WorldWideScience

Sample records for mediates arsenite-dependent regulation

  1. Involvement of c-Met- and phosphatidylinositol 3-kinase dependent pathways in arsenite-induced downregulation of catalase in hepatoma cells.

    Science.gov (United States)

    Kim, Soohee; Lee, Seung Heon; Kang, Sukmo; Lee, Lyon; Park, Jung-Duck; Ryu, Doug-Young

    2011-01-01

    Catalase protects cells from reactive oxygen species-induced damage by catalyzing the breakdown of hydrogen peroxide to oxygen and water. Arsenite decreases catalase activity; it activates phosphatidylinositol 3-kinase (PI3K) and its key downstream effector Akt in a variety of cells. The PI3K pathway is known to inhibit catalase expression. c-Met, an upstream regulator of PI3K and Akt, is also involved in the regulation of catalase expression. To examine the involvement of c-Met and PI3K pathways in the arsenite-induced downregulation of catalase, catalase mRNA and protein expression were analyzed in the human hepatoma cell line HepG2 treated with arsenite and either an inhibitor of c-Met (PHA665752 (PHA)) or of PI3K (LY294002 (LY)). Arsenite treatment markedly activated Akt and decreased the levels of both catalase mRNA and protein. Both PHA and LY attenuated arsenite-induced activation of Akt. PHA and LY treatment also prevented the inhibitory effect of arsenite on catalase protein expression but did not affect the level of catalase mRNA. These findings suggest that arsenite-induced inhibition of catalase expression is regulated at the mRNA and post-transcriptional levels in HepG2 cells, and that the post-transcriptional regulation is mediated via c-Met- and PI3K-dependent mechanisms.

  2. N6-methyladenosine mediates the cellular proliferation and apoptosis via microRNAs in arsenite-transformed cells.

    Science.gov (United States)

    Gu, Shiyan; Sun, Donglei; Dai, Huangmei; Zhang, Zunzhen

    2018-04-20

    N 6 -methyladenosine (m 6 A) modification is implicated to play an important role in cellular biological processes, but its regulatory mechanisms in arsenite-induced carcinogenesis are largely unknown. Here, human bronchial epithelial (HBE) cells were chronically treated with 2.5 μM arsenite sodium (NaAsO 2 ) for about 13 weeks and these cells were identified with malignant phenotype which was demonstrated by increased levels of cellular proliferation, percentages of plate colony formation and soft agar clone formation, and high potential of resistance to apoptotic induction. Our results firstly demonstrated that m 6 A modification on RNA was significantly increased in arsenite-transformed cells and this modification may be synergistically regulated by methyltransferase-like 3 (METTL3), methyltransferase-like 14 (METTL14), Wilms tumor 1-associated protein (WTAP) and Fat mass and obesity-associated protein (FTO). In addition, knocking down of METTL3 in arsenite-transformed cells can dramatically reverse the malignant phenotype, which was manifested by lower percentages of clone and colony formation as well as higher rates of apoptotic induction. Given the critical roles of miRNAs in cellular proliferation and apoptosis, miRNAs regulated by m 6 A in arsenite-transformed cells were analyzed by Venn diagram and KEGG pathway in this study. The results showed that these m 6 A-mediated miRNAs can regulate pathways which are closely associated with cellular proliferation and apoptosis, implicating that these miRNAs may be the critical bridge by which m 6 A mediates dysregulation of cell survival and apoptosis in arsenite-transformed cells. Taken together, our results firstly demonstrated the significant role of m 6 A in the prevention of tumor occurrence and progression induced by arsenite. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Arsenite evokes IL-6 secretion, autocrine regulation of STAT3 signaling, and miR-21 expression, processes involved in the EMT and malignant transformation of human bronchial epithelial cells

    International Nuclear Information System (INIS)

    Luo, Fei; Xu, Yuan; Ling, Min; Zhao, Yue; Xu, Wenchao; Liang, Xiao; Jiang, Rongrong; Wang, Bairu; Bian, Qian; Liu, Qizhan

    2013-01-01

    Arsenite is an established human carcinogen, and arsenite-induced inflammation contributes to malignant transformation of cells, but the molecular mechanisms by which cancers are produced remain to be established. The present results showed that, evoked by arsenite, secretion of interleukin-6 (IL-6), a pro-inflammatory cytokine, led to the activation of STAT3, a transcription activator, and to increased levels of a microRNA, miR-21. Blocking IL-6 with anti-IL-6 antibody and inhibiting STAT3 activation reduced miR-21 expression. For human bronchial epithelial cells, cultured in the presence of anti-IL-6 antibody for 3 days, the arsenite-induced EMT and malignant transformation were reversed. Thus, IL-6, acting on STAT3 signaling, which up-regulates miR-21in an autocrine manner, contributes to the EMT induced by arsenite. These data define a link from inflammation to EMT in the arsenite-induced malignant transformation of HBE cells. This link, mediated through miRNAs, establishes a mechanism for arsenite-induced lung carcinogenesis. - Highlights: • Arsenite evokes IL-6 secretion. • IL-6 autocrine mediates STAT3 signaling and up-regulates miR-21expression. • Inflammation is involved in arsenite-induced EMT

  4. The study of the mechanism of arsenite toxicity in respiration-deficient cells reveals that NADPH oxidase-derived superoxide promotes the same downstream events mediated by mitochondrial superoxide in respiration-proficient cells

    Energy Technology Data Exchange (ETDEWEB)

    Guidarelli, Andrea; Fiorani, Mara; Carloni, Silvia; Cerioni, Liana; Balduini, Walter; Cantoni, Orazio, E-mail: orazio.cantoni@uniurb.it

    2016-09-15

    We herein report the results from a comparative study of arsenite toxicity in respiration-proficient (RP) and -deficient (RD) U937 cells. An initial characterization of these cells led to the demonstration that the respiration-deficient phenotype is not associated with apparent changes in mitochondrial mass and membrane potential. In addition, similar levels of superoxide (O{sub 2}{sup .-}) were generated by RP and RD cells in response to stimuli specifically triggering respiratory chain-independent mitochondrial mechanisms or extramitochondrial, NADPH-oxidase dependent, mechanisms. At the concentration of 2.5 μM, arsenite elicited selective formation of O{sub 2}{sup .-} in the respiratory chain of RP cells, with hardly any contribution of the above mechanisms. Under these conditions, O{sub 2}{sup .-} triggered downstream events leading to endoplasmic reticulum (ER) stress, autophagy and apoptosis. RD cells challenged with similar levels of arsenite failed to generate O{sub 2}{sup .-} because of the lack of a functional respiratory chain and were therefore resistant to the toxic effects mediated by the metalloid. Their resistance, however, was lost after exposure to four fold greater concentrations of arsenite, coincidentally with the release of O{sub 2}{sup .-} mediated by NADPH oxidase. Interestingly, extramitochondrial O{sub 2}{sup .-} triggered the same downstream events and an identical mode of death previously observed in RP cells. Taken together, the results obtained in this study indicate that arsenite toxicity is strictly dependent on O{sub 2}{sup .-} availability that, regardless of whether generated in the mitochondrial or extramitochondrial compartments, triggers similar downstream events leading to ER stress, autophagy and apoptosis. - Highlights: • Mitochondrial superoxide mediates arsenite toxicity in respiration-proficient cells. • NADPH-derived superoxide mediates arsenite toxicity in respiration-deficient cells. • Arsenite causes apoptosis

  5. Sensitivity to sodium arsenite in human melanoma cells depends upon susceptibility to arsenite-induced mitotic arrest

    International Nuclear Information System (INIS)

    McNeely, Samuel C.; Belshoff, Alex C.; Taylor, B. Frazier; Fan, Teresa W-M.; McCabe, Michael J.; Pinhas, Allan R.

    2008-01-01

    Arsenic induces clinical remission in patients with acute promyelocytic leukemia and has potential for treatment of other cancers. The current study examines factors influencing sensitivity to arsenic using human malignant melanoma cell lines. A375 and SK-Mel-2 cells were sensitive to clinically achievable concentrations of arsenite, whereas SK-Mel-3 and SK-Mel-28 cells required supratherapeutic levels for toxicity. Inhibition of glutathione synthesis, glutathione S-transferase (GST) activity, and multidrug resistance protein (MRP) transporter function attenuated arsenite resistance, consistent with studies suggesting that arsenite is extruded from the cell as a glutathione conjugate by MRP-1. However, MRP-1 was not overexpressed in resistant lines and GST-π was only slightly elevated. ICP-MS analysis indicated that arsenite-resistant SK-Mel-28 cells did not accumulate less arsenic than arsenite-sensitive A375 cells, suggesting that resistance was not attributable to reduced arsenic accumulation but rather to intrinsic properties of resistant cell lines. The mode of arsenite-induced cell death was apoptosis. Arsenite-induced apoptosis is associated with cell cycle alterations. Cell cycle analysis revealed arsenite-sensitive cells arrested in mitosis whereas arsenite-resistant cells did not, suggesting that induction of mitotic arrest occurs at lower intracellular arsenic concentrations. Higher intracellular arsenic levels induced cell cycle arrest in the S-phase and G 2 -phase in SK-Mel-3 and SK-Mel-28 cells, respectively. The lack of arsenite-induced mitotic arrest in resistant cell lines was associated with a weakened spindle checkpoint resulting from reduced expression of spindle checkpoint protein BUBR1. These data suggest that arsenite has potential for treatment of solid tumors but a functional spindle checkpoint is a prerequisite for a positive response to its clinical application

  6. Sodium arsenite accelerates TRAIL-mediated apoptosis in melanoma cells through upregulation of TRAIL-R1/R2 surface levels and downregulation of cFLIP expression

    International Nuclear Information System (INIS)

    Ivanov, Vladimir N.; Hei, Tom K.

    2006-01-01

    AP-1/cJun, NF-κB and STAT3 transcription factors control expression of numerous genes, which regulate critical cell functions including proliferation, survival and apoptosis. Sodium arsenite is known to suppress both the IKK-NF-κB and JAK2-STAT3 signaling pathways and to activate the MAPK/JNK-cJun pathways, thereby committing some cancers to undergo apoptosis. Indeed, sodium arsenite is an effective drug for the treatment of acute promyelocytic leukemia with little nonspecific toxicity. Malignant melanoma is highly refractory to conventional radio- and chemotherapy. In the present study, we observed strong effects of sodium arsenite treatment on upregulation of TRAIL-mediated apoptosis in human and mouse melanomas. Arsenite treatment upregulated surface levels of death receptors, TRAIL-R1 and TRAIL-R2, through increased translocation of these proteins from cytoplasm to the cell surface. Furthermore, activation of cJun and suppression of NF-κB by sodium arsenite resulted in upregulation of the endogenous TRAIL and downregulation of the cFLIP gene expression (which encodes one of the main anti-apoptotic proteins in melanomas) followed by cFLIP protein degradation and, finally, by acceleration of TRAIL-induced apoptosis. Direct suppression of cFLIP expression by cFLIP RNAi also accelerated TRAIL-induced apoptosis in these melanomas, while COX-2 suppression substantially increased levels of both TRAIL-induced and arsenite-induced apoptosis. In contrast, overexpression of permanently active AKTmyr inhibited TRAIL-mediated apoptosis via downregulation of TRAIL-R1 levels. Finally, AKT overactivation increased melanoma survival in cell culture and dramatically accelerated growth of melanoma transplant in vivo, highlighting a role of AKT suppression for effective anticancer treatment

  7. Endoplasmic reticulum stress is involved in arsenite-induced oxidative injury in rat brain

    International Nuclear Information System (INIS)

    Lin, Anya M.Y.; Chao, P.L.; Fang, S.F.; Chi, C.W.; Yang, C.H.

    2007-01-01

    The mechanism underlying sodium arsenite (arsenite)-induced neurotoxicity was investigated in rat brain. Arsenite was locally infused in the substantia nigra (SN) of anesthetized rat. Seven days after infusion, lipid peroxidation in the infused SN was elevated and dopamine level in the ipsilateral striatum was reduced in a concentration-dependent manner (0.3-5 nmol). Furthermore, local infusion of arsenite (5 nmol) decreased GSH content and increased expression of heat shock protein 70 and heme oxygenase-1 in the infused SN. Aggregation of α-synuclein, a putative pathological protein involved in several CNS neurodegenerative diseases, was elevated in the arsenite-infused SN. From the breakdown pattern of α-spectrin, both necrosis and apoptosis were involved in the arsenite-induced neurotoxicity. Pyknotic nuclei, cellular shrinkage and cytoplasmic disintegration, indicating necrosis, and TUNEL-positive cells and DNA ladder, indicating apoptosis was observed in the arsenite-infused SN. Arsenite-induced apoptosis was mediated via two different organelle pathways, mitochondria and endoplasmic reticulum (ER). For mitochondrial activation, cytosolic cytochrome c and caspase-3 levels were elevated in the arsenite-infused SN. In ER pathway, arsenite increased activating transcription factor-4, X-box binding protein 1, C/EBP homologues protein (CHOP) and cytosolic immunoglobulin binding protein levels. Moreover, arsenite reduced procaspase 12 levels, an ER-specific enzyme in the infused SN. Taken together, our study suggests that arsenite is capable of inducing oxidative injury in CNS. In addition to mitochondria, ER stress was involved in the arsenite-induced apoptosis. Arsenite-induced neurotoxicity clinically implies a pathophysiological role of arsenite in CNS neurodegeneration

  8. c-Jun/AP-1 pathway-mediated cyclin D1 expression participates in low dose arsenite-induced transformation in mouse epidermal JB6 Cl41 cells

    International Nuclear Information System (INIS)

    Zhang Dongyun; Li Jingxia; Gao Jimin; Huang Chuanshu

    2009-01-01

    Arsenic is a well-documented human carcinogen associated with skin carcinogenesis. Our previous work reveals that arsenite exposure is able to induce cell transformation in mouse epidermal cell JB6 Cl41 through the activation of ERK, rather than JNK pathway. Our current studies further evaluate downstream pathway in low dose arsenite-induced cell transformation in JB6 Cl41 cells. Our results showed that treatment of cells with low dose arsenite induced activation of c-Jun/AP-1 pathway, and ectopic expression of dominant negative mutant of c-Jun (TAM67) blocked arsenite-induced transformation. Furthermore, our data indicated that cyclin D1 was an important downstream molecule involved in c-Jun/AP-1-mediated cell transformation upon low dose arsenite exposure, because inhibition of cyclin D1 expression by its specific siRNA in the JB6 Cl41 cells resulted in impairment of anchorage-independent growth of cells induced by low dose arsenite. Collectively, our results demonstrate that c-Jun/AP-1-mediated cyclin D1 expression is at least one of the key events implicated in cell transformation upon low dose arsenite exposure

  9. Arsenite reduces insulin secretion in rat pancreatic β-cells by decreasing the calcium-dependent calpain-10 proteolysis of SNAP-25

    International Nuclear Information System (INIS)

    Diaz-Villasenor, Andrea; Burns, Anna L.; Salazar, Ana Maria; Sordo, Monserrat; Hiriart, Marcia; Cebrian, Mariano E.; Ostrosky-Wegman, Patricia

    2008-01-01

    An increase in the prevalence of type 2 diabetes has been consistently observed among residents of high arsenic exposure areas. We have previously shown that in rat pancreatic β-cells, low arsenite doses impair the secretion of insulin without altering its synthesis. To further study the mechanism by which arsenite reduces insulin secretion, we evaluated the effects of arsenite on the calcium-calpain pathway that triggers insulin exocytosis in RINm5F cells. Cell cycle and proliferation analysis were also performed to complement the characterization. Free [Ca 2+ ]i oscillations needed for glucose-stimulated insulin secretion were abated in the presence of subchronic low arsenite doses (0.5-2 μM). The global activity of calpains increased with 2 μM arsenite. However, during the secretion of insulin stimulated with glucose (15.6 mM), 1 μM arsenite decreased the activity of calpain-10, measured as SNAP-25 proteolysis. Both proteins are needed to fuse insulin granules with the membrane to produce insulin exocytosis. Arsenite also induced a slowdown in the β cell line proliferation in a dose-dependent manner, reflected by a reduction of dividing cells and in their arrest in G2/M. Data obtained showed that one of the mechanisms by which arsenite impairs insulin secretion is by decreasing the oscillations of free [Ca 2+ ]i, thus reducing calcium-dependent calpain-10 partial proteolysis of SNAP-25. The effects in cell division and proliferation observed with arsenite exposure can be an indirect consequence of the decrease in insulin secretion

  10. Effects of sodium arsenite on the survival of UV-irradiated Escherichia coli: inhibition of a recA-dependent function

    Energy Technology Data Exchange (ETDEWEB)

    Rossman, T; Meyn, M S; Troll, W [New York Univ., N.Y. (USA). Dept. of Environmental Medicine

    1975-11-01

    Epidemiological studies and clinical observations suggesting potential hazards of arsenic compounds in increasing the incidence of cancer have been in complete contradiction with experimental findings in animals. Because of the predominance of skin cancers in the epidemiological reports, it was decided to investigate the possibility that arsenic compounds might interfere with DNA repair. Using Escherichia coli as a test system, it is shown that this is indeed the case. Sodium arsenite, at concentrations of 0.1mM and higher, decreases the survival of ultraviolet-irradiated E.coli WP2, a strain which possesses the full complement of repair genes. The effect of the arsenite increases with increasing ultraviolet dose. Similar results were obtained with the excision repair deficient strains WWP2 (uvrA) and WP6(polA). Sodium arsenite had no effect on the survival of recA mutant, WP10. Survival of ultraviolet-irradiated WP5(exrA) was enhanced by sodium arsenite, the effect being greatest at low ultraviolet doses. It is postulated that arsenite inhibits a recA-dependent step in DNA repair. To account for the increased survival of the exrA mutant, it is suggested that in the absence of the exr/sup +/ gene, the arsenite-sensitive recA-dependent function is deleterious. The ability of arsenite to inhibit DNA repair may account for the clinical and epidemiological reports linking arsenicals with an increased incidence of cancer.

  11. The accumulations of HIF-1α and HIF-2α by JNK and ERK are involved in biphasic effects induced by different levels of arsenite in human bronchial epithelial cells

    International Nuclear Information System (INIS)

    Xu, Yuan; Li, Yuan; Li, Huiqiao; Pang, Ying; Zhao, Yue; Jiang, Rongrong; Shen, Lu; Zhou, Jianwei; Wang, Xinru; Liu, Qizhan

    2013-01-01

    The biphasic effects of arsenite, in which low levels of arsenite induce cell proliferation and high levels of arsenite induce DNA damage and apoptosis, apparently contribute to arsenite-induced carcinogenesis. However, the mechanisms underlying this phenomenon are not well understood. In this study, we investigated the effects of different levels of arsenite on cell proliferation, DNA damage and apoptosis as well as on signal transduction pathways in human bronchial epithelial (HBE) cells. Our results show that a low level of arsenite activates extracellular signal-regulated kinases (ERK), which probably mediate arsenite-inhibited degradation of ubiquitinated hypoxia-inducible factor-2α (HIF-2α) in HBE cells. ERK inhibition blocks cell proliferation induced by a low level of arsenite, in part via HIF-2α. In contrast, a high level of arsenite activates c-Jun N-terminal kinases (JNK), which provoke a response to suppress ubiquitinated HIF-1α degradation. Down-regulation of HIF-1α by inhibiting JNK, however, increases the DNA damage but decreases the apoptosis induced by a high level of arsenite. Thus, data in the present study suggest that the accumulations of HIF-1α and HIF-2α by JNK and ERK are involved in different levels of arsenite-induced biphasic effects, with low levels of arsenite inducing cell proliferation and high levels of arsenite inducing DNA damage and apoptosis in HBE cells. -- Highlights: ► Biphasic effects induced by different concentrations of arsenite. ► Different regulation of ERK or JNK signal pathway by arsenite. ► Different regulation of HIF1α or HIF 2α by arsenite.

  12. An ArsR/SmtB family member is involved in the regulation by arsenic of the arsenite oxidase operon in Thiomonas arsenitoxydans.

    Science.gov (United States)

    Moinier, Danielle; Slyemi, Djamila; Byrne, Deborah; Lignon, Sabrina; Lebrun, Régine; Talla, Emmanuel; Bonnefoy, Violaine

    2014-10-01

    The genetic organization of the aioBA operon, encoding the arsenite oxidase of the moderately acidophilic and facultative chemoautotrophic bacterium Thiomonas arsenitoxydans, is different from that of the aioBA operon in the other arsenite oxidizers, in that it encodes AioF, a metalloprotein belonging to the ArsR/SmtB family. AioF is stabilized by arsenite, arsenate, or antimonite but not molybdate. Arsenic is tightly attached to AioF, likely by cysteine residues. When loaded with arsenite or arsenate, AioF is able to bind specifically to the regulatory region of the aio operon at two distinct positions. In Thiomonas arsenitoxydans, the promoters of aioX and aioB are convergent, suggesting that transcriptional interference occurs. These results indicate that the regulation of the aioBA operon is more complex in Thiomonas arsenitoxydans than in the other aioBA containing arsenite oxidizers and that the arsenic binding protein AioF is involved in this regulation. On the basis of these data, a model to explain the tight control of aioBA expression by arsenic in Thiomonas arsenitoxydans is proposed. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  13. Effects of cultivation conditions on the uptake of arsenite and arsenic chemical species accumulated by Pteris vittata in hydroponics.

    Science.gov (United States)

    Hatayama, Masayoshi; Sato, Takahiko; Shinoda, Kozo; Inoue, Chihiro

    2011-03-01

    The physiological responses of the arsenic-hyperaccumulator, Pteris vittata, such as arsenic uptake and chemical transformation in the fern, have been investigated. However, a few questions remain regarding arsenic treatment in hydroponics. Incubation conditions such as aeration, arsenic concentration, and incubation period might affect those responses of P. vittata in hydroponics. Arsenite uptake was low under anaerobic conditions, as previously reported. However, in an arsenite uptake experiment, phosphorous (P) starvation-dependent uptake of arsenate was observed under aerobic conditions. Time course-dependent analysis of arsenite oxidation showed that arsenite was gradually oxidized to arsenate during incubation. Arsenite oxidation was not observed in any of the control conditions, such as exposure to a nutrient solution or to culture medium only, or with the use of dried root; arsenite oxidation was only observed when live root was used. This result suggests that sufficient aeration allows the rhizosphere system to oxidize arsenite and enables the fern to efficiently take up arsenite as arsenate. X-ray absorption near edge structure (XANES) analyses showed that long-duration exposure to arsenic using a hydroponic system led to the accumulation of arsenate as the dominant species in the root tips, but not in the whole roots, partly because up-regulation of arsenate uptake by P starvation of the fern was caused and retained by long-time incubation. Analysis of concentration-dependent arsenate uptake by P. vittata showed that the uptake switched from a high-affinity transport system to a low-affinity system at high arsenate concentrations, which partially explains the increased arsenate abundance in the whole root. Copyright © 2010 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. Acetylacetone as an efficient electron shuttle for concerted redox conversion of arsenite and nitrate in the opposite direction.

    Science.gov (United States)

    Chen, Zhihao; Song, Xiaojie; Zhang, Shujuan; Wu, Bingdang; Zhang, Guoyang; Pan, Bingcai

    2017-11-01

    The redox conversion of arsenite and nitrate has direct effects on their potential environment risks. Due to the similar reduction potentials, there are few technologies that can simultaneously oxidize arsenite and reduce nitrate in one process. Here, we demonstrate that a diketone-mediated photochemical process could efficiently do this. A combined experimental and theoretical investigation was conducted to elucidate the mechanisms behind the redox conversion in the UV/acetylacetone (AA) process. Our key finding is that UV irradiation significantly changed the redox potential of AA. The excited AA, 3 (AA)*, acted as a semiquinone radical-like electron shuttle. For arsenite oxidation, the efficiency of 3 (AA)* was 1-2 orders of magnitude higher than those of quinone-type electron shuttles, whereas the consumption of AA was 2-4 orders of magnitude less than those of benzonquinones. The oxidation of arsenite and reduction of nitrate could be both accelerated when they existed together in UV/AA process. The results indicate that small diketones are some neglected but potent electron shuttles of great application potential in regulating aquatic redox reactions with the combination of UV irradiation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Calcium-dependent protein kinase CPK31 interacts with arsenic transporter AtNIP1;1 and regulates arsenite uptake in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Ruijie Ji

    Full Text Available Although arsenite [As(III] is non-essential and toxic for plants, it is effectively absorbed through various transporters into the roots. Here we identified a calcium-dependent protein kinase (CPK31 response for As(III tolerance in Arabidopsis. We identified CPK31 as an interacting protein of a nodulin 26-like intrinsic protein (NIP1;1, an aquaporin involved in As(III uptake. Similarly to the nip1;1 mutants, the loss-of-function mutants of CPK31 improved the tolerance against As(III but not As(V, and accumulated less As(III in roots than that of the wild-type plants. The promoter-β-glucuronidase and quantitative Real-Time PCR analysis revealed that CPK31 displayed overlapping expression profiles with NIP1;1 in the roots, suggesting that they might function together in roots. Indeed, the cpk31 nip1;1 double mutants exhibited stronger As(III tolerance than cpk31 mutants, but similar to nip1;1 mutants, supporting the idea that CPK31 might serve as an upstream regulator of NIP1;1. Furthermore, transient CPK31 overexpression induced by dexamethasone caused the decrease in As(III tolerance of transgenic Arabidopsis lines. These findings reveal that CPK31 is a key factor in As(III response in plants.

  16. Induction of apoptotic death and retardation of neuronal differentiation of human neural stem cells by sodium arsenite treatment

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Vladimir N., E-mail: vni3@columbia.edu [Center for Radiological Research, Department of Radiation Oncology, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, NY 10032 (United States); Hei, Tom K. [Center for Radiological Research, Department of Radiation Oncology, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, NY 10032 (United States)

    2013-04-01

    Chronic arsenic toxicity is a global health problem that affects more than 100 million people worldwide. Long-term health effects of inorganic sodium arsenite in drinking water may result in skin, lung and liver cancers and in severe neurological abnormalities. We investigated in the present study whether sodium arsenite affects signaling pathways that control cell survival, proliferation and neuronal differentiation of human neural stem cells (NSC). We demonstrated that the critical signaling pathway, which was suppressed by sodium arsenite in NSC, was the protective PI3K–AKT pathway. Sodium arsenite (2–4 μM) also caused down-regulation of Nanog, one of the key transcription factors that control pluripotency and self-renewal of stem cells. Mitochondrial damage and cytochrome-c release induced by sodium arsenite exposure was followed by initiation of the mitochondrial apoptotic pathway in NSC. Beside caspase-9 and caspase-3 inhibitors, suppression of JNK activity decreased levels of arsenite-induced apoptosis in NSC. Neuronal differentiation of NSC was substantially inhibited by sodium arsenite exposure. Overactivation of JNK1 and ERK1/2 and down-regulation of PI3K–AKT activity induced by sodium arsenite were critical factors that strongly affected neuronal differentiation. In conclusion, sodium arsenite exposure of human NSC induces the mitochondrial apoptotic pathway, which is substantially accelerated due to the simultaneous suppression of PI3K–AKT. Sodium arsenite also negatively affects neuronal differentiation of NSC through overactivation of MEK–ERK and suppression of PI3K–AKT. - Highlights: ► Arsenite induces the mitochondrial apoptotic pathway in human neural stem cells. ► Arsenite-induced apoptosis is strongly upregulated by suppression of PI3K–AKT. ► Arsenite-induced apoptosis is strongly down-regulated by inhibition of JNK–cJun. ► Arsenite negatively affects neuronal differentiation by inhibition of PI3K–AKT.

  17. Induction of apoptotic death and retardation of neuronal differentiation of human neural stem cells by sodium arsenite treatment

    International Nuclear Information System (INIS)

    Ivanov, Vladimir N.; Hei, Tom K.

    2013-01-01

    Chronic arsenic toxicity is a global health problem that affects more than 100 million people worldwide. Long-term health effects of inorganic sodium arsenite in drinking water may result in skin, lung and liver cancers and in severe neurological abnormalities. We investigated in the present study whether sodium arsenite affects signaling pathways that control cell survival, proliferation and neuronal differentiation of human neural stem cells (NSC). We demonstrated that the critical signaling pathway, which was suppressed by sodium arsenite in NSC, was the protective PI3K–AKT pathway. Sodium arsenite (2–4 μM) also caused down-regulation of Nanog, one of the key transcription factors that control pluripotency and self-renewal of stem cells. Mitochondrial damage and cytochrome-c release induced by sodium arsenite exposure was followed by initiation of the mitochondrial apoptotic pathway in NSC. Beside caspase-9 and caspase-3 inhibitors, suppression of JNK activity decreased levels of arsenite-induced apoptosis in NSC. Neuronal differentiation of NSC was substantially inhibited by sodium arsenite exposure. Overactivation of JNK1 and ERK1/2 and down-regulation of PI3K–AKT activity induced by sodium arsenite were critical factors that strongly affected neuronal differentiation. In conclusion, sodium arsenite exposure of human NSC induces the mitochondrial apoptotic pathway, which is substantially accelerated due to the simultaneous suppression of PI3K–AKT. Sodium arsenite also negatively affects neuronal differentiation of NSC through overactivation of MEK–ERK and suppression of PI3K–AKT. - Highlights: ► Arsenite induces the mitochondrial apoptotic pathway in human neural stem cells. ► Arsenite-induced apoptosis is strongly upregulated by suppression of PI3K–AKT. ► Arsenite-induced apoptosis is strongly down-regulated by inhibition of JNK–cJun. ► Arsenite negatively affects neuronal differentiation by inhibition of PI3K–AKT

  18. Multiple controls affect arsenite oxidase gene expression in Herminiimonas arsenicoxydans

    Directory of Open Access Journals (Sweden)

    Coppée Jean-Yves

    2010-02-01

    Full Text Available Abstract Background Both the speciation and toxicity of arsenic are affected by bacterial transformations, i.e. oxidation, reduction or methylation. These transformations have a major impact on environmental contamination and more particularly on arsenic contamination of drinking water. Herminiimonas arsenicoxydans has been isolated from an arsenic- contaminated environment and has developed various mechanisms for coping with arsenic, including the oxidation of As(III to As(V as a detoxification mechanism. Results In the present study, a differential transcriptome analysis was used to identify genes, including arsenite oxidase encoding genes, involved in the response of H. arsenicoxydans to As(III. To get insight into the molecular mechanisms of this enzyme activity, a Tn5 transposon mutagenesis was performed. Transposon insertions resulting in a lack of arsenite oxidase activity disrupted aoxR and aoxS genes, showing that the aox operon transcription is regulated by the AoxRS two-component system. Remarkably, transposon insertions were also identified in rpoN coding for the alternative N sigma factor (σ54 of RNA polymerase and in dnaJ coding for the Hsp70 co-chaperone. Western blotting with anti-AoxB antibodies and quantitative RT-PCR experiments allowed us to demonstrate that the rpoN and dnaJ gene products are involved in the control of arsenite oxidase gene expression. Finally, the transcriptional start site of the aoxAB operon was determined using rapid amplification of cDNA ends (RACE and a putative -12/-24 σ54-dependent promoter motif was identified upstream of aoxAB coding sequences. Conclusion These results reveal the existence of novel molecular regulatory processes governing arsenite oxidase expression in H. arsenicoxydans. These data are summarized in a model that functionally integrates arsenite oxidation in the adaptive response to As(III in this microorganism.

  19. Arsenite induces cell transformation by reactive oxygen species, AKT, ERK1/2, and p70S6K1

    International Nuclear Information System (INIS)

    Carpenter, Richard L.; Jiang, Yue; Jing, Yi; He, Jun; Rojanasakul, Yon; Liu, Ling-Zhi; Jiang, Bing-Hua

    2011-01-01

    Highlights: ► Chronic exposure to arsenite induces cell proliferation and transformation. ► Arsenite-induced transformation increases ROS production and downstream signalings. ► Inhibition of ROS levels via catalase reduces arsenite-induced cell transformation. ► Interruption of AKT, ERK, or p70S6K1 inhibits arsenite-induced cell transformation. -- Abstract: Arsenic is naturally occurring element that exists in both organic and inorganic formulations. The inorganic form arsenite has a positive association with development of multiple cancer types. There are significant populations throughout the world with high exposure to arsenite via drinking water. Thus, human exposure to arsenic has become a significant public health problem. Recent evidence suggests that reactive oxygen species (ROS) mediate multiple changes to cell behavior after acute arsenic exposure, including activation of proliferative signaling and angiogenesis. However, the role of ROS in mediating cell transformation by chronic arsenic exposure is unknown. We found that cells chronically exposed to sodium arsenite increased proliferation and gained anchorage-independent growth. This cell transformation phenotype required constitutive activation of AKT, ERK1/2, mTOR, and p70S6K1. We also observed these cells constitutively produce ROS, which was required for the constitutive activation of AKT, ERK1/2, mTOR, and p70S6K1. Suppression of ROS levels by forced expression of catalase also reduced cell proliferation and anchorage-independent growth. These results indicate cell transformation induced by chronic arsenic exposure is mediated by increased cellular levels of ROS, which mediates activation of AKT, ERK1/2, and p70S6K1.

  20. The metalloid arsenite induces nuclear export of Id3 possibly via binding to the N-terminal cysteine residues

    International Nuclear Information System (INIS)

    Kurooka, Hisanori; Sugai, Manabu; Mori, Kentaro; Yokota, Yoshifumi

    2013-01-01

    Highlights: •Sodium arsenite induces cytoplasmic accumulation of Id3. •Arsenite binds to closely spaced N-terminal cysteine residues of Id3. •N-terminal cysteines are essential for arsenite-induced nuclear export of Id3. •Nuclear export of Id3 counteracts its transcriptional repression activity. -- Abstract: Ids are versatile transcriptional repressors that regulate cell proliferation and differentiation, and appropriate subcellular localization of the Id proteins is important for their functions. We previously identified distinct functional nuclear export signals (NESs) in Id1 and Id2, but no active NES has been reported in Id3. In this study, we found that treatment with the stress-inducing metalloid arsenite led to the accumulation of GFP-tagged Id3 in the cytoplasm. Cytoplasmic accumulation was impaired by a mutation in the Id3 NES-like sequence resembling the Id1 NES, located at the end of the HLH domain. It was also blocked by co-treatment with the CRM1-specific nuclear export inhibitor leptomycin B (LMB), but not with the inhibitors for mitogen-activated protein kinases (MAPKs). Importantly, we showed that the closely spaced N-terminal cysteine residues of Id3 interacted with the arsenic derivative phenylarsine oxide (PAO) and were essential for the arsenite-induced cytoplasmic accumulation, suggesting that arsenite induces the CRM1-dependent nuclear export of Id3 via binding to the N-terminal cysteines. Finally, we demonstrated that Id3 significantly repressed arsenite-stimulated transcription of the immediate-early gene Egr-1 and that this repression activity was inversely correlated with the arsenite-induced nuclear export. Our results imply that Id3 may be involved in the biological action of arsenite

  1. Arsenite enhances tumor necrosis factor-α-induced expression of vascular cell adhesion molecule-1

    International Nuclear Information System (INIS)

    Tsou, T.-C.; Yeh, Szu Ching; Tsai, E.-M.; Tsai, F.-Y.; Chao, H.-R.; Chang, Louis W.

    2005-01-01

    Epidemiological studies demonstrated a high association of vascular diseases with arsenite exposure. We hypothesize that arsenite potentiates the effect of proinflammatory cytokines on vascular endothelial cells, and hence contributes to atherosclerosis. In this study, we investigated the effect of arsenite and its induction of glutathione (GSH) on vascular cell adhesion molecule-1 (VCAM-1) protein expression in human umbilical vein endothelial cells (HUVECs) in response to tumor necrosis factor-α (TNF-α), a typical proinflammatory cytokine. Our study demonstrated that arsenite pretreatment potentiated the TNF-α-induced VCAM-1 expression with up-regulations of both activator protein-1 (AP-1) and nuclear factor-κB (NF-κB). To elucidate the role of GSH in regulation of AP-1, NF-κB, and VCAM-1 expression, we employed L-buthionine (S,R)-sulfoximine (BSO), a specific γ-glutamylcysteine synthetase (γ-GCS) inhibitor, to block intracellular GSH synthesis. Our investigation revealed that, by depleting GSH, arsenite attenuated the TNF-α-induced VCAM-1 expression as well as a potentiation of AP-1 and an attenuation of NF-κB activations by TNF-α. Moreover, we found that depletion of GSH would also attenuate the TNF-α-induced VCAM-1 expression with a down-regulation of the TNF-α-induced NF-κB activation and without significant effect on AP-1. On the other hand, the TNF-α-induced VCAM-1 expression could be completely abolished by inhibition of AP-1 or NF-κB activity, suggesting that activation of both AP-1 and NF-κB was necessary for VCAM-1 expression. In summary, we demonstrate that arsenite enhances the TNF-α-induced VCAM-1 expression in HUVECs via regulation of AP-1 and NF-κB activities in a GSH-sensitive manner. Our present study suggested a potential mechanism for arsenite in the induction of vascular inflammation and vascular diseases via modulating the actions of proinflammatory cytokines

  2. Herp regulates Hrd1-mediated ubiquitylation in a ubiquitin-like domain-dependent manner

    DEFF Research Database (Denmark)

    Kny, Melanie; Standera, Sybille; Hartmann-Petersen, Rasmus

    2011-01-01

    in ER-associated protein degradation (ERAD) and interacts directly with the ubiquitin ligase Hrd1, which is found in high molecular mass complexes of the ER membrane. Here we present the first evidence that Herp regulates Hrd1-mediated ubiquitylation in a ubiquitin-like (UBL) domain-dependent manner. We...

  3. p52-Bcl3 complex promotes cyclin D1 expression in BEAS-2B cells in response to low concentration arsenite

    International Nuclear Information System (INIS)

    Wang, Feng; Shi, Yongli; Yadav, Santosh; Wang, He

    2010-01-01

    Arsenic is a well-recognized human carcinogen that causes a number of malignant diseases, including lung cancer. Previous studies have indicated that cyclin D1 is frequently over-expressed in many cancer types. It is also known that arsenite exposure enhances cyclin D1 expression, which involves NF-κB activation. However, the mechanism between cyclin D1 and the NF-κB pathway has not been well studied. This study was designed to characterize the underlying mechanism of induced cell growth and cyclin D1 expression in response to low concentration sodium arsenic (NaAsO 2 ) exposure through the NF-κB pathway. Cultured human bronchial epithelial cells, BEAS-2B, were exposed to low concentration sodium arsenite for the indicated durations, and cytotoxicity, gene expression, and protein activity were assessed. To profile the canonical and non-canonical NF-κB pathways involved in cell growth and cyclin D1 expression induced by low concentration arsenite, the NF-κB-specific inhibitor-phenethyl caffeate (CAPE) and NF-κB2 mRNA target sequences were used, and cyclin D1 expression in BEAS-2B cells was assessed. Our results demonstrated that exposure to low concentration arsenite enhanced BEAS-2B cells growth and cyclin D1 mRNA and protein expression. Activation and nuclear localization of p52 and Bcl3 in response to low concentration arsenite indicated that the non-canonical NF-κB pathway was involved in arsenite-induced cyclin D1 expression. Moreover, we further demonstrated that p52/Bcl3 complex formation enhanced cyclin D1 expression through the cyclin D1 gene promoter via its κB site. The up-regulation of cyclin D1 mediated by the p52-Bcl3 complex in response to low concentration arsenite might be important in assessing the health risk of low concentration arsenite and understanding the mechanisms of the harmful effects of arsenite.

  4. Regulation of metabolism by the Mediator complex.

    Science.gov (United States)

    Youn, Dou Yeon; Xiaoli, Alus M; Pessin, Jeffrey E; Yang, Fajun

    2016-01-01

    The Mediator complex was originally discovered in yeast, but it is conserved in all eukaryotes. Its best-known function is to regulate RNA polymerase II-dependent gene transcription. Although the mechanisms by which the Mediator complex regulates transcription are often complicated by the context-dependent regulation, this transcription cofactor complex plays a pivotal role in numerous biological pathways. Biochemical, molecular, and physiological studies using cancer cell lines or model organisms have established the current paradigm of the Mediator functions. However, the physiological roles of the mammalian Mediator complex remain poorly defined, but have attracted a great interest in recent years. In this short review, we will summarize some of the reported functions of selective Mediator subunits in the regulation of metabolism. These intriguing findings suggest that the Mediator complex may be an important player in nutrient sensing and energy balance in mammals.

  5. Reduction of arsenite-enhanced ultraviolet radiation-induced DNA damage by supplemental zinc

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Karen L.; King, Brenee S.; Sandoval, Monica M.; Liu, Ke Jian; Hudson, Laurie G., E-mail: lhudson@salud.unm.edu

    2013-06-01

    Arsenic is a recognized human carcinogen and there is evidence that arsenic augments the carcinogenicity of DNA damaging agents such as ultraviolet radiation (UVR) thereby acting as a co-carcinogen. Inhibition of DNA repair is one proposed mechanism to account for the co-carcinogenic actions of arsenic. We and others find that arsenite interferes with the function of certain zinc finger DNA repair proteins. Furthermore, we reported that zinc reverses the effects of arsenite in cultured cells and a DNA repair target protein, poly (ADP-ribose) polymerase-1. In order to determine whether zinc ameliorates the effects of arsenite on UVR-induced DNA damage in human keratinocytes and in an in vivo model, normal human epidermal keratinocytes and SKH-1 hairless mice were exposed to arsenite, zinc or both before solar-simulated (ss) UVR exposure. Poly (ADP-ribose) polymerase activity, DNA damage and mutation frequencies at the Hprt locus were measured in each treatment group in normal human keratinocytes. DNA damage was assessed in vivo by immunohistochemical staining of skin sections isolated from SKH-1 hairless mice. Cell-based findings demonstrate that ssUVR-induced DNA damage and mutagenesis are enhanced by arsenite, and supplemental zinc partially reverses the arsenite effect. In vivo studies confirm that zinc supplementation decreases arsenite-enhanced DNA damage in response to ssUVR exposure. From these data we can conclude that zinc offsets the impact of arsenic on ssUVR-stimulated DNA damage in cells and in vivo suggesting that zinc supplementation may provide a strategy to improve DNA repair capacity in arsenic exposed human populations. - Highlights: • Low levels of arsenite enhance UV-induced DNA damage in human keratinocytes. • UV-initiated HPRT mutation frequency is enhanced by arsenite. • Zinc supplementation offsets DNA damage and mutation frequency enhanced by arsenite. • Zinc-dependent reduction of arsenite enhanced DNA damage is confirmed in vivo.

  6. Sodium arsenite alters cell cycle and MTHFR, MT1/2, and c-Myc protein levels in MCF-7 cells

    International Nuclear Information System (INIS)

    Ruiz-Ramos, Ruben; Lopez-Carrillo, Lizbeth; Albores, Arnulfo; Hernandez-Ramirez, Raul U.; Cebrian, Mariano E.

    2009-01-01

    There is limited available information on the effects of arsenic on enzymes participating in the folate cycle. Therefore, our aim was to evaluate the effects of sodium arsenite on the protein levels of methylenetetrahydrofolate reductase (MTHFR) and dihydrofolate reductase (DHFR) and its further relationship with the expression MT1/2 and c-myc in MCF-7 cells. Arsenite treatment (0-10 μM) for 4 h decreased MTHFR levels in a concentration-dependent fashion without significant effects on DHFR. The effects on MTHFR were observed at arsenite concentrations not significantly affecting cell viability. We also observed an increase in S-phase recruitment at all concentrations probed. Lower concentrations (< 5 μM) induced cell proliferation, showing a high proportion of BrdU-stained cells, indicating a higher DNA synthesis rate. However, higher concentrations (≥ 5 μM) or longer treatment periods induced apoptosis. Arsenite also induced dose-dependent increases in MT1/2 and c-Myc protein levels. The levels of MTHFR were inversely correlated to MT1/2 and c-Myc overexpression and increased S-phase recruitment. Our findings indicate that breast epithelial cells are responsive to arsenite and suggest that exposure may pose a risk for breast cancer. The reductions in MTHFR protein levels contribute to understand the mechanisms underlying the induction of genes influencing growth regulation, such as c-myc and MT1/2. However, further research is needed to ascertain if the effects here reported following short-time and high-dose exposure are relevant for human populations chronically exposed to low arsenic concentrations.

  7. Calcium-mediated signaling and calmodulin-dependent kinase regulate hepatocyte-inducible nitric oxide synthase expression.

    Science.gov (United States)

    Zhang, Baochun; Crankshaw, Will; Nesemeier, Ryan; Patel, Jay; Nweze, Ikenna; Lakshmanan, Jaganathan; Harbrecht, Brian G

    2015-02-01

    Induced nitric oxide synthase (iNOS) is induced in hepatocytes by shock and inflammatory stimuli. Excessive NO from iNOS mediates shock-induced hepatic injury and death, so understanding the regulation of iNOS will help elucidate the pathophysiology of septic shock. In vitro, cytokines induce iNOS expression through activation of signaling pathways including mitogen-activated protein kinases and nuclear factor κB. Cytokines also induce calcium (Ca(2+)) mobilization and activate calcium-mediated intracellular signaling pathways, typically through activation of calmodulin-dependent kinases (CaMK). Calcium regulates NO production in macrophages but the role of calcium and calcium-mediated signaling in hepatocyte iNOS expression has not been defined. Primary rat hepatocytes were isolated, cultured, and induced to produce NO with proinflammatory cytokines. Calcium mobilization and Ca(2+)-mediated signaling were altered with ionophore, Ca(2+) channel blockers, and inhibitors of CaMK. The Ca(2+) ionophore A23187 suppressed cytokine-stimulated NO production, whereas Ethylene glycol tetraacetic acid and nifedipine increased NO production, iNOS messenger RNA, and iNOS protein expression. Inhibition of CaMK with KN93 and CBD increased NO production but the calcineurin inhibitor FK 506 decreased iNOS expression. These data demonstrate that calcium-mediated signaling regulates hepatocyte iNOS expression and does so through a mechanism independent of calcineurin. Changes in intracellular calcium levels may regulate iNOS expression during hepatic inflammation induced by proinflammatory cytokines. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. The Arsenite Oxidation Potential of Native Microbial Communities from Arsenic-Rich Freshwaters.

    Science.gov (United States)

    Fazi, Stefano; Crognale, Simona; Casentini, Barbara; Amalfitano, Stefano; Lotti, Francesca; Rossetti, Simona

    2016-07-01

    Microorganisms play an important role in speciation and mobility of arsenic in the environment, by mediating redox transformations of both inorganic and organic species. Since arsenite [As(III)] is more toxic than arsenate [As(V)] to the biota, the microbial driven processes of As(V) reduction and As(III) oxidation may play a prominent role in mediating the environmental impact of arsenic contamination. However, little is known about the ecology and dynamics of As(III)-oxidizing populations within native microbial communities exposed to natural high levels of As. In this study, two techniques for single cell quantification (i.e., flow cytometry, CARD-FISH) were used to analyze the structure of aquatic microbial communities across a gradient of arsenic (As) contamination in different freshwater environments (i.e., groundwaters, surface and thermal waters). Moreover, we followed the structural evolution of these communities and their capacity to oxidize arsenite, when experimentally exposed to high As(III) concentrations in experimental microcosms. Betaproteobacteria and Deltaproteobacteria were the main groups retrieved in groundwaters and surface waters, while Beta and Gammaproteobacteria dominated the bacteria community in thermal waters. At the end of microcosm incubations, the communities were able to oxidize up to 95 % of arsenite, with an increase of Alphaproteobacteria in most of the experimental conditions. Finally, heterotrophic As(III)-oxidizing strains (one Alphaproteobacteria and two Gammaproteobacteria) were isolated from As rich waters. Our findings underlined that native microbial communities from different arsenic-contaminated freshwaters can efficiently perform arsenite oxidation, thus contributing to reduce the overall As toxicity to the aquatic biota.

  9. Suppression of Mediator is regulated by Cdk8-dependent Grr1 turnover of the Med3 coactivator.

    Science.gov (United States)

    Gonzalez, Deyarina; Hamidi, Nurul; Del Sol, Ricardo; Benschop, Joris J; Nancy, Thomas; Li, Chao; Francis, Lewis; Tzouros, Manuel; Krijgsveld, Jeroen; Holstege, Frank C P; Conlan, R Steven

    2014-02-18

    Mediator, an evolutionary conserved large multisubunit protein complex with a central role in regulating RNA polymerase II-transcribed genes, serves as a molecular switchboard at the interface between DNA binding transcription factors and the general transcription machinery. Mediator subunits include the Cdk8 module, which has both positive and negative effects on activator-dependent transcription through the activity of the cyclin-dependent kinase Cdk8, and the tail module, which is required for positive and negative regulation of transcription, correct preinitiation complex formation in basal and activated transcription, and Mediator recruitment. Currently, the molecular mechanisms governing Mediator function remain largely undefined. Here we demonstrate an autoregulatory mechanism used by Mediator to repress transcription through the activity of distinct components of different modules. We show that the function of the tail module component Med3, which is required for transcription activation, is suppressed by the kinase activity of the Cdk8 module. Med3 interacts with, and is phosphorylated by, Cdk8; site-specific phosphorylation triggers interaction with and degradation by the Grr1 ubiquitin ligase, thereby preventing transcription activation. This active repression mechanism involving Grr1-dependent ubiquitination of Med3 offers a rationale for the substoichiometric levels of the tail module that are found in purified Mediator and the corresponding increase in tail components seen in cdk8 mutants.

  10. The ADMA/DDAH/NO pathway in human vein endothelial cells exposed to arsenite.

    Science.gov (United States)

    Osorio-Yáñez, Citlalli; Chin-Chan, Miguel; Sánchez-Peña, Luz C; Atzatzi-Aguilar, Octavio G; Olivares-Reyes, Jesus A; Segovia, José; Del Razo, Luz M

    2017-08-01

    Inorganic arsenic (iAs) exposure is related to cardiovascular disease, which is characterized by endothelial dysfunction and nitric oxide (NO) depletion. The mechanisms underlying NO depletion as related to iAs exposure are not fully understood. The endogenous inhibitor of nitric oxide synthase, asymmetric dimethylarginine (ADMA), might be a molecular target of iAs. ADMA concentrations are regulated by proteins involved in its synthesis (arginine methyl transferase 1 [PRMT-1]) and degradation (dimethylarginine dimethylaminohydrolase [DDAH]). Both, ADMA and NO are susceptible to oxidative stress. We aimed to determine the ADMA/DDAH/NO pathway in human vein endothelial cells (HUVEC-CS) exposed to arsenite. We exposed HUVEC-CS cells to 1, 2.5 and 5μM of arsenite for 24h. We proved that arsenite at 5μM was able to decrease NO levels with an associated increase in ADMA and depletion of l-arginine in HUVEC-CS cells. We also found a decrease in DDAH-1 protein expression with 5μM of arsenite compared to the control group. However, we did not observe significant differences in PRMT-1 protein expression at any of the concentrations of arsenite employed. Finally, arsenite (2.5 and 5μM) increased NADPH oxidase 4 protein levels compared with the control group. We conclude that ADMA, l-arginine and DDAH are involved in NO depletion produced by arsenite, and that the mechanism is related to oxidative stress. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Continuous activation of Nrf2 and its target antioxidant enzymes leads to arsenite-induced malignant transformation of human bronchial epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xu [Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, Jiangsu (China); Wang, Dapeng [Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, Jiangsu (China); Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, Guizhou (China); Ma, Yuan; Xu, Xiguo; Zhu, Zhen; Wang, Xiaojuan; Deng, Hanyi; Li, Chunchun; Chen, Min; Tong, Jian [Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, Jiangsu (China); Yamanaka, Kenzo [Laboratory of Environmental Toxicology and Carcinogenesis, School of Pharmacy, Nihon University, Chiba (Japan); An, Yan, E-mail: dranyan@126.com [Department of Toxicology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, Jiangsu (China)

    2015-12-01

    Long-term exposure to arsenite leads to human lung cancer, but the underlying mechanisms of carcinogenesis remain obscure. The transcription factor of nuclear factor-erythroid-2 p45-related factor (Nrf2)-mediated antioxidant response represents a critical cellular defense mechanism and protection against various diseases. Paradoxically, emerging data suggest that the constitutive activation of Nrf2 is associated with cancer development, progression and chemotherapy resistance. However, the role of Nrf2 in the occurrence of cancer induced by long-term arsenite exposure remains to be fully understood. By establishing transformed human bronchial epithelial (HBE) cells via chronic low-dose arsenite treatment, we showed that, in acquiring this malignant phenotype, continuous low level of ROS and sustained enhancement of Nrf2 and its target antioxidant enzyme levels were observed in the later-stage of arsenite-induced cell transformation. The downregulation of Keap1 level may be responsible for the over-activation of Nrf2 and its target enzymes. To validate these observations, Nrf2 was knocked down in arsenite-transformed HBE cells by SiRNA transfection, and the levels of Nrf2 and its target antioxidant enzymes, ROS, cell proliferation, migration, and colony formation were determined following these treatments. Results showed that blocked Nrf2 expression significantly reduced Nrf2 and its target antioxidant enzyme levels, restored ROS levels, and eventually suppressed cell proliferation, migration, and colony formation of the transformed cells. In summary, the results of the study strongly suggested that the continuous activation of Nrf2 and its target antioxidant enzymes led to the over-depletion of intracellular ROS levels, which contributed to arsenite-induced HBE cell transformation. - Highlights: • Low level, long term arsenite exposure induces malignant transformation in vitro. • Long term arsenite exposure reduces ROS and MDA levels. • Long term arsenite

  12. Continuous activation of Nrf2 and its target antioxidant enzymes leads to arsenite-induced malignant transformation of human bronchial epithelial cells

    International Nuclear Information System (INIS)

    Yang, Xu; Wang, Dapeng; Ma, Yuan; Xu, Xiguo; Zhu, Zhen; Wang, Xiaojuan; Deng, Hanyi; Li, Chunchun; Chen, Min; Tong, Jian; Yamanaka, Kenzo; An, Yan

    2015-01-01

    Long-term exposure to arsenite leads to human lung cancer, but the underlying mechanisms of carcinogenesis remain obscure. The transcription factor of nuclear factor-erythroid-2 p45-related factor (Nrf2)-mediated antioxidant response represents a critical cellular defense mechanism and protection against various diseases. Paradoxically, emerging data suggest that the constitutive activation of Nrf2 is associated with cancer development, progression and chemotherapy resistance. However, the role of Nrf2 in the occurrence of cancer induced by long-term arsenite exposure remains to be fully understood. By establishing transformed human bronchial epithelial (HBE) cells via chronic low-dose arsenite treatment, we showed that, in acquiring this malignant phenotype, continuous low level of ROS and sustained enhancement of Nrf2 and its target antioxidant enzyme levels were observed in the later-stage of arsenite-induced cell transformation. The downregulation of Keap1 level may be responsible for the over-activation of Nrf2 and its target enzymes. To validate these observations, Nrf2 was knocked down in arsenite-transformed HBE cells by SiRNA transfection, and the levels of Nrf2 and its target antioxidant enzymes, ROS, cell proliferation, migration, and colony formation were determined following these treatments. Results showed that blocked Nrf2 expression significantly reduced Nrf2 and its target antioxidant enzyme levels, restored ROS levels, and eventually suppressed cell proliferation, migration, and colony formation of the transformed cells. In summary, the results of the study strongly suggested that the continuous activation of Nrf2 and its target antioxidant enzymes led to the over-depletion of intracellular ROS levels, which contributed to arsenite-induced HBE cell transformation. - Highlights: • Low level, long term arsenite exposure induces malignant transformation in vitro. • Long term arsenite exposure reduces ROS and MDA levels. • Long term arsenite

  13. Inhibition of mitotic-specific histone phophorylation by sodium arsenite

    Energy Technology Data Exchange (ETDEWEB)

    Cobo, J.M. [Universidad de Alcala de Henares, Madrid (Spain); Valdez, J.G.; Gurley, L.R. [Los Alamos National Lab., NM (United States)

    1994-10-01

    Synchronized cultures of Chinese hamster cells (line CHO) were used to measure the effects of 10{mu}M sodium arsenite on histone phosphorylation. This treatment caused cell proliferation to be temporarily arrested, after which the cells spontaneously resumed cell proliferation in a radiomimetric manner. Immediately following treatment, it was found that sodium arsenite affected only mitotic-specific HI and H3 phosphorylations. Neither interphase, nor mitotic, H2A and H4 phosphorylations were affected, nor was interphase HI Phosphorylation affected. The phosphorylation of HI was inhibited only in mitosis, reducing HI phosphorylation to 38.1% of control levels, which was the level of interphase HI phosphorylation. The phosphorylation of both H3 variants was inhibited in mitosis, the less hydrophobic H3 to 19% and the more hydrophobic H3 to 24% of control levels. These results suggest that sodium arsenite may inhibite cell proliferation by interfering with the cyclin B/p34{sup cdc2} histone kinase activity which is thought to play a key role in regulating the cell cycle. It has been proposed by our laboratory that HI and H3 phosphorylations play a role in restructuring interphase chromatin into metaphase chromosomes. Interference of this process by sodium arsenite may lead to structurally damaged chromosomes resulting in the increased cancer risks known to be produced by arsenic exposure from the environment.

  14. Differential sensitivities of cellular XPA and PARP-1 to arsenite inhibition and zinc rescue.

    Science.gov (United States)

    Ding, Xiaofeng; Zhou, Xixi; Cooper, Karen L; Huestis, Juliana; Hudson, Laurie G; Liu, Ke Jian

    2017-09-15

    Arsenite directly binds to the zinc finger domains of the DNA repair protein poly (ADP ribose) polymerase (PARP)-1, and inhibits PARP-1 activity in the base excision repair (BER) pathway. PARP inhibition by arsenite enhances ultraviolet radiation (UVR)-induced DNA damage in keratinocytes, and the increase in DNA damage is reduced by zinc supplementation. However, little is known about the effects of arsenite and zinc on the zinc finger nucleotide excision repair (NER) protein xeroderma pigmentosum group A (XPA). In this study, we investigated the difference in response to arsenite exposure between XPA and PARP-1, and the differential effectiveness of zinc supplementation in restoring protein DNA binding and DNA damage repair. Arsenite targeted both XPA and PARP-1 in human keratinocytes, resulting in zinc loss from each protein and a pronounced decrease in XPA and PARP-1 binding to chromatin as demonstrated by Chip-on-Western assays. Zinc effectively restored DNA binding of PARP-1 and XPA to chromatin when zinc concentrations were equal to those of arsenite. In contrast, zinc was more effective in rescuing arsenite-augmented direct UVR-induced DNA damage than oxidative DNA damage. Taken together, our findings indicate that arsenite interferes with PARP-1 and XPA binding to chromatin, and that zinc supplementation fully restores DNA binding activity to both proteins in the cellular context. Interestingly, rescue of arsenite-inhibited DNA damage repair by supplemental zinc was more sensitive for DNA damage repaired by the XPA-associated NER pathway than for the PARP-1-dependent BER pathway. This study expands our understanding of arsenite's role in DNA repair inhibition and co-carcinogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Arsenite adsorption on goethite at elevated temperatures

    International Nuclear Information System (INIS)

    Kersten, Michael; Vlasova, Nataliya

    2009-01-01

    Experimental closed-system ΔT acid-base titrations between 10 deg. C and 75 deg. C were used to constrain a temperature-dependent 1-pK basic Stern model of the goethite surface complexation reactions. Experimental data for the temperature dependence of pH PZC determined by the one-term Van't Hoff extrapolation yield a value for goethite surface protonation enthalpy of -49.6 kJ mol -1 in good agreement with literature data. Batch titration data between 10 deg. C and 75 deg. C with arsenite concentrations between 10 μM and 100 μM yield adsorption curves, which increases with pH, peak at a pH of 9, and decrease at higher pH values. The slope of this bend becomes steeper with increasing temperature. A 1-pK charge distribution model in combination with a basic Stern layer option could be established for the pH-dependent arsenite adsorption. Formation of two inner-sphere bidentate surface complexes best matched the experimental data in agreement with published EXAFS spectroscopic information. The temperature behaviour of the thus derived intrinsic equilibrium constants can be well represented by the linear Van't Hoff logK T int vs. 1/T plot. Adsorption of arsenite on the goethite surface is exothermic (negative Δ r H 298 values) and therefore becomes weaker with increasing temperature. Application of the new constants with the aqueous speciation code VMINTEQ predicts that the As(III) concentration in presence of goethite sorbent decreases by 10 times once the hydrothermal solution is cooled from 99 deg. C to 1 deg. C. The model curve matches data from a natural thermal water spring system. The increase of adsorption efficiency for As along the temperature gradient may well serve as an additional process to prevent ecosystem contamination by As-rich water seepage from geothermal energy generation facilities

  16. Embryotoxicity of arsenite and arsenate

    International Nuclear Information System (INIS)

    Lindgren, A.; Danielsson, R.G.; Dencker, L.; Vahter, M.

    1984-01-01

    The distribution of 74 As-labelled and arsenite in pregnant mice and a monkey has been studied by autoradiography and gamma counting of isolated tissues, and their in vitro toxicity to a chondrogenic system has been investigated. With both arsenic forms, given as single intravenous injections to the mother, the 74 As-arsenic appeared to pass the mouse placenta relatively freely and approximately to the same extent. The retention time in material tissues including the placenta was, however, around three times longer with arsenite than with arsenate. In early gestation, high activity was registered in the embryonic neuroepithelium, which correlates well with reported CNS malformations in rodents. In late gestation, the distribution pattern was more like that in the adults. Accumulation in skin and squamous epithelia of the upper gastrointestinal tract (oral cavity, oesophagus and oesophageal region of stomach) dominated the distribution pucture, especially at a long survival interval. Arsenate, but not arsenite, showed affinity for the calcified areas of the skeleton. A marmoset monkey in late gestation receiving arsenite showed a somewhat lower rate of placental transfer than the mice. Skin and liver had the highest concentrations (at 8 hrs), both in mother and foetuses. This species is known not to methylate arsenic, resulting in stronger binding and longer retention times of arsenic as compared with other species. The stronger binding in maternal tissues may possibly explain the lower rate of placental transfer. Arsenite was shown to inhibit cartilage formation in a chick limb bud mesenchymal spot culture system (ED50 approximately 5-10μM) while arsenate seemed to be without effect at concentrations up to 200 μM (highest tested). Arsenate, however, showed a potential of the arsenite toxicity. (author)

  17. Sodium arsenite impairs insulin secretion and transcription in pancreatic β-cells

    International Nuclear Information System (INIS)

    Diaz-Villasenor, Andrea; Sanchez-Soto, M. Carmen; Cebrian, Mariano E.; Ostrosky-Wegman, Patricia; Hiriart, Marcia

    2006-01-01

    Human studies have shown that chronic inorganic arsenic (iAs) exposure is associated with a high prevalence and incidence of type 2 diabetes. However, the mechanism(s) underlying this effect are not well understood, and practically, there is no information available on the effects of arsenic on pancreatic β-cells functions. Thus, since insulin secreted by the pancreas plays a crucial role in maintaining glucose homeostasis, our aim was to determine if sodium arsenite impairs insulin secretion and mRNA expression in single adult rat pancreatic β-cells. Cells were treated with 0.5, 1, 2, 5 and 10 μM sodium arsenite and incubated for 72 and 144 h. The highest dose tested (10 μM) decreased β-cell viability, by 33% and 83%, respectively. Insulin secretion and mRNA expression were evaluated in the presence of 1 and 5 μM sodium arsenite. Basal insulin secretion, in 5.6 mM glucose, was not significantly affected by 1 or 5 μM treatment for 72 h, but basal secretion was reduced when cells were exposed to 5 μM sodium arsenite for 144 h. On the other hand, insulin secretion in response to 15.6 mM glucose decreased with sodium arsenite in a dose-dependent manner in such a way that cells were no longer able to distinguish between different glucose concentrations. We also showed a significant decrease in insulin mRNA expression of cells exposed to 5 μM sodium arsenite during 72 h. Our data suggest that arsenic may contribute to the development of diabetes mellitus by impairing pancreatic β-cell functions, particularly insulin synthesis and secretion

  18. Exposures to arsenite and methylarsonite produce insulin resistance and impair insulin-dependent glycogen metabolism in hepatocytes.

    Science.gov (United States)

    Zhang, Chongben; Fennel, Emily M J; Douillet, Christelle; Stýblo, Miroslav

    2017-12-01

    Environmental exposure to inorganic arsenic (iAs) has been shown to disturb glucose homeostasis, leading to diabetes. Previous laboratory studies have suggested several mechanisms that may underlie the diabetogenic effects of iAs exposure, including (i) inhibition of insulin signaling (leading to insulin resistance) in glucose metabolizing peripheral tissues, (ii) inhibition of insulin secretion by pancreatic β cells, and (iii) dysregulation of the methylation or expression of genes involved in maintenance of glucose or insulin metabolism and function. Published studies have also shown that acute or chronic iAs exposures may result in depletion of hepatic glycogen stores. However, effects of iAs on pathways and mechanisms that regulate glycogen metabolism in the liver have never been studied. The present study examined glycogen metabolism in primary murine hepatocytes exposed in vitro to arsenite (iAs 3+ ) or its methylated metabolite, methylarsonite (MAs 3+ ). The results show that 4-h exposures to iAs 3+ and MAs 3+ at concentrations as low as 0.5 and 0.2 µM, respectively, decreased glycogen content in insulin-stimulated hepatocytes by inhibiting insulin-dependent activation of glycogen synthase (GS) and by inducing activity of glycogen phosphorylase (GP). Further investigation revealed that both iAs 3+ and MAs 3+ inhibit insulin-dependent phosphorylation of protein kinase B/Akt, one of the mechanisms involved in the regulation of GS and GP by insulin. Thus, inhibition of insulin signaling (i.e., insulin resistance) is likely responsible for the dysregulation of glycogen metabolism in hepatocytes exposed to iAs 3+ and MAs 3+ . This study provides novel information about the mechanisms by which iAs exposure impairs glucose homeostasis, pointing to hepatic metabolism of glycogen as one of the targets.

  19. The defensive effect of benfotiamine in sodium arsenite-induced experimental vascular endothelial dysfunction.

    Science.gov (United States)

    Verma, Sanjali; Reddy, Krishna; Balakumar, Pitchai

    2010-10-01

    The present study has been designed to investigate the effect of benfotiamine, a thiamine derivative, in sodium arsenite-induced vascular endothelial dysfunction (VED) in rats. Sodium arsenite (1.5 mg(-1) kg(-1) day(-1) i.p., 2 weeks) was administered in rats to produce VED. The development of VED was assessed by employing isolated aortic ring preparation and estimating the serum and aortic concentrations of nitrite/nitrate. Further, the integrity of vascular endothelium in thoracic aorta was assessed by scanning electron microscopy. Moreover, the oxidative stress was assessed by estimating serum thiobarbituric acid reactive substances (TBARS) and aortic superoxide anion generation. The administration of sodium arsenite markedly produced VED by attenuating acetylcholine-induced endothelium-dependent relaxation, decreasing serum and aortic concentrations of nitrite/nitrate, and impairing the integrity of vascular endothelium. Further, sodium arsenite produced oxidative stress by increasing serum TBARS and aortic superoxide generation. The treatment with benfotiamine (25, 50, and 100 mg(-1) kg(-1) day(-1) p.o.) or atorvastatin (30 mg(-1) kg(-1) day(-1) p.o., a standard agent) prevented sodium arsenite-induced VED and oxidative stress. However, the beneficial effects of benfotiamine in preventing the sodium arsenite-induced VED were attenuated by co-administration with N-omega-nitro-L: -arginine methyl ester (L: -NAME) (25 mg(-1) kg(-1) day(-1), i.p.), an inhibitor of NOS. Thus, it may be concluded that benfotiamine reduces oxidative stress and activates endothelial nitric oxide synthase to enhance the generation and bioavailability of NO and subsequently improves the integrity of vascular endothelium to prevent sodium arsenite-induced experimental VED.

  20. Photoinduced Oxidation of Arsenite to Arsenate on Ferrihydrite

    Energy Technology Data Exchange (ETDEWEB)

    N Bhandari; R Reeder; D Strongin

    2011-12-31

    The photochemistry of an aqueous suspension of the iron oxyhydroxide, ferrihydrite, in the presence of arsenite has been investigated using attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), X-ray absorption near edge structure (XANES), and solution phase analysis. Both ATR-FTIR and XANES show that the exposure of ferrihydrite to arsenite in the dark leads to no change in the As oxidation state, but the exposure of this arsenite-bearing surface, which is in contact with pH 5 water, to light leads to the conversion of the majority of the adsorbed arsenite to the As(V) bearing species, arsenate. Analysis of the solution phase shows that ferrous iron is released into solution during the oxidation of arsenite. The photochemical reaction, however, shows the characteristics of a self-terminating reaction in that there is a significant suppression of this redox chemistry before 10% of the total iron making up the ferrihydrite partitions into solution as ferrous iron. The self-terminating behavior exhibited by this photochemical arsenite/ferrihydrite system is likely due to the passivation of the ferrihydrite surface by the strongly bound arsenate product.

  1. Arsenite adsorption on goethite at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Kersten, Michael [Environmental Geochemistry Group, Institute of Geosciences, Johannes Gutenberg-University, Mainz 55099 (Germany)], E-mail: kersten@uni-mainz.de; Vlasova, Nataliya [Environmental Geochemistry Group, Institute of Geosciences, Johannes Gutenberg-University, Mainz 55099 (Germany)

    2009-01-15

    Experimental closed-system {delta}T acid-base titrations between 10 deg. C and 75 deg. C were used to constrain a temperature-dependent 1-pK basic Stern model of the goethite surface complexation reactions. Experimental data for the temperature dependence of pH{sub PZC} determined by the one-term Van't Hoff extrapolation yield a value for goethite surface protonation enthalpy of -49.6 kJ mol{sup -1} in good agreement with literature data. Batch titration data between 10 deg. C and 75 deg. C with arsenite concentrations between 10 {mu}M and 100 {mu}M yield adsorption curves, which increases with pH, peak at a pH of 9, and decrease at higher pH values. The slope of this bend becomes steeper with increasing temperature. A 1-pK charge distribution model in combination with a basic Stern layer option could be established for the pH-dependent arsenite adsorption. Formation of two inner-sphere bidentate surface complexes best matched the experimental data in agreement with published EXAFS spectroscopic information. The temperature behaviour of the thus derived intrinsic equilibrium constants can be well represented by the linear Van't Hoff logK{sub T}{sup int} vs. 1/T plot. Adsorption of arsenite on the goethite surface is exothermic (negative {delta}{sub r}H{sub 298} values) and therefore becomes weaker with increasing temperature. Application of the new constants with the aqueous speciation code VMINTEQ predicts that the As(III) concentration in presence of goethite sorbent decreases by 10 times once the hydrothermal solution is cooled from 99 deg. C to 1 deg. C. The model curve matches data from a natural thermal water spring system. The increase of adsorption efficiency for As along the temperature gradient may well serve as an additional process to prevent ecosystem contamination by As-rich water seepage from geothermal energy generation facilities.

  2. Do Si/As ratios in growth medium affect arsenic uptake, arsenite efflux and translocation of arsenite in rice (Oryza sativa)?

    Science.gov (United States)

    Zhang, Min; Zhao, Quanli; Xue, Peiying; Zhang, Shijie; Li, Bowen; Liu, Wenju

    2017-10-01

    Silicon (Si) may decrease the uptake and accumulation of arsenic (As) in rice. However, the effects of Si/As ratios in growth medium on arsenic uptake, arsenite efflux to the external medium and translocation of arsenite in rice are currently unclear. Rice seedlings (Oryza sativa L.) were exposed to nutrient solutions with 10 μM arsenite [As(III)] or 10 μM arsenate [As(V)] to explore the influence of different silicic acid concentrations (0, 10, 100, 1000 μM) on arsenic uptake and translocation of arsenite with or without 91 μM phosphate for 24 h. Arsenic speciation was determined in nutrient solutions, roots, and shoots. In the arsenite treatments, different Si/As ratios (1:1, 10:1, 100:1) did not affect As(III) uptake by rice roots, however they did inhibit translocation of As(III) from roots to shoots significantly (P rice roots and shoots. A Si/As ratio of 100:1 reduced As(III) translocation from roots to shoots markedly without phosphate. When phosphate was supplied, As(III) translocation from roots to shoots was significantly inhibited by Si/As ratios of 10:1 and 100:1. The results indicated that in the presence of P, different silicic acid concentrations did not impact arsenite uptake and transport in rice when arsenite was supplied. However, a Si/As ratio of 100:1 inhibited As(V) uptake, as well as As(III) efflux and translocation from roots to shoots when arsenate was supplied. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Functional genes and thermophilic microorganisms responsible for arsenite oxidation from the shallow sediment of an untraversed hot spring outlet.

    Science.gov (United States)

    Yang, Ye; Mu, Yao; Zeng, Xian-Chun; Wu, Weiwei; Yuan, Jie; Liu, Yichen; Guoji, E; Luo, Feng; Chen, Xiaoming; Li, Hao; Wang, Jianing

    2017-05-01

    Hot Springs have unique geochemical features. Microorganisms-mediated arsenite oxidation is one of the major biogeochemical processes occurred in some hot springs. This study aimed to understand the diversities of genes and microorganisms involved in arsenite oxidation from the outlet of an untraversed hot spring located at an altitude of 4226 m. Microcosm assay indicated that the microbial community from the hot spring was able to efficiently oxidize As(III) using glucose, lactic acid, yeast extract or sodium bicarbonate as the sole carbon source. The microbial community contained 7 phyla of microorganisms, of which Proteobacteria and Firmicutes are largely dominant; this composition is unique and differs significantly from those of other described hot springs. Twenty one novel arsenite oxidase genes were identified from the samples, which are affiliated with the arsenite oxidase families of α-Proteobacteria, β-Proteobacteria or Archaea; this highlights the high diversity of the arsenite-oxidizing microorganisms from the hot spring. A cultivable arsenite-oxidizer Chelatococcu sp. GHS311 was also isolated from the sample using enrichment technique. It can completely convert 75.0 mg/L As(III) into As(V) in 18 days at 45 °C. The arsenite oxidase of GHS311 shares the maximal sequence identity (84.7%) to that of Hydrogenophaga sp. CL3, a non-thermotolerant bacterium. At the temperature lower than 30 °C or higher than 65 °C, the growth of this strain was completely inhibited. These data help us to better understand the diversity and functional features of the thermophilic arsenite-oxidizing microorganisms from hot springs.

  4. Blimp-1-Dependent IL-10 Production by Tr1 Cells Regulates TNF-Mediated Tissue Pathology.

    Directory of Open Access Journals (Sweden)

    Marcela Montes de Oca

    2016-01-01

    Full Text Available Tumor necrosis factor (TNF is critical for controlling many intracellular infections, but can also contribute to inflammation. It can promote the destruction of important cell populations and trigger dramatic tissue remodeling following establishment of chronic disease. Therefore, a better understanding of TNF regulation is needed to allow pathogen control without causing or exacerbating disease. IL-10 is an important regulatory cytokine with broad activities, including the suppression of inflammation. IL-10 is produced by different immune cells; however, its regulation and function appears to be cell-specific and context-dependent. Recently, IL-10 produced by Th1 (Tr1 cells was shown to protect host tissues from inflammation induced following infection. Here, we identify a novel pathway of TNF regulation by IL-10 from Tr1 cells during parasitic infection. We report elevated Blimp-1 mRNA levels in CD4+ T cells from visceral leishmaniasis (VL patients, and demonstrate IL-12 was essential for Blimp-1 expression and Tr1 cell development in experimental VL. Critically, we show Blimp-1-dependent IL-10 production by Tr1 cells prevents tissue damage caused by IFNγ-dependent TNF production. Therefore, we identify Blimp-1-dependent IL-10 produced by Tr1 cells as a key regulator of TNF-mediated pathology and identify Tr1 cells as potential therapeutic tools to control inflammation.

  5. Characterization of arsenite tolerant Halomonas sp. Alang-4, originated from heavy metal polluted shore of Gulf of Cambay.

    Science.gov (United States)

    Jain, Raina; Jha, Sanjay; Mahatma, Mahesh K; Jha, Anamika; Kumar, G Naresh

    2016-01-01

    Arsenite [As(III)]-oxidizing bacteria were isolated from heavy metal contaminated shore of Gulf of Cambay at Alang, India. The most efficient bacterial strain Alang-4 could tolerate up to 15 mM arsenite [As(III)] and 200 mM of arsenate [As(V)]. Its 16S rRNA gene sequence was 99% identical to the 16S rRNA genes of genus Halomonas (Accession no. HQ659187). Arsenite oxidase enzyme localized on membrane helped in conversion of As(III) to As(V). Arsenite transporter genes (arsB, acr3(1) and acr3(2)) assisted in extrusion of arsenite from Halomonas sp. Alang-4. Generation of ROS in response to arsenite stress was alleviated by higher activities of catalase, ascorbate peroxidase, superoxide dismutase and glutathione S-transferase enzymes. Down-regulation in the specific activities of nearly all dehydrogenases of carbon assimilatory pathway viz., glucose-6-phosphate, pyruvate, α-ketoglutarate, isocitrate and malate dehydrogenases, was observed in presence of As(III), whereas, the specific activities of phosphoenol pyruvate carboxylase, pyruvate carboxylase and isocitrate lyase enzymes were found to increase two times in As(III) treated cells. The results suggest that in addition to efficient ars operon, alternative pathways of carbon utilization exist in the marine bacterium Halomonas sp. Alang-4 to overcome the toxic effects of arsenite on its dehydrogenase enzymes.

  6. Modulation of DNA polymerase beta-dependent base excision repair in cultured human cells after low dose exposure to arsenite

    International Nuclear Information System (INIS)

    Sykora, Peter; Snow, Elizabeth T.

    2008-01-01

    Base excision repair (BER) is crucial for development and for the repair of endogenous DNA damage. However, unlike nucleotide excision repair, the regulation of BER is not well understood. Arsenic, a well-established human carcinogen, is known to produce oxidative DNA damage, which is repaired primarily by BER, whilst high doses of arsenic can also inhibit DNA repair. However, the mechanism of repair inhibition by arsenic and the steps inhibited are not well defined. To address this question we have investigated the regulation of DNA polymerase β (Pol β) and AP endonuclease (APE1), in response to low, physiologically relevant doses of arsenic. GM847 lung fibroblasts and HaCaT keratinocytes were exposed to sodium arsenite, As(III), and mRNA, protein levels and BER activity were assessed. Both Pol β and APE1 mRNA exhibited significant dose-dependant down regulation at doses of As(III) above 1 μM. However, at lower doses Pol β mRNA and protein levels, and consequently, BER activity were significantly increased. In contrast, APE1 protein levels were only marginally increased by low doses of As(III) and there was no correlation between APE1 and overall BER activity. Enzyme supplementation of nuclear extracts confirmed that Pol β was rate limiting. These changes in BER correlated with overall protection against sunlight UV-induced toxicity at low doses of As(III) and produced synergistic toxicity at high doses. The results provide evidence that changes in BER due to low doses of arsenic could contribute to a non-linear, threshold dose response for arsenic carcinogenesis

  7. The Mediator complex and transcription regulation

    Science.gov (United States)

    Poss, Zachary C.; Ebmeier, Christopher C.

    2013-01-01

    The Mediator complex is a multi-subunit assembly that appears to be required for regulating expression of most RNA polymerase II (pol II) transcripts, which include protein-coding and most non-coding RNA genes. Mediator and pol II function within the pre-initiation complex (PIC), which consists of Mediator, pol II, TFIIA, TFIIB, TFIID, TFIIE, TFIIF and TFIIH and is approximately 4.0 MDa in size. Mediator serves as a central scaffold within the PIC and helps regulate pol II activity in ways that remain poorly understood. Mediator is also generally targeted by sequence-specific, DNA-binding transcription factors (TFs) that work to control gene expression programs in response to developmental or environmental cues. At a basic level, Mediator functions by relaying signals from TFs directly to the pol II enzyme, thereby facilitating TF-dependent regulation of gene expression. Thus, Mediator is essential for converting biological inputs (communicated by TFs) to physiological responses (via changes in gene expression). In this review, we summarize an expansive body of research on the Mediator complex, with an emphasis on yeast and mammalian complexes. We focus on the basics that underlie Mediator function, such as its structure and subunit composition, and describe its broad regulatory influence on gene expression, ranging from chromatin architecture to transcription initiation and elongation, to mRNA processing. We also describe factors that influence Mediator structure and activity, including TFs, non-coding RNAs and the CDK8 module. PMID:24088064

  8. Identification of anaerobic arsenite-oxidizing and arsenate-reducing bacteria associated with an alkaline saline lake in Khovsgol, Mongolia.

    Science.gov (United States)

    Hamamura, Natsuko; Itai, Takaaki; Liu, Yitai; Reysenbach, Anna-Louise; Damdinsuren, Narantuya; Inskeep, William P

    2014-10-01

    Microbial arsenic transformation pathways associated with a saline lake located in northern Mongolia were examined using molecular biological and culturing approaches. Bacterial 16S rRNA gene sequences recovered from saline lake sediments and soils were affiliated with haloalkaliphiles, including Bacillus and Halomonas spp. Diverse sequences of arsenate respiratory reductase (arrA) and a new group of arsenite oxidase (arxA) genes were also identified. Pure cultures of arsenate-reducing Nitrincola strain and anaerobic arsenite-oxidizing Halomonas strain were isolated. The chemoorganotrophic Halomonas strain contains arxA gene similar to that of a chemoautotrophic arsenite-oxidizing Alkalilimnicola ehrlichii strain MLHE-1. These results revealed the diversity of arsenic transformation pathways associated with a geographically distinct saline system and the potential contribution of arx-dependent arsenite oxidation by heterotrophic bacteria.

  9. Sodium arsenite-induced inhibition of cell proliferation is related to inhibition of IL-2 mRNA expression in mouse activated T cells

    Energy Technology Data Exchange (ETDEWEB)

    Conde, Patricia; Acosta-Saavedra, Leonor C.; Calderon-Aranda, Emma S. [Centro de Investigacion y de Estudios Avanzados, CINVESTAV, Seccion Toxicologia, P.O. Box 14-740, Mexico, D.F. (Mexico); Goytia-Acevedo, Raquel C. [Universidad Juarez del Estado de Durango, Facultad de Medicina, Gomez Palacio, Durango (Mexico)

    2007-04-15

    A proposed mechanism for the As-induced inhibition of cell proliferation is the inhibition of IL-2 secretion. However, the effects of arsenite on IL-2 mRNA expression or on the ERK pathway in activated-T cells have not yet been described. We examined the effect of arsenite on IL-2 mRNA expression, cell activation and proliferation in PHA-stimulated murine lymphocytes. Arsenite (1 and 10 {mu}M) decreased IL-2 mRNA expression, IL-2 secretion and cell proliferation. Arsenite (10 {mu}M) strongly inhibited ERK-phosphorylation. However, the partial inhibition (50%) of IL-2 mRNA produced by 1 {mu}M, consistent with the effects on IL-2 secretion and cell proliferation, could not be explained by the inhibition of ERK-phosphorylation, which was not affected at this concentration. The inhibition of IL-2 mRNA expression caused by 1 {mu}M could be associated to effects on pathways located downstream or parallel to ERK. Arsenite also decreased early activation (surface CD69{sup +} expression) in both CD4{sup +} and CD8{sup +}, and decreased total CD8{sup +} count without significantly affecting CD4{sup +}, supporting that the cellular immune response mediated by cytotoxic T cells is an arsenic target. Thus, our results suggest that arsenite decreases IL-2 mRNA levels and T-cell activation and proliferation. However, further studies on the effects of arsenite on IL-2 gene transcription and IL-2 mRNA stability are needed. (orig.)

  10. Effect of arsenite on the DNA repair of UV-irradiated Chinese hamster ovary cells

    International Nuclear Information System (INIS)

    Lee-Chen, S.F.; Yu, C.T.; Jan, K.Y.

    1992-01-01

    Arsenite, an ubiquitous human carcinogen, has been shown to enhance the cytotoxicity, mutagenicity and clastogenicity of UV light in mammalian cells. Arsenite may exert its co-genotoxic effects by inhibiting DNA repair. Results from alkaline sucrose gradient sedimentation show that arsenite did not accumulate UV-induced DNA strand breaks in Chinese hamster ovary (CHO) K1 cells as aphidicolin plus hydroxyurea (HU) did. These data indicate that arsenite did not inhibit the activity of DNA polymerase α in UV repair. Treatment with arsenite before UV irradiation slightly reduced the DNA strand breaks accumulated by cytosine β-D-arabinofuranoside (AraC) plus HU. This effect implies that arsenite only slightly inhibited the incision of UV-induced DNA adducts. The low molecular weight DNA accumulated by post-UV incubation with AraC plus HU shifted to high molecular weight upon the incubation of cells in drug-free medium, but this shifting was prohibited by the presence of arsenite. This suggests that arsenite inhibited the rejoining of DNA strand breaks. When a pulse-chase labelling procedure was applied on UV-irradiated cells, the chain elongation of nascent DNA was strongly inhibited by post-incubation with arsenite. These data show that arsenite inhibited post-replication repair in UV-irradiated cells. Therefore, the steps inhibited by arsenite in UV-induced cells. Therefore, the steps inhibited by arsenite in UV-induced DNA repair in CHO K1 cells are different from human fibroblasts. (author)

  11. Effect of arsenite on the DNA repair of UV-irradiated Chinese hamster ovary cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee-Chen, S.F.; Yu, C.T.; Jan, K.Y. (Academia Sinica, Taipei, (Taiwan). Institute of Zoology)

    1992-01-01

    Arsenite, an ubiquitous human carcinogen, has been shown to enhance the cytotoxicity, mutagenicity and clastogenicity of UV light in mammalian cells. Arsenite may exert its co-genotoxic effects by inhibiting DNA repair. Results from alkaline sucrose gradient sedimentation show that arsenite did not accumulate UV-induced DNA strand breaks in Chinese hamster ovary (CHO) K1 cells as aphidicolin plus hydroxyurea (HU) did. These data indicate that arsenite did not inhibit the activity of DNA polymerase [alpha] in UV repair. Treatment with arsenite before UV irradiation slightly reduced the DNA strand breaks accumulated by cytosine [beta]-D-arabinofuranoside (AraC) plus HU. This effect implies that arsenite only slightly inhibited the incision of UV-induced DNA adducts. The low molecular weight DNA accumulated by post-UV incubation with AraC plus HU shifted to high molecular weight upon the incubation of cells in drug-free medium, but this shifting was prohibited by the presence of arsenite. This suggests that arsenite inhibited the rejoining of DNA strand breaks. When a pulse-chase labelling procedure was applied on UV-irradiated cells, the chain elongation of nascent DNA was strongly inhibited by post-incubation with arsenite. These data show that arsenite inhibited post-replication repair in UV-irradiated cells. Therefore, the steps inhibited by arsenite in UV-induced cells. Therefore, the steps inhibited by arsenite in UV-induced DNA repair in CHO K1 cells are different from human fibroblasts. (author).

  12. Dependence regulation in newlywed couples: A prospective examination.

    Science.gov (United States)

    Derrick, Jaye L; Leonard, Kenneth E; Homish, Gregory G

    2012-12-01

    According to the Risk Regulation Model (Murray, S. L., Holmes, J. G., & Collins, N. L. (2006). Optimizing assurance: The risk regulation system in relationships. Psychological Bulletin, 132 , 641-666), people need to trust in their partner's regard before they risk interdependence. The current study prospectively examines the association between perceived regard and levels of dependence in newlywed couples over nine years of marriage. Analyses demonstrate that changes in perceived regard predict levels of dependence, changes in dependence do not predict perceived regard, and alternative explanations cannot account for these effects. Further, changes in perceived regard prospectively predict divorce, and levels of dependence mediate this association. Results are discussed in terms of the dependence regulation component of the Risk Regulation Model.

  13. Arsenite-induced autophagy is associated with proteotoxicity in human lymphoblastoid cells

    Energy Technology Data Exchange (ETDEWEB)

    Bolt, Alicia M.; Zhao, Fei; Pacheco, Samantha; Klimecki, Walter T., E-mail: klimecki@pharmacy.arizona.edu

    2012-10-15

    Epidemiological studies of arsenic-exposed populations have provided evidence that arsenic exposure in humans is associated with immunosuppression. Previously, we have reported that arsenite-induced toxicity is associated with the induction of autophagy in human lymphoblastoid cell lines (LCL). Autophagy is a cellular process that functions in the degradation of damaged cellular components, including protein aggregates formed by misfolded or damaged proteins. Accumulation of misfolded or damaged proteins in the endoplasmic reticulum (ER) lumen causes ER stress and activates the unfolded protein response (UPR). In an effort to investigate the mechanism of autophagy induction by arsenite in the LCL model, we examined the potential contribution of ER stress and activation of the UPR. LCL exposed to sodium arsenite for 8-days induced expression of UPR-activated genes, including CHOP and GRP78, at the RNA and the protein level. Evidence for activation of the three arms of the UPR was observed. The arsenite-induced activation of the UPR was associated with an accumulation of protein aggregates containing p62 and LC3, proteins with established roles in the sequestration and autophagic clearance of protein aggregates. Taken together, these data provide evidence that arsenite-induced autophagy is associated with the generation of ER stress, activation of the UPR, and formation of protein aggregates that may be targeted to the lysosome for degradation. -- Highlights: ► Arsenite induces endoplasmic reticulum stress and the unfolded protein response. ► Arsenite induces the formation of protein aggregates that contain p62 and LC3-II. ► Time-course data suggests that arsenite-induced autophagy precedes ER stress.

  14. Biosorption and toxicity responses to arsenite (As[III]) in Scenedesmus quadricauda.

    Science.gov (United States)

    Zhang, Jianying; Ding, Tengda; Zhang, Chunlong

    2013-08-01

    Toxicity and biosorption responses to arsenite (As[III]) were examined in a 96-h exposure study using Scenedesmus quadricauda, one of the most popular green algae distributed in freshwaters in China. Results indicated that the pH-dependent distribution of two arsenite species (H2AsO3(-) and H3AsO3) played an important role in biosorption and toxicity. The undissociated H3AsO3 was more toxic than its monoanionic H2AsO3(-) through comparison of algal cell numbers, chlorophyll-a contents, and algal ultrastructural changes observed with transmission electron microscopy. An effective biosorption of 89.0mgg(-1) at 100mgL(-1) As[III] was found in the treatments with an initial pH of 9.3 and 25.2μgg(-1) at 0.03mgL(-1) As[III] at an initial pH of 8.2 as a result of the predominant species of H2AsO3(-) under the ambient pH and Eh conditions. Our results imply that S. quadricauda may provide a new means for the removal of toxic arsenite species present in contaminated surface water. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Effect of Zingiber Officinale (Ginger) on Sodium Arsenite- Induced ...

    African Journals Online (AJOL)

    Arsenite is a major environmental chemical and a known reproductive toxicant via the depression of spermatogenesis and androgenesis in males. The possibility of sodium arsenite reproductive toxicity been caused by autooxidation was investigated in this study taking advantage of the anti-oxidant properties of ginger and ...

  16. Arabidopsis cryptochrome 1 is a soluble protein mediating blue light-dependent regulation of plant growth and development

    International Nuclear Information System (INIS)

    Lin ChenTao; Ahmad, M.; Cashmore, A.R.

    1996-01-01

    Cryptochrome 1 (CRY1) is a flavin-type blue type receptor of Arabidopsis thaliana which mediates inhibition of hypocotyl elongation. In the work described in this report it is demonstrated that CRY1 is a soluble protein expressed in both young seedlings grown either in the dark or under light, and in different organs of adult plants. The functional role of CRY1 was further investigated using transgenic Arabidopsis plants overexpressing CRY1. It is demonstrated that overexpression of CRY1 resulted in hypersensitivity to blue, UV-A, and green light for the inhibition of hypocotyl elongation response. Transgenic plants overexpressing CRY1 also exhibited a dwarf phenotype with reduced size in almost every organ. This was in keeping with the previous observation of reciprocal alterations found in hy4 mutant plants and is consistent with a hypothesis that CRY1 mediates a light-dependent process resulting in a general inhibitory effect on plant growth. In addition, transgenic plants overexpressing CRY1 showed increased anthocyanin accumulation in response to blue, UV-A, and green light in a fluence rate-dependent manner. This increase in anthocyanin accumulation in transgenic plants was shown to be concomitant with increased blue light-induction of CHS gene expression. It is concluded that CRY1 is a photoreceptor mediating blue light-dependent regulation of gene expression in addition to its affect on plant growth. (author)

  17. Regulation of apoptosis in human melanoma and neuroblastoma cells by statins, sodium arsenite and TRAIL: a role of combined treatment versus monotherapy

    Science.gov (United States)

    Ivanov, Vladimir N.; Hei, Tom K.

    2015-01-01

    Treatment of melanoma cells by sodium arsenite or statins (simvastatin and lovastatin) dramatically modified activities of the main cell signaling pathways resulting in the induction of heme oxygenase-1 (HO-1) and in a downregulation of cyclooxygenase-2 (COX-2) protein levels. Through heme degradation and the production of carbon monoxide and biliverdin, HO-1 plays a protective role in different scenario of oxidative stress followed by mitochondrial apoptosis. Both sodium arsenite and statins could be efficient inducers of apoptosis in some melanoma cell lines, but often exhibited only modest proapoptotic activity in others, due to numerous protective mechanisms. We demonstrated in the present study that treatment by sodium arsenite or statins with an additional inhibition of HO-1 expression (or activation) caused a substantial upregulation of apoptosis in melanoma cells. Sodium arsenite- or statin-induced apoptosis was independent of BRAF status (wild type versus V600E) in melanoma lines. Monotreatment required high doses of statins (20–40 μM) for effective induction of apoptosis. As an alternative approach, pretreatment of melanoma cells with statin at decreased doses (5–20 μM) dramatically enhanced TRAIL-induced apoptosis, due to suppression of the NF-κB and STAT3-transcriptional targets (including COX-2) and downregulation of cFLIP-L (a caspase-8 inhibitor) protein levels. Furthermore, combined treatment with sodium arsenite and TRAIL or simvastatin and TRAIL efficiently induced apoptotic commitment in human neuroblastoma cells. In summary, our findings on enhancing effects of combined treatment of cancer cells using statin and TRAIL provide the rationale for further preclinical evaluation. PMID:21910007

  18. Arsenite Oxidation and Arsenite Resistance by Bacillus sp. PNKP-S2

    Directory of Open Access Journals (Sweden)

    Pranee Pattanapipitpaisal

    2015-01-01

    Full Text Available Arsenic causes human health problems after accumulate in the body for 10-15 years and arsenite [As(III] is generally regarded as being more mobile and toxic than other oxidation states. In this study, two-hundred and three bacterial strains were isolated from groundwater and soil samples collecting in Ubon Ratchathani Province, Thailand. All strains were screened for arsenic tolerant efficiency at 1-10 mM of sodium arsenite. Eighteen selected strains which had the highest resistance to 10 mM of As(III were further studied for their As(III-oxidizing activity and growth in enrichment and growth medium (EG medium supplemented with 0.58 mM of As(III. It was found that strain PNKP-S2 was able to grow in the medium with As(III as a sole energy source and had 89.11% As(III removal within 48 h. The PCR-based 16S rDNA sequencing analysis revealed that the strain PNKP-S2 was closed relative to Bacillus sp. This is the first report on Bacillus sp. chemolithoautotrophic As(III-oxidizer and this strain could be a potential candidate for application in arsenic remediation of contaminated water.

  19. Label-free signal-on aptasensor for sensitive electrochemical detection of arsenite.

    Science.gov (United States)

    Cui, Lin; Wu, Jie; Ju, Huangxian

    2016-05-15

    A signal-on aptasensor was fabricated for highly sensitive and selective electrochemical detection of arsenite with a label-free Ars-3 aptamer self-assembled on a screen-printed carbon electrode (SPCE) via Au-S bond. The Ars-3 aptamer could adsorb cationic polydiallyldimethylammonium (PDDA) via electrostatic interaction to repel other cationic species. In the presence of arsenite, the change of Ars-3 conformation due to the formation of Ars-3/arsenite complex led to less adsorption of PDDA, and the complex could adsorb more positively charged [Ru(NH3)6](3+) as an electrochemically active indicator on the aptasensor surface, which produced a sensitive "turn-on" response. The target-induced structure switching could be used for sensitive detection of arsenite with a linear range from 0.2 nM to 100 nM and a detection limit down to 0.15 nM. Benefiting from Ars-3 aptamer, the proposed system exhibited excellent specificity against other heavy metal ions. The SPCE-based aptasensor exhibited the advantages of low cost and simple fabrication, providing potential application of arsenite detection in environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Arsenite Effects on Mitochondrial Bioenergetics in Human and Mouse Primary Hepatocytes Follow a Nonlinear Dose Response

    Directory of Open Access Journals (Sweden)

    Hemantkumar Chavan

    2017-01-01

    Full Text Available Arsenite is a known carcinogen and its exposure has been implicated in a variety of noncarcinogenic health concerns. Increased oxidative stress is thought to be the primary cause of arsenite toxicity and the toxic effect is thought to be linear with detrimental effects reported at all concentrations of arsenite. But the paradigm of linear dose response in arsenite toxicity is shifting. In the present study we demonstrate that arsenite effects on mitochondrial respiration in primary hepatocytes follow a nonlinear dose response. In vitro exposure of primary hepatocytes to an environmentally relevant, moderate level of arsenite results in increased oxidant production that appears to arise from changes in the expression and activity of respiratory Complex I of the mitochondrial proton circuit. In primary hepatocytes the excess oxidant production appears to elicit adaptive responses that promote resistance to oxidative stress and a propensity to increased proliferation. Taken together, these results suggest a nonlinear dose-response characteristic of arsenite with low-dose arsenite promoting adaptive responses in a process known as mitohormesis, with transient increase in ROS levels acting as transducers of arsenite-induced mitohormesis.

  1. Evidence that arsenite acts as a cocarcinogen in skin cancer

    International Nuclear Information System (INIS)

    Rossman, Toby G.; Uddin, Ahmed N.; Burns, Fredric J.

    2004-01-01

    Inorganic arsenic (arsenite and arsenate) in drinking water has been associated with skin cancers in several countries such as Taiwan, Chile, Argentina, Bangladesh, and Mexico. This association has not been established in the United States. In addition, inorganic arsenic alone in drinking water does not cause skin cancers in animals. We recently showed that concentrations as low as 1.25 mg/l sodium arsenite were able to enhance the tumorigenicity of solar UV irradiation in mice. The tumors were almost all squamous cell carcinomas (SCCs). These data suggest that arsenic in drinking water may need a carcinogenic partner, such as sunlight, in the induction of skin cancers. Arsenite may enhance tumorigenicity via effects on DNA repair and DNA damage-induced cell cycle effects, leading to genomic instability. Others have found that dimethlyarsinic acid (DMA), a metabolite of arsenite, can induce bladder cancers at high concentrations in drinking water. In those experiments, skin cancers were not produced. Taken together, these data suggest that arsenite (or possibly an earlier metabolite), and not DMA, is responsible for the skin cancers, but a second genotoxic agent may be a requirement. The differences between the US and the other arsenic-exposed populations with regard to skin cancers might be explained by the lower levels of arsenic in the US, less sun exposure, better nutrition, or perhaps genetic susceptibility differences

  2. Arsenite and its metabolites, MMAIII and DMAIII, modify CYP3A4, PXR and RXR alpha expression in the small intestine of CYP3A4 transgenic mice

    International Nuclear Information System (INIS)

    Medina-Diaz, I.M.; Estrada-Muniz, E.; Reyes-Hernandez, O.D.; Ramirez, P.; Vega, L.; Elizondo, G.

    2009-01-01

    Arsenic is an environmental pollutant that has been associated with an increased risk for the development of cancer and several other diseases through alterations of cellular homeostasis and hepatic function. Cytochrome P450 (P450) modification may be one of the factors contributing to these disorders. Several reports have established that exposure to arsenite modifies P450 expression by decreasing or increasing mRNA and protein levels. Cytochrome P450 3A4 (CYP3A4), the predominant P450 expressed in the human liver and intestines, which is regulated mainly by the Pregnane X Receptor-Retinoid X Receptor alpha (PXR-RXR alpha) heterodimer, contributes to the metabolism of approximately half the drugs in clinical use today. The present study investigates the effect of sodium arsenite and its metabolites monomethylarsonous acid (MMA III ) and dimethylarsinous acid (DMA III ) on CYP3A4, PXR, and RXR alpha expression in the small intestine of CYP3A4 transgenic mice. Sodium arsenite treatment increases mRNA, protein and CYP3A4 activity in a dose-dependent manner. However, the increase in protein expression was not as marked as compared to the increase in mRNA levels. Arsenite treatment induces the accumulation of Ub-protein conjugates, indicating that the activation of this mechanism may explain the differences observed between the mRNA and protein expression of CYP3A4 induction. Treatment with 0.05 mg/kg of DMA III induces CYP3A4 in a similar way, while treatment with 0.05 mg/kg of MMA III increases mostly mRNA, and to a lesser degree, CYP3A4 activity. Sodium arsenite and both its metabolites increase PXR mRNA, while only DMA III induces RXR alpha expression. Overall, these results suggest that sodium arsenite and its metabolites induce CYP3A4 expression by increasing PXR expression in the small intestine of CYP3A4 transgenic mice.

  3. Transcription regulation by the Mediator complex.

    Science.gov (United States)

    Soutourina, Julie

    2018-04-01

    Alterations in the regulation of gene expression are frequently associated with developmental diseases or cancer. Transcription activation is a key phenomenon in the regulation of gene expression. In all eukaryotes, mediator of RNA polymerase II transcription (Mediator), a large complex with modular organization, is generally required for transcription by RNA polymerase II, and it regulates various steps of this process. The main function of Mediator is to transduce signals from the transcription activators bound to enhancer regions to the transcription machinery, which is assembled at promoters as the preinitiation complex (PIC) to control transcription initiation. Recent functional studies of Mediator with the use of structural biology approaches and functional genomics have revealed new insights into Mediator activity and its regulation during transcription initiation, including how Mediator is recruited to transcription regulatory regions and how it interacts and cooperates with PIC components to assist in PIC assembly. Novel roles of Mediator in the control of gene expression have also been revealed by showing its connection to the nuclear pore and linking Mediator to the regulation of gene positioning in the nuclear space. Clear links between Mediator subunits and disease have also encouraged studies to explore targeting of this complex as a potential therapeutic approach in cancer and fungal infections.

  4. KAP1 regulates type I interferon/STAT1-mediated IRF-1 gene expression

    International Nuclear Information System (INIS)

    Kamitani, Shinya; Ohbayashi, Norihiko; Ikeda, Osamu; Togi, Sumihito; Muromoto, Ryuta; Sekine, Yuichi; Ohta, Kazuhide; Ishiyama, Hironobu; Matsuda, Tadashi

    2008-01-01

    Signal transducers and activators of transcription (STATs) mediate cell proliferation, differentiation, and survival in immune responses, hematopoiesis, neurogenesis, and other biological processes. Recently, we showed that KAP1 is a novel STAT-binding partner that regulates STAT3-mediated transactivation. KAP1 is a universal co-repressor protein for the KRAB zinc finger protein superfamily of transcriptional repressors. In this study, we found KAP1-dependent repression of interferon (IFN)/STAT1-mediated signaling. We also demonstrated that endogenous KAP1 associates with endogenous STAT1 in vivo. Importantly, a small-interfering RNA-mediated reduction in KAP1 expression enhanced IFN-induced STAT1-dependent IRF-1 gene expression. These results indicate that KAP1 may act as an endogenous regulator of the IFN/STAT1 signaling pathway

  5. Co-delivery of doxorubicin and arsenite with reduction and pH dual-sensitive vesicle for synergistic cancer therapy

    Science.gov (United States)

    Zhang, Lu; Xiao, Hong; Li, Jingguo; Cheng, Du; Shuai, Xintao

    2016-06-01

    Drug resistance is the underlying cause for therapeutic failure in clinical cancer chemotherapy. A prodrug copolymer mPEG-PAsp(DIP-co-BZA-co-DOX) (PDBD) was synthesized and assembled into a nanoscale vesicle comprising a PEG corona, a reduction and pH dual-sensitive hydrophobic membrane and an aqueous lumen encapsulating doxorubicin hydrochloride (DOX.HCl) and arsenite (As). The dual stimulation-sensitive design of the vesicle gave rise to rapid release of the physically entrapped DOX.HCl and arsenite inside acidic lysosomes, and chemically conjugated DOX inside the cytosol with high glutathione (GSH) concentration. In the optimized concentration range, arsenite previously recognized as a promising anticancer agent from traditional Chinese medicine can down-regulate the expressions of anti-apoptotic and multidrug resistance proteins to sensitize cancer cells to chemotherapy. Consequently, the DOX-As-co-loaded vesicle demonstrated potent anticancer activity. Compared to the only DOX-loaded vesicle, the DOX-As-co-loaded one induced more than twice the apoptotic ratio of MCF-7/ADR breast cancer cells at a low As concentration (0.5 μM), due to the synergistic effects of DOX and As. The drug loading strategy integrating chemical conjugation and physical encapsulation in stimulation-sensitive carriers enabled efficient drug loading in the formulation.Drug resistance is the underlying cause for therapeutic failure in clinical cancer chemotherapy. A prodrug copolymer mPEG-PAsp(DIP-co-BZA-co-DOX) (PDBD) was synthesized and assembled into a nanoscale vesicle comprising a PEG corona, a reduction and pH dual-sensitive hydrophobic membrane and an aqueous lumen encapsulating doxorubicin hydrochloride (DOX.HCl) and arsenite (As). The dual stimulation-sensitive design of the vesicle gave rise to rapid release of the physically entrapped DOX.HCl and arsenite inside acidic lysosomes, and chemically conjugated DOX inside the cytosol with high glutathione (GSH) concentration. In the

  6. Voltage dependent anion channel-1 regulates death receptor mediated apoptosis by enabling cleavage of caspase-8

    International Nuclear Information System (INIS)

    Chacko, Alex D; Liberante, Fabio; Paul, Ian; Longley, Daniel B; Fennell, Dean A

    2010-01-01

    Activation of the extrinsic apoptosis pathway by tumour necrosis factor related apoptosis inducing ligand (TRAIL) is a novel therapeutic strategy for treating cancer that is currently under clinical evaluation. Identification of molecular biomarkers of resistance is likely to play an important role in predicting clinical anti tumour activity. The involvement of the mitochondrial type 1 voltage dependent anion channel (VDAC1) in regulating apoptosis has been highly debated. To date, a functional role in regulating the extrinsic apoptosis pathway has not been formally excluded. We carried out stable and transient RNAi knockdowns of VDAC1 in non-small cell lung cancer cells, and stimulated the extrinsic apoptotic pathway principally by incubating cells with the death ligand TRAIL. We used in-vitro apoptotic and cell viability assays, as well as western blot for markers of apoptosis, to demonstrate that TRAIL-induced toxicity is VDAC1 dependant. Confocal microscopy and mitochondrial fractionation were used to determine the importance of mitochondria for caspase-8 activation. Here we show that either stable or transient knockdown of VDAC1 is sufficient to antagonize TRAIL mediated apoptosis in non-small cell lung cancer (NSCLC) cells. Specifically, VDAC1 is required for processing of procaspase-8 to its fully active p18 form at the mitochondria. Loss of VDAC1 does not alter mitochondrial sensitivity to exogenous caspase-8-cleaved BID induced mitochondrial depolarization, even though VDAC1 expression is essential for TRAIL dependent activation of the intrinsic apoptosis pathway. Furthermore, expression of exogenous VDAC1 restores the apoptotic response to TRAIL in cells in which endogenous VDAC1 has been selectively silenced. Expression of VDAC1 is required for full processing and activation of caspase-8 and supports a role for mitochondria in regulating apoptosis signaling via the death receptor pathway

  7. Calcium-dependent regulation of SNARE-mediated membrane fusion by calmodulin.

    Science.gov (United States)

    Di Giovanni, Jerome; Iborra, Cécile; Maulet, Yves; Lévêque, Christian; El Far, Oussama; Seagar, Michael

    2010-07-30

    Neuroexocytosis requires SNARE proteins, which assemble into trans complexes at the synaptic vesicle/plasma membrane interface and mediate bilayer fusion. Ca(2+) sensitivity is thought to be conferred by synaptotagmin, although the ubiquitous Ca(2+)-effector calmodulin has also been implicated in SNARE-dependent membrane fusion. To examine the molecular mechanisms involved, we examined the direct action of calmodulin and synaptotagmin in vitro, using fluorescence resonance energy transfer to assay lipid mixing between target- and vesicle-SNARE liposomes. Ca(2+)/calmodulin inhibited SNARE assembly and membrane fusion by binding to two distinct motifs located in the membrane-proximal regions of VAMP2 (K(D) = 500 nm) and syntaxin 1 (K(D) = 2 microm). In contrast, fusion was increased by full-length synaptotagmin 1 anchored in vesicle-SNARE liposomes. When synaptotagmin and calmodulin were combined, synaptotagmin overcame the inhibitory effects of calmodulin. Furthermore, synaptotagmin displaced calmodulin binding to target-SNAREs. These findings suggest that two distinct Ca(2+) sensors act antagonistically in SNARE-mediated fusion.

  8. Facultative anoxygenic photosynthesis in cyanobacteria driven by arsenite and sulfide with evidence for the support of nitrogen fixation

    Science.gov (United States)

    Wolfe-Simon, F.; Hoeft, S. E.; Baesman, S. M.; Oremland, R. S.

    2010-12-01

    The rise in atmospheric oxygen (O2) over geologic time is attributed to the evolution and widespread proliferation of oxygenic photosynthesis in cyanobacteria. However, cyanobacteria maintain a metabolic flexibility that may not always result in O2 release. In the environment, cyanobacteria may use a variety of alternative electron donors rather than water that are known to be used by other anoxygenic phototrophs (eg. purple sulfur bacteria) including reduced forms of sulfur, iron, nitrogen, and arsenic. Recent evidence suggests cyanobacteria actively take advantage of at least a few of these alternatives. We used a classical Winogradsky approach to enrich for cyanobacteria from the high salinity, elevated pH and arsenic-enriched waters of Mono Lake (CA). Experiments, optimized for cyanobacteria, revealed light-dependent, anaerobic arsenite-oxidation in sub-cultured sediment-free enrichments dominated by a filamentous cyanobacteria. We isolated and identified the dominant member of this enrichment to be a member of the Oscillatoriales by 16S rDNA. Addition of 1 mM arsenite induced facultative anoxygenic photosynthesis under continuous and circadian light. This isolate also oxidized sulfide under the same light-based conditions. Aerobic conditions elicited no arsenite oxidation in the light or dark and the isolate grew as a typical cyanobacterium using oxygenic photosynthesis. Under near-infrared light (700 nm) there was a direct correlation of enhanced growth with an increase in the rate arsenite or sulfide oxidation suggesting the use of photosystem I. Additionally, to test the wide-spread nature of this metabolism in the Oscillatoriales, we followed similar arsenite- and sulfide-driven facultative anoxygenic photosynthesis as well as nitrogen fixation (C2H2 reduction) in the axenic isolate Oscillatoria sp. CCMP 1731. Future characterization includes axenic isolation of the Mono Lake Oscillatoria sp. as well as the arsenite oxidase responsible for electron

  9. Reduction of Sodium Arsenite-Mediated Adverse Effects in Mice using Dietary Supplementation of Water Hyacinth (Eichornia crassipes) Root Powder.

    Science.gov (United States)

    Sarker, Rim Sabrina Jahan; Ahsan, Nazmul; Hossain, Khaled; Ghosh, Paritosh Kumar; Ahsan, Chowdhury Rafiqul; Akhand, Anwarul Azim

    2012-07-01

    In this study, we evaluated the protective effects of water Hyacinth Root Powder (HRP) on arsenic-mediated toxic effects in mice. Swiss albino mice, used in this study, were divided into four different groups (for each group n=5). The control group was supplied with normal feed and water, Arsenic group (As-group) was supplied with normal feed plus arsenic (sodium arsenite)-containing water, and arsenic+hyacinth group (As+Hy group) was supplied with feed supplemented with HRP plus arsenic water. The remaining Hy-group was supplied with feed supplemented with HRP plus normal water. Oral administration of arsenic reduced the normal growth of the mice as evidenced by weight loss. Interestingly, tip of the tails of these mice developed wound that caused gradual reduction of the tail length. Supplementation of HRP in feed significantly prevented mice growth retardation and tail wounding in As+Hy group mice. However, the growth pattern in Hy-group mice was observed to be almost similar to that of the control group indicating that HRP itself has no toxic or negative effect in mice. Ingested arsenic also distorted the shape of the blood cells and elevated the serum enzymes such as lactate dehydrogenase (LDH), alkaline phosphatase (ALP) and serum glutamic pyruvic transaminase (SGPT). Importantly, elevation of these enzymes and distortion of blood cell shape were partially reduced in mice belong to As+Hy group, indicating HRP-mediated reduction of arsenic toxicity. Therefore, the preventive effect of hyacinth root on arsenic-poisoned mice suggested the future application of hyacinth to reduce arsenic toxicity in animal and human.

  10. Activity-dependent astrocyte swelling is mediated by pH-regulating mechanisms.

    Science.gov (United States)

    Larsen, Brian Roland; MacAulay, Nanna

    2017-10-01

    During neuronal activity in the mammalian brain, the K + released into the synaptic space is initially buffered by the astrocytic compartment. In parallel, the extracellular space (ECS) shrinks, presumably due to astrocytic cell swelling. With the Na + /K + /2Cl - cotransporter and the Kir4.1/AQP4 complex not required for the astrocytic cell swelling in the hippocampus, the molecular mechanisms underlying the activity-dependent ECS shrinkage have remained unresolved. To identify these molecular mechanisms, we employed ion-sensitive microelectrodes to measure changes in ECS, [K + ] o and [H + ] o /pH o during electrical stimulation of rat hippocampal slices. Transporters and receptors responding directly to the K + and glutamate released into the extracellular space (the K + /Cl - cotransporter, KCC, glutamate transporters and G protein-coupled receptors) did not modulate the extracellular space dynamics. The HCO3--transporting mechanism, which in astrocytes mainly constitutes the electrogenic Na + / HCO3- cotransporter 1 (NBCe1), is activated by the K + -mediated depolarization of the astrocytic membrane. Inhibition of this transporter reduced the ECS shrinkage by ∼25% without affecting the K + transients, pointing to NBCe1 as a key contributor to the stimulus-induced astrocytic cell swelling. Inhibition of the monocarboxylate cotransporters (MCT), like-wise, reduced the ECS shrinkage by ∼25% without compromising the K + transients. Isosmotic reduction of extracellular Cl - revealed a requirement for this ion in parts of the ECS shrinkage. Taken together, the stimulus-evoked astrocytic cell swelling does not appear to occur as a direct effect of the K + clearance, as earlier proposed, but partly via the pH-regulating transport mechanisms activated by the K + -induced astrocytic depolarization and the activity-dependent metabolism. © 2017 Wiley Periodicals, Inc.

  11. Drinking motives mediate emotion regulation difficulties and problem drinking in college students.

    Science.gov (United States)

    Aurora, Pallavi; Klanecky, Alicia K

    2016-05-01

    Problem drinking in college places students at an increased risk for a wealth of negative consequences including alcohol use disorders. Most research has shown that greater emotion regulation difficulties are related to increased problem drinking, and studies generally assume that drinking is motivated by efforts to cope with or enhance affective experiences. However, there is a lack of research specifically testing this assumption. The current study sought to examine the mediating potential of drinking motives, specifically coping and enhancement, on the relationship between emotion regulation and problem drinking. College participants (N = 200) completed an online survey, consisting of a battery of measures assessing alcohol use behaviors and related variables. Coping drinking motives fully mediated the emotion regulation/problem drinking relationship, and enhancement motives partially mediated this relationship. Exploratory analyses indicated that all four drinking motives (i.e. coping, enhancement, social, and conformity) simultaneously mediated the relationship between emotion regulation and quantity/frequency of alcohol use. However, only coping and enhancement significantly mediated the relationship between emotion regulation and alcohol-related consequences (e.g. alcohol dependence symptoms, alcohol-related injuries). The current results offer direction for potentially modifying brief alcohol interventions in efforts to reduce students' engagement in problem drinking behaviors. For example, interventions might incorporate information on the risks of using alcohol as a means of emotion regulation and offer alternative emotion regulation strategies.

  12. Mechanism of estrogen-mediated attenuation of hepatic injury following trauma-hemorrhage: Akt-dependent HO-1 up-regulation.

    Science.gov (United States)

    Hsu, Jun-Te; Kan, Wen-Hong; Hsieh, Chi-Hsun; Choudhry, Mashkoor A; Schwacha, Martin G; Bland, Kirby I; Chaudry, Irshad H

    2007-10-01

    Protein kinase B (Akt) is known to be involved in proinflammatory and chemotactic events in response to injury. Akt activation also leads to the induction of heme oxygenase (HO)-1. Up-regulation of HO-1 mediates potent, anti-inflammatory effects and attenuates organ injury. Although studies have shown that 17beta-estradiol (E2) prevents organ damage following trauma-hemorrhage, it remains unknown whether Akt/HO-1 plays any role in E2-mediated attenuation of hepatic injury following trauma-hemorrhage. To study this, male rats underwent trauma-hemorrhage (mean blood pressure, approximately 40 mmHg for 90 min), followed by fluid resuscitation. At the onset of resuscitation, rats were treated with vehicle, E2 (1 mg/kg body weight), E2 plus the PI-3K inhibitor (Wortmannin), or the estrogen receptor (ER) antagonist (ICI 182,780). At 2 h after sham operation or trauma-hemorrhage, plasma alpha-GST and hepatic tissue myeloperoxidase (MPO) activity, IL-6, TNF-alpha, ICAM-1, cytokine-induced neutrophil chemoattractant-1, and MIP-2 levels were measured. Hepatic Akt and HO-1 protein levels were also determined. Trauma-hemorrhage increased hepatic injury markers (alpha-GST and MPO activity), cytokines, ICAM-1, and chemokine levels. These parameters were markedly improved in the E2-treated rats following trauma-hemorrhage. E2 treatment also increased hepatic Akt activation and HO-1 expression compared with vehicle-treated, trauma-hemorrhage rats, which were abolished by coadministration of Wortmannin or ICI 182,780. These results suggest that the salutary effects of E2 on hepatic injury following trauma-hemorrhage are in part mediated via an ER-related, Akt-dependent up-regulation of HO-1.

  13. Effects of nickel, chromate, and arsenite on histone 3 lysine methylation

    International Nuclear Information System (INIS)

    Zhou Xue; Li Qin; Arita, Adriana; Sun Hong; Costa, Max

    2009-01-01

    Occupational exposure to nickel (Ni), chromium (Cr), and arsenic (As) containing compounds has been associated with lung cancer and other adverse health effects. Their carcinogenic properties may be attributable in part, to activation and/or repression of gene expression induced by changes in the DNA methylation status and histone tail post-translational modifications. Here we show that individual treatment with nickel, chromate, and arsenite all affect the gene activating mark H3K4 methylation. We found that nickel (1 mM), chromate (10 μM), and arsenite (1 μM) significantly increase tri-methyl H3K4 after 24 h exposure in human lung carcinoma A549 cells. Seven days of exposure to lower levels of nickel (50 and 100 μM), chromate (0.5 and 1 μM) or arsenite (0.1, 0.5 and 1 μM) also increased tri-methylated H3K4 in A549 cells. This mark still remained elevated and inherited through cell division 7 days following removal of 1 μM arsenite. We also demonstrate by dual staining immunofluorescence microscopy that both H3K4 tri-methyl and H3K9 di-methyl marks increase globally after 24 h exposure to each metal treatment in A549 cells. However, the tri-methyl H3K4 and di-methyl H3K9 marks localize in different regions in the nucleus of the cell. Thus, our study provides further evidence that a mechanism(s) of carcinogenicity of nickel, chromate, and arsenite metal compounds may involve alterations of various histone tail modifications that may in turn affect the expression of genes that may cause transformation

  14. Aqueous and ethanolic leaf extracts of Ocimum basilicum (sweet basil) protect against sodium arsenite-induced hepatotoxicity in Wistar rats.

    Science.gov (United States)

    Gbadegesin, M A; Odunola, O A

    2010-11-25

    We evaluated the effects of aqueous and ethanolic leaf extracts of Ocimum basilicum (sweet basil) on sodium arsenite-induced hepatotoxicity in Wistar rats. We observed that treatment of the animals with the extracts before or just after sodium arsenite administration significantly (p < 0.05) reduced mean liver and serum γ-Glutamyl transferase (γGT), and serum alkaline phosphatase (ALP) activities when compared with the group administered the toxin alone. In addition, treatments of the animals with aqueous or ethanolic extract of O. basilicum before the administration of sodium arsenite resulted in the attenuation of the sodium arsenite-induced aspartate and alanine aminotransferase activities: ALT (from 282.6% to 167.7% and 157.8%), AST (from 325.1% to 173.5% and 164.2%) for the group administered sodium arsenite alone, the aqueous extracts plus sodium arsenite, and ethanolic extracts plus sodium arsenite respectively, expressed as percentage of the negative control. These findings support the presence of hepatoprotective activity in the O.basilicum extracts.

  15. β-Adrenergic regulation of the cardiac Na+-K+ ATPase mediated by oxidative signaling

    DEFF Research Database (Denmark)

    Galougahi, Keyvan Karimi; Liu, Chia-Chi; Bundgaard, Henning

    2012-01-01

    Activation of β-adrenergic receptors (ARs) elicits responses arising from protein kinase A (PKA)-mediated phosphorylation of target proteins that regulate Ca(2+)-dependent excitation-contraction coupling. Some important targets for β-AR- and PKA-dependent pathways, including the sarcolemmal Na(+)...

  16. Helper T cell subpopulations from women are more susceptible to the toxic effect of sodium arsenite in vitro

    International Nuclear Information System (INIS)

    Vega, Libia; Montes de Oca, Pavel; Saavedra, Rafael; Ostrosky-Wegman, Patricia

    2004-01-01

    Arsenic is known to produce inhibition as well as induction of proliferative responses in animal and human cells depending on the doses. Despite the amount of information on the immunotoxic effects of arsenic exposure in different animal models, little is known in humans. Arsenic susceptibility of lymphocyte subpopulations (T helper (Th), CD4+; T cytotoxic (Tc), CD8+) and whether arsenic effects are gender related are still to be determined. This work evaluated the in vitro toxicity of sodium arsenite on human T lymphocyte subpopulations from men and women. Peripheral blood mononuclear cells (PBMC) obtained from healthy young men and women were treated with sodium arsenite (0.01, 0.1, and 1 μM). We assessed cell viability, cell proliferation, and the proportion of Th and Tc cells after 48 or 72 h of arsenic exposure in resting and phytohemagglutinin M (PHA)-activated PBMC. We observed that sodium arsenite at 1 μM was more toxic for Th than for Tc cells in PBMC from women. Besides, T lymphocytes from women were more affected by the cell proliferation inhibition induced by arsenic, suggesting that women could be more susceptible to the toxic and immunotoxic effects caused by arsenic exposure

  17. Epidermal growth factor receptor mediated proliferation depends on increased lipid droplet density regulated via a negative regulatory loop with FOXO3/Sirtuin6

    Energy Technology Data Exchange (ETDEWEB)

    Penrose, Harrison; Heller, Sandra; Cable, Chloe [Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave SL-79, New Orleans, LA 70112 (United States); Makboul, Rania [Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave SL-79, New Orleans, LA 70112 (United States); Pathology Department, Assiut University, Assiut (Egypt); Chadalawada, Gita; Chen, Ying [Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave SL-79, New Orleans, LA 70112 (United States); Crawford, Susan E. [Department of Pathology, Saint Louis University School of Medicine, 1402 South Grand Blvd, Saint Louis, MO 63104 (United States); Savkovic, Suzana D., E-mail: ssavkovi@tulane.edu [Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, 1430 Tulane Ave SL-79, New Orleans, LA 70112 (United States)

    2016-01-15

    The proliferation of colon cancer cells is mediated in part by epidermal growth factor receptor (EGFR) signaling and requires sustained levels of cellular energy to meet its high metabolic needs. Intracellular lipid droplets (LDs) are a source of energy used for various cellular functions and they are elevated in density in human cancer, yet their regulation and function are not well understood. Here, in human colon cancer cells, EGF stimulates increases in LD density, which depends on EGFR expression and activation as well as the individual cellular capacity for lipid synthesis. Increases in LDs are blockaded by inhibition of PI3K/mTOR and PGE2 synthesis, supporting their dependency on select upstream pathways. In colon cancer cells, silencing of the FOXO3 transcription factor leads to down regulation of SIRT6, a negative regulator of lipid synthesis, and consequent increases in the LD coat protein PLIN2, revealing that increases in LDs depend on loss of FOXO3/SIRT6. Moreover, EGF stimulates loss of FOXO3/SIRT6, which is blockaded by the inhibition of upstream pathways as well as lipid synthesis, revealing existence of a negative regulatory loop between LDs and FOXO3/SIRT6. Elevated LDs are utilized by EGF treatment and their depletion through the inhibition of lipid synthesis or silencing of PLIN2 significantly attenuates proliferation. This novel mechanism of proliferative EGFR signaling leading to elevated LD density in colon cancer cells could potentially be therapeutically targeted for the treatment of tumor progression. - Highlights: • In colon cancer cells, EGFR activation leads to increases in LD density. • EGFR signaling includes PI3K/mTOR and PGE2 leading to lipid synthesis. • Increases in LDs are controlled by a negative regulatory loop with FOXO3/SIRT6. • EGFR mediated colon cancer cell proliferation depends on increased LD density.

  18. Epidermal growth factor receptor mediated proliferation depends on increased lipid droplet density regulated via a negative regulatory loop with FOXO3/Sirtuin6

    International Nuclear Information System (INIS)

    Penrose, Harrison; Heller, Sandra; Cable, Chloe; Makboul, Rania; Chadalawada, Gita; Chen, Ying; Crawford, Susan E.; Savkovic, Suzana D.

    2016-01-01

    The proliferation of colon cancer cells is mediated in part by epidermal growth factor receptor (EGFR) signaling and requires sustained levels of cellular energy to meet its high metabolic needs. Intracellular lipid droplets (LDs) are a source of energy used for various cellular functions and they are elevated in density in human cancer, yet their regulation and function are not well understood. Here, in human colon cancer cells, EGF stimulates increases in LD density, which depends on EGFR expression and activation as well as the individual cellular capacity for lipid synthesis. Increases in LDs are blockaded by inhibition of PI3K/mTOR and PGE2 synthesis, supporting their dependency on select upstream pathways. In colon cancer cells, silencing of the FOXO3 transcription factor leads to down regulation of SIRT6, a negative regulator of lipid synthesis, and consequent increases in the LD coat protein PLIN2, revealing that increases in LDs depend on loss of FOXO3/SIRT6. Moreover, EGF stimulates loss of FOXO3/SIRT6, which is blockaded by the inhibition of upstream pathways as well as lipid synthesis, revealing existence of a negative regulatory loop between LDs and FOXO3/SIRT6. Elevated LDs are utilized by EGF treatment and their depletion through the inhibition of lipid synthesis or silencing of PLIN2 significantly attenuates proliferation. This novel mechanism of proliferative EGFR signaling leading to elevated LD density in colon cancer cells could potentially be therapeutically targeted for the treatment of tumor progression. - Highlights: • In colon cancer cells, EGFR activation leads to increases in LD density. • EGFR signaling includes PI3K/mTOR and PGE2 leading to lipid synthesis. • Increases in LDs are controlled by a negative regulatory loop with FOXO3/SIRT6. • EGFR mediated colon cancer cell proliferation depends on increased LD density.

  19. Arsenite promotes centrosome abnormalities under a p53 compromised status induced by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)

    International Nuclear Information System (INIS)

    Liao, W.-T.; Yu, H.-S.; Lin Pinpin; Chang, Louis W.

    2010-01-01

    Epidemiological evidence indicated that residents, especially cigarette smokers, in arseniasis areas had significantly higher lung cancer risk than those living in non-arseniasis areas. Thus an interaction between arsenite and cigarette smoking in lung carcinogenesis was suspected. In the present study, we investigated the interactions of a tobacco-specific carcinogen 4- (methylnitrosamino)-1-(3-pyridyl)-1-butanone (nicotine-derived nitrosamine ketone, NNK) and arsenite on lung cell transformation. BEAS-2B, an immortalized human lung epithelial cell line, was selected to test the centrosomal abnormalities and colony formation by NNK and arsenite. We found that NNK, alone, could enhance BEAS-2B cell growth at 1-5 μM. Under NNK exposure, arsenite was able to increase centrosomal abnormality as compared with NNK or arsenite treatment alone. NNK treatment could also reduce arsenite-induced G2/M cell cycle arrest and apoptosis, these cellular effects were found to be correlated with p53 dysfunction. Increased anchorage-independent growth (colony formation) of BEAS-2B cells cotreated with NNK and arsenite was also observed in soft agar. Our present investigation demonstrated that NNK could provide a p53 compromised status. Arsenite would act specifically on this p53 compromised status to induce centrosomal abnormality and colony formation. These findings provided strong evidence on the carcinogenic promotional role of arsenite under tobacco-specific carcinogen co-exposure.

  20. C/EBPβ Mediates Growth Hormone-Regulated Expression of Multiple Target Genes

    Science.gov (United States)

    Cui, Tracy X.; Lin, Grace; LaPensee, Christopher R.; Calinescu, Anda-Alexandra; Rathore, Maanjot; Streeter, Cale; Piwien-Pilipuk, Graciela; Lanning, Nathan; Jin, Hui; Carter-Su, Christin; Qin, Zhaohui S.

    2011-01-01

    Regulation of c-Fos transcription by GH is mediated by CCAAT/enhancer binding protein β (C/EBPβ). This study examines the role of C/EBPβ in mediating GH activation of other early response genes, including Cyr61, Btg2, Socs3, Zfp36, and Socs1. C/EBPβ depletion using short hairpin RNA impaired responsiveness of these genes to GH, as seen for c-Fos. Rescue with wild-type C/EBPβ led to GH-dependent recruitment of the coactivator p300 to the c-Fos promoter. In contrast, rescue with C/EBPβ mutated at the ERK phosphorylation site at T188 failed to induce GH-dependent recruitment of p300, indicating that ERK-mediated phosphorylation of C/EBPβ at T188 is required for GH-induced recruitment of p300 to c-Fos. GH also induced the occupancy of phosphorylated C/EBPβ and p300 on Cyr61, Btg2, and Socs3 at predicted C/EBP-cAMP response element-binding protein motifs in their promoters. Consistent with a role for ERKs in GH-induced expression of these genes, treatment with U0126 to block ERK phosphorylation inhibited their GH-induced expression. In contrast, GH-dependent expression of Zfp36 and Socs1 was not inhibited by U0126. Thus, induction of multiple early response genes by GH in 3T3-F442A cells is mediated by C/EBPβ. A subset of these genes is regulated similarly to c-Fos, through a mechanism involving GH-stimulated ERK 1/2 activation, phosphorylation of C/EBPβ, and recruitment of p300. Overall, these studies suggest that C/EBPβ, like the signal transducer and activator of transcription proteins, regulates multiple genes in response to GH. PMID:21292824

  1. Arsenite induced oxidative damage in mouse liver is associated with increased cytokeratin 18 expression

    Energy Technology Data Exchange (ETDEWEB)

    Gonsebatt, M.E. [UNAM, Ciudad Universitaria, Dept. Medicina Genomica y Toxicologia Ambiental, Instituto de Investigaciones Biomedicas, Mexico (Mexico); Razo, L.M. del; Sanchez-Pena, L.C. [Seccion de Toxicologia, CINVESTAV, Mexico (Mexico); Cerbon, M.A. [Facultad de Quimica, UNAM, Departamento de Biologia, Mexico (Mexico); Zuniga, O.; Ramirez, P. [Facultad de Estudios Superiores Cuautitlan, UNAM, Laboratorio de Toxicologia Celular, Coordinacion General de Estudios de Posgrado e Investigacion, Cuautitlan Izcalli, Estado de Mexico (Mexico)

    2007-09-15

    Cytokeratins (CK) constitute a family of cytoskeletal intermediate filament proteins that are typically expressed in epithelial cells. An abnormal structure and function are effects that are clearly related to liver diseases as non-alcoholic steatohepatitis, cirrhosis and hepatocellular carcinoma. We have previously observed that sodium arsenite (SA) induced the synthesis of CK18 protein and promotes a dose-related disruption of cytoplasmic CK18 filaments in a human hepatic cell line. Both abnormal gene expression and disturbance of structural organization are toxic effects that are likely to cause liver disease by interfering with normal hepatocyte function. To investigate if a disruption in the CK18 expression pattern is associated with arsenite liver damage, we investigated CK18 mRNA and protein levels in liver slices treated with low levels of SA. Organotypic cultures were incubated with 0.01, 1 and 10 {mu}M of SA in the absence and presence of N-acetyl cysteine (NAC). Cell viability and inorganic arsenic metabolism were determined. Increased expression of CK18 was observed after exposure to SA. The addition of NAC impeded the oxidative effects of SA exposure, decreasing the production of thiobarbituric acid-reactive substances and significantly diminishing the up regulation of CK18 mRNA and protein. Liver arsenic levels correlated with increased levels of mRNA. Mice treated with intragastric single doses of 2.5 and 5 mg/kg of SA showed an increased expression of CK18. Results suggest that CK18 expression may be a sensible early biomarker of oxidative stress and damage induced by arsenite in vitro and in vivo. Then, during SA exposure, altered CK expression may compromise liver function. (orig.)

  2. Mediator can regulate mitotic entry and direct periodic transcription in fission yeast.

    Science.gov (United States)

    Banyai, Gabor; Lopez, Marcela Davila; Szilagyi, Zsolt; Gustafsson, Claes M

    2014-11-01

    Cdk8 is required for correct timing of mitotic progression in fission yeast. How the activity of Cdk8 is regulated is unclear, since the kinase is not activated by T-loop phosphorylation and its partner, CycC, does not oscillate. Cdk8 is, however, a component of the multiprotein Mediator complex, a conserved coregulator of eukaryotic transcription that is connected to a number of intracellular signaling pathways. We demonstrate here that other Mediator components regulate the activity of Cdk8 in vivo and thereby direct the timing of mitotic entry. Deletion of Mediator components Med12 and Med13 leads to higher cellular Cdk8 protein levels, premature phosphorylation of the Cdk8 target Fkh2, and earlier entry into mitosis. We also demonstrate that Mediator is recruited to clusters of mitotic genes in a periodic fashion and that the complex is required for the transcription of these genes. We suggest that Mediator functions as a hub for coordinated regulation of mitotic progression and cell cycle-dependent transcription. The many signaling pathways and activator proteins shown to function via Mediator may influence the timing of these cell cycle events. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  3. Arsenic induced progesterone production in a caspase-3-dependent manner and changed redox status in preovulatory granulosa cells.

    Science.gov (United States)

    Yuan, Xiao-Hua; Lu, Cai-Ling; Yao, Nan; An, Li-Sha; Yang, Bai-Qing; Zhang, Chuan-Ling; Ma, Xu

    2012-01-01

    Arsenic contamination is a principal environmental health threat throughout the world. However, little is known about the effect of arsenic on steroidogenesis in granulosa cells (GCs). We found that the treatment of preovulatory GCs with arsenite stimulated progesterone production. A significant increase in serum level of progesterone was observed in female Sprague-Dawley rats following arsenite treatment at a dose of 10 mg/L/rat/day for 7 days. Further experiments demonstrated that arsenite treatment did not change the level of intracellular cyclic AMP (cAMP) or phosphorylated ERK1/2 in preovulatory GCs; however, progesterone production was significantly decreased when cAMP-dependent protein kinase (PKA) or ERK1/2 pathway was inhibited. This implied that the effect of arsenite on progesterone production may require cAMP/PKA and ERK1/2 signaling but not depend on them. Furthermore, we found that arsenite decreased intracellular reactive oxygen species (ROS) but increased the antioxidant glutathione (GSH) levels and mitochondrial membrane potential (ΔΨm) in parallel to the changes in progesterone production. Progesterone antagonist blocked the arsenic-stimulated increase of GSH levels. Arsenite treatment induced caspase-3 activation, although no apoptosis was observed. Inhibition of caspase-3 activity significantly decreased progesterone production stimulated by arsenite or follicle-stimulating hormone (FSH). GSH depletion with buthionine sulfoximine led to cell apoptosis in response to arsenite treatment. Collectively, this study demonstrated for the first time that arsenite stimulates progesterone production through cleaved/active caspase-3-dependent pathway, and the increase of GSH level promoted by progesterone production may protect GCs against apoptosis and maintain the steroidogenesis of GCs in response to arsenite treatment. Copyright © 2011 Wiley Periodicals, Inc.

  4. Developmental mechanisms of arsenite toxicity in zebrafish (Danio rerio) embryos

    International Nuclear Information System (INIS)

    Li Dan; Lu Cailing; Wang Ju; Hu Wei; Cao Zongfu; Sun Daguang; Xia Hongfei; Ma Xu

    2009-01-01

    Arsenic usually accumulates in soil, water and airborne particles, from which it is taken up by various organisms. Exposure to arsenic through food and drinking water is a major public health problem affecting some countries. At present there are limited laboratory data on the effects of arsenic exposure on early embryonic development and the mechanisms behind its toxicity. In this study, we used zebrafish as a model system to investigate the effects of arsenite on early development. Zebrafish embryos were exposed to a range of sodium arsenite concentrations (0-10.0 mM) between 4 and 120 h post-fertilization (hpf). Survival and early development of the embryos were not obviously influenced by arsenite concentrations below 0.5 mM. However, embryos exposed to higher concentrations (0.5-10.0 mM) displayed reduced survival and abnormal development including delayed hatching, retarded growth and changed morphology. Alterations in neural development included weak tactile responses to light (2.0-5.0 mM, 30 hpf), malformation of the spinal cord and disordered motor axon projections (2.0 mM, 48 hpf). Abnormal cardiac function was observed as bradycardia (0.5-2.0 mM, 60 hpf) and altered ventricular shape (2.0 mM, 48 hpf). Furthermore, altered cell proliferation (2.0 mM, 24 hpf) and apoptosis status (2.0 mM, 24 and 48 hpf), as well as abnormal genomic DNA methylation patterning (2.0 mM, 24 and 48 hpf) were detected in the arsenite-treated embryos. All of these indicate a possible relationship between arsenic exposure and developmental failure in early embryogenesis. Our studies suggest that the negative effects of arsenic on vertebrate embryogenesis are substantial

  5. Mediator: A key regulator of plant development.

    Science.gov (United States)

    Buendía-Monreal, Manuel; Gillmor, C Stewart

    2016-11-01

    Mediator is a multiprotein complex that regulates transcription at the level of RNA pol II assembly, as well as through regulation of chromatin architecture, RNA processing and recruitment of epigenetic marks. Though its modular structure is conserved in eukaryotes, its subunit composition has diverged during evolution and varies in response to environmental and tissue-specific inputs, suggesting different functions for each subunit and/or Mediator conformation. In animals, Mediator has been implicated in the control of differentiation and morphogenesis through modulation of numerous signaling pathways. In plants, studies have revealed roles for Mediator in regulation of cell division, cell fate and organogenesis, as well as developmental timing and hormone responses. We begin this review with an overview of biochemical mechanisms of yeast and animal Mediator that are likely to be conserved in all eukaryotes, as well as a brief discussion of the role of Mediator in animal development. We then present a comprehensive review of studies of the role of Mediator in plant development. Finally, we point to important questions for future research on the role of Mediator as a master coordinator of development. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Fragile X Mental Retardation Protein Regulates Activity-Dependent Membrane Trafficking and Trans-Synaptic Signaling Mediating Synaptic Remodeling

    Science.gov (United States)

    Sears, James C.; Broadie, Kendal

    2018-01-01

    Fragile X syndrome (FXS) is the leading monogenic cause of autism and intellectual disability. The disease arises through loss of fragile X mental retardation protein (FMRP), which normally exhibits peak expression levels in early-use critical periods, and is required for activity-dependent synaptic remodeling during this transient developmental window. FMRP canonically binds mRNA to repress protein translation, with targets that regulate cytoskeleton dynamics, membrane trafficking, and trans-synaptic signaling. We focus here on recent advances emerging in these three areas from the Drosophila disease model. In the well-characterized central brain mushroom body (MB) olfactory learning/memory circuit, FMRP is required for activity-dependent synaptic remodeling of projection neurons innervating the MB calyx, with function tightly restricted to an early-use critical period. FMRP loss is phenocopied by conditional removal of FMRP only during this critical period, and rescued by FMRP conditional expression only during this critical period. Consistent with FXS hyperexcitation, FMRP loss defects are phenocopied by heightened sensory experience and targeted optogenetic hyperexcitation during this critical period. FMRP binds mRNA encoding Drosophila ESCRTIII core component Shrub (human CHMP4 homolog) to restrict Shrub translation in an activity-dependent mechanism only during this same critical period. Shrub mediates endosomal membrane trafficking, and perturbing Shrub expression is known to interfere with neuronal process pruning. Consistently, FMRP loss and Shrub overexpression targeted to projection neurons similarly causes endosomal membrane trafficking defects within synaptic boutons, and genetic reduction of Shrub strikingly rescues Drosophila FXS model defects. In parallel work on the well-characterized giant fiber (GF) circuit, FMRP limits iontophoretic dye loading into central interneurons, demonstrating an FMRP role controlling core neuronal properties through the

  7. Pharmacokinetic and Genomic Effects of Arsenite in Drinking Water on Mouse Lung in a 30-Day Exposure

    Directory of Open Access Journals (Sweden)

    Jaya Chilakapati

    2015-06-01

    Full Text Available The 2 objectives of this subchronic study were to determine the arsenite drinking water exposure dependent increases in female C3H mouse liver and lung tissue arsenicals and to characterize the dose response (to 0, 0.05, 0.25, 1, 10, and 85 ppm arsenite in drinking water for 30 days and a purified AIN-93M diet for genomic mouse lung expression patterns. Mouse lungs were analyzed for inorganic arsenic, monomethylated, and dimethylated arsenicals by hydride generation atomic absorption spectroscopy. The total lung mean arsenical levels were 1.4, 22.5, 30.1, 50.9, 105.3, and 316.4 ng/g lung tissue after 0, 0.05, 0.25, 1, 10, and 85 ppm, respectively. At 85 ppm, the total mean lung arsenical levels increased 14-fold and 131-fold when compared to either the lowest noncontrol dose (0.05 ppm or the control dose, respectively. We found that arsenic exposure elicited minimal numbers of differentially expressed genes (DEGs; 77, 38, 90, 87, and 87 DEGs after 0.05, 0.25, 1, 10, and 85 ppm, respectively, which were associated with cardiovascular disease, development, differentiation, apoptosis, proliferation, and stress response. After 30 days of arsenite exposure, this study showed monotonic increases in mouse lung arsenical (total arsenic and dimethylarsinic acid concentrations but no clear dose-related increases in DEG numbers.

  8. Population Structure and Abundance of Arsenite-Oxidizing Bacteria along an Arsenic Pollution Gradient in Waters of the Upper Isle River Basin, France▿ †

    Science.gov (United States)

    Quéméneur, Marianne; Cébron, Aurélie; Billard, Patrick; Battaglia-Brunet, Fabienne; Garrido, Francis; Leyval, Corinne; Joulian, Catherine

    2010-01-01

    Denaturing gradient gel electrophoresis (DGGE) and quantitative real-time PCR (qPCR) were successfully developed to monitor functional aoxB genes as markers of aerobic arsenite oxidizers. DGGE profiles showed a shift in the structure of the aoxB-carrying bacterial population, composed of members of the Alpha-, Beta- and Gammaproteobacteria, depending on arsenic (As) and Eh levels in Upper Isle River Basin waters. The highest aoxB gene densities were found in the most As-polluted oxic surface waters but without any significant correlation with environmental factors. Arsenite oxidizers seem to play a key role in As mobility in As-impacted waters. PMID:20453153

  9. Hepatoprotective Role of Hydrangea macrophylla against Sodium Arsenite-Induced Mitochondrial-Dependent Oxidative Stress via the Inhibition of MAPK/Caspase-3 Pathways

    Directory of Open Access Journals (Sweden)

    Md Rashedunnabi Akanda

    2017-07-01

    Full Text Available Sodium arsenite (NaAsO2 has been recognized as a worldwide health concern. Hydrangea macrophylla (HM is used as traditional Chinese medicine possessing antioxidant activities. The study was performed to investigate the therapeutic role and underlying molecular mechanism of HM on NaAsO2-induced toxicity in human liver cancer (HepG2 cells and liver in mice. The hepatoprotective role of HM in HepG2 cells was assessed by using 3-(4,5-dimethylthiazol-2-Yl-2,5-diphenyltetrazolium bromide (MTT, reactive oxygen species (ROS, and lactate dehydrogenase (LDH assays. Histopathology, lipid peroxidation, serum biochemistry, quantitative real-time polymerase chain reaction (qPCR and Western blot analyses were performed to determine the protective role of HM against NaAsO2 intoxication in liver tissue. In this study, we found that co-treatment with HM significantly attenuated the NaAsO2-induced cell viability loss, intracellular ROS, and LDH release in HepG2 cells in a dose-dependent manner. Hepatic histopathology, lipid peroxidation, and the serum biochemical parameters alanine aminotransferase (ALT and aspartate aminotransferase (AST were notably improved by HM. HM effectively downregulated the both gene and protein expression level of the mitogen-activated protein kinase (MAPK cascade. Moreover, HM well-regulated the Bcl-2-associated X protein (Bax/B-cell lymphoma-2 (Bcl-2 ratio, remarkably suppressed the release of cytochrome c, and blocked the expression of the post-apoptotic transcription factor caspase-3. Therefore, our study provides new insights into the hepatoprotective role of HM through its reduction in apoptosis, which likely involves in the modulation of MAPK/caspase-3 signaling pathways.

  10. A “Turn-On” thiol functionalized fluorescent carbon quantum dot based chemosensory system for arsenite detection

    Energy Technology Data Exchange (ETDEWEB)

    Pooja, D., E-mail: poojaiitr@csio.res.in [Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research, New Delhi (India); Central Scientific Instruments Organisation, Sectro-30 C, Chandigarh 160030 (India); Saini, Sonia; Thakur, Anupma; Kumar, Baban; Tyagi, Sachin [Central Scientific Instruments Organisation, Sectro-30 C, Chandigarh 160030 (India); Nayak, Manoj K. [Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research, New Delhi (India); Central Scientific Instruments Organisation, Sectro-30 C, Chandigarh 160030 (India)

    2017-04-15

    Highlights: • Environmental friendly carbon quantum dots grafted with thiol moieties. • The functionalized CQDs demonstrated for optical detection of arsenite in water. • High analytical performance in terms of sensitivity, selectivity and detection limit (0.086 ppb). - Abstract: Carbon quantum dots (CQDs) have emerged out as promising fluorescent probes for hazardous heavy metals detection in recent past. In this study, water soluble CQDs were synthesized by facile microwave pyrolysis of citric acid & cysteamine, and functionalized with ditheritheritol to impart thiol functionalities at surface for selective detection of toxic arsenite in water. Microscopic analysis reveals that the synthesized CQDs are of uniform size (diameter ∼5 nm) and confirmed to have surface −SH groups by FT-IR. The functionalized probe is then demonstrated for arsenite detection in water by “Turn-On” read out mechanism, which reduces the possibility of false positive signals associated with “turn off’ probes reported earlier. The blue luminescent functionalized CQDs exhibit increase in fluorescence intensity on arsenite addition in 5–100 ppb wide detection range. The probe can be used for sensitive detection of arsenite in environmental water to a theoretical detection limit (3s) of 0.086 ppb (R{sup 2} = 0.9547) with good reproducibility at 2.6% relative standard deviation. The presented reliable, sensitive, rapid fCQDs probe demonstrated to exhibit high selectivity towards arsenite and exemplified for real water samples as well. The analytical performance of the presented probe is comparable to existing organic & semiconductor based optical probes.

  11. Sexual harassment in heterogeneous landscapes can mediate population regulation in a grasshopper

    NARCIS (Netherlands)

    Bauer, S.; Samietz, J.; Berger, U.

    2005-01-01

    Population regulation has been related to differences in the quality among habitats, which mediate differences in vital rates such that in poor habitats reproductive rates are lower than those in high-quality habitats. The spatial distribution of animals in such habitats depends on their preferences

  12. Phospho-Caveolin-1 Mediates Integrin-Regulated Membrane Domain Internalisation

    Science.gov (United States)

    del Pozo, Miguel A.; Alderson, Nazilla B.; Grande-García, Araceli; Balasubramanian, Nagaraj; Schwartz, Martin A.; Kiosses, William B.; Anderson, Richard G.W.

    2005-01-01

    Growth of normal cells is anchorage-dependent because signalling through multiple pathways including Erk, PI 3-kinase and Rac requires integrin-mediated cell adhesion 1. Components of these pathways localize to low density, cholesterol-rich domains in the plasma membrane named “lipid rafts” 2,3 or “cholesterol enriched membrane microdomains” (CEMM) 4. We previously reported that integrin-mediated adhesion regulates CEMM trafficking such that cell detachment from the extracellular matrix (ECM) triggers CEMM internalisation and clearance from the plasma membrane 5. We now report that this internalisation is mediated by dynamin-2 and caveolin-1. Internalisation requires phosphorylation of caveolin-1 on tyrosine 14. A shift in localisation of phospho-caveolin-1 from focal adhesions to caveolae induces CEMM internalisation upon cell detachment, which mediates inhibition of Erk, PI 3-kinase and Rac. These data define a novel molecular mechanism for growth and tumour suppression by caveolin-1. PMID:16113676

  13. Activity-Dependent Bidirectional Regulation of GAD Expression in a Homeostatic Fashion Is Mediated by BDNF-Dependent and Independent Pathways

    Science.gov (United States)

    Hanno-Iijima, Yoko; Tanaka, Masami; Iijima, Takatoshi

    2015-01-01

    Homeostatic synaptic plasticity, or synaptic scaling, is a mechanism that tunes neuronal transmission to compensate for prolonged, excessive changes in neuronal activity. Both excitatory and inhibitory neurons undergo homeostatic changes based on synaptic transmission strength, which could effectively contribute to a fine-tuning of circuit activity. However, gene regulation that underlies homeostatic synaptic plasticity in GABAergic (GABA, gamma aminobutyric) neurons is still poorly understood. The present study demonstrated activity-dependent dynamic scaling in which NMDA-R (N-methyl-D-aspartic acid receptor) activity regulated the expression of GABA synthetic enzymes: glutamic acid decarboxylase 65 and 67 (GAD65 and GAD67). Results revealed that activity-regulated BDNF (brain-derived neurotrophic factor) release is necessary, but not sufficient, for activity-dependent up-scaling of these GAD isoforms. Bidirectional forms of activity-dependent GAD expression require both BDNF-dependent and BDNF-independent pathways, both triggered by NMDA-R activity. Additional results indicated that these two GAD genes differ in their responsiveness to chronic changes in neuronal activity, which could be partially caused by differential dependence on BDNF. In parallel to activity-dependent bidirectional scaling in GAD expression, the present study further observed that a chronic change in neuronal activity leads to an alteration in neurotransmitter release from GABAergic neurons in a homeostatic, bidirectional fashion. Therefore, the differential expression of GAD65 and 67 during prolonged changes in neuronal activity may be implicated in some aspects of bidirectional homeostatic plasticity within mature GABAergic presynapses. PMID:26241953

  14. ERK1/2 mediates glucose-regulated POMC gene expression in hypothalamic neurons.

    Science.gov (United States)

    Zhang, Juan; Zhou, Yunting; Chen, Cheng; Yu, Feiyuan; Wang, Yun; Gu, Jiang; Ma, Lian; Ho, Guyu

    2015-04-01

    Hypothalamic glucose-sensing neurons regulate the expression of genes encoding feeding-related neuropetides POMC, AgRP, and NPY - the key components governing metabolic homeostasis. AMP-activated protein kinase (AMPK) is postulated to be the molecular mediator relaying glucose signals to regulate the expression of these neuropeptides. Whether other signaling mediator(s) plays a role is not clear. In this study, we investigated the role of ERK1/2 using primary hypothalamic neurons as the model system. The primary neurons were differentiated from hypothalamic progenitor cells. The differentiated neurons possessed the characteristic neuronal cell morphology and expressed neuronal post-mitotic markers as well as leptin-regulated orexigenic POMC and anorexigenic AgRP/NPY genes. Treatment of cells with glucose dose-dependently increased POMC and decreased AgRP/NPY expression with a concurrent suppression of AMPK phosphorylation. In addition, glucose treatment dose-dependently increased the ERK1/2 phosphorylation. Blockade of ERK1/2 activity with its specific inhibitor PD98059 partially (approximately 50%) abolished glucose-induced POMC expression, but had little effect on AgRP/NPY expression. Conversely, blockade of AMPK activity with its specific inhibitor produced a partial (approximately 50%) reversion of low-glucose-suppressed POMC expression, but almost completely blunted the low-glucose-induced AgRP/NPY expression. The results indicate that ERK1/2 mediated POMC but not AgRP/NPY expression. Confirming the in vitro findings, i.c.v. administration of PD98059 in rats similarly attenuated glucose-induced POMC expression in the hypothalamus, but again had little effect on AgRP/NPY expression. The results are indicative of a novel role of ERK1/2 in glucose-regulated POMC expression and offer new mechanistic insights into hypothalamic glucose sensing. © 2015 Society for Endocrinology.

  15. The Genotoxicity of Sodium Arsenite in Human Lymphocyte Culture

    International Nuclear Information System (INIS)

    El-Habit Ola, H.M.

    1998-01-01

    Sodium arsenite was tested for its clastogenic effect alone and on isolated lymphocyte culture. The results showed a significant difference in the yield of chromosome aberrations induced with respect to the culture time 48 h. Whole blood culture showed significant increase in gaps and breaks whereas isolated lymphocyte culture showed significant inhibition of cell cycle and 75% of the lymphocytes were in their first cell cycle at 72 hr. Arsenite showed co-mutagenicity with different doses of x-ray delivered immediately or few hours after treatment of the culture with S A. The results suggest that S A is also mutagenic at the dose level used and provide support for the indispensability of whole blood culture for evaluation of the in vivo effect of any suspected mustagen using isolated lymphocytes appear to have problems leading to extensive cell cycle delay

  16. Auxin-dependent compositional change in Mediator in ARF7- and ARF19-mediated transcription.

    Science.gov (United States)

    Ito, Jun; Fukaki, Hidehiro; Onoda, Makoto; Li, Lin; Li, Chuanyou; Tasaka, Masao; Furutani, Masahiko

    2016-06-07

    Mediator is a multiprotein complex that integrates the signals from transcription factors binding to the promoter and transmits them to achieve gene transcription. The subunits of Mediator complex reside in four modules: the head, middle, tail, and dissociable CDK8 kinase module (CKM). The head, middle, and tail modules form the core Mediator complex, and the association of CKM can modify the function of Mediator in transcription. Here, we show genetic and biochemical evidence that CKM-associated Mediator transmits auxin-dependent transcriptional repression in lateral root (LR) formation. The AUXIN/INDOLE 3-ACETIC ACID 14 (Aux/IAA14) transcriptional repressor inhibits the transcriptional activity of its binding partners AUXIN RESPONSE FACTOR 7 (ARF7) and ARF19 by making a complex with the CKM-associated Mediator. In addition, TOPLESS (TPL), a transcriptional corepressor, forms a bridge between IAA14 and the CKM component MED13 through the physical interaction. ChIP assays show that auxin induces the dissociation of MED13 but not the tail module component MED25 from the ARF7 binding region upstream of its target gene. These findings indicate that auxin-induced degradation of IAA14 changes the module composition of Mediator interacting with ARF7 and ARF19 in the upstream region of their target genes involved in LR formation. We suggest that this regulation leads to a quick switch of signal transmission from ARFs to target gene expression in response to auxin.

  17. Histone deacetylase-mediated regulation of endolysosomal pH.

    Science.gov (United States)

    Prasad, Hari; Rao, Rajini

    2018-05-04

    The pH of the endolysosomal system is tightly regulated by a balance of proton pump and leak mechanisms that are critical for storage, recycling, turnover, and signaling functions in the cell. Dysregulation of endolysosomal pH has been linked to aging, amyloidogenesis, synaptic dysfunction, and various neurodegenerative disorders, including Alzheimer's disease. Therefore, understanding the mechanisms that regulate luminal pH may be key to identifying new targets for managing these disorders. Meta-analysis of yeast microarray databases revealed that nutrient-limiting conditions inhibited the histone deacetylase (HDAC) Rpd3 and thereby up-regulated transcription of the endosomal Na + /H + exchanger Nhx1, resulting in vacuolar alkalinization. Consistent with these findings, Rpd3 inhibition by the HDAC inhibitor and antifungal drug trichostatin A induced Nhx1 expression and vacuolar alkalinization. Bioinformatics analysis of Drosophila and mouse databases revealed that caloric control of the Nhx1 orthologs DmNHE3 and NHE6, respectively, is also mediated by HDACs. We show that NHE6 is a target of the transcription factor cAMP-response element-binding protein (CREB), a known regulator of cellular responses to low-nutrient conditions, providing a molecular mechanism for nutrient- and HDAC-dependent regulation of endosomal pH. Of note, pharmacological targeting of the CREB pathway to increase NHE6 expression helped regulate endosomal pH and correct defective clearance of amyloid Aβ in an apoE4 astrocyte model of Alzheimer's disease. These observations from yeast, fly, mouse, and cell culture models point to an evolutionarily conserved mechanism for HDAC-mediated regulation of endosomal NHE expression. Our insights offer new therapeutic strategies for modulation of endolysosomal pH in fungal infection and human disease. © 2018 Prasad and Rao.

  18. Treatment of Arsenite Intoxication-Induced Peripheral Vasculopathy with Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Yi-Hung Chiang

    2018-03-01

    Full Text Available Arsenite (As, a notorious toxic metal, is ubiquitously distributed in the earth and poses a serious threat to human health. Histopathological lesions of As intoxication are known as thromboangiitis obliterans, which are resistant to current treatment and often lead to lower limb amputation. In this study, we attempt to find that treatment with mesenchymal stem cells (MSCs may be effective for As-induced vasculopathy. We first conducted an in vitro study with a co-culture system containing human MSCs and human umbilical vein endothelial cells (HUVECs and treated individual and co-cultured cells with various concentrations of arsenite. We also designed an in vivo study in which Sprague Dawley (SD rats received periodic intraperitoneal (IP injections of 16 ppm arsenite for 12 weeks. MSCs were harvested from BALB/c mice that were transplanted via tail vein injection. We found that there was significantly higher cellular viability in human mesenchymal stem cells (hMSCs than in HUVECs under concentrations of arsenite between 15 and 25 μM. The Annexin V apoptosis assay further confirmed this finding. Cytokine array assay for As-conditioned media revealed an elevated vascular endothelial growth factor (VEGF level secreted by MSCs, which is crucial for HUVEC survival and was evaluated by an siRNA VEGF knockdown test. In the in vivo study, we demonstrated early apoptotic changes in the anterior tibial vessels of As-injected SD rats with a Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL assay, but these apoptotic changes were less frequently observed upon MSCs transplantation, indicating that the cytoprotective effect of MSCs successfully protected against As-induced peripheral vasculopathy. The feasibility of MSCs to treat and /or prevent the progression of As-induced vasculopathy is justified. Further clinical studies are required to demonstrate the therapeutic efficacy of MSCs in patients suffering from As intoxication with

  19. The genotoxicity of sodium arsenite in human lymphocyte culture

    International Nuclear Information System (INIS)

    Elhabit, O.H.M.

    1995-01-01

    Sodium arsenite was tested for its clastogenic effect alone and in combination with x-irradiation on whole blood culture and on isolated lymphocyte culture. The results showed a significant difference in the yield of aberrations induced with respect to the culture time 48 hr whole blood culture showed significant increase in gaps and breaks whereas isolated lymphocytes culture showed significant inhibition of cell cycle and 75% of the lymphocytes were in first cell cycle at 72 hr. Arsenite showed co-mutagenicity with different doses of x-ray delivered immediately or few hours after treatment of the culture with SA. The results suggest that SA also is mutagenic at the dose level used and provide support for the indispensability of whole blood culture for evaluation of the in vivo effect any suspected mutagen. Using isolated lymphocytes appear to have problems leading to extensive cell cycle delay

  20. Contribution of aquaporin 9 and multidrug resistance-associated protein 2 to differential sensitivity to arsenite between primary cultured chorion and amnion cells prepared from human fetal membranes

    International Nuclear Information System (INIS)

    Yoshino, Yuta; Yuan, Bo; Kaise, Toshikazu; Takeichi, Makoto; Tanaka, Sachiko; Hirano, Toshihiko; Kroetz, Deanna L.; Toyoda, Hiroo

    2011-01-01

    Arsenic trioxide (arsenite, As III ) has shown a remarkable clinical efficacy, whereas its side effects are still a serious concern. Therefore, it is critical to understand the effects of As III on human-derived normal cells for revealing the mechanisms underlying these side effects. We examined the effects of As III on primary cultured chorion (C) and amnion (A) cells prepared from human fetal membranes. A significant dose-dependent As III -mediated cytotoxicity was observed in the C-cells accompanied with an increase of lactate dehydrogenase (LDH) release. Higher concentrations of As III were required for the A-cells to show cytotoxicity and LDH release, suggesting that the C-cells were more sensitive to As III than the A-cells. The expression levels of aquaporin 9 (AQP9) were approximately 2 times higher in the C-cells than those in the A-cells. Both intracellular arsenic accumulation and its cytotoxicity in the C-cells were significantly abrogated by sorbitol, a competitive AQP9 inhibitor, in a dose-dependent manner. The protein expression levels of multidrug resistance-associated protein (MRP) 2 were downregulated by As III in the C-cells, but not in the A-cells. No significant differences in the expression levels of MRP1 were observed between C- and A-cells. The protein expression of P-glycoprotein (P-gp) was hardly detected in both cells, although a detectable amount of its mRNA was observed. Cyclosporine A, a broad-spectrum inhibitor for ABC transporters, and MK571, a MRP inhibitor, but not PGP-4008, a P-gp specific inhibitor, potently sensitized both cells to As III -mediated cytotoxicity. These results suggest that AQP9 and MRP2 are involved in controlling arsenic accumulation in these normal cells, which then contribute to differential sensitivity to As III cytotoxicity between these cells. -- Highlights: ► Examination of effect of As III on primary cultured chorion (C) and amnion (A) cells. ► Dose-dependent As III -mediated cytotoxicity in C

  1. Arsenite-oxidizing and arsenate-reducing bacteria associated with arsenic-rich groundwater in Taiwan

    Science.gov (United States)

    Liao, Vivian Hsiu-Chuan; Chu, Yu-Ju; Su, Yu-Chen; Hsiao, Sung-Yun; Wei, Chia-Cheng; Liu, Chen-Wuing; Liao, Chung-Min; Shen, Wei-Chiang; Chang, Fi-John

    2011-04-01

    Drinking highly arsenic-contaminated groundwater is a likely cause of blackfoot disease in Taiwan, but microorganisms that potentially control arsenic mobility in the subsurface remain unstudied. The objective of this study was to investigate the relevant arsenite-oxidizing and arsenate-reducing microbial community that exists in highly arsenic-contaminated groundwater in Taiwan. We cultured and identified arsenic-transforming bacteria, analyzed arsenic resistance and transformation, and determined the presence of genetic markers for arsenic transformation. In total, 11 arsenic-transforming bacterial strains with different colony morphologies and varying arsenic transformation abilities were isolated, including 10 facultative anaerobic arsenate-reducing bacteria and one strictly aerobic arsenite-oxidizing bacterium. All of the isolates exhibited high levels of arsenic resistance with minimum inhibitory concentrations of arsenic ranging from 2 to 200 mM. Strain AR-11 was able to rapidly oxidize arsenite to arsenate at concentrations relevant to environmental groundwater samples without the addition of any electron donors or acceptors. We provide evidence that arsenic-reduction activity may be conferred by the ars operon(s) that were not amplified by the designed primers currently in use. The 16S rRNA sequence analysis grouped the isolates into the following genera: Pseudomonas, Bacillus, Psychrobacter, Vibrio, Citrobacter, Enterobacter, and Bosea. Among these genera, we present the first report of the genus Psychrobacter being involved in arsenic reduction. Our results further support the hypothesis that bacteria capable of either oxidizing arsenite or reducing arsenate coexist and are ubiquitous in arsenic-contaminated groundwater.

  2. Sorption and desorption of arsenate and arsenite on calcite

    DEFF Research Database (Denmark)

    Sø, Helle Ugilt; Postma, Diederik Jan; Jakobsen, Rasmus

    2008-01-01

    The adsorption and desorption of arsenate (As(V)) and arsenite (As(111)) oil calcite was investigated in a series of batch experiments in calcite-equilibrated solutions. The solutions covered a broad range of pH, alkalinity, calcium concentration and ionic strength. The initial arsenic...

  3. Negative regulation of quorum-sensing systems in Pseudomonas aeruginosa by ATP-dependent Lon protease.

    Science.gov (United States)

    Takaya, Akiko; Tabuchi, Fumiaki; Tsuchiya, Hiroko; Isogai, Emiko; Yamamoto, Tomoko

    2008-06-01

    Lon protease, a member of the ATP-dependent protease family, regulates numerous cellular systems by degrading specific substrates. Here, we demonstrate that Lon is involved in the regulation of quorum-sensing (QS) signaling systems in Pseudomonas aeruginosa, an opportunistic human pathogen. The organism has two acyl-homoserine lactone (HSL)-mediated QS systems, LasR/LasI and RhlR/RhlI. Many reports have demonstrated that these two systems are regulated and interconnected by global regulators. We found that lon-disrupted cells overproduce pyocyanin, the biosynthesis of which depends on the RhlR/RhlI system, and show increased levels of a transcriptional regulator, RhlR. The QS systems are organized hierarchically: the RhlR/RhlI system is subordinate to LasR/LasI. To elucidate the mechanism by which Lon negatively regulates RhlR/RhlI, we examined the effect of lon disruption on the LasR/LasI system. We found that Lon represses the expression of LasR/LasI by degrading LasI, an HSL synthase, leading to negative regulation of the RhlR/RhlI system. RhlR/RhlI was also shown to be regulated by Lon independently of LasR/LasI via regulation of RhlI, an HSL synthase. In view of these findings, it is suggested that Lon protease is a powerful negative regulator of both HSL-mediated QS systems in P. aeruginosa.

  4. A LuxS-Dependent Cell-to-Cell Language Regulates Social Behavior and Development in Bacillus subtilis

    OpenAIRE

    Lombardía, Esteban; Rovetto, Adrián J.; Arabolaza, Ana L.; Grau, Roberto R.

    2006-01-01

    Cell-to-cell communication in bacteria is mediated by quorum-sensing systems (QSS) that produce chemical signal molecules called autoinducers (AI). In particular, LuxS/AI-2-dependent QSS has been proposed to act as a universal lexicon that mediates intra- and interspecific bacterial behavior. Here we report that the model organism Bacillus subtilis operates a luxS-dependent QSS that regulates its morphogenesis and social behavior. We demonstrated that B. subtilis luxS is a growth-phase-regula...

  5. Biotin uptake by mouse and human pancreatic beta cells/islets: a regulated, lipopolysaccharide-sensitive carrier-mediated process

    Science.gov (United States)

    Ghosal, Abhisek; Sekar, Thillai V.

    2014-01-01

    Biotin is essential for the normal function of pancreatic beta cells. These cells obtain biotin from their surroundings via transport across their cell membrane. Little is known about the uptake mechanism involved, how it is regulated, and how it is affected by internal and external factors. We addressed these issues using the mouse-derived pancreatic beta-TC-6 cells and freshly isolated mouse and human primary pancreatic beta cells as models. The results showed biotin uptake by pancreatic beta-TC-6 cells occurs via a Na+-dependent, carrier-mediated process, that is sensitive to desthiobiotin, as well as to pantothenic acid and lipoate; the process is also saturable as a function of concentration (apparent Km = 22.24 ± 5.5 μM). These cells express the sodium-dependent multivitamin transporter (SMVT), whose knockdown (with doxycycline-inducible shRNA) led to a sever inhibition in biotin uptake. Similarly, uptake of biotin by mouse and human primary pancreatic islets is Na+-dependent and carrier-mediated, and both cell types express SMVT. Biotin uptake by pancreatic beta-TC-6 cells is also adaptively regulated (via transcriptional mechanism) by extracellular substrate level. Chronic treatment of pancreatic beta-TC-6 cells with bacterial lipopolysaccharides (LPS) leads to inhibition in biotin uptake. This inhibition is mediated via a Toll-Like receptor 4-mediated process and involves a decrease in membrane expression of SMVT. These findings show, for the first time, that pancreatic beta cells/islets take up biotin via a specific and regulated carrier-mediated process, and that the process is sensitive to the effect of LPS. PMID:24904078

  6. Mediator complex cooperatively regulates transcription of retinoic acid target genes with Polycomb Repressive Complex 2 during neuronal differentiation.

    Science.gov (United States)

    Fukasawa, Rikiya; Iida, Satoshi; Tsutsui, Taiki; Hirose, Yutaka; Ohkuma, Yoshiaki

    2015-11-01

    The Mediator complex (Mediator) plays key roles in transcription and functions as the nexus for integration of various transcriptional signals. Previously, we screened for Mediator cyclin-dependent kinase (CDK)-interacting factors and identified three proteins related to chromatin regulation. One of them, SUZ12 is required for both stability and activity of Polycomb Repressive Complex 2 (PRC2). PRC2 primarily suppresses gene expression through histone H3 lysine 27 trimethylation, resulting in stem cell maintenance and differentiation; perturbation of this process leads to oncogenesis. Recent work showed that Mediator contributes to the embryonic stem cell state through DNA loop formation, which is strongly associated with chromatin architecture; however, it remains unclear how Mediator regulates gene expression in cooperation with chromatin regulators (i.e. writers, readers and remodelers). We found that Mediator CDKs interact directly with the PRC2 subunit EZH2, as well as SUZ12. Known PRC2 target genes were deregulated by Mediator CDK knockdown during neuronal differentiation, and both Mediator and PRC2 complexes co-occupied the promoters of developmental genes regulated by retinoic acid. Our results provide a mechanistic link between Mediator and PRC2 during neuronal differentiation. © The Authors 2015. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  7. Arsenite induces apoptosis in human mesenchymal stem cells by altering Bcl-2 family proteins and by activating intrinsic pathway

    International Nuclear Information System (INIS)

    Yadav, Santosh; Shi Yongli; Wang Feng; Wang He

    2010-01-01

    Purpose: Environmental exposure to arsenic is an important public health issue. The effects of arsenic on different tissues and organs have been intensively studied. However, the effects of arsenic on bone marrow mesenchymal stem cells (MSCs) have not been reported. This study is designed to investigate the cell death process caused by arsenite and its related underlying mechanisms on MSCs. The rationale is that absorbed arsenic in the blood circulation can reach to the bone marrow and may affect the cell survival of MSCs. Methods: MSCs of passage 1 were purchased from Tulane University, grown till 70% confluency level and plated according to the experimental requirements followed by treatment with arsenite at various concentrations and time points. Arsenite (iAs III ) induced cytotoxic effects were confirmed by cell viability and cell cycle analysis. For the presence of canonic apoptosis markers; DNA damage, exposure of intramembrane phosphotidylserine, protein and m-RNA expression levels were analyzed. Results: iAs III induced growth inhibition, G2-M arrest and apoptotic cell death in MSCs, the apoptosis induced by iAs III in the cultured MSCs was, via altering Bcl-2 family proteins and by involving intrinsic pathway. Conclusion: iAs III can induce apoptosis in bone marrow-derived MSCs via Bcl-2 family proteins, regulating intrinsic apoptotic pathway. Due to the multipotency of MSC, acting as progenitor cells for a variety of connective tissues including bone, adipose, cartilage and muscle, these effects of arsenic may be important in assessing the health risk of the arsenic compounds and understanding the mechanisms of arsenic-induced harmful effects.

  8. PIXE study on absorption of arsenate and arsenite by arsenic hyperaccumulating fern (Pteris vittata)

    International Nuclear Information System (INIS)

    Yamazaki, H.; Ishii, K.; Matsuyama, S.

    2008-01-01

    Pytoremediation using an arsenic hyperaccumulator, Petris vittata L., has generated an increasing interest worldwide due to both environmentally sound and cost effectiveness. However the mechanism of arsenic accumulation by this fern is not clear at this time. This study examined the uptake of arsenate (As(V)) and arsenite (As(III)) by a hydroponic culture of Pteris vittata using both in-air submilli-PIXE for different parts of the fern and in-air micro-PIXE for the tissue cells. These PIXE analysis systems used 3 MeV proton beams from a 4.5-MV single-ended Dynamitron accelerator at Tohoku University, Japan. The fern took up both arsenate and arsenite from hydroponic solutions which were spiked with 50 mg of arsenic per litter. Final amount of arsenic accumulation in the fern is 1,500 mg per kg (wet weight) of the plant biomass in arsenite treatment and 1,100 mg per kg in arsenate treatment. Arsenic accumulation was not observed at the root parts of the ferns. The in-vivo mapping of elements by submilli-PIXE analyses on the fern laminas showed the arsenic accumulation in the edges of a pinna. The micro-PIXE analyses revealed arsenic maps homogeneously distributed in cells of the lamina, stem and rhizome of the fern. These results indicate that arsenic, both arsenate and arsenite in a contaminated medium are translocated quickly from roots to fronds of Pteris vittata, and distributes homogeneously into tissue cells of the fern laminas. (author)

  9. Arsenite-induced ROS/RNS generation causes zinc loss and inhibits the activity of poly(ADP-ribose) polymerase-1.

    Science.gov (United States)

    Wang, Feng; Zhou, Xixi; Liu, Wenlan; Sun, Xi; Chen, Chen; Hudson, Laurie G; Jian Liu, Ke

    2013-08-01

    Arsenic enhances the genotoxicity of other carcinogenic agents such as ultraviolet radiation and benzo[a]pyrene. Recent reports suggest that inhibition of DNA repair is an important aspect of arsenic cocarcinogenesis, and DNA repair proteins such as poly(ADP ribose) polymerase (PARP)-1 are direct molecular targets of arsenic. Although arsenic has been shown to generate reactive oxygen/nitrogen species (ROS/RNS), little is known about the role of arsenic-induced ROS/RNS in the mechanism underlying arsenic inhibition of DNA repair. We report herein that arsenite-generated ROS/RNS inhibits PARP-1 activity in cells. Cellular exposure to arsenite, as well as hydrogen peroxide and NONOate (nitric oxide donor), decreased PARP-1 zinc content, enzymatic activity, and PARP-1 DNA binding. Furthermore, the effects of arsenite on PARP-1 activity, DNA binding, and zinc content were partially reversed by the antioxidant ascorbic acid, catalase, and the NOS inhibitor, aminoguanidine. Most importantly, arsenite incubation with purified PARP-1 protein in vitro did not alter PARP-1 activity or DNA-binding ability, whereas hydrogen peroxide or NONOate retained PARP-1 inhibitory activity. These results strongly suggest that cellular generation of ROS/RNS plays an important role in arsenite inhibition of PARP-1 activity, leading to the loss of PARP-1 DNA-binding ability and enzymatic activity. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Regulator of calcineurin 1 differentially regulates TLR-dependent MyD88 and TRIF signaling pathways.

    Directory of Open Access Journals (Sweden)

    Zheng Pang

    Full Text Available Toll-like receptors (TLRs recognize the conserved molecular patterns in microorganisms and trigger myeloid differentiation primary response 88 (MyD88 and/or TIR-domain-containing adapter-inducing interferon-β (TRIF pathways that are critical for host defense against microbial infection. However, the molecular mechanisms that govern TLR signaling remain incompletely understood. Regulator of calcineurin-1 (RCAN1, a small evolutionarily conserved protein that inhibits calcineurin phosphatase activity, suppresses inflammation during Pseudomonas aeruginosa infection. Here, we define the roles for RCAN1 in P. aeruginosa lipopolysaccharide (LPS-activated TLR4 signaling. We compared the effects of P. aeruginosa LPS challenge on bone marrow-derived macrophages from both wild-type and RCAN1-deficient mice and found that RCAN1 deficiency increased the MyD88-NF-κB-mediated cytokine production (IL-6, TNF and MIP-2, whereas TRIF-interferon-stimulated response elements (ISRE-mediated cytokine production (IFNβ, RANTES and IP-10 was suppressed. RCAN1 deficiency caused increased IκBα phosphorylation and NF-κB activity in the MyD88-dependent pathway, but impaired ISRE activation and reduced IRF7 expression in the TRIF-dependent pathway. Complementary studies of a mouse model of P. aeruginosa LPS-induced acute pneumonia confirmed that RCAN1-deficient mice displayed greatly enhanced NF-κB activity and MyD88-NF-κB-mediated cytokine production, which correlated with enhanced pulmonary infiltration of neutrophils. By contrast, RCAN1 deficiency had little effect on the TRIF pathway in vivo. These findings demonstrate a novel regulatory role of RCAN1 in TLR signaling, which differentially regulates MyD88 and TRIF pathways.

  11. Adsorption of Arsenite onto Kemiron in a batch system

    African Journals Online (AJOL)

    doti

    This study investigated the effect of pH and coexisting ions on As(III) adsorption using batch experiment and discovered that pH strongly influenced As(III) adsorption. However, differences ... contamination by such heavy metals as arsenic (As). Arsenite ..... and then transition through point of zero charge (PZC) and then into ...

  12. Sodium arsenite-induced reproductive toxicities in male Wistar rats ...

    African Journals Online (AJOL)

    Sodium arsenite-induced reproductive toxicities in male Wistar rats: role of Tridax procumbens leaf extract. ... Bulletin of Animal Health and Production in Africa ... In the present study, the effects of ethanol leaf extract of Tridax procumbens ... in Groups B to D as compared to Group A was significantly reduced (p<0.05).

  13. Fe/Ti co-pillared clay for enhanced arsenite removal and photo oxidation under UV irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yuan [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Guang Dong Electric Power Design Institute, China Energy Engineering Group Co. Ltd., Guangzhou 510663 (China); Cai, Xiaojiao [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Guo, Jingwei [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); The 718th Research Institute of CSIC, Handan 056027 (China); Zhou, Shimin [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Na, Ping, E-mail: naping@tju.edu.cn [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China)

    2015-01-01

    Graphical abstract: - Highlights: • An iron and titanium co-pillared montmorillonite (Fe-Ti/MMT) was synthesized for arsenite removal. • Variety of characterization results indicated that Fe and Ti species were pillared in MMT. • A possible mechanism of arsenite adsorption/oxidation with UV light was established. • The participation of Fe component can promote the process of photocatalytic oxidation in Fe-Ti/MMT + As(III) system. • Fe-Ti/MMT can function as both photocatalyst and adsorbent for arsenite removal. - Abstract: A series of iron and titanium co-pillared montmorillonites (Fe-Ti/MMT) were prepared using hydrolysis of inserted titanium and different iron content in montmorillonite (MMT). The Fe-Ti/MMT were characterized by X-ray fluorescence, N{sub 2} adsorption and desorption, X-ray diffraction, scanning electron microscopy (SEM) and transmission electron microscopy (TEM), confirming the effective insertion of Fe species and TiO{sub 2} in the MMT. The Fe-Ti/MMT was used to remove arsenite (As(III)) from aqueous solutions under different conditions. The result of As(III) adsorption under UV irradiation showed that the photo activity can be enhanced by incorporating Fe and Ti in MMT. Fourier-transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) analysis indicated that the hydroxyl groups bonded to metal oxide (M–OH) played an important role in the adsorption of As(III)

  14. TOR Pathway-Mediated Juvenile Hormone Synthesis Regulates Nutrient-Dependent Female Reproduction in Nilaparvata lugens (Stål).

    Science.gov (United States)

    Lu, Kai; Chen, Xia; Liu, Wen-Ting; Zhou, Qiang

    2016-03-28

    The "target of rapamycin" (TOR) nutritional signaling pathway and juvenile hormone (JH) regulation of vitellogenesis has been known for a long time. However, the interplay between these two pathways regulating vitellogenin (Vg) expression remains obscure. Here, we first demonstrated the key role of amino acids (AAs) in activation of Vg synthesis and egg development in Nilaparvata lugens using chemically defined artificial diets. AAs induced the expression of TOR and S6K (S6 kinase), whereas RNAi-mediated silencing of these two TOR pathway genes and rapamycin application strongly inhibited the AAs-induced Vg synthesis. Furthermore, knockdown of Rheb (Ras homologue enriched in brain), TOR, S6K and application of rapamycin resulted in a dramatic reduction in the mRNA levels of jmtN (juvenile hormone acid methyltransferase, JHAMT). Application of JH III on the RNAi (Rheb and TOR) and rapamycin-treated females partially rescued the Vg expression. Conversely, knockdown of either jmtN or met (methoprene-tolerant, JH receptor) and application of JH III had no effects on mRNA levels of Rheb, TOR and S6K and phosphorylation of S6K. In summary, our results demonstrate that the TOR pathway induces JH biosynthesis that in turn regulates AAs-mediated Vg synthesis in N. lugens.

  15. Embryotoxicity of arsenite and arsenate. Distribution in pregnant mice and monkeys and effects on embryonic cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Lindgren, A; Danielsson, R G; Dencker, L [Department of Toxicology, Biomedical Center, Uppsala University, Sweden; Vahter, M [National Institute of Environmental Medicine, Stockholm, Sweden

    1984-01-01

    The distribution of /sup 74/As-labelled arsenate and arsenite in pregnant mice and a monkey has been studied by autoradiography and gamma counting of isolated tissues, and their in vitro toxicity to a chondrogenic system has been investigated. With both arsenic forms, given as single intravenous injections to the mother, the /sup 74/As-arsenic appeared to pass the mouse placenta relatively freely and approximately to the same extent. The retention time in material tissues including the placenta was, however, around three times longer with arsenite than with arsenate. In early gestation, high activity was registered in the embryonic neuroepithelium, which correlates well with reported CNS malformations in rodents. In late gestation, the distribution pattern was more like that in the adults. Accumulation in skin and squamous epithelia of the upper gastrointestinal tract (oral cavity, oesophagus and oesophageal region of stomach) dominated the distribution pucture, especially at a long survival interval. Arsenate, but not arsenite, showed affinity for the calcified areas of the skeleton. A marmoset monkey in late gestation receiving arsenite showed a somewhat lower rate of placental transfer than the mice. Skin and liver had the highest concentrations (at 8 hrs), both in mother and foetuses. This species is known not to methylate arsenic, resulting in stronger binding and longer retention times of arsenic as compared with other species. The stronger binding in maternal tissues may possibly explain the lower rate of placental transfer. Arsenite was shown to inhibit cartilage formation in a chick limb bud mesenchymal spot culture system (ED50 approximately 5-10..mu..M) while arsenate seemed to be without effect at concentrations up to 200 ..mu..M (highest tested). Arsenate, however, showed a potential of the arsenite toxicity.

  16. Embryotoxicity of arsenite and arsenate. Distribution in pregnant mice and monkeys and effects on embryonic cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Lindgren, A; Danielsson, R G; Dencker, L [Department of Toxicology, Biomedical Center, Uppsala University, Sweden; Vahter, M [National Institute of Environmental Medicine, Stockholm, Sweden

    1984-01-01

    The distribution of /sup 74/As-labelled and arsenite in pregnant mice and a monkey has been studied by autoradiography and gamma counting of isolated tissues, and their in vitro toxicity to a chondrogenic system has been investigated. With both arsenic forms, given as single intravenous injections to the mother, the /sup 74/As-arsenic appeared to pass the mouse placenta relatively freely and approximately to the same extent. The retention time in material tissues including the placenta was, however, around three times longer with arsenite than with arsenate. In early gestation, high activity was registered in the embryonic neuroepithelium, which correlates well with reported CNS malformations in rodents. In late gestation, the distribution pattern was more like that in the adults. Accumulation in skin and squamous epithelia of the upper gastrointestinal tract (oral cavity, oesophagus and oesophageal region of stomach) dominated the distribution picture, especially at a long survival interval. Arsenate, but not arsenite, showed affinity for the calcified areas of the skeleton. A marmoset monkey in late gestation receiving arsenite showed a somewhat lower rate of placental transfer than the mice. Skin and liver had the highest concentrations (at 8 hrs), both in mother and foetuses. This species is known not to methylate arsenic, resulting in stronger binding and longer retention times of arsenic as compared with other species. The stronger binding in maternal tissues may possibly explain the lower rate of placental transfer. Arsenite was shown to inhibit cartilage formation in a chick limb bud mesenchymal spot culture system (ED50 approximately 5-10..mu..M) while arsenate seemed to be without effect at concentrations up to 200 ..mu..M (highest tested). Arsenate, however, showed a potential of the arsenite toxicity.

  17. Arsenite binding-induced zinc loss from PARP-1 is equivalent to zinc deficiency in reducing PARP-1 activity, leading to inhibition of DNA repair

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xi; Zhou, Xixi [Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Du, Libo [Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Liu, Wenlan [Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Liu, Yang [Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Hudson, Laurie G. [Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States); Liu, Ke Jian, E-mail: kliu@salud.unm.edu [Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131 (United States)

    2014-01-15

    Inhibition of DNA repair is a recognized mechanism for arsenic enhancement of ultraviolet radiation-induced DNA damage and carcinogenesis. Poly(ADP-ribose) polymerase-1 (PARP-1), a zinc finger DNA repair protein, has been identified as a sensitive molecular target for arsenic. The zinc finger domains of PARP-1 protein function as a critical structure in DNA recognition and binding. Since cellular poly(ADP-ribosyl)ation capacity has been positively correlated with zinc status in cells, we hypothesize that arsenite binding-induced zinc loss from PARP-1 is equivalent to zinc deficiency in reducing PARP-1 activity, leading to inhibition of DNA repair. To test this hypothesis, we compared the effects of arsenite exposure with zinc deficiency, created by using the membrane-permeable zinc chelator TPEN, on 8-OHdG formation, PARP-1 activity and zinc binding to PARP-1 in HaCat cells. Our results show that arsenite exposure and zinc deficiency had similar effects on PARP-1 protein, whereas supplemental zinc reversed these effects. To investigate the molecular mechanism of zinc loss induced by arsenite, ICP-AES, near UV spectroscopy, fluorescence, and circular dichroism spectroscopy were utilized to examine arsenite binding and occupation of a peptide representing the first zinc finger of PARP-1. We found that arsenite binding as well as zinc loss altered the conformation of zinc finger structure which functionally leads to PARP-1 inhibition. These findings suggest that arsenite binding to PARP-1 protein created similar adverse biological effects as zinc deficiency, which establishes the molecular mechanism for zinc supplementation as a potentially effective treatment to reverse the detrimental outcomes of arsenic exposure. - Highlights: • Arsenite binding is equivalent to zinc deficiency in reducing PARP-1 function. • Zinc reverses arsenic inhibition of PARP-1 activity and enhancement of DNA damage. • Arsenite binding and zinc loss alter the conformation of zinc finger

  18. Arsenite binding-induced zinc loss from PARP-1 is equivalent to zinc deficiency in reducing PARP-1 activity, leading to inhibition of DNA repair

    International Nuclear Information System (INIS)

    Sun, Xi; Zhou, Xixi; Du, Libo; Liu, Wenlan; Liu, Yang; Hudson, Laurie G.; Liu, Ke Jian

    2014-01-01

    Inhibition of DNA repair is a recognized mechanism for arsenic enhancement of ultraviolet radiation-induced DNA damage and carcinogenesis. Poly(ADP-ribose) polymerase-1 (PARP-1), a zinc finger DNA repair protein, has been identified as a sensitive molecular target for arsenic. The zinc finger domains of PARP-1 protein function as a critical structure in DNA recognition and binding. Since cellular poly(ADP-ribosyl)ation capacity has been positively correlated with zinc status in cells, we hypothesize that arsenite binding-induced zinc loss from PARP-1 is equivalent to zinc deficiency in reducing PARP-1 activity, leading to inhibition of DNA repair. To test this hypothesis, we compared the effects of arsenite exposure with zinc deficiency, created by using the membrane-permeable zinc chelator TPEN, on 8-OHdG formation, PARP-1 activity and zinc binding to PARP-1 in HaCat cells. Our results show that arsenite exposure and zinc deficiency had similar effects on PARP-1 protein, whereas supplemental zinc reversed these effects. To investigate the molecular mechanism of zinc loss induced by arsenite, ICP-AES, near UV spectroscopy, fluorescence, and circular dichroism spectroscopy were utilized to examine arsenite binding and occupation of a peptide representing the first zinc finger of PARP-1. We found that arsenite binding as well as zinc loss altered the conformation of zinc finger structure which functionally leads to PARP-1 inhibition. These findings suggest that arsenite binding to PARP-1 protein created similar adverse biological effects as zinc deficiency, which establishes the molecular mechanism for zinc supplementation as a potentially effective treatment to reverse the detrimental outcomes of arsenic exposure. - Highlights: • Arsenite binding is equivalent to zinc deficiency in reducing PARP-1 function. • Zinc reverses arsenic inhibition of PARP-1 activity and enhancement of DNA damage. • Arsenite binding and zinc loss alter the conformation of zinc finger

  19. Melanopsin mediates light-dependent relaxation in blood vessels.

    Science.gov (United States)

    Sikka, Gautam; Hussmann, G Patrick; Pandey, Deepesh; Cao, Suyi; Hori, Daijiro; Park, Jong Taek; Steppan, Jochen; Kim, Jae Hyung; Barodka, Viachaslau; Myers, Allen C; Santhanam, Lakshmi; Nyhan, Daniel; Halushka, Marc K; Koehler, Raymond C; Snyder, Solomon H; Shimoda, Larissa A; Berkowitz, Dan E

    2014-12-16

    Melanopsin (opsin4; Opn4), a non-image-forming opsin, has been linked to a number of behavioral responses to light, including circadian photo-entrainment, light suppression of activity in nocturnal animals, and alertness in diurnal animals. We report a physiological role for Opn4 in regulating blood vessel function, particularly in the context of photorelaxation. Using PCR, we demonstrate that Opn4 (a classic G protein-coupled receptor) is expressed in blood vessels. Force-tension myography demonstrates that vessels from Opn4(-/-) mice fail to display photorelaxation, which is also inhibited by an Opn4-specific small-molecule inhibitor. The vasorelaxation is wavelength-specific, with a maximal response at ∼430-460 nm. Photorelaxation does not involve endothelial-, nitric oxide-, carbon monoxide-, or cytochrome p450-derived vasoactive prostanoid signaling but is associated with vascular hyperpolarization, as shown by intracellular membrane potential measurements. Signaling is both soluble guanylyl cyclase- and phosphodiesterase 6-dependent but protein kinase G-independent. β-Adrenergic receptor kinase 1 (βARK 1 or GRK2) mediates desensitization of photorelaxation, which is greatly reduced by GRK2 inhibitors. Blue light (455 nM) regulates tail artery vasoreactivity ex vivo and tail blood blood flow in vivo, supporting a potential physiological role for this signaling system. This endogenous opsin-mediated, light-activated molecular switch for vasorelaxation might be harnessed for therapy in diseases in which altered vasoreactivity is a significant pathophysiologic contributor.

  20. Exosome uptake depends on ERK1/2-heat shock protein 27 signaling and lipid Raft-mediated endocytosis negatively regulated by caveolin-1.

    Science.gov (United States)

    Svensson, Katrin J; Christianson, Helena C; Wittrup, Anders; Bourseau-Guilmain, Erika; Lindqvist, Eva; Svensson, Lena M; Mörgelin, Matthias; Belting, Mattias

    2013-06-14

    The role of exosomes in cancer can be inferred from the observation that they transfer tumor cell derived genetic material and signaling proteins, resulting in e.g. increased tumor angiogenesis and metastasis. However, the membrane transport mechanisms and the signaling events involved in the uptake of these virus-like particles remain ill-defined. We now report that internalization of exosomes derived from glioblastoma (GBM) cells involves nonclassical, lipid raft-dependent endocytosis. Importantly, we show that the lipid raft-associated protein caveolin-1 (CAV1), in analogy with its previously described role in virus uptake, negatively regulates the uptake of exosomes. We find that exosomes induce the phosphorylation of several downstream targets known to associate with lipid rafts as signaling and sorting platforms, such as extracellular signal-regulated kinase-1/2 (ERK1/2) and heat shock protein 27 (HSP27). Interestingly, exosome uptake appears dependent on unperturbed ERK1/2-HSP27 signaling, and ERK1/2 phosphorylation is under negative influence by CAV1 during internalization of exosomes. These findings significantly advance our general understanding of exosome-mediated uptake and offer potential strategies for how this pathway may be targeted through modulation of CAV1 expression and ERK1/2 signaling.

  1. RNA-Mediated Regulation of HMGA1 Function

    Directory of Open Access Journals (Sweden)

    Arndt G. Benecke

    2015-05-01

    Full Text Available The high mobility group protein A1 (HMGA1 is a master regulator of chromatin structure mediating its major gene regulatory activity by direct interactions with A/T-rich DNA sequences located in the promoter and enhancer regions of a large variety of genes. HMGA1 DNA-binding through three AT-hook motifs results in an open chromatin structure and subsequently leads to changes in gene expression. Apart from its significant expression during development, HMGA1 is over-expressed in virtually every cancer, where HMGA1 expression levels correlate with tumor malignancy. The exogenous overexpression of HMGA1 can lead to malignant cell transformation, assigning the protein a key role during cancerogenesis. Recent studies have unveiled highly specific competitive interactions of HMGA1 with cellular and viral RNAs also through an AT-hook domain of the protein, significantly impacting the HMGA1-dependent gene expression. In this review, we discuss the structure and function of HMGA1-RNA complexes during transcription and epigenomic regulation and their implications in HMGA1-related diseases.

  2. RhoG regulates anoikis through a phosphatidylinositol 3-kinase-dependent mechanism

    International Nuclear Information System (INIS)

    Yamaki, Nao; Negishi, Manabu; Katoh, Hironori

    2007-01-01

    In normal epithelial cells, cell-matrix interaction is required for cell survival and proliferation, whereas disruption of this interaction causes epithelial cells to undergo apoptosis called anoikis. Here we show that the small GTPase RhoG plays an important role in the regulation of anoikis. HeLa cells are capable of anchorage-independent cell growth and acquire resistance to anoikis. We found that RNA interference-mediated knockdown of RhoG promoted anoikis in HeLa cells. Previous studies have shown that RhoG activates Rac1 and induces several cellular functions including promotion of cell migration through its effector ELMO and the ELMO-binding protein Dock180 that function as a Rac-specific guanine nucleotide exchange factor. However, RhoG-induced suppression of anoikis was independent of the ELMO- and Dock180-mediated activation of Rac1. On the other hand, the regulation of anoikis by RhoG required phosphatidylinositol 3-kinase (PI3K) activity, and constitutively active RhoG bound to the PI3K regulatory subunit p85α and induced the PI3K-dependent phosphorylation of Akt. Taken together, these results suggest that RhoG protects cells from apoptosis caused by the loss of anchorage through a PI3K-dependent mechanism, independent of its activation of Rac1

  3. Negative regulation of NOD1 mediated angiogenesis by PPARγ-regulated miR-125a

    International Nuclear Information System (INIS)

    Kang, Hyesoo; Park, Youngsook; Lee, Aram; Seo, Hyemin; Kim, Min Jung; Choi, Jihea; Jo, Ha-neul; Jeong, Ha-neul; Cho, Jin Gu; Chang, Woochul; Lee, Myeong-Sok; Jeon, Raok; Kim, Jongmin

    2017-01-01

    Infection with pathogens activates the endothelial cell and its sustained activation may result in impaired endothelial function. Endothelial dysfunction contributes to the pathologic angiogenesis that is characteristic of infection-induced inflammatory pathway activation. Nucleotide-binding oligomerization domain-containing protein 1 (NOD1) is a protein receptor which recognizes bacterial molecules and stimulates an immune reaction in various cells; however, the underlying molecular mechanisms in the regulation of inflammation-triggered angiogenesis are not fully understood. Here we report that peroxisome proliferator-activated receptor gamma (PPARγ)-mediated miR-125a serves as an important regulator of NOD1 agonist-mediated angiogenesis in endothelial cells by directly targeting NOD1. Treatment of human umbilical vein endothelial cells with natural PPARγ ligand, 15-Deoxy-Delta12,14-prostaglandin J2, led to inhibition of NOD1 expression; contrarily, protein levels of NOD1 were significantly increased by PPARγ knockdown. We report that PPARγ regulation of NOD1 expression is a novel microRNA-mediated regulation in endothelial cells. MiR-125a expression was markedly decreased in human umbilical vein endothelial cells subjected to PPARγ knockdown while 15-Deoxy-Delta12,14-prostaglandin J2 treatment increased the level of miR-125a. In addition, NOD1 is closely regulated by miR-125a, which directly targets the 3′ untranslated region of NOD1. Moreover, both overexpression of miR-125a and PPARγ activation led to inhibition of NOD1 agonist-induced tube formation in endothelial cells. Finally, NOD1 agonist increased the formation of cranial and subintestinal vessel plexus in zebrafish, and this effect was abrogated by concurrent PPARγ activation. Overall, these findings identify a PPARγ-miR-125a-NOD1 signaling axis in endothelial cells that is critical in the regulation of inflammation-mediated angiogenesis. - Highlights: • Expression of NOD1 is regulated by

  4. K-Cl Cotransporter 2-mediated Cl- Extrusion Determines Developmental Stage-dependent Impact of Propofol Anesthesia on Dendritic Spines.

    Science.gov (United States)

    Puskarjov, Martin; Fiumelli, Hubert; Briner, Adrian; Bodogan, Timea; Demeter, Kornel; Lacoh, Claudia-Marvine; Mavrovic, Martina; Blaesse, Peter; Kaila, Kai; Vutskits, Laszlo

    2017-05-01

    General anesthetics potentiating γ-aminobutyric acid (GABA)-mediated signaling are known to induce a persistent decrement in excitatory synapse number in the cerebral cortex when applied during early postnatal development, while an opposite action is produced at later stages. Here, the authors test the hypothesis that the effect of general anesthetics on synaptogenesis depends upon the efficacy of GABA receptor type A (GABAA)-mediated inhibition controlled by the developmental up-regulation of the potassium-chloride (K-Cl) cotransporter 2 (KCC2). In utero electroporation of KCC2 was used to prematurely increase the efficacy of (GABAA)-mediated inhibition in layer 2/3 pyramidal neurons in the immature rat somatosensory cortex. Parallel experiments with expression of the inward-rectifier potassium channel Kir2.1 were done to reduce intrinsic neuronal excitability. The effects of these genetic manipulations (n = 3 to 4 animals per experimental group) were evaluated using iontophoretic injection of Lucifer Yellow (n = 8 to 12 cells per animal). The total number of spines analyzed per group ranged between 907 and 3,371. The authors found a robust effect of the developmental up-regulation of KCC2-mediated Cl transport on the age-dependent action of propofol on dendritic spines. Premature expression of KCC2, unlike expression of a transport-inactive KCC2 variant, prevented a propofol-induced decrease in spine density. In line with a reduction in neuronal excitability, the above result was qualitatively replicated by overexpression of Kir2.1. The KCC2-dependent developmental increase in the efficacy of GABAA-mediated inhibition is a major determinant of the age-dependent actions of propofol on dendritic spinogenesis.

  5. Focal adhesion kinase regulates neuronal growth, synaptic plasticity and hippocampus-dependent spatial learning and memory.

    Science.gov (United States)

    Monje, Francisco J; Kim, Eun-Jung; Pollak, Daniela D; Cabatic, Maureen; Li, Lin; Baston, Arthur; Lubec, Gert

    2012-01-01

    The focal adhesion kinase (FAK) is a non-receptor tyrosine kinase abundantly expressed in the mammalian brain and highly enriched in neuronal growth cones. Inhibitory and facilitatory activities of FAK on neuronal growth have been reported and its role in neuritic outgrowth remains controversial. Unlike other tyrosine kinases, such as the neurotrophin receptors regulating neuronal growth and plasticity, the relevance of FAK for learning and memory in vivo has not been clearly defined yet. A comprehensive study aimed at determining the role of FAK in neuronal growth, neurotransmitter release and synaptic plasticity in hippocampal neurons and in hippocampus-dependent learning and memory was therefore undertaken using the mouse model. Gain- and loss-of-function experiments indicated that FAK is a critical regulator of hippocampal cell morphology. FAK mediated neurotrophin-induced neuritic outgrowth and FAK inhibition affected both miniature excitatory postsynaptic potentials and activity-dependent hippocampal long-term potentiation prompting us to explore the possible role of FAK in spatial learning and memory in vivo. Our data indicate that FAK has a growth-promoting effect, is importantly involved in the regulation of the synaptic function and mediates in vivo hippocampus-dependent spatial learning and memory. Copyright © 2011 S. Karger AG, Basel.

  6. Strategies to regulate transcription factor-mediated gene positioning and interchromosomal clustering at the nuclear periphery.

    Science.gov (United States)

    Randise-Hinchliff, Carlo; Coukos, Robert; Sood, Varun; Sumner, Michael Chas; Zdraljevic, Stefan; Meldi Sholl, Lauren; Garvey Brickner, Donna; Ahmed, Sara; Watchmaker, Lauren; Brickner, Jason H

    2016-03-14

    In budding yeast, targeting of active genes to the nuclear pore complex (NPC) and interchromosomal clustering is mediated by transcription factor (TF) binding sites in the gene promoters. For example, the binding sites for the TFs Put3, Ste12, and Gcn4 are necessary and sufficient to promote positioning at the nuclear periphery and interchromosomal clustering. However, in all three cases, gene positioning and interchromosomal clustering are regulated. Under uninducing conditions, local recruitment of the Rpd3(L) histone deacetylase by transcriptional repressors blocks Put3 DNA binding. This is a general function of yeast repressors: 16 of 21 repressors blocked Put3-mediated subnuclear positioning; 11 of these required Rpd3. In contrast, Ste12-mediated gene positioning is regulated independently of DNA binding by mitogen-activated protein kinase phosphorylation of the Dig2 inhibitor, and Gcn4-dependent targeting is up-regulated by increasing Gcn4 protein levels. These different regulatory strategies provide either qualitative switch-like control or quantitative control of gene positioning over different time scales. © 2016 Randise-Hinchliff et al.

  7. Immobilization of Ochrobactrum tritici As5 on PTFE thin films for arsenite biofiltration.

    Science.gov (United States)

    Branco, Rita; Sousa, Tânia; Piedade, Ana P; Morais, Paula V

    2016-03-01

    Ochrobactrum tritici SCII24T bacteria is an environmental strain with high capacity to resist to arsenic (As) toxicity, which makes it able to grow in the presence of As(III). The inactivation of the two functional arsenite efflux pumps, ArsB and ACR3_1, resulted in the mutant O. tritici As5 exhibiting a high accumulation of arsenite. This work describes a method for the immobilization of the mutant cells O. tritici As5, on a commercial polymeric net after sputtered modified by the deposition of poly(tetrafluoroethylene) (PTFE) thin films, and demonstrates the capacity of immobilized cells to accumulate arsenic from solutions. Six different set of deposition parameters for PTFE thin films were developed and tested in vitro regarding their ability to immobilize the bacterial cells. The surface that exhibited a mild zeta potential value, hydrophobic characteristics, the lowest surface free energy but with a high polar component and the appropriate ratio of chemical reactive groups allowed cells to proliferate and to grow as a biofilm. These immobilized cells maintained their ability to accumulate the surrounding arsenite, making it a great arsenic biofilter to be used in bioremediation processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Could vitamin C and zinc chloride protect the germ cells against sodium arsenite?

    Science.gov (United States)

    Altoé, L S; Reis, I B; Gomes, Mlm; Dolder, H; Pirovani, Jc Monteiro

    2017-10-01

    Arsenic (As) is commonly associated with natural and human processes such as volcanic emissions, mining and herbicides production, being an important pollutant. Several studies have associated As intake with male fertility reduction, thus the aim of the present study was to evaluate whether vitamin C and/or zinc would counteract As side effects within the testicles. Adult male Wistar rats were divided into six experimental groups: control, sodium arsenite (5 mg/kg/day), vitamin C (100 mg/kg/day), zinc chloride (ZnCl 2 ; 20 mg/kg/day), sodium arsenite + vitamin C and sodium arsenite + ZnCl 2 . Testicles and epididymis were harvested and either frozen or routinely processed to be embedded in glycol methacrylate resin. As reduced the seminiferous epithelium and tubules diameter due to germ cell loss. In addition, both the round spermatids population and the daily sperm production were reduced. However, ZnCl 2 and vitamin C showed to be effective against such side effects, mainly regarding to sperm morphology. Long-term As intake increased the proportions of abnormal sperm, whereas the concomitant intake of As with zinc or vitamin C enhanced the proportions of normal sperm, showing that such compounds could be used to protect this cell type against morphological defects.

  9. Contribution of aquaporin 9 and multidrug resistance-associated protein 2 to differential sensitivity to arsenite between primary cultured chorion and amnion cells prepared from human fetal membranes

    Energy Technology Data Exchange (ETDEWEB)

    Yoshino, Yuta [Department of Clinical Molecular Genetics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 (Japan); Yuan, Bo, E-mail: yuanbo@toyaku.ac.jp [Department of Clinical Molecular Genetics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 (Japan); Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, 1550 4th St, RH584E Box 2911 San Francisco, CA 94158-2911 (United States); Kaise, Toshikazu [Laboratory of Environmental Chemodynamics, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 (Japan); Takeichi, Makoto [Yoneyama Maternity Hospital, 2-12 Shin-machi, Hachioji, Tokyo 192-0065 (Japan); Tanaka, Sachiko; Hirano, Toshihiko [Department of Clinical Pharmacology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 (Japan); Kroetz, Deanna L. [Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, 1550 4th St, RH584E Box 2911 San Francisco, CA 94158-2911 (United States); Toyoda, Hiroo [Department of Clinical Molecular Genetics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 (Japan)

    2011-12-15

    Arsenic trioxide (arsenite, As{sup III}) has shown a remarkable clinical efficacy, whereas its side effects are still a serious concern. Therefore, it is critical to understand the effects of As{sup III} on human-derived normal cells for revealing the mechanisms underlying these side effects. We examined the effects of As{sup III} on primary cultured chorion (C) and amnion (A) cells prepared from human fetal membranes. A significant dose-dependent As{sup III}-mediated cytotoxicity was observed in the C-cells accompanied with an increase of lactate dehydrogenase (LDH) release. Higher concentrations of As{sup III} were required for the A-cells to show cytotoxicity and LDH release, suggesting that the C-cells were more sensitive to As{sup III} than the A-cells. The expression levels of aquaporin 9 (AQP9) were approximately 2 times higher in the C-cells than those in the A-cells. Both intracellular arsenic accumulation and its cytotoxicity in the C-cells were significantly abrogated by sorbitol, a competitive AQP9 inhibitor, in a dose-dependent manner. The protein expression levels of multidrug resistance-associated protein (MRP) 2 were downregulated by As{sup III} in the C-cells, but not in the A-cells. No significant differences in the expression levels of MRP1 were observed between C- and A-cells. The protein expression of P-glycoprotein (P-gp) was hardly detected in both cells, although a detectable amount of its mRNA was observed. Cyclosporine A, a broad-spectrum inhibitor for ABC transporters, and MK571, a MRP inhibitor, but not PGP-4008, a P-gp specific inhibitor, potently sensitized both cells to As{sup III}-mediated cytotoxicity. These results suggest that AQP9 and MRP2 are involved in controlling arsenic accumulation in these normal cells, which then contribute to differential sensitivity to As{sup III} cytotoxicity between these cells. -- Highlights: Black-Right-Pointing-Pointer Examination of effect of As{sup III} on primary cultured chorion (C) and amnion

  10. Regulation of p73 by Hck through kinase-dependent and independent mechanisms

    Directory of Open Access Journals (Sweden)

    Radha Vegesna

    2007-05-01

    Full Text Available Abstract Background p73, a p53 family member is a transcription factor that plays a role in cell cycle, differentiation and apoptosis. p73 is regulated through post translational modifications and protein interactions. c-Abl is the only known tyrosine kinase that phosphorylates and activates p73. Here we have analyzed the role of Src family kinases, which are involved in diverse signaling pathways, in regulating p73. Results Exogenously expressed as well as cellular Hck and p73 interact in vivo. In vitro binding assays show that SH3 domain of Hck interacts with p73. Co-expression of p73 with Hck or c-Src in mammalian cells resulted in tyrosine phosphorylation of p73. Using site directed mutational analysis, we determined that Tyr-28 was the major site of phosphorylation by Hck and c-Src, unlike c-Abl which phosphorylates Tyr-99. In a kinase dependent manner, Hck co-expression resulted in stabilization of p73 protein in the cytoplasm. Activation of Hck in HL-60 cells resulted in tyrosine phosphorylation of endogenous p73. Both exogenous and endogenous Hck localize to the nuclear as well as cytoplasmic compartment, just as does p73. Ectopically expressed Hck repressed the transcriptional activity of p73 as determined by promoter assays and semi-quantitative RT-PCR analysis of the p73 target, Ipaf and MDM2. SH3 domain- dependent function of Hck was required for its effect on p73 activity, which was also reflected in its ability to inhibit p73-mediated apoptosis. We also show that Hck interacts with Yes associated protein (YAP, a transcriptional co-activator of p73, and shRNA mediated knockdown of YAP protein reduces p73 induced Ipaf promoter activation. Conclusion We have identified p73 as a novel substrate and interacting partner of Hck and show that it regulates p73 through mechanisms that are dependent on either catalytic activity or protein interaction domains. Hck-SH3 domain-mediated interactions play an important role in the inhibition of p73

  11. Endoglin-mediated suppression of prostate cancer invasion is regulated by activin and bone morphogenetic protein type II receptors.

    Directory of Open Access Journals (Sweden)

    Michael J Breen

    Full Text Available Mortality from prostate cancer (PCa is due to the formation of metastatic disease. Understanding how that process is regulated is therefore critical. We previously demonstrated that endoglin, a type III transforming growth factor β (TGFβ superfamily receptor, suppresses human PCa cell invasion and metastasis. Endoglin-mediated suppression of invasion was also shown by us to be dependent upon the type I TGFβ receptor, activin receptor-like kinase 2 (ALK2, and the downstream effector, Smad1. In this study we demonstrate for the first time that two type II TGFβ receptors are required for endoglin-mediated suppression of invasion: activin A receptor type IIA (ActRIIA and bone morphogenetic protein receptor type II (BMPRII. Downstream signaling through these receptors is predominantly mediated by Smad1. ActRIIA stimulates Smad1 activation in a kinase-dependent manner, and this is required for suppression of invasion. In contrast BMPRII regulates Smad1 in a biphasic manner, promoting Smad1 signaling through its kinase domain but suppressing it through its cytoplasmic tail. BMPRII's Smad1-regulatory effects are dependent upon its expression level. Further, its ability to suppress invasion is independent of either kinase function or tail domain. We demonstrate that ActRIIA and BMPRII physically interact, and that each also interacts with endoglin. The current findings demonstrate that both BMPRII and ActRIIA are necessary for endoglin-mediated suppression of human PCa cell invasion, that they have differential effects on Smad1 signaling, that they make separate contributions to regulation of invasion, and that they functionally and physically interact.

  12. Siderophore-mediated iron trafficking in humans is regulated by iron

    Science.gov (United States)

    Liu, Zhuoming; Lanford, Robert; Mueller, Sebastian; Gerhard, Glenn S.; Luscieti, Sara; Sanchez, Mayka; Devireddy, L.

    2013-01-01

    Siderophores are best known as small iron binding molecules that facilitate microbial iron transport. In our previous study we identified a siderophore-like molecule in mammalian cells and found that its biogenesis is evolutionarily conserved. A member of the short chain dehydrogenase family of reductases, 3-OH butyrate dehydrogenase (BDH2) catalyzes a rate-limiting step in the biogenesis of the mammalian siderophore. We have shown that depletion of the mammalian siderophore by inhibiting expression of bdh2 results in abnormal accumulation of cellular iron and mitochondrial iron deficiency. These observations suggest that the mammalian siderophore is a critical regulator of cellular iron homeostasis and facilitates mitochondrial iron import. By utilizing bioinformatics, we identified an iron-responsive element (IRE; a stem-loop structure that regulates genes expression post-transcriptionally upon binding to iron regulatory proteins or IRPs) in the 3′-untranslated region (3′-UTR) of the human BDH2 (hBDH2) gene. In cultured cells as well as in patient samples we now demonstrate that the IRE confers iron-dependent regulation on hBDH2 and binds IRPs in RNA electrophoretic mobility shift assays. In addition, we show that the hBDH2 IRE associates with IRPs in cells and that abrogation of IRPs by RNAi eliminates the iron-dependent regulation of hBDH2 mRNA. The key physiologic implication is that iron-mediated post-transcriptional regulation of hBDH2 controls mitochondrial iron homeostasis in human cells. These observations provide a new and an unanticipated mechanism by which iron regulates its intracellular trafficking. PMID:22527885

  13. DREAM mediates cAMP-dependent, Ca2+-induced stimulation of GFAP gene expression and regulates cortical astrogliogenesis.

    Science.gov (United States)

    Cebolla, Beatriz; Fernández-Pérez, Antonio; Perea, Gertrudis; Araque, Alfonso; Vallejo, Mario

    2008-06-25

    In the developing mouse brain, once the generation of neurons is mostly completed during the prenatal period, precisely coordinated signals act on competent neural precursors to direct their differentiation into astrocytes, which occurs mostly after birth. Among these signals, those provided by neurotrophic cytokines and bone morphogenetic proteins appear to have a key role in triggering the neurogenic to gliogenic switch and in regulating astrocyte numbers. In addition, we have reported previously that the neurotrophic peptide pituitary adenylate cyclase-activating polypeptide (PACAP) is able to promote astrocyte differentiation of cortical precursors via activation of a cAMP-dependent pathway. Signals acting on progenitor cells of the developing cortex to generate astrocytes activate glial fibrillary acidic protein (GFAP) gene expression, but the transcriptional mechanisms that regulate this activation are unclear. Here, we identify the previously known transcriptional repressor downstream regulatory element antagonist modulator (DREAM) as an activator of GFAP gene expression. We found that DREAM occupies specific sites on the GFAP promoter before and after differentiation is initiated by exposure of cortical progenitor cells to PACAP. PACAP raises intracellular calcium concentration via a mechanism that requires cAMP, and DREAM-mediated transactivation of the GFAP gene requires the integrity of calcium-binding domains. Cortical progenitor cells from dream(-/-) mice fail to express GFAP in response to PACAP. Moreover, the neonatal cortex of dream(-/-) mice exhibits a reduced number of astrocytes and increased number of neurons. These results identify the PACAP-cAMP-Ca(2+)-DREAM cascade as a new pathway to activate GFAP gene expression during astrocyte differentiation.

  14. Depolarization-mediated regulation of alternative splicing

    Directory of Open Access Journals (Sweden)

    Alok eSharma

    2011-12-01

    Full Text Available Alternative splicing in eukaryotes plays an important role in regulating gene expression by selectively including alternative exons. A wealth of information has been accumulated that explains how alternative exons are selected in a developmental stage- or tissue-specific fashion. However, our knowledge of how cells respond to environmental changes to alter alternative splicing is very limited. For example, although a number of alternative exons have been shown to be regulated by calcium level alterations, the underlying mechanisms are not well understood. As calcium signaling in neurons plays a crucial role in essential neuronal functions such as learning and memory formation, it is important to understand how this process is regulated at every level in gene expression. The significance of the dynamic control of alternative splicing in response to changes of calcium levels has been largely unappreciated. In this communication, we will summarize the recent advances in calcium signaling-mediated alternative splicing that have provided some insights into the important regulatory mechanisms. In addition to describing the cis-acting RNA elements on the pre-mRNA molecules that respond to changes of intracellular calcium levels, we will summarize how splicing regulators change and affect alternative splicing in this process. We will also discuss a novel mode of calcium-mediated splicing regulation at the level of chromatin structure and transcription.

  15. Flavonoids from Theobroma cacao down-regulate inflammatory mediators.

    Science.gov (United States)

    Ramiro, Emma; Franch, Angels; Castellote, Cristina; Pérez-Cano, Francisco; Permanyer, Joan; Izquierdo-Pulido, Maria; Castell, Margarida

    2005-11-02

    In the present study, we report the effects of a cocoa extract on the secretion and RNA expression of various proinflammatory mediators by macrophages. Monocyte chemoattractant protein 1 and tumor necrosis factor alpha (TNFalpha) were significantly and dose-dependently diminished by cocoa extract, and this effect was higher than that produced by equivalent concentrations of epicatechin but was lower than that produced by isoquercitrin. Interestingly, cocoa extract added prior to cell activation resulted in a significantly greater inhibition of TNFalpha secretion. Both cocoa extract and epicatechin decreased TNFalpha, interleukin (IL) 1alpha, and IL-6 mRNA expression, suggesting that their inhibitory effect on cytokine secretion is produced, in part, at the transcriptional level. Cocoa extract also significantly decreased NO secretion in a dose-dependent manner and with a greater effect than that produced by epicatechin. In conclusion, our study shows that cocoa flavonoids not only inhibit NO release from macrophages but also down-regulate inflammatory cytokines and chemokines.

  16. RGM regulates BMP-mediated secondary axis formation in the sea anemone Nematostella vectensis.

    Science.gov (United States)

    Leclère, Lucas; Rentzsch, Fabian

    2014-12-11

    Patterning of the metazoan dorsoventral axis is mediated by a complex interplay of BMP signaling regulators. Repulsive guidance molecule (RGM) is a conserved BMP coreceptor that has not been implicated in axis specification. We show that NvRGM is a key positive regulator of BMP signaling during secondary axis establishment in the cnidarian Nematostella vectensis. NvRGM regulates first the generation and later the shape of a BMP-dependent Smad1/5/8 gradient with peak activity on the side opposite the NvBMP/NvRGM/NvChordin expression domain. Full knockdown of Smad1/5/8 signaling blocks the formation of endodermal structures, the mesenteries, and the establishment of bilateral symmetry, while altering the gradient through partial NvRGM or NvBMP knockdown shifts the boundaries of asymmetric gene expression and the positioning of the mesenteries along the secondary axis. These findings provide insight into the diversification of axis specification mechanisms and identify a previously unrecognized role for RGM in BMP-mediated axial patterning. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  17. The Arabidopsis mediator complex subunits MED16, MED14, and MED2 regulate mediator and RNA polymerase II recruitment to CBF-responsive cold-regulated genes.

    Science.gov (United States)

    Hemsley, Piers A; Hurst, Charlotte H; Kaliyadasa, Ewon; Lamb, Rebecca; Knight, Marc R; De Cothi, Elizabeth A; Steele, John F; Knight, Heather

    2014-01-01

    The Mediator16 (MED16; formerly termed SENSITIVE TO FREEZING6 [SFR6]) subunit of the plant Mediator transcriptional coactivator complex regulates cold-responsive gene expression in Arabidopsis thaliana, acting downstream of the C-repeat binding factor (CBF) transcription factors to recruit the core Mediator complex to cold-regulated genes. Here, we use loss-of-function mutants to show that RNA polymerase II recruitment to CBF-responsive cold-regulated genes requires MED16, MED2, and MED14 subunits. Transcription of genes known to be regulated via CBFs binding to the C-repeat motif/drought-responsive element promoter motif requires all three Mediator subunits, as does cold acclimation-induced freezing tolerance. In addition, these three subunits are required for low temperature-induced expression of some other, but not all, cold-responsive genes, including genes that are not known targets of CBFs. Genes inducible by darkness also required MED16 but required a different combination of Mediator subunits for their expression than the genes induced by cold. Together, our data illustrate that plants control transcription of specific genes through the action of subsets of Mediator subunits; the specific combination defined by the nature of the stimulus but also by the identity of the gene induced.

  18. Regulating NETosis: Increasing pH Promotes NADPH Oxidase-Dependent NETosis

    Science.gov (United States)

    Khan, Meraj A.; Philip, Lijy M.; Cheung, Guillaume; Vadakepeedika, Shawn; Grasemann, Hartmut; Sweezey, Neil; Palaniyar, Nades

    2018-01-01

    Neutrophils migrating from the blood (pH 7.35–7.45) into the surrounding tissues encounter changes in extracellular pH (pHe) conditions. Upon activation of NADPH oxidase 2 (Nox), neutrophils generate large amounts of H+ ions reducing the intracellular pH (pHi). Nevertheless, how extracellular pH regulates neutrophil extracellular trap (NET) formation (NETosis) is not clearly established. We hypothesized that increasing pH increases Nox-mediated production of reactive oxygen species (ROS) and neutrophil protease activity, stimulating NETosis. Here, we found that raising pHe (ranging from 6.6 to 7.8; every 0.2 units) increased pHi of both activated and resting neutrophils within 10–20 min (Seminaphtharhodafluor dual fluorescence measurements). Since Nox activity generates H+ ions, pHi is lower in neutrophils that are activated compared to resting. We also found that higher pH stimulated Nox-dependent ROS production (R123 generation; flow cytometry, plate reader assay, and imaging) during spontaneous and phorbol myristate acetate-induced NETosis (Sytox Green assays, immunoconfocal microscopy, and quantifying NETs). In neutrophils that are activated and not resting, higher pH stimulated histone H4 cleavage (Western blots) and NETosis. Raising pH increased Escherichia coli lipopolysaccharide-, Pseudomonas aeruginosa (Gram-negative)-, and Staphylococcus aureus (Gram-positive)-induced NETosis. Thus, higher pHe promoted Nox-dependent ROS production, protease activity, and NETosis; lower pH has the opposite effect. These studies provided mechanistic steps of pHe-mediated regulation of Nox-dependent NETosis. Raising pH either by sodium bicarbonate or Tris base (clinically known as Tris hydroxymethyl aminomethane, tromethamine, or THAM) increases NETosis. Each Tris molecule can bind 3H+ ions, whereas each bicarbonate HCO3− ion binds 1H+ ion. Therefore, the amount of Tris solution required to cause the same increase in pH level is less than that of equimolar

  19. Regulating NETosis: Increasing pH Promotes NADPH Oxidase-Dependent NETosis

    Directory of Open Access Journals (Sweden)

    Meraj A. Khan

    2018-02-01

    Full Text Available Neutrophils migrating from the blood (pH 7.35–7.45 into the surrounding tissues encounter changes in extracellular pH (pHe conditions. Upon activation of NADPH oxidase 2 (Nox, neutrophils generate large amounts of H+ ions reducing the intracellular pH (pHi. Nevertheless, how extracellular pH regulates neutrophil extracellular trap (NET formation (NETosis is not clearly established. We hypothesized that increasing pH increases Nox-mediated production of reactive oxygen species (ROS and neutrophil protease activity, stimulating NETosis. Here, we found that raising pHe (ranging from 6.6 to 7.8; every 0.2 units increased pHi of both activated and resting neutrophils within 10–20 min (Seminaphtharhodafluor dual fluorescence measurements. Since Nox activity generates H+ ions, pHi is lower in neutrophils that are activated compared to resting. We also found that higher pH stimulated Nox-dependent ROS production (R123 generation; flow cytometry, plate reader assay, and imaging during spontaneous and phorbol myristate acetate-induced NETosis (Sytox Green assays, immunoconfocal microscopy, and quantifying NETs. In neutrophils that are activated and not resting, higher pH stimulated histone H4 cleavage (Western blots and NETosis. Raising pH increased Escherichia coli lipopolysaccharide-, Pseudomonas aeruginosa (Gram-negative-, and Staphylococcus aureus (Gram-positive-induced NETosis. Thus, higher pHe promoted Nox-dependent ROS production, protease activity, and NETosis; lower pH has the opposite effect. These studies provided mechanistic steps of pHe-mediated regulation of Nox-dependent NETosis. Raising pH either by sodium bicarbonate or Tris base (clinically known as Tris hydroxymethyl aminomethane, tromethamine, or THAM increases NETosis. Each Tris molecule can bind 3H+ ions, whereas each bicarbonate HCO3− ion binds 1H+ ion. Therefore, the amount of Tris solution required to cause the same increase in pH level is less than that of equimolar

  20. Endophilin, Lamellipodin, and Mena cooperate to regulate F-actin-dependent EGF-receptor endocytosis.

    Science.gov (United States)

    Vehlow, Anne; Soong, Daniel; Vizcay-Barrena, Gema; Bodo, Cristian; Law, Ah-Lai; Perera, Upamali; Krause, Matthias

    2013-10-16

    The epidermal growth factor receptor (EGFR) plays an essential role during development and diseases including cancer. Lamellipodin (Lpd) is known to control lamellipodia protrusion by regulating actin filament elongation via Ena/VASP proteins. However, it is unknown whether this mechanism supports endocytosis of the EGFR. Here, we have identified a novel role for Lpd and Mena in clathrin-mediated endocytosis (CME) of the EGFR. We have discovered that endogenous Lpd is in a complex with the EGFR and Lpd and Mena knockdown impairs EGFR endocytosis. Conversely, overexpressing Lpd substantially increases the EGFR uptake in an F-actin-dependent manner, suggesting that F-actin polymerization is limiting for EGFR uptake. Furthermore, we found that Lpd directly interacts with endophilin, a BAR domain containing protein implicated in vesicle fission. We identified a role for endophilin in EGFR endocytosis, which is mediated by Lpd. Consistently, Lpd localizes to clathrin-coated pits (CCPs) just before vesicle scission and regulates vesicle scission. Our findings suggest a novel mechanism in which Lpd mediates EGFR endocytosis via Mena downstream of endophilin.

  1. Cell cycle pathway dysregulation in human keratinocytes during chronic exposure to low arsenite.

    Science.gov (United States)

    Al-Eryani, Laila; Waigel, Sabine; Jala, Venkatakrishna; Jenkins, Samantha F; States, J Christopher

    2017-09-15

    Arsenic is naturally prevalent in the earth's crust and widely distributed in air and water. Chronic low arsenic exposure is associated with several cancers in vivo, including skin cancer, and with transformation in vitro of cell lines including immortalized human keratinocytes (HaCaT). Arsenic also is associated with cell cycle dysregulation at different exposure levels in multiple cell lines. In this work, we analyzed gene expression in HaCaT cells to gain an understanding of gene expression changes contributing to transformation at an early time point. HaCaT cells were exposed to 0 or 100nM NaAsO 2 for 7weeks. Total RNA was purified and analyzed by microarray hybridization. Differential expression with fold change≥|1.5| and p-value≤0.05 was determined using Partek Genomic Suite™ and pathway and network analyses using MetaCore™ software (FDR≤0.05). Cell cycle analysis was performed using flow cytometry. 644 mRNAs were differentially expressed. Cell cycle/cell cycle regulation pathways predominated in the list of dysregulated pathways. Genes involved in replication origin licensing were enriched in the network. Cell cycle assay analysis showed an increase in G2/M compartment in arsenite-exposed cells. Arsenite exposure induced differential gene expression indicating dysregulation of cell cycle control, which was confirmed by cell cycle analysis. The results suggest that cell cycle dysregulation is an early event in transformation manifested in cells unable to transit G2/M efficiently. Further study at later time points will reveal additional changes in gene expression related to transformation processes. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. K-Cl Cotransporter 2–mediated Cl− Extrusion Determines Developmental Stage–dependent Impact of Propofol Anesthesia on Dendritic Spines

    KAUST Repository

    Puskarjov, Martin; Fiumelli, Hubert; Briner, Adrian; Bodogan, Timea; Demeter, Kornel; Lacoh, Claudia Marvine; Mavrovic, Martina; Blaesse, Peter; Kaila, Kai; Vutskits, Laszlo

    2017-01-01

    Background: General anesthetics potentiating γ-aminobutyric acid (GABA)-mediated signaling are known to induce a persistent decrement in excitatory synapse number in the cerebral cortex when applied during early postnatal development, while an opposite action is produced at later stages. Here, the authors test the hypothesis that the effect of general anesthetics on synaptogenesis depends upon the efficacy of GABA receptor type A (GABA A)-mediated inhibition controlled by the developmental up-regulation of the potassium-chloride (K-Cl) cotransporter 2 (KCC2). Methods: In utero electroporation of KCC2 was used to prematurely increase the efficacy of (GABA A)-mediated inhibition in layer 2/3 pyramidal neurons in the immature rat somatosensory cortex. Parallel experiments with expression of the inward-rectifier potassium channel Kir2.1 were done to reduce intrinsic neuronal excitability. The effects of these genetic manipulations (n = 3 to 4 animals per experimental group) were evaluated using iontophoretic injection of Lucifer Yellow (n = 8 to 12 cells per animal). The total number of spines analyzed per group ranged between 907 and 3,371. Results: The authors found a robust effect of the developmental up-regulation of KCC2-mediated Cl - transport on the age-dependent action of propofol on dendritic spines. Premature expression of KCC2, unlike expression of a transport-inactive KCC2 variant, prevented a propofol-induced decrease in spine density. In line with a reduction in neuronal excitability, the above result was qualitatively replicated by overexpression of Kir2.1. Conclusions: The KCC2-dependent developmental increase in the efficacy of GABA A -mediated inhibition is a major determinant of the age-dependent actions of propofol on dendritic spinogenesis.

  3. K-Cl Cotransporter 2–mediated Cl− Extrusion Determines Developmental Stage–dependent Impact of Propofol Anesthesia on Dendritic Spines

    KAUST Repository

    Puskarjov, Martin

    2017-03-16

    Background: General anesthetics potentiating γ-aminobutyric acid (GABA)-mediated signaling are known to induce a persistent decrement in excitatory synapse number in the cerebral cortex when applied during early postnatal development, while an opposite action is produced at later stages. Here, the authors test the hypothesis that the effect of general anesthetics on synaptogenesis depends upon the efficacy of GABA receptor type A (GABA A)-mediated inhibition controlled by the developmental up-regulation of the potassium-chloride (K-Cl) cotransporter 2 (KCC2). Methods: In utero electroporation of KCC2 was used to prematurely increase the efficacy of (GABA A)-mediated inhibition in layer 2/3 pyramidal neurons in the immature rat somatosensory cortex. Parallel experiments with expression of the inward-rectifier potassium channel Kir2.1 were done to reduce intrinsic neuronal excitability. The effects of these genetic manipulations (n = 3 to 4 animals per experimental group) were evaluated using iontophoretic injection of Lucifer Yellow (n = 8 to 12 cells per animal). The total number of spines analyzed per group ranged between 907 and 3,371. Results: The authors found a robust effect of the developmental up-regulation of KCC2-mediated Cl - transport on the age-dependent action of propofol on dendritic spines. Premature expression of KCC2, unlike expression of a transport-inactive KCC2 variant, prevented a propofol-induced decrease in spine density. In line with a reduction in neuronal excitability, the above result was qualitatively replicated by overexpression of Kir2.1. Conclusions: The KCC2-dependent developmental increase in the efficacy of GABA A -mediated inhibition is a major determinant of the age-dependent actions of propofol on dendritic spinogenesis.

  4. Arsenite stimulated glucose transport in 3T3-L1 adipocytes involves both Glut4 translocation and p38 MAPK activity

    NARCIS (Netherlands)

    Bazuine, Merlijn; Ouwens, D. Margriet; Gomes de Mesquita, Daan S.; Maassen, J. Antonie

    2003-01-01

    The protein-modifying agent arsenite stimulates glucose uptake in 3T3-L1 adipocytes. In the current study we have analysed the signalling pathways that contribute to this response. By subcellular fractionation we observed that arsenite, like insulin, induces translocation of the GLUT1 and GLUT4

  5. Stabilizing in vitro ultrasound-mediated gene transfection by regulating cavitation.

    Science.gov (United States)

    Lo, Chia-Wen; Desjouy, Cyril; Chen, Shing-Ru; Lee, Jyun-Lin; Inserra, Claude; Béra, Jean-Christophe; Chen, Wen-Shiang

    2014-03-01

    It is well known that acoustic cavitation can facilitate the inward transport of genetic materials across cell membranes (sonoporation). However, partially due to the unstationary behavior of the initiation and leveling of cavitation, the sonoporation effect is usually unstable, especially in low intensity conditions. A system which is able to regulate the cavitation level during sonication by modulating the applied acoustic intensity with a feedback loop is implemented and its effect on in vitro gene transfection is tested. The regulated system provided better time stability and reproducibility of the cavitation levels than the unregulated conditions. Cultured hepatoma cells (BNL) mixed with 10 μg luciferase plasmids are exposed to 1-MHz pulsed ultrasound with or without cavitation regulation, and the gene transfection efficiency and cell viability are subsequently assessed. Experimental results show that for all exposure intensities (low, medium, and high), stable and intensity dependent, although not higher, gene expression could be achieved in the regulated cavitation system than the unregulated conditions. The cavitation regulation system provides a better control of cavitation and its bioeffect which are crucial important for clinical applications of ultrasound-mediated gene transfection. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Theoretical studies on sRNA-mediated regulation in bacteria

    Science.gov (United States)

    Chang, Xiao-Xue; Xu, Liu-Fang; Shi, Hua-Lin

    2015-12-01

    Small RNA(sRNA)-mediated post-transcriptional regulation differs from protein-mediated regulation. Through base-pairing, sRNA can regulate the target mRNA in a catalytic or stoichiometric manner. Some theoretical models were built for comparison of the protein-mediated and sRNA-mediated modes in the steady-state behaviors and noise properties. Many experiments demonstrated that a single sRNA can regulate several mRNAs, which causes crosstalk between the targets. Here, we focus on some models in which two target mRNAs are silenced by the same sRNA to discuss their crosstalk features. Additionally, the sequence-function relationship of sRNA and its role in the kinetic process of base-pairing have been highlighted in model building. Project supported by the National Basic Research Program of China (Grant No. 2013CB834100), the National Natural Science Foundation of China (Grant Nos. 11121403 and 11274320), the Open Project Program of State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, China (Grant No. Y4KF171CJ1), the National Natural Science Foundation for Young Scholar of China (Grant No. 11304115), and the China Postdoctoral Science Foundation (Grant No. 2013M541282).

  7. Thioarsenate Formation Coupled with Anaerobic Arsenite Oxidation by a Sulfate-Reducing Bacterium Isolated from a Hot Spring

    Directory of Open Access Journals (Sweden)

    Geng Wu

    2017-07-01

    Full Text Available Thioarsenates are common arsenic species in sulfidic geothermal waters, yet little is known about their biogeochemical traits. In the present study, a novel sulfate-reducing bacterial strain Desulfotomaculum TC-1 was isolated from a sulfidic hot spring in Tengchong geothermal area, Yunnan Province, China. The arxA gene, encoding anaerobic arsenite oxidase, was successfully amplified from the genome of strain TC-1, indicating it has a potential ability to oxidize arsenite under anaerobic condition. In anaerobic arsenite oxidation experiments inoculated with strain TC-1, a small amount of arsenate was detected in the beginning but became undetectable over longer time. Thioarsenates (AsO4-xSx2- with x = 1–4 formed with mono-, di- and tri-thioarsenates being dominant forms. Tetrathioarsenate was only detectable at the end of the experiment. These results suggest that thermophilic microbes might be involved in the formation of thioarsenates and provide a possible explanation for the widespread distribution of thioarsenates in terrestrial geothermal environments.

  8. Thioarsenate Formation Coupled with Anaerobic Arsenite Oxidation by a Sulfate-Reducing Bacterium Isolated from a Hot Spring.

    Science.gov (United States)

    Wu, Geng; Huang, Liuqin; Jiang, Hongchen; Peng, Yue'e; Guo, Wei; Chen, Ziyu; She, Weiyu; Guo, Qinghai; Dong, Hailiang

    2017-01-01

    Thioarsenates are common arsenic species in sulfidic geothermal waters, yet little is known about their biogeochemical traits. In the present study, a novel sulfate-reducing bacterial strain Desulfotomaculum TC-1 was isolated from a sulfidic hot spring in Tengchong geothermal area, Yunnan Province, China. The arxA gene, encoding anaerobic arsenite oxidase, was successfully amplified from the genome of strain TC-1, indicating it has a potential ability to oxidize arsenite under anaerobic condition. In anaerobic arsenite oxidation experiments inoculated with strain TC-1, a small amount of arsenate was detected in the beginning but became undetectable over longer time. Thioarsenates (AsO 4-x S x 2- with x = 1-4) formed with mono-, di- and tri-thioarsenates being dominant forms. Tetrathioarsenate was only detectable at the end of the experiment. These results suggest that thermophilic microbes might be involved in the formation of thioarsenates and provide a possible explanation for the widespread distribution of thioarsenates in terrestrial geothermal environments.

  9. [Purification of arsenic-binding proteins in hamster plasma after oral administration of arsenite].

    Science.gov (United States)

    Wang, Wenwen; Zhang, Min; Li, Chunhui; Qin, Yingjie; Hua, Naranmandura

    2013-01-01

    To purify the arsenic-binding proteins (As-BP) in hamster plasma after a single oral administration of arsenite (iAs(III)). Arsenite was given to hamsters in a single dose. Three types of HPLC columns, size exclusion, gel filtration and anion exchange columns, combined with an inductively coupled argon plasma mass spectrometer (ICP MS) were used to purify the As-BP in hamster plasma. SDS-PAGE was used to confirm the arsenic-binding proteins at each purification step. The three-step purification process successfully separated As-BP from other proteins (ie, arsenic unbound proteins) in hamster plasma. The molecular mass of purified As-BP in plasma was approximately 40-50 kD on SDS-PAGE. The three-step purification method is a simple and fast approach to purify the As-BP in plasma samples.

  10. Nicotinamide clearance by Pnc1 directly regulates Sir2-mediated silencing and longevity.

    Science.gov (United States)

    Gallo, Christopher M; Smith, Daniel L; Smith, Jeffrey S

    2004-02-01

    The Saccharomyces cerevisiae Sir2 protein is an NAD(+)-dependent histone deacetylase (HDAC) that functions in transcriptional silencing and longevity. The NAD(+) salvage pathway protein, Npt1, regulates Sir2-mediated processes by maintaining a sufficiently high intracellular NAD(+) concentration. However, another NAD(+) salvage pathway component, Pnc1, modulates silencing independently of the NAD(+) concentration. Nicotinamide (NAM) is a by-product of the Sir2 deacetylase reaction and is a natural Sir2 inhibitor. Pnc1 is a nicotinamidase that converts NAM to nicotinic acid. Here we show that recombinant Pnc1 stimulates Sir2 HDAC activity in vitro by preventing the accumulation of NAM produced by Sir2. In vivo, telomeric, rDNA, and HM silencing are differentially sensitive to inhibition by NAM. Furthermore, PNC1 overexpression suppresses the inhibitory effect of exogenously added NAM on silencing, life span, and Hst1-mediated transcriptional repression. Finally, we show that stress suppresses the inhibitory effect of NAM through the induction of PNC1 expression. Pnc1, therefore, positively regulates Sir2-mediated silencing and longevity by preventing the accumulation of intracellular NAM during times of stress.

  11. Spatio-temporal detection of the Thiomonas population and the Thiomonas arsenite oxidase involved in natural arsenite attenuation processes in the Carnoulès Acid Mine Drainage

    Directory of Open Access Journals (Sweden)

    Agnès eHovasse

    2016-02-01

    Full Text Available The acid mine drainage (AMD impacted creek of the Carnoulès mine (Southern France is characterized by acid waters with a high heavy metal content. The microbial community inhabiting this AMD was extensively studied using isolation, metagenomic and metaproteomic methods, and the results showed that a natural arsenic (and iron attenuation process involving the arsenite oxidase activity of several Thiomonas strains occurs at this site. A sensitive quantitative Selected Reaction Monitoring (SRM-based proteomic approach was developed for detecting and quantifying the two subunits of the arsenite oxidase and RpoA of two different Thiomonas groups. Using this approach combined with 16S rRNA gene sequence analysis based on pyrosequencing and FISH, it was established here for the first time that these Thiomonas strains are ubiquitously present in minor proportions in this AMD and that they express the key enzymes involved in natural remediation processes at various locations and time points. In addition to these findings, this study also confirms that targeted proteomics applied at the community level can be used to detect weakly abundant proteins in situ.

  12. DMPD: Negative regulation of cytoplasmic RNA-mediated antiviral signaling. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18703349 Negative regulation of cytoplasmic RNA-mediated antiviral signaling. Komur...Show Negative regulation of cytoplasmic RNA-mediated antiviral signaling. PubmedID 18703349 Title Negative r...egulation of cytoplasmic RNA-mediated antiviral signaling. Authors Komuro A, Bamm

  13. Biotransformation of arsenite and bacterial aox activity in drinking water produced from surface water of floating houses: Arsenic contamination in Cambodia

    International Nuclear Information System (INIS)

    Chang, Jin-Soo

    2015-01-01

    The potential arsenite bioteansformation activity of arsenic was investigated by examining bacterial arsenic arsenite-oxidizing gene such as aoxS, aoxR, aoxA, aoxB, aoxC, and aoxD in high arsenic-contaminated drinking water produced from the surface water of floating houses. There is a biogeochemical cycle of activity involving arsenite oxidase aox system and the ars (arsenic resistance system) gene operon and aoxR leader gene activity in Alcaligenes faecalis SRR-11 and aoxS leader gene activity in Achromobacter xylosoxidans TSL-66. Batch experiments showed that SRR-11 and TSL-66 completely oxidized 1 mM of As (III) to As (V) within 35–40 h. The leaders of aoxS and aoxR are important for gene activity, and their effects in arsenic bioremediation and mobility in natural water has a significant ecological role because it allows arsenite oxidase in bacteria to control the biogeochemical cycle of arsenic-contaminated drinking water produced from surface water of floating houses. - Highlights: • The aox genotype system activity and arsenite-oxidizing bacteria was studied. • High arsenic contamination affects the detoxification activities of aoxS and aoxM. • Much Cambodian drinking water has dangerously high arsenic contamination. • Disease-causing microorganisms were found in various drinking water sources. - The importance of this study is that it responds to the high concentrations of arsenic contamination that were found in the drinking water of floating-house residents with the following proposition: The combined periplasm activity of the aoxS and aoxR genes and arsenite oxidase reflects the arsenic oxidation potential of the aoxA, aoxB, aoxC, and aoxD systems in the surface water of floating houses in Cambodia.

  14. Attachment, emotion regulation, and adaptation to breast cancer: assessment of a mediational hypothesis.

    Science.gov (United States)

    Ávila, Marisa; Brandão, Tânia; Teixeira, Joana; Coimbra, Joaquim Luis; Matos, Paula Mena

    2015-11-01

    This study examines the links between attachment, adaptation to breast cancer, and the mediating role played by emotional regulation processes. Participants were 127 women with breast cancer recruited in two public hospitals of Porto and at the Portuguese Cancer League. Women completed measures of attachment, quality of life, and emotion regulation. Path models were used to examine the associations between the constructs and to test the mediational hypotheses. Significant associations were found between attachment and adaptation. Dimensions of emotion regulation totally or partially mediated the associations between attachment and adaptation outcomes. Attachment security effects on interpersonal relations were totally mediated by communicating emotions. Also, attachment anxiety effect on physical well-being was totally mediated by rumination. Attachment avoidance effects on psychological outcomes were totally mediated by emotional control and partially mediated by communicating emotions for the case of interpersonal relations. This study highlights the importance of addressing emotional regulation jointly with attachment to deepen the comprehension of the relational processes implicated in adaptation to breast cancer. Results supported a mediational hypothesis, presenting emotional regulation processes as relevant dimensions for the understanding of attachment associations with adaptation to breast cancer. Copyright © 2015 John Wiley & Sons, Ltd.

  15. COMPARATIVE GENOTOXIC RESPONSES TO ARSENITE IN GUINEA PIG, MOUSE, RAT AND HUMAN LYMPHOCYTES

    Science.gov (United States)

    Comparative genotoxic responses to arsenite in guinea pig, mouse, rat and human lymphocytes.Inorganic arsenic is a known human carcinogen causing skin, lung, and bladder cancer following chronic exposures. Yet, long-term laboratory animal carcinogenicity studies have ...

  16. Regulation of basal and reserve cardiac pacemaker function by interactions of cAMP mediated PKA-dependent Ca2+ cycling with surface membrane channels

    Science.gov (United States)

    Vinogradova, Tatiana M.; Lakatta, Edward G.

    2009-01-01

    Decades of intensive research of primary cardiac pacemaker, the sinoatrial node, have established potential roles of specific membrane channels in the generation of the diastolic depolarization, the major mechanism allowing sinoatrial node cells generate spontaneous beating. During the last three decades, multiple studies made either in the isolated sinoatrial node or sinoatrial node cells have demonstrated a pivotal role of Ca2+ and, specifically Ca2+-release from sarcoplasmic reticulum, for spontaneous beating of cardiac pacemaker. Recently, spontaneous, rhythmic local subsarcolemmal Ca2+ releases from ryanodine receptors during late half of the diastolic depolarization have been implicated as a vital factor in the generation of sinoatrial node cells spontaneous firing. Local Ca2+ releases are driven by a unique combination of high basal cAMP production by adenylyl cyclases, high basal cAMP degradation by phosphodiesterases and a high level of cAMP-mediated PKA-dependent phosphorylation. These local Ca2+ releases activate an inward Na+-Ca2+ exchange current which accelerates the terminal diastolic depolarization rate and, thus, controls the spontaneous pacemaker firing. Both the basal primary pacemaker beating rate and its modulation via β-adrenergic receptor stimulation appear to be critically dependent upon intact RyR function and local subsarcolemmal sarcoplasmic reticulum generated Ca2+ releases. This review aspires to integrate the traditional viewpoint that has emphasized the supremacy of the ensemble of surface membrane ion channels in spontaneous firing of the primary cardiac pacemaker, and these novel perspectives of cAMP-mediated PKA-dependent Ca2+ cycling in regulation of the heart pacemaker clock, both in the basal state and during β-adrenergic receptor stimulation. PMID:19573534

  17. Caspase-dependant activation of chymotrypsin-like proteases mediates nuclear events during Jurkat T cell apoptosis

    International Nuclear Information System (INIS)

    O'Connell, A.R.; Lee, B.W.; Stenson-Cox, C.

    2006-01-01

    Apoptosis involves a cascade of biochemical and morphological changes resulting in the systematic disintegration of the cell. Caspases are central mediators of this process. Supporting and primary roles for serine proteases as pro-apoptotic mediators have also been highlighted. Evidence for such roles comes largely from the use of pharmacological inhibitors; as a consequence information regarding their apoptotic function and biochemical properties has been limited. Here, we circumvented limitations associated with traditional serine protease inhibitors through use of a fluorescently labelled inhibitor of serine proteases (FLISP) that allowed for analysis of the specificity, regulation and positioning of apoptotic serine proteases within a classical apoptotic cascade. We demonstrate that staurosporine triggers a caspase-dependant induction of chymotrypsin-like activity in the nucleus of apoptotic Jurkat T cells. We show that serine protease activity is required for the generation of late stage nuclear events including condensation, fragmentation and DNA degradation. Furthermore, we reveal caspase-dependant activation of two chymotrypsin-like protein species that we hypothesize mediate cell death-associated nuclear events

  18. Effects of Arsenite Resistance on the Growth and Functional Gene Expression of Leptospirillum ferriphilum and Acidithiobacillus thiooxidans in Pure Culture and Coculture

    Directory of Open Access Journals (Sweden)

    Huidan Jiang

    2015-01-01

    Full Text Available The response of iron-oxidizing Leptospirillum ferriphilum YSK and sulfur-oxidizing Acidithiobacillus thiooxidans A01 to arsenite under pure culture and coculture was investigated based on biochemical characterization (concentration of iron ion and pH value and related gene expression. L. ferriphilum YSK and At. thiooxidans A01 in pure culture could adapt up to 400 mM and 800 mM As(III after domestication, respectively, although arsenite showed a negative effect on both strains. The coculture showed a stronger sulfur and ferrous ion oxidation activity when exposed to arsenite. In coculture, the pH value showed no significant difference when under 500 mM arsenite stress, and the cell number of At. thiooxidans was higher than that in pure culture benefiting from the interaction with L. ferriphilum. The expression profile showed that the arsenic efflux system in the coculture was more active than that in pure culture, indicating that there is a synergetic interaction between At. thiooxidans A01 and L. ferriphilum YSK. In addition, a model was proposed to illustrate the interaction between arsenite and the ars operon in L. ferriphilum YSK and At. thiooxidans A01. This study will facilitate the effective application of coculture in the bioleaching process by taking advantage of strain-strain communication and coordination.

  19. Biphasic effect of arsenite on cell proliferation and apoptosis is associated with the activation of JNK and ERK1/2 in human embryo lung fibroblast cells

    International Nuclear Information System (INIS)

    He Xiaoqing; Chen Rui; Yang Ping; Li Aiping; Zhou Jianwei; Liu Qizhan

    2007-01-01

    Biphasic dose-response relationship induced by environmental agents is often characterized with the effect of low-dose stimulation and high-dose inhibition. Some studies showed that arsenite may induce cell proliferation and apoptosis via biphasic dose-response relationship in human cells; however, mechanisms underlying this phenomenon are not well understood. In the present study, we aimed at investigating the relationship between biphasic effect of arsenite on cell proliferation and apoptosis and activation of JNK and ERK1/2 in human embryo lung fibroblast (HELF) cells. Our results demonstrated that cell proliferation may be stimulated at lower concentrations (0.1 and 0.5 μM) arsenite but inhibited at higher concentrations (5 and 10 μM). When cell apoptosis was used as the endpoint, the concentration-response curves were changed to U-shapes. During stimulation phospho-JNK levels were significantly increased at 3, 6, and 12 h after 0.1 or 0.5 μM arsenite exposure. Phospho-ERK1/2 levels were increased with different concentrations (0.1-10 μM) of arsenite at 6, 12, and 24 h. Blocking of JNK pathway with 20 μM SP600125 or ERK1/2 by 100 μM PD98059 significantly inhibited biphasic effect of arsenite in cells. Data in the present study suggest that activation of JNK and ERK1/2 may be involved in biphasic effect of arsenite when measuring cell proliferation and apoptosis in HELF cells. JNK activation seems to play a more critical role than ERK1/2 activation in the biphasic process

  20. VirF-Independent Regulation of Shigella virB Transcription is Mediated by the Small RNA RyhB

    Science.gov (United States)

    Broach, William H.; Egan, Nicholas; Wing, Helen J.; Payne, Shelley M.; Murphy, Erin R.

    2012-01-01

    Infection of the human host by Shigella species requires the coordinated production of specific Shigella virulence factors, a process mediated largely by the VirF/VirB regulatory cascade. VirF promotes the transcription of virB, a gene encoding the transcriptional activator of several virulence-associated genes. This study reveals that transcription of virB is also regulated by the small RNA RyhB, and importantly, that this regulation is not achieved indirectly via modulation of VirF activity. These data are the first to demonstrate that the regulation of virB transcription can be uncoupled from the master regulator VirF. It is also established that efficient RyhB-dependent regulation of transcription is facilitated by specific nucleic acid sequences within virB. This study not only reveals RyhB-dependent regulation of virB transcription as a novel point of control in the central regulatory circuit modulating Shigella virulence, but also highlights the versatility of RyhB in controlling bacterial gene expression. PMID:22701677

  1. Evaluation of the toxic effects of arsenite, chromate, cadmium, and copper using a battery of four bioassays

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Kyung-Seok; Lee, Pyeong-Koo [Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon (Korea, Republic of). Geologic Environment Div.; Kong, In Chul [Yeungnam Univ., Kyungbuk (Korea, Republic of). Dept. of Environmental Engineering

    2012-09-15

    The sensitivities of four different kinds of bioassays to the toxicities of arsenite, chromate, cadmium, and copper were compared. The different bioassays exhibited different sensitivities, i.e., they responded to different levels of toxicity of each of the different metals. However, with the exception of the {alpha}-glucosidase enzyme activity, arsenite was the most toxic compound towards all the tested organisms, exhibiting the highest toxic effect on the seeds of Lactuca, with an EC{sub 50} value of 0.63 mg/L. The sensitivities of Lactuca and Raphanus were greater than the sensitivities of two other kinds of seeds tested. Therefore, these were the seeds appropriate for use in a seed germination assay. A high revertant mutagenic ratio (5:1) of Salmonella typhimurium was observed with an arsenite concentration of 0.1 {mu}g/plate, indicative of a high possibility of mutagenicity. These different results suggested that a battery of bioassays, rather than one bioassay alone, is needed as a more accurate and better tool for the bioassessment of environmental pollutants. (orig.)

  2. A small quantity of sodium arsenite will kill large cull hardwoods

    Science.gov (United States)

    Francis M. Rushmore

    1956-01-01

    Although it is well known that sodium arsenite is an effective silvicide, forestry literature contains little information about the minimum quantities of this chemical that are required to kill large cull trees. Such information would be of value because if small quantities of a chemical will produce satisfactory results, small holes or frills in the tree will hold it...

  3. Oxidised LDL internalisation by the LOX-1 scavenger receptor is dependent on a novel cytoplasmic motif and is regulated by dynamin-2.

    Science.gov (United States)

    Murphy, Jane E; Vohra, Ravinder S; Dunn, Sarah; Holloway, Zoe G; Monaco, Anthony P; Homer-Vanniasinkam, Shervanthi; Walker, John H; Ponnambalam, Sreenivasan

    2008-07-01

    The LOX-1 scavenger receptor recognises pro-atherogenic oxidised low-density lipoprotein (OxLDL) particles and is implicated in atherosclerotic plaque formation, but this mechanism is not well understood. Here we show evidence for a novel clathrin-independent and cytosolic-signal-dependent pathway that regulates LOX-1-mediated OxLDL internalisation. Cell surface labelling in the absence or presence of OxLDL ligand showed that LOX-1 is constitutively internalised from the plasma membrane and its half-life is not altered upon ligand binding and trafficking. We show that LOX-1-mediated OxLDL uptake is disrupted by overexpression of dominant-negative dynamin-2 but unaffected by CHC17 or mu2 (AP2) depletion. Site-directed mutagenesis revealed a conserved and novel cytoplasmic tripeptide motif (DDL) that regulates LOX-1-mediated endocytosis of OxLDL. Taken together, these findings indicate that LOX-1 is internalised by a clathrin-independent and dynamin-2-dependent pathway and is thus likely to mediate OxLDL trafficking in vascular tissues.

  4. HIV-1 matrix dependent membrane targeting is regulated by Gag mRNA trafficking.

    Directory of Open Access Journals (Sweden)

    Jing Jin

    Full Text Available Retroviral Gag polyproteins are necessary and sufficient for virus budding. Productive HIV-1 Gag assembly takes place at the plasma membrane. However, little is known about the mechanisms by which thousands of Gag molecules are targeted to the plasma membrane. Using a bimolecular fluorescence complementation (BiFC assay, we recently reported that the cellular sites and efficiency of HIV-1 Gag assembly depend on the precise pathway of Gag mRNA export from the nucleus, known to be mediated by Rev. Here we describe an assembly deficiency in human cells for HIV Gag whose expression depends on hepatitis B virus (HBV post-transcriptional regulatory element (PRE mediated-mRNA nuclear export. PRE-dependent HIV Gag expressed well in human cells, but assembled with slower kinetics, accumulated intracellularly, and failed to associate with a lipid raft compartment where the wild-type Rev-dependent HIV-1 Gag efficiently assembles. Surprisingly, assembly and budding of PRE-dependent HIV Gag in human cells could be rescued in trans by co-expression of Rev-dependent Gag that provides correct membrane targeting signals, or in cis by replacing HIV matrix (MA with other membrane targeting domains. Taken together, our results demonstrate deficient membrane targeting of PRE-dependent HIV-1 Gag and suggest that HIV MA function is regulated by the trafficking pathway of the encoding mRNA.

  5. Molecular Mechanisms Underlying Renin-Angiotensin-Aldosterone System Mediated Regulation of BK Channels

    Directory of Open Access Journals (Sweden)

    Zhen-Ye Zhang

    2017-09-01

    Full Text Available Large-conductance calcium-activated potassium channels (BK channels belong to a family of Ca2+-sensitive voltage-dependent potassium channels and play a vital role in various physiological activities in the human body. The renin-angiotensin-aldosterone system is acknowledged as being vital in the body's hormone system and plays a fundamental role in the maintenance of water and electrolyte balance and blood pressure regulation. There is growing evidence that the renin-angiotensin-aldosterone system has profound influences on the expression and bioactivity of BK channels. In this review, we focus on the molecular mechanisms underlying the regulation of BK channels mediated by the renin-angiotensin-aldosterone system and its potential as a target for clinical drugs.

  6. A comparative study of self-regulation in substance dependent and non-dependent individuals.

    Science.gov (United States)

    Bakhshani, Nour Mohammad; Hosseinbor, Mohsen

    2013-08-05

    Several factors influence the beginning and maintenance of substance use. The purpose of this study was to examine as well as to compare 'self-regulation' in both substance dependent and non-substance dependent individuals. In a cross-sectional study 228 (118 substance dependent and 110 with no history of using substance) participants aged 16-55 were recruited. All of the participants were asked to complete the Self-Regulation Inventory (SRI-25) and a demographic characteristics data checklist. Data was analyzed using descriptive statistics (frequency, mean and standard deviation) and the t-test. The results showed significant differences between substance dependent and non- substance dependent groups in all the scales of the self-regulation inventory including positive actions, controllability, expression of feelings and needs, assertiveness, and well-being seeking (p<0.01). Self-regulation and self-control skills in drug dependent individuals are lower than those without substance dependence individuals. It is concluded that substance use may related to a deficiency in self-control and regulation of feelings. Therefore, for prevention and treatment of substance dependence disorder, it is necessary to work out and exploit strategies that include the improvement of self-regulation.

  7. The Arabidopsis Mediator Complex Subunits MED16, MED14, and MED2 Regulate Mediator and RNA Polymerase II Recruitment to CBF-Responsive Cold-Regulated Genes[C][W][OPEN

    Science.gov (United States)

    Hemsley, Piers A.; Hurst, Charlotte H.; Kaliyadasa, Ewon; Lamb, Rebecca; Knight, Marc R.; De Cothi, Elizabeth A.; Steele, John F.; Knight, Heather

    2014-01-01

    The Mediator16 (MED16; formerly termed SENSITIVE TO FREEZING6 [SFR6]) subunit of the plant Mediator transcriptional coactivator complex regulates cold-responsive gene expression in Arabidopsis thaliana, acting downstream of the C-repeat binding factor (CBF) transcription factors to recruit the core Mediator complex to cold-regulated genes. Here, we use loss-of-function mutants to show that RNA polymerase II recruitment to CBF-responsive cold-regulated genes requires MED16, MED2, and MED14 subunits. Transcription of genes known to be regulated via CBFs binding to the C-repeat motif/drought-responsive element promoter motif requires all three Mediator subunits, as does cold acclimation–induced freezing tolerance. In addition, these three subunits are required for low temperature–induced expression of some other, but not all, cold-responsive genes, including genes that are not known targets of CBFs. Genes inducible by darkness also required MED16 but required a different combination of Mediator subunits for their expression than the genes induced by cold. Together, our data illustrate that plants control transcription of specific genes through the action of subsets of Mediator subunits; the specific combination defined by the nature of the stimulus but also by the identity of the gene induced. PMID:24415770

  8. Ripk3 regulates cardiac microvascular reperfusion injury: The role of IP3R-dependent calcium overload, XO-mediated oxidative stress and F-action/filopodia-based cellular migration.

    Science.gov (United States)

    Zhou, Hao; Wang, Jin; Zhu, Pingjun; Hu, Shunying; Ren, Jun

    2018-05-01

    Ripk3-mediated cellular apoptosis is a major contributor to the pathogenesis of myocardial ischemia reperfusion (IR) injury. However, the mechanisms by which Ripk3 influences microvascular homeostasis and endothelial apoptosis are not completely understood. In this study, loss of Ripk3 inhibited endothelial apoptosis, alleviated luminal swelling, maintained microvasculature patency, reduced the expression of adhesion molecules and limited the myocardial inflammatory response. In vitro, Ripk3 deficiency protected endothelial cells from apoptosis and migratory arrest induced by HR injury. Mechanistically, Ripk3 had the ability to migrate onto the endoplasmic reticulum (ER), leading to ER damage, as evidenced by increased IP3R and XO expression. The higher IP3R content was associated with cellular calcium overload, and increased XO expression was involved in cellular oxidative injury. Furthermore, IP3R-mediated calcium overload and XO-dependent oxidative damage were able to initiate cellular apoptosis. More importantly, IP3R and XO also caused F-actin degradation into G-actin via post-transcriptional modification of cofilin, impairing the formation of the filopodia and limiting the migratory response of endothelial cells. Altogether, our data confirmed that Ripk3 was involved in microvascular IR injury via regulation of IP3R-mediated calcium overload, XO-dependent oxidative damage and filopodia-related cellular migration, ultimately leading to endothelial apoptosis and migratory inhibition. These findings provide a potential target for treating cardiac microcirculatory IR injury. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Exercisers' identities and exercise dependence: the mediating effect of exercise commitment.

    Science.gov (United States)

    Lu, Frank Jing-Horng; Hsu, Eva Ya-Wen; Wang, Junn-Ming; Huang, Mei-Yao; Chang, Jo-Ning; Wang, Chien-Hsin

    2012-10-01

    The purpose of this study was to examine the associations of exercise identity, exercise commitment, exercise dependence, and, particularly, the mediating effects of exercise commitment on the relationship between exercise identity and exercise dependence. 253 Taiwanese regular exercisers completed measures, including the Exercise Dependence Scale-Revised, the Exercise Identity Scale, the Exercise Commitment Scale, and the Godin Leisure Time Exercise Questionnaire. Results showed that exercise identity, exercise dependence, and two types of exercise commitment were moderately to highly correlated. Furthermore, structural equation modelling indicated that a "have to" commitment partially mediated the relationship between exercise identity and exercise dependence. Based on the mediating role of a "have to" commitment, the findings are particularly informative to exercise instructors and for exercise program managers.

  10. Effects of exogenous glutathione on arsenic burden and NO metabolism in brain of mice exposed to arsenite through drinking water.

    Science.gov (United States)

    Wang, Yan; Zhao, Fenghong; Jin, Yaping; Zhong, Yuan; Yu, Xiaoyun; Li, Gexin; Lv, Xiuqiang; Sun, Guifan

    2011-03-01

    Chronic exposure to inorganic arsenic (iAs) is associated with neurotoxicity. Studies to date have disclosed that methylation of ingested iAs is the main metabolic pathway, and it is a process relying on reduced glutathione (GSH). The aim of this study was to explore the effects of exogenous GSH on arsenic burden and metabolism of nitric oxide (NO) in the brain of mice exposed to arsenite via drinking water. Mice were exposed to sodium arsenite through drinking water contaminated with 50 mg/L arsenic for 4 weeks and treated intraperitoneally with saline solution, 200 mg/kg body weight (b.w), 400 mg/kg b.w, or 800 mg/kg b.w GSH, respectively, at the 4th week. Levels of iAs, monomethylarsenic acid, and dimethylarsenic acid (DMAs) in the liver, blood, and brain were determined by method of hydride generation coupled with atomic absorption spectrophotometry. Activities of nitric oxide synthase (NOS) and contents of NO in the brain were determined by colorimetric method. Compared with mice exposed to arsenite alone, administration of GSH increased dose-dependently the primary and secondary methylation ratio in the liver, which caused the decrease in percent iAs and increase in percent DMAs in the liver, as a consequence, resulted in significant decrease in iAs levels in the blood and total arsenic levels in both blood and brain. NOS activities and NO levels in the brain of mice in iAs group were significantly lower than those in control; however, administration of GSH could increase significantly activities of NOS and contents of NO. Findings from this study suggested that exogenous GSH could promote both primary and secondary arsenic methylation capacity in the liver, which might facilitate excretion of arsenicals, and consequently reduce arsenic burden in both blood and brain and furthermore ameliorate the effects of arsenicals on NO metabolism in the brain.

  11. Lysosomal regulation of cholesterol homeostasis in tuberous sclerosis complex is mediated via NPC1 and LDL-R.

    Science.gov (United States)

    Filippakis, Harilaos; Alesi, Nicola; Ogorek, Barbara; Nijmeh, Julie; Khabibullin, Damir; Gutierrez, Catherine; Valvezan, Alexander J; Cunningham, James; Priolo, Carmen; Henske, Elizabeth P

    2017-06-13

    Tuberous sclerosis complex (TSC) is a multisystem disease associated with hyperactive mTORC1. The impact of TSC1/2 deficiency on lysosome-mediated processes is not fully understood. We report here that inhibition of lysosomal function using chloroquine (CQ) upregulates cholesterol homeostasis genes in TSC2-deficient cells. This TSC2-dependent transcriptional signature is associated with increased accumulation and intracellular levels of both total cholesterol and cholesterol esters. Unexpectedly, engaging this CQ-induced cholesterol uptake pathway together with inhibition of de novo cholesterol synthesis allows survival of TSC2-deficient, but not TSC2-expressing cells. The underlying mechanism of TSC2-deficient cell survival is dependent on exogenous cholesterol uptake via LDL-R, and endosomal trafficking mediated by Vps34. Simultaneous inhibition of lysosomal and endosomal trafficking inhibits uptake of esterified cholesterol and cell growth in TSC2-deficient, but not TSC2-expressing cells, highlighting the TSC-dependent lysosome-mediated regulation of cholesterol homeostasis and pointing toward the translational potential of these pathways for the therapy of TSC.

  12. CD4+ type II NKT cells mediate ICOS and programmed death-1-dependent regulation of type 1 diabetes

    DEFF Research Database (Denmark)

    Kadri, Nadir; Korpos, Eva; Gupta, Shashank

    2012-01-01

    Type 1 diabetes (T1D) is a chronic autoimmune disease that results from T cell-mediated destruction of pancreatic ß cells. CD1d-restricted NKT lymphocytes have the ability to regulate immunity, including autoimmunity. We previously demonstrated that CD1d-restricted type II NKT cells, which carry ...

  13. β-Arrestin-2-Dependent Signaling Promotes CCR4-mediated Chemotaxis of Murine T-Helper Type 2 Cells.

    Science.gov (United States)

    Lin, Rui; Choi, Yeon Ho; Zidar, David A; Walker, Julia K L

    2018-06-01

    Allergic asthma is a complex inflammatory disease that leads to significant healthcare costs and reduction in quality of life. Although many cell types are implicated in the pathogenesis of asthma, CD4 + T-helper cell type 2 (Th2) cells are centrally involved. We previously reported that the asthma phenotype is virtually absent in ovalbumin-sensitized and -challenged mice that lack global expression of β-arrestin (β-arr)-2 and that CD4 + T cells from these mice displayed significantly reduced CCL22-mediated chemotaxis. Because CCL22-mediated activation of CCR4 plays a role in Th2 cell regulation in asthmatic inflammation, we hypothesized that CCR4-mediated migration of CD4 + Th2 cells to the lung in asthma may use β-arr-dependent signaling. To test this hypothesis, we assessed the effect of various signaling inhibitors on CCL22-induced chemotaxis using in vitro-polarized primary CD4 + Th2 cells from β-arr2-knockout and wild-type mice. Our results show, for the first time, that CCL22-induced, CCR4-mediated Th2 cell chemotaxis is dependent, in part, on a β-arr2-dependent signaling pathway. In addition, we show that this chemotactic signaling mechanism involves activation of P-p38 and Rho-associated protein kinase. These findings point to a proinflammatory role for β-arr2-dependent signaling and support β-arr2 as a novel therapeutic target in asthma.

  14. Nuclear DAMP complex-mediated RAGE-dependent macrophage cell death

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ruochan [Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213 (United States); Department of Infectious Diseases and State Key Lab of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan 410008 (China); Fu, Sha; Fan, Xue-Gong [Department of Infectious Diseases and State Key Lab of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan 410008 (China); Lotze, Michael T.; Zeh, Herbert J. [Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213 (United States); Tang, Daolin, E-mail: tangd2@upmc.edu [Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213 (United States); Kang, Rui, E-mail: kangr@upmc.edu [Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213 (United States)

    2015-03-13

    High mobility group box 1 (HMGB1), histone, and DNA are essential nuclear components involved in the regulation of chromosome structure and function. In addition to their nuclear function, these molecules act as damage-associated molecular patterns (DAMPs) alone or together when released extracellularly. The synergistic effect of these nuclear DNA-HMGB1-histone complexes as DAMP complexes (nDCs) on immune cells remains largely unexplored. Here, we demonstrate that nDCs limit survival of macrophages (e.g., RAW264.7 and peritoneal macrophages) but not cancer cells (e.g., HCT116, HepG2 and Hepa1-6). nDCs promote production of inflammatory tumor necrosis factor α (TNFα) release, triggering reactive oxygen species-dependent apoptosis and necrosis. Moreover, the receptor for advanced glycation end products (RAGE), but not toll-like receptor (TLR)-4 and TLR-2, was required for Akt-dependent TNFα release and subsequent cell death following treatment with nDCs. Genetic depletion of RAGE by RNAi, antioxidant N-Acetyl-L-cysteine, and TNFα neutralizing antibody significantly attenuated nDC-induced cell death. These findings provide evidence supporting novel signaling mechanisms linking nDCs and inflammation in macrophage cell death. - Highlights: • Nuclear DAMP complexes (nDCs) selectively induce cell death in macrophages, but not cancer cells. • TNFα-mediated oxidative stress is required for nDC-induced death. • RAGE-mediated Akt activation is required for nDC-induced TNFα release. • Blocking RAGE and TNFα inhibits nDC-induced macrophage cell death.

  15. Influence of titanium dioxide nanoparticles on speciation and bioavailability of arsenite

    International Nuclear Information System (INIS)

    Sun Hongwen; Zhang Xuezhi; Zhang Zhiyan; Chen Yongsheng; Crittenden, John C.

    2009-01-01

    In this study, the influence of the co-existence of TiO 2 nanoparticles on the speciation of arsenite [As(III)] was studied by observing its adsorption and valence changing. Moreover, the influence of TiO 2 nanoparticles on the bioavailability of As(III) was examined by bioaccumulation test using carp (Cyprinus carpio). The results showed that TiO 2 nanoparticles have a significant adsorption capacity for As (III). Equilibrium was established within 30 min, with about 30% of the initial As (III) being adsorbed onto TiO 2 nanoparticles. Most of aqueous As (III) was oxidized to As(V) in the presence of TiO 2 nanoparticles under sunlight. The carp accumulated considerably more As in the presence of TiO 2 nanoparticles than in the absence of TiO 2 nanoparticles, and after 25-day exposure, As concentration in carp increased by 44%. Accumulation of As in viscera, gills and muscle of the carp was significantly enhanced by the presence of TiO 2 nanoparticles. - The co-existence of TiO 2 nanoparticles could change the speciation of arsenite by adsorption and photo-oxidation, and enhance its bioaccumulation to carp

  16. A complex effect of arsenite on the formation of alpha-ketoglutarate in rat liver mitochondria.

    Science.gov (United States)

    Lenartowicz, E

    1990-12-01

    This investigation presents disturbances of the mitochondrial metabolism by arsenite, a hydrophilic dithiol reagent known as an inhibitor of mitochondrial alpha-keto acid dehydrogenases. Arsenite at concentrations of 0.1-1.0 mM was shown to induce a considerable oxidation of intramitochondrial NADPH, NADH, and glutathione without decreasing the mitochondrial membrane potential. The oxidation of NAD(P)H required the presence of phosphate and was sensitive to ruthenium red, but occurred without the addition of calcium salts. Mitochondrial reactions producing alpha-ketoglutarate from glutamate and isocitrate were modulated by arsenite through various mechanisms: (i) both glutamate transaminations, with oxaloacetate and with pyruvate, were inhibited by accumulating alpha-ketoglutarate; however, at low concentrations of alpha-ketoglutarate the aspartate aminotransferase reaction was stimulated due to the increase of NAD+ content; (ii) the oxidation of isocitrate was stimulated at its low concentration only, due to the oxidation of NADPH and NADH; this oxidation was prevented by concentrations of citrate or isocitrate greater than 1 mM; (iii) the conversion of isocitrate to citrate was suppressed, presumably as a result of the decrease of Mg2+ concentration in mitochondria. Thus the depletion of mitochondrial vicinal thiol groups in hydrophilic domains disturbs the mitochondrial metabolism not only by the inhibition of alpha-keto acid dehydrogenases but also by the oxidation of NAD(P)H and, possibly, by the change in the ion concentrations.

  17. Parental Emotion Socialization and Child Psychological Adjustment among Chinese Urban Families: Mediation through Child Emotion Regulation and Moderation through Dyadic Collaboration

    Science.gov (United States)

    Jin, Zhuyun; Zhang, Xutong; Han, Zhuo Rachel

    2017-01-01

    The theoretical model of emotion regulation and many empirical findings have suggested that children’s emotion regulation may mediate the association between parents’ emotion socialization and children’s psychological adjustment. However, limited research has been conducted on moderators of these relations, despite the argument that the associations between parenting practices and children’s psychological adjustment are probabilistic rather than deterministic. This study examined the mediating role of children’s emotion regulation in linking parents’ emotion socialization and children’s psychological adjustment, and whether dyadic collaboration could moderate the proposed mediation model in a sample of Chinese parents and their children in their middle childhood. Participants were 150 Chinese children (87 boys and 63 girls, Mage = 8.54, SD = 1.67) and their parents (Mage = 39.22, SD = 4.07). Parent–child dyadic collaboration was videotaped and coded from an interaction task. Parents reported on their emotion socialization, children’s emotion regulation and psychopathological symptoms. Results indicated that child emotion regulation mediated the links between parental emotion socialization and child’s psychopathological symptoms. Evidence of moderated mediation was also found: supportive emotion socialization and child emotion regulation were positively correlated only at high and medium levels of dyadic collaboration, with child’s psychopathological symptoms as the dependent variables. Our findings suggested that higher-level parent–child collaboration might further potentiate the protective effect of parental supportive emotion socialization practices against child psychopathological symptoms. PMID:29326629

  18. Parental Emotion Socialization and Child Psychological Adjustment among Chinese Urban Families: Mediation through Child Emotion Regulation and Moderation through Dyadic Collaboration

    Directory of Open Access Journals (Sweden)

    Zhuyun Jin

    2017-12-01

    Full Text Available The theoretical model of emotion regulation and many empirical findings have suggested that children’s emotion regulation may mediate the association between parents’ emotion socialization and children’s psychological adjustment. However, limited research has been conducted on moderators of these relations, despite the argument that the associations between parenting practices and children’s psychological adjustment are probabilistic rather than deterministic. This study examined the mediating role of children’s emotion regulation in linking parents’ emotion socialization and children’s psychological adjustment, and whether dyadic collaboration could moderate the proposed mediation model in a sample of Chinese parents and their children in their middle childhood. Participants were 150 Chinese children (87 boys and 63 girls, Mage = 8.54, SD = 1.67 and their parents (Mage = 39.22, SD = 4.07. Parent–child dyadic collaboration was videotaped and coded from an interaction task. Parents reported on their emotion socialization, children’s emotion regulation and psychopathological symptoms. Results indicated that child emotion regulation mediated the links between parental emotion socialization and child’s psychopathological symptoms. Evidence of moderated mediation was also found: supportive emotion socialization and child emotion regulation were positively correlated only at high and medium levels of dyadic collaboration, with child’s psychopathological symptoms as the dependent variables. Our findings suggested that higher-level parent–child collaboration might further potentiate the protective effect of parental supportive emotion socialization practices against child psychopathological symptoms.

  19. Synthesis of Nano- alumina Powder from Impure Kaolin and its Application for Arsenite Removal from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Ahmad Khodadadi Darban

    2013-07-01

    Full Text Available Adsorption is considered a cost-effective procedure, safer to handle with high removal efficiency. Activated alumina is the most commonly used adsorbent for the removal of arsenic from aqueous solutions. However, activated alumina has a low adsorption capacity and acts kinetically in a slow manner. An ideal adsorbent should have a high surface area, physical and/or chemical stability and be inexpensive. To meet this requirement, nanomeso porous γ-alumina with a high surface area (201.53 m2/g and small particle size (22–36 nm was prepared from inexpensive kaolin as the raw material, by precipitation method. The research results showed that adsorbent has the high adsorption capacity (for initial arsenite concentration up to 10 mg/L, in which 97.65% recovery was achieved. Optimal experimental conditions including pH, initial arsenite concentration and contact time were determined. Langmuir, Freundlich and Dubinin– Radushkevich isotherm models were applied to analyze the experimental data. The best interpretation for the experimental data was given by Langmuir adsorption isotherm equation and the maximum arsenite adsorbed by synthesized nano γ–alumina (qe was found to be 40 (mg/g.

  20. Context-Dependent Modulation of GABAAR-Mediated Tonic Currents

    DEFF Research Database (Denmark)

    Patel, Bijal; Bright, Damian P; Mortensen, Martin

    2016-01-01

    UNLABELLED: Tonic GABA currents mediated by high-affinity extrasynaptic GABAA receptors, are increasingly recognized as important regulators of cell and neuronal network excitability. Dysfunctional GABAA receptor signaling that results in modified tonic GABA currents is associated with a number o...

  1. Follistatin-mediated skeletal muscle hypertrophy is regulated by Smad3 and mTOR independently of myostatin

    Science.gov (United States)

    Winbanks, Catherine E.; Weeks, Kate L.; Thomson, Rachel E.; Sepulveda, Patricio V.; Beyer, Claudia; Qian, Hongwei; Chen, Justin L.; Allen, James M.; Lancaster, Graeme I.; Febbraio, Mark A.; Harrison, Craig A.; McMullen, Julie R.; Chamberlain, Jeffrey S.

    2012-01-01

    Follistatin is essential for skeletal muscle development and growth, but the intracellular signaling networks that regulate follistatin-mediated effects are not well defined. We show here that the administration of an adeno-associated viral vector expressing follistatin-288aa (rAAV6:Fst-288) markedly increased muscle mass and force-producing capacity concomitant with increased protein synthesis and mammalian target of rapamycin (mTOR) activation. These effects were attenuated by inhibition of mTOR or deletion of S6K1/2. Furthermore, we identify Smad3 as the critical intracellular link that mediates the effects of follistatin on mTOR signaling. Expression of constitutively active Smad3 not only markedly prevented skeletal muscle growth induced by follistatin but also potently suppressed follistatin-induced Akt/mTOR/S6K signaling. Importantly, the regulation of Smad3- and mTOR-dependent events by follistatin occurred independently of overexpression or knockout of myostatin, a key repressor of muscle development that can regulate Smad3 and mTOR signaling and that is itself inhibited by follistatin. These findings identify a critical role of Smad3/Akt/mTOR/S6K/S6RP signaling in follistatin-mediated muscle growth that operates independently of myostatin-driven mechanisms. PMID:22711699

  2. Negative regulators of brown adipose tissue (BAT)-mediated thermogenesis.

    Science.gov (United States)

    Sharma, Bal Krishan; Patil, Mallikarjun; Satyanarayana, Ande

    2014-12-01

    Brown adipose tissue (BAT) is specialized for energy expenditure, a process called adaptive thermogenesis. PET-CT scans recently demonstrated the existence of metabolically active BAT in adult humans, which revitalized our interest in BAT. Increasing the amount and/or activity of BAT holds tremendous promise for the treatment of obesity and its associated diseases. PGC1α is the master regulator of UCP1-mediated thermogenesis in BAT. A number of proteins have been identified to influence thermogenesis either positively or negatively through regulating the expression or transcriptional activity of PGC1α. Therefore, BAT activation can be achieved by either inducing the expression of positive regulators of PGC1α or by inhibiting the repressors of the PGC1α/UCP1 pathway. Here, we review the most important negative regulators of PGC1α/UCP1 signaling and their mechanism of action in BAT-mediated thermogenesis. © 2014 Wiley Periodicals, Inc.

  3. Cyclic AMP (cAMP)-mediated stimulation of adipocyte differentiation requires the synergistic action of Epac- and cAMP-dependent protein kinase-dependent processes

    DEFF Research Database (Denmark)

    Petersen, Rasmus Koefoed; Madsen, Lise; Pedersen, Lone Møller

    2008-01-01

    AMP-dependent stimulation of adipocyte differentiation. Epac, working via Rap, acted synergistically with cAMP-dependent protein kinase (protein kinase A [PKA]) to promote adipogenesis. The major role of PKA was to down-regulate Rho and Rho-kinase activity, rather than to enhance CREB phosphorylation. Suppression of Rho......-kinase impaired proadipogenic insulin/insulin-like growth factor 1 signaling, which was restored by activation of Epac. This interplay between PKA and Epac-mediated processes not only provides novel insight into the initiation and tuning of adipocyte differentiation, but also demonstrates a new mechanism of c......AMP signaling whereby cAMP uses both PKA and Epac to achieve an appropriate cellular response....

  4. Genome-wide association of mediator and RNA polymerase II in wild-type and mediator mutant yeast.

    Science.gov (United States)

    Paul, Emily; Zhu, Z Iris; Landsman, David; Morse, Randall H

    2015-01-01

    Mediator is a large, multisubunit complex that is required for essentially all mRNA transcription in eukaryotes. In spite of the importance of Mediator, the range of its targets and how it is recruited to these is not well understood. Previous work showed that in Saccharomyces cerevisiae, Mediator contributes to transcriptional activation by two distinct mechanisms, one depending on the tail module triad and favoring SAGA-regulated genes, and the second occurring independently of the tail module and favoring TFIID-regulated genes. Here, we use chromatin immunoprecipitation sequencing (ChIP-seq) to show that dependence on tail module subunits for Mediator recruitment and polymerase II (Pol II) association occurs preferentially at SAGA-regulated over TFIID-regulated genes on a genome-wide scale. We also show that recruitment of tail module subunits to active gene promoters continues genome-wide when Mediator integrity is compromised in med17 temperature-sensitive (ts) yeast, demonstrating the modular nature of the Mediator complex in vivo. In addition, our data indicate that promoters exhibiting strong and stable occupancy by Mediator have a wide range of activity and are enriched for targets of the Tup1-Cyc8 repressor complex. We also identify a number of strong Mediator occupancy peaks that overlap dubious open reading frames (ORFs) and are likely to include previously unrecognized upstream activator sequences. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  5. Comparative investigations of sodium arsenite, arsenic trioxide and cadmium sulphate in combination with gamma-radiation on apoptosis, micronuclei induction and DNA damage in a human lymphoblastoid cell line

    International Nuclear Information System (INIS)

    Hornhardt, Sabine; Gomolka, Maria; Walsh, Linda; Jung, Thomas

    2006-01-01

    In the field of radiation protection the combined exposure to radiation and other toxic agents is recognised as an important research area. To elucidate the basic mechanisms of simultaneous exposure, the interaction of the carcinogens and environmental toxicants cadmium and two arsenic compounds, arsenite and arsenic trioxide, in combination with gamma-radiation in human lymphoblastoid cells (TK6) were investigated. Gamma-radiation induced significant genotoxic effects such as micronuclei formation, DNA damage and apoptosis, whereas arsenic and cadmium had no significant effect on these indicators of cellular damage at non-toxic concentrations. However, in combination with gamma-radiation arsenic trioxide induced a more than additive apoptotic rate compared to the sum of the single effects. Here, the level of apoptotic cells was increased, in a dose-dependent way, up to two-fold compared to the irradiated control cells. Arsenite did not induce a significant additive effect at any of the concentrations or radiation doses tested. On the other hand, arsenic trioxide was less effective than arsenite in the induction of DNA protein cross-links. These data indicate that the two arsenic compounds interact through different pathways in the cell. Cadmium sulphate, like arsenite, had no significant effect on apoptosis in combination with gamma-radiation at low concentrations and, at high concentrations, even reduced the radiation-induced apoptosis. An additive effect on micronuclei induction was observed with 1 μM cadmium sulphate with an increase of up to 80% compared to the irradiated control cells. Toxic concentrations of cadmium and arsenic trioxide seemed to reduce micronuclei induction. The results presented here indicate that relatively low concentrations of arsenic and cadmium, close to those occurring in nature, may interfere with radiation effects. Differences in action of the two arsenic compounds were identified

  6. Light Signaling-Dependent Regulation of Photoinhibition and Photoprotection in Tomato.

    Science.gov (United States)

    Wang, Feng; Wu, Nan; Zhang, Luyue; Ahammed, Golam Jalal; Chen, Xiaoxiao; Xiang, Xun; Zhou, Jie; Xia, Xiaojian; Shi, Kai; Yu, Jingquan; Foyer, Christine H; Zhou, Yanhong

    2018-02-01

    Photoreceptor-mediated light signaling plays a critical role in plant growth, development, and stress responses but its contribution to the spatial regulation of photoinhibition and photoprotection within the canopy remains unclear. Here, we show that low-red/far-red ( L - R / FR ) ratio light conditions significantly alleviate PSII and PSI photoinhibition in the shade leaves of tomato ( Solanum lycopersicum ) plants. This protection is accompanied by a phytochrome A-dependent induction of LONG HYPOCOTYL5 (HY5). HY5 binds to the promoter of ABA INSENSITIVE 5 ( ABI5 ), triggering RESPIRATORY BURST OXIDASE HOMOLOG1 ( RBOH1 )-dependent H 2 O 2 production in the apoplast. Decreased levels of HY5 , ABI5 , and RBOH1 transcripts increased cold-induced photoinhibition and abolished L - R / FR -induced alleviation of photoinhibition. L - R / FR illumination induced nonphotochemical quenching (NPQ) of chlorophyll a fluorescence and increased the activities of Foyer-Halliwell-Asada cycle enzymes and cyclic electron flux (CEF) around PSI. In contrast, decreased HY5 , ABI5 , and RBOH1 transcript levels abolished the positive effect of L - R / FR on photoprotection. Loss of PROTON GRADIENT REGULATION5 -dependent CEF led to increased photoinhibition and attenuated L - R / FR -dependent NPQ. These data demonstrate that HY5 is an important hub in the cross talk between light and cold response pathways, integrating ABA and reactive oxygen species signaling, leading to the attenuation of photoinhibition by enhanced induction of photoprotection in shade leaves. © 2018 American Society of Plant Biologists. All Rights Reserved.

  7. Use of {sup 74}As-Tagged Sodium Arsenite in a Study of Effects of a Herbicide on Pond Ecology

    Energy Technology Data Exchange (ETDEWEB)

    Ball, R. C. [Michigan State University, East Lansing, MI (United States); Hooper, F. H. [Michigan Department of Conservation, Ann Arbor, MI (United States)

    1966-05-15

    Over-abundance of higher aquatic vegetation is one of the most serious problems in inland lakes of the United States. Sodium arsenite is extensively used in these areas to control or destroy aquatic vegetation, but little is known of its pathways in the aquatic system or its effects on the biota of the system. Sodium arsenite tagged with {sup 74}As was added to a series of aquaria and its uptake, movement within the ecosystem, and effect upon the metabolism of the system studied. A duplicate experiment was run in a. 1/3 acre pond (0.14 hectare) in which plants were treated at the levels(8 ppm) usually employed in commercial treatment. The sodium arsenite was taken up actively by the plants immediately and recycled to the water and soil by decay and sedimentation of the plants within 5 d. The herbicide and tracer were taken up very actively by filamentous algae (Spirogyra) and the activity disappeared within 8 h and the algae died within a day following. Chara which is generally considered not to take up the herbicide was very radioactive but showed no signs of deterioration or change in growth pattern or rate. The tagged material persisted in the water for the duration of the study in amounts of nearly one half of the applied amounts. Certain of the invertebrates (microcrustacea) are very sensitive to low levels of sodium arsenite, while others show large concentrations and appear to be unaffected by the herbicide. The arsenite moved into the soil and reached a depth of 3 in. in the undisturbed bottom deposits in a 60-d period. The general effect on the community metabolism of the pond as shown by the diurnal oxygen curve indicates a drastic response to the herbicide and, raises serious questions as to the advisability of use of this herbicide in fish-producing ponds due to its effect upon the several trophic levels in the food web of fish. (author)

  8. Role of glutathione in tolerance to arsenite in Salvinia molesta, an aquatic fern

    Directory of Open Access Journals (Sweden)

    Adinan Alves da Silva

    2017-09-01

    Full Text Available ABSTRACT In many plant species, tolerance to toxic metals is highly dependent on glutathione, an essential metabolite for cellular detoxification. We evaluated the responses of glutathione metabolism to arsenite (AsIII in Salvinia molesta, an aquatic fern that has unexplored phytoremediation potential. Plants were exposed to different AsIII concentrations in nutrient solution for 24 h. AsIII caused cell membrane damage to submerged leaves, indicating oxidative stress. There was an increase in the glutathione content and ϒ-glutamylcysteine synthetase enzyme activity in the submerged and floating leaves. The glutathione peroxidase and glutathione sulfotransferase enzymes also showed increased activity in both plant parts, whereas glutathione reductase only showed increased activity in the submerged leaves. These findings suggest an important role for glutathione in the protection of S. molesta against the toxic effects of AsIII, with more effective tolerance responses in the floating leaves.

  9. CD177 modulates human neutrophil migration through activation-mediated integrin and chemoreceptor regulation.

    Science.gov (United States)

    Bai, Ming; Grieshaber-Bouyer, Ricardo; Wang, Junxia; Schmider, Angela B; Wilson, Zachary S; Zeng, Liling; Halyabar, Olha; Godin, Matthew D; Nguyen, Hung N; Levescot, Anaïs; Cunin, Pierre; Lefort, Craig T; Soberman, Roy J; Nigrovic, Peter A

    2017-11-09

    CD177 is a glycosylphosphatidylinositol (GPI)-anchored protein expressed by a variable proportion of human neutrophils that mediates surface expression of the antineutrophil cytoplasmic antibody antigen proteinase 3. CD177 associates with β2 integrins and recognizes platelet endothelial cell adhesion molecule 1 (PECAM-1), suggesting a role in neutrophil migration. However, CD177 pos neutrophils exhibit no clear migratory advantage in vivo, despite interruption of in vitro transendothelial migration by CD177 ligation. We sought to understand this paradox. Using a PECAM-1-independent transwell system, we found that CD177 pos and CD177 neg neutrophils migrated comparably. CD177 ligation selectively impaired migration of CD177 pos neutrophils, an effect mediated through immobilization and cellular spreading on the transwell membrane. Correspondingly, CD177 ligation enhanced its interaction with β2 integrins, as revealed by fluorescence lifetime imaging microscopy, leading to integrin-mediated phosphorylation of Src and extracellular signal-regulated kinase (ERK). CD177-driven cell activation enhanced surface β2 integrin expression and affinity, impaired internalization of integrin attachments, and resulted in ERK-mediated attenuation of chemokine signaling. We conclude that CD177 signals in a β2 integrin-dependent manner to orchestrate a set of activation-mediated mechanisms that impair human neutrophil migration. © 2017 by The American Society of Hematology.

  10. miRNA-mediated functional changes through co-regulating function related genes.

    Directory of Open Access Journals (Sweden)

    Jie He

    Full Text Available BACKGROUND: MicroRNAs play important roles in various biological processes involving fairly complex mechanism. Analysis of genome-wide miRNA microarray demonstrate that a single miRNA can regulate hundreds of genes, but the regulative extent on most individual genes is surprisingly mild so that it is difficult to understand how a miRNA provokes detectable functional changes with such mild regulation. RESULTS: To explore the internal mechanism of miRNA-mediated regulation, we re-analyzed the data collected from genome-wide miRNA microarray with bioinformatics assay, and found that the transfection of miR-181b and miR-34a in Hela and HCT-116 tumor cells regulated large numbers of genes, among which, the genes related to cell growth and cell death demonstrated high Enrichment scores, suggesting that these miRNAs may be important in cell growth and cell death. MiR-181b induced changes in protein expression of most genes that were seemingly related to enhancing cell growth and decreasing cell death, while miR-34a mediated contrary changes of gene expression. Cell growth assays further confirmed this finding. In further study on miR-20b-mediated osteogenesis in hMSCs, miR-20b was found to enhance osteogenesis by activating BMPs/Runx2 signaling pathway in several stages by co-repressing of PPARγ, Bambi and Crim1. CONCLUSIONS: With its multi-target characteristics, miR-181b, miR-34a and miR-20b provoked detectable functional changes by co-regulating functionally-related gene groups or several genes in the same signaling pathway, and thus mild regulation from individual miRNA targeting genes could have contributed to an additive effect. This might also be one of the modes of miRNA-mediated gene regulation.

  11. Receptor-like kinases as surface regulators for RAC/ROP-mediated pollen tube growth and interaction with the pistil

    Science.gov (United States)

    Zou, Yanjiao; Aggarwal, Mini; Zheng, Wen-Guang; Wu, Hen-Ming; Cheung, Alice Y.

    2011-01-01

    Background RAC/ROPs are RHO-type GTPases and are known to play diverse signalling roles in plants. Cytoplasmic RAC/ROPs are recruited to the cell membrane and activated in response to extracellular signals perceived and mediated by cell surface-located signalling assemblies, transducing the signals to regulate cellular processes. More than any other cell types in plants, pollen tubes depend on continuous interactions with an extracellular environment produced by their surrounding tissues as they grow within the female organ pistil to deliver sperm to the female gametophyte for fertilization. Scope We review studies on pollen tube growth that provide compelling evidence indicating that RAC/ROPs are crucial for regulating the cellular processes that underlie the polarized cell growth process. Efforts to identify cell surface regulators that mediate extracellular signals also point to RAC/ROPs being the molecular switches targeted by growth-regulating female factors for modulation to mediate pollination and fertilization. We discuss a large volume of work spanning more than two decades on a family of pollen-specific receptor kinases and some recent studies on members of the FERONIA family of receptor-like kinases (RLKs). Significance The research described shows the crucial roles that two RLK families play in transducing signals from growth regulatory factors to the RAC/ROP switch at the pollen tube apex to mediate and target pollen tube growth to the female gametophyte and signal its disintegration to achieve fertilization once inside the female chamber. PMID:22476487

  12. Rac1 regulates the NLRP3 inflammasome which mediates IL-1beta production in Chlamydophila pneumoniae infected human mononuclear cells.

    Directory of Open Access Journals (Sweden)

    Julia Eitel

    Full Text Available Chlamydophila pneumoniae causes acute respiratory tract infections and has been associated with development of asthma and atherosclerosis. The production of IL-1β, a key mediator of acute and chronic inflammation, is regulated on a transcriptional level and additionally on a posttranslational level by inflammasomes. In the present study we show that C. pneumoniae-infected human mononuclear cells produce IL-1β protein depending on an inflammasome consisting of NLRP3, the adapter protein ASC and caspase-1. We further found that the small GTPase Rac1 is activated in C. pneumoniae-infected cells. Importantly, studies with specific inhibitors as well as siRNA show that Rac1 regulates inflammasome activation in C. pneumoniae-infected cells. In conclusion, C. pneumoniae infection of mononuclear cells stimulates IL-1β production dependent on a NLRP3 inflammasome-mediated processing of proIL-1β which is controlled by Rac1.

  13. Investigating the Regulation of Estrogen Receptor-Mediated Transcription

    National Research Council Canada - National Science Library

    Thackray, Varykina

    2002-01-01

    ...-mediated regulation of specific target genes are still lacking. We have developed an estrogen responsive system in the fruit fly, Drosophila melanogaster in order to explore the functional interactions between ER and other cellular proteins...

  14. Investigating the Regulation of Estrogen Receptor-Mediated Transcription

    National Research Council Canada - National Science Library

    Thackray, Varykina

    2001-01-01

    ...-mediated regulation of specific target genes are still lacking. We have developed an estrogen responsive system in the fruit fly, Drosophila melanogaster in order to explore the functional interactions between ER and other cellular proteins...

  15. A study on the coprecipitation of arsenite and arsenate into calcite coupled with the determination of oxidation states of arsenic both in calcite and water

    International Nuclear Information System (INIS)

    Yokoyama, Yuka; Takahashi, Yoshio; Mitsunobu, Satoshi; Tanaka, Kazuya; Itai, Takaaki

    2009-01-01

    It was found that the amount of arsenite incorporated into calcite is much less than that of arsenate. The result suggests that the sequestration of arsenic by coprecipitation with calcite cannot be an important chemical process under reducing conditions such as in groundwater where arsenite is the dominant arsenic species. (author)

  16. Emotion regulation strategies mediate the associations of positive and negative affect to upper extremity physical function.

    Science.gov (United States)

    Talaei-Khoei, Mojtaba; Nemati-Rezvani, Hora; Fischerauer, Stefan F; Ring, David; Chen, Neal; Vranceanu, Ana-Maria

    2017-05-01

    The Gross process model of emotion regulation holds that emotion-eliciting situations (e.g. musculoskeletal illness) can be strategically regulated to determine the final emotional and behavioral response. Also, there is some evidence that innate emotional traits may predispose an individual to a particular regulating coping style. We enrolled 107 patients with upper extremity musculoskeletal illness in this cross-sectional study. They completed self-report measures of positive and negative affect, emotion regulation strategies (cognitive reappraisal and expressive suppression), upper extremity physical function, pain intensity, and demographics. We used Preacher and Hayes' bootstrapping approach to process analysis to infer the direct effect of positive and negative affect on physical function as well as their indirect effects through activation of emotion regulation strategies. Negative affect was associated with decreased physical function. The association was partly mediated by expressive suppression (b (SE)=-.10 (.05), 95% BCa CI [-.21, -.02]). Positive affect was associated with increased physical function. Cognitive reappraisal partially mediated this association (b (SE)=.11 (.05), 95% BCa CI [.03, .24]). After controlling for pain intensity, the ratio of the mediated effect to total effect grew even larger in controlled model comparing to uncontrolled model (33% vs. 26% for expressive suppression and 32% vs. 30% for cognitive reappraisal). The relationships between affect, emotion regulation strategies and physical function appear to be more dependent on the emotional response to an orthopedic condition rather than the intensity of the nociceptive stimulation of the pain. Findings support integration of emotion regulation training in skill-based psychotherapy in this population to mitigate the effect of negative affect and enhance the influence of positive affect on physical function. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Size-Dependent Regulation of Intracellular Trafficking of Polystyrene Nanoparticle-Based Drug-Delivery Systems.

    Science.gov (United States)

    Wang, Ting; Wang, Lu; Li, Xiaoming; Hu, Xingjie; Han, Yuping; Luo, Yao; Wang, Zejun; Li, Qian; Aldalbahi, Ali; Wang, Lihua; Song, Shiping; Fan, Chunhai; Zhao, Yun; Wang, Maolin; Chen, Nan

    2017-06-07

    Nanoparticles (NPs) have shown great promise as intracellular imaging probes or nanocarriers and are increasingly being used in biomedical applications. A detailed understanding of how NPs get "in and out" of cells is important for developing new nanomaterials with improved selectivity and less cytotoxicity. Both physical and chemical characteristics have been proven to regulate the cellular uptake of NPs. However, the exocytosis process and its regulation are less explored. Herein, we investigated the size-regulated endocytosis and exocytosis of carboxylated polystyrene (PS) NPs. PS NPs with a smaller size were endocytosed mainly through the clathrin-dependent pathway, whereas PS NPs with a larger size preferred caveolae-mediated endocytosis. Furthermore, our results revealed exocytosis of larger PS NPs and tracked the dynamic process at the single-particle level. These results indicate that particle size is a key factor for the regulation of intracellular trafficking of NPs and provide new insight into the development of more effective cellular nanocarriers.

  18. The γ-secretase cleavage product of Polycystin-1 regulates TCF and CHOP-mediated transcriptional activation through a p300-dependent mechanism

    Science.gov (United States)

    Merrick, David; Chapin, Hannah; Baggs, Julie E.; Yu, Zhiheng; Somlo, Stefan; Sun, Zhaoxia; Hogenesch, John B.; Caplan, Michael

    2011-01-01

    Summary Mutations in Pkd1, encoding polycystin-1 (PC1), cause Autosomal Dominant Polycystic Kidney Disease (ADPKD). We show that the carboxy-terminal tail (CTT) of PC1 is released by γ-secretase-mediated cleavage and regulates the Wnt and CHOP pathways by binding the transcription factors TCF and CHOP, disrupting their interaction with the common transcriptional co-activator p300. Loss of PC1 causes increased proliferation and apoptosis, while reintroducing PC1-CTT into cultured Pkd1 null cells reestablishes normal growth rate, suppresses apoptosis, and prevents cyst formation. Inhibition of γ-secretase activity impairs the ability of PC1 to suppress growth and apoptosis, and leads to cyst formation in cultured renal epithelial cells. Expression of the PC1-CTT is sufficient to rescue the dorsal body curvature phenotype in zebrafish embryos resulting from either γ-secretase inhibition or suppression of Pkd1 expression. Thus, γ-secretase-dependent release of the PC1-CTT creates a protein fragment whose expression is sufficient to suppress ADPKD-related phenotypes in vitro and in vivo. PMID:22178500

  19. Synergism between arsenite and proteasome inhibitor MG132 over cell death in myeloid leukaemic cells U937 and the induction of low levels of intracellular superoxide anion

    International Nuclear Information System (INIS)

    Lombardo, Tomás; Cavaliere, Victoria; Costantino, Susana N.; Kornblihtt, Laura; Alvarez, Elida M.; Blanco, Guillermo A.

    2012-01-01

    Increased oxygen species production has often been cited as a mechanism determining synergism on cell death and growth inhibition effects of arsenic-combined drugs. However the net effect of drug combination may not be easily anticipated solely from available knowledge of drug-induced death mechanisms. We evaluated the combined effect of sodium arsenite with the proteasome inhibitor MG132, and the anti-leukaemic agent CAPE, on growth-inhibition and cell death effect in acute myeloid leukaemic cells U937 and Burkitt's lymphoma-derived Raji cells, by the Chou–Talalay method. In addition we explored the association of cytotoxic effect of drugs with changes in intracellular superoxide anion (O 2 − ) levels. Our results showed that combined arsenite + MG132 produced low levels of O 2 − at 6 h and 24 h after exposure and were synergic on cell death induction in U937 cells over the whole dose range, although the combination was antagonistic on growth inhibition effect. Exposure to a constant non-cytotoxic dose of 80 μM hydrogen peroxide together with arsenite + MG132 changed synergism on cell death to antagonism at all effect levels while increasing O 2 − levels. Arsenite + hydrogen peroxide also resulted in antagonism with increased O 2 − levels in U937 cells. In Raji cells, arsenite + MG132 also produced low levels of O 2 − at 6 h and 24 h but resulted in antagonism on cell death and growth inhibition. By contrast, the combination arsenite + CAPE showed high levels of O 2 − production at 6 h and 24 h post exposure but resulted in antagonism over cell death and growth inhibition effects in U937 and Raji cells. We conclude that synergism between arsenite and MG132 in U937 cells is negatively associated to O 2 − levels at early time points after exposure. -- Highlights: ► Arsenic combined cytotoxic and anti-proliferative effects by Chou–Talalay method. ► Cytotoxic effect associated with superoxide levels as assessed by flow cytometry. ► Synergism

  20. Extracellular signal-regulated kinase 2 (ERK-2) mediated phosphorylation regulates nucleo-cytoplasmic shuttling and cell growth control of Ras-associated tumor suppressor protein, RASSF2

    International Nuclear Information System (INIS)

    Kumari, Gita; Mahalingam, S.

    2009-01-01

    Ras GTPase controls the normal cell growth through binding with an array of effector molecules, such as Raf and PI3-kinase in a GTP-dependent manner. RASSF2, a member of the Ras association domain family, is known to be involved in the suppression of cell growth and is frequently down-regulated in various tumor tissues by promoter hypermethylation. In the present study, we demonstrate that RASSF2 shuttles between nucleus and cytoplasm by a signal-mediated process and its export from the nucleus is sensitive to leptomycin B. Amino acids between 240 to 260 in the C-terminus of RASSF2 harbor a functional nuclear export signal (NES), which is necessary and sufficient for efficient export of RASSF2 from the nucleus. Substitution of conserved Ile254, Val257 and Leu259 within the minimal NES impaired RASSF2 export from the nucleus. In addition, wild type but not the nuclear export defective RASSF2 mutant interacts with export receptor, CRM-1 and exported from the nucleus. Surprisingly, we observed nucleolar localization for the nuclear export defective mutant suggesting the possibility that RASSF2 may localize in different cellular compartments transiently in a cell cycle dependent manner and the observed nuclear localization for wild type protein may be due to faster export kinetics from the nucleolus. Furthermore, our data suggest that RASSF2 is specifically phosphorylated by MAPK/ERK-2 and the inhibitors of MAPK pathway impair the phosphorylation and subsequently block the export of RASSF2 from the nucleus. These data clearly suggest that ERK-2 mediated phosphorylation plays an important role in regulating the nucleo-cytoplasmic shuttling of RASSF2. Interestingly, nuclear import defective mutant of RASSF2 failed to induce cell cycle arrest at G1/S phase and apoptosis suggesting that RASSF2 regulates cell growth in a nuclear localization dependent manner. Collectively, these data provided evidence for the first time that MAPK/ERK-2 mediated phosphorylation regulates

  1. Extracellular signal-regulated kinase 2 (ERK-2) mediated phosphorylation regulates nucleo-cytoplasmic shuttling and cell growth control of Ras-associated tumor suppressor protein, RASSF2

    Energy Technology Data Exchange (ETDEWEB)

    Kumari, Gita [Laboratory of Molecular Virology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500076 (India); Mahalingam, S., E-mail: mahalingam@iitm.ac.in [Laboratory of Molecular Virology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500076 (India); Department of Biotechnology, Laboratory of Molecular Virology and Cell Biology, Indian Institute of Technology-Madras, Chennai 600 036 (India)

    2009-10-01

    Ras GTPase controls the normal cell growth through binding with an array of effector molecules, such as Raf and PI3-kinase in a GTP-dependent manner. RASSF2, a member of the Ras association domain family, is known to be involved in the suppression of cell growth and is frequently down-regulated in various tumor tissues by promoter hypermethylation. In the present study, we demonstrate that RASSF2 shuttles between nucleus and cytoplasm by a signal-mediated process and its export from the nucleus is sensitive to leptomycin B. Amino acids between 240 to 260 in the C-terminus of RASSF2 harbor a functional nuclear export signal (NES), which is necessary and sufficient for efficient export of RASSF2 from the nucleus. Substitution of conserved Ile254, Val257 and Leu259 within the minimal NES impaired RASSF2 export from the nucleus. In addition, wild type but not the nuclear export defective RASSF2 mutant interacts with export receptor, CRM-1 and exported from the nucleus. Surprisingly, we observed nucleolar localization for the nuclear export defective mutant suggesting the possibility that RASSF2 may localize in different cellular compartments transiently in a cell cycle dependent manner and the observed nuclear localization for wild type protein may be due to faster export kinetics from the nucleolus. Furthermore, our data suggest that RASSF2 is specifically phosphorylated by MAPK/ERK-2 and the inhibitors of MAPK pathway impair the phosphorylation and subsequently block the export of RASSF2 from the nucleus. These data clearly suggest that ERK-2 mediated phosphorylation plays an important role in regulating the nucleo-cytoplasmic shuttling of RASSF2. Interestingly, nuclear import defective mutant of RASSF2 failed to induce cell cycle arrest at G1/S phase and apoptosis suggesting that RASSF2 regulates cell growth in a nuclear localization dependent manner. Collectively, these data provided evidence for the first time that MAPK/ERK-2 mediated phosphorylation regulates

  2. Influence of titanium dioxide nanoparticles on speciation and bioavailability of arsenite

    Energy Technology Data Exchange (ETDEWEB)

    Sun Hongwen [Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300071 (China)], E-mail: sunhongwen@nankai.edu.cn; Zhang Xuezhi [Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300071 (China); Department of Civil and Environmental Engineering, Arizona State University, Tempe, AZ 85287 (United States); Zhang Zhiyan [Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300071 (China); Chen Yongsheng; Crittenden, John C. [Department of Civil and Environmental Engineering, Arizona State University, Tempe, AZ 85287 (United States)

    2009-04-15

    In this study, the influence of the co-existence of TiO{sub 2} nanoparticles on the speciation of arsenite [As(III)] was studied by observing its adsorption and valence changing. Moreover, the influence of TiO{sub 2} nanoparticles on the bioavailability of As(III) was examined by bioaccumulation test using carp (Cyprinus carpio). The results showed that TiO{sub 2} nanoparticles have a significant adsorption capacity for As (III). Equilibrium was established within 30 min, with about 30% of the initial As (III) being adsorbed onto TiO{sub 2} nanoparticles. Most of aqueous As (III) was oxidized to As(V) in the presence of TiO{sub 2} nanoparticles under sunlight. The carp accumulated considerably more As in the presence of TiO{sub 2} nanoparticles than in the absence of TiO{sub 2} nanoparticles, and after 25-day exposure, As concentration in carp increased by 44%. Accumulation of As in viscera, gills and muscle of the carp was significantly enhanced by the presence of TiO{sub 2} nanoparticles. - The co-existence of TiO{sub 2} nanoparticles could change the speciation of arsenite by adsorption and photo-oxidation, and enhance its bioaccumulation to carp.

  3. 3-Phosphoinositide-dependent PDK1 negatively regulates transforming growth factor-beta-induced signaling in a kinase-dependent manner through physical interaction with Smad proteins.

    Science.gov (United States)

    Seong, Hyun-A; Jung, Haiyoung; Kim, Kyong-Tai; Ha, Hyunjung

    2007-04-20

    We have reported previously that PDK1 physically interacts with STRAP, a transforming growth factor-beta (TGF-beta) receptor-interacting protein, and enhances STRAP-induced inhibition of TGF-beta signaling. In this study we show that PDK1 coimmunoprecipitates with Smad proteins, including Smad2, Smad3, Smad4, and Smad7, and that this association is mediated by the pleckstrin homology domain of PDK1. The association between PDK1 and Smad proteins is increased by insulin treatment but decreased by TGF-beta treatment. Analysis of the interacting proteins shows that Smad proteins enhance PDK1 kinase activity by removing 14-3-3, a negative regulator of PDK1, from the PDK1-14-3-3 complex. Knockdown of endogenous Smad proteins, including Smad3 and Smad7, by transfection with small interfering RNA produced the opposite trend and decreased PDK1 activity, protein kinase B/Akt phosphorylation, and Bad phosphorylation. Moreover, coexpression of Smad proteins and wild-type PDK1 inhibits TGF-beta-induced transcription, as well as TGF-beta-mediated biological functions, such as apoptosis and cell growth arrest. Inhibition was dose-dependent on PDK1, but no inhibition was observed in the presence of an inactive kinase-dead PDK1 mutant. In addition, confocal microscopy showed that wild-type PDK1 prevents translocation of Smad3 and Smad4 from the cytoplasm to the nucleus, as well as the redistribution of Smad7 from the nucleus to the cytoplasm in response to TGF-beta. Taken together, our results suggest that PDK1 negatively regulates TGF-beta-mediated signaling in a PDK1 kinase-dependent manner via a direct physical interaction with Smad proteins and that Smad proteins can act as potential positive regulators of PDK1.

  4. Keratin impact on PKCδ- and ASMase-mediated regulation of hepatocyte lipid raft size – implication for FasR-associated apoptosis

    Science.gov (United States)

    Gilbert, Stéphane; Loranger, Anne; Omary, M. Bishr

    2016-01-01

    ABSTRACT Keratins are epithelial cell intermediate filament (IF) proteins that are expressed as pairs in a cell-differentiation-regulated manner. Hepatocytes express the keratin 8 and 18 pair (denoted K8/K18) of IFs, and a loss of K8 or K18, as in K8-null mice, leads to degradation of the keratin partner. We have previously reported that a K8/K18 loss in hepatocytes leads to altered cell surface lipid raft distribution and more efficient Fas receptor (FasR, also known as TNFRSF6)-mediated apoptosis. We demonstrate here that the absence of K8 or transgenic expression of the K8 G62C mutant in mouse hepatocytes reduces lipid raft size. Mechanistically, we find that the lipid raft size is dependent on acid sphingomyelinase (ASMase, also known as SMPD1) enzyme activity, which is reduced in absence of K8/K18. Notably, the reduction of ASMase activity appears to be caused by a less efficient redistribution of surface membrane PKCδ toward lysosomes. Moreover, we delineate the lipid raft volume range that is required for an optimal FasR-mediated apoptosis. Hence, K8/K18-dependent PKCδ- and ASMase-mediated modulation of lipid raft size can explain the more prominent FasR-mediated signaling resulting from K8/K18 loss. The fine-tuning of ASMase-mediated regulation of lipid rafts might provide a therapeutic target for death-receptor-related liver diseases. PMID:27422101

  5. Hypoxia-inducible factor-dependent production of profibrotic mediators by hypoxic hepatocytes.

    Science.gov (United States)

    Copple, Bryan L; Bustamante, Juan J; Welch, Timothy P; Kim, Nam Deuk; Moon, Jeon-Ok

    2009-08-01

    During the development of liver fibrosis, mediators are produced that stimulate cells in the liver to differentiate into myofibroblasts and to produce collagen. Recent studies demonstrated that the transcription factor, hypoxia-inducible factor-1alpha (HIF-1alpha), is critical for upregulation of profibrotic mediators, such as platelet-derived growth factor-A (PDGF-A), PDGF-B and plasminogen activator inhibitor-1 (PAI-1) in the liver, during the development of fibrosis. What remains unknown is the cell type-specific regulation of these genes by HIF-1alpha in liver cell types. Accordingly, the hypothesis was tested that HIF-1alpha is activated in hypoxic hepatocytes and regulates the production of profibrotic mediators by these cells. In this study, hepatocytes were isolated from the livers of control and HIF-1alpha- or HIF-1beta-deficient mice and exposed to hypoxia. Exposure of primary mouse hepatocytes to 1% oxygen stimulated nuclear accumulation of HIF-1alpha and upregulated PAI-1, vascular endothelial cell growth factor and the vasoactive peptides adrenomedullin-1 (ADM-1) and ADM-2. In contrast, the levels of PDGF-A and PDGF-B mRNAs were unaffected in these cells by hypoxia. Exposure of HIF-1alpha-deficient hepatocytes to 1% oxygen only partially prevented upregulation of these genes, suggesting that other hypoxia-regulated transcription factors, such as HIF-2alpha, may also regulate these genes. In support of this, HIF-2alpha was activated in hypoxic hepatocytes, and exposure of HIF-1beta-deficient hepatocytes to 1% oxygen completely prevented upregulation of PAI-1, vascular endothelial cell growth factor and ADM-1, suggesting that HIF-2alpha may also contribute to upregulation of these genes in hypoxic hepatocytes. Collectively, our results suggest that HIFs may be important regulators of profibrotic and vasoactive mediators by hypoxic hepatocytes.

  6. Effectiveness of Iron Filings in Arsenate and Arsenite Removal from Drinking Water

    Directory of Open Access Journals (Sweden)

    AliReza Asgari

    2009-09-01

    Full Text Available Groundwater contamination with arsenic (As has been recognized as a serious problem and there are various reports from different regions, especially from Kurdistan Providence, indicating the presence of As in the from of arsenate and arsenite in water recourses. Removal of these compounds can be accomplished by various methods but they are all expensive. In this study, three concentrations (0.5, 1, and 1 mg/L of iron filings (0.25, 0.5, 1 and 1.5 grams were used as a cheap and available material for adsorption of As and the effects of contact time and pH as well as chloride and sulfate ion concentrations on removal efficiency were determined. Description of adsorption isotherms (Ferundlich and Langmuir was accomplished. Finally, the data obtained were analyzed using the Excel softwere. The results indicate that iron filings show a high capability in adsorbing both arsenate and arsenic compounds from polluted water samples at pH 7 over a short contact time of 30 minutes. In fact, this cheap adsorbent shows good treatment when used at doses as low as 1g/L with no considerable interference by interfering anions (SO42- and Cl-. It appears that the absorbability of both arsenate and arsenite by iron filings can be expressed by Ferundlich isotherm with R2>0.96, whereas arsenate adsorption (with a R2 value of more than 0.96 can be better described by Langmuir isotherm than arsenite (with R2 value of more than 0.91. Results also indicate that the amount of iron added to water is much more than the standard value of 0.3mg/L set for dinking water. Nevertheless, this method has far greater advantages in terms of costs and availability than similar methods. Besides, as removal by this method is efficient without pH modification, iron filing treatment of drinking water may, therefore, be recomnended as a convenient solution to the problem of water resources polluted with As in Iran.

  7. Regulation of FOXO1-mediated transcription and cell proliferation by PARP-1

    Energy Technology Data Exchange (ETDEWEB)

    Sakamaki, Jun-ichi; Daitoku, Hiroaki; Yoshimochi, Kenji [Center for Tsukuba Advanced Research Alliance, Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Miwa, Masanao [Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829 (Japan); Fukamizu, Akiyoshi, E-mail: akif@tara.tsukuba.ac.jp [Center for Tsukuba Advanced Research Alliance, Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan)

    2009-05-08

    Forkhead box O (FOXO) transcription factors play an important role in a wide range of biological processes, including cell cycle control, apoptosis, detoxification of reactive oxygen species, and gluconeogenesis through regulation of gene expression. In this study, we demonstrated that PARP-1 functions as a negative regulator of FOXO1. We showed that PARP-1 directly binds to and poly(ADP-ribosyl)ates FOXO1 protein. PARP-1 represses FOXO1-mediated expression of cell cycle inhibitor p27{sup Kip1} gene. Notably, poly(ADP-ribosyl)ation activity was not required for the repressive effect of PARP-1 on FOXO1 function. Furthermore, knockdown of PARP-1 led to a decrease in cell proliferation in a manner dependent on FOXO1 function. Chromatin immunoprecipitation experiments confirmed that PARP-1 is recruited to the p27{sup Kip1} gene promoter through a binding to FOXO1. These results suggest that PARP-1 acts as a corepressor for FOXO1, which could play an important role in proper cell proliferation by regulating p27{sup Kip1} gene expression.

  8. Difficulties in emotion regulation mediate negative and positive affects and craving in alcoholic patients.

    Science.gov (United States)

    Khosravani, Vahid; Sharifi Bastan, Farangis; Ghorbani, Fatemeh; Kamali, Zoleikha

    2017-08-01

    The aim of this study was to assess the mediating effects of difficulties in emotion regulation (DER) on the relations of negative and positive affects to craving in alcoholic patients. 205 treatment-seeking alcoholic outpatients were included. DER, positive and negative affects as well as craving were evaluated by the Difficulties in Emotion Regulation Scale (DERS), the Positive/Negative Affect Scales, and the Obsessive Compulsive Drinking Scale (OCDS) respectively. Clinical factors including depression and severity of alcohol dependence were investigated by the Alcohol Use Disorders Identification Test (AUDIT) and the Beck Depression Inventory-II (BDI-II) respectively. Results revealed that both increased negative affect and decreased positive affect indirectly influenced craving through limited access to emotion regulation strategies. It was concluded that limited access to emotion regulation strategies may be important in predicting craving for alcoholics who experience both increased negative affect and decreased positive affect. This suggests that treatment and prevention efforts focused on increasing positive affect, decreasing negative affect and teaching effective regulation strategies may be critical in reducing craving in alcoholic patients. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Human I-mfa domain proteins specifically interact with KSHV LANA and affect its regulation of Wnt signaling-dependent transcription

    Energy Technology Data Exchange (ETDEWEB)

    Kusano, Shuichi, E-mail: skusano@m2.kufm.kagoshima-u.ac.jp [Division of Persistent and Oncogenic Viruses, Center for Chronic Viral Diseases, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544 (Japan); Eizuru, Yoshito [Division of Persistent and Oncogenic Viruses, Center for Chronic Viral Diseases, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544 (Japan)

    2010-06-04

    Kaposi's sarcoma-associated herpes virus (KSHV)-encoded latency-associated nuclear antigen (LANA) protein has been reported to interact with glycogen synthase kinase 3{beta} (GSK-3{beta}) and to negatively regulate its activity, leading to stimulation of GSK-3{beta}-dependent {beta}-catenin degradation. We show here that the I-mfa domain proteins, HIC (human I-mfa domain-containing protein) and I-mfa (inhibitor of MyoD family a), interacted in vivo with LANA through their C-terminal I-mfa domains. This interaction affected the intracellular localization of HIC, inhibited the LANA-dependent transactivation of a {beta}-catenin-regulated reporter construct, and decreased the level of the LANA.GSK-3{beta} complex. These data reveal for the first time that I-mfa domain proteins interact with LANA and negatively regulate LANA-mediated activation of Wnt signaling-dependent transcription by inhibiting the formation of the LANA.GSK-3{beta} complex.

  10. Emotion regulation as a mediator in the relationship between attachment and depressive symptomatology: A systematic review.

    Science.gov (United States)

    Malik, Sonia; Wells, Adrian; Wittkowski, Anja

    2015-02-01

    Attachment theory has been conceptualised as an emotion regulation theory. Research attributes the occurrence of depressive symptoms to a dysfunction of emotion regulation. Anxious attachment and avoidant attachment, which are two dimensions of insecure attachment, are hypothesised to lead to the development of hyperactivating and deactivating emotion regulation strategies. This systematic review examines the literature on the role of emotion regulation and its relationship with attachment and depressive symptomatology. Furthermore, we examined evidence for hyperactivating and deactivating strategies. Nineteen papers were identified. Adolescent studies demonstrated associations of varying strength and found unreliable and contradictory results for emotion regulation as a mediator. Conversely, adult studies provided strong evidence for emotion regulation as a mediator. The hypothesis that hyperactivating strategies mediate anxious attachment and depressive symptoms was consistently supported. Mixed evidence was provided for deactivating strategies as mediators to avoidant attachment and depressive symptomatology. Limitations of methodology and quality of studies are identified with particular attention drawn to problems with conceptual singularity and multicollinearity. Despite mixed variable findings, this review indicates that emotion regulation is a mediator between attachment and depression. Hyperactivating strategies, in particular, have been consistently noted as mediators for anxious attachment and depressive symptomatology, whereas evidence for deactivating strategies as mediators between avoidant attachment and depressive symptoms has been mixed. Future research should test the mediators of attachment and symptoms and examine theoretically grounded models of psychopathology, such as metacognitive and cognitive models using clinical samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Grb2 mediates semaphorin-4D-dependent RhoA inactivation.

    Science.gov (United States)

    Sun, Tianliang; Krishnan, Rameshkumar; Swiercz, Jakub M

    2012-08-01

    Signaling through the semaphorin 4D (Sema4D) receptor plexin-B1 is modulated by its interaction with tyrosine kinases ErbB-2 and Met. In cells expressing the plexin-B1-ErbB-2 receptor complex, ligand stimulation results in the activation of small GTPase RhoA and stimulation of cellular migration. By contrast, in cells expressing plexin-B1 and Met, ligand stimulation results in an association with the RhoGTPase-activating protein p190 RhoGAP and subsequent RhoA inactivation--a process that involves the tyrosine phosphorylation of plexin-B1 by Met. Inactivation of RhoA is necessary for Sema4D-mediated inhibition of cellular migration. It is, however, unknown how plexin-B1 phosphorylation regulates RhoGAP interaction and activity. Here we show that the activation of plexin-B1 by Sema4D and its subsequent tyrosine phosphorylation by Met creates a docking site for the SH2 domain of growth factor receptor bound-2 (Grb2). Grb2 is thereby recruited into the plexin-B1 receptor complex and, through its SH3 domain, interacts with p190 RhoGAP and mediates RhoA deactivation. Phosphorylation of plexin-B1 by Met and the recruitment of Grb2 have no effect on the R-RasGAP activity of plexin-B1, but are required for Sema4D-induced, RhoA-dependent antimigratory effects of Sema4D on breast cancer cells. These data show Grb2 as a direct link between plexin and p190-RhoGAP-mediated downstream signaling.

  12. Pro-Resolving Mediators in Regulating and Conferring Macrophage Function

    Directory of Open Access Journals (Sweden)

    Jesmond Dalli

    2017-11-01

    Full Text Available Macrophages are central in coordinating the host response to both sterile and infective insults. Clearance of apoptotic cells and cellular debris is a key biological action preformed by macrophages that paves the way to the resolution of local inflammation, repair and regeneration of damaged tissues, and re-establishment of function. The essential fatty acid-derived autacoids termed specialized pro-resolving mediators (SPM play central roles in promoting these processes. In the present article, we will review the role of microvesicles in controlling macrophage efferocytosis and SPM production. We will also discuss the role of both apoptotic cells and microvesicles in providing substrate for transcellular biosynthesis of several SPM families during efferocyotsis. In addition, this article will discuss the biological actions of the recently uncovered macrophage-derived SPM termed maresins. These mediators are produced via 14-lipoxygenation of docosahexaenoic acid that is either enzymatically converted to mediators carrying two hydroxyl groups or to autacoids that are peptide-lipid conjugates, coined maresin conjugates in tissue regeneration. The formation of these mediators is temporally regulated during acute self-limited infectious-inflammation where they promote the uptake and clearance of apoptotic cells, regulate several aspects of the tissue repair and regeneration, and display potent anti-nociceptive actions.

  13. CD4(+) type II NKT cells mediate ICOS and programmed death-1-dependent regulation of type 1 diabetes.

    Science.gov (United States)

    Kadri, Nadir; Korpos, Eva; Gupta, Shashank; Briet, Claire; Löfbom, Linda; Yagita, Hideo; Lehuen, Agnes; Boitard, Christian; Holmberg, Dan; Sorokin, Lydia; Cardell, Susanna L

    2012-04-01

    Type 1 diabetes (T1D) is a chronic autoimmune disease that results from T cell-mediated destruction of pancreatic β cells. CD1d-restricted NKT lymphocytes have the ability to regulate immunity, including autoimmunity. We previously demonstrated that CD1d-restricted type II NKT cells, which carry diverse TCRs, prevented T1D in the NOD mouse model for the human disease. In this study, we show that CD4(+) 24αβ type II NKT cells, but not CD4/CD8 double-negative NKT cells, were sufficient to downregulate diabetogenic CD4(+) BDC2.5 NOD T cells in adoptive transfer experiments. CD4(+) 24αβ NKT cells exhibited a memory phenotype including high ICOS expression, increased cytokine production, and limited display of NK cell markers, compared with double-negative 24αβ NKT cells. Blocking of ICOS or the programmed death-1/programmed death ligand 1 pathway was shown to abolish the regulation that occurred in the pancreas draining lymph nodes. To our knowledge, these results provide for the first time cellular and molecular information on how type II CD1d-restricted NKT cells regulate T1D.

  14. Oxalomalate, a competitive inhibitor of NADP+ -dependent isocitrate dehydrogenase, regulates lipid peroxidation-mediated apoptosis in U937 cells.

    Science.gov (United States)

    Yang, Eun Sun; Yang, Joon-Hyuck; Park, Ji Eun; Park, Jeen-Woo

    2005-01-01

    Membrane lipid peroxidation processes yield products that may react with DNA and proteins to cause oxidative modifications. Recently, we demonstrated that the control of cytosolic redox balance and the cellular defense against oxidative damage is one of the primary functions of cytosolic NADP+ -dependent isocitrate dehydrogenase (IDPc) through to supply NADPH for antioxidant systems. The protective role of IDPc against lipid peroxidation-mediated apoptosis in U937 cells was investigated in control and cells pre-treated with oxlalomalate, a competitive inhibitor of IDPc. Upon exposure to 2,2'-azobis (2-amidinopropane) hydrochloride (AAPH) to U937 cells, which induces lipid peroxidation in membranes, the susceptibility to apoptosis was higher in oxalomalate-treated cells as compared to control cells. The results suggest that IDPc plays an important protective role in apoptosis of U937 cells induced by lipid peroxidation-mediated oxidative stress.

  15. Synergism between arsenite and proteasome inhibitor MG132 over cell death in myeloid leukaemic cells U937 and the induction of low levels of intracellular superoxide anion

    Energy Technology Data Exchange (ETDEWEB)

    Lombardo, Tomás [Laboratorio de Immunotoxicologia (LaITO), IDEHU-CONICET, Hospital de Clínicas, José de San Martín, Universidad de Buenos Aires (UBA), Buenos Aires (Argentina); Cavaliere, Victoria; Costantino, Susana N. [Laboratorio de Inmunología Tumoral (LIT), IDEHU-CONICET, Facultad de Farmacia y Bioquímica, UBA, Buenos Aires (Argentina); Kornblihtt, Laura [Servicio de Hematología, Hospital de Clínicas, José de San Martín (UBA), Buenos Aires (Argentina); Alvarez, Elida M. [Laboratorio de Inmunología Tumoral (LIT), IDEHU-CONICET, Facultad de Farmacia y Bioquímica, UBA, Buenos Aires (Argentina); Blanco, Guillermo A., E-mail: gblanco@ffyb.uba.ar [Laboratorio de Immunotoxicologia (LaITO), IDEHU-CONICET, Hospital de Clínicas, José de San Martín, Universidad de Buenos Aires (UBA), Buenos Aires (Argentina)

    2012-02-01

    Increased oxygen species production has often been cited as a mechanism determining synergism on cell death and growth inhibition effects of arsenic-combined drugs. However the net effect of drug combination may not be easily anticipated solely from available knowledge of drug-induced death mechanisms. We evaluated the combined effect of sodium arsenite with the proteasome inhibitor MG132, and the anti-leukaemic agent CAPE, on growth-inhibition and cell death effect in acute myeloid leukaemic cells U937 and Burkitt's lymphoma-derived Raji cells, by the Chou–Talalay method. In addition we explored the association of cytotoxic effect of drugs with changes in intracellular superoxide anion (O{sub 2}{sup −}) levels. Our results showed that combined arsenite + MG132 produced low levels of O{sub 2}{sup −} at 6 h and 24 h after exposure and were synergic on cell death induction in U937 cells over the whole dose range, although the combination was antagonistic on growth inhibition effect. Exposure to a constant non-cytotoxic dose of 80 μM hydrogen peroxide together with arsenite + MG132 changed synergism on cell death to antagonism at all effect levels while increasing O{sub 2}{sup −} levels. Arsenite + hydrogen peroxide also resulted in antagonism with increased O{sub 2}{sup −} levels in U937 cells. In Raji cells, arsenite + MG132 also produced low levels of O{sub 2}{sup −} at 6 h and 24 h but resulted in antagonism on cell death and growth inhibition. By contrast, the combination arsenite + CAPE showed high levels of O{sub 2}{sup −} production at 6 h and 24 h post exposure but resulted in antagonism over cell death and growth inhibition effects in U937 and Raji cells. We conclude that synergism between arsenite and MG132 in U937 cells is negatively associated to O{sub 2}{sup −} levels at early time points after exposure. -- Highlights: ► Arsenic combined cytotoxic and anti-proliferative effects by Chou–Talalay method. ► Cytotoxic effect

  16. Adolescent Depression and Negative Life Events, the Mediating Role of Cognitive Emotion Regulation

    Science.gov (United States)

    Stikkelbroek, Yvonne; Bodden, Denise H. M.; Kleinjan, Marloes; Reijnders, Mirjam; van Baar, Anneloes L.

    2016-01-01

    Background Depression during adolescence is a serious mental health problem. Difficulties in regulating evoked emotions after stressful life events are considered to lead to depression. This study examined if depressive symptoms were mediated by various cognitive emotion regulation strategies after stressful life events, more specifically, the loss of a loved one, health threats or relational challenges. Methods We used a sample of 398 adolescents (Mage = 16.94, SD = 2.90), including 52 depressed outpatients, who all reported stressful life event(s). Path analyses in Mplus were used to test mediation, for the whole sample as well as separately for participants scoring high versus low on depression, using multigroup analyses. Results Health threats and relational challenging stressful life events were associated with depressive symptoms, while loss was not. More frequent use of maladaptive strategies was related to more depressive symptoms. More frequent use of adaptive strategies was related to less depressive symptoms. Specific life events were associated with specific emotion regulation strategies. The relationship between challenging, stressful life events and depressive symptoms in the whole group was mediated by maladaptive strategies (self-blame, catastrophizing and rumination). No mediation effect was found for adaptive strategies. Conclusion The association between relational challenging, stressful life events and depressive symptoms was mediated by maladaptive, cognitive emotion regulation strategies. PMID:27571274

  17. TLR-mediated inflammatory responses to Streptococcus pneumoniae are highly dependent on surface expression of bacterial lipoproteins.

    Science.gov (United States)

    Tomlinson, Gillian; Chimalapati, Suneeta; Pollard, Tracey; Lapp, Thabo; Cohen, Jonathan; Camberlein, Emilie; Stafford, Sian; Periselneris, Jimstan; Aldridge, Christine; Vollmer, Waldemar; Picard, Capucine; Casanova, Jean-Laurent; Noursadeghi, Mahdad; Brown, Jeremy

    2014-10-01

    Streptococcus pneumoniae infections induce inflammatory responses that contribute toward both disease pathogenesis and immunity, but the host-pathogen interactions that mediate these effects are poorly defined. We used the surface lipoprotein-deficient ∆lgt pneumococcal mutant strain to test the hypothesis that lipoproteins are key determinants of TLR-mediated immune responses to S. pneumoniae. We show using reporter assays that TLR2 signaling is dependent on pneumococcal lipoproteins, and that macrophage NF-κB activation and TNF-α release were reduced in response to the ∆lgt strain. Differences in TNF-α responses between Δlgt and wild-type bacteria were abrogated for macrophages from TLR2- but not TLR4-deficient mice. Transcriptional profiling of human macrophages revealed attenuated TLR2-associated responses to ∆lgt S. pneumoniae, comprising many NF-κB-regulated proinflammatory cytokine and chemokine genes. Importantly, non-TLR2-associated responses were preserved. Experiments using leukocytes from IL-1R-associated kinase-4-deficient patients and a mouse pneumonia model confirmed that proinflammatory responses were lipoprotein dependent. Our data suggest that leukocyte responses to bacterial lipoproteins are required for TLR2- and IL-1R-associated kinase-4-mediated inflammatory responses to S. pneumoniae. Copyright © 2014 The Authors.

  18. Calcium and Superoxide-Mediated Pathways Converge to Induce Nitric Oxide-Dependent Apoptosis in Mycobacterium fortuitum-Infected Fish Macrophages.

    Science.gov (United States)

    Datta, Debika; Khatri, Preeti; Banerjee, Chaitali; Singh, Ambika; Meena, Ramavatar; Saha, Dhira Rani; Raman, Rajagopal; Rajamani, Paulraj; Mitra, Abhijit; Mazumder, Shibnath

    2016-01-01

    Mycobacterium fortuitum causes 'mycobacteriosis' in wide range of hosts although the mechanisms remain largely unknown. Here we demonstrate the role of calcium (Ca+2)-signalling cascade on M. fortuitum-induced apoptosis in headkidney macrophages (HKM) of Clarias sp. M. fortuitum could trigger intracellular-Ca+2 influx leading to the activation of calmodulin (CaM), protein kinase C alpha (PKCα) and Calmodulin kinase II gamma (CaMKIIg). Gene silencing and inhibitor studies established the role of CaM in M. fortuitum pathogenesis. We noted that CaMKIIg activation is regulated by CaM as well as PKCα-dependent superoxide anions. This is altogether first report of oxidised CaMKIIg in mycobacterial infections. Our studies with targeted-siRNA and pharmacological inhibitors implicate CaMKIIg to be pro-apoptotic and critical for the activation of extra-cellular signal regulated kinase 1/2 (ERK1/2). Inhibiting the ERK1/2 pathway attenuated nitric oxide synthase 2 (NOS2)-induced nitric oxide (NO) production. Conversely, inhibiting the NOS2-NO axis by specific-siRNA and inhibitors down-regulated ERK1/2 activation suggesting the crosstalk between ERK1/2 and NO is essential for pathogenesis induced by the bacterium. Silencing the NOS2-NO axis enhanced intracellular bacterial survival and attenuated caspase-8 mediated activation of caspase-3 in the infected HKM. Our findings unveil hitherto unknown mechanism of M. fortuitum pathogenesis. We propose that M. fortuitum triggers intracellular Ca+2 elevations resulting in CaM activation and PKCα-mediated superoxide generation. The cascade converges in common pathway mediated by CaMKIIg resulting in the activation of ERK1/2-NOS2 axis. The crosstalk between ERK1/2 and NO shifts the balance in favour of caspase dependent apoptosis of M. fortuitum-infected HKM.

  19. Emotional maltreatment and disordered eating in adolescents: testing the mediating role of emotion regulation.

    Science.gov (United States)

    Mills, Pamela; Newman, Emily Frances; Cossar, Jill; Murray, George

    2015-01-01

    The present study aimed to determine if emotion regulation mediates the relationship between emotional maltreatment and disordered eating behavior in adolescents. Participants were 222 secondary school pupils (aged 14-18 years) from a state high school in the UK. Standardized questionnaire measures were used to gather self-report data on emotional abuse and emotional neglect, functional and dysfunctional emotion regulation strategies and disordered eating behavior. Results showed that disordered eating was associated with emotional abuse, dysfunctional emotion regulation and being female. Multiple mediation analysis found an indirect relationship between emotional abuse and disordered eating through dysfunctional emotion regulation. Interestingly, emotional neglect predicted lower levels of functional emotion regulation. The findings support previous research showing emotion regulation to mediate the relationship between childhood abuse and disordered eating in adults and a differential effect of abuse and neglect on emotion regulation. Longitudinal studies are required to confirm the direction of relationships; however these data suggest that dysfunctional emotion regulation is a significant variable in the development of disordered eating and may be a useful target for intervention. Copyright © 2014. Published by Elsevier Ltd.

  20. Draft genome sequence of the arsenite-oxidizing strain Aliihoeflea sp. 2WW, isolated from arsenic-contaminated groundwater

    NARCIS (Netherlands)

    Cavalca, L.; Corsini, A.; Andreoni, V.; Muyzer, G.

    2013-01-01

    Here, we report the draft genome sequence of the arsenite-oxidizing bacterium Aliihoeflea sp. strain 2WW, which consists of a 4.15-Mb chromosome and contains different genes that are involved in arsenic transformations.

  1. Phytomelatonin receptor PMTR1-mediated signaling regulates stomatal closure in Arabidopsis thaliana.

    Science.gov (United States)

    Wei, Jian; Li, Dong-Xu; Zhang, Jia-Rong; Shan, Chi; Rengel, Zed; Song, Zhong-Bang; Chen, Qi

    2018-04-27

    Melatonin has been detected in plants in 1995; however, the function and signaling pathway of this putative phytohormone are largely undetermined due to a lack of knowledge about its receptor. Here, we discovered the first phytomelatonin receptor (CAND2/PMTR1) in Arabidopsis thaliana and found that melatonin governs the receptor-dependent stomatal closure. The application of melatonin induced stomatal closure through the heterotrimeric G protein α subunit-regulated H 2 O 2 and Ca 2+ signals. The Arabidopsis mutant lines lacking AtCand2 that encodes a candidate G protein-coupled receptor were insensitive to melatonin-induced stomatal closure. Accordingly, the melatonin-induced H 2 O 2 production and Ca 2+ influx were completely abolished in cand2. CAND2 is a membrane protein that interacts with GPA1 and the expression of AtCand2 was tightly regulated by melatonin in various organs and guard cells. CAND2 showed saturable and specific 125 I-melatonin binding, with apparent K d (dissociation constant) of 0.73 ± 0.10 nmol/L (r 2  = .99), demonstrating this protein is a phytomelatonin receptor (PMTR1). Our results suggest that the phytomelatonin regulation of stomatal closure is dependent on its receptor CAND2/PMTR1-mediated H 2 O 2 and Ca 2+ signaling transduction cascade. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Gene regulation mediating fiber-type transformation in skeletal muscle cells is partly glucose- and ChREBP-dependent.

    Science.gov (United States)

    Hanke, Nina; Scheibe, Renate J; Manukjan, Georgi; Ewers, David; Umeda, Patrick K; Chang, Kin-Chow; Kubis, Hans-Peter; Gros, Gerolf; Meissner, Joachim D

    2011-03-01

    Adaptations in the oxidative capacity of skeletal muscle cells can occur under several physiological or pathological conditions. We investigated the effect of increasing extracellular glucose concentration on the expression of markers of energy metabolism in primary skeletal muscle cells and the C2C12 muscle cell line. Growth of myotubes in 25mM glucose (high glucose, HG) compared with 5.55mM led to increases in the expression and activity of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a marker of glycolytic energy metabolism, while oxidative markers peroxisome proliferator-activated receptor γ coactivator 1α and citrate synthase decreased. HG induced metabolic adaptations as are seen during a slow-to-fast fiber transformation. Furthermore, HG increased fast myosin heavy chain (MHC) IId/x but did not change slow MHCI/β expression. Protein phosphatase 2A (PP2A) was shown to mediate the effects of HG on GAPDH and MHCIId/x. Carbohydrate response element-binding protein (ChREBP), a glucose-dependent transcription factor downstream of PP2A, partially mediated the effects of glucose on metabolic markers. The glucose-induced increase in PP2A activity was associated with an increase in p38 mitogen-activated protein kinase activity, which presumably mediates the increase in MHCIId/x promoter activity. Liver X receptor, another possible mediator of glucose effects, induced only an incomplete metabolic shift, mainly increasing the expression of the glycolytic marker. Taken together, HG induces a partial slow-to-fast transformation comprising metabolic enzymes together with an increased expression of MHCIId/x. This work demonstrates a functional role for ChREBP in determining the metabolic type of muscle fibers and highlights the importance of glucose as a signaling molecule in muscle. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Negative regulation of RIG-I-mediated antiviral signaling by TRK-fused gene (TFG) protein

    International Nuclear Information System (INIS)

    Lee, Na-Rae; Shin, Han-Bo; Kim, Hye-In; Choi, Myung-Soo; Inn, Kyung-Soo

    2013-01-01

    Highlights: •TRK-fused gene product (TFG) interacts with TRIM25 upon viral infection. •TFG negatively regulates RIG-I mediated antiviral signaling. •TFG depletion leads to enhanced viral replication. •TFG act downstream of MAVS. -- Abstract: RIG-I (retinoic acid inducible gene I)-mediated antiviral signaling serves as the first line of defense against viral infection. Upon detection of viral RNA, RIG-I undergoes TRIM25 (tripartite motif protein 25)-mediated K63-linked ubiquitination, leading to type I interferon (IFN) production. In this study, we demonstrate that TRK-fused gene (TFG) protein, previously identified as a TRIM25-interacting protein, binds TRIM25 upon virus infection and negatively regulates RIG-I-mediated type-I IFN signaling. RIG-I-mediated IFN production and nuclear factor (NF)-κB signaling pathways were upregulated by the suppression of TFG expression. Furthermore, vesicular stomatitis virus (VSV) replication was significantly inhibited by small inhibitory hairpin RNA (shRNA)-mediated knockdown of TFG, supporting the suppressive role of TFG in RIG-I-mediated antiviral signaling. Interestingly, suppression of TFG expression increased not only RIG-I-mediated signaling but also MAVS (mitochondrial antiviral signaling protein)-induced signaling, suggesting that TFG plays a pivotal role in negative regulation of RNA-sensing, RIG-I-like receptor (RLR) family signaling pathways

  4. Syk-dependent tyrosine phosphorylation of 3BP2 is required for optimal FcRγ-mediated phagocytosis and chemokine expression in U937 cells.

    Science.gov (United States)

    Chihara, Kazuyasu; Kato, Yuji; Yoshiki, Hatsumi; Takeuchi, Kenji; Fujieda, Shigeharu; Sada, Kiyonao

    2017-09-13

    The adaptor protein c-Abl SH3 domain binding protein-2 (3BP2) is tyrosine phosphorylated by Syk in response to cross-linking of antigen receptors, which in turn activates various immune responses. Recently, a study using the mouse model of cherubism, a dominant inherited disorder caused by mutations in the gene encoding 3BP2, showed that 3BP2 is involved in the regulation of phagocytosis mediated by Fc receptor for IgG (FcγR) in macrophages. However, the molecular mechanisms underlying 3BP2-mediated regulation of phagocytosis and the physiological relevance of 3BP2 tyrosine phosphorylation remains elusive. In this study, we established various gene knockout U937 cell lines using the CRISPR/Cas9 system and found that 3BP2 is rapidly tyrosine phosphorylated by Syk in response to cross-linking of FcγRI. Depletion of 3BP2 caused significant reduction in the Fc receptor γ chain (FcRγ)-mediated phagocytosis in addition to the FcγRI-mediated induction of chemokine mRNA for IL-8, CCL3L3 and CCL4L2. Syk-dependent tyrosine phosphorylation of 3BP2 was required for overcoming these defects. Finally, we found that the PH and SH2 domains play important roles on FcγRI-mediated tyrosine phosphorylation of 3BP2 in HL-60 cells. Taken together, these results indicate that Syk-dependent tyrosine phosphorylation of 3BP2 is required for optimal FcRγ-mediated phagocytosis and chemokine expression.

  5. Emotion regulation mediates age differences in emotions.

    Science.gov (United States)

    Yeung, Dannii Y; Wong, Carmen K M; Lok, David P P

    2011-04-01

    This study aimed at testing the proposition of socioemotional selectivity theory whether older people would use more antecedent-focused emotion regulatory strategies like cognitive reappraisal but fewer response-focused strategies like suppression. It also aimed at investigating the mediating role of emotion regulation on the relationship between age and emotions. The sample consisted of 654 younger and older adults aged between 18 and 64. Results showed that age was significantly associated with positive emotions and cognitive reappraisal. No difference was found in negative emotions and suppression between younger and older adults. Cognitive reappraisal partially mediated the effect of age on positive emotions. Findings of this study contribute to our understanding of the underlying mechanism of age variations in emotional experiences.

  6. Prolonged inorganic arsenite exposure suppresses insulin-stimulated AKT S473 phosphorylation and glucose uptake in 3T3-L1 adipocytes: involvement of the adaptive antioxidant response.

    Science.gov (United States)

    Xue, Peng; Hou, Yongyong; Zhang, Qiang; Woods, Courtney G; Yarborough, Kathy; Liu, Huiyu; Sun, Guifan; Andersen, Melvin E; Pi, Jingbo

    2011-04-08

    There is growing evidence that chronic exposure of humans to inorganic arsenic, a potent environmental oxidative stressor, is associated with the incidence of type 2 diabetes (T2D). One critical feature of T2D is insulin resistance in peripheral tissues, especially in mature adipocytes, the hallmark of which is decreased insulin-stimulated glucose uptake (ISGU). Despite the deleterious effects of reactive oxygen species (ROS), they have been recognized as a second messenger serving an intracellular signaling role for insulin action. Nuclear factor erythroid 2-related factor 2 (NRF2) is a central transcription factor regulating cellular adaptive response to oxidative stress. This study proposes that in response to arsenic exposure, the NRF2-mediated adaptive induction of endogenous antioxidant enzymes blunts insulin-stimulated ROS signaling and thus impairs ISGU. Exposure of differentiated 3T3-L1 cells to low-level (up to 2 μM) inorganic arsenite (iAs³(+)) led to decreased ISGU in a dose- and time-dependent manner. Concomitant to the impairment of ISGU, iAs³(+) exposure significantly attenuated insulin-stimulated intracellular ROS accumulation and AKT S473 phosphorylation, which could be attributed to the activation of NRF2 and induction of a battery of endogenous antioxidant enzymes. In addition, prolonged iAs³(+) exposure of 3T3-L1 adipocytes resulted in significant induction of inflammatory response genes and decreased expression of adipogenic genes and glucose transporter type 4 (GLUT4), suggesting chronic inflammation and reduction in GLUT4 expression may also be involved in arsenic-induced insulin resistance in adipocytes. Taken together our studies suggest that prolonged low-level iAs³(+) exposure activates the cellular adaptive oxidative stress response, which impairs insulin-stimulated ROS signaling that is involved in ISGU, and thus causes insulin resistance in adipocytes. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Canonical TGF-β Signaling Negatively Regulates Neuronal Morphogenesis through TGIF/Smad Complex-Mediated CRMP2 Suppression.

    Science.gov (United States)

    Nakashima, Hideyuki; Tsujimura, Keita; Irie, Koichiro; Ishizu, Masataka; Pan, Miao; Kameda, Tomonori; Nakashima, Kinichi

    2018-05-16

    Functional neuronal connectivity requires proper neuronal morphogenesis and its dysregulation causes neurodevelopmental diseases. Transforming growth factor-β (TGF-β) family cytokines play pivotal roles in development, but little is known about their contribution to morphological development of neurons. Here we show that the Smad-dependent canonical signaling of TGF-β family cytokines negatively regulates neuronal morphogenesis during brain development. Mechanistically, activated Smads form a complex with transcriptional repressor TG-interacting factor (TGIF), and downregulate the expression of a neuronal polarity regulator, collapsin response mediator protein 2. We also demonstrate that TGF-β family signaling inhibits neurite elongation of human induced pluripotent stem cell-derived neurons. Furthermore, the expression of TGF-β receptor 1, Smad4, or TGIF, which have mutations found in patients with neurodevelopmental disorders, disrupted neuronal morphogenesis in both mouse (male and female) and human (female) neurons. Together, these findings suggest that the regulation of neuronal morphogenesis by an evolutionarily conserved function of TGF-β signaling is involved in the pathogenesis of neurodevelopmental diseases. SIGNIFICANCE STATEMENT Canonical transforming growth factor-β (TGF-β) signaling plays a crucial role in multiple organ development, including brain, and mutations in components of the signaling pathway associated with several human developmental disorders. In this study, we found that Smads/TG-interacting factor-dependent canonical TGF-β signaling regulates neuronal morphogenesis through the suppression of collapsin response mediator protein-2 (CRMP2) expression during brain development, and that function of this signaling is evolutionarily conserved in the mammalian brain. Mutations in canonical TGF-β signaling factors identified in patients with neurodevelopmental disorders disrupt the morphological development of neurons. Thus, our

  8. Characterization of the arsenite oxidizer Aliihoeflea sp. strain 2WW and its potential application in the removal of arsenic from groundwater in combination with Pf-ferritin.

    Science.gov (United States)

    Corsini, Anna; Colombo, Milena; Muyzer, Gerard; Cavalca, Lucia

    2015-09-01

    A heterotrophic arsenite-oxidizing bacterium, strain 2WW, was isolated from a biofilter treating arsenic-rich groundwater. Comparative analysis of 16S rRNA gene sequences showed that it was closely related (98.7 %) to the alphaproteobacterium Aliihoeflea aesturari strain N8(T). However, it was physiologically different by its ability to grow at relatively low substrate concentrations, low temperatures and by its ability to oxidize arsenite. Here we describe the physiological features of strain 2WW and compare these to its most closely related relative, A. aestuari strain N8(T). In addition, we tested its efficiency to remove arsenic from groundwater in combination with Pf-ferritin. Strain 2WW oxidized arsenite to arsenate between pH 5.0 and 8.0, and from 4 to 30 °C. When the strain was used in combination with a Pf-ferritin-based material for arsenic removal from natural groundwater, the removal efficiency was significantly higher (73 %) than for Pf-ferritin alone (64 %). These results showed that arsenite oxidation by strain 2WW combined with Pf-ferritin-based material has a potential in arsenic removal from contaminated groundwater.

  9. The Mediator Complex and Lipid Metabolism.

    Science.gov (United States)

    Zhang, Yi; Xiaoli; Zhao, Xiaoping; Yang, Fajun

    2013-03-01

    The precise control of gene expression is essential for all biological processes. In addition to DNA-binding transcription factors, numerous transcription cofactors contribute another layer of regulation of gene transcription in eukaryotic cells. One of such transcription cofactors is the highly conserved Mediator complex, which has multiple subunits and is involved in various biological processes through directly interacting with relevant transcription factors. Although the current understanding on the biological functions of Mediator remains incomplete, research in the past decade has revealed an important role of Mediator in regulating lipid metabolism. Such function of Mediator is dependent on specific transcription factors, including peroxisome proliferator-activated receptor-gamma (PPARγ) and sterol regulatory element-binding proteins (SREBPs), which represent the master regulators of lipid metabolism. The medical significance of these findings is apparent, as aberrant lipid metabolism is intimately linked to major human diseases, such as type 2 diabetes and cardiovascular disease. Here, we briefly review the functions and molecular mechanisms of Mediator in regulation of lipid metabolism.

  10. Time-Dependent Vascular Effects of Endocannabinoids Mediated by Peroxisome Proliferator-Activated Receptor Gamma (PPAR

    Directory of Open Access Journals (Sweden)

    Saoirse E. O'Sullivan

    2009-01-01

    Full Text Available The aim of the present study was to examine whether endocannabinoids cause PPAR-mediated vascular actions. Functional vascular studies were carried out in rat aortae. Anandamide and N-arachidonoyl-dopamine (NADA, but not palmitoylethanolamide, caused significant vasorelaxation over time (2 hours. Vasorelaxation to NADA, but not anandamide, was inhibited by CB1 receptor antagonism (AM251, 1 M, and vasorelaxation to both anandamide and NADA was inhibited by PPAR antagonism (GW9662, 1 M. Pharmacological inhibition of de novo protein synthesis, nitric oxide synthase, and super oxide dismutase abolished the responses to anandamide and NADA. Removal of the endothelium partly inhibited the vasorelaxant responses to anandamide and NADA. Inhibition of fatty acid amide hydrolase (URB597, 1 M inhibited the vasorelaxant response to NADA, but not anandamide. These data indicate that endocannabinoids cause time-dependent, PPAR-mediated vasorelaxation. Activation of PPAR in the vasculature may represent a novel mechanism by which endocannabinoids are involved in vascular regulation.

  11. Distinct brain systems mediate the effects of nociceptive input and self-regulation on pain.

    Directory of Open Access Journals (Sweden)

    Choong-Wan Woo

    2015-01-01

    Full Text Available Cognitive self-regulation can strongly modulate pain and emotion. However, it is unclear whether self-regulation primarily influences primary nociceptive and affective processes or evaluative ones. In this study, participants engaged in self-regulation to increase or decrease pain while experiencing multiple levels of painful heat during functional magnetic resonance imaging (fMRI imaging. Both heat intensity and self-regulation strongly influenced reported pain, but they did so via two distinct brain pathways. The effects of stimulus intensity were mediated by the neurologic pain signature (NPS, an a priori distributed brain network shown to predict physical pain with over 90% sensitivity and specificity across four studies. Self-regulation did not influence NPS responses; instead, its effects were mediated through functional connections between the nucleus accumbens and ventromedial prefrontal cortex. This pathway was unresponsive to noxious input, and has been broadly implicated in valuation, emotional appraisal, and functional outcomes in pain and other types of affective processes. These findings provide evidence that pain reports are associated with two dissociable functional systems: nociceptive/affective aspects mediated by the NPS, and evaluative/functional aspects mediated by a fronto-striatal system.

  12. USP21 regulates Hippo pathway activity by mediating MARK protein turnover

    DEFF Research Database (Denmark)

    Nguyen, Thanh Hung; Kugler, Jan-Michael; Loya, Anand Chainsukh

    2017-01-01

    observed in cancer and often correlates with worse survival. The activity and stability of Hippo pathway components, including YAP/TAZ, AMOT and LATS1/2, are regulated by ubiquitin-mediated protein degradation. Aberrant expression of ubiquitin ligase complexes that regulate the turnover of Hippo components...

  13. Mediator MED23 regulates basal transcription in vivo via an interaction with P-TEFb.

    Science.gov (United States)

    Wang, Wei; Yao, Xiao; Huang, Yan; Hu, Xiangming; Liu, Runzhong; Hou, Dongming; Chen, Ruichuan; Wang, Gang

    2013-01-01

    The Mediator is a multi-subunit complex that transduces regulatory information from transcription regulators to the RNA polymerase II apparatus. Growing evidence suggests that Mediator plays roles in multiple stages of eukaryotic transcription, including elongation. However, the detailed mechanism by which Mediator regulates elongation remains elusive. In this study, we demonstrate that Mediator MED23 subunit controls a basal level of transcription by recruiting elongation factor P-TEFb, via an interaction with its CDK9 subunit. The mRNA level of Egr1, a MED23-controlled model gene, is reduced 4-5 fold in Med23 (-/-) ES cells under an unstimulated condition, but Med23-deficiency does not alter the occupancies of RNAP II, GTFs, Mediator complex, or activator ELK1 at the Egr1 promoter. Instead, Med23 depletion results in a significant decrease in P-TEFb and RNAP II (Ser2P) binding at the coding region, but no changes for several other elongation regulators, such as DSIF and NELF. ChIP-seq revealed that Med23-deficiency partially reduced the P-TEFb occupancy at a set of MED23-regulated gene promoters. Further, we demonstrate that MED23 interacts with CDK9 in vivo and in vitro. Collectively, these results provide the mechanistic insight into how Mediator promotes RNAP II into transcription elongation.

  14. The CD3 gamma leucine-based receptor-sorting motif is required for efficient ligand-mediated TCR down-regulation

    DEFF Research Database (Denmark)

    von Essen, Marina; Menné, Charlotte; Nielsen, Bodil L

    2002-01-01

    . The other pathway is dependent on protein kinase C (PKC)-mediated activation of the CD3 gamma di-leucine-based receptor-sorting motif. Previous studies have failed to demonstrate a connection between ligand- and PKC-induced TCR down-regulation. Thus, although an apparent paradox, the dogma has been...... that ligand- and PKC-induced TCR down-regulations are not interrelated. By analyses of a newly developed CD3 gamma-negative T cell variant, freshly isolated and PHA-activated PBMC, and a mouse T cell line, we challenged this dogma and demonstrate in this work that PKC activation and the CD3 gamma di...

  15. Stathmin Mediates Hepatocyte Resistance to Death from Oxidative Stress by down Regulating JNK

    Science.gov (United States)

    Zhao, Enpeng; Amir, Muhammad; Lin, Yu; Czaja, Mark J.

    2014-01-01

    Stathmin 1 performs a critical function in cell proliferation by regulating microtubule polymerization. This proliferative function is thought to explain the frequent overexpression of stathmin in human cancer and its correlation with a bad prognosis. Whether stathmin also functions in cell death pathways is unclear. Stathmin regulates microtubules in part by binding free tubulin, a process inhibited by stathmin phosphorylation from kinases including c-Jun N-terminal kinase (JNK). The involvement of JNK activation both in stathmin phosphorylation, and in hepatocellular resistance to oxidative stress, led to an examination of the role of stathmin/JNK crosstalk in oxidant-induced hepatocyte death. Oxidative stress from menadione-generated superoxide induced JNK-dependent stathmin phosphorylation at Ser-16, Ser-25 and Ser-38 in hepatocytes. A stathmin knockdown sensitized hepatocytes to both apoptotic and necrotic cell death from menadione without altering levels of oxidant generation. The absence of stathmin during oxidative stress led to JNK overactivation that was the mechanism of cell death as a concomitant knockdown of JNK1 or JNK2 blocked death. Hepatocyte death from JNK overactivation was mediated by the effects of JNK on mitochondria. Mitochondrial outer membrane permeabilization occurred in stathmin knockdown cells at low concentrations of menadione that triggered apoptosis, whereas mitochondrial β-oxidation and ATP homeostasis were compromised at higher, necrotic menadione concentrations. Stathmin therefore mediates hepatocyte resistance to death from oxidative stress by down regulating JNK and maintaining mitochondrial integrity. These findings demonstrate a new mechanism by which stathmin promotes cell survival and potentially tumor growth. PMID:25285524

  16. Stathmin mediates hepatocyte resistance to death from oxidative stress by down regulating JNK.

    Directory of Open Access Journals (Sweden)

    Enpeng Zhao

    Full Text Available Stathmin 1 performs a critical function in cell proliferation by regulating microtubule polymerization. This proliferative function is thought to explain the frequent overexpression of stathmin in human cancer and its correlation with a bad prognosis. Whether stathmin also functions in cell death pathways is unclear. Stathmin regulates microtubules in part by binding free tubulin, a process inhibited by stathmin phosphorylation from kinases including c-Jun N-terminal kinase (JNK. The involvement of JNK activation both in stathmin phosphorylation, and in hepatocellular resistance to oxidative stress, led to an examination of the role of stathmin/JNK crosstalk in oxidant-induced hepatocyte death. Oxidative stress from menadione-generated superoxide induced JNK-dependent stathmin phosphorylation at Ser-16, Ser-25 and Ser-38 in hepatocytes. A stathmin knockdown sensitized hepatocytes to both apoptotic and necrotic cell death from menadione without altering levels of oxidant generation. The absence of stathmin during oxidative stress led to JNK overactivation that was the mechanism of cell death as a concomitant knockdown of JNK1 or JNK2 blocked death. Hepatocyte death from JNK overactivation was mediated by the effects of JNK on mitochondria. Mitochondrial outer membrane permeabilization occurred in stathmin knockdown cells at low concentrations of menadione that triggered apoptosis, whereas mitochondrial β-oxidation and ATP homeostasis were compromised at higher, necrotic menadione concentrations. Stathmin therefore mediates hepatocyte resistance to death from oxidative stress by down regulating JNK and maintaining mitochondrial integrity. These findings demonstrate a new mechanism by which stathmin promotes cell survival and potentially tumor growth.

  17. Arsenic exposure induces the Warburg effect in cultured human cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Fei; Severson, Paul; Pacheco, Samantha; Futscher, Bernard W.; Klimecki, Walter T., E-mail: klimecki@pharmacy.arizona.edu

    2013-08-15

    Understanding how arsenic exacts its diverse, global disease burden is hampered by a limited understanding of the particular biological pathways that are disrupted by arsenic and underlie pathogenesis. A reductionist view would predict that a small number of basic pathways are generally perturbed by arsenic, and manifest as diverse diseases. Following an initial observation that arsenite-exposed cells in culture acidify their media more rapidly than control cells, the report here shows that low level exposure to arsenite (75 ppb) is sufficient to induce aerobic glycolysis (the Warburg effect) as a generalized phenomenon in cultured human primary cells and cell lines. Expanded studies in one such cell line, the non-malignant pulmonary epithelial line, BEAS-2B, established that the arsenite-induced Warburg effect was associated with increased accumulation of intracellular and extracellular lactate, an increased rate of extracellular acidification, and inhibition by the non-metabolized glucose analog, 2-deoxy-D-glucose. Associated with the induction of aerobic glycolysis was a pathway-wide induction of glycolysis gene expression, as well as protein accumulation of an established glycolysis master-regulator, hypoxia-inducible factor 1A. Arsenite-induced alteration of energy production in human cells represents the type of fundamental perturbation that could extend to many tissue targets and diseases. - Highlights: • Chronic arsenite exposure induces aerobic glycolysis, dubbed the “Warburg effect”. • Arsenite-induced Warburg effect is a general phenomenon in cultured human cells. • HIF-1A may mediate arsenite induced Warburg effect.

  18. Arsenic exposure induces the Warburg effect in cultured human cells

    International Nuclear Information System (INIS)

    Zhao, Fei; Severson, Paul; Pacheco, Samantha; Futscher, Bernard W.; Klimecki, Walter T.

    2013-01-01

    Understanding how arsenic exacts its diverse, global disease burden is hampered by a limited understanding of the particular biological pathways that are disrupted by arsenic and underlie pathogenesis. A reductionist view would predict that a small number of basic pathways are generally perturbed by arsenic, and manifest as diverse diseases. Following an initial observation that arsenite-exposed cells in culture acidify their media more rapidly than control cells, the report here shows that low level exposure to arsenite (75 ppb) is sufficient to induce aerobic glycolysis (the Warburg effect) as a generalized phenomenon in cultured human primary cells and cell lines. Expanded studies in one such cell line, the non-malignant pulmonary epithelial line, BEAS-2B, established that the arsenite-induced Warburg effect was associated with increased accumulation of intracellular and extracellular lactate, an increased rate of extracellular acidification, and inhibition by the non-metabolized glucose analog, 2-deoxy-D-glucose. Associated with the induction of aerobic glycolysis was a pathway-wide induction of glycolysis gene expression, as well as protein accumulation of an established glycolysis master-regulator, hypoxia-inducible factor 1A. Arsenite-induced alteration of energy production in human cells represents the type of fundamental perturbation that could extend to many tissue targets and diseases. - Highlights: • Chronic arsenite exposure induces aerobic glycolysis, dubbed the “Warburg effect”. • Arsenite-induced Warburg effect is a general phenomenon in cultured human cells. • HIF-1A may mediate arsenite induced Warburg effect

  19. Global regulator SATB1 recruits beta-catenin and regulates T(H2 differentiation in Wnt-dependent manner.

    Directory of Open Access Journals (Sweden)

    Dimple Notani

    2010-01-01

    Full Text Available In vertebrates, the conserved Wnt signalling cascade promotes the stabilization and nuclear accumulation of beta-catenin, which then associates with the lymphoid enhancer factor/T cell factor proteins (LEF/TCFs to activate target genes. Wnt/beta -catenin signalling is essential for T cell development and differentiation. Here we show that special AT-rich binding protein 1 (SATB1, the T lineage-enriched chromatin organizer and global regulator, interacts with beta-catenin and recruits it to SATB1's genomic binding sites. Gene expression profiling revealed that the genes repressed by SATB1 are upregulated upon Wnt signalling. Competition between SATB1 and TCF affects the transcription of TCF-regulated genes upon beta-catenin signalling. GATA-3 is a T helper type 2 (T(H2 specific transcription factor that regulates production of T(H2 cytokines and functions as T(H2 lineage determinant. SATB1 positively regulated GATA-3 and siRNA-mediated knockdown of SATB1 downregulated GATA-3 expression in differentiating human CD4(+ T cells, suggesting that SATB1 influences T(H2 lineage commitment by reprogramming gene expression. In the presence of Dickkopf 1 (Dkk1, an inhibitor of Wnt signalling, GATA-3 is downregulated and the expression of signature T(H2 cytokines such as IL-4, IL-10, and IL-13 is reduced, indicating that Wnt signalling is essential for T(H2 differentiation. Knockdown of beta-catenin also produced similar results, confirming the role of Wnt/beta-catenin signalling in T(H2 differentiation. Furthermore, chromatin immunoprecipitation analysis revealed that SATB1 recruits beta-catenin and p300 acetyltransferase on GATA-3 promoter in differentiating T(H2 cells in a Wnt-dependent manner. SATB1 coordinates T(H2 lineage commitment by reprogramming gene expression. The SATB1:beta-catenin complex activates a number of SATB1 regulated genes, and hence this study has potential to find novel Wnt responsive genes. These results demonstrate that SATB1

  20. Maternal Emotion Regulation and Adolescent Behaviors: The Mediating Role of Family Functioning and Parenting.

    Science.gov (United States)

    Crandall, AliceAnn; Ghazarian, Sharon R; Day, Randal D; Riley, Anne W

    2016-11-01

    Prior research links poor maternal emotion regulation to maladaptive parenting and child behaviors, but little research is available on these relationships during the adolescent period. We use structural equation modeling to assess the influence of poor maternal emotion regulation, measured as emotional reactivity and distancing, on adolescent behaviors (measured as aggression and prosocial behaviors) among 478 adolescents (53 % female; baseline age 10-13 years) and their mothers over a 5 year period. We also tested the possible mediating roles of family functioning and parenting behaviors between maternal emotion regulation and adolescent behaviors. Results indicated that higher baseline maternal emotional distancing and reactivity were not directly predictive of adolescents' behaviors, but they were indirectly related through family functioning and parenting. Specifically, indulgent parenting mediated the relationship between maternal emotional reactivity and adolescent aggression. Maternal-reported family functioning significantly mediated the relationship between maternal emotional distancing and adolescent aggression. Family functioning also mediated the relationship between emotional distancing and regulation parenting. The results imply that poor maternal emotion regulation during their child's early adolescence leads to more maladaptive parenting and problematic behaviors during the later adolescent period. However, healthy family processes may ameliorate the negative impact of low maternal emotion regulation on parenting and adolescent behavioral outcomes. The implications for future research and interventions to improve parenting and adolescent outcomes are discussed.

  1. Agonist-mediated activation of Bombyx mori diapause hormone receptor signals to extracellular signal-regulated kinases 1 and 2 through Gq-PLC-PKC-dependent cascade.

    Science.gov (United States)

    Jiang, Xue; Yang, Jingwen; Shen, Zhangfei; Chen, Yajie; Shi, Liangen; Zhou, Naiming

    2016-08-01

    Diapause is a developmental strategy adopted by insects to survive in challenging environments such as the low temperatures of a winter. This unique process is regulated by diapause hormone (DH), which is a neuropeptide hormone that induces egg diapause in Bombyx mori and is involved in terminating pupal diapause in heliothis moths. An G protein-coupled receptor from the silkworm, B. mori, has been identified as a specific cell surface receptor for DH. However, the detailed information on the DH-DHR system and its mechanism(s) involved in the induction of embryonic diapause remains unknown. Here, we combined functional assays with various specific inhibitors to elucidate the DHR-mediated signaling pathways. Upon activation by DH, B. mori DHR is coupled to the Gq protein, leading to a significant increase of intracellular Ca(2+) and cAMP response element-driven luciferase activity in an UBO-QIC, a specific Gq inhibitor, sensitive manner. B. mori DHR elicited ERK1/2 phosphorylation in a dose- and time-dependent manner in response to DH. This effect was almost completely inhibited by co-incubation with UBO-QIC and was also significantly suppressed by PLC inhibitor U73122, PKC inhibitors Gö6983 and the Ca(2+) chelator EGTA. Moreover, DHR-induced activation of ERK1/2 was significantly attenuated by treatment with the Gβγ specific inhibitors gallein and M119K and the PI3K specific inhibitor Wortmannin, but not by the Src specific inhibitor PP2. Our data also demonstrates that the EGFR-transactivation pathway is not involved in the DHR-mediated ERK1/2 phosphorylation. Future efforts are needed to clarify the role of the ERK1/2 signaling pathway in the DH-mediated induction of B. mori embryonic diapause. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Staphylococcus aureus regulates the expression and production of the staphylococcal superantigen-like secreted proteins in a Rot-dependent manner.

    Science.gov (United States)

    Benson, Meredith A; Lilo, Sarit; Wasserman, Gregory A; Thoendel, Matthew; Smith, Amanda; Horswill, Alexander R; Fraser, John; Novick, Richard P; Shopsin, Bo; Torres, Victor J

    2011-08-01

    Staphylococcus aureus overproduces a subset of immunomodulatory proteins known as the staphylococcal superantigen-like proteins (Ssls) under conditions of pore-mediated membrane stress. In this study we demonstrate that overproduction of Ssls during membrane stress is due to the impaired activation of the two-component module of the quorum-sensing accessory gene regulator (Agr) system. Agr-dependent repression of ssl expression is indirect and mediated by the transcription factor repressor of toxins (Rot). Surprisingly, we observed that Rot directly interacts with and activates the ssl promoters. The role of Agr and Rot as regulators of ssl expression was observed across several clinically relevant strains, suggesting that overproduction of immunomodulatory proteins benefits agr-defective strains. In support of this notion, we demonstrate that Ssls contribute to the residual virulence of S. aureus lacking agr in a murine model of systemic infection. Altogether, these results suggest that S. aureus compensates for the inactivation of Agr by producing immunomodulatory exoproteins that could protect the bacterium from host-mediated clearance. © 2011 Blackwell Publishing Ltd.

  3. Hes1 promotes the IL-22-mediated antimicrobial response by enhancing STAT3-dependent transcription in human intestinal epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Murano, Tatsuro [Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo (Japan); Okamoto, Ryuichi, E-mail: rokamoto.gast@tmd.ac.jp [Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo (Japan); Department of Advanced GI Therapeutics, Graduate School, Tokyo Medical and Dental University, Tokyo (Japan); Ito, Go; Nakata, Toru; Hibiya, Shuji; Shimizu, Hiromichi; Fujii, Satoru; Kano, Yoshihito; Mizutani, Tomohiro; Yui, Shiro; Akiyama-Morio, Junko; Nemoto, Yasuhiro [Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo (Japan); Tsuchiya, Kiichiro; Nakamura, Tetsuya [Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo (Japan); Department of Advanced GI Therapeutics, Graduate School, Tokyo Medical and Dental University, Tokyo (Japan); Watanabe, Mamoru [Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University, Tokyo (Japan)

    2014-01-17

    Highlights: •Hes1 enhances IL-22-STAT3 signaling in human intestinal epithelial cells. •Hes1 enhances REG family gene induction by IL-22-STAT3 signaling. •Protein level of Hes1 restricts the response to IL-22. •Present regulation of a cytokine signal represents a new mode of Hes1 function. -- Abstract: Notch signaling plays an essential role in the proliferation and differentiation of intestinal epithelial cells (IECs). We have previously shown that Notch signaling is up-regulated in the inflamed mucosa of ulcerative colitis (UC) and thereby plays an indispensable role in tissue regeneration. Here we show that in addition to Notch signaling, STAT3 signaling is highly activated in the inflamed mucosa of UC. Forced expression of the Notch target gene Hes1 dramatically enhanced the IL-22-mediated STAT3-dependent transcription in human IECs. This enhancement of STAT3-dependent transcription was achieved by the extended phosphorylation of STAT3 by Hes1. Microarray analysis revealed that Hes1-mediated enhancement of IL-22-STAT3 signaling significantly increased the induction of genes encoding antimicrobial peptides, such as REG1A, REG3A and REG3G, in human IECs. Conversely, the reduction of Hes1 protein levels with a γ-secretase inhibitor significantly down-regulated the induction of those genes in IECs, resulting in a markedly poor response to IL-22. Our present findings identify a new role for the molecular function of Hes1 in which the protein can interact with cytokine signals and regulate the immune response of IECs.

  4. E2F1-Mediated Induction of NFYB Attenuates Apoptosis via Joint Regulation of a Pro-Survival Transcriptional Program.

    Directory of Open Access Journals (Sweden)

    Xiaolei Jiang

    Full Text Available The E2F1 transcription factor regulates cell proliferation and apoptosis through the control of a considerable variety of target genes. Previous work has detailed the role of other transcription factors in mediating the specificity of E2F function. Here we identify the NF-YB transcription factor as a novel direct E2F1 target. Genome-wide expression analysis of the effects of NFYB knockdown on E2F1-mediated transcription identified a large group of genes that are co-regulated by E2F1 and NFYB. We also provide evidence that knockdown of NFYB enhances E2F1-induced apoptosis, suggesting a pro-survival function of the NFYB/E2F1 joint transcriptional program. Bioinformatic analysis suggests that deregulation of these NFY-dependent E2F1 target genes might play a role in sarcomagenesis as well as drug resistance.

  5. Regulation of the ligand-dependent activation of the epidermal growth factor receptor by calmodulin

    DEFF Research Database (Denmark)

    Li, Hongbing; Panina, Svetlana; Kaur, Amandeep

    2012-01-01

    Calmodulin (CaM) is the major component of calcium signaling pathways mediating the action of various effectors. Transient increases in the intracellular calcium level triggered by a variety of stimuli lead to the formation of Ca2+/CaM complexes, which interact with and activate target proteins....... In the present study the role of Ca2+/CaM in the regulation of the ligand-dependent activation of the epidermal growth factor receptor (EGFR) has been examined in living cells. We show that addition of different cell permeable CaM antagonists to cultured cells or loading cells with a Ca2+ chelator inhibited...

  6. Orphan Nuclear Receptor Small Heterodimer Partner Negatively Regulates Growth Hormone-mediated Induction of Hepatic Gluconeogenesis through Inhibition of Signal Transducer and Activator of Transcription 5 (STAT5) Transactivation*

    Science.gov (United States)

    Kim, Yong Deuk; Li, Tiangang; Ahn, Seung-Won; Kim, Don-Kyu; Lee, Ji-Min; Hwang, Seung-Lark; Kim, Yong-Hoon; Lee, Chul-Ho; Lee, In-Kyu; Chiang, John Y. L.; Choi, Hueng-Sik

    2012-01-01

    Growth hormone (GH) is a key metabolic regulator mediating glucose and lipid metabolism. Ataxia telangiectasia mutated (ATM) is a member of the phosphatidylinositol 3-kinase superfamily and regulates cell cycle progression. The orphan nuclear receptor small heterodimer partner (SHP: NR0B2) plays a pivotal role in regulating metabolic processes. Here, we studied the role of ATM on GH-dependent regulation of hepatic gluconeogenesis in the liver. GH induced phosphoenolpyruvate carboxykinase (PEPCK) and glucose 6-phosphatase gene expression in primary hepatocytes. GH treatment and adenovirus-mediated STAT5 overexpression in hepatocytes increased glucose production, which was blocked by a JAK2 inhibitor, AG490, dominant negative STAT5, and STAT5 knockdown. We identified a STAT5 binding site on the PEPCK gene promoter using reporter assays and point mutation analysis. Up-regulation of SHP by metformin-mediated activation of the ATM-AMP-activated protein kinase pathway led to inhibition of GH-mediated induction of hepatic gluconeogenesis, which was abolished by an ATM inhibitor, KU-55933. Immunoprecipitation studies showed that SHP physically interacted with STAT5 and inhibited STAT5 recruitment on the PEPCK gene promoter. GH-induced hepatic gluconeogenesis was decreased by either metformin or Ad-SHP, whereas the inhibition by metformin was abolished by SHP knockdown. Finally, the increase of hepatic gluconeogenesis following GH treatment was significantly higher in the liver of SHP null mice compared with that of wild-type mice. Overall, our results suggest that the ATM-AMP-activated protein kinase-SHP network, as a novel mechanism for regulating hepatic glucose homeostasis via a GH-dependent pathway, may be a potential therapeutic target for insulin resistance. PMID:22977252

  7. Ceramide-mediated macroautophagy involves inhibition of protein kinase B and up-regulation of beclin 1.

    Science.gov (United States)

    Scarlatti, Francesca; Bauvy, Chantal; Ventruti, Annamaria; Sala, Giusy; Cluzeaud, Françoise; Vandewalle, Alain; Ghidoni, Riccardo; Codogno, Patrice

    2004-04-30

    The sphingolipid ceramide is involved in the cellular stress response. Here we demonstrate that ceramide controls macroautophagy, a major lysosomal catabolic pathway. Exogenous C(2)-ceramide stimulates macroautophagy (proteolysis and accumulation of autophagic vacuoles) in the human colon cancer HT-29 cells by increasing the endogenous pool of long chain ceramides as demonstrated by the use of the ceramide synthase inhibitor fumonisin B(1). Ceramide reverted the interleukin 13-dependent inhibition of macroautophagy by interfering with the activation of protein kinase B. In addition, C(2)-ceramide stimulated the expression of the autophagy gene product beclin 1. Ceramide is also the mediator of the tamoxifen-dependent accumulation of autophagic vacuoles in the human breast cancer MCF-7 cells. Monodansylcadaverine staining and electron microscopy showed that this accumulation was abrogated by myriocin, an inhibitor of de novo synthesis ceramide. The tamoxifen-dependent accumulation of vacuoles was mimicked by 1-phenyl-2-decanoylamino-3-morpholino-1-propanol, an inhibitor of glucosylceramide synthase. 1-Phenyl-2-decanoylamino-3-morpholino-1-propanol, tamoxifen, and C(2)-ceramide stimulated the expression of beclin 1, whereas myriocin antagonized the tamoxifen-dependent up-regulation. Tamoxifen and C(2)-ceramide interfere with the activation of protein kinase B, whereas myriocin relieved the inhibitory effect of tamoxifen. In conclusion, the control of macroautophagy by ceramide provides a novel function for this lipid mediator in a cell process with major biological outcomes.

  8. Pdlim7 Regulates Arf6-Dependent Actin Dynamics and Is Required for Platelet-Mediated Thrombosis in Mice.

    Directory of Open Access Journals (Sweden)

    Alexander E Urban

    Full Text Available Upon vessel injury, platelets become activated and rapidly reorganize their actin cytoskeleton to adhere to the site of endothelial damage, triggering the formation of a fibrin-rich plug to prevent further blood loss. Inactivation of Pdlim7 provides the new perspective that regulation of actin cytoskeletal changes in platelets is dependent on the encoded PDZ-LIM protein. Loss-of-function of Pdlim7 triggers hypercoagulopathy and causes significant perinatal lethality in mice. Our in vivo and in vitro studies reveal that Pdlim7 is dynamically distributed along actin fibers, and lack of Pdlim7 leads to a marked inability to rearrange the actin cytoskeleton. Specifically, the absence of Pdlim7 prevents platelets from bundling actin fibers into a concentric ring that defines the round spread shape of activated platelets. Similarly, in mouse embryonic fibroblasts, loss of Pdlim7 abolishes the formation of stress fibers needed to adopt the typical elongated fibroblast shape. In addition to revealing a fundamental cell biological role in actin cytoskeletal organization, we also demonstrate a function of Pdlim7 in regulating the cycling between the GTP/GDP-bound states of Arf6. The small GTPase Arf6 is an essential factor required for actin dynamics, cytoskeletal rearrangements, and platelet activation. Consistent with our findings of significantly elevated initial F-actin ratios and subsequent morphological aberrations, loss of Pdlim7 causes a shift in balance towards an increased Arf6-GTP level in resting platelets. These findings identify a new Pdlim7-Arf6 axis controlling actin dynamics and implicate Pdlim7 as a primary endogenous regulator of platelet-dependent hemostasis.

  9. Academic Stress and Self-Regulation among University Students in Malaysia: Mediator Role of Mindfulness.

    Science.gov (United States)

    Hj Ramli, Nur Hamizah; Alavi, Masoumeh; Mehrinezhad, Seyed Abolghasem; Ahmadi, Atefeh

    2018-01-15

    Academic stress is the most common emotional or mental state that students experience during their studies. Stress is a result of a wide range of issues, including test and exam burden, a demanding course, a different educational system, and thinking about future plans upon graduation. A sizeable body of literature in stress management research has found that self-regulation and being mindful will help students to cope up with the stress and dodge long-term negative consequences, such as substance abuse. The present study aims to investigate the influence of academic stress, self-regulation, and mindfulness among undergraduate students in Klang Valley, Malaysia, and to identify mindfulness as the mediator between academic stress and self-regulation. For this study, a total of 384 undergraduate students in Klang Valley, Malaysia were recruited. Using Correlational analysis, results revealed that there was a significant relationship between academic stress, self-regulation, and mindfulness. However, using SPSS mediational analysis, mindfulness did not prove the mediator role in the study.

  10. Regulation of stem-cell mediated host immunity by the sphingolipid ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Regulation of stem-cell mediated host immunity by the sphingolipid pathway ... in the generation of mature immune cells and the functioning of the surrounding ... methods with human cells and genetically engineered mice to examine how the ...

  11. Integrated co-regulation of bacterial arsenic and phosphorus metabolisms.

    Science.gov (United States)

    Kang, Yoon-Suk; Heinemann, Joshua; Bothner, Brian; Rensing, Christopher; McDermott, Timothy R

    2012-12-01

    Arsenic ranks first on the US Environmental Protection Agency Superfund List of Hazardous Substances. Its mobility and toxicity depend upon chemical speciation, which is significantly driven by microbial redox transformations. Genome sequence-enabled surveys reveal that in many microorganisms genes essential to arsenite (AsIII) oxidation are located immediately adjacent to genes coding for functions associated with phosphorus (Pi) acquisition, implying some type of functional importance to the metabolism of As, Pi or both. We extensively document how expression of genes key to AsIII oxidation and the Pi stress response are intricately co-regulated in the soil bacterium Agrobacterium tumefaciens. These observations significantly expand our understanding of how environmental factors influence microbial AsIII metabolism and contribute to the current discussion of As and P metabolism in the microbial cell. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  12. β-adrenergic receptor-dependent alterations in murine cardiac transcript expression are differentially regulated by gefitinib in vivo.

    Directory of Open Access Journals (Sweden)

    Jennifer A Talarico

    Full Text Available β-adrenergic receptor (βAR-mediated transactivation of epidermal growth factor receptor (EGFR has been shown to promote cardioprotection in a mouse model of heart failure and we recently showed that this mechanism leads to enhanced cell survival in part via regulation of apoptotic transcript expression in isolated primary rat neonatal cardiomyocytes. Thus, we hypothesized that this process could regulate cardiac transcript expression in vivo. To comprehensively assess cardiac transcript alterations in response to acute βAR-dependent EGFR transactivation, we performed whole transcriptome analysis of hearts from C57BL/6 mice given i.p. injections of the βAR agonist isoproterenol in the presence or absence of the EGFR antagonist gefitinib for 1 hour. Total cardiac RNA from each treatment group underwent transcriptome analysis, revealing a substantial number of transcripts regulated by each treatment. Gefitinib alone significantly altered the expression of 405 transcripts, while isoproterenol either alone or in conjunction with gefitinib significantly altered 493 and 698 distinct transcripts, respectively. Further statistical analysis was performed, confirming 473 transcripts whose regulation by isoproterenol were significantly altered by gefitinib (isoproterenol-induced up/downregulation antagonized/promoted by gefinitib, including several known to be involved in the regulation of numerous processes including cell death and survival. Thus, βAR-dependent regulation of cardiac transcript expression in vivo can be modulated by the EGFR antagonist gefitinib.

  13. Mitochondrial Porin Isoform AtVDAC1 Regulates the Competence of Arabidopsis thaliana to Agrobacterium-Mediated Genetic Transformation.

    Science.gov (United States)

    Kwon, Tackmin

    2016-09-01

    The efficiency of Agrobacterium-mediated transformation in plants depends on the virulence of Agrobacterium strains, the plant tissue culture conditions, and the susceptibility of host plants. Understanding the molecular interactions between Agrobacterium and host plant cells is crucial when manipulating the susceptibility of recalcitrant crop plants and protecting orchard trees from crown gall disease. It was discovered that Arabidopsis voltage-dependent anion channel 1 (atvdac1) mutant has drastic effects on Agrobacterium-mediated tumorigenesis and growth developmental phenotypes, and that these effects are dependent on a Ws-0 genetic background. Genetic complementation of Arabidopsis vdac1 mutants and yeast porin1-deficient strain with members of the AtVDAC gene family revealed that AtVDAC1 is required for Agrobacterium-mediated transformation, and there is weak functional redundancy between AtVDAC1 and AtVDAC3, which is independent of porin activity. Furthermore, atvdac1 mutants were deficient in transient and stable transformation by Agrobacterium, suggesting that AtVDAC1 is involved in the early stages of Agrobacterium infection prior to transferred-DNA (T-DNA) integration. Transgenic plants overexpressing AtVDAC1 not only complemented the phenotypes of the atvdac1 mutant, but also showed high efficiency of transient T-DNA gene expression; however, the efficiency of stable transformation was not affected. Moreover, the effect of phytohormone treatment on competence to Agrobacterium was compromised in atvdac1 mutants. These data indicate that AtVDAC1 regulates the competence of Arabidopsis to Agrobacterium infection.

  14. Arsenate and Arsenite Sorption on Magnetite: Relations to Groundwater Arsenic Treatment Using Zerovalent Iron and Natural Attenuation

    Science.gov (United States)

    Magnetite (Fe3O4) is a zerovalent iron corrosion product; it is also formed in natural soil and sediment. Sorption of arsenate (As(V)) and arsenite (As(III)) on magnetite is an important process of arsenic removal from groundwater using zerovalent iron-based permeable reactive ba...

  15. Characterization of a calcium/calmodulin-dependent protein kinase homolog from maize roots showing light-regulated gravitropism

    Science.gov (United States)

    Lu, Y. T.; Hidaka, H.; Feldman, L. J.

    1996-01-01

    Roots of many species respond to gravity (gravitropism) and grow downward only if illuminated. This light-regulated root gravitropism is phytochrome-dependent, mediated by calcium, and inhibited by KN-93, a specific inhibitor of calcium/calmodulin-dependent protein kinase II (CaMK II). A cDNA encoding MCK1, a maize homolog of mammalian CaMK, has been isolated from roots of maize (Zea mays L.). The MCK1 gene is expressed in root tips, the site of perception for both light and gravity. Using the [35S]CaM gel-overlay assay we showed that calmodulin-binding activity of the MCK1 is abolished by 50 microM KN-93, but binding is not affected by 5 microM KN-93, paralleling physiological findings that light-regulated root gravitropism is inhibited by 50 microM KN-93, but not by 5 microM KN-93. KN-93 inhibits light-regulated gravitropism by interrupting transduction of the light signal, not light perception, suggesting that MCK1 may play a role in transducing light. This is the first report suggesting a physiological function for a CaMK homolog in light signal transduction.

  16. Novel Phosphorylation and Ubiquitination Sites Regulate Reactive Oxygen Species-dependent Degradation of Anti-apoptotic c-FLIP Protein*

    Science.gov (United States)

    Wilkie-Grantham, Rachel P.; Matsuzawa, Shu-Ichi; Reed, John C.

    2013-01-01

    The cytosolic protein c-FLIP (cellular Fas-associated death domain-like interleukin 1β-converting enzyme inhibitory protein) is an inhibitor of death receptor-mediated apoptosis that is up-regulated in a variety of cancers, contributing to apoptosis resistance. Several compounds found to restore sensitivity of cancer cells to TRAIL, a TNF family death ligand with promising therapeutic potential, act by targeting c-FLIP ubiquitination and degradation by the proteasome. The generation of reactive oxygen species (ROS) has been implicated in c-FLIP protein degradation. However, the mechanism by which ROS post-transcriptionally regulate c-FLIP protein levels is not well understood. We show here that treatment of prostate cancer PPC-1 cells with the superoxide generators menadione, paraquat, or buthionine sulfoximine down-regulates c-FLIP long (c-FLIPL) protein levels, which is prevented by the proteasome inhibitor MG132. Furthermore, pretreatment of PPC-1 cells with a ROS scavenger prevented ubiquitination and loss of c-FLIPL protein induced by menadione or paraquat. We identified lysine 167 as a novel ubiquitination site of c-FLIPL important for ROS-dependent degradation. We also identified threonine 166 as a novel phosphorylation site and demonstrate that Thr-166 phosphorylation is required for ROS-induced Lys-167 ubiquitination. The mutation of either Thr-166 or Lys-167 was sufficient to stabilize c-FLIP protein levels in PPC-1, HEK293T, and HeLa cancer cells treated with menadione or paraquat. Accordingly, expression of c-FLIP T166A or K167R mutants protected cells from ROS-mediated sensitization to TRAIL-induced cell death. Our findings reveal novel ROS-dependent post-translational modifications of the c-FLIP protein that regulate its stability, thus impacting sensitivity of cancer cells to TRAIL. PMID:23519470

  17. Exercise-Dependent Regulation of NK Cells in Cancer Protection

    DEFF Research Database (Denmark)

    Idorn, Manja; Hojman, Pernille

    2016-01-01

    Natural killer (NK) cells are the most responsive immune cells to exercise, displaying an acute mobilization to the circulation during physical exertion. Recently, exercise-dependent mobilization of NK cells was found to play a central role in exercise-mediated protection against cancer. Here, we...... a mechanistic explanation for the protective effect of exercise on cancer, and we propose that exercise represents a potential strategy as adjuvant therapy in cancer, by improving NK cell recruitment and infiltration in solid tumors....... review the link between exercise and NK cell function, focusing on circulating exercise factors and additional effects, including vascularization, hypoxia, and body temperature in mediating the effects on NK cell functionality. Exercise-dependent mobilization and activation of NK cells provides...

  18. WhiB6 is required for the secretion-dependent regulation of ESX-1 substrates in pathogenic mycobacteria.

    KAUST Repository

    Abdallah, Abdallah

    2018-04-09

    The mycobacterial type VII secretion system ESX-1 is responsible for the secretion of a number of proteins that play important roles during host infection. The regulation of the expression of secreted proteins is often essential to establish successful infection. Using transcriptome sequencing, we found that the abrogation of ESX-1 function in Mycobacterium marinum leads to a pronounced increase in gene expression levels of the espA operon during the infection of macrophages, suggesting an important role in ESX-1-mediated virulence during the early phase of infection. In addition, the disruption of ESX-1-mediated protein secretion also leads to a specific down-regulation of the ESX-1 substrates, but not of the structural components of this system, during growth in culture medium. This effect is observed in both M. marinum and M. tuberculosis. We established that down-regulation of ESX-1 substrates is the result of a regulatory process that is influenced by the putative transcriptional regulator whib6, which is located adjacent to the esx-1 locus. In addition, the overexpression of the ESX-1-associated PE35/PPE68 protein pair resulted in a significantly increased secretion of the ESX-1 substrate EsxA, demonstrating a functional link between these proteins. Taken together, these data show that WhiB6 is required for the secretion-dependent regulation of ESX-1 substrates and that ESX-1 substrates are regulated independently from the structural components, both during infection and as a result of active secretion.

  19. WhiB6 is required for the secretion-dependent regulation of ESX-1 substrates in pathogenic mycobacteria.

    KAUST Repository

    Abdallah, Abdallah; Weerdenburg, Eveline; Guan, Qingtian; Ummels, Roy; Borggreve, S; Adroub, Sabir; Malas, Tareq; Naeem, Raeece; Zhang, Huoming; Otto, Thomas; Bitter, Wilbert; Pain, Arnab

    2018-01-01

    The mycobacterial type VII secretion system ESX-1 is responsible for the secretion of a number of proteins that play important roles during host infection. The regulation of the expression of secreted proteins is often essential to establish successful infection. Using transcriptome sequencing, we found that the abrogation of ESX-1 function in Mycobacterium marinum leads to a pronounced increase in gene expression levels of the espA operon during the infection of macrophages, suggesting an important role in ESX-1-mediated virulence during the early phase of infection. In addition, the disruption of ESX-1-mediated protein secretion also leads to a specific down-regulation of the ESX-1 substrates, but not of the structural components of this system, during growth in culture medium. This effect is observed in both M. marinum and M. tuberculosis. We established that down-regulation of ESX-1 substrates is the result of a regulatory process that is influenced by the putative transcriptional regulator whib6, which is located adjacent to the esx-1 locus. In addition, the overexpression of the ESX-1-associated PE35/PPE68 protein pair resulted in a significantly increased secretion of the ESX-1 substrate EsxA, demonstrating a functional link between these proteins. Taken together, these data show that WhiB6 is required for the secretion-dependent regulation of ESX-1 substrates and that ESX-1 substrates are regulated independently from the structural components, both during infection and as a result of active secretion.

  20. Neuronal extracellular signal-regulated kinase (ERK activity as marker and mediator of alcohol and opioid dependence

    Directory of Open Access Journals (Sweden)

    Eva R. Zamora-Martinez

    2014-03-01

    Full Text Available Early pioneering work in the field of biochemistry identified phosphorylation as a crucial post-translational modification of proteins with the ability to both indicate and arbitrate complex physiological processes. More recent investigations have functionally linked phosphorylation of extracellular signal-regulated kinase (ERK to a variety of neurophysiological mechanisms ranging from acute neurotransmitter action to long-term gene expression. ERK phosphorylation serves as an intracellular bridging mechanism that facilitates neuronal communication and plasticity. Drugs of abuse, including alcohol and opioids, act as artificial yet powerful rewards that impinge upon natural reinforcement processes critical for survival. The graded progression from initial exposure to addiction (or substance dependence is believed to result from drug- and drug context-induced adaptations in neuronal signaling processes across brain reward and stress circuits following excessive drug use. In this regard, commonly abused drugs as well as drug-associated experiences are capable of modifying the phosphorylation of ERK within central reinforcement systems. In addition, chronic drug and alcohol exposure may drive ERK-regulated epigenetic and structural alterations that underlie a long-term propensity for escalating drug use. Under the influence of such a neurobiological vulnerability, encountering drug-associated cues and contexts can produce subsequent alterations in ERK signaling that drive relapse to drug and alcohol seeking. Current studies are determining precisely which molecular and regional ERK phosphorylation-associated events contribute to the addiction process, as well as which neuroadaptations need to be targeted in order to return dependent individuals to a healthy state.

  1. A functional screen implicates microRNA-138-dependent regulation of the depalmitoylation enzyme APT1 in dendritic spine morphogenesis

    DEFF Research Database (Denmark)

    Siegel, Gabriele; Obernosterer, Gregor; Fiore, Roberto

    2009-01-01

    of acyl protein thioesterase 1 (APT1), an enzyme regulating the palmitoylation status of proteins that are known to function at the synapse, including the alpha(13) subunits of G proteins (Galpha(13)). RNA-interference-mediated knockdown of APT1 and the expression of membrane-localized Galpha(13) both...... suppress spine enlargement caused by inhibition of miR-138, suggesting that APT1-regulated depalmitoylation of Galpha(13) might be an important downstream event of miR-138 function. Our results uncover a previously unknown miRNA-dependent mechanism in neurons and demonstrate a previously unrecognized...

  2. COPI-mediated retrograde trafficking from the Golgi to the ER regulates EGFR nuclear transport

    International Nuclear Information System (INIS)

    Wang, Ying-Nai; Wang, Hongmei; Yamaguchi, Hirohito; Lee, Hong-Jen; Lee, Heng-Huan; Hung, Mien-Chie

    2010-01-01

    Research highlights: → ARF1 activation is involved in the EGFR transport to the ER and the nucleus. → Assembly of γ-COP coatomer mediates EGFR transport to the ER and the nucleus. → Golgi-to-ER retrograde trafficking regulates nuclear transport of EGFR. -- Abstract: Emerging evidence indicates that cell surface receptors, such as the entire epidermal growth factor receptor (EGFR) family, have been shown to localize in the nucleus. A retrograde route from the Golgi to the endoplasmic reticulum (ER) is postulated to be involved in the EGFR trafficking to the nucleus; however, the molecular mechanism in this proposed model remains unexplored. Here, we demonstrate that membrane-embedded vesicular trafficking is involved in the nuclear transport of EGFR. Confocal immunofluorescence reveals that in response to EGF, a portion of EGFR redistributes to the Golgi and the ER, where its NH 2 -terminus resides within the lumen of Golgi/ER and COOH-terminus is exposed to the cytoplasm. Blockage of the Golgi-to-ER retrograde trafficking by brefeldin A or dominant mutants of the small GTPase ADP-ribosylation factor, which both resulted in the disassembly of the coat protein complex I (COPI) coat to the Golgi, inhibit EGFR transport to the ER and the nucleus. We further find that EGF-dependent nuclear transport of EGFR is regulated by retrograde trafficking from the Golgi to the ER involving an association of EGFR with γ-COP, one of the subunits of the COPI coatomer. Our findings experimentally provide a comprehensive pathway that nuclear transport of EGFR is regulated by COPI-mediated vesicular trafficking from the Golgi to the ER, and may serve as a general mechanism in regulating the nuclear transport of other cell surface receptors.

  3. Cyclin-dependent kinase 5 regulates degranulation in human eosinophils.

    Science.gov (United States)

    Odemuyiwa, Solomon O; Ilarraza, Ramses; Davoine, Francis; Logan, Michael R; Shayeganpour, Anooshirvan; Wu, Yingqi; Majaesic, Carina; Adamko, Darryl J; Moqbel, Redwan; Lacy, Paige

    2015-04-01

    Degranulation from eosinophils in response to secretagogue stimulation is a regulated process that involves exocytosis of granule proteins through specific signalling pathways. One potential pathway is dependent on cyclin-dependent kinase 5 (Cdk5) and its effector molecules, p35 and p39, which play a central role in neuronal cell exocytosis by phosphorylating Munc18, a regulator of SNARE binding. Emerging evidence suggests a role for Cdk5 in exocytosis in immune cells, although its role in eosinophils is not known. We sought to examine the expression of Cdk5 and its activators in human eosinophils, and to assess the role of Cdk5 in eosinophil degranulation. We used freshly isolated human eosinophils and analysed the expression of Cdk5, p35, p39 and Munc18c by Western blot, RT-PCR, flow cytometry and immunoprecipitation. Cdk5 kinase activity was determined following eosinophil activation. Cdk5 inhibitors were used (roscovitine, AT7519 and small interfering RNA) to determine its role in eosinophil peroxidase (EPX) secretion. Cdk5 was expressed in association with Munc18c, p35 and p39, and phosphorylated following human eosinophil activation with eotaxin/CCL11, platelet-activating factor, and secretory IgA-Sepharose. Cdk5 inhibitors (roscovitine, AT7519) reduced EPX release when cells were stimulated by PMA or secretory IgA. In assays using small interfering RNA knock-down of Cdk5 expression in human eosinophils, we observed inhibition of EPX release. Our findings suggest that in activated eosinophils, Cdk5 is phosphorylated and binds to Munc18c, resulting in Munc18c release from syntaxin-4, allowing SNARE binding and vesicle fusion, with subsequent eosinophil degranulation. Our work identifies a novel role for Cdk5 in eosinophil mediator release by agonist-induced degranulation. © 2014 John Wiley & Sons Ltd.

  4. Hydroxyoctadecadienoic acids regulate apoptosis in human THP-1 cells in a PPARγ-dependent manner.

    Science.gov (United States)

    Vangaveti, Venkat N; Shashidhar, Venkatesh M; Rush, Catherine; Malabu, Usman H; Rasalam, Roy R; Collier, Fiona; Baune, Bernhard T; Kennedy, Richard L

    2014-12-01

    Macrophage apoptosis, a key process in atherogenesis, is regulated by oxidation products, including hydroxyoctadecadienoic acids (HODEs). These stable oxidation products of linoleic acid (LA) are abundant in atherosclerotic plaque and activate PPARγ and GPR132. We investigated the mechanisms through which HODEs regulate apoptosis. The effect of HODEs on THP-1 monocytes and adherent THP-1 cells were compared with other C18 fatty acids, LA and α-linolenic acid (ALA). The number of cells was reduced within 24 hours following treatment with 9-HODE (p labelling of cells (p blocked by the caspase inhibitor DEVD-CHO. The PPARγ antagonist T0070907 further increased apoptosis, suggestive of the PPARγ-regulated apoptotic effects induced by 9-HODE. The use of siRNA for GPR132 showed no evidence that the effect of HODEs was mediated through this receptor. 9-HODE and 13-HODE are potent--and specific--regulators of apoptosis in THP-1 cells. Their action is PPARγ-dependent and independent of GPR132. Further studies to identify the signalling pathways through which HODEs increase apoptosis in macrophages may reveal novel therapeutic targets for atherosclerosis.

  5. Inhibition of fibroblast growth by Notch1 signaling is mediated by induction of Wnt11-dependent WISP-1.

    Directory of Open Access Journals (Sweden)

    Zhao-Jun Liu

    Full Text Available Fibroblasts are an integral component of stroma and important source of growth factors and extracellular matrix (ECM. They play a prominent role in maintaining tissue homeostasis and in wound healing and tumor growth. Notch signaling regulates biological function in a variety of cells. To elucidate the physiological function of Notch signaling in fibroblasts, we ablated Notch1 in mouse (Notch1(Flox/Flox embryonic fibroblasts (MEFs. Notch1-deficient (Notch1(-/- MEFs displayed faster growth and motility rate compared to Notch1(Flox/Flox MEFs. Such phenotypic changes, however, were reversible by reconstitution of Notch1 activation via overexpression of the intracellular domain of Notch1 (NICD1 in Notch1-deficient MEFs. In contrast, constitutive activation of Notch1 signaling by introducing NICD1 into primary human dermal fibroblasts (FF2441, which caused pan-Notch activation, inhibited cell growth and motility, whereas cellular inhibition was relievable when the Notch activation was countered with dominant-negative mutant of Master-mind like 1 (DN-MAML-1. Functionally, "Notch-activated" stromal fibroblasts could inhibit tumor cell growth/invasion. Moreover, Notch activation induced expression of Wnt-induced secreted proteins-1 (WISP-1/CCN4 in FF2441 cells while deletion of Notch1 in MEFs resulted in an opposite effect. Notably, WISP-1 suppressed fibroblast proliferation, and was responsible for mediating Notch1's inhibitory effect since siRNA-mediated blockade of WISP-1 expression could relieve cell growth inhibition. Notch1-induced WISP-1 expression appeared to be Wnt11-dependent, but Wnt1-independent. Blockade of Wnt11 expression resulted in decreased WISP-1 expression and liberated Notch-induced cell growth inhibition. These findings indicated that inhibition of fibroblast proliferation by Notch pathway activation is mediated, at least in part, through regulating Wnt1-independent, but Wnt11-dependent WISP-1 expression.

  6. Physiological roles of Regulated Ire1 Dependent Decay

    Directory of Open Access Journals (Sweden)

    Dina S. Coelho

    2014-04-01

    Full Text Available Ire1 is an important transducer of the Unfolded Protein Response (UPR that is activated by the accumulation of misfolded proteins in the Endoplamic Reticulum (ER stress. Activated Ire1 mediates the splicing of an intron from the mRNA of Xbp1, causing a frame-shift during translation and introducing a new carboxyl domain in the Xbp1 protein, which only then becomes a fully functional transcription factor. Studies using cell culture systems demonstrated that Ire1 also promotes the degradation of mRNAs encoding mostly ER-targeted proteins, to reduce the load of incoming ER client proteins during ER stress. This process was called RIDD (regulated Ire1-dependent decay, but its physiological significance remained poorly characterized beyond cell culture systems. Here we review several recent studies that have highlighted the physiological roles of RIDD in specific biological paradigms, such as photoreceptor differentiation in Drosophila or mammalian liver and endocrine pancreas function. These studies demonstrate the importance of RIDD in tissues undergoing intense secretory function and highlight the physiologic role of RIDD during UPR activation in cells and organisms.

  7. The inhibition of tissue respiration and alcoholic fermentation at different catabolic levels by ethyl carbamate (urethan) and arsenite

    NARCIS (Netherlands)

    Florijn, E.; Gruber, M.; Leijnse, B.; Huisman, T.H.J.

    1950-01-01

    1. A hypothesis is given concerning the action of urethan and arsenite on malignant growth. Two assumptionsares made:- (a) the enzyme system responsible for energy production in malignant tumours is working at maximal rate, contrary to the corresponding enzyme system in normal tissues. (b) a

  8. Skp2 regulates androgen receptor through ubiquitin-mediated degradation independent of Akt/mTOR pathways in prostate cancer.

    Science.gov (United States)

    Li, Bo; Lu, Wenfu; Yang, Qing; Yu, Xiuping; Matusik, Robert J; Chen, Zhenbang

    2014-04-01

    The intervention of advanced prostate cancer (PCa) in patients has been commonly depending on androgen deprivation therapy. Despite of tremendous research efforts, however, molecular mechanisms on AR regulation remain poorly understood, particularly for castration resistant prostate cancer (CRPC). Targeting AR and associated factors is considered an effective strategy in PCa treatment. Human prostate cancer cells were used in this study. Manipulations of Skp2 expression were achieved by Skp2 shRNA/siRNA or overexpression of plasmids. Dual luciferase reporter assay was applied for AR activity assessment. Western blot, ubiquitination assay, immunoprecipitation, and immunofluorescence were applied to detect the proteins. Our results demonstrated that Skp2 directly involves the regulation of AR expression through ubiquitination-mediated degradation. Skp2 interacted with AR protein in PCa cells, and enforced expression of Skp2 resulted in a decreased level and activity of AR. By contrast, Skp2 knockdown increased the protein accumulation and activity of AR. Importantly, changes of AR contributed by Skp2 led to subsequent alterations of PSA level in PCa cells. AR ubiquitination was significantly increased upon Skp2 overexpression but greatly reduced upon Skp2 knockdown. AR mutant at K847R abrogated Skp2-mediated ubiquitination of AR. NVP-BEZ235, a dual PI3K/mTOR inhibitor, remarkably inhibited Skp2 level with a striking elevation of AR. The results indicate that Skp2 is an E3 ligase for proteasome-dependent AR degradation, and K847 on AR is the recognition site for Skp2-mediated ubiquitination. Our findings reveal an essential role of Skp2 in AR signaling. © 2013 Wiley Periodicals, Inc.

  9. Inflammatory impact of IFN-γ in CD8+ T cell-mediated lung injury is mediated by both Stat1-dependent and -independent pathways

    Science.gov (United States)

    Ramana, Chilakamarti V.; DeBerge, Matthew P.; Kumar, Aseem; Alia, Christopher S.; Durbin, Joan E.

    2015-01-01

    Influenza infection results in considerable pulmonary pathology, a significant component of which is mediated by CD8+ T cell effector functions. To isolate the specific contribution of CD8+ T cells to lung immunopathology, we utilized a nonviral murine model in which alveolar epithelial cells express an influenza antigen and injury is initiated by adoptive transfer of influenza-specific CD8+ T cells. We report that IFN-γ production by adoptively transferred influenza-specific CD8+ T cells is a significant contributor to acute lung injury following influenza antigen recognition, in isolation from its impact on viral clearance. CD8+ T cell production of IFN-γ enhanced lung epithelial cell expression of chemokines and the subsequent recruitment of inflammatory cells into the airways. Surprisingly, Stat1 deficiency in the adoptive-transfer recipients exacerbated the lung injury that was mediated by the transferred influenza-specific CD8+ T cells but was still dependent on IFN-γ production by these cells. Loss of Stat1 resulted in sustained activation of Stat3 signaling, dysregulated chemokine expression, and increased infiltration of the airways by inflammatory cells. Taken together, these data identify important roles for IFN-γ signaling and Stat1-independent IFN-γ signaling in regulating CD8+ T cell-mediated acute lung injury. This is the first study to demonstrate an anti-inflammatory effect of Stat1 on CD8+ T cell-mediated lung immunopathology without the complication of differences in viral load. PMID:25617378

  10. Presynaptic Regulation of Leptin in a Defined Lateral Hypothalamus-Ventral Tegmental Area Neurocircuitry Depends on Energy State.

    Science.gov (United States)

    Liu, Jing-Jing; Bello, Nicholas T; Pang, Zhiping P

    2017-12-06

    Synaptic transmission controls brain activity and behaviors, including food intake. Leptin, an adipocyte-derived hormone, acts on neurons located in the lateral hypothalamic area (LHA) to maintain energy homeostasis and regulate food intake behavior. The specific synaptic mechanisms, cell types, and neural projections mediating this effect remain unclear. In male mice, using pathway-specific retrograde tracing, whole-cell patch-clamp recordings and post hoc cell type identification, we found that leptin reduces excitatory synaptic strength onto both melanin-concentrating hormone- and orexin-expressing neurons projecting from the LHA to the ventral tegmental area (VTA), which may affect dopamine signaling and motivation for feeding. A presynaptic mechanism mediated by distinct intracellular signaling mechanisms may account for this regulation by leptin. The regulatory effects of leptin depend on intact leptin receptor signaling. Interestingly, the synaptic regulatory function of leptin in the LHA-to-VTA neuronal pathway is highly sensitive to energy states: both energy deficiency (acute fasting) and excessive energy storage (high-fat diet-induced obesity) blunt the effect of leptin. These data revealed that leptin may regulate synaptic transmission in the LHA-to-VTA neurocircuitry in an inverted "U-shape" fashion dependent on plasma glucose levels and related to metabolic states. SIGNIFICANCE STATEMENT The lateral hypothalamic area (LHA) to ventral tegmental area (VTA) projection is an important neural pathway involved in balancing whole-body energy states and reward. We found that the excitatory synaptic inputs to both orexin- and melanin-concentrating hormone expressing LHA neurons projecting to the VTA were suppressed by leptin, a peptide hormone derived from adipocytes that signals peripheral energy status to the brain. Interestingly, energy states seem to affect how leptin regulates synaptic transmission since both the depletion of energy induced by acute food

  11. Tc1-mediated contact sensitivity reaction, its mechanism and regulation

    Directory of Open Access Journals (Sweden)

    Magdalena Zemelka-Wiącek

    2014-07-01

    Full Text Available The contact hypersensitivity reaction (CHS to haptens is a classic example of cell-mediated immune response. In the effector phase, two stages can be distinguished: an early component, that appears only 2 hours after subsequent contact with the hapten, and the late component that develops approximately 24 hours later which is mediated by TCRαβ+ cells. The effector lymphocytes may be CD4+ T helper 1 (Th1 cells or CD8+ T cytotoxic 1 (Tc1 cells, which depends on the employed hapten and/or mice strain. NKT lymphocytes play the crucial role in the CHS initiation, by supporting B1 cells in the antigen-specific IgM antibodies production. The development of an early component is essential for the recruitment of T effector (Teff cells to the side of hapten deposition and for the complete expansion of inflammatory reaction. The CHS reaction is under T regulatory (Treg cells control, both in the induction phase as well as in the effector phase. A new view of a negative regulation of the Tc1 mediated CHS response is based on the suppression induced by epicutaneous (EC application of protein antigen. The DNP-BSA skin application, on a gauze patch, leads to a state of immunosuppression. This maneuver results in rising the population of Treg cells with TCRαβ+CD4+CD25+Foxp3+ phenotype. The mechanism of suppression requires direct contact between Treg cells and Teff cells and the participation of CTLA-4 molecule is also necessary. The described method of evoking immune tolerance via EC immunization may contribute to elaborate a new method of allergic contact dermatitis therapy. This is because of its effectiveness, ease of induction and non-invasive protein antigen application.

  12. Development of a hybrid paclitaxel-loaded arsenite nanoparticle (HPAN) delivery system for synergistic combined therapy of paclitaxel-resistant cancer

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Fei-yan; Zhang, Yu [Nanchang University, College of Chemistry (China); Chen, Xiang-yu [Xiangya No.2 Hospital of Central South University, Department of Radiology (China); Li, Jia-qian; Xiao, Xiao-ping; Yu, Lu-lu; Tang, Qun, E-mail: tangqun@ncu.edu.cn [Nanchang University, Institute for Advanced Study (China)

    2017-04-15

    Multidrug resistance (MDR) is a major reason for failure of chemotherapy in a variety of human tumors. For instance, paclitaxel (PTX) has been widely used as a first-line anticancer drug, but resistance to PTX is becoming increasingly serious. Herein, we propose a strategy of combined therapy to overcome MDR of PTX by introducing a hybrid paclitaxel-loaded gadolinium arsenite nanoparticle (HPAN), where PTX was conjugated with rod-shaped gadolinium arsenite (GdAsO{sub x}) nanoparticle (NP). Triggered by endogenous inorganic phosphate (Pi), the hybrid nanoparticles readily collapse, thereby releasing PTX and arsenic trioxide (ATO). An MTT assay indicated IC50 values for HPAN one order of magnitude lower than for a simple equivalent mixture of PTX and ATO against PTX-resistant human colon cancer cells (HCT 166), indicating remarkable synergistic effect. Species type-dependent cellular uptake, induced apoptosis, and cell cycle modulation were also evaluated. Cellular uptake tests indicate that the HPAN presents higher PTX intracellular loading for the PTX-resistant cells and longer intracellular retention time, displaying resistance to drug efflux from the cancer cell than pristine PTX or the equivalent mixture of PTX and ATO. Cell cycle and apoptosis tests consistently proved that addition of HPAN resulted in higher G2/M and apoptosis in PTX-resistant cells. In vivo anticancer experiments evidenced that HPAN had better therapeutic effect on the resistant tumor in the murine xenograft model than pristine PTX or a mixture of PTX and ATO. Our results suggest that HPAN might enhance the therapeutic index and overcome PTX resistance and also demonstrate that the combined therapy is not only related to the species of combined agents but also their physiochemical states.

  13. Maladaptive perfectionism as mediator among psychological control, eating disorders, and exercise dependence symptoms in habitual exerciser.

    Science.gov (United States)

    Costa, Sebastiano; Hausenblas, Heather A; Oliva, Patrizia; Cuzzocrea, Francesca; Larcan, Rosalba

    2016-03-01

    Background and aims The current study examined the mediating role of maladaptive perfectionism among parental psychological control, eating disorder symptoms, and exercise dependence symptoms by gender in habitual exercisers. Methods Participants were 348 Italian exercisers (n = 178 men and n = 170 women; M age = 20.57, SD = 1.13) who completed self-report questionnaires assessing their parental psychological control, maladaptive perfectionism, eating disorder symptoms, and exercise dependence symptoms. Results Results of the present study confirmed the mediating role of maladaptive perfectionism for eating disorder and exercise dependence symptoms for the male and female exercisers in the maternal data. In the paternal data, maladaptive perfectionism mediated the relationships between paternal psychological control and eating disorder and exercise dependence symptoms as full mediator for female participants and as partial mediator for male participants. Discussion Findings of the present study suggest that it may be beneficial to consider dimensions of maladaptive perfectionism and parental psychological control when studying eating disorder and exercise dependence symptoms in habitual exerciser.

  14. B7h-expressing dendritic cells and plasma B cells mediate distinct outcomes of ICOS costimulation in T cell-dependent antibody responses

    Directory of Open Access Journals (Sweden)

    Larimore Kevin

    2012-06-01

    Full Text Available Abstract Background The ICOS-B7h costimulatory receptor-ligand pair is required for germinal center formation, the production of isotype-switched antibodies, and antibody affinity maturation in response to T cell-dependent antigens. However, the potentially distinct roles of regulated B7h expression on B cells and dendritic cells in T cell-dependent antibody responses have not been defined. Results We generated transgenic mice with lineage-restricted B7h expression to assess the cell-type specific roles of B7h expression on B cells and dendritic cells in regulating T cell-dependent antibody responses. Our results show that endogenous B7h expression is reduced on B cells after activation in vitro and is also reduced in vivo on antibody-secreting plasma B cells in comparison to both naïve and germinal center B cells from which they are derived. Increasing the level of B7h expression on activated and plasma B cells in B-B7hTg mice led to an increase in the number of antibody-secreting plasma cells generated after immunization and a corresponding increase in the concentration of antigen-specific high affinity serum IgG antibodies of all isotypes, without affecting the number of responding germinal center B cells. In contrast, ICOS costimulation mediated by dendritic cells in DC-B7hTg mice contributed to germinal center formation and selectively increased IgG2a production without affecting the overall magnitude of antibody responses. Conclusions Using transgenic mice with lineage-restricted B7h expression, we have revealed distinct roles of ICOS costimulation mediated by dendritic cells and B cells in the regulation of T cell-dependent antibody responses.

  15. Prefrontal mediation of emotion regulation in social anxiety disorder during laughter perception.

    Science.gov (United States)

    Kreifelts, Benjamin; Brück, Carolin; Ethofer, Thomas; Ritter, Jan; Weigel, Lena; Erb, Michael; Wildgruber, Dirk

    2017-02-01

    Social anxiety disorder (SAD) is characterized by negatively biased perception of social cues and deficits in emotion regulation. While negatively biased perception is thought to maintain social anxiety, emotion regulation represents an ability necessary to overcome both biased perception and social anxiety. Here, we used laughter as a social threat in a functional magnetic resonance imaging (fMRI) study to identify cerebral mediators linking SAD with attention and interpretation biases and their modification through cognitive emotion regulation in the form of reappraisal. We found that reappraisal abolished the negative laughter interpretation bias in SAD and that this process was directly mediated through activation patterns of the left dorsolateral prefrontal cortex (DLPFC) serving as a cerebral pivot between biased social perception and its normalization through reappraisal. Connectivity analyses revealed reduced prefrontal control over threat-processing sensory cortices (here: the temporal voice area) during cognitive emotion regulation in SAD. Our results indicate a central role for the left DLPFC in SAD which might represent a valuable target for future research on interventions either aiming to directly modulate cognitive emotion regulation in SAD or to evaluate its potential as physiological marker for psychotherapeutic interventions relying on emotion regulation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Depression and reduced heart rate variability after cardiac surgery: the mediating role of emotion regulation.

    Science.gov (United States)

    Patron, Elisabetta; Messerotti Benvenuti, Simone; Favretto, Giuseppe; Gasparotto, Renata; Palomba, Daniela

    2014-02-01

    Heart rate variability (HRV), as an index of autonomic nervous system (ANS) functioning, is reduced by depression after cardiac surgery, but the underlying mechanisms of this relationship are poorly understood. Poor emotion regulation as a core symptom of depression has also been associated with altered ANS functioning. The present study aimed to examine whether emotion dysregulation could be a mediator of the depression-reduced HRV relationship observed after cardiac surgery. Self-reported emotion regulation and four-minute HRV were measured in 25 depressed and 43 nondepressed patients after cardiac surgery. Mediation analysis was conducted to evaluate emotion regulation as a mediator of the depression-reduced HRV relationship. Compared to nondepressed patients, those with depression showed lower standard deviation of normal-to-normal (NN) intervals (pbehavior partially mediated the effect of depression on LF n.u. and HF n.u. Results confirmed previous findings showing that depression is associated with reduced HRV, especially a reduced vagal tone and a sympathovagal imbalance, after cardiac surgery. This study also provides preliminary evidence that increased trait levels of suppression of emotion-expressive behavior may mediate the depression-related sympathovagal imbalance after cardiac surgery. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Neuronal SIRT1 (Silent Information Regulator 2 Homologue 1) Regulates Glycolysis and Mediates Resveratrol-Induced Ischemic Tolerance.

    Science.gov (United States)

    Koronowski, Kevin B; Khoury, Nathalie; Saul, Isabel; Loris, Zachary B; Cohan, Charles H; Stradecki-Cohan, Holly M; Dave, Kunjan R; Young, Juan I; Perez-Pinzon, Miguel A

    2017-11-01

    Resveratrol, at least in part via SIRT1 (silent information regulator 2 homologue 1) activation, protects against cerebral ischemia when administered 2 days before injury. However, it remains unclear if SIRT1 activation must occur, and in which brain cell types, for the induction of neuroprotection. We hypothesized that neuronal SIRT1 is essential for resveratrol-induced ischemic tolerance and sought to characterize the metabolic pathways regulated by neuronal Sirt1 at the cellular level in the brain. We assessed infarct size and functional outcome after transient 60 minute middle cerebral artery occlusion in control and inducible, neuronal-specific SIRT1 knockout mice. Nontargeted primary metabolomics analysis identified putative SIRT1-regulated pathways in brain. Glycolytic function was evaluated in acute brain slices from adult mice and primary neuronal-enriched cultures under ischemic penumbra-like conditions. Resveratrol-induced neuroprotection from stroke was lost in neuronal Sirt1 knockout mice. Metabolomics analysis revealed alterations in glucose metabolism on deletion of neuronal Sirt1 , accompanied by transcriptional changes in glucose metabolism machinery. Furthermore, glycolytic ATP production was impaired in acute brain slices from neuronal Sirt1 knockout mice. Conversely, resveratrol increased glycolytic rate in a SIRT1-dependent manner and under ischemic penumbra-like conditions in vitro. Our data demonstrate that resveratrol requires neuronal SIRT1 to elicit ischemic tolerance and identify a novel role for SIRT1 in the regulation of glycolytic function in brain. Identification of robust neuroprotective mechanisms that underlie ischemia tolerance and the metabolic adaptations mediated by SIRT1 in brain are crucial for the translation of therapies in cerebral ischemia and other neurological disorders. © 2017 American Heart Association, Inc.

  18. Adaptor Protein Complex-2 (AP-2) and Epsin-1 Mediate Protease-activated Receptor-1 Internalization via Phosphorylation- and Ubiquitination-dependent Sorting Signals*

    Science.gov (United States)

    Chen, Buxin; Dores, Michael R.; Grimsey, Neil; Canto, Isabel; Barker, Breann L.; Trejo, JoAnn

    2011-01-01

    Signaling by protease-activated receptor-1 (PAR1), a G protein-coupled receptor (GPCR) for thrombin, is regulated by desensitization and internalization. PAR1 desensitization is mediated by β-arrestins, like most classic GPCRs. In contrast, internalization of PAR1 occurs through a clathrin- and dynamin-dependent pathway independent of β-arrestins. PAR1 displays two modes of internalization. Constitutive internalization of unactivated PAR1 is mediated by the clathrin adaptor protein complex-2 (AP-2), where the μ2-adaptin subunit binds directly to a tyrosine-based motif localized within the receptor C-tail domain. However, AP-2 depletion only partially inhibits agonist-induced internalization of PAR1, suggesting a function for other clathrin adaptors in this process. Here, we now report that AP-2 and epsin-1 are both critical mediators of agonist-stimulated PAR1 internalization. We show that ubiquitination of PAR1 and the ubiquitin-interacting motifs of epsin-1 are required for epsin-1-dependent internalization of activated PAR1. In addition, activation of PAR1 promotes epsin-1 de-ubiquitination, which may increase its endocytic adaptor activity to facilitate receptor internalization. AP-2 also regulates activated PAR1 internalization via recognition of distal C-tail phosphorylation sites rather than the canonical tyrosine-based motif. Thus, AP-2 and epsin-1 are both required to promote efficient internalization of activated PAR1 and recognize discrete receptor sorting signals. This study defines a new pathway for internalization of mammalian GPCRs. PMID:21965661

  19. The metazoan Mediator co-activator complex as an integrative hub for transcriptional regulation

    OpenAIRE

    Malik, Sohail; Roeder, Robert G.

    2010-01-01

    The Mediator is an evolutionarily conserved, multiprotein complex that is a key regulator of protein-coding genes. In metazoan cells, multiple pathways that are responsible for homeostasis, cell growth and differentiation converge on the Mediator through transcriptional activators and repressors that target one or more of the almost 30 subunits of this complex. Besides interacting directly with RNA polymerase II, Mediator has multiple functions and can interact with and coordinate the action ...

  20. A conserved degron containing an amphipathic helix regulates the cholesterol-mediated turnover of human squalene monooxygenase, a rate-limiting enzyme in cholesterol synthesis.

    Science.gov (United States)

    Chua, Ngee Kiat; Howe, Vicky; Jatana, Nidhi; Thukral, Lipi; Brown, Andrew J

    2017-12-08

    Cholesterol biosynthesis in the endoplasmic reticulum (ER) is tightly controlled by multiple mechanisms to regulate cellular cholesterol levels. Squalene monooxygenase (SM) is the second rate-limiting enzyme in cholesterol biosynthesis and is regulated both transcriptionally and post-translationally. SM undergoes cholesterol-dependent proteasomal degradation when cholesterol is in excess. The first 100 amino acids of SM (designated SM N100) are necessary for this degradative process and represent the shortest cholesterol-regulated degron identified to date. However, the fundamental intrinsic characteristics of this degron remain unknown. In this study, we performed a series of deletions, point mutations, and domain swaps to identify a 12-residue region (residues Gln-62-Leu-73), required for SM cholesterol-mediated turnover. Molecular dynamics and circular dichroism revealed an amphipathic helix within this 12-residue region. Moreover, 70% of the variation in cholesterol regulation was dependent on the hydrophobicity of this region. Of note, the earliest known Doa10 yeast degron, Deg1, also contains an amphipathic helix and exhibits 42% amino acid similarity with SM N100. Mutating SM residues Phe-35/Ser-37/Leu-65/Ile-69 into alanine, based on the key residues in Deg1, blunted SM cholesterol-mediated turnover. Taken together, our results support a model whereby the amphipathic helix in SM N100 attaches reversibly to the ER membrane depending on cholesterol levels; with excess, the helix is ejected and unravels, exposing a hydrophobic patch, which then serves as a degradation signal. Our findings shed new light on the regulation of a key cholesterol synthesis enzyme, highlighting the conservation of critical degron features from yeast to humans. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Ciliopathy proteins regulate paracrine signaling by modulating proteasomal degradation of mediators

    Science.gov (United States)

    Liu, Yangfan P.; Tsai, I-Chun; Morleo, Manuela; Oh, Edwin C.; Leitch, Carmen C.; Massa, Filomena; Lee, Byung-Hoon; Parker, David S.; Finley, Daniel; Zaghloul, Norann A.; Franco, Brunella; Katsanis, Nicholas

    2014-01-01

    Cilia are critical mediators of paracrine signaling; however, it is unknown whether proteins that contribute to ciliopathies converge on multiple paracrine pathways through a common mechanism. Here, we show that loss of cilopathy-associated proteins Bardet-Biedl syndrome 4 (BBS4) or oral-facial-digital syndrome 1 (OFD1) results in the accumulation of signaling mediators normally targeted for proteasomal degradation. In WT cells, several BBS proteins and OFD1 interacted with proteasomal subunits, and loss of either BBS4 or OFD1 led to depletion of multiple subunits from the centrosomal proteasome. Furthermore, overexpression of proteasomal regulatory components or treatment with proteasomal activators sulforaphane (SFN) and mevalonolactone (MVA) ameliorated signaling defects in cells lacking BBS1, BBS4, and OFD1, in morphant zebrafish embryos, and in induced neurons from Ofd1-deficient mice. Finally, we tested the hypothesis that other proteasome-dependent pathways not known to be associated with ciliopathies are defective in the absence of ciliopathy proteins. We found that loss of BBS1, BBS4, or OFD1 led to decreased NF-κB activity and concomitant IκBβ accumulation and that these defects were ameliorated with SFN treatment. Taken together, our data indicate that basal body proteasomal regulation governs paracrine signaling pathways and suggest that augmenting proteasomal function might benefit ciliopathy patients. PMID:24691443

  2. TALE activators regulate gene expression in a position- and strand-dependent manner in mammalian cells.

    Science.gov (United States)

    Uhde-Stone, Claudia; Cheung, Edna; Lu, Biao

    2014-01-24

    Transcription activator-like effectors (TALEs) are a class of transcription factors that are readily programmable to regulate gene expression. Despite their growing popularity, little is known about binding site parameters that influence TALE-mediated gene activation in mammalian cells. We demonstrate that TALE activators modulate gene expression in mammalian cells in a position- and strand-dependent manner. To study the effects of binding site location, we engineered TALEs customized to recognize specific DNA sequences located in either the promoter or the transcribed region of reporter genes. We found that TALE activators robustly activated reporter genes when their binding sites were located within the promoter region. In contrast, TALE activators inhibited the expression of reporter genes when their binding sites were located on the sense strand of the transcribed region. Notably, this repression was independent of the effector domain utilized, suggesting a simple blockage mechanism. We conclude that TALE activators in mammalian cells regulate genes in a position- and strand-dependent manner that is substantially different from gene activation by native TALEs in plants. These findings have implications for optimizing the design of custom TALEs for genetic manipulation in mammalian cells. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. dSir2 in the Adult Fat Body, but Not in Muscles, Regulates Life Span in a Diet-Dependent Manner

    Directory of Open Access Journals (Sweden)

    Kushal Kr. Banerjee

    2012-12-01

    Full Text Available Sir2, an evolutionarily conserved NAD+-dependent deacetylase, has been implicated as a key factor in mediating organismal life span. However, recent contradictory findings have brought into question the role of Sir2 and its orthologs in regulating organismal longevity. In this study, we report that Drosophila Sir2 (dSir2 in the adult fat body regulates longevity in a diet-dependent manner. We used inducible Gal4 drivers to knock down and overexpress dSir2 in a tissue-specific manner. A diet-dependent life span phenotype of dSir2 perturbations (both knockdown and overexpression in the fat body, but not muscles, negates the effects of background genetic mutations. In addition to providing clarity to the field, our study contrasts the ability of dSir2 in two metabolic tissues to affect longevity. We also show that dSir2 knockdown abrogates fat-body dFOXO-dependent life span extension. This report highlights the importance of the interplay between genetic factors and dietary inputs in determining organismal life spans.

  4. Essential role of TGF-beta/Smad pathway on statin dependent vascular smooth muscle cell regulation.

    Directory of Open Access Journals (Sweden)

    Juan Rodríguez-Vita

    Full Text Available BACKGROUND: The 3-hydroxy-3-methylglutaryl CoA reductase inhibitors (also called statins exert proven beneficial effects on cardiovascular diseases. Recent data suggest a protective role for Transforming Growth Factor-beta (TGF-beta in atherosclerosis by regulating the balance between inflammation and extracellular matrix accumulation. However, there are no studies about the effect of statins on TGF-beta/Smad pathway in atherosclerosis and vascular cells. METHODOLOGY: In cultured vascular smooth muscle cells (VSMCs statins enhanced Smad pathway activation caused by TGF-beta. In addition, statins upregulated TGF-beta receptor type II (TRII, and increased TGF-beta synthesis and TGF-beta/Smad-dependent actions. In this sense, statins, through Smad activation, render VSMCs more susceptible to TGF-beta induced apoptosis and increased TGF-beta-mediated ECM production. It is well documented that high doses of statins induce apoptosis in cultured VSMC in the presence of serum; however the precise mechanism of this effect remains to be elucidated. We have found that statins-induced apoptosis was mediated by TGF-beta/Smad pathway. Finally, we have described that RhoA inhibition is a common intracellular mechanisms involved in statins effects. The in vivo relevance of these findings was assessed in an experimental model of atherosclerosis in apolipoprotein E deficient mice: Treatment with Atorvastatin increased Smad3 phosphorylation and TRII overexpression, associated to elevated ECM deposition in the VSMCs within atheroma plaques, while apoptosis was not detected. CONCLUSIONS: Statins enhance TGF-beta/Smad pathway, regulating ligand levels, receptor, main signaling pathway and cellular responses of VSMC, including apoptosis and ECM accumulation. Our findings show that TGF-beta/Smad pathway is essential for statins-dependent actions in VSMCs.

  5. The role of exercise dependence for the relationship between exercise behavior and eating pathology: mediator or moderator?

    Science.gov (United States)

    Cook, Brian J; Hausenblas, Heather A

    2008-05-01

    Our study examined the potential mediating or moderating effect of exercise dependence on the exercise-eating pathology relationship. Female university students (N = 330) completed Internet-based self-report measures of exercise behavior, exercise dependence, and eating pathology. Exercise dependence served as a mediator for the relationship between exercise and eating pathology. This unidirectional causal model suggests that an individual's pathological motivation or compulsion to exercise is the critical mediating component in the exercise-eating pathology relationship. The best target for removing the link between exercise behavior and eating pathology may be reformulating exercise dependence symptoms.

  6. Strain- and Substrate-Dependent Redox Mediator and Electricity Production by Pseudomonas aeruginosa.

    Science.gov (United States)

    Bosire, Erick M; Blank, Lars M; Rosenbaum, Miriam A

    2016-08-15

    Pseudomonas aeruginosa is an important, thriving member of microbial communities of microbial bioelectrochemical systems (BES) through the production of versatile phenazine redox mediators. Pure culture experiments with a model strain revealed synergistic interactions of P. aeruginosa with fermenting microorganisms whereby the synergism was mediated through the shared fermentation product 2,3-butanediol. Our work here shows that the behavior and efficiency of P. aeruginosa in mediated current production is strongly dependent on the strain of P. aeruginosa We compared levels of phenazine production by the previously investigated model strain P. aeruginosa PA14, the alternative model strain P. aeruginosa PAO1, and the BES isolate Pseudomonas sp. strain KRP1 with glucose and the fermentation products 2,3-butanediol and ethanol as carbon substrates. We found significant differences in substrate-dependent phenazine production and resulting anodic current generation for the three strains, with the BES isolate KRP1 being overall the best current producer and showing the highest electrochemical activity with glucose as a substrate (19 μA cm(-2) with ∼150 μg ml(-1) phenazine carboxylic acid as a redox mediator). Surprisingly, P. aeruginosa PAO1 showed very low phenazine production and electrochemical activity under all tested conditions. Microbial fuel cells and other microbial bioelectrochemical systems hold great promise for environmental technologies such as wastewater treatment and bioremediation. While there is much emphasis on the development of materials and devices to realize such systems, the investigation and a deeper understanding of the underlying microbiology and ecology are lagging behind. Physiological investigations focus on microorganisms exhibiting direct electron transfer in pure culture systems. Meanwhile, mediated electron transfer with natural redox compounds produced by, for example, Pseudomonas aeruginosa might enable an entire microbial

  7. Context-dependent memory following recurrent hypoglycaemia in non-diabetic rats is mediated via glucocorticoid signalling in the dorsal hippocampus.

    Science.gov (United States)

    Osborne, Danielle M; O'Leary, Kelsey E; Fitzgerald, Dennis P; George, Alvin J; Vidal, Michael M; Anderson, Brian M; McNay, Ewan C

    2017-01-01

    Recurrent hypoglycaemia is primarily caused by repeated over-administration of insulin to patients with diabetes. Although cognition is impaired during hypoglycaemia, restoration of euglycaemia after recurrent hypoglycaemia is associated with improved hippocampally mediated memory. Recurrent hypoglycaemia alters glucocorticoid secretion in response to hypoglycaemia; glucocorticoids are well established to regulate hippocampal processes, suggesting a possible mechanism for recurrent hypoglycaemia modulation of subsequent cognition. We tested the hypothesis that glucocorticoids within the dorsal hippocampus might mediate the impact of recurrent hypoglycaemia on hippocampal cognitive processes. We characterised changes in the dorsal hippocampus at several time points to identify specific mechanisms affected by recurrent hypoglycaemia, using a well-validated 3 day model of recurrent hypoglycaemia either alone or with intrahippocampal delivery of glucocorticoid (mifepristone) and mineralocorticoid (spironolactone) receptor antagonists prior to each hypoglycaemic episode. Recurrent hypoglycaemia enhanced learning and also increased hippocampal expression of glucocorticoid receptors, serum/glucocorticoid-regulated kinase 1, cyclic AMP response element binding (CREB) phosphorylation, and plasma membrane levels of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartic acid (NMDA) receptors. Both hippocampus-dependent memory enhancement and the molecular changes were reversed by glucocorticoid receptor antagonist treatment. These results indicate that increased glucocorticoid signalling during recurrent hypoglycaemia produces several changes in the dorsal hippocampus that are conducive to enhanced hippocampus-dependent contextual learning. These changes appear to be adaptive, and in addition to supporting cognition may reduce damage otherwise caused by repeated exposure to severe hypoglycaemia.

  8. The dual regulation of substance P-mediated inflammation via human synovial mast cells in rheumatoid arthritis

    Directory of Open Access Journals (Sweden)

    Yuki Okamura

    2017-09-01

    Conclusions: Activated synovial MCs may rapidly degrade SP, which may downregulate the SP-mediated activation of synoviocytes in RA. On the other hand, SP activates MCs to induce inflammatory mediators, suggesting the dual regulation of SP-mediated inflammation by MCs in RA.

  9. 38 CFR 3.270 - Applicability of various dependency, income and estate regulations.

    Science.gov (United States)

    2010-07-01

    ... dependency, income and estate regulations. 3.270 Section 3.270 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS ADJUDICATION Pension, Compensation, and Dependency and Indemnity Compensation Dependency, Income and Estate § 3.270 Applicability of various dependency, income and estate regulations. (a...

  10. Regulation of Serine-Threonine Kinase Akt Activation by NAD+-Dependent Deacetylase SIRT7

    Directory of Open Access Journals (Sweden)

    Jia Yu

    2017-01-01

    Full Text Available The Akt pathway is a central regulator that promotes cell survival in response to extracellular signals. Depletion of SIRT7, an NAD+-dependent deacetylase that is the least-studied sirtuin, is known to significantly increase Akt activity in mice through unknown mechanisms. In this study, we demonstrate that SIRT7 depletion in breast cancer cells results in Akt hyper-phosphorylation and increases cell survival following genotoxic stress. Mechanistically, SIRT7 specifically interacts with and deacetylates FKBP51 at residue lysines 28 and 155 (K28 and K155, resulting in enhanced interactions among FKBP51, Akt, and PHLPP, as well as Akt dephosphorylation. Mutating both lysines to arginines abolishes the effect of SIRT7 on Akt activity through FKBP51 deacetylation. Finally, energy stress strengthens SIRT7-mediated effects on Akt dephosphorylation through FKBP51 and thus sensitizes cancer cells to cytotoxic agents. These results reveal a direct role of SIRT7 in Akt regulation and raise the possibility of using the glucose analog 2-deoxy-D-glucose (2DG as a chemo-sensitizing agent.

  11. The multitalented Mediator complex.

    Science.gov (United States)

    Carlsten, Jonas O P; Zhu, Xuefeng; Gustafsson, Claes M

    2013-11-01

    The Mediator complex is needed for regulated transcription of RNA polymerase II (Pol II)-dependent genes. Initially, Mediator was only seen as a protein bridge that conveyed regulatory information from enhancers to the promoter. Later studies have added many other functions to the Mediator repertoire. Indeed, recent findings show that Mediator influences nearly all stages of transcription and coordinates these events with concomitant changes in chromatin organization. We review the multitude of activities associated with Mediator and discuss how this complex coordinates transcription with other cellular events. We also discuss the inherent difficulties associated with in vivo characterization of a coactivator complex that can indirectly affect diverse cellular processes via changes in gene transcription. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Work Environment Characteristics and Teacher Well-Being: The Mediation of Emotion Regulation Strategies.

    Science.gov (United States)

    Yin, Hongbiao; Huang, Shenghua; Wang, Wenlan

    2016-09-13

    Based on an adjusted Job Demands-Resources (JD-R) model that considers the mediation of personal resources, this study examined the relationships between two characteristics of teachers' work environment (i.e., emotional job demands and trust in colleagues) and two indicators of teachers' well-being (i.e., teaching satisfaction and emotional exhaustion). In particular, the study focused on how emotion regulation strategies (i.e., reappraisal and suppression) mediate these relationships. Data collected from a questionnaire survey of 1115 primary school teachers in Hong Kong was analyzed to test the hypothesized relationships. The results of structural equation modeling indicated that: (1) the emotional job demands of teaching were detrimental to teacher well-being, whereas trust in colleagues was beneficial; (2) both emotion regulation strategies mediated the relationships between both emotional job demands and trust in colleagues and teacher well-being; and (3) teachers who tend to use more reappraisal may be psychologically healthier than those tend to adopt more suppression. These findings support the applicability of the JD-R model to school settings and highlight the role of teachers' emotion regulation in teachers' well-being. Implications for the improvement of school environments and teachers' well-being are identified.

  13. Work Environment Characteristics and Teacher Well-Being: The Mediation of Emotion Regulation Strategies

    Science.gov (United States)

    Yin, Hongbiao; Huang, Shenghua; Wang, Wenlan

    2016-01-01

    Based on an adjusted Job Demands-Resources (JD-R) model that considers the mediation of personal resources, this study examined the relationships between two characteristics of teachers’ work environment (i.e., emotional job demands and trust in colleagues) and two indicators of teachers’ well-being (i.e., teaching satisfaction and emotional exhaustion). In particular, the study focused on how emotion regulation strategies (i.e., reappraisal and suppression) mediate these relationships. Data collected from a questionnaire survey of 1115 primary school teachers in Hong Kong was analyzed to test the hypothesized relationships. The results of structural equation modeling indicated that: (1) the emotional job demands of teaching were detrimental to teacher well-being, whereas trust in colleagues was beneficial; (2) both emotion regulation strategies mediated the relationships between both emotional job demands and trust in colleagues and teacher well-being; and (3) teachers who tend to use more reappraisal may be psychologically healthier than those tend to adopt more suppression. These findings support the applicability of the JD-R model to school settings and highlight the role of teachers’ emotion regulation in teachers’ well-being. Implications for the improvement of school environments and teachers’ well-being are identified. PMID:27649216

  14. Membrane-anchored MucR mediates nitrate-dependent regulation of alginate production in Pseudomonas aeruginosa

    KAUST Repository

    Wang, Yajie

    2015-04-29

    Alginates exhibit unique material properties suitable for medical and industrial applications. However, if produced by Pseudomonas aeruginosa, it is an important virulence factor in infection of cystic fibrosis patients. The alginate biosynthesis machinery is activated by c-di-GMP imparted by the inner membrane protein, MucR. Here, it was shown that MucR impairs alginate production in response to nitrate in P. aeruginosa. Subsequent site-specific mutagenesis of MucR revealed that the second MHYT sensor motif (MHYT II, amino acids 121–124) of MucR sensor domain was involved in nitrate sensing. We also showed that both c-di-GMP synthesizing and degrading active sites of MucR were important for alginate production. Although nitrate and deletion of MucR impaired alginate promoter activity and global c-di-GMP levels, alginate yields were not directly correlated with alginate promoter activity or c-di-GMP levels, suggesting that nitrate and MucR modulate alginate production at a post-translational level through a localized pool of c-di-GMP. Nitrate increased pel promoter activity in the mucR mutant while in the same mutant the psl promoter activity was independent of nitrate. Nitrate and deletion of mucR did not impact on swarming motility but impaired attachment to solid surfaces. Nitrate and deletion of mucR promoted the formation of biofilms with increased thickness, cell density, and survival. Overall, this study provided insight into the functional role of MucR with respect to nitrate-mediated regulation of alginate biosynthesis. © 2015 Springer-Verlag Berlin Heidelberg

  15. The functionalized amino acid (S-Lacosamide subverts CRMP2-mediated tubulin polymerization to prevent constitutive and activity-dependent increase in neurite outgrowth

    Directory of Open Access Journals (Sweden)

    Sarah M Wilson

    2014-07-01

    Full Text Available Activity-dependent neurite outgrowth is a highly complex, regulated process with important implications for neuronal circuit remodeling in development as well as in seizure-induced sprouting in epilepsy. Recent work has linked outgrowth to collapsin response mediator protein 2 (CRMP2, an intracellular phosphoprotein originally identified as axon guidance and growth cone collapse protein. The neurite outgrowth promoting function of CRMP2 is regulated by its phosphorylation state. In this study, depolarization (potassium chloride-driven activity increased the level of active CRMP2 by decreasing its phosphorylation by GSK3β via a reduction in priming by Cdk5. To determine the contribution of CRMP2 in activity-driven neurite outgrowth, we screened a limited set of compounds for their ability to reduce neurite outgrowth but not modify voltage-gated sodium channel (VGSC biophysical properties. This led to the identification of (S-lacosamide ((S-LCM, a stereoisomer of the clinically used antiepileptic drug (R-LCM (Vimpat®, as a novel tool for preferentially targeting CRMP2-mediated neurite outgrowth. Whereas (S-LCM was ineffective in targeting VGSCs, the presumptive pharmacological targets of (R-LCM, (S-LCM was more efficient than (R-LCM in subverting neurite outgrowth. Biomolecular interaction analyses revealed that (S-LCM bound to wildtype CRMP2 with low micromolar affinity, similar to (R-LCM. Through the use of this novel tool, the activity-dependent increase in neurite outgrowth observed following depolarization was characterized to be reliant on CRMP2 function. Knockdown of CRMP2 by siRNA in cortical neurons resulted in reduced CRMP2-dependent neurite outgrowth; incubation with (S-LCM phenocopied this effect. Other CRMP2-mediated processes were unaffected. (S-LCM subverted neurite outgrowth not by affecting the canonical CRMP2-tubulin association but rather by impairing the ability of CRMP2 to promote tubulin polymerization, events that are

  16. Crosstalk between Rac1-mediated actin regulation and ROS production.

    Science.gov (United States)

    Acevedo, Alejandro; González-Billault, Christian

    2018-02-20

    The small RhoGTPase Rac1 is implicated in a variety of events related to actin cytoskeleton rearrangement. Remarkably, another event that is completely different from those related to actin regulation has the same relevance; the Rac1-mediated production of reactive oxygen species (ROS) through NADPH oxidases (NOX). Each outcome involves different Rac1 downstream effectors; on one hand, events related to the actin cytoskeleton require Rac1 to bind to WAVEs proteins and PAKs that ultimately promote actin branching and turnover, on the other, NOX-derived ROS production demands active Rac1 to be bound to a cytosolic activator of NOX. How Rac1-mediated signaling ends up promoting actin-related events, NOX-derived ROS, or both is poorly understood. Rac1 regulators, including scaffold proteins, are known to exert tight control over its functions. Hence, evidence of Rac1 regulatory events leading to both actin remodeling and NOX-mediated ROS generation are discussed. Moreover, cellular functions linked to physiological and pathological conditions that exhibit crosstalk between Rac1 outcomes are analyzed, while plausible roles in neuronal functions (and dysfunctions) are highlighted. Together, discussed evidence shed light on cellular mechanisms which requires Rac1 to direct either actin- and/or ROS-related events, helping to understand crucial roles of Rac1 dual functionality. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Calmodulin-mediated activation of Akt regulates survival of c-Myc-overexpressing mouse mammary carcinoma cells.

    Science.gov (United States)

    Deb, Tushar B; Coticchia, Christine M; Dickson, Robert B

    2004-09-10

    c-Myc-overexpressing mammary epithelial cells are proapoptotic; their survival is strongly promoted by epidermal growth factor (EGF). We now demonstrate that EGF-induced Akt activation and survival in transgenic mouse mammary tumor virus-c-Myc mouse mammary carcinoma cells are both calcium/calmodulin-dependent. Akt activation is abolished by the phospholipase C-gamma inhibitor U-73122, by the intracellular calcium chelator BAPTA-AM, and by the specific calmodulin antagonist W-7. These results implicate calcium/calmodulin in the activation of Akt in these cells. In addition, Akt activation by serum and insulin is also inhibited by W-7. EGF-induced and calcium/calmodulin-mediated Akt activation occurs in both tumorigenic and non-tumorigenic mouse and human mammary epithelial cells, independent of their overexpression of c-Myc. These results imply that calcium/calmodulin may be a common regulator of Akt activation, irrespective of upstream receptor activator, mammalian species, and transformation status in mammary epithelial cells. However, only c-Myc-overexpressing mouse mammary carcinoma cells (but not normal mouse mammary epithelial cells) undergo apoptosis in the presence of the calmodulin antagonist W-7, indicating the vital selective role of calmodulin for survival of these cells. Calcium/calmodulin-regulated Akt activation is mediated directly by neither calmodulin kinases nor phosphatidylinositol 3-kinase (PI-3 kinase). Pharmacological inhibitors of calmodulin kinase kinase and calmodulin kinases II and III do not inhibit EGF-induced Akt activation, and calmodulin antagonist W-7 does not inhibit phosphotyrosine-associated PI-3 kinase activation. Akt is, however, co-immunoprecipitated with calmodulin in an EGF-dependent manner, which is inhibited by calmodulin antagonist W-7. We conclude that calmodulin may serve a vital regulatory function to direct the localization of Akt to the plasma membrane for its activation by PI-3 kinase.

  18. BID-dependent release of mitochondrial SMAC dampens XIAP-mediated immunity against Shigella

    Science.gov (United States)

    Andree, Maria; Seeger, Jens M; Schüll, Stephan; Coutelle, Oliver; Wagner-Stippich, Diana; Wiegmann, Katja; Wunderlich, Claudia M; Brinkmann, Kerstin; Broxtermann, Pia; Witt, Axel; Fritsch, Melanie; Martinelli, Paola; Bielig, Harald; Lamkemeyer, Tobias; Rugarli, Elena I; Kaufmann, Thomas; Sterner-Kock, Anja; Wunderlich, F Thomas; Villunger, Andreas; Martins, L Miguel; Krönke, Martin; Kufer, Thomas A; Utermöhlen, Olaf; Kashkar, Hamid

    2014-01-01

    The X-linked inhibitor of apoptosis protein (XIAP) is a potent caspase inhibitor, best known for its anti-apoptotic function in cancer. During apoptosis, XIAP is antagonized by SMAC, which is released from the mitochondria upon caspase-mediated activation of BID. Recent studies suggest that XIAP is involved in immune signaling. Here, we explore XIAP as an important mediator of an immune response against the enteroinvasive bacterium Shigella flexneri, both in vitro and in vivo. Our data demonstrate for the first time that Shigella evades the XIAP-mediated immune response by inducing the BID-dependent release of SMAC from the mitochondria. Unlike apoptotic stimuli, Shigella activates the calpain-dependent cleavage of BID to trigger the release of SMAC, which antagonizes the inflammatory action of XIAP without inducing apoptosis. Our results demonstrate how the cellular death machinery can be subverted by an invasive pathogen to ensure bacterial colonization. PMID:25056906

  19. Sirt1 negatively regulates FcεRI-mediated mast cell activation through AMPK- and PTP1B-dependent processes.

    Science.gov (United States)

    Li, Xian; Lee, Youn Ju; Jin, Fansi; Park, Young Na; Deng, Yifeng; Kang, Youra; Yang, Ju Hye; Chang, Jae-Hoon; Kim, Dong-Young; Kim, Jung-Ae; Chang, Young-Chae; Ko, Hyun-Jeong; Kim, Cheorl-Ho; Murakami, Makoto; Chang, Hyeun Wook

    2017-07-25

    Sirt1, a key regulator of metabolism and longevity, has recently been implicated in the regulation of allergic reactions, although the underlying mechanism remains unclear. Here we show that Sirt1 negatively regulates FcεRI-stimulated mast cell activation and anaphylaxis through two mutually regulated pathways involving AMP-activated protein kinase (AMPK) and protein tyrosine phosphatase 1B (PTP1B). Mast cell-specific knockout of Sirt1 dampened AMPK-dependent suppression of FcεRI signaling, thereby augmenting mast cell activation both in vitro and in vivo. Sirt1 inhibition of FcεRI signaling also involved an alternative component, PTP1B, which attenuated the inhibitory AMPK pathway and conversely enhanced the stimulatory Syk pathway, uncovering a novel role of this phosphatase. Moreover, a Sirt1 activator resveratrol stimulated the inhibitory AMPK axis, with reciprocal suppression of the stimulatory PTP1B/Syk axis, thus potently inhibiting anaphylaxis. Overall, our results provide a molecular explanation for the beneficial role of Sirt1 in allergy and underscore a potential application of Sirt1 activators as a new class of anti-allergic agents.

  20. Activation of CFTR by ASBT-mediated bile salt absorption

    NARCIS (Netherlands)

    Bijvelds, MJC; Jorna, H; Verkade, HJ; Bot, AGM; Hofmann, F; Agellon, LB; Sinaasappel, M; de Jonge, HR

    2005-01-01

    In cholangiocytes, bile salt (BS) uptake via the apical sodium-dependent bile acid transporter (ASBT) may evoke ductular flow by enhancing cAMP-mediated signaling to the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel. We considered that ASBT-mediated BS uptake in the distal

  1. PPAR-alpha dependent regulation of vanin-1 mediates hepatic lipid metabolism

    NARCIS (Netherlands)

    Diepen, van J.A.; Jansen, P.A.; Ballak, D.B.; Hijmans, A.; Hooiveld, G.J.E.J.; Rommelaere, S.; Kersten, A.H.; Stienstra, R.

    2014-01-01

    Background & Aims Peroxisome proliferator-activated receptor alpha (PPARa) is a key regulator of hepatic fat oxidation that serves as an energy source during starvation. Vanin-1 has been described as a putative PPARa target gene in liver, but its function in hepatic lipid metabolism is unknown.

  2. GDF15 regulates Kv2.1-mediated outward K+ current through the Akt/mTOR signalling pathway in rat cerebellar granule cells.

    Science.gov (United States)

    Wang, Chang-Ying; Huang, An-Qi; Zhou, Meng-Hua; Mei, Yan-Ai

    2014-05-15

    GDF15 (growth/differentiation factor 15), a novel member of the TGFβ (transforming growth factor β) superfamily, plays critical roles in the central and peripheral nervous systems, but the signal transduction pathways and receptor subtypes involved are not well understood. In the present paper, we report that GDF15 specifically increases the IK (delayed-rectifier outward K+ current) in rat CGNs (cerebellar granule neurons) in time- and concentration-dependent manners. The GDF15-induced amplification of the IK is mediated by the increased expression and reduced lysosome-dependent degradation of the Kv2.1 protein, the main α-subunit of the IK channel. Exposure of CGNs to GDF15 markedly induced the phosphorylation of ERK (extracellular-signal-regulated kinase), Akt and mTOR (mammalian target of rapamycin), but the GDF15-induced IK densities and increased expression of Kv2.1 were attenuated only by Akt and mTOR, and not ERK, inhibitors. Pharmacological inhibition of the Src-mediated phosphorylation of TGFβR2 (TGFβ receptor 2), not TGFβR1, abrogated the effect of GDF15 on IK amplification and Kv2.1 induction. Immunoprecipitation assays showed that GDF15 increased the tyrosine phosphorylation of TGFβRII in the CGN lysate. The results of the present study reveal a novel regulation of Kv2.1 by GDF15 mediated through the TGFβRII-activated Akt/mTOR pathway, which is a previously uncharacterized Smad-independent mechanism of GDF15 signalling.

  3. sRNA-Mediated Regulation of P-Fimbriae Phase Variation in Uropathogenic Escherichia coli

    DEFF Research Database (Denmark)

    Khandige, Surabhi; Kronborg, Tina; Uhlin, Bernt Eric

    2015-01-01

    Uropathogenic Escherichia coli (UPEC) are capable of occupying physiologically distinct intracellular and extracellular niches within the urinary tract. This feat requires the timely regulation of gene expression and small RNAs (sRNAs) are known to mediate such rapid adjustments in response to ch...... to changing environmental cues. This study aimed to uncover sRNA-mediated gene regulation in the UPEC strain UTI89, during infection of bladder epithelial cells. Hfq is an RNA chaperone known to facilitate and stabilize sRNA and target mRNA interactions with bacterial cells. The co...... to the discovery of a novel virulence-associated trans-acting sRNA-PapR. Deletion of papR was found to enhance adhesion of UTI89 to both bladder and kidney cell lines in a manner independent of type-1 fimbriae. We demonstrate PapR mediated posttranscriptional repression of the P-fimbriae phase regulator gene pap...

  4. Warm and harsh parenting as mediators of the relation between maternal and adolescent emotion regulation.

    Science.gov (United States)

    Sarıtaş, Dilek; Grusec, Joan E; Gençöz, Tülin

    2013-12-01

    Maternal hostility/rejection and warmth were considered as potential mediators of the relation between mothers' and adolescents' emotion regulation. Participants were first-year high school students living in Ankara, Turkey and their mothers (N = 365). Scales assessing emotion regulation difficulties and maternal hostility/rejection and warmth were administered to both the adolescents and their mothers. Maternal hostility/rejection, but not warmth, mediated the relation between maternal and adolescent emotion regulation. For girls there was, additionally, a direct effect of maternal emotion regulation. The different roles played by parental rejection and parental warmth in the development of adolescents' emotion regulation accord with arguments that socialization occurs in different domains and that rejection and warmth are not aspects of the same domain. Copyright © 2013 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.

  5. GGA1 regulates signal-dependent sorting of BACE1 to recycling endosomes, which moderates Aβ production

    Science.gov (United States)

    Toh, Wei Hong; Chia, Pei Zhi Cheryl; Hossain, Mohammed Iqbal; Gleeson, Paul A.

    2018-01-01

    The diversion of the membrane-bound β-site amyloid precursor protein–(APP) cleaving enzyme (BACE1) from the endolysosomal pathway to recycling endosomes represents an important transport step in the regulation of amyloid beta (Aβ) production. However, the mechanisms that regulate endosome sorting of BACE1 are poorly understood. Here we assessed the transport of BACE1 from early to recycling endosomes and have identified essential roles for the sorting nexin 4 (SNX4)-mediated, signal-independent pathway and for a novel signal-mediated pathway. The signal-mediated pathway is regulated by the phosphorylation of the DXXLL-motif sequence DISLL in the cytoplasmic tail of BACE1. The phosphomimetic S498D BACE1 mutant was trafficked to recycling endosomes at a faster rate compared with wild-type BACE1 or the nonphosphorylatable S498A mutant. The rapid transit of BACE1 S498D from early endosomes was coupled with reduced levels of amyloid precursor protein processing and Aβ production, compared with the S498A mutant. We show that the adaptor, GGA1, and retromer are essential to mediate rapid trafficking of phosphorylated BACE1 to recycling endosomes. In addition, the BACE1 DISLL motif is phosphorylated and regulates endosomal trafficking, in primary neurons. Therefore, post-translational phosphorylation of DISLL enhances the exit of BACE1 from early endosomes, a pathway mediated by GGA1 and retromer, which is important in regulating Aβ production. PMID:29142073

  6. Activating transcription factor 6 mediates oxidized LDL-induced cholesterol accumulation and apoptosis in macrophages by up-regulating CHOP expression.

    Science.gov (United States)

    Yao, Shutong; Zong, Chuanlong; Zhang, Ying; Sang, Hui; Yang, Mingfeng; Jiao, Peng; Fang, Yongqi; Yang, Nana; Song, Guohua; Qin, Shucun

    2013-01-01

    This study was to explore whether activating transcription factor 6 (ATF6), an important sensor to endoplasmic reticulum (ER) stress, would mediate oxidized low-density lipoprotein (ox-LDL)- induced cholesterol accumulation and apoptosis in cultured macrophages and the underlying molecular mechanisms. Intracellular lipid droplets and total cholesterol levels were assayed by oil red O staining and enzymatic colorimetry, respectively. Cell viability and apoptosis were determined using MTT assay and AnnexinV-FITC apoptosis detection kit, respectively. The nuclear translocation of ATF6 in cells was detected by immunofluorescence analysis. Protein and mRNA levels were examined by Western blot analysis and real time-PCR, respectively. ATF6 siRNA was transfected to RAW264.7 cells by lipofectamin. Exposure of cells to ox-LDL induced glucose-regulated protein 78 (GRP78). C/EBP homologous protein (CHOP), a key-signaling component of ER stress-induced apoptosis, was up-regulated in ox-LDL-treated cells. ATF6, a factor that positively regulates CHOP expression, was activated by ox-LDL in a concentration- and time- dependent manner. The role of the ATF6-mediated ER stress pathway was further confirmed through the siRNA-mediated knockdown of ATF6, which attenuated ox-LDL-induced upregulation of CHOP, cholesterol accumulation and apoptosis in macrophages. In addition, the phosphorylation of double-stranded RNA-activated protein kinase-like endoplasmic reticulum kinase (PERK), another factor that positively regulates CHOP expression, was induced in the presence of ox-LDL, and PERK-specific siRNA also inhibited the ox-LDL-induced upregulation of CHOP and apoptosis in RAW264.7 cells. These results demonstrate that ER stress-related proteins, particularly ATF6 and its downstream molecule CHOP, are involved in ox-LDL-induced cholesterol accumulation and apoptosis in macrophages.

  7. Imaging TCR-Dependent NFAT-Mediated T-Cell Activation with Positron Emission Tomography In Vivo

    Directory of Open Access Journals (Sweden)

    Vladimir Ponomarev

    2001-01-01

    Full Text Available A noninvasive method for molecular imaging of T-cell activity in vivo would be of considerable value. It would aid in understanding the role of specific genes and signal transduction pathways in the course of normal and pathologic immune responses, could elucidate temporal dynamics and immune regulation at different stages of disease and following therapy. We developed and assessed a novel method for monitoring the T-cell receptor (TCR -dependent nuclear factor of activated T cells (NFAT -mediated activation of T cells by optical fluorescence imaging (OFI and positron emission tomography (PET. The herpes simplex virus type 1 thymidine kinase/green fluorescent protein [HSV1-tk/GFP (TKGFP ] dual reporter gene was used to monitor NFAT-mediated transcriptional activation in human Jurkat cells. A recombinant retrovirus bearing the NFAT-TKGFP reporter system was constructed in which the TKGFP reporter gene was placed under control of an artificial cis-acting NFAT-specific enhancer. Transduced Jurkat cells were used to establish subcutaneous infiltrates in nude rats. We demonstrated that noninvasive OR and nuclear imaging of T-cell activation is feasible using the NFAT-TKGFP reporter system. PET imaging with [124]FIAU using the NFAT-TKGFP reporter system is sufficiently sensitive to detect T-cell activation in vivo. PET images were confirmed by independent measurements of T-cell activation (e.g., CD69 and induction of GFP fluorescence. PET imaging of TCR-induced NFAT-dependent transcriptional activity may be useful in the assessment of T cell responses, T-cell-based adoptive therapies, vaccination strategies and immunosuppressive drugs.

  8. IMBALANCE OF DNA METHYLATION, BOTH HYPERMETHYLATION AND HYPOMETHYLATION, OCCUR AFTER EXPOSURE OF HUMAN CELLS TO NANOMOLAR CONCENTRATIONS OF ARSENITE IN CULTURE.

    Science.gov (United States)

    Imbalance of DNA methylation, BOTH hypermethylation and hypomethylation, occur after exposure of human cells to nanomolar concentrations of arsenite in culture.We and others have hypothesized that a mechanism of arsenic carcinogenesis could involve alteration of DNA methy...

  9. Nipbl and mediator cooperatively regulate gene expression to control limb development.

    Directory of Open Access Journals (Sweden)

    Akihiko Muto

    2014-09-01

    Full Text Available Haploinsufficiency for Nipbl, a cohesin loading protein, causes Cornelia de Lange Syndrome (CdLS, the most common "cohesinopathy". It has been proposed that the effects of Nipbl-haploinsufficiency result from disruption of long-range communication between DNA elements. Here we use zebrafish and mouse models of CdLS to examine how transcriptional changes caused by Nipbl deficiency give rise to limb defects, a common condition in individuals with CdLS. In the zebrafish pectoral fin (forelimb, knockdown of Nipbl expression led to size reductions and patterning defects that were preceded by dysregulated expression of key early limb development genes, including fgfs, shha, hand2 and multiple hox genes. In limb buds of Nipbl-haploinsufficient mice, transcriptome analysis revealed many similar gene expression changes, as well as altered expression of additional classes of genes that play roles in limb development. In both species, the pattern of dysregulation of hox-gene expression depended on genomic location within the Hox clusters. In view of studies suggesting that Nipbl colocalizes with the mediator complex, which facilitates enhancer-promoter communication, we also examined zebrafish deficient for the Med12 Mediator subunit, and found they resembled Nipbl-deficient fish in both morphology and gene expression. Moreover, combined partial reduction of both Nipbl and Med12 had a strongly synergistic effect, consistent with both molecules acting in a common pathway. In addition, three-dimensional fluorescent in situ hybridization revealed that Nipbl and Med12 are required to bring regions containing long-range enhancers into close proximity with the zebrafish hoxda cluster. These data demonstrate a crucial role for Nipbl in limb development, and support the view that its actions on multiple gene pathways result from its influence, together with Mediator, on regulation of long-range chromosomal interactions.

  10. Exercise dependence as a mediator of the exercise and eating disorders relationship: a pilot study.

    Science.gov (United States)

    Cook, Brian; Hausenblas, Heather; Crosby, Ross D; Cao, Li; Wonderlich, Stephen A

    2015-01-01

    Excessive exercise is a common feature of eating disorders (ED) and is associated with earlier ED onset, more ED symptoms, and higher persistence of ED behavior. Research indicates that exercise amount alone is not associated with ED. The purpose of this study was to investigate pathological attitudes and behaviors related to exercise (e.g., exercise dependence) as a mediator of the exercise and ED relationship. Participants were 43 women with an ED who completed measures of ED symptoms, exercise behavior, and exercise dependence. Analyses were conducted using the indirect bootstrapping method for examining mediation. Exercise dependence mediated the relationship between exercise and ED. This mediation model accounted for 14.34% of the variance in the relationship. Our results extend the literature by offering preliminary evidence of a psychological variable that may be a candidate for future interventions on the exercise and ED relationship. Implications and suggestions for future research are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Phosphatidylserine Sensing by TAM Receptors Regulates AKT-Dependent Chemoresistance and PD-L1 Expression.

    Science.gov (United States)

    Kasikara, Canan; Kumar, Sushil; Kimani, Stanley; Tsou, Wen-I; Geng, Ke; Davra, Viralkumar; Sriram, Ganapathy; Devoe, Connor; Nguyen, Khanh-Quynh N; Antes, Anita; Krantz, Allen; Rymarczyk, Grzegorz; Wilczynski, Andrzej; Empig, Cyril; Freimark, Bruce; Gray, Michael; Schlunegger, Kyle; Hutchins, Jeff; Kotenko, Sergei V; Birge, Raymond B

    2017-06-01

    Tyro3, Axl, and Mertk (collectively TAM receptors) are three homologous receptor tyrosine kinases that bind vitamin K-dependent endogenous ligands, Protein S (ProS), and growth arrest-specific factor 6 (Gas6), and act as bridging molecules to promote phosphatidylserine (PS)-mediated clearance of apoptotic cells (efferocytosis). TAM receptors are overexpressed in a vast array of tumor types, whereby the level of expression correlates with the tumor grade and the emergence of chemo- and radioresistance to targeted therapeutics, but also have been implicated as inhibitory receptors on infiltrating myeloid-derived cells in the tumor microenvironment that can suppress host antitumor immunity. In the present study, we utilized TAM-IFNγR1 reporter lines and expressed TAM receptors in a variety of epithelial cell model systems to show that each TAM receptor has a unique pattern of activation by Gas6 or ProS, as well as unique dependency for PS on apoptotic cells and PS liposomes for activity. In addition, we leveraged this system to engineer epithelial cells that express wild-type TAM receptors and show that although each receptor can promote PS-mediated efferocytosis, AKT-mediated chemoresistance, as well as upregulate the immune checkpoint molecule PD-L1 on tumor cells, Mertk is most dominant in the aforementioned pathways. Functionally, TAM receptor-mediated efferocytosis could be partially blocked by PS-targeting antibody 11.31 and Annexin V, demonstrating the existence of a PS/PS receptor (i.e., TAM receptor)/PD-L1 axis that operates in epithelial cells to foster immune escape. These data provide a rationale that PS-targeting, anti-TAM receptor, and anti-PD-L1-based therapeutics will have merit as combinatorial checkpoint inhibitors. Implications: Many tumor cells are known to upregulate the immune checkpoint inhibitor PD-L1. This study demonstrates a role for PS and TAM receptors in the regulation of PD-L1 on cancer cells. Mol Cancer Res; 15(6); 753-64. ©2017 AACR

  12. Fe-Mn binary oxide incorporated into diatomite as an adsorbent for arsenite removal: preparation and evaluation.

    Science.gov (United States)

    Chang, Fangfang; Qu, Jiuhui; Liu, Huijuan; Liu, Ruiping; Zhao, Xu

    2009-10-15

    Fe-Mn binary oxide incorporated into diatomite (FMBO-diatomite) was prepared by a simple coating method, and exhibited high oxidation and adsorption ability for arsenite [As(III)]. After being incorporated by Fe-Mn binary oxide, the surface area of diatomite increased 36%, and the pore volume increased five times. The pHzpc of FMBO-diatomite was determined to be 8.1. These characteristics are responsible for the increased As(III) adsorption efficiency. The adsorption equilibria of As(III) on FMBO-diatomite were described well by a Langmuir isotherm model due to the homogeneous distribution of Fe-Mn binary oxide on a diatomite surface. As(III) was oxidized into As(V), and then adsorbed by FMBO-diatomite. The oxidation and adsorption efficiencies for As(III) depended deeply on the pH of solution. When the pH was raised to 8.1, the As(III) adsorption efficiency of FMBO-diatomite was almost equal to the As(III) oxidation efficiency. Silicate and phosphate had negative effects on As(III) adsorption. Also the influence of silicate and phosphate with the pH variation was different.

  13. CRM1-mediated nuclear export is required for 26 S proteasome-dependent degradation of the TRIP-Br2 proto-oncoprotein.

    Science.gov (United States)

    Cheong, Jit Kong; Gunaratnam, Lakshman; Hsu, Stephen I-Hong

    2008-04-25

    Overexpression of the proto-oncogene TRIP-Br2 (SERTAD2) has been shown to induce E2F activity and promote tumorigenesis, whereas ablation of TRIP-Br2 arrests cell proliferation. Timely degradation of many cell cycle regulators is fundamental to the maintenance of proper cell cycle progression. Here we report novel mechanism(s) that govern the tight regulation of TRIP-Br2 levels during cell cycle progression. TRIP-Br2 was observed to be a short-lived protein in which the expression level peaks at the G(1)/S boundary. TRIP-Br2 accumulated in cells treated with 26 S proteasome inhibitors. Co-immunoprecipitation studies revealed that TRIP-Br2 forms ubiquitin conjugates. In silico analysis identified a putative leucine-rich nuclear export signal (NES) motif that overlaps with the PHD-Bromo interaction domain in the acidic C-terminal transactivation domain (TAD) of TRIP-Br2. This NES motif is highly conserved in widely divergent species and in all TRIP-Br family members. TRIP-Br2 was shown to be stabilized in G(2)/M phase cells through nuclear entrapment, either by deletion of the acidic C-terminal TAD, which includes the NES motif, or by leptomycin B-mediated inhibition of the CRM1-dependent nuclear export machinery. Mutation of leucine residue 238 of this NES motif abolished the interaction between CRM1 and TRIP-Br2, as well as the nuclear export of TRIP-Br2 and its subsequent 26 S proteasome-dependent degradation. These data suggest that CRM1-mediated nuclear export may be required for the proper execution of ubiquitin-proteasome-dependent degradation of TRIP-Br2.

  14. Mediator-dependent Nuclear Receptor Functions

    Science.gov (United States)

    Chen, Wei; Roeder, Robert

    2011-01-01

    As gene-specific transcription factors, nuclear hormone receptors are broadly involved in many important biological processes. Their function on target genes requires the stepwise assembly of different coactivator complexes that facilitate chromatin remodeling and subsequent preinitiation complex (PIC) formation and function. Mediator has proved to be a crucial, and general, nuclear receptor-interacting coactivator, with demonstrated functions in transcription steps ranging from chromatin remodeling to subsequent PIC formation and function. Here we discuss (i) our current understanding of pathways that nuclear receptors and other interacting cofactors employ to recruit Mediator to target gene enhancers and promoters, including conditional requirements for the strong NR-Mediator interactions mediated by the NR AF2 domain and the MED1 LXXLLL motifs and (ii) mechanisms by which Mediator acts to transmit signals from enhancer-bound nuclear receptors to the general transcription machinery at core promoters to effect PIC formation and function. PMID:21854863

  15. Mediator kinase module and human tumorigenesis.

    Science.gov (United States)

    Clark, Alison D; Oldenbroek, Marieke; Boyer, Thomas G

    2015-01-01

    Mediator is a conserved multi-subunit signal processor through which regulatory informatiosn conveyed by gene-specific transcription factors is transduced to RNA Polymerase II (Pol II). In humans, MED13, MED12, CDK8 and Cyclin C (CycC) comprise a four-subunit "kinase" module that exists in variable association with a 26-subunit Mediator core. Genetic and biochemical studies have established the Mediator kinase module as a major ingress of developmental and oncogenic signaling through Mediator, and much of its function in signal-dependent gene regulation derives from its resident CDK8 kinase activity. For example, CDK8-targeted substrate phosphorylation impacts transcription factor half-life, Pol II activity and chromatin chemistry and functional status. Recent structural and biochemical studies have revealed a precise network of physical and functional subunit interactions required for proper kinase module activity. Accordingly, pathologic change in this activity through altered expression or mutation of constituent kinase module subunits can have profound consequences for altered signaling and tumor formation. Herein, we review the structural organization, biological function and oncogenic potential of the Mediator kinase module. We focus principally on tumor-associated alterations in kinase module subunits for which mechanistic relationships as opposed to strictly correlative associations are established. These considerations point to an emerging picture of the Mediator kinase module as an oncogenic unit, one in which pathogenic activation/deactivation through component change drives tumor formation through perturbation of signal-dependent gene regulation. It follows that therapeutic strategies to combat CDK8-driven tumors will involve targeted modulation of CDK8 activity or pharmacologic manipulation of dysregulated CDK8-dependent signaling pathways.

  16. Emotion Regulation and Aggressive Behavior in Preschoolers: The Mediating Role of Social Information Processing

    Science.gov (United States)

    Helmsen, Johanna; Koglin, Ute; Petermann, Franz

    2012-01-01

    This study examined whether the relation between maladaptive emotion regulation and aggression was mediated by deviant social information processing (SIP). Participants were 193 preschool children. Emotion regulation and aggression were rated by teachers. Deviant SIP (i.e., attribution of hostile intent, aggressive response generation, aggressive…

  17. Phytochrome B Mediates the Regulation of Chlorophyll Biosynthesis through Transcriptional Regulation of ChlH and GUN4 in Rice Seedlings

    Science.gov (United States)

    Kagawa, Takatoshi; Tanaka, Ayumi; Ueno, Osamu; Shimada, Hiroaki; Takano, Makoto

    2015-01-01

    Accurate regulation of chlorophyll synthesis is crucial for chloroplast formation during the greening process in angiosperms. In this study, we examined the role of phytochrome B (phyB) in the regulation of chlorophyll synthesis in rice seedlings (Oryza sativa L.) through the characterization of a pale-green phenotype observed in the phyB mutant grown under continuous red light (Rc) irradiation. Our results show that the Rc-induced chlorophyll accumulation can be divided into two components—a phyB-dependent and a phyB-independent component, and that the pale-green phenotype is caused by the absence of the phyB-dependent component. To elucidate the role of the missing component we established an Rc-induced greening experiment, the results of which revealed that several genes encoding proteins on the chlorophyll branch were repressed in the phyB mutant. Notable among them were ChlH and GUN4 genes, which encode subunit H and an activating factor of magnesium chelatase (Mg-chelatase), respectively, that were largely repressed in the mutant. Moreover, the kinetic profiles of chlorophyll precursors suggested that Mg-chelatase activity simultaneously decreased with the reduction in the transcript levels of ChlH and GUN4. These results suggest that phyB mediates the regulation of chlorophyll synthesis through transcriptional regulation of these two genes, whose products exert their action at the branching point of the chlorophyll biosynthesis pathway. Reduction of 5-aminolevulinic acid (5-ALA) synthesis could be detected in the mutant, but the kinetic profiles of chlorophyll precursors indicated that it was an event posterior to the reduction of the Mg-chelatase activity. It means that the repression of 5-ALA synthesis should not be a triggering event for the appearance of the pale-green phenotype. Instead, the repression of 5-ALA synthesis might be important for the subsequent stabilization of the pale-green phenotype for preventing excessive accumulation of hazardous

  18. [Psychological aspects of emotional regulation in smoking dependency].

    Science.gov (United States)

    Carton, S

    2001-04-01

    We reviewed the literature on the relationships between smoking and affect regulation. There is strong evidence that vulnerability to smoking dependence is a function of a high initial sensitivity to nicotine, which produces reinforcing consequences that lead to chronic use. These strong reinforcers of tobacco dependence include regulation of mood and modulation of arousal. We focused on studies concerned with the subjective component of arousal and emotional experience. We discuss first the models and classifications used to differentiate types of smoking as related to the management of emotions and studies evaluating the stimulant and subjective effects of smoking behavior, questioning the paradoxical tranquilizing and anxiety-reducing effects of nicotine. We also looked into the mood regulation effects that may explain the strong relationships observed between depression and smoking and finally focus on some of the personality risk factors that may make individuals more susceptible to these rewarding properties of smoking.

  19. RIP1 regulates TNF-α-mediated lymphangiogenesis and lymphatic metastasis in gallbladder cancer by modulating the NF-κB-VEGF-C pathway.

    Science.gov (United States)

    Li, Cheng-Zong; Jiang, Xiao-Jie; Lin, Bin; Hong, Hai-Jie; Zhu, Si-Yuan; Jiang, Lei; Wang, Xiao-Qian; Tang, Nan-Hong; She, Fei-Fei; Chen, Yan-Ling

    2018-01-01

    Tumor necrosis factor alpha (TNF-α) enhances lymphangiogenesis in gallbladder carcinoma (GBC) via activation of nuclear factor (NF-κB)-dependent vascular endothelial growth factor-C (VEGF-C). Receptor-interacting protein 1 (RIP1) is a multifunctional protein in the TNF-α signaling pathway and is highly expressed in GBC. However, whether RIP1 participates in the signaling pathway of TNF-α-mediated VEGF-C expression that enhances lymphangiogenesis in GBC remains unclear. The RIP1 protein levels in the GBC-SD and NOZ cells upon stimulation with increasing concentrations of TNF-α as indicated was examined using Western blot. Lentiviral RIP1 shRNA and siIκBα were constructed and transduced respectively them into NOZ and GBC-SD cells, and then PcDNA3.1-RIP1 vectors was transduced into siRIP1 cell lines to reverse RIP1 expression. The protein expression of RIP1, inhibitor of NF-κB alpha (IκBα), p-IκBα, TAK1, NF-κB essential modulator were examined through immunoblotting or immunoprecipitation. Moreover, VEGF-C mRNA levels were measured by quantitative real-time polymerase chain reaction, VEGF-C protein levels were measured by immunoblotting and enzyme-linked immunosorbent assay, and VEGF-C promoter and NF-κB activities were quantified using a dual luciferase reporter assay. The association of NF-κB with the VEGF-C promoter was analysed by chromatin immunoprecipitation assay. A three-dimensional coculture method and orthotopic transplantation nude mice model were used to evaluate lymphatic tube-forming and metastasis ability in GBC cells. The expression of RIP1 protein, TNF-α protein and lymphatic vessels in human GBC tissues was examined by immunohistochemistry, and the dependence between RIP1 protein with TNF-α protein and lymphatic vessel density was analysed. TNF-α dose- and time-dependently increased RIP1 protein expression in the GBC-SD and NOZ cells of GBC, and the strongest effect was observed with a concentration of 50 ng/ml. RIP1 is fundamental

  20. An ethanol extract of Piper betle Linn. mediates its anti-inflammatory activity via down-regulation of nitric oxide.

    Science.gov (United States)

    Ganguly, Sudipto; Mula, Soumyaditya; Chattopadhyay, Subrata; Chatterjee, Mitali

    2007-05-01

    The leaves of Piper betle (locally known as Paan) have long been in use in the Indian indigenous system of medicine for the relief of pain; however, the underlying molecular mechanisms of this effect have not been elucidated. The anti-inflammatory and immunomodulatory effects of an ethanolic extract of the leaves of P. betle (100 mg kg(-1); PB) were demonstrated in a complete Freund's adjuvant-induced model of arthritis in rats with dexamethasone (0.1 mg kg(-1)) as the positive control. At non-toxic concentrations of PB (5-25 microg mL(-1)), a dose-dependent decrease in extracellular production of nitric oxide in murine peritoneal macrophages was measured by the Griess assay and corroborated by flow cytometry using the nitric oxide specific probe, 4,5-diaminofluorescein-2 diacetate. This decreased generation of reactive nitrogen species was mediated by PB progressively down-regulating transcription of inducible nitric oxide synthase in macrophages, and concomitantly causing a dose-dependent decrease in the expression of interleukin-12 p40, indicating the ability of PB to down-regulate T-helper 1 pro-inflammatory responses. Taken together, the anti-inflammatory and anti-arthrotic activity of PB is attributable to its ability to down-regulate the generation of reactive nitrogen species, thus meriting further pharmacological investigation.

  1. Vitex rotundifolia Fruit Suppresses the Proliferation of Human Colorectal Cancer Cells through Down-regulation of Cyclin D1 and CDK4 via Proteasomal-Dependent Degradation and Transcriptional Inhibition.

    Science.gov (United States)

    Song, Hun Min; Park, Gwang Hun; Park, Su Bin; Kim, Hyun-Seok; Son, Ho-Jun; Um, Yurry; Jeong, Jin Boo

    2018-01-01

    Viticis Fructus (VF) as the dried fruit from Vitex rotundifolia L. used as a traditional medicine for treating inflammation, headache, migraine, chronic bronchitis, eye pain, and gastrointestinal infections has been reported to have antiproliferative effects against various cancer cells, including breast, lung and colorectal cancer cells. However, the molecular mechanisms by which VF mediates the inhibitory effect of the proliferation of cancer cells have not been elucidated in detail. In this study, we investigated the molecular mechanism of VF on the down-regulation of cyclin D1 and CDK4 level associated with cancer cell proliferation. VF suppressed the proliferation of human colorectal cancer cell lines such as HCT116 and SW480. VF induced decrease in cyclin D1 and CDK4 in both protein and mRNA levels. However, the protein levels of cyclin D1 and CDK4 were decreased by VF at an earlier time than the change of mRNA levels; rather it suppressed the expression of cyclin D1 and CDK4 via the proteasomal degradation. In cyclin D1 and CDK4 degradation, we found that Thr286 phosphorylation of cyclin D1 plays a pivotal role in VF-mediated cyclin D1 degradation. Subsequent experiments with several kinase inhibitors suggest that VF-mediated degradation of cyclin D1 may be dependent on GSK3[Formula: see text] and VF-mediated degradation of CDK4 is dependent on ERK1/2, p38 and GSK3[Formula: see text]. In the transcriptional regulation of cyclin D1 and CDK4, we found that VF inhibited Wnt activation associated with cyclin D1 transcriptional regulation through TCF4 down-regulation. In addition, VF treatment down-regulated c-myc expression associated CDK4 transcriptional regulation. Our results suggest that VF has potential to be a candidate for the development of chemoprevention or therapeutic agents for human colorectal cancer.

  2. Work Environment Characteristics and Teacher Well-Being: The Mediation of Emotion Regulation Strategies

    Directory of Open Access Journals (Sweden)

    Hongbiao Yin

    2016-09-01

    Full Text Available Based on an adjusted Job Demands-Resources (JD-R model that considers the mediation of personal resources, this study examined the relationships between two characteristics of teachers’ work environment (i.e., emotional job demands and trust in colleagues and two indicators of teachers’ well-being (i.e., teaching satisfaction and emotional exhaustion. In particular, the study focused on how emotion regulation strategies (i.e., reappraisal and suppression mediate these relationships. Data collected from a questionnaire survey of 1115 primary school teachers in Hong Kong was analyzed to test the hypothesized relationships. The results of structural equation modeling indicated that: (1 the emotional job demands of teaching were detrimental to teacher well-being, whereas trust in colleagues was beneficial; (2 both emotion regulation strategies mediated the relationships between both emotional job demands and trust in colleagues and teacher well-being; and (3 teachers who tend to use more reappraisal may be psychologically healthier than those tend to adopt more suppression. These findings support the applicability of the JD-R model to school settings and highlight the role of teachers’ emotion regulation in teachers’ well-being. Implications for the improvement of school environments and teachers’ well-being are identified.

  3. ANGUSTIFOLIA mediates one of the multiple SCRAMBLED signaling pathways regulating cell growth pattern in Arabidopsis thaliana.

    Science.gov (United States)

    Kwak, Su-Hwan; Song, Sang-Kee; Lee, Myeong Min; Schiefelbein, John

    2015-09-25

    In Arabidopsis thaliana, an atypical leucine-rich repeat receptor-like kinase, SCRAMBLED (SCM), is required for multiple developmental processes including root epidermal cell fate determination, silique dehiscence, inflorescence growth, ovule morphogenesis, and tissue morphology. Previous work suggested that SCM regulates these multiple pathways using distinct mechanisms via interactions with specific downstream factors. ANGUSTIFOLIA (AN) is known to regulate cell and tissue morphogenesis by influencing cortical microtubule arrangement, and recently, the AN protein was reported to interact with the SCM protein. Therefore, we examined whether AN might be responsible for mediating some of the SCM-dependent phenotypes. We discovered that both scm and an mutant lines cause an abnormal spiral or twisting growth of roots, but only the scm mutant affected root epidermal patterning. The siliques of the an and scm mutants also exhibited spiral growth, as previously reported, but only the scm mutant altered silique dehiscence. Interestingly, we discovered that the spiral growth of roots and siliques of the scm mutant is rescued by a truncated SCM protein that lacks its kinase domain, and that a juxtamembrane domain of SCM was sufficient for AN binding in the yeast two-hybrid analysis. These results suggest that the AN protein is one of the critical downstream factors of SCM pathways specifically responsible for mediating its effects on cell/tissue morphogenesis through cortical microtubule arrangement. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Delicate regulation of the cGAS-MITA-mediated innate immune response.

    Science.gov (United States)

    Luo, Wei-Wei; Shu, Hong-Bing

    2018-02-19

    Although it has long been demonstrated that cytosolic DNA is a potent immune stimulant, it is only in recent years that the molecular mechanisms of DNA-stimulated innate immune responses have emerged. Studies have established critical roles for the DNA sensor cyclic GMP-AMP synthase (cGAS) and the adapter protein MITA/STING in the innate immune response to cytosolic DNA or DNA viruses. Although the regulation of cGAS-MITA/STING-mediated signaling remains to be fully investigated, understanding the processes involved may help to explain the mechanisms of innate immune signaling events and perhaps autoinflammatory diseases and to provide potential therapeutic targets for drug intervention. In this review, we summarize recent progress on the regulation of the cGAS-MITA/STING-mediated innate immune response to DNA viruses at the organelle-trafficking, post-translational and transcriptional levels.Cellular & Molecular Immunology advance online publication, 19 February 2018; doi:10.1038/cmi.2016.51.

  5. Adaptive emotion regulation mediates the relationship between self-compassion and depression in individuals with unipolar depression.

    Science.gov (United States)

    Diedrich, Alice; Burger, Julian; Kirchner, Mareike; Berking, Matthias

    2017-09-01

    To identify the mechanisms involved in the association between self-compassion and depression, we examined whether adaptive emotion regulation would mediate the relationship between self-compassion and depression in individuals with unipolar depression. Furthermore, we explored which specific emotion regulation skills would be most important in this relationship. Sixty-nine individuals with unipolar depression were assessed with the Self-Compassion Scale and the Emotion Regulation Skills Questionnaire at baseline and with the Beck Depression Inventory-II 1 week later. The results showed that successful application of emotion regulation skills mediates the association between self-compassion and depression. Among eight specific emotion regulation skills, only the ability to tolerate negative emotions was identified as a significant mediator in the self-compassion-depression relationship. These findings provide preliminary evidence that systematically fostering self-compassion might help depressed individuals cope with their symptoms by enhancing their abilities to tolerate undesired emotions. Systematically fostering self-compassion through specific compassion-focused interventions might facilitate a reduction in depressive symptoms by improving the person's emotion regulation abilities, especially by improving his or her ability to tolerate negative emotions. Hence, compassion-focused interventions might be particularly promising in depressed patients with a tendency to avoid negative emotions and deficits in tolerating them. © 2016 The British Psychological Society.

  6. Environment-dependent regulation of spliceosome activity by the LSM2-8 complex in Arabidopsis.

    Science.gov (United States)

    Carrasco-López, Cristian; Hernández-Verdeja, Tamara; Perea-Resa, Carlos; Abia, David; Catalá, Rafael; Salinas, Julio

    2017-07-07

    Spliceosome activity is tightly regulated to ensure adequate splicing in response to internal and external cues. It has been suggested that core components of the spliceosome, such as the snRNPs, would participate in the control of its activity. The experimental indications supporting this proposition, however, remain scarce, and the operating mechanisms poorly understood. Here, we present genetic and molecular evidence demonstrating that the LSM2-8 complex, the protein moiety of the U6 snRNP, regulates the spliceosome activity in Arabidopsis, and that this regulation is controlled by the environmental conditions. Our results show that the complex ensures the efficiency and accuracy of constitutive and alternative splicing of selected pre-mRNAs, depending on the conditions. Moreover, miss-splicing of most targeted pre-mRNAs leads to the generation of nonsense mediated decay signatures, indicating that the LSM2-8 complex also guarantees adequate levels of the corresponding functional transcripts. Interestingly, the selective role of the complex has relevant physiological implications since it is required for adequate plant adaptation to abiotic stresses. These findings unveil an unanticipated function for the LSM2-8 complex that represents a new layer of posttranscriptional regulation in response to external stimuli in eukaryotes. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. The metazoan Mediator co-activator complex as an integrative hub for transcriptional regulation.

    Science.gov (United States)

    Malik, Sohail; Roeder, Robert G

    2010-11-01

    The Mediator is an evolutionarily conserved, multiprotein complex that is a key regulator of protein-coding genes. In metazoan cells, multiple pathways that are responsible for homeostasis, cell growth and differentiation converge on the Mediator through transcriptional activators and repressors that target one or more of the almost 30 subunits of this complex. Besides interacting directly with RNA polymerase II, Mediator has multiple functions and can interact with and coordinate the action of numerous other co-activators and co-repressors, including those acting at the level of chromatin. These interactions ultimately allow the Mediator to deliver outputs that range from maximal activation of genes to modulation of basal transcription to long-term epigenetic silencing.

  8. Relationship between cognitive emotion regulation, social support, resilience and acute stress responses in Chinese soldiers: Exploring multiple mediation model.

    Science.gov (United States)

    Cai, Wen-Peng; Pan, Yu; Zhang, Shui-Miao; Wei, Cun; Dong, Wei; Deng, Guang-Hui

    2017-10-01

    The current study aimed to explore the association of cognitive emotion regulation, social support, resilience and acute stress responses in Chinese soldiers and to understand the multiple mediation effects of social support and resilience on the relationship between cognitive emotion regulation and acute stress responses. A total of 1477 male soldiers completed mental scales, including the cognitive emotion regulation questionnaire-Chinese version, the perceived social support scale, the Chinese version of the Connor-Davidson resilience scale, and the military acute stress scale. As hypothesized, physiological responses, psychological responses, and acute stress were associated with negative-focused cognitive emotion regulation, and negatively associated with positive-focused cognitive emotion regulation, social supports and resilience. Besides, positive-focused cognitive emotion regulation, social support, and resilience were significantly associated with one another, and negative-focused cognitive emotion regulation was negatively associated with social support. Regression analysis and bootstrap analysis showed that social support and resilience had partly mediating effects on negative strategies and acute stress, and fully mediating effects on positive strategies and acute stress. These results thus indicate that military acute stress is significantly associated with cognitive emotion regulation, social support, and resilience, and that social support and resilience have multiple mediation effects on the relationship between cognitive emotion regulation and acute stress responses. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Attachment, emotion regulation and coping in Portuguese emerging adults: a test of a mediation hypothesis.

    Science.gov (United States)

    Cabral, Joana; Matos, Paula M; Beyers, Wim; Soenens, Bart

    2012-11-01

    Although the quality of parent-adolescent emotional bonds has consistently been proposed as a major influence on young adult's psycho-emotional functioning, the precise means by which these bonds either facilitate or impede adaptive coping are not well-understood. In an effort to advance this inquiry, the present study examined interrelationships among measures of parental attachment, emotion regulation processes, and preferred coping strategies within a sample of 942 college freshmen. Structural Equation Modelling was used to test whether the link between attachment to parents and the use of particular coping strategies is mediated by differences in emotion regulation mechanisms. As hypothesized, differences in attachment to parents predicted differences in the use of emotion regulation mechanisms and coping strategies. More specifically, having a close emotional bond, feeling supported in autonomy processes and having (moderately) low levels of separation anxiety toward parents predict more constructive emotion regulation mechanisms and coping strategies. Additionally emotion regulation was found to (partly or totally) mediate the association between attachment and coping.

  10. NF-kappaB mediates FGF signal regulation of msx-1 expression.

    Science.gov (United States)

    Bushdid, P B; Chen, C L; Brantley, D M; Yull, F; Raghow, R; Kerr, L D; Barnett, J V

    2001-09-01

    The nuclear factor-kappaB (NF-kappaB) family of transcription factors is involved in proliferation, differentiation, and apoptosis in a stage- and cell-dependent manner. Recent evidence has shown that NF-kappaB activity is necessary for both chicken and mouse limb development. We report here that the NF-kappaB family member c-rel and the homeodomain gene msx-1 have partially overlapping expression patterns in the developing chick limb. In addition, inhibition of NF-kappaB activity resulted in a decrease in msx-1 mRNA expression. Sequence analysis of the msx-1 promoter revealed three potential kappaB-binding sites similar to the interferon-gamma (IFN-gamma) kappaB-binding site. These sites bound to c-Rel, as shown by electrophoretic mobility shift assay (EMSA). Furthermore, inhibition of NF-kappaB activity significantly reduced transactivation of the msx-1 promoter in response to FGF-2/-4, known stimulators of msx-1 expression. These results suggest that NF-kappaB mediates the FGF-2/-4 signal regulation of msx-1 gene expression. Copyright 2001 Academic Press.

  11. Mediator and p300/CBP-Steroid Receptor Coactivator Complexes Have Distinct Roles, but Function Synergistically, during Estrogen Receptor α-Dependent Transcription with Chromatin Templates

    OpenAIRE

    Acevedo, Mari Luz; Kraus, W. Lee

    2003-01-01

    Ligand-dependent transcriptional activation by nuclear receptors involves the recruitment of various coactivators to the promoters of hormone-regulated genes assembled into chromatin. Nuclear receptor coactivators include histone acetyltransferase complexes, such as p300/CBP-steroid receptor coactivator (SRC), as well as the multisubunit mediator complexes (“Mediator”), which may help recruit RNA polymerase II to the promoter. We have used a biochemical approach, including an in vitro chromat...

  12. Involvement of the Acr3 and DctA anti-porters in arsenite oxidation in Agrobacterium tumefaciens 5A.

    Science.gov (United States)

    Kang, Yoon-Suk; Shi, Zunji; Bothner, Brian; Wang, Gejiao; McDermott, Timothy R

    2015-06-01

    Microbial arsenite (AsIII) oxidation forms a critical piece of the arsenic cycle in nature, though our understanding of how and why microorganisms oxidize AsIII remains rudimentary. Our model organism Agrobacterium tumefaciens 5A contains two distinct ars operons (ars1 and ars2) that are similar in their coding region content. The ars1 operon is located nearby the aio operon that is essential for AsIII oxidation. The AsIII/H(+) anti-porters encoded by acr3-1 and acr3-2 are required for maximal AsIII and antimonite (SbIII) resistance, but acr3-1 (negatively regulated by ArsR-1) appears more active in this regard and also required for AsIII oxidation and expression of aioBA. A malate-phosphate anti-porter DctA is regulated by RpoN and AsIII, and is required for normal growth with malate as a sole carbon source. Qualitatively, a ΔdctA mutant was normal for AsIII oxidation and AsIII/SbIII resistance at metalloid concentrations inhibitory to the Δacr3-1 mutant; however, aioBA induction kinetics was significantly phase-shift delayed. Acr3 involvement in AsIII/SbIII resistance is reasonably well understood, but the role of Acr3 and DctA anti-porters in AsIII oxidation and its regulation is unexpected, and suggests that controlled AsIII trafficking across the cytoplasmic membrane is important to a process understood to occur in the periplasm. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  13. Protective behavioral strategies as a mediator and moderator of the relationship between self-regulation and alcohol-related consequences in first-year college students.

    Science.gov (United States)

    D'Lima, Gabrielle Maria; Pearson, Matthew R; Kelley, Michelle L

    2012-06-01

    This study examined protective behavioral strategies (PBS) as a potential mediator and moderator of the relationship between self-regulation and alcohol-related consequences. Participants were 249 first-year undergraduate men and women. The use of PBS partially mediated the relationship between self-regulation and alcohol-related problems (i.e., supporting the "self-control equals drinking control" hypothesis). However, use of PBS appeared more important for those with poorer self-regulation abilities (supporting the "PBS protect the impaired" hypothesis). Because both mediation and moderation were supported, a moderated mediation model was tested. The moderated mediation model demonstrated that the negative relationship between self-regulation and alcohol-related consequences could be explained by use of PBS for individuals with poor-to-average self-regulation but not for individuals with above-average, self-regulation abilities. Implications of the study's findings are discussed.

  14. The PPARγ ligand ciglitazone regulates androgen receptor activation differently in androgen-dependent versus androgen-independent human prostate cancer cells

    International Nuclear Information System (INIS)

    Moss, Patrice E.; Lyles, Besstina E.; Stewart, LaMonica V.

    2010-01-01

    The androgen receptor (AR) regulates growth and progression of androgen-dependent as well as androgen-independent prostate cancer cells. Peroxisome proliferator-activated receptor gamma (PPARγ) agonists have been reported to reduce AR activation in androgen-dependent LNCaP prostate cancer cells. To determine whether PPARγ ligands are equally effective at inhibiting AR activity in androgen-independent prostate cancer, we examined the effect of the PPARγ ligands ciglitazone and rosiglitazone on C4-2 cells, an androgen- independent derivative of the LNCaP cell line. Luciferase-based reporter assays and Western blot analysis demonstrated that PPARγ ligand reduced dihydrotestosterone (DHT)-induced increases in AR activity in LNCaP cells. However, in C4-2 cells, these compounds increased DHT-induced AR driven luciferase activity. In addition, ciglitazone did not significantly alter DHT-mediated increases in prostate specific antigen (PSA) protein or mRNA levels within C4-2 cells. siRNA-based experiments demonstrated that the ciglitazone-induced regulation of AR activity observed in C4-2 cells was dependent on the presence of PPARγ. Furthermore, overexpression of the AR corepressor cyclin D1 inhibited the ability of ciglitazone to induce AR luciferase activity in C4-2 cells. Thus, our data suggest that both PPARγ and cyclin D1 levels influence the ability of ciglitazone to differentially regulate AR signaling in androgen-independent C4-2 prostate cancer cells.

  15. PI3K/Akt/GSK3β induced CREB activation ameliorates arsenic mediated alterations in NMDA receptors and associated signaling in rat hippocampus: Neuroprotective role of curcumin.

    Science.gov (United States)

    Srivastava, Pranay; Dhuriya, Yogesh K; Kumar, Vivek; Srivastava, Akriti; Gupta, Richa; Shukla, Rajendra K; Yadav, Rajesh S; Dwivedi, Hari N; Pant, Aditya B; Khanna, Vinay K

    2018-04-30

    Protective efficacy of curcumin in arsenic induced NMDA receptor dysfunctions and PI3K/Akt/ GSK3β signalling in hippocampus has been investigated in vivo and in vitro. Exposure to sodium arsenite (in vivo - 20 mg/kg, body weight p.o. for 28 days; in vitro - 10 μM for 24 h) and curcumin (in vivo - 100 mg/kg body weight p.o. for 28 days; in vitro - 20 μM for 24 h) was carried out alone or simultaneously. Treatment with curcumin ameliorated sodium arsenite induced alterations in the levels of NMDA receptors, its receptor subunits and synaptic proteins - pCaMKIIα, PSD-95 and SynGAP both in vivo and in vitro. Decreased levels of BDNF, pAkt, pERK1/2, pGSK3β and pCREB on sodium arsenite exposure were also protected by curcumin. Curcumin was found to decrease sodium arsenite induced changes in hippocampus by modulating PI3K/Akt/GSK3β neuronal survival pathway, known to regulate various cellular events. Treatment of hippocampal cultures with pharmacological inhibitors for ERK1/2, GSK3β and Akt individually inhibited levels of CREB and proteins associated with PI3K/Akt/GSK3β pathway. Simultaneous treatment with curcumin was found to improve sodium arsenite induced learning and memory deficits in rats assessed by water maze and Y-maze. The results provide evidence that curcumin exercises its neuroprotective effect involving PI3K/Akt pathway which may affect NMDA receptors and downstream signalling through TrKβ and BDNF in arsenic induced cognitive deficits in hippocampus. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Thermo-Regulation of Genes Mediating Motility and Plant Interactions in Pseudomonas syringae

    Science.gov (United States)

    Hockett, Kevin L.; Burch, Adrien Y.; Lindow, Steven E.

    2013-01-01

    Pseudomonas syringae is an important phyllosphere colonist that utilizes flagellum-mediated motility both as a means to explore leaf surfaces, as well as to invade into leaf interiors, where it survives as a pathogen. We found that multiple forms of flagellum-mediated motility are thermo-suppressed, including swarming and swimming motility. Suppression of swarming motility occurs between 28° and 30°C, which coincides with the optimal growth temperature of P. syringae. Both fliC (encoding flagellin) and syfA (encoding a non-ribosomal peptide synthetase involved in syringafactin biosynthesis) were suppressed with increasing temperature. RNA-seq revealed 1440 genes of the P. syringae genome are temperature sensitive in expression. Genes involved in polysaccharide synthesis and regulation, phage and IS elements, type VI secretion, chemosensing and chemotaxis, translation, flagellar synthesis and motility, and phytotoxin synthesis and transport were generally repressed at 30°C, while genes involved in transcriptional regulation, quaternary ammonium compound metabolism and transport, chaperone/heat shock proteins, and hypothetical genes were generally induced at 30°C. Deletion of flgM, a key regulator in the transition from class III to class IV gene expression, led to elevated and constitutive expression of fliC regardless of temperature, but did not affect thermo-regulation of syfA. This work highlights the importance of temperature in the biology of P. syringae, as many genes encoding traits important for plant-microbe interactions were thermo-regulated. PMID:23527276

  17. UVA-mediated down-regulation of MMP-2 and MT1-MMP coincides with impaired angiogenic phenotype of human dermal endothelial cells

    International Nuclear Information System (INIS)

    Cauchard, Jean-Hubert; Robinet, Arnaud; Poitevin, Stephane; Bobichon, Helene; Maziere, Jean-Claude; Bellon, Georges; Hornebeck, William

    2006-01-01

    UVA irradiation, dose-dependently (5-20 J/cm 2 ), was shown to impair the morphogenic differentiation of human microvascular endothelial cells (HMECs) on Matrigel. Parallely, UVA down-regulated the expression of MMP-2 and MT1-MMP, both at the protein and the mRNA levels. On the contrary, the production of MMP-1 and TIMP-1 by HMECs increased following UVA treatment. The inhibitory effect of UVA on MMP expression and pseudotubes formation was mediated by UVA-generated singlet oxygen ( 1 O 2 ). The contribution of MT1-MMP, but not TIMP-1, to the regulation of HMECs' angiogenic phenotype following UVA irradiation was suggested using elastin-derived peptides and TIMP-1 blocking antibody, respectively

  18. Simulation of the effects of phosphate on adsorption of arsenite and arsenate on ferrihydrite matrix using a geochemical equilibrium model

    International Nuclear Information System (INIS)

    Kassenga, G.R.

    2005-01-01

    Arsenic is of environmental concern because of its toxicity to plants, animals, and human beings. Iron oxides, including the poorly crystalline (amorphous) iron oxides, e.g., ferrihydrite, have a strong affinity for both arsenite and arsenate (the most toxic species of arsenic). In view of this, adsorption on ferrihydrite matrix is the main process of immobilization of arsenic in groundwater. The presence of phosphate in groundwater may however limit adsorption of arsenic on iron oxides due to competition for adsorption sites, resulting in higher aqueous concentrations in some environments. This paper analyses the effects of phosphate on aqueous concentration of arsenic at different pH using a geochemical equilibrium simulation model. It specifically focuses on arsenite and arsenate, the most toxic forms of arsenic. A general description of the occurrence of arsenic in the environment, its toxicity, and health hazards is first given. The paper discusses sources and geochemical processes that control arsenic mobility in aquifers. Adsorption and desorption reactions of arsenic on ferrihydrite and the factors that affect them are described. Modeling of adsorption/desorption processes is then discussed. Finally, the effects of phosphate on adsorption and desorption processes of arsenic on ferrihydrite as a function of pH are analyzed using PHREEQC Version 2, a computer program for simulating chemical reactions and transport processes in natural and polluted water. The model is applied in a case study formulated on the basis of a realistic hydrogeochemical setting to demonstrate how the use of arsenical pesticides and phosphate fertilizers may pose potential public health problems in areas where groundwater is used for domestic purposes. The modeling results have shown that aqueous concentration of arsenic increases with increasing phosphate-phosphorus concentration for pH values less than 10 assuming that ferrihydrite concentration and other hydrogeochemical conditions

  19. The cyclin-dependent kinase 8 module sterically blocks Mediator interactions with RNA polymerase II

    DEFF Research Database (Denmark)

    Elmlund, Hans; Baraznenok, Vera; Lindahl, Martin

    2006-01-01

    CDK8 (cyclin-dependent kinase 8), along with CycC, Med12, and Med13, form a repressive module (the Cdk8 module) that prevents RNA polymerase II (pol II) interactions with Mediator. Here, we report that the ability of the Cdk8 module to prevent pol II interactions is independent of the Cdk8......-dependent kinase activity. We use electron microscopy and single-particle reconstruction to demonstrate that the Cdk8 module forms a distinct structural entity that binds to the head and middle region of Mediator, thereby sterically blocking interactions with pol II....

  20. Metabolic-flux dependent regulation of microbial physiology.

    Science.gov (United States)

    Litsios, Athanasios; Ortega, Álvaro D; Wit, Ernst C; Heinemann, Matthias

    2018-04-01

    According to the most prevalent notion, changes in cellular physiology primarily occur in response to altered environmental conditions. Yet, recent studies have shown that changes in metabolic fluxes can also trigger phenotypic changes even when environmental conditions are unchanged. This suggests that cells have mechanisms in place to assess the magnitude of metabolic fluxes, that is, the rate of metabolic reactions, and use this information to regulate their physiology. In this review, we describe recent evidence for metabolic flux-sensing and flux-dependent regulation. Furthermore, we discuss how such sensing and regulation can be mechanistically achieved and present a set of new candidates for flux-signaling metabolites. Similar to metabolic-flux sensing, we argue that cells can also sense protein translation flux. Finally, we elaborate on the advantages that flux-based regulation can confer to cells. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. ATM-mediated Snail Serine 100 phosphorylation regulates cellular radiosensitivity

    International Nuclear Information System (INIS)

    Boohaker, Rebecca J.; Cui, Xiaoli; Stackhouse, Murray; Xu, Bo

    2013-01-01

    Purpose: Activation of the DNA damage responsive protein kinase ATM is a critical step for cellular survival in response to ionizing irradiation (IR). Direct targets of ATM regulating radiosensitivity remain to be fully investigated. We have recently reported that ATM phosphorylates the transcriptional repressor Snail on Serine 100. We aimed to further study the functional significance of ATM-mediated Snail phosphorylation in response to IR. Material and methods: We transfected vector-only, wild-type, the Serine 100 to alanine (S100A) or to glutamic acid (S100E) substitution of Snail into various cell lines. We assessed colony formation, γ-H2AX focus formation and the invasion index in the cells treated with or without IR. Results: We found that over-expression of the S100A mutant Snail in HeLa cells significantly increased radiosensitivity. Meanwhile the expression of S100E, a phospho-mimicking mutation, resulted in enhanced radio-resistance. Interestingly, S100E could rescue the radiosensitive phenotype in ATM-deficient cells. We also found that expression of S100E increased γ-H2AX focus formation and compromised inhibition of invasion in response to IR independent of cell survival. Conclusion: ATM-mediated Snail Serine 100 phosphorylation in response to IR plays an important part in the regulation of radiosensitivity

  2. VMAT2-mediated neurotransmission from midbrain leptin receptor neurons in feeding regulation

    Science.gov (United States)

    Leptin receptors (LepRs) expressed in the midbrain contribute to the action of leptin on feeding regulation. The midbrain neurons release a variety of neurotransmitters including dopamine (DA), glutamate and GABA. However, which neurotransmitter mediates midbrain leptin action on feeding remains unc...

  3. Two conserved modules of Schizosaccharomyces pombe Mediator regulate distinct cellular pathways

    DEFF Research Database (Denmark)

    Linder, Tomas; Rasmussen, Nina; Samuelsen, Camilla O

    2008-01-01

    Mediator is an evolutionary conserved coregulator complex required for transcription of almost all RNA polymerase II-dependent genes. The Schizosaccharomyces pombe Mediator consists of two dissociable components-a core complex organized into a head and middle domain as well as the Cdk8 regulatory...... subcomplex. In this work we describe a functional characterization of the S. pombe Mediator. We report the identification of the S. pombe Med20 head subunit and the isolation of ts alleles of the core head subunit encoding med17+. Biochemical analysis of med8(ts), med17(ts), Deltamed18, Deltamed20...... and Deltamed27 alleles revealed a stepwise head domain molecular architecture. Phenotypical analysis of Cdk8 and head module alleles including expression profiling classified the Mediator mutant alleles into one of two groups. Cdk8 module mutants flocculate due to overexpression of adhesive cell...

  4. Interaction with epsin 1 regulates the constitutive clathrin-dependent internalization of ErbB3.

    Science.gov (United States)

    Szymanska, Monika; Fosdahl, Anne Marthe; Raiborg, Camilla; Dietrich, Markus; Liestøl, Knut; Stang, Espen; Bertelsen, Vibeke

    2016-06-01

    In contrast to other members of the EGF receptor family, ErbB3 is constitutively internalized in a clathrin-dependent manner. Previous studies have shown that ErbB3 does not interact with the coated pit localized adaptor complex 2 (AP-2), and that ErbB3 lacks two AP-2 interacting internalization signals identified in the EGF receptor. Several other clathrin-associated sorting proteins which may recruit cargo into coated pits have, however, been identified, and the study was performed to identify adaptors needed for constitutive internalization of ErbB3. A high-throughput siRNA screen was used to identify adaptor proteins needed for internalization of ErbB3. Upon knock-down of candidate proteins internalization of ErbB3 was identified using an antibody-based internalization assay combined with automatic fluorescence microscopy. Among 29 candidates only knock-down of epsin 1 turned out to inhibit ErbB3. Epsin 1 has ubiquitin interacting motifs (UIMs) and we show that ErbB3 interacts with an epsin 1 deletion mutant containing these UIMs. In support of an ErbB3-epsin 1 UIM dependent interaction, we show that ErbB3 is constitutively ubiquitinated, but that both ubiquitination and the ErbB3-epsin 1 interaction increase upon ligand binding. Altogether the results are consistent with a model whereby both constitutive and ligand-induced internalization of ErbB3 are regulated through interaction with epsin 1. Internalization is an important regulator of growth factor receptor mediated signaling and the current study identify mechanisms regulating plasma membrane turnover of ErbB3. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. The MAPK-dependent regulation of the Jagged/Notch gene expression by VEGF, bFGF or PPAR gamma mediated angiogenesis in HUVEC

    DEFF Research Database (Denmark)

    Kiec-Wilk, B; Grzybowska-Galuszka, J; Polus, A

    2010-01-01

    The Jagged-Notch signalling, plays a crucial role in cell differentiation. Angiogenesis, is regulated by VEGF, bFGF as well as by the free fatty acid metabolites , which are regulators of transcription factors such as peroxisome proliferation activating receptors (PPARs). The study analyzed...... the signalling pathways involved in the regulation of Jagged-1/Notch-4 expression in endothelial cells (HUVECs) in response to VEGF, bFGF and PPAR-gamma exogenous activator - ciglitazone. HUVECs were incubated with investigated substances for 24 hours, with or without the presence of the MAP-kinases inhibitors...... were used. Jagged-1 and Notch-4 gene expression was determined using quantitative Real-Time PCR. The Jagged-1/Notch-4 protein expression was compared by flow cytometry, when the phosphorylation-dependent activation of kinases was estimated by Western-blot method. The opposite effect of VEGF, b...

  6. Anaerobic expression of the gadE-mdtEF multidrug efflux operon is primarily regulated by the two-component system ArcBA through antagonizing the H-NS mediated repression.

    Science.gov (United States)

    Deng, Ziqing; Shan, Yue; Pan, Qing; Gao, Xiang; Yan, Aixin

    2013-01-01

    The gadE-mdtEF operon encodes a central acid resistance regulator GadE and two multidrug efflux proteins MdtEF. Although transcriptional regulation of gadE in the context of acid resistance under the aerobic growth environment of Escherichia coli has been extensively studied, regulation of the operon under the physiologically relevant environment of anaerobic growth and its effect on the expression of the multidrug efflux proteins MdtEF in the operon has not been disclosed. Our previous study revealed that anaerobic induction of the operon was dependent on ArcA, the response regulator of the ArcBA two-component system, in the M9 glucose minimal medium. However, the detailed regulatory mechanism remains unknown. In this study, we showed that anaerobic activation of mdtEF was driven by the 798 bp unusually long gadE promoter. Deletion of evgA, ydeO, rpoS, and gadX which has been shown to activate the gadE expression during acid stresses under aerobic condition did not have a significant effect on the anaerobic activation of the operon. Rather, anaerobic activation of the operon was largely dependent on the global regulator ArcA and a GTPase MnmE. Under aerobic condition, transcription of gadE was repressed by the global DNA silencer H-NS in M9 minimal medium. Interestingly, under anaerobic condition, while ΔarcA almost completely abolished transcription of gadE-mdtEF, further deletion of hns in ΔarcA mutant restored the transcription of the full-length PgadE-lacZ, and P1- and P3-lacZ fusions, suggesting an antagonistic effect of ArcA on the H-NS mediated repression. Taken together, we conclude that the anaerobic activation of the gadE-mdtEF was primarily mediated by the two-component system ArcBA through antagonizing the H-NS mediated repression.

  7. Anaerobic expression of the gadE-mdtEF multidrug efflux operon is primarily regulated by the two-component system ArcBA through antagonizing the H-NS mediated repression

    Directory of Open Access Journals (Sweden)

    Ziqing eDeng

    2013-07-01

    Full Text Available The gadE-mdtEF operon encodes a central acid resistance regulator GadE and two multidrug efflux proteins MdtEF. Although transcriptional regulation of gadE in the context of acid resistance under the aerobic growth environment of E. coli has been extensively studied, regulation of the operon under the physiologically relevant environment of anaerobic growth and its effect on the expression of the multidrug efflux proteins MdtEF has not been disclosed. Our previous study revealed that anaerobic induction of the operon was dependent on ArcA, the response regulator of the ArcBA two-component system, in the M9 glucose minimal medium. However, the detailed regulatory mechanism remains unknown. In this study, we showed that anaerobic activation of mdtEF was driven by the 798bp unusually long gadE promoter. Deletion of evgA, ydeO, rpoS, and gadX which has been shown to activate the gadE expression during acid stresses under aerobic condition did not have a significant effect on the anaerobic activation of the operon. Rather, anaerobic activation of the operon was largely dependent on the global regulator ArcA and a GTPase MnmE. Under aerobic condition, transcription of gadE was repressed by the global DNA silencer H-NS in M9 minimal medium. Interestingly, under anaerobic condition, while ΔarcA almost completely abolished transcription of gadE-mdtEF, further deletion of hns in ΔarcA mutant restored the transcription of the full length PgadE-lacZ, and P1- and P3-lacZ fusions, suggesting an antagonistic effect of ArcA on the H-NS mediated repression. Taken together, we conclude that the anaerobic activation of the gadE-mdtEF was primarily mediated by the two-component system ArcBA through antagonizing the H-NS mediated repression.

  8. 4EGI-1 represses cap-dependent translation and regulates genome-wide translation in malignant pleural mesothelioma.

    Science.gov (United States)

    De, Arpita; Jacobson, Blake A; Peterson, Mark S; Jay-Dixon, Joe; Kratzke, Marian G; Sadiq, Ahad A; Patel, Manish R; Kratzke, Robert A

    2018-04-01

    Deregulation of cap-dependent translation has been implicated in the malignant transformation of numerous human tissues. 4EGI-1, a novel small-molecule inhibitor of cap-dependent translation, disrupts formation of the eukaryotic initiation factor 4F (eIF4F) complex. The effects of 4EGI-1-mediated inhibition of translation initiation in malignant pleural mesothelioma (MPM) were examined. 4EGI-1 preferentially inhibited cell viability and induced apoptosis in MPM cells compared to normal mesothelial (LP9) cells. This effect was associated with hypophosphorylation of 4E-binding protein 1 (4E-BP1) and decreased protein levels of the cancer-related genes, c-myc and osteopontin. 4EGI-1 showed enhanced cytotoxicity in combination with pemetrexed or gemcitabine. Translatome-wide polysome microarray analysis revealed a large cohort of genes that were translationally regulated upon treatment with 4EGI-1. The 4EGI-1-regulated translatome was negatively correlated to a previously published translatome regulated by eIF4E overexpression in human mammary epithelial cells, which is in agreement with the notion that 4EGI-1 inhibits the eIF4F complex. These data indicate that inhibition of the eIF4F complex by 4EGI-1 or similar translation inhibitors could be a strategy for treating mesothelioma. Genome wide translational profiling identified a large cohort of promising target genes that should be further evaluated for their potential significance in the treatment of MPM.

  9. Emotion Regulation Feeding Practices Link Parents' Emotional Eating to Children's Emotional Eating: A Moderated Mediation Study.

    Science.gov (United States)

    Tan, Cin Cin; Holub, Shayla C

    2015-08-01

    Past research suggests an association between parents' and children's emotional eating, but research has yet to examine mechanisms underlying this association. The current study examined whether feeding for emotion regulation mediates the association between parents' and children's emotional eating, and whether this association is moderated by children's self-regulation in eating. 95 parents reported on their own and their children's emotional eating, their children's self-regulation in eating, as well as their feeding practices. Findings revealed that feeding for emotion regulation mediated the association between parents' and children's emotional eating when children's self-regulation in eating was low, but not when self-regulation in eating was high. The current findings demonstrate the complexity of the link between parents' and children's emotional eating, suggesting practitioners should consider both feeding practices and children's self-regulation in eating when designing intervention programs. © The Author 2015. Published by Oxford University Press on behalf of the Society of Pediatric Psychology. All rights reserved.For permissions, please e-mail: journals.permissions@oup.com.

  10. Malaria parasite cGMP-dependent protein kinase regulates blood stage merozoite secretory organelle discharge and egress.

    Directory of Open Access Journals (Sweden)

    Christine R Collins

    2013-05-01

    Full Text Available The malaria parasite replicates within an intraerythrocytic parasitophorous vacuole (PV. Eventually, in a tightly regulated process called egress, proteins of the PV and intracellular merozoite surface are modified by an essential parasite serine protease called PfSUB1, whilst the enclosing PV and erythrocyte membranes rupture, releasing merozoites to invade fresh erythrocytes. Inhibition of the Plasmodium falciparum cGMP-dependent protein kinase (PfPKG prevents egress, but the underlying mechanism is unknown. Here we show that PfPKG activity is required for PfSUB1 discharge into the PV, as well as for release of distinct merozoite organelles called micronemes. Stimulation of PfPKG by inhibiting parasite phosphodiesterase activity induces premature PfSUB1 discharge and egress of developmentally immature, non-invasive parasites. Our findings identify the signalling pathway that regulates PfSUB1 function and egress, and raise the possibility of targeting PfPKG or parasite phosphodiesterases in therapeutic approaches to dysregulate critical protease-mediated steps in the parasite life cycle.

  11. NOX4-mediated ROS production induces apoptotic cell death via down-regulation of c-FLIP and Mcl-1 expression in combined treatment with thioridazine and curcumin

    Directory of Open Access Journals (Sweden)

    Seung Un Seo

    2017-10-01

    Full Text Available Thioridazine is known to have anti-tumor effects by inhibiting PI3K/Akt signaling, which is an important signaling pathway in cell survival. However, thioridazine alone does not induce apoptosis in head and neck squamous cell carcinoma (AMC-HN4, human breast carcinoma (MDA-MB231, and human glioma (U87MG cells. Therefore, we investigated whether combined treatment with thioridazine and curcumin induces apoptosis. Combined treatment with thioridazine and curcumin markedly induced apoptosis in cancer cells without inducing apoptosis in human normal mesangial cells and human normal umbilical vein cells (EA.hy926. We found that combined treatment with thioridazine and curcumin had synergistic effects in AMC-HN4 cells. Among apoptosis-related proteins, thioridazine plus curcumin induced down-regulation of c-FLIP and Mcl-1 expression at the post-translational levels in a proteasome-dependent manner. Augmentation of proteasome activity was related to the up-regulation of proteasome subunit alpha 5 (PSMA5 expression in curcumin plus thioridazine-treated cells. Combined treatment with curcumin and thioridazine produced intracellular ROS in a NOX4-dependent manner, and ROS-mediated activation of Nrf2/ARE signaling played a critical role in the up-regulation of PSMA5 expression. Furthermore, ectopic expression of c-FLIP and Mcl-1 inhibited apoptosis in thioridazine and curcumin-treated cells. Therefore, we demonstrated that thioridazine plus curcumin induces proteasome activity by up-regulating PSMA5 expression via NOX4-mediated ROS production and that down-regulation of c-FLIP and Mcl-1 expression post-translationally is involved in apoptosis.

  12. Arsenite activates NFκB through induction of C-reactive protein

    International Nuclear Information System (INIS)

    Druwe, Ingrid L.; Sollome, James J.; Sanchez-Soria, Pablo; Hardwick, Rhiannon N.; Camenisch, Todd D.; Vaillancourt, Richard R.

    2012-01-01

    C-reactive protein (CRP) is an acute phase protein in humans. Elevated levels of CRP are produced in response to inflammatory cytokines and are associated with atherosclerosis, hypertension, cardiovascular disease and insulin resistance. Exposure to inorganic arsenic, a common environmental toxicant, also produces cardiovascular disorders, namely atherosclerosis and is associated with insulin-resistance. Inorganic arsenic has been shown to contribute to cardiac toxicities through production of reactive oxygen species (ROS) that result in the activation of NFκB. In this study we show that exposure of the hepatic cell line, HepG2, to environmentally relevant levels of arsenite (0.13 to 2 μM) results in elevated CRP expression and secretion. ROS analysis of the samples showed that a minimal amount of ROS are produced by HepG2 cells in response to these concentrations of arsenic. In addition, treatment of FvB mice with 100 ppb sodium arsenite in the drinking water for 6 months starting at weaning age resulted in dramatically higher levels of CRP in both the liver and inner medullary region of the kidney. Further, mouse Inner Medullary Collecting Duct cells (mIMCD-4), a mouse kidney cell line, were stimulated with 10 ng/ml CRP which resulted in activation of NFκB. Pretreatment with 10 nM Y27632, a known Rho-kinase inhibitor, prior to CRP exposure attenuated NFκB activation. These data suggest that arsenic causes the expression and secretion of CRP and that CRP activates NFκB through activation of the Rho-kinase pathway, thereby providing a novel pathway by which arsenic can contribute to metabolic syndrome and cardiovascular disease. -- Highlights: ► Exposure to arsenic can induce the expression and secretion of CRP. ► Mice treated with NaAsO 2 showed higher levels of CRP in both the liver and kidney. ► mIMCD-3 were stimulated with CRP which resulted in activation of NFκB. ► CRP activates NFκB through activation of the Rho-kinase pathway. ► Data provide

  13. Arsenite activates NFκB through induction of C-reactive protein

    Energy Technology Data Exchange (ETDEWEB)

    Druwe, Ingrid L.; Sollome, James J.; Sanchez-Soria, Pablo; Hardwick, Rhiannon N.; Camenisch, Todd D.; Vaillancourt, Richard R., E-mail: vaillancourt@pharmacy.arizona.edu

    2012-06-15

    C-reactive protein (CRP) is an acute phase protein in humans. Elevated levels of CRP are produced in response to inflammatory cytokines and are associated with atherosclerosis, hypertension, cardiovascular disease and insulin resistance. Exposure to inorganic arsenic, a common environmental toxicant, also produces cardiovascular disorders, namely atherosclerosis and is associated with insulin-resistance. Inorganic arsenic has been shown to contribute to cardiac toxicities through production of reactive oxygen species (ROS) that result in the activation of NFκB. In this study we show that exposure of the hepatic cell line, HepG2, to environmentally relevant levels of arsenite (0.13 to 2 μM) results in elevated CRP expression and secretion. ROS analysis of the samples showed that a minimal amount of ROS are produced by HepG2 cells in response to these concentrations of arsenic. In addition, treatment of FvB mice with 100 ppb sodium arsenite in the drinking water for 6 months starting at weaning age resulted in dramatically higher levels of CRP in both the liver and inner medullary region of the kidney. Further, mouse Inner Medullary Collecting Duct cells (mIMCD-4), a mouse kidney cell line, were stimulated with 10 ng/ml CRP which resulted in activation of NFκB. Pretreatment with 10 nM Y27632, a known Rho-kinase inhibitor, prior to CRP exposure attenuated NFκB activation. These data suggest that arsenic causes the expression and secretion of CRP and that CRP activates NFκB through activation of the Rho-kinase pathway, thereby providing a novel pathway by which arsenic can contribute to metabolic syndrome and cardiovascular disease. -- Highlights: ► Exposure to arsenic can induce the expression and secretion of CRP. ► Mice treated with NaAsO{sub 2} showed higher levels of CRP in both the liver and kidney. ► mIMCD-3 were stimulated with CRP which resulted in activation of NFκB. ► CRP activates NFκB through activation of the Rho-kinase pathway. ► Data

  14. Cumulative childhood trauma and psychological maladjustment of sexually abused children in Korea: mediating effects of emotion regulation.

    Science.gov (United States)

    Choi, Ji Young; Oh, Kyung Ja

    2014-02-01

    The purpose of the present study was to identify the mediating effects of emotion regulation on the association between cumulative childhood trauma and behavior problems in sexually abused children in Korea, using structural equation modeling (SEM). Data were collected on 171 children (ages 6-13 years) referred to a public counseling center for sexual abuse in Seoul, Korea. Cumulative childhood traumas were defined on the basis of number of traumas (physical abuse, witnessing domestic violence, neglect, traumatic separation from parent, and sexual abuse) and the severity and duration of traumas. Children were evaluated by their parents on emotion regulation using the Emotion Regulation Checklist and internalizing and externalizing behavior problems using the Korean-Child Behavior Checklist. SEM analyses confirmed the complete mediation model, in which emotion dysregulation fully mediates the relationship between cumulative childhood traumas and internalizing/externalizing behavior problems. These findings indicate that emotion regulation is an important mechanism that can explain the negative effects of cumulative childhood traumas and that there is a need to focus on emotion regulation in sexually abused children exposed to cumulative trauma. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Current knowledge of microRNA-mediated regulation of drug metabolism in humans.

    Science.gov (United States)

    Nakano, Masataka; Nakajima, Miki

    2018-05-01

    Understanding the factors causing inter- and intra-individual differences in drug metabolism potencies is required for the practice of personalized or precision medicine, as well as for the promotion of efficient drug development. The expression of drug-metabolizing enzymes is controlled by transcriptional regulation by nuclear receptors and transcriptional factors, epigenetic regulation, such as DNA methylation and histone acetylation, and post-translational modification. In addition to such regulation mechanisms, recent studies revealed that microRNAs (miRNAs), endogenous ~22-nucleotide non-coding RNAs that regulate gene expression through the translational repression and degradation of mRNAs, significantly contribute to post-transcriptional regulation of drug-metabolizing enzymes. Areas covered: This review summarizes the current knowledge regarding miRNAs-dependent regulation of drug-metabolizing enzymes and transcriptional factors and its physiological and clinical significance. We also describe recent advances in miRNA-dependent regulation research, showing that the presence of pseudogenes, single-nucleotide polymorphisms, and RNA editing affects miRNA targeting. Expert opinion: It is unwavering fact that miRNAs are critical factors causing inter- and intra-individual differences in the expression of drug-metabolizing enzymes. Consideration of miRNA-dependent regulation would be a helpful tool for optimizing personalized and precision medicine.

  16. Mechanisms of interaction between arsenian pyrite and aqueous arsenite under anoxic and oxic conditions

    Science.gov (United States)

    Qiu, Guohong; Gao, Tianyu; Hong, Jun; Luo, Yao; Liu, Lihu; Tan, Wenfeng; Liu, Fan

    2018-05-01

    Pyrite affects the conversion and migration processes of arsenic in soils and waters. Adsorption and redox reactions of arsenite (As(III)) occur on the surface of pyrite, and the interaction processes are influenced by the arsenic incorporated into pyrite. This work examined the effects of arsenic content, pH and oxygen on the interaction between arsenian pyrite and aqueous As(III) and investigated the underlying mechanisms. The results indicated that arsenic incorporation led to a high content of Fe(III) in pyrite, and that As(III) was mainly adsorbed on pyrite surface and part of As(III) was oxidized to As(V) by the newly formed intermediates including hydroxyl radicals and hydrogen peroxide. The oxidation rate increased with increasing arsenic content in the pyrite and the presence of air (oxygen), and first decreased and then increased with increasing pH from 3.0 to 11.0. Hydroxyl radicals and hydrogen peroxide significantly contributed to the oxidation of pyrite and aqueous As(III) in acidic and alkaline solutions, respectively. Although pyrite oxidation increased with increasing arsenic content as indicated by the elevated concentrations of elemental S and SO42-, the percentage of released arsenic in total arsenic of the arsenian pyrite decreased due to the adsorption of arsenic on the surface of newly formed ferric (hydr)oxides, especially the ferric arsenate precipitate formed in high pH solutions. The present study enables a better understanding of the important interaction process of dissolved arsenite and natural pyrites in the study of groundwater contamination, arsenic migration/sequestration, and acid mine drainage formation.

  17. Activity-regulated genes as mediators of neural circuit plasticity.

    Science.gov (United States)

    Leslie, Jennifer H; Nedivi, Elly

    2011-08-01

    Modifications of neuronal circuits allow the brain to adapt and change with experience. This plasticity manifests during development and throughout life, and can be remarkably long lasting. Evidence has linked activity-regulated gene expression to the long-term structural and electrophysiological adaptations that take place during developmental critical periods, learning and memory, and alterations to sensory map representations in the adult. In all these cases, the cellular response to neuronal activity integrates multiple tightly coordinated mechanisms to precisely orchestrate long-lasting, functional and structural changes in brain circuits. Experience-dependent plasticity is triggered when neuronal excitation activates cellular signaling pathways from the synapse to the nucleus that initiate new programs of gene expression. The protein products of activity-regulated genes then work via a diverse array of cellular mechanisms to modify neuronal functional properties. Synaptic strengthening or weakening can reweight existing circuit connections, while structural changes including synapse addition and elimination create new connections. Posttranscriptional regulatory mechanisms, often also dependent on activity, further modulate activity-regulated gene transcript and protein function. Thus, activity-regulated genes implement varied forms of structural and functional plasticity to fine-tune brain circuit wiring. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Advantages of low pH and limited oxygenation in arsenite removal from water by zero-valent iron.

    Science.gov (United States)

    Klas, Sivan; Kirk, Donald W

    2013-05-15

    The removal of toxic arsenic species from contaminated waters by zero-valent iron (ZVI) has drawn considerable attention in recent years. In this approach, arsenic ions are mainly removed by adsorption to the iron corrosion products. Reduction to zero-valent arsenic on the ZVI surface is possible in the absence of competing oxidants and can reduce arsenic mobility and sludge formation. However, associated removal rates are relatively low. In the current study, simultaneous high reduction and removal rates of arsenite (H3AsO3), the more toxic and mobile environmentally occurring arsenic species, was demonstrated by reacting it with ZVI under limited aeration and relatively low pH. 90% of the removed arsenic was attached to the ZVI particles and 60% of which was in the elemental state. Under the same non-acidic conditions, only 40-60% of the removed arsenic was attached to the ZVI with no change in arsenic oxidation state. Under anaerobic conditions, reduction occurred but total arsenic removal rate was significantly lower and ZVI demand was higher. The effective arsenite removal under acidic oxygen-limited conditions was explained by formation of Fe(II)-solid intermediate on the ZVI surface that provided high surface area and reducing power. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Redox regulation of the MED28 and MED32 mediator subunits is important for development and senescence.

    Science.gov (United States)

    Shaikhali, Jehad; Davoine, Céline; Björklund, Stefan; Wingsle, Gunnar

    2016-05-01

    Mediator is a conserved multi-protein complex that acts as a bridge between promoter-bound transcriptional regulators and RNA polymerase II. While redox signaling is important in adjusting plant metabolism and development, the involvement of Mediator in redox homeostasis and regulation only recently started to emerge. Our previous results show that the MED10a, MED28, and MED32 Mediator subunits form various types of covalent oligomers linked by intermolecular disulfide bonds in vitro. To link that with biological significance we have characterized Arabidopsis med32 and med28 mutants and found that they are affected in root development and senescence, phenotypes possibly associated to redox changes.

  20. TRIM45 negatively regulates NF-κB-mediated transcription and suppresses cell proliferation

    International Nuclear Information System (INIS)

    Shibata, Mio; Sato, Tomonobu; Nukiwa, Ryota; Ariga, Tadashi; Hatakeyama, Shigetsugu

    2012-01-01

    Highlights: ► NF-κB plays an important role in cell survival and carcinogenesis. ► TRIM45 negatively regulates TNFα-induced NF-κB-mediated transcription. ► TRIM45 overexpression suppresses cell growth. ► TRIM45 acts as a repressor for the NF-κB signal and regulates cell growth. -- Abstract: The NF-κB signaling pathway plays an important role in cell survival, immunity, inflammation, carcinogenesis, and organogenesis. Activation of NF-κB is regulated by several posttranslational modifications including phosphorylation, neddylation and ubiquitination. The NF-κB signaling pathway is activated by two distinct signaling mechanisms and is strictly modulated by the ubiquitin–proteasome system. It has been reported that overexpression of TRIM45, one of the TRIM family ubiquitin ligases, suppresses transcriptional activities of Elk-1 and AP-1, which are targets of the MAPK signaling pathway. In this study, we showed that TRIM45 also negatively regulates TNFα-induced NF-κB-mediated transcription by a luciferase reporter assay and that TRIM45 lacking a RING domain also has an activity to inhibit the NF-κB signal. Moreover, we found that TRIM45 overexpression suppresses cell growth. These findings suggest that TRIM45 acts as a repressor for the NF-κB signal and regulates cell growth.

  1. c-Myb Regulates the T-Bet-Dependent Differentiation Program in B Cells to Coordinate Antibody Responses

    Directory of Open Access Journals (Sweden)

    Dana Piovesan

    2017-04-01

    Full Text Available Summary: Humoral immune responses are tailored to the invading pathogen through regulation of key transcription factors and their networks. This is critical to establishing effective antibody-mediated responses, yet it is unknown how B cells integrate pathogen-induced signals to drive or suppress transcriptional programs specialized for each class of pathogen. Here, we detail the key role of the transcription factor c-Myb in regulating the T-bet-mediated anti-viral program. Deletion of c-Myb in mature B cells significantly increased serum IgG2c and CXCR3 expression by upregulating T-bet, normally suppressed during Th2-cell-mediated responses. Enhanced expression of T-bet resulted in aberrant plasma cell differentiation within the germinal center, mediated by CXCR3 expression. These findings identify a dual role for c-Myb in limiting inappropriate effector responses while coordinating plasma cell differentiation with germinal center egress. Identifying such intrinsic regulators of specialized antibody responses can assist in vaccine design and therapeutic intervention in B-cell-mediated immune disorders. : Piovesan et al. examine how B cells establish transcriptional programs that result in tailored responses to invading pathogens. The authors find that the transcription factor c-Myb represses the T-bet-mediated anti-viral program in B cells. c-Myb limits inappropriate effector responses while coordinating plasma cell differentiation with germinal center egress. Keywords: B cells, c-Myb, T-bet, immunoglobulin, CXCR3, plasma cell, germinal center

  2. Protein tyrosine phosphatase-PEST (PTP-PEST) regulates mast cell-activating signals in PTP activity-dependent and -independent manners.

    Science.gov (United States)

    Motohashi, Satoru; Koizumi, Karen; Honda, Reika; Maruyama, Atsuko; Palmer, Helen E F; Mashima, Keisuke

    2014-01-01

    Aggregation of the high-affinity IgE receptor (FcεRI) in mast cells leads to degranulation and production of numerous cytokines and lipid mediators that promote allergic inflammation. Tyrosine phosphorylation of proteins in response to FcεRI aggregation has been implicated in mast cell activation. Here, we determined the role of PTP-PEST (encoded by PTPN12) in the regulation of mast cell activation using the RBL-2H3 rat basophilic leukemia cell line as a model. PTP-PEST expression was significantly induced upon FcεRI-crosslinking, and aggregation of FcεRI induced the phosphorylation of PTP-PEST at Ser39, thus resulting in the suppression of PTP activity. By overexpressing a phosphatase-dead mutant (PTP-PEST CS) and a constitutively active mutant (PTP-PEST SA) in RBL-2H3 cells, we showed that PTP-PEST decreased degranulation and enhanced IL-4 and IL-13 transcription in FcεRI-crosslinked RBL-2H3 cells, but PTP activity of PTP-PEST was not necessary for this regulation. However, FcεRI-induced TNF-α transcription was increased by the overexpression of PTP-PEST SA and suppressed by the overexpression of PTP-PEST CS. Taken together, these results suggest that PTP-PEST is involved in the regulation of FcεRI-mediated mast cell activation through at least two different processes represented by PTP activity-dependent and -independent pathways. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Ligand-mediated negative regulation of a chimeric transmembrane receptor tyrosine phosphatase

    DEFF Research Database (Denmark)

    Desai, D M; Sap, J; Schlessinger, J

    1993-01-01

    CD45, a transmembrane protein tyrosine phosphatase (PTPase), is required for TCR signaling. Multiple CD45 isoforms, differing in the extracellular domain, are expressed in a tissue- and activation-specific manner, suggesting an important function for this domain. We report that a chimeric protein...... that ligand-mediated regulation of receptor-PTPases may have mechanistic similarities with receptor tyrosine kinases....

  4. RNF4-mediated polyubiquitination regulates the Fanconi anemia/BRCA pathway.

    Science.gov (United States)

    Xie, Jenny; Kim, Hyungjin; Moreau, Lisa A; Puhalla, Shannon; Garber, Judy; Al Abo, Muthana; Takeda, Shunichi; D'Andrea, Alan D

    2015-04-01

    The Fanconi anemia/BRCA (FA/BRCA) pathway is a DNA repair pathway that is required for excision of DNA interstrand cross-links. The 17 known FA proteins, along with several FA-associated proteins (FAAPs), cooperate in this pathway to detect, unhook, and excise DNA cross-links and to subsequently repair the double-strand breaks generated in the process. In the current study, we identified a patient with FA with a point mutation in FANCA, which encodes a mutant FANCA protein (FANCAI939S). FANCAI939S failed to bind to the FAAP20 subunit of the FA core complex, leading to decreased stability. Loss of FAAP20 binding exposed a SUMOylation site on FANCA at amino acid residue K921, resulting in E2 SUMO-conjugating enzyme UBC9-mediated SUMOylation, RING finger protein 4-mediated (RNF4-mediated) polyubiquitination, and proteasome-mediated degradation of FANCA. Mutation of the SUMOylation site of FANCA rescued the expression of the mutant protein. Wild-type FANCA was also subject to SUMOylation, RNF4-mediated polyubiquitination, and degradation, suggesting that regulated release of FAAP20 from FANCA is a critical step in the normal FA pathway. Consistent with this model, cells lacking RNF4 exhibited interstrand cross-linker hypersensitivity, and the gene encoding RNF4 was epistatic with the other genes encoding members of the FA/BRCA pathway. Together, the results from our study underscore the importance of analyzing unique patient-derived mutations for dissecting complex DNA repair processes.

  5. Regulation of the copper chaperone CCS by XIAP-mediated ubiquitination.

    Science.gov (United States)

    Brady, Graham F; Galbán, Stefanie; Liu, Xuwen; Basrur, Venkatesha; Gitlin, Jonathan D; Elenitoba-Johnson, Kojo S J; Wilson, Thomas E; Duckett, Colin S

    2010-04-01

    In order to balance the cellular requirements for copper with its toxic properties, an elegant set of mechanisms has evolved to regulate and buffer intracellular copper. The X-linked inhibitor of apoptosis (XIAP) protein was recently identified as a copper-binding protein and regulator of copper homeostasis, although the mechanism by which XIAP binds copper in the cytosol is unclear. Here we describe the identification of the copper chaperone for superoxide dismutase (CCS) as a mediator of copper delivery to XIAP in cells. We also find that CCS is a target of the E3 ubiquitin ligase activity of XIAP, although interestingly, ubiquitination of CCS by XIAP was found to lead to enhancement of its chaperone activity toward its physiologic target, superoxide dismutase 1, rather than proteasomal degradation. Collectively, our results reveal novel links among apoptosis, copper metabolism, and redox regulation through the XIAP-CCS complex.

  6. Nutritional regulation of IGF-II, but not IGF-I, is age dependent in sheep.

    Science.gov (United States)

    Oldham, J M; Martyn, J A; Hua, K M; MacDonald, N A; Hodgkinson, S C; Bass, J J

    1999-12-01

    In post-natal animals, plasma concentrations of IGF-I are tightly regulated by nutritional status. The current study reports that plasma levels of IGF-II in sheep are also regulated by nutrition, but whether plasma IGF-II is increased, decreased or remains the same, depends on the age of the animal. Ewe lambs, ranging in age from 2 days to 2 years, were fed or fasted for lengths of time between 24 and 72 h. Blood samples were taken at intervals of 24 h throughout the treatment period and immediately before slaughter. Plasma concentrations of IGF-I increased with advancing age in fed animals (Panimals matured (Pnutrition (Panimals (Panimals (Pnutritional sensitivity of serum IGF-binding proteins (BPs) also changed with age. The 29 kDa BP, which we presume to be BP1, was elevated by fasting in young animals and reduced slightly in older animals. BP2 was increased to a similar magnitude by fasting at all ages. BP3 was depressed by fasting in young animals and showed little change in adults. In contrast, a 24 kDa BP, which is probably BP4, showed little change in young animals and was reduced substantially in older sheep. In conclusion, the response of plasma IGF-II to fasting suggests that this peptide has functions in mediating nutritional stress which depend on the age of the animal, and also that the role of IGF-II may differ from that of IGF-I in adults.

  7. Microtubule-dependent association of AKAP350A and CCAR1 with RNA stress granules

    International Nuclear Information System (INIS)

    Kolobova, Elena; Efimov, Andrey; Kaverina, Irina; Rishi, Arun K.; Schrader, John W.; Ham, Amy-Joan; Larocca, M. Cecilia; Goldenring, James R.

    2009-01-01

    Recent investigations have highlighted the importance of subcellular localization of mRNAs to cell function. While AKAP350A, a multifunctional scaffolding protein, localizes to the Golgi apparatus and centrosomes, we have now identified a cytosolic pool of AKAP350A. Analysis of AKAP350A scaffolded complexes revealed two novel interacting proteins, CCAR1 and caprin-1. CCAR1, caprin-1 and AKAP350A along with G3BP, a stress granule marker, relocate to RNA stress granules after arsenite treatment. Stress also caused loss of AKAP350 from the Golgi and fragmentation of the Golgi apparatus. Disruption of microtubules with nocodazole altered stress granule formation and changed their morphology by preventing fusion of stress granules. In the presence of nocodazole, arsenite induced smaller granules with the vast majority of AKAP350A and CCAR1 separated from G3BP-containing granules. Similar to nocodazole treatment, reduction of AKAP350A or CCAR1 expression also altered the size and number of G3BP-containing stress granules induced by arsenite treatment. A limited set of 69 mRNA transcripts was immunoisolated with AKAP350A even in the absence of stress, suggesting the association of AKAP350A with mRNA transcripts. These results provide the first evidence for the microtubule dependent association of AKAP350A and CCAR1 with RNA stress granules

  8. Axon-Axon Interactions Regulate Topographic Optic Tract Sorting via CYFIP2-Dependent WAVE Complex Function.

    Science.gov (United States)

    Cioni, Jean-Michel; Wong, Hovy Ho-Wai; Bressan, Dario; Kodama, Lay; Harris, William A; Holt, Christine E

    2018-03-07

    The axons of retinal ganglion cells (RGCs) are topographically sorted before they arrive at the optic tectum. This pre-target sorting, typical of axon tracts throughout the brain, is poorly understood. Here, we show that cytoplasmic FMR1-interacting proteins (CYFIPs) fulfill non-redundant functions in RGCs, with CYFIP1 mediating axon growth and CYFIP2 specifically involved in axon sorting. We find that CYFIP2 mediates homotypic and heterotypic contact-triggered fasciculation and repulsion responses between dorsal and ventral axons. CYFIP2 associates with transporting ribonucleoprotein particles in axons and regulates translation. Axon-axon contact stimulates CYFIP2 to move into growth cones where it joins the actin nucleating WAVE regulatory complex (WRC) in the periphery and regulates actin remodeling and filopodial dynamics. CYFIP2's function in axon sorting is mediated by its binding to the WRC but not its translational regulation. Together, these findings uncover CYFIP2 as a key regulatory link between axon-axon interactions, filopodial dynamics, and optic tract sorting. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Emotion regulation and depressive symptoms: examining the mediation effects of school connectedness in Chinese late adolescents.

    Science.gov (United States)

    Zhao, Yanhua; Zhao, Guoxiang

    2015-04-01

    This study tested Gross's process model of emotion regulation in a Chinese adolescent sample. It hypothesized that emotion regulation strategies (cognitive reappraisal and expressive suppression) would predict adolescents' perception of school connectedness and depressive symptoms. It also posited that school connectedness may be a possible mediator between emotion regulation and depressive symptoms. Participants were 504 adolescents aged 16-18 from two Chinese public upper secondary schools. Structural equation modeling analyses indicated that reappraisal and suppression significantly associated with school connectedness and depressive symptoms, and school connectedness mediated the link between emotion regulation and depressive symptoms, even when the general emotion experiences were controlled. Although boys unexpectedly reported higher level depressive symptoms, the hypothesized model was invariant across gender except for the link between suppression and depressive symptoms. These findings demonstrate that it is meaningful to involve both emotion regulation processes and school connectedness in explaining adolescent depressive symptoms. Copyright © 2015 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.

  10. KLF2 in Regulation of NF-κB-Mediated Immune Cell Function and Inflammation

    Directory of Open Access Journals (Sweden)

    Prerana Jha

    2017-11-01

    Full Text Available KLF2 (Kruppel-like factor 2 is a member of the zinc finger transcription factor family, which critically regulates embryonic lung development, function of endothelial cells and maintenance of quiescence in T-cells and monocytes. It is expressed in naïve T-cells and monocytes, however its level of expression decreases during activation and differentiation. KLF2 also plays critical regulatory role in various inflammatory diseases and their pathogenesis. Nuclear factor-kappaB (NF-κB is an important inducer of inflammation and the inflammation is mediated through the transcription of several proinflammatory cytokines, chemokines and adhesion molecules. So, both transcriptional factors KLF2 and NF-κB are being associated with the similar cellular functions and their maintenance. It was shown that KLF2 regulates most of the NF-κB-mediated activities. In this review, we focused on emphasizing the involvement of KLF2 in health and disease states and how they interact with transcriptional master regulator NF-κB.

  11. Circadian clocks govern calorie restriction-mediated life span extension through BMAL1- and IGF-1-dependent mechanisms.

    Science.gov (United States)

    Patel, Sonal A; Chaudhari, Amol; Gupta, Richa; Velingkaar, Nikkhil; Kondratov, Roman V

    2016-04-01

    Calorie restriction (CR) increases longevity in many species by unknown mechanisms. The circadian clock was proposed as a potential mediator of CR. Deficiency of the core component of the circadian clock-transcriptional factor BMAL1 (brain and muscle ARNT [aryl hydrocarbon receptor nuclear translocator]-like protein 1)-results in accelerated aging. Here we investigated the role of BMAL1 in mechanisms of CR. The 30% CR diet increased the life span of wild-type (WT) mice by 20% compared to mice on anad libitum(AL) diet but failed to increase life span ofBmal1(-/-)mice. BMAL1 deficiency impaired CR-mediated changes in the plasma levels of IGF-1 and insulin. We detected a statistically significantly reduction of IGF-1 in CRvs.AL by 50 to 70% in WT mice at several daily time points tested, while inBmal1(-/-)the reduction was not significant. Insulin levels in WT were reduced by 5 to 9%, whileBmal1(-/-)induced it by 10 to 35% at all time points tested. CR up-regulated the daily average expression ofBmal1(by 150%) and its downstream target genesPeriods(by 470% forPer1and by 130% forPer2). We propose that BMAL1 is an important mediator of CR, and activation of BMAL1 might link CR mechanisms with biologic clocks.-Patel, S. A., Chaudhari, A., Gupta, R., Velingkaar, N., Kondratov, R. V. Circadian clocks govern calorie restriction-mediated life span extension through BMAL1- and IGF-1-dependent mechanisms. © FASEB.

  12. Self-Regulation Mediates the Relationship between Learner Typology and Achievement in At - Risk Children

    Science.gov (United States)

    Weed, Keri; Keogh, Deborah; Borkowski, John G.; Whitman, Thomas; Noria, Christine W.

    2010-01-01

    A person-centered approach was used to explore the mediating role of self-regulation between learner typology at age 8 and academic achievement at age 14while controlling for domain-specific achievement in a longitudinal sample of 113 children born to adolescent mothers. Children were classified into one of 5 learner typologies at age 8based on interactive patterns of intellectual, achievement, and adaptive abilities. Typology classification explained significant variance in both reading and mathematics achievement at age 14. A bootstrapping approach confirmed that self-regulation mediated the relationship between typology and reading and mathematical achievement for children from all typologies except those classified as Cognitively and Adaptively Challenged. Implications of person-centered approaches for understanding processes involved with achievement are discussed. PMID:21278904

  13. Examining exercise dependence symptomatology from a self-determination perspective.

    Science.gov (United States)

    Edmunds, Jemma; Ntoumanis, Nikos; Duda, Joan L

    2006-11-01

    Background Pulling from Self-Determination Theory (SDT; Deci & Ryan, 1985), this study examined whether individuals classified as 'nondependent-symptomatic' and 'nondependent-asymptomatic' for exercise dependence differed in terms of reported levels of exercise-related psychological need satisfaction, self-determined versus controlling motivation and exercise behavior. In addition, we examined the type of motivational regulations predicting exercise behavior among these different groups, and their role as mediators between psychological need satisfaction and behavioral outcomes. Methods Participants (N = 339) completed measures of exercise-specific psychological need satisfaction, motivational regulations, exercise behavior and exercise dependence. Results Nondependent-symptomatic individuals reported higher levels of competence need satisfaction and all forms of motivational regulation, compared to nondependent-asymptomatic individuals. Introjected regulation approached significance as a positive predictor of strenuous exercise behavior for symptomatic individuals. Identified regulation was a positive predictor of strenuous exercise, and completely mediated the relationship between competence need satisfaction and strenuous exercise behavior, for asymptomatic individuals. Conclusions The findings reinforce the applicability of SDT to understanding the quantity and quality of engagement in exercise.

  14. Hypothalamic AMPK and fatty acid metabolism mediate thyroid regulation of energy balance.

    Science.gov (United States)

    López, Miguel; Varela, Luis; Vázquez, María J; Rodríguez-Cuenca, Sergio; González, Carmen R; Velagapudi, Vidya R; Morgan, Donald A; Schoenmakers, Erik; Agassandian, Khristofor; Lage, Ricardo; Martínez de Morentin, Pablo Blanco; Tovar, Sulay; Nogueiras, Rubén; Carling, David; Lelliott, Christopher; Gallego, Rosalía; Oresic, Matej; Chatterjee, Krishna; Saha, Asish K; Rahmouni, Kamal; Diéguez, Carlos; Vidal-Puig, Antonio

    2010-09-01

    Thyroid hormones have widespread cellular effects; however it is unclear whether their effects on the central nervous system (CNS) contribute to global energy balance. Here we demonstrate that either whole-body hyperthyroidism or central administration of triiodothyronine (T3) decreases the activity of hypothalamic AMP-activated protein kinase (AMPK), increases sympathetic nervous system (SNS) activity and upregulates thermogenic markers in brown adipose tissue (BAT). Inhibition of the lipogenic pathway in the ventromedial nucleus of the hypothalamus (VMH) prevents CNS-mediated activation of BAT by thyroid hormone and reverses the weight loss associated with hyperthyroidism. Similarly, inhibition of thyroid hormone receptors in the VMH reverses the weight loss associated with hyperthyroidism. This regulatory mechanism depends on AMPK inactivation, as genetic inhibition of this enzyme in the VMH of euthyroid rats induces feeding-independent weight loss and increases expression of thermogenic markers in BAT. These effects are reversed by pharmacological blockade of the SNS. Thus, thyroid hormone-induced modulation of AMPK activity and lipid metabolism in the hypothalamus is a major regulator of whole-body energy homeostasis.

  15. Hypothalamic AMPK and fatty acid metabolism mediate thyroid regulation of energy balance

    Science.gov (United States)

    López, Miguel; Varela, Luis; Vázquez, María J.; Rodríguez-Cuenca, Sergio; González, Carmen R.; Velagapudi, Vidya R.; Morgan, Donald A.; Schoenmakers, Erik; Agassandian, Khristofor; Lage, Ricardo; de Morentin, Pablo Blanco Martínez; Tovar, Sulay; Nogueiras, Rubén; Carling, David; Lelliott, Christopher; Gallego, Rosalía; Orešič, Matej; Chatterjee, Krishna; Saha, Asish K.; Rahmouni, Kamal; Diéguez, Carlos; Vidal-Puig, Antonio

    2010-01-01

    Thyroid hormones have widespread cellular effects; however it is unclear whether their effects on the central nervous system (CNS) contribute to global energy balance. Here, we demonstrate that either whole body hyperthyroidism or central administration of triiodothyronine (T3) decreases the activity of hypothalamic AMP-activated protein kinase (AMPK), increases sympathetic nervous system (SNS) activity and upregulates thermogenic markers in brown adipose tissue (BAT). Inhibition of the lipogenic pathway in the ventromedial nucleus of the hypothalamus (VMH) prevents CNS-mediated activation of BAT by thyroid hormone and reverses the weight loss associated with hyperthyroidism. Similarly inhibition of thyroid hormone receptors (TRs) in the VMH reverses the weight loss associated with hyperthyroidism. This regulatory mechanism depends on AMPK inactivation as genetic ablation of this enzyme in the VMH of euthyroid rats induces feeding-independent weight loss and increases expression of thermogenic markers in BAT. These effects are reversed by pharmacological blockade of the SNS. Thus, thyroid-hormone-induced modulation of AMPK activity and lipid metabolism in the hypothalamus is an important regulator of energy homeostasis. PMID:20802499

  16. Cyanide-induced death of dopaminergic cells is mediated by uncoupling protein-2 up-regulation and reduced Bcl-2 expression

    International Nuclear Information System (INIS)

    Zhang, X.; Li, L.; Zhang, L.; Borowitz, J.L.; Isom, G.E.

    2009-01-01

    Cyanide is a potent inhibitor of mitochondrial oxidative metabolism and produces mitochondria-mediated death of dopaminergic neurons and sublethal intoxications that are associated with a Parkinson-like syndrome. Cyanide toxicity is enhanced when mitochondrial uncoupling is stimulated following up-regulation of uncoupling protein-2 (UCP-2). In this study, the role of a pro-survival protein, Bcl-2, in cyanide-mediated cell death was determined in a rat dopaminergic immortalized mesencephalic cell line (N27 cells). Following pharmacological up-regulation of UCP-2 by treatment with Wy14,643, cyanide reduced cellular Bcl-2 expression by increasing proteasomal degradation of the protein. The increased turnover of Bcl-2 was mediated by an increase of oxidative stress following UCP-2 up-regulation. The oxidative stress involved depletion of mitochondrial glutathione (mtGSH) and increased H 2 O 2 generation. Repletion of mtGSH by loading cells with glutathione ethyl ester reduced H 2 O 2 generation and in turn blocked the cyanide-induced decrease of Bcl-2. To determine if UCP-2 mediated the response, RNAi knock down was conducted. The RNAi decreased cyanide-induced depletion of mtGSH, reduced H 2 O 2 accumulation, and inhibited down-regulation of Bcl-2, thus blocking cell death. To confirm the role of Bcl-2 down-regulation in the cell death, it was shown that over-expression of Bcl-2 by cDNA transfection attenuated the enhancement of cyanide toxicity after UCP-2 up-regulation. It was concluded that UCP-2 up-regulation sensitizes cells to cyanide by increasing cellular oxidative stress, leading to an increase of Bcl-2 degradation. Then the reduced Bcl-2 levels sensitize the cells to cyanide-mediated cell death.

  17. Deciphering Cis-Regulatory Element Mediated Combinatorial Regulation in Rice under Blast Infected Condition.

    Directory of Open Access Journals (Sweden)

    Arindam Deb

    Full Text Available Combinations of cis-regulatory elements (CREs present at the promoters facilitate the binding of several transcription factors (TFs, thereby altering the consequent gene expressions. Due to the eminent complexity of the regulatory mechanism, the combinatorics of CRE-mediated transcriptional regulation has been elusive. In this work, we have developed a new methodology that quantifies the co-occurrence tendencies of CREs present in a set of promoter sequences; these co-occurrence scores are filtered in three consecutive steps to test their statistical significance; and the significantly co-occurring CRE pairs are presented as networks. These networks of co-occurring CREs are further transformed to derive higher order of regulatory combinatorics. We have further applied this methodology on the differentially up-regulated gene-sets of rice tissues under fungal (Magnaporthe infected conditions to demonstrate how it helps to understand the CRE-mediated combinatorial gene regulation. Our analysis includes a wide spectrum of biologically important results. The CRE pairs having a strong tendency to co-occur often exhibit very similar joint distribution patterns at the promoters of rice. We couple the network approach with experimental results of plant gene regulation and defense mechanisms and find evidences of auto and cross regulation among TF families, cross-talk among multiple hormone signaling pathways, similarities and dissimilarities in regulatory combinatorics between different tissues, etc. Our analyses have pointed a highly distributed nature of the combinatorial gene regulation facilitating an efficient alteration in response to fungal attack. All together, our proposed methodology could be an important approach in understanding the combinatorial gene regulation. It can be further applied to unravel the tissue and/or condition specific combinatorial gene regulation in other eukaryotic systems with the availability of annotated genomic

  18. Heme oxygenase is the major 32-kDa stress protein induced in human skin fibroblasts by UVA radiation, hydrogen peroxide, and sodium arsenite

    International Nuclear Information System (INIS)

    Keyse, S.M.; Tyrrell, R.M.

    1989-01-01

    We have shown that UVA (320-380 nm) radiation, hydrogen peroxide, and sodium arsenite induce a stress protein of approximately 32 kDa in human skin fibroblasts. The synthesis and cloning of cDNA from arsenite-induced mRNA populations have now allowed us to unequivocally identify the 32-kDa protein as heme oxygenase. By mRNA analysis we have shown that the heme oxygenase gene is also induced in cultured human skin fibroblasts by UVA radiation, hydrogen peroxide, cadmium chloride, iodoacetamide, and menadione. The known antioxidant properties of heme catabolites taken together with the observation of a high level of induction of the enzyme in cells from an organ not involved in hemoglobin breakdown strongly supports the proposal that the induction of heme oxygenase may be a general response to oxidant stress and constitutes an important cellular defense mechanism against oxidative damage

  19. Fibroblast Growth Factor 21 Mediates Glycemic Regulation by Hepatic JNK

    Directory of Open Access Journals (Sweden)

    Santiago Vernia

    2016-03-01

    Full Text Available The cJun NH2-terminal kinase (JNK-signaling pathway is implicated in metabolic syndrome, including dysregulated blood glucose concentration and insulin resistance. Fibroblast growth factor 21 (FGF21 is a target of the hepatic JNK-signaling pathway and may contribute to the regulation of glycemia. To test the role of FGF21, we established mice with selective ablation of the Fgf21 gene in hepatocytes. FGF21 deficiency in the liver caused marked loss of FGF21 protein circulating in the blood. Moreover, the protective effects of hepatic JNK deficiency to suppress metabolic syndrome in high-fat diet-fed mice were not observed in mice with hepatocyte-specific FGF21 deficiency, including reduced blood glucose concentration and reduced intolerance to glucose and insulin. Furthermore, we show that JNK contributes to the regulation of hepatic FGF21 expression during fasting/feeding cycles. These data demonstrate that the hepatokine FGF21 is a key mediator of JNK-regulated metabolic syndrome.

  20. Exercise motivational regulations and exercise addiction: The mediating role of passion.

    Science.gov (United States)

    Sicilia, Álvaro; Alcaraz-Ibáñez, Manuel; Lirola, María-Jesús; Burgueño, Rafael; Maher, Anthony

    2018-05-23

    Background and aims The study explored the mediating role of forms of passion in the relationship between motivational regulations in exercise and exercise addiction (EA). Methods A total of 485 university students (368 males and 117 females; M age  = 20.43, SD = 3.21) completed a questionnaire measuring the frequency and intensity of exercise, motivational regulations in exercise, passion for exercise, and EA. Controlling the effects of age, frequency, and intensity of practice, the relationships between the study variables were examined though a path analysis. Results Both self-determined and non-self-determined forms of motivation showed positive association with EA. The forms of motivation with greatest predictive power for EA were introjected and integrated regulations. Both forms of motivation had positive direct and indirect effects through obsessive passion (OP) on EA; however, integrated regulation also showed negative indirect effects through harmonious passion on EA. Conclusions Both forms of passion and, especially, OP, seem to affect how motivational regulations are associated with EA. These findings clarify the association found in previous studies between self-determined forms of motivation and EA.

  1. Shh mediates PDGF-induced contractile-to-synthetic phenotypic modulation in vascular smooth muscle cells through regulation of KLF4

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Qiu [Department of Vascular Surgery, 1st Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Wei, Bin [Department of Dermatology, 1st Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Zhao, Yu; Wang, Xuehu; Fu, Qining; Liu, Hong [Department of Vascular Surgery, 1st Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China); Li, Fenghe, E-mail: lfh_cmu@126.com [Department of Vascular Surgery, 1st Affiliated Hospital of Chongqing Medical University, Chongqing 400016 (China)

    2016-07-01

    Platelet-derived growth factor (PDGF) is known to induce phenotypic switching of vascular smooth muscle cells (VSMCs) from contractile to a pathological synthetic state, which played an essential role in proliferation of VSMCs. Sonic hedgehog (Shh) contributes to the proliferation of VSMCs when induced by PDGF. Here, we investigated the probable role of Shh in PDGF-induced VSMC dedifferentiation and its underlying mechanisms. We found that PDGF stimulated Shh expression in VSMCs, which was mediated by activation of PDGFRβ/ERK1/2 cell signaling pathway. Further, we found PDGF-induced VSMC phenotypic modulation was accompanied by up-regulation of Shh/Gli family zinc finger 2 (Gli2) signaling and Krüppel-like factor 4 (KLF4). When inhibited Shh in the presence of PDGF, the expressions of KLF4 and VSMC dedifferentiation markers were down-regulated and the effect of PDGF in inducing VSMC dedifferentiation was blocked. In the absence of PDGF, Shh signaling activation increased the expression of KLF4 and promoted VSMC dedifferentiation. The results indicate Shh participated in the regulation of PDGF-induced VSMC dedifferentiation. Finally, we found that KLF4 was closely involved in this process. On inhibition of KLF4, PDGF induced VSMC dedifferentiation was abrogated, even in the presence of Shh. Taken together, the results provide critical insights into the newly discovered role of Shh in phenotypic modulation of VSMCs which depends on KLF4. - Highlights: • Shh as a downstream effector of PDGF participates in PDGF-induced VSMC phenotypic modulation. • Shh can promote VSMC phenotypic switching from contractile to synthetic state. • Shh mediates VSMC phenotypic modulation through regulation of KLF4.

  2. Shh mediates PDGF-induced contractile-to-synthetic phenotypic modulation in vascular smooth muscle cells through regulation of KLF4

    International Nuclear Information System (INIS)

    Zeng, Qiu; Wei, Bin; Zhao, Yu; Wang, Xuehu; Fu, Qining; Liu, Hong; Li, Fenghe

    2016-01-01

    Platelet-derived growth factor (PDGF) is known to induce phenotypic switching of vascular smooth muscle cells (VSMCs) from contractile to a pathological synthetic state, which played an essential role in proliferation of VSMCs. Sonic hedgehog (Shh) contributes to the proliferation of VSMCs when induced by PDGF. Here, we investigated the probable role of Shh in PDGF-induced VSMC dedifferentiation and its underlying mechanisms. We found that PDGF stimulated Shh expression in VSMCs, which was mediated by activation of PDGFRβ/ERK1/2 cell signaling pathway. Further, we found PDGF-induced VSMC phenotypic modulation was accompanied by up-regulation of Shh/Gli family zinc finger 2 (Gli2) signaling and Krüppel-like factor 4 (KLF4). When inhibited Shh in the presence of PDGF, the expressions of KLF4 and VSMC dedifferentiation markers were down-regulated and the effect of PDGF in inducing VSMC dedifferentiation was blocked. In the absence of PDGF, Shh signaling activation increased the expression of KLF4 and promoted VSMC dedifferentiation. The results indicate Shh participated in the regulation of PDGF-induced VSMC dedifferentiation. Finally, we found that KLF4 was closely involved in this process. On inhibition of KLF4, PDGF induced VSMC dedifferentiation was abrogated, even in the presence of Shh. Taken together, the results provide critical insights into the newly discovered role of Shh in phenotypic modulation of VSMCs which depends on KLF4. - Highlights: • Shh as a downstream effector of PDGF participates in PDGF-induced VSMC phenotypic modulation. • Shh can promote VSMC phenotypic switching from contractile to synthetic state. • Shh mediates VSMC phenotypic modulation through regulation of KLF4.

  3. NOX4-mediated ROS production induces apoptotic cell death via down-regulation of c-FLIP and Mcl-1 expression in combined treatment with thioridazine and curcumin.

    Science.gov (United States)

    Seo, Seung Un; Kim, Tae Hwan; Kim, Dong Eun; Min, Kyoung-Jin; Kwon, Taeg Kyu

    2017-10-01

    Thioridazine is known to have anti-tumor effects by inhibiting PI3K/Akt signaling, which is an important signaling pathway in cell survival. However, thioridazine alone does not induce apoptosis in head and neck squamous cell carcinoma (AMC-HN4), human breast carcinoma (MDA-MB231), and human glioma (U87MG) cells. Therefore, we investigated whether combined treatment with thioridazine and curcumin induces apoptosis. Combined treatment with thioridazine and curcumin markedly induced apoptosis in cancer cells without inducing apoptosis in human normal mesangial cells and human normal umbilical vein cells (EA.hy926). We found that combined treatment with thioridazine and curcumin had synergistic effects in AMC-HN4 cells. Among apoptosis-related proteins, thioridazine plus curcumin induced down-regulation of c-FLIP and Mcl-1 expression at the post-translational levels in a proteasome-dependent manner. Augmentation of proteasome activity was related to the up-regulation of proteasome subunit alpha 5 (PSMA5) expression in curcumin plus thioridazine-treated cells. Combined treatment with curcumin and thioridazine produced intracellular ROS in a NOX4-dependent manner, and ROS-mediated activation of Nrf2/ARE signaling played a critical role in the up-regulation of PSMA5 expression. Furthermore, ectopic expression of c-FLIP and Mcl-1 inhibited apoptosis in thioridazine and curcumin-treated cells. Therefore, we demonstrated that thioridazine plus curcumin induces proteasome activity by up-regulating PSMA5 expression via NOX4-mediated ROS production and that down-regulation of c-FLIP and Mcl-1 expression post-translationally is involved in apoptosis. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Overexpression of PLK3 Mediates the Degradation of Abnormal Prion Proteins Dependent on Chaperone-Mediated Autophagy.

    Science.gov (United States)

    Wang, Hui; Tian, Chan; Sun, Jing; Chen, Li-Na; Lv, Yan; Yang, Xiao-Dong; Xiao, Kang; Wang, Jing; Chen, Cao; Shi, Qi; Shao, Qi-Xiang; Dong, Xiao-Ping

    2017-08-01

    Polo-like kinase 3 (PLK3) is the main cause of cell cycle reentry-related neuronal apoptosis which has been implicated in the pathogenesis of prion diseases. Previous work also showed the regulatory activity of exogenous PLK3 on the degradation of PrP (prion protein) mutants and pathogenic PrP Sc ; however, the precise mechanisms remain unknown. In this study, we identified that the overexpression of PLK3-mediated degradation of PrP mutant and PrP Sc was repressed by lysosome rather than by proteasomal and macroautophagy inhibitors. Core components of chaperone-mediated autophagy (CMA) effectors, lysosome-associated membrane protein type 2A (LAMP2a), and heat shock cognate protein 70 (Hsc70) are markedly decreased in the HEK293T cells expressing PrP mutant and scrapie-infected cell line SMB-S15. Meanwhile, PrP mutant showed ability to interact with LAMP2a and Hsc70. Overexpression of PLK3 sufficiently increased the cellular levels of LAMP2a and Hsc70, accompanying with declining the accumulations of PrP mutant and PrP Sc . The kinase domain (KD) of PLK3 was responsible for elevating LAMP2a and Hsc70. Knockdown of endogenous PLK3 enhanced the activity of macroautophagy in the cultured cells. Moreover, time-dependent reductions of LAMP2a and Hsc70 were also observed in the brain tissues of hamster-adapted scrapie agent 263K-infected hamsters, indicating an impairment of CMA during prion infection. Those data indicate that the overexpression of PLK3-mediated degradation of abnormal PrP is largely dependent on CMA pathway.

  5. Cyclic-AMP mediated regulation of ABCB mRNA expression in mussel haemocytes.

    Directory of Open Access Journals (Sweden)

    Silvia Franzellitti

    Full Text Available BACKGROUND: The multixenobiotic resistance system (MXR allows aquatic organisms to cope with their habitat despite high pollution levels by over-expressing membrane and intracellular transporters, including the P-glycoprotein (Pgp. In mammals transcription of the ABCB1 gene encoding Pgp is under cAMP/PKA-mediated regulation; whether this is true in mollusks is not fully clarified. METHODOLOGY/PRINCIPAL FINDINGS: cAMP/PKA regulation and ABCB mRNA expression were assessed in haemocytes from Mediterranean mussels (Mytilus galloprovincialis exposed in vivo for 1 week to 0.3 ng/L fluoxetine (FX alone or in combination with 0.3 ng/L propranolol (PROP. FX significantly decreased cAMP levels and PKA activity, and induced ABCB mRNA down-regulation. FX effects were abolished in the presence of PROP. In vitro experiments using haemocytes treated with physiological agonists (noradrenaline and serotonin and pharmacological modulators (PROP, forskolin, dbcAMP, and H89 of the cAMP/PKA system were performed to obtain clear evidence about the involvement of the signaling pathway in the transcriptional regulation of ABCB. Serotonin (5-HT decreased cAMP levels, PKA activity and ABCB mRNA expression but increased the mRNA levels for a putative 5-HT1 receptor. Interestingly, 5-HT1 was also over-expressed after in vivo exposures to FX. 5-HT effects were counteracted by PROP. Forskolin and dbcAMP increased PKA activity as well as ABCB mRNA expression; the latter effect was abolished in the presence of the PKA inhibitor H89. CONCLUSIONS: This study provides the first direct evidence for the cAMP/PKA-mediated regulation of ABCB transcription in mussels.

  6. Reexamination of mood-mediation hypothesis of background-music-dependent effects in free recall.

    Science.gov (United States)

    Isarida, Toshiko K; Kubota, Takayuki; Nakajima, Saki; Isarida, Takeo

    2017-03-01

    The present study reexamined the mood-mediation hypothesis for explaining background-music-dependent effects in free recall. Experiments 1 and 2 respectively examined tempo- and tonality-dependent effects in free recall, which had been used as evidence for the mood-mediation hypothesis. In Experiments 1 and 2, undergraduates (n = 75 per experiment) incidentally learned a list of 20 unrelated words presented one by one at a rate of 5 s per word and then received a 30-s delayed oral free-recall test. Throughout the study and test sessions, a piece of music was played. At the time of test, one third of the participants received the same piece of music with the same tempo or tonality as at study, one third heard a different piece with the same tempo or tonality, and one third heard a different piece with a different tempo or tonality. Note that the condition of the same piece with a different tempo or tonality was excluded. Furthermore, the number of sampled pieces of background music was increased compared with previous studies. The results showed neither tempo- nor tonality-dependent effects, but only a background-music-dependent effect. Experiment 3 (n = 40) compared the effects of background music with a verbal association task and focal music (only listening to musical selections) on the participants' moods. The results showed that both the music tempo and tonality influenced the corresponding mood dimensions (arousal and pleasantness). These results are taken as evidence against the mood-mediation hypothesis. Theoretical implications are discussed.

  7. Med1 subunit of the mediator complex in nuclear receptor-regulated energy metabolism, liver regeneration, and hepatocarcinogenesis.

    Science.gov (United States)

    Jia, Yuzhi; Viswakarma, Navin; Reddy, Janardan K

    2014-01-01

    Several nuclear receptors regulate diverse metabolic functions that impact on critical biological processes, such as development, differentiation, cellular regeneration, and neoplastic conversion. In the liver, some members of the nuclear receptor family, such as peroxisome proliferator-activated receptors (PPARs), constitutive androstane receptor (CAR), farnesoid X receptor (FXR), liver X receptor (LXR), pregnane X receptor (PXR), glucocorticoid receptor (GR), and others, regulate energy homeostasis, the formation and excretion of bile acids, and detoxification of xenobiotics. Excess energy burning resulting from increases in fatty acid oxidation systems in liver generates reactive oxygen species, and the resulting oxidative damage influences liver regeneration and liver tumor development. These nuclear receptors are important sensors of exogenous activators as well as receptor-specific endogenous ligands. In this regard, gene knockout mouse models revealed that some lipid-metabolizing enzymes generate PPARα-activating ligands, while others such as ACOX1 (fatty acyl-CoA oxidase1) inactivate these endogenous PPARα activators. In the absence of ACOX1, the unmetabolized ACOX1 substrates cause sustained activation of PPARα, and the resulting increase in energy burning leads to hepatocarcinogenesis. Ligand-activated nuclear receptors recruit the multisubunit Mediator complex for RNA polymerase II-dependent gene transcription. Evidence indicates that the Med1 subunit of the Mediator is essential for PPARα, PPARγ, CAR, and GR signaling in liver. Med1 null hepatocytes fail to respond to PPARα activators in that these cells do not show induction of peroxisome proliferation and increases in fatty acid oxidation enzymes. Med1-deficient hepatocytes show no increase in cell proliferation and do not give rise to liver tumors. Identification of nuclear receptor-specific coactivators and Mediator subunits should further our understanding of the complexities of metabolic

  8. Regulators of G-protein signaling 4: modulation of 5-HT1A-mediated neurotransmitter release in vivo.

    Science.gov (United States)

    Beyer, Chad E; Ghavami, Afshin; Lin, Qian; Sung, Amy; Rhodes, Kenneth J; Dawson, Lee A; Schechter, Lee E; Young, Kathleen H

    2004-10-01

    Regulators of G-protein signaling (RGS) play a key role in the signal transduction of G-protein-coupled receptors (GPCRs). Specifically, RGS proteins function as GTPase accelerating proteins (GAPs) to dampen or "negatively regulate" GPCR-mediated signaling. Our group recently showed that RGS4 effectively GAPs Galpha(i)-mediated signaling in CHO cells expressing the serotonin-1A (5-HT(1A)) receptor. However, whether a similar relationship exists in vivo has yet to be identified. In present studies, a replication-deficient herpes simplex virus (HSV) was used to elevate RGS4 mRNA in the rat dorsal raphe nuclei (DRN) while extracellular levels of 5-HT in the striatum were monitored by in vivo microdialysis. Initial experiments conducted with noninfected rats showed that acute administration of 8-OH-DPAT (0.01-0.3 mg/kg, subcutaneous [s.c.]) dose dependently decreased striatal levels of 5-HT, an effect postulated to result from activation of somatodendritic 5-HT(1A) autoreceptors in the DRN. In control rats receiving a single intra-DRN infusion of HSV-LacZ, 8-OH-DPAT (0.03 mg/kg, s.c.) decreased 5-HT levels to an extent similar to that observed in noninfected animals. Conversely, rats infected with HSV-RGS4 in the DRN showed a blunted neurochemical response to 8-OH-DPAT (0.03 mg/kg, s.c.); however, increasing the dose to 0.3 mg/kg reversed this effect. Together, these findings represent the first in vivo evidence demonstrating that RGS4 functions to GAP Galpha(i)-coupled receptors and suggest that drug discovery efforts targeting RGS proteins may represent a novel mechanism to manipulate 5-HT(1A)-mediated neurotransmitter release.

  9. Regulation of GPCR-mediated smooth muscle contraction : implications for asthma and pulmonary hypertension

    NARCIS (Netherlands)

    Wright, D B; Tripathi, S; Sikarwar, A; Santosh, K T; Perez-Zoghbi, J; Ojo, O O; Irechukwu, N; Ward, J P T; Schaafsma, D

    Contractile G-protein-coupled receptors (GPCRs) have emerged as key regulators of smooth muscle contraction, both under healthy and diseased conditions. This brief review will discuss some key topics and novel insights regarding GPCR-mediated airway and vascular smooth muscle contraction as

  10. How Do Motivational Regulation Strategies Affect Achievement: Mediated by Effort Management and Moderated by Intelligence

    Science.gov (United States)

    Schwinger, Malte; Steinmayr, Ricarda; Spinath, Birgit

    2009-01-01

    It was assumed that the effect of motivational regulation strategies on achievement is mediated by effort management and moderated by intelligence. A sample of 231 11th and 12th grade German high-school students provided self-reports on their use of motivational regulation strategies and effort management and completed an intelligence test.…

  11. Does Anger Regulation Mediate the Discrimination-Mental Health Link among Mexican-Origin Adolescents? A Longitudinal Mediation Analysis Using Multilevel Modeling

    Science.gov (United States)

    Park, Irene J. K.; Wang, Lijuan; Williams, David R.; Alegría, Margarita

    2017-01-01

    Although prior research has consistently documented the association between racial/ethnic discrimination and poor mental health outcomes, the mechanisms that underlie this link are still unclear. The present 3-wave longitudinal study tested the mediating role of anger regulation in the discrimination-mental health link among 269 Mexican-origin…

  12. Mediator subunit18 controls flowering time and floral organ identity in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Zhengui Zheng

    Full Text Available Mediator is a conserved multi-protein complex that plays an important role in regulating transcription by mediating interactions between transcriptional activator proteins and RNA polymerase II. Much evidence exists that Mediator plays a constitutive role in the transcription of all genes transcribed by RNA polymerase II. However, evidence is mounting that specific Mediator subunits may control the developmental regulation of specific subsets of RNA polymerase II-dependent genes. Although the Mediator complex has been extensively studied in yeast and mammals, only a few reports on Mediator function in flowering time control of plants, little is known about Mediator function in floral organ identity. Here we show that in Arabidopsis thaliana, MEDIATOR SUBUNIT 18 (MED18 affects flowering time and floral organ formation through FLOWERING LOCUS C (FLC and AGAMOUS (AG. A MED18 loss-of-function mutant showed a remarkable syndrome of later flowering and altered floral organ number. We show that FLC and AG mRNA levels and AG expression patterns are altered in the mutant. Our results support parallels between the regulation of FLC and AG and demonstrate a developmental role for Mediator in plants.

  13. Prolonged inorganic arsenite exposure suppresses insulin-stimulated AKT S473 phosphorylation and glucose uptake in 3T3-L1 adipocytes: Involvement of the adaptive antioxidant response

    International Nuclear Information System (INIS)

    Xue, Peng; Hou, Yongyong; Zhang, Qiang; Woods, Courtney G.; Yarborough, Kathy; Liu, Huiyu; Sun, Guifan; Andersen, Melvin E.; Pi, Jingbo

    2011-01-01

    Highlights: → In 3T3-L1 adipocytes iAs 3+ decreases insulin-stimulated glucose uptake. → iAs 3+ attenuates insulin-induced phosphorylation of AKT S473. → iAs 3+ activates the cellular adaptive oxidative stress response. → iAs 3+ impairs insulin-stimulated ROS signaling. → iAs 3+ decreases expression of adipogenic genes and GLUT4. -- Abstract: There is growing evidence that chronic exposure of humans to inorganic arsenic, a potent environmental oxidative stressor, is associated with the incidence of type 2 diabetes (T2D). One critical feature of T2D is insulin resistance in peripheral tissues, especially in mature adipocytes, the hallmark of which is decreased insulin-stimulated glucose uptake (ISGU). Despite the deleterious effects of reactive oxygen species (ROS), they have been recognized as a second messenger serving an intracellular signaling role for insulin action. Nuclear factor erythroid 2-related factor 2 (NRF2) is a central transcription factor regulating cellular adaptive response to oxidative stress. This study proposes that in response to arsenic exposure, the NRF2-mediated adaptive induction of endogenous antioxidant enzymes blunts insulin-stimulated ROS signaling and thus impairs ISGU. Exposure of differentiated 3T3-L1 cells to low-level (up to 2 μM) inorganic arsenite (iAs 3+ ) led to decreased ISGU in a dose- and time-dependent manner. Concomitant to the impairment of ISGU, iAs 3+ exposure significantly attenuated insulin-stimulated intracellular ROS accumulation and AKT S473 phosphorylation, which could be attributed to the activation of NRF2 and induction of a battery of endogenous antioxidant enzymes. In addition, prolonged iAs 3+ exposure of 3T3-L1 adipocytes resulted in significant induction of inflammatory response genes and decreased expression of adipogenic genes and glucose transporter type 4 (GLUT4), suggesting chronic inflammation and reduction in GLUT4 expression may also be involved in arsenic-induced insulin resistance in

  14. Prolonged inorganic arsenite exposure suppresses insulin-stimulated AKT S473 phosphorylation and glucose uptake in 3T3-L1 adipocytes: Involvement of the adaptive antioxidant response

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Peng [The Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709 (United States); School of Public Health, China Medical University, Shenyang 110001 (China); Hou, Yongyong; Zhang, Qiang; Woods, Courtney G.; Yarborough, Kathy; Liu, Huiyu [The Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709 (United States); Sun, Guifan [School of Public Health, China Medical University, Shenyang 110001 (China); Andersen, Melvin E. [The Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709 (United States); Pi, Jingbo, E-mail: jpi@thehamner.org [The Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709 (United States)

    2011-04-08

    Highlights: {yields} In 3T3-L1 adipocytes iAs{sup 3+} decreases insulin-stimulated glucose uptake. {yields} iAs{sup 3+} attenuates insulin-induced phosphorylation of AKT S473. {yields} iAs{sup 3+} activates the cellular adaptive oxidative stress response. {yields} iAs{sup 3+} impairs insulin-stimulated ROS signaling. {yields} iAs{sup 3+} decreases expression of adipogenic genes and GLUT4. -- Abstract: There is growing evidence that chronic exposure of humans to inorganic arsenic, a potent environmental oxidative stressor, is associated with the incidence of type 2 diabetes (T2D). One critical feature of T2D is insulin resistance in peripheral tissues, especially in mature adipocytes, the hallmark of which is decreased insulin-stimulated glucose uptake (ISGU). Despite the deleterious effects of reactive oxygen species (ROS), they have been recognized as a second messenger serving an intracellular signaling role for insulin action. Nuclear factor erythroid 2-related factor 2 (NRF2) is a central transcription factor regulating cellular adaptive response to oxidative stress. This study proposes that in response to arsenic exposure, the NRF2-mediated adaptive induction of endogenous antioxidant enzymes blunts insulin-stimulated ROS signaling and thus impairs ISGU. Exposure of differentiated 3T3-L1 cells to low-level (up to 2 {mu}M) inorganic arsenite (iAs{sup 3+}) led to decreased ISGU in a dose- and time-dependent manner. Concomitant to the impairment of ISGU, iAs{sup 3+} exposure significantly attenuated insulin-stimulated intracellular ROS accumulation and AKT S473 phosphorylation, which could be attributed to the activation of NRF2 and induction of a battery of endogenous antioxidant enzymes. In addition, prolonged iAs{sup 3+} exposure of 3T3-L1 adipocytes resulted in significant induction of inflammatory response genes and decreased expression of adipogenic genes and glucose transporter type 4 (GLUT4), suggesting chronic inflammation and reduction in GLUT4

  15. Redox-Mediated and Ionizing-Radiation-Induced Inflammatory Mediators in Prostate Cancer Development and Treatment

    Science.gov (United States)

    Miao, Lu; Holley, Aaron K.; Zhao, Yanming; St. Clair, William H.

    2014-01-01

    Abstract Significance: Radiation therapy is widely used for treatment of prostate cancer. Radiation can directly damage biologically important molecules; however, most effects of radiation-mediated cell killing are derived from the generated free radicals that alter cellular redox status. Multiple proinflammatory mediators can also influence redox status in irradiated cells and the surrounding microenvironment, thereby affecting prostate cancer progression and radiotherapy efficiency. Recent Advances: Ionizing radiation (IR)–generated oxidative stress can regulate and be regulated by the production of proinflammatory mediators. Depending on the type and stage of the prostate cancer cells, these proinflammatory mediators may lead to different biological consequences ranging from cell death to development of radioresistance. Critical Issues: Tumors are heterogeneous and dynamic communication occurs between stromal and prostate cancer cells, and complicated redox-regulated mechanisms exist in the tumor microenvironment. Thus, antioxidant and anti-inflammatory strategies should be carefully evaluated for each patient at different stages of the disease to maximize therapeutic benefits while minimizing unintended side effects. Future Directions: Compared with normal cells, tumor cells are usually under higher oxidative stress and secrete more proinflammatory mediators. Thus, redox status is often less adaptive in tumor cells than in their normal counterparts. This difference can be exploited in a search for new cancer therapeutics and treatment regimes that selectively activate cell death pathways in tumor cells with minimal unintended consequences in terms of chemo- and radio-resistance in tumor cells and toxicity in normal tissues. Antioxid. Redox Signal. 20, 1481–1500. PMID:24093432

  16. TPL-2 Regulates Macrophage Lipid Metabolism and M2 Differentiation to Control TH2-Mediated Immunopathology

    Science.gov (United States)

    Entwistle, Lewis J.; Khoury, Hania; Papoutsopoulou, Stamatia; Mahmood, Radma; Mansour, Nuha R.; Ching-Cheng Huang, Stanley; Pearce, Edward J.; Pedro S. de Carvalho, Luiz; Ley, Steven C.

    2016-01-01

    Persistent TH2 cytokine responses following chronic helminth infections can often lead to the development of tissue pathology and fibrotic scarring. Despite a good understanding of the cellular mechanisms involved in fibrogenesis, there are very few therapeutic options available, highlighting a significant medical need and gap in our understanding of the molecular mechanisms of TH2-mediated immunopathology. In this study, we found that the Map3 kinase, TPL-2 (Map3k8; Cot) regulated TH2-mediated intestinal, hepatic and pulmonary immunopathology following Schistosoma mansoni infection or S. mansoni egg injection. Elevated inflammation, TH2 cell responses and exacerbated fibrosis in Map3k8 –/–mice was observed in mice with myeloid cell-specific (LysM) deletion of Map3k8, but not CD4 cell-specific deletion of Map3k8, indicating that TPL-2 regulated myeloid cell function to limit TH2-mediated immunopathology. Transcriptional and metabolic assays of Map3k8 –/–M2 macrophages identified that TPL-2 was required for lipolysis, M2 macrophage activation and the expression of a variety of genes involved in immuno-regulatory and pro-fibrotic pathways. Taken together this study identified that TPL-2 regulated TH2-mediated inflammation by supporting lipolysis and M2 macrophage activation, preventing TH2 cell expansion and downstream immunopathology and fibrosis. PMID:27487182

  17. Oxygen-dependent regulation of aquaporin-3 expression

    Directory of Open Access Journals (Sweden)

    Hoogewijs D

    2016-04-01

    Full Text Available David Hoogewijs,1,2 Melanie Vogler,3 Eveline Zwenger,3 Sabine Krull,3 Anke Zieseniss3 1Institute of Physiology, University of Duisburg-Essen, Essen, Germany; 2Institute of Physiology, University of Zürich, Zürich, Switzerland; 3Institute of Cardiovascular Physiology, University Medical Center Göttingen, University of Göttingen, Göttingen, GermanyAbstract: The purpose of this study was to investigate whether aquaporin-3 (AQP3 expression is altered in hypoxia and whether hypoxia-inducible transcription factor (HIF-1 regulates the hypoxic expression. AQP3 mRNA expression was studied in L929 fibrosarcoma cells and in several tissues derived from mice that were subjected to hypoxia. Computational analysis of the AQP3 promoter revealed conserved HIF binding sites within close proximity to the translational start site, and chromatin immunoprecipitation assays confirmed binding of HIF-1 to the endogenous hypoxia response elements. Furthermore, hypoxia resulted in increased expression of AQP3 mRNA in L929 fibrosarcoma cells. Consistently, shRNA-mediated knockdown of HIF-1 greatly reduced the hypoxic induction of AQP3. In addition, mRNA analysis of organs from mice exposed to inspiratory hypoxia demonstrated pronounced hypoxia-inducible expression of AQP3 in the kidney. Overall, our findings suggest that AQP3 expression can be regulated at the transcriptional level and that AQP3 represents a novel HIF-1 target gene. Keywords: transcriptional regulation, oxygen, hypoxia-inducible factor, hypoxia response element

  18. Expression profiling of genes regulated by TGF-beta: Differential regulation in normal and tumour cells

    Directory of Open Access Journals (Sweden)

    Takahashi Takashi

    2007-04-01

    Full Text Available Abstract Background TGF-beta is one of the key cytokines implicated in various disease processes including cancer. TGF-beta inhibits growth and promotes apoptosis in normal epithelial cells and in contrast, acts as a pro-tumour cytokine by promoting tumour angiogenesis, immune-escape and metastasis. It is not clear if various actions of TGF-beta on normal and tumour cells are due to differential gene regulations. Hence we studied the regulation of gene expression by TGF-beta in normal and cancer cells. Results Using human 19 K cDNA microarrays, we show that 1757 genes are exclusively regulated by TGF-beta in A549 cells in contrast to 733 genes exclusively regulated in HPL1D cells. In addition, 267 genes are commonly regulated in both the cell-lines. Semi-quantitative and real-time qRT-PCR analysis of some genes agrees with the microarray data. In order to identify the signalling pathways that influence TGF-beta mediated gene regulation, we used specific inhibitors of p38 MAP kinase, ERK kinase, JNK kinase and integrin signalling pathways. The data suggest that regulation of majority of the selected genes is dependent on at least one of these pathways and this dependence is cell-type specific. Interestingly, an integrin pathway inhibitor, RGD peptide, significantly affected TGF-beta regulation of Thrombospondin 1 in A549 cells. Conclusion These data suggest major differences with respect to TGF-beta mediated gene regulation in normal and transformed cells and significant role of non-canonical TGF-beta pathways in the regulation of many genes by TGF-beta.

  19. Focal adhesion kinase-dependent focal adhesion recruitment of SH2 domains directs SRC into focal adhesions to regulate cell adhesion and migration.

    Science.gov (United States)

    Wu, Jui-Chung; Chen, Yu-Chen; Kuo, Chih-Ting; Wenshin Yu, Helen; Chen, Yin-Quan; Chiou, Arthur; Kuo, Jean-Cheng

    2015-12-18

    Directed cell migration requires dynamical control of the protein complex within focal adhesions (FAs) and this control is regulated by signaling events involving tyrosine phosphorylation. We screened the SH2 domains present in tyrosine-specific kinases and phosphatases found within FAs, including SRC, SHP1 and SHP2, and examined whether these enzymes transiently target FAs via their SH2 domains. We found that the SRC_SH2 domain and the SHP2_N-SH2 domain are associated with FAs, but only the SRC_SH2 domain is able to be regulated by focal adhesion kinase (FAK). The FAK-dependent association of the SRC_SH2 domain is necessary and sufficient for SRC FA targeting. When the targeting of SRC into FAs is inhibited, there is significant suppression of SRC-mediated phosphorylation of paxillin and FAK; this results in an inhibition of FA formation and maturation and a reduction in cell migration. This study reveals an association between FAs and the SRC_SH2 domain as well as between FAs and the SHP2_N-SH2 domains. This supports the hypothesis that the FAK-regulated SRC_SH2 domain plays an important role in directing SRC into FAs and that this SRC-mediated FA signaling drives cell migration.

  20. Mediator Recruitment to Heat Shock Genes Requires Dual Hsf1 Activation Domains and Mediator Tail Subunits Med15 and Med16*

    Science.gov (United States)

    Kim, Sunyoung; Gross, David S.

    2013-01-01

    The evolutionarily conserved Mediator complex is central to the regulation of gene transcription in eukaryotes because it serves as a physical and functional interface between upstream regulators and the Pol II transcriptional machinery. Nonetheless, its role appears to be context-dependent, and the detailed mechanism by which it governs the expression of most genes remains unknown. Here we investigate Mediator involvement in HSP (heat shock protein) gene regulation in the yeast Saccharomyces cerevisiae. We find that in response to thermal upshift, subunits representative of each of the four Mediator modules (Head, Middle, Tail, and Kinase) are rapidly, robustly, and selectively recruited to the promoter regions of HSP genes. Their residence is transient, returning to near-background levels within 90 min. Hsf1 (heat shock factor 1) plays a central role in recruiting Mediator, as indicated by the fact that truncation of either its N- or C-terminal activation domain significantly reduces Mediator occupancy, whereas removal of both activation domains abolishes it. Likewise, ablation of either of two Mediator Tail subunits, Med15 or Med16, reduces Mediator recruitment to HSP promoters, whereas deletion of both abolishes it. Accompanying the loss of Mediator, recruitment of RNA polymerase II is substantially diminished. Interestingly, Mediator antagonizes Hsf1 occupancy of non-induced promoters yet facilitates enhanced Hsf1 association with activated ones. Collectively, our observations indicate that Hsf1, via its dual activation domains, recruits holo-Mediator to HSP promoters in response to acute heat stress through cooperative physical and/or functional interactions with the Tail module. PMID:23447536

  1. Adaptive and innate immune reactions regulating mast cell activation: from receptor-mediated signaling to responses

    DEFF Research Database (Denmark)

    Tkaczyk, Christine; Jensen, Bettina M; Iwaki, Shoko

    2006-01-01

    differentially activate multiple signaling pathways within the mast cells required for the generation and/or release of inflammatory mediators. Thus, the composition of the suite of mediators released and the physiologic ramifications of these responses are dependent on the stimuli and the microenvironment...

  2. CD40 dependent exacerbation of immune mediated hepatitis by hepatic CD11b+ Gr-1+ myeloid derived suppressor cells in tumor bearing mice

    Science.gov (United States)

    Kapanadze, Tamar; Medina-Echeverz, José; Gamrekelashvili, Jaba; Weiss, Jonathan M.; Wiltrout, Robert H.; Kapoor, Veena; Hawk, Nga; Terabe, Masaki; Berzofsky, Jay A.; Manns, Michael P.; Wang, Ena; Marincola, Francesco M.; Korangy, Firouzeh; Greten, Tim F.

    2015-01-01

    Immunosuppressive CD11b+Gr-1+ myeloid-derived suppressor cells (MDSC) accumulate in the livers of tumor-bearing mice. We studied hepatic MDSC in two murine models of immune mediated hepatitis. Unexpectedly, treatment of tumor bearing mice with Concanavalin A or α-Galactosylceramide resulted in increased ALT and AST serum levels in comparison to tumor free mice. Adoptive transfer of hepatic MDSC into naïve mice exacerbated Concanavalin A induced liver damage. Hepatic CD11b+Gr-1+ cells revealed a polarized pro-inflammatory gene signature after Concanavalin A treatment. An interferon gamma- dependent up-regulation of CD40 on hepatic CD11b+Gr-1+ cells along with an up-regulation of CD80, CD86, and CD1d after Concanavalin A treatment was observed. Concanavalin A treatment resulted in a loss of suppressor function by tumor-induced CD11b+Gr-1+ MDSC as well as enhanced reactive oxygen species-mediated hepatotoxicity. CD40 knockdown in hepatic MDSC led to increased arginase activity upon Concanavalin A treatment and lower ALT/AST serum levels. Finally, blockade of arginase activity in Cd40−/− tumor-induced myeloid cells resulted in exacerbation of hepatitis and increased reactive oxygen species production in vivo. Our findings indicate that in a setting of acute hepatitis, tumor-induced hepatic MDSC act as pro-inflammatory immune effector cells capable of killing hepatocytes in a CD40-dependent manner. PMID:25616156

  3. Sun-mediated mechanical LINC between nucleus and cytoskeleton regulates βcatenin nuclear access.

    Science.gov (United States)

    Uzer, Gunes; Bas, Guniz; Sen, Buer; Xie, Zhihui; Birks, Scott; Olcum, Melis; McGrath, Cody; Styner, Maya; Rubin, Janet

    2018-06-06

    βcatenin acts as a primary intracellular signal transducer for mechanical and Wnt signaling pathways to control cell function and fate. Regulation of βcatenin in the cytoplasm has been well studied but βcatenin nuclear trafficking and function remains unclear. In a previous study we showed that, in mesenchymal stem cells (MSC), mechanical blockade of adipogenesis relied on inhibition of βcatenin destruction complex element GSK3β (glycogen synthase kinase 3β) to increase nuclear βcatenin as well as the function of Linker of Cytoskeleton and Nucleoskeleton (LINC) complexes, suggesting that these two mechanisms may be linked. Here we show that shortly after inactivation of GSK3β due to either low intensity vibration (LIV), substrate strain or pharmacologic inhibition, βcatenin associates with the nucleoskeleton, defined as the insoluble nuclear fraction that provides structure to the integrated nuclear envelope, nuclear lamina and chromatin. Co-depleting LINC elements Sun-1 and Sun-2 interfered with both nucleoskeletal association and nuclear entry of βcatenin, resulting in decreased nuclear βcatenin levels. Our findings reveal that the insoluble structural nucleoskeleton actively participates in βcatenin dynamics. As the cytoskeleton transmits applied mechanical force to the nuclear surface to influence the nucleoskeleton and its LINC mediated interaction, our results suggest a pathway by which LINC mediated connectivity may play a role in signaling pathways that depend on nuclear access of βcatenin. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. The PPAR{gamma} ligand ciglitazone regulates androgen receptor activation differently in androgen-dependent versus androgen-independent human prostate cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Moss, Patrice E.; Lyles, Besstina E.; Stewart, LaMonica V., E-mail: lstewart@mmc.edu

    2010-12-10

    The androgen receptor (AR) regulates growth and progression of androgen-dependent as well as androgen-independent prostate cancer cells. Peroxisome proliferator-activated receptor gamma (PPAR{gamma}) agonists have been reported to reduce AR activation in androgen-dependent LNCaP prostate cancer cells. To determine whether PPAR{gamma} ligands are equally effective at inhibiting AR activity in androgen-independent prostate cancer, we examined the effect of the PPAR{gamma} ligands ciglitazone and rosiglitazone on C4-2 cells, an androgen- independent derivative of the LNCaP cell line. Luciferase-based reporter assays and Western blot analysis demonstrated that PPAR{gamma} ligand reduced dihydrotestosterone (DHT)-induced increases in AR activity in LNCaP cells. However, in C4-2 cells, these compounds increased DHT-induced AR driven luciferase activity. In addition, ciglitazone did not significantly alter DHT-mediated increases in prostate specific antigen (PSA) protein or mRNA levels within C4-2 cells. siRNA-based experiments demonstrated that the ciglitazone-induced regulation of AR activity observed in C4-2 cells was dependent on the presence of PPAR{gamma}. Furthermore, overexpression of the AR corepressor cyclin D1 inhibited the ability of ciglitazone to induce AR luciferase activity in C4-2 cells. Thus, our data suggest that both PPAR{gamma} and cyclin D1 levels influence the ability of ciglitazone to differentially regulate AR signaling in androgen-independent C4-2 prostate cancer cells.

  5. Aryl hydrocarbon receptor-dependent up-regulation of the heterodimeric amino acid transporter LAT1 (SLC7A5)/CD98hc (SLC3A2) by diesel exhaust particle extract in human bronchial epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Le Vee, Marc; Jouan, Elodie; Lecureur, Valérie [Institut de Recherches en Santé, Environnement et Travail (IRSET), UMR INSERM U1085, Faculté de Pharmacie, 2 Avenue du Pr Léon Bernard, 35043 Rennes (France); Fardel, Olivier, E-mail: olivier.fardel@univ-rennes1.fr [Institut de Recherches en Santé, Environnement et Travail (IRSET), UMR INSERM U1085, Faculté de Pharmacie, 2 Avenue du Pr Léon Bernard, 35043 Rennes (France); Pôle Biologie, Centre Hospitalier Universitaire, 2 rue Henri Le Guilloux, 35033 Rennes (France)

    2016-01-01

    The heterodimeric L-type amino acid transporter (LAT) 1/CD98hc is overexpressed in lung cancers with a poor prognosis factor. Factors that contribute to LAT1/CD98hc overexpression in lung cells remain however to be determined, but the implication of atmospheric pollution can be suspected. The present study was therefore designed to analyze the effects of diesel exhaust particle (DEP) extract (DEPe) on LAT1/CD98hc expression in bronchial epithelial BEAS-2B cells. Exposure to DEPe up-regulated LAT1 and CD98hc mRNA levels in a concentration-dependent manner, with DEPe EC{sub 50} values (around 0.2 μg/mL) relevant to environmental situations. DEPe concomitantly induced LAT1/CD98hc protein expression and LAT1-mediated leucine accumulation in BEAS-2B cells. Inhibition of the aryl hydrocarbon receptor (AhR) pathway through the use of a chemical AhR antagonist or the siRNA-mediated silencing of AhR expression was next found to prevent DEPe-mediated induction of LAT1/CD98hc, indicating that this regulation depends on AhR, known to be activated by major chemical DEP components like polycyclic aromatic hydrocarbons. DEPe exposure was finally shown to induce mRNA expression and activity of matrix metalloproteinase (MMP)-2 in BEAS-2B cells, in a CD98hc/focal adhesion kinase (FAK)/extracellular regulated kinase (ERK) manner, thus suggesting that DEPe-mediated induction of CD98hc triggers activation of the integrin/FAK/ERK signaling pathway known to be involved in MMP-2 regulation. Taken together, these data demonstrate that exposure to DEPe induces functional overexpression of the amino acid transporter LAT1/CD98hc in lung cells. Such a regulation may participate to pulmonary carcinogenic effects of DEPs, owing to the well-documented contribution of LAT1 and CD98hc to cancer development. - Highlights: • The amino acid transporter LAT1/CD98hc is up-regulated in DEPe-treated lung cells. • The aryl hydrocarbon receptor is involved in DEPe-triggered induction of LAT1/CD98hc.

  6. Csk Homologous Kinase, a Potential Regulator of CXCR4-mediated Breast Cancer Cell Metastasis

    Science.gov (United States)

    2010-08-31

    SH2 ) and SH3 domains and lacks the consensus tyrosine phosphorylation and myristylation sites found in Src family kinases . CHK has been shown to...0350 TITLE: Csk Homologous Kinase , a Potential Regulator of CXCR4-mediated Breast Cancer Cell Metastasis PRINCIPAL INVESTIGATOR: Byeong-Chel...1 AUG 2009 - 31 JUL 2010 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER W81XWH-09-1-0350 Csk Homologous Kinase , a Potential Regulator

  7. Phospholipid-binding protein EhC2A mediates calcium-dependent translocation of transcription factor URE3-BP to the plasma membrane of Entamoeba histolytica.

    Science.gov (United States)

    Moreno, Heriberto; Linford, Alicia S; Gilchrist, Carol A; Petri, William A

    2010-05-01

    The Entamoeba histolytica upstream regulatory element 3-binding protein (URE3-BP) is a transcription factor that binds DNA in a Ca(2+)-inhibitable manner. The protein is located in both the nucleus and the cytoplasm but has also been found to be enriched in the plasma membrane of amebic trophozoites. We investigated the reason for the unusual localization of URE3-BP at the amebic plasma membrane. Here we identify and characterize a 22-kDa Ca(2+)-dependent binding partner of URE3-BP, EhC2A, a novel member of the C2-domain superfamily. Immunoprecipitations of URE3-BP and EhC2A showed that the proteins interact and that such interaction was enhanced in the presence of Ca(2+). Recombinant and native EhC2A bound phospholipid liposomes in a Ca(2+)-dependent manner, with half-maximal binding occurring at 3.4 muM free Ca(2+). A direct interaction between EhC2A and URE3-BP was demonstrated by the ability of recombinant EhC2A to recruit recombinant URE3-BP to phospholipid liposomes in a Ca(2+)-dependent manner. URE3-BP and EhC2A were observed to translocate to the amebic plasma membrane upon an increase in the intracellular Ca(2+) concentration of trophozoites, as revealed by subcellular fractionation and immunofluorescent staining. Short hairpin RNA-mediated knockdown of EhC2A protein expression significantly modulated the mRNA levels of URE3-BP-regulated transcripts. Based on these results, we propose a model for EhC2A-mediated regulation of the transcriptional activities of URE3-BP via Ca(2+)-dependent anchoring of the transcription factor to the amebic plasma membrane.

  8. O-GlcNAc regulates NEDD4-1 stability via caspase-mediated pathway

    International Nuclear Information System (INIS)

    Jiang, Kuan; Bai, Bingyang; Ta, Yajie; Zhang, Tingling; Xiao, Zikang; Wang, Peng George; Zhang, Lianwen

    2016-01-01

    O-GlcNAc modification of cytosolic and nuclear proteins regulates essential cellular processes such as stress responses, transcription, translation, and protein degradation. Emerging evidence indicates O-GlcNAcylation has a dynamic interplay with ubiquitination in cellular regulation. Here, we report that O-GlcNAc indirectly targets a vital E3 ubiquitin ligase enzyme of NEDD4-1. The protein level of NEDD4-1 is accordingly decreased following an increase of overall O-GlcNAc level upon PUGNAc or glucosamine stimulation. O-GlcNAc transferase (OGT) knockdown, overexpression and mutation results confirm that the stability of NEDD4-1 is negatively regulated by cellular O-GlcNAc. Moreover, the NEDD4-1 degradation induced by PUGNAc or GlcN is significantly inhibited by the caspase inhibitor. Our study reveals a regulation mechanism of NEDD4-1 stability by O-GlcNAcylation. - Highlights: • Reduced NEDD4-1 correlates with increased overall O-GlcNAc level. • OGT negatively regulates NEDD4-1 stability. • O-GlcNAc regulates NEDD4-1 through caspase-mediated pathway.

  9. ATR- and ATM-Mediated DNA Damage Response Is Dependent on Excision Repair Assembly during G1 but Not in S Phase of Cell Cycle.

    Science.gov (United States)

    Ray, Alo; Blevins, Chessica; Wani, Gulzar; Wani, Altaf A

    2016-01-01

    Cell cycle checkpoint is mediated by ATR and ATM kinases, as a prompt early response to a variety of DNA insults, and culminates in a highly orchestrated signal transduction cascade. Previously, we defined the regulatory role of nucleotide excision repair (NER) factors, DDB2 and XPC, in checkpoint and ATR/ATM-dependent repair pathway via ATR and ATM phosphorylation and recruitment to ultraviolet radiation (UVR)-induced damage sites. Here, we have dissected the molecular mechanisms of DDB2- and XPC- mediated regulation of ATR and ATM recruitment and activation upon UVR exposures. We show that the ATR and ATM activation and accumulation to UVR-induced damage not only depends on DDB2 and XPC, but also on the NER protein XPA, suggesting that the assembly of an active NER complex is essential for ATR and ATM recruitment. ATR and ATM localization and H2AX phosphorylation at the lesion sites occur as early as ten minutes in asynchronous as well as G1 arrested cells, showing that repair and checkpoint-mediated by ATR and ATM starts early upon UV irradiation. Moreover, our results demonstrated that ATR and ATM recruitment and H2AX phosphorylation are dependent on NER proteins in G1 phase, but not in S phase. We reasoned that in G1 the UVR-induced ssDNA gaps or processed ssDNA, and the bound NER complex promote ATR and ATM recruitment. In S phase, when the UV lesions result in stalled replication forks with long single-stranded DNA, ATR and ATM recruitment to these sites is regulated by different sets of proteins. Taken together, these results provide evidence that UVR-induced ATR and ATM recruitment and activation differ in G1 and S phases due to the existence of distinct types of DNA lesions, which promote assembly of different proteins involved in the process of DNA repair and checkpoint activation.

  10. Type I NKT-cell-mediated TNF-α is a positive regulator of NLRP3 inflammasome priming.

    Science.gov (United States)

    Chow, Melvyn T; Duret, Helene; Andrews, Daniel M; Faveeuw, Christelle; Möller, Andreas; Smyth, Mark J; Paget, Christophe

    2014-07-01

    The NLRP3 inflammasome plays a crucial role in the innate immune response to pathogens and exogenous or endogenous danger signals. Its activity must be precisely and tightly regulated to generate tailored immune responses. However, the immune cell subsets and cytokines controlling NLRP3 inflammasome activity are still poorly understood. Here, we have shown a link between NKT-cell-mediated TNF-α and NLRP3 inflammasome activity. The NLRP3 inflammasome in APCs was critical to potentiate NKT-cell-mediated immune responses, since C57BL/6 NLRP3 inflammasome-deficient mice exhibited reduced responsiveness to α-galactosylceramide. Importantly, NKT cells were found to act as regulators of NLRP3 inflammasome signaling, as NKT-cell-derived TNF-α was required for optimal IL-1β and IL-18 production by myeloid cells in response to α-galactosylceramide, by acting on the NLRP3 inflammasome priming step. Thus, NKT cells play a role in the positive regulation of NLRP3 inflammasome priming by mediating the production of TNF-α, thus demonstrating another means by which NKT cells control early inflammation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. β-Arrestin regulation of myosin light chain phosphorylation promotes AT1aR-mediated cell contraction and migration.

    Directory of Open Access Journals (Sweden)

    Elie Simard

    Full Text Available Over the last decade, it has been established that G-protein-coupled receptors (GPCRs signal not only through canonical G-protein-mediated mechanisms, but also through the ubiquitous cellular scaffolds β-arrestin-1 and β-arrestin-2. Previous studies have implicated β-arrestins as regulators of actin reorganization in response to GPCR stimulation while also being required for membrane protrusion events that accompany cellular motility. One of the most critical events in the active movement of cells is the cyclic phosphorylation and activation of myosin light chain (MLC, which is required for cellular contraction and movement. We have identified the myosin light chain phosphatase Targeting Subunit (MYPT-1 as a binding partner of the β-arrestins and found that β-arrestins play a role in regulating the turnover of phosphorylated myosin light chain. In response to stimulation of the angiotensin Type 1a Receptor (AT1aR, MLC phosphorylation is induced quickly and potently. We have found that β-arrestin-2 facilitates dephosphorylation of MLC, while, in a reciprocal fashion, β-arrestin 1 limits dephosphorylation of MLC. Intriguingly, loss of either β-arrestin-1 or 2 blocks phospho-MLC turnover and causes a decrease in the contraction of cells as monitored by atomic force microscopy (AFM. Furthermore, by employing the β-arrestin biased ligand [Sar(1,Ile(4,Ile(8]-Ang, we demonstrate that AT1aR-mediated cellular motility involves a β-arrestin dependent component. This suggests that the reciprocal regulation of MLC phosphorylation status by β-arrestins-1 and 2 causes turnover in the phosphorylation status of MLC that is required for cell contractility and subsequent chemotaxic motility.

  12. DMPD: Pivotal role of PGE2 and IL-10 in the cross-regulation of dendritic cell-derivedinflammatory mediators. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available l) (.csml) Show Pivotal role of PGE2 and IL-10 in the cross-regulation of dendritic cell-derivedinflammatory mediator...egulation of dendritic cell-derivedinflammatory mediators. Authors Harizi H, Gualde N. Publication Cell Mol ...16978535 Pivotal role of PGE2 and IL-10 in the cross-regulation of dendritic cell-derivedinflammatory mediat...ors. Harizi H, Gualde N. Cell Mol Immunol. 2006 Aug;3(4):271-7. (.png) (.svg) (.htm

  13. TET proteins regulate the lineage specification and TCR-mediated expansion of iNKT cells.

    Science.gov (United States)

    Tsagaratou, Ageliki; González-Avalos, Edahí; Rautio, Sini; Scott-Browne, James P; Togher, Susan; Pastor, William A; Rothenberg, Ellen V; Chavez, Lukas; Lähdesmäki, Harri; Rao, Anjana

    2017-01-01

    TET proteins oxidize 5-methylcytosine in DNA to 5-hydroxymethylcytosine and other oxidation products. We found that simultaneous deletion of Tet2 and Tet3 in mouse CD4 + CD8 + double-positive thymocytes resulted in dysregulated development and proliferation of invariant natural killer T cells (iNKT cells). Tet2-Tet3 double-knockout (DKO) iNKT cells displayed pronounced skewing toward the NKT17 lineage, with increased DNA methylation and impaired expression of genes encoding the key lineage-specifying factors T-bet and ThPOK. Transfer of purified Tet2-Tet3 DKO iNKT cells into immunocompetent recipient mice resulted in an uncontrolled expansion that was dependent on the nonclassical major histocompatibility complex (MHC) protein CD1d, which presents lipid antigens to iNKT cells. Our data indicate that TET proteins regulate iNKT cell fate by ensuring their proper development and maturation and by suppressing aberrant proliferation mediated by the T cell antigen receptor (TCR).

  14. XAP5 CIRCADIAN TIMEKEEPER Positively Regulates RESISTANCE TO POWDERY MILDEW8.1–Mediated Immunity in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Yong-Ju Xu

    2017-11-01

    Full Text Available Ectopic expression of the Arabidopsis RESISTANCE TO POWDERY MILDEW8.1 (RPW8.1 boosts pattern-triggered immunity leading to enhanced resistance to different pathogens in Arabidopsis and rice. However, the underlying regulatory mechanism remains largely elusive. Here, we report that XAP5 CIRCADIAN TIMEKEEPER (XCT, At2g21150 positively regulates RPW8.1-mediated cell death and disease resistance. Forward genetic screen identified the b3-17 mutant that exhibited less cell death and susceptibility to powdery mildew and bacterial pathogens. Map-based cloning identified a G-to-A point mutation at the 3′ splice site of the 8th intron, which resulted in splice shift to 8-bp down-stream of the original splice site of XCT in b3-17, and introduced into a stop codon after two codons leading to a truncated XCT. XCT has previously been identified as a circadian clock gene required for small RNA biogenesis and acting down-stream of ETHYLENE-INSENSITIVE3 (EIN3 in the ethylene-signaling pathway. Here we further showed that mutation or down-regulation of XCT by artificial microRNA reduced RPW8.1-mediated immunity in R1Y4, a transgenic line expressing RPW8.1-YFP from the RPW8.1 native promoter. On the contrary, overexpression of XCT in R1Y4 background enhanced RPW8.1-mediated cell death, H2O2 production and resistance against powdery mildew. Consistently, the expression of RPW8.1 was down- and up-regulated in xct mutant and XCT overexpression lines, respectively. Taken together, these results indicate that XCT positively regulates RPW8.1-mediated cell death and disease resistance, and provide new insight into the regulatory mechanism of RPW8.1-mediated immunity.

  15. AS160 associates with the Na+,K+-ATPase and mediates the adenosine monophosphate-stimulated protein kinase-dependent regulation of sodium pump surface expression.

    Science.gov (United States)

    Alves, Daiane S; Farr, Glen A; Seo-Mayer, Patricia; Caplan, Michael J

    2010-12-01

    The Na(+),K(+)-ATPase is the major active transport protein found in the plasma membranes of most epithelial cell types. The regulation of Na(+),K(+)-ATPase activity involves a variety of mechanisms, including regulated endocytosis and recycling. Our efforts to identify novel Na(+),K(+)-ATPase binding partners revealed a direct association between the Na(+),K(+)-ATPase and AS160, a Rab-GTPase-activating protein. In COS cells, coexpression of AS160 and Na(+),K(+)-ATPase led to the intracellular retention of the sodium pump. We find that AS160 interacts with the large cytoplasmic NP domain of the α-subunit of the Na(+),K(+)-ATPase. Inhibition of the activity of the adenosine monophosphate-stimulated protein kinase (AMPK) in Madin-Darby canine kidney cells through treatment with Compound C induces Na(+),K(+)-ATPase endocytosis. This effect of Compound C is prevented through the short hairpin RNA-mediated knockdown of AS160, demonstrating that AMPK and AS160 participate in a common pathway to modulate the cell surface expression of the Na(+),K(+)-ATPase.

  16. Endogenous TasiRNAs mediate non-cell autonomous effects on gene regulation in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Rebecca Schwab

    Full Text Available BACKGROUND: Different classes of small RNAs (sRNAs refine the expression of numerous genes in higher eukaryotes by directing protein partners to complementary nucleic acids, where they mediate gene silencing. Plants encode a unique class of sRNAs, called trans-acting small interfering RNAs (tasiRNAs, which post-transcriptionally regulate protein-coding transcripts, as do microRNAs (miRNAs, and both sRNA classes control development through their targets. TasiRNA biogenesis requires multiple components of the siRNA pathway and also miRNAs. But while 21mer siRNAs originating from transgenes can mediate silencing across several cell layers, miRNA action seems spatially restricted to the producing or closely surrounding cells. PRINCIPAL FINDINGS: We have previously described the isolation of a genetrap reporter line for TAS3a, the major locus producing AUXIN RESPONS FACTOR (ARF-regulating tasiRNAs in the Arabidopsis shoot. Its activity is limited to the adaxial (upper side of leaf primordia, thus spatially isolated from ARF-activities, which are located in the abaxial (lower side. We show here by in situ hybridization and reporter fusions that the silencing activities of ARF-regulating tasiRNAs are indeed manifested non-cell autonomously to spatially control ARF activities. CONCLUSIONS/SIGNIFICANCE: Endogenous tasiRNAs are thus mediators of a mobile developmental signal and might provide effective gene silencing at a distance beyond the reach of most miRNAs.

  17. The role of HSP70 in mediating age-dependent mortality in sepsis

    Science.gov (United States)

    McConnell, Kevin W.; Fox, Amy C.; Clark, Andrew T.; Chang, Nai-Yuan Nicholas; Dominguez, Jessica A.; Farris, Alton B.; Buchman, Timothy G.; Hunt, Clayton R.; Coopersmith, Craig M.

    2011-01-01

    Sepsis is primarily a disease of the aged, with increased incidence and mortality occurring in aged hosts. Heat shock protein (HSP) 70 plays an important role in both healthy aging and the stress response to injury. The purpose of this study was to determine the role of HSP70 in mediating mortality and the host inflammatory response in aged septic hosts. Sepsis was induced in both young (6–12week old) and aged (16–17 month old) HSP70−/− and wild type (WT) mice to determine if HSP70 modulated outcome in an age-dependent fashion. Young HSP70−/− and WT mice subjected to cecal ligation and puncture (CLP), Pseudomonas aeruginosa pneumonia or Streptococcus pneumoniae pneumonia had no differences in mortality, suggesting HSP70 does not mediate survival in young septic hosts. In contrast, mortality was higher in aged HSP70−/− mice than aged WT mice subjected to CLP (p=0.01), suggesting HSP70 mediates mortality in sepsis in an age-dependent fashion. Compared to WT mice, aged septic HSP70−/− mice had increased gut epithelial apoptosis and pulmonary inflammation. In addition, HSP70−/−mice had increased systemic levels of TNF-α, IL-6, IL-10 and IL-1β compared to WT mice. These data demonstrate that HSP70 is a key determinant of mortality in aged but not young hosts in sepsis. HSP70 may play a protective role in an age-dependent response to sepsis by preventing excessive gut apoptosis and both pulmonary and systemic inflammation. PMID:21296977

  18. Up-Regulation of P21 Inhibits TRAIL-Mediated Extrinsic Apoptosis, Contributing Resistance to SAHA in Acute Myeloid Leukemia Cells

    Directory of Open Access Journals (Sweden)

    Xing Wu

    2014-08-01

    Full Text Available Background/Aim: P21, a multifunctional cell cycle-regulatory molecule, regulates apoptotic cell death. In this study we examined the effect of altered p21 expression on the sensitivity of acute myeloid leukemia cells in response to HDAC inhibitor SAHA treatment and investigated the underlying mechanism. Methods: Stably transfected HL60 cell lines were established in RPMI-1640 with supplementation of G-418. Cell viability was measured by MTT assay. Western blot was applied to assess the protein expression levels of target genes. Cell apoptosis was monitored by AnnexinV-PE/7AAD assay. Results: We showed HL60 cells that that didn't up-regulate p21 expression were more sensitive to SAHA-mediated apoptosis than NB4 and U937 cells that had increased p21 level. Enforced expression of p21 in HL60 cells reduced sensitivity to SAHA and blocked TRAIL-mediated apoptosis. Conversely, p21 silencing in NB4 cells enhanced SAHA-mediated apoptosis and lethality. Finally, we found that combined treatment with SAHA and rapamycin down-regulated p21 and enhanced apoptosis in AML cells. Conclusion: We conclude that up-regulated p21 expression mediates resistance to SAHA via inhibition of TRAIL apoptotic pathway. P21 may serve as a candidate biomarker to predict responsiveness or resistance to SAHA-based therapy in AML patients. In addition, rapamycin may be an effective agent to override p21-mediated resistance to SAHA in AML patients.

  19. Polycomb Group Protein PHF1 Regulates p53-dependent Cell Growth Arrest and Apoptosis*

    Science.gov (United States)

    Yang, Yang; Wang, Chenji; Zhang, Pingzhao; Gao, Kun; Wang, Dejie; Yu, Hongxiu; Zhang, Ting; Jiang, Sirui; Hexige, Saiyin; Hong, Zehui; Yasui, Akira; Liu, Jun O.; Huang, Haojie; Yu, Long

    2013-01-01

    Polycomb group protein PHF1 is well known as a component of a novel EED-EZH2·Polycomb repressive complex 2 complex and plays important roles in H3K27 methylation and Hox gene silencing. PHF1 is also involved in the response to DNA double-strand breaks in human cells, promotes nonhomologous end-joining processes through interaction with Ku70/Ku80. Here, we identified another function of PHF1 as a potential p53 pathway activator in a pathway screen using luminescence reporter assay. Subsequent studies showed PHF1 directly interacts with p53 proteins both in vivo and in vitro and co-localized in nucleus. PHF1 binds to the C-terminal regulatory domain of p53. Overexpression of PHF1 elevated p53 protein level and prolonged its turnover. Knockdown of PHF1 reduced p53 protein level and its target gene expression both in normal state and DNA damage response. Mechanically, PHF1 protects p53 proteins from MDM2-mediated ubiquitination and degradation. Furthermore, we showed that PHF1 regulates cell growth arrest and etoposide-induced apoptosis in a p53-dependent manner. Finally, PHF1 expression was significantly down-regulated in human breast cancer samples. Taken together, we establish PHF1 as a novel positive regulator of the p53 pathway. These data shed light on the potential roles of PHF1 in tumorigenesis and/or tumor progression. PMID:23150668

  20. Differential Dopamine Regulation of Ca2+ Signaling and Its Timing Dependence in the Nucleus Accumbens

    Directory of Open Access Journals (Sweden)

    Immani Swapna

    2016-04-01

    Full Text Available Dopamine action in the nucleus accumbens (NAc is thought to drive appetitive behavior and Pavlovian reward learning. However, it remains controversial how dopamine achieves these behavioral effects by regulating medium spiny projection neurons (MSNs of the NAc, especially on a behaviorally relevant timescale. Metabotropic glutamate receptor (mGluR-induced Ca2+ signaling dependent on the Ca2+- releasing messenger inositol 1,4,5-triphosphate (IP3 plays a critical role in controlling neuronal excitability and synaptic plasticity. Here, we show that transient dopamine application facilitates mGluR/IP3-induced Ca2+ signals within a time window of ∼2–10 s in a subpopulation of MSNs in the NAc core. Dopamine facilitation of IP3-induced Ca2+ signaling is mediated by D1 dopamine receptors. In dopamine-insensitive MSNs, activation of A2A adenosine receptors causes enhancement of IP3-evoked Ca2+ signals, which is reversed by D2 dopamine receptor activation. These results show that dopamine differentially regulates Ca2+ signaling on the order of seconds in two distinct MSN subpopulations.

  1. Bistability and oscillations in gene regulation mediated by small noncoding RNAs.

    Directory of Open Access Journals (Sweden)

    Dengyu Liu

    Full Text Available The interplay of small noncoding RNAs (sRNAs, mRNAs, and proteins has been shown to play crucial roles in almost all cellular processes. As key post-transcriptional regulators of gene expression, the mechanisms and roles of sRNAs in various cellular processes still need to be fully understood. When participating in cellular processes, sRNAs mainly mediate mRNA degradation or translational repression. Here, we show how the dynamics of two minimal architectures is drastically affected by these two mechanisms. A comparison is also given to reveal the implication of the fundamental differences. This study may help us to analyze complex networks assembled by simple modules more easily. A better knowledge of the sRNA-mediated motifs is also of interest for bio-engineering and artificial control.

  2. Lysine Deacetylases and Regulated Glycolysis in Macrophages.

    Science.gov (United States)

    Shakespear, Melanie R; Iyer, Abishek; Cheng, Catherine Youting; Das Gupta, Kaustav; Singhal, Amit; Fairlie, David P; Sweet, Matthew J

    2018-06-01

    Regulated cellular metabolism has emerged as a fundamental process controlling macrophage functions, but there is still much to uncover about the precise signaling mechanisms involved. Lysine acetylation regulates the activity, stability, and/or localization of metabolic enzymes, as well as inflammatory responses, in macrophages. Two protein families, the classical zinc-dependent histone deacetylases (HDACs) and the NAD-dependent HDACs (sirtuins, SIRTs), mediate lysine deacetylation. We describe here mechanisms by which classical HDACs and SIRTs directly regulate specific glycolytic enzymes, as well as evidence that links these protein deacetylases to the regulation of glycolysis-related genes. In these contexts, we discuss HDACs and SIRTs as key control points for regulating immunometabolism and inflammatory outputs from macrophages. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. CcpA-dependent carbon catabolite repression in bacteria

    NARCIS (Netherlands)

    Warner, JB; Lolkema, JS; Warner, Jessica B.

    2003-01-01

    Carbon catabolite repression (CCR) by transcriptional regulators follows different mechanisms in gram-positive and gram-negative bacteria. In gram-positive bacteria, CcpA-dependent CCR is mediated by phosphorylation of the phosphoenolpyruvate:sugar phosphotransferase system intermediate HPr at a

  4. Dose- and time-dependence of the host-mediated response to paclitaxel therapy: a mathematical modeling approach.

    Science.gov (United States)

    Benguigui, Madeleine; Alishekevitz, Dror; Timaner, Michael; Shechter, Dvir; Raviv, Ziv; Benzekry, Sebastien; Shaked, Yuval

    2018-01-05

    It has recently been suggested that pro-tumorigenic host-mediated processes induced in response to chemotherapy counteract the anti-tumor activity of therapy, and thereby decrease net therapeutic outcome. Here we use experimental data to formulate a mathematical model describing the host response to different doses of paclitaxel (PTX) chemotherapy as well as the duration of the response. Three previously described host-mediated effects are used as readouts for the host response to therapy. These include the levels of circulating endothelial progenitor cells in peripheral blood and the effect of plasma derived from PTX-treated mice on migratory and invasive properties of tumor cells in vitro . A first set of mathematical models, based on basic principles of pharmacokinetics/pharmacodynamics, did not appropriately describe the dose-dependence and duration of the host response regarding the effects on invasion. We therefore provide an alternative mathematical model with a dose-dependent threshold, instead of a concentration-dependent one, that describes better the data. This model is integrated into a global model defining all three host-mediated effects. It not only precisely describes the data, but also correctly predicts host-mediated effects at different doses as well as the duration of the host response. This mathematical model may serve as a tool to predict the host response to chemotherapy in cancer patients, and therefore may be used to design chemotherapy regimens with improved therapeutic outcome by minimizing host mediated effects.

  5. TLR4 has a TP53-dependent dual role in regulating breast cancer cell growth.

    Science.gov (United States)

    Haricharan, Svasti; Brown, Powel

    2015-06-23

    Breast cancer is a leading cause of cancer-related death, and it is important to understand pathways that drive the disease to devise effective therapeutic strategies. Our results show that Toll-like receptor 4 (TLR4) drives breast cancer cell growth differentially based on the presence of TP53, a tumor suppressor. TP53 is mutationally inactivated in most types of cancer and is mutated in 30-50% of diagnosed breast tumors. We demonstrate that TLR4 activation inhibits growth of TP53 wild-type cells, but promotes growth of TP53 mutant breast cancer cells by regulating proliferation. This differential effect is mediated by changes in tumor cell cytokine secretion. Whereas TLR4 activation in TP53 mutant breast cancer cells increases secretion of progrowth cytokines, TLR4 activation in TP53 wild-type breast cancer cells increases type I IFN (IFN-γ) secretion, which is both necessary and sufficient for mediating TLR4-induced growth inhibition. This study identifies a novel dichotomous role for TLR4 as a growth regulator and a modulator of tumor microenvironment in breast tumors. These results have translational relevance, demonstrating that TP53 mutant breast tumor growth can be suppressed by pharmacologic TLR4 inhibition, whereas TLR4 inhibitors may in fact promote growth of TP53 wild-type tumors. Furthermore, using data generated by The Cancer Genome Atlas consortium, we demonstrate that the effect of TP53 mutational status on TLR4 activity may extend to ovarian, colon, and lung cancers, among others, suggesting that the viability of TLR4 as a therapeutic target depends on TP53 status in many different tumor types.

  6. Protein Kinase C-{delta} mediates down-regulation of heterogeneous nuclear ribonucleoprotein K protein: involvement in apoptosis induction

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Feng-Hou [NO.3 People' s Hospital affiliated to Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 201900 (China); The Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200025 (China); Wu, Ying-Li [The Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200025 (China); Zhao, Meng [Institute of Health Science, SJTU-SM/Shanghai Institutes for Biological Science, Chinese Academy of Sciences, Shanghai (China); Liu, Chuan-Xu; Wang, Li-Shun [The Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200025 (China); Chen, Guo-Qiang, E-mail: chengq@shsmu.edu.cn [The Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200025 (China); Institute of Health Science, SJTU-SM/Shanghai Institutes for Biological Science, Chinese Academy of Sciences, Shanghai (China)

    2009-11-15

    We reported previously that NSC606985, a camptothecin analogue, induces apoptosis of acute myeloid leukemia (AML) cells through proteolytic activation of protein kinase C delta ({Delta}PKC-{delta}). By subcellular proteome analysis, heterogeneous nuclear ribonucleoprotein K (hnRNP K) was identified as being significantly down-regulated in NSC606985-treated leukemic NB4 cells. HnRNP K, a docking protein for DNA, RNA, and transcriptional or translational molecules, is implicated in a host of processes involving the regulation of gene expression. However, the molecular mechanisms of hnRNP K reduction and its roles during apoptosis are still not understood. In the present study, we found that, following the appearance of the {Delta}PKC-{delta}, hnRNP K protein was significantly down-regulated in NSC606985, doxorubicin, arsenic trioxide and ultraviolet-induced apoptosis. We further provided evidence that {Delta}PKC-{delta} mediated the down-regulation of hnRNP K protein during apoptosis: PKC-{delta} inhibitor could rescue the reduction of hnRNP K; hnRNP K failed to be decreased in PKC-{delta}-deficient apoptotic KG1a cells; conditional induction of {Delta}PKC-{delta} in U937T cells directly down-regulated hnRNP K protein. Moreover, the proteasome inhibitor also inhibited the down-regulation of hnRNP K protein by apoptosis inducer and the conditional expression of {Delta}PKC-{delta}. More intriguingly, the suppression of hnRNP K with siRNA transfection significantly induced apoptosis. To our knowledge, this is the first demonstration that proteolytically activated PKC-{delta} down-regulates hnRNP K protein in a proteasome-dependent manner, which plays an important role in apoptosis induction.

  7. Sphingosine-1-Phosphate Mediates ICAM-1-Dependent Monocyte Adhesion through p38 MAPK and p42/p44 MAPK-Dependent Akt Activation

    Science.gov (United States)

    Lin, Chih-Chung; Lee, I-Ta; Hsu, Chun-Hao; Hsu, Chih-Kai; Chi, Pei-Ling; Hsiao, Li-Der; Yang, Chuen-Mao

    2015-01-01

    Up-regulation of intercellular adhesion molecule-1 (ICAM-1) is frequently implicated in lung inflammation. Sphingosine-1-phosphate (S1P) has been shown to play a key role in inflammation via adhesion molecules induction, and then causes lung injury. However, the mechanisms underlying S1P-induced ICAM-1 expression in human pulmonary alveolar epithelial cells (HPAEpiCs) remain unclear. The effect of S1P on ICAM-1 expression was determined by Western blot and real-time PCR. The involvement of signaling pathways in these responses was investigated by using the selective pharmacological inhibitors and transfection with siRNAs. S1P markedly induced ICAM-1 expression and monocyte adhesion which were attenuated by pretreatment with the inhibitor of S1PR1 (W123), S1PR3 (CAY10444), c-Src (PP1), EGFR (AG1478), PDGFR (AG1296), MEK1/2 (U0126), p38 MAPK (SB202190), JNK1/2 (SP600125), PI3K (LY294002), or AP-1 (Tanshinone IIA) and transfection with siRNA of S1PR1, S1PR3, c-Src, EGFR, PDGFR, p38, p42, JNK1, c-Jun, or c-Fos. We observed that S1P-stimulated p42/p44 MAPK and p38 MAPK activation was mediated via a c-Src/EGFR and PDGFR-dependent pathway. S1P caused the c-Src/EGFR/PDGFR complex formation. On the other hand, we demonstrated that S1P induced p42/p44 MAPK and p38 MAPK-dependent Akt activation. In addition, S1P-stimulated JNK1/2 phosphorylation was attenuated by SP600125 or PP1. Finally, S1P enhanced c-Fos mRNA levels and c-Jun phosphorylation. S1P-induced c-Jun activation was reduced by PP1, AG1478, AG1296, U0126, SP600125, SB202190, or LY294002. These results demonstrated that S1P-induced ICAM-1 expression and monocyte adhesion were mediated through S1PR1/3/c-Src/EGFR, PDGFR/p38 MAPK, p42/p44 MAPK/Akt-dependent AP-1 activation. PMID:25734900

  8. SGLT1-mediated transport in Caco-2 cells is highly dependent on cell bank origin

    DEFF Research Database (Denmark)

    Steffansen, B; Pedersen, Maria; Laghmoch, A M

    2017-01-01

    The Caco-2 cell line is a well-established in vitro model for studying transport phenomena for prediction of intestinal nutrient and drug absorption. However, for substances depending on transporters such predictions are complicated due to variable transporter expression and limited knowledge about...... transporter function during multiple cell passaging and cell thawings. In the case of SGLT1, a key transporter of oral absorption of D-glucose, one reason for compromised prediction could be inadequate expression of SGLT1 in Caco-2 cells and thereby limited sensitivity in the determination of SGLT1-mediated...... permeability (PSGLT1). Here, the objective was to characterize and compare SGLT1-mediated uptake in Caco-2 cells obtained from different cell banks. SGLT1-mediated uptake of the standard SGLT1 substrate, α-MDG, in Caco-2 cells was shown to be highly dependent on cell bank origin. The most robust and reliable...

  9. The Jasmonate-ZIM-domain proteins interact with the WD-Repeat/bHLH/MYB complexes to regulate Jasmonate-mediated anthocyanin accumulation and trichome initiation in Arabidopsis thaliana.

    Science.gov (United States)

    Qi, Tiancong; Song, Susheng; Ren, Qingcuo; Wu, Dewei; Huang, Huang; Chen, Yan; Fan, Meng; Peng, Wen; Ren, Chunmei; Xie, Daoxin

    2011-05-01

    Jasmonates (JAs) mediate plant responses to insect attack, wounding, pathogen infection, stress, and UV damage and regulate plant fertility, anthocyanin accumulation, trichome formation, and many other plant developmental processes. Arabidopsis thaliana Jasmonate ZIM-domain (JAZ) proteins, substrates of the CORONATINE INSENSITIVE1 (COI1)-based SCF(COI1) complex, negatively regulate these plant responses. Little is known about the molecular mechanism for JA regulation of anthocyanin accumulation and trichome initiation. In this study, we revealed that JAZ proteins interact with bHLH (Transparent Testa8, Glabra3 [GL3], and Enhancer of Glabra3 [EGL3]) and R2R3 MYB transcription factors (MYB75 and Glabra1), essential components of WD-repeat/bHLH/MYB transcriptional complexes, to repress JA-regulated anthocyanin accumulation and trichome initiation. Genetic and physiological evidence showed that JA regulates WD-repeat/bHLH/MYB complex-mediated anthocyanin accumulation and trichome initiation in a COI1-dependent manner. Overexpression of the MYB transcription factor MYB75 and bHLH factors (GL3 and EGL3) restored anthocyanin accumulation and trichome initiation in the coi1 mutant, respectively. We speculate that the JA-induced degradation of JAZ proteins abolishes the interactions of JAZ proteins with bHLH and MYB factors, allowing the transcriptional function of WD-repeat/bHLH/MYB complexes, which subsequently activate respective downstream signal cascades to modulate anthocyanin accumulation and trichome initiation.

  10. MicroRNA-mediated down-regulation of NKG2D ligands contributes to glioma immune escape.

    Science.gov (United States)

    Codo, Paula; Weller, Michael; Meister, Gunter; Szabo, Emese; Steinle, Alexander; Wolter, Marietta; Reifenberger, Guido; Roth, Patrick

    2014-09-15

    Malignant gliomas are intrinsic brain tumors with a dismal prognosis. They are well-adapted to hypoxic conditions and poorly immunogenic. NKG2D is one of the major activating receptors of natural killer (NK) cells and binds to several ligands (NKG2DL). Here we evaluated the impact of miRNA on the expression of NKG2DL in glioma cells including stem-like glioma cells. Three of the candidate miRNA predicted to target NKG2DL were expressed in various glioma cell lines as well as in glioblastomas in vivo: miR-20a, miR-93 and miR-106b. LNA inhibitor-mediated miRNA silencing up-regulated cell surface NKG2DL expression, which translated into increased susceptibility to NK cell-mediated lysis. This effect was reversed by neutralizing NKG2D antibodies, confirming that enhanced lysis upon miRNA silencing was mediated through the NKG2D system. Hypoxia, a hallmark of glioblastomas in vivo, down-regulated the expression of NKG2DL on glioma cells, associated with reduced susceptibility to NK cell-mediated lysis. This process, however, was not mediated through any of the examined miRNA. Accordingly, both hypoxia and the expression of miRNA targeting NKG2DL may contribute to the immune evasion of glioma cells at the level of the NKG2D recognition pathway. Targeting miRNA may therefore represent a novel approach to increase the immunogenicity of glioblastoma.

  11. Does anger regulation mediate the discrimination-mental health link among Mexican-origin adolescents? A longitudinal mediation analysis using multilevel modeling.

    Science.gov (United States)

    Park, Irene J K; Wang, Lijuan; Williams, David R; Alegría, Margarita

    2017-02-01

    [Correction Notice: An Erratum for this article was reported in Vol 53(2) of Developmental Psychology (see record 2017-04475-001). In the article, there were several typographical errors in the Recruitment and Procedures section. The percentage of mothers who responded to survey items should have been 99.3%. Additionally, the youths surveyed at T2 and T3 should have been n 246. Accordingly, the percentage of youths surveyed in T2 and T3 should have been 91.4% and the percentage of mothers surveyed at T2 and T3 should have been 90.7%. Finally, the youths missing at T2 should have been n 23, and therefore the attrition rate for youth participants should have been 8.6. All versions of this article have been corrected.] Although prior research has consistently documented the association between racial/ethnic discrimination and poor mental health outcomes, the mechanisms that underlie this link are still unclear. The present 3-wave longitudinal study tested the mediating role of anger regulation in the discrimination-mental health link among 269 Mexican-origin adolescents ( M age = 14.1 years, SD = 1.6; 57% girls), 12 to 17 years old. Three competing anger regulation variables were tested as potential mediators: outward anger expression, anger suppression, and anger control. Longitudinal mediation analyses were conducted using multilevel modeling that disaggregated within-person effects from between-person effects. Results indicated that outward anger expression was a significant mediator; anger suppression and anger control were not significant mediators. Within a given individual, greater racial/ethnic discrimination was associated with more frequent outward anger expression. In turn, more frequent outward anger expression was associated with higher levels of anxiety and depression at a given time point. Gender, age, and nativity status were not significant moderators of the hypothesized mediation models. By identifying outward anger expression as an explanatory

  12. Using therapeutic jurisprudence and preventive law to examine disputants' best interests in mediating cases about physicians' practices: a guide for medical regulators.

    Science.gov (United States)

    Ferris, Lorraine E

    2004-01-01

    Therapeutic jurisprudence (TJ) and preventive law (PL) are used as two theoretical perspectives from which to examine the best interests of parties in mediation because of a dispute about a physician's practice. The focus is mediation provided by and/or for the medical regulator. The paper reviews the literature on TJ and PL, and their relationship to mediation, and demonstrates how medical regulators could benefit by working within a framework reflecting both these perspectives providing it does not involve an egregious matter. A TJ and PL framework would be of particular value in identifying cases for mediation and in evaluating resolutions to mediated disputes.

  13. The wavelength dependence of gold nanorod-mediated optical breakdown during infrared ultrashort pulses

    Energy Technology Data Exchange (ETDEWEB)

    Davletshin, Yevgeniy R.; Kumaradas, J. Carl [Department of Physics, Ryerson University, Toronto, ON (Canada)

    2017-04-15

    This paper investigates the wavelength dependence of the threshold of gold nanorod-mediated optical breakdown during picosecond and femtosecond near infrared optical pulses. It was found that the wavelength dependence in the picosecond regime is governed solely by the changes of a nanorod's optical properties. On the other hand, the optical breakdown threshold during femtosecond pulse exposure falls within one of two regimes. When the ratio of the maximum electric field from the outside to the inside of the nanorod is less then 7 (the absorption regime) the seed electrons are initiated by photo-thermal emission, and the wavelength dependence in the threshold of optical breakdown is the result of optical properties of the nanoparticle. When the ratio is greater than 7 (the near-field regime) more seed electrons are initiated by multiphoton ionization, and the wavelength dependence of the threshold of optical breakdown results from a combination of nanorod's optical properties and transitions in the order of multiphoton ionization. The findings of this study can guide the design of nanoparticle based optical breakdown applications. This analysis also deepens the understanding of nanoparticle-mediated laser induced breakdown for picosecond and femtosecond pulses at near infrared wavelengths. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Evidence for autocrine and paracrine regulation of allergen-induced mast cell mediator release in the guinea pig airways.

    Science.gov (United States)

    Yu, Li; Liu, Qi; Canning, Brendan J

    2018-03-05

    Mast cells play an essential role in immediate type hypersensitivity reactions and in chronic allergic diseases of the airways, including asthma. Mast cell mediator release can be modulated by locally released autacoids and circulating hormones, but surprisingly little is known about the autocrine effects of mediators released upon mast cell activation. We thus set out to characterize the autocrine and paracrine effects of mast cell mediators on mast cell activation in the guinea pig airways. By direct measures of histamine, cysteinyl-leukotriene and thromboxane release and with studies of allergen-evoked contractions of airway smooth muscle, we describe a complex interplay amongst these autacoids. Notably, we observed an autocrine effect of the cysteinyl-leukotrienes acting through cysLT 1 receptors on mast cell leukotriene release. We confirmed the results of previous studies demonstrating a marked enhancement of mast cell mediator release following cyclooxygenase inhibition, but we have extended these results by showing that COX-2 derived eicosanoids inhibit cysteinyl-leukotriene release and yet are without effect on histamine release. Given the prominent role of COX-1 inhibition in aspirin-sensitive asthma, these data implicate preformed mediators stored in granules as the initial drivers of these adverse reactions. Finally, we describe the paracrine signaling cascade leading to thromboxane synthesis in the guinea pig airways following allergen challenge, which occurs indirectly, secondary to cysLT 1 receptor activation on structural cells and/ or leukocytes within the airway wall, and a COX-2 dependent synthesis of the eicosanoid. The results highlight the importance of cell-cell and autocrine interactions in regulating allergic responses in the airways. Copyright © 2017. Published by Elsevier B.V.

  15. Nanocurcumin-Mediated Down-Regulation of Telomerase Via Stimulating TGFβ1 Signaling Pathway in Hepatocellular Carcinoma Cells

    Science.gov (United States)

    Shariati, Molood; Hajigholami, Samira; Veisi Malekshahi, Ziba; Entezari, Maliheh; Bodaghabadi, Narges; Sadeghizadeh, Majid

    2017-10-10

    Curcumin, extracted from turmeric, represents enormous potential to serve as an anticancer agent. Telomerase is viewed as a prominent molecular target of curcumin, and Transforming growth factor-β1 (TGFβ1) has proven to be a major inhibitory signaling pathway for telomerase activity. In the current study, we aimed to explore suppressive effects of nanocurcumin on telomerase expression through TGFβ1 pathway in a hepatocellular carcinoma cell line (Huh7). MTT assay was used to determine the effect of nonocurcumin on viability of Huh7 cells. RT-PCR was used to analyze the gene expression patterns. MTT assay revealed that nanocurcumin acts in a dose- and time-dependent manner to diminish the cell viability. RT-PCR analysis indicated that nanocurcumin results in augmentation of TGFβ1 72 hours post treatment and leads to the reduction of telomerase expression 48 and 72 hours post exposure. Also, up-regulation of Smad3 and E2F1 and down-regulation of Smad7 confirmed the effect of nanocurcumin on intermediate components of TGFβ1 pathway. Furthermore, transfection of the proximal promoter of telomerase triggered a significant reduction in luciferase activity. The data from the present study lead us to develop a deeper understanding of the mechanisms underlying nanocurcumin-mediated regulation of telomerase expression, thereby presenting a new perspective to the landscape of using nanocurcumin as a cancer-oriented therapeutic agent.

  16. Pnrc2 regulates 3'UTR-mediated decay of segmentation clock-associated transcripts during zebrafish segmentation.

    Science.gov (United States)

    Gallagher, Thomas L; Tietz, Kiel T; Morrow, Zachary T; McCammon, Jasmine M; Goldrich, Michael L; Derr, Nicolas L; Amacher, Sharon L

    2017-09-01

    Vertebrate segmentation is controlled by the segmentation clock, a molecular oscillator that regulates gene expression and cycles rapidly. The expression of many genes oscillates during segmentation, including hairy/Enhancer of split-related (her or Hes) genes, which encode transcriptional repressors that auto-inhibit their own expression, and deltaC (dlc), which encodes a Notch ligand. We previously identified the tortuga (tor) locus in a zebrafish forward genetic screen for genes involved in cyclic transcript regulation and showed that cyclic transcripts accumulate post-splicing in tor mutants. Here we show that cyclic mRNA accumulation in tor mutants is due to loss of pnrc2, which encodes a proline-rich nuclear receptor co-activator implicated in mRNA decay. Using an inducible in vivo reporter system to analyze transcript stability, we find that the her1 3'UTR confers Pnrc2-dependent instability to a heterologous transcript. her1 mRNA decay is Dicer-independent and likely employs a Pnrc2-Upf1-containing mRNA decay complex. Surprisingly, despite accumulation of cyclic transcripts in pnrc2-deficient embryos, we find that cyclic protein is expressed normally. Overall, we show that Pnrc2 promotes 3'UTR-mediated decay of developmentally-regulated segmentation clock transcripts and we uncover an additional post-transcriptional regulatory layer that ensures oscillatory protein expression in the absence of cyclic mRNA decay. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Chaperone-Mediated Autophagy Protein BAG3 Negatively Regulates Ebola and Marburg VP40-Mediated Egress.

    Science.gov (United States)

    Liang, Jingjing; Sagum, Cari A; Bedford, Mark T; Sidhu, Sachdev S; Sudol, Marius; Han, Ziying; Harty, Ronald N

    2017-01-01

    Ebola (EBOV) and Marburg (MARV) viruses are members of the Filoviridae family which cause outbreaks of hemorrhagic fever. The filovirus VP40 matrix protein is essential for virus assembly and budding, and its PPxY L-domain motif interacts with WW-domains of specific host proteins, such as Nedd4 and ITCH, to facilitate the late stage of virus-cell separation. To identify additional WW-domain-bearing host proteins that interact with VP40, we used an EBOV PPxY-containing peptide to screen an array of 115 mammalian WW-domain-bearing proteins. Using this unbiased approach, we identified BCL2 Associated Athanogene 3 (BAG3), a member of the BAG family of molecular chaperone proteins, as a specific VP40 PPxY interactor. Here, we demonstrate that the WW-domain of BAG3 interacts with the PPxY motif of both EBOV and MARV VP40 and, unexpectedly, inhibits budding of both eVP40 and mVP40 virus-like particles (VLPs), as well as infectious VSV-EBOV recombinants. BAG3 is a stress induced protein that regulates cellular protein homeostasis and cell survival through chaperone-mediated autophagy (CMA). Interestingly, our results show that BAG3 alters the intracellular localization of VP40 by sequestering VP40 away from the plasma membrane. As BAG3 is the first WW-domain interactor identified that negatively regulates budding of VP40 VLPs and infectious virus, we propose that the chaperone-mediated autophagy function of BAG3 represents a specific host defense strategy to counteract the function of VP40 in promoting efficient egress and spread of virus particles.

  18. Chaperone-Mediated Autophagy Protein BAG3 Negatively Regulates Ebola and Marburg VP40-Mediated Egress.

    Directory of Open Access Journals (Sweden)

    Jingjing Liang

    2017-01-01

    Full Text Available Ebola (EBOV and Marburg (MARV viruses are members of the Filoviridae family which cause outbreaks of hemorrhagic fever. The filovirus VP40 matrix protein is essential for virus assembly and budding, and its PPxY L-domain motif interacts with WW-domains of specific host proteins, such as Nedd4 and ITCH, to facilitate the late stage of virus-cell separation. To identify additional WW-domain-bearing host proteins that interact with VP40, we used an EBOV PPxY-containing peptide to screen an array of 115 mammalian WW-domain-bearing proteins. Using this unbiased approach, we identified BCL2 Associated Athanogene 3 (BAG3, a member of the BAG family of molecular chaperone proteins, as a specific VP40 PPxY interactor. Here, we demonstrate that the WW-domain of BAG3 interacts with the PPxY motif of both EBOV and MARV VP40 and, unexpectedly, inhibits budding of both eVP40 and mVP40 virus-like particles (VLPs, as well as infectious VSV-EBOV recombinants. BAG3 is a stress induced protein that regulates cellular protein homeostasis and cell survival through chaperone-mediated autophagy (CMA. Interestingly, our results show that BAG3 alters the intracellular localization of VP40 by sequestering VP40 away from the plasma membrane. As BAG3 is the first WW-domain interactor identified that negatively regulates budding of VP40 VLPs and infectious virus, we propose that the chaperone-mediated autophagy function of BAG3 represents a specific host defense strategy to counteract the function of VP40 in promoting efficient egress and spread of virus particles.

  19. Concentration and length dependence of DNA looping in transcriptional regulation.

    Directory of Open Access Journals (Sweden)

    Lin Han

    2009-05-01

    Full Text Available In many cases, transcriptional regulation involves the binding of transcription factors at sites on the DNA that are not immediately adjacent to the promoter of interest. This action at a distance is often mediated by the formation of DNA loops: Binding at two or more sites on the DNA results in the formation of a loop, which can bring the transcription factor into the immediate neighborhood of the relevant promoter. These processes are important in settings ranging from the historic bacterial examples (bacterial metabolism and the lytic-lysogeny decision in bacteriophage, to the modern concept of gene regulation to regulatory processes central to pattern formation during development of multicellular organisms. Though there have been a variety of insights into the combinatorial aspects of transcriptional control, the mechanism of DNA looping as an agent of combinatorial control in both prokaryotes and eukaryotes remains unclear. We use single-molecule techniques to dissect DNA looping in the lac operon. In particular, we measure the propensity for DNA looping by the Lac repressor as a function of the concentration of repressor protein and as a function of the distance between repressor binding sites. As with earlier single-molecule studies, we find (at least two distinct looped states and demonstrate that the presence of these two states depends both upon the concentration of repressor protein and the distance between the two repressor binding sites. We find that loops form even at interoperator spacings considerably shorter than the DNA persistence length, without the intervention of any other proteins to prebend the DNA. The concentration measurements also permit us to use a simple statistical mechanical model of DNA loop formation to determine the free energy of DNA looping, or equivalently, the for looping.

  20. Caspase-10 Negatively Regulates Caspase-8-Mediated Cell Death, Switching the Response to CD95L in Favor of NF-κB Activation and Cell Survival

    Directory of Open Access Journals (Sweden)

    Sebastian Horn

    2017-04-01

    Full Text Available Formation of the death-inducing signaling complex (DISC initiates extrinsic apoptosis. Caspase-8 and its regulator cFLIP control death signaling by binding to death-receptor-bound FADD. By elucidating the function of the caspase-8 homolog, caspase-10, we discover that caspase-10 negatively regulates caspase-8-mediated cell death. Significantly, we reveal that caspase-10 reduces DISC association and activation of caspase-8. Furthermore, we extend our co-operative/hierarchical binding model of caspase-8/cFLIP and show that caspase-10 does not compete with caspase-8 for binding to FADD. Utilizing caspase-8-knockout cells, we demonstrate that caspase-8 is required upstream of both cFLIP and caspase-10 and that DISC formation critically depends on the scaffold function of caspase-8. We establish that caspase-10 rewires DISC signaling to NF-κB activation/cell survival and demonstrate that the catalytic activity of caspase-10, and caspase-8, is redundant in gene induction. Thus, our data are consistent with a model in which both caspase-10 and cFLIP coordinately regulate CD95L-mediated signaling for death or survival.

  1. ROTUNDA3 function in plant development by phosphatase 2A-mediated regulation of auxin transporter recycling.

    Science.gov (United States)

    Karampelias, Michael; Neyt, Pia; De Groeve, Steven; Aesaert, Stijn; Coussens, Griet; Rolčík, Jakub; Bruno, Leonardo; De Winne, Nancy; Van Minnebruggen, Annemie; Van Montagu, Marc; Ponce, María Rosa; Micol, José Luis; Friml, Jiří; De Jaeger, Geert; Van Lijsebettens, Mieke

    2016-03-08

    The shaping of organs in plants depends on the intercellular flow of the phytohormone auxin, of which the directional signaling is determined by the polar subcellular localization of PIN-FORMED (PIN) auxin transport proteins. Phosphorylation dynamics of PIN proteins are affected by the protein phosphatase 2A (PP2A) and the PINOID kinase, which act antagonistically to mediate their apical-basal polar delivery. Here, we identified the ROTUNDA3 (RON3) protein as a regulator of the PP2A phosphatase activity in Arabidopsis thaliana. The RON3 gene was map-based cloned starting from the ron3-1 leaf mutant and found to be a unique, plant-specific gene coding for a protein with high and dispersed proline content. The ron3-1 and ron3-2 mutant phenotypes [i.e., reduced apical dominance, primary root length, lateral root emergence, and growth; increased ectopic stages II, IV, and V lateral root primordia; decreased auxin maxima in indole-3-acetic acid (IAA)-treated root apical meristems; hypergravitropic root growth and response; increased IAA levels in shoot apices; and reduced auxin accumulation in root meristems] support a role for RON3 in auxin biology. The affinity-purified PP2A complex with RON3 as bait suggested that RON3 might act in PIN transporter trafficking. Indeed, pharmacological interference with vesicle trafficking processes revealed that single ron3-2 and double ron3-2 rcn1 mutants have altered PIN polarity and endocytosis in specific cells. Our data indicate that RON3 contributes to auxin-mediated development by playing a role in PIN recycling and polarity establishment through regulation of the PP2A complex activity.

  2. Lack of dependence of 5-fluorodeoxyuridine-mediated radiosensitization on cytotoxicity

    International Nuclear Information System (INIS)

    Lawrence, T.S.; Davis, M.A.; Chang, E.Y.

    1995-01-01

    It has been proposed that fluoropyrimidine-mediated cytotoxicity and radiosensitization are closely correlated. We have shown that HT29 human colon cancer cells transfected with the E. coli dUTPase gene are resistant to 5-fluorodeoxyuridine (FdUrd)-mediated cytotoxicity, presumably through more effective elimination of dUTP. We used these cells to assess the association between radiosensitization and cytotoxicity produced by FdUrd. The radiation sensitivities of the clones expressing elevated dUTPase activity (dutE clones) were similar to those of untransfected HT29 cells or HT29 cells which has been transfected with only the expression vector for the E. coli gene (con clones). We found that FdUrd produced similar increases in radiation sensitivity regardless of dUTPase activity. Levels of dUTPase in the dutE clones remained elevated during the entire period of FdUrd exposure, demonstrating that the lack of difference between dutE and Con clones was not a reflection of down-regulation of dUTPase activity by FdUrd, Flow cytometry showed that all clones progressed past the G 1 /S-phase boundary and into early S phase during FdUrd treatment. These data suggest that the mechanisms of FdUrd-mediated cytotoxicity and radiosensitization are not closely linked. These findings, combined with our previous investigations, are consistent with the hypothesis that radiosensitization occurs in cells which progress past the G 1 /S-phase boundary in the presence of FdUrd. 24 refs., 2 figs., 2 tabs

  3. Regulator of G protein signaling 6 is a critical mediator of both reward-related behavioral and pathological responses to alcohol.

    Science.gov (United States)

    Stewart, Adele; Maity, Biswanath; Anderegg, Simon P; Allamargot, Chantal; Yang, Jianqi; Fisher, Rory A

    2015-02-17

    Alcohol is the most commonly abused drug worldwide, and chronic alcohol consumption is a major etiological factor in the development of multiple pathological sequelae, including alcoholic cardiomyopathy and hepatic cirrhosis. Here, we identify regulator of G protein signaling 6 (RGS6) as a critical regulator of both alcohol-seeking behaviors and the associated cardiac and hepatic morbidities through two mechanistically divergent signaling actions. RGS6(-/-) mice consume less alcohol when given free access and are less susceptible to alcohol-induced reward and withdrawal. Antagonism of GABA(B) receptors or dopamine D2 receptors partially reversed the reduction in alcohol consumption in RGS6(-/-) animals. Strikingly, dopamine transporter inhibition completely restored alcohol seeking in mice lacking RGS6. RGS6 deficiency was associated with alterations in the expression of genes controlling dopamine (DA) homeostasis and a reduction in DA levels in the striatum. Taken together, these data implicate RGS6 as an essential regulator of DA bioavailability. RGS6 deficiency also provided dramatic protection against cardiac hypertrophy and fibrosis, hepatic steatosis, and gastrointestinal barrier dysfunction and endotoxemia when mice were forced to consume alcohol. Although RGS proteins canonically function as G-protein regulators, RGS6-dependent, alcohol-mediated toxicity in the heart, liver, and gastrointestinal tract involves the ability of RGS6 to promote reactive oxygen species-dependent apoptosis, an action independent of its G-protein regulatory capacity. We propose that inhibition of RGS6 might represent a viable means to reduce alcohol cravings and withdrawal in human patients, while simultaneously protecting the heart and liver from further damage upon relapse.

  4. Seasonal and scale-dependent variability in nutrient- and allelopathy-mediated macrophyte–phytoplankton interactions

    Directory of Open Access Journals (Sweden)

    Lombardo P.

    2013-08-01

    Full Text Available macrophyte–phytoplankton interactions were investigated using a dual laboratory and field approach during a growing season, with responses quantified as changes in biomass. Short-term, close-range interactions in laboratory microcosms always led to mutual exclusion of macrophytes (Elodea canadensis or Ceratophyllum demersum and algae (Raphidocelis subcapitata, Fistulifera pelliculosa or cyanobacteria (Synechococcus leopoliensis, suggesting regulation by positive feedback mechanisms, progressively establishing and reinforcing a “stable state”. Laboratory results suggest that close-range regulation of R. subcapitata and F. pelliculosa by macrophytes was primarily via nutrient (N, P mediation. Sprig-produced allelochemicals may have contributed to inhibition of S. leopoliensis in C. demersum presence, while S. leopoliensis was apparently enhanced by nutrients leaked by subhealthy (discolored leaves; biomass loss E. canadensis. Seasonal changes in algal growth suppression were correlated with sprig growth. Marginal differences in in situ phytoplankton patterns inside and outside monospecific macrophyte stands suggest that the nutrient- and/or allelopathy-mediated close-range mechanisms observed in the laboratory did not propagate at the macrophyte-stand scale. Factors operating at a larger scale (e.g., lake trophic state, extent of submerged vegetation coverage appear to override in situ macrophyte–phytoplankton close-range interactions.

  5. The Mediator co-activator complex regulates Ty1 retromobility by controlling the balance between Ty1i and Ty1 promoters.

    Science.gov (United States)

    Salinero, Alicia C; Knoll, Elisabeth R; Zhu, Z Iris; Landsman, David; Curcio, M Joan; Morse, Randall H

    2018-02-01

    The Ty1 retrotransposons present in the genome of Saccharomyces cerevisiae belong to the large class of mobile genetic elements that replicate via an RNA intermediary and constitute a significant portion of most eukaryotic genomes. The retromobility of Ty1 is regulated by numerous host factors, including several subunits of the Mediator transcriptional co-activator complex. In spite of its known function in the nucleus, previous studies have implicated Mediator in the regulation of post-translational steps in Ty1 retromobility. To resolve this paradox, we systematically examined the effects of deleting non-essential Mediator subunits on the frequency of Ty1 retromobility and levels of retromobility intermediates. Our findings reveal that loss of distinct Mediator subunits alters Ty1 retromobility positively or negatively over a >10,000-fold range by regulating the ratio of an internal transcript, Ty1i, to the genomic Ty1 transcript. Ty1i RNA encodes a dominant negative inhibitor of Ty1 retromobility that blocks virus-like particle maturation and cDNA synthesis. These results resolve the conundrum of Mediator exerting sweeping control of Ty1 retromobility with only minor effects on the levels of Ty1 genomic RNA and the capsid protein, Gag. Since the majority of characterized intrinsic and extrinsic regulators of Ty1 retromobility do not appear to effect genomic Ty1 RNA levels, Mediator could play a central role in integrating signals that influence Ty1i expression to modulate retromobility.

  6. Regulation of hippocampus-dependent memory by the zinc finger protein Zbtb20 in mature CA1 neurons.

    Science.gov (United States)

    Ren, Anjing; Zhang, Huan; Xie, Zhifang; Ma, Xianhua; Ji, Wenli; He, David Z Z; Yuan, Wenjun; Ding, Yu-Qiang; Zhang, Xiao-Hui; Zhang, Weiping J

    2012-10-01

    The mammalian hippocampus harbours neural circuitry that is crucial for associative learning and memory. The mechanisms that underlie the development and regulation of this complex circuitry are not fully understood. Our previous study established an essential role for the zinc finger protein Zbtb20 in the specification of CA1 field identity in the developing hippocampus. Here, we show that conditionally deleting Zbtb20 specifically in mature CA1 pyramidal neurons impaired hippocampus-dependent memory formation, without affecting hippocampal architecture or the survival, identity and basal excitatory synaptic activity of CA1 pyramidal neurons. We demonstrate that mature CA1-specific Zbtb20 knockout mice exhibited reductions in long-term potentiation (LTP) and NMDA receptor (NMDAR)-mediated excitatory post-synaptic currents. Furthermore, we show that activity-induced phosphorylation of ERK and CREB is impaired in the hippocampal CA1 of Zbtb20 mutant mice. Collectively, these results indicate that Zbtb20 in mature CA1 plays an important role in LTP and memory by regulating NMDAR activity, and activation of ERK and CREB.

  7. Approaches Mediating Oxytocin Regulation of the Immune System.

    Science.gov (United States)

    Li, Tong; Wang, Ping; Wang, Stephani C; Wang, Yu-Feng

    2016-01-01

    The hypothalamic neuroendocrine system is mainly composed of the neural structures regulating hormone secretion from the pituitary gland and has been considered as the higher regulatory center of the immune system. Recently, the hypothalamo-neurohypophysial system (HNS) emerged as an important component of neuroendocrine-immune network, wherein the oxytocin (OT)-secreting system (OSS) plays an essential role. The OSS, consisting of OT neurons in the supraoptic nucleus, paraventricular nucleus, their several accessory nuclei and associated structures, can integrate neural, endocrine, metabolic, and immune information and plays a pivotal role in the development and functions of the immune system. The OSS can promote the development of thymus and bone marrow, perform immune surveillance, strengthen immune defense, and maintain immune homeostasis. Correspondingly, OT can inhibit inflammation, exert antibiotic-like effect, promote wound healing and regeneration, and suppress stress-associated immune disorders. In this process, the OSS can release OT to act on immune system directly by activating OT receptors or through modulating activities of other hypothalamic-pituitary-immune axes and autonomic nervous system indirectly. However, our understandings of the role of the OSS in neuroendocrine regulation of immune system are largely incomplete, particularly its relationship with other hypothalamic-pituitary-immune axes and the vasopressin-secreting system that coexists with the OSS in the HNS. In addition, it remains unclear about the relationship between the OSS and peripherally produced OT in immune regulation, particularly intrathymic OT that is known to elicit central immunological self-tolerance of T-cells to hypophysial hormones. In this work, we provide a brief review of current knowledge of the features of OSS regulation of the immune system and of potential approaches that mediate OSS coordination of the activities of entire neuroendocrine-immune network.

  8. Regulation of cardiomyocyte autophagy by calcium.

    Science.gov (United States)

    Shaikh, Soni; Troncoso, Rodrigo; Criollo, Alfredo; Bravo-Sagua, Roberto; García, Lorena; Morselli, Eugenia; Cifuentes, Mariana; Quest, Andrew F G; Hill, Joseph A; Lavandero, Sergio

    2016-04-15

    Calcium signaling plays a crucial role in a multitude of events within the cardiomyocyte, including cell cycle control, growth, apoptosis, and autophagy. With respect to calcium-dependent regulation of autophagy, ion channels and exchangers, receptors, and intracellular mediators play fundamental roles. In this review, we discuss calcium-dependent regulation of cardiomyocyte autophagy, a lysosomal mechanism that is often cytoprotective, serving to defend against disease-related stress and nutrient insufficiency. We also highlight the importance of the subcellular distribution of calcium and related proteins, interorganelle communication, and other key signaling events that govern cardiomyocyte autophagy. Copyright © 2016 the American Physiological Society.

  9. Does rumination mediate the relationship between emotion regulation ability and posttraumatic stress disorder?

    Directory of Open Access Journals (Sweden)

    Thomas Ehring

    2014-08-01

    Full Text Available Background and objectives: Trauma-related rumination has been suggested to be involved in the maintenance of posttraumatic stress disorder (PTSD. This view has empirically been supported by extensive evidence using cross-sectional, prospective, and experimental designs. However, it is unclear why trauma survivors engage in rumination despite its negative consequences. The current study aimed to explore the hypothesis that low emotion regulation ability underlies trauma-related rumination. Methods: Emotion regulation ability and trauma-related rumination were assessed in 93 road traffic accident survivors 2 weeks post-trauma. In addition, symptom levels of PTSD were assessed at 2 weeks as well as 1, 3, and 6 months follow-up. Results: Emotion regulation ability was significantly related to trauma-related rumination as well as levels of PTSD symptoms. In addition, the association between low emotion regulation ability and PTSD was mediated by rumination. Conclusions: The findings support the view that rumination is used as a dysfunctional emotion regulation strategy by trauma survivors.

  10. Calcium/Calmodulin-Dependent Protein Kinase IV Mediates IFN-γ-Induced Immune Behaviors in Skeletal Muscle Cells

    Directory of Open Access Journals (Sweden)

    RuiCai Gu

    2018-03-01

    Full Text Available Background/Aims: Whether calcium/calmodulin-dependent protein kinase IV (CaMKIV plays a role in regulating immunologic features of muscle cells in inflammatory environment, as it does for immune cells, remains mostly unknown. In this study, we investigated the influence of endogenous CaMKIV on the immunological characteristics of myoblasts and myotubes received IFN-γ stimulation. Methods: C2C12 and murine myogenic precursor cells (MPCs were cultured and differentiated in vitro, in the presence of pro-inflammatory IFN-γ. CaMKIV shRNA lentivirus transfection was performed to knockdown CaMKIV gene in C2C12 cells. pEGFP-N1-CaMKIV plasmid was delivered into knockout cells for recovering intracellular CaMKIV gene level. CREB1 antagonist KG-501 was used to block CREB signal. qPCR, immunoblot analysis, or immunofluorescence was used to detect mRNA and protein levels of CaMKIV, immuno-molecules, or pro-inflammatory cytokines and chemokines. Co-stimulatory molecules expression was assessed by FACS analysis. Results: IFN-γ induces the expression or up-regulation of MHC-I/II and TLR3, and the up-regulation of CaMKIV level in muscle cells. In contrast, CaMKIV knockdown in myoblasts and myotubes leads to expression inhibition of the above immuno-molecules. As well, CaMKIV knockdown selectively inhibits pro-inflammatory cytokines/chemokines, and co-stimulatory molecules expression in IFN-γ treated myoblasts and myotubes. Finally, CaMKIV knockdown abolishes IFN-γ induced CREB pathway molecules accumulation in differentiated myotubes. Conclusions: CaMKIV can be induced to up-regulate in muscle cells under inflammatory condition, and positively mediates intrinsic immune behaviors of muscle cells triggered by IFN-γ.

  11. Hepatitis C virus infection induces apoptosis through a Bax-triggered, mitochondrion-mediated, caspase 3-dependent pathway.

    Science.gov (United States)

    Deng, Lin; Adachi, Tetsuya; Kitayama, Kikumi; Bungyoku, Yasuaki; Kitazawa, Sohei; Ishido, Satoshi; Shoji, Ikuo; Hotta, Hak

    2008-11-01

    We previously reported that cells harboring the hepatitis C virus (HCV) RNA replicon as well as those expressing HCV NS3/4A exhibited increased sensitivity to suboptimal doses of apoptotic stimuli to undergo mitochondrion-mediated apoptosis (Y. Nomura-Takigawa, et al., J. Gen. Virol. 87:1935-1945, 2006). Little is known, however, about whether or not HCV infection induces apoptosis of the virus-infected cells. In this study, by using the chimeric J6/JFH1 strain of HCV genotype 2a, we demonstrated that HCV infection induced cell death in Huh7.5 cells. The cell death was associated with activation of caspase 3, nuclear translocation of activated caspase 3, and cleavage of DNA repair enzyme poly(ADP-ribose) polymerase, which is known to be an important substrate for activated caspase 3. These results suggest that HCV-induced cell death is, in fact, apoptosis. Moreover, HCV infection activated Bax, a proapoptotic member of the Bcl-2 family, as revealed by its conformational change and its increased accumulation on mitochondrial membranes. Concomitantly, HCV infection induced disruption of mitochondrial transmembrane potential, followed by mitochondrial swelling and release of cytochrome c from mitochondria. HCV infection also caused oxidative stress via increased production of mitochondrial superoxide. On the other hand, HCV infection did not mediate increased expression of glucose-regulated protein 78 (GRP78) or GRP94, which are known as endoplasmic reticulum (ER) stress-induced proteins; this result suggests that ER stress is not primarily involved in HCV-induced apoptosis in our experimental system. Taken together, our present results suggest that HCV infection induces apoptosis of the host cell through a Bax-triggered, mitochondrion-mediated, caspase 3-dependent pathway(s).

  12. Transcription regulation of AAC3 gene encoding hypoxic isoform of ADP/ATP carrier in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Sokolikova, B.

    2001-01-01

    Two repressoric regions are present in the AAC3 promoter, termed URS1 and URS2. URS1 region is responsible for a carbon source-dependent regulation and plays a role under both, aerobic and anaerobic conditions. By deletion analysis URS1 was localized into the -322/-244 region and was found that the regulation is likely exerted by the repression by non-fermentable or non-repressing fermentable carbon sources than by the activation by repressing carbon source. By computer analysis cis sequences for two potential transcription factors, Rap1 and ERA, were identified within URS1. Rap1 binding into its consensus sequence was proved, effort to find the protein binding to the ERA cis regulatory sequences has failed. By the means of mutational analysis we revealed that the regulation pathway mediating the carbon source-dependent regulation via URS1 differs according to the presence or absence of oxygen in the growth medium. Under aerobic conditions the carbon source-dependent repression is mediated by the ERA factor and the role of Rap1 is only marginal. On the contrary, under anaerobic conditions, the repression is mediated solely by Rap1. AAC1 gene product might be involved in the regulation of the AAC3 gene, the regulation pathway has not been characterized yet. (author)

  13. Transport, metabolism, and endosomal trafficking-dependent regulation of intestinal fructose absorption

    Science.gov (United States)

    Patel, Chirag; Douard, Veronique; Yu, Shiyan; Gao, Nan; Ferraris, Ronaldo P.

    2015-01-01

    Dietary fructose that is linked to metabolic abnormalities can up-regulate its own absorption, but the underlying regulatory mechanisms are not known. We hypothesized that glucose transporter (GLUT) protein, member 5 (GLUT5) is the primary fructose transporter and that fructose absorption via GLUT5, metabolism via ketohexokinase (KHK), as well as GLUT5 trafficking to the apical membrane via the Ras-related protein-in-brain 11 (Rab11)a-dependent endosomes are each required for regulation. Introducing fructose but not lysine and glucose solutions into the lumen increased by 2- to 10-fold the heterogeneous nuclear RNA, mRNA, protein, and activity levels of GLUT5 in adult wild-type mice consuming chow. Levels of GLUT5 were >100-fold that of candidate apical fructose transporters GLUTs 7, 8, and 12 whose expression, and that of GLUT 2 and the sodium-dependent glucose transporter protein 1 (SGLT1), was not regulated by luminal fructose. GLUT5-knockout (KO) mice exhibited no facilitative fructose transport and no compensatory increases in activity and expression of SGLT1 and other GLUTs. Fructose could not up-regulate GLUT5 in GLUT5-KO, KHK-KO, and intestinal epithelial cell-specific Rab11a-KO mice. The fructose-specific metabolite glyceraldehyde did not increase GLUT5 expression. GLUT5 is the primary transporter responsible for facilitative absorption of fructose, and its regulation specifically requires fructose uptake and metabolism and normal GLUT5 trafficking to the apical membrane.—Patel, C., Douard, V., Yu, S., Gao, N., Ferraris, R. P. Transport, metabolism, and endosomal trafficking-dependent regulation of intestinal fructose absorption. PMID:26071406

  14. Large-Scale Phosphoproteomics Reveals Shp-2 Phosphatase-Dependent Regulators of Pdgf Receptor Signaling

    DEFF Research Database (Denmark)

    Batth, Tanveer S; Papetti, Moreno; Pfeiffer, Anamarija

    2018-01-01

    Despite its low cellular abundance, phosphotyrosine (pTyr) regulates numerous cell signaling pathways in health and disease. We applied comprehensive phosphoproteomics to unravel differential regulators of receptor tyrosine kinase (RTK)-initiated signaling networks upon activation by Pdgf-ββ, Fgf-2...... of Pdgfr pTyr signaling. Application of a recently introduced allosteric Shp-2 inhibitor revealed global regulation of the Pdgf-dependent tyrosine phosphoproteome, which significantly impaired cell migration. In addition, we present a list of hundreds of Shp-2-dependent targets and putative substrates...

  15. Up-regulation of integrin β3 in radioresistant pancreatic cancer impairs adenovirus-mediated gene therapy

    International Nuclear Information System (INIS)

    Egami, Takuya; Ohuchida, Kenoki; Yasui, Takaharu; Onimaru, Manabu; Toma, Hiroki; Sato, Norihiro; Tanaka, Masao; Mizumoto, Kazuhiro; Matsumoto, Kunio

    2009-01-01

    Adenovirus-mediated gene therapy is a promising approach for the treatment of pancreatic cancer. We previously reported that radiation enhanced adenovirus-mediated gene expression in pancreatic cancer, suggesting that adenoviral gene therapy might be more effective in radioresistant pancreatic cancer cells. In the present study, we compared the transduction efficiency of adenovirus-delivered genes in radiosensitive and radioresistant cells, and investigated the underlying mechanisms. We used an adenovirus expressing the hepatocyte growth factor antagonist, NK4 (Ad-NK4), as a representative gene therapy. We established two radioresistant human pancreatic cancer cell lines using fractionated irradiation. Radiosensitive and radioresistant pancreatic cancer cells were infected with Ad-NK4, and NK4 levels in the cells were measured. In order to investigate the mechanisms responsible for the differences in the transduction efficiency between these cells, we measured expression of the genes mediating adenovirus infection and endocytosis. The results revealed that NK4 levels in radioresistant cells were significantly lower (P<0.01) than those in radiosensitive cells, although there were no significant differences in adenovirus uptake between radiosensitive cells and radioresistant cells. Integrin β3 was up-regulated and the Coxsackie virus and adenovirus receptor was down-regulated in radioresistant cells, and inhibition of integrin β3 promoted adenovirus gene transfer. These results suggest that inhibition of integrin β3 in radioresistant pancreatic cancer cells could enhance adenovirus-mediated gene therapy. (author)

  16. Sodium fluoride induces apoptosis in mouse embryonic stem cells through ROS-dependent and caspase- and JNK-mediated pathways

    International Nuclear Information System (INIS)

    Nguyen Ngoc, Tam Dan; Son, Young-Ok; Lim, Shin-Saeng; Shi, Xianglin; Kim, Jong-Ghee; Heo, Jung Sun; Choe, Youngji; Jeon, Young-Mi; Lee, Jeong-Chae

    2012-01-01

    Sodium fluoride (NaF) is used as a source of fluoride ions in diverse applications. Fluoride salt is an effective prophylactic for dental caries and is an essential element required for bone health. However, fluoride is known to cause cytotoxicity in a concentration-dependent manner. Further, no information is available on the effects of NaF on mouse embryonic stem cells (mESCs). We investigated the mode of cell death induced by NaF and the mechanisms involved. NaF treatment greater than 1 mM reduced viability and DNA synthesis in mESCs and induced cell cycle arrest in the G 2 /M phase. The addition of NaF induced cell death mainly by apoptosis rather than necrosis. Catalase (CAT) treatment significantly inhibited the NaF-mediated cell death and also suppressed the NaF-mediated increase in phospho-c-Jun N-terminal kinase (p-JNK) levels. Pre-treatment with SP600125 or z-VAD-fmk significantly attenuated the NaF-mediated reduction in cell viability. In contrast, intracellular free calcium chelator, but not of sodium or calcium ion channel blockers, facilitated NaF-induced toxicity in the cells. A JNK specific inhibitor (SP600125) prevented the NaF-induced increase in growth arrest and the DNA damage-inducible protein 45α. Further, NaF-mediated loss of mitochondrial membrane potential was apparently inhibited by pifithrin-α or CAT inhibitor. These findings suggest that NaF affects viability of mESCs in a concentration-dependent manner, where more than 1 mM NaF causes apoptosis through hydroxyl radical-dependent and caspase- and JNK-mediated pathways. -- Highlights: ► The mode of NaF-induced cell death and the mechanisms involved were examined. ► NaF induced mainly apoptotic death of mouse embryonic stem cells (mESCs). ► NaF induced mitochondrial-mediated and caspase-dependent apoptosis. ► JNK- and p53-mediated pathways are involved in NaF-mediated apoptosis in the cells. ► ROS are the up-stream effector in NaF-mediated activation of JNK and p53 in mESCs.

  17. Sodium fluoride induces apoptosis in mouse embryonic stem cells through ROS-dependent and caspase- and JNK-mediated pathways

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen Ngoc, Tam Dan [Institute of Oral Biosciences and School of Dentistry (BK21 Program), Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Son, Young-Ok [Graduate Center for Toxicology, School of Medicine, University of Kentucky, Lexington, KY 40536-0305 (United States); Lim, Shin-Saeng [Institute of Oral Biosciences and School of Dentistry (BK21 Program), Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Shi, Xianglin [Graduate Center for Toxicology, School of Medicine, University of Kentucky, Lexington, KY 40536-0305 (United States); Kim, Jong-Ghee [Institute of Oral Biosciences and School of Dentistry (BK21 Program), Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Heo, Jung Sun [Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology, School of Dentistry, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Choe, Youngji [Institute of Oral Biosciences and School of Dentistry (BK21 Program), Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Jeon, Young-Mi, E-mail: young@jbnu.ac.kr [Institute of Oral Biosciences and School of Dentistry (BK21 Program), Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Lee, Jeong-Chae, E-mail: leejc88@jbnu.ac.kr [Institute of Oral Biosciences and School of Dentistry (BK21 Program), Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Graduate Center for Toxicology, School of Medicine, University of Kentucky, Lexington, KY 40536-0305 (United States); Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Chonbuk National University, Jeonju 561-756 (Korea, Republic of)

    2012-03-15

    Sodium fluoride (NaF) is used as a source of fluoride ions in diverse applications. Fluoride salt is an effective prophylactic for dental caries and is an essential element required for bone health. However, fluoride is known to cause cytotoxicity in a concentration-dependent manner. Further, no information is available on the effects of NaF on mouse embryonic stem cells (mESCs). We investigated the mode of cell death induced by NaF and the mechanisms involved. NaF treatment greater than 1 mM reduced viability and DNA synthesis in mESCs and induced cell cycle arrest in the G{sub 2}/M phase. The addition of NaF induced cell death mainly by apoptosis rather than necrosis. Catalase (CAT) treatment significantly inhibited the NaF-mediated cell death and also suppressed the NaF-mediated increase in phospho-c-Jun N-terminal kinase (p-JNK) levels. Pre-treatment with SP600125 or z-VAD-fmk significantly attenuated the NaF-mediated reduction in cell viability. In contrast, intracellular free calcium chelator, but not of sodium or calcium ion channel blockers, facilitated NaF-induced toxicity in the cells. A JNK specific inhibitor (SP600125) prevented the NaF-induced increase in growth arrest and the DNA damage-inducible protein 45α. Further, NaF-mediated loss of mitochondrial membrane potential was apparently inhibited by pifithrin-α or CAT inhibitor. These findings suggest that NaF affects viability of mESCs in a concentration-dependent manner, where more than 1 mM NaF causes apoptosis through hydroxyl radical-dependent and caspase- and JNK-mediated pathways. -- Highlights: ► The mode of NaF-induced cell death and the mechanisms involved were examined. ► NaF induced mainly apoptotic death of mouse embryonic stem cells (mESCs). ► NaF induced mitochondrial-mediated and caspase-dependent apoptosis. ► JNK- and p53-mediated pathways are involved in NaF-mediated apoptosis in the cells. ► ROS are the up-stream effector in NaF-mediated activation of JNK and p53 in mESCs.

  18. Extra-chromosomal DNA maintenance in Bacillus subtilis, dependence on flagellation factor FliF and moonlighting mediator EdmS.

    Science.gov (United States)

    Hakumai, Yuichi; Shimomoto, Kouko; Ashiuchi, Makoto

    2015-05-15

    Extra-chromosomal DNA maintenance (EDM) as an important process in the propagation and genetic engineering of microbes. Bacillus subtilis EdmS (formerly PgsE), a protein comprising 55 amino acids, is a mediator of the EDM process. In this study, the effect of mutation of global regulators on B. subtilis EDM was examined. Mutation of the swrA gene abolished EdmS-mediated EDM. It is known that swrA predominantly regulates expression of the fla/che operon in B. subtilis. We therefore performed EDM analysis using fla/che-deletion mutants and identified an EDM-mediated EDM cooperator in the flgB-fliL region. Further genetic investigation identified the flagellation factor FliF is a crucial EDM cooperator. To our knowledge, this is the first observation of the moonlighting function of FliF in DNA maintenance. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Regulator of G-protein signaling-5 is a marker of hepatic stellate cells and expression mediates response to liver injury.

    Directory of Open Access Journals (Sweden)

    Arya J Bahrami

    Full Text Available Liver fibrosis is mediated by hepatic stellate cells (HSCs, which respond to a variety of cytokine and growth factors to moderate the response to injury and create extracellular matrix at the site of injury. G-protein coupled receptor (GPCR-mediated signaling, via endothelin-1 (ET-1 and angiotensin II (AngII, increases HSC contraction, migration and fibrogenesis. Regulator of G-protein signaling-5 (RGS5, an inhibitor of vasoactive GPCR agonists, functions to control GPCR-mediated contraction and hypertrophy in pericytes and smooth muscle cells (SMCs. Therefore we hypothesized that RGS5 controls GPCR signaling in activated HSCs in the context of liver injury. In this study, we localize RGS5 to the HSCs and demonstrate that Rgs5 expression is regulated during carbon tetrachloride (CCl4-induced acute and chronic liver injury in Rgs5LacZ/LacZ reporter mice. Furthermore, CCl4 treated RGS5-null mice develop increased hepatocyte damage and fibrosis in response to CCl4 and have increased expression of markers of HSC activation. Knockdown of Rgs5 enhances ET-1-mediated signaling in HSCs in vitro. Taken together, we demonstrate that RGS5 is a critical regulator of GPCR signaling in HSCs and regulates HSC activation and fibrogenesis in liver injury.

  20. Ameliorative Effects of Acacia Honey against Sodium Arsenite-Induced Oxidative Stress in Some Viscera of Male Wistar Albino Rats

    OpenAIRE

    Muhammad Aliyu; Sani Ibrahim; Hajiya M. Inuwa; Abdullahi B. Sallau; Olagunju Abbas; Idowu A. Aimola; Nathan Habila; Ndidi S. Uche

    2013-01-01

    Cancer is a leading cause of death worldwide and its development is frequently associated with oxidative stress-induced by carcinogens such as arsenicals. Most foods are basically health-promoting or disease-preventing and a typical example of such type is honey. This study was undertaken to investigate the ameliorative effects of Acacia honey on sodium arsenite-induced oxidative stress in the heart, lung and kidney tissues of male Wistar rats. Male Wistar albino rats divided into four groups...

  1. RhoA-Mediated Functions in C3H10T1/2 Osteoprogenitors Are Substrate Topography Dependent.

    Science.gov (United States)

    Ogino, Yoichiro; Liang, Ruiwei; Mendonça, Daniela B S; Mendonça, Gustavo; Nagasawa, Masako; Koyano, Kiyoshi; Cooper, Lyndon F

    2016-03-01

    Surface topography broadly influences cellular responses. Adherent cell activities are regulated, in part, by RhoA, a member of the Rho-family of GTPases. In this study, we evaluated the influence of surface topography on RhoA activity and associated cellular functions. The murine mesenchymal stem cell line C3H10T1/2 cells (osteoprogenitor cells) were cultured on titanium substrates with smooth topography (S), microtopography (M), and nanotopography (N) to evaluate the effect of surface topography on RhoA-mediated functions (cell spreading, adhesion, migration, and osteogenic differentiation). The influence of RhoA activity in the context of surface topography was also elucidated using RhoA pharmacologic inhibitor. Following adhesion, M and N adherent cells developed multiple projections, while S adherent cells had flattened and widespread morphology. RhoA inhibitor induced remarkable longer and thinner cytoplasmic projections on all surfaces. Cell adhesion and osteogenic differentiation was topography dependent with S topography roughness dependent (S topography. Smooth surface adherent cells appear highly sensitive to RhoA function, while nano-scale topography adherent cell may utilize alternative cellular signaling pathway(s) to influence adherent cellular functions regardless of RhoA activity. © 2015 Wiley Periodicals, Inc.

  2. Hypoxia-inducible factors regulate pluripotency factor expression by ZNF217- and ALKBH5-mediated modulation of RNA methylation in breast cancer cells.

    Science.gov (United States)

    Zhang, Chuanzhao; Zhi, Wanqing Iris; Lu, Haiquan; Samanta, Debangshu; Chen, Ivan; Gabrielson, Edward; Semenza, Gregg L

    2016-10-04

    Exposure of breast cancer cells to hypoxia increases the percentage of breast cancer stem cells (BCSCs), which are required for tumor initiation and metastasis, and this response is dependent on the activity of hypoxia-inducible factors (HIFs). We previously reported that exposure of breast cancer cells to hypoxia induces the ALKBH5-mediated demethylation of N6-methyladenosine (m6A) in NANOG mRNA leading to increased expression of NANOG, which is a pluripotency factor that promotes BCSC specification. Here we report that exposure of breast cancer cells to hypoxia also induces ZNF217-dependent inhibition of m6A methylation of mRNAs encoding NANOG and KLF4, which is another pluripotency factor that mediates BCSC specification. Although hypoxia induced the BCSC phenotype in all breast-cancer cell lines analyzed, it did so through variable induction of pluripotency factors and ALKBH5 or ZNF217. However, in every breast cancer line, the hypoxic induction of pluripotency factor and ALKBH5 or ZNF217 expression was HIF-dependent. Immunohistochemistry revealed that expression of HIF-1α and ALKBH5 was concordant in all human breast cancer biopsies analyzed. ALKBH5 knockdown in MDA-MB-231 breast cancer cells significantly decreased metastasis from breast to lungs in immunodeficient mice. Thus, HIFs stimulate pluripotency factor expression and BCSC specification by negative regulation of RNA methylation.

  3. Chronic low-level arsenite exposure through drinking water increases blood pressure and promotes concentric left ventricular hypertrophy in female mice.

    Science.gov (United States)

    Sanchez-Soria, Pablo; Broka, Derrick; Monks, Sarah L; Camenisch, Todd D

    2012-04-01

    Cardiovascular disease is the leading cause of death in the United States and worldwide. High incidence of cardiovascular diseases has been linked to populations with elevated arsenic content in their drinking water. Although this correlation has been established in many epidemiological studies, a lack of experimental models to study mechanisms of arsenic-related cardiovascular pathogenesis has limited our understanding of how arsenic exposure predisposes for development of hypertension and increased cardiovascular mortality. Our studies show that mice chronically exposed to drinking water containing 100 parts per billion (ppb) sodium arsenite for 22 weeks show an increase in both systolic and diastolic blood pressure. Echocardiographic analyses as well as histological assessment show concentric left ventricular hypertrophy, a primary cardiac manifestation of chronic hypertension. Live imaging by echocardiography shows a 43% increase in left ventricular mass in arsenic-treated animals. Relative wall thickness (RWT) was calculated showing that all the arsenic-exposed animals show an RWT greater than 0.45, indicating concentric hypertrophy. Importantly, left ventricular hypertrophy, although often associated with chronic hypertension, is an independent risk factor for cardiovascular-related mortalities. These results suggest that chronic low-level arsenite exposure promotes the development of hypertension and the comorbidity of concentric hypertrophy.

  4. Regulation of DNA Methylation Patterns by CK2-Mediated Phosphorylation of Dnmt3a

    Directory of Open Access Journals (Sweden)

    Rachel Deplus

    2014-08-01

    Full Text Available DNA methylation is a central epigenetic modification that is established by de novo DNA methyltransferases. The mechanisms underlying the generation of genomic methylation patterns are still poorly understood. Using mass spectrometry and a phosphospecific Dnmt3a antibody, we demonstrate that CK2 phosphorylates endogenous Dnmt3a at two key residues located near its PWWP domain, thereby downregulating the ability of Dnmt3a to methylate DNA. Genome-wide DNA methylation analysis shows that CK2 primarily modulates CpG methylation of several repeats, most notably of Alu SINEs. This modulation can be directly attributed to CK2-mediated phosphorylation of Dnmt3a. We also find that CK2-mediated phosphorylation is required for localization of Dnmt3a to heterochromatin. By revealing phosphorylation as a mode of regulation of de novo DNA methyltransferase function and by uncovering a mechanism for the regulation of methylation at repetitive elements, our results shed light on the origin of DNA methylation patterns.

  5. Regulation of SIRT 1 mediated NAD dependent deacetylation: A novel role for the multifunctional enzyme CD38

    International Nuclear Information System (INIS)

    Aksoy, Pinar; Escande, Carlos; White, Thomas A.; Thompson, Michael; Soares, Sandra; Benech, Juan Claudio; Chini, Eduardo N.

    2006-01-01

    The SIRT 1 enzyme is a NAD dependent deacetylase implicated in ageing, cell protection, and energy metabolism in mammalian cells. How the endogenous activity of SIRT 1 is modulated is not known. The enzyme CD38 is a multifunctional enzyme capable of synthesis of the second messenger, cADPR, NAADP, and ADPR. However, the major enzymatic activity of CD38 is the hydrolysis of NAD. Of particular interest is the fact that CD38 is present on the inner nuclear membrane. Here, we investigate the modulation of the SIRT 1 activity by CD38. We propose that by modulating availability of NAD to the SIRT1 enzyme, CD38 may regulate SIRT1 enzymatic activity. We observed that in CD38 knockout mice, tissue levels of NAD are significantly increased. We also observed that incubation of purified recombinant SIRT1 enzyme with CD38 or nuclear extracts of wild-type mice led to a significant inhibition of its activity. In contrast, incubation of SIRT1 with cellular extract from CD38 knockout mice was without effect. Furthermore, the endogenous activity of SIRT1 was several time higher in nuclear extracts from CD38 knockout mice when compared to wild-type nuclear extracts. Finally, the in vivo deacetylation of the SIRT1 substrate P53 is increased in CD38 knockout mice tissue. Our data support the novel concept that nuclear CD38 is a major regulator of cellular/nuclear NAD level, and SIRT1 activity. These findings have strong implications for understanding the basic mechanisms that modulate intracellular NAD levels, energy homeostasis, as well as ageing and cellular protection modulated by the SIRT enzymes

  6. Phosphorylation-dependent regulation of plant chromatin and chromatin-associated proteins

    KAUST Repository

    Bigeard, Jean; Rayapuram, Naganand; Pflieger, Delphine; Hirt, Heribert

    2014-01-01

    In eukaryotes, most of the DNA is located in the nucleus where it is organized with histone proteins in a higher order structure as chromatin. Chromatin and chromatin-associated proteins contribute to DNA-related processes such as replication and transcription as well as epigenetic regulation. Protein functions are often regulated by PTMs among which phosphorylation is one of the most abundant PTM. Phosphorylation of proteins affects important properties, such as enzyme activity, protein stability, or subcellular localization. We here describe the main specificities of protein phosphorylation in plants and review the current knowledge on phosphorylation-dependent regulation of plant chromatin and chromatin-associated proteins. We also outline some future challenges to further elucidate protein phosphorylation and chromatin regulation.

  7. Phosphorylation-dependent regulation of plant chromatin and chromatin-associated proteins

    KAUST Repository

    Bigeard, Jean

    2014-07-10

    In eukaryotes, most of the DNA is located in the nucleus where it is organized with histone proteins in a higher order structure as chromatin. Chromatin and chromatin-associated proteins contribute to DNA-related processes such as replication and transcription as well as epigenetic regulation. Protein functions are often regulated by PTMs among which phosphorylation is one of the most abundant PTM. Phosphorylation of proteins affects important properties, such as enzyme activity, protein stability, or subcellular localization. We here describe the main specificities of protein phosphorylation in plants and review the current knowledge on phosphorylation-dependent regulation of plant chromatin and chromatin-associated proteins. We also outline some future challenges to further elucidate protein phosphorylation and chromatin regulation.

  8. Nicotine impairs cyclooxygenase-2-dependent kinin-receptor-mediated murine airway relaxations

    International Nuclear Information System (INIS)

    Xu, Yuan; Cardell, Lars-Olaf

    2014-01-01

    Introduction: Cigarette smoke induces local inflammation and airway hyperreactivity. In asthmatics, it worsens the symptoms and increases the risk for exacerbation. The present study investigates the effects of nicotine on airway relaxations in isolated murine tracheal segments. Methods: Segments were cultured for 24 h in the presence of vehicle, nicotine (10 μM) and/or dexamethasone (1 μM). Airway relaxations were assessed in myographs after pre-contraction with carbachol (1 μM). Kinin receptors, cyclooxygenase (COX) and inflammatory mediator expressions were assessed by real-time PCR and confocal-microscopy-based immunohistochemistry. Results: The organ culture procedure markedly increased bradykinin- (selective B 2 receptor agonist) and des-Arg 9 -bradykinin- (selective B 1 receptor agonist) induced relaxations, and slightly increased relaxation induced by isoprenaline, but not that induced by PGE 2 . The kinin receptor mediated relaxations were epithelium-, COX-2- and EP2-receptor-dependent and accompanied by drastically enhanced mRNA levels of kinin receptors, as well as inflammatory mediators MCP-1 and iNOS. Increase in COX-2 and mPGES-1 was verified both at mRNA and protein levels. Nicotine selectively suppressed the organ-culture-enhanced relaxations induced by des-Arg 9 -bradykinin and bradykinin, at the same time reducing mPGES-1 mRNA and protein expressions. α7-nicotinic acetylcholine receptor inhibitors α-bungarotoxin and MG624 both blocked the nicotine effects on kinin B 2 receptors, but not those on B 1 . Dexamethasone completely abolished kinin-induced relaxations. Conclusion: It is tempting to conclude that a local inflammatory process per se could have a bronchoprotective component by increasing COX-2 mediated airway relaxations and that nicotine could impede this safety mechanism. Dexamethasone further reduced airway inflammation together with relaxations. This might contribute to the steroid resistance seen in some patients with asthma

  9. Nicotine impairs cyclooxygenase-2-dependent kinin-receptor-mediated murine airway relaxations

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yuan, E-mail: yuan.xu@ki.se; Cardell, Lars-Olaf

    2014-02-15

    Introduction: Cigarette smoke induces local inflammation and airway hyperreactivity. In asthmatics, it worsens the symptoms and increases the risk for exacerbation. The present study investigates the effects of nicotine on airway relaxations in isolated murine tracheal segments. Methods: Segments were cultured for 24 h in the presence of vehicle, nicotine (10 μM) and/or dexamethasone (1 μM). Airway relaxations were assessed in myographs after pre-contraction with carbachol (1 μM). Kinin receptors, cyclooxygenase (COX) and inflammatory mediator expressions were assessed by real-time PCR and confocal-microscopy-based immunohistochemistry. Results: The organ culture procedure markedly increased bradykinin- (selective B{sub 2} receptor agonist) and des-Arg{sup 9}-bradykinin- (selective B{sub 1} receptor agonist) induced relaxations, and slightly increased relaxation induced by isoprenaline, but not that induced by PGE{sub 2}. The kinin receptor mediated relaxations were epithelium-, COX-2- and EP2-receptor-dependent and accompanied by drastically enhanced mRNA levels of kinin receptors, as well as inflammatory mediators MCP-1 and iNOS. Increase in COX-2 and mPGES-1 was verified both at mRNA and protein levels. Nicotine selectively suppressed the organ-culture-enhanced relaxations induced by des-Arg{sup 9}-bradykinin and bradykinin, at the same time reducing mPGES-1 mRNA and protein expressions. α7-nicotinic acetylcholine receptor inhibitors α-bungarotoxin and MG624 both blocked the nicotine effects on kinin B{sub 2} receptors, but not those on B{sub 1}. Dexamethasone completely abolished kinin-induced relaxations. Conclusion: It is tempting to conclude that a local inflammatory process per se could have a bronchoprotective component by increasing COX-2 mediated airway relaxations and that nicotine could impede this safety mechanism. Dexamethasone further reduced airway inflammation together with relaxations. This might contribute to the steroid resistance seen in

  10. Control of the neurovascular coupling by nitric oxide-dependent regulation of astrocytic Ca2+ signaling

    Directory of Open Access Journals (Sweden)

    Manuel Francisco Muñoz

    2015-03-01

    Full Text Available Neuronal activity must be tightly coordinated with blood flow to keep proper brain function, which is achieved by a mechanism known as neurovascular coupling. Then, an increase in synaptic activity leads to a dilation of local parenchymal arterioles that matches the enhanced metabolic demand. Neurovascular coupling is orchestrated by astrocytes. These glial cells are located between neurons and the microvasculature, with the astrocytic endfeet ensheathing the vessels, which allows fine intercellular communication. The neurotransmitters released during neuronal activity reach astrocytic receptors and trigger a Ca2+ signaling that propagates to the endfeet, activating the release of vasoactive factors and arteriolar dilation. The astrocyte Ca2+ signaling is coordinated by gap junction channels and hemichannels formed by connexins (Cx43 and Cx30 and channels formed by pannexins (Panx-1. The neuronal activity-initiated Ca2+ waves are propagated among neighboring astrocytes directly via gap junctions or through ATP release via connexin hemichannels or pannexin channels. In addition, Ca2+ entry via connexin hemichannels or pannexin channels may participate in the regulation of the astrocyte signaling-mediated neurovascular coupling. Interestingly, nitric oxide (NO can activate connexin hemichannel by S-nitrosylation and the Ca2+-dependent NO-synthesizing enzymes endothelial NO synthase (eNOS and neuronal NOS (nNOS are expressed in astrocytes. Therefore, the astrocytic Ca2+ signaling triggered in neurovascular coupling may activate NO production, which, in turn, may lead to Ca2+ influx through hemichannel activation. Furthermore, NO release from the hemichannels located at astrocytic endfeet may contribute to the vasodilation of parenchymal arterioles. In this review, we discuss the mechanisms involved in the regulation of the astrocytic Ca2+ signaling that mediates neurovascular coupling, with a special emphasis in the possible participation of NO in

  11. HJURP regulates cellular senescence in human fibroblasts and endothelial cells via a p53-dependent pathway.

    Science.gov (United States)

    Heo, Jong-Ik; Cho, Jung Hee; Kim, Jae-Ryong

    2013-08-01

    Holliday junction recognition protein (HJURP), a centromere protein-A (CENP-A) histone chaperone, mediates centromere-specific assembly of CENP-A nucleosome, contributing to high-fidelity chromosome segregation during cell division. However, the role of HJURP in cellular senescence of human primary cells remains unclear. We found that the expression levels of HJURP decreased in human dermal fibroblasts and umbilical vein endothelial cells in replicative or premature senescence. Ectopic expression of HJURP in senescent cells partially overcame cell senescence. Conversely, downregulation of HJURP in young cells led to premature senescence. p53 knockdown, but not p16 knockdown, abolished senescence phenotypes caused by HJURP reduction. These data suggest that HJURP plays an important role in the regulation of cellular senescence through a p53-dependent pathway and might contribute to tissue or organismal aging and protection of cellular transformation.

  12. Transgenic rescue of adipocyte glucose-dependent insulinotropic polypeptide receptor expression restores high fat diet-induced body weight gain

    DEFF Research Database (Denmark)

    Ugleholdt, Randi; Pedersen, Jens; Bassi, Maria Rosaria

    2011-01-01

    that was similar between the groups. In contrast, glucose-dependent insulinotropic polypeptide-mediated insulin secretion does not seem to be important for regulation of body weight after high fat feeding. The study supports a role of the adipocyte GIPr in nutrient-dependent regulation of body weight and lean mass...

  13. Hypoxia-Mediated Epigenetic Regulation of Stemness in Brain Tumor Cells.

    Science.gov (United States)

    Prasad, Pankaj; Mittal, Shivani Arora; Chongtham, Jonita; Mohanty, Sujata; Srivastava, Tapasya

    2017-06-01

    Activation of pluripotency regulatory circuit is an important event in solid tumor progression and the hypoxic microenvironment is known to enhance the stemness feature of some cells. The distinct population of cancer stem cells (CSCs)/tumor initiating cells exist in a niche and augment invasion, metastasis, and drug resistance. Previously, studies have reported global hypomethylation and site-specific aberrant methylation in gliomas along with other epigenetic modifications as important contributors to genomic instability during glioma progression. Here, we have demonstrated the role of hypoxia-mediated epigenetic modifications in regulating expression of core pluripotency factors, OCT4 and NANOG, in glioma cells. We observe hypoxia-mediated induction of demethylases, ten-eleven-translocation (TET) 1 and 3, but not TET2 in our cell-line model. Immunoprecipitation studies reveal active demethylation and direct binding of TET1 and 3 at the Oct4 and Nanog regulatory regions. Tet1 and 3 silencing assays further confirmed induction of the pluripotency pathway involving Oct4, Nanog, and Stat3, by these paralogues, although with varying degrees. Knockdown of Tet1 and Tet3 inhibited the formation of neurospheres in hypoxic conditions. We observed independent roles of TET1 and TET3 in differentially regulating pluripotency and differentiation associated genes in hypoxia. Overall, this study demonstrates an active demethylation in hypoxia by TET1 and 3 as a mechanism of Oct4 and Nanog overexpression thus contributing to the formation of CSCs in gliomas. Stem Cells 2017;35:1468-1478. © 2017 AlphaMed Press.

  14. Phospholipid mediated activation of calcium dependent protein kinase 1 (CaCDPK1 from chickpea: a new paradigm of regulation.

    Directory of Open Access Journals (Sweden)

    Ajay Kumar Dixit

    Full Text Available Phospholipids, the major structural components of membranes, can also have functions in regulating signaling pathways in plants under biotic and abiotic stress. The effects of adding phospholipids on the activity of stress-induced calcium dependent protein kinase (CaCDPK1 from chickpea are reported here. Both autophosphorylation as well as phosphorylation of the added substrate were enhanced specifically by phosphatidylcholine and to a lesser extent by phosphatidic acid, but not by phosphatidylethanolamine. Diacylgylerol, the neutral lipid known to activate mammalian PKC, stimulated CaCDPK1 but at higher concentrations. Increase in V(max of the enzyme activity by these phospholipids significantly decreased the K(m indicating that phospholipids enhance the affinity towards its substrate. In the absence of calcium, addition of phospholipids had no effect on the negligible activity of the enzyme. Intrinsic fluorescence intensity of the CaCDPK1 protein was quenched on adding PA and PC. Higher binding affinity was found with PC (K(½ = 114 nM compared to PA (K(½ = 335 nM. We also found that the concentration of PA increased in chickpea plants under salt stress. The stimulation by PA and PC suggests regulation of CaCDPK1 by these phospholipids during stress response.

  15. The Porphyromonas gingivalis ferric uptake regulator orthologue binds hemin and regulates hemin-responsive biofilm development.

    Directory of Open Access Journals (Sweden)

    Catherine A Butler

    Full Text Available Porphyromonas gingivalis is a Gram-negative pathogen associated with the biofilm-mediated disease chronic periodontitis. P. gingivalis biofilm formation is dependent on environmental heme for which P. gingivalis has an obligate requirement as it is unable to synthesize protoporphyrin IX de novo, hence P. gingivalis transports iron and heme liberated from the human host. Homeostasis of a variety of transition metal ions is often mediated in Gram-negative bacteria at the transcriptional level by members of the Ferric Uptake Regulator (Fur superfamily. P. gingivalis has a single predicted Fur superfamily orthologue which we have designated Har (heme associated regulator. Recombinant Har formed dimers in the presence of Zn2+ and bound one hemin molecule per monomer with high affinity (Kd of 0.23 µM. The binding of hemin resulted in conformational changes of Zn(IIHar and residue 97Cys was involved in hemin binding as part of a predicted -97C-98P-99L- hemin binding motif. The expression of 35 genes was down-regulated and 9 up-regulated in a Har mutant (ECR455 relative to wild-type. Twenty six of the down-regulated genes were previously found to be up-regulated in P. gingivalis grown as a biofilm and 11 were up-regulated under hemin limitation. A truncated Zn(IIHar bound the promoter region of dnaA (PGN_0001, one of the up-regulated genes in the ECR455 mutant. This binding decreased as hemin concentration increased which was consistent with gene expression being regulated by hemin availability. ECR455 formed significantly less biofilm than the wild-type and unlike wild-type biofilm formation was independent of hemin availability. P. gingivalis possesses a hemin-binding Fur orthologue that regulates hemin-dependent biofilm formation.

  16. Regulation of DC development and DC-mediated T-cell immunity via CISH

    OpenAIRE

    Miah, Mohammad Alam; Bae, Yong-Soo

    2013-01-01

    Cytokine inducible SH2-containing protein (CISH) plays a crucial role in type 1 dendritic cell (DC) development as well as in the DC-mediated activation of cytotoxic T lymphocytes (CTLs). CISH expression at late DC developmental stages shuts down the proliferation of DC progenitors by negatively regulating signal transducer and activator of transcription 5 (STAT5) and facilitates the differentiation of DCs into potent stimulators of CTLs.

  17. Regulation of DC development and DC-mediated T-cell immunity via CISH.

    Science.gov (United States)

    Miah, Mohammad Alam; Bae, Yong-Soo

    2013-03-01

    Cytokine inducible SH2-containing protein (CISH) plays a crucial role in type 1 dendritic cell (DC) development as well as in the DC-mediated activation of cytotoxic T lymphocytes (CTLs). CISH expression at late DC developmental stages shuts down the proliferation of DC progenitors by negatively regulating signal transducer and activator of transcription 5 (STAT5) and facilitates the differentiation of DCs into potent stimulators of CTLs.

  18. Embryonic cholesterol esterification is regulated by a cyclic AMP-dependent pathway in yolk sac membrane-derived endodermal epithelial cells.

    Directory of Open Access Journals (Sweden)

    Siou-Huei Wang

    Full Text Available During avian embryonic development, endodermal epithelial cells (EECs absorb yolk through the yolk sac membrane. Sterol O-acyltransferase (SOAT is important for esterification and yolk lipid utilization during development. Because the major enzyme for yolk sac membrane cholesteryl ester synthesis is SOAT1, we cloned the avian SOAT1 promoter and elucidated the cellular functions of SOAT1. Treatments with either glucagon, isobutylmethylxanthine (IBMX, an adenylate cyclase activator (forskolin, a cAMP analog (dibutyryl-cAMP, or a low glucose concentration all increased SOAT1 mRNA accumulation in EECs from Japanese quail, suggesting that SOAT1 is regulated by nutrients and hormones through a cAMP-dependent pathway. Activity of protein kinase A (PKA was increased by IBMX, whereas co-treatment with the PKA inhibitor, H89 negated the increase in PKA activity. Cyclic AMP-induced EECs had greater cholesterol esterification than untreated EECs. By promoter deletion and point-mutation, the cAMP-response element (-349 to -341 bp was identified as critical in mediating transcription of SOAT1. In conclusion, expression of SOAT1 was regulated by a cAMP-dependent pathway and factors that increase PKA will increase SOAT1 to improve the utilization of lipids in the EECs and potentially modify embryonic growth.

  19. Function and regulation of the Mediator complex.

    Science.gov (United States)

    Conaway, Ronald C; Conaway, Joan Weliky

    2011-04-01

    Over the past few years, advances in biochemical and genetic studies of the structure and function of the Mediator complex have shed new light on its subunit architecture and its mechanism of action in transcription by RNA polymerase II (pol II). The development of improved methods for reconstitution of recombinant Mediator subassemblies is enabling more in-depth analyses of basic features of the mechanisms by which Mediator interacts with and controls the activity of pol II and the general initiation factors. The discovery and characterization of multiple, functionally distinct forms of Mediator characterized by the presence or absence of the Cdk8 kinase module have led to new insights into how Mediator functions in both Pol II transcription activation and repression. Finally, progress in studies of the mechanisms by which the transcriptional activation domains (ADs) of DNA binding transcription factors target Mediator have brought to light unexpected complexities in the way Mediator participates in signal transduction. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Defining an EPOR- regulated transcriptome for primary progenitors, including Tnfr-sf13c as a novel mediator of EPO- dependent erythroblast formation.

    Directory of Open Access Journals (Sweden)

    Seema Singh

    Full Text Available Certain concepts concerning EPO/EPOR action modes have been challenged by in vivo studies: Bcl-x levels are elevated in maturing erythroblasts, but not in their progenitors; truncated EPOR alleles that lack a major p85/PI3K recruitment site nonetheless promote polycythemia; and Erk1 disruption unexpectedly bolsters erythropoiesis. To discover novel EPO/EPOR action routes, global transcriptome analyses presently are applied to interrogate EPO/EPOR effects on primary bone marrow-derived CFUe-like progenitors. Overall, 160 EPO/EPOR target transcripts were significantly modulated 2-to 21.8-fold. A unique set of EPO-regulated survival factors included Lyl1, Gas5, Pim3, Pim1, Bim, Trib3 and Serpina 3g. EPO/EPOR-modulated cell cycle mediators included Cdc25a, Btg3, Cyclin-d2, p27-kip1, Cyclin-g2 and CyclinB1-IP-1. EPO regulation of signal transduction factors was also interestingly complex. For example, not only Socs3 plus Socs2 but also Spred2, Spred1 and Eaf1 were EPO-induced as negative-feedback components. Socs2, plus five additional targets, further proved to comprise new EPOR/Jak2/Stat5 response genes (which are important for erythropoiesis during anemia. Among receptors, an atypical TNF-receptor Tnfr-sf13c was up-modulated >5-fold by EPO. Functionally, Tnfr-sf13c ligation proved to both promote proerythroblast survival, and substantially enhance erythroblast formation. The EPOR therefore engages a sophisticated set of transcriptome response circuits, with Tnfr-sf13c deployed as one novel positive regulator of proerythroblast formation.

  1. Leptin regulates bone formation via the sympathetic nervous system

    Science.gov (United States)

    Takeda, Shu; Elefteriou, Florent; Levasseur, Regis; Liu, Xiuyun; Zhao, Liping; Parker, Keith L.; Armstrong, Dawna; Ducy, Patricia; Karsenty, Gerard

    2002-01-01

    We previously showed that leptin inhibits bone formation by an undefined mechanism. Here, we show that hypothalamic leptin-dependent antiosteogenic and anorexigenic networks differ, and that the peripheral mediators of leptin antiosteogenic function appear to be neuronal. Neuropeptides mediating leptin anorexigenic function do not affect bone formation. Leptin deficiency results in low sympathetic tone, and genetic or pharmacological ablation of adrenergic signaling leads to a leptin-resistant high bone mass. beta-adrenergic receptors on osteoblasts regulate their proliferation, and a beta-adrenergic agonist decreases bone mass in leptin-deficient and wild-type mice while a beta-adrenergic antagonist increases bone mass in wild-type and ovariectomized mice. None of these manipulations affects body weight. This study demonstrates a leptin-dependent neuronal regulation of bone formation with potential therapeutic implications for osteoporosis.

  2. COMPARATIVE TISSUE DISTRIBUTION AND URINARY EXCRETION OF INORGANIC ARSENIC (IAS) AND ITS METHYLATED METABOLITES IN MICE FOLLOWING ORAL ADMINISTRATION OF ARSENATE (ASV) AND ARSENITE (ASIII)

    Science.gov (United States)

    COMPARATIVE TISSUE DISTRIBUTION AND URINARY EXCRETION OF INORGANIC ARSENIC (iAs) AND ITS METHYLATED METABOLITES IN MICE FOLLOWING ORAL ADMINISTRATION OF ARSENATE (AsV) AND ARSENITE (AsIII). E M Kenyon, L M Del Razo and M F Hughes. U.S. EPA, ORD, NHEERL, ETD, PKB, RTP, NC, USA; ...

  3. "Does anger regulation mediate the discrimination-mental health link among Mexican-origin adolescents? A longitudinal mediation analysis using multilevel modeling": Correction to Park et al. (2016).

    Science.gov (United States)

    2017-02-01

    Reports an error in "Does Anger Regulation Mediate the Discrimination-Mental Health Link Among Mexican-Origin Adolescents? A Longitudinal Mediation Analysis Using Multilevel Modeling" by Irene J. K. Park, Lijuan Wang, David R. Williams and Margarita Alegría ( Developmental Psychology , Advanced Online Publication, Nov 28, 2016, np). In the article, there were several typographical errors in the Recruitment and Procedures section. The percentage of mothers who responded to survey items should have been 99.3%. Additionally, the youths surveyed at T2 and T3 should have been n=246 . Accordingly, the percentage of youths surveyed in T2 and T3 should have been 91.4% and the percentage of mothers surveyed at T2 and T3 should have been 90.7%. Finally, the youths missing at T2 should have been n= 23, and therefore the attrition rate for youth participants should have been 8.6. All versions of this article have been corrected. (The following abstract of the original article appeared in record 2016-57671-001.) Although prior research has consistently documented the association between racial/ethnic discrimination and poor mental health outcomes, the mechanisms that underlie this link are still unclear. The present 3-wave longitudinal study tested the mediating role of anger regulation in the discrimination-mental health link among 269 Mexican-origin adolescents ( M age = 14.1 years, SD = 1.6; 57% girls), 12 to 17 years old. Three competing anger regulation variables were tested as potential mediators: outward anger expression, anger suppression, and anger control. Longitudinal mediation analyses were conducted using multilevel modeling that disaggregated within-person effects from between-person effects. Results indicated that outward anger expression was a significant mediator; anger suppression and anger control were not significant mediators. Within a given individual, greater racial/ethnic discrimination was associated with more frequent outward anger expression. In turn

  4. Extended synaptotagmins are Ca2+-dependent lipid transfer proteins at membrane contact sites.

    Science.gov (United States)

    Yu, Haijia; Liu, Yinghui; Gulbranson, Daniel R; Paine, Alex; Rathore, Shailendra S; Shen, Jingshi

    2016-04-19

    Organelles are in constant communication with each other through exchange of proteins (mediated by trafficking vesicles) and lipids [mediated by both trafficking vesicles and lipid transfer proteins (LTPs)]. It has long been known that vesicle trafficking can be tightly regulated by the second messenger Ca(2+), allowing membrane protein transport to be adjusted according to physiological demands. However, it remains unclear whether LTP-mediated lipid transport can also be regulated by Ca(2+) In this work, we show that extended synaptotagmins (E-Syts), poorly understood membrane proteins at endoplasmic reticulum-plasma membrane contact sites, are Ca(2+)-dependent LTPs. Using both recombinant and endogenous mammalian proteins, we discovered that E-Syts transfer glycerophospholipids between membrane bilayers in the presence of Ca(2+) E-Syts use their lipid-accommodating synaptotagmin-like mitochondrial lipid binding protein (SMP) domains to transfer lipids. However, the SMP domains themselves cannot transport lipids unless the two membranes are tightly tethered by Ca(2+)-bound C2 domains. Strikingly, the Ca(2+)-regulated lipid transfer activity of E-Syts was fully recapitulated when the SMP domain was fused to the cytosolic domain of synaptotagmin-1, the Ca(2+)sensor in synaptic vesicle fusion, indicating that a common mechanism of membrane tethering governs the Ca(2+)regulation of lipid transfer and vesicle fusion. Finally, we showed that microsomal vesicles isolated from mammalian cells contained robust Ca(2+)-dependent lipid transfer activities, which were mediated by E-Syts. These findings established E-Syts as a novel class of LTPs and showed that LTP-mediated lipid trafficking, like vesicular transport, can be subject to tight Ca(2+)regulation.

  5. Nitric oxide-mediated maintenance of redox homeostasis contributes to NPR1-dependent plant innate immunity triggered by lipopolysaccharides.

    Science.gov (United States)

    Sun, Aizhen; Nie, Shengjun; Xing, Da

    2012-10-01

    The perception of lipopolysaccharides (LPS) by plant cells can lead to nitric oxide (NO) production and defense gene induction. However, the signaling cascades underlying these cellular responses have not yet been resolved. This work investigated the biosynthetic origin of NO and the role of NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 (NPR1) to gain insight into the mechanism involved in LPS-induced resistance of Arabidopsis (Arabidopsis thaliana). Analysis of inhibitors and mutants showed that LPS-induced NO synthesis was mainly mediated by an arginine-utilizing source of NO generation. Furthermore, LPS-induced NO caused transcript accumulation of alternative oxidase genes and increased antioxidant enzyme activity, which enhanced antioxidant capacity and modulated redox state. We also analyzed the subcellular localization of NPR1 to identify the mechanism for protein-modulated plant innate immunity triggered by LPS. LPS-activated defense responses, including callose deposition and defense-related gene expression, were found to be regulated through an NPR1-dependent pathway. In summary, a significant NO synthesis induced by LPS contributes to the LPS-induced defense responses by up-regulation of defense genes and modulation of cellular redox state. Moreover, NPR1 plays an important role in LPS-triggered plant innate immunity.

  6. Tyrosine kinase inhibitors as modulators of trastuzumab-mediated antibody-dependent cell-mediated cytotoxicity in breast cancer cell lines.

    Science.gov (United States)

    Collins, Denis M; Gately, Kathy; Hughes, Clare; Edwards, Connla; Davies, Anthony; Madden, Stephen F; O'Byrne, Kenneth J; O'Donovan, Norma; Crown, John

    2017-09-01

    Trastuzumab is an anti-HER2 monoclonal antibody (mAb) therapy capable of antibody-dependent cell-mediated cytotoxicity (ADCC) and used in the treatment of HER2+ breast cancer. Through interactions with FcƴR+ immune cell subsets, trastuzumab functions as a passive immunotherapy. The EGFR/HER2-targeting tyrosine kinase inhibitor (TKI) lapatinib and the next generation TKIs afatinib and neratinib, can alter HER2 levels, potentially modulating the ADCC response to trastuzumab. Using LDH-release assays, we investigated the impact of antigen modulation, assay duration and peripheral blood mononuclear cell (PBMC) activity on trastuzumab-mediated ADCC in breast cancer models of maximal (SKBR3) and minimal (MCF-7) target antigen expression to determine if modulating the ADCC response to trastuzumab using TKIs may be a viable approach for enhancing tumor immune reactivity. HER2 levels were determined in lapatinib, afatinib and neratinib-treated SKBR3 and MCF-7 using high content analysis (HCA). Trastuzumab-mediated ADCC was assessed following treatment with TKIs utilising a colorimetric LDH release-based protocol at 4 and 12h timepoints. PBMC activity was assessed against non-MHC-restricted K562 cells. A flow cytometry-based method (CFSE/7-AAD) was also used to measure trastuzumab-mediated ADCC in medium-treated SKBR3 and MCF-7. HER2 antigen levels were significantly altered by the three TKIs in both cell line models. The TKIs significantly reduced LDH levels directly in SKBR3 cells but not MCF-7. Lapatinib and neratinib augment trastuzumab-related ADCC in SKBR3 but the effect was not consistent with antigen expression levels and was dependent on volunteer PBMC activity (vs. K562). A 12h assay timepoint produced more consistent results. Trastuzumab-mediated ADCC (PBMC:target cell ratio of 10:1) was measured at 7.6±4.7% (T12) by LDH assay and 19±3.2 % (T12) using the flow cytometry-based method in the antigen-low model MCF-7. In the presence of effector cells with high

  7. Cyclic nucleotide dependent dephosphorylation of regulator of G-protein signaling 18 in human platelets.

    LENUS (Irish Health Repository)

    Gegenbauer, Kristina

    2013-11-01

    Regulator of G-protein signaling 18 (RGS18) is a GTPase-activating protein that turns off Gq signaling in platelets. RGS18 is regulated by binding to the adaptor protein 14-3-3 via phosphorylated serine residues S49 and S218 on RGS18. In this study we confirm that thrombin, thromboxane A2, or ADP stimulate the interaction of RGS18 and 14-3-3 by increasing the phosphorylation of S49. Cyclic AMP- and cyclic GMP-dependent kinases (PKA, PKG) inhibit the interaction of RGS18 and 14-3-3 by phosphorylating S216. To understand the effect of S216 phosphorylation we studied the phosphorylation kinetics of S49, S216, and S218 using Phos-tag gels and phosphorylation site-specific antibodies in transfected cells and in platelets. Cyclic nucleotide-induced detachment of 14-3-3 from RGS18 coincides initially with double phosphorylation of S216 and S218. This is followed by dephosphorylation of S49 and S218. Dephosphorylation of S49 and S218 might be mediated by protein phosphatase 1 (PP1) which is linked to RGS18 by the regulatory subunit PPP1R9B (spinophilin). We conclude that PKA and PKG induced S216 phosphorylation triggers the dephosphorylation of the 14-3-3 binding sites of RGS18 in platelets.

  8. The brain cytoplasmic RNA BC1 regulates dopamine D2 receptor-mediated transmission in the striatum.

    Science.gov (United States)

    Centonze, Diego; Rossi, Silvia; Napoli, Ilaria; Mercaldo, Valentina; Lacoux, Caroline; Ferrari, Francesca; Ciotti, Maria Teresa; De Chiara, Valentina; Prosperetti, Chiara; Maccarrone, Mauro; Fezza, Filomena; Calabresi, Paolo; Bernardi, Giorgio; Bagni, Claudia

    2007-08-15

    Dopamine D(2) receptor (D(2)DR)-mediated transmission in the striatum is remarkably flexible, and changes in its efficacy have been heavily implicated in a variety of physiological and pathological conditions. Although receptor-associated proteins are clearly involved in specific forms of synaptic plasticity, the molecular mechanisms regulating the sensitivity of D(2) receptors in this brain area are essentially obscure. We have studied the physiological responses of the D(2)DR stimulations in mice lacking the brain cytoplasmic RNA BC1, a small noncoding dendritically localized RNA that is supposed to play a role in mRNA translation. We show that the efficiency of D(2)-mediated transmission regulating striatal GABA synapses is under the control of BC1 RNA, through a negative influence on D(2) receptor protein level affecting the functional pool of receptors. Ablation of the BC1 gene did not result in widespread dysregulation of synaptic transmission, because the sensitivity of cannabinoid CB(1) receptors was intact in the striatum of BC1 knock-out (KO) mice despite D(2) and CB(1) receptors mediated similar electrophysiological actions. Interestingly, the fragile X mental retardation protein FMRP, one of the multiple BC1 partners, is not involved in the BC1 effects on the D(2)-mediated transmission. Because D(2)DR mRNA is apparently equally translated in the BC1-KO and wild-type mice, whereas the protein level is higher in BC1-KO mice, we suggest that BC1 RNA controls D(2)DR indirectly, probably regulating translation of molecules involved in D(2)DR turnover and/or stability.

  9. Influence of Student Learning Experience on Academic Performance: The Mediator and Moderator Effects of Self-Regulation and Motivation

    Science.gov (United States)

    Ning, Hoi Kwan; Downing, Kevin

    2012-01-01

    This study examined the mediator and moderator roles of self-regulation and motivation constructs in the relationship between learning experience and academic success. Self-reported measures of learning experience, self-regulation and motivation were obtained from 384 undergraduate students from a university in Hong Kong. Structural equation…

  10. Angiopoietin-like 4 mediates PPAR delta effect on lipoprotein lipase-dependent fatty acid uptake but not on beta-oxidation in myotubes.

    Directory of Open Access Journals (Sweden)

    Marius R Robciuc

    Full Text Available Peroxisome proliferator-activated receptor (PPAR delta is an important regulator of fatty acid (FA metabolism. Angiopoietin-like 4 (Angptl4, a multifunctional protein, is one of the major targets of PPAR delta in skeletal muscle cells. Here we investigated the regulation of Angptl4 and its role in mediating PPAR delta functions using human, rat and mouse myotubes. Expression of Angptl4 was upregulated during myotubes differentiation and by oleic acid, insulin and PPAR delta agonist GW501516. Treatment with GW501516 or Angptl4 overexpression inhibited both lipoprotein lipase (LPL activity and LPL-dependent uptake of FAs whereas uptake of BSA-bound FAs was not affected by either treatment. Activation of retinoic X receptor (RXR, PPAR delta functional partner, using bexarotene upregulated Angptl4 expression and inhibited LPL activity in a PPAR delta dependent fashion. Silencing of Angptl4 blocked the effect of GW501516 and bexarotene on LPL activity. Treatment with GW501516 but not Angptl4 overexpression significantly increased palmitate oxidation. Furthermore, Angptl4 overexpression did not affect the capacity of GW501516 to increase palmitate oxidation. Basal and insulin stimulated glucose uptake, glycogen synthesis and glucose oxidation were not significantly modulated by Angptl4 overexpression. Our findings suggest that FAs-PPARdelta/RXR-Angptl4 axis controls the LPL-dependent uptake of FAs in myotubes, whereas the effect of PPAR delta activation on beta-oxidation is independent of Angptl4.

  11. MC EMiNEM maps the interaction landscape of the Mediator

    OpenAIRE

    Niederberger, Theresa; Etzold, Stefanie; Lidschreiber, Michael; Maier, Kerstin C.; Martin, Dietmar E.; Fröhlich, Holger; Cramer, Patrick; Tresch, Achim

    2012-01-01

    The Mediator is a highly conserved, large multiprotein complex that is involved essentially in the regulation of eukaryotic mRNA transcription. It acts as a general transcription factor by integrating regulatory signals from gene-specific activators or repressors to the RNA Polymerase II. The internal network of interactions between Mediator subunits that conveys these signals is largely unknown. Here, we introduce MC EMiNEM, a novel method for the retrieval of functional dependencies between...

  12. Histone Methylation and microRNA-dependent Regulation of Epigenetic Activities in Neural Progenitor Self-Renewal and Differentiation.

    Science.gov (United States)

    Cacci, Emanuele; Negri, Rodolfo; Biagioni, Stefano; Lupo, Giuseppe

    2017-01-01

    Neural stem/progenitor cell (NSPC) self-renewal and differentiation in the developing and the adult brain are controlled by extra-cellular signals and by the inherent competence of NSPCs to produce appropriate responses. Stage-dependent responsiveness of NSPCs to extrinsic cues is orchestrated at the epigenetic level. Epigenetic mechanisms such as DNA methylation, histone modifications and non-coding RNA-mediated regulation control crucial aspects of NSPC development and function, and are also implicated in pathological conditions. While their roles in the regulation of stem cell fate have been largely explored in pluripotent stem cell models, the epigenetic signature of NSPCs is also key to determine their multipotency as well as their progressive bias towards specific differentiation outcomes. Here we review recent developments in this field, focusing on the roles of histone methylation marks and the protein complexes controlling their deposition in NSPCs of the developing cerebral cortex and the adult subventricular zone. In this context, we describe how bivalent promoters, carrying antagonistic epigenetic modifications, feature during multiple steps of neural development, from neural lineage specification to neuronal differentiation. Furthermore, we discuss the emerging cross-talk between epigenetic regulators and microRNAs, and how the interplay between these different layers of regulation can finely tune the expression of genes controlling NSPC maintenance and differentiation. In particular, we highlight recent advances in the identification of astrocyte-enriched microRNAs and their function in cell fate choices of NSPCs differentiating towards glial lineages.

  13. Capsaicin sensitizes TRAIL-induced apoptosis through Sp1-mediated DR5 up-regulation: Involvement of Ca2+ influx

    International Nuclear Information System (INIS)

    Moon, Dong-Oh; Kang, Chang-Hee; Kang, Sang-Hyuck; Choi, Yung-Hyun; Hyun, Jin-Won; Chang, Weon-Young; Kang, Hee-Kyoung; Koh, Young-Sang; Maeng, Young-Hee; Kim, Young-Ree; Kim, Gi-Young

    2012-01-01

    Although tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis in various malignant cells, several cancers including human hepatocellular carcinoma (HCC) exhibit potent resistance to TRAIL-induced cell death. The aim of this study is to evaluate the anti-cancer potential of capsaicin in TRAIL-induced cancer cell death. As indicated by assays that measure phosphatidylserine exposure, mitochondrial activity and activation of caspases, capsaicin potentiated TRAIL-resistant cells to lead to cell death. In addition, we found that capsaicin induces the cell surface expression of TRAIL receptor DR5, but not DR4 through the activation Sp1 on its promoter region. Furthermore, we investigated that capsaicin-induced DR5 expression and apoptosis are inhibited by calcium chelator or inhibitors for calmodulin-dependent protein kinase. Taken together, our data suggest that capsaicin sensitizes TRAIL-mediated HCC cell apoptosis by DR5 up-regulation via calcium influx-dependent Sp1 activation. Highlights: ► Capsaicin sensitizes TRAIL-induced apoptosis through activation of caspases. ► Capsaicin induces expression of DR5 through Sp1 activation. ► Capsaicin activates calcium signaling pathway.

  14. Characterization of the arsenite oxidizer Aliihoeflea sp. strain 2WW and its potential application in the removal of arsenic from groundwater in combination with Pf-ferritin

    NARCIS (Netherlands)

    Corsini, A.; Colombo, M.; Muyzer, G.; Cavalca, L.

    2015-01-01

    A heterotrophic arsenite-oxidizing bacterium, strain 2WW, was isolated from a biofilter treating arsenic-rich groundwater. Comparative analysis of 16S rRNA gene sequences showed that it was closely related (98.7 %) to the alphaproteobacterium Aliihoeflea aesturari strain N8T. However, it was

  15. TIMP-1 mediates the inhibitory effect of interleukin-6 on the proliferation of a hepatocarcinoma cell line in a STAT3-dependent manner

    Directory of Open Access Journals (Sweden)

    S.-Y. Guo

    2007-05-01

    Full Text Available The tissue inhibitor of metalloproteinases (TIMP-1 is a multifunctional protein which is not only an inhibitor of matrix metalloproteinases (MMPs but also to have a possible "cytokine-like" action. Here, we first compared mRNA expression of TIMP-1 and MMP-9 in BEL-7402 (a hepatocellular carcinoma cell line, L-02 (a normal liver cell line and QSG-7701 (a cell line derived from peripheral tissue of liver carcinoma using real-time quantitative RT-PCR. By evaluating the variation of the MMP-9/TIMP-1 ratio as an index of reciprocal changes of the expression of the two genes, we observed that the MMP-9/TIMP-1 ratio was about 13- and 5-fold higher in BEL-7402 than in L-02 and QSG-7701, respectively. Significantly, overexpression of TIMP-1 decreased the MMP-9/TIMP-1 ratio in BEL-7402 and then inhibited the cell growth to 60% and reduced the migration to about 30%. Meanwhile, our data showed that interleukin-6 (IL-6 (100 ng/mL could also inhibited the cell growth of BEL-7402. Further studies indicated that TIMP-1 mediated the inhibitory effect of IL-6 on BEL-7402 cell proliferation in a STAT3-dependent manner, which could further accelerate the expression of the cyclin-dependent kinase inhibitor p21. A dominant negative STAT3 mutant totally abolished IL-6-induced TIMP-1 expression and its biological functions. The present results demonstrate that TIMP-1 may be one of the mediators that regulate the inhibitory effect of IL-6 on BEL-7402 proliferation in which STAT3 signal transduction and p21 up-regulation also play important roles.

  16. 7 CFR 780.9 - Mediation.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Mediation. 780.9 Section 780.9 Agriculture Regulations... PROGRAMS APPEAL REGULATIONS § 780.9 Mediation. (a) Any request for mediation must be submitted after... once: (1) If resolution of an adverse decision is not achieved in mediation, a participant may exercise...

  17. Importance of Mediator complex in the regulation and integration of diverse signaling pathways in plants.

    Science.gov (United States)

    Samanta, Subhasis; Thakur, Jitendra K

    2015-01-01

    Basic transcriptional machinery in eukaryotes is assisted by a number of cofactors, which either increase or decrease the rate of transcription. Mediator complex is one such cofactor, and recently has drawn a lot of interest because of its integrative power to converge different signaling pathways before channeling the transcription instructions to the RNA polymerase II machinery. Like yeast and metazoans, plants do possess the Mediator complex across the kingdom, and its isolation and subunit analyses have been reported from the model plant, Arabidopsis. Genetic, and molecular analyses have unraveled important regulatory roles of Mediator subunits at every stage of plant life cycle starting from flowering to embryo and organ development, to even size determination. It also contributes immensely to the survival of plants against different environmental vagaries by the timely activation of its resistance mechanisms. Here, we have provided an overview of plant Mediator complex starting from its discovery to regulation of stoichiometry of its subunits. We have also reviewed involvement of different Mediator subunits in different processes and pathways including defense response pathways evoked by diverse biotic cues. Wherever possible, attempts have been made to provide mechanistic insight of Mediator's involvement in these processes.

  18. Cdc20 mediates D-box-dependent degradation of Sp100

    International Nuclear Information System (INIS)

    Wang, Ran; Li, Ke-min; Zhou, Cai-hong; Xue, Jing-lun; Ji, Chao-neng; Chen, Jin-zhong

    2011-01-01

    Highlights: ► Cdc20 is a co-activator of APC/C complex. ► Cdc20 recruits Sp100 and mediates its degradation. ► The D-box of Sp100 is required for Cdc20-mediated degradation. ► Sp100 expresses consistently at both the mRNA and protein levels in cell cycle. -- Abstract: Cdc20 is a co-activator of the anaphase-promoting complex/cyclosome (APC/C complex), which recruits substrates at particular phases of the cell cycle and mediates their degradation. Sp100 is a PML-NB scaffold protein, which localizes to nuclear particles during interphase and disperses from them during mitosis, participates in viral resistance, transcriptional regulation, and apoptosis. However, its metabolism during the cell cycle has not yet been fully characterized. We found a putative D-box in Sp100 using the Eukaryotic Linear Motif (ELM) predictor database. The putative D-box of Sp100 was verified by mutational analysis. Overexpression of Cdc20 resulted in decreased levels of both endogenous Sp100 protein and overexpressed Sp100 mRNA in HEK 293 cells. Only an overexpressed D-box deletion mutant of Sp100 accumulated in HEK293 cells that also overexpressed Cdc20. Cdc20 knockdown by cdc20 specific siRNA resulted in increased Sp100 protein levels in cells. Furthermore, we discovered that the Cdc20 mediated degradation of Sp100 is diminished by the proteasome inhibitor MG132, which suggests that the ubiquitination pathway is involved in this process. However, unlike the other Cdc20 substrates, which display oscillating protein levels, the level of Sp100 protein remains constant throughout the cell cycle. Additionally, both overexpression and knockdown of endogenous Sp100 had no effect on the cell cycle. Our results suggested that sp100 is a novel substrate of Cdc20 and it is degraded by the ubiquitination pathway. The intact D-box of Sp100 was necessary for this process. These findings expand our knowledge of both Sp100 and Cdc20 as well as their role in ubiquitination.

  19. Up-regulation of ROS by mitochondria-dependent bystander signaling contributes to genotoxicity of bystander effects

    International Nuclear Information System (INIS)

    Chen Shaopeng; Zhao Ye; Zhao Guoping; Han Wei; Bao Lingzhi; Yu, K.N.; Wu Lijun

    2009-01-01

    Genomic instability can be observed in bystander cells. However, the underlying mechanism(s) is still relatively unclear. In a previous study, we found that irradiated cells released mitochondria-dependent intracellular factor(s) which could lead to bystander γ-H2AX induction. In this paper, we used normal (ρ + ) and mtDNA-depleted (ρ 0 ) human-hamster hybrid cells to investigate mitochondrial effects on the genotoxicity in bystander effect through medium transfer experiments. Through the detection of DNA double-strand breaks with γ-H2AX, we found that the fraction of γ-H2AX positive cells changed with time when irradiation conditioned cell medium (ICCM) were harvested. ICCM harvested from irradiated ρ + cells at 10 min post-irradiation (ρ + ICCM 10min ) caused larger increases of bystander γ-H2AX induction comparing to ρ 0 ICCM 10min , which only caused a slight increase of bystander γ-H2AX induction. The ρ + ICCM 10min could also result in the up-regulation of ROS production (increased by 35% at 10 min), while there was no significant increase in cells treated with ρ 0 ICCM 10min . We treated cells with dimethyl sulfoxide (DMSO), the scavenger of ROS, and quenched γ-H2AX induction by ρ + ICCM. Furthermore, after the medium had been transferred and the cells were continuously cultured for 7 days, we found significantly increased CD59 - gene loci mutation (increased by 45.9%) and delayed cell death in the progeny of ρ + ICCM-treated bystander cells. In conclusion, the work presented here suggested that up-regulation of the mitochondria-dependent ROS might be very important in mediating genotoxicity of bystander effects.

  20. FGFR2c-mediated ERK-MAPK activity regulates coronal suture development

    Science.gov (United States)

    Pfaff, Miles J.; Xue, Ke; Li, Li; Horowitz, Mark C.; Steinbacher, Derek M.; Eswarakumar, Jacob V.P.

    2017-01-01

    Fibroblast growth factor receptor 2 (FGFR2) signaling is critical for proper craniofacial development. A gain-of-function mutation in the 2c splice variant of the receptor’s gene is associated with Crouzon syndrome, which is characterized by craniosynostosis, the premature fusion of one or more of the cranial vault sutures, leading to craniofacial maldevelopment. Insight into the molecular mechanism of craniosynostosis has identified the ERK-MAPK signaling cascade as a critical regulator of suture patency. The aim of this study is to investigate the role of FGFR2c-induced ERK-MAPK activation in the regulation of coronal suture development. Loss-of-function and gain-of-function Fgfr2c mutant mice have overlapping phenotypes, including coronal synostosis and craniofacial dysmorphia. In vivo analysis of coronal sutures in loss-of-function and gain-of-function models demonstrated fundamentally different pathogenesis underlying coronal suture synostosis. Calvarial osteoblasts from gain-of-function mice demonstrated enhanced osteoblastic function and maturation with concomitant increase in ERK-MAPK activation. In vitro inhibition with the ERK protein inhibitor U0126 mitigated ERK protein activation levels with a concomitant reduction in alkaline phosphatase activity. This study identifies FGFR2c-mediated ERK-MAPK signaling as a key mediator of craniofacial growth and coronal suture development. Furthermore, our results solve the apparent paradox between loss-of-function and gain-of-function FGFR2c mutants with respect to coronal suture synostosis. PMID:27034231