WorldWideScience

Sample records for mediated nutrient transformations

  1. The role of aquatic fungi in transformations of organic matter mediated by nutrients

    Science.gov (United States)

    Cynthia J. Tant; Amy D. Rosemond; Andrew S. Mehring; Kevin A. Kuehn; John M. Davis

    2015-01-01

    1. We assessed the key role of aquatic fungi in modifying coarse particulate organic matter (CPOM) by affecting its breakdown rate, nutrient concentration and conversion to fine particulate organic matter (FPOM). Overall, we hypothesised that fungal-mediated conditioning and breakdown of CPOM would be accelerated when nutrient concentrations are increased and tested...

  2. Managing Soil Biota-Mediated Decomposition and Nutrient Mineralization in Sustainable Agroecosystems

    Directory of Open Access Journals (Sweden)

    Joann K. Whalen

    2014-01-01

    Full Text Available Transformation of organic residues into plant-available nutrients occurs through decomposition and mineralization and is mediated by saprophytic microorganisms and fauna. Of particular interest is the recycling of the essential plant elements—N, P, and S—contained in organic residues. If organic residues can supply sufficient nutrients during crop growth, a reduction in fertilizer use is possible. The challenge is synchronizing nutrient release from organic residues with crop nutrient demands throughout the growing season. This paper presents a conceptual model describing the pattern of nutrient release from organic residues in relation to crop nutrient uptake. Next, it explores experimental approaches to measure the physical, chemical, and biological barriers to decomposition and nutrient mineralization. Methods are proposed to determine the rates of decomposition and nutrient release from organic residues. Practically, this information can be used by agricultural producers to determine if plant-available nutrient supply is sufficient to meet crop demands at key growth stages or whether additional fertilizer is needed. Finally, agronomic practices that control the rate of soil biota-mediated decomposition and mineralization, as well as those that facilitate uptake of plant-available nutrients, are identified. Increasing reliance on soil biological activity could benefit crop nutrition and health in sustainable agroecosystems.

  3. Enhancement of microbial 2,4,6-trinitrotoluene transformation with increased toxicity by exogenous nutrient amendment.

    Science.gov (United States)

    Liang, Shih-Hsiung; Hsu, Duen-Wei; Lin, Chia-Ying; Kao, Chih-Ming; Huang, Da-Ji; Chien, Chih-Ching; Chen, Ssu-Ching; Tsai, Isheng Jason; Chen, Chien-Cheng

    2017-04-01

    In this study, the bacterial strain Citrobacter youngae strain E4 was isolated from 2,4,6-trinitrotoluene (TNT)-contaminated soil and used to assess the capacity of TNT transformation with/without exogenous nutrient amendments. C. youngae E4 poorly degraded TNT without an exogenous amino nitrogen source, whereas the addition of an amino nitrogen source considerably increased the efficacy of TNT transformation in a dose-dependent manner. The enhanced TNT transformation of C. youngae E4 was mediated by increased cell growth and up-regulation of TNT nitroreductases, including NemA, NfsA and NfsB. This result indicates that the increase in TNT transformation by C. youngae E4 via nitrogen nutrient stimulation is a cometabolism process. Consistently, TNT transformation was effectively enhanced when C. youngae E4 was subjected to a TNT-contaminated soil slurry in the presence of an exogenous amino nitrogen amendment. Thus, effective enhancement of TNT transformation via the coordinated inoculation of the nutrient-responsive C. youngae E4 and an exogenous nitrogen amendment might be applicable for the remediation of TNT-contaminated soil. Although the TNT transformation was significantly enhanced by C. youngae E4 in concert with biostimulation, the 96-h LC50 value of the TNT transformation product mixture on the aquatic invertebrate Tigriopus japonicas was higher than the LC50 value of TNT alone. Our results suggest that exogenous nutrient amendment can enhance microbial TNT transformation; however, additional detoxification processes may be needed due to the increased toxicity after reduced TNT transformation. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Agrobacterium tumefaciens-mediated transformation of oleaginous yeast Lipomyces species.

    Science.gov (United States)

    Dai, Ziyu; Deng, Shuang; Culley, David E; Bruno, Kenneth S; Magnuson, Jon K

    2017-08-01

    Interest in using renewable sources of carbon, especially lignocellulosic biomass, for the production of hydrocarbon fuels and chemicals has fueled interest in exploring various organisms capable of producing hydrocarbon biofuels and chemicals or their precursors. The oleaginous (oil-producing) yeast Lipomyces starkeyi is the subject of active research regarding the production of triacylglycerides as hydrocarbon fuel precursors using a variety of carbohydrate and nutrient sources. The genome of L. starkeyi has been published, which opens the door to production strain improvements through the development and use of the tools of synthetic biology for this oleaginous species. The first step in establishment of synthetic biology tools for an organism is the development of effective and reliable transformation methods with suitable selectable marker genes and demonstration of the utility of the genetic elements needed for expression of introduced genes or deletion of endogenous genes. Chemical-based methods of transformation have been published but suffer from low efficiency. To address these problems, Agrobacterium-mediated transformation was investigated as an alternative method for L. starkeyi and other Lipomyces species. In this study, Agrobacterium-mediated transformation was demonstrated to be effective in the transformation of both L. starkeyi and other Lipomyces species. The deletion of the peroxisomal biogenesis factor 10 gene was also demonstrated in L. starkeyi. In addition to the bacterial antibiotic selection marker gene hygromycin B phosphotransferase, the bacterial β-glucuronidase reporter gene under the control of L. starkeyi translation elongation factor 1α promoter was also stably expressed in six different Lipomyces species. The results from this study demonstrate that Agrobacterium-mediated transformation is a reliable and effective genetic tool for homologous recombination and expression of heterologous genes in L. starkeyi and other Lipomyces

  5. Agrobacterium tumefaciens-mediated transformation of oleaginous yeast Lipomyces species

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Ziyu; Deng, Shuang; Culley, David E.; Bruno, Kenneth S.; Magnuson, Jon K.

    2017-06-19

    Background: Because of interest in the production of renewable bio-hydrocarbon fuels, various living organisms have been explored for their potential use in producing fuels and chemicals. The oil-producing (oleaginous) yeast Lipomyces starkeyi is the subject of active research regarding the production of lipids using a wide variety of carbon and nutrient sources. The genome of L. starkeyi has been published, which opens the door to production strain improvements using the tools of synthetic biology and metabolic engineering. However, using these tools for strain improvement requires the establishment of effective and reliable transformation methods with suitable selectable markers (antibiotic resistance or auxotrophic marker genes) and the necessary genetic elements (promoters and terminators) for expression of introduced genes. Chemical-based methods have been published, but suffer from low efficiency or the requirement for targeting to rRNA loci. To address these problems, Agrobacterium-mediated transformation was investigated as an alternative method for L. starkeyi and other Lipomyces species. Results: In this study, Agrobacterium-mediated transformation was demonstrated to be effective in the transformation of both L. starkeyi and other Lipomyces species and that the introduced DNA can be reliably integrated into the chromosomes of these species. The gene deletion of Ku70 and Pex10 was also demonstrated in L. starkeyi. In addition to the bacterial antibiotic selection marker gene hygromycin B phosphotransferase, the bacterial -glucuronidase reporter gene under the control of L. starkeyi translation elongation factor 1 promoter was also stably expressed in seven different Lipomyces species. Conclusion: The results from this study clearly demonstrate that Agrobacterium-mediated transformation is a reliable genetic tool for gene deletion and integration and expression of heterologous genes in L. starkeyi and other Lipomyces species.

  6. Agrobacterium tumefaciens-Mediated Transformation

    DEFF Research Database (Denmark)

    Frandsen, Rasmus John Normand

    2015-01-01

    The use of Agrobacterium tumefaciens-mediated transformation for achieving genetic transformation of fungi has steadily increased over the last decade, and has proven to be almost universally applicable technique once suitable selection markers have been developed. In recent years the major...... technical advances has been made within the initial steps of the process, more specifically the efficient construction of plasmids for performing targeted genome modifications. This chapter provides a generic protocol for performing genetic transformation of ascomycetes via A. tumefaciens......-mediated transformation (AMT) and guidelines for optimizing the AMT process with new fungal species. The chapter also includes a highly efficient vector construction system based on Uracil Specific Excisions Reagent (USER) cloning and specific PCR generated building blocks, which can be combined ad hoc to create complex...

  7. Animal pee in the sea: consumer-mediated nutrient dynamics in the world's changing oceans.

    Science.gov (United States)

    Allgeier, Jacob E; Burkepile, Deron E; Layman, Craig A

    2017-06-01

    Humans have drastically altered the abundance of animals in marine ecosystems via exploitation. Reduced abundance can destabilize food webs, leading to cascading indirect effects that dramatically reorganize community structure and shift ecosystem function. However, the additional implications of these top-down changes for biogeochemical cycles via consumer-mediated nutrient dynamics (CND) are often overlooked in marine systems, particularly in coastal areas. Here, we review research that underscores the importance of this bottom-up control at local, regional, and global scales in coastal marine ecosystems, and the potential implications of anthropogenic change to fundamentally alter these processes. We focus attention on the two primary ways consumers affect nutrient dynamics, with emphasis on implications for the nutrient capacity of ecosystems: (1) the storage and retention of nutrients in biomass, and (2) the supply of nutrients via excretion and egestion. Nutrient storage in consumer biomass may be especially important in many marine ecosystems because consumers, as opposed to producers, often dominate organismal biomass. As for nutrient supply, we emphasize how consumers enhance primary production through both press and pulse dynamics. Looking forward, we explore the importance of CDN for improving theory (e.g., ecological stoichiometry, metabolic theory, and biodiversity-ecosystem function relationships), all in the context of global environmental change. Increasing research focus on CND will likely transform our perspectives on how consumers affect the functioning of marine ecosystems. © 2017 John Wiley & Sons Ltd.

  8. Factor affecting Agrobacterium -mediated transformation of rice ...

    African Journals Online (AJOL)

    Potato is a very important food crop and is adversely affected by fungus. Agrobacterium-mediated transformation can play an important role in the improvement of potato. The present study was conducted to optimize the different factors affecting Agrobacterium-mediated transformation of chitinase gene. Nodes were used as ...

  9. Barley Transformation Using Agrobacterium-Mediated Techniques

    Science.gov (United States)

    Harwood, Wendy A.; Bartlett, Joanne G.; Alves, Silvia C.; Perry, Matthew; Smedley, Mark A.; Leyland, Nicola; Snape, John W.

    Methods for the transformation of barley using Agrobacterium-mediated techniques have been available for the past 10 years. Agrobacterium offers a number of advantages over biolistic-mediated techniques in terms of efficiency and the quality of the transformed plants produced. This chapter describes a simple system for the transformation of barley based on the infection of immature embryos with Agrobacterium tumefaciens followed by the selection of transgenic tissue on media containing the antibiotic hygromycin. The method can lead to the production of large numbers of fertile, independent transgenic lines. It is therefore ideal for studies of gene function in a cereal crop system.

  10. Invasive aquarium fish transform ecosystem nutrient dynamics

    Science.gov (United States)

    Capps, Krista A.; Flecker, Alexander S.

    2013-01-01

    Trade of ornamental aquatic species is a multi-billion dollar industry responsible for the introduction of myriad fishes into novel ecosystems. Although aquarium invaders have the potential to alter ecosystem function, regulation of the trade is minimal and little is known about the ecosystem-level consequences of invasion for all but a small number of aquarium species. Here, we demonstrate how ecological stoichiometry can be used as a framework to identify aquarium invaders with the potential to modify ecosystem processes. We show that explosive growth of an introduced population of stoichiometrically unique, phosphorus (P)-rich catfish in a river in southern Mexico significantly transformed stream nutrient dynamics by altering nutrient storage and remineralization rates. Notably, changes varied between elements; the P-rich fish acted as net sinks of P and net remineralizers of nitrogen. Results from this study suggest species-specific stoichiometry may be insightful for understanding how invasive species modify nutrient dynamics when their population densities and elemental composition differ substantially from native organisms. Risk analysis for potential aquarium imports should consider species traits such as body stoichiometry, which may increase the likelihood that an invasion will alter the structure and function of ecosystems. PMID:23966642

  11. Optimization of Agrobacterium -mediated transformation parameters ...

    African Journals Online (AJOL)

    Agrobacterium-mediated transformation factors for sweet potato embryogenic calli were optimized using -glucuronidase (GUS) as a reporter. The binary vector pTCK303 harboring the modified GUS gene driven by the CaMV 35S promoter was used. Transformation parameters were optimized including bacterial ...

  12. Agrobacterium-Mediated Transformation of Leaf Base Segments.

    Science.gov (United States)

    Gasparis, Sebastian

    2017-01-01

    Agrobacterium-mediated transformation has become a routine method of genetic engineering of cereals, gradually replacing the biolistic protocols. Simple integration patterns of transgenic loci, decent transformation efficiency, and technical simplicity are the main advantages offered by this method. Here we present a detailed protocol for the production of transgenic oat plants by Agrobacterium-mediated transformation of leaf base segments. The use of leaf explants as target tissues for transformation and in vitro regeneration of transgenic plants may be a good alternative for genotypes which are not susceptible to regeneration from immature or mature embryos. We also describe the biochemical and molecular analysis procedures of the transgenic plants including a GUS histochemical assay, and Southern blot, both of which are optimized for application in oat.

  13. Transformation of Botrytis cinerea by direct hyphal blasting or by wound-mediated transformation of sclerotia

    Directory of Open Access Journals (Sweden)

    Ish - Shalom Shahar

    2011-12-01

    Full Text Available Abstract Background Botrytis cinerea is a haploid necrotrophic ascomycete which is responsible for 'grey mold' disease in more than 200 plant species. Broad molecular research has been conducted on this pathogen in recent years, resulting in the sequencing of two strains, which has generated a wealth of information toward developing additional tools for molecular transcriptome, proteome and secretome investigations. Nonetheless, transformation protocols have remained a significant bottleneck for this pathogen, hindering functional analysis research in many labs. Results In this study, we tested three different transformation methods for B. cinerea: electroporation, air-pressure-mediated and sclerotium-mediated transformation. We demonstrate successful transformation with three different DNA constructs using both air-pressure- and sclerotium-mediated transformation. Conclusions These transformation methods, which are fast, simple and reproducible, can expedite functional gene analysis of B. cinerea.

  14. Herbivory and eutrophication mediate grassland plant nutrient responses across a global climatic gradient

    Science.gov (United States)

    Anderson, T. Michael; Griffith, Daniel M.; Grace, James B.; Lind, Eric M.; Adler, Peter B.; Biederman, Lori A.; Blumenthal, Dana M.; Daleo, Pedro; Firn, Jennifer; Hagenah, Nicole; Harpole, W. Stanley; MacDougall, Andrew S.; McCulley, Rebecca L.; Prober, Suzanne M.; Risch, Anita C.; Sankaran, Mahesh; Schütz, Martin; Seabloom, Eric W.; Stevens, Carly J.; Sullivan, Lauren; Wragg, Peter; Borer, Elizabeth T.

    2018-01-01

    Plant stoichiometry, the relative concentration of elements, is a key regulator of ecosystem functioning and is also being altered by human activities. In this paper we sought to understand the global drivers of plant stoichiometry and compare the relative contribution of climatic vs. anthropogenic effects. We addressed this goal by measuring plant elemental (C, N, P and K) responses to eutrophication and vertebrate herbivore exclusion at eighteen sites on six continents. Across sites, climate and atmospheric N deposition emerged as strong predictors of plot‐level tissue nutrients, mediated by biomass and plant chemistry. Within sites, fertilization increased total plant nutrient pools, but results were contingent on soil fertility and the proportion of grass biomass relative to other functional types. Total plant nutrient pools diverged strongly in response to herbivore exclusion when fertilized; responses were largest in ungrazed plots at low rainfall, whereas herbivore grazing dampened the plant community nutrient responses to fertilization. Our study highlights (1) the importance of climate in determining plant nutrient concentrations mediated through effects on plant biomass, (2) that eutrophication affects grassland nutrient pools via both soil and atmospheric pathways and (3) that interactions among soils, herbivores and eutrophication drive plant nutrient responses at small scales, especially at water‐limited sites.

  15. Cool tadpoles from Arctic environments waste fewer nutrients - high gross growth efficiencies lead to low consumer-mediated nutrient recycling in the North.

    Science.gov (United States)

    Liess, Antonia; Guo, Junwen; Lind, Martin I; Rowe, Owen

    2015-11-01

    Endothermic organisms can adapt to short growing seasons, low temperatures and nutrient limitation by developing high growth rates and high gross growth efficiencies (GGEs). Animals with high GGEs are better at assimilating limiting nutrients and thus should recycle (or lose) fewer nutrients. Longer guts in relation to body mass may facilitate higher GGE under resource limitation. Within the context of ecological stoichiometry theory, this study combines ecology with evolution by relating latitudinal life-history adaptations in GGE, mediated by gut length, to its ecosystem consequences, such as consumer-mediated nutrient recycling. In common garden experiments, we raised Rana temporaria tadpoles from two regions (Arctic/Boreal) under two temperature regimes (18/23 °C) crossed with two food quality treatments (high/low-nitrogen content). We measured tadpole GGEs, total nutrient loss (excretion + egestion) rates and gut length during ontogeny. In order to maintain their elemental balance, tadpoles fed low-nitrogen (N) food had lower N excretion rates and higher total phosphorous (P) loss rates than tadpoles fed high-quality food. In accordance with expectations, Arctic tadpoles had higher GGEs and lower N loss rates than their low-latitude conspecifics, especially when fed low-N food, but only in ambient temperature treatments. Arctic tadpoles also had relatively longer guts than Boreal tadpoles during early development. That temperature and food quality interacted with tadpole region of origin in affecting tadpole GGEs, nutrient loss rates and relative gut length, suggests evolved adaptation to temperature and resource differences. With future climate change, mean annual temperatures will increase. Additionally, species and genotypes will migrate north. This will change the functioning of Boreal and Arctic ecosystems by affecting consumer-mediated nutrient recycling and thus affect nutrient dynamics in general. Our study shows that evolved latitudinal adaption can

  16. Agrobacterium-mediated transformation of lipomyces

    Science.gov (United States)

    Dai, Ziyu; Magnuson, Jon K.; Deng, Shuang; Bruno, Kenneth S.; Culley, David E.

    2018-03-13

    This disclosure provides Agrobacterium-mediated transformation methods for the oil-producing (oleaginous) yeast Lipomyces sp., as well as yeast produced by the method. Such methods utilize Agrobacterium sp. cells that have a T-DNA binary plasmid, wherein the T-DNA binary plasmid comprises a first nucleic acid molecule encoding a first protein and a second nucleic acid molecule encoding a selective marker that permits growth of transformed Lipomyces sp. cells in selective culture media comprising an antibiotic.

  17. Agrobacterium tumefaciens-mediated transformation of biofuel plant ...

    African Journals Online (AJOL)

    Establishment of an efficient transformation system is a prerequisite for genetic improvement of Jatropha curcas, a promising biodiesel feedstock plant, by transgenic approach. In this study an efficient Agrobacterium-mediated transformation protocol using cotyledon explants from J. curcas seeds was developed.

  18. Nutrient Control of Yeast Gametogenesis Is Mediated by TORC1, PKA and Energy Availability.

    Directory of Open Access Journals (Sweden)

    Hilla Weidberg

    2016-06-01

    Full Text Available Cell fate choices are tightly controlled by the interplay between intrinsic and extrinsic signals, and gene regulatory networks. In Saccharomyces cerevisiae, the decision to enter into gametogenesis or sporulation is dictated by mating type and nutrient availability. These signals regulate the expression of the master regulator of gametogenesis, IME1. Here we describe how nutrients control IME1 expression. We find that protein kinase A (PKA and target of rapamycin complex I (TORC1 signalling mediate nutrient regulation of IME1 expression. Inhibiting both pathways is sufficient to induce IME1 expression and complete sporulation in nutrient-rich conditions. Our ability to induce sporulation under nutrient rich conditions allowed us to show that respiration and fermentation are interchangeable energy sources for IME1 transcription. Furthermore, we find that TORC1 can both promote and inhibit gametogenesis. Down-regulation of TORC1 is required to activate IME1. However, complete inactivation of TORC1 inhibits IME1 induction, indicating that an intermediate level of TORC1 signalling is required for entry into sporulation. Finally, we show that the transcriptional repressor Tup1 binds and represses the IME1 promoter when nutrients are ample, but is released from the IME1 promoter when both PKA and TORC1 are inhibited. Collectively our data demonstrate that nutrient control of entry into sporulation is mediated by a combination of energy availability, TORC1 and PKA activities that converge on the IME1 promoter.

  19. A highly efficient method for Agrobacterium mediated transformation ...

    African Journals Online (AJOL)

    An Agrobacterium mediated transformation method was developed for the Thai rice variety, Pathumthani 1 (PT1), and the Indian rice variety, Pokkali (PKL). Various aspects of the transformation method, including callus induction, callus age, Agrobacterium concentration and co-cultivation period were examined, in order to ...

  20. Laccase mediated transformation of 17β-estradiol in soil

    International Nuclear Information System (INIS)

    Singh, Rashmi; Cabrera, Miguel L.; Radcliffe, David E.; Zhang, Hao; Huang, Qingguo

    2015-01-01

    It is known that 17β-estradiol (E2) can be transformed by reactions mediated by some oxidoreductases such as laccase in water. Whether or how such reactions can happen in soil is however unknown although they may significantly impact the environmental fate of E2 that is introduced to soil by land application of animal wastes. We herein studied the reaction of E2 in a model soil mediated by laccase, and found that the reaction behaviors differ significantly from those in water partly because of the dramatic difference in laccase stability. We also examined E2 transformation in soil using 14 C-labeling in combination with soil organic matter extraction and size exclusion chromatography, which indicated that applied 14 C radioactivity was preferably bound to humic acids. The study provides useful information for understanding the environmental fate of E2 and for developing a novel soil remediation strategy via enzyme-enhanced humification reactions. - Highlights: • E2 was effectively transformed in soil through reactions mediated by laccase. • The reaction behaviors in soil differ significantly from those in water. • E2 was preferably bound to the humic acids in soil. • Laccase treatment resulted in changes in the structures of the humic acids. - E2 was effectively transformed in soil by preferably binding to the humic acids through reactions mediated by laccase

  1. Optimization of Agrobacterium-Mediated Transformation in Soybean

    Science.gov (United States)

    Li, Shuxuan; Cong, Yahui; Liu, Yaping; Wang, Tingting; Shuai, Qin; Chen, Nana; Gai, Junyi; Li, Yan

    2017-01-01

    High transformation efficiency is a prerequisite for study of gene function and molecular breeding. Agrobacterium tumefaciens-mediated transformation is a preferred method in many plants. However, the transformation efficiency in soybean is still low. The objective of this study is to optimize Agrobacterium-mediated transformation in soybean by improving the infection efficiency of Agrobacterium and regeneration efficiency of explants. Firstly, four factors affecting Agrobacterium infection efficiency were investigated by estimation of the rate of GUS transient expression in soybean cotyledonary explants, including Agrobacterium concentrations, soybean explants, Agrobacterium suspension medium, and co-cultivation time. The results showed that an infection efficiency of over 96% was achieved by collecting the Agrobacterium at a concentration of OD650 = 0.6, then using an Agrobacterium suspension medium containing 154.2 mg/L dithiothreitol to infect the half-seed cotyledonary explants (from mature seeds imbibed for 1 day), and co-cultured them for 5 days. The Agrobacterium infection efficiencies for soybean varieties Jack Purple and Tianlong 1 were higher than the other six varieties. Secondly, the rates of shoot elongation were compared among six different concentration combinations of gibberellic acid (GA3) and indole-3-acetic acid (IAA). The shoot elongation rate of 34 and 26% was achieved when using the combination of 1.0 mg/L GA3 and 0.1 mg/L IAA for Jack Purple and Tianlong 1, respectively. This rate was higher than the other five concentration combinations of GA3 and IAA, with an 18 and 11% increase over the original laboratory protocol (a combination of 0.5 mg/L GA3 and 0.1 mg/L IAA), respectively. The transformation efficiency was 7 and 10% for Jack Purple and Tianlong 1 at this optimized hormone concentration combination, respectively, which was 2 and 6% higher than the original protocol, respectively. Finally, GUS histochemical staining, PCR, herbicide

  2. Sonication assisted Agrobacterium -mediated transformation of ...

    African Journals Online (AJOL)

    In this study, a protocol was developed to obtain stable lines of the Spring Dendrobium cultivar 'Sanya' via sonication assisted Agrobacterium-mediated transformation (SAAT) of protocorm-like bodies (PLBs). Agrobacterium tumefaciens strain LBA4404 was used with the binary vector AG205 containing the chalcone ...

  3. Studies on Agrobacterium-mediated genetic transformation of ...

    African Journals Online (AJOL)

    SERVER

    2008-03-04

    Mar 4, 2008 ... Sweet potato (Ipomoea batatas) is the sixth most impor- tant crop in the world after ... mediated transformation system does not involve sophis- .... (w/v) agarose gel. .... This work was supported by National Natural Science.

  4. Transformation mechanism of nutrient elements in the process of biochar preparation for returning biochar to soil

    Institute of Scientific and Technical Information of China (English)

    Shuangshuang Tian; Zhongxin Tan; Alfreda Kasiulienė; Ping Ai

    2017-01-01

    Returning biochar to soil is a heavily researched topic because biochar functions well for soil improvement. There is a significant loss of nutrients, which occurs during biochar preparation before biochar is returned to soil, thereby seriously undermining biochar's efficacy. Therefore, the transformation mechanisms of biochar pH, mass, nutrients and metals during pyrolysis under different atmospheres and temperatures were studied such that the best method for biochar preparation could be developed. Several conclusions can be reached: (1) a CO2 atmosphere is better than a N2 atmosphere for biochar preparation, although preparation in a CO2 atmosphere is not a common practice for biochar producers; (2) 350 ℃ is the best temperature for biochar preparation because the amount of nutrient loss is notably low based on the premise of straw transferred into biochar; and (3) transforming mechanisms of pH, N, P and K are also involved in the biochar preparation process.

  5. Seasonal and scale-dependent variability in nutrient- and allelopathy-mediated macrophyte–phytoplankton interactions

    Directory of Open Access Journals (Sweden)

    Lombardo P.

    2013-08-01

    Full Text Available macrophyte–phytoplankton interactions were investigated using a dual laboratory and field approach during a growing season, with responses quantified as changes in biomass. Short-term, close-range interactions in laboratory microcosms always led to mutual exclusion of macrophytes (Elodea canadensis or Ceratophyllum demersum and algae (Raphidocelis subcapitata, Fistulifera pelliculosa or cyanobacteria (Synechococcus leopoliensis, suggesting regulation by positive feedback mechanisms, progressively establishing and reinforcing a “stable state”. Laboratory results suggest that close-range regulation of R. subcapitata and F. pelliculosa by macrophytes was primarily via nutrient (N, P mediation. Sprig-produced allelochemicals may have contributed to inhibition of S. leopoliensis in C. demersum presence, while S. leopoliensis was apparently enhanced by nutrients leaked by subhealthy (discolored leaves; biomass loss E. canadensis. Seasonal changes in algal growth suppression were correlated with sprig growth. Marginal differences in in situ phytoplankton patterns inside and outside monospecific macrophyte stands suggest that the nutrient- and/or allelopathy-mediated close-range mechanisms observed in the laboratory did not propagate at the macrophyte-stand scale. Factors operating at a larger scale (e.g., lake trophic state, extent of submerged vegetation coverage appear to override in situ macrophyte–phytoplankton close-range interactions.

  6. A Novel Phenolic Compound, Chloroxynil, Improves Agrobacterium-Mediated Transient Transformation in Lotus japonicus.

    Science.gov (United States)

    Kimura, Mitsuhiro; Cutler, Sean; Isobe, Sachiko

    2015-01-01

    Agrobacterium-mediated transformation is a commonly used method for plant genetic engineering. However, the limitations of Agrobacterium host-plant interactions and the complexity of plant tissue culture often make the production of transgenic plants difficult. Transformation efficiency in many legume species, including soybean and the common bean, has been reported to be quite low. To improve the transformation procedure in legumes, we screened for chemicals that increase the transformation efficiency of Lotus japonicus, a model legume species. A Chemical library was screened and chemicals that increase in transient transformation efficiency of L. japonicus accession, Miyakojima MG-20 were identified. The transient transformation efficiency was quantified by reporter activity in which an intron-containing reporter gene produces the GUS protein only when the T-DNA is expressed in the plant nuclei. We identified a phenolic compound, chloroxynil, which increased the genetic transformation of L. japonicus by Agrobacterium tumefaciens strain EHA105. Characterization of the mode of chloroxynil action indicated that it enhanced Agrobacterium-mediated transformation through the activation of the Agrobacterium vir gene expression, similar to acetosyringone, a phenolic compound known to improve Agrobacterium-mediated transformation efficiency. Transient transformation efficiency of L. japonicus with 5 μM chloroxynil was 60- and 6- fold higher than that of the control and acetosyringone treatment, respectively. In addition, transgenic L. japonicus lines were successfully generated by 5 μM chloroxynil treatment.Furthermore, we show that chloroxynil improves L. japonicus transformation by Agrobacterium strain GV3101 and rice transformation. Our results demonstrate that chloroxynil significantly improves Agrobacterium tumefaciens-mediated transformation efficiency of various agriculturally important crops.

  7. Genetic transformation of Physcomitrella patens mediated by ...

    African Journals Online (AJOL)

    USER

    2010-06-21

    Jun 21, 2010 ... plants could be obtained after 4 generations of selective culture. PCR analysis showed that gene ... 5'-triphosphate; SDS, sodium dodecyl sulfate; YFP, your favorite protein. ..... affected the transformation rate mediated by Agro- bacterium, this was confirmed and the result showed only the gametophores ...

  8. Transformational leadership and task cohesion in sport: the mediating role of inside sacrifice.

    Science.gov (United States)

    Cronin, Lorcan Donal; Arthur, Calum Alexander; Hardy, James; Callow, Nichola

    2015-02-01

    In this cross-sectional study, we examined a mediational model whereby transformational leadership is related to task cohesion via sacrifice. Participants were 381 American (Mage = 19.87 years, SD = 1.41) Division I university athletes (188 males, 193 females) who competed in a variety of sports. Participants completed measures of coach transformational leadership, personal and teammate inside sacrifice, and task cohesion. After conducting multilevel mediation analysis, we found that both personal and teammate inside sacrifice significantly mediated the relationships between transformational leadership behaviors and task cohesion. However, there were differential patterns of these relationships for male and female athletes. Interpretation of the results highlights that coaches should endeavor to display transformational leadership behaviors as they are related to personal and teammate inside sacrifices and task cohesion.

  9. Improvement of Agrobacterium-mediated transformation and rooting of black cherry

    Science.gov (United States)

    Ying Wang; Paula M. Pijut

    2014-01-01

    An improved protocol for Agrobacterium-mediated transformation of an elite, mature black cherry genotype was developed. To increase transformation efficiency, vacuum infiltration, sonication, and a combination of the two treatments were applied during the cocultivation of leaf explants with Agrobacterium tumefaciens strain EHA105...

  10. MOTOR 2.0: module for transformation of organic matter and nutrients in soil; user guide and technical documentation

    NARCIS (Netherlands)

    Assinck, F.B.T.; Rappoldt, C.

    2004-01-01

    MOTOR is a MOdule describing the Transformation of Organic matteR and nutrients in soil. It calculates the transformations between pools of organic matter and mineral nitrogen in soil. Pools are characterized by a carbon and nitrogen content and can be labelled. MOTOR is a flexible tool because the

  11. Escherichia coli can be transformed by a liposome-mediated lipofection method.

    Science.gov (United States)

    Kawata, Yoshikazu; Yano, Shin-ichi; Kojima, Hiroyuki

    2003-05-01

    Transformation of Escherichia coli is a basic technique for genetic engineering. We used a liposome-mediated lipofection method to transform electrocompetent E. coli cells which has little natural competence of foreign DNA without electroporation treatment, and got transformants with simple and quick treatment by a plasmid or a transposon and transposase complex.

  12. Biolistic- and Agrobacterium-mediated transformation protocols for wheat.

    Science.gov (United States)

    Tamás-Nyitrai, Cecília; Jones, Huw D; Tamás, László

    2012-01-01

    After rice, wheat is considered to be the most important world food crop, and the demand for high-quality wheat flour is increasing. Although there are no GM varieties currently grown, wheat is an important target for biotechnology, and we anticipate that GM wheat will be commercially available in 10-15 years. In this chapter, we summarize the main features and challenges of wheat transformation and then describe detailed protocols for the production of transgenic wheat plants both by biolistic and Agrobacterium-mediated DNA-delivery. Although these methods are used mainly for bread wheat (Triticum aestivum L.), they can also be successfully applied, with slight modifications, to tetraploid durum wheat (T. turgidum L. var. durum). The appropriate size and developmental stage of explants (immature embryo-derived scutella), the conditions to produce embryogenic callus tissues, and the methods to regenerate transgenic plants under increasing selection pressure are provided in the protocol. To illustrate the application of herbicide selection system, we have chosen to describe the use of the plasmid pAHC25 for biolistic transformation, while for Agrobacterium-mediated transformation the binary vector pAL156 (incorporating both the bar gene and the uidA gene) has been chosen. Beside the step-by-step methodology for obtaining stably transformed and normal fertile plants, procedures for screening and testing transgenic wheat plants are also discussed.

  13. Transformational leadership, empowerment, and job satisfaction: the mediating role of employee empowerment.

    Science.gov (United States)

    Choi, Sang Long; Goh, Chin Fei; Adam, Muhammad Badrull Hisyam; Tan, Owee Kowang

    2016-12-01

    Recent studies have revealed that nursing staff turnover remains a major problem in emerging economies. In particular, nursing staff turnover in Malaysia remains high due to a lack of job satisfaction. Despite a shortage of healthcare staff, the Malaysian government plans to create 181 000 new healthcare jobs by 2020 through the Economic Transformation Programme (ETP). This study investigated the causal relationships among perceived transformational leadership, empowerment, and job satisfaction among nurses and medical assistants in two selected large private and public hospitals in Malaysia. This study also explored the mediating effect of empowerment between transformational leadership and job satisfaction. This study used a survey to collect data from 200 nursing staff, i.e., nurses and medical assistants, employed by a large private hospital and a public hospital in Malaysia. Respondents were asked to answer 5-point Likert scale questions regarding transformational leadership, employee empowerment, and job satisfaction. Partial least squares-structural equation modeling (PLS-SEM) was used to analyze the measurement models and to estimate parameters in a path model. Statistical analysis was performed to examine whether empowerment mediated the relationship between transformational leadership and job satisfaction. This analysis showed that empowerment mediated the effect of transformational leadership on the job satisfaction in nursing staff. Employee empowerment not only is indispensable for enhancing job satisfaction but also mediates the relationship between transformational leadership and job satisfaction among nursing staff. The results of this research contribute to the literature on job satisfaction in healthcare industries by enhancing the understanding of the influences of empowerment and transformational leadership on job satisfaction among nursing staff. This study offers important policy insight for healthcare managers who seek to increase job

  14. Is VIP1 important for Agrobacterium-mediated transformation?

    Science.gov (United States)

    Shi, Yong; Lee, Lan-Ying; Gelvin, Stanton B

    2014-09-01

    Agrobacterium genetically transforms plants by transferring and integrating T-(transferred) DNA into the host genome. This process requires both Agrobacterium and host proteins. VirE2 interacting protein 1 (VIP1), an Arabidopsis bZIP protein, has been suggested to mediate transformation through interaction with and targeting of VirE2 to nuclei. We examined the susceptibility of Arabidopsis vip1 mutant and VIP1 overexpressing plants to transformation by numerous Agrobacterium strains. In no instance could we detect altered transformation susceptibility. We also used confocal microscopy to examine the subcellular localization of Venus-tagged VirE2 or Venus-tagged VIP1, in the presence or absence of the other untagged protein, in different plant cell systems. We found that VIP1-Venus localized in both the cytoplasm and the nucleus of Arabidopsis roots, agroinfiltrated Nicotiana benthamiana leaves, Arabidopsis mesophyll protoplasts and tobacco BY-2 protoplasts, regardless of whether VirE2 was co-expressed. VirE2 localized exclusively to the cytoplasm of tobacco and Arabidopsis protoplasts, whether in the absence or presence of VIP1 overexpression. In transgenic Arabidopsis plants and agroinfiltrated N. benthamina leaves we could occasionally detect small aggregates of the Venus signal in nuclei, but these were likely to be imagining artifacts. The vast majority of VirE2 remained in the cytoplasm. We conclude that VIP1 is not important for Agrobacterium-mediated transformation or VirE2 subcellular localization. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  15. Regulatory focus and burnout in nurses: The mediating effect of perception of transformational leadership.

    Science.gov (United States)

    Shi, Rui; Zhang, Shilei; Xu, Hang; Liu, Xufeng; Miao, Danmin

    2015-12-01

    This correlation study investigated the relationship between nurses' regulatory focus and burnout, as mediated by their perceptions of transformational leadership, using a cross-sectional research design with anonymous questionnaires. In July-August 2012, data were collected from 378 nurses from three hospitals in Shaanxi Province, China, using self-report questionnaires for measuring the nurses' regulatory focus, their level of burnout and their perception of whether the leadership of their supervisor was transformational. Structural equation modelling and bootstrapping procedures were used to identify the mediating effect of their perceptions of transformational leadership. The results supported our hypothesized model. The type of regulatory focus emerged as a significant predictor of burnout. Having a perception of transformational leadership partially mediated the relationship between regulatory focus and burnout. Having a promotion focus reduced burnout when the participants perceived transformational leadership, whereas having a prevention focus exhibited the opposite pattern. The mediating effect of the perception of transformational leadership suggests that a promotion focus may help diminish burnout, directly and indirectly. Nurse managers must be aware of the role of a regulatory focus and cultivate promotion focus in their followers. © 2014 Wiley Publishing Asia Pty Ltd.

  16. A comparison study of Agrobacterium-mediated transformation methods for root-specific promoter analysis in soybean.

    Science.gov (United States)

    Li, Caifeng; Zhang, Haiyan; Wang, Xiurong; Liao, Hong

    2014-11-01

    Both in vitro and in vivo hairy root transformation systems could not replace whole plant transformation for promoter analysis of root-specific and low-P induced genes in soybean. An efficient genetic transformation system is crucial for promoter analysis in plants. Agrobacterium-mediated transformation is the most popular method to produce transgenic hairy roots or plants. In the present study, first, we compared the two different Agrobacterium rhizogenes-mediated hairy root transformation methods using either constitutive CaMV35S or the promoters of root-preferential genes, GmEXPB2 and GmPAP21, in soybean, and found the efficiency of in vitro hairy root transformation was significantly higher than that of in vivo transformation. We compared Agrobacterium rhizogenes-mediated hairy root and Agrobacterium tumefaciens-mediated whole plant transformation systems. The results showed that low-phosphorous (P) inducible GmEXPB2 and GmPAP21 promoters could not induce the increased expression of the GUS reporter gene under low P stress in both in vivo and in vitro transgenic hairy roots. Conversely, GUS activity of GmPAP21 promoter was significantly higher at low P than high P in whole plant transformation. Therefore, both in vitro and in vivo hairy root transformation systems could not replace whole plant transformation for promoter analysis of root-specific and low-P induced genes in soybean.

  17. Transformational leadership and project success : The mediating role of team-building

    NARCIS (Netherlands)

    Aga, Deribe Assefa; Noorderhaven, Niels; Vallejo, Bertha

    2016-01-01

    Although the effect of transformational leadership on project success is empirically supported, less is known about the mechanisms that explain this effect. To address this issue, we propose the mediating role of team-building as a possible explanation of the relationship between transformational

  18. Agrobacterium-mediated genetic transformation of Fraxinus americana hypocotyls

    Science.gov (United States)

    Kaitlin J. Palla; Paula M. Pijut

    2015-01-01

    An Agrobacterium tumefaciens-mediated genetic transformation system was successfully developed for white ash (Fraxinus americana) using hypocotyls as the initial explants. Hypocotyls isolated from mature embryos germinated on Murashige and Skoog (MS) medium supplemented with 22.2 µM 6-benzyladenine (BA) and 0.5 µM...

  19. Does organizational culture mediate the relationship between transformational leadership and organizational commitment

    Directory of Open Access Journals (Sweden)

    Nor Hazana Abdullah

    2015-02-01

    Full Text Available To date, the relationships among organizational culture, transformational leadership and organizational commitment have been empirically investigated. However, majority of these studies have been focusing on direct effects of either transformational leadership or organizational culture on organizational commitment in large organizations. This approach might not only hinder our understanding on real predictors of organizational commitment but also obscure the presence of spurious relationships. Therefore, this study aims to determine the mediating effect of organizational culture on the relationship between transformational leadership and organizational commitment among small business employees. An explanatory research design was used with cross-sectional survey as data collection technique. Once the composite reliability, construct, and convergent and discriminant validity of the measurement constructs were established, a Partial Least Square Structural Equation Modeling (PLS-SEM was run to analyze the structural model and the mediating effect of organizational culture. The results showed that organizational culture mediates the effect of transformational leadership on organizational commitment among small business. This study cautions the generalization of findings obtained from large organizations to be extended to small organizations.

  20. Consistent nutrient storage and supply mediated by diverse fish communities in coral reef ecosystems.

    Science.gov (United States)

    Allgeier, Jacob E; Layman, Craig A; Mumby, Peter J; Rosemond, Amy D

    2014-08-01

    Corals thrive in low nutrient environments and the conservation of these globally imperiled ecosystems is largely dependent on mitigating the effects of anthropogenic nutrient enrichment. However, to better understand the implications of anthropogenic nutrients requires a heightened understanding of baseline nutrient dynamics within these ecosystems. Here, we provide a novel perspective on coral reef nutrient dynamics by examining the role of fish communities in the supply and storage of nitrogen (N) and phosphorus (P). We quantified fish-mediated nutrient storage and supply for 144 species and modeled these data onto 172 fish communities (71 729 individual fish), in four types of coral reefs, as well as seagrass and mangrove ecosystems, throughout the Northern Antilles. Fish communities supplied and stored large quantities of nutrients, with rates varying among ecosystem types. The size structure and diversity of the fish communities best predicted N and P supply and storage and N : P supply, suggesting that alterations to fish communities (e.g., overfishing) will have important implications for nutrient dynamics in these systems. The stoichiometric ratio (N : P) for storage in fish mass (~8 : 1) and supply (~20 : 1) was notably consistent across the four coral reef types (but not seagrass or mangrove ecosystems). Published nutrient enrichment studies on corals show that deviations from this N : P supply ratio may be associated with poor coral fitness, providing qualitative support for the hypothesis that corals and their symbionts may be adapted to specific ratios of nutrient supply. Consumer nutrient stoichiometry provides a baseline from which to better understand nutrient dynamics in coral reef and other coastal ecosystems, information that is greatly needed if we are to implement more effective measures to ensure the future health of the world's oceans. © 2014 John Wiley & Sons Ltd.

  1. Transient plant transformation mediated by Agrobacterium tumefaciens: Principles, methods and applications.

    Science.gov (United States)

    Krenek, Pavel; Samajova, Olga; Luptovciak, Ivan; Doskocilova, Anna; Komis, George; Samaj, Jozef

    2015-11-01

    Agrobacterium tumefaciens is widely used as a versatile tool for development of stably transformed model plants and crops. However, the development of Agrobacterium based transient plant transformation methods attracted substantial attention in recent years. Transient transformation methods offer several applications advancing stable transformations such as rapid and scalable recombinant protein production and in planta functional genomics studies. Herein, we highlight Agrobacterium and plant genetics factors affecting transfer of T-DNA from Agrobacterium into the plant cell nucleus and subsequent transient transgene expression. We also review recent methods concerning Agrobacterium mediated transient transformation of model plants and crops and outline key physical, physiological and genetic factors leading to their successful establishment. Of interest are especially Agrobacterium based reverse genetics studies in economically important crops relying on use of RNA interference (RNAi) or virus-induced gene silencing (VIGS) technology. The applications of Agrobacterium based transient plant transformation technology in biotech industry are presented in thorough detail. These involve production of recombinant proteins (plantibodies, vaccines and therapeutics) and effectoromics-assisted breeding of late blight resistance in potato. In addition, we also discuss biotechnological potential of recombinant GFP technology and present own examples of successful Agrobacterium mediated transient plant transformations. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Agrobacterium rhizogenes-Mediated Transformation – a Non-GMO Platform For Developing Compact Ornamentals

    DEFF Research Database (Denmark)

    Lütken, Henrik Vlk; Hegelund, Josefine Nymark; Lauridsen, Uffe Bjerre

    of these compounds are potentially harmful to both the environment and human health. A new non-GMO molecular breeding strategy, as opposed to both the application of chemical growth retardants and conventional molecular breeding is Agrobacterium rhizogenes-mediated transformation. In this method, the soil borne...... for transformations, plants produced via this approach are not considered as GMOs in the European Union and Japan. We have developed an optimised Agrobacterium rhizogenes-mediated transformation platform useful for a wide range of ornamentals. Kalanchoë was the starting point and the effect of the rol-genes has now...

  3. Okadaic acid and trifluoperazine enhance Agrobacterium-mediated transformation in eastern white pine.

    Science.gov (United States)

    Tang, Wei; Lin, Jinxing; Newton, Ronald J

    2007-05-01

    Mature zygotic embryos of recalcitrant Christmas tree species eastern white pine (Pinus strobus L.) were used as explants for Agrobacterium tumefaciens strain GV3101-mediated transformation using the uidA (beta-Glucuronidase) gene as a reporter. Influence of the time of sonication and the concentrations of protein phosphatase inhibitor (okadaic acid) and kinase inhibitor (trifluoperazine) on Agrobacterium-mediated transformation have been evaluated. A high transformation frequency was obtained after embryos were sonicated for 45-50 s, or treated with 1.5-2.0 microM okadaic acid or treated with 100-200 microM trifluoperazine, respectively. Protein phosphatase and kinase inhibitors enhance Agrobacterium-mediated transformation in eastern white pine. A 2-3.5-fold higher rate of hygromycin-resistant callus was obtained with an addition of 2 microM okadaic acid or 150 microM trifluoperazine or sonicated embryos for 45 s. Stable integration of the uidA gene in the plant genome of eastern white pine was confirmed by polymerase chain reaction (PCR), Southern and northern blot analyses. These results demonstrated that a stable and enhanced transformation system has been established in eastern white pine and this system would provide an opportunity to transfer economically important genes into this Christmas tree species.

  4. Agrobacterium- and Biolistic-Mediated Transformation of Maize B104 Inbred.

    Science.gov (United States)

    Raji, Jennifer A; Frame, Bronwyn; Little, Daniel; Santoso, Tri Joko; Wang, Kan

    2018-01-01

    Genetic transformation of maize inbred genotypes remains non-routine for many laboratories due to variations in cell competency to induce embryogenic callus, as well as the cell's ability to receive and incorporate transgenes into the genome. This chapter describes two transformation protocols using Agrobacterium- and biolistic-mediated methods for gene delivery. Immature zygotic embryos of maize inbred B104, excised from ears harvested 10-14 days post pollination, are used as starting explant material. Disarmed Agrobacterium strains harboring standard binary vectors and the biolistic gun system Bio-Rad PDS-1000/He are used as gene delivery systems. The herbicide resistant bar gene and selection agent bialaphos are used for identifying putative transgenic type I callus events. Using the step-by-step protocols described here, average transformation frequencies (number of bialaphos resistant T 0 callus events per 100 explants infected or bombarded) of 4% and 8% can be achieved using the Agrobacterium- and biolistic-mediated methods, respectively. An estimated duration of 16-21 weeks is needed using either protocol from the start of transformation experiments to obtaining putative transgenic plantlets with established roots. In addition to laboratory in vitro procedures, detailed greenhouse protocols for producing immature ears as transformation starting material and caring for transgenic plants for seed production are also described.

  5. Catalytic Organic Transformations Mediated by Actinide Complexes

    Directory of Open Access Journals (Sweden)

    Isabell S. R. Karmel

    2015-10-01

    Full Text Available This review article presents the development of organoactinides and actinide coordination complexes as catalysts for homogeneous organic transformations. This chapter introduces the basic principles of actinide catalysis and deals with the historic development of actinide complexes in catalytic processes. The application of organoactinides in homogeneous catalysis is exemplified in the hydroelementation reactions, such as the hydroamination, hydrosilylation, hydroalkoxylation and hydrothiolation of alkynes. Additionally, the use of actinide coordination complexes for the catalytic polymerization of α-olefins and the ring opening polymerization of cyclic esters is presented. The last part of this review article highlights novel catalytic transformations mediated by actinide compounds and gives an outlook to the further potential of this field.

  6. Optimization of Agrobacterium tumefaciens-Mediated Transformation Systems in Tea Plant (Camellia sinensis

    Directory of Open Access Journals (Sweden)

    Qianru LV

    2017-05-01

    Full Text Available In this study, an efficient plant regeneration protocol in vitro and transformation by Agrobacterium-mediated method of Camellia sinensis was achieved, which would lay the foundation for genetic improvement of tea plant by genetic engineering technology. The cotyledon callus of C. sinensis were used as the receptors for transformation by Agrobacterium tumefaciens EHA105 containing PS1aG-3. Some factors which affected the result of Agrobacterium-mediated transformation of C. sinensis were studied on the basis of GUS transient expression system. The optimum system of Agrobacterium-mediated transformation was that the cotyledon callus were pre-cultured for 3 d, and then infected by EHA105 for 15 min followed by 3 d co-culture in the dark on the YEB medium containing 150 µmol⋅L−1 acetosyringone (AS. The transient expression rate of GUS gene was 62.6%. After being delayed selective culture for 3 d, infected callus were transferred into the differentiation medium and the root induction medium both of which were supplemented with 100 mg⋅L−1 spectinomycin, and then resistant seedlings of C. sinensis were obtained. The conversion rate was 3.6%.

  7. Role of bacterial virulence proteins in Agrobacterium-mediated transformation of Aspergillus awamori

    NARCIS (Netherlands)

    Michielse, C.B.; Ram, A.F.J.; Hooykaas, P.J.J.; Hondel, C.A.M.J.J. van den

    2004-01-01

    The Agrobacterium-mediated transformation of Aspergillus awamori was optimized using defined co-cultivation conditions, which resulted in a reproducible and efficient transformation system. Optimal co-cultivation conditions were used to study the role of Agrobacterium tumefaciens virulence proteins

  8. Microbial enzyme activity, nutrient uptake and nutrient limitation in forested streams

    Science.gov (United States)

    Brian H. Hill; Frank H. McCormick; Bret C. Harvey; Sherri L. Johnson; Melvin L. Warren; Colleen M. Elonen

    2010-01-01

    The flow of organic matter and nutrients from catchments into the streams draining them and the biogeochemical transformations of organic matter and nutrients along flow paths are fundamental processes instreams (Hynes,1975; Fisher, Sponseller & Heffernan, 2004). Microbial biofilms are often the primary interface for organic matter and nutrient uptake and...

  9. An improved Agrobacterium-mediated transformation of recalcitrant indica rice (Oryza sativa L.) cultivars.

    Science.gov (United States)

    Shri, Manju; Rai, Arti; Verma, Pankaj Kumar; Misra, Prashant; Dubey, Sonali; Kumar, Smita; Verma, Sikha; Gautam, Neelam; Tripathi, Rudra Deo; Trivedi, Prabodh Kumar; Chakrabarty, Debasis

    2013-04-01

    Agrobacterium-mediated transformation of indica rice varieties has been quite difficult as these are recalcitrant to in vitro responses. In the present study, we established a high-efficiency Agrobacterium tumefaciens-mediated transformation system of rice (Oryza sativa L. ssp. indica) cv. IR-64, Lalat, and IET-4786. Agrobacterium strain EHA-101 harboring binary vector pIG121-Hm, containing a gene encoding for β-glucuronidase (GUS) and hygromycin resistance, was used in the transformation experiments. Manipulation of different concentrations of acetosyringone, days of co-culture period, bacterial suspension of different optical densities (ODs), and the concentrations of L-cysteine in liquid followed by solid co-culture medium was done for establishing the protocol. Among the different co-culture periods, 5 days of co-culture with bacterial cells (OD600 nm = 0.5-0.8) promoted the highest frequency of transformation (83.04 %) in medium containing L-cysteine (400 mg l(-1)). Putative transformed plants were analyzed for the presence of a transgene through genomic PCR and GUS histochemical analyses. Our results also suggest that different cultural conditions and the addition of L-cysteine in the co-culture medium improve the Agrobacterium-mediated transformation frequencies from an average of 12.82 % to 33.33 % in different indica rice cultivars.

  10. Efficient Transformation of Oil Palm Protoplasts by PEG-Mediated Transfection and DNA Microinjection

    Science.gov (United States)

    Masani, Mat Yunus Abdul; Noll, Gundula A.; Parveez, Ghulam Kadir Ahmad; Sambanthamurthi, Ravigadevi; Prüfer, Dirk

    2014-01-01

    Background Genetic engineering remains a major challenge in oil palm (Elaeis guineensis) because particle bombardment and Agrobacterium-mediated transformation are laborious and/or inefficient in this species, often producing chimeric plants and escapes. Protoplasts are beneficial as a starting material for genetic engineering because they are totipotent, and chimeras are avoided by regenerating transgenic plants from single cells. Novel approaches for the transformation of oil palm protoplasts could therefore offer a new and efficient strategy for the development of transgenic oil palm plants. Methodology/Principal Findings We recently achieved the regeneration of healthy and fertile oil palms from protoplasts. Therefore, we focused on the development of a reliable PEG-mediated transformation protocol for oil palm protoplasts by establishing and validating optimal heat shock conditions, concentrations of DNA, PEG and magnesium chloride, and the transfection procedure. We also investigated the transformation of oil palm protoplasts by DNA microinjection and successfully regenerated transgenic microcalli expressing green fluorescent protein as a visible marker to determine the efficiency of transformation. Conclusions/Significance We have established the first successful protocols for the transformation of oil palm protoplasts by PEG-mediated transfection and DNA microinjection. These novel protocols allow the rapid and efficient generation of non-chimeric transgenic callus and represent a significant milestone in the use of protoplasts as a starting material for the development of genetically-engineered oil palm plants. PMID:24821306

  11. The Impact of Transformational Leadership on Employee Sustainable Performance: The Mediating Role of Organizational Citizenship Behavior

    Directory of Open Access Journals (Sweden)

    Weiping Jiang

    2017-09-01

    Full Text Available Transformational leadership has drawn extensive attention in management research. In this field, the influence of transformational leadership on employee performance is an important branch. Recent research indicates that organizational citizenship behavior plays a mediating role between transformational leadership and employee performance. However, some of these findings contradict each other. Given the background where greater attention is being paid to transformational leadership in the construction industry, this research aims to find the degree of the influence of transformational leadership on employee sustainable performance, as well as the mediating role of organizational citizenship behavior. A total of 389 questionnaires were collected from contractors and analyzed via structural equation modeling. The findings reveal that employee sustainable performance is positively influenced by transformational leadership. In addition, more than half of that influence is mediated by their organizational citizenship behavior. These findings remind project managers of the need to pay close attention to transformational leadership, to cultivate organizational citizenship behavior, and thereby to eventually improve employee’s sustainable performance.

  12. Optimization of agrobacterium tumefaciens mediated transformation in eucalyptus camaldulensis

    International Nuclear Information System (INIS)

    Ahad, A.; Maqbool, A.; Malik, K.A.

    2014-01-01

    This study was conducted to optimize Agrobacterium tumefaciens mediated transformation for Eucalyptus camaldulensis. Transformation was done by using LBA4404 containing binary plasmid pGA482 with uidA (Gus) gene under CamV35S promoter and nptII gene under nos promoter. For optimization, different explants (Cotyledonary leaves, plantlet leaves and hypocotyls of young In vitro plants and calli) with and without preculture were infected with a range of optical densities (O.D.600nm=0.3-0.6). Effect of different concentrations of Acetosyringone, infection time and co-cultivation time on transformation efficiency was evaluated. Confirmation of transformation was done through GUS histochemical staining and through PCR. Callogenesis and regeneration was found fast on MS medium containing 0.5 mg/L NAA and 1.5 mg/L BAP. Highest transformation efficiency was obtained with bacterial suspension of O.D.600nm = 0.5 for non-precultured explants and O.D.600nm=0.3 for precultured explants. (author)

  13. Green Transformational Leadership and Green Performance: The Mediation Effects of Green Mindfulness and Green Self-Efficacy

    Directory of Open Access Journals (Sweden)

    Yu-Shan Chen

    2014-09-01

    Full Text Available No prior literature explores the influence of green transformational leadership on green performance, thus, this study develops a novel research framework to fill the research gap. This study investigates the influence of green transformational leadership on green performance and discusses the mediation effects of green mindfulness and green self-efficacy by means of structural equation modeling (SEM. The results indicate that green transformational leadership positively influences green mindfulness, green self-efficacy, and green performance. Moreover, this study demonstrates that the positive relationship between green transformational leadership and green performance is partially mediated by the two mediators: green mindfulness and green self-efficacy. It means that green transformational leadership can not only directly affect green performance positively but also indirectly affect it positively through green mindfulness and green self-efficacy. Therefore, firms need to raise their green transformational leadership, green mindfulness, and green self-efficacy to increase their green performance.

  14. Study on rice transformation mediated by low energy ion beam implantation

    International Nuclear Information System (INIS)

    Li Hong; Wu Lifang; Yu Zengliang

    2001-01-01

    Delivery of foreign DNA into rice via ion beam was first reported in 1994. In recent years we have aimed to set up efficient transformation system mediated by low energy ion beam. The factors that influence the transformation including type of ion, parameters of ion energy, dose and dose rate, plant genotype, composition of media, concentration of hormones and antibiotics were carefully investigated. Treated with 25ke V Ar + , the transformation efficiencies of the mature embryos of rice variety 02428, Hua pei94-jian-09 and Minghui63 reached 11%, 11.4% and 7.1% measured by produced antibiotic resistant callus and l.52%, 1.87% and l.13% measured by regenerated plants respectively. PCR detection and Southern blot analysis showed that GUS report gene had inserted in rice genome. Low energy ion beam mediated gene transfer will be extended to other cereal recalcitrant to Agrobacterium tumefaciens as soon as methodological parameters were optimized. (authors)

  15. Eddy Mediated Nutrient Pattern in the North Eastern Arabian Sea

    Science.gov (United States)

    Thachaparambil, M.; Moolakkal Antony, R.; B R, S.; V N, S.; N, C.; M, S.

    2016-02-01

    A Cold Core Eddy (CCE) mediated nutrient pattern in the North Eastern Arabian Sea (NEAS) is explained based on in situ measurments during March 2013 onboard FORV Sagar Sampada which was not reported earlier in the area. Samples for physical, chemical and biological parameters were collected in 5 stations along the diameter of the eddy and following standard protocols. The core of the CCE is identified at 21°20.38'N; 66°30.68'E with a diameter of 120Km. Earlier studies explaining the process and the forcing mechanism of the particular eddy records that, the eddy is short term (1-3 months) and is regular during the season. Surface waters were well oxygenated (>4.8 ml L-1) in the core. Surface value of nutrients viz., Nitrate, Nitrite, Silicate and phosphate in the core regions was 0.9µM, 0.01 µM, 0.5 µM and 0.7 µM respectively indicating upwelling in the core. Spring intermonsoon (SIM) is generally termed as a transition period between the active winter and summer seasons and as per earlier studies, high biological production and the regularly occurring Noctilica bloom is supported by the nutrient loading due to convective mixing during winter as well as regenerated production. However, present observations shows that, nutrient pumping due to the upwelling associated with the CCE also contributes for sustaining high biological production and are evident in the Chl a and mesozooplankton biovolume which records values of 4.35mg/m3 and 1.09ml/m3 respectively in the core. An intense Noctiluca blooms observed in the western flank of the eddy (Chl a 13.25 mg/m3; cell density 5.8×106 cells/litre), where Nitrate concentration records 1.04µM explains the role of such mesoscale processes in the sustenance of the HAB events. While eastern flank of the CCE showed typical open ocean condition of the season showing Nitrate 0.08µM; Chl a 0.23mg/m3; and phytoplankton cell density as 421 cells/litre. Keywords: Cold core eddy, nutrients, NEAS, SIM, biological production

  16. Transformational Leaders and Work Performance: The Mediating Roles of Identification and Self-efficacy

    Directory of Open Access Journals (Sweden)

    Flávia Cavazotte

    2013-10-01

    Full Text Available In this study we investigate the connections between transformational leadership and subordinate formal and contextual performance among Brazilian employees. We also proposed and tested two mediating processesthrough which transformational leaders would enhance the performance of their staff: stronger follower identification with the leader and efficacy beliefs. These relations were tested with a sample of 107 managers from a multinational company that operates in the financial sector. The proposed structural equation model was assessed with Partial Least Squares (PLS techniques. The results suggest that perceived transformational leadership is associated with higher levels of task performance and helping behaviors. Moreover, the proposed mediating processes were empirically supported. We discuss implications for theory and practice.

  17. Advances in Agrobacterium tumefaciens-mediated genetic transformation of graminaceous crops.

    Science.gov (United States)

    Singh, Roshan Kumar; Prasad, Manoj

    2016-05-01

    Steady increase in global population poses several challenges to plant science research, including demand for increased crop productivity, grain yield, nutritional quality and improved tolerance to different environmental factors. Transgene-based approaches are promising to address these challenges by transferring potential candidate genes to host organisms through different strategies. Agrobacterium-mediated gene transfer is one such strategy which is well known for enabling efficient gene transfer in both monocot and dicots. Due to its versatility, this technique underwent several advancements including development of improved in vitro plant regeneration system, co-cultivation and selection methods, and use of hyper-virulent strains of Agrobacterium tumefaciens harbouring super-binary vectors. The efficiency of this method has also been enhanced by the use of acetosyringone to induce the activity of vir genes, silver nitrate to reduce the Agrobacterium-induced necrosis and cysteine to avoid callus browning during co-cultivation. In the last two decades, extensive efforts have been invested towards achieving efficient Agrobacterium-mediated transformation in cereals. Though high-efficiency transformation systems have been developed for rice and maize, comparatively lesser progress has been reported in other graminaceous crops. In this context, the present review discusses the progress made in Agrobacterium-mediated transformation system in rice, maize, wheat, barley, sorghum, sugarcane, Brachypodium, millets, bioenergy and forage and turf grasses. In addition, it also provides an overview of the genes that have been recently transferred to these graminaceous crops using Agrobacterium, bottlenecks in this technique and future possibilities for crop improvement.

  18. Nutrient transport and transformation beneath an infiltration basin

    Science.gov (United States)

    Sumner, D.M.; Rolston, D.E.; Bradner, L.A.

    1998-01-01

    Field experiments were conducted to examine nutrient transport and transformation beneath an infiltration basin used for the disposal of treated wastewater. Removal of nitrogen from infiltrating water by denitrification was negligible beneath the basin, probably because of subsurface aeration as a result of daily interruptions in basin loading. Retention of organic nitrogen in the upper 4.6 m of the unsaturated zone (water table depth of approximately 11 m) during basin loading resulted in concentrations of nitrate as much as 10 times that of the applied treated wastewater, following basin 'rest' periods of several weeks, which allowed time for mineralization and nitrification. Approximately 90% of the phosphorus in treated wastewater was removed within the upper 4.6 m of the subsurface, primarily by adsorption reactions, with abundant iron and aluminum oxyhydroxides occurring as soil coatings. A reduction in the flow rate of infiltrating water arriving at the water table may explain the accumulation of relatively coarse (>0.45 ??m), organic forms of nitrogen and phosphorus slightly below the water table. Mineralization and nitrification reactions at this second location of organic nitrogen accumulation contributed to concentrations of nitrate as much as three times that of the applied treated wastewater. Phosphorus, which accumulated below the water table, was immobilized by adsorption or precipitation reactions during basin rest periods.Field experiments were conducted to examine nutrient transport and transformation beneath an infiltration basin used for the disposal of treated wastewater. Removal of nitrogen from infiltrating water by denitrification was negligible beneath the basin, probably because of subsurface aeration as a result of daily interruptions in basin loading. Retention of organic nitrogen in the upper 4.6 m of the unsaturated zone (water table depth of approximately 11 m) during basin loading resulted in concentrations of nitrate as much as 10

  19. Agrobacterium-mediated transformation: state of the art and future prospect

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Great progress has been made in recent years in studies on the mechanism of Agrobacterium-mediated transformation and its application. Many details of the key molecular events within the bacterial cells involved in T-DNA transfer have been elucidated, and it is notable that some plant factors which were elusive before are purified and characterized. Vast kinds of species, which were either recalcitrant to or not included in the host range of Agrobacterium, can now be transformed by this bacterium, and they include the very important cereal species, gymnosperms, yeast and many filamentous fungi. The simple in vivo transformation of tissue in intact plants and the "agrolistic" methods to transform recalcitrant plants are the two novel technical achievements. Combined with other powerful techniques such as bacterial artificial chromosome, very large DNA fragment can be transformed into the plant genome by Agrobacterium. Further studies will elucidate more plant-encoded factors involved in T-DNA transformation and there is a need to develop more powerful Agrobacterium-based transformation systems to meet different needs in basic research and crop improvement practice.

  20. Agrobacterium-mediated transformation of finger millet (Eleusine coracana (L.) Gaertn.) using shoot apex explants.

    Science.gov (United States)

    Ceasar, S Antony; Ignacimuthu, S

    2011-09-01

    A new Agrobacterium-mediated transformation system was developed for finger millet using shoot apex explants. The Agrobacterium strain LBA4404 harboring binary vector pCAMBIA1301, which contained hygromycin phosphotransferase (hptII) as selectable marker gene and β-glucuronidase (GUS) as reporter gene, was used for optimization of transformation conditions. Two finger millet genotypes, GPU 45 and CO 14, were used in this study. The optimal conditions for the Agrobacterium-mediated transformation of finger millet were found to be the co-cultivation of explants obtained on the 16th day after callus induction (DACI), exposure of explants for 30 min to agrobacterial inoculum and 3 days of co-cultivation on filter paper placed on medium supplemented with 100 μM acetosyringone (AS). Addition of 100 μM L: -cysteine in the selection medium enhanced the frequency of transformation and transgenic plant recovery. Both finger millet genotypes were transformed by Agrobacterium. A frequency of 19% transient expression with 3.8% stable transformation was achieved in genotype GPU 45 using optimal conditions. Five stably transformed plants were fully characterized by Southern blot analysis. A segregation analysis was also performed in four R(1) progenies, which showed normal Mendelian pattern of transgene segregation. The inheritance of transgenes in R(1) progenies was also confirmed by Southern blot analysis. This is the first report on Agrobacterium-mediated transformation of finger millet. This study underpins the introduction of numerous agronomically important genes into the genome of finger millet in the future.

  1. AgarTrap: a simplified Agrobacterium-mediated transformation method for sporelings of the liverwort Marchantia polymorpha L.

    Science.gov (United States)

    Tsuboyama, Shoko; Kodama, Yutaka

    2014-01-01

    The liverwort Marchantia polymorpha L. is being developed as an emerging model plant, and several transformation techniques were recently reported. Examples are biolistic- and Agrobacterium-mediated transformation methods. Here, we report a simplified method for Agrobacterium-mediated transformation of sporelings, and it is termed Agar-utilized Transformation with Pouring Solutions (AgarTrap). The procedure of the AgarTrap was carried out by simply exchanging appropriate solutions in a Petri dish, and completed within a week, successfully yielding sufficient numbers of independent transformants for molecular analysis (e.g. characterization of gene/protein function) in a single experiment. The AgarTrap method will promote future molecular biological study in M. polymorpha.

  2. Compost supplementation with nutrients and microorganisms in composting process.

    Science.gov (United States)

    Sánchez, Óscar J; Ospina, Diego A; Montoya, Sandra

    2017-11-01

    The composting is an aerobic, microorganism-mediated, solid-state fermentation process by which different organic materials are transformed into more stable compounds. The product obtained is the compost, which contributes to the improvement of physical, chemical and microbiological properties of the soil. However, the compost usage in agriculture is constrained because of its long-time action and reduced supply of nutrients to the crops. To enhance the content of nutrients assimilable by the plants in the compost, its supplementation with nutrients and inoculation with microorganisms have been proposed. The objective of this work was to review the state of the art on compost supplementation with nutrients and the role played by the microorganisms involved (or added) in their transformation during the composting process. The phases of composting are briefly compiled and different strategies for supplementation are analyzed. The utilization of nitrogenous materials and addition of microorganisms fixing nitrogen from the atmosphere or oxidizing ammonia into more assimilable for plants nitrogenous forms are analyzed. Several strategies for nitrogen conservation during composting are presented as well. The supplementation with phosphorus and utilization of microorganisms solubilizing phosphorus and potassium are also discussed. Main groups of microorganisms relevant during the composting process are described as well as most important strategies to identify them. In general, the development of this type of nutrient-enriched bio-inputs requires research and development not only in the supplementation of compost itself, but also in the isolation and identification of microorganisms and genes allowing the degradation and conversion of nitrogenous substances and materials containing potassium and phosphorus present in the feedstocks undergoing the composting process. In this sense, most important research trends and strategies to increase nutrient content in the compost

  3. In Vitro Callogenesis and Agrobacterium-Mediated Transformation of Globe Artichoke

    NARCIS (Netherlands)

    Menin, B.; Moglia, A.; Comino, C.; Lanteri, S.; Herpen, van T.W.J.M.; Beekwilder, M.J.

    2012-01-01

    Micropropagation techniques have been widely applied in globe artichoke (C. cardunculus L. var. scolymus), however, efficient protocols for the establishment of in vitro callogenesis and organogenesis, a pre-requisite for Agrobacterium-mediated genetic transformation, have not been set up so far. We

  4. Transformative Mediation and Human Rights: the Possibility of Insertion of Alterity in the Conflict

    Directory of Open Access Journals (Sweden)

    Romulo Rhemo Palitot Braga

    2015-12-01

    Full Text Available This paper intends to present the transformative mediation, from the theoretical perspective of Luis Alberto Warat, as a proposal for promoting a culture of human rights, seen articular in your exercise the individuals's autonomy and the inclusion of alterity in the conflict. It is from this last element that will be further articulated discussion between human rights and mediation through the debate on the recognition of equality and difference, currently so expensive for human rights. The transformative mediation aims through a dialogic relationship building with the other, a participatory approach and shared the problems and dilemmas common to human and social life.

  5. An efficient protocol for the Agrobacterium-mediated genetic transformation of microalga Chlamydomonas reinhardtii.

    Science.gov (United States)

    Pratheesh, P T; Vineetha, M; Kurup, G Muraleedhara

    2014-06-01

    Algal-based recombinant protein production has gained immense interest in recent years. The development of algal expression system was earlier hindered due to the lack of efficient and cost-effective transformation techniques capable of heterologous gene integration and expression. The recent development of Agrobacterium-mediated genetic transformation method is expected to be the ideal solution for these problems. We have developed an efficient protocol for the Agrobacterium-mediated genetic transformation of microalga Chlamydomonas reinhardtii. Pre-treatment of Agrobacterium in TAP induction medium (pH 5.2) containing 100 μM acetosyringone and 1 mM glycine betaine and infection of Chlamydomonas with the induced Agrobacterium greatly improved transformation frequency. This protocol was found to double the number of transgenic events on selection media compared to that of previous reports. PCR was used successfully to amplify fragments of the hpt and GUS genes from transformed cells, while Southern blot confirmed the integration of GUS gene into the genome of C. reinhardtii. RT-PCR, Northern blot and GUS histochemical analyses confirm GUS gene expression in the transgenic cell lines of Chlamydomonas. This protocol provides a quick, efficient, economical and high-frequency transformation method for microalgae.

  6. In situ measurement of solvent-mediated phase transformations during dissolution testing

    DEFF Research Database (Denmark)

    Aaltonen, Jaakko; Heinänen, Paula; Peltonen, Leena

    2006-01-01

    In this study, solvent-mediated phase transformations of theophylline (TP) and nitrofurantoin (NF) were measured in a channel flow intrinsic dissolution test system. The test set-up comprised simultaneous measurement of drug concentration in the dissolution medium (with UV-Vis spectrophotometry......) and measurement of the solid-state form of the dissolving solid (in situ with Raman spectroscopy). The solid phase transformations were also investigated off-line with scanning electron microscopy. TP anhydrate underwent a transformation to TP monohydrate, and NF anhydrate (form beta) to NF monohydrate (form II......). Transformation of TP anhydrate to TP monohydrate resulted in a clear decrease in the dissolution rate, while the transformation of NF anhydrate (form beta) to NF monohydrate (form II) could not be linked as clearly to changes in the dissolution rate. The transformation of TP was an order of magnitude faster than...

  7. Screening Chinese soybean genotypes for Agrobacterium-mediated genetic transformation suitability*

    Science.gov (United States)

    Song, Zhang-yue; Tian, Jing-luan; Fu, Wei-zhe; Li, Lin; Lu, Ling-hong; Zhou, Lian; Shan, Zhi-hui; Tang, Gui-xiang; Shou, Hui-xia

    2013-01-01

    The Agrobacterium-mediated transformation system is the most commonly used method in soybean transformation. Screening of soybean genotypes favorable for Agrobacterium-infection and tissue regeneration is the most important step to establish an efficient genetic transformation system. In this study, twenty soybean genotypes that originated from different soybean production regions in China were screened for transient infection, regeneration capacity, and stable transgenic efficiency. Three genotypes, Yuechun 04-5, Yuechun 03-3, and Tianlong 1, showed comparable stable transgenic efficiencies with that of the previously reported American genotypes Williams 82 and Jack in our experimental system. For the Tianlong 1, the average stable transformation efficiency is 4.59%, higher than that of control genotypes (Jack and Williams 82), which is enough for further genomic research and genetic engineering. While polymerase chain reaction (PCR), LibertyLink strips, and β-glucuronidase (GUS) staining assays were used to detect the insertion and expression of the transgene, leaves painted with 135 mg/L Basta could efficiently identify the transformants. PMID:23549846

  8. Transformational leadership, intrinsic motivation, and trust: a moderated-mediated model of workplace safety.

    Science.gov (United States)

    Conchie, Stacey M

    2013-04-01

    Two studies examine the role of motivation and trust in the relationship between safety-specific transformational leadership and employees' safety behavior. Study 1 tested the prediction that intrinsic and identified regulation motivations mediate the relationship between safety-specific transformational leadership and employees' safety behaviors. Study 2 further explored this relationship by testing the prediction that the mediating role of intrinsic motivation is dependent on employees' level of trust in their leader. Survey data from the U.K. construction industry supported both predictions. However, the mediating role of intrinsic motivation was found only for challenge safety citizenship behaviors (i.e., voice) and not for affiliative safety citizenship behaviors (i.e., helping). These findings suggest that employees' intrinsic motivation is important to the effectiveness of leaders' efforts to promote some but not all forms of safety behavior.

  9. Establishment of a simple and efficient Agrobacterium-mediated transformation system for Phytophthora palmivora.

    Science.gov (United States)

    Wu, Dongliang; Navet, Natasha; Liu, Yingchao; Uchida, Janice; Tian, Miaoying

    2016-09-06

    As an agriculturally important oomycete genus, Phytophthora contains a large number of destructive plant pathogens that severely threaten agricultural production and natural ecosystems. Among them is the broad host range pathogen P. palmivora, which infects many economically important plant species. An essential way to dissect their pathogenesis mechanisms is genetic modification of candidate genes, which requires effective transformation systems. Four methods were developed for transformation of Phytophthora spp., including PEG(polyethylene glycol)/CaCl2 mediated protoplast transformation, electroporation of zoospores, microprojectile bombardment and Agrobacterium-mediated transformation (AMT). Among them, AMT has many advantages over the other methods such as easy handling and mainly generating single-copy integration in the genome. An AMT method previously reported for P. infestans and P. palmivora has barely been used in oomycete research due to low success and low reproducibility. In this study, we report a simple and efficient AMT system for P. palmivora. Using this system, we were able to reproducibly generate over 40 transformants using zoospores collected from culture grown in a single 100 mm-diameter petri dish. The generated GFP transformants constitutively expressed GFP readily detectable using a fluorescence microscope. All of the transformants tested using Southern blot analysis contained a single-copy T-DNA insertion. This system is highly effective and reproducible for transformation of P. palmivora and expected to be adaptable for transformation of additional Phytophthora spp. and other oomycetes. Its establishment will greatly accelerate their functional genomic studies.

  10. Agrobacterium rhizogenes-mediated transformation of Superroot-derived Lotus corniculatus plants: a valuable tool for functional genomics

    Directory of Open Access Journals (Sweden)

    Liu Wei

    2009-06-01

    Full Text Available Abstract Background Transgenic approaches provide a powerful tool for gene function investigations in plants. However, some legumes are still recalcitrant to current transformation technologies, limiting the extent to which functional genomic studies can be performed on. Superroot of Lotus corniculatus is a continuous root cloning system allowing direct somatic embryogenesis and mass regeneration of plants. Recently, a technique to obtain transgenic L. corniculatus plants from Superroot-derived leaves through A. tumefaciens-mediated transformation was described. However, transformation efficiency was low and it took about six months from gene transfer to PCR identification. Results In the present study, we developed an A. rhizogenes-mediated transformation of Superroot-derived L. corniculatus for gene function investigation, combining the efficient A. rhizogenes-mediated transformation and the rapid regeneration system of Superroot. The transformation system using A. rhizogenes K599 harbouring pGFPGUSPlus was improved by validating some parameters which may influence the transformation frequency. Using stem sections with one node as explants, a 2-day pre-culture of explants, infection with K599 at OD600 = 0.6, and co-cultivation on medium (pH 5.4 at 22°C for 2 days enhanced the transformation frequency significantly. As proof of concept, Superroot-derived L. corniculatus was transformed with a gene from wheat encoding an Na+/H+ antiporter (TaNHX2 using the described system. Transgenic Superroot plants were obtained and had increased salt tolerance, as expected from the expression of TaNHX2. Conclusion A rapid and efficient tool for gene function investigation in L. corniculatus was developed, combining the simplicity and high efficiency of the Superroot regeneration system and the availability of A. rhizogenes-mediated transformation. This system was improved by validating some parameters influencing the transformation frequency, which could

  11. Speeding-up exchange-mediated saturation transfer experiments by Fourier transform

    Energy Technology Data Exchange (ETDEWEB)

    Carneiro, Marta G.; Reddy, Jithender G.; Griesinger, Christian; Lee, Donghan, E-mail: dole@nmr.mpibpc.mpg.de [Max-Planck Institute for Biophysical chemistry, Department of NMR-based Structural Biology (Germany)

    2015-11-15

    Protein motions over various time scales are crucial for protein function. NMR relaxation dispersion experiments play a key role in explaining these motions. However, the study of slow conformational changes with lowly populated states remained elusive. The recently developed exchange-mediated saturation transfer experiments allow the detection and characterization of such motions, but require extensive measurement time. Here we show that, by making use of Fourier transform, the total acquisition time required to measure an exchange-mediated saturation transfer profile can be reduced by twofold in case that one applies linear prediction. In addition, we demonstrate that the analytical solution for R{sub 1}ρ experiments can be used for fitting the exchange-mediated saturation transfer profile. Furthermore, we show that simultaneous analysis of exchange-mediated saturation transfer profiles with two different radio-frequency field strengths is required for accurate and precise characterization of the exchange process and the exchanging states.

  12. Speeding-up exchange-mediated saturation transfer experiments by Fourier transform

    International Nuclear Information System (INIS)

    Carneiro, Marta G.; Reddy, Jithender G.; Griesinger, Christian; Lee, Donghan

    2015-01-01

    Protein motions over various time scales are crucial for protein function. NMR relaxation dispersion experiments play a key role in explaining these motions. However, the study of slow conformational changes with lowly populated states remained elusive. The recently developed exchange-mediated saturation transfer experiments allow the detection and characterization of such motions, but require extensive measurement time. Here we show that, by making use of Fourier transform, the total acquisition time required to measure an exchange-mediated saturation transfer profile can be reduced by twofold in case that one applies linear prediction. In addition, we demonstrate that the analytical solution for R 1 ρ experiments can be used for fitting the exchange-mediated saturation transfer profile. Furthermore, we show that simultaneous analysis of exchange-mediated saturation transfer profiles with two different radio-frequency field strengths is required for accurate and precise characterization of the exchange process and the exchanging states

  13. Transformational leadership and organizational citizenship behavior: Modeling emotional intelligence as mediator

    Directory of Open Access Journals (Sweden)

    Majeed Nauman

    2017-12-01

    Full Text Available Leadership and organizational citizenship behavior (OCB stayed at pinnacle in the arena of organizational behavior research since decades and has attained significant consideration of scholars pursuing to define multifaceted dynamics of leadership and their influence on follower’s behavior at work. The voluntary behavior of Organizational citizenship improves organizational effectiveness, and it goes beyond formal job duties. This study attempts to explore the association amongst transformational leadership and organizational citizenship behavior of teachers in public sector higher education institutions in Pakistan. Study of organizational citizenship behavior in educational organizations and academicians is of high value that definitely requires attention. This study examines the direct and indirect influence of transformational leadership through exploring the mediating role of emotional intelligence. The model was tested by employing structural equation modelling technique on survey responses collected from academicians. Results from 220 responses indicated that relationship between transformational leadership and Organizational Citizenship Behavior is statistically significant where Emotional Intelligence plays an important role as a mediator. The results support and add to the positive effects of transformational leadership style interconnected with extra role behavior at work making it more meaningful. The findings make a significant contribution to leadership and organizational behavior literature in higher education sector and propose that organizations should implement practices that help in enhancing the level of organizational citizenship behavior in organizations.

  14. Robust regeneration protocol for the Agrobacterium tumefaciens mediated transformation of Solanum tuberosum

    International Nuclear Information System (INIS)

    Abbasi, A.; Bilal, M.; Hussain, J.; Shah, M. M.; Hassan, A.

    2016-01-01

    Plant genetic transformation requires robust regeneration system. Plant growth regulators (PGRs) such as cytokinins (CKs) play a pivotal role in organogenesis; however, CKs are the most expensive PGRs. In the current study, an efficient yet economical protocol for regeneration of potato plant was developed. Stem inter-nodal and leaf explants were cultured on different regeneration media supplemented with varying concentration of different CKs such as kinetin and zeatin. Murashige- Skoog media added with zeatin (1, 1.5 mg/L) was designated as RZ1, RZ1.5, respectively or kinetin (1.5, 2 mg/L) was designated as RK1.5 and RK2, respectively, however, concentrations of other hormones such as NAA (1-Naphthaleneacetic acid) and GA3 (Gibberellic acid A3) were kept same. RZ1 and RZ1.5 gave significantly better Results as compared to RK-type media in all aspects studied such as callus initiation, days to first shoot emergence, number of shoots per explants. RZ1 medium was then selected as regeneration media for Agrobacterium-mediated transformation of potato plants with cyanobacterial phosphoenol pyruvate carboxylase gene, which provided multiple putative transformants on selection media. The transformants were further confirmed through PCR. The current protocol is found to be cost effective and efficient for the regeneration of Solanum tuberosum and can be successfully implied for the Agrobacterium-mediated transformation. (author)

  15. Assessment of ptxD gene as an alternative selectable marker for Agrobacterium-mediated maize transformation.

    Science.gov (United States)

    Nahampun, Hartinio N; López-Arredondo, Damar; Xu, Xing; Herrera-Estrella, Luis; Wang, Kan

    2016-05-01

    Bacterial phosphite oxidoreductase gene and chemical phosphite can be used as a selection system for Agrobacterium -mediated maize transformation. Application of phosphite (Phi) on plants can interfere the plant metabolic system leading to stunted growth and lethality. On the other hand, ectopic expression of the ptxD gene in tobacco and Arabidopsis allowed plants to grow in media with Phi as the sole phosphorous source. The phosphite oxidoreductase (PTXD) enzyme catalyzes the conversion of Phi into phosphate (Pi) that can then be metabolized by plants and utilized as their essential phosphorous source. Here we assess an alternative selectable marker based on a bacterial ptxD gene for Agrobacterium-mediated maize transformation. We compared the transformation frequencies of maize using either the ptxD/Phi selection system or a standard herbicide bar/bialaphos selection system. Two maize genotypes, a transformation amenable hybrid Hi II and an inbred B104, were tested. Transgene presence, insertion copy numbers, and ptxD transcript levels were analyzed and compared. This work demonstrates that the ptxD/Phi selection system can be used for Agrobacterium-mediated maize transformation of both type I and type II callus culture and achieve a comparable frequency as that of the herbicide bar/bialaphos selection system.

  16. Relationship between transformational leadership style and organizational commitment: Mediating effect of psychological empowerment

    Science.gov (United States)

    Asif, Muhammad; Ayyub, Samia; Bashir, Muhammad Khawar

    2014-12-01

    This study explores the relationship between style of transformational leadership and organizational commitment of employees with mediating role of psychological empowerment in the textile sector Punjab Pakistan. Data was collected using tools from 250 employees. The transformational leadership questionnaire, MLQ-Multifactor leadership Questionnaire [1] was used to verify the perception of the employees towards transformational leadership style in two dimensions i.e. idealized influence and inspirational motivation. The organizational commitment questionnaire designed by [2] was used to verify the affective organizational commitment. Further, psychological empowerment questionnaire was developed by [3] which was used to examine the state of psychological empowerment of textile sector employees. Pearson Correlation revealed that there exists a positive significant relationship between idealized influence and affective organizational commitment, Inspirational motivation and affective organizational commitment, affective organizational commitment and psychological empowerment. The results from the study put forward that there is a significant relationship between style of transformational leadership and organizational commitment. The mediating variable which one is suitable in the model i.e. psychological empowerment and the model is good fit as the F value is significant.

  17. Agrobacterium-mediated genetic transformation and plant regeneration of the hardwood tree species Fraxinus profunda

    Science.gov (United States)

    Micah E. Stevens; Paula M. Pijut

    2014-01-01

    Using mature hypocotyls as the initial explants, an Agrobacterium tumefaciens-mediated genetic transformation system was successfully developed for pumpkin ash (Fraxinus profunda). This transformation protocol is an invaluable tool to combat the highly aggressive, non-native emerald ash borer (EAB), which has the potential to...

  18. Optimization of Production Conditions for Protoplasts and Polyethylene Glycol-Mediated Transformation of Gaeumannomyces tritici.

    Science.gov (United States)

    Wang, Mei; Zhang, Jie; Wang, Lanying; Han, Lirong; Zhang, Xing; Feng, Juntao

    2018-05-24

    Take-all, caused by Gaeumannomyces tritici , is one of the most important wheat root diseases worldwide, as it results in serious yield losses. In this study, G. tritici was transformed to express the hygromycin B phosphotransferase using a combined protoplast and polyethylene glycol (PEG)-mediated transformation technique. Based on a series of single-factor experimental results, three major factors-temperature, enzyme lysis time, and concentration of the lysing enzyme-were selected as the independent variables, which were optimized using the response surface methodology. A higher protoplast yield of 9.83 × 10⁷ protoplasts/mL was observed, and the protoplast vitality was also high, reaching 96.27% after optimization. Protoplasts were isolated under the optimal conditions, with the highest transformation frequency (46⁻54 transformants/μg DNA). Polymerase chain reaction and Southern blotting detection indicated that the genes of hygromycin phosphotransferase were successfully inserted into the genome of G. tritici . An optimised PEG-mediated protoplast transformation system for G. tritici was established. The techniques and procedures described will lay the foundation for establishing a good mutation library of G. tritici and could be used to transform other fungi.

  19. Progress of cereal transformation technology mediated by Agrobacterium tumefaciens

    Science.gov (United States)

    Hiei, Yukoh; Ishida, Yuji; Komari, Toshihiko

    2014-01-01

    Monocotyledonous plants were believed to be not transformable by the soil bacterium Agrobacterium tumefaciens until two decades ago, although convenient protocols for infection of leaf disks and subsequent regeneration of transgenic plants had been well established in a number of dicotyledonous species by then. This belief was reinforced by the fact that monocotyledons are mostly outside the host range of crown gall disease caused by the bacterium and by the failures in trials in monocotyledons to mimic the transformation protocols for dicotyledons. However, a key reason for the failure could have been the lack of active cell divisions at the wound sites in monocotyledons. The complexity and narrow optimal windows of critical factors, such as genotypes of plants, conditions of the plants from which explants are prepared, tissue culture methods and culture media, pre-treatments of explants, strains of A. tumefaciens, inducers of virulence genes, transformation vectors, selection marker genes and selective agents, kept technical hurdles high. Eventually it was demonstrated that rice and maize could be transformed by co-cultivating cells of callus cultures or immature embryos, which are actively dividing or about to divide, with A. tumefaciens. Subsequently, these initial difficulties were resolved one by one by many research groups, and the major cereals are now transformed quite efficiently. As many as 15 independent transgenic events may be regenerated from a single piece of immature embryo of rice. Maize transformation protocols are well established, and almost all transgenic events deregulated for commercialization after 2003 were generated by Agrobacterium-mediated transformation. Wheat, barley, and sorghum are also among those plants that can be efficiently transformed by A. tumefaciens. PMID:25426132

  20. Progress of cereal transformation technology mediated by Agrobacterium tumefaciens.

    Science.gov (United States)

    Hiei, Yukoh; Ishida, Yuji; Komari, Toshihiko

    2014-01-01

    Monocotyledonous plants were believed to be not transformable by the soil bacterium Agrobacterium tumefaciens until two decades ago, although convenient protocols for infection of leaf disks and subsequent regeneration of transgenic plants had been well established in a number of dicotyledonous species by then. This belief was reinforced by the fact that monocotyledons are mostly outside the host range of crown gall disease caused by the bacterium and by the failures in trials in monocotyledons to mimic the transformation protocols for dicotyledons. However, a key reason for the failure could have been the lack of active cell divisions at the wound sites in monocotyledons. The complexity and narrow optimal windows of critical factors, such as genotypes of plants, conditions of the plants from which explants are prepared, tissue culture methods and culture media, pre-treatments of explants, strains of A. tumefaciens, inducers of virulence genes, transformation vectors, selection marker genes and selective agents, kept technical hurdles high. Eventually it was demonstrated that rice and maize could be transformed by co-cultivating cells of callus cultures or immature embryos, which are actively dividing or about to divide, with A. tumefaciens. Subsequently, these initial difficulties were resolved one by one by many research groups, and the major cereals are now transformed quite efficiently. As many as 15 independent transgenic events may be regenerated from a single piece of immature embryo of rice. Maize transformation protocols are well established, and almost all transgenic events deregulated for commercialization after 2003 were generated by Agrobacterium-mediated transformation. Wheat, barley, and sorghum are also among those plants that can be efficiently transformed by A. tumefaciens.

  1. Progress of cereal transformation technology mediated by Agrobacterium tumefaciens

    Directory of Open Access Journals (Sweden)

    Yukoh eHiei

    2014-11-01

    Full Text Available Monocotyledonous plants were believed to be not transformable by the soil bacterium Agrobacterium tumefaciens until two decades ago, although convenient protocols for infection of leaf disks and subsequent regeneration of transgenic plants had been well established in a number of dicotyledonous species by then. This belief was reinforced by the fact that monocotyledons are mostly outside the host range of crown gall disease caused by the bacterium and by the failures in trials in monocotyledons to mimic the transformation protocols for dicotyledons. However, a key reason for the failure could have been the lack of active cell divisions at the wound sites, which are the basis of tissue culture and transformation in dicotyledons, in monocotyledons. The complexity and narrow optimal windows of critical factors, such as genotypes of plants, conditions of the plants from which explants are prepared, tissue culture methods and culture media, pre-treatments of explants, strains of A. tumefaciens, inducers of virulence genes, transformation vectors, selection marker genes and selective agents, kept technical hurdles high. Eventually it was determined that rice and maize could be transformed by co-cultivating cells of callus cultures or immature embryos, which are actively dividing or about to divide, with A. tumefaciens. Subsequently, these initial difficulties were resolved one by one by many research groups, and the major cereals are now transformed quite efficiently. As many as 15 independent transgenic events may be regenerated from a single piece of immature embryo of rice. Maize transformation protocols are well established, and almost all transgenic events deregulated for commercialization after 2003 were generated by Agrobacterium-mediated transformation. Wheat, barley and sorghum are also among those plants that can be efficiently transformed by A. tumefaciens.

  2. Agrobacterium-mediated transformation of the recalcitrant Vanda Kasem's Delight orchid with higher efficiency.

    Science.gov (United States)

    Gnasekaran, Pavallekoodi; Antony, Jessica Jeyanthi James; Uddain, Jasim; Subramaniam, Sreeramanan

    2014-01-01

    The presented study established Agrobacterium-mediated genetic transformation using protocorm-like bodies (PLBs) for the production of transgenic Vanda Kasem's Delight Tom Boykin (VKD) orchid. Several parameters such as PLB size, immersion period, level of wounding, Agrobacterium density, cocultivation period, and concentration of acetosyringone were tested and quantified using gusA gene expression to optimize the efficiency of Agrobacterium-mediated genetic transformation of VKD's PLBs. Based on the results, 3-4 mm PLBs wounded by scalpel and immersed for 30 minutes in Agrobacterium suspension of 0.8 unit at A 600 nm produced the highest GUS expression. Furthermore, cocultivating infected PLBs for 4 days in the dark on Vacin and Went cocultivation medium containing 200 μM acetosyringone enhanced the GUS expression. PCR analysis of the putative transformants selected in the presence of 250 mg/L cefotaxime and 30 mg/L geneticin proved the presence of wheatwin1, wheatwin2, and nptII genes.

  3. AMP-activated protein kinase (AMPK mediates nutrient regulation of thioredoxin-interacting protein (TXNIP in pancreatic beta-cells.

    Directory of Open Access Journals (Sweden)

    Maayan Shaked

    Full Text Available Thioredoxin-interacting protein (TXNIP regulates critical biological processes including inflammation, stress and apoptosis. TXNIP is upregulated by glucose and is a critical mediator of hyperglycemia-induced beta-cell apoptosis in diabetes. In contrast, the saturated long-chain fatty acid palmitate, although toxic to the beta-cell, inhibits TXNIP expression. The mechanisms involved in the opposing effects of glucose and fatty acids on TXNIP expression are unknown. We found that both palmitate and oleate inhibited TXNIP in a rat beta-cell line and islets. Palmitate inhibition of TXNIP was independent of fatty acid beta-oxidation or esterification. AMP-activated protein kinase (AMPK has an important role in cellular energy sensing and control of metabolic homeostasis; therefore we investigated its involvement in nutrient regulation of TXNIP. As expected, glucose inhibited whereas palmitate stimulated AMPK. Pharmacologic activators of AMPK mimicked fatty acids by inhibiting TXNIP. AMPK knockdown increased TXNIP expression in presence of high glucose with and without palmitate, indicating that nutrient (glucose and fatty acids effects on TXNIP are mediated in part via modulation of AMPK activity. TXNIP is transcriptionally regulated by carbohydrate response element-binding protein (ChREBP. Palmitate inhibited glucose-stimulated ChREBP nuclear entry and recruitment to the Txnip promoter, thereby inhibiting Txnip transcription. We conclude that AMPK is an important regulator of Txnip transcription via modulation of ChREBP activity. The divergent effects of glucose and fatty acids on TXNIP expression result in part from their opposing effects on AMPK activity. In light of the important role of TXNIP in beta-cell apoptosis, its inhibition by fatty acids can be regarded as an adaptive/protective response to glucolipotoxicity. The finding that AMPK mediates nutrient regulation of TXNIP may have important implications for the pathophysiology and treatment

  4. High-Throughput Agrobacterium-mediated Transformation of Medicago Truncatula in Comparison to Two Expression Vectors

    International Nuclear Information System (INIS)

    Sultana, T.; Deeba, F.; Naqvi, S. M. S.

    2016-01-01

    Legumes have been turbulent to efficient Agrobacterium-mediated transformation for a long time. The selection of Medicago truncatula as a model legume plant for molecular analysis resulted in the development of efficient Agrobacterium-mediated transformation protocols. In current study, M. truncatula transformed plants expressing OsRGLP1 were obtained through GATEWAY technology using pGOsRGLP1 (pH7WG2.0=OsRGLP1). The transformation efficiency of this vector was compared with expression vector from pCAMBIA series over-expressing same gene (pCOsRGLP1). A lower number of explants generated hygromycin resistant plantlet for instance, 18.3 with pGOsRGLP1 vector as compared to 35.5 percent with pCOsRGLP1 vector. Transformation efficiency of PCR positive plants generated was 9.4 percent for pGOsRGLP1 while 21.6 percent for pCOsRGLP1. Furthermore 24.4 percent of explants generated antibiotic resistant plantlet on 20 mgl/sup -1/ of hygromycin which was higher than on 15 mgl/sup -1/ of hygromycin such as 12.2 percent. T/sub 1/ progeny analysis indicated that the transgene was inherited in Mendelian manner. The functionally active status of transgene was monitored by high level of Superoxide dismutase (SOD) activity in transformed progeny. (author)

  5. Highly-efficient liposome-mediated transformation system for the basidiomycetous fungus Flammulina velutipes.

    Science.gov (United States)

    Shi, Liang; Chen, Dongdong; Xu, Chao; Ren, Ang; Yu, Hanshou; Zhao, Mingwen

    2017-07-11

    Flammulina velutipes is a well-known edible mushroom cultivated all over the world. However, because of the low transformation frequency, the expensive instruments required, and the complicated, time-consuming procedures necessary, there is insufficient genetic research on F. velutipes. In this study, we report a liposome-mediated transformation (LMT) system for the genetic transformation of F. velutipes. Using the LMT system, we obtained 82 ± 4 stable F. velutipes transformants per 10 5 protoplasts, which is a clear increase in transformation frequency compared to the other methods used. We were able to detect the expression of an EGFP reporter gene in the F. velutipes transformants using fluorescence imaging assays. Furthermore, we used this method to transfer the laccase gene into F. velutipes and found that the transcriptional level and enzymatic activity increased in these transformants. Mitotic stability analysis showed that all of the selected transformants remained mitotically stable, even after five successive rounds of sub-culturing. These results demonstrate a new transgenic approach that will facilitate F. velutipes research.

  6. Physical nutrient transport in the North Atlantic Subtropical Gyre

    Science.gov (United States)

    Jenkins, W.; Lott, D. E.

    2009-04-01

    Use of the helium-3 flux gauge to estimate the physically mediated flux of new nutrients to the euphotic zone of the North Atlantic subtropical gyre broadly suggests a pathway whereby inorganic nutrients that have been remineralized within the main thermocline may be returned to the seasonally accessible layer in the Sargasso Sea: the so-called "Nutrient Spiral" (Jenkins and Doney (2003), Glob. Biog. Cyc., 17(4), doi:1110.1029/2003GB002085.) The challenge, however, is identifying the exact mechanism whereby this occurs. One possible process is that of "obduction", whereby the combination of strong advection and rapidly deepening winter mixed layers result in the effective outcropping of substantial amounts of thermocline nutrients and tritiugenic helium-3. We present here a quantitative estimate based on hydrographic sections and geostrophic transports of the fluxes and transformations of both tritugenic helium-3 and nitrate within the basin, and attempt to relate these estimates to the specific shallow-water behaviors of these tracers, and their global and regional physical transports. An important constraint for these estimates lies in the evolving distributions of the transient tracers tritium and helium-3. We compare these results with other tracer-based estimates of new, net-community, and export production.

  7. Agrobacterium-mediated transformation as a tool for functional genomics in fungi

    NARCIS (Netherlands)

    Michielse, C.B.; Hooykaas, P.J.J.; Hondel, C.A.M.J.J. van den; Ram, A.F.J.

    2005-01-01

    In the era of functional genomics, the need for tools to perform large-scale targeted and random mutagenesis is increasing. A potential tool is Agrobacterium-mediated fungal transformation. A. tumefaciens is able to transfer a part of its DNA (transferred DNA; T-DNA) to a wide variety of fungi and

  8. Factors influencing Agrobacterium-mediated embryogenic callus transformation of Valencia sweet orange (Citrus sinensis) containing the pTA29-barnase gene.

    Science.gov (United States)

    Li, D D; Shi, W; Deng, X X

    2003-12-01

    Valencia sweet orange (Citrus sinensis (L.) Osbeck) calluses were used as explants to develop a new transformation system for citrus mediated by Agrobacterium tumefaciens. Factors affecting Agrobacterium-mediated transformation efficiency included mode of pre-cultivation, temperature of cocultivation and presence of acetosyringone (AS). The highest transformation efficiency was obtained with a 4-day pre-cultivation period in liquid medium. Transformation efficiency was higher when cocultivation was performed for 3 days at 19 degrees C than at 23 or 28 degrees C. Almost no resistant callus was obtained if the cocultivation medium lacked AS. The transformation procedure yielded transgenic Valencia plants containing the pTA29-barnase gene, as verified by PCR amplification and confirmed by Southern blotting. Because male sterility is a common factor leading to seedlessness in citrus cultivars with parthenocarpic characteristics, production of seedless citrus genotypes by Agrobacterium-mediated genetic transformation is a promising alternative to conventional breeding methods.

  9. Identification of auxotrophic mutants of the yeast Kluyveromyces marxianus by non-homologous end joining-mediated integrative transformation with genes from Saccharomyces cerevisiae.

    Science.gov (United States)

    Yarimizu, Tohru; Nonklang, Sanom; Nakamura, Junpei; Tokuda, Shuya; Nakagawa, Takaaki; Lorreungsil, Sasithorn; Sutthikhumpha, Surasit; Pukahuta, Charida; Kitagawa, Takao; Nakamura, Mikiko; Cha-Aim, Kamonchai; Limtong, Savitree; Hoshida, Hisashi; Akada, Rinji

    2013-12-01

    The isolation and application of auxotrophic mutants for gene manipulations, such as genetic transformation, mating selection and tetrad analysis, form the basis of yeast genetics. For the development of these genetic methods in the thermotolerant fermentative yeast Kluyveromyces marxianus, we isolated a series of auxotrophic mutants with defects in amino acid or nucleic acid metabolism. To identify the mutated genes, linear DNA fragments of nutrient biosynthetic pathway genes were amplified from Saccharomyces cerevisiae chromosomal DNA and used to directly transform the K. marxianus auxotrophic mutants by random integration into chromosomes through non-homologous end joining (NHEJ). The appearance of transformant colonies indicated that the specific S. cerevisiae gene complemented the K. marxianus mutant. Using this interspecific complementation approach with linear PCR-amplified DNA, we identified auxotrophic mutations of ADE2, ADE5,7, ADE6, HIS2, HIS3, HIS4, HIS5, HIS6, HIS7, LYS1, LYS2, LYS4, LYS9, LEU1, LEU2, MET2, MET6, MET17, TRP3, TRP4 and TRP5 without the labour-intensive requirement of plasmid construction. Mating, sporulation and tetrad analysis techniques for K. marxianus were also established. With the identified auxotrophic mutant strains and S. cerevisiae genes as selective markers, NHEJ-mediated integrative transformation with PCR-amplified DNA is an attractive system for facilitating genetic analyses in the yeast K. marxianus. Copyright © 2013 John Wiley & Sons, Ltd.

  10. Establishment of an efficient genetic transformation method in Dunaliella tertiolecta mediated by Agrobacterium tumefaciens.

    Science.gov (United States)

    Norzagaray-Valenzuela, Claudia D; Germán-Báez, Lourdes J; Valdez-Flores, Marco A; Hernández-Verdugo, Sergio; Shelton, Luke M; Valdez-Ortiz, Angel

    2018-05-16

    Microalgae are photosynthetic microorganisms widely used for the production of highly valued compounds, and recently they have been shown to be promising as a system for the heterologous expression of proteins. Several transformation methods have been successfully developed, from which the Agrobacterium tumefaciens-mediated method remains the most promising. However, microalgae transformation efficiency by A. tumefaciens is shown to vary depending on several transformation conditions. The present study aimed to establish an efficient genetic transformation system in the green microalgae Dunaliella tertiolecta using the A. tumefaciens method. The parameters assessed were the infection medium, the concentration of the A. tumefaciens and co-culture time. As a preliminary screening, the expression of the gusA gene and the viability of transformed cells were evaluated and used to calculate a novel parameter called Transformation Efficiency Index (TEI). The statistical analysis of TEI values showed five treatments with the highest gusA gene expression. To ensure stable transformation, transformed colonies were cultured on selective medium using hygromycin B and the DNA of resistant colonies were extracted after five subcultures and molecularly analyzed by PCR. Results revealed that treatments which use solid infection medium, A. tumefaciens OD 600  = 0.5 and co-culture times of 72 h exhibited the highest percentage of stable gusA expression. Overall, this study established an efficient, optimized A. tumefaciens-mediated genetic transformation of D. tertiolecta, which represents a relatively easy procedure with no expensive equipment required. This simple and efficient protocol opens the possibility for further genetic manipulation of this commercially-important microalgae for biotechnological applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. An Efficient Agrobacterium-Mediated Transformation of Strawberry cv. Camarosa by a Dual Plasmid System

    Directory of Open Access Journals (Sweden)

    Fatemeh Haddadi

    2015-02-01

    Full Text Available An Agrobacterium-mediated transformation method was applied to introduce the luciferase reporter gene under the control of the CaMV35S promoter in the pGreen0049 binary vector into strawberry cv. Camarosa. The in vitro regeneration system of strawberry leaves to be used in the transformation was optimized using different TDZ concentrations in MS medium. TDZ at 16 µM showed the highest percentage (100% of shoot formation and the highest mean number of shoots (24 produced per explant. Studies on the effects of different antibiotics, namely timentin, cefotaxime, carbenicillin and ampicillin, on shoot regeneration of strawberry leaf explants showed the best shoot regeneration in the presence of 300 mg/L timentin and 150 mg/L cefotaxime. Assessment of the different factors affecting Agrobacterium mediated-transformation of strawberry with the luciferase gene showed the highest efficiency of putative transformant production (86% in the treatment with no preculture, bacterial OD600 of 0.6 and the addition of 150 mg/L cefotaxime in the pre-selection and selection media. The presence of the luciferase gene in the plant genome was verified by the luciferase reporter gene assay, nested PCR amplification and dot blot of genomic DNA isolated from the young leaves of each putatively transformed plantlet.

  12. Transformational leadership and group potency in small military units: The mediating role of group identification and cohesion

    Directory of Open Access Journals (Sweden)

    Carlos García-Guiu

    2016-12-01

    Full Text Available In the present study, we examined an exploratory model to assess the relationship between transformational leadership and group potency and analyze the mediating role of group identification and cohesion. The research was conducted with squads of the Spanish Army. The sample was composed of 243 members of 51 squads of operational units. Our findings highlighted the importance of the transformational leadership style of command of non-commissioned officers (NCOs due to its positive relationship with the group potency of the squad. We also analyzed the indirect relationships between transformational leadership and group identification and group cohesion and found that the latter variables played a mediating role between transformational leadership and group potency. The conclusions of this study are relevant due to the growing importance of transformational leadership and actions implemented at lower levels of the command chain for the success of missions of security organizations and defense.

  13. High-efficiency Agrobacterium-mediated transformation of Norway spruce (Picea abies) and loblolly pine (Pinus taeda)

    Science.gov (United States)

    Wenck, A. R.; Quinn, M.; Whetten, R. W.; Pullman, G.; Sederoff, R.; Brown, C. S. (Principal Investigator)

    1999-01-01

    Agrobacterium-mediated gene transfer is the method of choice for many plant biotechnology laboratories; however, large-scale use of this organism in conifer transformation has been limited by difficult propagation of explant material, selection efficiencies and low transformation frequency. We have analyzed co-cultivation conditions and different disarmed strains of Agrobacterium to improve transformation. Additional copies of virulence genes were added to three common disarmed strains. These extra virulence genes included either a constitutively active virG or extra copies of virG and virB, both from pTiBo542. In experiments with Norway spruce, we increased transformation efficiencies 1000-fold from initial experiments where little or no transient expression was detected. Over 100 transformed lines expressing the marker gene beta-glucuronidase (GUS) were generated from rapidly dividing embryogenic suspension-cultured cells co-cultivated with Agrobacterium. GUS activity was used to monitor transient expression and to further test lines selected on kanamycin-containing medium. In loblolly pine, transient expression increased 10-fold utilizing modified Agrobacterium strains. Agrobacterium-mediated gene transfer is a useful technique for large-scale generation of transgenic Norway spruce and may prove useful for other conifer species.

  14. A Rapid, Highly Efficient and Economical Method of Agrobacterium-Mediated In planta Transient Transformation in Living Onion Epidermis

    Science.gov (United States)

    Xu, Kedong; Huang, Xiaohui; Wu, Manman; Wang, Yan; Chang, Yunxia; Liu, Kun; Zhang, Ju; Zhang, Yi; Zhang, Fuli; Yi, Liming; Li, Tingting; Wang, Ruiyue; Tan, Guangxuan; Li, Chengwei

    2014-01-01

    Transient transformation is simpler, more efficient and economical in analyzing protein subcellular localization than stable transformation. Fluorescent fusion proteins were often used in transient transformation to follow the in vivo behavior of proteins. Onion epidermis, which has large, living and transparent cells in a monolayer, is suitable to visualize fluorescent fusion proteins. The often used transient transformation methods included particle bombardment, protoplast transfection and Agrobacterium-mediated transformation. Particle bombardment in onion epidermis was successfully established, however, it was expensive, biolistic equipment dependent and with low transformation efficiency. We developed a highly efficient in planta transient transformation method in onion epidermis by using a special agroinfiltration method, which could be fulfilled within 5 days from the pretreatment of onion bulb to the best time-point for analyzing gene expression. The transformation conditions were optimized to achieve 43.87% transformation efficiency in living onion epidermis. The developed method has advantages in cost, time-consuming, equipment dependency and transformation efficiency in contrast with those methods of particle bombardment in onion epidermal cells, protoplast transfection and Agrobacterium-mediated transient transformation in leaf epidermal cells of other plants. It will facilitate the analysis of protein subcellular localization on a large scale. PMID:24416168

  15. Effect of gamma irradiation on Agrobacterium-mediated genetic transformation of Japanese lawngrass (Zoysia japonica Steud.)

    International Nuclear Information System (INIS)

    Zhang Lei; Anhui Agricultural Univ., Hefei; Hu Fanrong; Zhang Linlin; Wang Xueyan; Wu Dianxing; Ma Chuanxi

    2004-01-01

    The effects of gamma irradiation on Agrobacterium-mediated genetic transformation were investigated in the current paper, using embryonic calli derived from the mature seeds of Japanese lawngrass (Zoysia japonica Steud.). The result indicated that the GUS transient expression rates were enhanced with the increasing doses when treated by doses lower than 4 Gy, however it would be decreased when treated by doses higher than 4 Gy. Based on the survival rate and GUS transient expression rate, 2 Gy is the optimal dose for Agrobacterium-mediated genetic transformation. Further observation found that 36 hours reculture after gamma irradiation is the most appropriate for agrobacterium infection. (authors)

  16. Differential roles of glucosinolates and camalexin at different stages of Agrobacterium-mediated transformation.

    Science.gov (United States)

    Shih, Po-Yuan; Chou, Shu-Jen; Müller, Caroline; Halkier, Barbara Ann; Deeken, Rosalia; Lai, Erh-Min

    2018-03-02

    Agrobacterium tumefaciens is the causal agent of crown gall disease in a wide range of plants via a unique interkingdom DNA transfer from bacterial cells into the plant genome. Agrobacterium tumefaciens is capable of transferring its T-DNA into different plant parts at different developmental stages for transient and stable transformation. However, the plant genes and mechanisms involved in these transformation processes are not well understood. We used Arabidopsis thaliana Col-0 seedlings to reveal the gene expression profiles at early time points during Agrobacterium infection. Common and differentially expressed genes were found in shoots and roots. A gene ontology analysis showed that the glucosinolate (GS) biosynthesis pathway was an enriched common response. Strikingly, several genes involved in indole glucosinolate (iGS) modification and the camalexin biosynthesis pathway were up-regulated, whereas genes in aliphatic glucosinolate (aGS) biosynthesis were generally down-regulated, on Agrobacterium infection. Thus, we evaluated the impacts of GSs and camalexin during different stages of Agrobacterium-mediated transformation combining Arabidopsis mutant studies, metabolite profiling and exogenous applications of various GS hydrolysis products or camalexin. The results suggest that the iGS hydrolysis pathway plays an inhibitory role on transformation efficiency in Arabidopsis seedlings at the early infection stage. Later in the Agrobacterium infection process, the accumulation of camalexin is a key factor inhibiting tumour development on Arabidopsis inflorescence stalks. In conclusion, this study reveals the differential roles of GSs and camalexin at different stages of Agrobacterium-mediated transformation and provides new insights into crown gall disease control and improvement of plant transformation. © 2018 THE AUTHORS. MOLECULAR PLANT PATHOLOGY PUBLISHED BY BRITISH SOCIETY FOR PLANT PATHOLOGY AND JOHN WILEY & SONS LTD.

  17. Agrobacterium-mediated high-frequency transformation of an elite commercial maize (Zea mays L.) inbred line.

    Science.gov (United States)

    Cho, Myeong-Je; Wu, Emily; Kwan, Jackie; Yu, Maryanne; Banh, Jenny; Linn, Wutt; Anand, Ajith; Li, Zhi; TeRonde, Susan; Register, James C; Jones, Todd J; Zhao, Zuo-Yu

    2014-10-01

    An improved Agrobacterium -mediated transformation protocol is described for a recalcitrant commercial maize elite inbred with optimized media modifications and AGL1. These improvements can be applied to other commercial inbreds. This study describes a significantly improved Agrobacterium-mediated transformation protocol in a recalcitrant commercial maize elite inbred, PHR03, using optimal co-cultivation, resting and selection media. The use of green regenerative tissue medium components, high copper and 6-benzylaminopurine, in resting and selection media dramatically increased the transformation frequency. The use of glucose in resting medium further increased transformation frequency by improving the tissue induction rate, tissue survival and tissue proliferation from immature embryos. Consequently, an optimal combination of glucose, copper and cytokinin in the co-cultivation, resting and selection media resulted in significant improvement from 2.6 % up to tenfold at the T0 plant level using Agrobacterium strain LBA4404 in transformation of PHR03. Furthermore, we evaluated four different Agrobacterium strains, LBA4404, AGL1, EHA105, and GV3101 for transformation frequency and event quality. AGL1 had the highest transformation frequency with up to 57.1 % at the T0 plant level. However, AGL1 resulted in lower quality events (defined as single copy for transgenes without Agrobacterium T-DNA backbone) when compared to LBA4404 (30.1 vs 25.6 %). We propose that these improvements can be applied to other recalcitrant commercial maize inbreds.

  18. Green Transformational Leadership and Green Performance: The Mediation Effects of Green Mindfulness and Green Self-Efficacy

    OpenAIRE

    Yu-Shan Chen; Ching-Hsun Chang; Yu-Hsien Lin

    2014-01-01

    No prior literature explores the influence of green transformational leadership on green performance, thus, this study develops a novel research framework to fill the research gap. This study investigates the influence of green transformational leadership on green performance and discusses the mediation effects of green mindfulness and green self-efficacy by means of structural equation modeling (SEM). The results indicate that green transformational leadership positively influences green min...

  19. Evaluation of biochar amended biosolids co-composting to improve the nutrient transformation and its correlation as a function for the production of nutrient-rich compost.

    Science.gov (United States)

    Awasthi, Mukesh Kumar; Wang, Quan; Chen, Hongyu; Wang, Meijing; Ren, Xiuna; Zhao, Junchao; Li, Jiao; Guo, Di; Li, Dong-Sheng; Awasthi, Sanjeev Kumar; Sun, Xining; Zhang, Zengqiang

    2017-08-01

    The influence of biochar amended dewatered fresh sewage sludge (DFSS)-wheat straw co-composting on nutrients transformation and end products quality was investigated. This is the first study to examine the biochar applied compost quality with different kgha -1 TKN on Brassica rapa L. growth. Seven mixtures were composted over 8-weeks period in 130-L reactor using the same DFSS with different concentration of biochar (2%, 4%, 6%, 8%, 12% and 18% on dry weight basis) and without additive added treatment served as control. The results indicated that compost with 8-12% biochar became more humified within 35days of composting, and the compost maturity parameters also showed that this could be much more feasible approach to increased water-soluble nutrients including NO 3 , DOC, DON, PO 4 3- , K + and Na + , but bioavailability of Cu, Zn, Ni and Pb content reduced as compared to control. Finally, results showed that 8-12% biochar was recommended for DFSS composting and 150kgha -1 TKN of compost dosages for organic farming. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Mediating the effects of work-life conflict between transformational leadership and health-care workers' job satisfaction and psychological wellbeing.

    Science.gov (United States)

    Munir, Fehmidah; Nielsen, Karina; Garde, Anne H; Albertsen, Karen; Carneiro, Isabella G

    2012-05-01

    To explore the mediating effects of work-life conflict between transformational leadership and job satisfaction and psychological wellbeing. The importance of work-life balance for job satisfaction and wellbeing among health-care employees is well-recognized. Evidence shows that transformational leadership style is linked to psychological wellbeing. It is possible that transformational leadership is also associated with employees' perceptions of work-life conflict, thereby influencing their job satisfaction and wellbeing. A longitudinal design was used where staff working within Danish elderly care completed a questionnaire at baseline and 18-month follow-up (N=188). Regression analyses showed that transformational leadership style was directly associated with perceptions of work-life conflict, job satisfaction and psychological wellbeing. Work-life conflict mediated between transformational leadership and wellbeing, but not job satisfaction. The findings suggest transformational leadership style may improve perceptions of work-life balance and employee wellbeing. Managers should adopt transformational leadership styles to reduce work-life conflict and enhance the wellbeing of their staff. © 2011 Blackwell Publishing Ltd.

  1. Agrobacterium tumefaciens-mediated transformation as an efficient tool for insertional mutagenesis of Cercospora zeae-maydis.

    Science.gov (United States)

    Lu, Yuanyuan; Xiao, Shuqin; Wang, Fen; Sun, Jiaying; Zhao, Likun; Yan, Libin; Xue, Chunsheng

    2017-02-01

    An efficient Agrobacterium tumefaciens-mediated transformation (ATMT) approach was developed for the plant pathogenic fungus, Cercospora zeae-maydis, which is the causative agent of gray leaf spot in maize. The transformation was evaluated with five parameters to test the efficiencies of transformation. Results showed that spore germination time, co-cultivation temperature and time were the significant influencing factors in all parameters. Randomly selected transformants were confirmed and the transformants were found to be mitotically stable, with single-copy T-DNA integration in the genome. T-DNA flanking sequences were cloned by thermal asymmetric interlaced PCR. Thus, the ATMT approach is an efficient tool for insertional mutagenesis of C. zeae-maydis. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Promoting safety voice with safety-specific transformational leadership: the mediating role of two dimensions of trust.

    Science.gov (United States)

    Conchie, Stacey M; Taylor, Paul J; Donald, Ian J

    2012-01-01

    Although safety-specific transformational leadership is known to encourage employee safety voice behaviors, less is known about what makes this style of leadership effective. We tested a model that links safety-specific transformational leadership to safety voice through various dimensions of trust. Data from 150 supervisor-employee dyads from the United Kingdom oil industry supported our predictions that the effects of safety-specific transformational leadership are sequentially mediated by affect-based trust beliefs and disclosure trust intentions. Moreover, we found that reliance trust intentions moderated the effect of disclosure: employees' disclosure intentions mediated the effects of affect-based trust on safety voice behaviors only when employees' intention to rely on their leader was moderate to high. These findings suggest that leaders seeking to encourage safety voice behaviors should go beyond "good reason" arguments and develop affective bonds with their employees.

  3. Nutrient-Deprived Retinal Progenitors Proliferate in Response to Hypoxia: Interaction of the HIF-1 and mTOR Pathway

    Directory of Open Access Journals (Sweden)

    Helena Khaliullina

    2016-05-01

    Full Text Available At a cellular level, nutrients are sensed by the mechanistic Target of Rapamycin (mTOR. The response of cells to hypoxia is regulated via action of the oxygen sensor Hypoxia-Inducible Factor 1 (HIF-1. During development, injury and disease, tissues might face conditions of both low nutrient supply and low oxygen, yet it is not clear how cells adapt to both nutrient restriction and hypoxia, or how mTOR and HIF-1 interact in such conditions. Here we explore this question in vivo with respect to cell proliferation using the ciliary marginal zone (CMZ of Xenopus. We found that both nutrient-deprivation and hypoxia cause retinal progenitors to decrease their proliferation, yet when nutrient-deprived progenitors are exposed to hypoxia there is an unexpected rise in cell proliferation. This increase, mediated by HIF-1 signalling, is dependent on glutaminolysis and reactivation of the mTOR pathway. We discuss how these findings in non-transformed tissue may also shed light on the ability of cancer cells in poorly vascularised solid tumours to proliferate.

  4. An efficient Agrobacterium-mediated transformation method for the edible mushroom Hypsizygus marmoreus.

    Science.gov (United States)

    Zhang, Jin jing; Shi, Liang; Chen, Hui; Sun, Yun qi; Zhao, Ming wen; Ren, Ang; Chen, Ming jie; Wang, Hong; Feng, Zhi yong

    2014-01-01

    Hypsizygus marmoreus is one of the major edible mushrooms in East Asia. As no efficient transformation method, the molecular and genetics studies were hindered. The glyceraldehyde-3-phosphate dehydrogenase (GPD) gene of H. marmoreus was isolated and its promoter was used to drive the hygromycin B phosphotransferase (HPH) and enhanced green fluorescent protein (EGFP) in H. marmoreus. Agrobacterium tumefaciens-mediated transformation (ATMT) was successfully applied in H. marmoreus. The transformation parameters were optimized, and it was found that co-cultivation of bacteria with protoplast at a ratio of 1000:1 at a temperature of 26 °C in medium containing 0.3 mM acetosyringone resulted in the highest transformation efficiency for Agrobacterium strain. Besides, three plasmids, each carrying a different promoter (from H. marmoreus, Ganoderma lucidum and Lentinula edodes) driving the expression of an antibiotic resistance marker, were also tested. The construct carrying the H. marmoreus gpd promoter produced more transformants than other constructs. Our analysis showed that over 85% of the transformants tested remained mitotically stable even after five successive rounds of subculturing. Putative transformants were analyzed for the presence of hph gene by PCR and Southern blot. Meanwhile, the expression of EGFP in H. marmoreus transformants was detected by fluorescence imaging. This ATMT system increases the transformation efficiency of H. marmoreus and may represent a useful tool for molecular genetic studies in this mushroom species. Copyright © 2014 Elsevier GmbH. All rights reserved.

  5. Review on Periphyton as Mediator of Nutrient Transfer in Aquatic Ecosystems

    Directory of Open Access Journals (Sweden)

    Surjya K. Saikia

    2011-12-01

    Full Text Available In the studies of aquatic ecology, periphyton has been uncared for despite its vital role in nutrient uptake and transfer to the upper trophic organisms. Being the component of food chain as attached organism it takes part in nutrient cycling in the ecosystem like that of suspended planktonic counterparts. The present review, with an aim to understand the role of periphyton in nutrient transfer from benthic environment to upper trophic level, focuses many aspects of periphyton-nutrient relationship based on available literatures. It also attempts to redefine periphyton, as a part of biofilm, harboring nutrient components like protein, fat and carbohydrate preferably in its extracellular polymeric substance (EPS, cyanobacteria, diatom and other algal communities. In addition to physical processes, nutrient uptake by periphyton is catalyzed by enzymes like Nitrogen Reductase and Alkaline Phosphatase from the environment. This uptake and transfer is further regulated by periphytic C: nutrient (N or P stoichiometry, colonization time, distribution of periphyton cover on sediments and macrophytes, macronutrient concentration, grazing, sloughing, temperature, and advective transport. The Carbon (C sources of periphyton are mainly dissolve organic matter and photosynthetic C that enters into higher trophic levels through predation and transfers as C-rich nutrient components. Despite of emerging interests on utilizing periphyton as nutrient transfer tool in aquatic ecosystem, the major challenges ahead for modern aquatic biologists lies on determining nutrient uptake and transfer rate of periphyton, periphytic growth and simulating nutrient models of periphyton to figure a complete energy cycle in aquatic ecosystem.

  6. Agrobacterium-Mediated Transformation of Bread and Durum Wheat Using Freshly Isolated Immature Embryos

    Science.gov (United States)

    Wu, Huixia; Doherty, Angela; Jones, Huw D.

    Agrobacterium-mediated transformation of wheat is becoming a viable alternative to the more established biolistic protocols. It offers advantages in terms of simple, low-copy-number integrations and can be applied with similar efficiencies to specific durum wheat and spring and winter bread wheat types varieties.

  7. A guide to binary vectors and strategies for targeted genome modification in fungi using Agrobacterium tumefaciens-mediated transformation

    DEFF Research Database (Denmark)

    Frandsen, Rasmus John Normand

    2011-01-01

    Agrobacterium tumefaciens-mediated transformation (ATMT) of fungi has become a common technique for the study of a wide variety of different fungal species over the past 12years. The discovery that the host range of A. tumefaciens could be extended to include fungi provided an efficient transform......Agrobacterium tumefaciens-mediated transformation (ATMT) of fungi has become a common technique for the study of a wide variety of different fungal species over the past 12years. The discovery that the host range of A. tumefaciens could be extended to include fungi provided an efficient......-regulation of gene expression. This review summarizes the technical advances within the field from 1998 to the summer of 2011, focusing on the development of binary vectors that are compatible with fungal transformation (over 180 general vectors) and methods for constructing binary vectors for targeted integration...

  8. Relationship of transformational leadership style with employee health and well-being: The mediating role of trust in the leader

    Directory of Open Access Journals (Sweden)

    Lyria Esperanza Perilla-Toro

    2017-07-01

    Full Text Available This study examined the relationship between transformational leadership and employee well-being indicators in developing countries, as well as the mediation role of trust in the leader. Five hundred ninety-seven employees of Colombian and Mexican organizations answered a questionnaire. Results indicated that transformational leadership relates positively with job satisfaction and negatively with distress symptomatology. No relationship was established between transformational leadership and psychological well-being. Trust in the leader mediated totally the relationship between transformational leadership and job satisfaction and symptoms of distress. These results confirm the previously described relationship between transformational leadership, less distress, and higher job satisfaction. However, it suggests too that the possible effect of transformational leadership on employees health and well-being would be limited to promoting affective aspects of well-being, but not psychological well-being. This result invites to a thorough review of the meaning and use of the concepts affective and psychological well-being and the differences between them.

  9. Plant Cell Division Analyzed by Transient Agrobacterium-Mediated Transformation of Tobacco BY-2 Cells.

    Science.gov (United States)

    Buschmann, Henrik

    2016-01-01

    The continuing analysis of plant cell division will require additional protein localization studies. This is greatly aided by GFP-technology, but plant transformation and the maintenance of transgenic lines can present a significant technical bottleneck. In this chapter I describe a method for the Agrobacterium-mediated genetic transformation of tobacco BY-2 cells. The method allows for the microscopic analysis of fluorescence-tagged proteins in dividing cells in within 2 days after starting a coculture. This transient transformation procedure requires only standard laboratory equipment. It is hoped that this rapid method would aid researchers conducting live-cell localization studies in plant mitosis and cytokinesis.

  10. Periphytic biofilms: A promising nutrient utilization regulator in wetlands.

    Science.gov (United States)

    Wu, Yonghong; Liu, Junzhuo; Rene, Eldon R

    2018-01-01

    Low nutrient utilization efficiency in agricultural ecosystems is the main cause of nonpoint source (NPS) pollution. Therefore, novel approaches should be explored to improve nutrient utilization in these ecosystems. Periphytic biofilms composed of microalgae, bacteria and other microbial organisms are ubiquitous and form a 'third phase' in artificial wetlands such as paddy fields. Periphytic biofilms play critical roles in nutrient transformation between the overlying water and soil/sediment, however, their contributions to nutrient utilization improvement and NPS pollution control have been largely underestimated. This mini review summarizes the contributions of periphytic biofilms to nutrient transformation processes, including assimilating and storing bioavailable nitrogen and phosphorus, fixing nitrogen, and activating occluded phosphorus. Future research should focus on augmenting the nitrogen fixing, phosphate solubilizing and phosphatase producing microorganisms in periphytic biofilms to improve nutrient utilization and thereby reduce NPS pollution production in artificial and natural wetland ecosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. An efficient Agrobacterium-mediated transformation method for aflatoxin generation fungus Aspergillus flavus.

    Science.gov (United States)

    Han, Guomin; Shao, Qian; Li, Cuiping; Zhao, Kai; Jiang, Li; Fan, Jun; Jiang, Haiyang; Tao, Fang

    2018-05-01

    Aspergillus flavus often invade many important corps and produce harmful aflatoxins both in preharvest and during storage stages. The regulation mechanism of aflatoxin biosynthesis in this fungus has not been well explored mainly due to the lack of an efficient transformation method for constructing a genome-wide gene mutant library. This challenge was resolved in this study, where a reliable and efficient Agrobacterium tumefaciens-mediated transformation (ATMT) protocol for A. flavus NRRL 3357 was established. The results showed that removal of multinucleate conidia, to collect a homogenous sample of uninucleate conidia for use as the transformation material, is the key step in this procedure. A. tumefaciens strain AGL-1 harboring the ble gene for zeocin resistance under the control of the gpdA promoter from A. nidulans is suitable for genetic transformation of this fungus. We successfully generated A. flavus transformants with an efficiency of ∼ 60 positive transformants per 10 6 conidia using our protocol. A small-scale insertional mutant library (∼ 1,000 mutants) was constructed using this method and the resulting several mutants lacked both production of conidia and aflatoxin biosynthesis capacity. Southern blotting analysis demonstrated that the majority of the transformants contained a single T-DNA insert on the genome. To the best of our knowledge, this is the first report of genetic transformation of A. flavus via ATMT and our protocol provides an effective tool for construction of genome-wide gene mutant libraries for functional analysis of important genes in A. flavus.

  12. Nano-MnO2-mediated transformation of triclosan with humic molecules present: kinetics, products, and pathways.

    Science.gov (United States)

    Sun, Kai; Li, Shunyao; Waigi, Michael Gatheru; Huang, Qingguo

    2018-05-01

    It has been shown that manganese dioxide (MnO 2 ) can mediate transformation of phenolic contaminants to form phenoxyl radical intermediates, and subsequently, these intermediates intercouple to form oligomers via covalent binding. However, the reaction kinetics and transformation mechanisms of phenolic contaminants with humic molecules present in nano-MnO 2 -mediated systems were still unclear. In this study, it was proven that nano-MnO 2 were effective in transforming triclosan under acidic conditions (pH 3.5-5.0) during manganese reduction, and the apparent pseudo first-order kinetics rate constants (k = 0.0599-1.5314 h -1 ) increased as the pH decreased. In particular, the transformation of triclosan by nano-MnO 2 was enhanced in the presence of low-concentration humic acid (1-10 mg L -1 ). The variation in the absorption of humic molecules at 275 nm supported possible covalent binding between humic molecules and triclosan in the nano-MnO 2 -mediated systems. A total of four main intermediate products were identified by high-resolution mass spectrometry (HRMS), regardless of humic molecules present in the systems or not. These products correspond to a suite of radical intercoupling reactions (dimers and trimers), ether cleavage (2,4-dichlorophenol), and oxidation to quinone-like products, triggered by electron transfer from triclosan molecules to nano-MnO 2 . A possible reaction pathway in humic acid solutions, including homo-coupling, decomposition, oxidation, and cross-coupling, was proposed. Our findings provide valuable information regarding the environmental fate and transformation mechanism of triclosan by nano-MnO 2 in complex water matrices.

  13. Agrobacterium tumefaciens-MEDIATED IN-PLANTA TRANSFORMATION OF INDONESIAN MAIZE USING pIG121Hm-Cs PLASMID CONTAINING nptII AND hpt GENES

    Directory of Open Access Journals (Sweden)

    Edy Listanto

    2017-05-01

    Full Text Available Maize (Zea mays L. productivity in Indonesia is challenged to be increased using genetic engineering. Recent advances in Agrobacterium tumefaciens-mediated in-planta transforma-tion makes it possible to transform maize with low cost, and simple method. This study aimed to confirm pIG121Hm-Cs plasmid in A. tumefaciens, and to estimate the efficiency level of  A. tumefaciens-mediated in-planta transformation of Indonesian maize by using pIG121Hm-Cs plasmid containing nptII and hpt genes. A series of studies were conducted including confirmation of gene construct of pIG121Hm-Cs plasmid in A. tumefaciens, transformation of four maize lines through A. tumefaciens-mediated in-planta technique, acclimatization of transformant plants and molecular analysis of selected plants using polymerase chain reaction (PCR. The pIG121Hm-Cs plasmid was confirmed via PCR analysis using specific primers of nptII and hpt genes and resulted 700 bp and 500 bp for fragments of nptII and hpt, respectively. After selection, acclimatization and molecular analysis steps, the efficiency levels of transformation of four maize lines were low, ranging from 3.8% to 12.8%. The level of transformation efficiency of ST-27 line was the highest accounting for 12.8% of 45 planted embryos on selection medium based on PCR analysis using specific primer for nptII gene. Overall, A. tumefaciens-mediated in planta transformation on maize floral pistil in this study proved to be successful and rapid. Therefore, this enhanced transformation method will be beneficial for Indonesian maize genetic engineering.

  14. Transformational Leadership and Knowledge Sharing: Mediating Roles of Employee's Empowerment, Commitment, and Citizenship Behaviors

    Science.gov (United States)

    Han, Seung Hyun; Seo, Gaeun; Yoon, Seung Won; Yoon, Dong-Yeol

    2016-01-01

    Purpose: The purpose of this paper is to empirically examine the fundamental process through which transformational leaders play a significant role in employees' knowledge sharing by investigating mediating roles of individual affects, particularly psychological empowerment, organizational commitment and organizational citizenship behavior (OCB).…

  15. Enhanced targeted integration mediated by translocated I-SceI during the Agrobacterium mediated transformation of yeast.

    Science.gov (United States)

    Rolloos, Martijn; Hooykaas, Paul J J; van der Zaal, Bert J

    2015-02-09

    Agrobacterium mediated transformation (AMT) has been embraced by biotechnologists as the technology of choice to introduce or alter genetic traits of plants. However, in plants it is virtually impossible to predetermine the integration site of the transferred T-strand unless one is able to generate a double stranded break (DSB) in the DNA at the site of interest. In this study, we used the model organism Saccharomyces cerevisiae to investigate whether the Agrobacterium mediated translocation of site-specific endonucleases via the type IV secretion system (T4SS), concomitantly with T-DNA transfer is possible and whether this can improve the gene targeting efficiency. In addition to that, the effect of different chromatin states on targeted integration, was investigated. It was found that Agrobacterium mediated translocation of the homing endonuclease I-SceI has a positive effect on the integration of T-DNA via the homologous repair (HR) pathway. Furthermore, we obtained evidence that nucleosome removal has a positive effect on I-SceI facilitated T-DNA integration by HR. Reversely; inducing nucleosome formation at the site of integration removes the positive effect of translocated I-SceI on T-DNA integration.

  16. Studies of transformational leadership in consumer service: leadership trust and the mediating-moderating role of cooperative conflict management.

    Science.gov (United States)

    Yang, Yi-Feng

    2012-02-01

    This is the third in a series of studies evaluating how transformational leadership is associated with related variables such as job satisfaction, change commitment, leadership trust, cooperative conflict management, and market orientation. The present paper evaluates the effects of transformational leadership and cooperative conflict management along with their mediating and moderating of leadership trust in the life insurance industry for two sample groups, sales managers and sales employees. The main effect of leadership trust was mediated and moderated by cooperative conflict management. Cooperative conflict management made a more important contribution than transformational leadership or the moderating effect (interaction), but these three together were the most important variables predicting highest leadership trust. Transformational leadership has an indirect influence on leadership trust. This work summarizes the specific contribution and importance of building successful leadership trust associations with employees in relation to leadership and satisfaction with change commitment.

  17. Development of an Agrobacterium-Mediated Stable Transformation Method for the Sensitive Plant Mimosa pudica

    Science.gov (United States)

    Mano, Hiroaki; Fujii, Tomomi; Sumikawa, Naomi; Hiwatashi, Yuji; Hasebe, Mitsuyasu

    2014-01-01

    The sensitive plant Mimosa pudica has long attracted the interest of researchers due to its spectacular leaf movements in response to touch or other external stimuli. Although various aspects of this seismonastic movement have been elucidated by histological, physiological, biochemical, and behavioral approaches, the lack of reverse genetic tools has hampered the investigation of molecular mechanisms involved in these processes. To overcome this obstacle, we developed an efficient genetic transformation method for M. pudica mediated by Agrobacterium tumefaciens (Agrobacterium). We found that the cotyledonary node explant is suitable for Agrobacterium-mediated transformation because of its high frequency of shoot formation, which was most efficiently induced on medium containing 0.5 µg/ml of a synthetic cytokinin, 6-benzylaminopurine (BAP). Transformation efficiency of cotyledonary node cells was improved from almost 0 to 30.8 positive signals arising from the intron-sGFP reporter gene by using Agrobacterium carrying a super-binary vector pSB111 and stabilizing the pH of the co-cultivation medium with 2-(N-morpholino)ethanesulfonic acid (MES) buffer. Furthermore, treatment of the explants with the detergent Silwet L-77 prior to co-cultivation led to a two-fold increase in the number of transformed shoot buds. Rooting of the regenerated shoots was efficiently induced by cultivation on irrigated vermiculite. The entire procedure for generating transgenic plants achieved a transformation frequency of 18.8%, which is comparable to frequencies obtained for other recalcitrant legumes, such as soybean (Glycine max) and pea (Pisum sativum). The transgene was stably integrated into the host genome and was inherited across generations, without affecting the seismonastic or nyctinastic movements of the plants. This transformation method thus provides an effective genetic tool for studying genes involved in M. pudica movements. PMID:24533121

  18. Development of an Agrobacterium-mediated stable transformation method for the sensitive plant Mimosa pudica.

    Directory of Open Access Journals (Sweden)

    Hiroaki Mano

    Full Text Available The sensitive plant Mimosa pudica has long attracted the interest of researchers due to its spectacular leaf movements in response to touch or other external stimuli. Although various aspects of this seismonastic movement have been elucidated by histological, physiological, biochemical, and behavioral approaches, the lack of reverse genetic tools has hampered the investigation of molecular mechanisms involved in these processes. To overcome this obstacle, we developed an efficient genetic transformation method for M. pudica mediated by Agrobacterium tumefaciens (Agrobacterium. We found that the cotyledonary node explant is suitable for Agrobacterium-mediated transformation because of its high frequency of shoot formation, which was most efficiently induced on medium containing 0.5 µg/ml of a synthetic cytokinin, 6-benzylaminopurine (BAP. Transformation efficiency of cotyledonary node cells was improved from almost 0 to 30.8 positive signals arising from the intron-sGFP reporter gene by using Agrobacterium carrying a super-binary vector pSB111 and stabilizing the pH of the co-cultivation medium with 2-(N-morpholinoethanesulfonic acid (MES buffer. Furthermore, treatment of the explants with the detergent Silwet L-77 prior to co-cultivation led to a two-fold increase in the number of transformed shoot buds. Rooting of the regenerated shoots was efficiently induced by cultivation on irrigated vermiculite. The entire procedure for generating transgenic plants achieved a transformation frequency of 18.8%, which is comparable to frequencies obtained for other recalcitrant legumes, such as soybean (Glycine max and pea (Pisum sativum. The transgene was stably integrated into the host genome and was inherited across generations, without affecting the seismonastic or nyctinastic movements of the plants. This transformation method thus provides an effective genetic tool for studying genes involved in M. pudica movements.

  19. A simple and highly efficient Agrobacterium-mediated transformation protocol for Setaria viridis

    Directory of Open Access Journals (Sweden)

    Polyana Kelly Martins

    2015-06-01

    Full Text Available The production and use of sugarcane in Brazil is very important for bioenergy production and is recognized as one of the most efficient in the world. In our laboratory, Setaria viridis is being tested as a model plant for sugarcane. S. viridis has biological attributes (rapid life cycle, small genome, diploid, short stature and simple growth requirements that make it suitable for use as a model system. We report a highly efficient protocol for Agrobacterium-mediated genetic transformation of S. viridis. The optimization of several steps in tissue culture allowed the rapid regeneration of plants and increased the rate of transformation up to 29%. This protocol could become a powerful tool for functional genomics in sugarcane.

  20. Transformational leadership and safety performance among nurses: the mediating role of knowledge-related job characteristics.

    Science.gov (United States)

    Lievens, Ilse; Vlerick, Peter

    2014-03-01

    To report the impact of transformational leadership on two dimensions of nurses' safety performance (i.e. safety compliance and safety participation) and to study the mediating role of knowledge-related job characteristics in this relationship. Safety performance refers to the behaviours that employees exhibit to adhere to safety guidelines and to promote health and safety at their workplace. Nurses' safety performance is a major challenge for healthcare settings, urging the need to identify the key determinants and psychological mechanisms that influence it. A cross-sectional survey study. The study was carried out in September 2010 in a large Belgian hospital. We used self-administered questionnaires; 152 nurses participated. The hypotheses were tested using hierarchical regression analyses. In line with our first hypothesis, the results show that transformational leadership exerted a significant positive impact on both dimensions of nurses' safety performance. This positive relation was mediated by knowledge-related job characteristics, supporting our second hypothesis. Head nurses' transformational leadership can enhance nurses' compliance with and participation in safety. Furthermore, transformational head nurses are able to influence the perception that their nurses have about the kind and amount of knowledge in their job, which can also lead to increases in both dimensions of nurses' safety performance. This study therefore demonstrates the key impact that transformational head nurses have, both directly and indirectly, on the safety performance of their nurses. © 2013 John Wiley & Sons Ltd.

  1. PRMT5 Is Upregulated in HTLV-1-Mediated T-Cell Transformation and Selective Inhibition Alters Viral Gene Expression and Infected Cell Survival

    Directory of Open Access Journals (Sweden)

    Amanda R. Panfil

    2015-12-01

    Full Text Available Human T-cell leukemia virus type-1 (HTLV-1 is a tumorigenic retrovirus responsible for development of adult T-cell leukemia/lymphoma (ATLL. This disease manifests after a long clinical latency period of up to 2–3 decades. Two viral gene products, Tax and HBZ, have transforming properties and play a role in the pathogenic process. Genetic and epigenetic cellular changes also occur in HTLV-1-infected cells, which contribute to transformation and disease development. However, the role of cellular factors in transformation is not completely understood. Herein, we examined the role of protein arginine methyltransferase 5 (PRMT5 on HTLV-1-mediated cellular transformation and viral gene expression. We found PRMT5 expression was upregulated during HTLV-1-mediated T-cell transformation, as well as in established lymphocytic leukemia/lymphoma cell lines and ATLL patient PBMCs. shRNA-mediated reduction in PRMT5 protein levels or its inhibition by a small molecule inhibitor (PRMT5i in HTLV-1-infected lymphocytes resulted in increased viral gene expression and decreased cellular proliferation. PRMT5i also had selective toxicity in HTLV-1-transformed T-cells. Finally, we demonstrated that PRMT5 and the HTLV-1 p30 protein had an additive inhibitory effect on HTLV-1 gene expression. Our study provides evidence for PRMT5 as a host cell factor important in HTLV-1-mediated T-cell transformation, and a potential target for ATLL treatment.

  2. Agrobacterium-mediated genetic transformation of pineapple (Ananas comosus L., Merr.).

    Science.gov (United States)

    Mhatre, Minal

    2013-01-01

    Pineapple (Ananas comosus L., Merr.) is a commercially important crop, grown in the tropical and subtropical regions. However, the crop is faced with postharvest damage and poor varietal and nutritional improvement. Being a vegetatively propagated crop, conventional breeding programs take longer time for genetic improvement, which may not necessarily successfully develop an improved cultivar. Hence, the genetic modification of pineapple is an alternative handy approach to improve pineapple. We have established an Agrobacterium-mediated transformation system using leaf bases from in vitro-grown pineapple plants. Being a monocot, acetosyringone is added to the culture medium for overnight growth of Agrobacterium and transformation to transfer a gene of interest MSI99 soybean ferritin. Leaf bases isolated from in vitro shoot cultures are treated with Agrobacterium suspension at two dilutions, 10× and 20×, for 30 min. Explants are subsequently blot dried and cultured on gelrite solidified hormone-free Pin1 medium for 2 days (cocultivation). Periodic transfer is first done to the regeneration medium (Pin1) containing cefotaxime for the suppression of Agrobacterium growth. The transformants are selected by culturing on Pin1 medium containing cefotaxime and kanamycin. Multiple shoots, regenerated in leaf bases, are further multiplied and individually rooted in the liquid RM medium amended with antibiotics to recover plants. Putative transformants are analyzed for transgene integration and expression using standard molecular biological methods of PCR, RT-PCR, and genomic Southern.

  3. Inside out: high-efficiency plant regeneration and Agrobacterium-mediated transformation of upland and lowland switchgrass cultivars.

    Science.gov (United States)

    Liu, Yan-Rong; Cen, Hui-Fang; Yan, Jian-Ping; Zhang, Yun-Wei; Zhang, Wan-Jun

    2015-07-01

    Selection of pre-embryogenic callus from a core structure from mature seed-derived callus is the key for high-efficiency plant regeneration and transformation of switchgrass different cultivars. Switchgrass (Panicum virgatum L.) has been identified as a dedicated biofuel crop. For its trait improvement through biotechnological approaches, we have developed a highly efficient plant regeneration and genetic transformation protocol for both lowland and upland cultivars. We identified and separated a pre-embryogenic "core" structure from the seed-derived callus, which often leads to development of highly regenerative type II calluses. From the type II callus, plant regeneration rate of lowland cultivars Alamo and Performer reaches 95%, and upland cultivars Blackwell and Dacotah, 50 and 76%, respectively. The type II callus was also amenable for Agrobacterium-mediated transformation. Transformation efficiency of 72.8% was achieved for lowland cultivar Alamo, and 8.0% for upland cultivar Dacotah. PCR, Southern blot and GUS staining assays were performed to verify the transgenic events. High regenerative callus lines could be established in 3 months, and transgenic plants could be obtained in 2 months after Agrobacterium infection. To our knowledge, this is the first report on successful plant regeneration and recovery of transgenic plants from upland switchgrass cultivars by Agrobacterium-mediated transformation. The method presented here could be helpful in breaking through the bottleneck of regeneration and transformation of lowland and upland switchgrass cultivars and probably other recalcitrant grass crops.

  4. Transformational Leadership, Transactional Contingent Reward, and Organizational Identification: The Mediating Effect of Perceived Innovation and Goal Culture Orientations.

    Science.gov (United States)

    Xenikou, Athena

    2017-01-01

    Purpose: The aim of this research was to investigate the effect of transformational leadership and transactional contingent reward as complementary, but distinct, forms of leadership on facets of organizational identification via the perception of innovation and goal organizational values. Design/Methodology/Approach: Three studies were carried out implementing either a measurement of mediation or experimental-causal-chain design to test for the hypothesized effects. Findings: The measurement of mediation study showed that transformational leadership had a positive direct and indirect effect, via innovation value orientation, on cognitive identification, whereas transactional contingent reward was more strongly related to affective, rather than cognitive, identification, and goal orientation was a mediator of their link. The findings of the two experimental-causal-chain studies further supported the hypothesized effects. Transformational leadership was found to lead subordinates to perceive the culture as more innovative compared to transactional contingent reward, whereas transactional contingent reward led employees to perceive the culture as more goal, than innovation, oriented. Finally, innovation, compared to goal, value orientation increased cognitive identification, while goal orientation facilitated affective, rather than cognitive, identification. Implications: The practical implications involve the development of strategies organizations can apply, such as leadership training programs, to strengthen their ties with their employees, which, in turn, may have a positive impact on in-role, as well as extra-role, behaviors. Originality/Value: The originality of this research concerns the identification of distinct mechanisms explaining the effect of transformational leadership and transactional contingent reward on cognitive and affective identification applying an organizational culture perspective and a combination of measurement and causal mediation designs.

  5. Microbe and Mineral Mediated Transformation of Heavy Metals, Radionuclides, and Organic Contaminants

    Science.gov (United States)

    Gerlach, R.

    2011-12-01

    Microorganisms influence their surroundings in many ways and humans have utilized microbially catalyzed reactions for benefit for centuries. Over the past few decades, microorganisms have been used for the control of contaminant transport in subsurface environments where many microbe mineral interactions occur. This presentation will discuss microbially influenced mineral formation and transformation as well as their influence on the fate of organic contaminants such as chlorinated aliphatics & 2,4,6-trinitrotoluene (TNT), heavy metals such as chromium, and radionuclides such as uranium & strontium. Both, batch and flow experiments have been performed, which monitor the net effect of microbe mineral interactions on the fate of these contaminants. This invited presentation will place an emphasis on the relative importance of direct microbial (i.e. biotic) transformations, mineral-mediated transformations as well as other abiotic reactions influencing the fate of environmental contaminants. Experiments will be summarized and placed in context of past and future engineered applications for the control of subsurface contaminants.

  6. Agrobacterium-mediated transformation of the wild orchid Cattleya maxima Lindl

    Directory of Open Access Journals (Sweden)

    Augusta Yadira Cueva-Agila

    2018-03-01

    Full Text Available Protocorms are unique anatomical structures; they are akin to rhizoids and are formed by young orchid seedlings under physiological conditions. Explanted orchid tissues produce similar structures called protocorm-like bodies (PLBs when exposed to appropriate in vitro growing conditions. Both the propagative nature of PLBs and the easiness by which they can be generated, make these structures an attractive alternative to seed-mediated production for growing large numbers of plants. To increase somatic embryogenesis and optimize the procedure, PLBs of Cattleya maxima were transformed using the Agrobacterium tumefaciens method. The T-DNA carried a Hygromycin-resistance gene, a visible marker (GFP5-GUSA and a rice gene encoding the Somatic Embryogenesis Receptor Kinase, deemed to be important for somatic embryogenesis. Treated PLBs generated somatic embryos developing Hygromycin-resistant plantlets. The insertion of T-DNA was confirmed by PCR, and GFP expression was observed using a fluorescent stereomicroscope. Transformed Cattleya maxima PLBs were more efficient in forming somatic embryos (60 - 80 % than untransformed controls (45 - 57 %, and this contrast was maximized in hormone-free, Murashige and Skoog (MS medium (80 % of the transformed plants compared to 57 % of the untransformed ones. This finding supports the notion that SERK plays an important role in Orchid embryogenesis

  7. Linking transformational leadership to nurses' extra-role performance: the mediating role of self-efficacy and work engagement.

    Science.gov (United States)

    Salanova, Marisa; Lorente, Laura; Chambel, Maria J; Martínez, Isabel M

    2011-10-01

    This paper is a report of a social cognitive theory-guided study about the link between supervisors' transformational leadership and staff nurses' extra-role performance as mediated by nurse self-efficacy and work engagement. Past research has acknowledged the positive influence that transformational leaders have on employee (extra-role) performance. However, less is known about the psychological mechanisms that may explain the links between transformational leaders and extra-role performance, which encompasses behaviours that are not considered formal job requirements, but which facilitate the smooth functioning of the organization as a social system. Seventeen supervisors evaluated nurses' extra-role performance, the data generating a sample consisting of 280 dyads. The nurses worked in different health services in a large Portuguese hospital and the participation rate was 76·9% for nurses and 100% for supervisors. Data were collected during 2009. A theory-driven model of the relationships between transformation leadership, self-efficacy, work engagement and nurses' extra-role performance was tested using Structural Equation Modelling. Data analysis revealed a full mediation model in which transformational leadership explained extra-role performance through self-efficacy and work engagement. A direct relationship between transformational leadership and work engagement was also found. Nurses' supervisors with a transformational leadership style enhance different 'extra-role' performance in nurses and this increases hospital efficacy. They do so by establishing a sense of self-efficacy but also by amplifying their levels of engagement in the workplace. © 2011 Blackwell Publishing Ltd.

  8. Mitochondrial Porin Isoform AtVDAC1 Regulates the Competence of Arabidopsis thaliana to Agrobacterium-Mediated Genetic Transformation.

    Science.gov (United States)

    Kwon, Tackmin

    2016-09-01

    The efficiency of Agrobacterium-mediated transformation in plants depends on the virulence of Agrobacterium strains, the plant tissue culture conditions, and the susceptibility of host plants. Understanding the molecular interactions between Agrobacterium and host plant cells is crucial when manipulating the susceptibility of recalcitrant crop plants and protecting orchard trees from crown gall disease. It was discovered that Arabidopsis voltage-dependent anion channel 1 (atvdac1) mutant has drastic effects on Agrobacterium-mediated tumorigenesis and growth developmental phenotypes, and that these effects are dependent on a Ws-0 genetic background. Genetic complementation of Arabidopsis vdac1 mutants and yeast porin1-deficient strain with members of the AtVDAC gene family revealed that AtVDAC1 is required for Agrobacterium-mediated transformation, and there is weak functional redundancy between AtVDAC1 and AtVDAC3, which is independent of porin activity. Furthermore, atvdac1 mutants were deficient in transient and stable transformation by Agrobacterium, suggesting that AtVDAC1 is involved in the early stages of Agrobacterium infection prior to transferred-DNA (T-DNA) integration. Transgenic plants overexpressing AtVDAC1 not only complemented the phenotypes of the atvdac1 mutant, but also showed high efficiency of transient T-DNA gene expression; however, the efficiency of stable transformation was not affected. Moreover, the effect of phytohormone treatment on competence to Agrobacterium was compromised in atvdac1 mutants. These data indicate that AtVDAC1 regulates the competence of Arabidopsis to Agrobacterium infection.

  9. Forest, water and people: The roles and limits of mediation in transforming watershed conflict in Northern Thailand

    Directory of Open Access Journals (Sweden)

    Ahmad Dhiaulhaq

    2017-11-01

    Full Text Available This study focuses on watershed management in Northern Thailand, where conflict over forest, land and water-use is a prevailing problem. A characteristic of watershed conflicts is that they are often multifaceted and involve multiple stakeholders with different interests and values, consequently requiring conflict management approaches that are sustainable in their outcomes, including addressing the underlying causes of the conflicts. Drawing from a case study in Mae Tia Mae Tae watershed in Northern Thailand, this study explores how mediation by external third party can contribute to the transformation of conflicts in the watershed and how the broader institutional contexts in which the conflict is embedded shapes the mediation outcomes. The study suggests that co-creation of mutual understanding and recognition of each party’s socio-cultural differences, including land-use practices, are critical in building trust and in how conflict transformation processes moved forward. Moreover, the ability of the mediator in facilitating the establishment of a deliberative institution (i.e. a watershed network committee and agreed rules on forest utilization were also critical in maintaining long-term collaboration in the watershed and potentially preventing other conflicts arising in the future. Some issues, however, may threaten the continuity of the cooperation and sustainability of peace in the watershed, including the lack of structural reform that formally recognizes local people’s rights, insecure land tenure, and the absence of legal recognition for the watershed network committee as a legitimate mechanism for watershed decision making. The paper discusses these findings by comparing it with those from our previous studies in other locations (Cambodia, Indonesia and Western Thailand to strengthen the insights from Northern Thailand. Finally, the research puts forward some recommendations for reforms and to strengthen the use of effective

  10. stream nutrient uptake, forest succession, and biogeochemical theory

    OpenAIRE

    Valett, H. M.; Crenshaw, C. L.; Wagner, P. F.

    2002-01-01

    Theories of forest succession predict a close relationship between net biomass increment and catchment nutrient retention. Retention, therefore, is expected to be greatest during aggrading phases of forest succession. In general, studies of this type have compared watershed retention efficiency by monitoring stream nutrient export at the base of the catchment. As such, streams are viewed only as transport systems. Contrary to this view, the nutrient spiraling concept emphasizes transformation...

  11. Agrobacterium-mediated genetic transformation of Coffea arabica (L.) is greatly enhanced by using established embryogenic callus cultures

    Science.gov (United States)

    2011-01-01

    Background Following genome sequencing of crop plants, one of the main challenges today is determining the function of all the predicted genes. When gene validation approaches are used for woody species, the main obstacle is the low recovery rate of transgenic plants from elite or commercial cultivars. Embryogenic calli have frequently been the target tissue for transformation, but the difficulty in producing or maintaining embryogenic tissues is one of the main problems encountered in genetic transformation of many woody plants, including Coffea arabica. Results We identified the conditions required for successful long-term proliferation of embryogenic cultures in C. arabica and designed a highly efficient and reliable Agrobacterium tumefaciens-mediated transformation method based on these conditions. The transformation protocol with LBA1119 harboring pBin 35S GFP was established by evaluating the effect of different parameters on transformation efficiency by GFP detection. Using embryogenic callus cultures, co-cultivation with LBA1119 OD600 = 0.6 for five days at 20 °C enabled reproducible transformation. The maintenance conditions for the embryogenic callus cultures, particularly a high auxin to cytokinin ratio, the age of the culture (optimum for 7-10 months of proliferation) and the use of a yellow callus phenotype, were the most important factors for achieving highly efficient transformation (> 90%). At the histological level, successful transformation was related to the number of proembryogenic masses present. All the selected plants were proved to be transformed by PCR and Southern blot hybridization. Conclusion Most progress in increasing transformation efficiency in coffee has been achieved by optimizing the production conditions of embryogenic cultures used as target tissues for transformation. This is the first time that a strong positive effect of the age of the culture on transformation efficiency was demonstrated. Our results make Agrobacterium-mediated

  12. Agrobacterium-mediated genetic transformation of Coffea arabica (L. is greatly enhanced by using established embryogenic callus cultures

    Directory of Open Access Journals (Sweden)

    Lashermes Philippe

    2011-05-01

    Full Text Available Abstract Background Following genome sequencing of crop plants, one of the main challenges today is determining the function of all the predicted genes. When gene validation approaches are used for woody species, the main obstacle is the low recovery rate of transgenic plants from elite or commercial cultivars. Embryogenic calli have frequently been the target tissue for transformation, but the difficulty in producing or maintaining embryogenic tissues is one of the main problems encountered in genetic transformation of many woody plants, including Coffea arabica. Results We identified the conditions required for successful long-term proliferation of embryogenic cultures in C. arabica and designed a highly efficient and reliable Agrobacterium tumefaciens-mediated transformation method based on these conditions. The transformation protocol with LBA1119 harboring pBin 35S GFP was established by evaluating the effect of different parameters on transformation efficiency by GFP detection. Using embryogenic callus cultures, co-cultivation with LBA1119 OD600 = 0.6 for five days at 20 °C enabled reproducible transformation. The maintenance conditions for the embryogenic callus cultures, particularly a high auxin to cytokinin ratio, the age of the culture (optimum for 7-10 months of proliferation and the use of a yellow callus phenotype, were the most important factors for achieving highly efficient transformation (> 90%. At the histological level, successful transformation was related to the number of proembryogenic masses present. All the selected plants were proved to be transformed by PCR and Southern blot hybridization. Conclusion Most progress in increasing transformation efficiency in coffee has been achieved by optimizing the production conditions of embryogenic cultures used as target tissues for transformation. This is the first time that a strong positive effect of the age of the culture on transformation efficiency was demonstrated. Our

  13. Transformational Leadership, Transactional Contingent Reward, and Organizational Identification: The Mediating Effect of Perceived Innovation and Goal Culture Orientations

    Science.gov (United States)

    Xenikou, Athena

    2017-01-01

    Purpose: The aim of this research was to investigate the effect of transformational leadership and transactional contingent reward as complementary, but distinct, forms of leadership on facets of organizational identification via the perception of innovation and goal organizational values. Design/Methodology/Approach: Three studies were carried out implementing either a measurement of mediation or experimental-causal-chain design to test for the hypothesized effects. Findings: The measurement of mediation study showed that transformational leadership had a positive direct and indirect effect, via innovation value orientation, on cognitive identification, whereas transactional contingent reward was more strongly related to affective, rather than cognitive, identification, and goal orientation was a mediator of their link. The findings of the two experimental-causal-chain studies further supported the hypothesized effects. Transformational leadership was found to lead subordinates to perceive the culture as more innovative compared to transactional contingent reward, whereas transactional contingent reward led employees to perceive the culture as more goal, than innovation, oriented. Finally, innovation, compared to goal, value orientation increased cognitive identification, while goal orientation facilitated affective, rather than cognitive, identification. Implications: The practical implications involve the development of strategies organizations can apply, such as leadership training programs, to strengthen their ties with their employees, which, in turn, may have a positive impact on in-role, as well as extra-role, behaviors. Originality/Value: The originality of this research concerns the identification of distinct mechanisms explaining the effect of transformational leadership and transactional contingent reward on cognitive and affective identification applying an organizational culture perspective and a combination of measurement and causal mediation designs

  14. Agrobacterium tumefaciens-mediated transformation for investigating pathogenicity genes of the phytopathogenic fungus Colletotrichum sansevieriae.

    Science.gov (United States)

    Nakamura, Masayuki; Kuwahara, Hideto; Onoyama, Keisuke; Iwai, Hisashi

    2012-08-01

    Agrobacterium tumefaciens-mediated transformation (AtMT) has become a common technique for DNA transformation of yeast and filamentous fungi. In this study, we first established a protocol of AtMT for the phytopathogenic fungus Colletotrichum sansevieriae. Binary T-DNA vector containing the hygromycin B phosphotransferase gene controlled by the Aspergillus nidulans gpdA promoter and the trpC terminator was constructed with pCAMBIA0380 and used with three different strains LBA4404, GV3101, and GV2260 of A. tumefaciens. Transformants were most effectively obtained when GV2260 and C. sansevieriae Sa-1-2 were co-cultivated; there were about 320 transformants per 10(6) spores. When 1,048 transformants were inoculated on Sansevieria trifasciata, three transformants were found to have completely lost their pathogenicity and two transformants displayed reduced pathogenicity. All of the five transformants had a single copy of T-DNA in their genomes. The three pathogenicity-deficient transformants were subjected to thermal asymmetric interlaced polymerase chain reaction and the reaction allowed us to amplify the sequences flanking the left and/or right borders. The flanking sequences of the two transformants, M154 and M875, showed no homology to any sequences in databases, but the sequences of M678 contained motifs of alpha-1,3-glucan synthase, suggesting that the gene might contribute to the pathogenicity of C. sansevieriae. This study describes a useful method for investigating pathogenicity genes in C. sansevieriae.

  15. A study on ranking the effects of transformational leadership style on organizational agility and mediating role of organizational creativity

    Directory of Open Access Journals (Sweden)

    Seidmehdi Veiseh

    2014-09-01

    Full Text Available The purpose of this study was to investigate the effects of the components of transformational leadership style on organizational agility and mediating role of organizational creativity in Ilam Gas Refinery located in province of Ilam, Iran. The method of the present study was descriptive and correlational-structural equation modeling. The population of this research included all 400 workers of Ilam gas refinery and the study chose a sample of196 employees. The questionnaire was standardized using Cronbach's alpha; the obtained reliability was 0.90, which indicated the reliability of the questionnaire. At the end, the data was analyzed by LISREL software and structural equation modeling analysis was conducted. The findings showed that transformational leadership style had an effect on organizational agility. In addition, organizational creativity maintained a mediator role on influencing the transformational leadership on organizational agility. The four dimensions of transformational leadership, hopeful influence, inspirational motivation, intellectual encouragement as well as personal considerations also influenced on the agility of organizations.

  16. Histology of somatic embryos of eurycoma longifolia (simaroubaceae): relevance in agrobacterium rhizogenes-mediated transformation

    International Nuclear Information System (INIS)

    Balakrishnan, B.; Rabiah, S.S.; Keng, C.L.

    2014-01-01

    Histological analysis conducted on somatic embryos of Eurycoma longifolia shows the developmental structures that are remarkably similar to seeds found in the wild. The primary components of a growing somatic embryo are its shoot and root apical meristems indicated by dense layers of rapidly growing cells. The increased understanding of In vitro culture systems and anatomical changes provide information into cellular processes that govern genetic transformation of E. longifolia with Agrobacterium rhizogenes. The presence of meristematic regions on cultured somatic embryos suggests that they are suitable for genetic transformation as genetic elements could be transported to these regions where growth and differentiation are centered. This allows the successful integration and expression of transferred DNA in the host organism, leading the way for an efficient A. rhizogenes-mediated transformation protocol. (author)

  17. Cell-mediated mutagenesis and cell transformation of mammalian cells by chemical carcinogens

    International Nuclear Information System (INIS)

    Huberman, E.; Langenbach, R.

    1977-01-01

    We have developed a cell-mediated mutagenesis assay in which cells with the appropriate markers for mutagenesis are co-cultivated with either lethally irradiated rodent embryonic cells that can metabolize carcinogenic hydrocarbons or with primary rat liver cells that can metabolize chemicals carcinogenic to the liver. During co-cultivation, the reactive metabolites of the procarcinogen appear to be transmitted to the mutable cells and induce mutations in them. Assays of this type make it possible to demonstrate a relationship between carcinogenic potency of the chemicals and their ability to induce mutations in mammalian cells. In addition, by simultaneously comparing the frequencies of transformation and mutation induced in normal diploid hamster cells by benzo(a)pyrene (BP) and one of its metabolites, it is possible to estimate the genetic target size for cell transformation in vitro

  18. EWS/FLI mediates transcriptional repression via NKX2.2 during oncogenic transformation in Ewing's sarcoma.

    Directory of Open Access Journals (Sweden)

    Leah A Owen

    2008-04-01

    Full Text Available EWS/FLI is a master regulator of Ewing's sarcoma formation. Gene expression studies in A673 Ewing's sarcoma cells have demonstrated that EWS/FLI downregulates more genes than it upregulates, suggesting that EWS/FLI, and/or its targets, function as transcriptional repressors. One critical EWS/FLI target, NKX2.2, is a transcription factor that contains both transcriptional activation and transcriptional repression domains, raising the possibility that it mediates portions of the EWS/FLI transcriptional signature. We now report that microarray analysis demonstrated that the transcriptional profile of NKX2.2 consists solely of downregulated genes, and overlaps with the EWS/FLI downregulated signature, suggesting that NKX2.2 mediates oncogenic transformation via transcriptional repression. Structure-function analysis revealed that the DNA binding and repressor domains in NKX2.2 are required for oncogenesis in Ewing's sarcoma cells, while the transcriptional activation domain is completely dispensable. Furthermore, blockade of TLE or HDAC function, two protein families thought to mediate the repressive function of NKX2.2, inhibited the transformed phenotype and reversed the NKX2.2 transcriptional profile in Ewing's sarcoma cells. Whole genome localization studies (ChIP-chip revealed that a significant portion of the NKX2.2-repressed gene expression signature was directly mediated by NKX2.2 binding. These data demonstrate that the transcriptional repressive function of NKX2.2 is necessary, and sufficient, for the oncogenic phenotype of Ewing's sarcoma, and suggest a therapeutic approach to this disease.

  19. Agrobacterium-mediated transformation of bottle gourd (Lagenaria siceraria Standl.).

    Science.gov (United States)

    Han, J-S; Kim, C K; Park, S H; Hirschi, K D; Mok, I- G

    2005-03-01

    We describe a procedure for producing transgenic bottle gourd plants by inoculating cotyledon explants with Agrobacterium tumefaciens strain AGL1 that carries the binary vector pCAMBIA3301 containing a glufosinate ammonium-resistance (bar) gene and the beta-D-glucuronidase (GUS) reporter gene. The most effective bacterial infection was observed when cotyledon explants of 4-day-old seedlings were co-cultivated with Agrobacterium for 6-8 days on co-cultivation medium supplemented with 0.1-0.001 mg/l L-alpha-(2-aminoethoxyvinyl) glycine (AVG). The putatively transformed shoots directly emerged at the proximal end of cotyledon explants after 2-3 weeks of culturing on selection medium containing 2 mg/l DL-phosphinothricin. These shoots were rooted after 3 weeks of culturing on half-strength MS medium containing 0.1 mg/l indole acetic acid and 1 mg/l DL-phosphinothricin. Transgenic plants were obtained at frequencies of 1.9%. Stable integration and transmission of the transgenes in T1 generation plants were confirmed by a histochemical GUS assay, polymerase chain reaction and Southern blot analyses. Genetic segregation analysis of T1 progenies showed that transgenes were inherited in a Mendelian fashion. To our knowledge, this study is the first to show Agrobacterium-mediated transformation in bottle gourd.

  20. Does self-efficacy mediate the relationship between transformational leadership behaviours and healthcare workers' sleep quality? A longitudinal study.

    Science.gov (United States)

    Munir, Fehmidah; Nielsen, Karina

    2009-09-01

    This paper is a report of a study conducted to investigate the longitudinal relationship between transformational leadership behaviours and employees' sleep quality, and the mediating effects of self-efficacy. Although there is evidence for the influential role of transformational leadership on health outcomes, researchers have used either attitude outcomes (e.g. job satisfaction) or softer health measures, such as general well-being. Specific measures of well-being such as sleep quality have not been used, despite its association with working conditions. A longitudinal design was used to collect data from Danish healthcare workers at time 1 in 2005 (n = 447) and 18 months later at time 2 in 2007 (n = 274). Structural equation modelling was used to investigate the relationships between transformational leadership, self-efficacy and sleep quality at both time points independently (cross-sectionally) and longitudinally. For all constructs, time 2 measures were influenced by the baseline level. Direct relationships between transformational leadership and sleep quality were found. This relationship was negative cross-sectionally at both time points, but positive between baseline and follow-up. The relationship between leadership and employees' sleep quality was not mediated by employees' self-efficacy. Our results indicate that training managers in transformational leadership behaviours may have a positive impact on healthcare workers' health over time. However, more research is needed to examine the mechanisms by which transformational leadership brings about improved sleep quality; self-efficacy was not found to be the explanation.

  1. Homologous gene targeting of a carotenoids biosynthetic gene in Rhodosporidium toruloides by Agrobacterium-mediated transformation.

    Science.gov (United States)

    Sun, Wenyi; Yang, Xiaobing; Wang, Xueying; Lin, Xinping; Wang, Yanan; Zhang, Sufang; Luan, Yushi; Zhao, Zongbao K

    2017-07-01

    To target a carotenoid biosynthetic gene in the oleaginous yeast Rhodosporidium toruloides by using the Agrobacterium-mediated transformation (AMT) method. The RHTO_04602 locus of R. toruloides NP11, previously assigned to code the carotenoid biosynthetic gene CRTI, was amplified from genomic DNA and cloned into the binary plasmid pZPK-mcs, resulting in pZPK-CRT. A HYG-expression cassette was inserted into the CRTI sequence of pZPK-CRT by utilizing the restriction-free clone strategy. The resulted plasmid was used to transform R. toruloides cells according to the AMT method, leading to a few white transformants. Sequencing analysis of those transformants confirmed homologous recombination and insertional inactivation of CRTI. When the white variants were transformed with a CRTI-expression cassette, cells became red and produced carotenoids as did the wild-type strain NP11. Successful homologous targeting of the CrtI locus confirmed the function of RHTO_04602 in carotenoids biosynthesis in R. toruloides. It provided valuable information for metabolic engineering of this non-model yeast species.

  2. Psychological need fulfillment as a mediator of the relationship between transformational leadership and positive job attitudes

    NARCIS (Netherlands)

    Hetland, J.; Hetland, H.; Bakker, A.B.; Demerouti, E.; Andreassen, C.S.; Pallesen, S.

    2015-01-01

    Purpose – The purpose of this paper is to explore the possible mediating role of need fulfilment in the relationship between transformational leadership and employee job attitudes (job satisfaction and dedication). Design/methodology/approach – The two samples include both cross-sectional and diary

  3. Salmon-mediated nutrient flux in selected streams of the Columbia River basin, USA

    Science.gov (United States)

    Kohler, Andre E.; Kusnierz, Paul C.; Copeland, Timothy; Venditti, David A.; Denny, Lytle; Gable, Josh; Lewis, Bert; Kinzer, Ryan; Barnett, Bruce; Wipfli, Mark S.

    2013-01-01

    Salmon provide an important resource subsidy and linkage between marine and land-based ecosystems. This flow of energy and nutrients is not uni-directional (i.e., upstream only); in addition to passive nutrient export via stream flow, juvenile emigrants actively export nutrients from freshwater environments. In some cases, nutrient export can exceed import. We evaluated nutrient fluxes in streams across central Idaho, USA using Chinook salmon (Oncorhynchus tshawytscha) adult escapement and juvenile production data from 1998 to 2008. We found in the majority of stream-years evaluated, adults imported more nutrients than progeny exported; however, in 3% of the years, juveniles exported more nutrients than their parents imported. On average, juvenile emigrants exported 22 ± 3% of the nitrogen and 30 ± 4% of the phosphorus their parents imported. This relationship was density dependent and nonlinear; during periods of low adult abundance juveniles were larger and exported up to 194% and 268% of parental nitrogen and phosphorus inputs, respectively. We highlight minimum escapement thresholds that appear to 1) maintain consistently positive net nutrient flux and 2) reduce the average proportional rate of export across study streams. Our results suggest a state-shift occurs when adult spawner abundance falls below a threshold to a point where the probability of juvenile nutrient exports exceeding adult imports becomes increasingly likely.

  4. Aboveground insect infestation attenuates belowground Agrobacterium-mediated genetic transformation.

    Science.gov (United States)

    Song, Geun Cheol; Lee, Soohyun; Hong, Jaehwa; Choi, Hye Kyung; Hong, Gun Hyong; Bae, Dong-Won; Mysore, Kirankumar S; Park, Yong-Soon; Ryu, Choong-Min

    2015-07-01

    Agrobacterium tumefaciens causes crown gall disease. Although Agrobacterium can be popularly used for genetic engineering, the influence of aboveground insect infestation on Agrobacterium induced gall formation has not been investigated. Nicotiana benthamiana leaves were exposed to a sucking insect (whitefly) infestation and benzothiadiazole (BTH) for 7 d, and these exposed plants were inoculated with a tumorigenic Agrobacterium strain. We evaluated, both in planta and in vitro, how whitefly infestation affects crown gall disease. Whitefly-infested plants exhibited at least a two-fold reduction in gall formation on both stem and crown root. Silencing of isochorismate synthase 1 (ICS1), required for salicylic acid (SA) synthesis, compromised gall formation indicating an involvement of SA in whitefly-derived plant defence against Agrobacterium. Endogenous SA content was augmented in whitefly-infested plants upon Agrobacterium inoculation. In addition, SA concentration was three times higher in root exudates from whitefly-infested plants. As a consequence, Agrobacterium-mediated transformation of roots of whitefly-infested plants was clearly inhibited when compared to control plants. These results suggest that aboveground whitefly infestation elicits systemic defence responses throughout the plant. Our findings provide new insights into insect-mediated leaf-root intra-communication and a framework to understand interactions between three organisms: whitefly, N. benthamiana and Agrobacterium. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  5. Six1 overexpression at early stages of HPV16-mediated transformation of human keratinocytes promotes differentiation resistance and EMT

    International Nuclear Information System (INIS)

    Xu, Hanwen; Pirisi, Lucia; Creek, Kim E.

    2015-01-01

    Previous studies in our laboratory discovered that SIX1 mRNA expression increased during in vitro progression of HPV16-immortalized human keratinocytes (HKc/HPV16) toward a differentiation-resistant (HKc/DR) phenotype. In this study, we explored the role of Six1 at early stages of HPV16-mediated transformation by overexpressing Six1 in HKc/HPV16. We found that Six1 overexpression in HKc/HPV16 increased cell proliferation and promoted cell migration and invasion by inducing epithelial–mesenchymal transition (EMT). Moreover, the overexpression of Six1 in HKc/HPV16 resulted in resistance to serum and calcium-induced differentiation, which is the hallmark of the HKc/DR phenotype. Activation of MAPK in HKc/HPV16 overexpressing Six1 is linked to resistance to calcium-induced differentiation. In conclusion, this study determined that Six1 overexpression resulted in differentiation resistance and promoted EMT at early stages of HPV16-mediated transformation of human keratinocytes. - Highlights: • Six1 expression increases during HPV16-mediated transformation. • Six1 overexpression causes differentiation resistance in HPV16-immortalized cells. • Six1 overexpression in HPV16-immortalized keratinocytes activates MAPK. • Activation of MAPK promotes EMT and differentiation resistance. • Six1 overexpression reduces Smad-dependent TGF-β signaling

  6. In vitro azadirachtin production by hairy root cultivation of Azadirachta indica in nutrient mist bioreactor.

    Science.gov (United States)

    Srivastava, Smita; Srivastava, A K

    2012-01-01

    Azadirachtin, a well-known biopesticide is a secondary metabolite conventionally extracted from the seeds of Azadirachta indica. The present study involved in vitro azadirachtin production by developing hairy roots of A. indica via Agrobacterium rhizogenes-mediated transformation of A. indica explants. Liquid culture of hairy roots was established in shake flask to study the kinetics of growth and azadirachtin production. A biomass production of 13.3 g/L dry weight (specific growth rate of 0.7 day(-1)) was obtained after 25 days of cultivation period with an azadirachtin yield of 3.3 mg/g root biomass. To overcome the mass transfer limitation in conventionally used liquid-phase reactors, batch cultivation of hairy roots was carried out in gas-phase reactors (nutrient spray and nutrient mist bioreactor) to investigate the possible scale-up of A. indica hairy root culture. The nano-size nutrient mist particles generated from the nozzle of the nutrient mist bioreactor could penetrate till the inner core of the inoculated root matrix, facilitating uniform growth during high-density cultivation of hairy roots. A biomass production of 9.8 g/L dry weight with azadirachtin accumulation of 2.8 mg/g biomass (27.4 mg/L) could be achieved in 25 days of batch cultivation period, which was equivalent to a volumetric productivity of 1.09 mg/L per day of azadirachtin.

  7. Knockdown of AMPKα decreases ATM expression and increases radiosensitivity under hypoxia and nutrient starvation in an SV40-transformed human fibroblast cell line, LM217.

    Science.gov (United States)

    Murata, Yasuhiko; Hashimoto, Takuma; Urushihara, Yusuke; Shiga, Soichiro; Takeda, Kazuya; Jingu, Keiichi; Hosoi, Yoshio

    2018-01-22

    Presence of unperfused regions containing cells under hypoxia and nutrient starvation contributes to radioresistance in solid human tumors. It is well known that hypoxia causes cellular radioresistance, but little is known about the effects of nutrient starvation on radiosensitivity. We have reported that nutrient starvation induced decrease of mTORC1 activity and decrease of radiosensitivity in an SV40-transformed human fibroblast cell line, LM217, and that nutrient starvation induced increase of mTORC1 activity and increase of radiosensitivity in human liver cancer cell lines, HepG2 and HuH6 (Murata et al., BBRC 2015). Knockdown of mTOR using small interfering RNA (siRNA) for mTOR suppressed radiosensitivity under nutrient starvation alone in HepG2 cells, which suggests that mTORC1 pathway regulates radiosensitivity under nutrient starvation alone. In the present study, effects of hypoxia and nutrient starvation on radiosensitivity were investigated using the same cell lines. LM217 and HepG2 cells were used to examine the effects of hypoxia and nutrient starvation on cellular radiosensitivity, mTORC1 pathway including AMPK, ATM, and HIF-1α, which are known as regulators of mTORC1 activity, and glycogen storage, which is induced by HIF-1 and HIF-2 under hypoxia and promotes cell survival. Under hypoxia and nutrient starvation, AMPK activity and ATM expression were increased in LM217 cells and decreased in HepG2 cells compared with AMPK activity under nutrient starvation alone or ATM expression under hypoxia alone. Under hypoxia and nutrient starvation, radiosensitivity was decreased in LM217 cells and increased in HepG2 cells compared with radiosensitivity under hypoxia alone. Under hypoxia and nutrient starvation, knockdown of AMPK decreased ATM activity and increased radiation sensitivity in LM217 cells. In both cell lines, mTORC1 activity was decreased under hypoxia and nutrient starvation. Under hypoxia alone, knockdown of mTOR slightly increased ATM

  8. Peran Information Conciousness dan Nutrient Information dalam Meningkatkan Kinerja Individual

    Directory of Open Access Journals (Sweden)

    Niken Wahyu Wilujeng

    2014-12-01

    Full Text Available The objective of this research is to analyze nutrient information and information consciousness as factors that influence employee’s performance and job satisfication as intervening variable for finance employee in Brawijaya University. By employing Partial Least Square technique, it was indicated that nutrient information and information consciousness have positive effect to job satisfication, while job satisfication can also fully mediate nutrient information and information consciousness to employee’s performance. This research also indicated that information consciousness and nutrient information are factors that influence finance employee’s performance through intelectual emphasis.

  9. Methods for genetic transformation of filamentous fungi.

    Science.gov (United States)

    Li, Dandan; Tang, Yu; Lin, Jun; Cai, Weiwen

    2017-10-03

    Filamentous fungi have been of great interest because of their excellent ability as cell factories to manufacture useful products for human beings. The development of genetic transformation techniques is a precondition that enables scientists to target and modify genes efficiently and may reveal the function of target genes. The method to deliver foreign nucleic acid into cells is the sticking point for fungal genome modification. Up to date, there are some general methods of genetic transformation for fungi, including protoplast-mediated transformation, Agrobacterium-mediated transformation, electroporation, biolistic method and shock-wave-mediated transformation. This article reviews basic protocols and principles of these transformation methods, as well as their advantages and disadvantages.

  10. Neuronal regulation of homeostasis by nutrient sensing.

    Science.gov (United States)

    Lam, Tony K T

    2010-04-01

    In type 2 diabetes and obesity, the homeostatic control of glucose and energy balance is impaired, leading to hyperglycemia and hyperphagia. Recent studies indicate that nutrient-sensing mechanisms in the body activate negative-feedback systems to regulate energy and glucose homeostasis through a neuronal network. Direct metabolic signaling within the intestine activates gut-brain and gut-brain-liver axes to regulate energy and glucose homeostasis, respectively. In parallel, direct metabolism of nutrients within the hypothalamus regulates food intake and blood glucose levels. These findings highlight the importance of the central nervous system in mediating the ability of nutrient sensing to maintain homeostasis. Futhermore, they provide a physiological and neuronal framework by which enhancing or restoring nutrient sensing in the intestine and the brain could normalize energy and glucose homeostasis in diabetes and obesity.

  11. Context-dependent effects of nutrient loading on the coral-algal mutualism.

    Science.gov (United States)

    Shantz, Andrew A; Burkepile, Deron E

    2014-07-01

    Human-mediated increases in nutrient availability alter patterns of primary production, impact species diversity, and threaten ecosystem function. Nutrients can also alter community structure by disrupting the relationships between nutrient-sharing mutualists that form the foundation of communities. Given their oligotrophic nature and the dependence of reef-building corals on symbiotic relationships, coral reefs may be particularly vulnerable to excess nutrients. However, individual studies suggest complex, even contradictory, relationships among nutrient availability, coral physiology, and coral growth. Here, we used meta-analysis to establish general patterns of the impact of nitrogen (N) and phosphorus (P) on coral growth and photobiology. Overall, we found that over a wide range of concentrations, N reduced coral calcification 11%, on average, but enhanced metrics of coral photobiology, such as photosynthetic rate. In contrast, P enrichment increased average calcification rates by 9%, likely through direct impacts on the calcification process, but minimally impacted coral photobiology. There were few synergistic impacts of combined N and P on corals, as the nutrients impact corals via different pathways. Additionally, the response of corals to increasing nutrient availability was context dependent, varying with coral taxa and morphology, enrichment source, and nutrient identity. For example, naturally occurring enrichment from fish excretion increased coral growth, while human-mediated enrichment tended to decrease coral growth. Understanding the nuances of the relationship between nutrients and corals may allow for more targeted remediation strategies and suggest how other global change drivers such as overfishing and climate change will shape how nutrient availability impacts corals.

  12. Comparison of agrobacterium mediated wheat and barley transformation with nucleoside diphosphate kinase 2 (NDPK2) gene

    International Nuclear Information System (INIS)

    Waheed, U.; Shah, M.M.; Smedley, M.; Harwood, W.

    2016-01-01

    An efficient and reliable transformation system is imperative for improvement of important crop species like barley and wheat. Wheat transformation is complex due to larger genome size and polyploidy while barley has a limitation of genotypic dependency. The objective of current study was to compare the relative transformation efficiency of wheat and barley using specific expression vector pBRACT 214-NDPK2 constructed through gateway cloning carrying Nucleoside Diphosphate Kinase 2 (NDPK2) gene. The vector was used to compare the transformation response in both crops using immature embryos through Agrobacterium mediated transformation. Both wheat and barley showed different responses towards callus induction and regeneration. Immature embryos of 1.5 to 2 mm in diameter was found optimum for wheat callus induction while 1 to 1.5 mm for barley. Both embryogenic and non-embryogenic calli were found in wheat with significantly greater tendency for embryogenecity in barley. The overall regeneration response was found different for all transformed wheat and barley cultivars. Wheat cultivars showed good response initially that drastically slowed down in later stages with the exception of Fielder that reached to the green shoots with good roots. The barley transformed lines showed good regeneration response as compared to wheat. PCR analysis of putative transformants using genomic DNA showed a maximum of 27% transformation efficiency in barely. No true transformation response was obtained in all cultivars of wheat used in this study. The protocol developed for wheat and barley transformation will greatly be helpful in crop improvement programme through genetic engineering especially in diploid relatives of cereals. (author)

  13. High-throughput Agrobacterium-mediated barley transformation

    Directory of Open Access Journals (Sweden)

    Snape John W

    2008-09-01

    Full Text Available Abstract Background Plant transformation is an invaluable tool for basic plant research, as well as a useful technique for the direct improvement of commercial crops. Barley (Hordeum vulgare is the fourth most abundant cereal crop in the world. It also provides a useful model for the study of wheat, which has a larger and more complex genome. Most existing barley transformation methodologies are either complex or have low ( Results A robust, simple and reproducible barley transformation protocol has been developed that yields average transformation efficiencies of 25%. This protocol is based on the infection of immature barley embryos with Agrobacterium strain AGL1, carrying vectors from the pBract series that contain the hpt gene (conferring hygromycin resistance as a selectable marker. Results of large scale experiments utilising the luc (firefly luciferase gene as a reporter are described. The method presented here has been used to produce hundreds of independent, transgenic plant lines and we show that a large proportion of these lines contain single copies of the luc gene. Conclusion This protocol demonstrates significant improvements in both efficiency and ease of use over existing barley transformation methods. This opens up opportunities for the development of functional genomics resources in barley.

  14. AGROBACTERIUM-MEDIATED GENETIC TRANSFORMATION OF SORGHUM USING TISSUE CULTURE-BASED AND POLLEN-MEDIATED APPROACHES

    Directory of Open Access Journals (Sweden)

    Elkonin L.A.

    2012-08-01

    Full Text Available Genetic transformation is a powerful tool for genetic improvement of arable crops. Genetic engineering approaches are especially important for modification of starch and protein contents, vitamin and micronutrient concentration, improvement of nutritive value of protein fractions, and increase tolerance to environmental stresses. Application of transgenic technologies for genetic improvement of sorghum, a highly productive heat tolerant and drought resistant crop, is extremely important since climate aridization in many regions all over the globe hampers sustainable production of traditional cereals, such as wheat, maize and barley. However, sorghum, in spite of great number of investigations, is one of the most recalcitrant crop species to genetic modification. The most frequently reported problems are a low frequency of transformation and silencing of transgenes. Using the A. tumefaciens strain AGL0/p35SGIB with the bar and gus-intron genes under the nos and CaMV35S promoters, respectively, we studied different methods of Agrobacterium-mediated genetic transformation of the grain sorghum: in vitro culture-based techniques, by inoculation of immature embryos or embryo-derived calli, and pollen-mediated approach, by inoculation of flowering panicles. Four lines of grain sorghum – Milo-10, [9E] Milo-10 (CMS-line, KVV-114, and KVV-45 – were used. In both approaches, for activation of vir-genes agrobacterial cell suspension was grown in the AB or modified AB media with acetosyringone at room temperature. In vitro culture approach was effective for obtaining transgenic plants in the lines Milo-10 and KVV-45, which were able to produce embryogenic callus from immature embryos after their co-cultivation with agrobacterial cell suspension. Callus cultures tolerant to glufosinate ammonium (GA and capable to plant regeneration were obtained. The frequency of immature embryos producing PCR-positive transgenic plants varied in different experiments

  15. Knowledge management as a mediator for the efficacy of transformational leadership and quality management initiatives in U.S. health care.

    Science.gov (United States)

    Gowen, Charles R; Henagan, Stephanie C; McFadden, Kathleen L

    2009-01-01

    The health care industry has become one of the largest sectors of the U.S. economy and provides the greatest job growth of any industry. With such growth, effective leadership, knowledge management, and quality programs can ameliorate patient safety outcomes and improve organizational performance. This exploratory study examines the efficacy of transformational leadership, knowledge management, and quality initiatives, each of which has been proven effective in health care organizations. The literature has neglected the relationships among these three types of programs, although they are increasingly implemented simultaneously now. This research tests the degree to which knowledge management could act as a mediator of the effects transformational leadership and quality management have on organizational performance for hospitals. Our survey of U.S. hospitals utilizes validated scales from the literature. By calling and e-mailing quality and other department directors, the data set includes responses from all 50 states in our sample of 370 U.S. hospitals. Statistical tests confirmed acceptable regional distribution, interrater reliability, and control variable characteristics for our sample. Structural equation modeling is used to test the research hypotheses. These preliminary results reveal that transformational leadership and quality management improve knowledge management. In addition, transformational leadership is fully mediated by knowledge responsiveness and quality management is partially mediated by knowledge responsiveness for their effects on organizational performance. The unique contribution of this study includes the suggestion that greater transformational leadership skills are important for health care executives to motivate successful knowledge management initiatives. Secondly, continuous improvements in quality management programs have significant positive impacts on knowledge management and organizational outcomes in hospitals. Finally, successful

  16. Consumer-driven nutrient dynamics in freshwater ecosystems: from individuals to ecosystems.

    Science.gov (United States)

    Atkinson, Carla L; Capps, Krista A; Rugenski, Amanda T; Vanni, Michael J

    2017-11-01

    The role of animals in modulating nutrient cycling [hereafter, consumer-driven nutrient dynamics (CND)] has been accepted as an important influence on both community structure and ecosystem function in aquatic systems. Yet there is great variability in the influence of CND across species and ecosystems, and the causes of this variation are not well understood. Here, we review and synthesize the mechanisms behind CND in fresh waters. We reviewed 131 articles on CND published between 1973 and 1 June 2015. The rate of new publications in CND has increased from 1.4 papers per year during 1973-2002 to 7.3 per year during 2003-2015. The majority of investigations are in North America with many concentrating on fish. More recent studies have focused on animal-mediated nutrient excretion rates relative to nutrient demand and indirect impacts (e.g. decomposition). We identified several mechanisms that influence CND across levels of biological organization. Factors affecting the stoichiometric plasticity of consumers, including body size, feeding history and ontogeny, play an important role in determining the impact of individual consumers on nutrient dynamics and underlie the stoichiometry of CND across time and space. The abiotic characteristics of an ecosystem affect the net impact of consumers on ecosystem processes by influencing consumer metabolic processes (e.g. consumption and excretion/egestion rates), non-CND supply of nutrients and ecosystem nutrient demand. Furthermore, the transformation and transport of elements by populations and communities of consumers also influences the flow of energy and nutrients across ecosystem boundaries. This review highlights that shifts in community composition or biomass of consumers and eco-evolutionary underpinnings can have strong effects on the functional role of consumers in ecosystem processes, yet these are relatively unexplored aspects of CND. Future research should evaluate the value of using species traits and abiotic

  17. Agrobacterium-mediated genetic transformation and regeneration of transgenic plants using leaf midribs as explants in ramie [Boehmeria nivea (L.) Gaud].

    Science.gov (United States)

    An, Xia; Wang, Bo; Liu, Lijun; Jiang, Hui; Chen, Jie; Ye, Shengtuo; Chen, Leiyu; Guo, Pingan; Huang, Xing; Peng, Dingxiang

    2014-05-01

    In this study, leaf midribs, the elite explants, were used for the first time to develop an efficient regeneration and transformation protocol for ramie [Boehmeria nivea (L.) Gaud.] via Agrobacterium-mediated genetic transformation. Sensitivity of leaf midribs regeneration to kanamycin was evaluated, which showed that 40 mg l(-1) was the optimal concentration needed to create the necessary selection pressure. Factors affecting the ramie transformation efficiency were evaluated, including leaf age, Agrobacterium concentration, length of infection time for the Agrobacterium solution, acetosyringone concentration in the co-cultivation medium, and the co-cultivation period. The midrib explants from 40-day-old in vitro shoots, an Agrobacterium concentration at OD600 of 0.6, 10-min immersion in the bacteria solution, an acetosyringone concentration of 50 mg l(-1) in the co-cultivation medium and a 3-day co-cultivation period produced the highest efficiencies of regeneration and transformation. In this study, the average transformation rate was 23.25%. Polymerase chain reactions using GUS and NPTII gene-specific primers, Southern blot and histochemical GUS staining analyses further confirmed that the transgene was integrated into the ramie genome and expressed in the transgenic ramie. The establishment of this system of Agrobacterium-mediated genetic transformation and regeneration of transgenic plants will be used not only to introduce genes of interest into the ramie genome for the purpose of trait improvement, but also as a common means of testing gene function by enhancing or inhibiting the expression of target genes.

  18. Transformational leadership as a mediator in the relationship between satisfaction with remuneration and the retention of artisans in the military

    Directory of Open Access Journals (Sweden)

    Zamokuhle W. Shabane

    2017-11-01

    Full Text Available Orientation: The field of leadership has been extensively researched over the last couple of decades, with a particular emphasis on the different types of leadership styles. The most valuable resource that any manager works with is human resources. Studies have indicated that the way in which people are managed is influenced by the leadership styles of managers. This, in turn, influences employee behavioural intention, including intention to quit. Retention is, in turn, influenced by a number of factors, including remuneration. This study considers the relationship between satisfaction with remuneration and retention and the mediating role that a transformational leadership style may play in this regard. Research purpose: The objectives of this study were twofold. Firstly, to determine whether transformational leadership played a mediating role in the relationship between satisfaction with remuneration and intention to stay amongst artisans employed in the military. Secondly, to determine whether there were demographic differences for these findings. Motivation for the study: This study was conducted to determine whether a perceived lack or presence of transformational leadership influences the intention to quit amongst employees in relation to their level of satisfaction with their remuneration. In this way, the study may assist in determining strategies to improve artisan retention levels. Research methodology: The study was quantitative in nature. A survey research design was applied to collect data, using a questionnaire as the survey instrument, from artisans (N = 108 employed at a military unit in Pretoria. Main findings: The results revealed that the participants, regardless of gender or race, were generally unsatisfied with their remuneration. Transformational leadership was found to play a mediating role in the relationship between satisfaction with remuneration and intention to stay. Practical/managerial implications: Organisations

  19. Detection of Oil Palm Root Penetration by Agrobacterium-Mediated Transformed Ganoderma boninense, Expressing Green Fluorescent Protein.

    Science.gov (United States)

    Govender, Nisha; Wong, Mui-Yun

    2017-04-01

    A highly efficient and reproducible Agrobacterium-mediated transformation protocol for Ganoderma boninense was developed to facilitate observation of the early stage infection of basal stem rot (BSR). The method was proven amenable to different explants (basidiospore, protoplast, and mycelium) of G. boninense. The transformation efficiency was highest (62%) under a treatment combination of protoplast explant and Agrobacterium strain LBA4404, with successful expression of an hyg marker gene and gus-gfp fusion gene under the control of heterologous p416 glyceraldehyde 3-phosphate dehydrogenase promoter. Optimal transformation conditions included a 1:100 Agrobacterium/explant ratio, induction of Agrobacterium virulence genes in the presence of 250 μm acetosyringone, co-cultivation at 22°C for 2 days on nitrocellulose membrane overlaid on an induction medium, and regeneration of transformants on potato glucose agar prepared with 0.6 M sucrose and 20 mM phosphate buffer. Evaluated transformants were able to infect root tissues of oil palm plantlets with needle-like microhyphae during the penetration event. The availability of this model pathogen system for BSR may lead to a better understanding of the pathogenicity factors associated with G. boninense penetration into oil palm roots.

  20. Agrobacterium-mediated transformation of watermelon ( Citrullus ...

    African Journals Online (AJOL)

    Transformation of watermelon (Citrullus lanatus cv. Zaojia) using Agrobacterium tumefaciens strain EHA105 containing the plasmid pRD400 carrying Pti4 gene was studied in this work. Proximal cotyledons as explants were pre-cultivated for two day in the dark and it was found that the best condition for transformation of ...

  1. Agrobacterium-mediated transformation of tomato with the ICE1 transcription factor gene.

    Science.gov (United States)

    Juan, J X; Yu, X H; Jiang, X M; Gao, Z; Zhang, Y; Li, W; Duan, Y D; Yang, G

    2015-01-30

    ICE1 genes play a very important role in plants in cold conditions. To improve the cold resistance of tomato, the ICE1 gene of Arabidopsis thaliana was used to construct the plant expression vector p3301-ICE1, and was overexpressed in tomato through Agrobacterium-mediated transformation. Five strains of resistant plants were obtained. PCR and half-quantitative results showed that the ICE1 gene was transferred to tomato; three strains tested positive. After low-temperature stress treatment, praline content and peroxide and catalase activities in the transgenic tomato plants were higher compared with non-transgenic controls, while malondialdehyde content was clearly lower.

  2. Optimization of factors influencing microinjection method for Agrobacterium tumefaciens-mediated transformation of tomato.

    Science.gov (United States)

    Vinoth, S; Gurusaravanan, P; Jayabalan, N

    2013-02-01

    A simple and efficient protocol for Agrobacterium-mediated genetic transformation of tomato was developed using combination of non-tissue culture and micropropagation systems. Initially, ESAM region of 1-day-old germinated tomato seeds were microinjected for one to five times with Agrobacterium inoculums (OD(600) = 0.2-1.0). The germinated seeds were cocultivated in the MS medium fortified with (0-200 mM) acetosyringone and minimal concentrations of (0-20 mg L(-1)) kanamycin, and the antibiotic concentration was doubled during the second round of selection. Bacterial concentration of OD(600) = 0.6 served as an optimal concentration for infection and the transformation efficiency was significantly higher of about 46.28 %. In another set of experiment, an improved and stable regeneration system was adapted for the explants from the selection medium. Four-day-old double cotyledonary nodal explants were excised from the microinjected seedlings and cultured onto the MS medium supplemented with 1.5 mg L(-1) thidiazuron, 1.5 mg L(-1) indole-3-butyric acid, 30 mg L(-1) kanamycin, and 0-1.5 mg L(-1) adenine sulphate. Maximum of 9 out of 13 micropropagated shoots were shown positive to GUS assay. By this technique, the transformation efficiency was increased from 46.28 to 65.90 %. Thus, this paper reports the successful protocol for the mass production of transformants using microinjection and micropropagation techniques.

  3. Application of Isotope Techniques for Assessing Nutrient Dynamics in River Basins

    International Nuclear Information System (INIS)

    2013-05-01

    Nutrients are necessary for the growth and survival of animals, plants and other organisms. However, industrial, agricultural and urban development has dramatically increased nutrient levels in river systems, including nitrogen and phosphorus containing substances, degrading water quality, causing acidification and eutrophication and affecting aquatic ecosystems. Nutrient assessment and management in river systems has been an important part of water resource management for the past few decades, but the provision of appropriate and effective nutrient assessment and management continues to be a challenge for water resource managers and policy makers. Difficulties in assessment and management are due in part to the fact that nutrients in rivers may originate from a variety of sources, take numerous pathways and transform into other substances. This publication presents the application of isotope techniques as a powerful tool for evaluating the sources, pathways, transformation, and fate of nutrients in river systems, focusing on nitrogen, phosphorus and carbon containing substances. Eleven researchers using various isotope techniques for different aspects of nutrient studies and two IAEA officers met in a technical meeting and discussed a publication that could assist water resource managers in dealing with nutrient assessment and management issues in river systems. These researchers also recognized the need for careful consideration in selecting appropriate isotope techniques in view of not only technical, but also financial, human resources and logistical capabilities, among others. These contributors are listed as major authors in the later pages of this document. This publication aims at serving water resource managers as a guidebook on the application of isotope techniques in nutrient assessment and management, but it is also expected to be of practical aid for other interested and concerned individuals and organization.

  4. Application of Isotope Techniques for Assessing Nutrient Dynamics in River Basins

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-05-15

    Nutrients are necessary for the growth and survival of animals, plants and other organisms. However, industrial, agricultural and urban development has dramatically increased nutrient levels in river systems, including nitrogen and phosphorus containing substances, degrading water quality, causing acidification and eutrophication and affecting aquatic ecosystems. Nutrient assessment and management in river systems has been an important part of water resource management for the past few decades, but the provision of appropriate and effective nutrient assessment and management continues to be a challenge for water resource managers and policy makers. Difficulties in assessment and management are due in part to the fact that nutrients in rivers may originate from a variety of sources, take numerous pathways and transform into other substances. This publication presents the application of isotope techniques as a powerful tool for evaluating the sources, pathways, transformation, and fate of nutrients in river systems, focusing on nitrogen, phosphorus and carbon containing substances. Eleven researchers using various isotope techniques for different aspects of nutrient studies and two IAEA officers met in a technical meeting and discussed a publication that could assist water resource managers in dealing with nutrient assessment and management issues in river systems. These researchers also recognized the need for careful consideration in selecting appropriate isotope techniques in view of not only technical, but also financial, human resources and logistical capabilities, among others. These contributors are listed as major authors in the later pages of this document. This publication aims at serving water resource managers as a guidebook on the application of isotope techniques in nutrient assessment and management, but it is also expected to be of practical aid for other interested and concerned individuals and organization.

  5. N6-methyladenosine mediates the cellular proliferation and apoptosis via microRNAs in arsenite-transformed cells.

    Science.gov (United States)

    Gu, Shiyan; Sun, Donglei; Dai, Huangmei; Zhang, Zunzhen

    2018-04-20

    N 6 -methyladenosine (m 6 A) modification is implicated to play an important role in cellular biological processes, but its regulatory mechanisms in arsenite-induced carcinogenesis are largely unknown. Here, human bronchial epithelial (HBE) cells were chronically treated with 2.5 μM arsenite sodium (NaAsO 2 ) for about 13 weeks and these cells were identified with malignant phenotype which was demonstrated by increased levels of cellular proliferation, percentages of plate colony formation and soft agar clone formation, and high potential of resistance to apoptotic induction. Our results firstly demonstrated that m 6 A modification on RNA was significantly increased in arsenite-transformed cells and this modification may be synergistically regulated by methyltransferase-like 3 (METTL3), methyltransferase-like 14 (METTL14), Wilms tumor 1-associated protein (WTAP) and Fat mass and obesity-associated protein (FTO). In addition, knocking down of METTL3 in arsenite-transformed cells can dramatically reverse the malignant phenotype, which was manifested by lower percentages of clone and colony formation as well as higher rates of apoptotic induction. Given the critical roles of miRNAs in cellular proliferation and apoptosis, miRNAs regulated by m 6 A in arsenite-transformed cells were analyzed by Venn diagram and KEGG pathway in this study. The results showed that these m 6 A-mediated miRNAs can regulate pathways which are closely associated with cellular proliferation and apoptosis, implicating that these miRNAs may be the critical bridge by which m 6 A mediates dysregulation of cell survival and apoptosis in arsenite-transformed cells. Taken together, our results firstly demonstrated the significant role of m 6 A in the prevention of tumor occurrence and progression induced by arsenite. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. How do dynamic capabilities transform external technologies into firms’ renewed technological resources? – A mediation model

    DEFF Research Database (Denmark)

    Li-Ying, Jason; Wang, Yuandi; Ning, Lutao

    2016-01-01

    microfoundations of dynamic technological capabilities, mediate the relationship between external technology breadth and firms’ technological innovation performance, based on the resource-based view and dynamic capability view. Using a sample of listed Chinese licensee firms, we find that firms must broadly......How externally acquired resources may become valuable, rare, hard-to-imitate, and non-substitute resource bundles through the development of dynamic capabilities? This study proposes and tests a mediation model of how firms’ internal technological diversification and R&D, as two distinctive...... explore external technologies to ignite the dynamism in internal technological diversity and in-house R&D, which play their crucial roles differently to transform and reconfigure firms’ technological resources....

  7. Transformation of soybean Gy3 gene into Artemisaarenaria mediated by corona discharge

    International Nuclear Information System (INIS)

    Chao, Lu-meng; Na, Ri; Xue, Dan; Xu, Yongze; Liu, Teng

    2013-01-01

    In order to improve the protein content of desert plant, a method of genetic transformation mediated by corona discharge was established. Artemisia seeds were processed in corona electric field for 120 min at 12 kV, and then soaked in 0.1 SSC media that contained Soybean Gy3 gene DNA to incubate for 12 h at 26 °C. Finally the seeds were inoculated on the differentiation medium. Polymerase Chain Reaction (PCR) and Reverse Transcription Polymerase Chain Reaction (RT-PCR) detection showed that the Soybean Gy3 gene had been successfully introduced into genomic DNA of the regenerated plants of Artemisaarenaria. The study provided a new way for corona discharge in plant genetic modification.

  8. Increased Agrobacterium-mediated transformation and rooting efficiencies in canola (Brassica napus L.) from hypocotyl segment explants

    Science.gov (United States)

    Cardoza, V.; Stewart, C. N.

    2003-01-01

    An efficient protocol for the production of transgenic Brassica napus cv. Westar plants was developed by optimizing two important parameters: preconditioning time and co-cultivation time. Agrobacterium tumefaciens-mediated transformation was performed using hypocotyls as explant tissue. Two variants of a green fluorescent protein (GFP)-encoding gene--mGFP5-ER and eGFP--both under the constitutive expression of the cauliflower mosaic virus 35S promoter, were used for the experiments. Optimizing the preconditioning time to 72 h and co-cultivation time with Agrobacterium to 48 h provided the increase in the transformation efficiency from a baseline of 4% to 25%. With mGFP5-ER, the transformation rate was 17% and with eGFP it was 25%. Transgenic shoots were selected on 200 mg/l kanamycin. Rooting efficiency was 100% on half-strength Murashige and Skoog medium with 10 g/l sucrose and 0.5 mg/l indole butyric acid in the presence of kanamycin.

  9. The use of phosphomannose isomerase selection system for Agrobacterium-mediated transformation of tobacco and flax aimed for phytoremediation.

    Science.gov (United States)

    Hilgert, Jitka; Sura-De Jong, Martina; Fišer, Jiří; Tupá, Kateřina; Vrbová, Miroslava; Griga, Miroslav; Macek, Tomáš; Žiarovská, Jana

    2017-05-04

    A plant selection system based on the phosphomannose isomerase gene (pmi) as a selectable marker is often used to avoid selection using antibiotic resistance. Nevertheless, pmi gene is endogenous in several plant species and therefore difficult to use in such cases. Here we evaluated and compared Agrobacterium-mediated transformation of Linum usitatissimum breeding line AGT-952 (without endogenous pmi gene) and Nicotiana tabacum var. WSC-38 (with endogenous pmi gene). Transformation was evaluated for vectors bearing transgenes that have the potential to be involved in improved phytoremediation of contaminated environment. Tobacco regenerants selection resulted in 6.8% transformation efficiency when using a medium supplemented with 30 g/L mannose with stepwise decrease of the sucrose concentration. Similar transformation efficiency (5.3%) was achieved in transformation of flax. Relatively low selection efficiency was achieved (12.5% and 34.8%, respectively). The final detection of efficient pmi selection was conducted using PCR and the non-endogenous genes; pmi transgene for flax and todC2 transgene for tobacco plants.

  10. Agrobacterium-mediated transformation and direct shoot regeneration in Iranian tomato (Solanum lycopersicum L.) cultivar Falat- CH

    International Nuclear Information System (INIS)

    Kauser, N.; Khan, S.

    2016-01-01

    Falat CH is an important commercial tomato cultivar being used in Iran. In this article an optimized protocol with increased transformation and regeneration rate for this tomato variety is reported. Several explants including cotyledon, leaf and hypocotyl were evaluated for direct shoot formation and the effect of various combinations of BAP, Zeatin, IAA and IBA were studied. It is the first report on two cytokinins BAP and Zeatin in various combinations to evaluate the synergetic effect of cytokinins on direct shoot regeneration. The synergetic combination of 1.5mg/l BAP, 0.5 mg/l Zeatin and 0.2 mg/l IAA was considered as the best treatment which resulted in higher plant regeneration rates from all of the explants over previous reported methods. Using the best regeneration treatment obtained, the HBsAg gene was transferred into the tomato explants using Agrobacterium mediated transformation technique Percent of the putative transgenic plants regenerated was 68%. PCR of putative transformed plants showed that 87.1% of regenerated plants amplified nptII and HBsAg gene when specifically designed primers were used giving a final transformation rate of 34.85%. (author)

  11. SacB-SacR gene cassette as the negative selection marker to suppress Agrobacterium overgrowth in Agrobacterium-mediated plant transformation

    Science.gov (United States)

    Agrobacterium overgrowth is a common problem in Agrobacterium-mediated plant transformation. To suppress the Agrobacterium overgrowth, various antibiotics have been used during plant tissue culture steps. The antibiotics are expensive and may adversely affect plant cell differentiation and reduce ...

  12. Nutrient transformation during aerobic composting of pig manure with biochar prepared at different temperatures.

    Science.gov (United States)

    Li, Ronghua; Wang, Quan; Zhang, Zengqiang; Zhang, Guangjie; Li, Zhonghong; Wang, Li; Zheng, Jianzhong

    2015-01-01

    The effects of the corn stalk charred biomass (CB) prepared at different pyrolysis temperatures as additives on nutrient transformation during aerobic composting of pig manure were investigated. The results showed that the addition of CB carbonized at different temperatures to pig manure compost significantly influenced the compost temperature, moisture, pH, electrical conductivity, organic matter degradation, total nitrogen, [Formula: see text] and NH3 variations during composting. Compared with control and adding CB charred at lower temperature treatments, the addition of CB prepared over 700°C resulted in higher pH (over 9.2) and NH3 emission and lower potherb mustard seed germination index value during the thermophilic phase. Peak temperatures of composts appeared at 7 days for control and 11 days for CB added treatments. During 90 days composting, the organic matter degradation could be increased over 14.8-29.6% after adding of CB in the compost mixture. The introduction of CB in pig manure could prolong the thermophilic phase, inhibit moisture reduce, facilitate the organic matter decomposition, reduce diethylene triamine pentaacetic acid (DTPA) extractable Zn and Cu contents in pig manure composts and increase ryegrass growth. The study indicated that the corn stalk CB prepared around 500°C was a suitable additive in pig manure composting.

  13. Gene regulation mediating fiber-type transformation in skeletal muscle cells is partly glucose- and ChREBP-dependent.

    Science.gov (United States)

    Hanke, Nina; Scheibe, Renate J; Manukjan, Georgi; Ewers, David; Umeda, Patrick K; Chang, Kin-Chow; Kubis, Hans-Peter; Gros, Gerolf; Meissner, Joachim D

    2011-03-01

    Adaptations in the oxidative capacity of skeletal muscle cells can occur under several physiological or pathological conditions. We investigated the effect of increasing extracellular glucose concentration on the expression of markers of energy metabolism in primary skeletal muscle cells and the C2C12 muscle cell line. Growth of myotubes in 25mM glucose (high glucose, HG) compared with 5.55mM led to increases in the expression and activity of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a marker of glycolytic energy metabolism, while oxidative markers peroxisome proliferator-activated receptor γ coactivator 1α and citrate synthase decreased. HG induced metabolic adaptations as are seen during a slow-to-fast fiber transformation. Furthermore, HG increased fast myosin heavy chain (MHC) IId/x but did not change slow MHCI/β expression. Protein phosphatase 2A (PP2A) was shown to mediate the effects of HG on GAPDH and MHCIId/x. Carbohydrate response element-binding protein (ChREBP), a glucose-dependent transcription factor downstream of PP2A, partially mediated the effects of glucose on metabolic markers. The glucose-induced increase in PP2A activity was associated with an increase in p38 mitogen-activated protein kinase activity, which presumably mediates the increase in MHCIId/x promoter activity. Liver X receptor, another possible mediator of glucose effects, induced only an incomplete metabolic shift, mainly increasing the expression of the glycolytic marker. Taken together, HG induces a partial slow-to-fast transformation comprising metabolic enzymes together with an increased expression of MHCIId/x. This work demonstrates a functional role for ChREBP in determining the metabolic type of muscle fibers and highlights the importance of glucose as a signaling molecule in muscle. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. "We're Trying to Take Action": Transformative Agency, Role Re-Mediation, and the Complexities of Youth Participatory Action Research

    Science.gov (United States)

    Bertrand, Melanie; Durand, E. Sybil; Gonzalez, Taucia

    2017-01-01

    This article seeks to illuminate the complexity of youth participatory action research (YPAR) through the use of two concepts: (1) transformative agency, a collective initiative to address conflicts and contradictions in activity systems, and (2) role re-mediation, the disruption of power relations. We demonstrate that these concepts, in…

  15. Targeted Gene Replacement in Fungal Pathogens via Agrobacterium tumefaciens- Mediated Transformation

    DEFF Research Database (Denmark)

    Frandsen, Rasmus John Normand; Frandsen, Mette; Giese, Nanna Henriette

    2012-01-01

    -step cloning strategies for construction of vectors for Agrobacterium tumefaciens-mediated transformation (ATMT). Targeted genome modifications require integration by a homologous double crossover event, which is achieved by placing target sequences on either side of a selection marker gene in the vector....... Protocols are given for two single-step vector construction techniques. The In-Fusion cloning technique is independent of compatible restriction enzyme sites in the vector and the fragment to be cloned. The method can be directly applied to any vector of choice and it is possible to carry out four fragment...... cloning without the need for subcloning. The cloning efficiency is not always as high as desired, but it still presents an efficient alternative to restriction enzyme and ligase-based cloning systems. The USER technology offers a higher four fragment cloning efficiency than In-Fusion, but depends...

  16. Agrobacterium mediated genetic transformation of popular Indica ...

    African Journals Online (AJOL)

    Various parameters critical to rice transformation were optimized including callus induction medium, bacterial concentration, co-cultivation conditions, concentration of the plant growth regulator 2,4-D and the concentration of acetosyringone. The transformed lines were analyzed using PCR for marker sequence and gusA ...

  17. Transformational leadership and follower creativity : The mediating role of follower relational identification and the moderating role of leader creativity expectations

    NARCIS (Netherlands)

    Qu, Rujie; Janssen, Onne; Shi, Kan

    We examined follower relational identification with the leader as a mediator and follower perceptions of leader creativity expectations as a moderator in the relationship between transformational leadership and follower creativity. Using a sample of 420 leader-follower dyads from an energy company

  18. A role for N-acetylglucosamine as a nutrient sensor and mediator of insulin resistance.

    Science.gov (United States)

    Wells, L; Vosseller, K; Hart, G W

    2003-02-01

    The ability to regulate energy balance at both the cellular and whole body level is an essential process of life. As western society has shifted to a higher caloric diet and more sedentary lifestyle, the incidence of type 2 diabetes (non-insulin-dependent diabetes mellitus) has increased to epidemic proportions. Thus, type 2 diabetes has been described as a disease of 'chronic overnutrition'. There are abundant data to support the relationship between nutrient availability and insulin action. However, there have been multiple hypotheses and debates as to the mechanism by which nutrient availability modulates insulin signaling and how excess nutrients lead to insulin resistance. One well-established pathway for nutrient sensing is the hexosamine biosynthetic pathway (HSP), which produces the acetylated aminosugar nucleotide uridine 5'-diphospho-N-acetylglucosamine (UDP-Glc-NAc) as its end product. Since UDP-GlcNAc is the donor substrate for modification of nucleocytoplasmic proteins at serine and threonine residues with N-acetylglucosamine (O-GlcNAc), the possibility of this posttranslational modification serving as the nutrient sensor has been proposed. We have recently directly tested this model in adipocytes by examining the effect of elevated levels of O-GlcNAc on insulin-stimulated glucose uptake. In this review, we summarize the existing work that implicates the HSP and O-GlcNAc modification as nutrient sensors and regulators of insulin signaling.

  19. In Situ Monitoring and Modeling of the Solution-Mediated Polymorphic Transformation of Rifampicin: From Form II to Form I.

    Science.gov (United States)

    Guo, Nannan; Hou, Baohong; Wang, Na; Xiao, Yan; Huang, Jingjing; Guo, Yanmei; Zong, Shuyi; Hao, Hongxun

    2018-01-01

    In this article, the solution-mediated polymorphic transformation of rifampicin was investigated and simulated in 3 solvents at 30°C. The solid-state form I and form II of rifampicin was characterized by powder X-ray diffraction, scanning electron microscopy, thermogravimetric analysis, Raman spectroscopy, and Fourier transform infrared spectroscopy (FTIR). To explore the relative stability, solubility data of form I and form II of rifampicin in butan-1-ol were determined using a dynamical method. In addition, Raman spectroscopy and focused beam reflectance measurement were used to in situ monitor the transformation of rifampicin from form II to form I. The liquid state concentration of rifampicin was measured by UV spectroscopic method. To investigate the effect of solvent on transformation, the transformation experiments were carried out in 3 solvents. Furthermore, a mathematical model was built to describe the kinetics of dissolution, nucleation, and growth processes during transformation by using experimental data. By combination of experimental and simulation results, it was found that the transformation process of rifampicin is controlled by dissolution of form II in heptane, whereas the transformation in hexane and octane was firstly controlled by dissolution of solid-state form and then controlled by growth of form I. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  20. The Transformative Mediation and Women's Empowerment Instrument in Environmental Agenda for Sustainable Development : An Essay on the Pacification Intergenerational Conflict

    Directory of Open Access Journals (Sweden)

    Adriana Machado Yaghsisian

    2016-06-01

    Full Text Available Facing climate changes and other challenges of today’s world requires the adoption of peacemaking solutions to solve social-environmental conflicts in the perspective of intergenerational sustainable development. This architecture points to the total participa- tion of women, as conductors of the processes marked by the transformation of social-en- vironmental behaviors, which finds fertile ground in transformative mediation, seen as a practice that implies  revaluation and mutual recognition of the parties involved. Under this context,  the work will deal with important notions on mediation and women’s  em- powerment according to the relationship between genre, environment and  sustainable development as a strategy of pacifying intergenerational conflicts  and increasing women’s participation and engagement in the peacemaking processes of social-environmental con- flicts, complying with the goals  recommended by UN Women, created in 2010, and Agenda 21.

  1. Analogous simulation of nutrient transformation processes in stream ...

    African Journals Online (AJOL)

    The main transformation processes effected by the natural microbial consortium of upper Iskar River with predominant participation of sediment biofilm were simulated in the laboratory by the use of portable devices (chambers). The dynamics of real heterotrophic respiration, organic matter oxidation, denitrification and ...

  2. Lake nutrient stoichiometry is less predictable than nutrient concentrations at regional and sub-continental scales.

    Science.gov (United States)

    Collins, Sarah M; Oliver, Samantha K; Lapierre, Jean-Francois; Stanley, Emily H; Jones, John R; Wagner, Tyler; Soranno, Patricia A

    2017-07-01

    . Our results suggest ecological context mediates controls on lake nutrients and stoichiometry. Predicting stoichiometry was generally more difficult than predicting nutrient concentrations, but human activity may decouple N and P, leading to better prediction of N:P stoichiometry in regions with high anthropogenic activity. © 2017 by the Ecological Society of America.

  3. Formation of a new crystalline form of anhydrous β-maltose by ethanol-mediated crystal transformation.

    Science.gov (United States)

    Verhoeven, Nicolas; Neoh, Tze Loon; Ohashi, Tetsuya; Furuta, Takeshi; Kurozumi, Sayaka; Yoshii, Hidefumi

    2012-04-01

    β-Maltose monohydrate was transformed into an anhydrous form by ethanol-mediated method under several temperatures with agitation. A new stable anhydrous form of β-maltose (Mβ(s)) was obtained, as substantiated by the X-ray diffraction patterns. Mβ(s) obtained by this method presented a fine porous structure, resulting in greater specific surface area compared to those of β-maltose monohydrate and anhydrous β-maltose obtained by vacuum drying (Mβ(h)). The crystal transformation presumably consisted of two steps: dehydration reaction from the hydrous to amorphous forms and crystal formation from the amorphous forms to the noble anhydrous form. The kinetics of these reactions were determined by thermal analysis using Jander's equation and Arrhenius plots. The overall activation energies of the dehydration reaction and the formation of anhydrous maltose were evaluated to be 100 and 90 kJ/mol, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Wildfire Effects on In-stream Nutrient Processing and Hydrologic Transport

    Science.gov (United States)

    Rhea, A.; Covino, T. P.; Rhoades, C.; Fegel, T.

    2017-12-01

    In many forests throughout the Western U.S., drought, climate change, and growing fuel loads are contributing to increased fire frequency and severity. Wildfires can influence watershed nutrient retention as they fundamentally alter the biological composition and physical structure in upland landscapes, riparian corridors, and stream channels. While numerous studies have documented substantial short-term increases in stream nutrient concentrations and export (particularly reactive nitrogen, N) following forest fires, the long-term implications for watershed nutrient cycling remain unclear. For example, recent work indicates that nitrate concentrations and export can remain elevated for a decade or more following wildfire, yet the controls on these processes are unknown. In this research, we use empirical observations from nutrient tracer injections, nutrient diffusing substrates, and continuous water quality monitoring to isolate biological and physical controls on nutrient export across a burn-severity gradient. Tracer results demonstrate substantial stream-groundwater exchange, but little biological nutrient uptake in burned streams. This in part explains patterns of elevated nutrient export. Paired nutrient diffusing substrate experiments allow us to further investigate shifts in N, phosphorus, and carbon limitation that may suppress post-fire stream nutrient uptake. By isolating the mechanisms that reduce the capacity of fire-affected streams to retain and transform nutrient inputs, we can better predict dynamics in post-fire water quality and help prioritize upland and riparian restoration.

  5. Generation of marker- and/or backbone-free transgenic wheat plants via Agrobacterium-mediated transformation

    Directory of Open Access Journals (Sweden)

    Wang Genping

    2016-09-01

    Full Text Available Horizontal transfer of antibiotic resistance genes to animals and vertical transfer of herbicide resistance genes to the weedy relatives are perceived as major biosafety concerns in genetically modified (GM crops. In this study, five novel vectors which used gusA and bar as a reporter gene and a selection marker gene, respectively, were constructed based on the pCLEAN dual binary vector system. Among these vectors, 1G7B and 5G7B carried two T-DNAs located on two respective plasmids with 5G7B possessing an additional virGwt gene. 5LBTG154 and 5TGTB154 carried two T-DNAs in the target plasmid with either one or double right borders, and 5BTG154 carried the selectable marker gene on the backbone outside of the T-DNA left border in the target plasmid. In addition, 5BTG154, 5LBTG154 and 5TGTB154 used pAL154 as a helper plasmid which contains Komari fragment to facilitate transformation. These five dual binary vector combinations were transformed into Agrobacterium strain AGL1 and used to transform durum wheat cv Stewart 63. Evaluation of the co-transformation efficiencies, the frequencies of marker-free transgenic plants and integration of backbone sequences in the obtained transgenic lines indicated that two vectors (5G7B and 5TGTB154 were more efficient in generating marker-free transgenic wheat plants with no or minimal integration of backbone sequences in the wheat genome. The vector series developed in this study for generation of marker- and/or backbone-free transgenic wheat plants via Agrobacterium-mediated transformation will be useful to facilitate the creation of ‘clean’ GM wheat containing only the foreign genes of agronomic importance.

  6. Generation of Marker- and/or Backbone-Free Transgenic Wheat Plants via Agrobacterium-Mediated Transformation.

    Science.gov (United States)

    Wang, Gen-Ping; Yu, Xiu-Dao; Sun, Yong-Wei; Jones, Huw D; Xia, Lan-Qin

    2016-01-01

    Horizontal transfer of antibiotic resistance genes to animals and vertical transfer of herbicide resistance genes to the weedy relatives are perceived as major biosafety concerns in genetically modified (GM) crops. In this study, five novel vectors which used gusA and bar as a reporter gene and a selection marker gene, respectively, were constructed based on the pCLEAN dual binary vector system. Among these vectors, 1G7B and 5G7B carried two T-DNAs located on two respective plasmids with 5G7B possessing an additional virGwt gene. 5LBTG154 and 5TGTB154 carried two T-DNAs in the target plasmid with either one or double right borders, and 5BTG154 carried the selectable marker gene on the backbone outside of the T-DNA left border in the target plasmid. In addition, 5BTG154, 5LBTG154, and 5TGTB154 used pAL154 as a helper plasmid which contains Komari fragment to facilitate transformation. These five dual binary vector combinations were transformed into Agrobacterium strain AGL1 and used to transform durum wheat cv Stewart 63. Evaluation of the co-transformation efficiencies, the frequencies of marker-free transgenic plants, and integration of backbone sequences in the obtained transgenic lines indicated that two vectors (5G7B and 5TGTB154) were more efficient in generating marker-free transgenic wheat plants with no or minimal integration of backbone sequences in the wheat genome. The vector series developed in this study for generation of marker- and/or backbone-free transgenic wheat plants via Agrobacterium -mediated transformation will be useful to facilitate the creation of "clean" GM wheat containing only the foreign genes of agronomic importance.

  7. Nutrient-mediated architectural plasticity of a predatory trap.

    Directory of Open Access Journals (Sweden)

    Sean J Blamires

    Full Text Available BACKGROUND: Nutrients such as protein may be actively sought by foraging animals. Many predators exhibit foraging plasticity, but how their foraging strategies are affected when faced with nutrient deprivation is largely unknown. In spiders, the assimilation of protein into silk may be in conflict with somatic processes so we predicted web building to be affected under protein depletion. METHODOLOGY/PRINCIPAL FINDINGS: To assess the influence of protein intake on foraging plasticity we fed the orb-web spiders Argiope aemula and Cyclosa mulmeinensis high, low or no protein solutions over 10 days and allowed them to build webs. We compared post-feeding web architectural components and major ampullate (MA silk amino acid compositions. We found that the number of radii in webs increased in both species when fed high protein solutions. Mesh size increased in A. aemula when fed a high protein solution. MA silk proline and alanine compositions varied in each species with contrasting variations in alanine between the two species. Glycine compositions only varied in C. mulmeinensis silk. No spiders significantly lost or gained mass on any feeding treatment, so they did not sacrifice somatic maintenance for amino acid investment in silk. CONCLUSIONS/SIGNIFICANCE: Our results show that the amount of protein taken in significantly affects the foraging decisions of trap-building predators, such as orb web spiders. Nevertheless, the subtle differences found between species in the association between protein intake, the amino acids invested in silk and web architectural plasticity show that the influence of protein deprivation on specific foraging strategies differs among different spiders.

  8. Nutrient-mediated architectural plasticity of a predatory trap.

    Science.gov (United States)

    Blamires, Sean J; Tso, I-Min

    2013-01-01

    Nutrients such as protein may be actively sought by foraging animals. Many predators exhibit foraging plasticity, but how their foraging strategies are affected when faced with nutrient deprivation is largely unknown. In spiders, the assimilation of protein into silk may be in conflict with somatic processes so we predicted web building to be affected under protein depletion. To assess the influence of protein intake on foraging plasticity we fed the orb-web spiders Argiope aemula and Cyclosa mulmeinensis high, low or no protein solutions over 10 days and allowed them to build webs. We compared post-feeding web architectural components and major ampullate (MA) silk amino acid compositions. We found that the number of radii in webs increased in both species when fed high protein solutions. Mesh size increased in A. aemula when fed a high protein solution. MA silk proline and alanine compositions varied in each species with contrasting variations in alanine between the two species. Glycine compositions only varied in C. mulmeinensis silk. No spiders significantly lost or gained mass on any feeding treatment, so they did not sacrifice somatic maintenance for amino acid investment in silk. Our results show that the amount of protein taken in significantly affects the foraging decisions of trap-building predators, such as orb web spiders. Nevertheless, the subtle differences found between species in the association between protein intake, the amino acids invested in silk and web architectural plasticity show that the influence of protein deprivation on specific foraging strategies differs among different spiders.

  9. Factors affecting the efficient transformation of Colletotrichum species

    Science.gov (United States)

    Redman, Regina S.; Rodriguez, Rusty J.

    1994-01-01

    Factors affecting the efficient transformation of Colletotrichum species. Experimental Mycology, 18, 230-246. Twelve isolates representing four species of Colletotrichum were transformed either by enhanced protoplast, restriction enzyme-mediated integration (REMI), or electroporation-mediated protocols. The enhanced protoplast transformation protocol resulted in 100- and 50-fold increases in the transformation efficiencies of Colletotrichum lindemuthianum and C. magna , respectively. REMI transformation involved the use of Hin dIII and vector DNA linearized with HindIII to increase the number of integration events and potential gene disruptions in the fungal genome. Combining the enhanced protoplast and the REMI protocols resulted in a 22-fold increase in the number of hygromycin/nystatin-resistant mutants in C. lindemuthianum . Electroporation-mediated transformation was performed on mycelial fragments and spores of four Colletotrichum species, resulting in efficiencies of up to 1000 transformants/μg DNA. The pHA1.3 vector which confers hygromycin resistance contains telomeric sequences from Fusarium oxysporum , transforms by autonomous replication and genomic integration, and was essential for elevated transformation efficiencies of 100 to 10,000 transformants/μg DNA. Modifications of pHA1.3 occurred during bacterial amplification and post fungal transformation resulting in plasmids capable of significantly elevated transformation efficiencies in C. lindemuthianum.

  10. Selective inhibition of CTCF binding by iAs directs TET-mediated reprogramming of 5-hydroxymethylation patterns in iAs-transformed cells

    Science.gov (United States)

    Rea, Matthew; Gripshover, Tyler; Fondufe-Mittendorf, Yvonne

    2017-01-01

    Methylation at cytosine (5mC) is a fundamental epigenetic DNA modification recently associated with iAs-mediated carcinogenesis. In contrast, the role of 5-hydroxymethylcytosine (5hmC), the oxidation product of 5mC in iAs-mediated carcinogenesis is unknown. Here we assess the hydroxymethylome in iAs-transformed cells, showing that dynamic modulation of hydroxymethylated DNA is associated with specific transcriptional networks. Moreover, this pathologic iAs-mediated carcinogenesis is characterized by a shift toward a higher hydroxymethylation pattern genome-wide. At specific promoters, hydroxymethylation correlated with increased gene expression. Furthermore, this increase in hydroxymethylation occurs concurrently with an upregulation of ten-eleven translocation (TET) enzymes that oxidize 5-methylcytosine (5mC) in DNA. To gain an understanding into how iAs might impact TET expression, we found that iAs inhibits the binding of CTCF at the proximal, weak CTCF binding sites of the TET1 and TET2 gene promoters and enhances CTCF binding at the stronger distal binding site. Further analyses suggest that this distal site acts as an enhancer, thus high CTCF occupancy at the enhancer region of TET1 and TET2 possibly drives their high expression in iAs-transformed cells. These results have major implications in understanding the impact of differential CTCF binding, genome architecture and its consequences in iAs-mediated pathogenesis. PMID:29175454

  11. An Examination of Sex Differences in Relation to the Eating Habits and Nutrient Intakes of University Students

    Science.gov (United States)

    Li, Kin-Kit; Concepcion, Rebecca Y.; Lee, Hyo; Cardinal, Bradley J.; Ebbeck, Vicki; Woekel, Erica; Readdy, R. Tucker

    2012-01-01

    Objectives: To examine sex differences in eating habits and nutrient intakes and explore whether eating habits mediate the effects of sex on nutrient intakes and whether sex moderates the effects of eating habits on nutrient intakes. Methods: Cross-sectional survey of eating habits and food-intake frequency in a convenience sample of college…

  12. Conversion of tropical lowland forest reduces nutrient return through litterfall, and alters nutrient use efficiency and seasonality of net primary production.

    Science.gov (United States)

    Kotowska, Martyna M; Leuschner, Christoph; Triadiati, Triadiati; Hertel, Dietrich

    2016-02-01

    Tropical landscapes are not only rapidly transformed by ongoing land-use change, but are additionally confronted by increasing seasonal climate variation. There is an increasing demand for studies analyzing the effects and feedbacks on ecosystem functioning of large-scale conversions of tropical natural forest into intensively managed cash crop agriculture. We analyzed the seasonality of aboveground litterfall, fine root litter production, and aboveground woody biomass production (ANPP(woody)) in natural lowland forests, rubber agroforests under natural tree cover ("jungle rubber"), rubber and oil palm monocultures along a forest-to-agriculture transformation gradient in Sumatra. We hypothesized that the temporal fluctuation of litter production increases with increasing land-use intensity, while the associated nutrient fluxes and nutrient use efficiency (NUE) decrease. Indeed, the seasonal variation of aboveground litter production and ANPP(woody) increased from the natural forest to the plantations, while aboveground litterfall generally decreased. Nutrient return through aboveground litter was mostly highest in the natural forest; however, it was significantly lower only in rubber plantations. NUE of N, P and K was lowest in the oil palm plantations, with natural forest and the rubber systems showing comparably high values. Root litter production was generally lower than leaf litter production in all systems, while the root-to-leaf ratio of litter C flux increased along the land-use intensity gradient. Our results suggest that nutrient and C cycles are more directly affected by climate seasonality in species-poor agricultural systems than in species-rich forests, and therefore might be more susceptible to inter-annual climate fluctuation and climate change.

  13. piggybac- and PhiC31-mediated genetic transformation of the Asian tiger mosquito, Aedes albopictus (Skuse.

    Directory of Open Access Journals (Sweden)

    Geneviève M C Labbé

    Full Text Available BACKGROUND: The Asian tiger mosquito, Aedes albopictus (Skuse, is a vector of several arboviruses including dengue and chikungunya. This highly invasive species originating from Southeast Asia has travelled the world in the last 30 years and is now established in Europe, North and South America, Africa, the Middle East and the Caribbean. In the absence of vaccine or antiviral drugs, efficient mosquito control strategies are crucial. Conventional control methods have so far failed to control Ae. albopictus adequately. METHODOLOGY/PRINCIPAL FINDINGS: Germline transformation of Aedes albopictus was achieved by micro-injection of embryos with a piggyBac-based transgene carrying a 3xP3-ECFP marker and an attP site, combined with piggyBac transposase mRNA and piggyBac helper plasmid. Five independent transgenic lines were established, corresponding to an estimated transformation efficiency of 2-3%. Three lines were re-injected with a second-phase plasmid carrying an attB site and a 3xP3-DsRed2 marker, combined with PhiC31 integrase mRNA. Successful site-specific integration was observed in all three lines with an estimated transformation efficiency of 2-6%. CONCLUSIONS/SIGNIFICANCE: Both piggybac- and site-specific PhiC31-mediated germline transformation of Aedes albopictus were successfully achieved. This is the first report of Ae. albopictus germline transformation and engineering, a key step towards studying and controlling this species using novel molecular techniques and genetic control strategies.

  14. The mediating effects of team and self-efficacy on the relationship between transformational leadership, and job satisfaction and psychological well-being in healthcare professionals: a cross-sectional questionnaire survey.

    Science.gov (United States)

    Nielsen, Karina; Yarker, Joanna; Randall, Raymond; Munir, Fehmidah

    2009-09-01

    The importance of transformational leadership for the health and well-being of staff in the healthcare sector is increasingly acknowledged, however, there is less knowledge about the mechanisms that may explain the links between transformational leaders and employee health and well-being. To examine two possible psychological mechanisms that link transformational leadership behaviours to employee job satisfaction and well-being. Cross-sectional study design. The study took place in two elderly care centers in large Danish local government. Staff were predominantly healthcare assistants but also nurses and other healthcare-related professions participated in the study. 274 elderly care employees completed the questionnaire. Surveys were sent to all employees working at the centers. 91% were female, the average age was 45 years. A questionnaire was distributed to all members of staff in the elderly care centers and where employees were asked to rate their line manager's leadership style and were asked to evaluate their own level of self-efficacy as well as the level of efficacy in their team (team efficacy) and their job satisfaction and psychological well-being. Both team and self-efficacy were found to act as mediators, however, their effects differed. Self-efficacy was found to fully mediate the relationship between transformational leadership and well-being and team efficacy was found to partially mediate the relationship between transformational leadership and job satisfaction and fully mediate the relationship between transformational leadership and well-being. Within the pressurised environment faced by employees in the healthcare sector today transformational leaders may help ensure employees' job satisfaction and psychological well-being. They do so through the establishment of a sense of being in control as individuals but also as being part of a competent group.

  15. Changing stress while stressing change: the role of interprofessional education in mediating stress in the introduction of a transformative technology.

    Science.gov (United States)

    Gillan, Caitlin; Wiljer, David; Harnett, Nicole; Briggs, Kaleigh; Catton, Pamela

    2010-11-01

    The introduction of a transformative technology into practice settings can affect the functioning of interprofessional teams, placing stress on interprofessional relationships, thus slowing adoption and change. This study explored the potential of an interprofessional education (IPE) approach to mediate this stress and facilitate the adoption of a transformative technology- Image Guided Radiation Therapy (IGRT). Oncologists, physicists, and therapists in radiation medicine who attended an interprofessional IGRT Education Course were interviewed about perceived benefits and stressors to IPE and to interprofessional practice (IPP) in the IGRT context. A modified grounded theory approach was used to conduct 14 interviews, with 200 minutes of interview time recorded. In introducing IGRT, participants noted interprofessional stress in understanding and adopting new technology. IPE offered common terminology, appreciation for others' knowledge, and a holistic framework for practice. Outcomes were thought to foster collaboration, efficiency, and improved professional role definition. Time constraints and power relations were noted to be residual stressors exacerbated by IPE, but were thought to be transient. IPE can thus be of benefit in the implementation of transformative technologies such as IGRT, through mediation of interprofessional stress inherent in change. Interprofessional knowledge, collaboration, and efficiency in practice facilitate the development and adoption of a new practice model.

  16. c-Jun/AP-1 pathway-mediated cyclin D1 expression participates in low dose arsenite-induced transformation in mouse epidermal JB6 Cl41 cells

    International Nuclear Information System (INIS)

    Zhang Dongyun; Li Jingxia; Gao Jimin; Huang Chuanshu

    2009-01-01

    Arsenic is a well-documented human carcinogen associated with skin carcinogenesis. Our previous work reveals that arsenite exposure is able to induce cell transformation in mouse epidermal cell JB6 Cl41 through the activation of ERK, rather than JNK pathway. Our current studies further evaluate downstream pathway in low dose arsenite-induced cell transformation in JB6 Cl41 cells. Our results showed that treatment of cells with low dose arsenite induced activation of c-Jun/AP-1 pathway, and ectopic expression of dominant negative mutant of c-Jun (TAM67) blocked arsenite-induced transformation. Furthermore, our data indicated that cyclin D1 was an important downstream molecule involved in c-Jun/AP-1-mediated cell transformation upon low dose arsenite exposure, because inhibition of cyclin D1 expression by its specific siRNA in the JB6 Cl41 cells resulted in impairment of anchorage-independent growth of cells induced by low dose arsenite. Collectively, our results demonstrate that c-Jun/AP-1-mediated cyclin D1 expression is at least one of the key events implicated in cell transformation upon low dose arsenite exposure

  17. The PDZ-binding motif of Yes-associated protein is required for its co-activation of TEAD-mediated CTGF transcription and oncogenic cell transforming activity

    International Nuclear Information System (INIS)

    Shimomura, Tadanori; Miyamura, Norio; Hata, Shoji; Miura, Ryota; Hirayama, Jun; Nishina, Hiroshi

    2014-01-01

    Highlights: •Loss of the PDZ-binding motif inhibits constitutively active YAP (5SA)-induced oncogenic cell transformation. •The PDZ-binding motif of YAP promotes its nuclear localization in cultured cells and mouse liver. •Loss of the PDZ-binding motif inhibits YAP (5SA)-induced CTGF transcription in cultured cells and mouse liver. -- Abstract: YAP is a transcriptional co-activator that acts downstream of the Hippo signaling pathway and regulates multiple cellular processes, including proliferation. Hippo pathway-dependent phosphorylation of YAP negatively regulates its function. Conversely, attenuation of Hippo-mediated phosphorylation of YAP increases its ability to stimulate proliferation and eventually induces oncogenic transformation. The C-terminus of YAP contains a highly conserved PDZ-binding motif that regulates YAP’s functions in multiple ways. However, to date, the importance of the PDZ-binding motif to the oncogenic cell transforming activity of YAP has not been determined. In this study, we disrupted the PDZ-binding motif in the YAP (5SA) protein, in which the sites normally targeted by Hippo pathway-dependent phosphorylation are mutated. We found that loss of the PDZ-binding motif significantly inhibited the oncogenic transformation of cultured cells induced by YAP (5SA). In addition, the increased nuclear localization of YAP (5SA) and its enhanced activation of TEAD-dependent transcription of the cell proliferation gene CTGF were strongly reduced when the PDZ-binding motif was deleted. Similarly, in mouse liver, deletion of the PDZ-binding motif suppressed nuclear localization of YAP (5SA) and YAP (5SA)-induced CTGF expression. Taken together, our results indicate that the PDZ-binding motif of YAP is critical for YAP-mediated oncogenesis, and that this effect is mediated by YAP’s co-activation of TEAD-mediated CTGF transcription

  18. The PDZ-binding motif of Yes-associated protein is required for its co-activation of TEAD-mediated CTGF transcription and oncogenic cell transforming activity

    Energy Technology Data Exchange (ETDEWEB)

    Shimomura, Tadanori; Miyamura, Norio; Hata, Shoji; Miura, Ryota; Hirayama, Jun, E-mail: hirayama.dbio@mri.tmd.ac.jp; Nishina, Hiroshi, E-mail: nishina.dbio@mri.tmd.ac.jp

    2014-01-17

    Highlights: •Loss of the PDZ-binding motif inhibits constitutively active YAP (5SA)-induced oncogenic cell transformation. •The PDZ-binding motif of YAP promotes its nuclear localization in cultured cells and mouse liver. •Loss of the PDZ-binding motif inhibits YAP (5SA)-induced CTGF transcription in cultured cells and mouse liver. -- Abstract: YAP is a transcriptional co-activator that acts downstream of the Hippo signaling pathway and regulates multiple cellular processes, including proliferation. Hippo pathway-dependent phosphorylation of YAP negatively regulates its function. Conversely, attenuation of Hippo-mediated phosphorylation of YAP increases its ability to stimulate proliferation and eventually induces oncogenic transformation. The C-terminus of YAP contains a highly conserved PDZ-binding motif that regulates YAP’s functions in multiple ways. However, to date, the importance of the PDZ-binding motif to the oncogenic cell transforming activity of YAP has not been determined. In this study, we disrupted the PDZ-binding motif in the YAP (5SA) protein, in which the sites normally targeted by Hippo pathway-dependent phosphorylation are mutated. We found that loss of the PDZ-binding motif significantly inhibited the oncogenic transformation of cultured cells induced by YAP (5SA). In addition, the increased nuclear localization of YAP (5SA) and its enhanced activation of TEAD-dependent transcription of the cell proliferation gene CTGF were strongly reduced when the PDZ-binding motif was deleted. Similarly, in mouse liver, deletion of the PDZ-binding motif suppressed nuclear localization of YAP (5SA) and YAP (5SA)-induced CTGF expression. Taken together, our results indicate that the PDZ-binding motif of YAP is critical for YAP-mediated oncogenesis, and that this effect is mediated by YAP’s co-activation of TEAD-mediated CTGF transcription.

  19. The Application of Isotope Techniques in Nutrient Assessment and Management in Riverine Systems. Present and Future

    Energy Technology Data Exchange (ETDEWEB)

    Ito, M.; Newman, B. D. [International Atomic Energy Agency, Isotope Hydrology Section, Vienna (Austria); Hadwen, W. L. [Australian Rivers Institute, Griffith School of Environment, Griffith University - Nathan Campus, Brisbane, Queensland (Australia); Rogers, K. [National Isotope Center, GNS Science, Lower Hutt (New Zealand); Mayer, B. [Department of Geoscience, University of Calgary, Calgary, Alberta (Canada); Hein, T. [Wasser Cluster Lunz, Interuniversitary Center for Aquatic Research, Lunz-See, and University of Natural Resources and Applied Life Sciences, Institute of Hydrobiology and Aquatic Ecosystem Management, Vienna (Austria); Stellato, L. [Centre for Isotopic Research on Cultural and Environmental Heritage (CIRCE), Seconda Universita degli Studi di Napoli, Caserta (Italy); Ohte, N. [Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo (Japan); Mclaughlin, K. [Southern California Coastal Water Research Project, Costa Mesa, California (United States)

    2013-05-15

    A variety of sources contribute to nutrients in rivers and nutrients may subsequently take various pathways and undergo different transformation processes. We first review representative types of isotopes and the roles of isotope techniques that have been or could be used for nutrient assessment and management. We then present technical, financial and logistical matters to be considered in selecting appropriate isotope techniques for nutrient assessment and management. Lastly we propose several approaches on the application of isotope techniques to make more effective the studies and management of nutrients in rivers in the near future. (author)

  20. Agrobacterium-mediated transformation of grapefruit with the wild-type and mutant RNA-dependent RNA polymerase genes of Citrus tristeza virus

    Science.gov (United States)

    Citrus paradisi Macf. cv. Duncan was transformed with constructs coding for the wild-type and mutant RNA-dependent RNA polymerase (RdRp) of Citrus tristeza virus (CTV) for exploring replicase-mediated pathogen-derived resistance (RM-PDR). The RdRp gene was amplified from CTV genome and used to gener...

  1. MicroRNA-26a-mediated regulation of interleukin-2 expression in transformed avian lymphocyte lines

    Directory of Open Access Journals (Sweden)

    Smith Lorraine P

    2010-05-01

    Full Text Available Abstract Background Micro(miRNAs are a class of small non-coding RNAs that play critical roles in the induction of various cancers, including lymphomas induced by oncogenic viruses. While some of the miRNAs are oncogenic, miRNAs such as miR-26a are consistently downregulated in a number of cancers, demonstrating their potential tumor suppressor functions. Global miRNA expression profiles of a number of virus-transformed avian lymphoma cell lines have shown downregulation of gga-miR-26a expression, irrespective of molecular mechanisms of transformation or the viral aetiology. The neoplastic transformation of lymphocytes by many viruses accompanies high levels of proliferative responses, mostly mediated through cytokines such as IL-2. Chicken IL-2 can modulate T-cell proliferation and cytotoxicity in vitro and in vivo and dysregulation of IL-2 expression is observed in diseases such as leukaemia. Results The expression levels of gga-miR-26a in chicken lymphoma cells transformed by 3 distinct avian oncogenic viruses, viz Marek's disease virus (MDV, avian leukosis virus (ALV and Reticuloendotheliosis virus (REV were consistently downregulated compared to the levels in the normal lymphocytes. This downregulation of miR-26a regardless of the viral etiology and molecular mechanisms of transformation was consistent with the tumor suppressor role of this miRNA. Notwithstanding this well-established role in cancer, we demonstrate the additional role of this miRNA in directly targeting chicken IL-2 through reporter and biochemical assays. The downregulation of miR-26a can relieve the suppressive effect of this miRNA on IL-2 expression. Conclusions We show that miR-26a is globally downregulated in a number of avian lymphoma cells irrespective of the mechanisms of transformation, reiterating the highly conserved tumor suppressor function of this miRNA. However, with the potential for directly targeting chicken IL-2, the downregulation of miR-26a in these

  2. Optimization of agrobacterium tumefaciens mediated transformation in populus deltoides

    International Nuclear Information System (INIS)

    John, E.; Maqbool, A.; Malik, K.A.

    2014-01-01

    The objective of the study was to develop an efficient protocol for Populus deltoides transformation through Agrobacterium tumefaciens LBA4404. Agrobacterium strain harboring binary plasmid pGA482 with Gus (uidA) gene under CamV35S promoter and Neomycin phosphotransferase (nptII) gene under Nos promoter was used for the transformation. Nodal, internodal and leaf explants from 4-5 months In vitro and fieldgrown plants were used for the transformation. Transformation was done under different conditions including, preculture time, optical density, acetosyringone concentration, infection time and co-cultivation time. Confirmation of transformation was done through GUS histochemical staining. Highest transformation efficiency was observed in one week precultured leaf explants from field grown source on preculture medium containing 200 meu M acetosyringone. Precultured explants from In vitro source also gave good results for transformation but the callus formation was found to be slow in leaf explant. Calli from the both sources did not show any transformation when infected with O.D A600nm range from 0.3-0.8. Node and internode though showed less transformation rate but the callogenesis was found to be highest in node and internode explants on CIM 1. Leaf explants from field source also gave high callus induction on CIM 5. A. tumefaciens O.D A600nm 0.3-0.5 was found to be effective. Infection time of 1-2 hour and co-cultivation time of 1day in dark were found to be optimum for the transformation. 200mg/l of timentin was found the best to control the overgrowth of Agrobacterium.100mg/l Kanamycin in growth medium was found to sufficient for selection for transformants. Selected transformants were confirmed through PCR for the presence of transgene. The present protocol for P. deltoides was found to be efficient for genetic transformation and can be used to introduce novel traits in the P. deltoides. (author)

  3. Solution-mediated phase transformation of haloperidol mesylate in the presence of sodium lauryl sulfate.

    Science.gov (United States)

    Greco, Kristyn; Bogner, Robin

    2011-09-01

    Forming a salt is a common way to increase the solubility of a poorly soluble compound. However, the solubility enhancement gained by salt formation may be lost due to solution-mediated phase transformation (SMPT) during dissolution. The SMPT of a salt can occur due to a supersaturated solution near the dissolving surface caused by pH or other solution conditions. In addition to changes in pH, surfactants are also known to affect SMPT. In this study, SMPT of a highly soluble salt, haloperidol mesylate, at pH 7 in the presence of a commonly used surfactant, sodium lauryl sulfate (SLS), was investigated. Dissolution experiments were performed using a flow-through dissolution apparatus with solutions containing various concentrations of SLS. Compacts of haloperidol mesylate were observed during dissolution in the flow-through apparatus using a stereomicroscope. Raman microscopy was used to characterize solids. The dissolution of haloperidol mesylate was significantly influenced by the addition of sodium lauryl sulfate. In conditions where SMPT was expected, the addition of SLS at low concentrations (0.1-0.2 mM) reduced the dissolution of haloperidol mesylate. In solutions containing concentrations of SLS above the critical micelle concentration (CMC) (10-15 mM), the dissolution of haloperidol mesylate increased compared to below the CMC. The solids recovered from solubility experiments of haloperidol mesylate indicated that haloperidol free base precipitated at all concentrations of SLS. Above 5 mM of SLS, Raman microscopy suggested a new form, perhaps the estolate salt. The addition of surfactant in solids that undergo solution-mediated phase transformation can add complexity to the dissolution profiles and conversion.

  4. Dopamine alleviates nutrient deficiency-induced stress in Malus hupehensis.

    Science.gov (United States)

    Liang, Bowen; Li, Cuiying; Ma, Changqing; Wei, Zhiwei; Wang, Qian; Huang, Dong; Chen, Qi; Li, Chao; Ma, Fengwang

    2017-10-01

    Dopamine mediates many physiological processes in plants. We investigated its role in regulating growth, root system architecture, nutrient uptake, and responses to nutrient deficiencies in Malus hupehensis Rehd. Under a nutrient deficiency, plants showed significant reductions in growth, chlorophyll concentrations, and net photosynthesis, along with disruptions in nutrient uptake, transport, and distribution. However, pretreatment with 100 μM dopamine markedly alleviated such inhibitions. Supplementation with that compound enabled plants to maintain their photosynthetic capacity and development of the root system while promoting the uptake of N, P, K, Ca, Mg, Fe, Mn, Cu, Zn, and B, altering the way in which those nutrients were partitioned throughout the plant. The addition of dopamine up-regulated genes for antioxidant enzymes involved in the ascorbate-glutathione cycle (MdcAPX, MdcGR, MdMDHAR, MdDHAR-1, and MdDHAR-2) but down-regulated genes for senescence (SAG12, PAO, and MdHXK). These results indicate that exogenous dopamine has an important antioxidant and anti-senescence effect that might be helpful for improving nutrient uptake. Our findings demonstrate that dopamine offers new opportunities for its use in agriculture, especially when addressing the problem of nutrient deficiencies. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. Forms of Mediation: The Case of Interpreter-Mediated Interactions in Medical Systems

    Science.gov (United States)

    Baraldi, Claudio

    2009-01-01

    This paper analyses the forms of mediation in interlinguistic interactions performed in Italian healthcare services and in contexts of migration. The literature encourages dialogic transformative mediation, empowering participants' voices and changing cultural presuppositions in social systems. It may be doubtful, however, whether mediation can…

  6. An investigation of nutrient-dependent mRNA translation in Drosophila larvae

    Directory of Open Access Journals (Sweden)

    Sabarish Nagarajan

    2014-10-01

    Full Text Available The larval period of the Drosophila life cycle is characterized by immense growth. In nutrient rich conditions, larvae increase in mass approximately two hundred-fold in five days. However, upon nutrient deprivation, growth is arrested. The prevailing view is that dietary amino acids drive this larval growth by activating the conserved insulin/PI3 kinase and Target of rapamycin (TOR pathways and promoting anabolic metabolism. One key anabolic process is protein synthesis. However, few studies have attempted to measure mRNA translation during larval development or examine the signaling requirements for nutrient-dependent regulation. Our work addresses this issue. Using polysome analyses, we observed that starvation rapidly (within thirty minutes decreased larval mRNA translation, with a maximal decrease at 6–18 hours. By analyzing individual genes, we observed that nutrient-deprivation led to a general reduction in mRNA translation, regardless of any starvation-mediated changes (increase or decrease in total transcript levels. Although sugars and amino acids are key regulators of translation in animal cells and are the major macronutrients in the larval diet, we found that they alone were not sufficient to maintain mRNA translation in larvae. The insulin/PI3 kinase and TOR pathways are widely proposed as the main link between nutrients and mRNA translation in animal cells. However, we found that genetic activation of PI3K and TOR signaling, or regulation of two effectors – 4EBP and S6K – could not prevent the starvation-mediated translation inhibition. Similarly, we showed that the nutrient stress-activated eIF2α kinases, GCN2 and PERK, were not required for starvation-induced inhibition of translation in larvae. These findings indicate that nutrient control of mRNA translation in larvae is more complex than simply amino acid activation of insulin and TOR signaling.

  7. Modeling nutrient in-stream processes at the watershed scale using Nutrient Spiralling metrics

    Science.gov (United States)

    Marcé, R.; Armengol, J.

    2009-07-01

    One of the fundamental problems of using large-scale biogeochemical models is the uncertainty involved in aggregating the components of fine-scale deterministic models in watershed applications, and in extrapolating the results of field-scale measurements to larger spatial scales. Although spatial or temporal lumping may reduce the problem, information obtained during fine-scale research may not apply to lumped categories. Thus, the use of knowledge gained through fine-scale studies to predict coarse-scale phenomena is not straightforward. In this study, we used the nutrient uptake metrics defined in the Nutrient Spiralling concept to formulate the equations governing total phosphorus in-stream fate in a deterministic, watershed-scale biogeochemical model. Once the model was calibrated, fitted phosphorus retention metrics where put in context of global patterns of phosphorus retention variability. For this purpose, we calculated power regressions between phosphorus retention metrics, streamflow, and phosphorus concentration in water using published data from 66 streams worldwide, including both pristine and nutrient enriched streams. Performance of the calibrated model confirmed that the Nutrient Spiralling formulation is a convenient simplification of the biogeochemical transformations involved in total phosphorus in-stream fate. Thus, this approach may be helpful even for customary deterministic applications working at short time steps. The calibrated phosphorus retention metrics were comparable to field estimates from the study watershed, and showed high coherence with global patterns of retention metrics from streams of the world. In this sense, the fitted phosphorus retention metrics were similar to field values measured in other nutrient enriched streams. Analysis of the bibliographical data supports the view that nutrient enriched streams have lower phosphorus retention efficiency than pristine streams, and that this efficiency loss is maintained in a wide

  8. Agrobacterium-mediated genetic transformation of Pogostemon cablin (Blanco) Benth. Using leaf explants: bactericidal effect of leaf extracts and counteracting strategies.

    Science.gov (United States)

    Paul, Anamika; Bakshi, Souvika; Sahoo, Debee Prasad; Kalita, Mohan Chandra; Sahoo, Lingaraj

    2012-04-01

    An optimized protocol for Agrobacterium tumefaciens-mediated transformation of patchouli using leaf disk explants is reported. In vitro antibacterial activity of leaf extracts of the plants revealed Agrobacterium sensitivity to the extracts. Fluorometric assay of bacterial cell viability indicated dose-dependent cytotoxic activity of callus extract against Agrobacterium cells. Addition of 0.1% Tween 20 and 2 g/l L-glutamine to Agrobacterium infection medium counteracted the bactericidal effect and significantly increased the T-DNA delivery to explants. A short preculture of explants for 2 days followed by infection with Agrobacterium in medium containing 150 μM of acetosyringone were found essential for efficient T-DNA delivery. Cocultivation for 3 days at 22 °C in conjunction with other optimized factors resulted in maximum T-DNA delivery. The Agrobacterium-mediated transformation of leaf disk explants were found significantly related to physiological age of the explants, age and origin of the of the donor plant. Leaf explants from second node of the 3-month-old in vivo plants showed highest transformation efficiency (94.3%) revealed by transient GUS expression assay. Plants selected on medium containing 20 mg/l kanamycin showed stable GUS expression in leaves and stem. The elongated shoots readily developed roots on kanamycin-free rooting medium and on transfer to soil, plants were successfully established. Polymerase chain reaction (PCR) and reverse-transcriptase PCR analysis in putative plants confirmed their transgenic nature. The established transformation method should provide new opportunities for the genetic improvement of patchouli for desirable trait.

  9. Improved methods in Agrobacterium-mediated transformation of almond using positive (mannose/pmi) or negative (kanamycin resistance) selection-based protocols.

    Science.gov (United States)

    Ramesh, Sunita A; Kaiser, Brent N; Franks, Tricia; Collins, Graham; Sedgley, Margaret

    2006-08-01

    A protocol for Agrobacterium-mediated transformation with either kanamycin or mannose selection was developed for leaf explants of the cultivar Prunus dulcis cv. Ne Plus Ultra. Regenerating shoots were selected on medium containing 15 muM kanamycin (negative selection), while in the positive selection strategy, shoots were selected on 2.5 g/l mannose supplemented with 15 g/l sucrose. Transformation efficiencies based on PCR analysis of individual putative transformed shoots from independent lines relative to the initial numbers of leaf explants tested were 5.6% for kanamycin/nptII and 6.8% for mannose/pmi selection, respectively. Southern blot analysis on six randomly chosen PCR-positive shoots confirmed the presence of the nptII transgene in each, and five randomly chosen lines identified to contain the pmi transgene by PCR showed positive hybridisation to a pmi DNA probe. The positive (mannose/pmi) and the negative (kanamycin) selection protocols used in this study have greatly improved transformation efficiency in almond, which were confirmed with PCR and Southern blot. This study also demonstrates that in almond the mannose/pmi selection protocol is appropriate and can result in higher transformation efficiencies over that of kanamycin/nptII selection protocols.

  10. Physical size of the donor locus and transmission of Haemophilus influenzae ampicillin resistance genes by deoxyribonucleic acid-mediated transformation

    International Nuclear Information System (INIS)

    Bendler, J.W. III

    1976-01-01

    The properties of donor deoxyribonucleic acid (DNA) from three clinical isolates and its ability to mediate the transformation of competent Rd strains to ampicillin resistance were examined. A quantitative technique for determining the resistance of individual Haemophilus influenzae cells to ampicillin was developed. When this technique was used, sensitive cells failed to tolerate levels of ampicillin greater than 0.1 to 0.2 μg/ml, whereas three resistant type b β-lactamase-producing strains could form colonies 1- to 3-μg/ml levels of the antibiotic. DNA extracted from the resistant strains elicited transformation of the auxotrophic genes in a multiply auxotrophic Rd strain. For two of the donors, transformation to ampicillin resistance occurred after the uptake of a single DNA molecule approximately 10 4 -fold less frequently than transformation of auxotrophic loci and was not observed to occur at all with the third. The frequency of transformation to ampicillin resistance was two- to fivefold higher in strain BC200 (Okinaka and Barnhart, 1974), which was cured of a defective prophage. All three clinical ampicillin-resistant strains were poor recipients, but the presence of the ampicillin resistant genes in strain BC200 did not reduce its competence

  11. OPTIMIZATION OF FACTORS AFFECTING THE Agrobacterium tumefaciens- MEDIATED TRANSFORMATION OF Eucalyptus saligna

    Directory of Open Access Journals (Sweden)

    Yohana de Oliveira-Cauduro

    2018-02-01

    Full Text Available ABSTRACT This study aimed to evaluate the effect of factors that may affect the genetic transformation of cotiledonary explants of Eucalyptus saligna mediated by EHA105 strain of Agrobacterium tumefaciens. The vector pBI121 carrying gus gene under control of 35S CaMV promoter was used. The effect of the following factors was evaluated: explant pre-culture, use of different antibiotics and presence of acetosyringone (AS in co-culture media. An antioxidant solution was also used during excision, containing ascorbic acid (250mg.L-1, citric acid (25mg.L-1 and PVP-40 (1g.L-1. Pre-culture of the explants before the co-culture with bacteria was done over a 4-day period in MS culture medium supplemented with 4.4µM BAP and 2.7ìM NAA. After theco-culture period, three concentrations of kanamycin (12.5;25 and 50mg.L-1 combined with 300mg.L-1 Augmentin® in the culture medium were tested The influence of the antibiotic was also evaluated by keeping the explants in a medium containing 50mg.L-1 Km and 300mg.L-1 Augmentin® or 500mg.L-1 cefotaxime. It was concluded that Augmentin® stimulates organogenesis, that a Km concentration of 12.5mg.L-1 allows selection of explants transformed with gus gene and, finally, the addition of AS (50ìM to the liquid and solid co-culture media has a positive effect on gus gene expression. Moreover, the use of an antioxidant solution during cotyledon excision is dispensable and the pre-culture of the explants has no effect on bud regeneration or gus gene expression. A transformation efficiency of 1.5% was reached.

  12. Yeast transformation mediated by Agrobacterium strains harboring an Ri plasmid: comparative study between GALLS of an Ri plasmid and virE of a Ti plasmid.

    Science.gov (United States)

    Kiyokawa, Kazuya; Yamamoto, Shinji; Sato, Yukari; Momota, Naoto; Tanaka, Katsuyuki; Moriguchi, Kazuki; Suzuki, Katsunori

    2012-07-01

    Agrobacterium strains containing a Ti plasmid can transfer T-DNA not only to plants but also to fungi, including the yeast Saccharomyces cerevisiae. However, no Agrobacterium strain harboring an Ri plasmid has been evaluated in fungal transformation. Some Ri plasmids have GALLS , instead of virE1 and virE2. GALLS protein can functionally substitute in plant transformation for a structurally different protein VirE2. In this study, we compared the yeast transformation ability among Agrobacterium donors: a strain containing a Ti plasmid, strains harboring either an agropine-type or a mikimopine-type Ri plasmid, and a strain having a modified Ri plasmid supplemented with a Ti plasmid type virE operon. Agrobacterium strains possessing GALLS transformed yeast cells far less efficiently than the strain containing virE operon. Production of GALLS in recipient yeast cells improved the yeast transformation mediated by an Agrobacterium strain lacking neither GALLS nor virE operon. A reporter assay to detect mobilization of the proteins fused with Cre recombinase revealed that VirE2 protein is much more abundant in yeast cells than GALLS. Based on these results, we concluded that the low yeast transformability mediated by Agrobacterium strains having the Ri plasmid is because of low amount of mobilized GALLS in yeast cells. © 2012 The Authors Journal compilation © 2012 by the Molecular Biology Society of Japan/Blackwell Publishing Ltd.

  13. Micro dynamics in mediation

    OpenAIRE

    Boserup, Hans

    2014-01-01

    The author has identified a number of styles in mediation, which lead to different processes and different outcomes. Through discourse and conversation analysis he examines the micro dynamics in three of these, the postmodern styles: systemic, transformative and narrative mediation. The differences between the three mediation ideologies and practice is illustrated through role play scripts enacted in each style. Mediator and providers of mediation and trainers in mediation are encouraged to a...

  14. AGROBACTERIUM-MEDIATED TRANSFORMATION OF COMPOSITAE PLANTS. I. CONSTRUCTION OF TRANSGENIC PLANTS AND «HAIRY» ROOTS WITH NEW PROPERTIES

    Directory of Open Access Journals (Sweden)

    N. A.Matvieieva

    2013-02-01

    Full Text Available The review explores some of the recent advances and the author's own researchs concerning biotechnological approaches for Agrobacterium tumefaciens- and A. rhizogenes-mediated transformation of Compositae family plants. This paper reviews the results of genetic transformation of Compositae plants, including edible (Cichorium intybus, Lactuca sativa, oil (Helianthus annuus, decorative (Gerbera hybrida, medical (Bidens pilosa, Artemisia annua, Artemisia vulgaris, Calendula officinalis, Withania somnifera etc. plant species. Some Compositae genetic engineering areas are considered including creation of plants, resistant to pests, diseases and herbicides, to the effect of abiotic stress factors as well as plants with altered phenotype. The article also presents the data on the development of biotechnology for Compositae plants Cynara cardunculus, Arnica montana, Cichorium intybus, Artemisia annua "hairy" roots construction.

  15. Phase transformation and diffusion

    CERN Document Server

    Kale, G B; Dey, G K

    2008-01-01

    Given that the basic purpose of all research in materials science and technology is to tailor the properties of materials to suit specific applications, phase transformations are the natural key to the fine-tuning of the structural, mechanical and corrosion properties. A basic understanding of the kinetics and mechanisms of phase transformation is therefore of vital importance. Apart from a few cases involving crystallographic martensitic transformations, all phase transformations are mediated by diffusion. Thus, proper control and understanding of the process of diffusion during nucleation, g

  16. HvCKX2 gene silencing by biolistic or Agrobacterium-mediated transformation in barley leads to different phenotypes.

    Science.gov (United States)

    Zalewski, Wojciech; Orczyk, Wacław; Gasparis, Sebastian; Nadolska-Orczyk, Anna

    2012-11-07

    CKX genes encode cytokinin dehydrogenase enzymes (CKX), which metabolize cytokinins in plants and influence developmental processes. The genes are expressed in different tissues and organs during development; however, their exact role in barley is poorly understood. It has already been proven that RNA interference (RNAi)-based silencing of HvCKX1 decreased the CKX level, especially in those organs which showed the highest expression, i.e. developing kernels and roots, leading to higher plant productivity and higher mass of the roots [1]. The same type of RNAi construct was applied to silence HvCKX2 and analyze the function of the gene. Two cultivars of barley were transformed with the same silencing and selection cassettes by two different methods: biolistic and via Agrobacterium. The mean Agrobacterium-mediated transformation efficiency of Golden Promise was 3.47% (±2.82). The transcript level of HvCKX2 in segregating progeny of T(1) lines was decreased to 34%. The reduction of the transcript in Agrobacterium-derived plants resulted in decreased CKX activity in the developing and developed leaves as well as in 7 DAP (days after pollination) spikes. The final phenotypic effect was increased productivity of T(0) plants and T(1) lines. Higher productivity was the result of the higher number of seeds and higher grain yield. It was also correlated with the higher 1000 grain weight, increased (by 7.5%) height of the plants and higher (from 0.5 to 2) numbers of spikes. The transformation efficiency of Golden Promise after biolistic transformation was more than twice as low compared to Agrobacterium. The transcript level in segregating progeny of T(1) lines was decreased to 24%. Otherwise, the enzyme activity found in the leaves of the lines after biolistic transformation, especially in cv. Golden Promise, was very high, exceeding the relative level of the control lines. These unbalanced ratios of the transcript level and the activity of the CKX enzyme negatively

  17. Efficient and genotype-independent Agrobacterium--mediated tomato transformation.

    Science.gov (United States)

    Park, Sung Hun; Morris, Jay L; Park, Jung Eun; Hirschi, Kendal D; Smith, Roberta H

    2003-10-01

    An efficient method to transform five cultivars of tomato (Lycopersicon esculentum), Micro-Tom, Red Cherry, Rubion, Piedmont, and E6203 is reported. A comparison was made of leaf, cotyledon, and hypocotyl explants on 7 different regeneration media without Agrobacterium tumefaciens cocultivation and on 11 different media with cocultivation. Although all cultivars and explants formed callus and regenerated on the initial 7 media, cocultivation with A. tumefaciens significantly reduced the callus induction and regeneration. From these experiments, a transformation methodology using either hypocotyls or cotyledons cultured for one day on BA 1 mgL-1, NAA 0.1 mgL-1 and 3 days cocultivation with the Agrobacterium on this same medium followed by a transfer to a medium with zeatin 2 mgL-1 and IAA 0.1 mgL-1 for 4-6 weeks resulted in a greater than 20% transformation frequency for all five cultivars tested. In this transformation method, no feeder layers of tobacco, petunia or tomato suspension cultures were used, and the subculture media was minimal. Stable integration and transmission of the transgene in T1 generation plants were confirmed by Southern blot analysis. This procedure represents a simple, efficient and general means of transforming tomato.

  18. Agrobacterium-mediated transformation of chickpea with α-amylase ...

    Indian Academy of Sciences (India)

    Madhu

    Chickpea is a good source of carbohydrate (48.2–67.6%), protein. (12.4–31.5%), starch (41–50%), fat (6%) and nutritionally ... Production of chickpea has remained constantly low because of ..... Geervani P and Umadevi T 1989 Effect of maturation of nutrient .... Tewari-Singh N, Sen J, Kiesecker H, Reddy V S, Jacobsen H J.

  19. Transcriptional regulation of nutrient metabolism by PPARa,y and LXRa

    NARCIS (Netherlands)

    Patsouris, D.A.

    2006-01-01

    Peroxisome Proliferators Activated Receptors (PPARs) and Liver X Receptors (LXRs) are Nuclear Hormones Receptors that mediate the effect of nutrients on gene expression by acting as sensors for fatty acids and cholesterol-derived metabolites, respectively. In as much as metabolic diseases evolve by

  20. Optimization of genetic transformation protocol mediated by biolistic ...

    African Journals Online (AJOL)

    Abhay Kumar

    2013-02-06

    Feb 6, 2013 ... We report here an efficient genotype-independent genetic transformation system in wheat. Highly regenerable embryogenic calli obtained from mature seeds were employed as the target tissue for the genetic transformation of three bread wheat varieties viz C306, HDR77 and PBW343 representing.

  1. Transformational Leadership and Organizational Citizenship Behavior: A Meta-Analytic Test of Underlying Mechanisms.

    Science.gov (United States)

    Nohe, Christoph; Hertel, Guido

    2017-01-01

    Based on social exchange theory, we examined and contrasted attitudinal mediators (affective organizational commitment, job satisfaction) and relational mediators (trust in leader, leader-member exchange; LMX) of the positive relationship between transformational leadership and organizational citizenship behavior (OCB). Hypotheses were tested using meta-analytic path models with correlations from published meta-analyses (761 samples with 227,419 individuals overall). When testing single-mediator models, results supported our expectations that each of the mediators explained the relationship between transformational leadership and OCB. When testing a multi-mediator model, LMX was the strongest mediator. When testing a model with a latent attitudinal mechanism and a latent relational mechanism, the relational mechanism was the stronger mediator of the relationship between transformational leadership and OCB. Our findings help to better understand the underlying mechanisms of the relationship between transformational leadership and OCB.

  2. Cytoskeletal dynamics in interphase, mitosis and cytokinesis analysed through Agrobacterium-mediated transient transformation of tobacco BY-2 cells.

    Science.gov (United States)

    Buschmann, H; Green, P; Sambade, A; Doonan, J H; Lloyd, C W

    2011-04-01

    Transient transformation with Agrobacterium is a widespread tool allowing rapid expression analyses in plants. However, the available methods generate expression in interphase and do not allow the routine analysis of dividing cells. Here, we present a transient transformation method (termed 'TAMBY2') to enable cell biological studies in interphase and cell division. Agrobacterium-mediated transient gene expression in tobacco BY-2 was analysed by Western blotting and quantitative fluorescence microscopy. Time-lapse microscopy of cytoskeletal markers was employed to monitor cell division. Double-labelling in interphase and mitosis enabled localization studies. We found that the transient transformation efficiency was highest when BY-2/Agrobacterium co-cultivation was performed on solid medium. Transformants produced in this way divided at high frequency. We demonstrated the utility of the method by defining the behaviour of a previously uncharacterized microtubule motor, KinG, throughout the cell cycle. Our analyses demonstrated that TAMBY2 provides a flexible tool for the transient transformation of BY-2 with Agrobacterium. Fluorescence double-labelling showed that KinG localizes to microtubules and to F-actin. In interphase, KinG accumulates on microtubule lagging ends, suggesting a minus-end-directed function in vivo. Time-lapse studies of cell division showed that GFP-KinG strongly labels preprophase band and phragmoplast, but not the metaphase spindle. © 2010 The Authors. New Phytologist © 2010 New Phytologist Trust.

  3. Transformation of lettuce (Lactuca sativa) mediated by Agrobacterium tumefaciens.

    Science.gov (United States)

    Michelmore, R; Marsh, E; Seely, S; Landry, B

    1987-12-01

    Lactuca sativa can be routinely transformed using Ti plasmids of Agrobacterium tumefaciens containing a chimeric kanamycin resistance gene (NOS.NPTII.NOS). Critical experimental variables were plant genotype, bacterial concentration, presence of a nurse culture and timing of transfers between tissue culture media. Transformation was confirmed by the ability to callus and root in the presence of kanamycin, nopaline production, and by hybridization in Southern blots. Transformation has been achieved with several Ti vectors. Several hundred transformed plants have been regenerated. Kanamycin resistance was inherited monogenically. Homozygotes can be selected by growing R2 seedlings on media containing G418.

  4. Genetic transformation of switchgrass.

    Science.gov (United States)

    Xi, Yajun; Ge, Yaxin; Wang, Zeng-Yu

    2009-01-01

    Switchgrass (Panicum virgatum L.) is a highly productive warm-season C4 species that is being developed into a dedicated biofuel crop. This chapter describes a protocol that allows the generation of transgenic switchgrass plants by Agrobacterium tumefaciens-mediated transformation. Embryogenic calluses induced from caryopses or inflorescences were used as explants for inoculation with A. tumefaciens strain EHA105. Hygromycin phosphotransferase gene (hph) was used as the selectable marker and hygromycin was used as the selection agent. Calluses resistant to hygromycin were obtained after 5-6 weeks of selection. Soil-grown switchgrass plants were regenerated about 6 months after callus induction and Agrobacterium-mediated transformation.

  5. Hydromorphological control of nutrient cycling in complex river floodplain systems

    Science.gov (United States)

    Hein, T.; Bondar-Kunze, E.; Felkl, M.; Habersack, H.; Mair, M.; Pinay, G.; Tritthart, M.; Welti, N.

    2009-04-01

    Riparian zones and floodplains are key components within river ecosystems controlling nutrient cycling by promoting transformation processes and thus, act as biogeochemical hot spots. The intensity of these processes depends on the exchange conditions (the connectivity) with the main channel and the morphological setting of the water bodies. At the landscape scale, three interrelated principles of hydromorphological dynamics can be formulated regarding the cycling and transfer of carbon and nutrients in large rivers ecosystems: a) The mode of carbon and nutrient delivery affects ecosystem functioning; b) Increasing residence time and contact area impact nutrient transformation; c) Floods and droughts are natural events that strongly influence pathways of carbon and nutrient cycling. These three principles of hydromorphological dynamics control the nutrient uptake and retention and are linked over different temporal and spatial scales. All three factors can be strongly affected by natural disturbances or anthropogenic impacts, through a change in either the water regime or the geomorphologic setting of the river valley. Any change in natural water regimes will affect the biogeochemistry of riparian zones and floodplains as well as their ability to cycle and mitigate nutrient fluxes originating from upstream and/or upslope. Especially these areas have been altered by river regulation and land use changes over the last 200 years leading to the deterioration of the functioning of these compartments within the riverine landscape. The resulting deficits have prompted rehabilitation and restoration measures aiming to increase the spatial heterogeneity, the complexity, of these ecosystems. Yet, a more integrated approach is needed considering the present status of nutrient dynamics and the effects of restoration measures at different scales. The present paper analyses the effects of river side-arm restoration on ecosystem functions within the side-arm and highlights

  6. Studies of transformational leadership in consumer service: market orientation behavior and alternative roles for the mediators and moderators of change commitment.

    Science.gov (United States)

    Yang, Yi-Feng

    2013-12-01

    The present paper evaluates the relation between transformational leadership and market orientation along with the mediating and moderating effects of change commitment for employees in customer centers in Taiwan. 327 questionnaires were returned by personnel at several customer centers in four different insurance companies. Inter-rater agreement was acceptable based on the multiple raters (i.e., the consumer-related employees from the division groups) of one individual (i.e., a manager)--indicating the aggregated measures were acceptable. The multi-source sample comprised data taken from the four division centers: phone services, customer representatives, financial specialists, and front-line salespeople. The relations were assessed using a multiple mediation procedure incorporating bootstrap techniques and PRODCLIN2 with structural equation modeling analysis. The results reflect a mediating role for change commitment.

  7. Mathematical modelling of the influenced of diffusion rate on macro nutrient availability in paddy field

    Science.gov (United States)

    Renny; Supriyanto

    2018-04-01

    Nutrition is the chemical compounds that needed by the organism for the growth process. In plants, nutrients are organic or inorganic compounds that are absorbed from the roots of the soil. It consist of macro and micro nutrient. Macro nutrients are nutrition that needed by plants in large quantities, such as, nitrogen, calcium, pottacium, magnesium, and sulfur. The total soil nutrient is the difference between the input nutrient and the output nutrients. Input nutrients are nutrient that derived from the decomposition of organic substances. Meanwhile, the output nutrient consists of the nutrients that absorbed by plant roots (uptake), the evaporated nutrients (volatilized) and leached nutrients. The nutrient transport can be done through diffusion process. The diffusion process is essential in removing the nutrient from one place to the root surface. It will cause the rate of absorption of nutrient by the roots will be greater. Nutrient concept in paddy filed can be represented into a mathematical modelling, by making compartment models. The rate of concentration change in the compartment model forms a system of homogeneous linear differential equations. In this research, we will use Laplaces transformation to solve the compartment model and determined the dynamics of macro nutrition due to diffusion process.

  8. Cotton transformation via pollen tube pathway.

    Science.gov (United States)

    Wang, Min; Zhang, Baohong; Wang, Qinglian

    2013-01-01

    Although many gene transfer methods have been employed for successfully obtaining transgenic cotton, the major constraint in cotton improvement is the limitation of genotype because the majority of transgenic methods require plant regeneration from a single transformed cell which is limited by cotton tissue culture. Comparing with other plant species, it is difficult to induce plant regeneration from cotton; currently, only a limited number of cotton cultivars can be cultured for obtaining regenerated plants. Thus, development of a simple and genotype-independent genetic transformation method is particularly important for cotton community. In this chapter, we present a simple, cost-efficient, and genotype-independent cotton transformation method-pollen tube pathway-mediated transformation. This method uses pollen tube pathway to deliver transgene into cotton embryo sacs and then insert foreign genes into cotton genome. There are three major steps for pollen tube pathway-mediated genetic transformation, which include injection of -foreign genes into pollen tube, integration of foreign genes into plant genome, and selection of transgenic plants.

  9. Transformation of Mortierella alpina (fatty acid supplier myceliums via AMT system (Agrobacterium Mediated Transformation

    Directory of Open Access Journals (Sweden)

    Aida Javanmard

    2016-09-01

    Full Text Available Introduction: Mortierella alpina is one of the most important fungi in food industry because of having ability of synthesizing unsaturated fatty acids, particularly Arashidonic Acid. This is a precursor of Eicosanoidregulate-lipoprotein metabolism which is involved in blood rheology, platelet activation and leukocyte-function, and the functional characteristics of the cell membrane. Materials and methods: In this study genetic transformation of M. alpina CBS754.68 fungus was evaluated via Agrobacterium tumefaciens and Agrobacterium rhizogenes. Agrobacteriums containing pBI121 vector were used for transformation of three days of old mycelia. Three days old hyphae were exposed to the bacteria with three level of time (one, two and three hours in the present of acetosyringone. Mitotic stability of the third generation of transgenic (T2 was confirmed by GUS assay and amplification of CaMV 35S promoter by polymerase chain reaction. Results: The highest percentage of transformation and mitotic stability were obtained by using A. tumefaciens and A. rhizogenese, respectively. Discussion and conclusion: The results showed that to obtain more efficient and more stable transformation, the fundamental factor is the use of suitable species of Agrobacterium. It is the first report for transformation of autothroph strain of M. alpine via Agrobacterium.

  10. Regeneration and Agrobacterium -mediated transformation studies ...

    African Journals Online (AJOL)

    Leaf explants of carnation (Dianthus caryophyllus L. cv. Turbo) were used for the transformation of gene performed by the EHA 105 strain of Agrobacterium tumefaciens harboring the binary vector, pGA482GG. This vector carries the marker genes, neomycin phosphotansferase II (npt II) that determine resistance to ...

  11. Protoplast isolation, transient transformation of leaf mesophyll protoplasts and improved Agrobacterium-mediated leaf disc infiltration of Phaseolus vulgaris: tools for rapid gene expression analysis.

    Science.gov (United States)

    Nanjareddy, Kalpana; Arthikala, Manoj-Kumar; Blanco, Lourdes; Arellano, Elizabeth S; Lara, Miguel

    2016-06-24

    Phaseolus vulgaris is one of the most extensively studied model legumes in the world. The P. vulgaris genome sequence is available; therefore, the need for an efficient and rapid transformation system is more imperative than ever. The functional characterization of P. vulgaris genes is impeded chiefly due to the non-amenable nature of Phaseolus sp. to stable genetic transformation. Transient transformation systems are convenient and versatile alternatives for rapid gene functional characterization studies. Hence, the present work focuses on standardizing methodologies for protoplast isolation from multiple tissues and transient transformation protocols for rapid gene expression analysis in the recalcitrant grain legume P. vulgaris. Herein, we provide methodologies for the high-throughput isolation of leaf mesophyll-, flower petal-, hypocotyl-, root- and nodule-derived protoplasts from P. vulgaris. The highly efficient polyethylene glycol-mannitol magnesium (PEG-MMG)-mediated transformation of leaf mesophyll protoplasts was optimized using a GUS reporter gene. We used the P. vulgaris SNF1-related protein kinase 1 (PvSnRK1) gene as proof of concept to demonstrate rapid gene functional analysis. An RT-qPCR analysis of protoplasts that had been transformed with PvSnRK1-RNAi and PvSnRK1-OE vectors showed the significant downregulation and ectopic constitutive expression (overexpression), respectively, of the PvSnRK1 transcript. We also demonstrated an improved transient transformation approach, sonication-assisted Agrobacterium-mediated transformation (SAAT), for the leaf disc infiltration of P. vulgaris. Interestingly, this method resulted in a 90 % transformation efficiency and transformed 60-85 % of the cells in a given area of the leaf surface. The constitutive expression of YFP further confirmed the amenability of the system to gene functional characterization studies. We present simple and efficient methodologies for protoplast isolation from multiple P

  12. Optimization of in vitro regeneration and Agrobacterium tumefaciens-mediated transformation with heat-resistant cDNA in Brassica oleracea subsp. italica cv. Green Marvel.

    Science.gov (United States)

    Ravanfar, Seyed Ali; Aziz, Maheran Abdul; Saud, Halimi Mohd; Abdullah, Janna Ong

    2015-11-01

    An efficient system for shoot regeneration and Agrobacterium tumefaciens-mediated transformation of Brassica oleracea cv. Green Marvel cultivar is described. This study focuses on developing shoot regeneration from hypocotyl explants of broccoli cv. Green Marvel using thidiazuron (TDZ), zeatin, and kinetin, the optimization of factors affecting Agrobacterium-mediated transformation of the hypocotyl explants with heat-resistant cDNA, followed by the confirmation of transgenicity of the regenerants. High shoot regeneration was observed in 0.05-0.1 mg dm(-3) TDZ. TDZ at 0.1 mg dm(-3) produced among the highest percentage of shoot regeneration (96.67 %) and mean number of shoot formation (6.17). The highest percentage (13.33 %) and mean number (0.17) of putative transformant production were on hypocotyl explants subjected to preculture on shoot regeneration medium (SRM) with 200 µM acetosyringone. On optimization of bacterial density and inoculation time, the highest percentage and mean number of putative transformant production were on hypocotyl explants inoculated with a bacterial dilution of 1:5 for 30 min. Polymerase chain reaction (PCR) assay indicated a transformation efficiency of 8.33 %. The luciferase assay showed stable integration of the Arabidopsis thaliana HSP101 (AtHSP101) cDNA in the transgenic broccoli regenerants. Three out of five transgenic lines confirmed through PCR showed positive hybridization bands of the AtHSP101 cDNA through Southern blot analysis. The presence of AtHSP101 transcripts in the three transgenic broccoli lines indicated by reverse transcription-PCR (RT-PCR) confirmed the expression of the gene. In conclusion, an improved regeneration system has been established from hypocotyl explants of broccoli followed by successful transformation with AtHSP101 for resistance to high temperature.

  13. DNA-mediated gene transfer into human diploid fibroblasts derived from normal and ataxia-telangiectasia donors: parameters for DNA transfer and properties of DNA transformants

    International Nuclear Information System (INIS)

    Debenham, P.G.; Webb, M.B.T.; Masson, W.K.; Cox, R.

    1984-01-01

    An investigation was made of the feasibility of DNA-mediated gene transfer into human diploid fibroblasts derived from patients with the radiation sensitive syndrome ataxia-telangiectasia (A-T) and from a normal donor. Although they are markedly different in their growth characteristics, both normal and A-T strains give similar frequencies for DNA transfer in a model system using the recombinant plasmid pSV2-gpt. pSV2-gpt DNA transformants arise with a frequency between 10 -5 and 10 -4 per viable cell. Analysis of such transformants, although possible, is severely handicapped by the limited clonal life span of diploid human cells. Despite these problems it may be concluded that diploid human fibroblasts are competent recipients for DNA-mediated gene transfer and the putative repair deficiency of A-T does not markedly effect the efficiency of this process. (author)

  14. Nutrients, Microglia Aging, and Brain Aging

    Directory of Open Access Journals (Sweden)

    Zhou Wu

    2016-01-01

    Full Text Available As the life expectancy continues to increase, the cognitive decline associated with Alzheimer’s disease (AD becomes a big major issue in the world. After cellular activation upon systemic inflammation, microglia, the resident immune cells in the brain, start to release proinflammatory mediators to trigger neuroinflammation. We have found that chronic systemic inflammatory challenges induce differential age-dependent microglial responses, which are in line with the impairment of learning and memory, even in middle-aged animals. We thus raise the concept of “microglia aging.” This concept is based on the fact that microglia are the key contributor to the acceleration of cognitive decline, which is the major sign of brain aging. On the other hand, inflammation induces oxidative stress and DNA damage, which leads to the overproduction of reactive oxygen species by the numerous types of cells, including macrophages and microglia. Oxidative stress-damaged cells successively produce larger amounts of inflammatory mediators to promote microglia aging. Nutrients are necessary for maintaining general health, including the health of brain. The intake of antioxidant nutrients reduces both systemic inflammation and neuroinflammation and thus reduces cognitive decline during aging. We herein review our microglia aging concept and discuss systemic inflammation and microglia aging. We propose that a nutritional approach to controlling microglia aging will open a new window for healthy brain aging.

  15. Nutrients, Microglia Aging, and Brain Aging.

    Science.gov (United States)

    Wu, Zhou; Yu, Janchun; Zhu, Aiqin; Nakanishi, Hiroshi

    2016-01-01

    As the life expectancy continues to increase, the cognitive decline associated with Alzheimer's disease (AD) becomes a big major issue in the world. After cellular activation upon systemic inflammation, microglia, the resident immune cells in the brain, start to release proinflammatory mediators to trigger neuroinflammation. We have found that chronic systemic inflammatory challenges induce differential age-dependent microglial responses, which are in line with the impairment of learning and memory, even in middle-aged animals. We thus raise the concept of "microglia aging." This concept is based on the fact that microglia are the key contributor to the acceleration of cognitive decline, which is the major sign of brain aging. On the other hand, inflammation induces oxidative stress and DNA damage, which leads to the overproduction of reactive oxygen species by the numerous types of cells, including macrophages and microglia. Oxidative stress-damaged cells successively produce larger amounts of inflammatory mediators to promote microglia aging. Nutrients are necessary for maintaining general health, including the health of brain. The intake of antioxidant nutrients reduces both systemic inflammation and neuroinflammation and thus reduces cognitive decline during aging. We herein review our microglia aging concept and discuss systemic inflammation and microglia aging. We propose that a nutritional approach to controlling microglia aging will open a new window for healthy brain aging.

  16. Systematic review of nutrient intake and growth in children with multiple IgE-mediated food allergies.

    Science.gov (United States)

    Sova, Cassandra; Feuling, Mary Beth; Baumler, Megan; Gleason, Linda; Tam, Jonathan S; Zafra, Heidi; Goday, Praveen S

    2013-12-01

    Food allergies affect up to 8% of American children. The current recommended treatment for food allergies is strict elimination of the allergens from the diet. Dietary elimination of nutrient-dense foods may result in inadequate nutrient intake and impaired growth. The purpose of this review was to critically analyze available research on the effect of an elimination diet on nutrient intake and growth in children with multiple food allergies. A systematic review of the literature was conducted and a workgroup was established to critically analyze each relevant article. The findings were summarized and a conclusion was generated. Six studies were analyzed. One study found that children with food allergies are more likely to be malnourished than children without food allergies. Three studies found that children with multiple food allergies were shorter than children with 1 food allergy. Four studies assessed nutrient intake of children with multiple food allergies, but the inclusion and comparison criteria were different in each of the studies and the findings were conflicting. One study found that children with food allergies who did not receive nutrition counseling were more likely to have inadequate intake of calcium and vitamin D. Children with multiple food allergies have a higher risk of impaired growth and may have a higher risk of inadequate nutrient intake than children without food allergies. Until more research is available, we recommend monitoring of nutrition and growth of children with multiple food allergies to prevent possible nutrient deficiencies and to optimize growth.

  17. Stable genetic transformation of Jatropha curcas via Agrobacterium tumefaciens-mediated gene transfer using leaf explants

    KAUST Repository

    Kumar, Nitish

    2010-07-01

    Jatropha curcas is an oil bearing species with multiple uses and considerable economic potential as a biofuel crop. A simple and reproducible protocol was developed for Agrobacterium tumefaciens-mediated stable genetic transformation of J. curcas using leaf explains. Agrobacterium strain LBA 4404 harbouring the binary vector pCAMBIA 1304 having sense-dehydration responsive element binding (S-DREB2A), beta-glucuronidase (gus), and hygromycin-phosphotransferase (hpt) genes were used for gene transfer. A number of parameters such as preculture of explains, wounding of leaf explants, Agrobacterium growth phase (OD), infection duration, co-cultivation period, co-cultivation medium pH, and acetosyringone, were studied to optimized transformation efficiency. The highest transformation efficiency was achieved using 4-day precultured, non-wounded leaf explants infected with Agrobacterium culture corresponding to OD(600)=0.6 for 20 min, followed by co-cultivation for 4 days in a co-cultivation medium containing 100 mu M acetosyringone, pH 5.7. Co-cultivated leaf explants were initially cultured on Murashige and Skoog (MS) medium supplemented with 2.27 mu M thidiazuron (TDZ) for regeneration of shoot buds, followed by selection on same medium with 5 mu g ml(-1) hygromycin. Selected shoot buds were transferred to MS medium containing 10 mu M kinetin (Kn), 4.5 mu M 6-benzyl aminopurine (BA), and 5.5 mu M alpha-naphthaleneacetic acid (NAA) for proliferation. The proliferated shoots were elongated on MS medium supplemented with 2.25 mu M BA and 8.5 mu M indole-3-acetic acid (IAA). The elongated shoots were rooted on half strength MS medium supplemented with 15 mu M indole-3-butyric acid (IBA), 5.7 mu M IAA, 5.5 mu M NAA, and 0.25 mg l(-1) activated charcoal. GUS histochemical analysis of the transgenic tissues further confirmed the transformation event. PCR and DNA gel blot hybridization were performed to confirm the presence of transgene. A transformation efficiency of 29% was

  18. Stable genetic transformation of Jatropha curcas via Agrobacterium tumefaciens-mediated gene transfer using leaf explants

    KAUST Repository

    Kumar, Nitish; Vijay Anand, K.G.; Pamidimarri, D.V.N. Sudheer; Sarkar, Tanmoy; Reddy, Muppala P.; Radhakrishnan, T.; Kaul, Tanushri; Reddy, M.K.; Sopori, Sudhir K.

    2010-01-01

    Jatropha curcas is an oil bearing species with multiple uses and considerable economic potential as a biofuel crop. A simple and reproducible protocol was developed for Agrobacterium tumefaciens-mediated stable genetic transformation of J. curcas using leaf explains. Agrobacterium strain LBA 4404 harbouring the binary vector pCAMBIA 1304 having sense-dehydration responsive element binding (S-DREB2A), beta-glucuronidase (gus), and hygromycin-phosphotransferase (hpt) genes were used for gene transfer. A number of parameters such as preculture of explains, wounding of leaf explants, Agrobacterium growth phase (OD), infection duration, co-cultivation period, co-cultivation medium pH, and acetosyringone, were studied to optimized transformation efficiency. The highest transformation efficiency was achieved using 4-day precultured, non-wounded leaf explants infected with Agrobacterium culture corresponding to OD(600)=0.6 for 20 min, followed by co-cultivation for 4 days in a co-cultivation medium containing 100 mu M acetosyringone, pH 5.7. Co-cultivated leaf explants were initially cultured on Murashige and Skoog (MS) medium supplemented with 2.27 mu M thidiazuron (TDZ) for regeneration of shoot buds, followed by selection on same medium with 5 mu g ml(-1) hygromycin. Selected shoot buds were transferred to MS medium containing 10 mu M kinetin (Kn), 4.5 mu M 6-benzyl aminopurine (BA), and 5.5 mu M alpha-naphthaleneacetic acid (NAA) for proliferation. The proliferated shoots were elongated on MS medium supplemented with 2.25 mu M BA and 8.5 mu M indole-3-acetic acid (IAA). The elongated shoots were rooted on half strength MS medium supplemented with 15 mu M indole-3-butyric acid (IBA), 5.7 mu M IAA, 5.5 mu M NAA, and 0.25 mg l(-1) activated charcoal. GUS histochemical analysis of the transgenic tissues further confirmed the transformation event. PCR and DNA gel blot hybridization were performed to confirm the presence of transgene. A transformation efficiency of 29% was

  19. Skeletal nutrient vascular adaptation induced by external oscillatory intramedullary fluid pressure intervention

    Directory of Open Access Journals (Sweden)

    Qin Yi-Xian

    2010-03-01

    Full Text Available Abstract Background Interstitial fluid flow induced by loading has demonstrated to be an important mediator for regulating bone mass and morphology. It is shown that the fluid movement generated by the intramedullary pressure (ImP provides a source for pressure gradient in bone. Such dynamic ImP may alter the blood flow within nutrient vessel adjacent to bone and directly connected to the marrow cavity, further initiating nutrient vessel adaptation. It is hypothesized that oscillatory ImP can mediate the blood flow in the skeletal nutrient vessels and trigger vasculature remodeling. The objective of this study was then to evaluate the vasculature remodeling induced by dynamic ImP stimulation as a function of ImP frequency. Methods Using an avian model, dynamics physiological fluid ImP (70 mmHg, peak-peak was applied in the marrow cavity of the left ulna at either 3 Hz or 30 Hz, 10 minutes/day, 5 days/week for 3 or 4 weeks. The histomorphometric measurements of the principal nutrient arteries were done to quantify the arterial wall area, lumen area, wall thickness, and smooth muscle cell layer numbers for comparison. Results The preliminary results indicated that the acute cyclic ImP stimuli can significantly enlarge the nutrient arterial wall area up to 50%, wall thickness up to 20%, and smooth muscle cell layer numbers up to 37%. In addition, 3-week of acute stimulation was sufficient to alter the arterial structural properties, i.e., increase of arterial wall area, whereas 4-week of loading showed only minimal changes regardless of the loading frequency. Conclusions These data indicate a potential mechanism in the interrelationship between vasculature adaptation and applied ImP alteration. Acute ImP could possibly initiate the remodeling in the bone nutrient vasculature, which may ultimately alter blood supply to bone.

  20. A study on ranking the effects of transformational leadership style on organizational agility and mediating role of organizational creativity

    OpenAIRE

    Seidmehdi Veiseh; Ardshir shiri; Neeman Eghbali

    2014-01-01

    The purpose of this study was to investigate the effects of the components of transformational leadership style on organizational agility and mediating role of organizational creativity in Ilam Gas Refinery located in province of Ilam, Iran. The method of the present study was descriptive and correlational-structural equation modeling. The population of this research included all 400 workers of Ilam gas refinery and the study chose a sample of196 employees. The questionnaire was standardized ...

  1. SacB-SacR gene cassette as the negative selection marker to suppress Agrobacterium overgrowth in Agrobacterium-mediated plant transformation

    Directory of Open Access Journals (Sweden)

    Yiming Liu

    2016-10-01

    Full Text Available Agrobacterium overgrowth is a common problem in Agrobacterium-mediated plant transfor-mation. To suppress the Agrobacterium overgrowth, various antibiotics have been used during plant tissue culture steps. The antibiotics are expensive and may adversely affect plant cell differentiation and reduce plant transformation efficiency. The SacB-SacR proteins are toxic to most Agrobacterium tumefaciens strains when they are grown on culture medium sup¬plemented with sucrose. Therefore, SacB-SacR genes can be used as negative selection markers to suppress the overgrowth of Agrobacterium tumefaciens in the plant tissue culture process. We generated a mutant Agrobacterium tumefaciens strain GV2260 (recA-SacB/R that has the SacB-SacR cassette inserted into the bacterial genome at the recA gene locus. The mutant Agrobacterium strain is sensitive to sucrose but maintains its ability to transform plant cells in both transient and stable transformation assays. We demonstrated that the mutant strain GV2260 (recA-SacB/R can be inhibited by sucrose that reduces the overgrowth of Agrobacterium and therefore improves the plant transformation efficiency. We employed GV2260 (recA-SacB/R to generate stable transgenic N. benthamiana plants expressing a CRISPR-Cas9 for knocking out a WRKY transcrip¬tion factor.

  2. An Efficient Agrobacterium-Mediated Transformation System for Poplar

    Science.gov (United States)

    Movahedi, Ali; Zhang, Jiaxin; Amirian, Rasoul; Zhuge, Qiang

    2014-01-01

    Poplar is a model system for the regeneration and genetic transformation of woody plants. To shorten the time required for studies of transgenic poplar, efforts have been made to optimize transformation methods that use Agrobacterium tumefaciens. In this study, an Agrobacterium infective suspension was treated at 4 °C for at least 10 h before infecting explants. By transforming the Populus hybrid clone “Nanlin895” (Populus deltoides × P. euramericana) with Agrobacterium harboring the PBI121:CarNAC6 binary vector, we showed that the transformation efficiency was improved significantly by multiple independent factors, including an Agrobacterium infective suspension with an OD600 of 0.7, an Agrobacterium infection for 120 min, an Agrobacterium infective suspension at a pH of 5.0, an acetosyringone concentration of 200 µM, a cocultivation at 28 °C, a cocultivation for 72 h and a sucrose concentration of 30 g/L in the cocultivation medium. We also showed that preculture of wounded leaf explants for two days increased the regeneration rate. The integration of the desired gene into transgenic poplars was detected using selective medium containing kanamycin, followed by southern blot analysis. The expression of the transgene in the transgenic lines was confirmed by northern blot analysis. PMID:24933641

  3. Agrobacterium-mediated transformation of cauliflower: optimization ...

    Indian Academy of Sciences (India)

    Unknown

    2.1 Plant material and culture conditions. Seeds of cauliflower variety Pusa Snowball K-1 used for transformation were obtained from the National Seeds. Corporation, New Delhi. Seeds, surface sterilized in. 0⋅1% HgCl2 and 0⋅1% SDS for 10 min, were placed on half-strength MS (Murashige and Skoog 1962) medium.

  4. Regeneration of hyaline cartilage by cell-mediated gene therapy using transforming growth factor beta 1-producing fibroblasts.

    Science.gov (United States)

    Lee, K H; Song, S U; Hwang, T S; Yi, Y; Oh, I S; Lee, J Y; Choi, K B; Choi, M S; Kim, S J

    2001-09-20

    Transforming growth factor beta (TGF-beta) has been considered as a candidate for gene therapy of orthopedic diseases. The possible application of cell-mediated TGF-beta gene therapy as a new treatment regimen for degenerative arthritis was investigated. In this study, fibroblasts expressing active TGF-beta 1 were injected into the knee joints of rabbits with artificially made cartilage defects to evaluate the feasibility of this therapy for orthopedic diseases. Two to 3 weeks after the injection there was evidence of cartilage regeneration, and at 4 to 6 weeks the cartilage defect was completely filled with newly grown hyaline cartilage. Histological analyses of the regenerated cartilage suggested that it was well integrated with the adjacent normal cartilage at the sides of the defect and that the newly formed tissue was indeed hyaline cartilage. Our findings suggest that cell-mediated TGF-beta 1 gene therapy may be a novel treatment for orthopedic diseases in which hyaline cartilage damage has occurred.

  5. Agrobacterium-mediated gene transfer in plants and biosafety considerations.

    Science.gov (United States)

    Mehrotra, Shweta; Goyal, Vinod

    2012-12-01

    Agrobacterium, the natures' genetic engineer, has been used as a vector to create transgenic plants. Agrobacterium-mediated gene transfer in plants is a highly efficient transformation process which is governed by various factors including genotype of the host plant, explant, vector, plasmid, bacterial strain, composition of culture medium, tissue damage, and temperature of co-cultivation. Agrobacterium has been successfully used to transform various economically and horticulturally important monocot and dicot species by standard tissue culture and in planta transformation techniques like floral or seedling infilteration, apical meristem transformation, and the pistil drip methods. Monocots have been comparatively difficult to transform by Agrobacterium. However, successful transformations have been reported in the last few years based on the adjustment of the parameters that govern the responses of monocots to Agrobacterium. A novel Agrobacterium transferred DNA-derived nanocomplex method has been developed which will be highly valuable for plant biology and biotechnology. Agrobacterium-mediated genetic transformation is known to be the preferred method of creating transgenic plants from a commercial and biosafety perspective. Agrobacterium-mediated gene transfer predominantly results in the integration of foreign genes at a single locus in the host plant, without associated vector backbone and is also known to produce marker free plants, which are the prerequisites for commercialization of transgenic crops. Research in Agrobacterium-mediated transformation can provide new and novel insights into the understanding of the regulatory process controlling molecular, cellular, biochemical, physiological, and developmental processes occurring during Agrobacterium-mediated transformation and also into a wide range of aspects on biological safety of transgenic crops to improve crop production to meet the demands of ever-growing world's population.

  6. Bottom-up nutrient and top-down fish impacts on insect-mediated mercury flux from aquatic ecosystems.

    Science.gov (United States)

    Jones, Taylor A; Chumchal, Matthew M; Drenner, Ray W; Timmins, Gabrielle N; Nowlin, Weston H

    2013-03-01

    Methyl mercury (MeHg) is one of the most hazardous contaminants in the environment, adversely affecting the health of wildlife and humans. Recent studies have demonstrated that aquatic insects biotransport MeHg and other contaminants to terrestrial consumers, but the factors that regulate the flux of MeHg out of aquatic ecosystems via emergent insects have not been studied. The authors used experimental mesocosms to test the hypothesis that insect emergence and the associated flux of MeHg from aquatic to terrestrial ecosystems is affected by both bottom-up nutrient effects and top-down fish consumer effects. In the present study, nutrient addition led to an increase in MeHg flux primarily by enhancing the biomass of emerging insects whose tissues were contaminated with MeHg, whereas fish decreased MeHg flux primarily by reducing the biomass of emerging insects. Furthermore, the authors found that these factors are interdependent such that the effects of nutrients are more pronounced when fish are absent, and the effects of fish are more pronounced when nutrient concentrations are high. The present study is the first to demonstrate that the flux of MeHg from aquatic to terrestrial ecosystems is strongly enhanced by bottom-up nutrient effects and diminished by top-down consumer effects. Copyright © 2012 SETAC.

  7. Progress in planta transformation without tissue culture

    International Nuclear Information System (INIS)

    Gu Yunhong; Chinese Academy of Sciences, Hefei; Qin Guangyong; Huo Yuping; Yu Zengliang

    2004-01-01

    With the development of planta genetic engineering, more emphases have been laid on convenient and high efficient genetic transformation methods. And transformation without tissue culture is a prospective direction of it. In this paper, traditional transformation methods and the methods of non-tissue culture were summarized. With the exploration and application of Arabidopsis transformation mechanism, with the use of ion beam-mediated transformation invented by Chinese scientists and the development of other transformation methods, transformation methods without tissue culture and planta genetic engineering could be improved rapidly. (authors)

  8. Inhibition of the Transforming Growth Factor β (TGFβ) Pathway by Interleukin-1β Is Mediated through TGFβ-activated Kinase 1 Phosphorylation of SMAD3

    NARCIS (Netherlands)

    Benus, G.F.J.D.; Wierenga, A.T. J.; de Gorter, D.J.J.; Schuringa, Jan-Jacob; van Bennekum, A.M.; Drenth - Diephuis, L.; Vellenga, E.; Eggen, B.J.L.

    2005-01-01

    Transforming growth factor β is the prototype of a large family of secreted factors that regulate multiple biological processes. In the immune system, TGFβ acts as an anti-inflammatory and immunosuppressive molecule, whereas the cytokine interleukin (IL)-1β is a crucial mediator of inflammatory

  9. The Stoichiometry of Nutrient Release by Terrestrial Herbivores and Its Ecosystem Consequences

    Directory of Open Access Journals (Sweden)

    Judith Sitters

    2017-04-01

    Full Text Available It is widely recognized that the release of nutrients by herbivores via their waste products strongly impacts nutrient availability for autotrophs. The ratios of nitrogen (N and phosphorus (P recycled through herbivore release (i.e., waste N:P are mainly determined by the stoichiometric composition of the herbivore's food (food N:P and its body nutrient content (body N:P. Waste N:P can in turn impact autotroph nutrient limitation and productivity. Herbivore-driven nutrient recycling based on stoichiometric principles is dominated by theoretical and experimental research in freshwater systems, in particular interactions between algae and invertebrate herbivores. In terrestrial ecosystems, the impact of herbivores on nutrient cycling and availability is often limited to studying carbon (C:N and C:P ratios, while the role of terrestrial herbivores in mediating N:P ratios is also likely to influence herbivore-driven nutrient recycling. In this review, we use rules and predictions on the stoichiometry of nutrient release originating from algal-based aquatic systems to identify the factors that determine the stoichiometry of nutrient release by herbivores. We then explore how these rules can be used to understand the stoichiometry of nutrient release by terrestrial herbivores, ranging from invertebrates to mammals, and its impact on plant nutrient limitation and productivity. Future studies should focus on measuring both N and P when investigating herbivore-driven nutrient recycling in terrestrial ecosystems, while also taking the form of waste product (urine or feces and other pathways by which herbivores change nutrients into account, to be able to quantify the impact of waste stoichiometry on plant communities.

  10. Advances in the understanding of nutrient dynamics and management in UK agriculture.

    Science.gov (United States)

    Dungait, Jennifer A J; Cardenas, Laura M; Blackwell, Martin S A; Wu, Lianhai; Withers, Paul J A; Chadwick, David R; Bol, Roland; Murray, Philip J; Macdonald, Andrew J; Whitmore, Andrew P; Goulding, Keith W T

    2012-09-15

    Current research on macronutrient cycling in UK agricultural systems aims to optimise soil and nutrient management for improved agricultural production and minimise effects on the environment and provision of ecosystem services. Nutrient use inefficiencies can cause environmental pollution through the release of greenhouse gases into the atmosphere and of soluble and particulate forms of N, P and carbon (C) in leachate and run-off into watercourses. Improving nutrient use efficiencies in agriculture calls for the development of sustainable nutrient management strategies: more efficient use of mineral fertilisers, increased recovery and recycling of waste nutrients, and, better exploitation of the substantial inorganic and organic reserves of nutrients in the soil. Long-term field experimentation in the UK has provided key knowledge of the main nutrient transformations in agricultural soils. Emerging analytical technologies, especially stable isotope labelling, that better characterise macronutrient forms and bioavailability and improve the quantification of the complex relationships between the macronutrients in soils at the molecular scale, are augmenting this knowledge by revealing the underlying processes. The challenge for the future is to determine the relationships between the dynamics of N, P and C across scales, which will require both new modelling approaches and integrated approaches to macronutrient cycling. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Agrobacterium rhizogenes mediated transformation of Rhodiola sp. – an approach to enhance the level of bioactive compounds

    DEFF Research Database (Denmark)

    Møller Hansen, Martin; Lauridsen, Uffe Bjerre; Hegelund, Josefine Nymark

    Agrobacterium rhizogenes mediated transformation of Rhodiola sp. – an approach to enhance the level of bioactive compounds. Martin Møller Hansen1, Uffe Bjerre Lauridsen2, Josefine Nymark Hegelund3, Renate Müller4, Jihong Liu Clarke5, Henrik Lütken6 University of Copenhagen, Faculty of Science...... to wild type roots. The purpose of this study is to obtain HRs containing rol-genes from Rhodiola sp. for future sustainable production in bioreactors. Materials and Methods Whole stems of R. rosea and two accessions of R. pachyclados were sterilized with ethanol and NaOCl. The stems were then cut...

  12. An improved Agrobacterium mediated transformation in tomato ...

    African Journals Online (AJOL)

    ONOS

    2010-03-29

    Mar 29, 2010 ... extended periods and enters the roots through wounds. *Corresponding ..... syringone increases the transformation in Arabidopsis and in soybean ..... that the choice of a proper selection scheme has elimina- ted the chance ...

  13. Beaver-mediated lateral hydrologic connectivity, fluvial carbon and nutrient flux, and aquatic ecosystem metabolism

    Science.gov (United States)

    Wegener, Pam; Covino, Tim; Wohl, Ellen

    2017-06-01

    River networks that drain mountain landscapes alternate between narrow and wide valley segments. Within the wide segments, beaver activity can facilitate the development and maintenance of complex, multithread planform. Because the narrow segments have limited ability to retain water, carbon, and nutrients, the wide, multithread segments are likely important locations of retention. We evaluated hydrologic dynamics, nutrient flux, and aquatic ecosystem metabolism along two adjacent segments of a river network in the Rocky Mountains, Colorado: (1) a wide, multithread segment with beaver activity; and, (2) an adjacent (directly upstream) narrow, single-thread segment without beaver activity. We used a mass balance approach to determine the water, carbon, and nutrient source-sink behavior of each river segment across a range of flows. While the single-thread segment was consistently a source of water, carbon, and nitrogen, the beaver impacted multithread segment exhibited variable source-sink dynamics as a function of flow. Specifically, the multithread segment was a sink for water, carbon, and nutrients during high flows, and subsequently became a source as flows decreased. Shifts in river-floodplain hydrologic connectivity across flows related to higher and more variable aquatic ecosystem metabolism rates along the multithread relative to the single-thread segment. Our data suggest that beaver activity in wide valleys can create a physically complex hydrologic environment that can enhance hydrologic and biogeochemical buffering, and promote high rates of aquatic ecosystem metabolism. Given the widespread removal of beaver, determining the cumulative effects of these changes is a critical next step in restoring function in altered river networks.

  14. Nutrient-dependent/pheromone-controlled adaptive evolution: a model

    Directory of Open Access Journals (Sweden)

    James Vaughn Kohl

    2013-06-01

    Full Text Available Background: The prenatal migration of gonadotropin-releasing hormone (GnRH neurosecretory neurons allows nutrients and human pheromones to alter GnRH pulsatility, which modulates the concurrent maturation of the neuroendocrine, reproductive, and central nervous systems, thus influencing the development of ingestive behavior, reproductive sexual behavior, and other behaviors. Methods: This model details how chemical ecology drives adaptive evolution via: (1 ecological niche construction, (2 social niche construction, (3 neurogenic niche construction, and (4 socio-cognitive niche construction. This model exemplifies the epigenetic effects of olfactory/pheromonal conditioning, which alters genetically predisposed, nutrient-dependent, hormone-driven mammalian behavior and choices for pheromones that control reproduction via their effects on luteinizing hormone (LH and systems biology. Results: Nutrients are metabolized to pheromones that condition behavior in the same way that food odors condition behavior associated with food preferences. The epigenetic effects of olfactory/pheromonal input calibrate and standardize molecular mechanisms for genetically predisposed receptor-mediated changes in intracellular signaling and stochastic gene expression in GnRH neurosecretory neurons of brain tissue. For example, glucose and pheromones alter the hypothalamic secretion of GnRH and LH. A form of GnRH associated with sexual orientation in yeasts links control of the feedback loops and developmental processes required for nutrient acquisition, movement, reproduction, and the diversification of species from microbes to man. Conclusion: An environmental drive evolved from that of nutrient ingestion in unicellular organisms to that of pheromone-controlled socialization in insects. In mammals, food odors and pheromones cause changes in hormones such as LH, which has developmental affects on pheromone-controlled sexual behavior in nutrient-dependent reproductively

  15. An integrated decision support system for wastewater nutrient recovery and recycling to agriculture

    Science.gov (United States)

    Roy, E. D.; Bomeisl, L.; Cornbrooks, P.; Mo, W.

    2017-12-01

    Nutrient recovery and recycling has become a key research topic within the wastewater engineering and nutrient management communities. Several technologies now exist that can effectively capture nutrients from wastewater, and innovation in this area continues to be an important research pursuit. However, practical nutrient recycling solutions require more than capable nutrient capture technologies. We also need to understand the role that wastewater nutrient recovery and recycling can play within broader nutrient management schemes at the landscape level, including important interactions at the nexus of food, energy, and water. We are developing an integrated decision support system that combines wastewater treatment data, agricultural data, spatial nutrient balance modeling, life cycle assessment, stakeholder knowledge, and multi-criteria decision making. Our goals are to: (1) help guide design decisions related to the implementation of sustainable nutrient recovery technology, (2) support innovations in watershed nutrient management that operate at the interface of the built environment and agriculture, and (3) aid efforts to protect aquatic ecosystems while supporting human welfare in a circular nutrient economy. These goals will be realized partly through the assessment of plausible alternative scenarios for the future. In this presentation, we will describe the tool and focus on nutrient balance results for the New England region. These results illustrate that both centralized and decentralized wastewater nutrient recovery schemes have potential to transform nutrient flows in many New England watersheds, diverting wastewater N and P away from aquatic ecosystems and toward local or regional agricultural soils where they can offset a substantial percentage of imported fertilizer. We will also highlight feasibility criteria and next steps to integrate stakeholder knowledge, economics, and life cycle assessment into the tool.

  16. Determination of the transforming activities of adenovirus oncogenes.

    Science.gov (United States)

    Speiseder, Thomas; Nevels, Michael; Dobner, Thomas

    2014-01-01

    The last 50 years of molecular biological investigations into human adenoviruses (Ads) have contributed enormously to our understanding of the basic principles of normal and malignant cell growth. Much of this knowledge stems from analyses of the Ad productive infection cycle in permissive host cells. Also, initial observations concerning the transforming potential of human Ads subsequently revealed decisive insights into the molecular mechanisms of the origins of cancer and established Ads as a model system for explaining virus-mediated transformation processes. Today it is well established that cell transformation by human Ads is a multistep process involving several gene products encoded in early transcription units 1A (E1A) and 1B (E1B). Moreover, a large body of evidence now indicates that alternative or additional mechanisms are engaged in Ad-mediated oncogenic transformation involving gene products encoded in early region 4 (E4) as well as epigenetic changes resulting from viral DNA integration. In particular, studies on the transforming potential of several E4 gene products have now revealed new pathways that point to novel general mechanisms of virus-mediated oncogenesis. In this chapter we describe in vitro and in vivo assays to determine the transforming and oncogenic activities of the E1A, E1B, and E4 oncoproteins in primary baby rat kidney cells, human amniotic fluid cells and athymic nude mice.

  17. Isotopic dilution methods to determine the gross transformation rates of nitrogen, phosphorus, and sulfur in soil: a review of the theory, methodologies, and limitations

    International Nuclear Information System (INIS)

    Di, H. J.; Cameron, K. C.; McLaren, R. G.

    2000-01-01

    The rates at which nutrients are released to, and removed from, the mineral nutrient pool are important in regulating the nutrient supply to plants. These nutrient transformation rates need to be taken into account when developing nutrient management strategies for economical and sustainable production. A method that is gaining popularity for determining the gross transformation rates of nutrients in the soil is the isotopic dilution technique. The technique involves labelling a soil mineral nutrient pool, e.g. NH 4 + , NO 3 - , PO 4 3- , or SO 4 2- , and monitoring the changes with time of the size of the labelled nutrient pool and the excess tracer abundance (atom %, if stable isotope tracer is used) or specific activity (if radioisotope is used) in the nutrient pool. Because of the complexity of the concepts and procedures involved, the method has sometimes been used incorrectly, and results misinterpreted. This paper discusses the isotopic dilution technique, including the theoretical background, the methodologies to determine the gross flux rates of nitrogen, phosphorus, and sulfur, and the limitations of the technique. The assumptions, conceptual models, experimental procedures, and compounding factors are discussed. Possible effects on the results by factors such as the uniformity of tracer distribution in the soil, changes in soil moisture content, substrate concentration, and aeration status, and duration of the experiment are also discussed. The influx and out-flux transformation rates derived from this technique are often contributed by several processes simultaneously, and thus cannot always be attributed to a particular nutrient transformation process. Despite the various constraints or possible compounding factors, the technique is a valuable tool that can provide important quantitative information on nutrient dynamics in the soil-plant system. Copyright (2000) CSIRO Publishing

  18. Effect of Integrated Water-Nutrient Management Strategies on Soil Erosion Mediated Nutrient Loss and Crop Productivity in Cabo Verde Drylands

    Science.gov (United States)

    Baptista, Isaurinda; Ritsema, Coen; Geissen, Violette

    2015-01-01

    Soil erosion, runoff and related nutrient losses are a big risk for soil fertility in Cabo Verde drylands. In 2012, field trials were conducted in two agro-ecological zones to evaluate the effects of selected techniques of soil-water management combined with organic amendments (T1: compost/manure + soil surfactant; T2: compost/animal or green manure + pigeon-pea hedges + soil surfactant; T3: compost/animal or green manure + mulch + pigeon-pea hedges) on nitrogen (N) and phosphorus (P) losses in eroded soil and runoff and on crop yields. Three treatments and one control (traditional practice) were tested in field plots at three sites with a local maize variety and two types of beans. Runoff and eroded soil were collected after each erosive rain, quantified, and analysed for NO3-N and PO4-P concentrations. In all treatments runoff had higher concentrations of NO3-N (2.20-4.83 mg L-1) than of PO4-P (0.02-0.07 mg L-1), and the eroded soil had higher content of PO4-P (5.27-18.8 mg g-1) than of NO3-N (1.30-8.51 mg g-1). The control had significantly higher losses of both NO3-N (5.4, 4.4 and 19 kg ha-1) and PO4-P (0.2, 0.1 and 0.4 kg ha-1) than the other treatments. T3 reduced soil loss, runoff and nutrient losses to nearly a 100% while T1 and T2 reduced those losses from 43 to 88%. The losses of NO3-N and PO4-P were highly correlated with the amounts of runoff and eroded soil. Nutrient losses from the applied amendments were low (5.7% maximum), but the losses in the control could indicate long-term nutrient depletion in the soil (19 and 0.4 kg ha-1 of NO3-N and PO4-P, respectively). T1-T3 did not consistently increase crop yield or biomass in all three sites, but T1 increased both crop yield and biomass. We conclude that T3 (combining crop-residue mulch with organic amendment and runoff hedges) is the best treatment for steep slope areas but, the pigeon-pea hedges need to be managed for higher maize yield. T1 (combining organic amendment with soil surfactant) could be a

  19. Effect of Integrated Water-Nutrient Management Strategies on Soil Erosion Mediated Nutrient Loss and Crop Productivity in Cabo Verde Drylands.

    Science.gov (United States)

    Baptista, Isaurinda; Ritsema, Coen; Geissen, Violette

    2015-01-01

    Soil erosion, runoff and related nutrient losses are a big risk for soil fertility in Cabo Verde drylands. In 2012, field trials were conducted in two agro-ecological zones to evaluate the effects of selected techniques of soil-water management combined with organic amendments (T1: compost/manure + soil surfactant; T2: compost/animal or green manure + pigeon-pea hedges + soil surfactant; T3: compost/animal or green manure + mulch + pigeon-pea hedges) on nitrogen (N) and phosphorus (P) losses in eroded soil and runoff and on crop yields. Three treatments and one control (traditional practice) were tested in field plots at three sites with a local maize variety and two types of beans. Runoff and eroded soil were collected after each erosive rain, quantified, and analysed for NO3-N and PO4-P concentrations. In all treatments runoff had higher concentrations of NO3-N (2.20-4.83 mg L-1) than of PO4-P (0.02-0.07 mg L-1), and the eroded soil had higher content of PO4-P (5.27-18.8 mg g-1) than of NO3-N (1.30-8.51 mg g-1). The control had significantly higher losses of both NO3-N (5.4, 4.4 and 19 kg ha-1) and PO4-P (0.2, 0.1 and 0.4 kg ha-1) than the other treatments. T3 reduced soil loss, runoff and nutrient losses to nearly a 100% while T1 and T2 reduced those losses from 43 to 88%. The losses of NO3-N and PO4-P were highly correlated with the amounts of runoff and eroded soil. Nutrient losses from the applied amendments were low (5.7% maximum), but the losses in the control could indicate long-term nutrient depletion in the soil (19 and 0.4 kg ha-1 of NO3-N and PO4-P, respectively). T1-T3 did not consistently increase crop yield or biomass in all three sites, but T1 increased both crop yield and biomass. We conclude that T3 (combining crop-residue mulch with organic amendment and runoff hedges) is the best treatment for steep slope areas but, the pigeon-pea hedges need to be managed for higher maize yield. T1 (combining organic amendment with soil surfactant) could be a

  20. Changes in nutrient stoichiometry, elemental homeostasis and growth rate of aquatic litter-associated fungi in response to inorganic nutrient supply.

    Science.gov (United States)

    Gulis, Vladislav; Kuehn, Kevin A; Schoettle, Louie N; Leach, Desiree; Benstead, Jonathan P; Rosemond, Amy D

    2017-12-01

    Aquatic fungi mediate important energy and nutrient transfers in freshwater ecosystems, a role potentially altered by widespread eutrophication. We studied the effects of dissolved nitrogen (N) and phosphorus (P) concentrations and ratios on fungal stoichiometry, elemental homeostasis, nutrient uptake and growth rate in two experiments that used (1) liquid media and a relatively recalcitrant carbon (C) source and (2) fungi grown on leaf litter in microcosms. Two monospecific fungal cultures and a multi-species assemblage were assessed in each experiment. Combining a radioactive tracer to estimate fungal production (C accrual) with N and P uptake measurements provided an ecologically relevant estimate of mean fungal C:N:P of 107:9:1 in litter-associated fungi, similar to the 92:9:1 obtained from liquid cultures. Aquatic fungi were found to be relatively homeostatic with respect to their C:N ratio (~11:1), but non-homeostatic with respect to C:P and N:P. Dissolved N greatly affected fungal growth rate and production, with little effect on C:nutrient stoichiometry. Conversely, dissolved P did not affect fungal growth and production but controlled biomass C:P and N:P, probably via luxury P uptake and storage. The ability of fungi to immobilize and store excess P may alter nutrient flow through aquatic food webs and affect ecosystem functioning.

  1. Immediate Supervisors’ Leadership Behaviour and Employees’ Organizational Commitment: Do Pay and Promotion Mediate the Nexus?

    Directory of Open Access Journals (Sweden)

    Emmanuel Yaw Ampofo

    2016-09-01

    Full Text Available This study examines the mediating effect of motivational factors of pay and promotion on transformational leadership and organizational commitment relationship in Unilever Ghana using a quantitative, non-experimental, cross-sectional and analytical survey design study. The results of the study revealed significant positive relationship between transformational leadership style and affective commitment, continuance commitment, and normative commitment. However, the results of the study revealed no significant mediation of pay in the relationship between transformational leadership style and affective commitment, continuance commitment, and normative commitment. Additionally, no significant mediation of promotion was found in the relationship between transformational leadership and affective commitment, transformational leadership and continuance commitment, and transformational leadership and normative commitment. Managers’ adoption of transformational leadership behavior as a key strategy to get employees committed to the organizations will be of great significance because motivational factors such as pay and promotion do not mediate the transformational leadership and organizational commitment relationship. This is a maiden empirical research in Ghana where motivational factors are used as mediators in transformational leadership and organizational commitment relationship.

  2. agrobacterium-mediated transformation of common bean abstract

    African Journals Online (AJOL)

    Prof. Adipala Ekwamu

    confirmées par la culture histochimique pour activité GUS étaient obtenues dans les plantules ... plant tissues but not in bacterial cells and can be ... fluorescent protein (GFP) techniques (Zambre et ..... affecting Agrobacterium-mediated trans-.

  3. Mitochondrial protein acetylation mediates nutrient sensing of mitochondrial protein synthesis and mitonuclear protein balance.

    Science.gov (United States)

    Di Domenico, Antonella; Hofer, Annette; Tundo, Federica; Wenz, Tina

    2014-11-01

    Changes in nutrient supply require global metabolic reprogramming to optimize the utilization of the nutrients. Mitochondria as a central component of the cellular metabolism play a key role in this adaptive process. Since mitochondria harbor their own genome, which encodes essential enzymes, mitochondrial protein synthesis is a determinant of metabolic adaptation. While regulation of cytoplasmic protein synthesis in response to metabolic challenges has been studied in great detail, mechanisms which adapt mitochondrial translation in response to metabolic challenges remain elusive. Our results suggest that the mitochondrial acetylation status controlled by Sirt3 and its proposed opponent GCN5L1 is an important regulator of the metabolic adaptation of mitochondrial translation. Moreover, both proteins modulate regulators of cytoplasmic protein synthesis as well as the mitonuclear protein balance making Sirt3 and GCN5L1 key players in synchronizing mitochondrial and cytoplasmic translation. Our results thereby highlight regulation of mitochondrial translation as a novel component in the cellular nutrient sensing scheme and identify mitochondrial acetylation as a new regulatory principle for the metabolic competence of mitochondrial protein synthesis. © 2014 International Union of Biochemistry and Molecular Biology.

  4. Agrobacterium mediated transformation of Tunisian Cucumis melo ...

    African Journals Online (AJOL)

    Transgenic Cucumis melo cv. Maazoun containing the neomycin phosphotransferase II (NPT II) chimeric gene conferring resistance to kanamycin were obtained from cotyledons explants inoculated with Agrobacterium tumefaciens (GV3101) that contained the binary vector plasmid pADI. Transformed shoots were obtained ...

  5. Genetic transformation and gene silencing mediated by multiple copies of a transgene in eastern white pine.

    Science.gov (United States)

    Tang, Wei; Newton, Ronald J; Weidner, Douglas A

    2007-01-01

    An efficient transgenic eastern white pine (Pinus strobus L.) plant regeneration system has been established using Agrobacterium tumefaciens strain GV3850-mediated transformation and the green fluorescent protein (gfp) gene as a reporter in this investigation. Stable integration of transgenes in the plant genome of pine was confirmed by polymerase chain reaction (PCR), Southern blot, and northern blot analyses. Transgene expression was analysed in pine T-DNA transformants carrying different numbers of copies of T-DNA insertions. Post-transcriptional gene silencing (PTGS) was mostly obtained in transgenic lines with more than three copies of T-DNA, but not in transgenic lines with one copy of T-DNA. In situ hybridization chromosome analysis of transgenic lines demonstrated that silenced transgenic lines had two or more T-DNA insertions in the same chromosome. These results suggest that two or more T-DNA insertions in the same chromosome facilitate efficient gene silencing in transgenic pine cells expressing green fluorescent protein. There were no differences in shoot differentiation and development between transgenic lines with multiple T-DNA copies and transgenic lines with one or two T-DNA copies.

  6. Fish-derived nutrient hotspots shape coral reef benthic communities.

    Science.gov (United States)

    Shantz, Andrew A; Ladd, Mark C; Schrack, Elizabeth; Burkepile, Deron E

    2015-12-01

    Animal-derived nutrients play an important role in structuring nutrient regimes within and between ecosystems. When animals undergo repetitive, aggregating behavior through time, they can create nutrient hotspots where rates of biogeochemical activity are higher than those found in the surrounding environment. In turn, these hotspots can influence ecosystem processes and community structure. We examined the potential for reef fishes from the family Haemulidae (grunts) to create nutrient hotspots and the potential impact of these hotspots on reef communities. To do so, we tracked the schooling locations of diurnally migrating grunts, which shelter at reef sites during the day but forage off reef each night, and measured the impact of these fish schools on benthic communities. We found that grunt schools showed a high degree of site fidelity, repeatedly returning to the same coral heads. These aggregations created nutrient hotspots around coral heads where nitrogen and phosphorus delivery was roughly 10 and 7 times the respective rates of delivery to structurally similar sites that lacked schools of these fishes. In turn, grazing rates of herbivorous fishes at grunt-derived hotspots were approximately 3 times those of sites where grunts were rare. These differences in nutrient delivery and grazing led to distinct benthic communities with higher cover of crustose coralline algae and less total algal abundance at grunt aggregation sites. Importantly, coral growth was roughly 1.5 times greater at grunt hotspots, likely due to the important nutrient subsidy. Our results suggest that schooling reef fish and their nutrient subsidies play an important role in mediating community structure on coral reefs and that overfishing may have important negative consequences on ecosystem functions. As such, management strategies must consider mesopredatory fishes in addition to current protection often offered to herbivores and top-tier predators. Furthermore, our results suggest that

  7. Coat protein-mediated resistance against an Indian isolate of the ...

    Indian Academy of Sciences (India)

    Coat protein (CP)-mediated resistance against an Indian isolate of the Cucumber mosaic virus (CMV) subgroup IB was demonstrated in transgenic lines of Nicotiana benthamiana through Agrobacterium tumefaciens-mediated transformation. Out of the fourteen independently transformed lines developed, two lines were ...

  8. Transformations in destination texture

    DEFF Research Database (Denmark)

    Gyimóthy, Szilvia

    2018-01-01

    This article takes heterogeographical approaches to understand Bollywood-induced destination transformations in Switzerland. Positioned within the theoretical field of mediatized mobility, the study contextualizes Bollywood-induced tourism in Europe the concept of texture. Textural analysis (base...

  9. WERF Nutrient Challenge investigates limits of nutrient removal technologies.

    Science.gov (United States)

    Neethling, J B; Clark, D; Pramanik, A; Stensel, H D; Sandino, J; Tsuchihashi, R

    2010-01-01

    The WERF Nutrient Challenge is a multi-year collaborative research initiative established in 2007 to develop and provide current information about wastewater treatment nutrients (specifically nitrogen and phosphorus in wastewater), their characteristics, and bioavailability in aquatic environments to help regulators make informed decisions. The Nutrient Challenge will also provide data on nutrient removal so that treatment facilities can select sustainable, cost-effective methods and technologies to meet permit limits. To meet these goals, the Nutrient Challenge has teamed with a wide array of utilities, agencies, consultants, universities and other researchers and practitioners to collaborate on projects that advance these goals. The Nutrient Challenge is focusing on a different approach to collaborating and leveraging resources (financial and intellectual) on research projects by targeting existing projects and research that correspond with its goals and funding those aspects that the Nutrient Challenge identified as a priority. Because the Nutrient Challenge is focused on collaboration, outreach is an absolutely necessary component of its effectiveness. Through workshops, webinars, a web portal and online compendium, published papers, and conference lectures, the Nutrient Challenge is both presenting important new information, and soliciting new partnerships.

  10. An improved ternary vector system for Agrobacterium-mediated rapid maize transformation.

    Science.gov (United States)

    Anand, Ajith; Bass, Steven H; Wu, Emily; Wang, Ning; McBride, Kevin E; Annaluru, Narayana; Miller, Michael; Hua, Mo; Jones, Todd J

    2018-05-01

    A simple and versatile ternary vector system that utilizes improved accessory plasmids for rapid maize transformation is described. This system facilitates high-throughput vector construction and plant transformation. The super binary plasmid pSB1 is a mainstay of maize transformation. However, the large size of the base vector makes it challenging to clone, the process of co-integration is cumbersome and inefficient, and some Agrobacterium strains are known to give rise to spontaneous mutants resistant to tetracycline. These limitations present substantial barriers to high throughput vector construction. Here we describe a smaller, simpler and versatile ternary vector system for maize transformation that utilizes improved accessory plasmids requiring no co-integration step. In addition, the newly described accessory plasmids have restored virulence genes found to be defective in pSB1, as well as added virulence genes. Testing of different configurations of the accessory plasmids in combination with T-DNA binary vector as ternary vectors nearly doubles both the raw transformation frequency and the number of transformation events of usable quality in difficult-to-transform maize inbreds. The newly described ternary vectors enabled the development of a rapid maize transformation method for elite inbreds. This vector system facilitated screening different origins of replication on the accessory plasmid and T-DNA vector, and four combinations were identified that have high (86-103%) raw transformation frequency in an elite maize inbred.

  11. Fueling export production: nutrient return pathways from the deep ocean and their dependence on the Meridional Overturning Circulation

    Science.gov (United States)

    Palter, J. B.; Sarmiento, J. L.; Gnanadesikan, A.; Simeon, J.; Slater, R. D.

    2010-11-01

    In the Southern Ocean, mixing and upwelling in the presence of heat and freshwater surface fluxes transform subpycnocline water to lighter densities as part of the upward branch of the Meridional Overturning Circulation (MOC). One hypothesized impact of this transformation is the restoration of nutrients to the global pycnocline, without which biological productivity at low latitudes would be significantly reduced. Here we use a novel set of modeling experiments to explore the causes and consequences of the Southern Ocean nutrient return pathway. Specifically, we quantify the contribution to global productivity of nutrients that rise from the ocean interior in the Southern Ocean, the northern high latitudes, and by mixing across the low latitude pycnocline. In addition, we evaluate how the strength of the Southern Ocean winds and the parameterizations of subgridscale processes change the dominant nutrient return pathways in the ocean. Our results suggest that nutrients upwelled from the deep ocean in the Antarctic Circumpolar Current and subducted in Subantartic Mode Water support between 33 and 75% of global export production between 30° S and 30° N. The high end of this range results from an ocean model in which the MOC is driven primarily by wind-induced Southern Ocean upwelling, a configuration favored due to its fidelity to tracer data, while the low end results from an MOC driven by high diapycnal diffusivity in the pycnocline. In all models, nutrients exported in the SAMW layer are utilized and converted rapidly (in less than 40 years) to remineralized nutrients, explaining previous modeling results that showed little influence of the drawdown of SAMW surface nutrients on atmospheric carbon concentrations.

  12. Fueling export production: nutrient return pathways from the deep ocean and their dependence on the Meridional Overturning Circulation

    Directory of Open Access Journals (Sweden)

    J. B. Palter

    2010-11-01

    Full Text Available In the Southern Ocean, mixing and upwelling in the presence of heat and freshwater surface fluxes transform subpycnocline water to lighter densities as part of the upward branch of the Meridional Overturning Circulation (MOC. One hypothesized impact of this transformation is the restoration of nutrients to the global pycnocline, without which biological productivity at low latitudes would be significantly reduced. Here we use a novel set of modeling experiments to explore the causes and consequences of the Southern Ocean nutrient return pathway. Specifically, we quantify the contribution to global productivity of nutrients that rise from the ocean interior in the Southern Ocean, the northern high latitudes, and by mixing across the low latitude pycnocline. In addition, we evaluate how the strength of the Southern Ocean winds and the parameterizations of subgridscale processes change the dominant nutrient return pathways in the ocean. Our results suggest that nutrients upwelled from the deep ocean in the Antarctic Circumpolar Current and subducted in Subantartic Mode Water support between 33 and 75% of global export production between 30° S and 30° N. The high end of this range results from an ocean model in which the MOC is driven primarily by wind-induced Southern Ocean upwelling, a configuration favored due to its fidelity to tracer data, while the low end results from an MOC driven by high diapycnal diffusivity in the pycnocline. In all models, nutrients exported in the SAMW layer are utilized and converted rapidly (in less than 40 years to remineralized nutrients, explaining previous modeling results that showed little influence of the drawdown of SAMW surface nutrients on atmospheric carbon concentrations.

  13. Fueling primary productivity: nutrient return pathways from the deep ocean and their dependence on the Meridional Overturning Circulation

    Science.gov (United States)

    Palter, J. B.; Sarmiento, J. L.; Gnanadesikan, A.; Simeon, J.; Slater, D.

    2010-06-01

    In the Southern Ocean, mixing and upwelling in the presence of heat and freshwater surface fluxes transform subpycnocline water to lighter densities as part of the upward branch of the Meridional Overturning Circulation (MOC). One hypothesized impact of this transformation is the restoration of nutrients to the global pycnocline, without which biological productivity at low latitudes would be catastrophically reduced. Here we use a novel set of modeling experiments to explore the causes and consequences of the Southern Ocean nutrient return pathway. Specifically, we quantify the contribution to global productivity of nutrients that rise from the ocean interior in the Southern Ocean, the northern high latitudes, and by mixing across the low latitude pycnocline. In addition, we evaluate how the strength of the Southern Ocean winds and the parameterizations of subgridscale processes change the dominant nutrient return pathways in the ocean. Our results suggest that nutrients upwelled from the deep ocean in the Antarctic Circumpolar Current and subducted in Subantartic Mode Water support between 33 and 75% of global primary productivity between 30° S and 30° N. The high end of this range results from an ocean model in which the MOC is driven primarily by wind-induced Southern Ocean upwelling, a configuration favored due to its fidelity to tracer data, while the low end results from an MOC driven by high diapycnal diffusivity in the pycnocline. In all models, the high preformed nutrients subducted in the SAMW layer are converted rapidly (in less than 40 years) to remineralized nutrients, explaining previous modeling results that showed little influence of the drawdown of SAMW surface nutrients on atmospheric carbon concentrations.

  14. Advances in the understanding of nutrient dynamics and management in UK agriculture

    International Nuclear Information System (INIS)

    Dungait, Jennifer A.J.; Cardenas, Laura M.; Blackwell, Martin S.A.; Wu, Lianhai; Withers, Paul J.A.; Chadwick, David R.; Bol, Roland; Murray, Philip J.; Macdonald, Andrew J.; Whitmore, Andrew P.; Goulding, Keith W.T.

    2012-01-01

    Current research on macronutrient cycling in UK agricultural systems aims to optimise soil and nutrient management for improved agricultural production and minimise effects on the environment and provision of ecosystem services. Nutrient use inefficiencies can cause environmental pollution through the release of greenhouse gases into the atmosphere and of soluble and particulate forms of N, P and carbon (C) in leachate and run-off into watercourses. Improving nutrient use efficiencies in agriculture calls for the development of sustainable nutrient management strategies: more efficient use of mineral fertilisers, increased recovery and recycling of waste nutrients, and, better exploitation of the substantial inorganic and organic reserves of nutrients in the soil. Long-term field experimentation in the UK has provided key knowledge of the main nutrient transformations in agricultural soils. Emerging analytical technologies, especially stable isotope labelling, that better characterise macronutrient forms and bioavailability and improve the quantification of the complex relationships between the macronutrients in soils at the molecular scale, are augmenting this knowledge by revealing the underlying processes. The challenge for the future is to determine the relationships between the dynamics of N, P and C across scales, which will require both new modelling approaches and integrated approaches to macronutrient cycling. -- Highlights: ► Major advances in the knowledge of macronutrient cycling in agricultural soils are reviewed in the context of management. ► Novel analytical techniques and innovative modelling approaches that enhance understanding of nutrient cycling are explored. ► Knowledge gaps are identified, and the potential to improve comprehension of the integrated nutrient cycles is considered.

  15. UV stimulation of DNA-mediated transformation of human cells

    International Nuclear Information System (INIS)

    van Duin, M.; Westerveld, A.; Hoeijmakers, J.H.

    1985-01-01

    Irradiation of dominant marker DNA with UV light (150 to 1,000 J/m2) was found to stimulate the transformation of human cells by this marker from two- to more than fourfold. This phenomenon is also displayed by xeroderma pigmentosum cells, which are deficient in the excision repair of UV-induced pyrimidine dimers in the DNA. Also, exposure to UV of the transfected (xeroderma pigmentosum) cells enhanced the transfection efficiency. Removal of the pyrimidine dimers from the DNA by photoreactivating enzyme before transfection completely abolished the stimulatory effect, indicating that dimer lesions are mainly responsible for the observed enhancement. A similar stimulation of the transformation efficiency is exerted by 2-acetoxy-2-acetylaminofluorene modification of the DNA. These findings suggest that lesions which are targets for the excision repair pathway induce the increase in transformation frequency. The stimulation was found to be independent of sequence homology between the irradiated DNA and the host chromosomal DNA. Therefore, the increase of the transformation frequency is not caused by a mechanism inducing homologous recombination between these two DNAs. UV treatment of DNA before transfection did not have a significant effect on the amount of DNA integrated into the xeroderma pigmentosum genome

  16. Nutrient depletion in Bacillus subtilis biofilms triggers matrix production

    International Nuclear Information System (INIS)

    Zhang, Wenbo; Seminara, Agnese; Suaris, Melanie; Angelini, Thomas E; Brenner, Michael P; Weitz, David A

    2014-01-01

    Many types of bacteria form colonies that grow into physically robust and strongly adhesive aggregates known as biofilms. A distinguishing characteristic of bacterial biofilms is an extracellular polymeric substance (EPS) matrix that encases the cells and provides physical integrity to the colony. The EPS matrix consists of a large amount of polysaccharide, as well as protein filaments, DNA and degraded cellular materials. The genetic pathways that control the transformation of a colony into a biofilm have been widely studied, and yield a spatiotemporal heterogeneity in EPS production. Spatial gradients in metabolites parallel this heterogeneity in EPS, but nutrient concentration as an underlying physiological initiator of EPS production has not been explored. Here, we study the role of nutrient depletion in EPS production in Bacillus subtilis biofilms. By monitoring simultaneously biofilm size and matrix production, we find that EPS production increases at a critical colony thickness that depends on the initial amount of carbon sources in the medium. Through studies of individual cells in liquid culture we find that EPS production can be triggered at the single-cell level by reducing nutrient concentration. To connect the single-cell assays with conditions in the biofilm, we calculate carbon concentration with a model for the reaction and diffusion of nutrients in the biofilm. This model predicts the relationship between the initial concentration of carbon and the thickness of the colony at the point of internal nutrient deprivation. (paper)

  17. The Effects of Transformational Leadership and Mediating Factors on the Organizational Success Using Structural Equation Modeling: A Case Study.

    Science.gov (United States)

    Ravangard, Ramin; Karimi, Sakine; Farhadi, Payam; Sajjadnia, Zahra; Shokrpour, Nasrin

    This study was undertaken to determine the effects of transformational leadership (TL) and mediating factors on organizational success (OS) from the administrative, financial, and support employees' perspective in teaching hospitals affiliated with Shiraz University of Medical Sciences using structural equation modeling. Three hundred administrative and financial employees were selected, using stratified sampling proportional to size and simple random sampling. Data were collected using 5 questionnaires and analyzed using SPSS 21.0 and Lisrel 8.5 through Pearson correlation coefficient and path analysis and confirmatory factor analysis methods. Results showed that TL had significant positive effects on the 3 mediating factors, including organizational culture (t = 15.31), organizational citizenship behavior (OCB) (t = 10.06), and social capital (t = 10.25). Also, the organizational culture (t = 2.26), OCB (t = 3.48), and social capital (t = 7.41) had significant positive effects on OS. According to the results, TL had an indirect effect on OS. Therefore, organizations can achieve more success by strengthening organizational culture, OCB, and social capital through using transformational leadership style. Therefore, in order to increase OS, the following recommendations are made: supporting and encouraging new ideas in the organization, promoting teamwork, strengthening intergroup and intragroup relationships, planning to strengthen and enrich the social and organizational culture, considering the promotion of social capital in the employee training, establishing a system to give rewards to the employees performing extra-role activities, providing a suitable environment for creative employees, and so on.

  18. Nutrient Exchange and Regulation in Arbuscular Mycorrhizal Symbiosis.

    Science.gov (United States)

    Wang, Wanxiao; Shi, Jincai; Xie, Qiujin; Jiang, Yina; Yu, Nan; Wang, Ertao

    2017-09-12

    Most land plants form symbiotic associations with arbuscular mycorrhizal (AM) fungi. These are the most common and widespread terrestrial plant symbioses, which have a global impact on plant mineral nutrition. The establishment of AM symbiosis involves recognition of the two partners and bidirectional transport of different mineral and carbon nutrients through the symbiotic interfaces within the host root cells. Intriguingly, recent discoveries have highlighted that lipids are transferred from the plant host to AM fungus as a major carbon source. In this review, we discuss the transporter-mediated transfer of carbon, nitrogen, phosphate, potassium and sulfate, and present hypotheses pertaining to the potential regulatory mechanisms of nutrient exchange in AM symbiosis. Current challenges and future perspectives on AM symbiosis research are also discussed. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.

  19. The Mediating Effect of Social Capital on the Relationship Between Public Health Managers' Transformational Leadership and Public Health Nurses' Organizational Empowerment in Korea Public Health.

    Science.gov (United States)

    Jun, Soo Young

    2017-12-01

    This study was to verify the effect of public health nurse's (PHN's) social capital on the relationship between public health manager's (PHM's) transformational leadership and PHN's organizational empowerment in Korea public health. This was a cross-sectional descriptive study involving 303 PHNs from public health centers in Daegu and Gyeongsangbuk-do cities in South Korea. Data were collected from February 29, 2016 to April 8, 2016, using structured questionnaires which included general characteristics, transformational leadership, organizational empowerment, and social capital. Data were analyzed using descriptive statistics, correlations, and structural equation model. PHM's transformational leadership has a positive effect on PHN's social capital and PHN's organizational empowerment. Social capital had a mediating effect between transformational leadership and organizational empowerment in PHNs. This study suggests that PHM's transformational leadership is a contributing factor to improve PHN's organizational empowerment, and transformational leadership can lead to improve PHN's organizational empowerment through PHN's social capital. So, an intervention program to promote organizational empowerment should include strategies to enhance PHM's transformational leadership as well as to improve PHN's social capital. Copyright © 2017. Published by Elsevier B.V.

  20. A new and efficient approach for construction of uridine/uracil auxotrophic mutants in the filamentous fungus Aspergillus oryzae using Agrobacterium tumefaciens-mediated transformation.

    Science.gov (United States)

    Nguyen, Khuyen Thi; Ho, Quynh Ngoc; Do, Loc Thi Binh Xuan; Mai, Linh Thi Dam; Pham, Duc-Ngoc; Tran, Huyen Thi Thanh; Le, Diep Hong; Nguyen, Huy Quang; Tran, Van-Tuan

    2017-06-01

    Aspergillus oryzae is a filamentous fungus widely used in food industry and as a microbial cell factory for recombinant protein production. Due to the inherent resistance of A. oryzae to common antifungal compounds, genetic transformation of this mold usually requires auxotrophic mutants. In this study, we show that Agrobacterium tumefaciens-mediated transformation (ATMT) method is very efficient for deletion of the pyrG gene in different Aspergillus oryzae wild-type strains to generate uridine/uracil auxotrophic mutants. Our data indicated that all the obtained uridine/uracil auxotrophic transformants, which are 5- fluoroorotic acid (5-FOA) resistant, exist as the pyrG deletion mutants. Using these auxotrophic mutants and the pyrG selectable marker for genetic transformation via A. tumefaciens, we could get about 1060 transformants per 10 6 fungal spores. In addition, these A. oryzae mutants were also used successfully for expression of the DsRed fluorescent reporter gene under control of the A. oryzae amyB promoter by the ATMT method, which resulted in obvious red transformants on agar plates. Our work provides a new and effective approach for constructing the uridine/uracil auxotrophic mutants in the importantly industrial fungus A. oryzae. This strategy appears to be applicable to other filamentous fungi to develop similar genetic transformation systems based on auxotrophic/nutritional markers for food-grade recombinant applications.

  1. Host genes involved in Agrobacterium-mediated transformation

    NARCIS (Netherlands)

    Soltani, Jalal

    2009-01-01

    Agrobacterium is the nature’s genetic engineer that can transfer genes across the kingdom barriers to both prokaryotic and eukaryotic host cells. The host genes which are involved in Agrobacterium-mediated transformatiom (AMT) are not well known. Here, I studied in a systematic way to identify the

  2. Energy and nutrient density of foods in relation to their carbon footprint.

    Science.gov (United States)

    Drewnowski, Adam; Rehm, Colin D; Martin, Agnes; Verger, Eric O; Voinnesson, Marc; Imbert, Philippe

    2015-01-01

    A carbon footprint is the sum of greenhouse gas emissions (GHGEs) associated with food production, processing, transporting, and retailing. We examined the relation between the energy and nutrient content of foods and associated GHGEs as expressed as g CO2 equivalents. GHGE values, which were calculated and provided by a French supermarket chain, were merged with the Composition Nutritionnelle des Aliments (French food-composition table) nutrient-composition data for 483 foods and beverages from the French Agency for Food, Environmental and Occupational Health and Safety. Foods were aggregated into 34 food categories and 5 major food groups as follows: meat and meat products, milk and dairy products, frozen and processed fruit and vegetables, grains, and sweets. Energy density was expressed as kcal/100 g. Nutrient density was determined by using 2 alternative nutrient-density scores, each based on the sum of the percentage of daily values for 6 or 15 nutrients, respectively. The energy and nutrient densities of foods were linked to log-transformed GHGE values expressed per 100 g or 100 kcal. Grains and sweets had lowest GHGEs (per 100 g and 100 kcal) but had high energy density and a low nutrient content. The more-nutrient-dense animal products, including meat and dairy, had higher GHGE values per 100 g but much lower values per 100 kcal. In general, a higher nutrient density of foods was associated with higher GHGEs per 100 kcal, although the slopes of fitted lines varied for meat and dairy compared with fats and sweets. Considerations of the environmental impact of foods need to be linked to concerns about nutrient density and health. The point at which the higher carbon footprint of some nutrient-dense foods is offset by their higher nutritional value is a priority area for additional research. © 2015 American Society for Nutrition.

  3. Nutrient Sensing at the Plasma Membrane of Fungal Cells.

    Science.gov (United States)

    Van Dijck, Patrick; Brown, Neil Andrew; Goldman, Gustavo H; Rutherford, Julian; Xue, Chaoyang; Van Zeebroeck, Griet

    2017-03-01

    To respond to the changing environment, cells must be able to sense external conditions. This is important for many processes including growth, mating, the expression of virulence factors, and several other regulatory effects. Nutrient sensing at the plasma membrane is mediated by different classes of membrane proteins that activate downstream signaling pathways: nontransporting receptors, transceptors, classical and nonclassical G-protein-coupled receptors, and the newly defined extracellular mucin receptors. Nontransporting receptors have the same structure as transport proteins, but have lost the capacity to transport while gaining a receptor function. Transceptors are transporters that also function as a receptor, because they can rapidly activate downstream signaling pathways. In this review, we focus on these four types of fungal membrane proteins. We mainly discuss the sensing mechanisms relating to sugars, ammonium, and amino acids. Mechanisms for other nutrients, such as phosphate and sulfate, are discussed briefly. Because the model yeast Saccharomyces cerevisiae has been the most studied, especially regarding these nutrient-sensing systems, each subsection will commence with what is known in this species.

  4. Intestinal Fork Head Regulates Nutrient Absorption and Promotes Longevity

    Directory of Open Access Journals (Sweden)

    Ekin Bolukbasi

    2017-10-01

    Full Text Available Reduced activity of nutrient-sensing signaling networks can extend organismal lifespan, yet the underlying biology remains unclear. We show that the anti-aging effects of rapamycin and reduced intestinal insulin/insulin growth factor (IGF signaling (IIS require the Drosophila FoxA transcription factor homolog Fork Head (FKH. Intestinal FKH induction extends lifespan, highlighting a role for the gut. FKH binds to and is phosphorylated by AKT and Target of Rapamycin. Gut-specific FKH upregulation improves gut barrier function in aged flies. Additionally, it increases the expression of nutrient transporters, as does lowered IIS. Evolutionary conservation of this effect of lowered IIS is suggested by the upregulation of related nutrient transporters in insulin receptor substrate 1 knockout mouse intestine. Our study highlights a critical role played by FKH in the gut in mediating anti-aging effects of reduced IIS. Malnutrition caused by poor intestinal absorption is a major problem in the elderly, and a better understanding of the mechanisms involved will have important therapeutic implications for human aging.

  5. Canopy and leaf composition drive patterns of nutrient release from pruning residues in a coffee agroforest.

    Science.gov (United States)

    Tully, Katherine L; Lawrence, Deborah

    2012-06-01

    In a coffee agroforest, the crop is cultivated under the shade of fruit-bearing and nitrogen (N)-fixing trees. These trees are periodically pruned to promote flowering and fruiting as well as to make nutrients stored in tree biomass available to plants. We investigated the effect of canopy composition and substrate quality on decomposition rates and patterns of nutrient release from pruning residues in a coffee agroforest located in Costa Rica's Central Valley. Initial phosphorus (P) release was enhanced under a canopy composed solely of N-fixing, Erythrina poeppigiana compared to a mixed canopy of Erythrina and Musa acuminata (banana). Both initial and final N release were similar under the two canopy types. However, after five months of decomposition, a higher proportion of initial N had been released under the single canopy. Although patterns of decomposition and nutrient release were not predicted by initial substrate quality, mass loss in leaf mixtures rates were well predicted by mean mass loss of their component species. This study identifies specific pruning regimes that may regulate N and P release during crucial growth periods, and it suggests that strategic pruning can enhance nutrient availability. For example, during the onset of rapid fruit growth, a two-species mixture may release more P than a three-species mixture. However, by the time of the harvest, the two- and three-species mixtures have released roughly the same amount of N and P. These nutrients do not always follow the same pattern, as N release can be maximized in single-species substrates, while P release is often facilitated in species mixtures. Our study indicates the importance of management practices in mediating patterns of nutrient release. Future research should investigate how canopy composition and farm management can also mediate on-farm nutrient losses.

  6. mma: An R Package for Mediation Analysis with Multiple Mediators

    Directory of Open Access Journals (Sweden)

    Qingzhao Yu

    2017-04-01

    Full Text Available Mediation refers to the effect transmitted by mediators that intervene in the relationship between an exposure and a response variable. Mediation analysis has been broadly studied in many fields. However, it remains a challenge for researchers to consider complicated associations among variables and to differentiate individual effects from multiple mediators. [1] proposed general definitions of mediation effects that were adaptable to all different types of response (categorical or continuous, exposure, or mediation variables. With these definitions, multiple mediators of different types can be considered simultaneously, and the indirect effects carried by individual mediators can be separated from the total effect. Moreover, the derived mediation analysis can be performed with general predictive models. That is, the relationships among variables can be modeled using not only generalized linear models but also nonparametric models such as the Multiple Additive Regression Trees. Therefore, more complicated variable transformations and interactions can be considered in analyzing the mediation effects. The proposed method is realized by the R package 'mma'. We illustrate in this paper the proposed method and how to use 'mma' to estimate mediation effects and make inferences.

  7. Highly Efficient Agrobacterium-Mediated Transformation of Wheat Via In Planta Inoculation

    Science.gov (United States)

    Risacher, Thierry; Craze, Melanie; Bowden, Sarah; Paul, Wyatt; Barsby, Tina

    This chapter details a reproducible method for the transformation of spring wheat using Agrobacterium tumefaciens via the direct inoculation of bacteria into immature seeds in planta as described in patent WO 00/63398(1. Transformation efficiencies from 1 to 30% have been obtained and average efficiencies of at least 5% are routinely achieved. Regenerated plants are phenotypically normal with 30-50% of transformation events carrying introduced genes at single insertion sites, a higher rate than is typically reported for transgenic plants produced using biolistic transformation methods.

  8. Agrobacterium-mediated transformation of Fraxinus pennsylvanica hypocotyls and plant regeneration

    Science.gov (United States)

    Ningxia Du; Paula M. Pijut

    2009-01-01

    A genetic transformation protocol for green ash (Fraxinus pennsylvanica) hypocotyl explants was developed. Green ash hypocotyls were transformed using Agrobacterium tumefaciens strain EHA105 harboring binary vector pq35GR containing the neomycin phosphotransferase (nptII) and β-glucuronidase (GUS) fusion...

  9. Litter Controls Earthworm-Mediated Carbon and Nitrogen Transformations in Soil from Temperate Riparian Buffers

    Directory of Open Access Journals (Sweden)

    Maria Kernecker

    2014-01-01

    Full Text Available Nutrient cycling in riparian buffers is partly influenced by decomposition of crop, grass, and native tree species litter. Nonnative earthworms in riparian soils in southern Quebec are expected to speed the processes of litter decomposition and nitrogen (N mineralization, increasing carbon (C and N losses in gaseous forms or via leachate. A 5-month microcosm experiment evaluated the effect of Aporrectodea turgida on the decomposition of 3 litter types (deciduous leaves, reed canarygrass, and soybean stem residue. Earthworms increased CO2 and N2O losses from microcosms with soybean residue, by 112% and 670%, respectively, but reduced CO2 and N2O fluxes from microcosms with reed canarygrass by 120% and 220%, respectively. Litter type controlled the CO2 flux (soybean ≥ deciduous-mix litter = reed canarygrass > no litter and the N2O flux (soybean ≥ no litter ≥ reed canarygrass > deciduous-mix litter. However, in the presence of earthworms, there was a slight increase in C and N gaseous losses of C and N relative to their losses via leachate, across litter treatments. We conclude that litter type determines the earthworm-mediated decomposition effect, highlighting the importance of vegetation management in controlling C and N losses from riparian buffers to the environment.

  10. Development of an Agrobacterium-mediated transformation system for the cold-adapted fungi Pseudogymnoascus destructans and P. pannorum.

    Science.gov (United States)

    Zhang, Tao; Ren, Ping; Chaturvedi, Vishnu; Chaturvedi, Sudha

    2015-08-01

    The mechanisms of cold adaptation by fungi remain unknown. This topic is of high interest due to the emergence of white-nose syndrome (WNS), a skin infection of hibernating bats caused by Pseudogymnoascus destructans (Pd). Recent studies indicated that apart from Pd, there is an abundance of other Pseudogymnoascus species in the hibernacula soil. We developed an Agrobacterium tumefaciens-mediated transformation (ATMT) system for Pd and a related fungus Pseudogymnoascus pannorum (Pp) to advance experimental studies. URE1 gene encoding the enzyme urease was used as an easy to screen marker to facilitate molecular genetic analyses. A Uracil-Specific Excision Reagent (USER) Friendly pRF-HU2 vector containing Pd or Pp ure1::hygromycin (HYG) disruption cassette was introduced into A. tumefaciens AGL-1 cells by electroporation and the resulting strains were co-cultivated with conidia of Pd or Pp for various durations and temperatures to optimize the ATMT system. Overall, 680 Pd (0.006%) and 1800 Pp (0.018%) transformants were obtained from plating of 10(7) conidia; their recoveries were strongly correlated with the length of the incubation period (96h for Pd; 72h for Pp) and with temperature (15-18°C for Pd; 25°C for Pp). The homologous recombination in transformants was 3.1% for Pd and 16.7% for Pp. The availability of a standardized ATMT system would allow future molecular genetic analyses of Pd and related cold-adapted fungi. Copyright © 2015. Published by Elsevier Inc.

  11. Advances in the understanding of nutrient dynamics and management in UK agriculture

    Energy Technology Data Exchange (ETDEWEB)

    Dungait, Jennifer A.J., E-mail: jennifer.dungait@rothamsted.ac.uk [Department of Sustainable Soils and Grassland Systems, Rothamsted Research, North Wyke, Okehampton, Devon, EX20 2SB (United Kingdom); Cardenas, Laura M.; Blackwell, Martin S.A.; Wu, Lianhai [Department of Sustainable Soils and Grassland Systems, Rothamsted Research, North Wyke, Okehampton, Devon, EX20 2SB (United Kingdom); Withers, Paul J.A. [School of Environment, Natural Resources and Geography, Bangor University, Bangor, Gwynedd, LL57 2UW (United Kingdom); Chadwick, David R.; Bol, Roland; Murray, Philip J. [Department of Sustainable Soils and Grassland Systems, Rothamsted Research, North Wyke, Okehampton, Devon, EX20 2SB (United Kingdom); Macdonald, Andrew J.; Whitmore, Andrew P. [Department of Sustainable Soils and Grassland Systems, Rothamsted Research, Harpenden, Hertfordshire, AL5 2LQ (United Kingdom); Goulding, Keith W.T. [Department of Sustainable Soils and Grassland Systems, Rothamsted Research, North Wyke, Okehampton, Devon, EX20 2SB (United Kingdom); Department of Sustainable Soils and Grassland Systems, Rothamsted Research, Harpenden, Hertfordshire, AL5 2LQ (United Kingdom)

    2012-09-15

    Current research on macronutrient cycling in UK agricultural systems aims to optimise soil and nutrient management for improved agricultural production and minimise effects on the environment and provision of ecosystem services. Nutrient use inefficiencies can cause environmental pollution through the release of greenhouse gases into the atmosphere and of soluble and particulate forms of N, P and carbon (C) in leachate and run-off into watercourses. Improving nutrient use efficiencies in agriculture calls for the development of sustainable nutrient management strategies: more efficient use of mineral fertilisers, increased recovery and recycling of waste nutrients, and, better exploitation of the substantial inorganic and organic reserves of nutrients in the soil. Long-term field experimentation in the UK has provided key knowledge of the main nutrient transformations in agricultural soils. Emerging analytical technologies, especially stable isotope labelling, that better characterise macronutrient forms and bioavailability and improve the quantification of the complex relationships between the macronutrients in soils at the molecular scale, are augmenting this knowledge by revealing the underlying processes. The challenge for the future is to determine the relationships between the dynamics of N, P and C across scales, which will require both new modelling approaches and integrated approaches to macronutrient cycling. -- Highlights: Black-Right-Pointing-Pointer Major advances in the knowledge of macronutrient cycling in agricultural soils are reviewed in the context of management. Black-Right-Pointing-Pointer Novel analytical techniques and innovative modelling approaches that enhance understanding of nutrient cycling are explored. Black-Right-Pointing-Pointer Knowledge gaps are identified, and the potential to improve comprehension of the integrated nutrient cycles is considered.

  12. How Does Transformational Leadership Promote Innovation in Construction? The Mediating Role of Innovation Climate and the Multilevel Moderation Role of Project Requirements

    Directory of Open Access Journals (Sweden)

    Yanchun Zhang

    2018-05-01

    Full Text Available Innovation plays a critical role in the sustainable development of the construction industry. This research aims at examining transformational leadership’s role in shaping employees’ innovative behavior by analyzing the mediating effect of innovation climate and the cross-level moderating effect of innovativeness as a project requirement. To achieve this aim, a questionnaire survey was conducted with 300 construction industry professionals in China and 251 valid replies were received. Data collected by the questionnaire were analyzed using the method of hierarchical linear modeling (HLM. The results showed that transformational leaders could nurture a mutual climate for innovation to motivate employees’ innovative behaviors. In addition, innovativeness as a project requirement at the project level strengthens the indirect link amongst transformational leadership and innovative behavior via the innovation climate. Therefore, in the presence of higher innovativeness as a project requirement, transformational leadership is more prone to exert a positive influence upon an individual’s innovative behavior via the perceived innovation climate. The research findings improve understanding of the roles of leadership and innovation climate in affecting individual behavioral outcomes, and could help project managers and leaders encourage innovative ideas within project organizations.

  13. Regulation of metabolism by the Mediator complex.

    Science.gov (United States)

    Youn, Dou Yeon; Xiaoli, Alus M; Pessin, Jeffrey E; Yang, Fajun

    2016-01-01

    The Mediator complex was originally discovered in yeast, but it is conserved in all eukaryotes. Its best-known function is to regulate RNA polymerase II-dependent gene transcription. Although the mechanisms by which the Mediator complex regulates transcription are often complicated by the context-dependent regulation, this transcription cofactor complex plays a pivotal role in numerous biological pathways. Biochemical, molecular, and physiological studies using cancer cell lines or model organisms have established the current paradigm of the Mediator functions. However, the physiological roles of the mammalian Mediator complex remain poorly defined, but have attracted a great interest in recent years. In this short review, we will summarize some of the reported functions of selective Mediator subunits in the regulation of metabolism. These intriguing findings suggest that the Mediator complex may be an important player in nutrient sensing and energy balance in mammals.

  14. Nutrient-Sensing Biology in Mammals and Birds

    DEFF Research Database (Denmark)

    Roura, Eugeni; Foster, Simon R

    2018-01-01

    in nondigestive systems has uncovered fascinating potential as pharmacological targets relevant to respiratory and cardiovascular diseases. Expected final online publication date for the Annual Review of Animal Biosciences Volume 6 is February 15, 2018. Please see http://www.annualreviews.org/page/journal......, bitter receptors are highly divergent and have a high incidence of polymorphisms within and between mammals and birds and are involved in the adaptation of species to specific environments. In addition, the expression of nutrient sensing genes outside the oral cavity seems to mediate the required...

  15. CRISPR/Cas9-mediated efficient genome editing via blastospore-based transformation in entomopathogenic fungus Beauveria bassiana.

    Science.gov (United States)

    Chen, Jingjing; Lai, Yiling; Wang, Lili; Zhai, Suzhen; Zou, Gen; Zhou, Zhihua; Cui, Chunlai; Wang, Sibao

    2017-04-03

    Beauveria bassiana is an environmentally friendly alternative to chemical insecticides against various agricultural insect pests and vectors of human diseases. However, its application has been limited due to slow kill and sensitivity to abiotic stresses. Understanding of the molecular pathogenesis and physiological characteristics would facilitate improvement of the fungal performance. Loss-of-function mutagenesis is the most powerful tool to characterize gene functions, but it is hampered by the low rate of homologous recombination and the limited availability of selectable markers. Here, by combining the use of uridine auxotrophy as recipient and donor DNAs harboring auxotrophic complementation gene ura5 as a selectable marker with the blastospore-based transformation system, we established a highly efficient, low false-positive background and cost-effective CRISPR/Cas9-mediated gene editing system in B. bassiana. This system has been demonstrated as a simple and powerful tool for targeted gene knock-out and/or knock-in in B. bassiana in a single gene disruption. We further demonstrated that our system allows simultaneous disruption of multiple genes via homology-directed repair in a single transformation. This technology will allow us to study functionally redundant genes and holds significant potential to greatly accelerate functional genomics studies of B. bassiana.

  16. The mediating role of organizational justice in the relationship between transformational leadership and nurses' quality of work life: a cross-sectional questionnaire survey.

    Science.gov (United States)

    Gillet, Nicolas; Fouquereau, Evelyne; Bonnaud-Antignac, Angélique; Mokounkolo, René; Colombat, Philippe

    2013-10-01

    The importance of transformational leadership for nurses' well-being is increasingly acknowledged. However, there is a paucity of research examining the mechanisms that may explain the relationships between transformational leadership and nurses' quality of work life. First, to examine two possible psychological mechanisms that link transformational leadership behaviors to nurses' quality of work life. Second, to study the relationship between nurses' quality of work life and their work engagement. Cross-sectional study design. The study took place in 47 different hematology, oncology, and hematology/oncology units in France. Participants were nurses and auxiliary nurses. 343 nurses completed the questionnaire. Surveys were sent to all nurses working in the units. 95% were female, the average age was 36.30 years. Nurses were asked to rate their supervisor's transformational leadership style and their perceptions of distributive and interactional justice in the unit. They were also asked to evaluate their own level of quality of work life and their work engagement. Distributive justice and interactional justice were found to fully mediate the relationship between transformational leadership and nurses' quality of work life. In addition, nurses' quality of work life positively related to their work engagement. Transformational leaders may help ensure nurses' quality of work life which in turn increases their work engagement. These leadership practices are thus beneficial for both employees and organization. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Groundwater – The disregarded component in lake water and nutrient budgets. Part 2: effects of groundwater on nutrients

    Science.gov (United States)

    Lewandowski, Jörg; Meinikmann, Karin; Nützmann, Gunnar; Rosenberry, Donald O.

    2015-01-01

    Lacustrine groundwater discharge (LGD) transports nutrients from a catchment to a lake, which may fuel eutrophication, one of the major threats to our fresh waters. Unfortunately, LGD has often been disregarded in lake nutrient studies. Most measurement techniques are based on separate determinations of volume and nutrient concentration of LGD: Loads are calculated by multiplying seepage volumes by concentrations of exfiltrating water. Typically low phosphorus (P) concentrations of pristine groundwater often are increased due to anthropogenic sources such as fertilizer, manure or sewage. Mineralization of naturally present organic matter might also increase groundwater P. Reducing redox conditions favour P transport through the aquifer to the reactive aquifer-lake interface. In some cases, large decreases of P concentrations may occur at the interface, for example, due to increased oxygen availability, while in other cases, there is nearly no decrease in P. The high reactivity of the interface complicates quantification of groundwater-borne P loads to the lake, making difficult clear differentiation of internal and external P loads to surface water. Anthropogenic sources of nitrogen (N) in groundwater are similar to those of phosphate. However, the environmental fate of N differs fundamentally from P because N occurs in several different redox states, each with different mobility. While nitrate behaves essentially conservatively in most oxic aquifers, ammonium's mobility is similar to that of phosphate. Nitrate may be transformed to gaseous N2 in reducing conditions and permanently removed from the system. Biogeochemical turnover of N is common at the reactive aquifer-lake interface. Nutrient loads from LGD were compiled from the literature. Groundwater-borne P loads vary from 0.74 to 2900 mg PO4-P m−2 year−1; for N, these loads vary from 0.001 to 640 g m−2 year−1. Even small amounts of seepage can carry large nutrient loads due to often high

  18. Nutrient cycling strategies.

    NARCIS (Netherlands)

    Breemen, van N.

    1995-01-01

    This paper briefly reviews pathways by which plants can influence the nutrient cycle, and thereby the nutrient supply of themselves and of their competitors. Higher or lower internal nutrient use efficiency positively feeds back into the nutrient cycle, and helps to increase or decrease soil

  19. Contrasting nutritional acclimation of sugar maple (Acer saccharum Marsh. and red maple (Acer rubrum L. to increasing conifers and soil acidity as demonstrated by foliar nutrient balances

    Directory of Open Access Journals (Sweden)

    Alexandre Collin

    2016-07-01

    Full Text Available Sugar maple (Acer saccharum Marshall, SM is believed to be more sensitive to acidic and nutrient-poor soils associated with conifer-dominated stands than red maple (Acer rubrum L., RM. Greater foliar nutrient use efficiency (FNUE of RM is likely the cause for this difference. In the context of climate change, this greater FNUE could be key in favouring northward migration of RM over SM. We used the concept of foliar nutrient balances to study the nutrition of SM and RM seedlings along an increasing gradient in forest floor acidity conditioned by increasing proportions of conifers (pH values ranging from 4.39 under hardwoods, to 4.29 under mixed hardwood-conifer stands and 4.05 under conifer-dominated stands. Nutrients were subjected to isometric log-ratio (ilr transformation, which views the leaf as one closed system and considers interactions between nutrients. The ilr method eliminates numerical biases and weak statistical inferences based on raw or operationally’’ log-transformed data. We analyzed foliar nutrients of SM and RM seedlings and found that the [Ca,Mg,K|P,N] and [Ca,Mg|K] balances of SM seedlings were significantly different among soil acidity levels, whereas they did not vary for RM seedlings. For SM seedlings, these differences among soil acidity levels were due to a significant decrease in foliar Ca and Mg concentrations with increasing forest floor acidity. Similar differences in foliar balances were also found between healthy and declining SM stands estimated from literature values. Conversely, foliar balances of RM seedlings did not differ among soil acidity levels, even though untransformed foliar nutrient concentrations were significantly different. This result highlights the importance of using ilr transformation, since it provides more sensitive results than standard testing of untransformed nutrient concentrations. The lower nutrient requirements of RM and its greater capacity to maintain nutrient equilibrium are

  20. Genetic transformation of peanut (Arachis hypogaea L.) using ...

    Indian Academy of Sciences (India)

    Madhu

    tissue culture response and plant regeneration has driven researchers to develop alternate transformation systems that target axillary meristem in the cotyledonary nodes (Somers et al 2003). We report here for the first time the mode of genetic transformation using cotyledonary node (CN) as an explant in peanut mediated ...

  1. The State of Technology and Community Driven Application of Distributed Wastewater Reuse, Nutrient Reclamation, and Energy Savings

    OpenAIRE

    Gocke, Thomas Edward

    2014-01-01

    The security of clean water for urban communities is increasingly uncertain due to over usage, a shifting hydrosphere, and changes in development patterns. The wastewater treatment community has come to a turning point, where wastewater is increasingly being viewed as a valuable resource that can be transformed into commodities such as clean water, nutrients and energy. This document will discuss the current state of the industry for water reuse and nutrient reclamation and evaluate each prac...

  2. The Effects of Integrated Transformational Leadership on Achievement

    Science.gov (United States)

    Boberg, John Eric; Bourgeois, Steven J.

    2016-01-01

    Purpose: Greater understanding about how variables mediate the relationship between leadership and achievement is essential to the success of reform efforts that hold leaders accountable for student learning. The purpose of this paper is to test a model of integrated transformational leadership including three important school mediators.…

  3. Transforming growth factor β-induced expression of chondroitin sulfate proteoglycans is mediated through non-Smad signaling pathways.

    Science.gov (United States)

    Jahan, Naima; Hannila, Sari S

    2015-01-01

    The expression of chondroitin sulfate proteoglycans (CSPGs) by reactive astrocytes is a major factor contributing to glial scarring and regenerative failure after spinal cord injury, but the molecular mechanisms underlying CSPG expression remain largely undefined. One contributing factor is transforming growth factor β (TGFβ), which is upregulated after injury and has been shown to induce expression of CSPGs in vitro. TGFβ typically mediates its effects through the Smad2/3 signaling pathway, and it has been suggested that this pathway is responsible for CSPG expression. However, there is evidence that TGFβ can also activate non-Smad signaling pathways. In this study, we report that TGFβ-induced expression of three different CSPGs--neurocan, brevican, and aggrecan--is mediated through non-Smad signaling pathways. We observed significant increases in TGFβ-induced expression of neurocan, brevican, and aggrecan following siRNA knockdown of Smad2 or Smad4, which indicates that Smad signaling is not required for the expression of these CSPGs. In addition, we show that neurocan, aggrecan, and brevican levels are significantly reduced when TGFβ is administered in the presence of either the PI3K inhibitor LY294002 or the mTOR inhibitor rapamycin, but not the MEK1/2 inhibitor U0126. This suggests that TGFβ mediates this effect through non-Smad-dependent activation of the PI3K-Akt-mTOR signaling pathway, and targeting this pathway may therefore be an effective means of reducing CSPG expression in the injured CNS. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. PRELATIONSHIP BETWEEN TRANSFORMATIONAL LEADERSHIP, EMPOWERMENT AND FOLLOWERS’ PERFORMANCE: A EMPIRICAL STUDY IN MALAYSIA

    Directory of Open Access Journals (Sweden)

    Azman Ismail

    2009-07-01

    Full Text Available Further research reveals that the effect of transformational leadership on followers’ performance is indirectly affected by empowerment. The nature of this relationship is less emphasized in organizational leadership literature. Therefore, this study was conducted to examine the effect of transformational leadership on followers’ performance and investigate the mediating effect of empowerment in the relationship between transformational leadership and followers’ performance. Findings showed that the relationship between empowerment and transformational leadership had increased followers’ performance. This result confirms that empowerment acts as a full mediating role in the leadership model of the studied organization.

  5. Intragastric nutrient infusion reduces motivation for food in male and female rats.

    Science.gov (United States)

    Maske, Calyn B; Loney, Gregory C; Lilly, Nicole; Terrill, Sarah J; Williams, Diana L

    2018-03-13

    The idea that gut-derived satiation signals influence food reward has recently gained traction, but this hypothesis is largely based on studies focused on neural circuitry, not the peripherally released signals. Here, we directly tested the hypothesis that intragastric (IG) nutrient infusion can suppress motivation for food. In a series of experiments, IG sucrose infusion (15 kcal) significantly and reliably reduced operant responding for a sucrose reward on a progressive ratio (PR) schedule. Moreover, food deprivation for 24 h before the test session did not prevent the suppressive effect of nutrients. The suppressive effect of IG sucrose on fixed ratio 5 (FR5) operant responding was also assessed as a comparison. The effect of IG nutrients to reduce motivation was not limited to sucrose; IG Ensure infusion (9.3 kcal) also significantly reduced PR operant responding for sucrose pellets. To verify that these effects are not secondary to the osmotic challenge of concentrated nutrients, we tested IG infusion of non-caloric saline solutions equiosmolar to 40% sucrose or Ensure, and found no effect. Finally, we focused on glucagon-like peptide 1 (GLP-1) and cholecystokinin (CCK) as candidate mediators for the effect of IG nutrients. Pretreatment with Exendin-9, a GLP-1R antagonist, delivered IP, significantly attenuated the ability of IG nutrients to suppress PR responding and breakpoint in males, but not females, whereas pretreatment with Devazepide, a CCKA receptor antagonist, failed to do so in both sexes. Together, these data support the idea that nutrient-induced satiation signals influence food reward, and may implicate GLP-1 in this process.

  6. Long Term Large Scale river nutrient changes across the UK

    Science.gov (United States)

    Bell, Victoria; Naden, Pam; Tipping, Ed; Davies, Helen; Davies, Jessica; Dragosits, Ulli; Muhammed, Shibu; Quinton, John; Stuart, Marianne; Whitmore, Andy; Wu, Lianhai

    2017-04-01

    During recent decades and centuries, pools and fluxes of Carbon, Nitrogen and Phosphorus (C, N and P) in UK rivers and ecosystems have been transformed by the spread and fertiliser-based intensification of agriculture (necessary to sustain human populations), by atmospheric pollution, by human waste (rising in line with population growth), and now by climate change. The principal objective of the UK's NERC-funded Macronutrients LTLS research project has been to account for observable terrestrial and aquatic pools, concentrations and fluxes of C, N and P on the basis of past inputs, biotic and abiotic interactions, and transport processes. More specifically, over the last 200 years, what have been the temporal responses of plant and soil nutrient pools in different UK catchments to nutrient enrichment, and what have been the consequent effects on nutrient transfers from land to the atmosphere, freshwaters and estuaries? The work described here addresses the second question by providing an integrated quantitative description of the interlinked land and water pools and annual fluxes of C, N and P for UK catchments over time. A national-scale modelling environment has been developed, combining simple physically-based gridded models that can be parameterised using recent observations before application to long timescales. The LTLS Integrated Model (LTLS-IM) uses readily-available driving data (climate, land-use, nutrient inputs, topography), and model estimates of both terrestrial and freshwater nutrient loads have been compared with measurements from sites across the UK. Here, the focus is on the freshwater nutrient component of the LTLS-IM, but the terrestrial nutrient inputs required for this are provided by models of nutrient processes in semi-natural and agricultural systems, and from simple models of nutrients arising from human waste. In the freshwater model, lateral routing of dissolved and particulate nutrients and within-river processing such as

  7. Study on transformation of cowpea trypsin inhibitor gene into ...

    African Journals Online (AJOL)

    Cowpea Trypsin Inhibitor (CpTI) gene was transferred into cauliflower by agrobacterium-mediated transformation method, and 14 transgenic cauliflower plants were obtained. Cotyledons and hypocotyls were used as explants. The putative transformants were assayed by PCR and Southern blotting analysis. The results ...

  8. Marine phytoplankton stoichiometry mediates nonlinear interactions between nutrient supply, temperature, and atmospheric CO2

    Science.gov (United States)

    Moreno, Allison R.; Hagstrom, George I.; Primeau, Francois W.; Levin, Simon A.; Martiny, Adam C.

    2018-05-01

    Marine phytoplankton stoichiometry links nutrient supply to marine carbon export. Deviations of phytoplankton stoichiometry from Redfield proportions (106C : 1P) could therefore have a significant impact on carbon cycling, and understanding which environmental factors drive these deviations may reveal new mechanisms regulating the carbon cycle. To explore the links between environmental conditions, stoichiometry, and carbon cycling, we compared four different models of phytoplankton C : P: a fixed Redfield model, a model with C : P given as a function of surface phosphorus concentration (P), a model with C P given as a function of temperature, and a new multi-environmental model that predicts C : P as a function of light, temperature, and P. These stoichiometric models were embedded into a five-box ocean circulation model, which resolves the three major ocean biomes (high-latitude, subtropical gyres, and tropical upwelling regions). Contrary to the expectation of a monotonic relationship between surface nutrient drawdown and carbon export, we found that lateral nutrient transport from lower C : P tropical waters to high C : P subtropical waters could cause carbon export to decrease with increased tropical nutrient utilization. It has been hypothesized that a positive feedback between temperature and pCO2, atm will play an important role in anthropogenic climate change, with changes in the biological pump playing at most a secondary role. Here we show that environmentally driven shifts in stoichiometry make the biological pump more influential, and may reverse the expected positive relationship between temperature and pCO2, atm. In the temperature-only model, changes in tropical temperature have more impact on the Δ pCO2, atm (˜ 41 ppm) compared to subtropical temperature changes (˜ 4.5 ppm). Our multi-environmental model predicted a decline in pCO2, atm of ˜ 46 ppm when temperature spanned a change of 10 °C. Thus, we find that variation in marine phytoplankton

  9. The mediatization of ethical consumption

    DEFF Research Database (Denmark)

    Eskjær, Mikkel Fugl

    2013-01-01

    Over the years, mediatization studies have investigated the influence of media in numerous sections of contemporary society. One area that has received limited attention is the mediatization of consumption, particularly issues concerning ethical consumption. This article presents a study of how...... mediatization is transforming modern consumption and contributing to the mainstreaming of ethical consumption. Based on a study of a Danish online eco-store, the article argues that modern ethical consumption increasingly depends on new media practices to present sustainable consumption as practical...

  10. The mediating effect of organizational culture on the relationship between transformational leadership and organizational citizenship behavior

    Directory of Open Access Journals (Sweden)

    Keramat Esmi

    2017-10-01

    Full Text Available Introduction: Contemporary studies of organizational citizenship behavior (OCB are recognized as essential for modern organizations. These studies indicate that organizations with more emphasis on the OCB are healthier and more successful. The results also show that employees, who act beyond their job duties and exert OCB, belong to high productivity workgroup and enterprise with excellent quality in comparison to employees with low level of OCB. Therefore, the investigation of antecedents of organizational citizenship behavior can help the organizations to improve and reinforce it. Thus, the present study aimed at investigating the mediating effect of organizational culture on the relationship between transformational leadership and OCB. Method: A descriptive correlation research method was employed in this study. A total of 160 experts at Shiraz University were selected as the research sample through simple random sampling method using Cochran’s formula. Moreover, the study employed three instruments, namely Bass and Avolio’s transformational leadership questionnaire, Podsakoff’s et al.’s (1990 organizational citizenship behavior scale, and Denison organizational culture survey (2006. It is noted that the reliability of all the scales was obtained through Cronbach’s alpha coefficient. To analyze the research data, Pearson coefficient and structural equation modeling were used through SPSS 22 and Lisrel 8.8 software. Results: The results indicated that of dimensions of transformational leadership, inspirational motivation (β=0.33, and individualized consideration (β=-0.23 directly influenced OCB. Moreover, these two dimensions indirectly influenced OCB through organizational culture (dimension of involvement. The direct and indirect (β=0.16 effect of inspirational motivation on OCB was positive whereas individualized consideration directly had a negative and indirectly (β=0.14 a positive effect on OCB. Two other dimensions of

  11. Relationship between expression level of hygromycin B-resistant gene and Agrobacterium tumefaciens-mediated transformation efficiency in Beauveria bassiana JEF-007.

    Science.gov (United States)

    Nai, Y S; Lee, M R; Kim, S; Lee, S J; Kim, J C; Yang, Y T; Kim, J S

    2017-09-01

    Agrobacterium tumefaciens-mediated transformation (AtMT) is an effective method for generation of entomopathogenic Beauveria bassiana transformants. However, some strains grow on the selective medium containing hygromycin B (HygB), which reduces the selection efficiency of the putative transformants. In this work, a relationship between HygB resistance gene promoter and AtMT efficiency was investigated to improve the transformant selection. Ten B. bassiana isolates were grown on 800 μg ml -1 HygB medium, but only JEF-006, -007 and -013 showed susceptibility to the antibiotics. Particularly, JEF-007 showed the most dose-dependent susceptibility. Two different Ti-Plasmids, pCeg (gpdA promoter based) and pCambia-egfp (CaMV 35S promoter based), were constructed to evaluate the promoters on the expression of HygB resistance gene (hph) at 100, 150 and 200 μg ml -1 HygB medium. Eight days after the transformation, wild type, AtMT/pCeg and AtMT/pCambia-egfp colonies were observed on 100 μg ml -1 HygB, but significantly larger numbers of colonies were counted on AtMT/pCeg plates. At higher HygB concentration (150 μg ml -1 ), only AtMT/pCeg colonies were further observed, but very few colonies were observed on the wild type and AtMT/pCambia-egfp plates. Putative transformants were subjected to PCR, RT-PCR and qRT-PCR to investigate the T-DNA insertion rate and gene expression level. Consequently, >80% of colonies showed successful AtMT transformation, and the hph expression level in AtMT/pCeg colonies was higher than that of AtMT/pCambia-egfp colonies. In the HygB-susceptible B. bassianaJEF-007, gpdA promoter works better than CaMV 35S promoter in the expression of HygB resistance gene at 150 μg ml -1 HygB, consequently improving the selection efficiency of putative transformants. These results provide useful information for determining AtMT effectiveness in B. bassiana isolates, particularly antibiotic susceptibility and the role of promoters. © 2017 The

  12. High-efficiency Agrobacterium rhizogenes-mediated transformation of heat inducible sHSP18.2-GUS in Nicotiana tabacum.

    Science.gov (United States)

    Chen, Shih-Cheng; Liu, Hui-Wen; Lee, Kung-Ta; Yamakawa, Takashi

    2007-01-01

    The chimerical gene, Arabidopsis thaliana sHSP18.2 promoter fused to E. coli gusA gene, was Agrobacterium rhizogenes-mediated transformed into Nicotiana tabacum as a heat-regulatable model, and the thermo-inducible expression of GUS activity in N. tabacum transgenic hairy roots was profiled. An activation of A. rhizogenes with acetosyringone (AS) before cocultured with tobacco's leaf disc strongly promoted transgenic hairy roots formation. Transgenic hairy roots formation efficiency of A. rhizogenes precultured with 200 microM AS supplementation was 3.1-fold and 7.5-fold, respectively, compared to the formation efficiency obtained with and without AS supplementation in coculture. Transgenic hairy roots transformed with different AS concentration exhibited a similar pattern of thermo-inducibility after 10 min to 3 h heat treatments detected by GUS expression. The peak of expressed GUS specific activity, 399,530 pmol MUG per mg total protein per min, of the transgenic hairy roots was observed at 48 h after 3 h of 42 degrees C heat treatment, and the expressed GUS specific activity was 7-26 times more than that reported in A. thaliana, tobacco BY-2 cells and Nicotiana plumbaginifolia. Interference caused by AS supplementation on the growth of transgenic hairy roots, time-course of GUS expression and its expression level were not observed.

  13. Host plant quality mediates competition between arbuscular mycorrhizal fungi

    NARCIS (Netherlands)

    Knegt, B.; Jansa, J.; Franken, O.; Engelmoer, D.J.P.; Werner, G.D.A.; Bücking, H.; Kiers, E.T.

    2016-01-01

    Arbuscular mycorrhizal fungi exchange soil nutrients for carbon from plant hosts. Empirical works suggests that hosts may selectively provide resources to different fungal species, ultimately affecting fungal competition. However, fungal competition may also be mediated by colonization strategies of

  14. Trophic cascades of bottom-up and top-down forcing on nutrients and plankton in the Kattegat, evaluated by modelling

    DEFF Research Database (Denmark)

    Petersen, Marcell Elo; Maar, Marie; Larsen, Janus

    2017-01-01

    The aim of the study was to investigate the relative importance of bottom-up and top-down forcing on trophic cascades in the pelagic food-web and the implications for water quality indicators (summer phytoplankton biomass and winter nutrients) in relation to management. The 3D ecological model....... On annual basis, the system was more bottom-up than top-down controlled. Microzooplankton was found to play an important role in the pelagic food web as mediator of nutrient and energy fluxes. This study demonstrated that the best scenario for improved water quality was a combined reduction in nutrient...

  15. Leiomyoma-derived transforming growth factor-β impairs bone morphogenetic protein-2-mediated endometrial receptivity.

    Science.gov (United States)

    Doherty, Leo F; Taylor, Hugh S

    2015-03-01

    To determine whether transforming growth factor (TGF)-β3 is a paracrine signal secreted by leiomyoma that inhibits bone morphogenetic protein (BMP)-mediated endometrial receptivity and decidualization. Experimental. Laboratory. Women with symptomatic leiomyomas. Endometrial stromal cells (ESCs) and leiomyoma cells were isolated from surgical specimens. Leiomyoma-conditioned media (LCM) was applied to cultured ESC. The TGF-β was blocked by two approaches: TGF-β pan-specific antibody or transfection with a mutant TGF-β receptor type II. Cells were then treated with recombinant human BMP-2 to assess BMP responsiveness. Expression of BMP receptor types 1A, 1B, 2, as well as endometrial receptivity mediators HOXA10 and leukemia inhibitory factor (LIF). Enzyme-linked immunosorbent assay showed elevated TGF-β levels in LCM. LCM treatment of ESC reduced expression of BMP receptor types 1B and 2 to approximately 60% of pretreatment levels. Preincubation of LCM with TGF-β neutralizing antibody or mutant TGF receptor, but not respective controls, prevented repression of BMP receptors. HOXA10 and LIF expression was repressed in recombinant human BMP-2 treated, LCM exposed ESC. Pretreatment of LCM with TGF-β antibody or transfection with mutant TGF receptor prevented HOXA10 and LIF repression. Leiomyoma-derived TGF-β was necessary and sufficient to alter endometrial BMP-2 responsiveness. Blockade of TGF-β prevents repression of BMP-2 receptors and restores BMP-2-stimulated expression of HOXA10 and LIF. Blockade of TGF signaling is a potential strategy to improve infertility and pregnancy loss associated with uterine leiomyoma. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  16. A type IV pilus mediates DNA binding during natural transformation in Streptococcus pneumoniae.

    Directory of Open Access Journals (Sweden)

    Raphaël Laurenceau

    Full Text Available Natural genetic transformation is widely distributed in bacteria and generally occurs during a genetically programmed differentiated state called competence. This process promotes genome plasticity and adaptability in Gram-negative and Gram-positive bacteria. Transformation requires the binding and internalization of exogenous DNA, the mechanisms of which are unclear. Here, we report the discovery of a transformation pilus at the surface of competent Streptococcus pneumoniae cells. This Type IV-like pilus, which is primarily composed of the ComGC pilin, is required for transformation. We provide evidence that it directly binds DNA and propose that the transformation pilus is the primary DNA receptor on the bacterial cell during transformation in S. pneumoniae. Being a central component of the transformation apparatus, the transformation pilus enables S. pneumoniae, a major Gram-positive human pathogen, to acquire resistance to antibiotics and to escape vaccines through the binding and incorporation of new genetic material.

  17. Escherichia coli survival in the presence of Chlorella vulgaris in a nutrient supplemented freshwater medium

    Science.gov (United States)

    Fecal contamination of agricultural irrigation pond water is an on-going concern. Others have reported that fecal bacteria survival can be mediated by algae in natural ecosystems. The effect of bovine manure nutrient supplementation on the survival of E. coli in the presence of the single-celled ...

  18. Examination of mid-intervention mediating effects on objectively assessed sedentary time among children in the Transform-Us! cluster-randomized controlled trial.

    Science.gov (United States)

    Carson, Valerie; Salmon, Jo; Arundell, Lauren; Ridgers, Nicola D; Cerin, Ester; Brown, Helen; Hesketh, Kylie D; Ball, Kylie; Chinapaw, Mai; Yildirim, Mine; Daly, Robin M; Dunstan, David W; Crawford, David

    2013-05-20

    The optimal targets and strategies for effectively reducing sedentary behavior among young people are unknown. Intervention research that explores changes in mediated effects as well as in outcome behaviors is needed to help inform more effective interventions. Therefore, the purpose of this study was to examine the mid-intervention mediating effects on children's objectively assessed classroom and total weekday sedentary time in the Transform-Us! intervention. The results are based on 293 children, aged 7- to 9-years-old at baseline, from 20 schools in Melbourne, Australia. Each school was randomly allocated to one of four groups, which targeted reducing sedentary time in the school and family settings (SB; n = 74), increasing or maintaining moderate- to vigorous-intensity physical activity in the school and family settings (PA; n = 75), combined SB and PA (SB + PA; n = 80), or the current practice control (C; n = 64). Baseline and mid-intervention data (5-9 months) were collected in 2010 and analyzed in 2012. Classroom and total weekday sedentary time was objectively assessed using ActiGraph accelerometers. The hypothesized mediators including, child enjoyment, parent and teacher outcome expectancies, and child perceived access to standing opportunities in the classroom environment, were assessed by questionnaire. The SB + PA group spent 13.3 min/day less in weekday sedentary time at mid-intervention compared to the control group. At mid-intervention, children in the SB group had higher enjoyment of standing in class (0.9 units; 5-unit scale) and all intervention groups had more positive perceptions of access to standing opportunities in the classroom environment (0.3-0.4 units; 3-unit scale), compared to the control group. However, none of the hypothesized mediator variables had an effect on sedentary time; thus, no mediating effects were observed. While beneficial intervention effects were observed on some hypothesized mediating

  19. The Nutrient Density of Snacks: A Comparison of Nutrient Profiles of Popular Snack Foods Using the Nutrient-Rich Foods Index.

    Science.gov (United States)

    Hess, Julie; Rao, Goutham; Slavin, Joanne

    2017-01-01

    Background: Although Americans receive almost a quarter of their daily energy from snacks, snacking remains a poorly defined and understood eating occasion. However, there is little dietary guidance about choosing snacks. Families, clinicians, and researchers need a comprehensive approach to assessing their nutritional value. Objective: To quantify and compare the nutrient density of commonly consumed snacks by their overall nutrient profiles using the Nutrient-Rich Foods (NRF) Index 10.3. Methods: NRF Index scores were calculated for the top 3 selling products (based on 2014 market research data) in different snack categories. These NRF scores were averaged to provide an overall nutrient-density score for each category. Results: Based on NRF scores, yogurt (55.3), milk (52.5), and fruit (30.1) emerged as the most nutrient-dense snacks. Ice cream (-4.4), pies and cakes (-11.1), and carbonated soft drinks (-17.2) emerged as the most nutrient-poor snacks. Conclusions: The NRF Index is a useful tool for assessing the overall nutritional value of snacks based on nutrients to limit and nutrients to encourage.

  20. Transformative Agency

    DEFF Research Database (Denmark)

    Majgaard, Klaus

    The purpose of this paper is to enhance the conceptual understanding of the mediatory relationship between paradoxes on an organizational and an individual level. It presents a concept of agency that comprises and mediates between a structural and individual pole. The constitution of this agency ...... is achieved through narrative activity that oscillates between the poles and transforms paradoxes through the configuration of plots and metaphors. Empirical cases are introduced in order to illustrate the implications of this understanding....

  1. Transformation of ceria nanoparticles in cucumber plants is influenced by phosphate

    International Nuclear Information System (INIS)

    Rui, Yukui; Zhang, Peng; Zhang, Yanbei; Ma, Yuhui; He, Xiao; Gui, Xin; Li, Yuanyuan; Zhang, Jing; Zheng, Lirong; Chu, Shengqi; Guo, Zhi; Chai, Zhifang; Zhao, Yuliang; Zhang, Zhiyong

    2015-01-01

    Transformation is a critical factor that affects the fate and toxicity of manufactured nanoparticles (NPs) in the environment and living organisms. This paper aims to investigate the effect of phosphate on the transformation of CeO 2 NPs in hydroponic plants. Cucumber seedlings were treated with 2000 mg/L CeO 2 NPs in nutrient solutions with or without adding phosphate (+P or –P) for 3 weeks. Large quantities of needle-like CePO 4 was found outside the epidermis in the +P group. While in the –P group, CePO 4 only existed in the intercellular spaces and vacuole of root cells. X-ray absorption near edge spectroscopy (XANES) indicates that content and percentage of Ce-carboxylates in the shoots of –P group (418 mg/kg, 67.5%) were much higher than those in the +P group (30.1 mg/kg, 21%). The results suggest that phosphate might influence the transformation process of CeO 2 NPs in plants and subsequently their ultimate fate in the ecosystem. - Highlights: • We compared the transformation of CeO 2 NPs in cucumber plants with and without phosphate in nutrient solutions. • Results of TEM and STXM show that CePO 4 located differently in roots between +P and –P group. • The chemical species distributions of Ce in shoots were different between +P and –P group by XANES. • Phosphate significantly affected the transformation of CeO 2 NPs in plants. - CeO 2 NPs can be partially transformed to CePO 4 and Ce carboxylates in hydroponic plants. Phosphate significantly affected the transformation of CeO 2 NPs and subsequent translocation of Ce species

  2. Parahippocampal Cortex Mediates the Relationship between Lutein and Crystallized Intelligence in Healthy, Older Adults.

    Science.gov (United States)

    Zamroziewicz, Marta K; Paul, Erick J; Zwilling, Chris E; Johnson, Elizabeth J; Kuchan, Matthew J; Cohen, Neal J; Barbey, Aron K

    2016-01-01

    Introduction: Although, diet has a substantial influence on the aging brain, the relationship between dietary nutrients and aspects of brain health remains unclear. This study examines the neural mechanisms that mediate the relationship between a carotenoid important for brain health across the lifespan, lutein, and crystallized intelligence in cognitively intact older adults. We hypothesized that higher serum levels of lutein are associated with better performance on a task of crystallized intelligence, and that this relationship is mediated by gray matter structure of regions within the temporal cortex. This investigation aims to contribute to a growing line of evidence, which suggests that particular nutrients may slow or prevent aspects of cognitive decline by targeting specific features of brain aging. Methods: We examined 76 cognitively intact adults between the ages of 65 and 75 to investigate the relationship between serum lutein, tests of crystallized intelligence (measured by the Wechsler Abbreviated Scale of Intelligence), and gray matter volume of regions within the temporal cortex. A three-step mediation analysis was implemented using multivariate linear regressions to control for age, sex, education, income, depression status, and body mass index. Results: The mediation analysis revealed that gray matter thickness of one region within the temporal cortex, the right parahippocampal cortex (Brodmann's Area 34), partially mediates the relationship between serum lutein and crystallized intelligence. Conclusion: These results suggest that the parahippocampal cortex acts as a mediator of the relationship between serum lutein and crystallized intelligence in cognitively intact older adults. Prior findings substantiate the individual relationships reported within the mediation, specifically the links between (i) serum lutein and temporal cortex structure, (ii) serum lutein and crystallized intelligence, and (iii) parahippocampal cortex structure and

  3. Causal Mediation Analysis of Survival Outcome with Multiple Mediators.

    Science.gov (United States)

    Huang, Yen-Tsung; Yang, Hwai-I

    2017-05-01

    Mediation analyses have been a popular approach to investigate the effect of an exposure on an outcome through a mediator. Mediation models with multiple mediators have been proposed for continuous and dichotomous outcomes. However, development of multimediator models for survival outcomes is still limited. We present methods for multimediator analyses using three survival models: Aalen additive hazard models, Cox proportional hazard models, and semiparametric probit models. Effects through mediators can be characterized by path-specific effects, for which definitions and identifiability assumptions are provided. We derive closed-form expressions for path-specific effects for the three models, which are intuitively interpreted using a causal diagram. Mediation analyses using Cox models under the rare-outcome assumption and Aalen additive hazard models consider effects on log hazard ratio and hazard difference, respectively; analyses using semiparametric probit models consider effects on difference in transformed survival time and survival probability. The three models were applied to a hepatitis study where we investigated effects of hepatitis C on liver cancer incidence mediated through baseline and/or follow-up hepatitis B viral load. The three methods show consistent results on respective effect scales, which suggest an adverse estimated effect of hepatitis C on liver cancer not mediated through hepatitis B, and a protective estimated effect mediated through the baseline (and possibly follow-up) of hepatitis B viral load. Causal mediation analyses of survival outcome with multiple mediators are developed for additive hazard and proportional hazard and probit models with utility demonstrated in a hepatitis study.

  4. Numerical simulations of river discharges, nutrient flux and nutrient dispersal in Jakarta Bay, Indonesia

    International Nuclear Information System (INIS)

    Wulp, Simon A. van der; Damar, Ario; Ladwig, Norbert; Hesse, Karl-J.

    2016-01-01

    The present application of numerical modelling techniques provides an overview of river discharges, nutrient flux and nutrient dispersal in Jakarta Bay. A hydrological model simulated river discharges with a total of 90 to 377 m 3 s −1 entering Jakarta Bay. Daily total nitrogen and total phosphorus loads ranged from 40 to 174 tons and 14 to 60 tons, respectively. Flow model results indicate that nutrient gradients are subject to turbulent mixing by tides and advective transport through circulation driven by wind, barotropic and baroclinic pressure gradients. The bulk of nutrient loads originate from the Citarum and Cisadane rivers flowing through predominantly rural areas. Despite lower nutrient loads, river discharges from the urban area of Jakarta exhibit the highest impact of nutrient concentrations in the near shore area of Jakarta Bay and show that nutrient concentrations were not only regulated by nutrient loads but were strongly regulated by initial river concentrations and local flow characteristics. - Highlights: • Full overview of river discharges, nutrient flux and nutrient levels in Jakarta Bay • Important overview of nutrient flux from individual rivers • Simulations identify the principal drivers of water circulation and nutrient gradient. • Nutrient dispersion model includes the local effects of the Java Sea current system.

  5. ENVIRONMENTAL CHARACTERISTICS AFFECTING REDUCTIVE TRANSFORMATION OF ORGANIC POLLUTANTS IN ANOXIC SEDIMENTS

    Science.gov (United States)

    Reductive transformations are important processes for determining the fate of organic pollutants in anoxic environments. These processes are most often microbially mediated by both direct and indirect means. For example, specific bacteria transform organic pollutants directly as ...

  6. Conceptualising International Peace Mediation - Bring Back the Law

    OpenAIRE

    Higgins, Noelle; Daly, Brenda

    2011-01-01

    Mediation has been acknowledged and utilised for a number of decades as an effective method of alternative dispute resolution in a variety of areas of law, including family law, commercial law and medical law. A uniform, standardised framework exists within legal discourse which clearly identifies and categorises three main styles of mediation as facilitative, evaluative and transformative mediation. In the post-Cold War period, mediation has also emerged as an important resolution tool in ar...

  7. Approaches and uncertainties in nutrient budgets; Implications for nutrient management and environmental policies

    NARCIS (Netherlands)

    Oenema, O.; Kros, J.; Vries, de W.

    2003-01-01

    Nutrient budgets of agroecosystems are constructed either (i) to increase the understanding of nutrient cycling, (ii) as performance indicator and awareness raiser in nutrient management and environmental policy, or (iii) as regulating policy instrument to enforce a certain nutrient management

  8. From Nanowires to Biofilms: An Exploration of Novel Mechanisms of Uranium Transformation Mediated by Geobacter Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    REGUERA, GEMMA [Michigan State University

    2014-01-16

    One promising strategy for the in situ bioremediation of radioactive groundwater contaminants that has been identified by the SBR Program is to stimulate the activity of dissimilatory metal-reducing microorganisms to reductively precipitate uranium and other soluble toxic metals. The reduction of U(VI) and other soluble contaminants by Geobacteraceae is directly dependent on the reduction of Fe(III) oxides, their natural electron acceptor, a process that requires the expression of Geobacter’s conductive pili (pilus nanowires). Expression of conductive pili by Geobacter cells leads to biofilm development on surfaces and to the formation of suspended biogranules, which may be physiological closer to biofilms than to planktonic cells. Biofilm development is often assumed in the subsurface, particularly at the matrix-well screen interface, but evidence of biofilms in the bulk aquifer matrix is scarce. Our preliminary results suggest, however, that biofilms develop in the subsurface and contribute to uranium transformations via sorption and reductive mechanisms. In this project we elucidated the mechanism(s) for uranium immobilization mediated by Geobacter biofilms and identified molecular markers to investigate if biofilm development is happening in the contaminated subsurface. The results provided novel insights needed in order to understand the metabolic potential and physiology of microorganisms with a known role in contaminant transformation in situ, thus having a significant positive impact in the SBR Program and providing novel concept to monitor, model, and predict biological behavior during in situ treatments.

  9. Exploring the impact of transformational leadership on nurse innovation behaviour: a cross-sectional study.

    Science.gov (United States)

    Weng, Rhay-Hung; Huang, Ching-Yuan; Chen, Li-Mei; Chang, Li-Yu

    2015-05-01

    This study explored the influences of transformational leadership on nurse innovation behaviour and the mediating role of organisational climate. Recently, global nursing experts have been aggressively encouraging nurses to pursue innovation in nursing in order to improve nursing outcomes. Nursing innovation, in turn, is affected by nursing leadership. We employed a questionnaire survey to collect data, and selected a sample of nurses from hospitals in Taiwan. A total of 439 valid surveys were obtained. Hierarchical multiple regression model analysis was conducted to test the study hypothesis. The mean values of agreement of nurse innovation behaviour and transformational leadership were 3.40 and 3.78, respectively. Patient safety climate and innovation climate were found to have full mediating effects on the relationship between transformational leadership and innovation behaviour. Organisational climate has a significant impact on innovation behaviour. Transformational leadership has indirect effects on innovation behaviour via the mediation of patient safety climate and innovation climate. Hospitals should enhance transformational leadership by designing leadership training programmes and establishing transformational culture. In addition, nursing managers should foster nursing innovation through improvements in organisational climate. © 2013 John Wiley & Sons Ltd.

  10. Lack of Radiation Dose or Quality Dependence of Epithelial-to-Mesenchymal Transition (EMT) Mediated by Transforming Growth Factor β

    International Nuclear Information System (INIS)

    Andarawewa, Kumari L.; Costes, Sylvain V.; Fernandez-Garcia, Ignacio; Chou, William S.; Ravani, Shraddha A.; Park, Howard; Barcellos-Hoff, Mary Helen

    2011-01-01

    Purpose: Epithelial-to-mesenchymal transition (EMT) is a phenotype that alters cell morphology, disrupts morphogenesis, and increases motility. Our prior studies have shown that the progeny of human mammary epithelial cells (HMECs) irradiated with 2 Gy undergoes transforming growth factor β (TGF-β)-mediated EMT. In this study we determined whether radiation dose or quality affected TGF-β-mediated EMT. Methods and Materials: HMECs were cultured on tissue culture plastic or in Matrigel (BD Biosciences, San Jose, CA) and exposed to low or high linear energy transfer (LET) and TGF-β (400 pg/mL). Image analysis was used to measure membrane-associated E-cadherin, a marker of functional epithelia, or fibronectin, a product of mesenchymal cells, as a function of radiation dose and quality. Results: E-cadherin was reduced in TGF-β-treated cells irradiated with low-LET radiation doses between 0.03 and 2 Gy compared with untreated, unirradiated cells or TGF-β treatment alone. The radiation quality dependence of TGF-β-mediated EMT was determined by use of 1 GeV/amu (gigaelectron volt / atomic mass unit) 56 Fe ion particles at the National Aeronautics and Space Administration's Space Radiation Laboratory. On the basis of the relative biological effectiveness of 2 for 56 Fe ion particles' clonogenic survival, TGF-β-treated HMECs were irradiated with equitoxic 1-Gy 56 Fe ion or 2-Gy 137 Cs radiation in monolayer. Furthermore, TGF-β-treated HMECs irradiated with either high- or low-LET radiation exhibited similar loss of E-cadherin and gain of fibronectin and resulted in similar large, poorly organized colonies when embedded in Matrigel. Moreover, the progeny of HMECs exposed to different fluences of 56 Fe ion underwent TGF-β-mediated EMT even when only one-third of the cells were directly traversed by the particle. Conclusions: Thus TGF-β-mediated EMT, like other non-targeted radiation effects, is neither radiation dose nor quality dependent at the doses examined.

  11. The role of logbooks as mediators of engineering design work

    DEFF Research Database (Denmark)

    McAlpine, Hamish; Cash, Philip; Hicks, Ben

    2017-01-01

    Information transformation is key to engineering design work. However, research on how information management tools, and logbooks in particular, mediate this, is fragmented. We explore this via two studies (from which we confirm the central role of logbooks) and propose three modes of mediation...... are such a central and enduring medium. This synthesises and extends theory on mediation and information use in engineering design. Further, practical insights are derived for the development new information management tools.......: facilitating cognition and creation, gathering and collation of information, and staging and transformation of information. The findings explain the widespread use of logbooks through their support of these three modes. Consequently, we contend that multi-modal mediation is one of the main reasons why logbooks...

  12. Isolation of a conjugative F-like plasmid from a multidrug-resistant Escherichia coli strain CM6 using tandem shock wave-mediated transformation.

    Science.gov (United States)

    Soto-Alonso, G; Cruz-Medina, J A; Caballero-Pérez, J; Arvizu-Hernández, I; Ávalos-Esparza, L M; Cruz-Hernández, A; Romero-Gómez, S; Rodríguez, A L; Pastrana-Martínez, X; Fernández, F; Loske, A M; Campos-Guillén, J

    2015-07-01

    Genetic characterization of plasmids from bacterial strains provides insight about multidrug resistance. Ten wild type Escherichia coli (E. coli) strains isolated from cow fecal samples were characterized by their antibiotic resistance profile, plasmid patterns and three different identification methods. From one of the strains, a fertility factor-like plasmid was replicated using tandem shock wave-mediated transformation. Underwater shock waves with a positive pressure peak of up to approximately 40 MPa, followed by a pressure trough of approximately -19 MPa were generated using an experimental piezoelectric shock wave source. Three different shock wave energies and a fixed delay of 750 μs were used to study the relationship between energy and transformation efficiency (TE), as well as the influence of shock wave energy on the integrity of the plasmid. Our results showed that the mean shock wave-mediated TE and the integrity of the large plasmid (~70 kb) were reduced significantly at the energy levels tested. The sequencing analysis of the plasmid revealed a high identity to the pHK17a plasmid, including the replication system, which was similar to the plasmid incompatibility group FII. It also showed that it carried an extended spectrum beta-lactamase gene, ctx-m-14. Furthermore, diverse genes for the conjugative mechanism were identified. Our results may be helpful in improving methodologies for conjugative plasmid transfer and directly selecting the most interesting plasmids from environmental samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Transforming Environmental Knowledge into Behavior: The Mediating Role of Environmental Emotions

    Science.gov (United States)

    Carmi, Nurit; Arnon, Sara; Orion, Nir

    2015-01-01

    The present study was based on the premise that environmental knowledge can drive environmental behavior only if it arouses environmental emotions. Using a structural equations modeling approach, we tested the direct, as well as the indirect (mediated) effects of knowledge on behavior and assessed the mediating role of environmental emotions. We…

  14. Modeling farm nutrient flows in the North China Plain to reduce nutrient losses

    NARCIS (Netherlands)

    Zhao, Zhanqing; Bai, Zhaohai; Wei, Sha; Ma, Wenqi; Wang, Mengru; Kroeze, Carolien; Ma, Lin

    2017-01-01

    Years of poor nutrient management practices in the agriculture industry in the North China Plain have led to large losses of nutrients to the environment, causing severe ecological consequences. Analyzing farm nutrient flows is urgently needed in order to reduce nutrient losses. A farm-level

  15. Responses of plant nutrient resorption to phosphorus addition in freshwater marsh of Northeast China

    Science.gov (United States)

    Mao, Rong; Zeng, De-Hui; Zhang, Xin-Hou; Song, Chang-Chun

    2015-01-01

    Anthropogenic activities have increased phosphorus (P) inputs to most aquatic and terrestrial ecosystems. However, the relationship between plant nutrient resorption and P availability is still unclear, and much less is known about the underlying mechanisms. Here, we used a multi-level P addition experiment (0, 1.2, 4.8, and 9.6 g P m−2 year−1) to assess the effect of P enrichment on nutrient resorption at plant organ, species, and community levels in a freshwater marsh of Northeast China. The response of nutrient resorption to P addition generally did not vary with addition rates. Moreover, nutrient resorption exhibited similar responses to P addition across the three hierarchical levels. Specifically, P addition decreased nitrogen (N) resorption proficiency, P resorption efficiency and proficiency, but did not impact N resorption efficiency. In addition, P resorption efficiency and proficiency were linearly related to the ratio of inorganic P to organic P and organic P fraction in mature plant organs, respectively. Our findings suggest that the allocation pattern of plant P between inorganic and organic P fractions is an underlying mechanism controlling P resorption processes, and that P enrichment could strongly influence plant-mediated biogeochemical cycles through altered nutrient resorption in the freshwater wetlands of Northeast China. PMID:25631373

  16. STUDY REGARDING EFFICIENCY OF INDUCED GENETIC TRANSFORMATION IN BACILLUS LICHENIFORMIS WITH PLASMID DNA

    Directory of Open Access Journals (Sweden)

    T. VINTILĂ

    2007-05-01

    Full Text Available A strain of Bacillus licheniformis was subject to genetic transformation with plasmid vectors (pLC1 and pNC61, using electroporation technique, protoplast transformation and bivalent cations (CaCl2 mediated transformation. In the case of transformation by electroporation of Bacillus licheniformis B40, the highest number of transformed colonies (3 were obtained only after a 1,79 KV electric shock, for 2,2 milliseconds. Using this transformation technique we have obtained six kanamycin resistant transformants. The frequency of Bacillus licheniformis B40 protoplasts transformation using pLC1 and pNC61 plasmid vectors is approximately 10% (TF = 10%. As a result of pLC1 plasmid integration in Bacillus licheniformis protoplasts, six kanamycin resistant transformants were obtained. The pNC61 plasmid, which confers trimethoprim resistance, does not integrate in receiver cells by protoplast transformation. The direct genetic transformation in the presence of bivalent cations (CaCl2, mediated by pLC1 and pNC61 plasmid vectors, produce a low transformation frequency. Using this technique, we have obtained three trimethoprim resistant colonies and four kanamycin resistant colonies. The chemical way of transformation is the only technique, which realizes the integration of pNC61 in B. licheniformis B40 cells.

  17. Freshwater bacteria are stoichiometrically flexible with a nutrient composition similar to seston

    Science.gov (United States)

    Cotner, James B.; Hall, Edward K.; Scott, J. Thad; Heldal, Mikal

    2010-01-01

    Although aquatic bacteria are assumed to be nutrient-rich, they out-compete other foodweb osmotrophs for nitrogen (N) and phosphorus (P) an apparent contradiction to resource ratio theory. This paradox could be resolved if aquatic bacteria were demonstrated to be nutrient-poor relative other portions of the planktonic food web. In a survey of >120 lakes in the upper Midwest of the USA, the nutrient content of bacteria was lower than previously reported and very similar to the Redfield ratio, with a mean biomass composition of 102:12:1 (C:N:P). Individual freshwater bacterial isolates grown under P-limiting and P-replete conditions had even higher C:P and N:P ratios with a mean community biomass composition ratio of 875C:179N:1P suggesting that individual strains can be extremely nutrient-poor, especially with respect to P. Cell-specific measurements of individual cells from one lake confirmed that low P content could be observed at the community level in natural systems with a mean biomass composition of 259C:69N:1P. Variability in bacterial stoichiometry is typically not recognized in the literature as most studies assume constant and nutrient-rich bacterial biomass composition. We present evidence that bacteria can be extremely P-poor in individual systems and in culture, suggesting that bacteria in freshwater ecosystems can either play a role as regenerators or consumers of inorganic nutrients and that this role could switch depending on the relationship between bacterial biomass stoichiometry and resource stoichiometry. This ability to switch roles between nutrient retention and regeneration likely facilitates processing of terrestrial organic matter in lakes and rivers and has important implications for a wide range of bacterially mediated biogeochemical processes.

  18. Farm management, not soil microbial diversity, controls nutrient loss from smallholder tropical agriculture

    Directory of Open Access Journals (Sweden)

    Stephen A Wood

    2015-03-01

    Full Text Available Tropical smallholder agriculture supports the livelihoods of over 900 million of the world’s poorest people. This form of agriculture is undergoing rapid transformation in nutrient cycling pathways as international development efforts strongly promote greater use of mineral fertilizers to increase crop yields. These changes in nutrient availability may alter the composition of microbial communities with consequences for rates of biogeochemical processes that control nutrient losses to the environment. Ecological theory suggests that altered microbial diversity will strongly influence processes performed by relatively few microbial taxa, such as denitrification and hence nitrogen losses as nitrous oxide, a powerful greenhouse gas. Whether this theory helps predict nutrient losses from agriculture depends on the relative effects of microbial community change and increased nutrient availability on ecosystem processes. We find that mineral and organic nutrient addition to smallholder farms in Kenya alters the taxonomic and functional diversity of soil microbes. However, we find that the direct effects of farm management on both denitrification and carbon mineralization are greater than indirect effects through changes in the taxonomic and functional diversity of microbial communities. Changes in functional diversity are strongly coupled to changes in specific functional genes involved in denitrification, suggesting that it is the expression, rather than abundance, of key functional genes that can serve as an indicator of ecosystem process rates. Our results thus suggest that widely used broad summary statistics of microbial diversity based on DNA may be inappropriate for linking microbial communities to ecosystem processes in certain applied settings. Our results also raise doubts about the relative control of microbial composition compared to direct effects of management on nutrient losses in applied settings such as tropical agriculture.

  19. Nutrient transitions are a source of persisters in Escherichia coli biofilms.

    Directory of Open Access Journals (Sweden)

    Stephanie M Amato

    Full Text Available Chronic and recurrent infections have been attributed to persisters in biofilms, and despite this importance, the mechanisms of persister formation in biofilms remain unclear. The plethora of biofilm characteristics that could give rise to persisters, including slower growth, quorum signaling, oxidative stress, and nutrient heterogeneity, have complicated efforts to delineate formation pathways that generate persisters during biofilm development. Here we sought to specifically determine whether nutrient transitions, which are a common metabolic stress encountered within surface-attached communities, stimulate persister formation in biofilms and if so, to then identify the pathway. To accomplish this, we established an experimental methodology where nutrient availability to biofilm cells could be controlled exogenously, and then used that method to discover that diauxic carbon source transitions stimulated persister formation in Escherichia coli biofilms. Previously, we found that carbon source transitions stimulate persister formation in planktonic E. coli cultures, through a pathway that involved ppGpp and nucleoid-associated proteins, and therefore, tested the functionality of that pathway in biofilms. Biofilm persister formation was also found to be dependent on ppGpp and nucleoid-associated proteins, but the importance of specific proteins and enzymes between biofilm and planktonic lifestyles was significantly different. Data presented here support the increasingly appreciated role of ppGpp as a central mediator of bacterial persistence and demonstrate that nutrient transitions can be a source of persisters in biofilms.

  20. Nutrient transitions are a source of persisters in Escherichia coli biofilms.

    Science.gov (United States)

    Amato, Stephanie M; Brynildsen, Mark P

    2014-01-01

    Chronic and recurrent infections have been attributed to persisters in biofilms, and despite this importance, the mechanisms of persister formation in biofilms remain unclear. The plethora of biofilm characteristics that could give rise to persisters, including slower growth, quorum signaling, oxidative stress, and nutrient heterogeneity, have complicated efforts to delineate formation pathways that generate persisters during biofilm development. Here we sought to specifically determine whether nutrient transitions, which are a common metabolic stress encountered within surface-attached communities, stimulate persister formation in biofilms and if so, to then identify the pathway. To accomplish this, we established an experimental methodology where nutrient availability to biofilm cells could be controlled exogenously, and then used that method to discover that diauxic carbon source transitions stimulated persister formation in Escherichia coli biofilms. Previously, we found that carbon source transitions stimulate persister formation in planktonic E. coli cultures, through a pathway that involved ppGpp and nucleoid-associated proteins, and therefore, tested the functionality of that pathway in biofilms. Biofilm persister formation was also found to be dependent on ppGpp and nucleoid-associated proteins, but the importance of specific proteins and enzymes between biofilm and planktonic lifestyles was significantly different. Data presented here support the increasingly appreciated role of ppGpp as a central mediator of bacterial persistence and demonstrate that nutrient transitions can be a source of persisters in biofilms.

  1. UCE: A uracil excision (USERTM)-based toolbox for transformation of cereals

    DEFF Research Database (Denmark)

    Hebelstrup, Kim H; Christiansen, Michael W; Carciofi, Massimiliano

    2010-01-01

    Background Cloning of gene casettes and other DNA sequences into the conventional vectors for biolistic or Agrobacterium-mediated transformation is hampered by a limited amount of unique restriction sites and by the difficulties often encountered when ligating small single strand DNA overhangs...... (USER cereal), ready for use in cloning of complex constructs into the T-DNA. A series of the vectors were tested and shown to perform successfully in Agrobacterium-mediated transformation of barley (Hordeum vulgare L.) as well as in biolistic transformation of endosperm cells conferring transient...

  2. Agrobacterium-mediated transformation of modified antifreeze protein gene in strawberry

    Directory of Open Access Journals (Sweden)

    Srisulak Dheeranupattana

    2005-07-01

    Full Text Available The optimum condition for shoot regeneration from leaf explants of strawberry cultivar Tiogar was investigated. It was found that the best regeneration condition was MS medium containing N6-Benzyladenine (BA and 2,4-Dichlorophenoxy acetic acid (2,4-D at concentrations of 1 mg.l-1 and 0.2 mg.l-1, respectively. Antibiotics sensitivity test found that shoot regeneration from leaf explant was inhibited more than 90% at the concentration of kanamycin (Km as low as 5 mg.l-1. The modified gene encoding antifreeze protein isoform HPLC 6 was successfully constructed using codons which were optimally expressed in the strawberry plant. The antifreeze protein genes, naturally in plasmid pSW1 and modified in plasmid BB, were transformed to strawberry leaf explants by Agrobacterium tumefaciens LBA 4404. The strawberry plants, transformed with both AFP genes, were able to root in MS media containing 50 mg.l-1 Km, while no roots grew from nontransformed plant in this condition. Polymerase chain reaction indicated that the transgenes were integrated in the genome of transformants.

  3. Determination of essential nutrients in raw milk

    Directory of Open Access Journals (Sweden)

    Penphimon Phongphanphanee

    2006-03-01

    Full Text Available Milk production in Thailand has gradually increased since 1961. Occasional oversupply of raw milk has become one of dairy farmers' major problems. Increasing the consumption of milk by making use of its separated nutrients may offer a solution. This study was to assess the composition of raw milk produced in Thailand, which included fat, protein, lactose, solid-not-fat (SNF and total solid (TS. A large dairy cooperatives in Saraburi Province was selected for the study. About 9% of its total members, constituting 108 farms, were randomly chosen. They consisted of small size (less than 20 cows/farm, medium size (21-100 cows/farm and large size (>100 cows/farm. The majority was medium-size. Raw milk from each farm was sampled at the delivery site of the cooperatives in the morning. Milk data of the 108 farms were compiled at 3 different periods between February and July 2003. The raw milk was analyzed by the Fourier Transform Infrared Analysis (FTIR using MilkoScan FT6000. The results showed the average fat content of 3.50±0.47%, protein of 3.13±0.16%, lactose of 4.59±0.12%, SNF of 8.42±0.20%, and TS of 11.92±0.54%. The samples were superior in all of the nutrients as compared to the standard levels set by the Department of Livestock Development, except for TS. This indicates the possibility of a local production of milk nutrients such as lactose and protein as ingredients for the pharmaceutical and health food industries.

  4. Effects of nutrients, temperature and their interactions on spring phytoplankton community succession in Lake Taihu, China.

    Directory of Open Access Journals (Sweden)

    Jianming Deng

    Full Text Available We examined the potential effects of environmental variables, and their interaction, on phytoplankton community succession in spring using long-term data from 1992 to 2012 in Lake Taihu, China. Laboratory experiments were additionally performed to test the sensitivity of the phytoplankton community to nutrient concentrations and temperature. A phytoplankton community structure analysis from 1992 to 2012 showed that Cryptomonas (Cryptophyta was the dominant genus in spring during the early 1990s. Dominance then shifted to Ulothrix (Chlorophyta in 1996 and 1997. However, Cryptomonas again dominated in 1999, 2000, and 2002, with Ulothrix regaining dominance from 2003 to 2006. The bloom-forming cyanobacterial genus Microcystis dominated in 1995, 2001 and 2007-2012. The results of ordinations indicated that the nutrient concentration (as indicated by the trophic state index was the most important factor affecting phytoplankton community succession during the past two decades. In the laboratory experiments, shifts in dominance among phytoplankton taxa occurred in all nutrient addition treatments. Results of both long term monitoring and experiment indicated that nutrients exert a stronger control than water temperature on phytoplankton communities during spring. Interactive effect of nutrients and water temperature was the next principal factor. Overall, phytoplankton community composition was mediated by nutrients concentrations, but this effect was strongly enhanced by elevated water temperatures.

  5. Nutrient-induced glucagon like peptide-1 release is modulated by serotonin.

    Science.gov (United States)

    Ripken, Dina; van der Wielen, Nikkie; Wortelboer, Heleen M; Meijerink, Jocelijn; Witkamp, Renger F; Hendriks, Henk F J

    2016-06-01

    Glucagon like peptide-1 (GLP-1) and serotonin are both involved in food intake regulation. GLP-1 release is stimulated upon nutrient interaction with G-protein coupled receptors by enteroendocrine cells (EEC), whereas serotonin is released from enterochromaffin cells (ECC). The central hypothesis for the current study was that nutrient-induced GLP-1 release from EECs is modulated by serotonin through a process involving serotonin receptor interaction. This was studied by assessing the effects of serotonin reuptake inhibition by fluoxetine on nutrient-induced GLP-1, PYY and CCK release from isolated pig intestinal segments. Next, serotonin-induced GLP-1 release was studied in enteroendocrine STC-1 cells, where effects of serotonin receptor inhibition were studied using specific and non-specific antagonists. Casein (1% w/v), safflower oil (3.35% w/v), sucrose (50mM) and rebaudioside A (12.5mM) stimulated GLP-1 release from intestinal segments, whereas casein only stimulated PYY and CCK release. Combining nutrients with fluoxetine further increased nutrient-induced GLP-1, PYY and CCK release. Serotonin release from intestinal tissue segments was stimulated by casein and safflower oil while sucrose and rebaudioside A had no effect. The combination with fluoxetine (0.155μM) further enhanced casein and safflower oil induced-serotonin release. Exposure of ileal tissue segments to serotonin (30μM) stimulated GLP-1 release whereas it did not induce PYY and CCK release. Serotonin (30 and 100μM) also stimulated GLP-1 release from STC-1 cells, which was inhibited by the non-specific 5HT receptor antagonist asenapine (1 and 10μM). These data suggest that nutrient-induced GLP-1 release is modulated by serotonin through a receptor mediated process. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  6. The construction and use of versatile binary vectors carrying pyrG auxotrophic marker and fluorescent reporter genes for Agrobacterium-mediated transformation of Aspergillus oryzae.

    Science.gov (United States)

    Nguyen, Khuyen Thi; Ho, Quynh Ngoc; Pham, Thu Ha; Phan, Tuan-Nghia; Tran, Van-Tuan

    2016-12-01

    Aspergillus oryzae is a safe mold widely used in food industry. It is also considered as a microbial cell factory for production of recombinant proteins and enzymes. Currently, genetic manipulation of filamentous fungi is achieved via Agrobacterium tumefaciens-mediated transformation methods usually employing antibiotic resistance markers. These methods are hardly usable for A. oryzae due to its strong resistance to the common antifungal compounds used for fungal transformation. In this study, we have constructed two binary vectors carrying the pyrG gene from A. oryzae as a biochemical marker than an antibiotic resistance marker, and an expression cassette for GFP or DsRed reporter gene under control of the constitutive gpdA promoter from Aspergillus nidulans. All components of these vectors are changeable to generate new versions for specific research purposes. The developed vectors are fully functional for heterologous expression of the GFP and DsRed fluorescent proteins in the uridine/uracil auxotrophic A. oryzae strain. Our study provides a new approach for A. oryzae transformation using pyrG as the selectable auxotrophic marker, A. tumefaciens as the DNA transfer tool and fungal spores as the transformation material. The binary vectors constructed can be used for gene expression studies in this industrially important filamentous fungus.

  7. Selenium and vitamin E inhibit radiogenic and chemically induced transformation in vitro via different mechanisms

    International Nuclear Information System (INIS)

    Borek, C.; Ong, A.; Mason, H.; Donahue, L.; Biaglow, J.E.

    1986-01-01

    Results from in vivo and in vitro studies showing that antioxidants may act as anticarcinogens support the role of active oxygen in carcinogenesis and provide impetus for exploring the functions of dietary antioxidants in cancer prevention by using in vitro models. The authors examined the single and combined effects of selenium, a component of glutathione peroxidase, and vitamin E, a known antioxidant, on cell transformation induced in C3H/10T-1/2 cells by x-rays, benzo[a]pyrene, or tryptophan pyrolysate and on the levels of cellular scavenging systems peroxide destruction. Incubation of C3H/10T-1/2 cells with 2.5 μM Na 2 SeO 3 (selenium) or with 7 μM α-tocopherol succinate (vitamin E) 24 hr prior to exposure to x-rays or the chemical carcinogens resulted in an inhibition of transformation by each of the antioxidants with an additive-inhibitory action when the two nutrients were combined. Cellular pretreatment with selenium resulted in increased levels of cellular glutathione peroxidase, catalase, and nonprotein thiols (glutathione) and in an enhanced destruction of peroxide. The results support our earlier studies showing that free radical-mediated events play a role in radiation and chemically induced transformation. They indicate that selenium and vitamin E act alone and in additive fashion as radioprotecting and chemopreventing agents. The results further suggest that selenium confers protection in part by inducing or activating cellular free-radical scavenging systems and by enhancing peroxide breakdown while vitamin E appears to confer its protection by and alternate complementary mechanism

  8. When Memories are Mediated

    DEFF Research Database (Denmark)

    Frølunde, Lisbeth; Bjerregaard, Mette

    2013-01-01

    that are mediated through stories: told and retold as oral stories through generations, as myths or sagas, or remediated as contemporary documentary film accounts or more fictional film accounts. In these processes of retelling acts of violence, transformations of meanings across time, cultural, social...

  9. Mediating Business

    DEFF Research Database (Denmark)

    "Mediating Business" is a study of the expansion of business journalism. Building on evidence from Denmark, Finland, Norway and Sweden, "Mediating Business" is a comparative and multidisciplinary study of one of the major transformations of the mass media and the realm of business - nationally...... and globally. The book explores the history of key innovations and innovators in the business press. It analyzes changes in the discourse of business journalism associated with the growth in business news and the development of new ways of framing business issues and events. Finally, it examines...... the organizational implications of the increased media visibility of business and, in particular, the development of corporate governance and media relations....

  10. Nutrient Enrichment Mediates the Relationships of Soil Microbial Respiration with Climatic Factors in an Alpine Meadow

    Directory of Open Access Journals (Sweden)

    Ning Zong

    2015-01-01

    Full Text Available Quantifying the effects of nutrient additions on soil microbial respiration (Rm and its contribution to soil respiration (Rs are of great importance for accurate assessment ecosystem carbon (C flux. Nitrogen (N addition either alone (coded as LN and HN or in combination with phosphorus (P (coded as LN + P and HN + P were manipulated in a semiarid alpine meadow on the Tibetan Plateau since 2008. Either LN or HN did not affect Rm, while LN + P enhanced Rm during peak growing periods, but HN + P did not affect Rm. Nutrient addition also significantly affected Rm/Rs, and the correlations of Rm/Rs with climatic factors varied with years. Soil water content (Sw was the main factor controlling the variations of Rm/Rs. During the years with large rainfall variations, Rm/Rs was negatively correlated with Sw, while, in years with even rainfall, Rm/Rs was positively correlated with Sw. Meanwhile, in N + P treatments the controlling effects of climatic factors on Rm/Rs were more significant than those in CK. Our results indicate that the sensitivity of soil microbes to climatic factors is regulated by nutrient enrichment. The divergent effects of Sw on Rm/Rs suggest that precipitation distribution patterns are key factors controlling soil microbial activities and ecosystem C fluxes in semiarid alpine meadow ecosystems.

  11. To what extent do food purchases reflect shoppers? diet quality and nutrient intake?

    OpenAIRE

    Appelhans, Bradley M.; French, Simone A.; Tangney, Christy C.; Powell, Lisa M.; Wang, Yamin

    2017-01-01

    Background Food purchasing is considered a key mediator between the food environment and eating behavior, and food purchasing patterns are increasingly measured in epidemiologic and intervention studies. However, the extent to which food purchases actually reflect individuals? dietary intake has not been rigorously tested. This study examined cross-sectional agreement between estimates of diet quality and nutrient densities derived from objectively documented household food purchases and thos...

  12. Genetic Transformation of Metroxylon sagu (Rottb.) Cultures via Agrobacterium-Mediated and Particle Bombardment

    Science.gov (United States)

    Ibrahim, Evra Raunie

    2014-01-01

    Sago palm (Metroxylon sagu) is a perennial plant native to Southeast Asia and exploited mainly for the starch content in its trunk. Genetic improvement of sago palm is extremely slow when compared to other annual starch crops. Urgent attention is needed to improve the sago palm planting material and can be achieved through nonconventional methods. We have previously developed a tissue culture method for sago palm, which is used to provide the planting materials and to develop a genetic transformation procedure. Here, we report the genetic transformation of sago embryonic callus derived from suspension culture using Agrobacterium tumefaciens and gene gun systems. The transformed embryoids cells were selected against Basta (concentration 10 to 30 mg/L). Evidence of foreign genes integration and function of the bar and gus genes were verified via gene specific PCR amplification, gus staining, and dot blot analysis. This study showed that the embryogenic callus was the most suitable material for transformation as compared to the fine callus, embryoid stage, and initiated shoots. The gene gun transformation showed higher transformation efficiency than the ones transformed using Agrobacterium when targets were bombarded once or twice using 280 psi of helium pressure at 6 to 8 cm distance. PMID:25295258

  13. Genetic Transformation of Metroxylon sagu (Rottb. Cultures via Agrobacterium-Mediated and Particle Bombardment

    Directory of Open Access Journals (Sweden)

    Evra Raunie Ibrahim

    2014-01-01

    Full Text Available Sago palm (Metroxylon sagu is a perennial plant native to Southeast Asia and exploited mainly for the starch content in its trunk. Genetic improvement of sago palm is extremely slow when compared to other annual starch crops. Urgent attention is needed to improve the sago palm planting material and can be achieved through nonconventional methods. We have previously developed a tissue culture method for sago palm, which is used to provide the planting materials and to develop a genetic transformation procedure. Here, we report the genetic transformation of sago embryonic callus derived from suspension culture using Agrobacterium tumefaciens and gene gun systems. The transformed embryoids cells were selected against Basta (concentration 10 to 30 mg/L. Evidence of foreign genes integration and function of the bar and gus genes were verified via gene specific PCR amplification, gus staining, and dot blot analysis. This study showed that the embryogenic callus was the most suitable material for transformation as compared to the fine callus, embryoid stage, and initiated shoots. The gene gun transformation showed higher transformation efficiency than the ones transformed using Agrobacterium when targets were bombarded once or twice using 280 psi of helium pressure at 6 to 8 cm distance.

  14. Control of Saccharomyces cerevisiae catalase T gene (CTT1) expression by nutrient supply via the RAS-cyclic AMP pathway.

    Science.gov (United States)

    Bissinger, P H; Wieser, R; Hamilton, B; Ruis, H

    1989-03-01

    In Saccharomyces cerevisiae, lack of nutrients triggers a pleiotropic response characterized by accumulation of storage carbohydrates, early G1 arrest, and sporulation of a/alpha diploids. This response is thought to be mediated by RAS proteins, adenylate cyclase, and cyclic AMP (cAMP)-dependent protein kinases. This study shows that expression of the S. cerevisiae gene coding for a cytoplasmic catalase T (CTT1) is controlled by this pathway: it is regulated by the availability of nutrients. Lack of a nitrogen, sulfur, or phosphorus source causes a high-level expression of the gene. Studies with strains with mutations in the RAS-cAMP pathway and supplementation of a rca1 mutant with cAMP show that CTT1 expression is under negative control by a cAMP-dependent protein kinase and that nutrient control of CTT1 gene expression is mediated by this pathway. Strains containing a CTT1-Escherichia coli lacZ fusion gene have been used to isolate mutants with mutations in the pathway. Mutants characterized in this investigation fall into five complementation groups. Both cdc25 and ras2 alleles were identified among these mutants.

  15. Legacy nutrient dynamics and patterns of catchment response under changing land use and management

    Science.gov (United States)

    Attinger, S.; Van, M. K.; Basu, N. B.

    2017-12-01

    Watersheds are complex heterogeneous systems that store, transform, and release water and nutrients under a broad distribution of both natural and anthropogenic controls. Many current watershed models, from complex numerical models to simpler reservoir-type models, are considered to be well-developed in their ability to predict fluxes of water and nutrients to streams and groundwater. They are generally less adept, however, at capturing watershed storage dynamics. In other words, many current models are run with an assumption of steady-state dynamics, and focus on nutrient flows rather than changes in nutrient stocks within watersheds. Although these commonly used modeling approaches may be able to adequately capture short-term watershed dynamics, they are unable to represent the clear nonlinearities or hysteresis responses observed in watersheds experiencing significant changes in nutrient inputs. To address such a lack, we have, in the present work, developed a parsimonious modeling approach designed to capture long-term catchment responses to spatial and temporal changes in nutrient inputs. In this approach, we conceptualize the catchment as a biogeochemical reactor that is driven by nutrient inputs, characterized internally by both biogeochemical degradation and residence or travel time distributions, resulting in a specific nutrient output. For the model simulations, we define a range of different scenarios to represent real-world changes in land use and management implemented to improve water quality. We then introduce the concept of state-space trajectories to describe system responses to these potential changes in anthropogenic forcings. We also increase model complexity, in a stepwise fashion, by dividing the catchment into multiple biogeochemical reactors, coupled in series or in parallel. Using this approach, we attempt to answer the following questions: (1) What level of model complexity is needed to capture observed system responses? (2) How can we

  16. Epithelial-mesenchymal transition and cancer stem cells, mediated by a long non-coding RNA, HOTAIR, are involved in cell malignant transformation induced by cigarette smoke extract

    International Nuclear Information System (INIS)

    Liu, Yi; Luo, Fei; Xu, Yuan; Wang, Bairu; Zhao, Yue; Xu, Wenchao; Shi, Le; Lu, Xiaolin; Liu, Qizhan

    2015-01-01

    The incidence of lung diseases, including cancer, caused by cigarette smoke is increasing, but the molecular mechanisms of gene regulation induced by cigarette smoke remain unclear. This report describes a long noncoding RNA (lncRNA) that is induced by cigarette smoke extract (CSE) and experiments utilizing lncRNAs to integrate inflammation with the epithelial-mesenchymal transition (EMT) in human bronchial epithelial (HBE) cells. The present study shows that, induced by CSE, IL-6, a pro-inflammatory cytokine, leads to activation of STAT3, a transcription activator. A ChIP assay determined that the interaction of STAT3 with the promoter regions of HOX transcript antisense RNA (HOTAIR) increased levels of HOTAIR. Blocking of IL-6 with anti-IL-6 antibody, decreasing STAT3, and inhibiting STAT3 activation reduced HOTAIR expression. Moreover, for HBE cells cultured in the presence of HOTAIR siRNA for 24 h, the CSE-induced EMT, formation of cancer stem cells (CSCs), and malignant transformation were reversed. Thus, IL-6, acting on STAT3 signaling, which up-regulates HOTAIR in an autocrine manner, contributes to the EMT and to CSCs induced by CSE. These data define a link between inflammation and EMT, processes involved in the malignant transformation of cells caused by CSE. This link, mediated through lncRNAs, establishes a mechanism for CSE-induced lung carcinogenesis. - Highlights: • STAT3 directly regulates the levels of LncRNA HOTAIR. • LncRNA HOTAIR mediates the link between inflammation and EMT. • LncRNA HOTAIR is involved in the malignant transformation of cells caused by CSE

  17. Regeneration and Agrobacterium-mediated transformation of multiple lily cultivars

    NARCIS (Netherlands)

    Wang, Yue; Kronenburg-van de Ven, van B.C.E.; Menzel, T.R.; Maliepaard, C.A.; Shen, X.; Krens, F.A.

    2012-01-01

    To pursue genetic improvement of lily, efficiency of both regeneration and transformation from callus cultures induced from different explants were evaluated in multiple cultivars. Thirty-five callus lines induced from filaments or styles and one control callus line derived from bulb scales of in

  18. When nurse emotional intelligence matters: How transformational leadership influences intent to stay.

    Science.gov (United States)

    Wang, Lin; Tao, Hong; Bowers, Barbara J; Brown, Roger; Zhang, Yaqing

    2018-05-01

    The purpose of this study was to examine the role of staff nurse emotional intelligence between transformational leadership and nurse intent to stay. Nurse intent to stay and transformational leadership are widely recognized as vital components of nurse retention. Staff nurse emotional intelligence that has been confirmed improvable has been recently recognized in the nursing literature as correlated with retention. Yet, the nature of the relationships among these three variables is not known. Cross-sectional data for 535 Chinese nurses were analysed using Structural Equation Modelling. Transformational leadership and staff nurse emotional intelligence were significant predictors of nurse intent to stay, accounting for 34.3% of the variance in nurse intent to stay. Staff nurse emotional intelligence partially mediates the relationship between transformational leadership and nurse intent to stay. The findings of the study emphasized the importance of transformational leadership in enhancing nurse emotional intelligence and to provide a deeper understanding of the mediating role of emotional intelligence in the relationship between nurse manager's transformational leadership and nurse's intent to stay. Nurse leaders should develop training programmes to improve nursing manager transformational leadership and staff nurse emotional intelligence in the workplace. © 2018 John Wiley & Sons Ltd.

  19. Challenge towards plant recombinant protein expression: instability in nuclear and chloroplast transformation

    Energy Technology Data Exchange (ETDEWEB)

    Amiri, M.; Jalali-Javaran, M.; Ehsani, P.; Haddad, R.

    2016-07-01

    It is crucial to maintain the stability of transgene and its expression level. It seems the transformation method and the target organ can influence this instability. To this aim, two transformation systems, Agrobacterium-mediated and particle bombardment systems which have been applied to introduce tissue plasminogen activator (tPA) into nuclear and chloroplast respectively, have been compared to determine transformation efficiency and tPA expression and stability. The presence of tPA gene in transformants has been confirmed by PCR analysis. The gene expression in nuclear transformants and homoplasmy in transplastomic plants have been assayed by ELISA and southern blot, respectively. Some of the Agrobacterium-derived transformants have shown the heritability and stability of the integrated T-DNA harboring the transgene which encodes the tissue plasminogen activator and instability of its expression in T1 generation. Using Southern blot analysis of bombardment-mediated transformants has surprisingly led to detecting the inheritability of tPA. There are several factors lead to silencing of transgene in transgenic plants which should be considered. Possible reasons for these silencing are like vector designing, methylation, copy number, and genome rearrangement.

  20. Challenge towards plant recombinant protein expression: instability in nuclear and chloroplast transformation

    International Nuclear Information System (INIS)

    Amiri, M.; Jalali-Javaran, M.; Ehsani, P.; Haddad, R.

    2016-01-01

    It is crucial to maintain the stability of transgene and its expression level. It seems the transformation method and the target organ can influence this instability. To this aim, two transformation systems, Agrobacterium-mediated and particle bombardment systems which have been applied to introduce tissue plasminogen activator (tPA) into nuclear and chloroplast respectively, have been compared to determine transformation efficiency and tPA expression and stability. The presence of tPA gene in transformants has been confirmed by PCR analysis. The gene expression in nuclear transformants and homoplasmy in transplastomic plants have been assayed by ELISA and southern blot, respectively. Some of the Agrobacterium-derived transformants have shown the heritability and stability of the integrated T-DNA harboring the transgene which encodes the tissue plasminogen activator and instability of its expression in T1 generation. Using Southern blot analysis of bombardment-mediated transformants has surprisingly led to detecting the inheritability of tPA. There are several factors lead to silencing of transgene in transgenic plants which should be considered. Possible reasons for these silencing are like vector designing, methylation, copy number, and genome rearrangement.

  1. Tomato protoplast DNA transformation : physical linkage and recombination of exogenous DNA sequences

    NARCIS (Netherlands)

    Jongsma, Maarten; Koornneef, Maarten; Zabel, Pim; Hille, Jacques

    1987-01-01

    Tomato protoplasts have been transformed with plasmid DNA's, containing a chimeric kanamycin resistance gene and putative tomato origins of replication. A calcium phosphate-DNA mediated transformation procedure was employed in combination with either polyethylene glycol or polyvinyl alcohol. There

  2. Parahippocampal Cortex Mediates the Relationship between Lutein and Crystallized Intelligence in Healthy, Older Adults

    Directory of Open Access Journals (Sweden)

    Marta Karolina Zamroziewicz

    2016-12-01

    Full Text Available Introduction: Although diet has a substantial influence on the aging brain, the relationship between dietary nutrients and aspects of brain health remains unclear. This study examines the neural mechanisms that mediate the relationship between a carotenoid important for brain health across the lifespan, lutein, and crystallized intelligence in cognitively intact older adults. We hypothesized that higher serum levels of lutein are associated with better performance on a task of crystallized intelligence, and that this relationship is mediated by gray matter structure of regions within the temporal cortex. This investigation aims to contribute to a growing line of evidence, which suggests that particular nutrients may slow or prevent aspects of cognitive decline by targeting specific features of brain aging.Methods: We examined 75 cognitively intact adults between the ages of 65 and 75 to investigate the relationship between serum lutein, tests of crystallized intelligence (measured by the Wechsler Abbreviated Scale of Intelligence, and gray matter volume of regions within the temporal cortex. A three-step mediation analysis was implemented using multivariate linear regressions to control for age, sex, education, income, depression status, and body mass index.Results: The mediation analysis revealed that gray matter thickness of one region within the temporal cortex, the right parahippocampal cortex (Brodmann’s Area 34, partially mediates the relationship between serum lutein and crystallized intelligence. Conclusion: These results suggest that the parahippocampal cortex acts as a mediator of the relationship between serum lutein and crystallized intelligence in cognitively intact older adults. Prior findings substantiate the individual relationships reported within the mediation, specifically the links between (i serum lutein and temporal cortex structure, (ii serum lutein and crystallized intelligence, and (iii parahippocampal cortex structure

  3. Numerical simulations of river discharges, nutrient flux and nutrient dispersal in Jakarta Bay, Indonesia.

    Science.gov (United States)

    van der Wulp, Simon A; Damar, Ario; Ladwig, Norbert; Hesse, Karl-J

    2016-09-30

    The present application of numerical modelling techniques provides an overview of river discharges, nutrient flux and nutrient dispersal in Jakarta Bay. A hydrological model simulated river discharges with a total of 90 to 377m(3)s(-1) entering Jakarta Bay. Daily total nitrogen and total phosphorus loads ranged from 40 to 174tons and 14 to 60tons, respectively. Flow model results indicate that nutrient gradients are subject to turbulent mixing by tides and advective transport through circulation driven by wind, barotropic and baroclinic pressure gradients. The bulk of nutrient loads originate from the Citarum and Cisadane rivers flowing through predominantly rural areas. Despite lower nutrient loads, river discharges from the urban area of Jakarta exhibit the highest impact of nutrient concentrations in the near shore area of Jakarta Bay and show that nutrient concentrations were not only regulated by nutrient loads but were strongly regulated by initial river concentrations and local flow characteristics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Cell-cell adhesion mediated by binding of membrane-anchored transforming growth factor α to epidermal growth factor receptors promotes cell proliferation

    International Nuclear Information System (INIS)

    Anklesaria, P.; Greenberger, J.S.; Teixido, J.; Laiho, M.; Massague, J.; Pierce, J.H.

    1990-01-01

    The precursor for transforming growth factor α, pro-TGF-α, is a cell surface glycoprotein that can establish contact with epidermal growth factor (EGF) receptors on adjacent cells. To examine whether the pro-TGF-α/EGF receptor pair can simultaneously mediate cell adhesion and promote cell proliferation, the authors have expressed pro-TGF-α in a bone marrow stromal cell line labeled with [ 35 S] cysteine. Expression of pro-TGF-α allows these cells to support long-term attachment of an EGF/interleukin-3-dependent hematopoietic progenitor cell line that expresses EGF receptors but is unable to adhere to normal stroma. This interaction is inhibited by soluble EGF receptor ligands. Further, the hematopoietic progenitor cells replicate their DNA while they are attached to the stromal cell layer and become foci of sustained cell proliferation. Thus, pro-TGF-α and the EGF receptor can function as mediators of intercellular adhesion and this interaction may promote a mitogenic response. They propose the term juxtacrine to designate this form of stimulation between adjacent cells

  5. Mitochondrial Dynamics Mediated by Mitofusin 1 Is Required for POMC Neuron Glucose-Sensing and Insulin Release Control.

    Science.gov (United States)

    Ramírez, Sara; Gómez-Valadés, Alicia G; Schneeberger, Marc; Varela, Luis; Haddad-Tóvolli, Roberta; Altirriba, Jordi; Noguera, Eduard; Drougard, Anne; Flores-Martínez, Álvaro; Imbernón, Mónica; Chivite, Iñigo; Pozo, Macarena; Vidal-Itriago, Andrés; Garcia, Ainhoa; Cervantes, Sara; Gasa, Rosa; Nogueiras, Ruben; Gama-Pérez, Pau; Garcia-Roves, Pablo M; Cano, David A; Knauf, Claude; Servitja, Joan-Marc; Horvath, Tamas L; Gomis, Ramon; Zorzano, Antonio; Claret, Marc

    2017-06-06

    Proopiomelanocortin (POMC) neurons are critical sensors of nutrient availability implicated in energy balance and glucose metabolism control. However, the precise mechanisms underlying nutrient sensing in POMC neurons remain incompletely understood. We show that mitochondrial dynamics mediated by Mitofusin 1 (MFN1) in POMC neurons couple nutrient sensing with systemic glucose metabolism. Mice lacking MFN1 in POMC neurons exhibited defective mitochondrial architecture remodeling and attenuated hypothalamic gene expression programs during the fast-to-fed transition. This loss of mitochondrial flexibility in POMC neurons bidirectionally altered glucose sensing, causing abnormal glucose homeostasis due to defective insulin secretion by pancreatic β cells. Fed mice lacking MFN1 in POMC neurons displayed enhanced hypothalamic mitochondrial oxygen flux and reactive oxygen species generation. Central delivery of antioxidants was able to normalize the phenotype. Collectively, our data posit MFN1-mediated mitochondrial dynamics in POMC neurons as an intrinsic nutrient-sensing mechanism and unveil an unrecognized link between this subset of neurons and insulin release. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. cDNA sequence of human transforming gene hst and identification of the coding sequence required for transforming activity

    International Nuclear Information System (INIS)

    Taira, M.; Yoshida, T.; Miyagawa, K.; Sakamoto, H.; Terada, M.; Sugimura, T.

    1987-01-01

    The hst gene was originally identified as a transforming gene in DNAs from human stomach cancers and from a noncancerous portion of stomach mucosa by DNA-mediated transfection assay using NIH3T3 cells. cDNA clones of hst were isolated from the cDNA library constructed from poly(A) + RNA of a secondary transformant induced by the DNA from a stomach cancer. The sequence analysis of the hst cDNA revealed the presence of two open reading frames. When this cDNA was inserted into an expression vector containing the simian virus 40 promoter, it efficiently induced the transformation of NIH3T3 cells upon transfection. It was found that one of the reading frames, which coded for 206 amino acids, was responsible for the transforming activity

  7. Degradation of anthracene by laccase of Trametes versicolor in the presence of different mediator compounds.

    Science.gov (United States)

    Johannes, C; Majcherczyk, A; Hüttermann, A

    1996-10-01

    Laccase of Trametes versicolor was generally able to oxidize anthracene in vitro. After 72 h incubation about 35% of the anthracene was transformed stoichiometrically to 9,10-anthraquinone. Transformation of anthracene increased rapidly in the presence of different mediators that readily generate stable radicals: 2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) and 1-hydroxybenzotriazole. For the reaction, the presence of both the laccase and the mediator was necessary. In the presence of 0.005 mM 1-hydroxybenzotriazole this conversion had removed 47% of the anthracene after 72 h; 75% of the substrate was oxidized during this period when ABTS (1 mM) was used as mediator. In contrast to reactions without or with only low concentrations of a mediator, there was a discrepancy between the disappearance of anthracene and the formation of 9,10-anthraquinone in mediator-forced reactions. Coupling-products of mediators with anthracene degradation products were found. Anthracene disappeared nearly completely after incubation for 72 h with laccase in a 0.1 mM solution of 1-hydroxybenzotriazole and was transformed to 9,10-anthraquinone in about 80% yield; 90% of the substrate was transformed in the presence of ABTS (2.0 mM) resulting again in 80% quinone. Phenothiazine was not effective in this system.

  8. Pengaruh Dukungan Sosial dan Kepemimpinan Transformasional Terhadap Komitmen Organisasi dengan Mediator Motivasi Kerja

    Directory of Open Access Journals (Sweden)

    Miftahun Ni’mah Suseno

    2015-11-01

    Full Text Available The purpose of this research was to investigate the influence of social support and transformational leadership toward the three component model of organizational commitment (affective, continuance, and normative with work motivation as a mediator. Subjects were 94 employees of a sugar factory in Indonesia with minimum 2 years as tenure. Four questionnaire used to obtain the data were organizational commitment questionnaire, social support questionnaire, transformational leadership questionnaire, and work motivation questionnaire. Data were analyzed using regression analysis and partial correlation. Results were: (1 affective and continuance commitments were significantly influenced by social support and transformational leadership with work motivation as mediator and (2 normative commitment was not significantly influenced by social support and transformational leadership. Keywords: organizational commitment, social support, transformational leadership, work motivation.

  9. Hummingbirds rely on both paracellular and carrier-mediated intestinal glucose absorption to fuel high metabolism

    Science.gov (United States)

    McWhorter, Todd J; Bakken, Bradley Hartman; Karasov, William H; del Rio, Carlos Martínez

    2005-01-01

    Twenty years ago, the highest active glucose transport rate and lowest passive glucose permeability in vertebrates were reported in Rufous and Anna's hummingbirds (Selasphorus rufus, Calypte anna). These first measurements of intestinal nutrient absorption in nectarivores provided an unprecedented physiological foundation for understanding their foraging ecology. They showed that physiological processes are determinants of feeding behaviour. The conclusion that active, mediated transport accounts for essentially all glucose absorption in hummingbirds influenced two decades of subsequent research on the digestive physiology and nutritional ecology of nectarivores. Here, we report new findings demonstrating that the passive permeability of hummingbird intestines to glucose is much higher than previously reported, suggesting that not all sugar uptake is mediated. Even while possessing the highest active glucose transport rates measured in vertebrates, hummingbirds must rely partially on passive non-mediated intestinal nutrient absorption to meet their high mass-specific metabolic demands. PMID:17148346

  10. Agrobacterium-mediated transformation of Citrus sinensis and Citrus limonia epicotyl segments

    OpenAIRE

    Almeida,Weliton Antonio Bastos de; Mourão Filho,Francisco de Assis Alves; Mendes,Beatriz Madalena Januzzi; Pavan,Alexandra; Rodriguez,Adriana Pinheiro Martinelli

    2003-01-01

    Genetic transformation allows the release of improved cultivars with desirable characteristics in a shorter period of time and therefore may be useful in citrus breeding programs. The objective of this research was to establish a protocol for genetic transformation of Valencia and Natal sweet oranges (Citrus sinensis L. Osbeck) and Rangpur lime (Citrus limonia L. Osbeck). Epicotyl segments of germinated in vitro plantlets (three weeks in darkness and two weeks in a 16-h photoperiod) were used...

  11. Highly efficient transformation system for Malassezia furfur and Malassezia pachydermatis using Agrobacterium tumefaciens-mediated transformation

    NARCIS (Netherlands)

    Celis, A.M.; Vos, Aurin; Triana, S.; Medina, C.A.; Escobar Salazar, Natalia; Restrepo, S.; Wosten, Han; de Cock, Hans

    2017-01-01

    Malassezia spp. are part of the normal human and animal mycobiota but are also associated with a variety of dermatological diseases. The absence of a transformation system hampered studies to reveal mechanisms underlying the switch from the non-pathogenic to pathogenic life style. Here we describe,

  12. Micropropagation and genetic transformation of Tylophora indica (Burm. f.) Merr.: a review.

    Science.gov (United States)

    Teixeira da Silva, Jaime A; Jha, Sumita

    2016-11-01

    This review provides an in-depth and comprehensive overview of the in vitro culture of Tylophora species, which have medicinal properties. Tylophora indica (Burm. f.) Merr. is a climbing perennial vine with medicinal properties. The tissue culture and genetic transformation of T. indica, which has been extensively studied, is reviewed. Micropropagation using nodal explants has been reported in 25 % of all publications. Leaf explants from field-grown plants has been the explant of choice of independent research groups, which reported direct and callus-mediated organogenesis as well as callus-mediated somatic embryogenesis. Protoplast-mediated regeneration and callus-mediated shoot organogenesis has also been reported from stem explants, and to a lesser degree from root explants of micropropagated plants in vitro. Recent studies that used HPLC confirmed the potential of micropropagated plants to synthesize the major T. indica alkaloid tylophorine prior to and after transfer to field conditions. The genetic integrity of callus-regenerated plants was confirmed by RAPD in a few reports. Tissue culture is an essential base for genetic transformation studies. Hairy roots and transgenic T. indica plants have been shown to accumulate tylophorine suggesting that in vitro biology and transgenic methods are viable ways of clonally producing valuable germplasm and mass producing compounds of commercial value. Further studies that investigate the factors affecting the biosynthesis of Tylophora alkaloids and other secondary metabolites need to be conducted using non-transformed as well as transformed cell and organ cultures.

  13. Interference between Coulombic and CT-mediated couplings in molecular aggregates: H- to J-aggregate transformation in perylene-based π-stacks

    Energy Technology Data Exchange (ETDEWEB)

    Hestand, Nicholas J.; Spano, Frank C. [Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122 (United States)

    2015-12-28

    The spectroscopic differences between J and H-aggregates are traditionally attributed to the spatial dependence of the Coulombic coupling, as originally proposed by Kasha. However, in tightly packed molecular aggregates wave functions on neighboring molecules overlap, leading to an additional charge transfer (CT) mediated exciton coupling with a vastly different spatial dependence. The latter is governed by the nodal patterns of the molecular LUMOs and HOMOs from which the electron (t{sub e}) and hole (t{sub h}) transfer integrals derive. The sign of the CT-mediated coupling depends on the sign of the product t{sub e}t{sub h} and is therefore highly sensitive to small (sub-Angstrom) transverse displacements or slips. Given that Coulombic and CT-mediated couplings exist simultaneously in tightly packed molecular systems, the interference between the two must be considered when defining J and H-aggregates. Generally, such π-stacked aggregates do not abide by the traditional classification scheme of Kasha: for example, even when the Coulomb coupling is strong the presence of a similarly strong but destructively interfering CT-mediated coupling results in “null-aggregates” which spectroscopically resemble uncoupled molecules. Based on a Frenkel/CT Holstein Hamiltonian that takes into account both sources of electronic coupling as well as intramolecular vibrations, vibronic spectral signatures are developed for integrated Frenkel/CT systems in both the perturbative and resonance regimes. In the perturbative regime, the sign of the lowest exciton band curvature, which rigorously defines J and H-aggregation, is directly tracked by the ratio of the first two vibronic peak intensities. Even in the resonance regime, the vibronic ratio remains a useful tool to evaluate the J or H nature of the system. The theory developed is applied to the reversible H to J-aggregate transformations recently observed in several perylene bisimide systems.

  14. Interference between Coulombic and CT-mediated couplings in molecular aggregates: H- to J-aggregate transformation in perylene-based π-stacks

    International Nuclear Information System (INIS)

    Hestand, Nicholas J.; Spano, Frank C.

    2015-01-01

    The spectroscopic differences between J and H-aggregates are traditionally attributed to the spatial dependence of the Coulombic coupling, as originally proposed by Kasha. However, in tightly packed molecular aggregates wave functions on neighboring molecules overlap, leading to an additional charge transfer (CT) mediated exciton coupling with a vastly different spatial dependence. The latter is governed by the nodal patterns of the molecular LUMOs and HOMOs from which the electron (t e ) and hole (t h ) transfer integrals derive. The sign of the CT-mediated coupling depends on the sign of the product t e t h and is therefore highly sensitive to small (sub-Angstrom) transverse displacements or slips. Given that Coulombic and CT-mediated couplings exist simultaneously in tightly packed molecular systems, the interference between the two must be considered when defining J and H-aggregates. Generally, such π-stacked aggregates do not abide by the traditional classification scheme of Kasha: for example, even when the Coulomb coupling is strong the presence of a similarly strong but destructively interfering CT-mediated coupling results in “null-aggregates” which spectroscopically resemble uncoupled molecules. Based on a Frenkel/CT Holstein Hamiltonian that takes into account both sources of electronic coupling as well as intramolecular vibrations, vibronic spectral signatures are developed for integrated Frenkel/CT systems in both the perturbative and resonance regimes. In the perturbative regime, the sign of the lowest exciton band curvature, which rigorously defines J and H-aggregation, is directly tracked by the ratio of the first two vibronic peak intensities. Even in the resonance regime, the vibronic ratio remains a useful tool to evaluate the J or H nature of the system. The theory developed is applied to the reversible H to J-aggregate transformations recently observed in several perylene bisimide systems

  15. Development of an Agrobacterium-Mediated Transformation Method and Evaluation of Two Exogenous Constitutive Promoters in Oleaginous Yeast Lipomyces starkeyi.

    Science.gov (United States)

    Lin, Xinping; Liu, Sasa; Bao, Ruiqi; Gao, Ning; Zhang, Sufang; Zhu, Rongqian; Zhao, Zongbao Kent

    2017-11-01

    Oleaginous yeast Lipomyces starkeyi, a promising strain of great biotechnical importance, is able to accumulate over 60% of its cell biomass as triacylglycerols (TAGs). It is promising to directly produce the derivatives of TAGs, such as long-chain fatty acid methyl esters and alkanes, in L. starkeyi. However, techniques for genetic modification of this oleaginous yeast are lacking, thus, further research is needed to develop genetic tools and functional elements. Here, we used two exogenous promoters (pGPD and pPGK) from oleaginous yeast Rhodosporidium toruloides to establish a simpler Agrobacterium-mediated transformation (AMT) method for L. starkeyi. Hygromycin-resistant transformants were obtained on antibiotic-contained plate. Mitotic stability test, genotype verification by PCR, and protein expression confirmation all demonstrated the success of this method. Furthermore, the strength of these two promoters was evaluated at the phenotypic level on a hygromycin-gradient plate and at the transcriptional level by real-time quantitative PCR. The PGK promoter strength was 2.2-fold as that of GPD promoter to initiate the expression of the hygromycin-resistance gene. This study provided an easy and efficient genetic manipulation method and elements of the oleaginous yeast L. starkeyi for constructing superior strains to produce advanced biofuels.

  16. Ionizing Radiation Promotes Migration and Invasion of Cancer Cells Through Transforming Growth Factor-Beta–Mediated Epithelial–Mesenchymal Transition

    International Nuclear Information System (INIS)

    Zhou Yongchun; Liu Junye; Li Jing; Zhang Jie; Xu Yuqiao; Zhang Huawei; Qiu Lianbo; Ding Guirong; Su Xiaoming; Mei Shi; Guo Guozhen

    2011-01-01

    Purpose: To examine whether ionizing radiation enhances the migratory and invasive abilities of cancer cells through transforming growth factor (TGF-β)–mediated epithelial–mesenchymal transition (EMT). Methods and Materials: Six cancer cell lines originating from different human organs were irradiated by 60 Co γ-ray at a total dose of 2 Gy, and the changes associated with EMT, including morphology, EMT markers, migration and invasion, were observed by microscope, Western blot, immunofluorescence, scratch assay, and transwell chamber assay, respectively. Then the protein levels of TGF-β in these cancer cells were detected by enzyme-linked immunosorbent assay, and the role of TGF-β signaling pathway in the effect of ionizing radiation on EMT was investigate by using the specific inhibitor SB431542. Results: After irradiation with γ-ray at a total dose of 2 Gy, cancer cells presented the mesenchymal phenotype, and compared with the sham-irradiation group the expression of epithelial markers was decreased and of mesenchymal markers was increased, the migratory and invasive capabilities were strengthened, and the protein levels of TGF-β were enhanced. Furthermore, events associated with EMT induced by IR in A549 could be reversed through inhibition of TGF-β signaling. Conclusions: These results suggest that EMT mediated by TGF-β plays a critical role in IR-induced enhancing of migratory and invasive capabilities in cancer cells.

  17. Ionizing Radiation Promotes Migration and Invasion of Cancer Cells Through Transforming Growth Factor-Beta-Mediated Epithelial-Mesenchymal Transition

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Yongchun [Department of Radiation Oncology, Xijing Hospital Fourth Military Medical University, Xi' an (China); Department of Radiation Medicine, College of Preventive Medicine, Xijing Hospital Fourth Military Medical University, Xi' an (China); Liu Junye; Li Jing; Zhang Jie [Department of Radiation Medicine, College of Preventive Medicine, Xijing Hospital Fourth Military Medical University, Xi' an (China); Xu Yuqiao [Department of Pathology, Xijing Hospital Fourth Military Medical University, Xi' an (China); Zhang Huawei; Qiu Lianbo; Ding Guirong [Department of Radiation Medicine, College of Preventive Medicine, Xijing Hospital Fourth Military Medical University, Xi' an (China); Su Xiaoming [Department of Radiation Oncology, 306th Hospital of PLA, Beijing (China); Mei Shi [Department of Radiation Oncology, Xijing Hospital Fourth Military Medical University, Xi' an (China); Guo Guozhen, E-mail: guozhenguo@hotmail.com [Department of Radiation Medicine, College of Preventive Medicine, Xijing Hospital Fourth Military Medical University, Xi' an (China)

    2011-12-01

    Purpose: To examine whether ionizing radiation enhances the migratory and invasive abilities of cancer cells through transforming growth factor (TGF-{beta})-mediated epithelial-mesenchymal transition (EMT). Methods and Materials: Six cancer cell lines originating from different human organs were irradiated by {sup 60}Co {gamma}-ray at a total dose of 2 Gy, and the changes associated with EMT, including morphology, EMT markers, migration and invasion, were observed by microscope, Western blot, immunofluorescence, scratch assay, and transwell chamber assay, respectively. Then the protein levels of TGF-{beta} in these cancer cells were detected by enzyme-linked immunosorbent assay, and the role of TGF-{beta} signaling pathway in the effect of ionizing radiation on EMT was investigate by using the specific inhibitor SB431542. Results: After irradiation with {gamma}-ray at a total dose of 2 Gy, cancer cells presented the mesenchymal phenotype, and compared with the sham-irradiation group the expression of epithelial markers was decreased and of mesenchymal markers was increased, the migratory and invasive capabilities were strengthened, and the protein levels of TGF-{beta} were enhanced. Furthermore, events associated with EMT induced by IR in A549 could be reversed through inhibition of TGF-{beta} signaling. Conclusions: These results suggest that EMT mediated by TGF-{beta} plays a critical role in IR-induced enhancing of migratory and invasive capabilities in cancer cells.

  18. Novel Plasmid Transformation Method Mediated by Chrysotile, Sliding Friction, and Elastic Body Exposure

    Directory of Open Access Journals (Sweden)

    Naoto Yoshida

    2007-01-01

    Full Text Available Escherichia coli as a plasmid recipient cell was dispersed in a chrysotile colloidal solution, containing chrysotile adsorbed to plasmid DNA (chrysotile-plasmid cell mixture. Following this, the chrysotile-plasmid cell mixture was dropped onto the surface of an elastic body, such as agarose, and treated physically by sliding a polystyrene streak bar over the elastic body to create friction. Plasmid DNA was easily incorporated into E. coli, and antibiotic resistance was conferred by transformation. The transformation efficiency of E. coli cultured in solid medium was greater than that of E. coli cultured in broth. To obtain greater transformation efficiency, we attempted to determine optimal transformation conditions. The following conditions resulted in the greatest transformation efficiency: the recipient cell concentration within the chrysotileplasmid cell mixture had an optical density greater than or equal to 2 at 550 nm, the vertical reaction force applied to the streak bar was greater than or equal to 40 g, and the rotation speed of the elastic body was greater than or equal to 34 rpm. Under these conditions, we observed a transformation efficiency of 107 per μg plasmid DNA. The advantage of achieving bacterial transformation using the elastic body exposure method is that competent cell preparation of the recipient cell is not required. In addition to E. coli, other Gram negative bacteria are able to acquire plasmid DNA using the elastic body exposure method.

  19. UV-stimulation of DNA-mediated transformation of human cells.

    NARCIS (Netherlands)

    M. van Duin (Mark); A. Westerveld (Andries); J.H.J. Hoeijmakers (Jan)

    1985-01-01

    textabstractIrradiation of dominant marker DNA with UV light (150 to 1,000 J/m2) was found to stimulate the transformation of human cells by this marker from two- to more than fourfold. This phenomenon is also displayed by xeroderma pigmentosum cells (complementation groups A and F), which are

  20. Transforming growth factor alpha is a critical mediator of radiation lung injury.

    Science.gov (United States)

    Chung, Eun Joo; Hudak, Kathryn; Horton, Jason A; White, Ayla; Scroggins, Bradley T; Vaswani, Shiva; Citrin, Deborah

    2014-09-01

    Radiation fibrosis of the lung is a late toxicity of thoracic irradiation. Epidermal growth factor (EGF) signaling has previously been implicated in radiation lung injury. We hypothesized that TGF-α, an EGF receptor ligand, plays a key role in radiation-induced fibrosis in lung. Mice deficient in transforming growth factor (TGF-α(-/-)) and control C57Bl/6J (C57-WT) mice were exposed to thoracic irradiation in 5 daily fractions of 6 Gy. Cohorts of mice were followed for survival (n ≥ 5 per group) and tissue collection (n = 3 per strain and time point). Collagen accumulation in irradiated lungs was assessed by Masson's trichrome staining and analysis of hydroxyproline content. Cytokine levels in lung tissue were assessed with ELISA. The effects of TGF-α on pneumocyte and fibroblast proliferation and collagen production were analyzed in vitro. Lysyl oxidase (LOX) expression and activity were measured in vitro and in vivo. Irradiated C57-WT mice had a median survival of 24.4 weeks compared to 48.2 weeks for irradiated TGF-α(-/-) mice (P = 0.001). At 20 weeks after irradiation, hydroxyproline content was markedly increased in C57-WT mice exposed to radiation compared to TGF-α(-/-) mice exposed to radiation or unirradiated C57-WT mice (63.0, 30.5 and 37.6 μg/lung, respectively, P = 0.01). C57-WT mice exposed to radiation had dense foci of subpleural fibrosis at 20 weeks after exposure, whereas the lungs of irradiated TGF-α (-/-) mice were largely devoid of fibrotic foci. Lung tissue concentrations of IL-1β, IL-4, TNF-α, TGF-β and EGF at multiple time points after irradiation were similar in C57-WT and TGF-α(-/-) mice. TGF-α in lung tissue of C57-WT mice rose rapidly after irradiation and remained elevated through 20 weeks. TGF-α(-/-) mice had lower basal LOX expression than C57-WT mice. Both LOX expression and LOX activity were increased after irradiation in all mice but to a lesser degree in TGF-α(-/-) mice. Treatment of NIH-3T3 fibroblasts with TGF

  1. Transformation of barley (Hordeum vulgare L.) by Agrobacterium tumefaciens infection of in vitro cultured ovules

    DEFF Research Database (Denmark)

    Holme, Inger; Brinch-Pedersen, Henrik; Lange, Mette

    2012-01-01

    Agrobacterium-mediated transformation of in vitro cultured barley ovules is an attractive alternative to well-established barley transformation methods of immature embryos. The ovule culture system can be used for transformation with and without selection and has successfully been used to transfo...

  2. Enhanced biological stabilization of heavy metals in sediment using immobilized sulfate reducing bacteria beads with inner cohesive nutrient

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xin, E-mail: hgxlixin@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Dai, Lihua; Zhang, Chang; Zeng, Guangming; Liu, Yunguo [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Zhou, Chen [Swette Center for Environmental Biotechnology, Biodesign Institute, Arizona State University (United States); Xu, Weihua; Wu, Youe; Tang, Xinquan; Liu, Wei; Lan, Shiming [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China)

    2017-02-15

    Highlights: • Nutrient beads of immobilized SRB were more effective in transforming heavy metals into the more stable bound phases. • Inner cohesive nutrient effectively promoted the stabilization process of heavy metals. • The excellent removal efficiencies of Cu, Zn, Pb and Cd were 76.3%, 95.6%, 100% and 91.2%, respectively. • Easy to recycle and avoid secondary pollution. - Abstract: A series of experiments were conducted for treating heavy metals contaminated sediments sampled from Xiangjiang River, which combined polyvinyl alcohol (PVA) and immobilized sulfate reducing bacteria (SRB) into beads. The sodium lactate was served as the inner cohesive nutrient. Coupling the activity of the SRB with PVA, along with the porous structure and huge specific surface area, provided a convenient channel for the transmission of matter and protected the cells against the toxicity of metals. This paper systematically investigated the stability of Cu, Zn, Pb and Cd and its mechanisms. The results revealed the performance of leaching toxicity was lower and the removal efficiencies of Cu, Zn, Pb and Cd were 76.3%, 95.6%, 100% and 91.2%, respectively. Recycling experiments showed the beads could be reused 5 times with superbly efficiency. These results were also confirmed by continuous extraction at the optimal conditions. Furthermore, X-ray diffraction (XRD) and energy-dispersive spectra (EDS) analysis indicated the heavy metals could be transformed into stable crystal texture. The stabilization of heavy metals was attributed to the carbonyl and acyl amino groups. Results presented that immobilized bacteria with inner nutrient were potentially and practically applied to multi-heavy-metal-contamination sediment.

  3. Floral-dip transformation of flax (Linum usitatissimum) to generate transgenic progenies with a high transformation rate.

    Science.gov (United States)

    Bastaki, Nasmah K; Cullis, Christopher A

    2014-12-19

    Agrobacterium-mediated plant transformation via floral-dip is a widely used technique in the field of plant transformation and has been reported to be successful for many plant species. However, flax (Linum usitatissimum) transformation by floral-dip has not been reported. The goal of this protocol is to establish that Agrobacterium and the floral-dip method can be used to generate transgenic flax. We show that this technique is simple, inexpensive, efficient, and more importantly, gives a higher transformation rate than the current available methods of flax transformation. In summary, inflorescences of flax were dipped in a solution of Agrobacterium carrying a binary vector plasmid (T-DNA fragment plus the Linum Insertion Sequence, LIS-1) for 1 - 2 min. The plants were laid flat on their side for 24 hr. Then, plants were maintained under normal growth conditions until the next treatment. The process of dipping was repeated 2 - 3 times, with approximately 10 - 14 day intervals between dipping. The T1 seeds were collected and germinated on soil. After approximately two weeks, treated progenies were tested by direct PCR; 2 - 3 leaves were used per plant plus the appropriate T-DNA primers. Positive transformants were selected and grown to maturity. The transformation rate was unexpectedly high, with 50 - 60% of the seeds from treated plants being positive transformants. This is a higher transformation rate than those reported for Arabidopsis thaliana and other plant species, using floral-dip transformation. It is also the highest, which has been reported so far, for flax transformation using other methods for transformation.

  4. Spatial and temporal variation of nutrients in groundwater and associated processes in the coastal zone of the Pearl River Delta, China

    Science.gov (United States)

    Chen, J.

    2017-12-01

    Rapid urbanization has occurred in the Pearl River Delta since 1980s, resulting in tremendous accumulation of population and material in an area of around 1.1x104 km2. Massive nutrients were released to the coastal zone either via the Pearl River or the aquifer, and effects of these nutrients on ecosystem and drinking water supply are a big public concern. Field campaigns to collect groundwater samples were implemented in rainy (April- September) and dry seasons (October - March) during the period of 2005-2016, and samples were analyzed for major ions, nutrients, multiple isotopes, N2O and microbiological DNA. Seasonal and spatial pattern of nutrients from the recharge to the discharge zone in two case study areas were identified and compared regarding relevant N transformation processes. Main sources of nutrients in groundwater and major mechanisms, e.g. denitrification, nitrification and etc., involved in these processes were raised by integrating microbiological, isotopic and geochemical evidences. Driven forces of the change in nutrients in the past 10 years were investigated based on statistical data, and total nutrient load in groundwater in the delta was estimated.

  5. Nutrient synchrony in preruminant calves

    NARCIS (Netherlands)

    Borne, van den J.J.G.C.

    2006-01-01

    In animal nutrition, the nutrient composition of the daily feed supply is composed to match the nutrient requirements for the desired performance. The time of nutrient availability within a day is usually considered not to affect the fate of nutrients. The aim of this thesis was to evaluate effects

  6. A technique to study Meloidogyne arenaria resistance in Agrobacterium rhizogenes-transformed peanut

    Science.gov (United States)

    A reliable peanut root transformation system would be useful to study the functions of genes involved in root biology and disease resistance. The objective of this study was to establish an effective protocol to produce composite plants mediated by Agrobacterium rhizogenes transformation. More tha...

  7. Work Engagement: Investigating the Role of Transformational Leadership, Job Resources, and Recovery.

    Science.gov (United States)

    Hawkes, Amy J; Biggs, Amanda; Hegerty, Erin

    2017-08-18

    While the relationship between job resources and engagement has been well established, a greater understanding of the upstream factors that shape job resources is required to develop strategies to promote work engagement. The current study addresses this need by exploring transformational leadership as an upstream job resource, and the moderating role of recovery experiences. It was hypothesized that job resources would mediate the relationship between transformational leadership and engagement. Recovery experiences were expected to moderate the relationship between resources and engagement. A sample of 277 employees from a variety of organizations and industries was obtained. Analysis showed direct relationships between: transformational leadership and engagement, and transformational leadership and job resources. Mediation analysis using bootstrapping found a significant indirect path between transformational leadership and engagement via job resources. Recovery experiences did not significantly moderate the relationship between job resources and engagement. To date, the majority of published literature on recovery has focused on job demands; hence the nonsignificant result offers insight of a potentially more complex relationship for recovery with resources and engagement. Overall, the current study extends the JD-R model and provides evidence for broadening the model to include upstream organizational variables such as transformational leadership.

  8. Genetic transformation of wheat via Agrobacterium-mediated DNA delivery.

    Science.gov (United States)

    Sparks, Caroline A; Doherty, Angela; Jones, Huw D

    2014-01-01

    The method described involves an initial incubation of wheat immature embryos in a liquid culture of Agrobacterium tumefaciens. The Agrobacterium strain is engineered to contain a binary vector with a gene of interest and a selectable marker gene placed between the T-DNA borders; the T-DNA is the region transferred to the plant cells, thus harnessing the bacterium's natural ability to deliver specific DNA into host cells. Following the initial inoculation with the Agrobacterium, the embryos are co-cultivated for several days after which the Agrobacterium is selectively destroyed using an antibiotic. Tissue culture of the embryos on plant media with a correct balance of hormones allows embryogenic callus formation followed by regeneration of plantlets, and in the later stages of tissue culture a selectable marker (herbicide) is included to minimize the incidence of non-transformed plants. This protocol has been used successfully to generate transformed plants of a wide range of wheat varieties, both spring and winter bread wheats (T. aestivum L.) and durum wheats (T. turgidum L.).

  9. STUDY REGARDING EFFICIENCY OF INDUCED GENETIC TRANSFORMATION IN BACILLUS LICHENIFORMIS WITH PLASMID DNA

    Directory of Open Access Journals (Sweden)

    VINTILĂ T.

    2007-01-01

    Full Text Available A strain of Bacillus licheniformis was subject to genetic transformation with plasmidvectors (pLC1 and pNC61, using electroporation technique, protoplasttransformation and bivalent cations (CaCl2 mediated transformation. In the case oftransformation by electroporation of Bacillus licheniformis B40, the highest numberof transformed colonies (3 were obtained only after a 1,79 KV electric shock, for 2,2milliseconds. Using this transformation technique we have obtained six kanamycinresistant transformants. The frequency of Bacillus licheniformis B40 protoplaststransformation using pLC1 and pNC61 plasmid vectors is approximately 10% (TF =10%. As a result of pLC1 plasmid integration in Bacillus licheniformis protoplasts,six kanamycin resistant transformants were obtained. The pNC61 plasmid, whichconfers trimethoprim resistance, does not integrate in receiver cells by protoplasttransformation. The direct genetic transformation in the presence of bivalent cations(CaCl2, mediated by pLC1 and pNC61 plasmid vectors, produce a lowtransformation frequency. Using this technique, we have obtained three trimethoprimresistant colonies and four kanamycin resistant colonies. The chemical way oftransformation is the only technique, which realizes the integration of pNC61 in B.licheniformis B40 cells.

  10. In planta transformation method for T-DNA transfer in orchids

    Science.gov (United States)

    Semiarti, Endang; Purwantoro, Aziz; Mercuriani, Ixora S.; Anggriasari, Anida M.; Jang, Seonghoe; Suhandono, Sony; Machida, Yasunori; Machida, Chiyoko

    2014-03-01

    Transgenic plant technology is an efficient tool to study the function of gene(s) in plant. The most popular and widely used technique is Agrobacterium-mediated transformation in which cocultivation was done by immersing the plant tissues/organ in overnight bacterial cultured for about 30 minutes to one hour under in vitro condition. In this experiment, we developed more easier technique that omitted the in vitro step during cocultivation with Agrobacterium, namely in planta transformation method. Pollinaria (compact pollen mass of orchid) of Phalaenopsis amabilis and Spathoglottis plicata orchids were used as target explants that were immersed into bacterial culture for 30 minutes, then dried up the pollinaria, the transformed pollinaria was used to pollinate orchid flowers. The T-DNA used for this experiments were Ubipro∷PaFT/A. tumefaciens GV3101 for P. amabilis and MeEF1α2 pro∷GUS/ A. tumefaciens LBA 4404 for S.plicata. Seeds that were produced from pollinated flowers were grown onto 10 mg/l hygromicin containing NP (New Phalaenopsis) medium. The existance of transgene in putative transformant protocorm (developing orchid embryo) genome was confirmed using PCR with specific primers of either PaFT or GUS genes. Histochemical GUS assay was also performed to the putative transformants. The result showed that transformation frequencies were 2.1 % in P. amabilis, and 0,53% in S. plicata. These results indicates that in planta transformation method could be used for Agrobacterium-mediated genetic transformation, with advantage easier and more secure work from contaminants than that of the in vitro method.

  11. Evaluation on the effectiveness of 2-deoxyglucose-6-phosphate phosphatase (DOGR1) gene as a selectable marker for oil palm (Elaeis guineensis Jacq.) embryogenic calli transformation mediated by Agrobacterium tumefaciens

    Science.gov (United States)

    Izawati, Abang Masli Dayang; Masani, Mat Yunus Abdul; Ismanizan, Ismail; Parveez, Ghulam Kadir Ahmad

    2015-01-01

    DOGR1, which encodes 2-deoxyglucose-6-phosphate phosphatase, has been used as a selectable marker gene to produce transgenic plants. In this study, a transformation vector, pBIDOG, which contains the DOGR1 gene, was transformed into oil palm embryogenic calli (EC) mediated by Agrobacterium tumefaciens strain LBA4404. Transformed EC were exposed to 400 mg l-1 2-deoxyglucose (2-DOG) as the selection agent. 2-DOG resistant tissues were regenerated into whole plantlets on various regeneration media containing the same concentration of 2-DOG. The plantlets were later transferred into soil and grown in a biosafety screenhouse. PCR and subsequently Southern blot analyses were carried out to confirm the integration of the transgene in the plantlets. A transformation efficiency of about 1.0% was obtained using DOGR1 gene into the genome of oil palm. This result demonstrates the potential of using combination of DOGR1 gene and 2-DOG for regenerating transgenic oil palm. PMID:26442041

  12. Nutritional and metabolic mechanisms in the ovary and their role in mediating the effects of diet on folliculogenesis: a perspective.

    Science.gov (United States)

    Scaramuzzi, R J; Brown, H M; Dupont, J

    2010-09-01

    Folliculogenesis in ruminants is a nutritionally sensitive process, and short-term increases in nutrient flux can stimulate folliculogenesis in sheep and cattle. These short-term effects are probably mediated directly at the follicular level to modify gonadotrophin-induced follicle growth and development. The follicle appears to have a number of 'nutrient sensing' mechanism that may form the link between nutrient status and folliculogenesis. This review examines the evidence for the presence of pathways that may sense nutrient flux from within the follicle including the insulin signalling pathway, adenosine monophosphate-activated kinase (AMPK), the hexosamine pathway, peroxisome proliferator-activated receptors (PPARs) and leptin. The review then assesses the available evidence concerning their mechanisms in the follicle and speculates on how these 'nutrient sensing' pathways are integrated into the FSH signalling pathways to adjust gonadotrophin-stimulated follicular function. We conclude that there is good evidence to suggest that the follicle does contain more than one functional 'nutrient sensing' pathway that have intra-follicular effects on some FSH-mediated functions such as the synthesis of oestradiol, in granulosa cells. These pathways include insulin, AMPK, and leptin. There is also a good case for the integration of PPARs in the intra-follicular sensing of nutrient flux. However, there is little evidence at present to suggest the hexosamine biosynthetic pathway has functional significance in the follicle as a sensor of nutrient flux. Further study will be required to fully understand 'nutrient sensing' pathways in the follicle and their cross-talk with FSH signalling pathways. © 2010 Blackwell Verlag GmbH.

  13. In the other 90%: phytoplankton responses to enhanced nutrient availability in the Great Barrier Reef Lagoon

    International Nuclear Information System (INIS)

    Furnas, Miles; Mitchell, Alan; Skuza, Michele; Brodie, Jon

    2005-01-01

    Our view of how water quality effects ecosystems of the Great Barrier Reef (GBR) is largely framed by observed or expected responses of large benthic organisms (corals, algae, seagrasses) to enhanced levels of dissolved nutrients, sediments and other pollutants in reef waters. In the case of nutrients, however, benthic organisms and communities are largely responding to materials which have cycled through and been transformed by pelagic communities dominated by micro-algae (phytoplankton), protozoa, flagellates and bacteria. Because GBR waters are characterised by high ambient light intensities and water temperatures, inputs of nutrients from both internal and external sources are rapidly taken up and converted to organic matter in inter-reefal waters. Phytoplankton growth, pelagic grazing and remineralisation rates are very rapid. Dominant phytoplankton species in GBR waters have in situ growth rates which range from ∼1 to several doublings per day. To a first approximation, phytoplankton communities and their constituent nutrient content turn over on a daily basis. Relative abundances of dissolved nutrient species strongly indicate N limitation of new biomass formation. Direct ( 15 N) and indirect ( 14 C) estimates of N demand by phytoplankton indicate dissolved inorganic N pools have turnover times on the order of hours to days. Turnover times for inorganic phosphorus in the water column range from hours to weeks. Because of the rapid assimilation of nutrients by plankton communities, biological responses in benthic communities to changed water quality are more likely driven (at several ecological levels) by organic matter derived from pelagic primary production than by dissolved nutrient stocks alone

  14. The Nutrient Density of Snacks

    Directory of Open Access Journals (Sweden)

    Julie Hess BA

    2017-03-01

    Full Text Available Background: Although Americans receive almost a quarter of their daily energy from snacks, snacking remains a poorly defined and understood eating occasion. However, there is little dietary guidance about choosing snacks. Families, clinicians, and researchers need a comprehensive approach to assessing their nutritional value. Objective: To quantify and compare the nutrient density of commonly consumed snacks by their overall nutrient profiles using the Nutrient-Rich Foods (NRF Index 10.3. Methods: NRF Index scores were calculated for the top 3 selling products (based on 2014 market research data in different snack categories. These NRF scores were averaged to provide an overall nutrient-density score for each category. Results: Based on NRF scores, yogurt (55.3, milk (52.5, and fruit (30.1 emerged as the most nutrient-dense snacks. Ice cream (−4.4, pies and cakes (−11.1, and carbonated soft drinks (−17.2 emerged as the most nutrient-poor snacks. Conclusions: The NRF Index is a useful tool for assessing the overall nutritional value of snacks based on nutrients to limit and nutrients to encourage.

  15. Soluble organic nutrient fluxes

    Science.gov (United States)

    Robert G. Qualls; Bruce L. Haines; Wayne Swank

    2014-01-01

    Our objectives in this study were (i) compare fluxes of the dissolved organic nutrients dissolved organic carbon (DOC), DON, and dissolved organic phosphorus (DOP) in a clearcut area and an adjacent mature reference area. (ii) determine whether concentrations of dissolved organic nutrients or inorganic nutrients were greater in clearcut areas than in reference areas,...

  16. Plant–Agrobacterium interaction mediated by ethylene and super-Agrobacterium conferring efficient gene transfer

    OpenAIRE

    Nonaka, Satoko; Ezura, Hiroshi

    2014-01-01

    Agrobacterium tumefaciens has a unique ability to transfer genes into plant genomes. This ability has been utilized for plant genetic engineering. However, the efficiency is not sufficient for all plant species. Several studies have shown that ethylene decreased the Agrobacterium-mediated transformation frequency. Thus, A. tumefaciens with an ability to suppress ethylene evolution would increase the efficiency of Agrobacterium-mediated transformation. Some studies showed that plant growth-pro...

  17. Role of thyroid in x-ray-induced oncogenic transformation in cell culture

    International Nuclear Information System (INIS)

    Borek, C.

    1982-01-01

    This paper examines the role of thyroid hormones in x-ray-induced neoplastic transformation of C3H/10 T 1/2 cells. In addition, the delineation of the time when transformation is sensitive to T3, the dependence of transformation on T3 concentration, and the involvement of protein synthesis are studied. The results indicate that thyroid hormone plays a key role in the initiation of x-ray-induced neoplastic transformation and that induction of protein synthesis may mediate this response

  18. Cultural mediation in museums

    Directory of Open Access Journals (Sweden)

    Gherghina Boda

    2017-12-01

    Full Text Available If we perceive the museum not only as a place of storing and conserving the patrimony, but also of transmitting it, then we can also see it as a mediator through which cultures can become collective patrimony. Tightly connected to patrimonial appropriation, mediation appears from this perspective as a process and not an end, as it manifests itself in animation, communication and making knowledge popular in relation to a precise patrimony. That is why we can see cultural mediation as a transmission, as a transformation, as an action or social project which aims at creating social bonds, the museum thus being not only a place of meeting for the public with the objects exposed, but also as a place of meeting between different cultures. Thus, cultural mediation presents itself as the most efficient means for access to culture of all categories of the public, situated as the crossroads of culture, continuous education and entertainment and is inscribed in the field of informal education.

  19. Studies of transformational leadership: evaluating two alternative models of trust and satisfaction.

    Science.gov (United States)

    Yang, Yi-Feng

    2014-06-01

    This study evaluates the influence of leadership style and employee trust in their leaders on job satisfaction. 341 personnel (164 men, 177 women; M age = 33.5 yr., SD = 5.1) from four large insurance companies in Taiwan completed the transformational leadership behavior inventory, the leadership trust scale and a short version of the Minnesota (Job) Satisfaction Questionnaire. A bootstrapping mediation and structural equation modeling revealed that the effect of transformational leadership on job satisfaction was mediated by leadership trust. This study highlights the importance of leadership trust in leadership-satisfaction relationships, and provides managers with practical ways to enhance job satisfaction.

  20. Sensitivity analysis of a pulse nutrient addition technique for estimating nutrient uptake in large streams

    Science.gov (United States)

    Laurence Lin; J.R. Webster

    2012-01-01

    The constant nutrient addition technique has been used extensively to measure nutrient uptake in streams. However, this technique is impractical for large streams, and the pulse nutrient addition (PNA) has been suggested as an alternative. We developed a computer model to simulate Monod kinetics nutrient uptake in large rivers and used this model to evaluate the...

  1. Evaluating the consequences of salmon nutrients for riparian organisms: Linking condition metrics to stable isotopes.

    Science.gov (United States)

    Vizza, Carmella; Sanderson, Beth L; Coe, Holly J; Chaloner, Dominic T

    2017-03-01

    Stable isotope ratios (δ 13 C and δ 15 N) have been used extensively to trace nutrients from Pacific salmon, but salmon transfer more than carbon and nitrogen to stream ecosystems, such as phosphorus, minerals, proteins, and lipids. To examine the importance of these nutrients, metrics other than isotopes need to be considered, particularly when so few studies have made direct links between these nutrients and how they affect riparian organisms. Our study specifically examined δ 13 C and δ 15 N of riparian organisms from salmon and non-salmon streams in Idaho, USA, at different distances from the streams, and examined whether the quality of riparian plants and the body condition of invertebrates varied with access to these nutrients. Overall, quality and condition metrics did not mirror stable isotope patterns. Most notably, all riparian organisms exhibited elevated δ 15 N in salmon streams, but also with proximity to both stream types suggesting that both salmon and landscape factors may affect δ 15 N. The amount of nitrogen incorporated from Pacific salmon was low for all organisms (1950s. In addition, our results support those of other studies that have cautioned that inferences from natural abundance isotope data, particularly in conjunction with mixing models for salmon-derived nutrient percentage estimates, may be confounded by biogeochemical transformations of nitrogen, physiological processes, and even historical legacies of nitrogen sources. Critically, studies should move beyond simply describing isotopic patterns to focusing on the consequences of salmon-derived nutrients by quantifying the condition and fitness of organisms putatively using those resources.

  2. Sugar sensing by ChREBP/Mondo-Mlx-new insight into downstream regulatory networks and integration of nutrient-derived signals.

    Science.gov (United States)

    Havula, Essi; Hietakangas, Ville

    2018-04-01

    Animals regulate their physiology with respect to nutrient status, which requires nutrient sensing pathways. Simple carbohydrates, sugars, are sensed by the basic-helix-loop-helix leucine zipper transcription factors ChREBP/Mondo, together with their heterodimerization partner Mlx, which are well-established activators of sugar-induced lipogenesis. Loss of ChREBP/Mondo-Mlx in mouse and Drosophila leads to sugar intolerance, that is, inability to survive on sugar containing diet. Recent evidence has revealed that ChREBP/Mondo-Mlx responds to sugar and fatty acid-derived metabolites through several mechanisms and cross-connects with other nutrient sensing pathways. ChREBP/Mondo-Mlx controls several downstream transcription factors and hormones, which mediate not only readjustment of metabolic pathways, but also control feeding behavior, intestinal digestion, and circadian rhythm. Copyright © 2017. Published by Elsevier Ltd.

  3. H3K36 Methylation Regulates Nutrient Stress Response in Saccharomyces cerevisiae by Enforcing Transcriptional Fidelity

    Directory of Open Access Journals (Sweden)

    Stephen L. McDaniel

    2017-06-01

    Full Text Available Set2-mediated histone methylation at H3K36 regulates diverse activities, including DNA repair, mRNA splicing, and suppression of inappropriate (cryptic transcription. Although failure of Set2 to suppress cryptic transcription has been linked to decreased lifespan, the extent to which cryptic transcription influences other cellular functions is poorly understood. Here, we uncover a role for H3K36 methylation in the regulation of the nutrient stress response pathway. We found that the transcriptional response to nutrient stress was dysregulated in SET2-deleted (set2Δ cells and was correlated with genome-wide bi-directional cryptic transcription that originated from within gene bodies. Antisense transcripts arising from these cryptic events extended into the promoters of the genes from which they arose and were associated with decreased sense transcription under nutrient stress conditions. These results suggest that Set2-enforced transcriptional fidelity is critical to the proper regulation of inducible and highly regulated transcription programs.

  4. Nutrient acquisition strategies of mammalian cells.

    Science.gov (United States)

    Palm, Wilhelm; Thompson, Craig B

    2017-06-07

    Mammalian cells are surrounded by diverse nutrients, such as glucose, amino acids, various macromolecules and micronutrients, which they can import through transmembrane transporters and endolysosomal pathways. By using different nutrient sources, cells gain metabolic flexibility to survive periods of starvation. Quiescent cells take up sufficient nutrients to sustain homeostasis. However, proliferating cells depend on growth-factor-induced increases in nutrient uptake to support biomass formation. Here, we review cellular nutrient acquisition strategies and their regulation by growth factors and cell-intrinsic nutrient sensors. We also discuss how oncogenes and tumour suppressors promote nutrient uptake and thereby support the survival and growth of cancer cells.

  5. Establishment of an efficient transformation system for Pleurotus ostreatus.

    Science.gov (United States)

    Lei, Min; Wu, Xiangli; Zhang, Jinxia; Wang, Hexiang; Huang, Chenyang

    2017-11-21

    Pleurotus ostreatus is widely cultivated worldwide, but the lack of an efficient transformation system regarding its use restricts its genetic research. The present study developed an improved and efficient Agrobacterium tumefaciens-mediated transformation method in P. ostreatus. Four parameters were optimized to obtain the most efficient transformation method. The strain LBA4404 was the most suitable for the transformation of P. ostreatus. A bacteria-to-protoplast ratio of 100:1, an acetosyringone (AS) concentration of 0.1 mM, and 18 h of co-culture showed the best transformation efficiency. The hygromycin B phosphotransferase gene (HPH) was used as the selective marker, and EGFP was used as the reporter gene in this study. Southern blot analysis combined with EGFP fluorescence assay showed positive results, and mitotic stability assay showed that more than 75% transformants were stable after five generations. These results showed that our transformation method is effective and stable and may facilitate future genetic studies in P. ostreatus.

  6. Efficient transformation and expression of gfp gene in Valsa mali var. mali.

    Science.gov (United States)

    Chen, Liang; Sun, Gengwu; Wu, Shujing; Liu, Huixiang; Wang, Hongkai

    2015-01-01

    Valsa mali var. mali, the causal agent of valsa canker of apple, causes great loss of apple production in apple producing regions. The pathogenic mechanism of the pathogen has not been studied extensively, thus a suitable gene marker for pathogenic invasion analysis and a random insertion of T-DNA for mutants are desirable. In this paper, we reported the construction of a binary vector pKO1-HPH containing a positive selective gene hygromycin phosphotransferase (hph), a reporter gene gfp conferring green fluorescent protein, and an efficient protocol for V. mali var. mali transformation mediated by Agrobacterium tumefaciens. A transformation efficiency up to about 75 transformants per 10(5) conidia was achieved when co-cultivation of V. mali var. mali and A. tumefaciens for 48 h in A. tumefaciens inductive medium agar plates. The insertions of hph gene and gfp gene into V. mali var. mali genome verified by polymerase chain reaction and southern blot analysis showed that 10 randomly-selected transformants exhibited a single, unique hybridization pattern. This is the first report of A. tumefaciens-mediated transformation of V. mali var mali carrying a 'reporter' gfp gene that stably and efficiently expressed in the transformed V. mali var. mali species.

  7. Environmental Monitoring of Microbe Metabolic Transformation

    Science.gov (United States)

    Bebout, Brad (Inventor); Fleming, Erich (Inventor); Piccini, Matthew (Inventor); Beasley, Christopher (Inventor); Bebout, Leslie (Inventor)

    2013-01-01

    Mobile system and method for monitoring environmental parameters involved in growth or metabolic transformation of algae in a liquid. Each of one or more mobile apparati, suspended or partly or wholly submerged in the liquid, includes at least first and second environmental sensors that sense and transmit distinct first and second environmental, growth or transformation parameter values, such as liquid temperature, temperature of gas adjacent to and above the exposed surface, liquid pH, liquid salinity, liquid turbidity, O.sub.2 dissolved in the liquid, CO.sub.2 contained in the liquid, oxidization and reduction potential of the liquid, nutrient concentrations in the liquid, nitrate concentration in the liquid, ammonium concentration in the liquid, bicarbonate concentration in the liquid, phosphate concentration in the liquid, light intensity at the liquid surface, electrical conductivity of the liquid, and a parameter.alpha.(alga) associated with growth stage of the alga, using PAM fluorometry or other suitable parameter measurements.

  8. A quorum sensing-mediated switch contributes to natural transformation of Vibrio cholerae

    OpenAIRE

    Blokesch Melanie

    2013-01-01

    There is a fundamental gap in our understanding of how horizontal gene transfer contributes to the enormous range of genetic variations that are observed among bacteria. The objective of our study was to better understand how the acquisition of genetic material by natural transformation is regulated within a population of Vibrio cholerae cells. V. cholerae is an aquatic bacterium and a facultative human pathogen. It acquires natural competence for transformation in response to changing enviro...

  9. Plant species effects on soil nutrients and chemistry in arid ecological zones.

    Science.gov (United States)

    Johnson, Brittany G; Verburg, Paul S J; Arnone, John A

    2016-09-01

    The presence of vegetation strongly influences ecosystem function by controlling the distribution and transformation of nutrients across the landscape. The magnitude of vegetation effects on soil chemistry is largely dependent on the plant species and the background soil chemical properties of the site, but has not been well quantified along vegetation transects in the Great Basin. We studied the effects of plant canopy cover on soil chemistry within five different ecological zones, subalpine, montane, pinyon-juniper, sage/Mojave transition, and desert shrub, in the Great Basin of Nevada all with similar underlying geology. Although plant species differed in their effects on soil chemistry, the desert shrubs Sarcobatus vermiculatus, Atriplex spp., Coleogyne ramosissima, and Larrea tridentata typically exerted the most influence on soil chemistry, especially amounts of K(+) and total nitrogen, beneath their canopies. However, the extent to which vegetation affected soil nutrient status in any given location was not only highly dependent on the species present, and presumably the nutrient requirements and cycling patterns of the plant species, but also on the background soil characteristics (e.g., parent material, weathering rates, leaching) where plant species occurred. The results of this study indicate that the presence or absence of a plant species, especially desert shrubs, could significantly alter soil chemistry and subsequently ecosystem biogeochemistry and function.

  10. Bacterial natural transformation by highly fragmented and damaged DNA

    DEFF Research Database (Denmark)

    Overballe-Petersen, Søren; Harms, Klaus; Orlando, Ludovic Antoine Alexandre

    2013-01-01

    for microbes, but not as potential substrate for bacterial evolution. Here, we show that fragmented DNA molecules (≥20 bp) that additionally may contain abasic sites, cross-links, or miscoding lesions are acquired by the environmental bacterium Acinetobacter baylyi through natural transformation. With uptake......DNA molecules are continuously released through decomposition of organic matter and are ubiquitous in most environments. Such DNA becomes fragmented and damaged (often DNA is recognized as nutrient source...... of DNA from a 43,000-y-old woolly mammoth bone, we further demonstrate that such natural transformation events include ancient DNA molecules. We find that the DNA recombination is RecA recombinase independent and is directly linked to DNA replication. We show that the adjacent nucleotide variations...

  11. Nutrient sequestration in Aquitaine lakes (SW France) limits nutrient flux to the coastal zone

    Science.gov (United States)

    Buquet, Damien; Anschutz, Pierre; Charbonnier, Céline; Rapin, Anne; Sinays, Rémy; Canredon, Axel; Bujan, Stéphane; Poirier, Dominique

    2017-12-01

    Oligotrophic coastal zones are disappearing from increased nutrient loading. The quantity of nutrients reaching the coast is determined not only by their original source (e.g. fertilizers used in agriculture, waste water discharges) and the land use, but also by the pathways through which nutrients are cycled from the source to the river mouth. In particular, lakes sequester nutrients and, hence, reduce downstream transfer of nutrients to coastal environments. Here, we quantify the impact of Aquitaine great lakes on the fluxes of dissolved macro-nutrients (N, P, Si) to the Bay of Biscay. For that, we have measured nutrient concentrations and fluxes in 2014 upstream and downstream lakes of Lacanau and Carcans-Hourtin, which belongs to the catchment of the Arcachon Bay, which is the largest coastal lagoon of the Bay of Biscay French coast. Data were compared to values obtained from the Leyre river, the main freshwater and nutrient source for the lagoon. Results show that processes in lakes greatly limit nutrient flux to the lagoon compared to fluxes from Leyre river, although the watershed is similar in terms of land cover. In lakes, phosphorus and silicon are trapped for long term in the sediment, silicon as amorphous biogenic silica and phosphorus as organic P and P associated with Fe-oxides. Nitrogen that enters lakes mostly as nitrate is used for primary production. N is mineralized in the sediment; a fraction diffuses as ammonium. N2 production through benthic denitrification extracts only 10% of dissolved inorganic nitrogen from the aquatic system. The main part is sequestered in organic-rich sediment that accumulates below 5 m depth in both lakes.

  12. Equity by Design: Using Peer-Mediated Learning to Advance Equity for All Students

    Science.gov (United States)

    Tan, Paulo; Macey, Erin M.; Thorius, Kathleen A. K.; Simon, Marsha

    2013-01-01

    The use of peer-mediated learning has emerged as a promising practice to transform the classroom experiences of both students with disabilities and their non-disabled peers. This brief summarizes the best practices for implementing peer-mediated learning and advocates situating peer-mediated learning in inclusive, interdependent learning…

  13. Nutrient controls on biocomplexity of mangrove ecosystems

    Science.gov (United States)

    McKee, Karen L.

    2004-01-01

    Mangrove forests are important coastal ecosystems that provide a variety of ecological and societal services. These intertidal, tree-dominated communities along tropical coastlines are often described as “simple systems,” compared to other tropical forests with larger numbers of plant species and multiple understory strata; however, mangrove ecosystems have complex trophic structures, and organisms exhibit unique physiological, morphological, and behavioral adaptations to environmental conditions characteristic of the land-sea interface. Biogeochemical functioning of mangrove forests is also controlled by interactions among the microbial, plant, and animal communities and feedback linkages mediated by hydrology and other forcing functions. Scientists with the U.S. Geological Survey (USGS) at the National Wetlands Research Center are working to understand more fully the impact of nutrient variability on these delicate and important ecosystems.

  14. Nutrient biogeochemistry of the eastern Arabian Sea during the southwest monsoon retreat

    Digital Repository Service at National Institute of Oceanography (India)

    George, R; Muraleedharan, K.R; Martin, G.D.; Sabu, P.; Gerson, V.J.; Dineshkumar, P.K.; Nair, S.M.; Chandramohanakumar, N.; Nair, K.K.C.

    and adjoining southeastern Arabian Sea. Curr Sci 96:364–375 Jyothibabu R, Madhu NV, Jayalakshmi KV, Balachandran KK, Shiyas CA, Martin GD, Nair KKC (2006) Impact of freshwater influx on microzooplankton mediated food web in a tropical estuary (Cochin backwaters... ARTICLE Nutrient biogeochemistry of the eastern Arabian Sea during the southwest monsoon retreat Rejomon George • K. R. Muraleedharan • G. D. Martin • P. Sabu • Vijay John Gerson • P. K. Dineshkumar • S. M. Nair • N. Chandramohanakumar • K. K. C. Nair...

  15. Nutritional responses to soil drying and rewetting cycles under partial root-zone drying irrigation

    DEFF Research Database (Denmark)

    Wang, Yaosheng; Jensen, Christian Richardt; Liu, Fulai

    2017-01-01

    signaling that regulates stomatal aperture. PRI induced soil DRW cycles and more soil water dynamics in the root zone enhance soil nutrient mineralization process and thus increase the bioavailability of soil nutrients, resulting in improved nitrogen (N) and phosphorus (P) uptake, in which soil microbial...... processes play a key role. Studies investigating how soil DRW cycles and water dynamics under PRI on nutrient transport in soil solution, soil microbe mediated P transformation, interactions between phytohormones and nutrient uptake, root morphological and architectural traits for nutrient acquisition......Abstract Repeated soil drying and rewetting (DRW) cycles occur in rainfed and irrigated agriculture. The intensity and frequency of DRW cycles regulate both microbial physiology and soil physical processes, hereby affecting the mineralization and immobilization of soil nutrients...

  16. Nutrient Management in Recirculating Hydroponic Culture

    Science.gov (United States)

    Bugbee, Bruce

    2004-01-01

    There is an increasing need to recirculate and reuse nutrient solutions in order to reduce environmental and economic costs. However, one of the weakest points in hydroponics is the lack of information on managing the nutrient solution. Many growers and research scientists dump out nutrient solutions and refill at weekly intervals. Other authors have recommended measuring the concentrations of individual nutrients in solution as a key to nutrient control and maintenance. Dumping and replacing solution is unnecessary. Monitoring ions in solution is not always necessary; in fact the rapid depletion of some nutrients often causes people to add toxic amounts of nutrients to the solution. Monitoring ions in solution is interesting, but it is not the key to effective maintenance.

  17. Biolistic transformation of Scoparia dulcis L.

    Science.gov (United States)

    Srinivas, Kota; Muralikrishna, Narra; Kumar, Kalva Bharath; Raghu, Ellendula; Mahender, Aileni; Kiranmayee, Kasula; Yashodahara, Velivela; Sadanandam, Abbagani

    2016-01-01

    Here, we report for the first time, the optimized conditions for microprojectile bombardment-mediated genetic transformation in Vassourinha (Scoparia dulcis L.), a Plantaginaceae medicinal plant species. Transformation was achieved by bombardment of axenic leaf segments with Binary vector pBI121 harbouring β-glucuronidase gene (GUS) as a reporter and neomycin phosphotransferase II gene (npt II) as a selectable marker. The influence of physical parameters viz., acceleration pressure, flight distance, gap width & macroprojectile travel distance of particle gun on frequency of transient GUS and stable (survival of putative transformants) expressions have been investigated. Biolistic delivery of the pBI121 yielded the best (80.0 %) transient expression of GUS gene bombarded at a flight distance of 6 cm and rupture disc pressure/acceleration pressure of 650 psi. Highest stable expression of 52.0 % was noticed in putative transformants on RMBI-K medium. Integration of GUS and npt II genes in the nuclear genome was confirmed through primer specific PCR. DNA blot analysis showed more than one transgene copy in the transformed plantlet genomes. The present study may be used for metabolic engineering and production of biopharmaceuticals by transplastomic technology in this valuable medicinal plant.

  18. Methods for genetic transformation in Dendrobium.

    Science.gov (United States)

    da Silva, Jaime A Teixeira; Dobránszki, Judit; Cardoso, Jean Carlos; Chandler, Stephen F; Zeng, Songjun

    2016-03-01

    The genetic transformation of Dendrobium orchids will allow for the introduction of novel colours, altered architecture and valuable traits such as abiotic and biotic stress tolerance. The orchid genus Dendrobium contains species that have both ornamental value and medicinal importance. There is thus interest in producing cultivars that have increased resistance to pests, novel horticultural characteristics such as novel flower colours, improved productivity, longer flower spikes, or longer post-harvest shelf-life. Tissue culture is used to establish clonal plants while in vitro flowering allows for the production of flowers or floral parts within a sterile environment, expanding the selection of explants that can be used for tissue culture or genetic transformation. The latter is potentially the most effective, rapid and practical way to introduce new agronomic traits into Dendrobium. Most (69.4 %) Dendrobium genetic transformation studies have used particle bombardment (biolistics) while 64 % have employed some form of Agrobacterium-mediated transformation. A singe study has explored ovary injection, but no studies exist on floral dip transformation. While most of these studies have involved the use of selector or reporter genes, there are now a handful of studies that have introduced genes for horticulturally important traits.

  19. CO2 and nutrient-driven changes across multiple levels of organization in Zostera noltii ecosystems

    Science.gov (United States)

    Martínez-Crego, B.; Olivé, I.; Santos, R.

    2014-12-01

    context-dependent, being mediated by epiphyte overgrowth rather than by direct effects on plant biochemistry. Overall, we found that the responses of seagrass meadows to individual and interactive effects of CO2 and nutrient enrichment varied depending on interactions among species and connections between organization levels.

  20. A Potential Waste to be Selected as Media for Metal and Nutrient Removal

    Science.gov (United States)

    Zayadi, N.; Othman, N.; Hamdan, R.

    2016-07-01

    This study describes the potential of application of cassava peel, banana peel, coconut shell, and coconut coir to be selected as metal removal while limestone and steel slag for nutrient removal. The media were characterized by X-Ray Fluorescence (XRF), Fourier Transform Infrared (FTIR), Field Emission Scanning Electron Microscopy-Energy Dispersive X-Ray (FESEM-EDX), and X-Ray Powder Diffraction (XRD). The results of XRF analysis medias show the present of calcium oxide, CaO which confirm the high efficiency in adsorbing metal ions and nutrient which is in agreement with the result of XRD. The characteristics of medias by FTIR analysis also confirmed the involvement of alcohol, carboxylic, alkanes, amines and ethers which play important role to reduce ions while FESEM-EDX indicates the porous structures of study medias. The characterization analysis highlight that cassava peel and steel slag were selected as a potential media in this study.

  1. Fatal attraction: vegetation responses to nutrient inputs attract herbivores to infectious anthrax carcass sites.

    Science.gov (United States)

    Turner, Wendy C; Kausrud, Kyrre L; Krishnappa, Yathin S; Cromsigt, Joris P G M; Ganz, Holly H; Mapaure, Isaac; Cloete, Claudine C; Havarua, Zepee; Küsters, Martina; Getz, Wayne M; Stenseth, Nils Chr

    2014-11-22

    Parasites can shape the foraging behaviour of their hosts through cues indicating risk of infection. When cues for risk co-occur with desired traits such as forage quality, individuals face a trade-off between nutrient acquisition and parasite exposure. We evaluated how this trade-off may influence disease transmission in a 3-year experimental study of anthrax in a guild of mammalian herbivores in Etosha National Park, Namibia. At plains zebra (Equus quagga) carcass sites we assessed (i) carcass nutrient effects on soils and grasses, (ii) concentrations of Bacillus anthracis (BA) on grasses and in soils, and (iii) herbivore grazing behaviour, compared with control sites, using motion-sensing camera traps. We found that carcass-mediated nutrient pulses improved soil and vegetation, and that BA is found on grasses up to 2 years after death. Host foraging responses to carcass sites shifted from avoidance to attraction, and ultimately to no preference, with the strength and duration of these behavioural responses varying among herbivore species. Our results demonstrate that animal carcasses alter the environment and attract grazing hosts to parasite aggregations. This attraction may enhance transmission rates, suggesting that hosts are limited in their ability to trade off nutrient intake with parasite avoidance when relying on indirect cues. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  2. Development of efficient plant regeneration and transformation system for impatiens using Agrobacterium tumefaciens and multiple bud cultures as explants.

    Science.gov (United States)

    Dan, Yinghui; Baxter, Aaron; Zhang, Song; Pantazis, Christopher J; Veilleux, Richard E

    2010-08-09

    Impatiens (Impatiens walleriana) is a top selling floriculture crop. The potential for genetic transformation of Impatiens to introduce novel flower colors or virus resistance has been limited by its general recalcitrance to tissue culture and transformation manipulations. We have established a regeneration and transformation system for Impatiens that provides new alternatives to genetic improvement of this crop. In a first step towards the development of transgenic INSV-resistant Impatiens, we developed an efficient plant regeneration system using hypocotyl segments containing cotyledonary nodes as explants. With this regeneration system, 80% of explants produced an average of 32.3 elongated shoots per initial explant plated, with up to 167 elongated shoots produced per explant. Rooting efficiency was high, and 100% of shoots produced roots within 12 days under optimal conditions, allowing plant regeneration within approximately 8 weeks. Using this regeneration system, we developed an efficient Agrobacterium-mediated Impatiens transformation method using in vitro multiple bud cultures as explants and a binary plasmid (pHB2892) bearing gfp and nptII genes. Transgenic Impatiens plants, with a frequency up to 58.9%, were obtained within 12 to 16 weeks from inoculation to transfer of transgenic plants to soil. Transgenic plants were confirmed by Southern blot, phenotypic assays and T1 segregation analysis. Transgene expression was observed in leaves, stems, roots, flowers, and fruit. The transgenic plants were fertile and phenotypically normal. We report the development of a simple and efficient Agrobacterium-mediated transformation system for Impatiens. To the best of our knowledge, there have been no reports of Agrobacterium-mediated transformation of Impatiens with experimental evidence of stable integration of T-DNA and of Agrobacterium-mediated transformation method for plants using in vitro maintained multiple bud cultures as explants. This transformation system

  3. Development of Efficient Plant Regeneration and Transformation System for Impatiens Using Agrobacterium tumefaciens and Multiple Bud Cultures as Explants

    Directory of Open Access Journals (Sweden)

    Dan Yinghui

    2010-08-01

    Full Text Available Abstract Background Impatiens (Impatiens walleriana is a top selling floriculture crop. The potential for genetic transformation of Impatiens to introduce novel flower colors or virus resistance has been limited by its general recalcitrance to tissue culture and transformation manipulations. We have established a regeneration and transformation system for Impatiens that provides new alternatives to genetic improvement of this crop. Results In a first step towards the development of transgenic INSV-resistant Impatiens, we developed an efficient plant regeneration system using hypocotyl segments containing cotyledonary nodes as explants. With this regeneration system, 80% of explants produced an average of 32.3 elongated shoots per initial explant plated, with up to 167 elongated shoots produced per explant. Rooting efficiency was high, and 100% of shoots produced roots within 12 days under optimal conditions, allowing plant regeneration within approximately 8 weeks. Using this regeneration system, we developed an efficient Agrobacterium-mediated Impatiens transformation method using in vitro multiple bud cultures as explants and a binary plasmid (pHB2892 bearing gfp and nptII genes. Transgenic Impatiens plants, with a frequency up to 58.9%, were obtained within 12 to 16 weeks from inoculation to transfer of transgenic plants to soil. Transgenic plants were confirmed by Southern blot, phenotypic assays and T1 segregation analysis. Transgene expression was observed in leaves, stems, roots, flowers, and fruit. The transgenic plants were fertile and phenotypically normal. Conclusion We report the development of a simple and efficient Agrobacterium-mediated transformation system for Impatiens. To the best of our knowledge, there have been no reports of Agrobacterium-mediated transformation of Impatiens with experimental evidence of stable integration of T-DNA and of Agrobacterium-mediated transformation method for plants using in vitro maintained

  4. Nitrogen transformations in wetlands: Effects of water flow patterns

    Energy Technology Data Exchange (ETDEWEB)

    Davidsson, T.

    1997-11-01

    In this thesis, I have studied nitrogen turnover processes in water meadows. A water meadow is a wetland where water infiltrates through the soil of a grassland field. It is hypothesized that infiltration of water through the soil matrix promotes nutrient transformations compared to surface flow of water, by increasing the contact between water, nutrients, soil organic matter and bacteria. I have studied how the balance between nitrogen removal (denitrification, assimilative uptake, adsorption) and release (mineralization, desorption) processes are affected by water flow characteristics. Mass balance studies and direct denitrification measurements at two field sites showed that, although denitrification was high, net nitrogen removal in the water meadows was poor. This was due to release of ammonium and dissolved organic nitrogen (DON) from the soils. In laboratory studies, using {sup 15}N isotope techniques, I have shown that nitrogen turnover is considerably affected by hydrological conditions and by soil type. Infiltration increased virtually all the nitrogen processes, due to deeper penetration of nitrate and oxygen, and extended zones of turnover processes. On the contrary, soils and sediments with surface water flow, diffusion is the main transfer mechanism. The relation between release and removal processes sometimes resulted in shifts towards net nitrogen production. This occurred in infiltration treatments when ammonium efflux was high in relation to denitrification. It was concluded that ammonium and DON was of soil origin and hence not a product of dissimilatory nitrate reduction to ammonium. Both denitrification potential and mineralization rates were higher in peaty than in sandy soil. Vertical or horizontal subsurface flow is substantial in many wetland types, such as riparian zones, tidal salt marshes, fens, root-zone systems and water meadows. Moreover, any environment where aquatic and terrestrial ecosystems meet, and where water level fluctuates

  5. The Impact of Transformational Leadership on Safety Climate and Individual Safety Behavior on Construction Sites

    Directory of Open Access Journals (Sweden)

    Yuzhong Shen

    2017-01-01

    Full Text Available Unsafe acts contribute dominantly to construction accidents, and increasing safety behavior is essential to reduce accidents. Previous research conceptualized safety behavior as an interaction between proximal individual differences (safety knowledge and safety motivation and distal contextual factors (leadership and safety climate. However, relatively little empirical research has examined this conceptualization in the construction sector. Given the cultural background of the sample, this study makes a slight modification to the conceptualization and views transformational leadership as an antecedent of safety climate. Accordingly, this study establishes a multiple mediator model showing the mechanisms through which transformational leadership translates into safety behavior. The multiple mediator model is estimated by the structural equation modeling (SEM technique, using individual questionnaire responses from a random sample of construction personnel based in Hong Kong. As hypothesized, transformational leadership has a significant impact on safety climate which is mediated by safety-specific leader–member exchange (LMX, and safety climate in turn impacts safety behavior through safety knowledge. The results suggest that future safety climate interventions should be more effective if supervisors exhibit transformational leadership, encourage construction personnel to voice safety concerns without fear of retaliation, and repeatedly remind them about safety on the job.

  6. The Impact of Transformational Leadership on Safety Climate and Individual Safety Behavior on Construction Sites.

    Science.gov (United States)

    Shen, Yuzhong; Ju, Chuanjing; Koh, Tas Yong; Rowlinson, Steve; Bridge, Adrian J

    2017-01-05

    Unsafe acts contribute dominantly to construction accidents, and increasing safety behavior is essential to reduce accidents. Previous research conceptualized safety behavior as an interaction between proximal individual differences (safety knowledge and safety motivation) and distal contextual factors (leadership and safety climate). However, relatively little empirical research has examined this conceptualization in the construction sector. Given the cultural background of the sample, this study makes a slight modification to the conceptualization and views transformational leadership as an antecedent of safety climate. Accordingly, this study establishes a multiple mediator model showing the mechanisms through which transformational leadership translates into safety behavior. The multiple mediator model is estimated by the structural equation modeling (SEM) technique, using individual questionnaire responses from a random sample of construction personnel based in Hong Kong. As hypothesized, transformational leadership has a significant impact on safety climate which is mediated by safety-specific leader-member exchange (LMX), and safety climate in turn impacts safety behavior through safety knowledge. The results suggest that future safety climate interventions should be more effective if supervisors exhibit transformational leadership, encourage construction personnel to voice safety concerns without fear of retaliation, and repeatedly remind them about safety on the job.

  7. The Impact of Transformational Leadership on Safety Climate and Individual Safety Behavior on Construction Sites

    Science.gov (United States)

    Shen, Yuzhong; Ju, Chuanjing; Koh, Tas Yong; Rowlinson, Steve; Bridge, Adrian J.

    2017-01-01

    Unsafe acts contribute dominantly to construction accidents, and increasing safety behavior is essential to reduce accidents. Previous research conceptualized safety behavior as an interaction between proximal individual differences (safety knowledge and safety motivation) and distal contextual factors (leadership and safety climate). However, relatively little empirical research has examined this conceptualization in the construction sector. Given the cultural background of the sample, this study makes a slight modification to the conceptualization and views transformational leadership as an antecedent of safety climate. Accordingly, this study establishes a multiple mediator model showing the mechanisms through which transformational leadership translates into safety behavior. The multiple mediator model is estimated by the structural equation modeling (SEM) technique, using individual questionnaire responses from a random sample of construction personnel based in Hong Kong. As hypothesized, transformational leadership has a significant impact on safety climate which is mediated by safety-specific leader–member exchange (LMX), and safety climate in turn impacts safety behavior through safety knowledge. The results suggest that future safety climate interventions should be more effective if supervisors exhibit transformational leadership, encourage construction personnel to voice safety concerns without fear of retaliation, and repeatedly remind them about safety on the job. PMID:28067775

  8. A Novel Role for Keratin 17 in Coordinating Oncogenic Transformation and Cellular Adhesion in Ewing Sarcoma

    Science.gov (United States)

    Sankar, Savita; Tanner, Jason M.; Bell, Russell; Chaturvedi, Aashi; Randall, R. Lor; Beckerle, Mary C.

    2013-01-01

    Oncogenic transformation in Ewing sarcoma is caused by EWS/FLI, an aberrant transcription factor fusion oncogene. Glioma-associated oncogene homolog 1 (GLI1) is a critical target gene activated by EWS/FLI, but the mechanism by which GLI1 contributes to the transformed phenotype of Ewing sarcoma was unknown. In this work, we identify keratin 17 (KRT17) as a direct downstream target gene upregulated by GLI1. We demonstrate that KRT17 regulates cellular adhesion by activating AKT/PKB (protein kinase B) signaling. In addition, KRT17 is necessary for oncogenic transformation in Ewing sarcoma and accounts for much of the GLI1-mediated transformation function but via a mechanism independent of AKT signaling. Taken together, our data reveal previously unknown molecular functions for a cytoplasmic intermediate filament protein, KRT17, in coordinating EWS/FLI- and GLI1-mediated oncogenic transformation and cellular adhesion in Ewing sarcoma. PMID:24043308

  9. Reconstruction and analysis of nutrient-induced phosphorylation networks in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Guangyou eDuan

    2013-12-01

    Full Text Available Elucidating the dynamics of molecular processes in living organisms in response to external perturbations is a central goal in modern systems biology. We investigated the dynamics of protein phosphorylation events in Arabidopsis thaliana exposed to changing nutrient conditions. Phosphopeptide expression levels were detected at five consecutive time points over a time interval of 30 minutes after nutrient resupply following prior starvation. The three tested inorganic, ionic nutrients NH4+, NO3-, PO43- elicited similar phosphosignaling responses that were distinguishable from those invoked by the sugars mannitol, sucrose. When embedded in the protein-protein interaction network of Arabidopsis thaliana, phosphoproteins were found to exhibit a higher degree compared to average proteins. Based on the time-series data, we reconstructed a network of regulatory interactions mediated by phosphorylation. The performance of different network inference methods was evaluated by the observed likelihood of physical interactions within and across different subcellular compartments and based on gene ontology semantic similarity. The dynamic phosphorylation network was then reconstructed using a Pearson correlation method with added directionality based on partial variance differences. The topology of the inferred integrated network corresponds to an information dissemination architecture, in which the phosphorylation signal is passed on to an increasing number of phosphoproteins stratified into an initiation, processing, and effector layer. Specific phosphorylation peptide motifs associated with the distinct layers were identified indicating the action of layer-specific kinases. Despite the limited temporal resolution, combined with information on subcellular location, the available time-series data proved useful for reconstructing the dynamics of the molecular signaling cascade in response to nutrient stress conditions in the plant Arabidopsis thaliana.

  10. Yield Gap, Indigenous Nutrient Supply and Nutrient Use Efficiency for Maize in China

    Science.gov (United States)

    Xu, Xinpeng; Liu, Xiaoyan; He, Ping; Johnston, Adrian M.; Zhao, Shicheng; Qiu, Shaojun; Zhou, Wei

    2015-01-01

    Great achievements have been attained in agricultural production of China, while there are still many difficulties and challenges ahead that call for put more efforts to overcome to guarantee food security and protect environment simultaneously. Analyzing yield gap and nutrient use efficiency will help develop and inform agricultural policies and strategies to increase grain yield. On-farm datasets from 2001 to 2012 with 1,971 field experiments for maize (Zea mays L.) were collected in four maize agro-ecological regions of China, and the optimal management (OPT), farmers’ practice (FP), a series of nutrient omission treatments were used to analyze yield gap, nutrient use efficiency and indigenous nutrient supply by adopting meta-analysis and ANOVA analysis. Across all sites, the average yield gap between OPT and FP was 0.7 t ha-1, the yield response to nitrogen (N), phosphorus (P), and potassium (K) were 1.8, 1.0, and 1.2 t ha-1, respectively. The soil indigenous nutrient supply of N, P, and K averaged 139.9, 33.7, and 127.5 kg ha-1, respectively. As compared to FP, the average recovery efficiency (RE) of N, P, and K with OPT increased by percentage point of 12.2, 5.5, and 6.5, respectively. This study indicated that there would be considerable potential to further improve yield and nutrient use efficiency in China, and will help develop and inform agricultural policies and strategies, while some management measures such as soil, plant and nutrient are necessary and integrate with advanced knowledge and technologies. PMID:26484543

  11. Yield Gap, Indigenous Nutrient Supply and Nutrient Use Efficiency for Maize in China.

    Directory of Open Access Journals (Sweden)

    Xinpeng Xu

    Full Text Available Great achievements have been attained in agricultural production of China, while there are still many difficulties and challenges ahead that call for put more efforts to overcome to guarantee food security and protect environment simultaneously. Analyzing yield gap and nutrient use efficiency will help develop and inform agricultural policies and strategies to increase grain yield. On-farm datasets from 2001 to 2012 with 1,971 field experiments for maize (Zea mays L. were collected in four maize agro-ecological regions of China, and the optimal management (OPT, farmers' practice (FP, a series of nutrient omission treatments were used to analyze yield gap, nutrient use efficiency and indigenous nutrient supply by adopting meta-analysis and ANOVA analysis. Across all sites, the average yield gap between OPT and FP was 0.7 t ha-1, the yield response to nitrogen (N, phosphorus (P, and potassium (K were 1.8, 1.0, and 1.2 t ha-1, respectively. The soil indigenous nutrient supply of N, P, and K averaged 139.9, 33.7, and 127.5 kg ha-1, respectively. As compared to FP, the average recovery efficiency (RE of N, P, and K with OPT increased by percentage point of 12.2, 5.5, and 6.5, respectively. This study indicated that there would be considerable potential to further improve yield and nutrient use efficiency in China, and will help develop and inform agricultural policies and strategies, while some management measures such as soil, plant and nutrient are necessary and integrate with advanced knowledge and technologies.

  12. Yield Gap, Indigenous Nutrient Supply and Nutrient Use Efficiency for Maize in China.

    Science.gov (United States)

    Xu, Xinpeng; Liu, Xiaoyan; He, Ping; Johnston, Adrian M; Zhao, Shicheng; Qiu, Shaojun; Zhou, Wei

    2015-01-01

    Great achievements have been attained in agricultural production of China, while there are still many difficulties and challenges ahead that call for put more efforts to overcome to guarantee food security and protect environment simultaneously. Analyzing yield gap and nutrient use efficiency will help develop and inform agricultural policies and strategies to increase grain yield. On-farm datasets from 2001 to 2012 with 1,971 field experiments for maize (Zea mays L.) were collected in four maize agro-ecological regions of China, and the optimal management (OPT), farmers' practice (FP), a series of nutrient omission treatments were used to analyze yield gap, nutrient use efficiency and indigenous nutrient supply by adopting meta-analysis and ANOVA analysis. Across all sites, the average yield gap between OPT and FP was 0.7 t ha-1, the yield response to nitrogen (N), phosphorus (P), and potassium (K) were 1.8, 1.0, and 1.2 t ha-1, respectively. The soil indigenous nutrient supply of N, P, and K averaged 139.9, 33.7, and 127.5 kg ha-1, respectively. As compared to FP, the average recovery efficiency (RE) of N, P, and K with OPT increased by percentage point of 12.2, 5.5, and 6.5, respectively. This study indicated that there would be considerable potential to further improve yield and nutrient use efficiency in China, and will help develop and inform agricultural policies and strategies, while some management measures such as soil, plant and nutrient are necessary and integrate with advanced knowledge and technologies.

  13. Nutrient intake during peritoneal dialysis at the Prince of Wales Hospital in Hong Kong.

    Science.gov (United States)

    Wang, Angela Yee-Moon; Sea, Mandy Man-Mei; Ng, Kenway; Kwan, Mandy; Lui, Siu-Fai; Woo, Jean

    2007-05-01

    Individuals undergoing peritoneal dialysis are at increased risk of developing cardiac disease and malnutrition. A cross-sectional survey. 249 Chinese continuous ambulatory peritoneal dialysis (CAPD) patients were recruited from the Prince of Wales Hospital in Hong Kong. Another 249 age- and sex-matched controls were recruited from an archive of 1,010 individuals with known food frequency questionnaire (FFQ) data. To compare the dietary intake pattern of CAPD patients with controls and evaluate its association with background cardiac disease. Intake of different nutrients was estimated by using a 7-day FFQ. Intake of all nutrients was lower in CAPD patients than controls, with resulting lower overall energy intake. Nutrient intake was decreased further in CAPD patients with background cardiac disease, which corresponded to worse nutritional status. Controlling for age, male sex, body weight, diabetes mellitus, dialysis therapy duration, residual renal function, peritoneal dialysis urea clearance, and Charlson Comorbidity Index score, background cardiac disease was associated independently with less intake of energy and most macronutrients and micronutrients. However, the association between background cardiac disease and energy and most nutrient intake was decreased or even lost when additional adjustment was made for C-reactive protein and serum albumin levels. An FFQ is limited in that nutrient quantitation is not exact and may be underestimated as a result of underreporting by patients. CAPD patients were compared with a control group without cardiovascular disease ascertainment that did not include subjects with diabetes. Chinese CAPD patients had significantly lower nutrient intake than age- and sex-matched controls. The association between cardiac disease and lower dietary macronutrient and micronutrient intake in CAPD patients was mediated in part through systemic inflammation, which also was associated with more malnutrition. More attention should be

  14. Transport and transformation of genetic information in the critical zone: The case of antibiotic resistance genes

    Science.gov (United States)

    Zhu, Y. G.

    2015-12-01

    In addition to material and energy flows, the dynamics and functions of the Earth's critical zone are intensively mediated by biological actions performed by diverse organisms. These biological actions are modulated by the expression of functional genes and their translation into enzymes that catalyze geochemical reactions, such as nutrient turnover and pollutant biodegradation. Although geobiology, as an interdisciplinary research area, is playing and vital role in linking biological and geochemical processes at different temporal and spatial scales, the distribution and transport of functional genes have rarely been investigated from the Earth's critical zone perspectives. To illustrate the framework of studies on the transport and transformation of genetic information in the critical zone, antibiotic resistance is taken as an example. Antibiotic resistance genes are considered as a group of emerging contaminants, and their emergence and spread within the critical zone on one hand are induced by anthropogenic activities, and on other hand are threatening human health worldwide. The transport and transformation of antibiotic resistance genes are controlled by both horizontal gene transfer between bacterial cells and the movement of bacteria harboring antibiotic resistance genes. In this paper, the fate and behavior of antibiotic resistance genes will be discussed in the following aspects: 1) general overview of environmental antibiotic resistance; 2) high through quantification of the resistome in various environmental media; 3) pathways of resistance gene flow within the critical zone; and 4) potential strategies in mitigating antibiotic resistance, particularly from the critical zone perspectives.

  15. From Mediatized Emotion to Digital Affect Cultures

    OpenAIRE

    Döveling, Katrin; Harju, Anu Annika; Sommer, Denise

    2018-01-01

    Research on the processes of mediatization aims to explore the mutual shaping of media and social life and how new media technologies influence and infiltrate social practices and cultural life. We extend this discussion of media’s role in transforming the everyday by including in the discussion the mediatization of emotion and discuss what we conceptualize as digital affect culture(s). We understand these as relational, contextual, globally emergent spaces in the digital environment where af...

  16. Pesticide behaviour in pumice and rockwool growth media; adsorption and transformation of metalaxyl, oxamyl and carbendazim

    NARCIS (Netherlands)

    Matser, A.M.; Leistra, M.

    1997-01-01

    Interactions of pesticides with substrates were studied. The adsorption of metalaxyl, oxamyl and carbendazim on unused pumice and rock-wool is much weaker than that on soils. The transformation rate of the pesticides in nutrient solution in contact with unused substrates is low. Metalaxyl is

  17. Diversidade funcional em sistemas de montado: fluxo de nutrientes em Quercus rotundifolia Lam. Functional diversity in “montado” systems: nutrients fluxes in Quercus rotundifolia Lam.

    Directory of Open Access Journals (Sweden)

    J. D. Nunes

    2007-01-01

    Full Text Available Os componentes dos ciclos de nutrientes em montados de Quercus rotundifolia Lam., relacionados com a precipitação foram estudados na região de Évora, de Novembro de 1996 a Dezembro de 2000. A precipitação bruta, o gotejo a diferentes distâncias do tronco e o escorrimento ao longo do tronco das árvores foram quantificados de modo contínuo, sendo colhidas amostras semanalmente para se proceder à respectiva caracterização química. A quantidade de nutrientes transferidos para o solo através das diferentes soluções foi também determinada. Verificou-se um acréscimo da concentração das espécies iónicas no gotejo em relação à precipitação bruta, o qual foi ainda mais manifesto no escorrimento ao longo do tronco. Estudaram-se, igualmente, as características físico-químicas do solo sob e fora da influência da copa destas árvores, num montado relativamente esparso. Além disso, também se avaliou a quantidade das camadas orgânicas e a quantidade de nutrientes aí retidos. As características físicas e químicas do solo apresentaram, de um modo geral, uma diferenciação positiva em resultado da presença das árvores. Avaliou-se a taxa de mineralização de N nas áreas sob e fora da acção do coberto das árvores, tendo-se observado uma mais elevada disponibilidade deste nutriente nas áreas do sob coberto.Nutrient cycling in Quercus rotundifolia Lam. systems, regarding precipitation was studied at Évora (Southern Portugal, since November of 1996 until December of 2000. The amounts of gross rainfall, throughfall (at different distances from the tree trunk and stemflow were measured continuously and samples for chemical analysis were collected weekly. The concentration of nutrients was higher in the throughfall than in the gross rainfall, especially in the areas closer to the tree trunk. Nutrients transferred to soil, through bulk rainfall, throughfall and stemflow were quantified. The highest concentration of nutrients

  18. 变革型领导与创新行为:一个被调节的中介作用模型%Transformational Leadership for Creative Behavior:A Moderated Mediation Effect Model

    Institute of Scientific and Technical Information of China (English)

    陈晨; 时勘; 陆佳芳

    2015-01-01

    以认知机制和内在动机理论为基础,探究在科研团队中变革型领导对下属成员创新行为的影响及其内在作用机制。采用问卷调查方法,对中国科学院所属学部内科研团队中的领导者及其直属下属进行调研。由下属完成员工问卷(包括变革型领导、心理授权、工作复杂性),领导者对其下属的创新行为进行评价,共获得79名领导者和237名科研人员的配对数据,采用Mplus软件进行统计分析。研究结果表明,在科研团队中,变革型领导对其下属的创新行为有显著正向影响;下属的心理授权在变革型领导和下属创新行为间起中介作用;下属所从事工作的复杂性对变革型领导硳心理授权硳下属创新行为这一中介作用有正向调节作用,即工作复杂性较高时,变革型领导通过心理授权影响下属创新行为的正向中介作用显著,而工作复杂性较低时该中介作用不显著。%Researcher′creative behavior has received considerable attention from researchers as an important source of scientific team′s innovation.It is of great importance to understand the factors affecting researcher′individual creative behavior.However, some studies find that transformational leadership is not correlated, even negative correlated with followers′creative behavior. Given the inconsistent findings about the relationship between transformational leadership and followers′creative behavior in pre-vious research, we propose that mediating and moderating variables may help us better understand the dynamics between transfor-mational leadership and individual creative behavior.For this reason, this study aims at refining the effect of transformational leadership on followers′creative behavior and the mechanism between these two variables in teams of researchers. On the basis of recognition mechanism and intrinsic motivation theory, this study investigates the influence

  19. Nutrient imbalance in Norway spruce

    International Nuclear Information System (INIS)

    Thelin, Gunnar

    2000-11-01

    The studies presented in my thesis indicate that growing Norway spruce in monoculture does not constitute sustainable forest management in a high N and S deposition environment, such as in southern Sweden. The combination of N-induced high growth rates and leaching due to soil acidification causes soil reserves of nutrients to decrease. This will increase the risk of nutrient imbalance within the trees when nutrient demands are not met. The development of nutrient imbalance in Scania, southern Sweden, was shown as negative trends in needle and soil nutrient status from the mid-80s to the present in Norway spruce and Scots pine stands. This imbalance appears to be connected to high levels of N and S deposition. Clear negative effects on tree vitality were found when using a new branch development method. Today, growth and vitality seems to be limited by K, rather than N, in spruce stands older than 40 years. However, younger stands appear to be able to absorb the deposited N without negative effects on growth and vitality. When investigating effects of nutrient stress on tree vitality, indicators such as branch length and shoot multiplication rate, which include effects accumulated over several years, are suitable. Countermeasures are needed in order to maintain the forest production at a high level. Positive effects on tree nutrient status after vitality fertilization (N-free fertilization) was shown in two micronutrient deficient stands in south-central Sweden. In addition, tree vitality was positively affected after the application of a site-adapted fertilizer to the canopy. Site-adaption of fertilizers will most likely improve the possibilities of a positive response on tree growth and vitality in declining stands. In a survey of Norway spruce in mixtures with beech, birch, or oak compared to monocultures it was shown that spruce nutrient status was higher in mixtures with deciduous species than in monocultures. By using mixed-species stands the need for

  20. Nutrient imbalance in Norway spruce

    Energy Technology Data Exchange (ETDEWEB)

    Thelin, Gunnar

    2000-11-01

    The studies presented in my thesis indicate that growing Norway spruce in monoculture does not constitute sustainable forest management in a high N and S deposition environment, such as in southern Sweden. The combination of N-induced high growth rates and leaching due to soil acidification causes soil reserves of nutrients to decrease. This will increase the risk of nutrient imbalance within the trees when nutrient demands are not met. The development of nutrient imbalance in Scania, southern Sweden, was shown as negative trends in needle and soil nutrient status from the mid-80s to the present in Norway spruce and Scots pine stands. This imbalance appears to be connected to high levels of N and S deposition. Clear negative effects on tree vitality were found when using a new branch development method. Today, growth and vitality seems to be limited by K, rather than N, in spruce stands older than 40 years. However, younger stands appear to be able to absorb the deposited N without negative effects on growth and vitality. When investigating effects of nutrient stress on tree vitality, indicators such as branch length and shoot multiplication rate, which include effects accumulated over several years, are suitable. Countermeasures are needed in order to maintain the forest production at a high level. Positive effects on tree nutrient status after vitality fertilization (N-free fertilization) was shown in two micronutrient deficient stands in south-central Sweden. In addition, tree vitality was positively affected after the application of a site-adapted fertilizer to the canopy. Site-adaption of fertilizers will most likely improve the possibilities of a positive response on tree growth and vitality in declining stands. In a survey of Norway spruce in mixtures with beech, birch, or oak compared to monocultures it was shown that spruce nutrient status was higher in mixtures with deciduous species than in monocultures. By using mixed-species stands the need for

  1. [Correlation analysis of nutrients and microorganisms in soils with polyphenols and total flavonoids of Houttuynia cordata].

    Science.gov (United States)

    Wu, Dan; Luo, Shi-qiong; Yang, Zhan-nan; Ma, Jing; Hong, Liang

    2015-04-01

    The relationship of nutrients and microorganisms in soils with polyphenols and total flavonoids of Houttuynia cordata were investigated by measuring nutrients, enzyme activity, pH, concentrations of microbe phospholipid fatty acids (PLFAs) in soils, and determining concentrations of polyphenols and total flavonoids of H. cordata. The research is aimed to understand characteristics of the planting soils and improve the quality of cultivated H. cordata. The soils at different sample sites varied greatly in nutrients, enzyme activity, pH, microbic PLFAs and polyphenols and all flavonoids. The content of total PLFAs in sample sites was following: bacteria > fungi > actinomyces > nematode. The content of bacteria PLFAs was 37.5%-65.0% at different sample sites. Activities of polyphenol oxidease, concentrations of available P and content of PLFAs of bacteria, actinomyces and total microorganisms in soils were significantly and positively related to the concentrations of polyphenols and total flavonoids of H. cordata, respectively (P soils was significantly and negatively related to concentrations of polyphenols and total flavonoids of H. cordata, respectively (P soil nutrient, which may be improved due to transformation of soil microorganisms and enzymes to N and P in the soils, was beneficial to adaptation of H. cordata adapted to different soil conditions, and significantly affects metabolic accumulation of polyphenols and flavonoids of H. cordata.

  2. Applying Adult Behavior Change Theory to Support Mediator-Based Intervention Implementation

    Science.gov (United States)

    Sanetti, Lisa M. H.; Kratochwill, Thomas R.; Long, Anna C. J.

    2013-01-01

    A majority of evidence-based interventions in schools are delivered through consultation models and are implemented by a mediator, such as a teacher. Research indicates that mediators do not always adequately implement adopted evidence-based interventions, limiting their effectiveness in transforming student outcomes. We propose that to transform…

  3. USA Nutrient managment forecasting via the "Fertilizer Forecaster": linking surface runnof, nutrient application and ecohydrology.

    Science.gov (United States)

    Drohan, Patrick; Buda, Anthony; Kleinman, Peter; Miller, Douglas; Lin, Henry; Beegle, Douglas; Knight, Paul

    2017-04-01

    USA and state nutrient management planning offers strategic guidance that strives to educate farmers and those involved in nutrient management to make wise management decisions. A goal of such programs is to manage hotspots of water quality degradation that threaten human and ecosystem health, water and food security. The guidance provided by nutrient management plans does not provide the day-to-day support necessary to make operational decisions, particularly when and where to apply nutrients over the short term. These short-term decisions on when and where to apply nutrients often make the difference between whether the nutrients impact water quality or are efficiently utilized by crops. Infiltrating rainfall events occurring shortly after broadcast nutrient applications are beneficial, given they will wash soluble nutrients into the soil where they are used by crops. Rainfall events that generate runoff shortly after nutrients are broadcast may wash off applied nutrients, and produce substantial nutrient losses from that site. We are developing a model and data based support tool for nutrient management, the Fertilizer Forecaster, which identifies the relative probability of runoff or infiltrating events in Pennsylvania (PA) landscapes in order to improve water quality. This tool will support field specific decisions by farmers and land managers on when and where to apply fertilizers and manures over 24, 48 and 72 hour periods. Our objectives are to: (1) monitor agricultural hillslopes in watersheds representing four of the five Physiographic Provinces of the Chesapeake Bay basin; (2) validate a high resolution mapping model that identifies soils prone to runoff; (3) develop an empirically based approach to relate state-of-the-art weather forecast variables to site-specific rainfall infiltration or runoff occurrence; (4) test the empirical forecasting model against alternative approaches to forecasting runoff occurrence; and (5) recruit farmers from the four

  4. Nutrition Influences Caffeine-Mediated Sleep Loss in Drosophila.

    Science.gov (United States)

    Keebaugh, Erin S; Park, Jin Hong; Su, Chenchen; Yamada, Ryuichi; Ja, William W

    2017-11-01

    Plant-derived caffeine is regarded as a defensive compound produced to prevent herbivory. Caffeine is generally repellent to insects and often used to study the neurological basis for aversive responses in the model insect, Drosophila melanogaster. Caffeine is also studied for its stimulatory properties where sleep or drowsiness is suppressed across a range of species. Since limiting access to food also inhibits fly sleep-an effect known as starvation-induced sleep suppression-we tested whether aversion to caffeinated food results in reduced nutrient intake and assessed how this might influence fly studies on the stimulatory effects of caffeine. We measured sleep and total consumption during the first 24 hours of exposure to caffeinated diets containing a range of sucrose concentrations to determine the relative influence of caffeine and nutrient ingestion on sleep. Experiments were replicated using three fly strains. Caffeine reduced total consumption and nighttime sleep, but only at intermediate sucrose concentrations. Although sleep can be modeled by an exponential dose response to nutrient intake, caffeine-mediated sleep loss cannot be explained by absolute caffeine or sucrose ingestion alone. Instead, reduced sleep strongly correlates with changes in total consumption due to caffeine. Other bitter compounds phenocopy the effect of caffeine on sleep and food intake. Our results suggest that a major effect of dietary caffeine is on fly feeding behavior. Changes in feeding behavior may drive caffeine-mediated sleep loss. Future studies using psychoactive compounds should consider the potential impact of nutrition when investigating effects on sleep. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  5. Incorporating hydrologic variability into nutrient spiraling

    Science.gov (United States)

    Doyle, Martin W.

    2005-09-01

    Nutrient spiraling describes the path of a nutrient molecule within a stream ecosystem, combining the biochemical cycling processes with the downstream driving force of stream discharge. To date, nutrient spiraling approaches have been hampered by their inability to deal with fluctuating flows, as most studies have characterized nutrient retention within only a small range of discharges near base flow. Here hydrologic variability is incorporated into nutrient spiraling theory by drawing on the fluvial geomorphic concept of effective discharge. The effective discharge for nutrient retention is proposed to be that discharge which, over long periods of time, is responsible for the greatest portion of nutrient retention. A developed analytical model predicts that the effective discharge for nutrient retention will equal the modal discharge for small streams or those with little discharge variability. As modal discharge increases or discharge variability increases, the effective discharge becomes increasingly less than the modal discharge. In addition to the effective discharge, a new metric is proposed, the functionally equivalent discharge, which is the single discharge that will reproduce the magnitude of nutrient retention generated by the full hydrologic frequency distribution when all discharge takes place at that rate. The functionally equivalent discharge was found to be the same as the modal discharge at low hydrologic variability, but increasingly different from the modal discharge at large hydrologic variability. The functionally equivalent discharge provides a simple quantitative means of incorporating hydrologic variability into long-term nutrient budgets.

  6. Characterization of the In Situ Ecophysiology of Novel Phylotypes in Nutrient Removal Activated Sludge Treatment Plants.

    Directory of Open Access Journals (Sweden)

    Simon Jon McIlroy

    Full Text Available An in depth understanding of the ecology of activated sludge nutrient removal wastewater treatment systems requires detailed knowledge of the community composition and metabolic activities of individual members. Recent 16S rRNA gene amplicon surveys of activated sludge wastewater treatment plants with nutrient removal indicate the presence of a core set of bacterial genera. These organisms are likely responsible for the bulk of nutrient transformations underpinning the functions of these plants. While the basic activities of some of these genera in situ are known, there is little to no information for the majority. This study applied microautoradiography coupled with fluorescence in situ hybridization (MAR-FISH for the in situ characterization of selected genus-level-phylotypes for which limited physiological information is available. These included Sulfuritalea and A21b, both within the class Betaproteobacteria, as well as Kaga01, within sub-group 10 of the phylum Acidobacteria. While the Sulfuritalea spp. were observed to be metabolically versatile, the A21b and Kaga01 phylotypes appeared to be highly specialized.

  7. Nutrient additions to mitigate for loss of Pacific salmon: consequences for stream biofilm and nutrient dynamics

    Science.gov (United States)

    Marcarelli, Amy M.; Baxter, Colden V.; Wipfli, Mark S.

    2014-01-01

    Mitigation activities designed to supplement nutrient and organic matter inputs to streams experiencing decline or loss of Pacific salmon typically presuppose that an important pathway by which salmon nutrients are moved to fish (anadromous and/or resident) is via nutrient incorporation by biofilms and subsequent bottom-up stimulation of biofilm production, which is nutrient-limited in many ecosystems where salmon returns have declined. Our objective was to quantify the magnitude of nutrient incorporation and biofilm dynamics that underpin this indirect pathway in response to experimental additions of salmon carcasses and pelletized fish meal (a.k.a., salmon carcass analogs) to 500-m reaches of central Idaho streams over three years. Biofilm standing crops increased 2–8-fold and incorporated marine-derived nutrients (measured using 15N and 13C) in the month following treatment, but these responses did not persist year-to-year. Biofilms were nitrogen (N) limited before treatments, and remained N limited in analog, but not carcass-treated reaches. Despite these biofilm responses, in the month following treatment total N load was equal to 33–47% of the N added to the treated reaches, and N spiraling measurements suggested that as much as 20%, but more likely 2–3% of added N was taken up by microbes. Design of biologically and cost-effective strategies for nutrient addition will require understanding the rates at which stream microbes take up nutrients and the downstream distance traveled by exported nutrients.

  8. Effect of oral administration of probiotics on growth performance, apparent nutrient digestibility and stress-related indicators in Holstein calves.

    Science.gov (United States)

    Zhang, R; Zhou, M; Tu, Y; Zhang, N F; Deng, K D; Ma, T; Diao, Q Y

    2016-02-01

    This study aimed to investigate the effect of dietary supplementation with Lactobacillus plantarum and Bacillus subtilis on growth performance, apparent nutrient digestibility and stress-related indicators in dairy calves. Twenty-four neonatal Holstein calves were randomly allocated to three treatments: a basal diet with no supplementation (control), the basal diet supplemented with 1.7 × 10(10) CFU per head per day (CFU/h.d) of L. plantarum GF103 (LB group) or the basal diet supplemented with a mixture of L. plantarum GF103 (1.7 × 10(10) CFU/h.d) and B. subtilis B27 (1.7 × 10(8) CFU/h.d) (LBS group). Dry matter intake (DMI), average daily gain (ADG), feed conversation ratio (FCR), apparent digestibility of nutrients and stress-related indicators were measured in this trail. The result indicated that no significant differences were observed in DMI or ADG (p > 0.05), but the FCR was improved in the LB group over the first 12 weeks (p > 0.05). The apparent digestibility of nutrients was not altered by probiotics in week 6 (p > 0.05), but the apparent digestibility of total phosphorus was significantly greater in the LB and LBS groups in week 8 (p > 0.05); additionally, an increase in the apparent digestibility of crude protein was detected in the LBS group (p > 0.05). Oral administration of L. plantarum alone improved the T-lymphocyte transformation rate on days 58 and 62 (p > 0.05), while adding the mixture of L. plantarum and B. subtilis increased the T-lymphocyte transformation rate (p > 0.05) but decreased the content of cortisol on day 58 (p > 0.05). No significant differences were detected between the LB and LBS groups in growth performance, apparent digestibility of nutrients and stress-related indicators (p > 0.05). The results suggested that oral administration of L. plantarum improved growth performance, nutrient digestibility and relieved weaning stress in calves, but no additional effect was obtained by supplementation with B. subtilis. Journal of

  9. An efficient in planta transformation of Jatropha curcas (L.) and multiplication of transformed plants through in vivo grafting.

    Science.gov (United States)

    Jaganath, Balusamy; Subramanyam, Kondeti; Mayavan, Subramanian; Karthik, Sivabalan; Elayaraja, Dhandapani; Udayakumar, Rajangam; Manickavasagam, Markandan; Ganapathi, Andy

    2014-05-01

    An efficient and reproducible Agrobacterium-mediated in planta transformation was developed in Jatropha curcas. The various factors affecting J. curcas in planta transformation were optimized, including decapitation, Agrobacterium strain, pin-pricking, vacuum infiltration duration and vacuum pressure. Simple vegetative in vivo cleft grafting method was adopted in the multiplication of transformants without the aid of tissue culture. Among the various parameters evaluated, decapitated plants on pin-pricking and vacuum infiltrated at 250 mmHg for 3 min with the Agrobacterium strain EHA 105 harbouring the binary vector pGA 492 was proved to be efficient in all terms with a transformation efficiency of 62.66%. Transgene integration was evinced by the GUS histochemical analysis, and the GUS positive plants were subjected to grafting. Putatively transformed J. curcas served as "Scion" and the wild type J. curcas plant severed as "Stock". There was no occurrence of graft rejection and the plants were then confirmed by GUS histochemical analysis, polymerase chain reaction (PCR) and Southern hybridization. Genetic stability of the grafted plants was evaluated by using randomly amplified polymorphic DNA (RAPD), marker which showed 100% genetic stability between mother and grafted plants. Thus, an efficient in planta transformation and grafting based multiplication of J. curcas was established.

  10. Screening commercial wheat (triticum aestivum l.) varieties for agrobacterium mediated transformation ability

    International Nuclear Information System (INIS)

    Abid, N.; Maqbool, A.; Mlaik, K.

    2014-01-01

    Wheat is staple food crop of many countries including Pakistan. It has a large number of cultivars and genotypes. All genotypes have different tissue culture response that includes callus induction, regeneration and transformation efficiency. For transgenic plant production it is crucial to know tissue culture efficiency of a selected variety. Therefore, in the present study mature embryos of thirteen elite wheat (Triticum aestivum L.) varieties were evaluated for tissue culture response and their amenability to transformation. Each variety responded differently for callogenesis, transient GUS (glucuronidase) expression and regeneration. The results for callus induction and transient GUS expression ranged from 30-100% and 13-100%, respectively whereas regeneration response was quite different in tested varieties that ranged from 0-44%. Good quality callus was observed in all varieties except Dhurabi-11, Lasani-08, Millat and Pak-81. Maximum transient GUS expression (100%) was found in Faisalabad-2008. Highest regeneration (44%) was noticed in Pak-81. Results indicated that three varieties VIII-83, Faisalabad-2008 and Aas-11 are suitable for transformation in comparison to others. (author)

  11. Comparison of Soybean Transformation Efficiency and Plant Factors Affecting Transformation during the Agrobacterium Infection Process.

    Science.gov (United States)

    Jia, Yuying; Yao, Xingdong; Zhao, Mingzhe; Zhao, Qiang; Du, Yanli; Yu, Cuimei; Xie, Futi

    2015-08-07

    The susceptibility of soybean genotype to Agrobacterium infection is a key factor for the high level of genetic transformation efficiency. The objective of this study is to evaluate the plant factors related to transformation in cotyledonary nodes during the Agrobacterium infection process. This study selected three genotypes (Williams 82, Shennong 9 and Bert) with high transformation efficiency, which presented better susceptibility to Agrobacterium infection, and three low transformation efficiency genotypes (General, Liaodou 16 and Kottman), which showed a relatively weak susceptibility. Gibberellin (GA) levels and soybean GA20ox2 and CYP707A2 transcripts of high-efficiency genotypes increased and were higher than those of low-efficiency genotypes; however, the opposite performance was shown in abscisic acid (ABA). Higher zeatin riboside (ZR) content and DNA quantity, and relatively higher expression of soybean IPT5, CYCD3 and CYCA3 were obtained in high-efficiency genotypes. High-efficiency genotypes had low methyl jasmonate (MeJA) content, polyphenol oxidase (PPO) and peroxidase (POD) activity, and relatively lower expression of soybean OPR3, PPO1 and PRX71. GA and ZR were positive plant factors for Agrobacterium-mediated soybean transformation by facilitating germination and growth, and increasing the number of cells in DNA synthesis cycle, respectively; MeJA, PPO, POD and ABA were negative plant factors by inducing defence reactions and repressing germination and growth, respectively.

  12. Comparison of Soybean Transformation Efficiency and Plant Factors Affecting Transformation during the Agrobacterium Infection Process

    Directory of Open Access Journals (Sweden)

    Yuying Jia

    2015-08-01

    Full Text Available The susceptibility of soybean genotype to Agrobacterium infection is a key factor for the high level of genetic transformation efficiency. The objective of this study is to evaluate the plant factors related to transformation in cotyledonary nodes during the Agrobacterium infection process. This study selected three genotypes (Williams 82, Shennong 9 and Bert with high transformation efficiency, which presented better susceptibility to Agrobacterium infection, and three low transformation efficiency genotypes (General, Liaodou 16 and Kottman, which showed a relatively weak susceptibility. Gibberellin (GA levels and soybean GA20ox2 and CYP707A2 transcripts of high-efficiency genotypes increased and were higher than those of low-efficiency genotypes; however, the opposite performance was shown in abscisic acid (ABA. Higher zeatin riboside (ZR content and DNA quantity, and relatively higher expression of soybean IPT5, CYCD3 and CYCA3 were obtained in high-efficiency genotypes. High-efficiency genotypes had low methyl jasmonate (MeJA content, polyphenol oxidase (PPO and peroxidase (POD activity, and relatively lower expression of soybean OPR3, PPO1 and PRX71. GA and ZR were positive plant factors for Agrobacterium-mediated soybean transformation by facilitating germination and growth, and increasing the number of cells in DNA synthesis cycle, respectively; MeJA, PPO, POD and ABA were negative plant factors by inducing defence reactions and repressing germination and growth, respectively.

  13. Measuring nutrient spiralling in streams

    Energy Technology Data Exchange (ETDEWEB)

    Newbold, J D; Elwood, J W; O' Neill, R V; Van Winkle, W

    1981-01-01

    Nutrient cycling in streams involves some downstream transport before the cycle is completed. Thus, the path traveled by a nutrient atom in passing through the cycle can be visualized as a spiral. As an index of the spiralling process, we introduce spiralling length, defined as the average distance associated with one complete cycle of a nutrient atom. This index provides a measure of the utilization of nutrients relative to the available supply from upstream. Using /sup 32/p as a tracer, we estimated a spiralling length of 193 m for phosphorus in a small woodland stream.

  14. Sporangiospore-yeast transformation of Mucor circinelloides : Ionic ...

    African Journals Online (AJOL)

    Measurement of intracellular ion concentration during sporangiospores-yeast transformation of Mucor circinelloides Tieghem in K+- mediated (0.90 to 1.10 g/l) and Na+-modulated (0.05 to 0.20 g/l) multiionic broths, pH 4.5, temperature 20°C, showed that (a), transmembrane ion flux was continuous during the growth period ...

  15. Recovery of Three Arctic Stream Reaches From Experimental Nutrient Enrichment.

    Science.gov (United States)

    Green, A. C.; Benstead, J. P.; Deegan, L. A.; Peterson, B. J.; Bowden, W. B.; Huryn, A. D.; Slavik, K.; Hershey, A. E.

    2005-05-01

    We examined multi-year patterns in community recovery from experimental low-concentration nutrient (N+P and P only) enrichment in three reaches of two Arctic tundra streams (Kuparuk River and Oksrukuyik Creek) on the North Slope of Alaska (USA). Rates of recovery varied among community components and depended on duration of enrichment (2 to 13 consecutive growing seasons). Biomass and C:P ratio of epilithic algae returned to reference levels rapidly (within 2 years), regardless of enrichment duration. Bryophyte cover, which increased greatly after long-term enrichment (>8 years), recovered to reference levels only after 7 years, when a storm scoured most remnant moss in the recovering reach. Persistence of bryophytes slowed recovery rates of insect taxa that had either been positively (e.g., Ephemerella, most chironomid taxa) or negatively (e.g., Orthocladius rivulorum) affected by this shift in dominant primary producer and its consequence for benthic habitat. Growth of Arctic grayling (adults and young-of-year), the top predator, returned to reference rates within two years. Recovery of these Arctic stream ecosystems from nutrient enrichment was consequently controlled largely by interactions between duration of enrichment and physical disturbance, mediated through physical habitat shifts caused by bryophytes.

  16. Arsenite induces cell transformation by reactive oxygen species, AKT, ERK1/2, and p70S6K1

    International Nuclear Information System (INIS)

    Carpenter, Richard L.; Jiang, Yue; Jing, Yi; He, Jun; Rojanasakul, Yon; Liu, Ling-Zhi; Jiang, Bing-Hua

    2011-01-01

    Highlights: ► Chronic exposure to arsenite induces cell proliferation and transformation. ► Arsenite-induced transformation increases ROS production and downstream signalings. ► Inhibition of ROS levels via catalase reduces arsenite-induced cell transformation. ► Interruption of AKT, ERK, or p70S6K1 inhibits arsenite-induced cell transformation. -- Abstract: Arsenic is naturally occurring element that exists in both organic and inorganic formulations. The inorganic form arsenite has a positive association with development of multiple cancer types. There are significant populations throughout the world with high exposure to arsenite via drinking water. Thus, human exposure to arsenic has become a significant public health problem. Recent evidence suggests that reactive oxygen species (ROS) mediate multiple changes to cell behavior after acute arsenic exposure, including activation of proliferative signaling and angiogenesis. However, the role of ROS in mediating cell transformation by chronic arsenic exposure is unknown. We found that cells chronically exposed to sodium arsenite increased proliferation and gained anchorage-independent growth. This cell transformation phenotype required constitutive activation of AKT, ERK1/2, mTOR, and p70S6K1. We also observed these cells constitutively produce ROS, which was required for the constitutive activation of AKT, ERK1/2, mTOR, and p70S6K1. Suppression of ROS levels by forced expression of catalase also reduced cell proliferation and anchorage-independent growth. These results indicate cell transformation induced by chronic arsenic exposure is mediated by increased cellular levels of ROS, which mediates activation of AKT, ERK1/2, and p70S6K1.

  17. Task complexity and transformational leadership : The mediating role of leaders' state core self-evaluations

    NARCIS (Netherlands)

    Dóci, Edina; Hofmans, Joeri

    2015-01-01

    While substantial scholarly attention has been paid to the beneficial consequences of transformational leadership and the conditions in which this leadership style is most effective, there is a remarkable shortage of research on the contextual antecedents of transformational leadership behavior

  18. Leaf mineral nutrient remobilization during leaf senescence and modulation by nutrient deficiency.

    Directory of Open Access Journals (Sweden)

    Anne eMaillard

    2015-05-01

    Full Text Available Higher plants have to cope with fluctuating mineral resource availability. However strategies such as stimulation of root growth, increased transporter activities, and nutrient storage and remobilization have been mostly studied for only a few macronutrients. Leaves of cultivated crops (Zea mays, Brassica napus, Pisum sativum, Triticum aestivum, Hordeum vulgare and tree species (Quercus robur, Populus nigra, Alnus glutinosa grown under field conditions were harvested regularly during their life span and analysed to evaluate the net mobilization of 13 nutrients during leaf senescence. While N was remobilized in all plant species with different efficiencies ranging from 40% (maize to 90% (wheat, other macronutrients (K-P-S-Mg were mobilized in most species. Ca and Mn, usually considered as having low phloem mobility were remobilized from leaves in wheat and barley. Leaf content of Cu-Mo-Ni-B-Fe-Zn decreased in some species, as a result of remobilization. Overall, wheat, barley and oak appeared to be the most efficient at remobilization while poplar and maize were the least efficient. Further experiments were performed with rapeseed plants subjected to individual nutrient deficiencies. Compared to field conditions, remobilization from leaves was similar (N-S-Cu or increased by nutrient deficiency (K-P-Mg while nutrient deficiency had no effect on Mo-Zn-B-Ca-Mn, which seemed to be non-mobile during leaf senescence under field conditions. However, Ca and Mn were largely mobilized from roots (-97 and -86% of their initial root contents, respectively to shoots. Differences in remobilization between species and between nutrients are then discussed in relation to a range of putative mechanisms.

  19. Transformational leadership and group interaction as climate antecedents: a social network analysis.

    Science.gov (United States)

    Zohar, Dov; Tenne-Gazit, Orly

    2008-07-01

    In order to test the social mechanisms through which organizational climate emerges, this article introduces a model that combines transformational leadership and social interaction as antecedents of climate strength (i.e., the degree of within-unit agreement about climate perceptions). Despite their longstanding status as primary variables, both antecedents have received limited empirical research. The sample consisted of 45 platoons of infantry soldiers from 5 different brigades, using safety climate as the exemplar. Results indicate a partially mediated model between transformational leadership and climate strength, with density of group communication network as the mediating variable. In addition, the results showed independent effects for group centralization of the communication and friendship networks, which exerted incremental effects on climate strength over transformational leadership. Whereas centralization of the communication network was found to be negatively related to climate strength, centralization of the friendship network was positively related to it. Theoretical and practical implications are discussed.

  20. Review of methodologies and a protocol for the Agrobacterium-mediated transformation of wheat

    Directory of Open Access Journals (Sweden)

    Doherty Angela

    2005-09-01

    Full Text Available Abstract Since the first report of wheat transformation by Agrobacterium tumefaciens in 1997, various factors that influence T-DNA delivery and regeneration in tissue culture have been further investigated and modified. This paper reviews the current methodology literature describing Agrobacterium transformation of wheat and provides a complete protocol that we have developed and used to produce over one hundred transgenic lines in both spring and winter wheat varieties.

  1. Chronic exposure to arsenic, estrogen, and their combination causes increased growth and transformation in human prostate epithelial cells potentially by hypermethylation-mediated silencing of MLH1.

    Science.gov (United States)

    Treas, Justin; Tyagi, Tulika; Singh, Kamaleshwar P

    2013-11-01

    Chronic exposure to arsenic and estrogen is associated with risk of prostate cancer, but their mechanism is not fully understood. Additionally, the carcinogenic effects of their co-exposure are not known. Therefore, the objective of this study was to evaluate the effects of chronic exposure to arsenic, estrogen, and their combination, on cell growth and transformation, and identify the mechanism behind these effects. RWPE-1 human prostate epithelial cells were chronically exposed to arsenic and estrogen alone and in combination. Cell growth was measured by cell count and cell cycle, whereas cell transformation was evaluated by colony formation assay. Gene expression was measured by quantitative real-time PCR and confirmed at protein level by Western blot analysis. MLH1 promoter methylation was determined by pyrosequencing method. Exposure to arsenic, estrogen, and their combinations increases cell growth and transformation in RWPE-1 cells. Increased expression of Cyclin D1 and Bcl2, whereas decreased expression of mismatch repair genes MSH4, MSH6, and MLH1 was also observed. Hypermethylation of MLH1 promoter further suggested the epigenetic inactivation of MLH1 expression in arsenic and estrogen treated cells. Arsenic and estrogen combination caused greater changes than their individual treatments. Findings of this study for the first time suggest that arsenic and estrogen exposures cause increased cell growth and survival potentially through epigenetic inactivation of MLH1 resulting in decreased MLH1-mediated apoptotic response, and consequently increased cellular transformation. © 2013 Wiley Periodicals, Inc.

  2. Extracellular vesicle communication pathways as regulatory targets of oncogenic transformation.

    Science.gov (United States)

    Choi, Dongsic; Lee, Tae Hoon; Spinelli, Cristiana; Chennakrishnaiah, Shilpa; D'Asti, Esterina; Rak, Janusz

    2017-07-01

    Pathogenesis of human cancers bridges intracellular oncogenic driver events and their impact on intercellular communication. Among multiple mediators of this 'pathological connectivity' the role of extracellular vesicles (EVs) and their subsets (exosomes, ectosomes, oncosomes) is of particular interest for several reasons. The release of EVs from cancer cells represents a unique mechanism of regulated expulsion of bioactive molecules, a process that also mediates cell-to-cell transfer of lipids, proteins, and nucleic acids. Biological effects of these processes have been implicated in several aspects of cancer-related pathology, including tumour growth, invasion, angiogenesis, metastasis, immunity and thrombosis. Notably, the emerging evidence suggests that oncogenic mutations may impact several aspects of EV-mediated cell-cell communication including: (i) EV release rate and protein content; (ii) molecular composition of cancer EVs; (iii) the inclusion of oncogenic and mutant macromolecules in the EV cargo; (iv) EV-mediated release of genomic DNA; (v) deregulation of mechanisms responsible for EV biogenesis (vesiculome) and (vi) mechanisms of EV uptake by cancer cells. Intriguingly, EV-mediated intercellular transfer of mutant and oncogenic molecules between subpopulations of cancer cells, their indolent counterparts and stroma may exert profound biological effects that often resemble (but are not tantamount to) oncogenic transformation, including changes in cell growth, clonogenicity and angiogenic phenotype, or cause cell stress and death. However, several biological barriers likely curtail a permanent horizontal transformation of normal cells through EV-mediated mechanisms. The ongoing analysis and targeting of EV-mediated intercellular communication pathways can be viewed as a new therapeutic paradigm in cancer, while the analysis of oncogenic cargo contained in EVs released from cancer cells into biofluids is being developed for clinical use as a biomarker

  3. Mediatized Extreme Right Activism and Discourse

    DEFF Research Database (Denmark)

    Peters, Rikke Alberg

    2015-01-01

    This paper presents a case study of the German neo-fascist network The Immortals (Die Unsterblichen) who in 2011 performed a flash-mob disseminated on YouTube for the so- called ‘Become Immortal’ campaign. The street protest was designed for and adapted to the specific characteristics of online...... activism. It is a good example of how new contentious action repertoires in which online and street activism intertwine have also spread to extreme right groups. Despite its neo-fascist and extreme right content the ‘Become Immortal’ campaign serves as an illustrative case for the study of mediated...... and mediatized activism. In order to analyse of the protest form, the visual aesthetics and the discourse of ‘The Immortals’, the paper mobilises two concepts from media and communication studies: mediation and mediatization. It will be argued that that the current transformation of the extreme right: that is...

  4. Natural transformation of Campylobacter jejuni occurs beyond limits of growth

    DEFF Research Database (Denmark)

    Vegge, Christina Skovgaard; Brøndsted, Lone; Ligowska, Małgorzata

    2012-01-01

    of transformation is correlated to the growth conditions, but more importantly that transformation occurs at growth-restrictive conditions as well as in the late stationary phase; hence revealing that growth per se is not required for C. jejuni to be competent. Yet, natural transformation of C. jejuni is an energy......Campylobacter jejuni is a human bacterial pathogen. While poultry is considered to be a major source of food borne campylobacteriosis, C. jejuni is frequently found in the external environment, and water is another well-known source of human infections. Natural transformation is considered...... to be one of the main mechanisms for mediating transfer of genetic material and evolution of the organism. Given the diverse habitats of C. jejuni we set out to examine how environmental conditions and physiological processes affect natural transformation of C. jejuni. We show that the efficiency...

  5. Transformational Leadership and Creative Problem-Solving: The Mediating Role of Psychological Safety and Reflexivity

    Science.gov (United States)

    Carmeli, Abraham; Sheaffer, Zachary; Binyamin, Galy; Reiter-Palmon, Roni; Shimoni, Tali

    2014-01-01

    Previous research has pointed to the importance of transformational leadership in facilitating employees' creative outcomes. However, the mechanism by which transformational leadership cultivates employees' creative problem-solving capacity is not well understood. Drawing on theories of leadership, information processing and creativity,…

  6. The subtropical nutrient spiral

    Science.gov (United States)

    Jenkins, William J.; Doney, Scott C.

    2003-12-01

    We present an extended series of observations and more comprehensive analysis of a tracer-based measure of new production in the Sargasso Sea near Bermuda using the 3He flux gauge technique. The estimated annually averaged nitrate flux of 0.84 ± 0.26 mol m-2 yr-1 constitutes only that nitrate physically transported to the euphotic zone, not nitrogen from biological sources (e.g., nitrogen fixation or zooplankton migration). We show that the flux estimate is quantitatively consistent with other observations, including decade timescale evolution of the 3H + 3He inventory in the main thermocline and export production estimates. However, we argue that the flux cannot be supplied in the long term by local diapycnal or isopycnal processes. These considerations lead us to propose a three-dimensional pathway whereby nutrients remineralized within the main thermocline are returned to the seasonally accessible layers within the subtropical gyre. We describe this mechanism, which we call "the nutrient spiral," as a sequence of steps where (1) nutrient-rich thermocline waters are entrained into the Gulf Stream, (2) enhanced diapycnal mixing moves nutrients upward onto lighter densities, (3) detrainment and enhanced isopycnal mixing injects these waters into the seasonally accessible layer of the gyre recirculation region, and (4) the nutrients become available to biota via eddy heaving and wintertime convection. The spiral is closed when nutrients are utilized, exported, and then remineralized within the thermocline. We present evidence regarding the characteristics of the spiral and discuss some implications of its operation within the biogeochemical cycle of the subtropical ocean.

  7. Leaf absorption of mineral nutrients in carnivorous plants stimulates root nutrient uptake

    Czech Academy of Sciences Publication Activity Database

    Adamec, Lubomír

    2002-01-01

    Roč. 155, - (2002), s. 89-100 ISSN 0028-646X R&D Projects: GA AV ČR IAA6005905 Institutional research plan: CEZ:AV0Z6005908 Keywords : terrestrial carnivorous plant s * utilization of prey * mineral nutrient re-utilization * leaf nutrient supply Subject RIV: EF - Botanics Impact factor: 2.945, year: 2002

  8. CADDIS Volume 2. Sources, Stressors and Responses: Nutrients

    Science.gov (United States)

    Introduction to the nutrients module, when to list nutrients as a candidate cause, ways to measure nutrients, simple and detailed conceptual diagrams for nutrients, nutrients module references and literature reviews.

  9. T cell receptor (TCR-transgenic CD8 lymphocytes rendered insensitive to transforming growth factor beta (TGFβ signaling mediate superior tumor regression in an animal model of adoptive cell therapy

    Directory of Open Access Journals (Sweden)

    Quatromoni Jon G

    2012-06-01

    Full Text Available Abstract Tumor antigen-reactive T cells must enter into an immunosuppressive tumor microenvironment, continue to produce cytokine and deliver apoptotic death signals to affect tumor regression. Many tumors produce transforming growth factor beta (TGFβ, which inhibits T cell activation, proliferation and cytotoxicity. In a murine model of adoptive cell therapy, we demonstrate that transgenic Pmel-1 CD8 T cells, rendered insensitive to TGFβ by transduction with a TGFβ dominant negative receptor II (DN, were more effective in mediating regression of established B16 melanoma. Smaller numbers of DN Pmel-1 T cells effectively mediated tumor regression and retained the ability to produce interferon-γ in the tumor microenvironment. These results support efforts to incorporate this DN receptor in clinical trials of adoptive cell therapy for cancer.

  10. Leadership and change commitment in the life insurance service context in Taiwan: the mediating-moderating role of job satisfaction.

    Science.gov (United States)

    Yang, Yi-Feng

    2011-06-01

    The effects of transformational leadership and satisfaction were studied along with their interconnected effects (mediation and moderation) on commitment to change in the life insurance industry in two samples, sales managers and salespersons. A multiple mediated-moderated regression approach showed mediation and moderation to have statistically significant main effects on change commitment. Transformational leadership and satisfaction made a more important contribution to change commitment while job satisfaction had a mediating and moderating role that could enhance the relationships between leadership and change commitment. This information is of importance in building successful change commitment associations with customers.

  11. A Comparative-Study on Nutrient Cycling in Wet Heathland Ecosystems.2.Litter Decomposition and Nutrient Mineralization

    NARCIS (Netherlands)

    Berendse, F.; Bobbink, R.; Rouwenhorst, G.

    1989-01-01

    The concept of the relative nutrient requirement (L n) that was introduced in the first paper of this series is used to analyse the effects of the dominant plant population on nutrient cycling and nutrient mineralization in wet heathland ecosystems. A distinction is made between the effect that the

  12. Leaf nutrient resorption, leaf lifespan and the retention of nutrients in seagrass systems

    NARCIS (Netherlands)

    Hemminga, M.A.; Marbà, N.; Stapel, J.

    1999-01-01

    Efficient nutrient resorption from senescing leaves, and extended leaf life spans are important strategies in order to conserve nutrients for plants in general. Despite the fact that seagrasses often grow in oligotrophic waters, these conservation strategies are not strongly developed in seagrasses.

  13. Impact of Temperature and Nutrients on Carbon: Nutrient Tissue Stoichiometry of Submerged Aquatic Plants: An Experiment and Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Mandy Velthuis

    2017-05-01

    Full Text Available Human activity is currently changing our environment rapidly, with predicted temperature increases of 1–5°C over the coming century and increased nitrogen and phosphorus inputs in aquatic ecosystems. In the shallow parts of these ecosystems, submerged aquatic plants enhance water clarity by resource competition with phytoplankton, provide habitat, and serve as a food source for other organisms. The carbon:nutrient stoichiometry of submerged aquatic plants can be affected by changes in both temperature and nutrient availability. We hypothesized that elevated temperature leads to higher carbon:nutrient ratios through enhanced nutrient-use efficiency, while nutrient addition leads to lower carbon:nutrient ratios by the luxurious uptake of nutrients. We addressed these hypotheses with an experimental and a meta-analytical approach. We performed a full-factorial microcosm experiment with the freshwater plant Elodea nuttallii grown at 10, 15, 20, and 25°C on sediment consisting of pond soil/sand mixtures with 100, 50, 25, and 12.5% pond soil. To address the effect of climatic warming and nutrient addition on the carbon:nutrient stoichiometry of submerged freshwater and marine plants we performed a meta-analysis on experimental studies that elevated temperature and/or added nutrients (nitrogen and phosphorus. In the microcosm experiment, C:N ratios of Elodea nuttallii decreased with increasing temperature, and this effect was most pronounced at intermediate nutrient availability. Furthermore, higher nutrient availability led to decreased aboveground C:P ratios. In the meta-analysis, nutrient addition led to a 25, 22, and 16% reduction in aboveground C:N and C:P ratios and belowground C:N ratios, accompanied with increased N content. No consistent effect of elevated temperature on plant stoichiometry could be observed, as very few studies were found on this topic and contrasting results were reported. We conclude that while nutrient addition

  14. Octopamine connects nutrient cues to lipid metabolism upon nutrient deprivation.

    Science.gov (United States)

    Tao, Jun; Ma, Yi-Cheng; Yang, Zhong-Shan; Zou, Cheng-Gang; Zhang, Ke-Qin

    2016-05-01

    Starvation is probably the most common stressful situation in nature. In vertebrates, elevation of the biogenic amine norepinephrine levels is common during starvation. However, the precise role of norepinephrine in nutrient deprivation remains largely unknown. We report that in the free-living nematode Caenorhabditis elegans, up-regulation of the biosynthesis of octopamine, the invertebrate counterpart of norepinephrine, serves as a mechanism to adapt to starvation. During nutrient deprivation, the nuclear receptor DAF-12, known to sense nutritional cues, up-regulates the expression of tbh-1 that encodes tyramine β-hydroxylase, a key enzyme for octopamine biosynthesis, in the RIC neurons. Octopamine induces the expression of the lipase gene lips-6 via its receptor SER-3 in the intestine. LIPS-6, in turn, elicits lipid mobilization. Our findings reveal that octopamine acts as an endocrine regulator linking nutrient cues to lipolysis to maintain energy homeostasis, and suggest that such a mechanism may be evolutionally conserved in diverse organisms.

  15. Nutrient limitation and microbially mediated chemistry: studies using tuff inoculum obtained from the Exploratory Studies Facility, Yucca Mountain

    International Nuclear Information System (INIS)

    Chen, C. I.; Chuu, Y. J.; Meike, A.; Ringelberg, D.; Sawvel, A.