WorldWideScience

Sample records for mediated immune disorders

  1. Immune mediated disorders in women with a fragile X expansion and FXTAS.

    Science.gov (United States)

    Jalnapurkar, Isha; Rafika, Nuva; Tassone, Flora; Hagerman, Randi

    2015-01-01

    Premutation alleles in fragile X mental retardation 1 (FMR1) can cause the late-onset neurodegenerative disorder, fragile X-associated tremor ataxia syndrome (FXTAS) and/or the fragile X-associated primary ovarian insufficiency in approximately 20% of heterozygotes. Heterozygotes of the FMR1 premutation have a higher incidence of immune mediated disorders such as autoimmune thyroid disorder, especially when accompanied by FXTAS motor signs. We describe the time course of symptoms of immune mediated disorders and the subsequent development of FXTAS in four women with an FMR1 CGG expansion, including three with the premutation and one with a gray zone expansion. These patients developed an immune mediated disorder followed by neurological symptoms that become consistent with FXTAS. In all patients we observed a pattern involving an initial appearance of disease symptoms-often after a period of heightened stress (depression, anxiety, divorce, general surgery) followed by the onset of tremor and/or ataxia. Immune mediated diseases are associated with the manifestations of FXTAS temporally, although further studies are needed to clarify this association. If a cause and effect relationship can be established, treatment of pre-existing immune mediated disorders may benefit patients with pathogenic FMR1 mutations. © 2014 Wiley Periodicals, Inc.

  2. Principles and approaches to the treatment of immune-mediated movement disorders.

    Science.gov (United States)

    Mohammad, Shekeeb S; Dale, Russell C

    2018-03-01

    Immune mediated movement disorders include movement disorders in the context of autoimmune encephalitis such as anti-NMDAR encephalitis, post-infectious autoimmune movement disorders such as Sydenham chorea, paraneoplastic autoimmune movement disorders such as opsoclonus myoclonus ataxia syndrome, and infection triggered conditions such as paediatric acute neuropsychiatric syndrome. This review focuses on the approach to treatment of immune mediated movement disorders, which requires an understanding of the immunopathogenesis, whether the disease is destructive or 'altering', and the natural history of disease. Factors that can influence outcome include the severity of disease, the delay before starting therapy, use of multimodal therapy and whether the course is monophasic or relapsing. Although the four main conditions listed above have different pathophysiological processes, there are general themes that broadly apply including: early diagnosis and treatment is better, minimise the severity of disease, escalate treatment if the patient is not responding to initial treatments, and minimise relapse. Copyright © 2017. Published by Elsevier Ltd.

  3. Host-microbiota interplay in mediating immune disorders.

    Science.gov (United States)

    Felix, Krysta M; Tahsin, Shekha; Wu, Hsin-Jung Joyce

    2018-04-01

    To maintain health, the immune system must maintain a delicate balance between eliminating invading pathogens and avoiding immune disorders such as autoimmunity and allergies. The gut microbiota provide essential health benefits to the host, particularly by regulating immune homeostasis. Dysbiosis, an alteration and imbalance of the gut microbiota, is associated with the development of several autoimmune diseases in both mice and humans. In this review, we discuss recent advances in understanding how certain factors, such as age and gender, affect the gut microbiota, which in turn can influence the development of autoimmune diseases. The age factor in microbiota-dependent immune disorders indicates a window of opportunity for future diagnostic and therapeutic approaches. We also discuss unique commensal bacteria with strong immunomodulatory activity. Finally, we provide an overview of the potential molecular mechanisms whereby gut microbiota induce autoimmunity, as well as the evidence that gut microbiota trigger extraintestinal diseases by inducing the migration of gut-derived immune cells. Elucidating the interaction of gut microbiota and the host immune system will help us understand the pathogenesis of immune disorders, and provide us with new foundations to develop novel immuno- or microbe-targeted therapies. © 2017 New York Academy of Sciences.

  4. Immune-mediated neuropathies our experience over 3 years

    Directory of Open Access Journals (Sweden)

    Sadanandavalli Retnaswami Chandra

    2018-01-01

    Full Text Available Introduction: Immune-mediated peripheral neuropathy is the term applied to a spectrum of peripheral nerve disorders where immune dysregulation plays a role. Therefore, they are treatable. We analyzed the cases seen in the past 3 years by us and evaluated the clinical, laboratory, and outcome parameters in these patients. Patients and Methods: Consecutive patients seen by the authors and diagnosed as immune-mediated neuropathy were analyzed for etiology, pathology, and outcome assessed. Results: A total of sixty patients, 31 acute and 29 chronic neuropathies, were identified. Their subtypes treatment and outcome assessed. Males were significantly more in both acute and chronic cases. Miller Fisher 4, AMAN 1, paraplegic type 1, motor dominant type 19, Sensory-motor 1, MADSAM 3, Bifacial 2. Nonsystemic vasculitis was seen in 16 out of 29 chronic neuropathy and HIV, POEMS, and diabetes mellitus one each. Discussion: There is a spectrum of immune-mediated neuropathy which varies in clinical course, response to treatment, etc., Small percentage of uncommon cases are seen. In this group, mortality was nil and morbidity was minimal. Conclusion: Immune-mediated neuropathies are treatable and hence should be diagnosed early for good quality outcome.

  5. Immune-mediated animal models of Tourette syndrome

    Science.gov (United States)

    Hornig, Mady; Lipkin, W. Ian

    2014-01-01

    An autoimmune diathesis has been proposed in Tourette syndrome (TS) and related neuropsychiatric disorders such as obsessive-compulsive disorder, attention-deficit/hyperactivity disorder, autism and anorexia nervosa. Environmental triggers including infection and xenobiotics are hypothesized to lead to the production of brain-directed autoantibodies in a subset of genetically susceptible individuals. Although much work has focused on Group A Streptococcus (GAS), the role of this common childhood infection remains controversial. Animal model studies based on immune and autoantibody findings in TS have demonstrated immunoglobulin (Ig) deposits and stereotypic movements and related behavioral disturbances reminiscent of TS following exposure to GAS and other activators of host anti-microbial responses, soluble immune mediators and anti-GAS or anti-neuronal antibodies. Demonstration of the ability to recreate these abnormalities through passive transfer of serum IgG from GAS-immunized mice into naïve mice and abrogation of this activity through depletion of IgG has provided compelling evidence in support of the autoimmune hypothesis. Immunologically-based animal models of TS are a potent tool for dissecting the pathogenesis of this serious neuropsychiatric syndrome. PMID:23313649

  6. Immune mediated liver failure.

    Science.gov (United States)

    Wang, Xiaojing; Ning, Qin

    2014-01-01

    Liver failure is a clinical syndrome of various etiologies, manifesting as jaundice, encephalopathy, coagulopathy and circulatory dysfunction, which result in subsequent multiorgan failure. Clinically, liver failure is classified into four categories: acute, subacute, acute-on-chronic and chronic liver failure. Massive hepatocyte death is considered to be the core event in the development of liver failure, which occurs when the extent of hepatocyte death is beyond the liver regenerative capacity. Direct damage and immune-mediated liver injury are two major factors involved in this process. Increasing evidence has suggested the essential role of immune-mediated liver injury in the pathogenesis of liver failure. Here, we review the evolved concepts concerning the mechanisms of immune-mediated liver injury in liver failure from human and animal studies. Both innate and adaptive immunity, especially the interaction of various immune cells and molecules as well as death receptor signaling system are discussed. In addition, we highlight the concept of "immune coagulation", which has been shown to be related to the disease progression and liver injury exacerbation in HBV related acute-on-chronic liver failure.

  7. Maternal Immune-Mediated Conditions, Autism Spectrum Disorders, and Developmental Delay

    Science.gov (United States)

    Lyall, Kristen; Ashwood, Paul; Van de Water, Judy; Hertz-Picciotto, Irva

    2014-01-01

    The maternal immune system may play a role in offspring neurodevelopment. We examined whether maternal autoimmune disease, asthma, and allergy were associated with child autism spectrum disorder (ASD) and developmental delay without autism (DD) using 560 ASD cases, 391 typically developing controls, and 168 DD cases from the CHildhood Autism Risk…

  8. Genetics of immune-mediated disorders : from genome-wide association to molecular mechanism

    NARCIS (Netherlands)

    Kumar, Vinod; Wijmenga, Cisca; Xavier, Ramnik J.

    2014-01-01

    Genetic association studies have identified not only hundreds of susceptibility loci to immune-mediated diseases but also pinpointed causal amino-acid variants of HLA genes that contribute to many autoimmune reactions. Majority of non-HLA genetic variants are located within non-coding regulatory

  9. The Major Players in Adaptive Immunity-Cell-mediated Immunity

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 14; Issue 6. The Major Players in Adaptive Immunity - Cell-mediated Immunity. Asma Ahmed Banishree Saha Anand Patwardhan Shwetha Shivaprasad Dipankar Nandi. General Article Volume 14 Issue 6 June 2009 pp 610-621 ...

  10. Approaches Mediating Oxytocin Regulation of the Immune System.

    Science.gov (United States)

    Li, Tong; Wang, Ping; Wang, Stephani C; Wang, Yu-Feng

    2016-01-01

    The hypothalamic neuroendocrine system is mainly composed of the neural structures regulating hormone secretion from the pituitary gland and has been considered as the higher regulatory center of the immune system. Recently, the hypothalamo-neurohypophysial system (HNS) emerged as an important component of neuroendocrine-immune network, wherein the oxytocin (OT)-secreting system (OSS) plays an essential role. The OSS, consisting of OT neurons in the supraoptic nucleus, paraventricular nucleus, their several accessory nuclei and associated structures, can integrate neural, endocrine, metabolic, and immune information and plays a pivotal role in the development and functions of the immune system. The OSS can promote the development of thymus and bone marrow, perform immune surveillance, strengthen immune defense, and maintain immune homeostasis. Correspondingly, OT can inhibit inflammation, exert antibiotic-like effect, promote wound healing and regeneration, and suppress stress-associated immune disorders. In this process, the OSS can release OT to act on immune system directly by activating OT receptors or through modulating activities of other hypothalamic-pituitary-immune axes and autonomic nervous system indirectly. However, our understandings of the role of the OSS in neuroendocrine regulation of immune system are largely incomplete, particularly its relationship with other hypothalamic-pituitary-immune axes and the vasopressin-secreting system that coexists with the OSS in the HNS. In addition, it remains unclear about the relationship between the OSS and peripherally produced OT in immune regulation, particularly intrathymic OT that is known to elicit central immunological self-tolerance of T-cells to hypophysial hormones. In this work, we provide a brief review of current knowledge of the features of OSS regulation of the immune system and of potential approaches that mediate OSS coordination of the activities of entire neuroendocrine-immune network.

  11. Helminths as governors of immune-mediated inflammation.

    Science.gov (United States)

    Elliott, David E; Summers, Robert W; Weinstock, Joel V

    2007-04-01

    Immune-mediated diseases (e.g. inflammatory bowel disease, asthma, multiple sclerosis and autoimmune diabetes) are increasing in prevalence and emerge as populations adopt meticulously hygienic lifestyles. This change in lifestyles precludes exposure to helminths (parasitic worms). Loss of natural helminth exposure removes a previously universal Th2 and regulatory immune biasing imparted by these organisms. Helminths protect animals from developing immune-mediated diseases (colitis, reactive airway disease, encephalitis and diabetes). Clinical trials show that exposure to helminths can reduce disease activity in patients with ulcerative colitis or Crohn's disease. This paper summarises work by multiple groups demonstrating that colonization with helminths alters immune reactivity and protects against disease from dysregulated inflammation.

  12. Patofysiologien ved primær immun trombocytopeni

    DEFF Research Database (Denmark)

    Gudbrandsdottir, Sif; Frederiksen, Henrik; Birgens, Henrik Sverre

    2011-01-01

    Primary immune thrombocytopenia (ITP)--formerly known as idiopathic thrombocytopenic purpura--is an autoimmune disorder characterized by immune-mediated thrombocytopenia. The aetiology of ITP remains unknown, but studies have shown that multiple immunological mechanisms are involved in the pathog......Primary immune thrombocytopenia (ITP)--formerly known as idiopathic thrombocytopenic purpura--is an autoimmune disorder characterized by immune-mediated thrombocytopenia. The aetiology of ITP remains unknown, but studies have shown that multiple immunological mechanisms are involved...

  13. The function of the Mediator complex in plant immunity.

    Science.gov (United States)

    An, Chuanfu; Mou, Zhonglin

    2013-03-01

    Upon pathogen infection, plants undergo dramatic transcriptome reprogramming to shift from normal growth and development to immune response. During this rapid process, the multiprotein Mediator complex has been recognized as an important player to fine-tune gene-specific and pathway-specific transcriptional reprogramming by acting as an adaptor/coregulator between sequence-specific transcription factor and RNA polymerase II (RNAPII). Here, we review current understanding of the role of five functionally characterized Mediator subunits (MED8, MED15, MED16, MED21 and MED25) in plant immunity. All these Mediator subunits positively regulate resistance against leaf-infecting biotrophic bacteria or necrotrophic fungi. While MED21 appears to regulate defense against fungal pathogens via relaying signals from upstream regulators and chromatin modification to RNAPII, the other four Mediator subunits locate at different positions of the defense network to convey phytohormone signal(s). Fully understanding the role of Mediator in plant immunity needs to characterize more Mediator subunits in both Arabidopsis and other plant species. Identification of interacting proteins of Mediator subunits will further help to reveal their specific regulatory mechanisms in plant immunity.

  14. Helminthic therapy: using worms to treat immune-mediated disease.

    Science.gov (United States)

    Elliott, David E; Weinstock, Joel V

    2009-01-01

    There is an epidemic of immune-mediated disease in highly-developed industrialized countries. Such diseases, like inflammatory bowel disease, multiple sclerosis and asthma increase in prevalence as populations adopt modern hygienic practices. These practices prevent exposure to parasitic worms (helminths). Epidemiologic studies suggest that people who carry helminths have less immune-mediated disease. Mice colonized with helminths are protected from disease in models of colitis, encephalitis, Type 1 diabetes and asthma. Clinical trials show that exposure to helminths reduce disease activity in patients with ulcerative colitis or Crohn's disease. This chapter reviews some of the work showing that colonization with helminths alters immune responses, against dysregulated inflammation. These helminth-host immune interactions have potentially important implications for the treatment of immune-mediated diseases.

  15. Prognosis in canine idiopathic immune-mediated haemolytic anaemia

    NARCIS (Netherlands)

    Piek, C.J.

    2011-01-01

    Canine idiopathic immune-mediated haemolytic anaemia (iIMHA) is one of the most frequently occurring immune-mediated diseases in dogs. A gel-based Coombs' test was shown to perform equally well as a classical Coombs' test. Since the gel-based Coombs' test can be commercially produced and is easy and

  16. Nye behandlingsmuligheder ved primær immun trombocytopeni

    DEFF Research Database (Denmark)

    Gudbrandsdottir, Sif; Frederiksen, Henrik; Birgens, Henrik Sverre

    2011-01-01

    Primary immune thrombocytopenia (ITP)--formerly known as idiopathic thrombocytopenic purpura--is an autoimmune disorder characterized by immune mediated thrombocytopenia. The aetiology of ITP remains unknown, but studies have shown that multiple immunological mechanisms are involved in the pathog......Primary immune thrombocytopenia (ITP)--formerly known as idiopathic thrombocytopenic purpura--is an autoimmune disorder characterized by immune mediated thrombocytopenia. The aetiology of ITP remains unknown, but studies have shown that multiple immunological mechanisms are involved...

  17. Immune System: An Emerging Player in Mediating Effects of Endocrine Disruptors on Metabolic Health.

    Science.gov (United States)

    Bansal, Amita; Henao-Mejia, Jorge; Simmons, Rebecca A

    2018-01-01

    The incidence of metabolic disorders like type 2 diabetes and obesity continues to increase. In addition to the well-known contributors to these disorders, such as food intake and sedentary lifestyle, recent research in the exposure science discipline provides evidence that exposure to endocrine-disrupting chemicals like bisphenol A and phthalates via multiple routes (e.g., food, drink, skin contact) also contribute to the increased risk of metabolic disorders. Endocrine-disrupting chemicals (EDCs) can disrupt any aspect of hormone action. It is becoming increasingly clear that EDCs not only affect endocrine function but also adversely affect immune system function. In this review, we focus on human, animal, and in vitro studies that demonstrate EDC exposure induces dysfunction of the immune system, which, in turn, has detrimental effects on metabolic health. These findings highlight how the immune system is emerging as a novel player by which EDCs may mediate their effects on metabolic health. We also discuss studies highlighting mechanisms by which EDCs affect the immune system. Finally, we consider that a better understanding of the immunomodulatory roles of EDCs will provide clues to enhance metabolic function and contribute toward the long-term goal of reducing the burden of environmentally induced diabetes and obesity. Copyright © 2018 Endocrine Society.

  18. Studies of Cell-Mediated Immunity Against Immune Disorders Using Synthetic Peptides and Rotating Bioreactor System

    Science.gov (United States)

    Sastry, Jagannadha K.

    1997-01-01

    Our proposed experiments included: (1) immunzing mice with synthetic peptides; (2) preparing spleen and lymph node cells; (3) growing them under conventional conditions as well as in the rotatory vessel in appropriate medium reconstituting with synthetic peptides and/or cytokines as needed; and (4) comparing at regular time intervals the specific CTL activity as well as helper T-cell activity (in terms of both proliferative responses and cytokine production) using established procedures in my laboratory. We further proposed that once we demonstrated the merit of rotatory vessel technology to achieve desired results, these studies would be expanded to include immune cells from non-human primates (rhesus monkeys and chimpanzees) and also humans. We conducted a number of experiments to determine CTL induction by the synthetic peptides corresponding to antigenic proteins in HIV and HPV in different mouse strains that express MHC haplotypes H-2b or H-2d. We immunized mice with 100 ug of the synthetic peptide, suspended in sterile water, and emulsified in CFA (1:1). The immune lymph node cells obtained after 7 days were restimulated by culturing in T25 flask, HARV-10, or STLV-50, in the presence of the peptide at 20 ug/ml. The results from the 5'Cr-release assay consistently revealed complete abrogation of CTL activity of cells grown in the bioreactors (both HARV and STLV), while significant antigen-specific CTL activity was observed with cells cultured in tissue culture flasks. Thus, overall the data we generated in this study proved the usefulness of the NASA-developed developed technology for understanding the known immune deficiency during space travel. Additionally, this ex vivo microgravity technology since it mimics effectively the in vivo situation, it is also useful in understanding immune disorders in general. Thus, our proposed studies in TMC-NASA contract round II application benefit from data generated in this TMC-NASA contract round I study.

  19. The role of basic leucine zipper transcription factor E4BP4 in the immune system and immune-mediated diseases.

    Science.gov (United States)

    Yin, Jinghua; Zhang, Jian; Lu, Qianjin

    2017-07-01

    Basic leucine zipper transcription factor E4BP4 (also known as NFIL3) has been implicated in the molecular and cellular mechanisms of functions and activities in mammals. The interactions between E4BP4 and major regulators of cellular processes have triggered significant interest in the roles of E4BP4 in the pathogenesis of certain chronic diseases. Indeed, novel discoveries have been emerging to illustrate the involvement of E4BP4 in multiple disorders. It is recognized that E4BP4 is extensively involved in some immune-mediated diseases, but the mechanisms of E4BP4 involvement in these complex diseases remain poorly defined. Here we review the regulatory mechanisms of E4BP4 engaging in not only the biological function but also the development of immune-mediated diseases, paving the way for future therapies. Copyright © 2017. Published by Elsevier Inc.

  20. Blood coagulation factor XII drives adaptive immunity during neuroinflammation via CD87-mediated modulation of dendritic cells

    Science.gov (United States)

    Göbel, Kerstin; Pankratz, Susann; Asaridou, Chloi-Magdalini; Herrmann, Alexander M.; Bittner, Stefan; Merker, Monika; Ruck, Tobias; Glumm, Sarah; Langhauser, Friederike; Kraft, Peter; Krug, Thorsten F.; Breuer, Johanna; Herold, Martin; Gross, Catharina C.; Beckmann, Denise; Korb-Pap, Adelheid; Schuhmann, Michael K.; Kuerten, Stefanie; Mitroulis, Ioannis; Ruppert, Clemens; Nolte, Marc W.; Panousis, Con; Klotz, Luisa; Kehrel, Beate; Korn, Thomas; Langer, Harald F.; Pap, Thomas; Nieswandt, Bernhard; Wiendl, Heinz; Chavakis, Triantafyllos; Kleinschnitz, Christoph; Meuth, Sven G.

    2016-01-01

    Aberrant immune responses represent the underlying cause of central nervous system (CNS) autoimmunity, including multiple sclerosis (MS). Recent evidence implicated the crosstalk between coagulation and immunity in CNS autoimmunity. Here we identify coagulation factor XII (FXII), the initiator of the intrinsic coagulation cascade and the kallikrein–kinin system, as a specific immune cell modulator. High levels of FXII activity are present in the plasma of MS patients during relapse. Deficiency or pharmacologic blockade of FXII renders mice less susceptible to experimental autoimmune encephalomyelitis (a model of MS) and is accompanied by reduced numbers of interleukin-17A-producing T cells. Immune activation by FXII is mediated by dendritic cells in a CD87-dependent manner and involves alterations in intracellular cyclic AMP formation. Our study demonstrates that a member of the plasmatic coagulation cascade is a key mediator of autoimmunity. FXII inhibition may provide a strategy to combat MS and other immune-related disorders. PMID:27188843

  1. Eicosanoid-mediated immunity in insects

    Science.gov (United States)

    Eicosanoid is a collective term for oxygenated metabolites of C20 polyunsaturated fatty acids. As seen in mammals, eicosanoids play crucial roles in mediating various physiological processes, including immune responses, in insects. Upon microbial pathogen infection, non-self recognition signals are ...

  2. Immune disorders in anorexia

    OpenAIRE

    SŁOTWIŃSKA, SYLWIA MAŁGORZATA; SŁOTWIŃSKI, ROBERT

    2017-01-01

    Anorexia nervosa is a disease involving eating disorders. It mainly affects young people, especially teenage women. The disease is often latent and occurs in many sub-clinical and partial forms. Approximately from 0.3% to 1% of the population suffers from anorexia. It has been shown that patients with anorexia develop neurotransmitter-related disorders, leading to uncontrolled changes in the immune and endocrine systems. Interactions between cytokines, neuropeptides, and neurotransmitters pla...

  3. Immune disorders in anorexia.

    Science.gov (United States)

    Słotwińska, Sylwia Małgorzata; Słotwiński, Robert

    2017-01-01

    Anorexia nervosa is a disease involving eating disorders. It mainly affects young people, especially teenage women. The disease is often latent and occurs in many sub-clinical and partial forms. Approximately from 0.3% to 1% of the population suffers from anorexia. It has been shown that patients with anorexia develop neurotransmitter-related disorders, leading to uncontrolled changes in the immune and endocrine systems. Interactions between cytokines, neuropeptides, and neurotransmitters play an important role in disease development. Significant malnutrition induces disorders and alterations in T-cell populations. The cellular response in patients with anorexia nervosa has been shown to be normal, although opinions on this issue are controversial. Laboratory studies on neutrophils in anorexia patients showed decreased adhesion and reduced bactericidal and cell activities. Despite such unfavourable results, patients with anorexia are resistant to infections, which are very rare in this group. Glutamine improves the performance of the human immune system. The administration of glutamine to anorexia patients, as a supplement to parenteral nutrition, has resulted in significant improvements in immune system parameters. The results of previous studies on the causes and risk factors in the development of anorexia nervosa are still ambiguous. One can hope that the differences and similarities between patients with anorexia nervosa and those with other forms of protein-calorie malnutrition may be helpful in determining the relationship between nutritional status and body defences and susceptibility to infection, and can help to broaden the knowledge about the aetiopathogenesis of anorexia nervosa.

  4. Immune-mediated diseases and microbial exposure in early life

    DEFF Research Database (Denmark)

    Bisgaard, H; Bønnelykke, K; Stokholm, Jacob

    2014-01-01

    The non-communicable disease pandemic includes immune-mediated diseases such as asthma and allergy, which are likely originating in early life where the immature immune system is prone to alterations caused by the exposome. The timing of exposure seems critical for the developing immune system...

  5. Immune regulation and CNS autoimmune disease

    DEFF Research Database (Denmark)

    Antel, J P; Owens, T

    1999-01-01

    The central nervous system is a demonstrated target of both clinical and experimental immune mediated disorders. Immune regulatory mechanisms operative at the levels of the systemic immune system, the blood brain barrier, and within the CNS parenchyma are important determinants of the intensity...... and duration of the tissue directed injury. Convergence of research, involving direct manipulation of specific cells and molecular mediators in animal models and in vitro analysis of human immune and neural cells and tissues, is providing increasing insight into the role of these immune regulatory functions...

  6. Immune disorders in anorexia

    Directory of Open Access Journals (Sweden)

    Sylwia Małgorzata Słotwińska

    2017-10-01

    Full Text Available Anorexia nervosa is a disease involving eating disorders. It mainly affects young people, especially teenage women. The disease is often latent and occurs in many sub-clinical and partial forms. Approximately from 0.3% to 1% of the population suffers from anorexia. It has been shown that patients with anorexia develop neurotransmitter-related disorders, leading to uncontrolled changes in the immune and endocrine systems. Interactions between cytokines, neuropeptides, and neurotransmitters play an important role in disease development. Significant malnutrition induces disorders and alterations in T-cell populations. The cellular response in patients with anorexia nervosa has been shown to be normal, although opinions on this issue are controversial. Laboratory studies on neutrophils in anorexia patients showed decreased adhesion and reduced bactericidal and cell activities. Despite such unfavourable results, patients with anorexia are resistant to infections, which are very rare in this group. Glutamine improves the performance of the human immune system. The administration of glutamine to anorexia patients, as a supplement to parenteral nutrition, has resulted in significant improvements in immune system parameters. The results of previous studies on the causes and risk factors in the development of anorexia nervosa are still ambiguous. One can hope that the differences and similarities between patients with anorexia nervosa and those with other forms of protein-calorie malnutrition may be helpful in determining the relationship between nutritional status and body defences and susceptibility to infection, and can help to broaden the knowledge about the aetiopathogenesis of anorexia nervosa.

  7. From blood coagulation to innate and adaptive immunity: the role of platelets in the physiology and pathology of autoimmune disorders.

    Science.gov (United States)

    Łukasik, Zuzanna Małgorzata; Makowski, Marcin; Makowska, Joanna Samanta

    2018-02-28

    Thrombosis and cardiovascular complications are common manifestations of a variety of pathological conditions, including infections and chronic inflammatory diseases. Hence, there is great interest in determining the hitherto unforeseen immune role of the main blood coagulation executor-the platelet. Platelets store and release a plethora of immunoactive molecules, generate microparticles, and interact with cells classically belonging to the immune system. The observed effects of platelet involvement in immune processes, especially in autoimmune diseases, are conflicting-from inciting inflammation to mediating its resolution. An in-depth understanding of the role of platelets in inflammation and immunity could open new therapeutic pathways for patients with autoimmune disorders. This review aims to summarize the current knowledge on the role of platelets in the patomechanisms of autoimmune disorders and suggests directions for future research.

  8. Hepatitis A and B immunization for individuals with inherited bleeding disorders.

    Science.gov (United States)

    Steele, M; Cochrane, A; Wakefield, C; Stain, A-M; Ling, S; Blanchette, V; Gold, R; Ford-Jones, L

    2009-03-01

    Hepatitis A and B vaccines are highly effective tools that can greatly reduce infection risk in the bleeding disorder population. Although hepatitis A and B immunization for individuals with bleeding disorders is universally recommended, various advisory bodies often differ with respect to many practical aspects of vaccination. To review the published literature and guidelines and form a practical, comprehensive and consistent approach to hepatitis A and B immunization for individuals with bleeding disorders. We reviewed published immunization guidelines from North American immunization advisory bodies and published statements from North American and international haemophilia advisory bodies. A search of the MEDLINE database was performed to find original published literature pertaining to hepatitis A or B immunization of patients with haemophilia or bleeding disorder patients that provided supporting or refuting evidence for advisory body guidelines. Various advisory bodies' immunization guidelines regarding individuals with bleeding disorders have contradictory statements and often did not clarify issues (e.g. post vaccination surveillance). Published literature addressing immunization in bleeding disorder patients is sparse and mostly examines route of vaccine administration, complications and corresponding antibody response. Although the risk of hepatitis A and B infection is low, the use of simple measures such as vaccination is reasonable and advocated by haemophilia advisory bodies. Following our review of the available literature and North American guidelines, we have developed comprehensive and practical recommendations addressing hepatitis A and B immunization for the bleeding disorder population that may be applicable in Bleeding Disorder clinics.

  9. The Role of Histone Demethylase Jmjd3 in Immune-Mediated Aplastic Anemia

    Science.gov (United States)

    2017-03-01

    AWARD NUMBER: W81XWH-16-1-0055 TITLE: The Role of Histone Demethylase Jmjd3 in Immune-Mediated Aplastic Anemia PRINCIPAL INVESTIGATOR: Yi...Immune-Mediated Aplastic Anemia 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-16-1-0055 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Yi Zhang 5d... anemia (AA) is a condition of bone marrow failure (BMF) characterized by blood pancytopenia and BM hypoplasia. In most cases, AA is an immune-mediated

  10. Cerebrospinal fluid neopterin analysis in neuropediatric patients: establishment of a new cut off-value for the identification of inflammatory-immune mediated processes.

    Directory of Open Access Journals (Sweden)

    Marta Molero-Luis

    Full Text Available OBJECTIVE: A high level of cerebrospinal fluid (CSF neopterin is a marker of central nervous system inflammatory-immune mediated processes. We aimed to assess data from 606 neuropediatric patients, describing the clinical and biochemical features of those neurological disorders presenting CSF neopterin values above a new cut-off value that was defined in our laboratory. METHODS: To establish the new CSF neopterin cut-off value, we studied two groups of patients: Group 1 comprised 68 patients with meningoencephalitis, and Group 2 comprised 52 children with a confirmed peripheral infection and no central nervous system involvement. We studied 606 CSF samples from neuropediatric patients who were classified into 3 groups: genetic diagnosis (A, acquired/unknown etiologic neurologic diseases (B and inflammatory-immune mediated processes (C. RESULTS: The CSF neopterin cut-off value was 61 nmol/L. Out of 606 cases, 56 presented a CSF neopterin level above this value. Group C had significantly higher CSF neopterin, protein and leukocyte values than the other groups. Sixteen of twenty-three patients in this group had a CSF neopterin level above the cut-off, whereas three and seven patients presented increased leukocyte and protein values, respectively. A significant association was found among CSF neopterin, proteins and leukocytes in the 606 patients. White matter disturbances were associated with high CSF neopterin concentrations. CONCLUSIONS: Although children with inflammatory-immune mediated processes presented higher CSF neopterin values, patients with other neurological disorders also showed increased CSF neopterin concentrations. These results stress the importance of CSF neopterin analysis for the identification of inflammatory-immune mediated processes.

  11. Relations between immune and mediator receptors of mouse lymphocytes

    International Nuclear Information System (INIS)

    Ado, A.D.; Alekseeva, T.A.; Kravchenko, S.A.

    1985-01-01

    This paper examines the action of the specific muscarinic antogonist tritium-quinuclidinyl benzilate (tritium-QNB) on immune rosette formation in mice. It is shown that since the specific muscarini antagonist tritium-QNB inhibits immune rosette formation, this process must be regarded as interconnected with muscarinic receptors of lymphocytes. Interaction of immune (antigen-binding) and mediator receptors, however, is an important factor maintaining immune homeostasis at a certain level

  12. The Mannose Receptor in Regulation of Helminth-Mediated Host Immunity

    Directory of Open Access Journals (Sweden)

    Irma van Die

    2017-11-01

    Full Text Available Infection with parasitic helminths affects humanity and animal welfare. Parasitic helminths have the capacity to modulate host immune responses to promote their survival in infected hosts, often for a long time leading to chronic infections. In contrast to many infectious microbes, however, the helminths are able to induce immune responses that show positive bystander effects such as the protection to several immune disorders, including multiple sclerosis, inflammatory bowel disease, and allergies. They generally promote the generation of a tolerogenic immune microenvironment including the induction of type 2 (Th2 responses and a sub-population of alternatively activated macrophages. It is proposed that this anti-inflammatory response enables helminths to survive in their hosts and protects the host from excessive pathology arising from infection with these large pathogens. In any case, there is an urgent need to enhance understanding of how helminths beneficially modulate inflammatory reactions, to identify the molecules involved and to promote approaches to exploit this knowledge for future therapeutic interventions. Evidence is increasing that C-type lectins play an important role in driving helminth-mediated immune responses. C-type lectins belong to a large family of calcium-dependent receptors with broad glycan specificity. They are abundantly present on immune cells, such as dendritic cells and macrophages, which are essential in shaping host immune responses. Here, we will focus on the role of the C-type lectin macrophage mannose receptor (MR in helminth–host interactions, which is a critically understudied area in the field of helminth immunobiology. We give an overview of the structural aspects of the MR including its glycan specificity, and the functional implications of the MR in helminth–host interactions focusing on a few selected helminth species.

  13. Immune-based strategies for mood disorders: facts and challenges.

    Science.gov (United States)

    Colpo, Gabriela D; Leboyer, Marion; Dantzer, Robert; Trivedi, Mahdukar H; Teixeira, Antonio L

    2018-02-01

    Inflammation seems to play a role in the pathophysiology of mood disorders, including major depressive disorder (MDD) and bipolar disorder (BD). In the last years several studies have shown increased levels of inflammatory and/or immune markers in patients with mood disorders. Accordingly, the immune system has become a target of interest for the development of biomarkers and therapeutics for mood disorders. Areas covered: Here, we review the evidence showing low-grade inflammation in mood disorders and the studies evaluating immune-based strategies for the treatment of these conditions. Expert commentary: Clinical trials with non-steroidal anti-inflammatory drugs, polyunsaturated acids, N-acetylcysteine, anti-cytokines, physical activity and probiotics have provided promising results in terms of antidepressant efficacy in patients with MDD and BD. Regarding stem cells, only studies with animal models have been performed so far with interesting pre-clinical results. Due to the preliminary nature of the results, most of the clinical studies need to be replicated and/or confirmed in larger clinical settings, embracing the highly heterogeneous pathophysiology of mood disorders.

  14. Abundant genetic overlap between blood lipids and immune-mediated diseases indicates shared molecular genetic mechanisms.

    Directory of Open Access Journals (Sweden)

    Ole A Andreassen

    Full Text Available Epidemiological studies suggest a relationship between blood lipids and immune-mediated diseases, but the nature of these associations is not well understood. We used genome-wide association studies (GWAS to investigate shared single nucleotide polymorphisms (SNPs between blood lipids and immune-mediated diseases. We analyzed data from GWAS (n~200,000 individuals, applying new False Discovery Rate (FDR methods, to investigate genetic overlap between blood lipid levels [triglycerides (TG, low density lipoproteins (LDL, high density lipoproteins (HDL] and a selection of archetypal immune-mediated diseases (Crohn's disease, ulcerative colitis, rheumatoid arthritis, type 1 diabetes, celiac disease, psoriasis and sarcoidosis. We found significant polygenic pleiotropy between the blood lipids and all the investigated immune-mediated diseases. We discovered several shared risk loci between the immune-mediated diseases and TG (n = 88, LDL (n = 87 and HDL (n = 52. Three-way analyses differentiated the pattern of pleiotropy among the immune-mediated diseases. The new pleiotropic loci increased the number of functional gene network nodes representing blood lipid loci by 40%. Pathway analyses implicated several novel shared mechanisms for immune pathogenesis and lipid biology, including glycosphingolipid synthesis (e.g. FUT2 and intestinal host-microbe interactions (e.g. ATG16L1. We demonstrate a shared genetic basis for blood lipids and immune-mediated diseases independent of environmental factors. Our findings provide novel mechanistic insights into dyslipidemia and immune-mediated diseases and may have implications for therapeutic trials involving lipid-lowering and anti-inflammatory agents.

  15. Patofysiologien ved primær immun trombocytopeni

    DEFF Research Database (Denmark)

    Gudbrandsdottir, Sif; Frederiksen, Henrik; Birgens, Henrik Sverre

    2011-01-01

    Primary immune thrombocytopenia (ITP)--formerly known as idiopathic thrombocytopenic purpura--is an autoimmune disorder characterized by immune-mediated thrombocytopenia. The aetiology of ITP remains unknown, but studies have shown that multiple immunological mechanisms are involved...

  16. Maternal immunity enhances Mycoplasma hyopneumoniae vaccination induced cell-mediated immune responses in piglets.

    Science.gov (United States)

    Bandrick, Meggan; Theis, Kara; Molitor, Thomas W

    2014-06-05

    Passively acquired maternal derived immunity (MDI) is a double-edged sword. Maternal derived antibody-mediated immunity (AMI) and cell-mediated immunity (CMI) are critical immediate defenses for the neonate; however, MDI may interfere with the induction of active immunity in the neonate, i.e. passive interference. The effect of antigen-specific MDI on vaccine-induced AMI and CMI responses to Mycoplasma hyopneumoniae (M. hyopneumoniae) was assessed in neonatal piglets. To determine whether CMI and AMI responses could be induced in piglets with MDI, piglets with high and low levels of maternal M. hyopneumoniae-specific immunity were vaccinated against M. hyopneumoniae at 7 d of age. Piglet M. hyopneumoniae-specific antibody, lymphoproliferation, and delayed type hypersensitivity (DTH) responses were measured 7 d and 14 d post vaccination. Piglets with M. hyopneumoniae-specific MDI failed to show vaccine-induced AMI responses; there was no rise in M. hyopneumoniae antibody levels following vaccination of piglets in the presence of M. hyopneumoniae-specific MDI. However, piglets with M. hyopneumoniae-specific MDI had primary (antigen-specific lymphoproliferation) and secondary (DTH) M. hyopneumoniae-specific CMI responses following vaccination. In this study neonatal M. hyopneumoniae-specific CMI was not subject to passive interference by MDI. Further, it appears that both maternal derived and endogenous CMI contribute to M. hyopneumoniae-specific CMI responses in piglets vaccinated in the face of MDI.

  17. The Role of Innate Lymphoid Cells in Immune-Mediated Liver Diseases

    Science.gov (United States)

    Liu, Meifang; Zhang, Cai

    2017-01-01

    Innate lymphoid cells (ILCs) are a recently identified group of innate immune cells lacking antigen-specific receptors that can mediate immune responses and regulate tissue homeostasis and inflammation. ILCs comprise group 1 ILCs, group 2 ILCs, and group 3 ILCs. These ILCs usually localize at mucosal surfaces and combat pathogens by the rapid release of certain cytokines. However, the uncontrolled activation of ILCs can also lead to damaging inflammation, especially in the gut, lung, and skin. Although the physiological and pathogenic roles of ILCs in liver diseases have been attracting increasing attention recently, there has been no systematic review regarding the roles of ILCs in immune-mediated liver diseases. Here, we review the relationships between the ILC subsets and their functions in immune-mediated liver diseases, and discuss their therapeutic potential based on current knowledge about the functional roles of these cells in liver diseases. PMID:28659927

  18. Vesicular trafficking of immune mediators in human eosinophils revealed by immunoelectron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Melo, Rossana C.N., E-mail: rossana.melo@ufjf.edu.br [Laboratory of Cellular Biology, Department of Biology, ICB, Federal University of Juiz de Fora, UFJF, Rua José Lourenço Kelmer, Juiz de Fora, MG 36036-900 (Brazil); Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, CLS 943, Boston, MA 02215 (United States); Weller, Peter F. [Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, CLS 943, Boston, MA 02215 (United States)

    2016-10-01

    Electron microscopy (EM)-based techniques are mostly responsible for our current view of cell morphology at the subcellular level and continue to play an essential role in biological research. In cells from the immune system, such as eosinophils, EM has helped to understand how cells package and release mediators involved in immune responses. Ultrastructural investigations of human eosinophils enabled visualization of secretory processes in detail and identification of a robust, vesicular trafficking essential for the secretion of immune mediators via a non-classical secretory pathway associated with secretory (specific) granules. This vesicular system is mainly organized as large tubular-vesicular carriers (Eosinophil Sombrero Vesicles – EoSVs) actively formed in response to cell activation and provides a sophisticated structural mechanism for delivery of granule-stored mediators. In this review, we highlight the application of EM techniques to recognize pools of immune mediators at vesicular compartments and to understand the complex secretory pathway within human eosinophils involved in inflammatory and allergic responses. - Highlights: • Application of EM to understand the complex secretory pathway in human eosinophils. • EM techniques reveal an active vesicular system associated with secretory granules. • Tubular vesicles are involved in the transport of granule-derived immune mediators.

  19. Vesicular trafficking of immune mediators in human eosinophils revealed by immunoelectron microscopy

    International Nuclear Information System (INIS)

    Melo, Rossana C.N.; Weller, Peter F.

    2016-01-01

    Electron microscopy (EM)-based techniques are mostly responsible for our current view of cell morphology at the subcellular level and continue to play an essential role in biological research. In cells from the immune system, such as eosinophils, EM has helped to understand how cells package and release mediators involved in immune responses. Ultrastructural investigations of human eosinophils enabled visualization of secretory processes in detail and identification of a robust, vesicular trafficking essential for the secretion of immune mediators via a non-classical secretory pathway associated with secretory (specific) granules. This vesicular system is mainly organized as large tubular-vesicular carriers (Eosinophil Sombrero Vesicles – EoSVs) actively formed in response to cell activation and provides a sophisticated structural mechanism for delivery of granule-stored mediators. In this review, we highlight the application of EM techniques to recognize pools of immune mediators at vesicular compartments and to understand the complex secretory pathway within human eosinophils involved in inflammatory and allergic responses. - Highlights: • Application of EM to understand the complex secretory pathway in human eosinophils. • EM techniques reveal an active vesicular system associated with secretory granules. • Tubular vesicles are involved in the transport of granule-derived immune mediators.

  20. Application of the 2012 revised diagnostic definitions for paediatric multiple sclerosis and immune-mediated central nervous system demyelination disorders

    NARCIS (Netherlands)

    van Pelt, E. Danielle; Neuteboom, Rinze F.; Ketelslegers, Immy A.; Boon, Maartje; Catsman-Berrevoets, Coriene E.; Hintzen, Rogier Q.

    Background Recently, the International Paediatric Multiple Sclerosis Study Group (IPMSSG) definitions for the diagnosis of immune-mediated acquired demyelinating syndromes (ADS) of the central nervous system, including paediatric multiple sclerosis (MS), have been revised. Objective To evaluate the

  1. Regulation of stem-cell mediated host immunity by the sphingolipid ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Regulation of stem-cell mediated host immunity by the sphingolipid pathway ... in the generation of mature immune cells and the functioning of the surrounding ... methods with human cells and genetically engineered mice to examine how the ...

  2. Sleep, immunity and inflammation in gastrointestinal disorders.

    Science.gov (United States)

    Ali, Tauseef; Choe, James; Awab, Ahmed; Wagener, Theodore L; Orr, William C

    2013-12-28

    Sleep disorders have become a global issue, and discovering their causes and consequences are the focus of many research endeavors. An estimated 70 million Americans suffer from some form of sleep disorder. Certain sleep disorders have been shown to cause neurocognitive impairment such as decreased cognitive ability, slower response times and performance detriments. Recent research suggests that individuals with sleep abnormalities are also at greater risk of serious adverse health, economic consequences, and most importantly increased all-cause mortality. Several research studies support the associations among sleep, immune function and inflammation. Here, we review the current research linking sleep, immune function, and gastrointestinal diseases and discuss the interdependent relationship between sleep and these gastrointestinal disorders. Different physiologic processes including immune system and inflammatory cytokines help regulate the sleep. The inflammatory cytokines such as tumor necrosis factor, interleukin-1 (IL-1), and IL-6 have been shown to be a significant contributor of sleep disturbances. On the other hand, sleep disturbances such as sleep deprivation have been shown to up regulate these inflammatory cytokines. Alterations in these cytokine levels have been demonstrated in certain gastrointestinal diseases such as inflammatory bowel disease, gastro-esophageal reflux, liver disorders and colorectal cancer. In turn, abnormal sleep brought on by these diseases is shown to contribute to the severity of these same gastrointestinal diseases. Knowledge of these relationships will allow gastroenterologists a great opportunity to enhance the care of their patients.

  3. AAV2-mediated in vivo immune gene therapy of solid tumours

    LENUS (Irish Health Repository)

    Collins, Sara A

    2010-12-20

    Abstract Background Many strategies have been adopted to unleash the potential of gene therapy for cancer, involving a wide range of therapeutic genes delivered by various methods. Immune therapy has become one of the major strategies adopted for cancer gene therapy and seeks to stimulate the immune system to target tumour antigens. In this study, the feasibility of AAV2 mediated immunotherapy of growing tumours was examined, in isolation and combined with anti-angiogenic therapy. Methods Immune-competent Balb\\/C or C57 mice bearing subcutaneous JBS fibrosarcoma or Lewis Lung Carcinoma (LLC) tumour xenografts respectively were treated by intra-tumoural administration of AAV2 vector encoding the immune up-regulating cytokine granulocyte macrophage-colony stimulating factor (GM-CSF) and the co-stimulatory molecule B7-1 to subcutaneous tumours, either alone or in combination with intra-muscular (IM) delivery of AAV2 vector encoding Nk4 14 days prior to tumour induction. Tumour growth and survival was monitored for all animals. Cured animals were re-challenged with tumourigenic doses of the original tumour type. In vivo cytotoxicity assays were used to investigate establishment of cell-mediated responses in treated animals. Results AAV2-mediated GM-CSF, B7-1 treatment resulted in a significant reduction in tumour growth and an increase in survival in both tumour models. Cured animals were resistant to re-challenge, and induction of T cell mediated anti-tumour responses were demonstrated. Adoptive transfer of splenocytes to naïve animals prevented tumour establishment. Systemic production of Nk4 induced by intra-muscular (IM) delivery of Nk4 significantly reduced subcutaneous tumour growth. However, combination of Nk4 treatment with GM-CSF, B7-1 therapy reduced the efficacy of the immune therapy. Conclusions Overall, this study demonstrates the potential for in vivo AAV2 mediated immune gene therapy, and provides data on the inter-relationship between tumour

  4. DMPD: IRAK1: a critical signaling mediator of innate immunity. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17890055 IRAK1: a critical signaling mediator of innate immunity. Gottipati S, Rao ...IRAK1: a critical signaling mediator of innate immunity. PubmedID 17890055 Title IRAK1: a critical signaling mediator

  5. The cell-mediated immunity of Drosophila melanogaster: hemocyte lineages, immune compartments, microanatomy and regulation.

    Science.gov (United States)

    Honti, Viktor; Csordás, Gábor; Kurucz, Éva; Márkus, Róbert; Andó, István

    2014-01-01

    In the animal kingdom, innate immunity is the first line of defense against invading pathogens. The dangers of microbial and parasitic attacks are countered by similar mechanisms, involving the prototypes of the cell-mediated immune responses, the phagocytosis and encapsulation. Work on Drosophila has played an important role in promoting an understanding of the basic mechanisms of phylogenetically conserved modules of innate immunity. The aim of this review is to survey the developments in the identification and functional definition of immune cell types and the immunological compartments of Drosophila melanogaster. We focus on the molecular and developmental aspects of the blood cell types and compartments, as well as the dynamics of blood cell development and the immune response. Further advances in the characterization of the innate immune mechanisms in Drosophila will provide basic clues to the understanding of the importance of the evolutionary conserved mechanisms of innate immune defenses in the animal kingdom. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Neurotransmitter system of immune regulation as a marker of immunological disorders in pupils in the conditions of increased entry of strontium with drinking water

    Directory of Open Access Journals (Sweden)

    О.V. Dolgikh

    2015-09-01

    Full Text Available The evaluation of immunological markers in schoolchildren exposed to strontium is performed. It is shown that under the conditions of increased administration of strontium with drinking water the indication of spontaneous and induced levels of neurotransmitters in vitro allows to detect early functional disorders of the immune system. It was found that the following markers of specific hypersensitivity and mediators of intercellular immune regulation (IgG specific to strontium, cytokines IL-6, IL-10, IL-12, IL-17, α-TNF, GM-CSF, spontaneous and specifically stimulated, RANKL, OPG( may be proposed for the identification of health risk as early markers of immune disorders in school children living in areas of strontium geochemical provinces.

  7. 25-Hydroxyvitamin D and Peripheral Immune Mediators

    DEFF Research Database (Denmark)

    Thorsen, Steffen; Pipper, Christian; Skogstrand, Kristin

    2017-01-01

    Background: We aimed to examine if 25-hydroxyvitamin D (25(OH)D) was related to the peripheral immunological and inflammatory signature both at birth, and in newly diagnosed patients with childhood type 1 diabetes (T1D) and their healthy controls; (2) Methods: The birth cohort consisted of 470...... patients and 500 healthy controls. Dried blood samples were collected from the neonates in the period 1981–1999. The newly diagnosed cohort consisted of 460 patients and 453 siblings. Serum samples were collected in the period 1997–2005. A variety of peripheral immune mediators were measured and compared...... to total 25(OH)D levels (25(OH)D2 + 25(OH)D3). For each immune mediator, the relative change (RC) in the mean level was modeled by robust log-normal regression and correction for multiple testing was performed; (3) Results: Two associations were identified; there was a negative association between 25(OH...

  8. The neuro-immune axis: Prospect for novel treatments for mental disorders

    NARCIS (Netherlands)

    Kraneveld, Aletta D.; de Theije, Caroline G.M.; van Heesch, Floor; Borre, Yuliya; de Kivit, Sander; Olivier, Berend; Korte, Mechiel; Garssen, Johan

    2014-01-01

    Disturbed bidirectional pathways between the (central) nervous system and immune system have been implicated in various mental disorders, including depressive and neurodevelopmental disorders. In this minireview, the role of the neuro-immune axis and its targetability in relation to major depression

  9. Nye behandlingsmuligheder ved primær immun trombocytopeni

    DEFF Research Database (Denmark)

    Gudbrandsdottir, Sif; Frederiksen, Henrik; Birgens, Henrik Sverre

    2011-01-01

    Primary immune thrombocytopenia (ITP)--formerly known as idiopathic thrombocytopenic purpura--is an autoimmune disorder characterized by immune mediated thrombocytopenia. The aetiology of ITP remains unknown, but studies have shown that multiple immunological mechanisms are involved in the pathog...

  10. Acne: a new model of immune-mediated chronic inflammatory skin disease.

    Science.gov (United States)

    Antiga, E; Verdelli, A; Bonciani, D; Bonciolini, V; Caproni, M; Fabbri, P

    2015-04-01

    Acne is a chronic inflammatory disease of the sebaceous-pilosebaceous unit. Interestingly, inflammation can be detected by histopathological examination and immuohistochemical analysis even in the apparently non-inflammatory acneic lesions, such as comedones. In the last years, it has been clearly demonstrated that acne development is linked to the combination of predisposing genetic factors and environmental triggers, among which a prominent role is played by the follicular colonization by Propionibacterium acnes (P. acnes). P. acnes displays several activities able to promote the development of acne skin lesions, including the promotion of follicular hyperkeratinisation, the induction of sebogenesis, and the stimulation of an inflammatory response by the secretion of proinflammatory molecules and by the activation of innate immunity, that is followed by a P. acnes-specific adaptive immune response. In addition, P. acnes-independent inflammation mediated by androgens or by a neurogenic activation, followed by the secretion in the skin of pro-inflammatory neuropeptides, can occur in acne lesions. In conclusion, acne can be considered as a model of immune-mediated chronic inflammatory skin disease, characterized by an innate immune response that is not able to control P. acnes followed by a Th1-mediated adaptive immune response, that becomes self-maintaining independently from P. acnes itself.

  11. Brassinosteroids antagonize gibberellin- and salicylate-mediated root immunity in rice.

    Science.gov (United States)

    De Vleesschauwer, David; Van Buyten, Evelien; Satoh, Kouji; Balidion, Johny; Mauleon, Ramil; Choi, Il-Ryong; Vera-Cruz, Casiana; Kikuchi, Shoshi; Höfte, Monica

    2012-04-01

    Brassinosteroids (BRs) are a unique class of plant steroid hormones that orchestrate myriad growth and developmental processes. Although BRs have long been known to protect plants from a suite of biotic and abiotic stresses, our understanding of the underlying molecular mechanisms is still rudimentary. Aiming to further decipher the molecular logic of BR-modulated immunity, we have examined the dynamics and impact of BRs during infection of rice (Oryza sativa) with the root oomycete Pythium graminicola. Challenging the prevailing view that BRs positively regulate plant innate immunity, we show that P. graminicola exploits BRs as virulence factors and hijacks the rice BR machinery to inflict disease. Moreover, we demonstrate that this immune-suppressive effect of BRs is due, at least in part, to negative cross talk with salicylic acid (SA) and gibberellic acid (GA) pathways. BR-mediated suppression of SA defenses occurred downstream of SA biosynthesis, but upstream of the master defense regulators NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 and OsWRKY45. In contrast, BR alleviated GA-directed immune responses by interfering at multiple levels with GA metabolism, resulting in indirect stabilization of the DELLA protein and central GA repressor SLENDER RICE1 (SLR1). Collectively, these data favor a model whereby P. graminicola coopts the plant BR pathway as a decoy to antagonize effectual SA- and GA-mediated defenses. Our results highlight the importance of BRs in modulating plant immunity and uncover pathogen-mediated manipulation of plant steroid homeostasis as a core virulence strategy.

  12. Adenovirus Vector-Derived VA-RNA-Mediated Innate Immune Responses

    Directory of Open Access Journals (Sweden)

    Hiroyuki Mizuguchi

    2011-07-01

    Full Text Available The major limitation of the clinical use of replication-incompetent adenovirus (Ad vectors is the interference by innate immune responses, including induction of inflammatory cytokines and interferons (IFN, following in vivo application of Ad vectors. Ad vector-induced production of inflammatory cytokines and IFNs also results in severe organ damage and efficient induction of acquired immune responses against Ad proteins and transgene products. Ad vector-induced innate immune responses are triggered by the recognition of Ad components by pattern recognition receptors (PRRs. In order to reduce the side effects by Ad vector-induced innate immune responses and to develop safer Ad vectors, it is crucial to clarify which PRRs and which Ad components are involved in Ad vector-induced innate immune responses. Our group previously demonstrated that myeloid differentiating factor 88 (MyD88 and toll-like receptor 9 (TLR9 play crucial roles in the Ad vector-induced inflammatory cytokine production in mouse bone marrow-derived dendritic cells. Furthermore, our group recently found that virus associated-RNAs (VA-RNAs, which are about 160 nucleotide-long non-coding small RNAs encoded in the Ad genome, are involved in IFN production through the IFN-β promoter stimulator-1 (IPS-1-mediated signaling pathway following Ad vector transduction. The aim of this review is to highlight the Ad vector-induced innate immune responses following transduction, especially VA-RNA-mediated innate immune responses. Our findings on the mechanism of Ad vector-induced innate immune responses should make an important contribution to the development of safer Ad vectors, such as an Ad vector lacking expression of VA-RNAs.

  13. The Scaffold Immune Microenvironment: Biomaterial-Mediated Immune Polarization in Traumatic and Nontraumatic Applications.

    Science.gov (United States)

    Sadtler, Kaitlyn; Allen, Brian W; Estrellas, Kenneth; Housseau, Franck; Pardoll, Drew M; Elisseeff, Jennifer H

    2017-10-01

    The immune system mediates tissue growth and homeostasis and is the first responder to injury or biomaterial implantation. Recently, it has been appreciated that immune cells play a critical role in wound healing and tissue repair and should thus be considered potentially beneficial, particularly in the context of scaffolds for regenerative medicine. In this study, we present a flow cytometric analysis of cellular recruitment to tissue-derived extracellular matrix scaffolds, where we quantitatively describe the infiltration and polarization of several immune subtypes, including macrophages, dendritic cells, neutrophils, monocytes, T cells, and B cells. We define a specific scaffold-associated macrophage (SAM) that expresses CD11b + F4/80 + CD11c +/- CD206 hi CD86 + MHCII + that are characteristic of an M2-like cell (CD206 hi ) with high antigen presentation capabilities (MHCII + ). Adaptive immune cells tightly regulate the phenotype of a mature SAM. These studies provide a foundation for detailed characterization of the scaffold immune microenvironment of a given biomaterial scaffold to determine the effect of scaffold changes on immune response and subsequent therapeutic outcome of that material.

  14. Peripheral immune abnormalities in two high-risk populations for bipolar disorder

    NARCIS (Netherlands)

    Snijders, G.; Schiweck, C.; Brouwer, R.; Mesman, E.; Grosse, L.; de Wit, H; Nolen, W. A.; Drexhage, H. A.; Hillegers, M. H. J.

    Objective: Mounting data support the hypothesis for a role of the immune system in the pathophysiology of bipolar disorder. The aim of this study was to examine immune alterations in two unique familial high-risk cohorts for bipolar disorder. Methods: The study population comprised bipolar

  15. Delicate regulation of the cGAS-MITA-mediated innate immune response.

    Science.gov (United States)

    Luo, Wei-Wei; Shu, Hong-Bing

    2018-02-19

    Although it has long been demonstrated that cytosolic DNA is a potent immune stimulant, it is only in recent years that the molecular mechanisms of DNA-stimulated innate immune responses have emerged. Studies have established critical roles for the DNA sensor cyclic GMP-AMP synthase (cGAS) and the adapter protein MITA/STING in the innate immune response to cytosolic DNA or DNA viruses. Although the regulation of cGAS-MITA/STING-mediated signaling remains to be fully investigated, understanding the processes involved may help to explain the mechanisms of innate immune signaling events and perhaps autoinflammatory diseases and to provide potential therapeutic targets for drug intervention. In this review, we summarize recent progress on the regulation of the cGAS-MITA/STING-mediated innate immune response to DNA viruses at the organelle-trafficking, post-translational and transcriptional levels.Cellular & Molecular Immunology advance online publication, 19 February 2018; doi:10.1038/cmi.2016.51.

  16. CHARACTERISTICS OF NEUROPEPTIDE-CYTOKINE IMMUNITY LINKS IN PATIENTS WITH COMBINED CARDIOVASCULAR PATHOLOGY, PROCEEDING WITH ANXIETY/DEPRESSION DISORDER

    Directory of Open Access Journals (Sweden)

    A. V. Gertsev

    2018-01-01

    Full Text Available To date, pathogenetic events underlying coronary heart disease and hypertensive syndrome should be regarded as complex reactions of neuroimmune interactions characterized by activation of proinflammatory cytokines, opiate receptors and endogenous opioid peptides. These changes are mediated by high activity of basic regulatory systems that increase myocardial resistance to acute and chronic ischemic damage. However, there is lack of data concerning severity of these changes in the course of complicated coronary heart disease and hypertension, which occur in the background of anxiety-depressive disorders.The aim of present study was to assess regulatory disturbances at the level of neuropeptide-cytokine pool in the patients with polymorbid cardiovascular disease accomplished by anxiety and depressive conditions. Clinical examination of 85 patients (males aged 35 to 45 years, with complicated cardiovascular disease (coronary heart disease combined with essential hypertension stage II associated with anxiety and depressive disorders. To address these issues, we have formed a group of patients with anxiety and depressive disorders (group 1, n = 40, patients with coronary artery disease and stage II hypertension; group 2 (n = 20 included patients with coronary artery disease; group 3 (n = 25 included patients with hypertension stage II; group 4 (n = 30 represented controls (healthy person. In order to study dysfunction of regulatory neuropeptides at the level of cytokine-mediated immunity in these groups, we have studied diagnostic markers of the suprasegmentary autonomous nervous condition, and cytokine pool of immune system. Immune testing was used to determine β-endorphin, cytokines of pro-inflammatory (TNFα, IL-1β, IL-6 and anti-inflammatory (IL-4, IL-10 spectra in blood serum of patients.In the course of clinical and laboratory examination, the authors found that the patients with polymorbid cardiovascular pathology exhibit regulatory

  17. Immunization Uptake in Younger Siblings of Children with Autism Spectrum Disorder

    Science.gov (United States)

    Kuwaik, Ghassan Abu; Roberts, Wendy; Zwaigenbaum, Lonnie; Bryson, Susan; Smith, Isabel M.; Szatmari, Peter; Modi, Bonnie M.; Tanel, Nadia; Brian, Jessica

    2014-01-01

    Background: Parental concerns persist that immunization increases the risk of autism spectrum disorder, resulting in the potential for reduced uptake by parents of younger siblings of children with autism spectrum disorder ("younger sibs"). Objective: To compare immunization uptake by parents for their younger child relative to their…

  18. Oral immune therapy: targeting the systemic immune system via the gut immune system for the treatment of inflammatory bowel disease.

    Science.gov (United States)

    Ilan, Yaron

    2016-01-01

    Inflammatory bowel diseases (IBD) are associated with an altered systemic immune response leading to inflammation-mediated damage to the gut and other organs. Oral immune therapy is a method of systemic immune modulation via alteration of the gut immune system. It uses the inherit ability of the innate system of the gut to redirect the systemic innate and adaptive immune responses. Oral immune therapy is an attractive clinical approach to treat autoimmune and inflammatory disorders. It can induce immune modulation without immune suppression, has minimal toxicity and is easily administered. Targeting the systemic immune system via the gut immune system can serve as an attractive novel therapeutic method for IBD. This review summarizes the current data and discusses several examples of oral immune therapeutic methods for using the gut immune system to generate signals to reset systemic immunity as a treatment for IBD.

  19. TLR4 links podocytes with the innate immune system to mediate glomerular injury

    DEFF Research Database (Denmark)

    Banas, Miriam C; Banas, Bernhard; Hudkins, Kelly L

    2008-01-01

    profile of chemokines. In conclusion, it was demonstrated that TLR4 is constitutively expressed by podocytes and is upregulated in MPGN, where it may mediate glomerular injury by modulating expression of chemokines; therefore, TLR4 may link podocytes with the innate immune system to mediate MPGN triggered...... by the deposition of immune complexes....

  20. The 3 major types of innate and adaptive cell-mediated effector immunity.

    Science.gov (United States)

    Annunziato, Francesco; Romagnani, Chiara; Romagnani, Sergio

    2015-03-01

    The immune system has tailored its effector functions to optimally respond to distinct species of microbes. Based on emerging knowledge on the different effector T-cell and innate lymphoid cell (ILC) lineages, it is clear that the innate and adaptive immune systems converge into 3 major kinds of cell-mediated effector immunity, which we propose to categorize as type 1, type 2, and type 3. Type 1 immunity consists of T-bet(+) IFN-γ-producing group 1 ILCs (ILC1 and natural killer cells), CD8(+) cytotoxic T cells (TC1), and CD4(+) TH1 cells, which protect against intracellular microbes through activation of mononuclear phagocytes. Type 2 immunity consists of GATA-3(+) ILC2s, TC2 cells, and TH2 cells producing IL-4, IL-5, and IL-13, which induce mast cell, basophil, and eosinophil activation, as well as IgE antibody production, thus protecting against helminthes and venoms. Type 3 immunity is mediated by retinoic acid-related orphan receptor γt(+) ILC3s, TC17 cells, and TH17 cells producing IL-17, IL-22, or both, which activate mononuclear phagocytes but also recruit neutrophils and induce epithelial antimicrobial responses, thus protecting against extracellular bacteria and fungi. On the other hand, type 1 and 3 immunity mediate autoimmune diseases, whereas type 2 responses can cause allergic diseases. Copyright © 2014 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  1. Nitric oxide mediates insect cellular immunity via phospholipase A2 activation

    Science.gov (United States)

    After infection or invasion is recognized, biochemical mediators act in signaling insect immune functions. These include biogenic amines, insect cytokines, eicosanoids and nitric oxide (NO). Treating insects or isolated hemocyte populations with different mediators often leads to similar results. Se...

  2. The Role of the Immune System in Autism Spectrum Disorder.

    Science.gov (United States)

    Meltzer, Amory; Van de Water, Judy

    2017-01-01

    Autism is a neurodevelopmental disorder characterized by deficits in communication and social skills as well as repetitive and stereotypical behaviors. While much effort has focused on the identification of genes associated with autism, research emerging within the past two decades suggests that immune dysfunction is a viable risk factor contributing to the neurodevelopmental deficits observed in autism spectrum disorders (ASD). Further, it is the heterogeneity within this disorder that has brought to light much of the current thinking regarding the subphenotypes within ASD and how the immune system is associated with these distinctions. This review will focus on the two main axes of immune involvement in ASD, namely dysfunction in the prenatal and postnatal periods. During gestation, prenatal insults including maternal infection and subsequent immunological activation may increase the risk of autism in the child. Similarly, the presence of maternally derived anti-brain autoantibodies found in ~20% of mothers whose children are at risk for developing autism has defined an additional subphenotype of ASD. The postnatal environment, on the other hand, is characterized by related but distinct profiles of immune dysregulation, inflammation, and endogenous autoantibodies that all persist within the affected individual. Further definition of the role of immune dysregulation in ASD thus necessitates a deeper understanding of the interaction between both maternal and child immune systems, and the role they have in diagnosis and treatment.

  3. Targeting methionine cycle as a potential therapeutic strategy for immune disorders.

    Science.gov (United States)

    Li, Heng; Lu, Huimin; Tang, Wei; Zuo, Jianping

    2017-08-23

    Methionine cycle plays an essential role in regulating many cellular events, especially transmethylation reactions, incorporating the methyl donor S-adenosylmethionine (SAM). The transmethylations and substances involved in the cycle have shown complicated effects and mechanisms on immunocytes developments and activations, and exert crucial impacts on the pathological processes in immune disorders. Areas covered: Methionine cycle has been considered as an effective means of drug developments. This review discussed the role of methionine cycle in immune responses and summarized the potential therapeutic strategies based on the cycle, including SAM analogs, methyltransferase inhibitors, S-adenosylhomocysteine hydrolase (SAHH) inhibitors, adenosine receptors specific agonists or antagonists and homocysteine (Hcy)-lowering reagents, in treating human immunodeficiency virus (HIV) infections, systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), multiple sclerosis (MS), systemic sclerosis (SSc) and other immune disorders. Expert opinion: New targets and biomarkers grown out of methionine cycle have developed rapidly in the past decades. However, impacts of epigenetic regulations on immune disorders are unclear and whether the substances in methionine cycle can be clarified as biomarkers remains controversial. Therefore, further elucidation on the role of epigenetic regulations and substances in methionine cycle may contribute to exploring the cycle-derived biomarkers and drugs in immune disorders.

  4. Immune activation by casein dietary antigens in bipolar disorder

    NARCIS (Netherlands)

    Severance, E.G.; Dupont, D.; Dickerson, F.B.; Stallings, C.R.; Origoni, A.E.; Krivogorsky, B.; Yang, S.; Haasnoot, W.; Yolken, R.H.

    2010-01-01

    Objectives: Inflammation and other immune processes are increasingly linked to psychiatric diseases. Antigenic triggers specific to bipolar disorder are not yet defined. We tested whether antibodies to bovine milk caseins were associated with bipolar disorder, and whether patients recognized

  5. BID-dependent release of mitochondrial SMAC dampens XIAP-mediated immunity against Shigella

    Science.gov (United States)

    Andree, Maria; Seeger, Jens M; Schüll, Stephan; Coutelle, Oliver; Wagner-Stippich, Diana; Wiegmann, Katja; Wunderlich, Claudia M; Brinkmann, Kerstin; Broxtermann, Pia; Witt, Axel; Fritsch, Melanie; Martinelli, Paola; Bielig, Harald; Lamkemeyer, Tobias; Rugarli, Elena I; Kaufmann, Thomas; Sterner-Kock, Anja; Wunderlich, F Thomas; Villunger, Andreas; Martins, L Miguel; Krönke, Martin; Kufer, Thomas A; Utermöhlen, Olaf; Kashkar, Hamid

    2014-01-01

    The X-linked inhibitor of apoptosis protein (XIAP) is a potent caspase inhibitor, best known for its anti-apoptotic function in cancer. During apoptosis, XIAP is antagonized by SMAC, which is released from the mitochondria upon caspase-mediated activation of BID. Recent studies suggest that XIAP is involved in immune signaling. Here, we explore XIAP as an important mediator of an immune response against the enteroinvasive bacterium Shigella flexneri, both in vitro and in vivo. Our data demonstrate for the first time that Shigella evades the XIAP-mediated immune response by inducing the BID-dependent release of SMAC from the mitochondria. Unlike apoptotic stimuli, Shigella activates the calpain-dependent cleavage of BID to trigger the release of SMAC, which antagonizes the inflammatory action of XIAP without inducing apoptosis. Our results demonstrate how the cellular death machinery can be subverted by an invasive pathogen to ensure bacterial colonization. PMID:25056906

  6. Humoral and cell-mediated immune responses in DNA immunized mink challenged with wild-type canine distemper virus.

    Science.gov (United States)

    Nielsen, Line; Søgaard, Mette; Karlskov-Mortensen, Peter; Jensen, Trine Hammer; Jensen, Tove Dannemann; Aasted, Bent; Blixenkrone-Møller, Merete

    2009-07-30

    The aim of the study was to investigate the different phases of the immune response after DNA immunization with the hemagglutinin and nucleoprotein genes from canine distemper virus (CDV). Although attenuated live CDV vaccines have effectively reduced the incidence of disease, canine distemper is still a problem worldwide. The broad host range of CDV creates a constant viral reservoir among wildlife animals. Our results demonstrated early humoral and cell-mediated immune responses (IFN-gamma) in DNA vaccinated mink compared to mock-vaccinated mink after challenge with a Danish wild-type CDV. The DNA vaccine-induced immunity protected the natural host against disease development.

  7. HIF-mediated innate immune responses: cell signaling and therapeutic implications

    Directory of Open Access Journals (Sweden)

    Harris AJ

    2014-05-01

    Full Text Available Alison J Harris, AA Roger Thompson, Moira KB Whyte, Sarah R Walmsley Academic Unit of Respiratory Medicine, Department of Infection and Immunity, University of Sheffield, Sheffield, UK Abstract: Leukocytes recruited to infected, damaged, or inflamed tissues during an immune response must adapt to oxygen levels much lower than those in the circulation. Hypoxia inducible factors (HIFs are key mediators of cellular responses to hypoxia and, as in other cell types, HIFs are critical for the upregulation of glycolysis, which enables innate immune cells to produce adenosine triphosphate anaerobically. An increasing body of evidence demonstrates that hypoxia also regulates many other innate immunological functions, including cell migration, apoptosis, phagocytosis of pathogens, antigen presentation and production of cytokines, chemokines, and angiogenic and antimicrobial factors. Many of these functions are mediated by HIFs, which are not only stabilized posttranslationally by hypoxia, but also transcriptionally upregulated by inflammatory signals. Here, we review the role of HIFs in the responses of innate immune cells to hypoxia, both in vitro and in vivo, with a particular focus on myeloid cells, on which the majority of studies have so far been carried out. Keywords: hypoxia, neutrophils, monocytes, macrophages

  8. Gut Microbiota-Immune System Crosstalk and Pancreatic Disorders

    Directory of Open Access Journals (Sweden)

    D. Pagliari

    2018-01-01

    Full Text Available Gut microbiota is key to the development and modulation of the mucosal immune system. It plays a central role in several physiological functions, in the modulation of inflammatory signaling and in the protection against infections. In healthy states, there is a perfect balance between commensal and pathogens, and microbiota and the immune system interact to maintain gut homeostasis. The alteration of such balance, called dysbiosis, determines an intestinal bacterial overgrowth which leads to the disruption of the intestinal barrier with systemic translocation of pathogens. The pancreas does not possess its own microbiota, and it is believed that inflammatory and neoplastic processes affecting the gland may be linked to intestinal dysbiosis. Increasing research evidence testifies a correlation between intestinal dysbiosis and various pancreatic disorders, but it remains unclear whether dysbiosis is the cause or an effect. The analysis of specific alterations in the microbiome profile may permit to develop novel tools for the early detection of several pancreatic disorders, utilizing samples, such as blood, saliva, and stools. Future studies will have to elucidate the mechanisms by which gut microbiota is modulated and how it tunes the immune system, in order to be able to develop innovative treatment strategies for pancreatic disorders.

  9. Immune-mediated rippling muscle disease and myasthenia gravis.

    Science.gov (United States)

    Bettini, Mariela; Gonorazky, Hernan; Chaves, Marcelo; Fulgenzi, Ernesto; Figueredo, Alejandra; Christiansen, Silvia; Cristiano, Edgardo; Bertini, Enrico S; Rugiero, Marcelo

    2016-10-15

    Cases of acquired rippling muscle disease in association with myasthenia gravis have been reported. We present three patients with iRMD (immune-mediated rippling muscle disease) and AChR-antibody positive myasthenia gravis. None of them had thymus pathology. They presented exercise-induced muscle rippling combined with generalized myasthenia gravis. One of them had muscle biopsy showing a myopathic pattern and a patchy immunostaining with caveolin antibodies. They were successfully treated steroids and azathioprine. The immune nature of this association is supported by the response to immunotherapies and the positivity of AChR-antibodies. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Anterior Chamber-Associated Immune Deviation (ACAID: An Acute Response to Ocular Insult Protects from Future Immune-Mediated Damage?

    Directory of Open Access Journals (Sweden)

    Robert E. Cone

    2009-01-01

    Full Text Available The “immune privilege” that inhibits immune defense mechanisms that could lead to damage to sensitive ocular tissue is based on the expression of immunosuppressive factors on ocular tissue and in ocular fluids. In addition to this environmental protection, the injection of antigen into the anterior chamber or infection in the anterior chamber induces a systemic suppression of potentially damaging cell-mediated and humoral responses to the antigen. Here we discuss evidence that suggests that Anterior Chamber-Associated Immune Deviation (ACAID a is initiated by an ocular response to moderate inflammation that leads to a systemic immunoregulatory response. Injection into the anterior chamber induces a rise in TNF-α and MCP-1 in aqueous humor and an infiltration of circulating F4/80 + monocytes that home to the iris. The induction of ACAID is dependent on this infiltration of circulating monocytes that eventually emigrate to the thymus and spleen where they induce regulatory T cells that inhibit the inductive or effector phases of a cell-mediated immune response. ACAID therefore protects the eye from the collateral damage of an immune response to infection by suppressing a future potentially damaging response to infection.

  11. Recent Advances in Type-2-Cell-Mediated Immunity: Insights from Helminth Infection.

    Science.gov (United States)

    Harris, Nicola L; Loke, P'ng

    2017-12-19

    Type-2-cell-mediated immune responses play a critical role in mediating both host-resistance and disease-tolerance mechanisms during helminth infections. Recently, type 2 cell responses have emerged as major regulators of tissue repair and metabolic homeostasis even under steady-state conditions. In this review, we consider how studies of helminth infection have contributed toward our expanding cellular and molecular understanding of type-2-cell-mediated immunity, as well as new areas such as the microbiome. By studying how these successful parasites form chronic infections without overt pathology, we are gaining additional insights into allergic and inflammatory diseases, as well as normal physiology. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Genetic liability for schizophrenia predicts risk of immune disorders

    NARCIS (Netherlands)

    Stringer, Sven; Kahn, René S.; de Witte, Lot D.; Ophoff, Roel A.; Derks, Eske M.

    2014-01-01

    Schizophrenia patients and their parents have an increased risk of immune disorders compared to population controls and their parents. This may be explained by genetic overlap in the pathogenesis of both types of disorders. The purpose of this study was to investigate the genetic overlap between

  13. Genetic liability for schizophrenia predicts risk of immune disorders

    NARCIS (Netherlands)

    Stringer, Sven; Kahn, René S; de Witte, Lot D; Ophoff, Roel A; Derks, Eske M

    2014-01-01

    BACKGROUND: Schizophrenia patients and their parents have an increased risk of immune disorders compared to population controls and their parents. This may be explained by genetic overlap in the pathogenesis of both types of disorders. The purpose of this study was to investigate the genetic overlap

  14. Mathematical and Computational Modeling for Tumor Virotherapy with Mediated Immunity.

    Science.gov (United States)

    Timalsina, Asim; Tian, Jianjun Paul; Wang, Jin

    2017-08-01

    We propose a new mathematical modeling framework based on partial differential equations to study tumor virotherapy with mediated immunity. The model incorporates both innate and adaptive immune responses and represents the complex interaction among tumor cells, oncolytic viruses, and immune systems on a domain with a moving boundary. Using carefully designed computational methods, we conduct extensive numerical simulation to the model. The results allow us to examine tumor development under a wide range of settings and provide insight into several important aspects of the virotherapy, including the dependence of the efficacy on a few key parameters and the delay in the adaptive immunity. Our findings also suggest possible ways to improve the virotherapy for tumor treatment.

  15. Combined effect of x irradiation and cell-mediated immune reaction

    International Nuclear Information System (INIS)

    Song, C.W.; Guertin, D.P.

    1978-01-01

    The combined effect of radiation and cell-mediated immune reaction on tumor cells was investigated in vitro. Mastocytoma P815-X2 cells of DBA mice either were irradiated first and subjected to immune lysis by immune splenic lymphocytes of C57Bl mice, or the tumor cells were subjected to immune reaction first and then irradiated. Cell survival was quantitated by colony formation in soft agar medium. It was observed that cellular immune damage to tumor cells did not influence the response of tumor cells to subsequent radiation. Irradiation of tumor cells first, followed by subjection of the cells to cellular immune reaction, slightly enhanced the death of the tumor cells. It appears that this enhanced death might have resulted from a relative increase in the ratio of the number of cytotoxic immune cells to the number of target tumor cells in the incubation mixture as a consequence of the decrease in the number of viable tumor cells by radiation

  16. Human prealbumin fraction: effects on cell-mediated immunity and tumor rejection

    International Nuclear Information System (INIS)

    Leung, K.H.; Ehrke, M.J.; Bercsenyi, K.; Mihich, E.

    1982-01-01

    The effect of human prealbumin fraction as allogeneic cell-mediated immunity in primary sensitization cultures of murine spleen cells was studied by 3H-thymidine uptake and specific 51Cr release assays. Prealbumin caused a dose-dependent augmentation of these responses. Human serum albumin, bovine serum albumin, and calf-thymosin fraction 5 had little effect. Prealbumin was active when added on day 0 or 1 but not thereafter. Prealbumin added to effector cells from immunized mice did not change their lytic activity. Prealbumin, but not human serum albumin or thymosin fraction 5, augmented secondary cell-mediated immunity in culture after primary immunization in mice. A slow growing mammary tumor line, which originated as a spontaneous mammary tumor in a DBA/2 HaDD breeder mouse, initially grows in 100% of DBA/2J mice but is then rejected in 10 to 20% of them. When prealbumin (59 microgram/day) was given subcutaneously for 2 weeks to DBA/2J mice and the tumor implanted 2 weeks later. 78% of the mice rejected the tumor and were then resistant to a rechallenge

  17. IL-10 polymorphism and cell-mediated immune response to Chlamydia trachomatis

    DEFF Research Database (Denmark)

    Öhman, H.; Tiitinen, A; Halttunen, M.

    2006-01-01

    background. To study a relationship between interleukin-10 (IL-10) promoter -1082 polymorphism and cell-mediated immune response during C trachomatis infection in vitro, lymphocyte proliferation and cytokine (IL-10, IFN-gamma, TNF-alpha, IL-2, IL-4 and IL-5) secretion were analysed in subjects with different...... IL-10 genotypes. Enhanced IL-10 secretion and reduced antigen-specific lymphocyte proliferative and IFN-gamma responses were found in subjects with IL-10 -1082 GG genotype when compared to those with -1082 AA genotype. CD14+ monocytes were main source of IL-10 indicating that these cells...... are important regulators of the antigen-specific cell-mediated responses during active C trachomatis infection. We conclude that impaired cell-mediated response to C trachomatis is associated with IL-10 genotype in subjects with high IL-10 producing capacity. A comparison of immune markers between subjects...

  18. Movement disorders in paraneoplastic and autoimmune disease

    Science.gov (United States)

    Panzer, Jessica; Dalmau, Josep

    2013-01-01

    Purpose of review The most relevant advances in immune-mediated movement disorders are described, with emphasis on the clinical–immunological associations, novel antigens, and treatment. Recent findings Many movement disorders previously considered idiopathic or degenerative are now recognized as immune-mediated. Some disorders are paraneoplastic, such as anti-CRMP5-associated chorea, anti-Ma2 hypokinesis and rigidity, anti-Yo cerebellar ataxia and tremor, and anti-Hu ataxia and pesudoathetosis. Other disorders such as Sydenham's chorea, or chorea related to systemic lupus erythematosus and antiphospholipid syndrome occur in association with multiple antibodies, are not paraneoplastic, and are triggered by molecular mimicry or unknown mechanisms. Recent studies have revealed a new category of disorders that can be paraneoplastic or not, and associate with antibodies against cell-surface or synaptic proteins. They include anti-N-methyl-d-aspartate receptor (anti-NMDAR) encephalitis, which may cause dyskinesias, chorea, ballismus or dystonia (NMDAR antibodies), the spectrum of Stiff-person syndrome/muscle rigidity (glutamic acid decarboxylase, amphiphysin, GABAA-receptor-associated protein, or glycine receptor antibodies), neuromyotonia (Caspr2 antibodies), and opsoclonus–myoclonus–ataxia (unknown antigens). Summary Neurologists should be aware that many movement disorders are immune-mediated. Recognition of these disorders is important because it may lead to the diagnosis of an occult cancer, and a substantial number of patients, mainly those with antibodies to cell-surface or synaptic proteins, respond to immunotherapy. PMID:21577108

  19. Steroid sparing regimens for management of oral immune-mediated diseases

    Directory of Open Access Journals (Sweden)

    Arti Agrawal

    2014-01-01

    Full Text Available Immune-mediated mucocutaneous disease may present oral symptoms as a first sign of the disease. The primary etiology could be the cellular and/or humoral immune responses directed against epithelial or connective tissue, in a chronic and recurrent pattern. Lichen planus, pemphigus vulgaris and bullous pemphigoid are the most frequent immunologically mediated mucocutaneous diseases. More often than not, patients present with complaints of blisters, oral ulcers, pain, burning sensation, and bleeding from the various oral sites. Steroids, whether topical or systemic, are the treatment of choice as they have both anti-inflammatory and immune-suppressant properties; however, challenges in the treatment of autoimmune diseases are the complexity of symptoms, the need to manage long-term medications for preserving organ function, and the long-term adverse effects of steroids. In such situations steroid sparing agents, such as, tacrolimus, dapsone, azathioprine, cyclosporine, and so on, may be helpful. Here an attempt is made to review various treatment regimens that could be used as alternatives to steroids for management of such diseases.

  20. Houttuynia cordata modulates oral innate immune mediators: potential role of herbal plant on oral health.

    Science.gov (United States)

    Satthakarn, S; Chung, W O; Promsong, A; Nittayananta, W

    2015-05-01

    Epithelial cells play an active role in oral innate immunity by producing various immune mediators. Houttuynia cordata Thunb (H. cordata), a herbal plant found in Asia, possesses many activities. However, its impacts on oral innate immunity have never been reported. The aim of this study was to determine the effects of H. cordata extract on the expression of innate immune mediators produced by oral epithelial cells. Primary gingival epithelial cells (GECs) were treated with various concentrations of the extract for 18 h. The gene expression of hBD2, SLPI, cytokines, and chemokines was measured using quantitative real-time RT-PCR. The secreted proteins in the culture supernatants were detected by ELISA or Luminex assay. Cytotoxicity of the extract was assessed using CellTiter-Blue Assay. H. cordata significantly induced the expression of hBD2, SLPI, IL-8, and CCL20 in a dose-dependent manner without cytotoxicity. The secreted hBD2 and SLPI proteins were modulated, and the levels of IL-2, IL-6, IL-8, and IFN-γ were significantly induced by the extract. Our data indicated that H. cordata can modulate oral innate immune mediators. These findings may lead to the development of new topical agents from H. cordata for the prevention and treatment of immune-mediated oral diseases. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Review of somatic symptoms in post-traumatic stress disorder.

    Science.gov (United States)

    Gupta, Madhulika A

    2013-02-01

    Post-traumatic stress disorder (PTSD) is associated with both (1) 'ill-defined' or 'medically unexplained' somatic syndromes, e.g. unexplained dizziness, tinnitus and blurry vision, and syndromes that can be classified as somatoform disorders (DSM-IV-TR); and (2) a range of medical conditions, with a preponderance of cardiovascular, respiratory, musculoskeletal, neurological, and gastrointestinal disorders, diabetes, chronic pain, sleep disorders and other immune-mediated disorders in various studies. Frequently reported medical co-morbidities with PTSD across various studies include cardiovascular disease, especially hypertension, and immune-mediated disorders. PTSD is associated with limbic instability and alterations in both the hypothalamic- pituitary-adrenal and sympatho-adrenal medullary axes, which affect neuroendocrine and immune functions, have central nervous system effects resulting in pseudo-neurological symptoms and disorders of sleep-wake regulation, and result in autonomic nervous system dysregulation. Hypervigilance, a central feature of PTSD, can lead to 'local sleep' or regional arousal states, when the patient is partially asleep and partially awake, and manifests as complex motor and/or verbal behaviours in a partially conscious state. The few studies of the effects of standard PTSD treatments (medications, CBT) on PTSD-associated somatic syndromes report a reduction in the severity of ill-defined and autonomically mediated somatic symptoms, self-reported physical health problems, and some chronic pain syndromes.

  2. Gamma-irradiated scrub typhus immunogens: development of cell-mediated immunity after vaccination of inbred mice

    International Nuclear Information System (INIS)

    Jerrells, T.R.; Palmer, B.A.; Osterman, J.V.

    1983-01-01

    Mice immunized with three injections of gamma-irradiated Karp strain of Rickettsia tsutsugamushi were evaluated for the presence of cell-mediated immunity by using delayed-type hypersensitivity, antigen-induced lymphocyte proliferation, and antigen-induced lymphokine production. These animals also were evaluated for levels of circulating antibody after immunization as well as for the presence of rickettsemia after intraperitoneal challenge with viable Karp rickettsiae. After immunization with irradiated Karp rickettsiae, a demonstrable cell-mediated immunity was present as evidenced by delayed-type hypersensitivity responsiveness, lymphocyte proliferation, and production of migration inhibition factor and interferon by immune spleen lymphocytes. Also, a reduction in circulating rickettsiae was seen in mice immunized with irradiated rickettsiae after challenge with 1,000 50% mouse lethal doses of viable, homologous rickettsiae. All responses except antibody titer and reduction of rickettsemia were similar to the responses noted in mice immunized with viable organisms. Antibody levels were lower in mice immunized with irradiated rickettsiae than in mice immunized with viable rickettsiae. Furthermore, mice that were immunized with viable rickettsiae demonstrated markedly lower levels of rickettsemia after intraperitoneal challenge compared with either mice immunized with irradiated rickettsiae or nonimmunized mice

  3. In vitro cell-mediated immunity assay using 125I-iododeoxyuridine

    International Nuclear Information System (INIS)

    Morris, J.E.; Graham, T.M.

    1979-01-01

    We investigated an in vitro cell-mediated immunity assay using incorporation of 125 I-iododeoxyuridine as an indicator of lymphocyte responsiveness to mitogen stimulation. The system permits the use of whole-blood cultures in rats and dogs

  4. Changes in cell-mediated immunity in patients undergoing radiotherapy

    International Nuclear Information System (INIS)

    Rafla, S.; Yang, S.J.; Meleka, F.

    1978-01-01

    The cell-mediated immune status of 147 patients who received radiotherapy was evaluated using in vitro tests (PHA, E-rosette, and spontaneous blastogenesis) both before and 6 weeks after the end of radiation. All patients have verified malignancies, involving the bronchus in 29 cases, breast in 28, female genital system in 26, head and neck in 20 and bladder in 15. Patients suffering from bronchogenic carcinomas or malignancies of the head and neck showed a relative high degree of immune suppression. Our findings indicate a trend towards some improvement in PHA reactivity, as well as in the percentage of E-rosette-forming cells after treatment, which is more noticeable in patients with pelvic or breast tumors. A relationship seems to exist between the tumor load and the immune status, which reverts to a normal pattern when the former is extinguished. Moreover, patients with poor clinical response display a profoundly depressed level of immune status without any improvement after treatment

  5. Divergent Roles of Interferon-γ and Innate Lymphoid Cells in Innate and Adaptive Immune Cell-Mediated Intestinal Inflammation.

    Science.gov (United States)

    Brasseit, Jennifer; Kwong Chung, Cheong K C; Noti, Mario; Zysset, Daniel; Hoheisel-Dickgreber, Nina; Genitsch, Vera; Corazza, Nadia; Mueller, Christoph

    2018-01-01

    Aberrant interferon gamma (IFNγ) expression is associated with the pathogenesis of numerous autoimmune- and inflammatory disorders, including inflammatory bowel diseases (IBD). However, the requirement of IFNγ for the pathogenesis of chronic intestinal inflammation remains controversial. The aim of this study was thus to investigate the role of IFNγ in experimental mouse models of innate and adaptive immune cell-mediated intestinal inflammation using genetically and microbiota-stabilized hosts. While we find that IFNγ drives acute intestinal inflammation in the anti-CD40 colitis model in an innate lymphoid cell (ILC)-dependent manner, IFNγ secreted by both transferred CD4 T cells and/or cells of the lymphopenic Rag1 -/- recipient mice was dispensable for CD4 T cell-mediated colitis. In the absence of IFNγ, intestinal inflammation in CD4 T cell recipient mice was associated with enhanced IL17 responses; consequently, targeting IL17 signaling in IFNγ-deficient mice reduced T cell-mediated colitis. Intriguingly, in contrast to the anti-CD40 model of colitis, depletion of ILC in the Rag1 -/- recipients of colitogenic CD4 T cells did not prevent induction of colonic inflammation. Together, our findings demonstrate that IFNγ represents an essential, or a redundant, pro-inflammatory cytokine for the induction of intestinal inflammation, depending on the experimental mouse model used and on the nature of the critical disease inducing immune cell populations involved.

  6. Immunization Safety Review: Thimerosal - Containing Vaccines and Neurodevelopmental Disorders

    National Research Council Canada - National Science Library

    Stratton, Kathleen; Gable, Alicia; McCormick, Marie C

    2001-01-01

    In this report, the Immunization Safety Review committee examines the hypothesis of whether or not the use of vaccines containing the preservative thimerosal can cause neurodevelopmental disorders (NDDs...

  7. Function of endoplasmic reticulum calcium ATPase in innate immunity-mediated programmed cell death

    Science.gov (United States)

    Zhu, Xiaohong; Caplan, Jeffrey; Mamillapalli, Padmavathi; Czymmek, Kirk; Dinesh-Kumar, Savithramma P

    2010-01-01

    Programmed cell death (PCD) initiated at the pathogen-infected sites during the plant innate immune response is thought to prevent the development of disease. Here, we describe the identification and characterization of an ER-localized type IIB Ca2+-ATPase (NbCA1) that function as a regulator of PCD. Silencing of NbCA1 accelerates viral immune receptor N- and fungal-immune receptor Cf9-mediated PCD, as well as non-host pathogen Pseudomonas syringae pv. tomato DC3000 and the general elicitor cryptogein-induced cell death. The accelerated PCD rescues loss-of-resistance phenotype of Rar1, HSP90-silenced plants, but not SGT1-silenced plants. Using a genetically encoded calcium sensor, we show that downregulation of NbCA1 results in the modulation of intracellular calcium signalling in response to cryptogein elicitor. We further show that NbCAM1 and NbrbohB function as downstream calcium decoders in N-immune receptor-mediated PCD. Our results indicate that ER-Ca2+-ATPase is a component of the calcium efflux pathway that controls PCD during an innate immune response. PMID:20075858

  8. Cell-mediated immunity during syphilis. A review

    Science.gov (United States)

    Pavia, Charles S.; Folds, James D.; Baseman, Joel B.

    1978-01-01

    Evidence is presented which reinforces the complexity of the host-parasite interaction during the course of syphilis. Infection with Treponema pallidum evokes a complicated antibody response and an assortment of cell-mediated immune reactions in the host. It appears that humoral immunity plays a minor role towards the complete elimination of syphilitic infection while the cellular limb of the immune response may be an important host defence mechanism. Information now available indicates that a state of anergy, or immunosuppression, exists in the early stages of human and experimental rabbit syphilis based upon negative skin reactions to T. pallidum antigen(s), the abnormal histological appearance of lymphoid organs, and impaired in vitro lymphocyte reactivity. It is also evident that in the later stages of the disease cellular immunity becomes activated as delayed type skin reactions can normally be elicited in tertiary syphilitics and lymphocyte behaviour in cell culture appears normal. Several mechanisms have been invoked to explain the delay in an effective immune response against syphilitic infection and the duration of the disease: (1) a capsule-like substance on the outer surface of virulant T. pallidum may act as a barrier against treponemicidal antibody; (2) this material and other biological properties of virulent treponemes could enable spirochaetes to escape being engulfed by macrophages and other phagocytic cells; (3) antigenic competition among different treponemal antigens causing partial tolerance; (4) T. pallidum infection may bring about the elaboration of immunosuppressive substances of host or treponemal origin which inhibit the proper function of lymphocytes, macrophages, and other cell types. PMID:350348

  9. Circumsporozoite Protein-Specific Kd-Restricted CD8+ T Cells Mediate Protective Antimalaria Immunity in Sporozoite-Immunized MHC-I-Kd Transgenic Mice

    Directory of Open Access Journals (Sweden)

    Jing Huang

    2014-01-01

    Full Text Available Although the roles of CD8+ T cells and a major preerythrocytic antigen, the circumsporozoite (CS protein, in contributing protective antimalaria immunity induced by radiation-attenuated sporozoites, have been shown by a number of studies, the extent to which these players contribute to antimalaria immunity is still unknown. To address this question, we have generated C57BL/6 (B6 transgenic (Tg mice, expressing Kd molecules under the MHC-I promoter, called MHC-I-Kd-Tg mice. In this study, we first determined that a single immunizing dose of IrPySpz induced a significant level of antimalaria protective immunity in MHC-I-Kd-Tg mice but not in B6 mice. Then, by depleting various T-cell subsets in vivo, we determined that CD8+ T cells are the main mediator of the protective immunity induced by IrPySpz. Furthermore, when we immunized (MHC-I-Kd-Tg × CS-Tg F1 mice with IrPySpz after crossing MHC-I-Kd-Tg mice with PyCS-transgenic mice (CS-Tg, which are unable to mount PyCS-specific immunity, we found that IrPySpz immunization failed to induce protective antimalaria immunity in (MHC-I-Kd-Tg × CS-Tg F1 mice, thus indicating the absence of PyCS antigen-dependent immunity in these mice. These results indicate that protective antimalaria immunity induced by IrPySpz in MHC-I-Kd-Tg mice is mediated by CS protein-specific, Kd-restricted CD8+ T cells.

  10. Shared genetics in coeliac disease and other immune-mediated diseases

    NARCIS (Netherlands)

    Gutierrez-Achury, J.; Coutinho de Almeida, R.; Wijmenga, C.

    Gutierrez-Achury J, Coutinho de Almeida R, Wijmenga C (University Medical Centre Groningen and University of Groningen, Groningen, the Netherlands; University of Brasilia School of Health Sciences, Brasilia, DF, Brazil). Shared genetics in coeliac disease and other immune-mediated diseases

  11. In immune defense: redefining the role of the immune system in chronic disease.

    Science.gov (United States)

    Rubinow, Katya B; Rubinow, David R

    2017-03-01

    The recognition of altered immune system function in many chronic disease states has proven to be a pivotal advance in biomedical research over the past decade. For many metabolic and mood disorders, this altered immune activity has been characterized as inflammation, with the attendant assumption that the immune response is aberrant. However, accumulating evidence challenges this assumption and suggests that the immune system may be mounting adaptive responses to chronic stressors. Further, the inordinate complexity of immune function renders a simplistic, binary model incapable of capturing critical mechanistic insights. In this perspective article, we propose alternative paradigms for understanding the role of the immune system in chronic disease. By invoking allostasis or systems biology rather than inflammation, we can ascribe greater functional significance to immune mediators, gain newfound appreciation of the adaptive facets of altered immune activity, and better avoid the potentially disastrous effects of translating erroneous assumptions into novel therapeutic strategies.

  12. Statin-associated immune-mediated myopathy: biology and clinical implications.

    Science.gov (United States)

    Christopher-Stine, Lisa; Basharat, Pari

    2017-04-01

    In the last 6 years, our understanding of statin-associated myopathy expanded to include not only a toxic myopathy with limited and reversible side-effects but also an autoimmune variety in which statins likely induce an autoimmune myopathy that is both associated with a specific autoantibody and responsive to immunosuppression and immune modulation. This review widens the reader's understanding of statin myopathy to include an autoimmune process. Statin-associated immune-mediated myopathy provides an example of an environmental trigger (statins) directly implicated in an autoimmune disease associated with a genetic predisposition as well as potential risk factors including concomitant diseases and specific statins. Given a median exposure to statins of 38 months, providers should be aware that anti-3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR) myopathy may occur even after several years of statin exposure. It is important for the reader to understand the clinical presentation of statin-associated immune-mediated myopathy and the difference in its clinical presentation to that of statins as direct myotoxins. Prompt recognition of such an entity allows the clinician to immediately stop the offending agent if it has not already been discontinued as well as to recognize that statin rechallenge is not a likely option, and that prompt treatment with immunosuppression and/or immunomodulation is usually of enormous benefit to the patient in restoring muscle strength and physical function. VIDEO ABSTRACT.

  13. Immunotherapy: Shifting the Balance of Cell-Mediated Immunity and Suppression in Human Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Tucker, Jo A.; Jochems, Caroline [Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Gulley, James L. [Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Schlom, Jeffrey, E-mail: js141c@nih.gov; Tsang, Kwong Y. [Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States)

    2012-12-11

    Active immunotherapy is dependent on the ability of the immune system to recognize and respond to tumors. Despite overwhelming evidence to support a cell-mediated immune response to prostate cancer, it is insufficient to eradicate the disease. This is likely due to a high level of suppression at the tumor site from a variety of sources, including immunosuppressive cells. Immune cells entering the tumor microenvironment may be inhibited directly by the tumor, stromal cells or other immune cells that have been induced to adopt a suppressive phenotype. The resurgence of interest in immunotherapy following the approval of sipuleucel-T and ipilimumab by the Food and Drug Administration has brought about new strategies for overcoming tumor-mediated suppression and bolstering anti-tumor responses. Improved understanding of the immune response to prostate cancer can lead to new combination therapies, such as the use of vaccine with small molecule and checkpoint inhibitors or other immunotherapies.

  14. Immunotherapy: Shifting the Balance of Cell-Mediated Immunity and Suppression in Human Prostate Cancer

    International Nuclear Information System (INIS)

    Tucker, Jo A.; Jochems, Caroline; Gulley, James L.; Schlom, Jeffrey; Tsang, Kwong Y.

    2012-01-01

    Active immunotherapy is dependent on the ability of the immune system to recognize and respond to tumors. Despite overwhelming evidence to support a cell-mediated immune response to prostate cancer, it is insufficient to eradicate the disease. This is likely due to a high level of suppression at the tumor site from a variety of sources, including immunosuppressive cells. Immune cells entering the tumor microenvironment may be inhibited directly by the tumor, stromal cells or other immune cells that have been induced to adopt a suppressive phenotype. The resurgence of interest in immunotherapy following the approval of sipuleucel-T and ipilimumab by the Food and Drug Administration has brought about new strategies for overcoming tumor-mediated suppression and bolstering anti-tumor responses. Improved understanding of the immune response to prostate cancer can lead to new combination therapies, such as the use of vaccine with small molecule and checkpoint inhibitors or other immunotherapies

  15. Therapeutic Targets for Neurodevelopmental Disorders Emerging from Animal Models with Perinatal Immune Activation

    Directory of Open Access Journals (Sweden)

    Daisuke Ibi

    2015-11-01

    Full Text Available Increasing epidemiological evidence indicates that perinatal infection with various viral pathogens enhances the risk for several psychiatric disorders. The pathophysiological significance of astrocyte interactions with neurons and/or gut microbiomes has been reported in neurodevelopmental disorders triggered by pre- and postnatal immune insults. Recent studies with the maternal immune activation or neonatal polyriboinosinic polyribocytidylic acid models of neurodevelopmental disorders have identified various candidate molecules that could be responsible for brain dysfunction. Here, we review the functions of several candidate molecules in neurodevelopment and brain function and discuss their potential as therapeutic targets for psychiatric disorders.

  16. Anti-thymocyte serum as part of an immunosuppressive regimen in treating haematological immune-mediated diseases in dogs.

    Science.gov (United States)

    Cuq, B; Blois, S L; Mathews, K A

    2017-06-01

    To report the outcomes associated with the use of rabbit anti-dog thymocyte serum in dogs with haematological immune-mediated diseases. Medical records from 2000 to 2016 of patients diagnosed with immune-mediated haemolytic anaemia, immune-mediated thrombocytopenia, pancytopenia and myelofibrosis were reviewed. All dogs had a severe or refractory disease and received rabbit anti-dog thymocyte serum. Lymphocyte counts were used to monitor the immediate anti-thymocyte effect of therapy; long-term patient outcome was recorded. A total of 10 dogs were included. All dogs except one had a notable decrease in their lymphocyte count after rabbit anti-dog thymocyte serum; four of nine had a decrease to less than 10% of the initial lymphocyte count and one dog reached 10·8%. All dogs were discharged from the hospital following their treatment. The dog with no alteration of lymphocyte count following therapy with rabbit anti-dog thymocyte serum had refractory immune mediated haemolytic anemia and was euthanised within two weeks. All other cases achieved clinical remission with immunosuppressive therapy eventually being tapered (3 of 10) or discontinued (6 of 10). Rabbit anti-dog thymocyte serum therapy might be of interest as an adjunctive therapy in refractory immune-mediated diseases and suppressed lymphocyte counts in most dogs. © 2017 British Small Animal Veterinary Association.

  17. Toll-like Receptor 4: Innate Immune Regulator of Neuroimmune and Neuroendocrine interactions in Stress and Major Depressive Disorder

    Directory of Open Access Journals (Sweden)

    Jiajun eLiu

    2014-09-01

    Full Text Available Major depressive disorder (MDD poses one of the highest disease burdens worldwide. Yet, current treatments targeting serotonergic and noradrenaline reuptake systems are insufficient to provide long-term relief from depressive symptoms in most patients, indicating the need for new treatment targets. Having the ability to influence behaviour similar to depressive symptoms, as well as communicate with neuronal and neuroendocrine systems, the innate immune system is a strong candidate for MDD treatments. Given the complex nature of immune signalling, the main question becomes: What is the role of the innate immune system in MDD?The current review presents evidence that toll-like receptor 4 (TLR4, via driving both peripheral and central immune responses, can interact with serotonergic neurotransmission and cause neuroendocrine disturbances, thus integrating with widely observed hallmarks of MDD. Additionally, through describing the multi-directional communication between immune, neural and endocrine systems in stress, TLR4 – related mechanisms can mediate stress-induced adaptations, which are necessary for the development of MDD. Therefore, apart from exogenous pathogenic mechanisms, TLR4 is involved in immune changes as a result of endogenous stress signals, playing an integral part in the pathophysiology, and could be a potential target for pharmacological treatments to improve current interventions for MDD.

  18. Immune-Mediated Neutropenia and Thrombocytopenia in a Patient with Ulcerative Colitis: An Unusual Hematological Association with IBD

    Directory of Open Access Journals (Sweden)

    Young-In Kim

    1995-01-01

    Full Text Available Hematological manifestations of inflammatory bowel disease (IBD are well described in the literature. However, the combination of immune-mediated neutropenia and thrombocytopenia has only been reported once in association with IBD. A case is reported of immune-mediated neutropenia and thrombocytopenia in a patient with ulcerative colitis during a relapse. No obvious causes of these hematological abnormalities were found in the patient despite an exhaustive search. An immune-mediated process was confirmed by positive antineutrophil antibody and platelet-associated antibody in the patient’s serum, and the demonstration of binding of the patient’s immunoglobulin G to autologous neutrophils. The patient was treated with high-dose steroid, intravenous gamma-globulin and eventually splenectomy. The platelet count subsequently normalized; although the severe neutropenia recurred, it has subsequently improved without further treatment. Although a definitive cause-effect relationship cannot be established, the immune-mediated neutropenia and thrombocytopenia may be an unusual hematological manifestation associated with ulcerative colitis.

  19. Cannabinoids and Innate Immunity: Taking a Toll on Neuroinflammation

    Directory of Open Access Journals (Sweden)

    Eric J. Downer

    2011-01-01

    Full Text Available The biologically active components of cannabis have therapeutic potential in neuroinflammatory disorders due to their anti-inflammatory propensity. Cannabinoids influence immune function in both the peripheral and the central nervous system (CNS, and the components of the cannabinoid system, the cannabinoid receptors and their endogenous ligands (endocannabinoids, have been detected on immune cells as well as in brain glia. Neuroinflammation is the complex innate immune response of neural tissue to control infection and eliminate pathogens, and Toll-like receptors (TLRs, a major family of pattern recognition receptors (PRRs that mediate innate immunity, have emerged as players in the neuroinflammatory processes underpinning various CNS diseases. This review will highlight evidence that cannabinoids interact with the immune system by impacting TLR-mediated signaling events, which may provide cues for devising novel therapeutic approaches for cannabinoid ligands.

  20. Effects of Food Additives on Immune Cells As Contributors to Body Weight Gain and Immune-Mediated Metabolic Dysregulation.

    Science.gov (United States)

    Paula Neto, Heitor A; Ausina, Priscila; Gomez, Lilian S; Leandro, João G B; Zancan, Patricia; Sola-Penna, Mauro

    2017-01-01

    Food additives are compounds used in order to improve food palatability, texture, and shelf life. Despite a significant effort to assure safety of use, toxicological analysis of these substances, generally, rely on their direct toxicity to target organs (liver and kidney) or their genotoxic effects. Much less attention is paid to the effects of these compounds on cells of the immune system. This is of relevance given that metabolic dysregulation and obesity have a strong immune-mediated component. Obese individuals present a state of chronic low-grade inflammation that contributes to the establishment of insulin resistance and other metabolic abnormalities known as the metabolic syndrome. Obesity and metabolic syndrome are currently recognized as worldwide epidemics that pose a profound socioeconomic impact and represent a concern to public health. Cells of the immune system contribute to both the maintenance of "lean homeostasis" and the metabolic dysregulation observed in obese individuals. Although much attention has been drawn in the past decades to obesity and metabolic syndrome as a result of ingesting highly processed food containing large amounts of fat and simple sugars, mounting evidence suggest that food additives may also be important contributors to metabolic derangement. Herein, we review pieces of evidence from the literature showing that food additives have relevant effects on cells of the immune system that could contribute to immune-mediated metabolic dysregulation. Considering their potential to predispose individuals to develop obesity and metabolic syndrome, their use should be taken with caution or maybe revisited.

  1. Complement-mediated solubilization of immune complexes and their interaction with complement C3 receptors

    DEFF Research Database (Denmark)

    Petersen, Ivan; Baatrup, Gunnar; Jepsen, H H

    1985-01-01

    Some of the molecular events in the complement (C)-mediated solubilization of immune complexes (IC) have been clarified in recent years. The solubilization is primarily mediated by alternative C pathway proteins whereas factors in the classical pathway accelerate the process. Components of the me......Some of the molecular events in the complement (C)-mediated solubilization of immune complexes (IC) have been clarified in recent years. The solubilization is primarily mediated by alternative C pathway proteins whereas factors in the classical pathway accelerate the process. Components...... of the cellular localization, expression and structure of the C3 receptors, especially the C3b (CR1) receptor, has been considerably extended in the last few years, whereas our understanding of the physiological role of these receptors is still fragmentary. However, it is becoming increasingly evident...

  2. Role of macrophage inflammatory protein-1alpha in T-cell-mediated immunity to viral infection

    DEFF Research Database (Denmark)

    Madsen, Andreas N; Nansen, Anneline; Christensen, Jan P

    2003-01-01

    The immune response to lymphocytic choriomeningitis virus in mice lacking macrophage inflammatory protein-1alpha (MIP-1alpha) was evaluated. Generation of virus-specific effector T cells is unimpaired in MIP-1alpha-deficient mice. Furthermore, MIP-1alpha is not required for T-cell-mediated virus...... control or virus-induced T-cell-dependent inflammation. Thus, MIP-1alpha is not mandatory for T-cell-mediated antiviral immunity....

  3. A case of non-regenerative immune-mediated anemia treated by ...

    African Journals Online (AJOL)

    A 12-year-old female Shih Tzu dog was referred with diarrhea. Hematological examination indicated severe nonregenerative anemia. Bone marrow aspiration smears and core biopsy specimens revealed normal bone marrow. Based on those results, non-regenerative immune mediated anemia was diagnosed. The dog ...

  4. Suppression of immune-mediated liver injury after vaccination with attenuated pathogenic cells.

    Science.gov (United States)

    Mei, Yunhua; Wang, Ying; Xu, Lingyun

    2007-05-15

    Cell vaccination via immunization with attenuated pathogenic cells is an effective preventive method that has been successfully applied in several animal models of inflammatory or autoimmune diseases. Concanavalin A (Con A)-induced hepatitis (CIH) is a commonly used experimental model to study immune-mediated liver injury. Multiple cell types including T lymphocytes, macrophages and neutrophils have been found to be involved in the pathogenesis of CIH. In this study, we used attenuated spleen lymphocytes or peripheral blood lymphocytes as vaccines to investigate whether they could induce protective immune responses to prevent mice from developing CIH. We found that mice receiving such vaccination before CIH induction developed much milder diseases, exhibited a lower level of alanine aminotransferase (ALT) released into their plasma and had less inflammatory lesions in their livers. Such CIH-suppression is dose- and frequency-dependent. The suppressive effect was associated with inhibition of several major inflammatory mediators, pro-inflammatory cytokines and chemokines.

  5. Cell-mediated immune responses in rainbow trout after DNA immunization against the viral hemorrhagic septicemia virus

    DEFF Research Database (Denmark)

    Utke, Katrin; Kock, Holger; Schuetze, Heike

    2008-01-01

    injection site rather than to injection sites of heterologous vaccines, suggesting the antigen specificity of homing. By demonstrating CMC responses to distinct viral proteins and homing in rainbow trout, these results substantially contribute to the understanding of the teleost immune system.......To identify viral proteins that induce cell-mediated cytotoxicity (CMC) against viral hemorrhagic septicemia virus (VHSV)-infected cells, rainbow trout were immunized with DNA vectors encoding the glycoprotein G or the nucleocapsid protein N of VHSV. The G protein was a more potent trigger...... of cytotoxic cells than the N protein. Peripheral blood leukocytes (PBL) isolated from trout immunized against the G protein killed both VHSV-infected MHC class I matched (RTG-2) and VHSV-infected xenogeneic (EPC) target cells, suggesting the involvement of both cytotoxic T lymphocytes (CTL) and NK cells...

  6. Cell mediated immune response in human antirabies revaccination

    Directory of Open Access Journals (Sweden)

    Débora Regina Veiga

    1987-04-01

    Full Text Available The occurrence of secondary cell mediated immune response (CMI in human antirabies immunization was studied. The Puenzalida & Palácios vaccine was used because it is routinely used in Brazil. CMI was evaluated by lymphoblastic transformation indices obtained in whole blood culture in the presence of rabies and control (nervous tissue antigens. Eleven volunteers submitted to revaccination constituted the group under study, while three other volunteers submitted primo vaccination were utilized as control group. A clear secondary CMI to rabies antigen was detected in all the revaccinated volunteers who showed earlier and more intense response than the control group. Response to the control antigen, however, present in all the components of the first group was not detectable in two out of the three primovaccinated and very low in the third one.

  7. Transgenerational Social Stress, Immune Factors, Hormones, and Social Behavior

    Directory of Open Access Journals (Sweden)

    Christopher Anthony Murgatroyd

    2016-01-01

    Full Text Available A social signal transduction theory of depression has been proposed that states that exposure to social adversity alters the immune response and these changes mediate symptoms of depression such as anhedonia and impairments in social behavior. The exposure of maternal rats to the chronic social stress (CSS of a male intruder depresses maternal care and impairs social behavior in the F1 and F2 offspring of these dams. The objective of the present study was to characterize basal peripheral levels of several immune factors and related hormone levels in the adult F2 offspring of CSS exposed dams and assess whether changes in these factors are associated with previously reported deficits in allogrooming behavior. CSS decreased acid glycoprotein (α1AGP and intercellular adhesion molecule-1 (ICAM-1 in F2 females, and increased granulocyte macrophage-colony stimulating factor (GM-CSF in F2 males. There were also sex dependent changes in IL-18, tissue inhibitors of metalloproteinases 1 (TIMP-1, and vascular endothelial growth factor (VEGF. Progesterone was decreased and alpha melanocyte stimulating hormone (α-MSH was increased in F2 males, and brain-derived neurotrophic factor (BDNF was decreased in F2 females. Changes in α1AGP, GM-CSF, progesterone and α-MSH were correlated with decreased allogrooming in the F2 offspring of stressed dams. These results support the hypothesis that transgenerational social stress affects both the immune system and social behavior, and also support previous studies on the adverse effects of early life stress on immune functioning and stress associated immunological disorders, including the increasing prevalence of asthma. The immune system may represent an important transgenerational etiological factor in disorders which involve social and/or early life stress associated changes in social behavior, such as depression, anxiety, and autism, as well as comorbid immune disorders. Future studies involving immune and

  8. Sporothrix schenckii Immunization, but Not Infection, Induces Protective Th17 Responses Mediated by Circulating Memory CD4+ T Cells

    Directory of Open Access Journals (Sweden)

    Alberto García-Lozano

    2018-06-01

    Full Text Available Sporotrichosis is a chronic subcutaneous mycosis caused by the Sporothrix schenckii species complex and it is considered an emerging opportunistic infection in countries with tropical and subtropical climates. The host’s immune response has a main role in the development of this disease. However, it is unknown the features of the memory cellular immune response that could protect against the infection. Our results show that i.d. immunization in the ears of mice with inactivated S. schenckii conidia (iC combined with the cholera toxin (CT induces a cellular immune response mediated by circulating memory CD4+ T cells, which mainly produce interleukin 17 (IL-17. These cells mediate a strong delayed-type hypersensitivity (DTH reaction. Systemic and local protection against S. schenckii was mediated by circulating CD4+ T cells. In contrast, the infection induces a potent immune response in the skin mediated by CD4+ T cells, which have an effector phenotype that preferentially produce interferon gamma (IFN-γ and mediate a transitory DTH reaction. Our findings prove the potential value of the CT as a potent skin adjuvant when combined with fungal antigens, and they also have important implications for our better understanding of the differences between the memory immune response induced by the skin immunization and those induced by the infection; this knowledge enhances our understanding of how a protective immune response against a S. schenckii infection is developed.

  9. Cell mediated immunity in patients with osteosarcoma

    International Nuclear Information System (INIS)

    Lloyd, E.L.; Henning, C.B.

    1975-01-01

    Because of the difficulty of obtaining suitable material, earlier studies on cell mediated immunity in the radium patients failed to include positive controls. Recently we were fortunate in obtaining samples of lymphocytes from two suitable patients who had had amputations for spontaneous osteosarcoma six months previously. Lymphocytes from both of these patients showed cytotoxicity to cultured cells derived from a human osteogenic sarcoma but not to normal fibroblasts. These results help to validate our test for early detection of osteosarcoma in the radium patients using measurements of cytotoxicity

  10. Bipolar Disorder and Immune Dysfunction: Epidemiological Findings, Proposed Pathophysiology and Clinical Implications

    Directory of Open Access Journals (Sweden)

    Joshua D. Rosenblat

    2017-10-01

    Full Text Available Bipolar disorder (BD is strongly associated with immune dysfunction. Replicated epidemiological studies have demonstrated that BD has high rates of inflammatory medical comorbidities, including autoimmune disorders, chronic infections, cardiovascular disease and metabolic disorders. Cytokine studies have demonstrated that BD is associated with chronic low-grade inflammation with further increases in pro-inflammatory cytokine levels during mood episodes. Several mechanisms have been identified to explain the bidirectional relationship between BD and immune dysfunction. Key mechanisms include cytokine-induced monoamine changes, increased oxidative stress, pathological microglial over-activation, hypothalamic-pituitary-adrenal (HPA axis over-activation, alterations of the microbiome-gut-brain axis and sleep-related immune changes. The inflammatory-mood pathway presents several potential novel targets in the treatment of BD. Several proof-of-concept clinical trials have shown a positive effect of anti-inflammatory agents in the treatment of BD; however, further research is needed to determine the clinical utility of these treatments. Immune dysfunction is likely to only play a role in a subset of BD patients and as such, future clinical trials should also strive to identify which specific group(s of BD patients may benefit from anti-inflammatory treatments.

  11. Antibody-mediated immunity to the obligate intracellular bacterial pathogen Coxiella burnetii is Fc receptor- and complement-independent

    Directory of Open Access Journals (Sweden)

    Heinzen Robert A

    2009-05-01

    Full Text Available Abstract Background The obligate intracellular bacterial pathogen Coxiella burnetii causes the zoonosis Q fever. The intracellular niche of C. burnetii has led to the assumption that cell-mediated immunity is the most important immune component for protection against this pathogen. However, passive immunization with immune serum can protect naïve animals from challenge with virulent C. burnetii, indicating a role for antibody (Ab in protection. The mechanism of this Ab-mediated protection is unknown. Therefore, we conducted a study to determine whether Fc receptors (FcR or complement contribute to Ab-mediated immunity (AMI to C. burnetii. Results Virulent C. burnetii infects and replicates within human dendritic cells (DC without inducing their maturation or activation. We investigated the effects of Ab opsonized C. burnetii on human monocyte-derived and murine bone marrow-derived DC. Infection of DC with Ab-opsonized C. burnetii resulted in increased expression of maturation markers and inflammatory cytokine production. Bacteria that had been incubated with naïve serum had minimal effect on DC, similar to virulent C. burnetii alone. The effect of Ab opsonized C. burnetii on DC was FcR dependent as evidenced by a reduced response of DC from FcR knockout (FcR k/o compared to C57Bl/6 (B6 mice. To address the potential role of FcR in Ab-mediated protection in vivo, we compared the response of passively immunized FcR k/o mice to the B6 controls. Interestingly, we found that FcR are not essential for AMI to C. burnetii in vivo. We subsequently examined the role of complement in AMI by passively immunizing and challenging several different strains of complement-deficient mice and found that AMI to C. burnetii is also complement-independent. Conclusion Despite our data showing FcR-dependent stimulation of DC in vitro, Ab-mediated immunity to C. burnetii in vivo is FcR-independent. We also found that passive immunity to this pathogen is independent of

  12. Sympathetic Nerve Hyperactivity in the Spleen: Causal for Nonpathogenic-Driven Chronic Immune-Mediated Inflammatory Diseases (IMIDs?

    Directory of Open Access Journals (Sweden)

    Denise L. Bellinger

    2018-04-01

    Full Text Available Immune-Mediated Inflammatory Diseases (IMIDs is a descriptive term coined for an eclectic group of diseases or conditions that share common inflammatory pathways, and for which there is no definitive etiology. IMIDs affect the elderly most severely, with many older individuals having two or more IMIDs. These diseases include, but are not limited to, type-1 diabetes, obesity, hypertension, chronic pulmonary disease, coronary heart disease, inflammatory bowel disease, and autoimmunity, such as rheumatoid arthritis (RA, Sjőgren’s syndrome, systemic lupus erythematosus, psoriasis, psoriatic arthritis, and multiple sclerosis. These diseases are ostensibly unrelated mechanistically, but increase in frequency with age and share chronic systemic inflammation, implicating major roles for the spleen. Chronic systemic and regional inflammation underlies the disease manifestations of IMIDs. Regional inflammation and immune dysfunction promotes targeted end organ tissue damage, whereas systemic inflammation increases morbidity and mortality by affecting multiple organ systems. Chronic inflammation and skewed dysregulated cell-mediated immune responses drive many of these age-related medical disorders. IMIDs are commonly autoimmune-mediated or suspected to be autoimmune diseases. Another shared feature is dysregulation of the autonomic nervous system and hypothalamic pituitary adrenal (HPA axis. Here, we focus on dysautonomia. In many IMIDs, dysautonomia manifests as an imbalance in activity/reactivity of the sympathetic and parasympathetic divisions of the autonomic nervous system (ANS. These major autonomic pathways are essential for allostasis of the immune system, and regulating inflammatory processes and innate and adaptive immunity. Pathology in ANS is a hallmark and causal feature of all IMIDs. Chronic systemic inflammation comorbid with stress pathway dysregulation implicate neural-immune cross-talk in the etiology and pathophysiology of IMIDs

  13. DMPD: Nod1 and Nod2 in innate immunity and human inflammatory disorders. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18031249 Nod1 and Nod2 in innate immunity and human inflammatory disorders. Le Bour...w Nod1 and Nod2 in innate immunity and human inflammatory disorders. PubmedID 18031249 Title Nod1 and Nod2 in innate immunity and hum...an inflammatory disorders. Authors Le Bourhis L, Benko S

  14. Functional Bowel Disorders Are Associated with a Central Immune Activation

    Directory of Open Access Journals (Sweden)

    Per G. Farup

    2017-01-01

    Full Text Available Background. Subjects with depression and unexplained neurological symptoms have a high prevalence of gastrointestinal comorbidity probably related to the brain-gut communication. This study explored associations between functional gastrointestinal disorders (FGID and inflammatory markers in subjects with these disorders. Methods. The FGID, including irritable bowel syndrome (IBS, were classified according to the Rome III criteria, and degree of symptoms was assessed with IBS symptom severity score (IBS-SSS. A range of interleukins (IL, chemokines and growth factors, tryptophan, and kynurenine were analysed in serum and the cerebrospinal fluid (CSF, and short-chain fatty acids (SCFA were analysed in the faeces. The results are reported as partial correlation (pc and p values. Results. Sixty-six subjects were included. IBS was associated with high levels of tryptophan (p=0.048 and kynurenine (p=0.019 and low level of IL-10 (p=0.047 in the CSF. IBS-SSS was associated with high tumor necrosis factor and low IL-10 in the CSF; pc=0.341 and p=0.009 and pc=−0.299 and p=0.023, respectively. Propionic minus butyric acid in faeces was negatively associated with IL-10 in the CSF (pc=−0.416, p=0.005. Conclusions. FGID were associated with a proinflammatory immune activation in the central nervous system and a disturbed tryptophan metabolism that could have been mediated by the faecal microbiota.

  15. IL-17-mediated immunity to the opportunistic fungal pathogen Candida albicans

    Science.gov (United States)

    Conti, Heather R.; Gaffen, Sarah L.

    2015-01-01

    IL-17 (IL-17A) has emerged as a key mediator of protection against extracellular microbes, but this cytokine also drives pathology in various autoimmune diseases. Overwhelming data in both humans and mice reveal a clear and surprisingly specific role for IL-17 in protection against the fungus Candida albicans, a commensal of the human oral cavity, gastrointestinal tract and reproductive mucosa. The IL-17 pathway regulates antifungal immunity through upregulation of pro-inflammatory cytokines including IL-6, neutrophil-recruiting chemokines such as CXCL1 and CXCL5 and antimicrobial peptides such as the defensins, which act in concert to limit fungal overgrowth. This review will focus on diseases caused by C. albicans, the role of IL-17-mediated immunity in candidiasis, and the implications for clinical therapies for both autoimmune conditions and fungal infections. PMID:26188072

  16. Effects of Food Additives on Immune Cells As Contributors to Body Weight Gain and Immune-Mediated Metabolic Dysregulation

    Directory of Open Access Journals (Sweden)

    Heitor A. Paula Neto

    2017-11-01

    Full Text Available Food additives are compounds used in order to improve food palatability, texture, and shelf life. Despite a significant effort to assure safety of use, toxicological analysis of these substances, generally, rely on their direct toxicity to target organs (liver and kidney or their genotoxic effects. Much less attention is paid to the effects of these compounds on cells of the immune system. This is of relevance given that metabolic dysregulation and obesity have a strong immune-mediated component. Obese individuals present a state of chronic low-grade inflammation that contributes to the establishment of insulin resistance and other metabolic abnormalities known as the metabolic syndrome. Obesity and metabolic syndrome are currently recognized as worldwide epidemics that pose a profound socioeconomic impact and represent a concern to public health. Cells of the immune system contribute to both the maintenance of “lean homeostasis” and the metabolic dysregulation observed in obese individuals. Although much attention has been drawn in the past decades to obesity and metabolic syndrome as a result of ingesting highly processed food containing large amounts of fat and simple sugars, mounting evidence suggest that food additives may also be important contributors to metabolic derangement. Herein, we review pieces of evidence from the literature showing that food additives have relevant effects on cells of the immune system that could contribute to immune-mediated metabolic dysregulation. Considering their potential to predispose individuals to develop obesity and metabolic syndrome, their use should be taken with caution or maybe revisited.

  17. Lack of collagen XVIII/endostatin exacerbates immune-mediated glomerulonephritis.

    Science.gov (United States)

    Hamano, Yuki; Okude, Takashi; Shirai, Ryota; Sato, Ikumi; Kimura, Ryota; Ogawa, Makoto; Ueda, Yoshihiko; Yokosuka, Osamu; Kalluri, Raghu; Ueda, Shiro

    2010-09-01

    Collagen XVIII is a component of the highly specialized extracellular matrix associated with basement membranes of epithelia and endothelia. In the normal kidney, collagen XVIII is distributed throughout glomerular and tubular basement membranes, mesangial matrix, and Bowman's capsule. Proteolytic cleavage within its C-terminal domain releases the fragment endostatin, which has antiangiogenic properties. Because damage to the glomerular basement membrane (GBM) accompanies immune-mediated renal injury, we investigated the role of collagen XVIII/endostatin in this disorder. We induced anti-GBM glomerulonephritis in collagen XVIII alpha1-null and wild-type mice and compared the resulting matrix accumulation, inflammation, and capillary rarefaction. Anti-GBM disease upregulated collagen XVIII/endostatin expression within the GBM and Bowman's capsule of wild-type mice. Collagen XVIII/endostatin-deficient mice developed more severe glomerular and tubulointerstitial injury than wild-type mice. Collagen XVIII/endostatin deficiency altered matrix remodeling, enhanced the inflammatory response, and promoted capillary rarefaction and vascular endothelial cell damage, but did not affect endothelial proliferation. Supplementing collagen XVIII-deficient mice with exogenous endostatin did not affect the progression of anti-GBM disease. Taken together, these results suggest that collagen XVIII/endostatin preserves the integrity of the extracellular matrix and capillaries in the kidney, protecting against progressive glomerulonephritis.

  18. Applying causal mediation analysis to personality disorder research.

    Science.gov (United States)

    Walters, Glenn D

    2018-01-01

    This article is designed to address fundamental issues in the application of causal mediation analysis to research on personality disorders. Causal mediation analysis is used to identify mechanisms of effect by testing variables as putative links between the independent and dependent variables. As such, it would appear to have relevance to personality disorder research. It is argued that proper implementation of causal mediation analysis requires that investigators take several factors into account. These factors are discussed under 5 headings: variable selection, model specification, significance evaluation, effect size estimation, and sensitivity testing. First, care must be taken when selecting the independent, dependent, mediator, and control variables for a mediation analysis. Some variables make better mediators than others and all variables should be based on reasonably reliable indicators. Second, the mediation model needs to be properly specified. This requires that the data for the analysis be prospectively or historically ordered and possess proper causal direction. Third, it is imperative that the significance of the identified pathways be established, preferably with a nonparametric bootstrap resampling approach. Fourth, effect size estimates should be computed or competing pathways compared. Finally, investigators employing the mediation method are advised to perform a sensitivity analysis. Additional topics covered in this article include parallel and serial multiple mediation designs, moderation, and the relationship between mediation and moderation. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  19. T Cell-Mediated Immunity towards Yellow Fever Virus and Useful Animal Models.

    Science.gov (United States)

    Watson, Alan M; Klimstra, William B

    2017-04-11

    The 17D line of yellow fever virus vaccines is among the most effective vaccines ever created. The humoral and cellular immunity elicited by 17D has been well characterized in humans. Neutralizing antibodies have long been known to provide protection against challenge with a wild-type virus. However, a well characterized T cell immune response that is robust, long-lived and polyfunctional is also elicited by 17D. It remains unclear whether this arm of immunity is protective following challenge with a wild-type virus. Here we introduce the 17D line of yellow fever virus vaccines, describe the current state of knowledge regarding the immunity directed towards the vaccines in humans and conclude with a discussion of animal models that are useful for evaluating T cell-mediated immune protection to yellow fever virus.

  20. Glycan elongation beyond the mucin associated Tn antigen protects tumor cells from immune-mediated killing.

    Directory of Open Access Journals (Sweden)

    Caroline B Madsen

    Full Text Available Membrane bound mucins are up-regulated and aberrantly glycosylated during malignant transformation in many cancer cells. This results in a negatively charged glycoprotein coat which may protect cancer cells from immune surveillance. However, only limited data have so far demonstrated the critical steps in glycan elongation that make aberrantly glycosylated mucins affect the interaction between cancer cells and cytotoxic effector cells of the immune system. Tn (GalNAc-Ser/Thr, STn (NeuAcα2-6GalNAc-Ser/Thr, T (Galβ1-3GalNAc-Ser/Thr, and ST (NeuAcα2-6Galβ1-3GalNAc-Ser/Thr antigens are recognized as cancer associated truncated glycans, and are expressed in many adenocarcinomas, e.g. breast- and pancreatic cancer cells. To investigate the role of the cancer associated glycan truncations in immune-mediated killing we created glyco-engineered breast- and pancreatic cancer cells expressing only the shortest possible mucin-like glycans (Tn and STn. Glyco-engineering was performed by zinc finger nuclease (ZFN knockout (KO of the Core 1 enzyme chaperone COSMC, thereby preventing glycan elongation beyond the initial GalNAc residue in O-linked glycans. We find that COSMC KO in the breast and pancreatic cancer cell lines T47D and Capan-1 increases sensitivity to both NK cell mediated antibody-dependent cellular-cytotoxicity (ADCC and cytotoxic T lymphocyte (CTL-mediated killing. In addition, we investigated the association between total cell surface expression of MUC1/MUC16 and NK or CTL mediated killing, and observed an inverse correlation between MUC16/MUC1 expression and the sensitivity to ADCC and CTL-mediated killing. Together, these data suggest that up-regulation of membrane bound mucins protects cells from immune mediated killing, and that particular glycosylation steps, as demonstrated for glycan elongation beyond Tn and STn, can be important for fine tuning of the immune escape mechanisms in cancer cells.

  1. Innate immunity in the pathogenesis of psoriasis.

    LENUS (Irish Health Repository)

    Sweeney, Cheryl M

    2011-12-01

    Psoriasis is a common, immune-mediated inflammatory skin disorder. T helper(h)1 and Th17 lymphocytes contribute to the pathogenesis of psoriasis through the release of inflammatory cytokines that promote further recruitment of immune cells, keratinocyte proliferation and sustained inflammation. The innate immune system is the first line of defence against infection and plays a crucial role in the initiation of the adaptive immune response. The presence of innate immune cells and their products in psoriatic skin plaques suggests a role for innate immunity in this disease. In addition, the innate immune system can direct the development of pathogenic Th cells in psoriasis. In this article, we will summarise the role of the innate immune system in psoriasis with particular emphasis on the role of cytokines, signalling pathways and cells of the innate immune system.

  2. Aggravating Impact of Nanoparticles on Immune-Mediated Pulmonary Inflammation

    Directory of Open Access Journals (Sweden)

    Ken-Ichiro Inoue

    2011-01-01

    Full Text Available Although the adverse health effects of nanoparticles have been proposed and are being clarified, their aggravating effects on pre-existing pathological conditions have not been fully investigated. In this review, we provide insights into the immunotoxicity of both airborne and engineered nanoparticles as an exacerbating factor on hypersusceptible subjects, especially those with immune-mediated pulmonary inflammation, using our in vivo experimental model. First, we exhibit the effects of nanoparticles on pulmonary inflammation induced by bacterial endotoxin (lipopolysaccharide: LPS as a disease model in innate immunity, and demonstrate that nanoparticles instilled through both an intratracheal tube and an inhalation system can exacerbate the lung inflammation. Second, we introduce the effects of nanoparticles on allergic pulmonary inflammation as a disease model in adaptive immunity, and show that repetitive pulmonary exposure to nanoparticles has aggravating effects on allergic inflammation, including adjuvant effects on Th2-milieu. Third, we show that very small nanoparticle exposure exacerbates emphysematous pulmonary inflammation, which is concomitant with enhanced lung expression of proinflammatory molecules (including those that are innate immunity related. Taken together, nanoparticle exposure may synergistically facilitate pathological pulmonary inflammation via both innate and adaptive immunological impairment.

  3. T Cell-Mediated Immunity towards Yellow Fever Virus and Useful Animal Models

    Science.gov (United States)

    Watson, Alan M.; Klimstra, William B.

    2017-01-01

    The 17D line of yellow fever virus vaccines is among the most effective vaccines ever created. The humoral and cellular immunity elicited by 17D has been well characterized in humans. Neutralizing antibodies have long been known to provide protection against challenge with a wild-type virus. However, a well characterized T cell immune response that is robust, long-lived and polyfunctional is also elicited by 17D. It remains unclear whether this arm of immunity is protective following challenge with a wild-type virus. Here we introduce the 17D line of yellow fever virus vaccines, describe the current state of knowledge regarding the immunity directed towards the vaccines in humans and conclude with a discussion of animal models that are useful for evaluating T cell-mediated immune protection to yellow fever virus. PMID:28398253

  4. Novel roles for immune molecules in neural development: Implications for neurodevelopmental disoders

    Directory of Open Access Journals (Sweden)

    Paula A Garay

    2010-09-01

    Full Text Available Although the brain has classically been considered "immune-privileged," current research suggests extensive communication between the nervous and the immune systems in both health and disease. Recent studies demonstrate that immune molecules are present at the right place and time to modulate the development and function of the healthy and diseased CNS. Indeed, immune molecules play integral roles in the CNS throughout neural development, including affecting neurogenesis, neuronal migration, axon guidance, synapse formation, activity-dependent refinement of circuits, and synaptic plasticity. Moreover, the roles of individual immune molecules in the nervous system may change over development. This review focuses on the effects of immune molecules on neuronal connections in the mammalian central nervous system—specifically the roles for MHCI and its receptors, complement, and cytokines on the function, refinement, and plasticity of cortical and hippocampal synapses and their relationship to neurodevelopmental disorders. These functions for immune molecules during neural development suggest that they could also mediate pathological responses to chronic elevations of cytokines in neurodevelopmental disorders, including autism spectrum disorders (ASD and schizophrenia.

  5. Brassinosteroids Antagonize Gibberellin- and Salicylate-Mediated Root Immunity in Rice1[C][W][OA

    Science.gov (United States)

    De Vleesschauwer, David; Van Buyten, Evelien; Satoh, Kouji; Balidion, Johny; Mauleon, Ramil; Choi, Il-Ryong; Vera-Cruz, Casiana; Kikuchi, Shoshi; Höfte, Monica

    2012-01-01

    Brassinosteroids (BRs) are a unique class of plant steroid hormones that orchestrate myriad growth and developmental processes. Although BRs have long been known to protect plants from a suite of biotic and abiotic stresses, our understanding of the underlying molecular mechanisms is still rudimentary. Aiming to further decipher the molecular logic of BR-modulated immunity, we have examined the dynamics and impact of BRs during infection of rice (Oryza sativa) with the root oomycete Pythium graminicola. Challenging the prevailing view that BRs positively regulate plant innate immunity, we show that P. graminicola exploits BRs as virulence factors and hijacks the rice BR machinery to inflict disease. Moreover, we demonstrate that this immune-suppressive effect of BRs is due, at least in part, to negative cross talk with salicylic acid (SA) and gibberellic acid (GA) pathways. BR-mediated suppression of SA defenses occurred downstream of SA biosynthesis, but upstream of the master defense regulators NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 and OsWRKY45. In contrast, BR alleviated GA-directed immune responses by interfering at multiple levels with GA metabolism, resulting in indirect stabilization of the DELLA protein and central GA repressor SLENDER RICE1 (SLR1). Collectively, these data favor a model whereby P. graminicola coopts the plant BR pathway as a decoy to antagonize effectual SA- and GA-mediated defenses. Our results highlight the importance of BRs in modulating plant immunity and uncover pathogen-mediated manipulation of plant steroid homeostasis as a core virulence strategy. PMID:22353574

  6. Mediating role of borderline personality disorder traits in the effects of childhood maltreatment on suicidal behaviour among mood disorder patients.

    Science.gov (United States)

    Aaltonen, K I; Rosenström, T; Baryshnikov, I; Karpov, B; Melartin, T; Suominen, K; Heikkinen, M; Näätänen, P; Koivisto, M; Joffe, G; Isometsä, E

    2017-07-01

    Substantial evidence supports an association between childhood maltreatment and suicidal behaviour. However, few studies have examined factors mediating this relationship among patients with unipolar or bipolar mood disorders. Depressive disorder and bipolar disorder (ICD-10-DCR) patients (n=287) from the Helsinki University Psychiatric Consortium (HUPC) Study were surveyed on self-reported childhood experiences, current depressive symptoms, borderline personality disorder traits, and lifetime suicidal behaviour. Psychiatric records served to complement the information on suicide attempts. We examined by formal mediation analyses whether (1) the effect of childhood maltreatment on suicidal behaviour is mediated through borderline personality disorder traits and (2) the mediation effect differs between lifetime suicidal ideation and lifetime suicide attempts. The impact of childhood maltreatment in multivariate models on either lifetime suicidal ideation or lifetime suicide attempts showed comparable total effects. In formal mediation analyses, borderline personality disorder traits mediated all of the total effect of childhood maltreatment on lifetime suicide attempts, but only one fifth of the total effect on lifetime suicidal ideation. The mediation effect was stronger for lifetime suicide attempts than for lifetime suicidal ideation (P=0.002) and independent of current depressive symptoms. The mechanisms of the effect of childhood maltreatment on suicidal ideation versus suicide attempts may diverge among psychiatric patients with mood disorders. Borderline personality disorder traits may contribute to these mechanisms, although the influence appears considerably stronger for suicide attempts than for suicidal ideation. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  7. Combined local and systemic immunization is essential for durable T-cell mediated heterosubtypic immunity against influenza A virus

    DEFF Research Database (Denmark)

    Uddbäck, Ida Elin Maria; Pedersen, Line M I; Pedersen, Sara R

    2016-01-01

    nucleoprotein have previously been found to induce short-term protection in mice. In this study we confirm that systemic (subcutaneous (s.c.) immunization rapidly induced heterosubtypic protection predominantly mediated by CD8 T cells, but within three months clinical protection completely disappeared. Local......The threat from unpredictable influenza virus pandemics necessitates the development of a new type of influenza vaccine. Since the internal proteins are highly conserved, induction of T cells targeting these antigens may provide the solution. Indeed, adenoviral (Ad) vectors expressing flu...... (intranasal (i.n.)) immunization elicited delayed, but more lasting protection despite relatively inefficient immunization. However, by far, the most robust protection was induced by simultaneous, combined (i.n. + s.c.) vaccination, and, notably, in this case clinical protection lasted at least 8 months...

  8. Immune-Mediated Damage Completes the Parabola: Cryptococcus neoformans Pathogenesis Can Reflect the Outcome of a Weak or Strong Immune Response

    Directory of Open Access Journals (Sweden)

    Liise-anne Pirofski

    2017-12-01

    Full Text Available Cryptococcosis occurs most frequently in immunocompromised individuals. This has led to the prevailing view that this disease is the result of weak immune responses that cannot control the fungus. However, increasingly, clinical and experimental studies have revealed that the host immune response can contribute to cryptococcal pathogenesis, including the recent study of L. M. Neal et al. (mBio 8:e01415-17, 2017, https://doi.org/10.1128/mBio.01415-17 that reports that CD4+ T cells mediate tissue damage in experimental murine cryptococcosis. This finding has fundamental implications for our understanding of the pathogenesis of cryptococcal disease; it helps explain why immunotherapy has been largely unsuccessful in treatment and provides insight into the paradoxical observation that HIV-associated cryptococcosis may have a better prognosis than cryptococcosis in those with no known immune impairment. The demonstration that host-mediated damage can drive cryptococcal disease provides proof of concept that the parabola put forth in the damage-response framework has the flexibility to depict complex and changing outcomes of host-microbe interaction.

  9. PPARγ and the Innate Immune System Mediate the Resolution of Inflammation

    Directory of Open Access Journals (Sweden)

    Amanda Croasdell

    2015-01-01

    Full Text Available The resolution of inflammation is an active and dynamic process, mediated in large part by the innate immune system. Resolution represents not only an increase in anti-inflammatory actions, but also a paradigm shift in immune cell function to restore homeostasis. PPARγ, a ligand activated transcription factor, has long been studied for its anti-inflammatory actions, but an emerging body of literature is investigating the role of PPARγ and its ligands (including thiazolidinediones, prostaglandins, and oleanolic acids in all phases of resolution. PPARγ can shift production from pro- to anti-inflammatory mediators by neutrophils, platelets, and macrophages. PPARγ and its ligands further modulate platelet and neutrophil function, decreasing trafficking, promoting neutrophil apoptosis, and preventing platelet-leukocyte interactions. PPARγ alters macrophage trafficking, increases efferocytosis and phagocytosis, and promotes alternative M2 macrophage activation. There are also roles for this receptor in the adaptive immune response, particularly regarding B cells. These effects contribute towards the attenuation of multiple disease states, including COPD, colitis, Alzheimer’s disease, and obesity in animal models. Finally, novel specialized proresolving mediators—eicosanoids with critical roles in resolution—may act through PPARγ modulation to promote resolution, providing another exciting area of therapeutic potential for this receptor.

  10. Evolution of disorder in Mediator complex and its functional relevance.

    Science.gov (United States)

    Nagulapalli, Malini; Maji, Sourobh; Dwivedi, Nidhi; Dahiya, Pradeep; Thakur, Jitendra K

    2016-02-29

    Mediator, an important component of eukaryotic transcriptional machinery, is a huge multisubunit complex. Though the complex is known to be conserved across all the eukaryotic kingdoms, the evolutionary topology of its subunits has never been studied. In this study, we profiled disorder in the Mediator subunits of 146 eukaryotes belonging to three kingdoms viz., metazoans, plants and fungi, and attempted to find correlation between the evolution of Mediator complex and its disorder. Our analysis suggests that disorder in Mediator complex have played a crucial role in the evolutionary diversification of complexity of eukaryotic organisms. Conserved intrinsic disordered regions (IDRs) were identified in only six subunits in the three kingdoms whereas unique patterns of IDRs were identified in other Mediator subunits. Acquisition of novel molecular recognition features (MoRFs) through evolution of new subunits or through elongation of the existing subunits was evident in metazoans and plants. A new concept of 'junction-MoRF' has been introduced. Evolutionary link between CBP and Med15 has been provided which explain the evolution of extended-IDR in CBP from Med15 KIX-IDR junction-MoRF suggesting role of junction-MoRF in evolution and modulation of protein-protein interaction repertoire. This study can be informative and helpful in understanding the conserved and flexible nature of Mediator complex across eukaryotic kingdoms. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. Selfish brain and selfish immune system interplay: A theoretical framework for metabolic comorbidities of mood disorders.

    Science.gov (United States)

    Yamagata, Ana Sayuri; Mansur, Rodrigo Barbachan; Rizzo, Lucas Bortolotto; Rosenstock, Tatiana; McIntyre, Roger S; Brietzke, Elisa

    2017-01-01

    According to the "selfish brain" theory, the brain regulates its own energy supply influencing the peripheral metabolism and food intake according to its needs. The immune system has been likewise "selfish" due to independent energy consumption; and it may compete with the brain (another high energy-consumer) for glucose. In mood disorders, stress in mood episodes or physiological stress activate homeostasis mechanisms from the brain and the immune system to solve the imbalance. The interaction between the selfish brain and the selfish immune system may explain various conditions of medical impairment in mood disorders, such as Metabolic Syndrome (MetS), obesity, type 2 diabetes mellitus (T2DM) and immune dysregulation. The objective of this study is to comprehensively review the literature regarding the competition between the brain and the immune system for energy substrate. Targeting the energetic regulation of the brain and the immune system and their cross-talk open alternative treatments and a different approach in the study of general medical comorbidities in mood disorders, although more investigation is needed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Virion Glycoprotein-Mediated Immune Evasion by Human Cytomegalovirus: a Sticky Virus Makes a Slick Getaway

    Science.gov (United States)

    Gardner, Thomas J.

    2016-01-01

    SUMMARY The prototypic herpesvirus human cytomegalovirus (CMV) exhibits the extraordinary ability to establish latency and maintain a chronic infection throughout the life of its human host. This is even more remarkable considering the robust adaptive immune response elicited by infection and reactivation from latency. In addition to the ability of CMV to exist in a quiescent latent state, its persistence is enabled by a large repertoire of viral proteins that subvert immune defense mechanisms, such as NK cell activation and major histocompatibility complex antigen presentation, within the cell. However, dissemination outside the cell presents a unique existential challenge to the CMV virion, which is studded with antigenic glycoprotein complexes targeted by a potent neutralizing antibody response. The CMV virion envelope proteins, which are critical mediators of cell attachment and entry, possess various characteristics that can mitigate the humoral immune response and prevent viral clearance. Here we review the CMV glycoprotein complexes crucial for cell attachment and entry and propose inherent properties of these proteins involved in evading the CMV humoral immune response. These include viral glycoprotein polymorphism, epitope competition, Fc receptor-mediated endocytosis, glycan shielding, and cell-to-cell spread. The consequences of CMV virion glycoprotein-mediated immune evasion have a major impact on persistence of the virus in the population, and a comprehensive understanding of these evasion strategies will assist in designing effective CMV biologics and vaccines to limit CMV-associated disease. PMID:27307580

  13. Complement-mediated solubilization of immune complexes. Solubilization inhibition and complement factor levels in SLE patients

    DEFF Research Database (Denmark)

    Baatrup, Gunnar; Petersen, Ivan; Kappelgaard, E

    1984-01-01

    Thirty-two of 36 serum samples from 19 SLE patients showed reduced capacity to mediate complement-dependent solubilization of immune complexes (IC). SLE patients with nephritis exerted the lowest complement-mediated solubilization capacity (CMSC) whereas sera from patients with inactive disease g...

  14. Immune-related genetic enrichment in frontotemporal dementia: An analysis of genome-wide association studies.

    Science.gov (United States)

    Broce, Iris; Karch, Celeste M; Wen, Natalie; Fan, Chun C; Wang, Yunpeng; Tan, Chin Hong; Kouri, Naomi; Ross, Owen A; Höglinger, Günter U; Muller, Ulrich; Hardy, John; Momeni, Parastoo; Hess, Christopher P; Dillon, William P; Miller, Zachary A; Bonham, Luke W; Rabinovici, Gil D; Rosen, Howard J; Schellenberg, Gerard D; Franke, Andre; Karlsen, Tom H; Veldink, Jan H; Ferrari, Raffaele; Yokoyama, Jennifer S; Miller, Bruce L; Andreassen, Ole A; Dale, Anders M; Desikan, Rahul S; Sugrue, Leo P

    2018-01-01

    Converging evidence suggests that immune-mediated dysfunction plays an important role in the pathogenesis of frontotemporal dementia (FTD). Although genetic studies have shown that immune-associated loci are associated with increased FTD risk, a systematic investigation of genetic overlap between immune-mediated diseases and the spectrum of FTD-related disorders has not been performed. Using large genome-wide association studies (GWASs) (total n = 192,886 cases and controls) and recently developed tools to quantify genetic overlap/pleiotropy, we systematically identified single nucleotide polymorphisms (SNPs) jointly associated with FTD-related disorders-namely, FTD, corticobasal degeneration (CBD), progressive supranuclear palsy (PSP), and amyotrophic lateral sclerosis (ALS)-and 1 or more immune-mediated diseases including Crohn disease, ulcerative colitis (UC), rheumatoid arthritis (RA), type 1 diabetes (T1D), celiac disease (CeD), and psoriasis. We found up to 270-fold genetic enrichment between FTD and RA, up to 160-fold genetic enrichment between FTD and UC, up to 180-fold genetic enrichment between FTD and T1D, and up to 175-fold genetic enrichment between FTD and CeD. In contrast, for CBD and PSP, only 1 of the 6 immune-mediated diseases produced genetic enrichment comparable to that seen for FTD, with up to 150-fold genetic enrichment between CBD and CeD and up to 180-fold enrichment between PSP and RA. Further, we found minimal enrichment between ALS and the immune-mediated diseases tested, with the highest levels of enrichment between ALS and RA (up to 20-fold). For FTD, at a conjunction false discovery rate enriched in microglia/macrophages compared to other central nervous system cell types. The main study limitation is that the results represent only clinically diagnosed individuals. Also, given the complex interconnectedness of the HLA region, we were not able to define the specific gene or genes on Chr 6 responsible for our pleiotropic signal. We

  15. Mannose Receptor Mediates the Immune Response to Ganoderma atrum Polysaccharides in Macrophages.

    Science.gov (United States)

    Li, Wen-Juan; Tang, Xiao-Fang; Shuai, Xiao-Xue; Jiang, Cheng-Jia; Liu, Xiang; Wang, Le-Feng; Yao, Yu-Fei; Nie, Shao-Ping; Xie, Ming-Yong

    2017-01-18

    The ability of mannose receptor (MR) to recognize the carbohydrate structures is well-established. Here, we reported that MR was crucial for the immune response to a Ganoderma atrum polysaccharide (PSG-1), as evidenced by elevation of MR in association with increase of phagocytosis and concentrations of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) in normal macrophages. Elevation of MR triggered by PSG-1 also led to control lipopolysaccharide (LPS)-triggered inflammatory response via the increase of interleukin-10 (IL-10) and inhibition of phagocytosis and IL-1β. Anti-MR antibody partly attenuated PSG-1-mediated anti-inflammatory responses, while it could not affect TNF-α secretion, suggesting that another receptor was involved in PSG-1-triggered immunomodulatory effects. MR and toll-like receptor (TLR)4 coordinated the influences on the TLR4-mediated signaling cascade by the nuclear factor-κB (NF-κB) pathway in LPS-stimulated macrophages subjected to PSG-1. Collectively, immune response to PSG-1 required recognition by MR in macrophages. The NF-κB pathway served as a central role for the coordination of MR and TLR4 to elicit immune response to PSG-1.

  16. The Immune System, Cytokines, and Biomarkers in Autism Spectrum Disorder

    Institute of Scientific and Technical Information of China (English)

    Anne Masi; Nicholas Glozier; Russell Dale; Adam J.Guastella

    2017-01-01

    Autism Spectrum Disorder (ASD) is a pervasive neurodevelopmental condition characterized by variable impairments in communication and social interaction as well as restricted interests and repetitive behaviors.Heterogeneity of presentation is a hallmark.Investigations of immune system problems in ASD,including aberrations in cytokine profiles and signaling,have been increasing in recent times and are the subject of ongoing interest.With the aim of establishing whether cytokines have utility as potential biomarkers that may define a subgroup of ASD,or function as an objective measure of response to treatment,this review summarizes the role of the immune system,discusses the relationship between the immune system,the brain,and behavior,and presents previouslyidentified immune system abnormalities in ASD,specifically addressing the role of cytokines in these aberrations.The roles and identification of biomarkers are also addressed,particularly with respect to cytokine profiles in ASD.

  17. The Immune System, Cytokines, and Biomarkers in Autism Spectrum Disorder.

    Science.gov (United States)

    Masi, Anne; Glozier, Nicholas; Dale, Russell; Guastella, Adam J

    2017-04-01

    Autism Spectrum Disorder (ASD) is a pervasive neurodevelopmental condition characterized by variable impairments in communication and social interaction as well as restricted interests and repetitive behaviors. Heterogeneity of presentation is a hallmark. Investigations of immune system problems in ASD, including aberrations in cytokine profiles and signaling, have been increasing in recent times and are the subject of ongoing interest. With the aim of establishing whether cytokines have utility as potential biomarkers that may define a subgroup of ASD, or function as an objective measure of response to treatment, this review summarizes the role of the immune system, discusses the relationship between the immune system, the brain, and behavior, and presents previously-identified immune system abnormalities in ASD, specifically addressing the role of cytokines in these aberrations. The roles and identification of biomarkers are also addressed, particularly with respect to cytokine profiles in ASD.

  18. Integrated analysis of HPV-mediated immune alterations in cervical cancer.

    Science.gov (United States)

    Chen, Long; Luan, Shaohong; Xia, Baoguo; Liu, Yansheng; Gao, Yuan; Yu, Hongyan; Mu, Qingling; Zhang, Ping; Zhang, Weina; Zhang, Shengmiao; Wei, Guopeng; Yang, Min; Li, Ke

    2018-05-01

    Human papillomavirus (HPV) infection is the primary cause of cervical cancer. HPV-mediated immune alterations are known to play crucial roles in determining viral persistence and host cell transformation. We sought to thoroughly understand HPV-directed immune alterations in cervical cancer by exploring publically available datasets. 130 HPV positive and 7 HPV negative cervical cancer cases from The Cancer Genome Atlas were compared for differences in gene expression levels and functional enrichment. Analyses for copy number variation (CNV) and genetic mutation were conducted for differentially expressed immune genes. Kaplan-Meier analysis was performed to assess survival and relapse differences across cases with or without alterations of the identified immune signature genes. Genes up-regulated in HPV positive cervical cancer were enriched for various gene ontology terms of immune processes (P=1.05E-14~1.00E-05). Integrated analysis of the differentially expressed immune genes identified 9 genes that displayed either CNV, genetic mutation and/or gene expression changes in at least 10% of the cases of HPV positive cervical cancer. Genomic amplification may cause elevated levels of these genes in some HPV positive cases. Finally, patients with alterations in at least one of the nine signature genes overall had earlier relapse compared to those without any alterations. The altered expression of either TFRC or MMP13 may indicate poor survival for a subset of cervical cancer patients (P=1.07E-07). We identified a novel immune gene signature for HPV positive cervical cancer that is potentially associated with early relapse of cervical cancer. Copyright © 2018. Published by Elsevier Inc.

  19. Induction of cell-mediated immunity to Mycobacterium leprae in mice

    Energy Technology Data Exchange (ETDEWEB)

    Patel, P.J.; Lefford, M.J.

    1978-01-01

    The immune response of mice to armadillo-derived, irradiation-killed Mycobacterium leprae (I-ML) was investigated. Following injection of 100 microgram of I-ML into the left hind footpads of mice, a state of cell-mediated immunity (CMI) was engendered to antigens of M. leprae. The evidence for CMI was as follows: (1) development of delayed-type hypersensitivity to both human tuberculin purified protein derivative and soluble M. leprae antigens; (2) T-lymphocyte-dependent macrophage activation at the inoculation site; (3) specific systemaic resistance to the cross-reactive species M. tuberculosis; and (4) immunopotentiation of the delayed-type hypersensitivity response to an unrelated antigen. The CMI induced by I-ML in aqueous suspension was greater than that obtained with the same antigen in water-in-oil emulsion, even though the latter generated a more severe reaction at the site of immunization. I-ML also induced a stronger CMI response than the corresponding dose of heat-killed BCG.

  20. Cell-mediated and humoral immune responses in pigs following primary and challenge-exposure to Lawsonia intracellularis

    DEFF Research Database (Denmark)

    Hvass, Henriette Cordes; Riber, Ulla; Jensen, Tim Kåre

    2012-01-01

    not boosted by the re-inoculation, since identical intestinal IgA responses developed in response to the inoculation in both the susceptible CC pigs and the protected RE pigs. A memory recall cell-mediated immune response developed in RE pigs which was significantly stronger compared to the primary response...... responses are likely mediators of protective immunity against L. intracellularis, with CD8+ effector cells and CD4+CD8+ double positive memory T cells as main contributors to the antigen-specific IFN-γ production....

  1. Membrane attack complex of complement is not essential for immune mediated demyelination in experimental autoimmune neuritis.

    Science.gov (United States)

    Tran, Giang T; Hodgkinson, Suzanne J; Carter, Nicole M; Killingsworth, Murray; Nomura, Masaru; Verma, Nirupama D; Plain, Karren M; Boyd, Rochelle; Hall, Bruce M

    2010-12-15

    Antibody deposition and complement activation, especially membrane attack complex (MAC) formation are considered central for immune mediated demyelination. To examine the role of MAC in immune mediated demyelination, we studied experimental allergic neuritis (EAN) in Lewis rats deficient in complement component 6 (C6) that cannot form MAC. A C6 deficient Lewis (Lewis/C6-) strain of rats was bred by backcrossing the defective C6 gene, from PVG/C6- rats, onto the Lewis background. Lewis/C6- rats had the same C6 gene deletion as PVG/C6- rats and their sera did not support immune mediated haemolysis unless C6 was added. Active EAN was induced in Lewis and Lewis/C6- rats by immunization with bovine peripheral nerve myelin in complete Freund's adjuvant (CFA), and Lewis/C6- rats had delayed clinical EAN compared to the Lewis rats. Peripheral nerve demyelination in Lewis/C6- was also delayed but was similar in extent at the peak of disease. Compared to Lewis, Lewis/C6- nerves had no MAC deposition, reduced macrophage infiltrate and IL-17A, but similar T cell infiltrate and Th1 cytokine mRNA expression. ICAM-1 and P-selectin mRNA expression and immunostaining on vascular endothelium were delayed in Lewis C6- compared to Lewis rats' nerves. This study found that MAC was not required for immune mediated demyelination; but that MAC enhanced early symptoms and early demyelination in EAN, either by direct lysis or by sub-lytic induction of vascular endothelial expression of ICAM-1 and P-selectin. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Discovery of innovative therapies for rare immune-mediated inflammatory diseases via off-label prescription of biologics: the case of IL-6 receptor blockade in Castleman’s disease

    Directory of Open Access Journals (Sweden)

    Anne eMusters

    2015-12-01

    Full Text Available Biologics have revolutionized the field of clinical immunology and proven to be both effective and safe in common immune-mediated inflammatory diseases (IMIDs such as rheumatoid arthritis, inflammatory bowel diseases, and various haematological disorders. However, in patients with rare, severe IMIDs failing on standard therapies it is virtually impossible to conduct randomized controlled trials. Therefore, biologics are usually prescribed off-label in these often severely ill patients. Unfortunately, off-label prescription is sometimes hampered in these diseases due to a lack of reimbursement that is often based on a presumed lack of evidence for effectiveness. In the present article will discuss that off-label prescription of biologics can be a good way to discover new treatments for rare diseases. This will be ilustrated using a case of multicentric Castleman’s disease, an immune-mediated lymphoproliferative disorder, in which off-label tocilizumab (humanized anti-IL-6 receptor blocking antibody treatment resulted in remarkable clinical improvement. Furthermore, we will give recommendations for monitoring efficacy and safety of biologic treatment in rare IMIDs, including the use of registries. In conclusion, we put forward that innovative treatments for rare IMIDs can be discovered via off-label prescription of biologicals, provided that this is based on rational arguments including knowledge of the pathophysiology of the disease.

  3. End-point effector stress mediators in neuroimmune interactions: their role in immune system homeostasis and autoimmune pathology.

    Science.gov (United States)

    Dimitrijevic, Mirjana; Stanojevic, Stanislava; Kustrimovic, Natasa; Leposavic, Gordana

    2012-04-01

    Much evidence has identified a direct anatomical and functional link between the brain and the immune system, with glucocorticoids (GCs), catecholamines (CAs), and neuropeptide Y (NPY) as its end-point mediators. This suggests the important role of these mediators in immune system homeostasis and the pathogenesis of inflammatory autoimmune diseases. However, although it is clear that these mediators can modulate lymphocyte maturation and the activity of distinct immune cell types, their putative role in the pathogenesis of autoimmune disease is not yet completely understood. We have contributed to this field by discovering the influence of CAs and GCs on fine-tuning thymocyte negative selection and, in particular, by pointing to the putative CA-mediated mechanisms underlying this influence. Furthermore, we have shown that CAs are implicated in the regulation of regulatory T-cell development in the thymus. Moreover, our investigations related to macrophage biology emphasize the complex interaction between GCs, CAs and NPY in the modulation of macrophage functions and their putative significance for the pathogenesis of autoimmune inflammatory diseases.

  4. Nutritional strategies to optimize dairy cattle immunity.

    Science.gov (United States)

    Sordillo, L M

    2016-06-01

    Dairy cattle are susceptible to increased incidence and severity of both metabolic and infectious diseases during the periparturient period. A major contributing factor to increased health disorders is alterations in bovine immune mechanisms. Indeed, uncontrolled inflammation is a major contributing factor and a common link among several economically important infectious and metabolic diseases including mastitis, retained placenta, metritis, displaced abomasum, and ketosis. The nutritional status of dairy cows and the metabolism of specific nutrients are critical regulators of immune cell function. There is now a greater appreciation that certain mediators of the immune system can have a reciprocal effect on the metabolism of nutrients. Thus, any disturbances in nutritional or immunological homeostasis can provide deleterious feedback loops that can further enhance health disorders, increase production losses, and decrease the availability of safe and nutritious dairy foods for a growing global population. This review will discuss the complex interactions between nutrient metabolism and immune functions in periparturient dairy cattle. Details of how either deficiencies or overexposure to macro- and micronutrients can contribute to immune dysfunction and the subsequent development of health disorders will be presented. Specifically, the ways in which altered nutrient metabolism and oxidative stress can interact to compromise the immune system in transition cows will be discussed. A better understanding of the linkages between nutrition and immunity may facilitate the design of nutritional regimens that will reduce disease susceptibility in early lactation cows. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  5. Role of MicroRNAs in Obesity-Induced Metabolic Disorder and Immune Response.

    Science.gov (United States)

    Zhong, Hong; Ma, Minjuan; Liang, Tingming; Guo, Li

    2018-01-01

    In all living organisms, metabolic homeostasis and the immune system are the most fundamental requirements for survival. Recently, obesity has become a global public health issue, which is the cardinal risk factor for metabolic disorder. Many diseases emanating from obesity-induced metabolic dysfunction are responsible for the activated immune system, including innate and adaptive responses. Of note, inflammation is the manifest accountant signal. Deeply studied microRNAs (miRNAs) have participated in many pathways involved in metabolism and immune responses to protect cells from multiple harmful stimulants, and they play an important role in determining the progress through targeting different inflammatory pathways. Thus, immune response and metabolic regulation are highly integrated with miRNAs. Collectively, miRNAs are the new targets for therapy in immune dysfunction.

  6. Evidence of functional cell-mediated immune responses to nontypeable Haemophilus influenzae in otitis-prone children

    Science.gov (United States)

    Seppanen, Elke; Tan, Dino; Corscadden, Karli J.; Currie, Andrew J.; Richmond, Peter C.; Thornton, Ruth B.

    2018-01-01

    Otitis media (OM) remains a common paediatric disease, despite advances in vaccinology. Susceptibility to recurrent acute OM (rAOM) has been postulated to involve defective cell-mediated immune responses to common otopathogenic bacteria. We compared the composition of peripheral blood mononuclear cells (PBMC) from 20 children with a history of rAOM (otitis-prone) and 20 healthy non-otitis-prone controls, and assessed innate and cell-mediated immune responses to the major otopathogen nontypeable Haemophilus influenzae (NTHi). NTHi was a potent stimulator of inflammatory cytokine secretion from PBMC within 4 hours, with no difference in cytokine levels produced between PBMC from cases or controls. In the absence of antigen stimulation, otitis-prone children had more circulating Natural Killer (NK) cells (potitis-prone and non-otitis-prone children (potitis-prone children are functional and respond to NTHi. CD8+ T cells and NK cells from both cases and controls produced IFNγ in response to polyclonal stimulus (Staphylococcal enterotoxin B; SEB), with more IFNγ+ CD8+ T cells present in cases than controls (pOtitis-prone children had more circulating IFNγ-producing NK cells (potitis-prone children mounted innate and T cell-mediated responses to NTHi challenge that were comparable to healthy children. These data provide evidence that otitis-prone children do not have impaired functional cell mediated immunity. PMID:29621281

  7. Effects of paroxetine and venlafaxine on immune parameters in patients with obsessive compulsive disorder

    NARCIS (Netherlands)

    Denys, Damiaan; Fluitman, Sjoerd; Kavelaars, Annemieke; Heijnen, Cobi; Westenberg, Herman G. M.

    2006-01-01

    BACKGROUND: Obsessive-compulsive disorder (OCD) has been associated with an altered activity of the immune system. This study was carried out to investigate whether treatment with paroxetine and venlafaxine modifies the immune function in OCD and whether this modification is related to treatment

  8. Viral Inhibition of PRR-Mediated Innate Immune Response: Learning from KSHV Evasion Strategies.

    Science.gov (United States)

    Lee, Hye-Ra; Choi, Un Yung; Hwang, Sung-Woo; Kim, Stephanie; Jung, Jae U

    2016-11-30

    The innate immune system has evolved to detect and destroy invading pathogens before they can establish systemic infection. To successfully eradicate pathogens, including viruses, host innate immunity is activated through diverse pattern recognition receptors (PRRs) which detect conserved viral signatures and trigger the production of type I interferon (IFN) and pro-inflammatory cytokines to mediate viral clearance. Viral persistence requires that viruses co-opt cellular pathways and activities for their benefit. In particular, due to the potent antiviral activities of IFN and cytokines, viruses have developed various strategies to meticulously modulate intracellular innate immune sensing mechanisms to facilitate efficient viral replication and persistence. In this review, we highlight recent advances in the study of viral immune evasion strategies with a specific focus on how Kaposi's sarcoma-associated herpesvirus (KSHV) effectively targets host PRR signaling pathways.

  9. Immune- and Pollution-mediated DNA Damage in Two Wild Mya arenaria Clam Populations

    Directory of Open Access Journals (Sweden)

    François Gagné

    2009-01-01

    Full Text Available In aquatic environments, genotoxicity results from the effects of pollution combined with the inflammatory response triggered by the immune system. Indeed, the production of nitrosylated DNA and proteins are though to arise from the production of peroxinitrite during phagocytosis and inflammation. The purpose of this study was to examine new DNA biomarkers that differentiate between immune- and pollution-mediated genotoxicity in wild clam populations. Intertidal clam populations were sampled and analyzed for gonadal DNA strand breaks, DNA nitrosylation and xanthine oxidoreductase (XOR activity (purine salvage pathway. The clam weight-to-shell-length ratio, the gonado-somatic index (GSI, age status, lipid peroxidation, xenobiotic conjugation activity (glutathione S-transferase (GST and phagocytic activity were examined to shed light on their relationships with the observed genotoxic endpoints. XOR activity and DNA strand breaks were generally elevated at polluted sites and correlated significantly with clam weight-to-shell-length ratios and DNA nitrosylation. DNA nitrosylation was also higher at some sites and correlated significantly with phagocytic activity and with DNA strand breaks. This study showed that DNA strand breaks were associated with both immune- and pollution-mediated effects. This suggests that there is a loss of DNA repair capacity due to the combined effects of aging, pollution and immune response in wild clam populations that are impacted by anthropogenic activity.

  10. The Influence of Maternal Prenatal and Early Childhood Nutrition and Maternal Prenatal Stress on Offspring Immune System Development and Neurodevelopmental Disorders

    Directory of Open Access Journals (Sweden)

    Andrea Horvath Marques

    2013-07-01

    Full Text Available The developing immune system and central nervous system in the fetus and child are extremely sensitive to both exogenous and endogenous signals. Early immune system programming, leading to changes that can persist over the life course, has been suggested, and other evidence suggests that immune dysregulation in the early developing brain may play a role in neurodevelopmental disorders such as autism spectrum disorder and schizophrenia. The timing of immune dysregulation with respect to gestational age and neurologic development of the fetus may shape the elicited response. This creates a possible sensitive window of programming or vulnerability. This review will explore the effects of prenatal maternal and infant nutritional status (from conception until early childhood as well as prenatal maternal stress and anxiety on early programming of immune function, and how this might influence neurodevelopment. We will describe fetal immune system development and maternal-fetal immune interactions to provide a better context for understanding the influence of nutrition and stress on the immune system. Finally, we will discuss the implications for prevention of neurodevelopmental disorders, with a focus on nutrition. Although certain micronutrient supplements have shown to both reduce the risk of neurodevelopmental disorders and enhance fetal immune development, we do not know whether their impact on immune development contributes to the preventive effect on neurodevelopmental disorders. Future studies are needed to elucidate this relationship, which may contribute to a better understanding of preventative mechanisms. Integrating studies of neurodevelopmental disorders and prenatal exposures with the simultaneous evaluation of neural and immune systems will shed light on mechanisms that underlie individual vulnerability or resilience to neurodevelopmental disorders and ultimately contribute to the development of primary preventions and early

  11. Au@Pt nanoparticles as catalase mimics to attenuate tumor hypoxia and enhance immune cell-mediated cytotoxicity

    Science.gov (United States)

    Liang, Hong; Wu, Ying; Ou, Xiang-Yu; Li, Jing-Ying; Li, Juan

    2017-11-01

    Hypoxic tumor microenvironment (TME) is closely linked to tumor progression, heterogeneity and immune suppression. Therefore, the development of effective methods to overcome hypoxia and substantially enhance the immunotherapy efficacy remains a desirable goal. Herein, we engineered a biocompatible Au core/Pt shell nanoparticles (Au@Pt NPs) to reoxygenate the TME by reacting with endogenous H2O2. Treatment with Au@Pt NPs appeared to improve oxygen in intracellular environments and decrease hypoxia-inducible factor-1α expression. Furthermore, the integration of high catalytic efficiency of Au@Pt NPs with cytokine-induced killer (CIK) cell immunotherapy, could lead to significantly improve the effect of CIK cell-mediated cytotoxicity. These results suggest great potential of Au@Pt NPs for regulation of the hypoxic TME and enhance immune cell mediated anti-tumor immunity.

  12. Role of MicroRNAs in Obesity-Induced Metabolic Disorder and Immune Response

    Directory of Open Access Journals (Sweden)

    Hong Zhong

    2018-01-01

    Full Text Available In all living organisms, metabolic homeostasis and the immune system are the most fundamental requirements for survival. Recently, obesity has become a global public health issue, which is the cardinal risk factor for metabolic disorder. Many diseases emanating from obesity-induced metabolic dysfunction are responsible for the activated immune system, including innate and adaptive responses. Of note, inflammation is the manifest accountant signal. Deeply studied microRNAs (miRNAs have participated in many pathways involved in metabolism and immune responses to protect cells from multiple harmful stimulants, and they play an important role in determining the progress through targeting different inflammatory pathways. Thus, immune response and metabolic regulation are highly integrated with miRNAs. Collectively, miRNAs are the new targets for therapy in immune dysfunction.

  13. Immunologic Endocrine Disorders

    Science.gov (United States)

    Michels, Aaron W.; Eisenbarth, George S.

    2010-01-01

    Autoimmunity affects multiple glands in the endocrine system. Animal models and human studies highlight the importance of alleles in HLA (human leukocyte antigen)-like molecules determining tissue specific targeting that with the loss of tolerance leads to organ specific autoimmunity. Disorders such as type 1A diabetes, Grave's disease, Hashimoto's thyroiditis, Addison's disease, and many others result from autoimmune mediated tissue destruction. Each of these disorders can be divided into stages beginning with genetic susceptibility, environmental triggers, active autoimmunity, and finally metabolic derangements with overt symptoms of disease. With an increased understanding of the immunogenetics and immunopathogenesis of endocrine autoimmune disorders, immunotherapies are becoming prevalent, especially in type 1A diabetes. Immunotherapies are being used more in multiple subspecialty fields to halt disease progression. While therapies for autoimmune disorders stop the progress of an immune response, immunomodulatory therapies for cancer and chronic infections can also provoke an unwanted immune response. As a result, there are now iatrogenic autoimmune disorders arising from the treatment of chronic viral infections and malignancies. PMID:20176260

  14. Imbalanced immune homeostasis in immune thrombocytopenia.

    Science.gov (United States)

    Yazdanbakhsh, Karina

    2016-04-01

    Immune thrombocytopenia (ITP) is an autoimmune bleeding disorder resulting from low platelet counts caused by inadequate production as well as increased destruction by autoimmune mechanisms. As with other autoimmune disorders, chronic ITP is characterized by perturbations of immune homeostasis with hyperactivated effector cells as well as defective regulatory arm of the adaptive immune system, which will be reviewed here. Interestingly, some ITP treatments are associated with restoring the regulatory imbalance, although it remains unclear whether the immune system is redirected to a state of tolerance once treatment is discontinued. Understanding the mechanisms that result in breakdown of immune homeostasis in ITP will help to identify novel pathways for restoring tolerance and inhibiting effector cell responses. This information can then be translated into developing therapies for averting autoimmunity not only in ITP but also many autoimmune disorders. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Youth internalizing symptoms, sleep-related problems, and disordered eating attitudes and behaviors: A moderated mediation analysis.

    Science.gov (United States)

    Chardon, Marie L; Janicke, David M; Carmody, Julia K; Dumont-Driscoll, Marilyn C

    2016-04-01

    Internalizing symptoms increase the risk for disordered eating; however, the mechanism through which this relationship occurs remains unclear. Sleep-related problems may be a potential link as they are associated with both emotional functioning and disordered eating. The present study aims to evaluate the mediating roles of two sleep-related problems (sleep disturbance and daytime sleepiness) in the relationship between youth internalizing symptoms and disordered eating, and to explore if age moderates these relations. Participants were 225 youth (8-17years) attending a primary care appointment. Youth and legal guardians completed questionnaires about youth disordered eating attitudes and behaviors, internalizing symptoms, sleep disturbance, and daytime sleepiness. Mediation and moderated mediation analyses were utilized. The mediation model revealed both youth sleep disturbance and daytime sleepiness independently mediated the association between internalizing symptoms and disordered eating attitudes and behaviors, and explained 18% of the variance in disordered eating. The moderated mediation model including youth age accounted for 21% of the variance in disordered eating; youth age significantly interacted with sleep disturbance, but not with daytime sleepiness, to predict disordered eating. Sleep disturbance only mediated the relationship between internalizing symptoms and disordered eating in youth 12years old and younger, while daytime sleepiness was a significant mediator regardless of age. As sleep-related problems are frequently improved with the adoption of health behaviors conducive to good sleep, these results may suggest a relatively modifiable and cost-effective target to reduce youth risk for disordered eating. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Impact of innate immunity in a subset of children with autism spectrum disorders: a case control study

    Directory of Open Access Journals (Sweden)

    Cushing-Ruby Agnes

    2008-11-01

    Full Text Available Abstract Background Among patients with autism spectrum disorders (ASD evaluated in our clinic, there appears to be a subset that can be clinically distinguished from other ASD children because of frequent infections (usually viral accompanied by worsening behavioural symptoms and/or loss/decrease in acquired skills. This study assessed whether these clinical features of this ASD subset are associated with atopy, asthma, food allergy (FA, primary immunodeficiency (PID, or innate immune responses important in viral infections. Methods This study included the ASD children described above (ASD test, N = 26 and the following controls: ASD controls (N = 107, non-ASD controls with FA (N = 24, non-ASD controls with chronic rhinosinusitis/recurrent otitis media (CRS/ROM; N = 38, and normal controls (N = 43. We assessed prevalence of atopy, asthma, FA, CRS/ROM, and PID. Innate immune responses were assessed by measuring production of proinflammatory and counter-regulatory cytokines by peripheral blood mononuclear cells (PBMCs in response to agonists of Toll-like receptors (TLRs, with or without pre-treatment of lipopolysaccharide (LPS, a TLR4 agonist. Results Non-IgE mediated FA was equally prevalent in both ASD test and ASD control groups, occurring at higher frequency than in the non-ASD controls. Allergic rhinitis, atopic/non-atopic asthma, and atopic dermatitis were equally prevalent among the study groups except for the CRS/ROM group in which non-atopic asthma was more prevalent (52.6%. CRS/ROM and specific polysaccharide antibody deficiency (SPAD were more prevalent in the ASD test group than in the ASD control, FA, and normal control groups: 23.1% vs. Conclusion Clinical features of the ASD test group were not associated with atopy, asthma, FA, or PID in our study but may be associated with altered TLR responses mediating neuro-immune interactions.

  17. Depressive mood, eating disorder symptoms, and perfectionism in female college students: a mediation analysis.

    Science.gov (United States)

    García-Villamisar, Domingo; Dattilo, John; Del Pozo, Araceli

    2012-01-01

    Although perfectionism has long been established as an important risk factor for depressive mood and eating disorders, the mechanisms through which this temperamental predisposition mediates the relationship between depressive mood and eating disorder symptoms are still relatively unclear. In this study we hypothesized that both perfectionism dimensions, self-oriented perfectionism and socially prescribed perfectionism, would mediate the relationship between current symptoms of depression and eating disorders in a non-clinical sample of Spanish undergraduate females. Two hundred sixteen female undergraduate students of the University Complutense of Madrid (Spain) completed the Spanish versions of the Eating Attitudes Test (EAT-40), the Multidimensional Perfectionism Scale (MPS), OBQ-44, and BDI-II and BAI. Results demonstrated the importance of socially prescribed perfectionism in mediation of the relationship between depressive mood and symptoms of eating disorders. Socially prescribed perfectionism mediates the relationship between depressive mood and eating disorder symptoms for female college students.

  18. A longitudinal study of cell-mediated immunity in pigs infected with porcine parvovirus

    DEFF Research Database (Denmark)

    Ladekjaer-Mikkelsen, A.S.; Nielsen, Jens

    2002-01-01

    Porcine parvovirus (PPV) is an ubiquitous pathogen causing reproductive failure in swine. Protection against reproductive failure caused by acute PPV infection has commonly been related to the presence of specific antibodies in the dam. However, the role of cell-mediated immunity during chronic PPV...

  19. Embodiment Mediates the Relationship between Avoidant Attachment and Eating Disorder Psychopathology.

    Science.gov (United States)

    Monteleone, Alessio Maria; Castellini, Giovanni; Ricca, Valdo; Volpe, Umberto; De Riso, Francesco; Nigro, Massimiliano; Zamponi, Francesco; Mancini, Milena; Stanghellini, Giovanni; Monteleone, Palmiero; Treasure, Janet; Maj, Mario

    2017-11-01

    The overvaluation of body shape and weight of persons with eating disorders (EDs) is putatively explained by a disturbance in the way they experience their own body (embodiment). Moreover, attachment disorders seem to promote the use of body as source for self-definition. Therefore, we assessed the role of embodiment in the connection between attachment styles and ED psychopathology. One-hundred and thirteen ED patients and 117 healthy subjects completed the Identity and Eating Disorders (IDEA) Questionnaire, the Eating Disorder Inventory-2 (EDI-2) and the Experiences in Close Relationships Scale. Eating disorder patients displayed IDEA, EDI-2 and Experiences in Close Relationships scores significantly higher than controls. IDEA total and subtotal scores mediated entirely the influence of avoidant attachment on EDI-2 interoceptive awareness and impulsivity. These findings demonstrate a relationship between insecure attachment and disorders of identity and embodiment and point to embodiment as a possible mediator between avoidant attachment and specific ED psychopathological traits. Copyright © 2017 John Wiley & Sons, Ltd and Eating Disorders Association. Copyright © 2017 John Wiley & Sons, Ltd and Eating Disorders Association.

  20. Ornamental comb colour predicts T-cell-mediated immunity in male red grouse Lagopus lagopus scoticus

    Science.gov (United States)

    Mougeot, Francois

    2008-02-01

    Sexual ornaments might reliably indicate the ability to cope with parasites and diseases, and a better ability to mount a primary inflammatory response to a novel challenge. Carotenoid-based ornaments are amongst the commonest sexual signals of birds and often influence mate choice. Because carotenoids are immuno-stimulants, signallers may trade-off allocating these to ornamental colouration or using them for immune responses, so carotenoid-based ornaments might be particularly useful as honest indicators of immuno-compentence. Tetraonid birds, such as the red grouse Lagopus lagopus scoticus, exhibit supra-orbital yellow red combs, a conspicuous ornament which functions in intra- and inter-sexual selection. The colour of combs is due to epidermal pigmentation by carotenoids, while their size is testosterone-dependent. In this study, I investigated whether comb characteristics, and in particular, comb colour, indicated immuno-competence in free-living male red grouse. I assessed T-cell-mediated immunity using a standardised challenge with phytohaemagglutinin. Red grouse combs reflect in the red and in the ultraviolet spectrum of light, which is not visible to humans but that grouse most likely see, so I measured comb colour across the whole bird visible spectrum (300 700 nm) using a reflectance spectrometer. I found that males with bigger and redder combs, but with less ultraviolet reflectance, had greater T-cell-mediated immune response. Comb colour predicted T-cell-mediated immune response better than comb size, indicating that the carotenoid-based colouration of this ornament might reliably signal this aspect of male quality.

  1. Microneedle-mediated immunization of an adenovirus-based malaria vaccine enhances antigen-specific antibody immunity and reduces anti-vector responses compared to the intradermal route.

    Science.gov (United States)

    Carey, John B; Vrdoljak, Anto; O'Mahony, Conor; Hill, Adrian V S; Draper, Simon J; Moore, Anne C

    2014-08-21

    Substantial effort has been placed in developing efficacious recombinant attenuated adenovirus-based vaccines. However induction of immunity to the vector is a significant obstacle to its repeated use. Here we demonstrate that skin-based delivery of an adenovirus-based malaria vaccine, HAdV5-PyMSP1₄₂, to mice using silicon microneedles induces equivalent or enhanced antibody responses to the encoded antigen, however it results in decreased anti-vector responses, compared to intradermal delivery. Microneedle-mediated vaccine priming and resultant induction of low anti-vector antibody titres permitted repeated use of the same adenovirus vaccine vector. This resulted in significantly increased antigen-specific antibody responses in these mice compared to ID-treated mice. Boosting with a heterologous vaccine; MVA-PyMSP1₄₂ also resulted in significantly greater antibody responses in mice primed with HAdV5-PyMSP1₄₂ using MN compared to the ID route. The highest protection against blood-stage malaria challenge was observed when a heterologous route of immunization (MN/ID) was used. Therefore, microneedle-mediated immunization has potential to both overcome some of the logistic obstacles surrounding needle-and-syringe-based immunization as well as to facilitate the repeated use of the same adenovirus vaccine thereby potentially reducing manufacturing costs of multiple vaccines. This could have important benefits in the clinical ease of use of adenovirus-based immunization strategies.

  2. Microneedle-mediated immunization of an adenovirus-based malaria vaccine enhances antigen-specific antibody immunity and reduces anti-vector responses compared to the intradermal route

    Science.gov (United States)

    Carey, John B.; Vrdoljak, Anto; O'Mahony, Conor; Hill, Adrian V. S.; Draper, Simon J.; Moore, Anne C.

    2014-01-01

    Substantial effort has been placed in developing efficacious recombinant attenuated adenovirus-based vaccines. However induction of immunity to the vector is a significant obstacle to its repeated use. Here we demonstrate that skin-based delivery of an adenovirus-based malaria vaccine, HAdV5-PyMSP142, to mice using silicon microneedles induces equivalent or enhanced antibody responses to the encoded antigen, however it results in decreased anti-vector responses, compared to intradermal delivery. Microneedle-mediated vaccine priming and resultant induction of low anti-vector antibody titres permitted repeated use of the same adenovirus vaccine vector. This resulted in significantly increased antigen-specific antibody responses in these mice compared to ID-treated mice. Boosting with a heterologous vaccine; MVA-PyMSP142 also resulted in significantly greater antibody responses in mice primed with HAdV5-PyMSP142 using MN compared to the ID route. The highest protection against blood-stage malaria challenge was observed when a heterologous route of immunization (MN/ID) was used. Therefore, microneedle-mediated immunization has potential to both overcome some of the logistic obstacles surrounding needle-and-syringe-based immunization as well as to facilitate the repeated use of the same adenovirus vaccine thereby potentially reducing manufacturing costs of multiple vaccines. This could have important benefits in the clinical ease of use of adenovirus-based immunization strategies. PMID:25142082

  3. CLINICAL SIGNIFICANCE OF IMMUNE IMBALANCE AND AUTOIMMUNITY IN NERVOUS SYSTEM DISORDERS (NSDs

    Directory of Open Access Journals (Sweden)

    Vijendra K. SINGH

    2015-11-01

    Full Text Available In recent years, the role of immune imbalance and autoimmunity has been experimentally demonstrated in nervous system disorders (NSDs that include Alzheimer’s disease, autism, obsessive-compulsive disorder (OCD, tics and Tourette’s syndrome, schizophrenia, and some other NSDs. And yet, these NSDs are never counted as autoimmune diseases. Deriving from the rapidly expanding knowledge of neuro-immunology and auto-immune diseases, for example multiple scle-rosis (MS, the author of this mini-review strongly recommends that these NSDs should be included while tallying the number of autoimmune diseases. This effort will help create an updated global database of all autoimmune diseases as well as it should help treat millions of patients who are suffering from debilitating NSDs for which there is no known cure or treatment currently.

  4. Mindfulness mediates the relation between disordered eating-related cognitions and psychological distress.

    Science.gov (United States)

    Masuda, Akihiko; Wendell, Johanna W

    2010-12-01

    The present study investigated whether mindfulness mediates the relation between disordered eating-related cognitions and negative psychological outcomes within a non-clinical college sample. Disordered eating-related cognitions were positively associated with general psychological ill-health and emotional distress in interpersonal contexts and inversely related to mindfulness. Mindfulness, which was also inversely related to general psychological ill-health and emotional distress, was found to partially mediate the relations between disordered eating-related cognitions and the two predicted variables. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Immune disorders in sepsis and their treatment as a significant problem of modern intensive care

    Directory of Open Access Journals (Sweden)

    Lidia Łysenko

    2017-08-01

    Full Text Available Despite the great advances in the treatment of sepsis over the past 20 years, sepsis remains the main cause of death in intensive care units. In the context of new possibilities of treating sepsis, a comprehensive response of the immune system to the infection, immunosuppression, in particular, has in recent years gained considerable interest. There is vast evidence pointing to the correlation between comorbid immunosuppression and an increased risk of recurrent infections and death. Immune disorders may impact the clinical course of sepsis. This applies in particular to patients with deteriorated clinical response to infections. They usually suffer from comorbidities and conditions accompanied by immunosuppression. Sepsis disrupts innate and adaptive immunity. The key to diagnose the immune disorders in sepsis and undertake targeted immunomodulatory therapy is to define the right biomarkers and laboratory methods, which permit prompt “bedside” diagnosis. Flow cytometry is a laboratory tool that meets these criteria. Two therapeutic methods are currently being suggested to restore the immune homeostasis of sepsis patients. Excessive inflammatory response may be controlled through extracorporeal blood purification techniques, in large part derived from renal replacement therapy. These are such techniques as high-volume haemofiltration, cascade haemofiltration, plasma exchange, coupled plasma filtration and adsorption, high-absorption membranes, high cut-off membranes. The main task of theses techniques is the selective elimination of middle molecular weight molecules, such as cytokines. Pharmacotherapy with the use of such immunostimulants as interleukin 7, granulocyte-macrophage colony-stimulating factor, interferon gamma, PD-1, PD-L1 and CTLA-4 antagonists, intravenous immunoglobulins may help fight immunosuppressive immune disorders.

  6. Immune disorders in sepsis and their treatment as a significant problem of modern intensive care.

    Science.gov (United States)

    Łysenko, Lidia; Leśnik, Patrycja; Nelke, Kamil; Gerber, Hanna

    2017-08-22

    Despite the great advances in the treatment of sepsis over the past 20 years, sepsis remains the main cause of death in intensive care units. In the context of new possibilities of treating sepsis, a comprehensive response of the immune system to the infection, immunosuppression, in particular, has in recent years gained considerable interest. There is vast evidence pointing to the correlation between comorbid immunosuppression and an increased risk of recurrent infections and death. Immune disorders may impact the clinical course of sepsis. This applies in particular to patients with deteriorated clinical response to infections. They usually suffer from comorbidities and conditions accompanied by immunosuppression. Sepsis disrupts innate and adaptive immunity. The key to diagnose the immune disorders in sepsis and undertake targeted immunomodulatory therapy is to define the right biomarkers and laboratory methods, which permit prompt "bedside" diagnosis. Flow cytometry is a laboratory tool that meets these criteria. Two therapeutic methods are currently being suggested to restore the immune homeostasis of sepsis patients. Excessive inflammatory response may be controlled through extracorporeal blood purification techniques, in large part derived from renal replacement therapy. These are such techniques as high-volume haemofiltration, cascade haemofiltration, plasma exchange, coupled plasma filtration and adsorption, high-absorption membranes, high cut-off membranes. The main task of theses techniques is the selective elimination of middle molecular weight molecules, such as cytokines. Pharmacotherapy with the use of such immunostimulants as interleukin 7, granulocyte-macrophage colony-stimulating factor, interferon gamma, PD-1, PD-L1 and CTLA-4 antagonists, intravenous immunoglobulins may help fight immunosuppressive immune disorders.

  7. Autoimmunity in Arabidopsis acd11 Is Mediated by Epigenetic Regulation of an Immune Receptor

    DEFF Research Database (Denmark)

    Palma, K.; Thorgrimsen, S.; Malinovsky, F.G.

    2010-01-01

    Certain pathogens deliver effectors into plant cells to modify host protein targets and thereby suppress immunity. These target modifications can be detected by intracellular immune receptors, or Resistance (R) proteins, that trigger strong immune responses including localized host cell death....... The accelerated cell death 11 (acd11) "lesion mimic" mutant of Arabidopsis thaliana exhibits autoimmune phenotypes such as constitutive defense responses and cell death without pathogen perception. ACD11 encodes a putative sphingosine transfer protein, but its precise role during these processes is unknown......, and that cell death in other lesion mimic mutants may also be caused by inappropriate activation of R genes. Moreover, SDG8 is required for basal and R protein-mediated pathogen resistance in Arabidopsis, revealing the importance of chromatin remodeling as a key process in plant innate immunity....

  8. The Role of Innate Immune System Receptors in Epilepsy Research.

    Science.gov (United States)

    Cordero-Arreola, Jessica; West, Rachel M; Mendoza-Torreblanca, Julieta; Mendez-Hernandez, Edna; Salas-Pacheco, Jose; Menendez-Gonzalez, Manuel; Freire, Rafael C; Machado, Sergio; Murillo-Rodriguez, Eric; Nardi, Antonio E; Arias-Carrion, Oscar

    2017-01-01

    Epilepsy is one of the most complex neurological disorders and its study requires a broad knowledge of neurology and neuroscience. It comprises a diverse group of neurological disorders that share the central feature of spontaneous recurrent seizures, and are often accompanied by cognitive deficits and mood disorder. This condition is one of the most common neurological disorders. Until recently, alterations of neuronal activities had been the focus of epilepsy research. This neurocentric emphasis did not address issues that arise in more complex models of epileptogenesis. An important factor in epilepsy that is not regulated directly by neurons is inflammation and the immune response of the brain. Recent evidence obtained in rodent epilepsy models supports the role of immune responses in the initiation and maintenance of epilepsy. Recognition of exogenous pathogens by the innate immune system is mediated by some pattern recognition receptors such as Toll-like receptors leading to cell activation and cytokine production. Currently, these receptors have been the focus of epilepsy studies looking to determine whether the innate immune activation is neuroprotective or neurotoxic for the brain. Here, we present the evidence in the literature of the involvement of key innate immune receptors in the development of epilepsy. We address some of the contradictory findings in these studies and also mention possible avenues for research into epilepsy treatments that target these receptors. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Contribution of T cell-mediated immunity to the resistance to staphlococcal infection

    International Nuclear Information System (INIS)

    Tsuda, S.; Sasai, Y.; Minami, K.; Nomoto, K.

    1978-01-01

    Abscess formation in nude mice after subcutaneous inoculation of Staphylococcus aureus (S. aureus) was more extensive and prolonged as compared with that in phenotypically normal littermates. Abscess formation in nude mice was augmented markedly by whole-body irradiation. Not only T cell-mediated immunity but also radiosensitive, nonimmune phagocytosis appear to contribute to the resistance against staphylococcal infection

  10. High intravascular tissue factor expression in dogs with idiopathic immune-mediated haemolytic anaemia

    NARCIS (Netherlands)

    Piek, C.J.; Brinkhof, B.; Teske, E.; Rothuizen, J.; Dekker, A.; Penning, L.C.

    2011-01-01

    A high mortality occurs in dogs with idiopathic immune-mediated haemolytic anaemia (IMHA) during the first 2 weeks after the diagnosis. The aim of this study was to investigate the inflammatory response and coagulation abnormalities in dogs with IMHA in relation to the prognosis and to establish the

  11. Serum C-reactive protein concentrations in Nova Scotia Duck Tolling Retrievers with immune-mediated rheumatic disease.

    Science.gov (United States)

    Bremer, Hanna Dorotea; Hillström, Anna; Kånåhols, Malin; Hagman, Ragnvi; Hansson-Hamlin, Helene

    2017-04-17

    Nova Scotia Duck Tolling Retrievers (NSDTRs) are a dog breed often affected by immune-mediated rheumatic disease (IMRD), a disorder characterised by chronic stiffness and joint pain. Most, but not all, dogs with IMRD, have antinuclear antibodies (ANA), which are also commonly present in the autoimmune disease systemic lupus erythematosus (SLE). The clinical and diagnostic findings of IMRD indicate that it is an SLE-related disorder. C-reactive protein (CRP), an acute phase protein, is a quantitative marker of inflammation for many diseases and is used for diagnosing and monitoring systemic inflammation in both humans and dogs. However, in human SLE, CRP concentrations are often elevated but correlate poorly with disease activity; they can be low in individual patients with active disease. The aim of the study was to investigate CRP in a group of NSDTRs with the SLE-related disorder IMRD. The hypothesis was that CRP concentrations would be increased in dogs with IMRD compared to healthy dogs, but that the increase would be mild. Serum CRP concentrations were measured in 18 IMRD-affected NSDTRs and 19 healthy control NSDTRs using two different canine-specific CRP assays. Dogs with IMRD and ANA had higher CRP concentrations than the control dogs, but the concentrations were below the clinical decision limit for systemic inflammation for most of the IMRD dogs. These results indicate that CRP concentrations were increased in dogs with IMRD and ANA, but the increase was mild, similar to what has been observed in human SLE.

  12. The new numerology of immunity mediated by virus-specific CD8(+) T cells.

    Science.gov (United States)

    Doherty, P C

    1998-08-01

    Our understanding of virus-specific CD8(+) T cell responses is currently being revolutionized by peptide-based assay systems that allow flow cytometric analysis of effector and memory cytotoxic T lymphocyte populations. These techniques are, for the first time, putting the analysis of T-cell-mediated immunity on a quantitative basis.

  13. Meta-Analysis of Parent-Mediated Interventions for Young Children with Autism Spectrum Disorder

    Science.gov (United States)

    Nevill, Rose E.; Lecavalier, Luc; Stratis, Elizabeth A.

    2018-01-01

    A number of studies of parent-mediated interventions in autism spectrum disorder have been published in the last 15 years. We reviewed 19 randomized clinical trials of parent-mediated interventions for children with autism spectrum disorder between the ages of 1 and 6 years and conducted a meta-analysis on their efficacy. Meta-analysis outcomes…

  14. Immune Evasion, Immunopathology and the Regulation of the Immune System

    Directory of Open Access Journals (Sweden)

    Bruno Faivre

    2013-02-01

    Full Text Available Costs and benefits of the immune response have attracted considerable attention in the last years among evolutionary biologists. Given the cost of parasitism, natural selection should favor individuals with the most effective immune defenses. Nevertheless, there exists huge variation in the expression of immune effectors among individuals. To explain this apparent paradox, it has been suggested that an over-reactive immune system might be too costly, both in terms of metabolic resources and risks of immune-mediated diseases, setting a limit to the investment into immune defenses. Here, we argue that this view neglects one important aspect of the interaction: the role played by evolving pathogens. We suggest that taking into account the co-evolutionary interactions between the host immune system and the parasitic strategies to overcome the immune response might provide a better picture of the selective pressures that shape the evolution of immune functioning. Integrating parasitic strategies of host exploitation can also contribute to understand the seemingly contradictory results that infection can enhance, but also protect from, autoimmune diseases. In the last decades, the incidence of autoimmune disorders has dramatically increased in wealthy countries of the northern hemisphere with a concomitant decrease of most parasitic infections. Experimental work on model organisms has shown that this pattern may be due to the protective role of certain parasites (i.e., helminths that rely on the immunosuppression of hosts for their persistence. Interestingly, although parasite-induced immunosuppression can protect against autoimmunity, it can obviously favor the spread of other infections. Therefore, we need to think about the evolution of the immune system using a multidimensional trade-off involving immunoprotection, immunopathology and the parasitic strategies to escape the immune response.

  15. Impact of the Gut Microbiota on Intestinal Immunity Mediated by Tryptophan Metabolism

    Science.gov (United States)

    Gao, Jing; Xu, Kang; Liu, Hongnan; Liu, Gang; Bai, Miaomiao; Peng, Can; Li, Tiejun; Yin, Yulong

    2018-01-01

    The gut microbiota influences the health of the host, especially with regard to gut immune homeostasis and the intestinal immune response. In addition to serving as a nutrient enhancer, L-tryptophan (Trp) plays crucial roles in the balance between intestinal immune tolerance and gut microbiota maintenance. Recent discoveries have underscored that changes in the microbiota modulate the host immune system by modulating Trp metabolism. Moreover, Trp, endogenous Trp metabolites (kynurenines, serotonin, and melatonin), and bacterial Trp metabolites (indole, indolic acid, skatole, and tryptamine) have profound effects on gut microbial composition, microbial metabolism, the host's immune system, the host-microbiome interface, and host immune system–intestinal microbiota interactions. The aryl hydrocarbon receptor (AhR) mediates the regulation of intestinal immunity by Trp metabolites (as ligands of AhR), which is beneficial for immune homeostasis. Among Trp metabolites, AhR ligands consist of endogenous metabolites, including kynurenine, kynurenic acid, xanthurenic acid, and cinnabarinic acid, and bacterial metabolites, including indole, indole propionic acid, indole acetic acid, skatole, and tryptamine. Additional factors, such as aging, stress, probiotics, and diseases (spondyloarthritis, irritable bowel syndrome, inflammatory bowel disease, colorectal cancer), which are associated with variability in Trp metabolism, can influence Trp–microbiome–immune system interactions in the gut and also play roles in regulating gut immunity. This review clarifies how the gut microbiota regulates Trp metabolism and identifies the underlying molecular mechanisms of these interactions. Increased mechanistic insight into how the microbiota modulates the intestinal immune system through Trp metabolism may allow for the identification of innovative microbiota-based diagnostics, as well as appropriate nutritional supplementation of Trp to prevent or alleviate intestinal inflammation

  16. Functional motifs responsible for human metapneumovirus M2-2-mediated innate immune evasion.

    Science.gov (United States)

    Chen, Yu; Deng, Xiaoling; Deng, Junfang; Zhou, Jiehua; Ren, Yuping; Liu, Shengxuan; Prusak, Deborah J; Wood, Thomas G; Bao, Xiaoyong

    2016-12-01

    Human metapneumovirus (hMPV) is a major cause of lower respiratory infection in young children. Repeated infections occur throughout life, but its immune evasion mechanisms are largely unknown. We recently found that hMPV M2-2 protein elicits immune evasion by targeting mitochondrial antiviral-signaling protein (MAVS), an antiviral signaling molecule. However, the molecular mechanisms underlying such inhibition are not known. Our mutagenesis studies revealed that PDZ-binding motifs, 29-DEMI-32 and 39-KEALSDGI-46, located in an immune inhibitory region of M2-2, are responsible for M2-2-mediated immune evasion. We also found both motifs prevent TRAF5 and TRAF6, the MAVS downstream adaptors, to be recruited to MAVS, while the motif 39-KEALSDGI-46 also blocks TRAF3 migrating to MAVS. In parallel, these TRAFs are important in activating transcription factors NF-kB and/or IRF-3 by hMPV. Our findings collectively demonstrate that M2-2 uses its PDZ motifs to launch the hMPV immune evasion through blocking the interaction of MAVS and its downstream TRAFs. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Local cell-mediated immune reactions in cancer patients

    International Nuclear Information System (INIS)

    Bilynskij, B.T.; Vasil'ev, N.V.; Volod'ko, N.A.; Akademiya Meditsinskikh Nauk SSSR, Tomsk. Onkologicheskij Nauchnyj Tsentr)

    1988-01-01

    The analysis of 178 cases of stage I-II breast cancer showed morphological features of local cell-mediated immune reactions to be of limited prognostic value. A comparative evaluation of some characteristics of cell surface receptors, such as ability to spontaneous rosette formation with sheep erythrocytes and sensitivty to theophylline, was carried out in lymphocyte samples obtained from tumor tissue and peripheral blood of 76 cancer patients subjected to preoperative radiotherapy. The said parameters were studied in breast cancer patients of rosette-forming cell reaction to theophylline were identified, the incidence of some of them being determined by the presence or absence of regional metastases. The level and functional activity of surface receptors of tumor mononuclear cells proved to influence prognosis

  18. Immune-related genetic enrichment in frontotemporal dementia: An analysis of genome-wide association studies.

    Directory of Open Access Journals (Sweden)

    Iris Broce

    2018-01-01

    Full Text Available Converging evidence suggests that immune-mediated dysfunction plays an important role in the pathogenesis of frontotemporal dementia (FTD. Although genetic studies have shown that immune-associated loci are associated with increased FTD risk, a systematic investigation of genetic overlap between immune-mediated diseases and the spectrum of FTD-related disorders has not been performed.Using large genome-wide association studies (GWASs (total n = 192,886 cases and controls and recently developed tools to quantify genetic overlap/pleiotropy, we systematically identified single nucleotide polymorphisms (SNPs jointly associated with FTD-related disorders-namely, FTD, corticobasal degeneration (CBD, progressive supranuclear palsy (PSP, and amyotrophic lateral sclerosis (ALS-and 1 or more immune-mediated diseases including Crohn disease, ulcerative colitis (UC, rheumatoid arthritis (RA, type 1 diabetes (T1D, celiac disease (CeD, and psoriasis. We found up to 270-fold genetic enrichment between FTD and RA, up to 160-fold genetic enrichment between FTD and UC, up to 180-fold genetic enrichment between FTD and T1D, and up to 175-fold genetic enrichment between FTD and CeD. In contrast, for CBD and PSP, only 1 of the 6 immune-mediated diseases produced genetic enrichment comparable to that seen for FTD, with up to 150-fold genetic enrichment between CBD and CeD and up to 180-fold enrichment between PSP and RA. Further, we found minimal enrichment between ALS and the immune-mediated diseases tested, with the highest levels of enrichment between ALS and RA (up to 20-fold. For FTD, at a conjunction false discovery rate < 0.05 and after excluding SNPs in linkage disequilibrium, we found that 8 of the 15 identified loci mapped to the human leukocyte antigen (HLA region on Chromosome (Chr 6. We also found novel candidate FTD susceptibility loci within LRRK2 (leucine rich repeat kinase 2, TBKBP1 (TBK1 binding protein 1, and PGBD5 (piggyBac transposable element

  19. Reuma.pt contribution to the knowledge of immune-mediated systemic rheumatic diseases.

    Science.gov (United States)

    Santos, Maria José; Canhão, Helena; Mourão, Ana Filipa; Oliveira Ramos, Filipa; Ponte, Cristina; Duarte, Cátia; Barcelos, Anabela; Martins, Fernando; Melo Gomes, José António

    2017-01-01

    Patient registries are key instruments aimed at a better understanding of the natural history of diseases, at assessing the effectiveness of therapeutic interventions, as well as identifying rare events or outcomes that are not captured in clinical trials. However, the potential of registries goes far beyond these aspects. For example, registries promote the standardization of clinical practice, can also provide information on domains that are not routinely collected in clinical practice and can support decision-making. Being aware of the importance of registries, the Portuguese Society of Rheumatology developed the Rheumatic Diseases Portuguese Register- Reuma.pt - which proved to be an innovative instrument essential to a better understanding of systemic immune-mediated rheumatic diseases. To describe the contribution of Reuma.pt to the knowledge of systemic immune-mediated rheumatic diseases. Reuma.pt is widely implemented, with 77 centres actively contributing to the recruitment and follow-up of patients. Reuma.pt follows in a standardized way patients with the following systemic inflammatory rheumatic diseases: rheumatoid arthritis (n=6218), psoriatic arthritis (n=1498), spondyloarthritis (n=2529), juvenile idiopathic arthritis (n =1561), autoinflammatory syndromes (n=122), systemic lupus erythematosus (n =1718), systemic sclerosis (n=180) and vasculitis (n=221). This platform is intended for use as an electronic medical record, provides standardized assessment of patients and support to the clinical decision, thereby contributing to a better quality of care of rheumatic patients. The research based on Reuma.pt identified genetic determinants of susceptibility and response to therapy, characterized in detail systemic rheumatic diseases and their long-term impact, critically appraised the performance of instruments for monitoring the disease activity, established the effectiveness and safety of biologic therapies and identified predictors of response, and

  20. Sphingosine 1-phosphate receptor 5 mediates the immune quiescence of the human brain endothelial barrier

    Directory of Open Access Journals (Sweden)

    van Doorn Ruben

    2012-06-01

    Full Text Available Abstract Background The sphingosine 1-phosphate (S1P receptor modulator FTY720P (Gilenya® potently reduces relapse rate and lesion activity in the neuroinflammatory disorder multiple sclerosis. Although most of its efficacy has been shown to be related to immunosuppression through the induction of lymphopenia, it has been suggested that a number of its beneficial effects are related to altered endothelial and blood–brain barrier (BBB functionality. However, to date it remains unknown whether brain endothelial S1P receptors are involved in the maintenance of the function of the BBB thereby mediating immune quiescence of the brain. Here we demonstrate that the brain endothelial receptor S1P5 largely contributes to the maintenance of brain endothelial barrier function. Methods We analyzed the expression of S1P5 in human post-mortem tissues using immunohistochemistry. The function of S1P5 at the BBB was assessed in cultured human brain endothelial cells (ECs using agonists and lentivirus-mediated knockdown of S1P5. Subsequent analyses of different aspects of the brain EC barrier included the formation of a tight barrier, the expression of BBB proteins and markers of inflammation and monocyte transmigration. Results We show that activation of S1P5 on cultured human brain ECs by a selective agonist elicits enhanced barrier integrity and reduced transendothelial migration of monocytes in vitro. These results were corroborated by genetically silencing S1P5 in brain ECs. Interestingly, functional studies with these cells revealed that S1P5 strongly contributes to brain EC barrier function and underlies the expression of specific BBB endothelial characteristics such as tight junctions and permeability. In addition, S1P5 maintains the immunoquiescent state of brain ECs with low expression levels of leukocyte adhesion molecules and inflammatory chemokines and cytokines through lowering the activation of the transcription factor NFκB. Conclusion Our

  1. Risk of venous thromboembolism in people admitted to hospital with selected immune-mediated diseases: record-linkage study

    Directory of Open Access Journals (Sweden)

    Handel Adam E

    2011-01-01

    Full Text Available Abstract Background Venous thromboembolism (VTE is a common complication during and after a hospital admission. Although it is mainly considered a complication of surgery, it often occurs in people who have not undergone surgery, with recent evidence suggesting that immune-mediated diseases may play a role in VTE risk. We, therefore, decided to study the risk of deep vein thrombosis (DVT and pulmonary embolism (PE in people admitted to hospital with a range of immune-mediated diseases. Methods We analysed databases of linked statistical records of hospital admissions and death certificates for the Oxford Record Linkage Study area (ORLS1:1968 to 1998 and ORLS2:1999 to 2008 and the whole of England (1999 to 2008. Rate ratios for VTE were determined, comparing immune-mediated disease cohorts with comparison cohorts. Results Significantly elevated risks of VTE were found, in all three populations studied, in people with a hospital record of admission for autoimmune haemolytic anaemia, chronic active hepatitis, dermatomyositis/polymyositis, type 1 diabetes mellitus, multiple sclerosis, myasthenia gravis, myxoedema, pemphigus/pemphigoid, polyarteritis nodosa, psoriasis, rheumatoid arthritis, Sjogren's syndrome, and systemic lupus erythematosus. Rate ratios were considerably higher for some of these diseases than others: for example, for systemic lupus erythematosus the rate ratios were 3.61 (2.36 to 5.31 in the ORLS1 population, 4.60 (3.19 to 6.43 in ORLS2 and 3.71 (3.43 to 4.02 in the England dataset. Conclusions People admitted to hospital with immune-mediated diseases may be at an increased risk of subsequent VTE. Our findings need independent confirmation or refutation; but, if confirmed, there may be a role for thromboprophylaxis in some patients with these diseases.

  2. Obesity, Fat Mass and Immune System: Role for Leptin

    Directory of Open Access Journals (Sweden)

    Vera Francisco

    2018-06-01

    Full Text Available Obesity is an epidemic disease characterized by chronic low-grade inflammation associated with a dysfunctional fat mass. Adipose tissue is now considered an extremely active endocrine organ that secretes cytokine-like hormones, called adipokines, either pro- or anti-inflammatory factors bridging metabolism to the immune system. Leptin is historically one of most relevant adipokines, with important physiological roles in the central control of energy metabolism and in the regulation of metabolism-immune system interplay, being a cornerstone of the emerging field of immunometabolism. Indeed, leptin receptor is expressed throughout the immune system and leptin has been shown to regulate both innate and adaptive immune responses. This review discusses the latest data regarding the role of leptin as a mediator of immune system and metabolism, with particular emphasis on its effects on obesity-associated metabolic disorders and autoimmune and/or inflammatory rheumatic diseases.

  3. Induced ER-chaperones regulate a novel receptor-like kinase to mediate a viral innate immune response

    Science.gov (United States)

    Caplan, Jeffrey L.; Zhu, Xiaohong; Mamillapalli, Padmavathi; Marathe, Rajendra; Anandalakshmi, Radhamani; Dinesh-Kumar, S. P.

    2009-01-01

    Summary The plant innate immune response requires a rapid, global reprogramming of cellular processes. Here we employed two complementary proteomic methods, two-dimensional differential in-gel electrophoresis (2D-DIGE) and iTRAQ, to identify differentially regulated proteins early during a defense response. Besides defense-related proteins, the constituents of the largest category of up-regulated proteins were cytoplasmic- and endoplasmic reticulum (ER)-residing molecular chaperones. Silencing of ER-resident protein disulfide isomerases, NbERp57 and NbP5, and the calreticulins, NbCRT2 and NbCRT3, lead to a partial loss of N immune receptor-mediated defense against Tobacco mosaic virus (TMV). Furthermore, NbCRT2 and NbCRT3 are required for the expression of a novel induced receptor-like kinase (IRK). IRK is a plasma membrane-localized protein required for the N-mediated hypersensitive response programmed cell death (HR-PCD) and resistance to TMV. These data support a model in which ER-resident chaperones are required for the accumulation of membrane bound or secreted proteins that are necessary for innate immunity. PMID:19917500

  4. Mediating and Moderating Role of Depression, Conduct Disorder or Attention-Deficit/Hyperactivity Disorder in Developing Adolescent Substance Use Disorders: A Population-Based Study.

    Directory of Open Access Journals (Sweden)

    Kouichi Yoshimasu

    Full Text Available To evaluate the mediating/moderating effects of common internalizing /externalizing disorders on the association between ADHD and adolescent substance use disorders (SUD in a population-based birth cohort.Among 5718 children in the birth cohort, 343 ADHD incident cases and 712 matched controls were identified. Psychiatric diagnoses prior to age 19 were classified into DSM-IV categories. The association between ADHD and SUD was summarized (hazard ratios (HR, 95% CI. The effect of depression, CD/ODD, anxiety was evaluated separately.Assessment of the joint effects of ADHD and each psychiatric disorder did not support a moderating effect of these disorders on SUD on additive scale. However, the association between ADHD and SUD was partially explained by a mediating role of these psychiatric disorders.For clinicians our results emphasize that depression (or CD/ODD confers greater risk for SUD than ADHD alone. Early detection/treatment of SUD among adolescents with depression (or CD/ODD is crucial regardless of ADHD.

  5. Mediating and Moderating Role of Depression, Conduct Disorder or Attention-Deficit/Hyperactivity Disorder in Developing Adolescent Substance Use Disorders: A Population-Based Study.

    Science.gov (United States)

    Yoshimasu, Kouichi; Barbaresi, William J; Colligan, Robert C; Voigt, Robert G; Weaver, Amy L; Katusic, Slavica K

    2016-01-01

    To evaluate the mediating/moderating effects of common internalizing /externalizing disorders on the association between ADHD and adolescent substance use disorders (SUD) in a population-based birth cohort. Among 5718 children in the birth cohort, 343 ADHD incident cases and 712 matched controls were identified. Psychiatric diagnoses prior to age 19 were classified into DSM-IV categories. The association between ADHD and SUD was summarized (hazard ratios (HR), 95% CI). The effect of depression, CD/ODD, anxiety was evaluated separately. Assessment of the joint effects of ADHD and each psychiatric disorder did not support a moderating effect of these disorders on SUD on additive scale. However, the association between ADHD and SUD was partially explained by a mediating role of these psychiatric disorders. For clinicians our results emphasize that depression (or CD/ODD) confers greater risk for SUD than ADHD alone. Early detection/treatment of SUD among adolescents with depression (or CD/ODD) is crucial regardless of ADHD.

  6. Cholinergic Modulation of Type 2 Immune Responses

    Directory of Open Access Journals (Sweden)

    Goele Bosmans

    2017-12-01

    Full Text Available In recent years, the bidirectional relationship between the nervous and immune system has become increasingly clear, and its role in both homeostasis and inflammation has been well documented over the years. Since the introduction of the cholinergic anti-inflammatory pathway, there has been an increased interest in parasympathetic regulation of both innate and adaptive immune responses, including T helper 2 responses. Increasing evidence has been emerging suggesting a role for the parasympathetic nervous system in the pathophysiology of allergic diseases, including allergic rhinitis, asthma, food allergy, and atopic dermatitis. In this review, we will highlight the role of cholinergic modulation by both nicotinic and muscarinic receptors in several key aspects of the allergic inflammatory response, including barrier function, innate and adaptive immune responses, and effector cells responses. A better understanding of these cholinergic processes mediating key aspects of type 2 immune disorders might lead to novel therapeutic approaches to treat allergic diseases.

  7. Emotional maltreatment and disordered eating in adolescents: testing the mediating role of emotion regulation.

    Science.gov (United States)

    Mills, Pamela; Newman, Emily Frances; Cossar, Jill; Murray, George

    2015-01-01

    The present study aimed to determine if emotion regulation mediates the relationship between emotional maltreatment and disordered eating behavior in adolescents. Participants were 222 secondary school pupils (aged 14-18 years) from a state high school in the UK. Standardized questionnaire measures were used to gather self-report data on emotional abuse and emotional neglect, functional and dysfunctional emotion regulation strategies and disordered eating behavior. Results showed that disordered eating was associated with emotional abuse, dysfunctional emotion regulation and being female. Multiple mediation analysis found an indirect relationship between emotional abuse and disordered eating through dysfunctional emotion regulation. Interestingly, emotional neglect predicted lower levels of functional emotion regulation. The findings support previous research showing emotion regulation to mediate the relationship between childhood abuse and disordered eating in adults and a differential effect of abuse and neglect on emotion regulation. Longitudinal studies are required to confirm the direction of relationships; however these data suggest that dysfunctional emotion regulation is a significant variable in the development of disordered eating and may be a useful target for intervention. Copyright © 2014. Published by Elsevier Ltd.

  8. Immune System and Disorders

    Science.gov (United States)

    Your immune system is a complex network of cells, tissues, and organs that work together to defend against germs. It ... t, to find and destroy them. If your immune system cannot do its job, the results can be ...

  9. Maladaptive perfectionism as mediator among psychological control, eating disorders, and exercise dependence symptoms in habitual exerciser.

    Science.gov (United States)

    Costa, Sebastiano; Hausenblas, Heather A; Oliva, Patrizia; Cuzzocrea, Francesca; Larcan, Rosalba

    2016-03-01

    Background and aims The current study examined the mediating role of maladaptive perfectionism among parental psychological control, eating disorder symptoms, and exercise dependence symptoms by gender in habitual exercisers. Methods Participants were 348 Italian exercisers (n = 178 men and n = 170 women; M age = 20.57, SD = 1.13) who completed self-report questionnaires assessing their parental psychological control, maladaptive perfectionism, eating disorder symptoms, and exercise dependence symptoms. Results Results of the present study confirmed the mediating role of maladaptive perfectionism for eating disorder and exercise dependence symptoms for the male and female exercisers in the maternal data. In the paternal data, maladaptive perfectionism mediated the relationships between paternal psychological control and eating disorder and exercise dependence symptoms as full mediator for female participants and as partial mediator for male participants. Discussion Findings of the present study suggest that it may be beneficial to consider dimensions of maladaptive perfectionism and parental psychological control when studying eating disorder and exercise dependence symptoms in habitual exerciser.

  10. 2006 Rare Neuroimmunological Disorders Symposium; Sheraton Inner Harbor, Baltimore, MD, July 20-23, 2006

    DEFF Research Database (Denmark)

    Kerr, DA; Antel, JP; Arnold, DL

    2007-01-01

    On July 20-22nd 2006, the second International Rare Neuroimmunologic Disorders Symposium was held in Baltimore, Maryland. The purpose of this symposium was to bring together diverse groups interested in immune-mediated disorders of the nervous system. The symposium was not disease-specific but at...

  11. Cefditoren and ceftriaxone enhance complement-mediated immunity in the presence of specific antibodies against antibiotic-resistant pneumococcal strains.

    Directory of Open Access Journals (Sweden)

    Elisa Ramos-Sevillano

    Full Text Available BACKGROUND: Specific antibodies mediate humoral and cellular protection against invading pathogens such as Streptococcus pneumoniae by activating complement mediated immunity, promoting phagocytosis and stimulating bacterial clearance. The emergence of pneumococcal strains with high levels of antibiotic resistance is of great concern worldwide and a serious threat for public health. METHODOLOGY/PRINCIPAL FINDINGS: Flow cytometry was used to determine whether complement-mediated immunity against three antibiotic-resistant S. pneumoniae clinical isolates is enhanced in the presence of sub-inhibitory concentrations of cefditoren and ceftriaxone. The binding of acute phase proteins such as C-reactive protein and serum amyloid P component, and of complement component C1q, to pneumococci was enhanced in the presence of serum plus either of these antibiotics. Both antibiotics therefore trigger the activation of the classical complement pathway against S. pneumoniae. C3b deposition was also increased in the presence of specific anti-pneumococcal antibodies and sub-inhibitory concentrations of cefditoren and ceftriaxone confirming that the presence of these antibiotics enhances complement-mediated immunity to S. pneumoniae. CONCLUSIONS/SIGNIFICANCE: Using cefditoren and ceftriaxone to promote the binding of acute phase proteins and C1q to pneumococci, and to increase C3b deposition, when anti-pneumococcal antibodies are present, might help reduce the impact of antibiotic resistance in S. pneumoniae infections.

  12. Manipulations of the immune response in the chicken

    International Nuclear Information System (INIS)

    Bixler, G.S. Jr.

    1978-01-01

    The chicken with its dissociation of immune responses in cell-mediated immunity, dependent on the thymus, and humoral immunity, dependent on the bursa of Fabricius, provides a unique model for studying the two components of the immune system. While there are methods of obtaining selective, profound deficiency of humoral immunity, in this species, methods for obtaining a consistent, profound selective deficiency of cell-mediated immunity have been lacking. Oxisuran, 2[(methylsulfinyl)acetal] pyridine, has been reported to have the unique ability to differentially suppress cell-mediated immunity in several species of mammals without a concomitant reduction in antibody forming capacity. The effect of this compound on two parameters of cell-mediated immune responses in chickens was investigated. In further attempts to create a deficiency of both cell-mediated and humoral immunity, the effects of a combination of cyclophosphamide treatment and x-irradiation early in life on immune responses were studied

  13. The interplay between the gut microbiota and the immune system.

    Science.gov (United States)

    Geuking, Markus B; Köller, Yasmin; Rupp, Sandra; McCoy, Kathy D

    2014-01-01

    The impact of the gut microbiota on immune homeostasis within the gut and, importantly, also at systemic sites has gained tremendous research interest over the last few years. The intestinal microbiota is an integral component of a fascinating ecosystem that interacts with and benefits its host on several complex levels to achieve a mutualistic relationship. Host-microbial homeostasis involves appropriate immune regulation within the gut mucosa to maintain a healthy gut while preventing uncontrolled immune responses against the beneficial commensal microbiota potentially leading to chronic inflammatory bowel diseases (IBD). Furthermore, recent studies suggest that the microbiota composition might impact on the susceptibility to immune-mediated disorders such as autoimmunity and allergy. Understanding how the microbiota modulates susceptibility to these diseases is an important step toward better prevention or treatment options for such diseases.

  14. Season of birth shapes neonatal immune function

    DEFF Research Database (Denmark)

    Thysen, Anna Hammerich; Rasmussen, Morten Arendt; Kreiner-Møller, Eskil

    2016-01-01

    Birth season has been reported to be a risk factor for several immune-mediated diseases. We hypothesized that this association is mediated by differential changes in neonatal immune phenotype and function with birth season. We sought to investigate the influence of season of birth on cord blood...... immune cell subsets and inflammatory mediators in neonatal airways. Cord blood was phenotyped for 26 different immune cell subsets, and at 1 month of age, 20 cytokines and chemokines were quantified in airway mucosal lining fluid. Multivariate partial least squares discriminant analyses were applied...... to determine whether certain immune profiles dominate by birth season, and correlations between individual cord blood immune cells and early airway immune mediators were defined. We found a birth season-related fluctuation in neonatal immune cell subsets and in early-life airway mucosal immune function...

  15. [Auto-immune disorders as a possible cause of neuropsychiatric syndromes].

    Science.gov (United States)

    Martinez-Martinez, P; Molenaar, P C; Losen, M; Hoffmann, C; Stevens, J; de Witte, L D; van Amelsvoort, T; van Os, J; Rutten, B P F

    2015-01-01

    Changes that occur in the behaviour of voltage-gated ion channels and ligand-gated receptor channels due to gene mutations or auto-immune attack are the cause of channelopathies in the central and peripheral nervous system. Although the relation between molecular channel defects and clinical symptoms has been explained in the case of many neuromuscular channelopathies, the pathophysiology of auto-immunity in neuropsychiatric syndromes is still unclear. To review recent findings regarding neuronal auto-immune reactions in severe neuropsychiatric syndromes. Using PubMed, we consulted the literature published between 1990 and August 2014 relating to the occurrence of auto-immune antibodies in severe and persistent neuropsychiatric syndromes. Auto-antibodies have only limited access to the central nervous system, but if they do enter the system they can, in some cases, cause disease. We discuss recent findings regarding the occurrence of auto-antibodies against ligand-activated receptor channels and potassium channels in neuropsychiatric and neurological syndromes, including schizophrenia and limbic encephalitis. Although the occurrence of several auto-antibodies in schizophrenia has been confirmed, there is still no proof of a causal relationship in the syndrome. We still have no evidence of the prevalence of auto-immunity in neuropsychiatric syndromes. The discovery that an antibody against an ion channel is associated with some neuropsychiatric disorders may mean that in future it will be possible to treat patients by means of immunosuppression, which could lead to an improvement in a patient's cognitive abilities.

  16. MicroRNA-mediated networks underlie immune response regulation in papillary thyroid carcinoma

    Science.gov (United States)

    Huang, Chen-Tsung; Oyang, Yen-Jen; Huang, Hsuan-Cheng; Juan, Hsueh-Fen

    2014-09-01

    Papillary thyroid carcinoma (PTC) is a common endocrine malignancy with low death rate but increased incidence and recurrence in recent years. MicroRNAs (miRNAs) are small non-coding RNAs with diverse regulatory capacities in eukaryotes and have been frequently implied in human cancer. Despite current progress, however, a panoramic overview concerning miRNA regulatory networks in PTC is still lacking. Here, we analyzed the expression datasets of PTC from The Cancer Genome Atlas (TCGA) Data Portal and demonstrate for the first time that immune responses are significantly enriched and under specific regulation in the direct miRNA-target network among distinctive PTC variants to different extents. Additionally, considering the unconventional properties of miRNAs, we explore the protein-coding competing endogenous RNA (ceRNA) and the modulatory networks in PTC and unexpectedly disclose concerted regulation of immune responses from these networks. Interestingly, miRNAs from these conventional and unconventional networks share general similarities and differences but tend to be disparate as regulatory activities increase, coordinately tuning the immune responses that in part account for PTC tumor biology. Together, our systematic results uncover the intensive regulation of immune responses underlain by miRNA-mediated networks in PTC, opening up new avenues in the management of thyroid cancer.

  17. IP-10-mediated T cell homing promotes cerebral inflammation over splenic immunity to malaria infection.

    Directory of Open Access Journals (Sweden)

    Catherine Q Nie

    2009-04-01

    Full Text Available Plasmodium falciparum malaria causes 660 million clinical cases with over 2 million deaths each year. Acquired host immunity limits the clinical impact of malaria infection and provides protection against parasite replication. Experimental evidence indicates that cell-mediated immune responses also result in detrimental inflammation and contribute to severe disease induction. In both humans and mice, the spleen is a crucial organ involved in blood stage malaria clearance, while organ-specific disease appears to be associated with sequestration of parasitized erythrocytes in vascular beds and subsequent recruitment of inflammatory leukocytes. Using a rodent model of cerebral malaria, we have previously found that the majority of T lymphocytes in intravascular infiltrates of cerebral malaria-affected mice express the chemokine receptor CXCR3. Here we investigated the effect of IP-10 blockade in the development of experimental cerebral malaria and the induction of splenic anti-parasite immunity. We found that specific neutralization of IP-10 over the course of infection and genetic deletion of this chemokine in knockout mice reduces cerebral intravascular inflammation and is sufficient to protect P. berghei ANKA-infected mice from fatality. Furthermore, our results demonstrate that lack of IP-10 during infection significantly reduces peripheral parasitemia. The increased resistance to infection observed in the absence of IP-10-mediated cell trafficking was associated with retention and subsequent expansion of parasite-specific T cells in spleens of infected animals, which appears to be advantageous for the control of parasite burden. Thus, our results demonstrate that modulating homing of cellular immune responses to malaria is critical for reaching a balance between protective immunity and immunopathogenesis.

  18. Mediational Significance of PTSD in the Relationship of Sexual Trauma and Eating Disorders

    Science.gov (United States)

    Holzer, Sarah R.; Uppala, Saritha; Wonderlich, Stephen A.; Crosby, Ross D.; Simonich, Heather

    2008-01-01

    Objective: To examine the mediational significance of posttraumatic stress disorder (PTSD) and the development of eating disorder symptomatology following sexually traumatic experiences. Method: Seventy-one victims of sexual trauma and 25 control subjects completed interviews and questionnaires assessing eating disorder psychopathology and…

  19. Cancer as an immune-mediated disease

    Directory of Open Access Journals (Sweden)

    Shurin MR

    2012-06-01

    Full Text Available Michael R ShurinDepartments of Pathology and Immunology, University of Pittsburgh Medical Center, Pittsburgh, PA, USAAbstract: The link between oncology and immunology has a long history and its development is forced by the necessity to develop innovative and highly efficient modalities for immunological destruction of malignant cells. The limited efficacy of surgery, chemotherapy and radiation also exemplify these issues, as these treatments do not eliminate all cancerous cells, do not address the immunosuppressive nature of the disease and can further impair the patient's immune response weakening patient's resistance to the cancer. Multidisciplinary analysis of the interaction between the immune system and cancer in preclinical and clinical settings suggests that the immune system is closely intertwined with both cancer pathogenesis and treatment. On the one hand, cancer is a manifestation of malfunctions in immunity, as malignant cells manage to escape recognition and elimination by the immune system. Chronic infections and inflammation associated with limited or polarized immune responses also contribute to carcinogenesis and tumor progression. The tumor immunoenvironment represents specific conditions and elements that support cancerous cell survival, proliferation and spreading. On the other hand, the specificity and strength of antitumor immunity is a powerful and efficient tool that can be used to recognize and destroy neoplastic cells or their supporting microenvironment. Understanding the role of the immune system in controlling and supporting tumor initiation, formation, growth and progression has crucial implications for cancer therapy and will therefore guide the future development of cancer immunotherapy and its combination with conventional therapies to achieve optimal antitumor effects in patients with different types of cancer.Keywords: tumor immunology and immunotherapy, tumor immunoenvironment, cancer, immunosuppression

  20. Childhood life events, immune activation and the development of mood and anxiety disorders: the TRAILS study.

    Science.gov (United States)

    Jonker, I; Rosmalen, J G M; Schoevers, R A

    2017-05-02

    The experience of childhood life events is associated with higher vulnerability to develop psychiatric disorders. One of the pathways suggested to lead to this vulnerability is activation of the immune system. The aim of this study is to find out whether the association between childhood life events and the development of mood and anxiety disorders is predicted by the activation of the immune system. This study was performed in TRAILS, a large prospective population cohort, from which a subgroup was selected (N=1084, 54.3% female, mean age 19.0 (s.d., 0.6)). Childhood life events before age 16 were assessed using questionnaires at age 12, 14, 16 and 19. Immune activation was assessed at age 16 by elevated high-sensitive C-reactive protein (hsCRP) and by levels of immunoglobulin G antibodies against the herpes viruses herpes simplex virus 1, cytomegalovirus and Epstein-Barr virus. At age 19, the presence of mood and anxiety disorders was determined using the World Health Organization Composite International Diagnostic Interview Version 3.0. Regression analyses were used to study the association between life events, the inflammatory markers and mental health. We found that childhood life events score was associated with risk of mood disorders (B=0.269, P<0.001) and anxiety disorders (B=0.129, P<0.001). Childhood life events score was marginally associated with elevated hsCRP (B=0.076, P=0.006), but not with the antibody levels. This was especially due to separation trauma (P=0.015) and sexual abuse (P=0.019). Associations lost significance after correcting for lifestyle factors such as body mass index and substance abuse (P=0.042). None of the inflammatory markers were associated with development of anxiety disorders or mood disorders. In conclusion, the life event scores predicted the development of anxiety disorders and mood disorders at age 19. Life event scores were associated with elevated hsCRP, which was partly explained by lifestyle factors. Elevated hs

  1. The mediating role of mentalizing capacity between parents and peer attachment and adolescent borderline personality disorder

    DEFF Research Database (Denmark)

    Beck, Emma; Sharp, Carla; Poulsen, Stig

    2017-01-01

    Background: Insecure attachment is a precursor and correlate of borderline personality disorder. According to the mentalization-based theory of borderline personality disorder, the presence of insecure attachment derails the development of the capacity to mentalize, potentially resulting in borde......Background: Insecure attachment is a precursor and correlate of borderline personality disorder. According to the mentalization-based theory of borderline personality disorder, the presence of insecure attachment derails the development of the capacity to mentalize, potentially resulting...... personality features. Our findings suggest that in a simple mediational model, mentalizing capacity mediated the relation between attachment to peers and borderline features. In the case of attachment to parents, the mediational model was not significant. Conclusions: The current study is the first...... to evaluate this mediational model with parent and peer attachment as separate concepts and the first to do so in a sample of adolescents who meet full or sub-threshold criteria for borderline personality disorder. Findings incrementally support that mentalizing capacity and attachment insecurity, also...

  2. The role of cytokines in development of hematological and immune disorders at radiation therapy for uterine body cancer

    International Nuclear Information System (INIS)

    Sorochan, P.P.; Prokhach, N.E.; Gromakova, Yi.A.; Krugova, Yi.M.; Sukhyin, V.S.

    2013-01-01

    The changes in hematological and immune parameters in patients with uterine body cancer were analyzed by the stages of the combined treatment. The rol of cytokines in the development of hematologic and immune disorders was assessed

  3. A Comparative Clinicopathologic Study of Collagenous Gastritis in Children and Adults: The Same Disorder With Associated Immune-mediated Diseases.

    Science.gov (United States)

    Ma, Changqing; Park, Jason Y; Montgomery, Elizabeth A; Arnold, Christina A; McDonald, Oliver G; Liu, Ta-Chiang; Salaria, Safia N; Limketkai, Berkeley N; McGrath, Kevin M; Musahl, Tina; Singhi, Aatur D

    2015-06-01

    Collagenous gastritis is a rare condition characterized by surface epithelial damage, subepithelial collagen deposition, and a lamina propria inflammatory infiltrate. Previous studies have proposed 2 clinicopathologic subtypes: (1) children (18 y of age or younger) presenting with severe anemia, nodular gastric mucosa, and isolated gastric disease; and (2) adults with chronic watery diarrhea that is associated with diffuse collagenous involvement of the gastrointestinal tract. However, notable exceptions exist. In fact, broad variability in clinical presentation, etiology, treatment and disease course has been reported. To better define the clinicopathologic features of collagenous gastritis, we have collected 10 pediatric and 21 adult cases and describe their clinical, endoscopic, pathologic, and follow-up findings. Both children and adults presented with similar clinical symptoms such as anemia (50%, 35%, respectively), epigastric/abdominal pain (50%, 45%), and diarrhea (40%, 55%). Concomitant immune disorders were identified in 2 (20%) children and 3 (14%) adults. Further, 7 of 17 (41%) adults were taking medications associated with other immune-related gastrointestinal diseases including olmesartan and antidepressants. Histologically, there were no differences between children and adults with collagenous gastritis in the location of gastric involvement, mean collagenous layer thickness, and prominence of eosinophils (P>0.05). Extragastric collagenous involvement was also seen with comparable frequencies in each cohort (44%, 59%). Follow-up information was available for 22 of 31 (71%) patients and ranged from 2 to 122 months (mean, 33.6 mo). Despite medical management in most cases, persistence of symptoms or collagenous gastritis on subsequent biopsies was seen in 100% of children and 82% of adults. Of note, treatment for 1 adult patient involved cessation of olmesartan resulting in resolution of both symptoms and subepithelial collagen deposition on subsequent

  4. Facilitating Effects of Nanoparticles/Materials on Sensitive Immune-Related Lung Disorders

    International Nuclear Information System (INIS)

    Inoue, K.I.; Takano, H.

    2011-01-01

    Although the adverse health effects of nanoparticles/materials have been proposed and are being clarified, their facilitating effects on preexisting pathological conditions have not been fully examined. In this paper, we provide insights into the immunotoxicity of nanoparticles/materials as an aggravating factor in hyper susceptible subjects, especially those with immune-related respiratory disorders using our in vivo experimental model. We first exhibit the effects of nanoparticles/materials on lung inflammation induced by bacterial endotoxin (lipopolysaccharide: LPS) in vivo as a disease model in innate immunity, and demonstrated that nanoparticles instilled through both an intratracheal tube and an inhalation system can exacerbate the lung inflammation. Secondly, we introduce the effects of nanoparticles/materials on allergic asthma in vivo as a disease model in adaptive immunity, and showed that repetitive pulmonary exposure to nanoparticles has aggravating effects on allergic airway inflammation, including adjuvant effects on Th2-milieu. Taken together, nanoparticle exposure may synergistically facilitate pathological inflammatory conditions in the lung via both innate and adaptive immunological abnormalities.

  5. XAP5 CIRCADIAN TIMEKEEPER Positively Regulates RESISTANCE TO POWDERY MILDEW8.1–Mediated Immunity in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Yong-Ju Xu

    2017-11-01

    Full Text Available Ectopic expression of the Arabidopsis RESISTANCE TO POWDERY MILDEW8.1 (RPW8.1 boosts pattern-triggered immunity leading to enhanced resistance to different pathogens in Arabidopsis and rice. However, the underlying regulatory mechanism remains largely elusive. Here, we report that XAP5 CIRCADIAN TIMEKEEPER (XCT, At2g21150 positively regulates RPW8.1-mediated cell death and disease resistance. Forward genetic screen identified the b3-17 mutant that exhibited less cell death and susceptibility to powdery mildew and bacterial pathogens. Map-based cloning identified a G-to-A point mutation at the 3′ splice site of the 8th intron, which resulted in splice shift to 8-bp down-stream of the original splice site of XCT in b3-17, and introduced into a stop codon after two codons leading to a truncated XCT. XCT has previously been identified as a circadian clock gene required for small RNA biogenesis and acting down-stream of ETHYLENE-INSENSITIVE3 (EIN3 in the ethylene-signaling pathway. Here we further showed that mutation or down-regulation of XCT by artificial microRNA reduced RPW8.1-mediated immunity in R1Y4, a transgenic line expressing RPW8.1-YFP from the RPW8.1 native promoter. On the contrary, overexpression of XCT in R1Y4 background enhanced RPW8.1-mediated cell death, H2O2 production and resistance against powdery mildew. Consistently, the expression of RPW8.1 was down- and up-regulated in xct mutant and XCT overexpression lines, respectively. Taken together, these results indicate that XCT positively regulates RPW8.1-mediated cell death and disease resistance, and provide new insight into the regulatory mechanism of RPW8.1-mediated immunity.

  6. Scintigraphic diagnosis and computed tomographic localization of an accessory spleen following relapse of chronic immune thrombocytopaenia

    International Nuclear Information System (INIS)

    Cardaci, G.T.; Blake, M.P.

    1992-01-01

    Chronic immune thrombocytopaenia is an immunologically mediated disorder resulting in disordered platelet kinetics and potentially life-threatening disease. Failure of medical therapy is an indication for splenectomy, and responses are seen in 80% of patients following this procedure. An important cause of relapse following splenectomy is the presence of an accessory spleen. A patient with Hodgkin's Disease developed chronic immune thrombocytopaenia despite previous splenectomy. A remission was induced with immunosuppressive therapy, but he later relapsed. An accessory spleen was detected using 99 m Tc denatured red blood cells and localized using computed tomography. Resection of the accessory spleen resulted in clinical remission. As accessory spleens are often small in size, combined modality imaging is recommended in the evaluation of this disorder. 15 refs., 2 figs

  7. Leptin as immune mediator: Interaction between neuroendocrine and immune system.

    Science.gov (United States)

    Procaccini, Claudio; La Rocca, Claudia; Carbone, Fortunata; De Rosa, Veronica; Galgani, Mario; Matarese, Giuseppe

    2017-01-01

    Leptin is an adipocyte-derived hormone/cytokine that links nutritional status with neuroendocrine and immune functions. Initially described as an anti-obesity hormone, leptin has subsequently been shown to exert pleiotropic effects, being also able to influence haematopoiesis, thermogenesis, reproduction, angiogenesis, and more importantly immune homeostasis. As a cytokine, leptin can affect both innate and adaptive immunity, by inducing a pro-inflammatory response and thus playing a key role in the regulation of the pathogenesis of several autoimmune/inflammatory diseases. In this review, we discuss the most recent advances on the role of leptin as immune-modulator in mammals and we also provide an overview on its main functions in non-mammalian vertebrates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Attention deficit hyperactivity disorder symptoms mediate early-onset smoking

    NARCIS (Netherlands)

    Huizink, A.C.; Van Lier, P.A.C.; Crijnen, A.A.M.

    2009-01-01

    Background/Aims: Symptoms of attention deficit hyperactivity disorder (ADHD) have often been associated with early-onset smoking. We hypothesize that reductions in ADHD symptoms due to an intervention have a mediating effect on early-onset smoking. Methods: In a universal, school-based, randomized

  9. Attention Deficit Hyperactivity Disorder Symptoms Mediate Early-Onset Smoking

    NARCIS (Netherlands)

    Huizink, A.C.; Lier, P.A.C. van; Crijnen, A.A.M.

    2009-01-01

    Background/Aims: Symptoms of attention deficit hyperactivity disorder (ADHD) have often been associated with early-onset smoking. We hypothesize that reductions in ADHD symptoms due to an intervention have a mediating effect on early-onset smoking. Methods: In a universal, school-based, randomized

  10. Attention deficit hyperactivity disorder symptoms mediate early-onset smoking

    NARCIS (Netherlands)

    A.C. Huizink (Anja); P.A.C. van Lier (Pol); A.A.M. Crijnen (Alfons)

    2008-01-01

    textabstractBackground/Aims: Symptoms of attention deficit hyperactivity disorder (ADHD) have often been associated with early-onset smoking. We hypothesize that reductions in ADHD symptoms due to an intervention have a mediating effect on early-onset smoking. Methods: In a universal, school-based,

  11. Good agreement of conventional and gel-based direct agglutination test in immune-mediated haemolytic anaemia

    NARCIS (Netherlands)

    Piek, C.J.; Teske, E.; van Leeuwen, M.W.; Day, M.J.

    2012-01-01

    Abstract Background The aim of this study was to compare a gel-based test with the traditional direct agglutination test (DAT) for the diagnosis of immune-mediated haemolytic anaemia (IMHA). Methods Canine (n = 247) and feline (n = 74) blood samples were submitted for DAT testing to two

  12. Neurotrophin Receptor p75NTR Regulates Immune Function of Plasmacytoid Dendritic Cells.

    Science.gov (United States)

    Bandoła, Joanna; Richter, Cornelia; Ryser, Martin; Jamal, Arshad; Ashton, Michelle P; von Bonin, Malte; Kuhn, Matthias; Dorschner, Benjamin; Alexopoulou, Dimitra; Navratiel, Katrin; Roeder, Ingo; Dahl, Andreas; Hedrich, Christian M; Bonifacio, Ezio; Brenner, Sebastian; Thieme, Sebastian

    2017-01-01

    Plasmacytoid dendritic cells (pDCs) regulate innate and adaptive immunity. Neurotrophins and their receptors control the function of neuronal tissue. In addition, they have been demonstrated to be part of the immune response but little is known about the effector immune cells involved. We report, for the first time, the expression and immune-regulatory function of the low affinity neurotrophin receptor p75 neurotrophin receptor (p75NTR) by the antigen-presenting pDCs, mediated by toll-like receptor (TLR) 9 activation and differential phosphorylation of interferon regulatory factor 3 and 7. The modulation of p75NTR on pDCs significantly influences disease progression of asthma in an ovalbumin-induced mouse model mediated by the TLR9 signaling pathway. p75NTR activation of pDCs from patients with asthma increased allergen-specific T cell proliferation and cytokine secretion in nerve growth factor concentration-dependent manner. Further, p75NTR activation of pDCs delayed the onset of autoimmune diabetes in RIP-CD80GP mice and aggravated graft-versus-host disease in a xenotransplantation model. Thus, p75NTR signaling on pDCs constitutes a new and critical mechanism connecting neurotrophin signaling and immune response regulation with great therapeutic potential for a variety of immune disorders.

  13. Neurotrophin Receptor p75NTR Regulates Immune Function of Plasmacytoid Dendritic Cells

    Directory of Open Access Journals (Sweden)

    Joanna Bandoła

    2017-08-01

    Full Text Available Plasmacytoid dendritic cells (pDCs regulate innate and adaptive immunity. Neurotrophins and their receptors control the function of neuronal tissue. In addition, they have been demonstrated to be part of the immune response but little is known about the effector immune cells involved. We report, for the first time, the expression and immune-regulatory function of the low affinity neurotrophin receptor p75 neurotrophin receptor (p75NTR by the antigen-presenting pDCs, mediated by toll-like receptor (TLR 9 activation and differential phosphorylation of interferon regulatory factor 3 and 7. The modulation of p75NTR on pDCs significantly influences disease progression of asthma in an ovalbumin-induced mouse model mediated by the TLR9 signaling pathway. p75NTR activation of pDCs from patients with asthma increased allergen-specific T cell proliferation and cytokine secretion in nerve growth factor concentration-dependent manner. Further, p75NTR activation of pDCs delayed the onset of autoimmune diabetes in RIP-CD80GP mice and aggravated graft-versus-host disease in a xenotransplantation model. Thus, p75NTR signaling on pDCs constitutes a new and critical mechanism connecting neurotrophin signaling and immune response regulation with great therapeutic potential for a variety of immune disorders.

  14. Gut-Microbiota-Brain Axis and Its Effect on Neuropsychiatric Disorders With Suspected Immune Dysregulation.

    Science.gov (United States)

    Petra, Anastasia I; Panagiotidou, Smaro; Hatziagelaki, Erifili; Stewart, Julia M; Conti, Pio; Theoharides, Theoharis C

    2015-05-01

    Gut microbiota regulate intestinal function and health. However, mounting evidence indicates that they can also influence the immune and nervous systems and vice versa. This article reviews the bidirectional relationship between the gut microbiota and the brain, termed the microbiota-gut-brain (MGB) axis, and discusses how it contributes to the pathogenesis of certain disorders that may involve brain inflammation. Articles were identified with a search of Medline (starting in 1980) by using the key words anxiety, attention-deficit hypersensitivity disorder (ADHD), autism, cytokines, depression, gut, hypothalamic-pituitary-adrenal (HPA) axis, inflammation, immune system, microbiota, nervous system, neurologic, neurotransmitters, neuroimmune conditions, psychiatric, and stress. Various afferent or efferent pathways are involved in the MGB axis. Antibiotics, environmental and infectious agents, intestinal neurotransmitters/neuromodulators, sensory vagal fibers, cytokines, and essential metabolites all convey information to the central nervous system about the intestinal state. Conversely, the hypothalamic-pituitary-adrenal axis, the central nervous system regulatory areas of satiety, and neuropeptides released from sensory nerve fibers affect the gut microbiota composition directly or through nutrient availability. Such interactions seem to influence the pathogenesis of a number of disorders in which inflammation is implicated, such as mood disorder, autism-spectrum disorders, attention-deficit hypersensitivity disorder, multiple sclerosis, and obesity. Recognition of the relationship between the MGB axis and the neuroimmune systems provides a novel approach for better understanding and management of these disorders. Appropriate preventive measures early in life or corrective measures such as use of psychobiotics, fecal microbiota transplantation, and flavonoids are discussed. Copyright © 2015 Elsevier HS Journals, Inc. All rights reserved.

  15. IL-35, a hallmark of immune-regulation in cancer progression, chronic infections and inflammatory diseases.

    Science.gov (United States)

    Teymouri, Manouchehr; Pirro, Matteo; Fallarino, Francesca; Gargaro, Marco; Sahebkar, Amirhosein

    2018-03-25

    Cytokine members of the IL-12 family have attracted enormous attention in the last few years, with IL-35 being the one of the most attractive-suppressive cytokine. IL-35 is an important mediator of regulatory T cell function. Regulatory T cells play key roles in restoring immune homeostasis after facing challenges such as infection by specific pathogens. Moreover, a crucial role for regulatory T cell populations has been demonstrated in several physiological processes, including establishment of fetal-maternal tolerance, maintenance of self-tolerance and prevention of autoimmune diseases. However, a deleterious involvement of immune regulatory T cells has been documented in specific inhibition of immune responses against tumor cells, promotion of chronic infections and establishment of chronic inflammatory disorders. In this review, we attempt to shed light on the concept of immune-homoeostasis on the aforementioned issues, taking IL-35 as the hallmark of regulatory responses. The dilemma between immune-mediated cancer treatment and inflammation is discussed. Histopathological indications of chronic vs. acute infections are elaborated. Moreover, the evidence that IL-35 requires additional immune-regulatory cytokines, such as IL-10 and TGF-β, to induce effective and maximal anti-inflammatory effects suggest that immune-regulation requires multi-factorial analysis of many immune playmakers rather than a specific immune target. © 2018 UICC.

  16. Inactivated Influenza Vaccine That Provides Rapid, Innate-Immune-System-Mediated Protection and Subsequent Long-Term Adaptive Immunity.

    Science.gov (United States)

    Chua, Brendon Y; Wong, Chinn Yi; Mifsud, Edin J; Edenborough, Kathryn M; Sekiya, Toshiki; Tan, Amabel C L; Mercuri, Francesca; Rockman, Steve; Chen, Weisan; Turner, Stephen J; Doherty, Peter C; Kelso, Anne; Brown, Lorena E; Jackson, David C

    2015-10-27

    The continual threat to global health posed by influenza has led to increased efforts to improve the effectiveness of influenza vaccines for use in epidemics and pandemics. We show in this study that formulation of a low dose of inactivated detergent-split influenza vaccine with a Toll-like receptor 2 (TLR2) agonist-based lipopeptide adjuvant (R4Pam2Cys) provides (i) immediate, antigen-independent immunity mediated by the innate immune system and (ii) significant enhancement of antigen-dependent immunity which exhibits an increased breadth of effector function. Intranasal administration of mice with vaccine formulated with R4Pam2Cys but not vaccine alone provides protection against both homologous and serologically distinct (heterologous) viral strains within a day of administration. Vaccination in the presence of R4Pam2Cys subsequently also induces high levels of systemic IgM, IgG1, and IgG2b antibodies and pulmonary IgA antibodies that inhibit hemagglutination (HA) and neuraminidase (NA) activities of homologous but not heterologous virus. Improved primary virus nucleoprotein (NP)-specific CD8(+) T cell responses are also induced by the use of R4Pam2Cys and are associated with robust recall responses to provide heterologous protection. These protective effects are demonstrated in wild-type and antibody-deficient animals but not in those depleted of CD8(+) T cells. Using a contact-dependent virus transmission model, we also found that heterologous virus transmission from vaccinated mice to naive mice is significantly reduced. These results demonstrate the potential of adding a TLR2 agonist to an existing seasonal influenza vaccine to improve its utility by inducing immediate short-term nonspecific antiviral protection and also antigen-specific responses to provide homologous and heterologous immunity. The innate and adaptive immune systems differ in mechanisms, specificities, and times at which they take effect. The innate immune system responds within hours of

  17. Cell-mediated immune response: a clinical review of the therapeutic potential of human papillomavirus vaccination.

    Science.gov (United States)

    Meyer, Sonja Izquierdo; Fuglsang, Katrine; Blaakaer, Jan

    2014-12-01

    This clinical review aims to assess the efficacy of human papillomavirus 16/18 (HPV16/18) vaccination on the cell-mediated immune response in women with existing cervical intraepithelial neoplasia or cervical cancer induced by HPV16 or HPV18. A focused and thorough literature search conducted in five different databases found 996 publications. Six relevant articles were chosen for further review. In total, 154 patients (>18 years of age) were enrolled in prospective study trials with 3-15 months of follow up. The vaccine applications were administered two to four times. The vaccines contained different combinations of HPV16 and HPV18 and early proteins, E6 and E7. The primary outcome was the cell-mediated immune response. Correlation to clinical outcome (histopathology) and human leukocyte antigen genes were secondary endpoints. All vaccines triggered a detectable cell-mediated immune response, some of which were statistically significant. Correlations between immunological response and clinical outcome (histopathology) were not significant, so neoplasms may not be susceptible to vaccine-generated cytotoxic T cells (CD8(+)). Prophylactic HPV vaccines have been introduced to reduce the incidence of cervical cancer in young women. Women already infected with HPV could benefit from a therapeutic HPV vaccination. Hence, it is important to continue the development of therapeutic HPV vaccines to lower the rate of HPV-associated malignancies and crucial to evaluate vaccine efficacy clinically. This clinical review represents an attempt to elucidate the theories supporting the development of an HPV vaccine with a therapeutic effect on human papillomavirus-induced malignancies of the cervix. © 2014 Nordic Federation of Societies of Obstetrics and Gynecology.

  18. Immune-Mediated Inner Ear Disease: Diagnostic and therapeutic approaches.

    Science.gov (United States)

    Penêda, José Ferreira; Lima, Nuno Barros; Monteiro, Francisco; Silva, Joana Vilela; Gama, Rita; Condé, Artur

    2018-03-07

    Immune Mediated Inner Ear Disease (IMIED) is a rare form of sensorineural bilateral hearing loss, usually progressing in weeks to months and responsive to immunosuppressive treatment. Despite recent advances, there is no consensus on diagnosis and optimal treatment. A review of articles on IMIED from the last 10 years was conducted using PubMed ® database. IMIED is a rare disease, mostly affecting middle aged women. It may be a primary ear disease or secondary to autoimmune systemic disease. A dual immune response (both cellular and humoral) seems to be involved. Cochlin may be the inner ear protein targeted in this disease. Distinction from other (core common) forms of neurosensory hearing loss is a challenge. Physical examination is mandatory for exclusion of other causes of hearing loss; audiometry identifies characteristic hearing curves. Laboratory and imaging studies are controversial since no diagnostic marker is available. Despite recent research, IMIED diagnosis remains exclusive. Steroids are the mainstay treatment; other therapies need further investigation. For refractory cases, cochlear implantation is an option and with good relative outcome. Copyright © 2018 Sociedad Española de Otorrinolaringología y Cirugía de Cabeza y Cuello. Publicado por Elsevier España, S.L.U. All rights reserved.

  19. Features of borderline personality disorder as a mediator of the relation between childhood traumatic experiences and psychosis-like experiences in patients with mood disorder.

    Science.gov (United States)

    Baryshnikov, Ilya; Aaltonen, Kari; Suvisaari, Jaana; Koivisto, Maaria; Heikkinen, Martti; Joffe, Grigori; Isometsä, Erkki

    2018-03-01

    Psychosis-like experiences (PEs) are common in patients with non-psychotic disorders. Several factors predict reporting of PEs in mood disorders, including mood-associated cognitive biases, anxiety and features of borderline personality disorder (BPD). Childhood traumatic experiences (CEs), often reported by patients with BPD, are an important risk factor for mental disorders. We hypothesized that features of BPD may mediate the relationship between CEs and PEs. In this study, we investigated the relationships between self-reported PEs, CEs and features of BPD in patients with mood disorders. As part of the Helsinki University Psychiatric Consortium study, McLean Screening Instrument (MSI), Community Assessment of Psychic Experiences (CAPE-42) and Trauma and Distress Scale (TADS) were filled in by patients with mood disorders (n = 282) in psychiatric care. Correlation coefficients between total scores of scales and their dimensions were estimated, multiple regression and mediation analyses were conducted. Total scores of MSI correlated strongly with scores of the CAPE-42 dimension "frequency of positive symptoms" (rho = 0.56; p ≤ 0.001) and moderately with scores of TADS (rho = 0.4; p ≤ 0.001). Total score of MSI and its dimension "cognitive symptoms", including identity disturbance, distrustfulness and dissociative symptoms, fully mediated the relation between TADS and CAPE-42. Each cognitive symptom showed a partial mediating role (dissociative symptoms 43% (CI = 25-74%); identity disturbance 40% (CI = 30-73%); distrustfulness 18% (CI = 12-50%)). Self-reported cognitive-perceptual symptoms of BPD fully mediate, while affective, behavioural and interpersonal symptoms only partially mediate the relationships between CEs and PEs. Recognition of co-morbid features of BPD in patients with mood disorders reporting PEs is essential. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  20. Rumination mediates the relationship between overgeneral autobiographical memory and depression in patients with major depressive disorder.

    Science.gov (United States)

    Liu, Yansong; Yu, Xinnian; Yang, Bixiu; Zhang, Fuquan; Zou, Wenhua; Na, Aiguo; Zhao, Xudong; Yin, Guangzhong

    2017-03-21

    Overgeneral autobiographical memory has been identified as a risk factor for the onset and maintenance of depression. However, little is known about the underlying mechanisms that might explain overgeneral autobiographical memory phenomenon in depression. The purpose of this study was to test the mediation effects of rumination on the relationship between overgeneral autobiographical memory and depressive symptoms. Specifically, the mediation effects of brooding and reflection subtypes of rumination were examined in patients with major depressive disorder. Eighty-seven patients with major depressive disorder completed the 17-item Hamilton Depression Rating Scale, Ruminative Response Scale, and Autobiographical Memory Test. Bootstrap mediation analysis for simple and multiple mediation models through the PROCESS macro was applied. Simple mediation analysis showed that rumination significantly mediated the relationship between overgeneral autobiographical memory and depression symptoms. Multiple mediation analyses showed that brooding, but not reflection, significantly mediated the relationship between overgeneral autobiographical memory and depression symptoms. Our results indicate that global rumination partly mediates the relationship between overgeneral autobiographical memory and depressive symptoms in patients with major depressive disorder. Furthermore, the present results suggest that the mediating role of rumination in the relationship between overgeneral autobiographical memory and depression is mainly due to the maladaptive brooding subtype of rumination.

  1. Modulations in cell-mediated immunity of Mytilus edulis following the 'Sea Empress' oil spill

    International Nuclear Information System (INIS)

    Dyrynda, E.A.; Dyrynda, P.E.J.; Ratcliffe, N.A.; Pipe, R.K.

    1997-01-01

    The 'Sea Empress' oil tanker grounded outside Milford Haven (Wales, UK) in February 1996, spilling ∼ 70,000 tonnes of crude oil and contaminating over 100 km of coastline, causing mass mortalities and strandings of at least 11 mollusc species. Intensive field monitoring commenced after the spill, examining immunity and hydrocarbon levels in the mussel, Mytilus edulis (Mollusca: Bivalvia), a commercially-harvested species which can accumulate contaminants. Comparisons of mussels from oiled and reference sites revealed significant modulations in cell-mediated immunity. Elevations in blood cell (haemocyte) numbers and decreases in superoxide generation and phagocytosis were identified in contaminated animals. The immune response of contaminated mussels gradually improved and generally showed no significant differences compared with clean mussels after 11 weeks. By then, total hydrocarbon content in contaminated mussels had declined by 70-90%, while polycyclic aromatic hydrocarbon content had decreased by over 90%. (author)

  2. Immune regulation of systemic hypertension, pulmonary arterial hypertension, and preeclampsia: shared disease mechanisms and translational opportunities.

    Science.gov (United States)

    Jafri, Salema; Ormiston, Mark L

    2017-12-01

    Systemic hypertension, preeclampsia, and pulmonary arterial hypertension (PAH) are diseases of high blood pressure in the systemic or pulmonary circulation. Beyond the well-defined contribution of more traditional pathophysiological mechanisms, such as changes in the renin-angiotensin-aldosterone system, to the development of these hypertensive disorders, there is substantial clinical evidence supporting an important role for inflammation and immunity in the pathogenesis of each of these three conditions. Over the last decade, work in small animal models, bearing targeted deficiencies in specific cytokines or immune cell subsets, has begun to clarify the immune-mediated mechanisms that drive changes in vascular structure and tone in hypertensive disease. By summarizing the clinical and experimental evidence supporting a contribution of the immune system to systemic hypertension, preeclampsia, and PAH, the current review highlights the cellular and molecular pathways that are common to all three hypertensive disorders. These mechanisms are centered on an imbalance in CD4 + helper T cell populations, defined by excessive Th17 responses and impaired T reg activity, as well as the excessive activation or impairment of additional immune cell types, including macrophages, dendritic cells, CD8 + T cells, B cells, and natural killer cells. The identification of common immune mechanisms in systemic hypertension, preeclampsia, and PAH raises the possibility of new therapeutic strategies that target the immune component of hypertension across multiple disorders. Copyright © 2017 the American Physiological Society.

  3. Immune system of the inner ear as a novel therapeutic target for sensorineural hearing loss

    Directory of Open Access Journals (Sweden)

    Takayuki eOkano

    2014-09-01

    Full Text Available Sensorineural hearing loss (SNHL is a common clinical condition resulting from dysfunction in one or more parts in the auditory pathway between the inner ear and auditory cortex. Despite the prevalence of SNHL, little is known about its etiopathology, although several mechanisms have been postulated including ischemia, viral infection or reactivation, and microtrauma. Immune-mediated inner ear disease has been introduced and accepted as one SNHL pathophysiology; it responds to immunosuppressive therapy and is one of the few reversible forms of bilateral SNHL. The concept of immune-mediated inner ear disease is straightforward and comprehensible, but criteria for clinical diagnosis and the precise mechanism of hearing loss have not been determined. Moreover, the therapeutic mechanisms of corticosteroids are unclear, leading to several misconceptions by both clinicians and investigators concerning corticosteroid therapy. This review addresses our current understanding of the immune system in the inner ear and its involvement in the pathophysiology in SNHL. Treatment of SNHL, including immune-mediated inner ear disorder, will be discussed with a focus on the immune mechanism and immunocompetent cells as therapeutic targets. Finally, possible interventions modulating the immune system in the inner ear to repair the tissue organization and improve hearing in patients with SNHL will be discussed. Tissue macrophages in the inner ear appear to be a potential target for modulating the immune response in the inner ear in the pathophysiology of SNHL.

  4. The vagus nerve and the inflammatory reflex—linking immunity and metabolism

    Science.gov (United States)

    Pavlov, Valentin A.; Tracey, Kevin J.

    2014-01-01

    The vagus nerve has an important role in regulation of metabolic homeostasis, and efferent vagus nerve-mediated cholinergic signalling controls immune function and proinflammatory responses via the inflammatory reflex. Dysregulation of metabolism and immune function in obesity are associated with chronic inflammation, a critical step in the pathogenesis of insulin resistance and type 2 diabetes mellitus. Cholinergic mechanisms within the inflammatory reflex have, in the past 2 years, been implicated in attenuating obesity-related inflammation and metabolic complications. This knowledge has led to the exploration of novel therapeutic approaches in the treatment of obesity-related disorders. PMID:23169440

  5. 2,3,7,8-TCDD enhances the sensitivity of mice to concanavalin A immune-mediated liver injury

    Energy Technology Data Exchange (ETDEWEB)

    Fullerton, Aaron M., E-mail: fuller22@msu.edu [Department of Pharmacology and Toxicology, Center for Integrative Toxicology, Michigan State University, 1129 Farm Lane, Room 215, East Lansing, MI 48824 (United States); Roth, Robert A., E-mail: rothr@msu.edu [Department of Pharmacology and Toxicology, Center for Integrative Toxicology, Michigan State University, Food Safety and Toxicology Building, 1129 Farm Lane, Room 221, East Lansing, MI 48824 (United States); Ganey, Patricia E., E-mail: ganey@msu.edu [Department of Pharmacology and Toxicology, Center for Integrative Toxicology, Michigan State University, Food Safety and Toxicology Building, 1129 Farm Lane, Room 214, East Lansing, MI 48824 (United States)

    2013-01-15

    Inflammation plays a major role in immune-mediated liver injury, and exposure to environmental pollutants such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) has been reported to alter the inflammatory response as well as affect immune cell activity. In this study, we tested the hypothesis that TCDD pretreatment exacerbates hepatotoxicity in a murine model of immune-mediated liver injury induced by concanavalin A (Con A) administration. Mice were pretreated with 30 μg/kg TCDD or vehicle control on day zero and then given either Con A or saline intravenously on day four. Mice treated with TCDD did not develop liver injury; however, TCDD pretreatment increased liver injury resulting from moderate doses of Con A (4–10 mg/kg). TCDD-pretreated mice had altered plasma concentrations of inflammatory cytokines, including interferon gamma (IFNγ), and TCDD/Con A-induced hepatotoxicity was attenuated in IFNγ knockout mice. At various times after treatment, intrahepatic immune cells were isolated, and expression of cell activation markers as well as cytolytic proteins was determined. TCDD pretreatment increased the proportion of activated natural killer T (NKT) cells and the percent of cells expressing Fas ligand (FasL) after Con A administration. In addition FasL knockout mice and mice treated with CD18 antiserum were both protected from TCDD/Con A-induced hepatotoxicity, suggesting a requirement for direct cell–cell interaction between effector immune cells and parenchymal cell targets in the development of liver injury from TCDD/Con A treatment. In summary, exposure to TCDD increased NKT cell activation and exacerbated immune-mediated liver injury induced by Con A through a mechanism involving IFNγ and FasL expression. -- Highlights: ► TCDD pretreatment sensitizes mice to Con A-induced hepatotoxicity. ► TCDD pretreatment increased concentration of IFNγ in plasma after Con A. ► Con A-induced activation of NKT cells was increased by TCDD pretreatment. ► Fas

  6. 2,3,7,8-TCDD enhances the sensitivity of mice to concanavalin A immune-mediated liver injury

    International Nuclear Information System (INIS)

    Fullerton, Aaron M.; Roth, Robert A.; Ganey, Patricia E.

    2013-01-01

    Inflammation plays a major role in immune-mediated liver injury, and exposure to environmental pollutants such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) has been reported to alter the inflammatory response as well as affect immune cell activity. In this study, we tested the hypothesis that TCDD pretreatment exacerbates hepatotoxicity in a murine model of immune-mediated liver injury induced by concanavalin A (Con A) administration. Mice were pretreated with 30 μg/kg TCDD or vehicle control on day zero and then given either Con A or saline intravenously on day four. Mice treated with TCDD did not develop liver injury; however, TCDD pretreatment increased liver injury resulting from moderate doses of Con A (4–10 mg/kg). TCDD-pretreated mice had altered plasma concentrations of inflammatory cytokines, including interferon gamma (IFNγ), and TCDD/Con A-induced hepatotoxicity was attenuated in IFNγ knockout mice. At various times after treatment, intrahepatic immune cells were isolated, and expression of cell activation markers as well as cytolytic proteins was determined. TCDD pretreatment increased the proportion of activated natural killer T (NKT) cells and the percent of cells expressing Fas ligand (FasL) after Con A administration. In addition FasL knockout mice and mice treated with CD18 antiserum were both protected from TCDD/Con A-induced hepatotoxicity, suggesting a requirement for direct cell–cell interaction between effector immune cells and parenchymal cell targets in the development of liver injury from TCDD/Con A treatment. In summary, exposure to TCDD increased NKT cell activation and exacerbated immune-mediated liver injury induced by Con A through a mechanism involving IFNγ and FasL expression. -- Highlights: ► TCDD pretreatment sensitizes mice to Con A-induced hepatotoxicity. ► TCDD pretreatment increased concentration of IFNγ in plasma after Con A. ► Con A-induced activation of NKT cells was increased by TCDD pretreatment. ► Fas

  7. Novel positive regulatory role for the SPL6 transcription factor in the N TIR-NB-LRR receptor-mediated plant innate immunity.

    Directory of Open Access Journals (Sweden)

    Meenu S Padmanabhan

    2013-03-01

    Full Text Available Following the recognition of pathogen-encoded effectors, plant TIR-NB-LRR immune receptors induce defense signaling by a largely unknown mechanism. We identify a novel and conserved role for the SQUAMOSA PROMOTER BINDING PROTEIN (SBP-domain transcription factor SPL6 in enabling the activation of the defense transcriptome following its association with a nuclear-localized immune receptor. During an active immune response, the Nicotiana TIR-NB-LRR N immune receptor associates with NbSPL6 within distinct nuclear compartments. NbSPL6 is essential for the N-mediated resistance to Tobacco mosaic virus. Similarly, the presumed Arabidopsis ortholog AtSPL6 is required for the resistance mediated by the TIR-NB-LRR RPS4 against Pseudomonas syringae carrying the avrRps4 effector. Transcriptome analysis indicates that AtSPL6 positively regulates a subset of defense genes. A pathogen-activated nuclear-localized TIR-NB-LRR like N can therefore regulate defense genes through SPL6 in a mechanism analogous to the induction of MHC genes by mammalian immune receptors like CIITA and NLRC5.

  8. Immune responses to metastases

    International Nuclear Information System (INIS)

    Herberman, R.B.; Wiltrout, R.H.; Gorelik, E.

    1987-01-01

    The authors present the changes in the immune system in tumor-bearing hosts that may influence the development of progression of metastases. Included are mononuclear cell infiltration of metastases; alterations in natural resistance mediated by natural killer cells and macrophages; development of specific immunity mediated by T-lymphocytes or antibodies; modulation of tumor-associated antigen expression; and the down-regulation of the immune response to the tumor by several suppressor mechanisms; the augmentation of the immune response and its potential for therapeutic application; includes the prophylaxis of metastases formation by NK cells; the therapy of metastases by augmentation NK-, macrophage-, or T-lymphocyte-mediated responses by biological response modifiers; and the transfer of anticancer activity by cytoxic T-lymphocytes or immunoconjugates of monoclonal antibodies with specificity for tumors

  9. Immune-mediated thrombocytopenia associated with angiostrongylus vasorum infection in a jack russell terrier

    Directory of Open Access Journals (Sweden)

    JO'Neill Emma

    2010-07-01

    Full Text Available Abstract A twenty-month-old Jack Russell terrier was presented with a four-day history of thrombocytopenia, echymotic inguinal haemorrhages, coughing and reduced exercise tolerance. Clinical examination revealed several petechial haemorrhages on the gingivae and small echymotic haemorrhages in the inguinal region, along with mild bilateral epistaxis. Haematology confirmed a platelet count of 1.0 × 10/L. Thoracic radiographs revealed a wide-spread mixed alveolar-interstitial lung pattern, apparent throughout the entire lungfield, but particularly marked within the left lung lobes. A presumptive diagnosis of immune-mediated thrombocytopenia was made and the dog was treated with vincristine and immunosuppressive doses of prednisolone. Initially anaemia developed following gastrointestinal haemorrhage; however, after symptomatic treatment the dog showed a marked clinical improvement. Evaluation for an underlying cause of the disease revealed Angiostrongylus vasorum L1 larvae on faecal analysis and treatment with fenbendazole was commenced. The dog made a full clinical recovery with all treatment was withdrawn within five weeks of diagnosis. This is the second report of immune-mediated thrombocytopenia associated with Angiostrongylus vasorum infection and it is the first to be successfully managed. The report highlights that Angiostrongylus vasorum should be considered in young dogs presented with thrombocytopenia.

  10. Facilitating Effects of Nanoparticles/Materials on Sensitive Immune-Related Lung Disorders

    Directory of Open Access Journals (Sweden)

    Ken-ichiro Inoue

    2011-01-01

    Full Text Available Although the adverse health effects of nanoparticles/materials have been proposed and are being clarified, their facilitating effects on preexisting pathological conditions have not been fully examined. In this paper, we provide insights into the immunotoxicity of nanoparticles/materials as an aggravating factor in hypersusceptible subjects, especially those with immune-related respiratory disorders using our in vivo experimental model. We first exhibit the effects of nanoparticles/materials on lung inflammation induced by bacterial endotoxin (lipopolysaccharide: LPS in vivo as a disease model in innate immunity, and demonstrated that nanoparticles instilled through both an intratracheal tube and an inhalation system can exacerbate the lung inflammation. Secondly, we introduce the effects of nanoparticles/materials on allergic asthma in vivo as a disease model in adaptive immunity, and showed that repetitive pulmonary exposure to nanoparticles has aggravating effects on allergic airway inflammation, including adjuvant effects on Th2-milieu. Taken together, nanoparticle exposure may synergistically facilitate pathological inflammatory conditions in the lung via both innate and adaptive immunological abnormalities.

  11. A Genetic Screen Identifies a Requirement for Cysteine-Rich-Receptor-Like Kinases in Rice NH1 (OsNPR1-Mediated Immunity.

    Directory of Open Access Journals (Sweden)

    Mawsheng Chern

    2016-05-01

    Full Text Available Systemic acquired resistance, mediated by the Arabidopsis NPR1 gene and the rice NH1 gene, confers broad-spectrum immunity to diverse pathogens. NPR1 and NH1 interact with TGA transcription factors to activate downstream defense genes. Despite the importance of this defense response, the signaling components downstream of NPR1/NH1 and TGA proteins are poorly defined. Here we report the identification of a rice mutant, snim1, which suppresses NH1-mediated immunity and demonstrate that two genes encoding previously uncharacterized cysteine-rich-receptor-like kinases (CRK6 and CRK10, complement the snim1 mutant phenotype. Silencing of CRK6 and CRK10 genes individually in the parental genetic background recreates the snim1 phenotype. We identified a rice mutant in the Kitaake genetic background with a frameshift mutation in crk10; this mutant also displays a compromised immune response highlighting the important role of crk10. We also show that elevated levels of NH1 expression lead to enhanced CRK10 expression and that the rice TGA2.1 protein binds to the CRK10 promoter. These experiments demonstrate a requirement for CRKs in NH1-mediated immunity and establish a molecular link between NH1 and induction of CRK10 expression.

  12. Helminths in the gastrointestinal tract as modulators of immunity and pathology.

    Science.gov (United States)

    Varyani, Fumi; Fleming, John O; Maizels, Rick M

    2017-06-01

    Helminth parasites are highly prevalent in many low- and middle-income countries, in which inflammatory bowel disease and other immunopathologies are less frequent than in the developed world. Many of the most common helminths establish themselves in the gastrointestinal tract and can exert counter-inflammatory influences on the host immune system. For these reasons, interest has arisen as to how parasites may ameliorate intestinal inflammation and whether these organisms, or products they release, could offer future therapies for immune disorders. In this review, we discuss interactions between helminth parasites and the mucosal immune system, as well as the progress being made toward identifying mechanisms and molecular mediators through which it may be possible to attenuate pathology in the intestinal tract. Copyright © 2017 the American Physiological Society.

  13. Neuroimmune Interactions: From the Brain to the Immune System and Vice Versa.

    Science.gov (United States)

    Dantzer, Robert

    2018-01-01

    Because of the compartmentalization of disciplines that shaped the academic landscape of biology and biomedical sciences in the past, physiological systems have long been studied in isolation from each other. This has particularly been the case for the immune system. As a consequence of its ties with pathology and microbiology, immunology as a discipline has largely grown independently of physiology. Accordingly, it has taken a long time for immunologists to accept the concept that the immune system is not self-regulated but functions in close association with the nervous system. These associations are present at different levels of organization. At the local level, there is clear evidence for the production and use of immune factors by the central nervous system and for the production and use of neuroendocrine mediators by the immune system. Short-range interactions between immune cells and peripheral nerve endings innervating immune organs allow the immune system to recruit local neuronal elements for fine tuning of the immune response. Reciprocally, immune cells and mediators play a regulatory role in the nervous system and participate in the elimination and plasticity of synapses during development as well as in synaptic plasticity at adulthood. At the whole organism level, long-range interactions between immune cells and the central nervous system allow the immune system to engage the rest of the body in the fight against infection from pathogenic microorganisms and permit the nervous system to regulate immune functioning. Alterations in communication pathways between the immune system and the nervous system can account for many pathological conditions that were initially attributed to strict organ dysfunction. This applies in particular to psychiatric disorders and several immune-mediated diseases. This review will show how our understanding of this balance between long-range and short-range interactions between the immune system and the central nervous

  14. Cell-mediated immunity against human retinal extract, S-antigen, and interphotoreceptor retinoid binding protein in onchocercal chorioretinopathy

    NARCIS (Netherlands)

    van der Lelij, A.; Rothova, A.; Stilma, J. S.; Hoekzema, R.; Kijlstra, A.

    1990-01-01

    Autoimmune mechanisms are thought to be involved in the pathogenesis of onchocercal chorioretinopathy. Cell-mediated immune responses to human retinal S-antigen, interphotoreceptor retinoid binding protein (IRBP), and crude retinal extract were investigated in patients with onchocerciasis from

  15. Metabolic syndrome, activity of the hypothalamic-pituitary-adrenal axis and inflammatory mediators in depressive disorder.

    Science.gov (United States)

    Martinac, Marko; Pehar, Davor; Karlović, Dalibor; Babić, Dragan; Marcinko, Darko; Jakovljević, Miro

    2014-03-01

    Depression has been associated with various cardiovascular risk factors such as hypertension, obesity, atherogenic dyslipidemia and hyperglycemia. In depressive disorder, hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis and changes in the immune system have been observed. On the other hand, somatic diseases such as obesity, hyperlipidemia, hypertension and diabetes mellitus type 2 are now perceived as important comorbid conditions in patients with depression. The pathogenesis of the metabolic syndrome and depression is complex and poorly researched; however, it is considered that the interaction of chronic stress, psychotrauma, hypercotisolism and disturbed immune functions contribute to the development of these disorders. The aim of the study was to investigate the relationship between depression and metabolic syndrome regarding the HPA axis dysfunction and altered inflammatory processes. Literature search in Medline and other databases included articles written in English published between 1985 and 2012. Analysis of the literature was conducted using a systematic approach with the search terms such as depression, metabolic syndrome, inflammation, cytokines, glucocorticoids, cortisol, and HPA axis. In conclusion, the relationship between depression and metabolic syndrome is still a subject of controversy. Further prospective studies are required to clarify the possible causal relationship between depression and metabolic syndrome and its components. Furthermore, it is important to explore the possibility of a common biologic mechanism in the pathogenesis of these two disorders, in which special attention should be paid to the immune system function, especially the possible specific mechanisms by which cytokines can induce and maintain depressive symptoms and metabolic disorders. The data presented here emphasize the importance of recognition and treatment of depressive disorders with consequent reduction in the incidence of metabolic syndrome, but

  16. Super-enhancers: Asset management in immune cell genomes.

    Science.gov (United States)

    Witte, Steven; O'Shea, John J; Vahedi, Golnaz

    2015-09-01

    Super-enhancers (SEs) are regions of the genome consisting of clusters of regulatory elements bound with very high amounts of transcription factors, and this architecture appears to be the hallmark of genes and noncoding RNAs linked with cell identity. Recent studies have identified SEs in CD4(+) T cells and have further linked these regions to single nucleotide polymorphisms (SNPs) associated with immune-mediated disorders, pointing to an important role for these structures in the T cell differentiation and function. Here we review the features that define SEs, and discuss their function within the broader understanding of the mechanisms that define immune cell identity and function. We propose that SEs present crucial regulatory hubs, coordinating intrinsic and extrinsic differentiation signals, and argue that delineating these regions will provide important insight into the factors and mechanisms that define immune cell identity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. The measurement of cell mediated immunity by radioimmunoassay in desensitizing treatment with acupoints for allergic asthma

    International Nuclear Information System (INIS)

    Zhou Ronglin; Luan Meiling; Wang Mingsuo; Liu Keliang

    1994-05-01

    Three mitogens consisted of PHA, PWM, LPS were used to activate lymphocytes. Lymphocyte transformation with radioisotope incorporation of 3 H-TdR was done in 20 patients with allergic asthma and 14 healthy persons as control groups. Cell mediated immune in these cases of desensitizing treatment with acupoints were studied. The experiments showed that the incorporation rates of 3 H-TdR, acupoints were studied. The experiments showed that the incorporation rates of 3 H-TdR, activated by PHA, PWM, LPS, of the allergic asthma patients were P>0.05, P 3 H-TdR in lymphocytes after desensitizing treatment with acupoints compared with that before the treatment tended to be normal. Lymphocyte transformation difference of 3 H-TdR incorporation rates between this group and A or B control groups was significant (P<0.01). This study provides scientific clinical experimental evidences for researching cell mediated immune in attack and curative effects of allergic asthma

  18. Adverse Childhood Experiences and Disordered Gambling: Assessing the Mediating Role of Emotion Dysregulation.

    Science.gov (United States)

    Poole, Julia C; Kim, Hyoun S; Dobson, Keith S; Hodgins, David C

    2017-12-01

    Adverse childhood experiences (ACEs), such as sexual and physical abuse, have been established as risk factors for the development of disordered gambling. The underlying mechanism by which ACEs influence disordered gambling, however, remains unknown. The aims of the present research were to comprehensively investigate ten types of childhood adversity and their relationships to disordered gambling in adulthood, and to test whether emotion dysregulation mediated the relationship between ACEs and disordered gambling. A sample of community gamblers (N = 414) completed self-report measures of ACEs, emotion dysregulation, and gambling severity. Results revealed a significant association between all but one type (physical abuse) of ACEs and disordered gambling. Further, the results highlighted the cumulative impact of ACEs on gambling. Specifically, individuals who experienced three or more types of ACEs were more than three times as likely to report disordered gambling as compared to individuals with no history of childhood adversity. Importantly, as hypothesized, emotion dysregulation mediated the relationship between ACEs and disordered gambling. Findings from this research describe the association between ACEs and gambling and indicate a causal link between childhood adversity and disordered gambling. Results suggest that treatment initiatives may do well to address both ACEs and emotion dysregulation in the treatment of problem gambling.

  19. Immunologically mediated oral diseases

    OpenAIRE

    Jimson, Sudha; Balachader, N.; Anita, N.; Babu, R.

    2015-01-01

    Immune mediated diseases of oral cavity are uncommon. The lesions may be self-limiting and undergo remission spontaneously. Among the immune mediated oral lesions the most important are lichen planus, pemphigus, erythema multiformi, epidermolysis bullosa, systemic lupus erythematosis. Cellular and humoral mediated immunity play a major role directed against epithelial and connective tissue in chronic and recurrent patterns. Confirmatory diagnosis can be made by biopsy, direct and indirect imm...

  20. Paraneoplastic autoimmune movement disorders.

    Science.gov (United States)

    Lim, Thien Thien

    2017-11-01

    To provide an overview of paraneoplastic autoimmune disorders presenting with various movement disorders. The spectrum of paraneoplastic autoimmune disorders has been expanding with the discovery of new antibodies against cell surface and intracellular antigens. Many of these paraneoplastic autoimmune disorders manifest as a form of movement disorder. With the discovery of new neuronal antibodies, an increasing number of idiopathic or neurodegenerative movement disorders are now being reclassified as immune-mediated movement disorders. These include anti-N-methyl-d-aspartate receptor (NMDAR) encephalitis which may present with orolingual facial dyskinesia and stereotyped movements, CRMP-5 IgG presenting with chorea, anti-Yo paraneoplastic cerebellar degeneration presenting with ataxia, anti-VGKC complex (Caspr2 antibodies) neuromyotonia, opsoclonus-myoclonus-ataxia syndrome, and muscle rigidity and episodic spasms (amphiphysin, glutamic acid decarboxylase, glycine receptor, GABA(A)-receptor associated protein antibodies) in stiff-person syndrome. Movement disorders may be a presentation for paraneoplastic autoimmune disorders. Recognition of these disorders and their common phenomenology is important because it may lead to the discovery of an occult malignancy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Immunity's ancient arms

    OpenAIRE

    Litman, Gary W.; Cannon, John P.

    2009-01-01

    Diverse receptors on two types of cell mediate adaptive immunity in jawed vertebrates. In the lamprey, a jawless vertebrate, immunity is likewise compartmentalized but the molecular mechanics are very different.

  2. Unfolded protein response (UPR) signaling regulates arsenic trioxide-mediated macrophage innate immune function disruption

    International Nuclear Information System (INIS)

    Srivastava, Ritesh K.; Li, Changzhao; Chaudhary, Sandeep C.; Ballestas, Mary E.; Elmets, Craig A.; Robbins, David J.; Matalon, Sadis; Deshane, Jessy S.; Afaq, Farrukh; Bickers, David R.; Athar, Mohammad

    2013-01-01

    Arsenic exposure is known to disrupt innate immune functions in humans and in experimental animals. In this study, we provide a mechanism by which arsenic trioxide (ATO) disrupts macrophage functions. ATO treatment of murine macrophage cells diminished internalization of FITC-labeled latex beads, impaired clearance of phagocytosed fluorescent bacteria and reduced secretion of pro-inflammatory cytokines. These impairments in macrophage functions are associated with ATO-induced unfolded protein response (UPR) signaling pathway characterized by the enhancement in proteins such as GRP78, p-PERK, p-eIF2α, ATF4 and CHOP. The expression of these proteins is altered both at transcriptional and translational levels. Pretreatment with chemical chaperon, 4-phenylbutyric acid (PBA) attenuated the ATO-induced activation in UPR signaling and afforded protection against ATO-induced disruption of macrophage functions. This treatment also reduced ATO-mediated reactive oxygen species (ROS) generation. Interestingly, treatment with antioxidant N-acetylcysteine (NAC) prior to ATO exposure, not only reduced ROS production and UPR signaling but also improved macrophage functions. These data demonstrate that UPR signaling and ROS generation are interdependent and are involved in the arsenic-induced pathobiology of macrophage. These data also provide a novel strategy to block the ATO-dependent impairment in innate immune responses. - Highlights: • Inorganic arsenic to humans and experimental animals disrupt innate immune responses. • The mechanism underlying arsenic impaired macrophage functions involves UPR signaling. • Chemical chaperon attenuates arsenic-mediated macrophage function impairment. • Antioxidant, NAC blocks impairment in arsenic-treated macrophage functions

  3. Unfolded protein response (UPR) signaling regulates arsenic trioxide-mediated macrophage innate immune function disruption

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Ritesh K.; Li, Changzhao; Chaudhary, Sandeep C. [Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL (United States); Ballestas, Mary E. [Department of Pediatrics Infectious Disease, Children' s of Alabama, School of Medicine, University of Alabama at Birmingham, AL (United States); Elmets, Craig A. [Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL (United States); Robbins, David J. [Department of Surgery, Molecular Oncology Program, Miller School of Medicine, University of Miami, Miami (United States); Matalon, Sadis [Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, AL (United States); Deshane, Jessy S. [Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL (United States); Afaq, Farrukh [Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL (United States); Bickers, David R. [Department of Dermatology, Columbia University Medical Center, New York (United States); Athar, Mohammad, E-mail: mathar@uab.edu [Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL (United States)

    2013-11-01

    Arsenic exposure is known to disrupt innate immune functions in humans and in experimental animals. In this study, we provide a mechanism by which arsenic trioxide (ATO) disrupts macrophage functions. ATO treatment of murine macrophage cells diminished internalization of FITC-labeled latex beads, impaired clearance of phagocytosed fluorescent bacteria and reduced secretion of pro-inflammatory cytokines. These impairments in macrophage functions are associated with ATO-induced unfolded protein response (UPR) signaling pathway characterized by the enhancement in proteins such as GRP78, p-PERK, p-eIF2α, ATF4 and CHOP. The expression of these proteins is altered both at transcriptional and translational levels. Pretreatment with chemical chaperon, 4-phenylbutyric acid (PBA) attenuated the ATO-induced activation in UPR signaling and afforded protection against ATO-induced disruption of macrophage functions. This treatment also reduced ATO-mediated reactive oxygen species (ROS) generation. Interestingly, treatment with antioxidant N-acetylcysteine (NAC) prior to ATO exposure, not only reduced ROS production and UPR signaling but also improved macrophage functions. These data demonstrate that UPR signaling and ROS generation are interdependent and are involved in the arsenic-induced pathobiology of macrophage. These data also provide a novel strategy to block the ATO-dependent impairment in innate immune responses. - Highlights: • Inorganic arsenic to humans and experimental animals disrupt innate immune responses. • The mechanism underlying arsenic impaired macrophage functions involves UPR signaling. • Chemical chaperon attenuates arsenic-mediated macrophage function impairment. • Antioxidant, NAC blocks impairment in arsenic-treated macrophage functions.

  4. Plasma-mediated immune suppression : a neonatal perspective

    NARCIS (Netherlands)

    Belderbos, Mirjam E.; Levy, Ofer; Meyaard, Linde; Bont, Louis

    Plasma is a rich mixture of immune regulatory factors that shape immune cell function. This immunomodulatory role of plasma is especially important in neonates. To maintain in utero feto-maternal tolerance and to allow for microbial colonization after birth, the neonatal immune system is biased

  5. Modulation of Immune Responses by Exosomes Derived from Antigen-Presenting Cells

    Directory of Open Access Journals (Sweden)

    Botros B. Shenoda

    2016-01-01

    Full Text Available Exosome-mediated signaling is important in mediating the inflammatory response. To exert their biological or pathophysiological functions in the recipient cells, exosomes deliver a diverse array of biomacromolecules including long and short coding and non-coding RNAs, proteins, and lipids. Exosomes secreted by antigen-presenting cells can confer therapeutic benefits by attenuating or stimulating the immune response. Exosomes play a crucial role in carrying and presenting functional major histocompatibility peptide complexes to modulate antigen-specific T cell responses. Exosomes from Dendritic Cells (DCs can activate T and B cells and have been explored for their immunostimulatory properties in cancer therapy. The immunosuppressive properties of exosomes derived from macrophages and DCs can reduce inflammation in animal models for several inflammatory disorders. This review focuses on the protective role of exosomes in attenuating inflammation or augmenting immune response, emphasizing studies on exosomes derived from DCs and macrophages.

  6. Dendritic cells in dengue virus infection: Targets of virus replication and mediators of immunity

    Directory of Open Access Journals (Sweden)

    Michael A. Schmid

    2014-12-01

    Full Text Available Dendritic cells (DCs are sentinels of the immune system and detect pathogens at sites of entry, such as the skin. In addition to the ability of DCs to control infections directly via their innate immune functions, DCs help to prime adaptive B and T cell responses via antigen presentation in lymphoid tissues. Infected Aedes aegypti or Ae. albopictus mosquitoes transmit the four dengue virus (DENV serotypes to humans while probing for small blood vessels in the skin. DENV causes the most prevalent arthropod-borne viral disease in humans, yet no vaccine or specific therapeutic is currently approved. Although primary DENV infection confers life-long protective immunity against re-infection with the same DENV serotype, secondary infection with a different DENV serotype can lead to increased disease severity via cross-reactive T cells or enhancing antibodies. This review summarizes recent findings in humans and animal models about DENV infection of DCs, monocytes and macrophages. We discuss the dual role of DCs as both targets of DENV replication and mediators of innate and adaptive immunity, and summarize immune evasion strategies whereby DENV impairs the function of infected DCs. We suggest that DCs play a key role in priming DENV-specific neutralizing or potentially harmful memory B and T cell responses, and that future DC-directed therapies may help induce protective memory responses and reduce dengue pathogenesis.

  7. The association of fatigue, pain, depression and anxiety with work and activity impairment in immune mediated inflammatory diseases.

    Directory of Open Access Journals (Sweden)

    Murray W Enns

    Full Text Available Impairment in work function is a frequent outcome in patients with chronic conditions such as immune-mediated inflammatory diseases (IMID, depression and anxiety disorders. The personal and economic costs of work impairment in these disorders are immense. Symptoms of pain, fatigue, depression and anxiety are potentially remediable forms of distress that may contribute to work impairment in chronic health conditions such as IMID. The present study evaluated the association between pain [Medical Outcomes Study Pain Effects Scale], fatigue [Daily Fatigue Impact Scale], depression and anxiety [Hospital Anxiety and Depression Scale] and work impairment [Work Productivity and Activity Impairment Scale] in four patient populations: multiple sclerosis (n = 255, inflammatory bowel disease (n = 248, rheumatoid arthritis (n = 154 and a depression and anxiety group (n = 307, using quantile regression, controlling for the effects of sociodemographic factors, physical disability, and cognitive deficits. Each of pain, depression symptoms, anxiety symptoms, and fatigue individually showed significant associations with work absenteeism, presenteeism, and general activity impairment (quantile regression standardized estimates ranging from 0.3 to 1.0. When the distress variables were entered concurrently into the regression models, fatigue was a significant predictor of work and activity impairment in all models (quantile regression standardized estimates ranging from 0.2 to 0.5. These findings have important clinical implications for understanding the determinants of work impairment and for improving work-related outcomes in chronic disease.

  8. Brain-gut axis and mucosal immunity: a perspective on mucosal psychoneuroimmunology.

    LENUS (Irish Health Repository)

    Shanahan, F

    2012-02-03

    The role of the brain-gut axis has traditionally been investigated in relation to intestinal motility, secretion, and vascularity. More recently, the concept of brain-gut dialogue has extended to the relationship between the nervous system and mucosal immune function. There is compelling evidence for a reciprocal or bi-directional communication between the immune system and the neuroendocrine system. This is mediated, in part, by shared ligands (chemical messengers) and receptors that are common to the immune and nervous systems. Although the concept of psychoneuroimmunology and neuroimmune cross-talk has been studied primarily in the context of the systemic immune system, it is likely to have special significance in the gut. The mucosal immune system is anatomically, functionally, and operationally distinct from the systemic immune system and is subject to independent regulatory signals. Furthermore, the intestinal mucosal immune system operates in a local milieu that depends on a dense innervation for its integrity, with juxtaposition of neuroendocrine cells and mucosal immune cells. An overview of evidence for the biologic plausibility of a brain-gut-immune axis is presented and its potential relevance to mucosal inflammatory disorders is discussed.

  9. [Relationship of childhood physical abuse and internet addiction disorder in adolescence: the mediating role of self-esteem].

    Science.gov (United States)

    Zhang, Zhi-hua; Yang, Lin-sheng; Hao, Jia-hu; Huang, Fen; Zhang, Xiu-jun; Sun, Ye-huan

    2012-01-01

    To find out whether the effects of childhood physical abuse on internet addiction disorder in adolescence could be mediated by self-esteem. 3798 high school students selected from 76 classes in Grade One and Grade Two, were asked to fill in the anonymous questionnaire, which including the demographic characteristics of students, Young's Internet Addiction Scale, Parent-Child Conflict Tactics Scales and Rosenberg's Self-Esteem Scale. Childhood physical abuse could directly predict less self-esteem and internet addiction disorder (r = -0.108, P self-esteem (a = -0.703, standardized b = -0.104, z = 5.052, P Self-esteem had mediated 22.5% of the childhood physical abuse cases on their internet addiction disorders during the period of adolescence. Self-esteem could partially mediate the relationship between childhood physical abuse and internet addiction disorder. The mediating roles of self-esteem suggested that salient leverage points could make a change through empowerment training, self-esteem group training on self-esteem enhancement in the stage of adolescence.

  10. Immunologically mediated oral diseases.

    Science.gov (United States)

    Jimson, Sudha; Balachader, N; Anita, N; Babu, R

    2015-04-01

    Immune mediated diseases of oral cavity are uncommon. The lesions may be self-limiting and undergo remission spontaneously. Among the immune mediated oral lesions the most important are lichen planus, pemphigus, erythema multiformi, epidermolysis bullosa, systemic lupus erythematosis. Cellular and humoral mediated immunity play a major role directed against epithelial and connective tissue in chronic and recurrent patterns. Confirmatory diagnosis can be made by biopsy, direct and indirect immunoflouresence, immune precipitation and immunoblotting. Therapeutic agents should be selected after thorough evaluation of immune status through a variety of tests and after determining any aggravating or provoking factors. Early and appropriate diagnosis is important for proper treatment planning contributing to better prognosis and better quality of life of patient.

  11. Parental mediation of television viewing and videogaming of adolescents with autism spectrum disorder and their siblings.

    Science.gov (United States)

    Kuo, Melissa H; Magill-Evans, Joyce; Zwaigenbaum, Lonnie

    2015-08-01

    Adolescents with autism spectrum disorder spend considerable time in media activities. Parents play an important role in shaping adolescents' responses to media. This study explored the mediation strategies that parents of adolescents with autism spectrum disorder used to manage television and video game use, factors associated with their use of different strategies, and whether mediation strategies changed over time. A secondary purpose was to examine whether parents applied different mediation strategies to adolescents with autism spectrum disorder versus siblings, and the factors that created stress related to managing media use. Parents of 29 adolescents with autism spectrum disorder and 16 siblings completed questionnaires at two time points. Parents most frequently supervised their television viewing by watching it with the adolescents, and used restrictive strategies to regulate their videogaming. Parents used similar strategies for siblings, but more frequently applied restrictive and instructive strategies for videogaming with adolescents with autism spectrum disorder than their siblings. Restrictive mediation of television viewing for the adolescents decreased significantly over the year. Adolescents' time spent in media activities, age, and behavior problems, and parents' concerns about media use were significant factors associated with the strategies that parents employed. Parents' stress related to the adolescents' behavioral and emotional responses to parental restrictions. © The Author(s) 2014.

  12. Relationship between body dissatisfaction and disordered eating: mediating role of self-esteem and depression.

    Science.gov (United States)

    Brechan, Inge; Kvalem, Ingela Lundin

    2015-04-01

    The purpose of this study was to investigate the hypothesis that the effect of body dissatisfaction on disordered eating behavior is mediated through self-esteem and depression. If the effect of body dissatisfaction on disordered eating can be explained by self-esteem and depression, treatment may benefit from focusing more on self-esteem and depression than body dissatisfaction. We also hypothesized body image importance to be associated with lower self-esteem, stronger symptoms of depression, and more disordered eating. The results showed that the effect of body dissatisfaction on disorder eating was completely mediated, whereas the effect of body image importance was partly mediated. Both self-esteem and depression were significant mediators. Body image importance and self-esteem had a direct effect on restrained eating and compensatory behavior. Depression had a direct effect on binge eating. This effect was significantly stronger among women. Depression also had a direct effect on restrained eating. This effect was positive among women, but negative among men. The results support emotion regulation and cognitive behavioral theories of eating disorders, indicating that self-esteem and depression are the most proximal factors, whereas the effect of body dissatisfaction is indirect. The results point out the importance of distinguishing between different symptoms of bulimia. Depression may cause binge eating, but compensatory behavior depends on self-esteem and body image importance. The results suggest that women may turn to both binge eating and restrained eating to escape awareness of negative emotions, whereas men focus on eating to a lesser extent than women. Existing treatment focuses on eating behavior first and mechanisms such as self-esteem and depression second. The results from this study suggest that an earlier focus on self-esteem and depression may be warranted in the treatment of disordered eating. Copyright © 2015 Elsevier Ltd. All rights

  13. Golimumab as Rescue Therapy for Refractory Immune-Mediated Uveitis: A Three-Center Experience

    Directory of Open Access Journals (Sweden)

    Miguel Cordero-Coma

    2014-01-01

    Full Text Available Objective. To evaluate, in three Spanish tertiary referral centres, the short-term safety and efficacy of golimumab (GLM for treatment of immune-mediated uveitis resistant to previous immunosuppressive therapy. Methods. Nonrandomized retrospective interventional case series. Thirteen patients with different types of uveitis that were resistant to treatment with at least 2 previous immunosuppressors were included in this study. All included patients were treated with GLM (50 mg every four weeks during at least 6 months. Clinical evaluation and treatment-related side effects were assessed at least four times in all included patients. Results. Eight men and 5 women (22 affected eyes with a median age of 30 years (range 20–38 and active immune-mediated uveitides were studied. GLM was used in combination with conventional immunosuppressors in 7 patients (53.8%. GLM therapy achieved complete control of inflammation in 12/13 patients (92.3% after six months of treatment. There was a statistically significant improvement in mean BCVA (0.60 versus 0.68, P=0.009 and mean 1 mm central retinal thickness (317 versus 261.2 μ, P=0.05 at the six-month endpoint when compared to basal values. No major systemic adverse effects associated with GLM therapy were observed. Conclusions. GLM is a new and promising therapeutic option for patients with severe and refractory uveitis.

  14. The role of the immune system in kidney disease.

    Science.gov (United States)

    Tecklenborg, J; Clayton, D; Siebert, S; Coley, S M

    2018-05-01

    The immune system and the kidneys are closely linked. In health the kidneys contribute to immune homeostasis, while components of the immune system mediate many acute forms of renal disease and play a central role in progression of chronic kidney disease. A dysregulated immune system can have either direct or indirect renal effects. Direct immune-mediated kidney diseases are usually a consequence of autoantibodies directed against a constituent renal antigen, such as collagen IV in anti-glomerular basement membrane disease. Indirect immune-mediated renal disease often follows systemic autoimmunity with immune complex formation, but can also be due to uncontrolled activation of the complement pathways. Although the range of mechanisms of immune dysregulation leading to renal disease is broad, the pathways leading to injury are similar. Loss of immune homeostasis in renal disease results in perpetual immune cell recruitment and worsening damage to the kidney. Uncoordinated attempts at tissue repair, after immune-mediated disease or non-immune mediated injury, result in fibrosis of structures important for renal function, leading eventually to kidney failure. As renal disease often manifests clinically only when substantial damage has already occurred, new diagnostic methods and indeed treatments must be identified to inhibit further progression and promote appropriate tissue repair. Studying cases in which immune homeostasis is re-established may reveal new treatment possibilities. © 2018 British Society for Immunology.

  15. Immune-relevant thrombocytes of common carp undergo parasite-induced nitric oxide-mediated apoptosis.

    Science.gov (United States)

    Fink, Inge R; Ribeiro, Carla M S; Forlenza, Maria; Taverne-Thiele, Anja; Rombout, Jan H W M; Savelkoul, Huub F J; Wiegertjes, Geert F

    2015-06-01

    Common carp thrombocytes account for 30-40% of peripheral blood leukocytes and are abundant in the healthy animals' spleen, the thrombopoietic organ. We show that, ex vivo, thrombocytes from healthy carp express a large number of immune-relevant genes, among which several cytokines and Toll-like receptors, clearly pointing at immune functions of carp thrombocytes. Few studies have described the role of fish thrombocytes during infection. Carp are natural host to two different but related protozoan parasites, Trypanoplasma borreli and Trypanosoma carassii, which reside in the blood and tissue fluids. We used the two parasites to undertake controlled studies on the role of fish thrombocytes during these infections. In vivo, but only during infection with T. borreli, thrombocytes were massively depleted from the blood and spleen leading to severe thrombocytopenia. Ex vivo, addition of nitric oxide induced a clear and rapid apoptosis of thrombocytes from healthy carp, supporting a role for nitric oxide-mediated control of immune-relevant thrombocytes during infection with T. borreli. The potential advantage for parasites to selectively deplete the host of thrombocytes via nitric oxide-induced apoptosis is discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Induction of cell-mediated immunity during early stages of infection with intracellular protozoa

    Directory of Open Access Journals (Sweden)

    Gazzinelli R.T.

    1998-01-01

    Full Text Available Toxoplasma gondii and Trypanosoma cruzi are intracellular parasites which, as part of their life cycle, induce a potent cell-mediated immunity (CMI maintained by Th1 lymphocytes and IFN-g. In both cases, induction of a strong CMI is thought to protect the host against rapid parasite multiplication and consequent pathology and lethality during the acute phase of infection. However, the parasitic infection is not eliminated by the immune system and the vertebrate host serves as a parasite reservoir. In contrast, Leishmania sp, which is a slow growing parasite, appears to evade induction of CMI during early stages of infection as a strategy for surviving in a hostile environment (i.e., inside the macrophages which are their obligatory niche in the vertebrate host. Recent reports show that the initiation of IL-12 synthesis by macrophages during these parasitic infections is a key event in regulating CMI and disease outcome. The studies reviewed here indicate that activation/inhibition of distinct signaling pathways and certain macrophage functions by intracellular protozoa are important events in inducing/modulating the immune response of their vertebrate hosts, allowing parasite and host survival and therefore maintaining parasite life cycles.

  17. Immune Modulation by Vitamin D and Its Relevance to Food Allergy

    Directory of Open Access Journals (Sweden)

    Noor H. A. Suaini

    2015-07-01

    Full Text Available Apart from its classical function in bone and calcium metabolism, vitamin D is also involved in immune regulation and has been linked to various cancers, immune disorders and allergic diseases. Within the innate and adaptive immune systems, the vitamin D receptor and enzymes in monocytes, dendritic cells, epithelial cells, T lymphocytes and B lymphocytes mediate the immune modulatory actions of vitamin D. Vitamin D insufficiency/deficiency early in life has been identified as one of the risk factors for food allergy. Several studies have observed an association between increasing latitude and food allergy prevalence, plausibly linked to lower ultraviolet radiation (UVR exposure and vitamin D synthesis in the skin. Along with mounting epidemiological evidence of a link between vitamin D status and food allergy, mice and human studies have shed light on the modulatory properties of vitamin D on the innate and adaptive immune systems. This review will summarize the literature on the metabolism and immune modulatory properties of vitamin D, with particular reference to food allergy.

  18. Inflammation meets metabolic disease: Gut feeling mediated by GLP-1

    Directory of Open Access Journals (Sweden)

    Tamara eZietek

    2016-04-01

    Full Text Available Chronic diseases such as obesity and diabetes, cardiovascular and inflammatory bowel diseases (IBD share common features in their pathology. Metabolic disorders exhibit strong inflammatory underpinnings and vice versa, inflammation is associated with metabolic alterations. Next to cytokines and cellular stress pathways like the unfolded protein response (UPR, alterations in the enteroendocrine system are intersections of various pathologies. Enteroendocrine cells (EEC have been studied extensively for their ability to regulate gastrointestinal motility, secretion, and insulin release by release of peptide hormones. In particular the L cell-derived incretin hormone glucagon-like peptide 1 (GLP-1 has gained enormous attention due to its insulinotropic action and relevance in the treatment of type 2 diabetes (T2D. Yet, accumulating data indicates a critical role for EEC and in particular for GLP-1 in metabolic adaptation and in orchestrating immune responses beyond blood glucose control. EEC sense the lamina propria and luminal environment including the microbiota via receptors and transporters. Subsequently mediating signals by secreting hormones and cytokines, EEC can be considered as integrators of metabolic and inflammatory signaling.This review focuses on L cell and GLP-1 functions in the context of metabolic and inflammatory diseases. The effects of incretin-based therapies on metabolism and immune system are discussed and the interrelation and common features of metabolic and immune-mediated disorders are highlighted. Moreover, it presents data on the impact of inflammation, in particular of IBD on EEC and discusses the potential role of the microbiota as link between nutrients, metabolism, immunity and disease.

  19. Cell-mediated immunity to herpes simplex in humans: lymphocyte cytotoxicity measured by 51Cr release from infected cells

    International Nuclear Information System (INIS)

    Russell, A.S.; Percy, J.S.; Kovithavongs, T.

    1975-01-01

    We assessed cell-mediated immunity to herpes simplex virus type 1 antigen in patients suffering from recurrent cold sores and in a series of healthy controls. Paradoxically, all those subject to recurrent herpetic infections had, without exception, evidence of cell-mediated immunity to herpes antigens. This was demonstrated by lymphocyte transformation and specific 51 Cr release from infected human amnion cells after incubation with peripheral blood mononuclear cells. Where performed, skin tests with herpes antigen were also positive. In addition, serum from these patients specifically sensitized herpes virus-infected cells to killing by nonimmune, control mononuclear cells. These tests were negative in the control patients except in a few cases, and it is suggested that these latter may be the asymptomatic herpes virus carriers previously recognized or that they may have experienced a genital infection. (U.S.)

  20. Modulation of inflammasome-mediated pulmonary immune activation by type I IFNs protects bone marrow homeostasis during systemic responses to Pneumocystis lung infection.

    Science.gov (United States)

    Searles, Steve; Gauss, Katherine; Wilkison, Michelle; Hoyt, Teri R; Dobrinen, Erin; Meissner, Nicole

    2013-10-01

    Although acquired bone marrow failure (BMF) is considered a T cell-mediated autoimmune disease, possible innate immune defects as a cause for systemic immune deviations in response to otherwise innocuous infections have not been extensively explored. In this regard, we recently demonstrated an important role of type I IFNs in protecting hematopoiesis during systemic stress responses to the opportunistic fungal pathogen Pneumocystis in lymphocyte-deficient mice. Mice deficient in both lymphocytes and type I IFN receptor (IFrag(-/-) mice) develop rapidly progressing BMF due to accelerated bone marrow (BM) cell apoptosis associated with innate immune deviations in the BM in response to Pneumocystis lung infection. However, the communication pathway between lung and BM eliciting the induction of BMF in response to this strictly pulmonary infection has been unclear. In this study, we report that absence of an intact type I IFN system during Pneumocystis lung infection not only causes BMF in lymphocyte-deficient mice but also transient BM stress in lymphocyte-competent mice. This is associated with an exuberant systemic IFN-γ response. IFN-γ neutralization prevented Pneumocystis lung infection-induced BM depression in type I IFN receptor-deficient mice and prolonged neutrophil survival time in BM from IFrag(-/-) mice. IL-1β and upstream regulators of IFN-γ, IL-12, and IL-18 were also upregulated in lung and serum of IFrag(-/-) mice. In conjunction, there was exuberant inflammasome-mediated caspase-1 activation in pulmonary innate immune cells required for processing of IL-18 and IL-1β. Thus, absence of type I IFN signaling during Pneumocystis lung infection may result in deregulation of inflammasome-mediated pulmonary immune activation, causing systemic immune deviations triggering BMF in this model.

  1. Type 2 immunity and wound healing: evolutionary refinement of adaptive immunity by helminths

    Science.gov (United States)

    Gause, William C.; Wynn, Thomas A.; Allen, Judith E.

    2013-01-01

    Helminth-induced type 2 immune responses, which are characterized by the T helper 2 cell-associated cytokines interleukin-4 (IL-4) and IL-13, mediate host protection through enhanced tissue repair, the control of inflammation and worm expulsion. In this Opinion article, we consider type 2 immunity in the context of helminth-mediated tissue damage. We examine the relationship between the control of helminth infection and the mechanisms of wound repair, and we provide a new understanding of the adaptive type 2 immune response and its contribution to both host tolerance and resistance. PMID:23827958

  2. Characteristics of innate lymphoid cells (ILCs) and their role in immunological disorders (an update).

    Science.gov (United States)

    Yazdani, Reza; Sharifi, Mehri; Shirvan, Aylar Saba; Azizi, Gholamreza; Ganjalikhani-Hakemi, Mazdak

    2015-01-01

    Innate lymphoid cells (ILCs) are a novel family of hematopoietic effectors and regulators of innate immunity. Although these cells are morphologically similar to B cells and T cells, however they do not express antigen receptors. ILCs seems to have emerging roles in innate immune responses against infectious or non-infectious microorganisms, protection of the epithelial barrier, lymphoid organogenesis and inflammation, tissue remodeling and regulating homeostasis of tissue stromal cells. In addition, it has recently been reported that ILCs have a crucial role in several disorders such as allergy and autoimmunity. Based on their phenotype and functions, ILCs are classified into three major groups called ILCs1, ILCs2, and ILCs3. Here we reviewed the most recent data concerning diverse ILC phenotypes, subclasses, functions in immune responses as well as in immune mediated disorders. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Immunologically mediated oral diseases

    Directory of Open Access Journals (Sweden)

    Sudha Jimson

    2015-01-01

    Full Text Available Immune mediated diseases of oral cavity are uncommon. The lesions may be self-limiting and undergo remission spontaneously. Among the immune mediated oral lesions the most important are lichen planus, pemphigus, erythema multiformi, epidermolysis bullosa, systemic lupus erythematosis. Cellular and humoral mediated immunity play a major role directed against epithelial and connective tissue in chronic and recurrent patterns. Confirmatory diagnosis can be made by biopsy, direct and indirect immunoflouresence, immune precipitation and immunoblotting. Therapeutic agents should be selected after thorough evaluation of immune status through a variety of tests and after determining any aggravating or provoking factors. Early and appropriate diagnosis is important for proper treatment planning contributing to better prognosis and better quality of life of patient.

  4. The evolutionarily conserved mediator subunit MDT-15/MED15 links protective innate immune responses and xenobiotic detoxification.

    Directory of Open Access Journals (Sweden)

    Read Pukkila-Worley

    2014-05-01

    Full Text Available Metazoans protect themselves from environmental toxins and virulent pathogens through detoxification and immune responses. We previously identified a small molecule xenobiotic toxin that extends survival of Caenorhabditis elegans infected with human bacterial pathogens by activating the conserved p38 MAP kinase PMK-1 host defense pathway. Here we investigate the cellular mechanisms that couple activation of a detoxification response to innate immunity. From an RNAi screen of 1,420 genes expressed in the C. elegans intestine, we identified the conserved Mediator subunit MDT-15/MED15 and 28 other gene inactivations that abrogate the induction of PMK-1-dependent immune effectors by this small molecule. We demonstrate that MDT-15/MED15 is required for the xenobiotic-induced expression of p38 MAP kinase PMK-1-dependent immune genes and protection from Pseudomonas aeruginosa infection. We also show that MDT-15 controls the induction of detoxification genes and functions to protect the host from bacteria-derived phenazine toxins. These data define a central role for MDT-15/MED15 in the coordination of xenobiotic detoxification and innate immune responses.

  5. The evolutionarily conserved mediator subunit MDT-15/MED15 links protective innate immune responses and xenobiotic detoxification.

    Science.gov (United States)

    Pukkila-Worley, Read; Feinbaum, Rhonda L; McEwan, Deborah L; Conery, Annie L; Ausubel, Frederick M

    2014-05-01

    Metazoans protect themselves from environmental toxins and virulent pathogens through detoxification and immune responses. We previously identified a small molecule xenobiotic toxin that extends survival of Caenorhabditis elegans infected with human bacterial pathogens by activating the conserved p38 MAP kinase PMK-1 host defense pathway. Here we investigate the cellular mechanisms that couple activation of a detoxification response to innate immunity. From an RNAi screen of 1,420 genes expressed in the C. elegans intestine, we identified the conserved Mediator subunit MDT-15/MED15 and 28 other gene inactivations that abrogate the induction of PMK-1-dependent immune effectors by this small molecule. We demonstrate that MDT-15/MED15 is required for the xenobiotic-induced expression of p38 MAP kinase PMK-1-dependent immune genes and protection from Pseudomonas aeruginosa infection. We also show that MDT-15 controls the induction of detoxification genes and functions to protect the host from bacteria-derived phenazine toxins. These data define a central role for MDT-15/MED15 in the coordination of xenobiotic detoxification and innate immune responses.

  6. Bipolar and panic disorders may be associated with hereditary defects in the innate immune system

    DEFF Research Database (Denmark)

    Foldager, Leslie; Köhler, Karl Ole; Steffensen, Rudi Nora

    2014-01-01

    Background: Mannan-binding lectin (MBL) and mannan-binding lectin-associated serine protease-2 (MASP-2) represent important arms of the innate immune system, and different deficiencies may result in infections or autoimmune diseases. Both bipolar and panic disorders are associated with increased...

  7. A downy mildew effector attenuates salicylic acid-triggered immunity in Arabidopsis by interacting with the host mediator complex.

    Directory of Open Access Journals (Sweden)

    Marie-Cécile Caillaud

    2013-12-01

    Full Text Available Plants are continually exposed to pathogen attack but usually remain healthy because they can activate defences upon perception of microbes. However, pathogens have evolved to overcome plant immunity by delivering effectors into the plant cell to attenuate defence, resulting in disease. Recent studies suggest that some effectors may manipulate host transcription, but the specific mechanisms by which such effectors promote susceptibility remain unclear. We study the oomycete downy mildew pathogen of Arabidopsis, Hyaloperonospora arabidopsidis (Hpa, and show here that the nuclear-localized effector HaRxL44 interacts with Mediator subunit 19a (MED19a, resulting in the degradation of MED19a in a proteasome-dependent manner. The Mediator complex of ∼25 proteins is broadly conserved in eukaryotes and mediates the interaction between transcriptional regulators and RNA polymerase II. We found MED19a to be a positive regulator of immunity against Hpa. Expression profiling experiments reveal transcriptional changes resembling jasmonic acid/ethylene (JA/ET signalling in the presence of HaRxL44, and also 3 d after infection with Hpa. Elevated JA/ET signalling is associated with a decrease in salicylic acid (SA-triggered immunity (SATI in Arabidopsis plants expressing HaRxL44 and in med19a loss-of-function mutants, whereas SATI is elevated in plants overexpressing MED19a. Using a PR1::GUS reporter, we discovered that Hpa suppresses PR1 expression specifically in cells containing haustoria, into which RxLR effectors are delivered, but not in nonhaustoriated adjacent cells, which show high PR1::GUS expression levels. Thus, HaRxL44 interferes with Mediator function by degrading MED19, shifting the balance of defence transcription from SA-responsive defence to JA/ET-signalling, and enhancing susceptibility to biotrophs by attenuating SA-dependent gene expression.

  8. Proteins Encoded in Genomic Regions Associated with Immune-Mediated Disease Physically Interact and Suggest Underlying Biology

    DEFF Research Database (Denmark)

    Rossin, Elizabeth J.; Hansen, Kasper Lage; Raychaudhuri, Soumya

    2011-01-01

    Genome-wide association studies (GWAS) have defined over 150 genomic regions unequivocally containing variation predisposing to immune-mediated disease. Inferring disease biology from these observations, however, hinges on our ability to discover the molecular processes being perturbed by these r......Genome-wide association studies (GWAS) have defined over 150 genomic regions unequivocally containing variation predisposing to immune-mediated disease. Inferring disease biology from these observations, however, hinges on our ability to discover the molecular processes being perturbed...... in rheumatoid arthritis (RA) and Crohn's disease (CD) GWAS, we build protein-protein interaction (PPI) networks for genes within associated loci and find abundant physical interactions between protein products of associated genes. We apply multiple permutation approaches to show that these networks are more...... that the RA and CD networks have predictive power by demonstrating that proteins in these networks, not encoded in the confirmed list of disease associated loci, are significantly enriched for association to the phenotypes in question in extended GWAS analysis. Finally, we test our method in 3 non...

  9. Convergence of neuro-endocrine-immune pathways in the pathophysiology of irritable bowel syndrome.

    Science.gov (United States)

    Buckley, Maria M; O'Mahony, Siobhain M; O'Malley, Dervla

    2014-07-21

    Disordered signalling between the brain and the gut are generally accepted to underlie the functional bowel disorder, irritable bowel syndrome (IBS). However, partly due to the lack of disease-defining biomarkers, understanding the aetiology of this complex and multifactorial disease remains elusive. This common gastrointestinal disorder is characterised by alterations in bowel habit such as diarrhoea and/or constipation, bloating and abdominal pain, and symptom exacerbation has been linked with periods of stress, both psychosocial and infection-related. Indeed, a high level of comorbidity exists between IBS and stress-related mood disorders such as anxiety and depression. Moreover, studies have observed alterations in autonomic output and neuro-endocrine signalling in IBS patients. Accumulating evidence indicates that a maladaptive stress response, probably mediated by the stress hormone, corticotropin-releasing factor contributes to the initiation, persistence and severity of symptom flares. Other risk factors for developing IBS include a positive family history, childhood trauma, dietary factors and prior gastrointestinal infection. An emerging role has been attributed to the importance of immune factors in the pathophysiology of IBS with evidence of altered cytokine profiles and increased levels of mucosal immune cells. These factors have also been shown to have direct effects on neural signalling. This review discusses how pathological changes in neural, immune and endocrine pathways, and communication between these systems, contribute to symptom flares in IBS.

  10. Proliferative, necrotizing and crescentic immune complex-mediated glomerulonephritis in a cat

    Directory of Open Access Journals (Sweden)

    Carolyn Gross

    2015-09-01

    Full Text Available Case Summary A 5-year-old cat was examined for vomiting and anorexia of 2 days’ duration. Azotemia, hyperphosphatemia and hypoalbuminemia were the main biochemical findings. Serial analyses of the urine revealed isosthenuria, proteinuria and eventual glucosuria. Hyperechoic perirenal fat was detected surrounding the right kidney by ultrasonography. Histopathologic evaluation of ante-mortem ultrasound-guided needle biopsies of the right kidney was consistent with proliferative, necrotizing and crescentic glomerulonephritis with fibrin thrombi, proteinaceous and red blood cell casts, and moderate multifocal chronic-active interstitial nephritis. Owing to a lack of clinical improvement, the cat was eventually euthanized. Post-mortem renal biopsies were processed for light microscopy, transmission electron microscopy and immunofluorescence. This revealed severe focal proliferative and necrotizing glomerulonephritis with cellular crescent formation, podocyte injury and secondary segmental sclerosis. Ultrastructural analysis revealed scattered electron-dense deposits in the mesangium, and immunofluorescence demonstrated positive granular staining for λ light chains, consistent with immune complex-mediated glomerulonephritis. Severe diffuse acute tubular epithelial injury and numerous red blood cell casts were also seen. Relevance and novel information To our knowledge, this is the first report of naturally occurring proliferative, necrotizing and crescentic immune complex glomerulonephritis in a cat.

  11. Circumvention of regulatory CD4(+) T cell activity during cross-priming strongly enhances T cell-mediated immunity.

    Science.gov (United States)

    Heit, Antje; Gebhardt, Friedemann; Lahl, Katharina; Neuenhahn, Michael; Schmitz, Frank; Anderl, Florian; Wagner, Hermann; Sparwasser, Tim; Busch, Dirk H; Kastenmüller, Kathrin

    2008-06-01

    Immunization with purified antigens is a safe and practical vaccination strategy but is generally unable to induce sustained CD8(+) T cell-mediated protection against intracellular pathogens. Most efforts to improve the CD8(+) T cell immunogenicity of these vaccines have focused on co-administration of adjuvant to support cross-presentation and dendritic cell maturation. In addition, it has been shown that CD4(+) T cell help during the priming phase contributes to the generation of protective CD8(+) memory T cells. In this report we demonstrate that the depletion of CD4(+) T cells paradoxically enhances long-lasting CD8-mediated protective immunity upon protein vaccination. Functional and genetic in vivo inactivation experiments attribute this enhancement primarily to MHC class II-restricted CD4(+) regulatory T cells (Treg), which appear to physiologically suppress the differentiation process towards long-living effector memory T cells. Since, in functional terms, this suppression by Treg largely exceeds the positive effects of conventional CD4(+) T cell help, even the absence of all CD4(+) T cells or lack of MHC class II-mediated interactions on priming dendritic cells result in enhanced CD8(+) T cell immunogenicity. These findings have important implications for the improvement of vaccines against intracellular pathogens or tumors, especially in patients with highly active Treg.

  12. Effects of ionizing radiation on the immune system

    International Nuclear Information System (INIS)

    Dubois, J.B.

    1986-01-01

    After reviewing the different lymphoid organs and the essential phases of the immune response, we studied the morphological and functional effects of ionizing radiation on the immunological system. Histologic changes in the lymph nodes, spleen, thymus, and different lymphocyte subpopulations were studied in relation with the radiation dose and irradiated volume (whole body irradiation, localized irradiation). Functional changes in the immune system induced by ionizing radiation were also investigated by a study of humoral-mediated immunity (antibody formation) and cell-mediated immunity (behavior of macrophages, B-cells, T suppressor cells, T helper cells, T effector cells, and natural killer cells). A study into the mechanisms of action of ionizing radiation and the immune processes it interferes with suggests several likely hypotheses (direct action on the immune cells, on their precursors, on seric mediators or on cell mediators). The effects on cancer patients' immune reactions of low radiation doses delivered to the various lymphoid organs are discussed, as well as the relationships between the host and the evolution of the tumor [fr

  13. Arabidopsis ZED1-related kinases mediate the temperature-sensitive intersection of immune response and growth homeostasis.

    Science.gov (United States)

    Wang, Zhicai; Cui, Dayong; Liu, Jing; Zhao, Jingbo; Liu, Cheng; Xin, Wei; Li, Yuan; Liu, Na; Ren, Dongtao; Tang, Dingzhong; Hu, Yuxin

    2017-07-01

    Activation of the immune response in plants antagonizes growth and development in the absence of pathogens, and such an autoimmune phenotype is often suppressed by the elevation of ambient temperature. However, molecular regulation of the ambient temperature-sensitive intersection of immune response and growth is largely elusive. A genetic screen identified an Arabidopsis mutant, zed1-D, by its high temperature-dependent growth retardation. A combination of molecular, cytological and genetic approaches was used to investigate the molecular basis behind the temperature-sensitive growth and immune response in zed1-D. A dominant mutation in HOPZ-ETI-DEFICIENT 1 (ZED1) is responsible for a high temperature-dependent autoimmunity and growth retardation in zed1-D. The autoimmune phenotype in zed1-D is dependent on the HOPZ-ACTIVATED RESISTANCE 1 (ZAR1). ZED1 and some ZED1-related kinases (ZRKs) are induced by elevated temperature and function cooperatively to suppress the immune response by modulating the transcription of SUPPRESSOR OF NPR1-1 CONSTITUTIVE 1 (SNC1) in the absence of pathogens. Our data reveal a previously unidentified role of ZRKs in the ambient temperature-sensitive immune response in the absence of pathogens, and thus reveals a possible molecular mechanism underlying the temperature-mediated intersection of immune response and growth in plants. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  14. Immune thrombocytopenia in two unrelated Fanconi anemia patients – a mere coincidence?

    Directory of Open Access Journals (Sweden)

    Anna eKarastaneva

    2015-06-01

    Full Text Available Thrombocytopenia and pancytopenia, occurring in patients with Fanconi anemia (FA, are interpreted either as progression to bone marrow failure or as developing myelodysplasia. On the other hand, immune thrombocytopenia (ITP represents an acquired and often self-limiting benign hematologic disorder, associated with peripheral, immune-mediated, platelet destruction requiring different management modalities than those used in congenital bone marrow failure syndromes, including FA. Here we describe the clinical course of two independent FA patients with atypical - namely immune - thrombocytopenia. While in one patient belonging to complementation group FA-A, the ITP started at 17 months of age and showed a chronically persisting course with severe purpura, responding well to intravenous immunoglobulins (IVIG and later also danazol, a synthetic androgen, the other patient (of complementation group FA-D2 had a self-limiting course that resolved after one administration of IVIG. No cytogenetic aberrations or bone marrow abnormalities other than FA-typical mild dysplasia were detected. Our data show that acute and chronic ITP may occur in FA patients and impose individual diagnostic and therapeutic challenges in this rare congenital bone marrow failure / tumor predisposition syndrome. The management and a potential context of immune pathogenesis with the underlying marrow disorder are discussed.

  15. Immune Thrombocytopenia in Two Unrelated Fanconi Anemia Patients – A Mere Coincidence?

    Science.gov (United States)

    Karastaneva, Anna; Lanz, Sofia; Wawer, Angela; Behrends, Uta; Schindler, Detlev; Dietrich, Ralf; Burdach, Stefan; Urban, Christian; Benesch, Martin; Seidel, Markus G.

    2015-01-01

    Thrombocytopenia and pancytopenia, occurring in patients with Fanconi anemia (FA), are interpreted either as progression to bone marrow failure or as developing myelodysplasia. On the other hand, immune thrombocytopenia (ITP) represents an acquired and often self-limiting benign hematologic disorder, associated with peripheral, immune-mediated, platelet destruction requiring different management modalities than those used in congenital bone marrow failure syndromes, including FA. Here, we describe the clinical course of two independent FA patients with atypical – namely immune – thrombocytopenia. While in one patient belonging to complementation group FA-A, the ITP started at 17 months of age and showed a chronically persisting course with severe purpura, responding well to intravenous immunoglobulins (IVIG) and later also danazol, a synthetic androgen, the other patient (of complementation group FA-D2) had a self-limiting course that resolved after one administration of IVIG. No cytogenetic aberrations or bone marrow abnormalities other than FA-typical mild dysplasia were detected. Our data show that acute and chronic ITP may occur in FA patients and impose individual diagnostic and therapeutic challenges in this rare congenital bone marrow failure/tumor predisposition syndrome. The management and a potential context of immune pathogenesis with the underlying marrow disorder are discussed. PMID:26106590

  16. The Tomato U-Box Type E3 Ligase PUB13 Acts With Group III Ubiquitin E2 Enzymes to Modulate FLS2-Mediated Immune Signaling

    Directory of Open Access Journals (Sweden)

    Bangjun Zhou

    2018-05-01

    Full Text Available In Arabidopsis and rice, the ubiquitin ligase PUB13-mediated protein degradation plays a significant role in plant pattern-triggered immunity (PTI and flowering time control. The Arabidopsis PUB13 has been shown to attenuate the pattern recognition receptor FLS2-mediated immune signaling by ubiquitinating FLS2 and consequently promoting its degradation by the 26S proteasome. Nevertheless, the cognate ubiquitin-conjugating enzymes (E2 with which PUB13 acts to modulate FLS2-mediated PTI are unknown. To address this question, we investigate here the tomato (Solanum lycopersicum homolog of PUB13, SlPUB13 by utilizing the recently characterized complete set of tomato E2s. Of the 13 groups of tomato E2s, only members in group III are found to interact and act with SlPUB13. Knocking-down of the group III E2 genes enhances callose deposition and induction of the RbohB gene in the immunity-associated, early oxidative burst after flg22 treatment. The group III E2s are also found to work with SlPUB13 to ubiquitinate FLS2 in vitro and are required for PUB13-mediated degradation of FLS2 in vivo upon flg22 treatment, suggesting an essential role for group III E2s in the modulation of FLS2-mediated immune signaling by PUB13. Additionally, another immunity-associated E3, NtCMPG1 is shown to also work specifically with members of group III E2 in the in vitro ubiquitination assay, which implies the group III E2 enzymes may cooperate with many E3 ligases to regulate different aspects of PTI. Taken together, these data corroborate the notion that group III E2 enzymes play an important role in PTI and build a foundation for further functional and mechanistic characterization of tomato PUB13.

  17. Psychological distress as a mediator in the relationships between biopsychosocial factors and disordered eating among Malaysian university students.

    Science.gov (United States)

    Gan, Wan Ying; Mohd Nasir, Mohd Taib; Zalilah, Mohd Shariff; Hazizi, Abu Saad

    2012-12-01

    The mechanism linking biopsychosocial factors to disordered eating among university students is not well understood especially among Malaysians. This study aimed to examine the mediating role of psychological distress in the relationships between biopsychosocial factors and disordered eating among Malaysian university students. A self-administered questionnaire measured self-esteem, body image, social pressures to be thin, weight-related teasing, psychological distress, and disordered eating in 584 university students (59.4% females and 40.6% males). Body weight and height were measured. Structural equation modeling analysis revealed that the partial mediation model provided good fit to the data. Specifically, the relationships between self-esteem and weight-related teasing with disordered eating were mediated by psychological distress. In contrast, only direct relationships between body weight status, body image, and social pressures to be thin with disordered eating were found and were not mediated by psychological distress. Furthermore, multigroup analyses indicated that the model was equivalent for both genders but not for ethnic groups. There was a negative relationship between body weight status and psychological distress for Chinese students, whereas this was not the case among Malay students. Intervention and prevention programs on psychological distress may be beneficial in reducing disordered eating among Malaysian university students. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Role of very late antigen-1 in T-cell-mediated immunity to systemic viral infection

    DEFF Research Database (Denmark)

    Ørding Kauffmann, Susanne; Thomsen, Allan Randrup; Christensen, Jan Pravsgaard

    2006-01-01

    or their distribution between lymphoid and nonlymphoid organs. Regarding a functional role of VLA-1, we found that intracerebral infection of both VLA-1(-/-) and wild-type (wt) mice resulted in lethal T-cell-mediated meningitis, and quantitative and qualitative analyses of the cellular exudate did not reveal any...... significant differences between the two strains. Expression of VLA-1 was also found to be redundant regarding the ability of effector T cells to eliminate virus from internal organs of i.v. infected mice. Using delayed-type hypersensitivity (DTH) assays to evaluate subdermal CD8(+) T......, the current findings indicate that the expression of VLA-1 is not pivotal for T-cell-mediated antiviral immunity to a systemic infection....

  19. Attachment Style and Obesity: Disordered Eating Behaviors as a Mediator in a Community Sample of Canadian Youth.

    Science.gov (United States)

    Maras, Danijela; Obeid, Nicole; Flament, Martine; Buchholz, Annick; Henderson, Katherine A; Gick, Mary; Goldfield, Gary S

    Obesity and overweight are associated with many negative health outcomes. Attachment style has been implicated in the development of obesity in youth. The present study examined if disordered eating behaviors mediate the relationship between attachment style and body mass index (BMI) in a large community sample of Canadian youth. A total of 3,043 participants (1,254 males and 1,789 females, Mage = 14.20 years) completed self-report questionnaires including the Relationship Questionnaire and the Dutch Eating Behavior Questionnaire, and BMI was objectively measured. Disordered eating behaviors (restrained, emotional, and external) were examined as possible mediating mechanisms in the relationship between attachment style and BMI z-score, using a multiple mediation model using bootstrapping while controlling for socio-demographic covariates. Insecure attachment was significantly associated with higher BMI, and disordered eating mediated this relationship. Restrained eating was the strongest mediator of this pathway. Results suggest that it may be important to take attachment history and restrained eating into account when designing treatment and prevention strategies for obesity in youth.

  20. Genetics Home Reference: common variable immune deficiency

    Science.gov (United States)

    ... disorders are immune thrombocytopenia purpura, which is an abnormal bleeding disorder caused by a decrease in cell fragments involved ... antibodies makes it difficult for people with this disorder to fight off infections. Abnormal and deficient immune responses over time likely contribute ...

  1. Cellular Immune Response Against Firefly Luciferase After Sleeping Beauty–Mediated Gene Transfer In Vivo

    Science.gov (United States)

    Podetz-Pedersen, Kelly M.; Vezys, Vaiva; Somia, Nikunj V.; Russell, Stephen J.

    2014-01-01

    Abstract The Sleeping Beauty (SB) transposon system has been shown to mediate new gene sequence integration resulting in long-term expression. Here the effectiveness of hyperactive SB100X transposase was tested, and we found that hydrodynamic co-delivery of a firefly luciferase transposon (pT2/CaL) along with SB100X transposase (pCMV-SB100X) resulted in remarkably sustained, high levels of luciferase expression. However, after 4 weeks there was a rapid, animal-by-animal loss of luciferase expression that was not observed in immunodeficient mice. We hypothesized that this sustained, high-level luciferase expression achieved using the SB100X transposase elicits an immune response in pT2/CaL co-administered mice, which was supported by the rapid loss of luciferase expression upon challenge of previously treated animals and in naive animals adoptively transferred with splenocytes from previously treated animals. Specificity of the immune response to luciferase was demonstrated by increased cytokine expression in splenocytes after exposure to luciferase peptide in parallel with MHC I–luciferase peptide tetramer binding. This anti-luciferase immune response observed following continuous, high-level luciferase expression in vivo clearly impacts its use as an in vivo reporter. As both an immunogen and an extremely sensitive reporter, luciferase is also a useful model system for the study of immune responses following in vivo gene transfer and expression. PMID:25093708

  2. Alternatives to conventional vaccines--mediators of innate immunity.

    Science.gov (United States)

    Eisen, D P; Liley, H G; Minchinton, R M

    2004-01-01

    Vaccines have been described as "weapons of mass protection". The eradication of many diseases is testament to their utility and effectiveness. Nevertheless, many vaccine preventable diseases remain prevalent because of political and economic barriers. Additionally, the effects of immaturity and old age, therapies that incapacitate the adaptive immune system and the multitude of strategies evolved by pathogens to evade immediate or sustained recognition by the mammalian immune system are barriers to the effectiveness of existing vaccines or development of new vaccines. In the front line of defence against the pervasiness of infection are the elements of the innate immune system. Innate immunity is under studied and poorly appreciated. However, in the first days after entry of a pathogen into the body, our entire protective response is dependant upon the various elements of our innate immune repertoire. In spite of its place as our initial defence against infection, attention is only now turning to strategies which enhance or supplement innate immunity. This review examines the need for and potential of innate immune therapies.

  3. Azathioprine reduces the risk of audiometric relapse in immune-mediated hearing loss.

    Science.gov (United States)

    Mata-Castro, Nieves; Gavilanes-Plasencia, Javier; Ramírez-Camacho, Rafael; García-Fernández, Alfredo; García-Berrocal, José Ramón

    2018-03-01

    Current schemes for treatment of immune-mediated hearing loss with sporadic short-course, low-dose corticosteroids, are insufficient. To determine the role of azathioprine in the control of auditory impairment, a longitudinal, observational, descriptive study was performed with 20 patients treated with azathioprine (1.5-2.5mg/kg/day into two doses) for 1year. The loss of 10dB on two consecutive frequencies or 15dB on an isolated frequency was considered as relapse. The mean age of the patients was 52.50years (95%CI: 46.91-58.17), half were women. Bilateral affectation was 65%. 75% had organ specific disease and 25% had systemic autoimmune disease. The difference between baseline PTA (46.49dB; DS18.90) and PTA at 12months (45.47dB; DS18.88) did not reach statistical significance (P=.799). There was a moderate positive correlation between female sex and the presence of systemic disease (R=.577). By applying Student's t for paired data, a significant difference (P=.042) was obtained between the PTA in frequencies up to 1000 Hz (PTA125-1000Hz). The relative incidence rate of relapse per year was .52 relapses/year (95%CI: .19-1.14]). The median time to audiometric relapse-free was 9.70months (DS1.03). Azathioprine maintains the hearing threshold, decreases the risk of relapse, and slows down the rate at which patients relapse, altering the course of immune-mediated inner ear disease. Copyright © 2018 Sociedad Española de Otorrinolaringología y Cirugía de Cabeza y Cuello. Publicado por Elsevier España, S.L.U. All rights reserved.

  4. Excessive Time on Social Networking Sites and Disordered Eating Behaviors Among Undergraduate Students: Appearance and Weight Esteem as Mediating Pathways.

    Science.gov (United States)

    Murray, Marisa; Maras, Danijela; Goldfield, Gary S

    2016-12-01

    Social networking sites (SNS) are a popular form of communication among undergraduate students. Body image concerns and disordered eating behaviors are also quite prevalent among this population. Maladaptive use of SNS has been associated with disordered eating behaviors; however, the mechanisms remain unclear. The present study examined if body image concerns (e.g., appearance and weight esteem) mediate the relationship between excessive time spent on SNS and disordered eating behaviors (restrained and emotional eating). The sample included 383 (70.2 percent female) undergraduate students (mean age = 23.08 years, standard deviation = 3.09) who completed self-report questionnaires related to SNS engagement, body image, disordered eating behaviors, and demographics. Parallel multiple mediation and moderated mediation analyses revealed that lower weight and appearance esteem mediated the relationship between excessive time on SNS and restrained eating for males and females, whereas appearance esteem mediated the relationship between excessive time on SNS and emotional eating for females only. The study adds to the literature by highlighting mediational pathways and gender differences. Intervention research is needed to determine if teaching undergraduate students more adaptive ways of using SNS or reducing exposure to SNS reduces body dissatisfaction and disordered eating in this high-risk population.

  5. A flagellin-derived toll-like receptor 5 agonist stimulates cytotoxic lymphocyte-mediated tumor immunity.

    Directory of Open Access Journals (Sweden)

    Nicholas D Leigh

    Full Text Available Toll-like receptor (TLR mediated recognition of pathogen associated molecular patterns allows the immune system to rapidly respond to a pathogenic insult. The "danger context" elicited by TLR agonists allows an initially non-immunogenic antigen to become immunogenic. This ability to alter environment is highly relevant in tumor immunity, since it is inherently difficult for the immune system to recognize host-derived tumors as immunogenic. However, immune cells may have encountered certain TLR ligands associated with tumor development, yet the endogenous stimulation is typically not sufficient to induce spontaneous tumor rejection. Of special interest are TLR5 agonists, because there are no endogenous ligands that bind TLR5. CBLB502 is a pharmacologically optimized TLR5 agonist derived from Salmonella enterica flagellin. We examined the effect of CBLB502 on tumor immunity using two syngeneic lymphoma models, both of which do not express TLR5, and thus do not directly respond to CBLB502. Upon challenge with the T-cell lymphoma RMAS, CBLB502 treatment after tumor inoculation protects C57BL/6 mice from death caused by tumor growth. This protective effect is both natural killer (NK cell- and perforin-dependent. In addition, CBLB502 stimulates clearance of the B-cell lymphoma A20 in BALB/c mice in a CD8(+ T cell-dependent fashion. Analysis on the cellular level via ImageStream flow cytometry reveals that CD11b(+ and CD11c(+ cells, but neither NK nor T cells, directly respond to CBLB502 as determined by NFκB nuclear translocation. Our findings demonstrate that CBLB502 stimulates a robust antitumor response by directly activating TLR5-expressing accessory immune cells, which in turn activate cytotoxic lymphocytes.

  6. Rationale for combination of therapeutic antibodies targeting tumor cells and immune checkpoint receptors: Harnessing innate and adaptive immunity through IgG1 isotype immune effector stimulation.

    Science.gov (United States)

    Ferris, Robert L; Lenz, Heinz-Josef; Trotta, Anna Maria; García-Foncillas, Jesús; Schulten, Jeltje; Audhuy, François; Merlano, Marco; Milano, Gerard

    2018-02-01

    Immunoglobulin (Ig) G1 antibodies stimulate antibody-dependent cell-mediated cytotoxicity (ADCC). Cetuximab, an IgG1 isotype monoclonal antibody, is a standard-of-care treatment for locally advanced and recurrent and/or metastatic squamous cell carcinoma of the head and neck (SCCHN) and metastatic colorectal cancer (CRC). Here we review evidence regarding the clinical relevance of cetuximab-mediated ADCC and other immune functions and provide a biological rationale concerning why this property positions cetuximab as an ideal partner for immune checkpoint inhibitors (ICIs) and other emerging immunotherapies. We performed a nonsystematic review of available preclinical and clinical data involving cetuximab-mediated immune activity and combination approaches of cetuximab with other immunotherapies, including ICIs, in SCCHN and CRC. Indeed, cetuximab mediates ADCC activity in the intratumoral space and primes adaptive and innate cellular immunity. However, counterregulatory mechanisms may lead to immunosuppressive feedback loops. Accordingly, there is a strong rationale for combining ICIs with cetuximab for the treatment of advanced tumors, as targeting CTLA-4, PD-1, and PD-L1 can ostensibly overcome these immunosuppressive counter-mechanisms in the tumor microenvironment. Moreover, combining ICIs (or other immunotherapies) with cetuximab is a promising strategy for boosting immune response and enhancing response rates and durability of response. Cetuximab immune activity-including, but not limited to, ADCC-provides a strong rationale for its combination with ICIs or other immunotherapies to synergistically and fully mobilize the adaptive and innate immunity against tumor cells. Ongoing prospective studies will evaluate the clinical effect of these combination regimens and their immune effect in CRC and SCCHN and in other indications. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Immune mechanisms in Babesia-infected animals

    International Nuclear Information System (INIS)

    Phillips, R.S.

    1980-01-01

    The course of a Babesia infection depends on the species of host and parasite involved. Animals infected with virulent babesias may need chemotherapy before acquired immunity develops. Maintenance of immunity is not dependent on the presence of the parasite. Babesia infections are characteristically of long duration. The immune response to babesias includes both humoral and cellular components. Antibody levels detected in serodiagnostic tests do not relate to levels of resistance to the parasite. Some antibodies, however, appear to be protective. Antiparasitic antibodies may damage parasites in or outside the red cell and act as opsonins. T-cell-deficient and anti-lymphocyte-serum-treated rodents are more susceptible to rodent piroplasms indicating a role for T-cells as either helper cells and/or as mediators of cell-mediated immunity (CMI). There is indirect evidence of CMI, but the cell-mediated mechanisms involved in parasite killing are not known. In domestic animals immunity is largely species- and strain-specific. Antigenic variation by babesias occurs. In rodents, however, there is cross-immunity between different species of rodent piroplasms and between rodent piroplasms and some malaria parasites. Prior infection with agents such as BCG, and Corynebacterium parvum, gives mice non-specific resistance to rodent piroplasms possibly mediated through a soluble non-antibody factor. This factor may also be liberated during piroplasm infections and by being toxic to malaria parasites account for heterologous immunity. Active immunization against babesias has been achieved with avirulent strains, irradiated parasites and dead parasites in adjuvant. During Babesia infections the primary and, to a lesser degree, the secondary immune response to heterologous antigens can be depressed. Maximum depression coincides with peak parasitaemia when antigen priming may be abolished completely. Immunosuppression during Babesia infections can prolong or exacerbate concurrent

  8. Hemocyte-mediated phagocytosis and melanization in the mosquito Armigeres subalbatus following immune challenge by bacteria.

    Science.gov (United States)

    Hillyer, Julián F; Schmidt, Shelley L; Christensen, Bruce M

    2003-07-01

    Mosquitoes are important vectors of disease. These insects respond to invading organisms with strong cellular and humoral immune responses that share many similarities with vertebrate immune systems. The strength and specificity of these responses are directly correlated to a mosquito's ability to transmit disease. In the current study, we characterized the hemocytes (blood cells) of Armigeres subalbatus by morphology (ultrastructure), lectin binding, enzyme activity, immunocytochemistry, and function. We found four hemocyte types: granulocytes, oenocytoids, adipohemocytes, and thrombocytoids. Granulocytes contained acid phosphatase activity and bound the exogenous lectins Helix pomatia agglutinin, Galanthus nivalis lectin, and wheat germ agglutinin. Following bacteria inoculation, granulocytes mounted a strong phagocytic response as early as 5 min postexposure. Bacteria also elicited a hemocyte-mediated melanization response. Phenoloxidase, the rate-limiting enzyme in the melanization pathway, was present exclusively in oenocytoids and in many of the melanotic capsules enveloping bacteria. The immune responses mounted against different bacteria were not identical; gram(-) Escherichia coli were predominantly phagocytosed and gram(+) Micrococcus luteus were melanized. These studies implicate hemocytes as the primary line of defense against bacteria.

  9. Duox2-induced innate immune responses in the respiratory epithelium and intranasal delivery of Duox2 DNA using polymer that mediates immunization.

    Science.gov (United States)

    Jeon, Yung Jin; Kim, Hyun Jik

    2018-05-01

    Respiratory mucosa especially nasal epithelium is well known as the first-line barrier of air-borne pathogens. High levels of reactive oxygen species (ROS) are detected in in vitro cultured human epithelial cells and in vivo lung. With identification of NADPH oxidase (Nox) system of respiratory epithelium, the antimicrobial role of ROS has been studied. Duox2 is the most abundant Nox isoform and produces the regulated amount of ROS in respiratory epithelium. Duox2-derived ROS are involved in antiviral innate immune responses but more studies are needed to verify the mechanism. In respiratory epithelium, Duox2-derived ROS is critical for recognition of virus through families retinoic acid-inducible gene-I (RIG-I) and melanoma differentiation-associated protein 5 (MDA5) at the early stage of antiviral innate immune responses. Various secreted interferons (IFNs) play essential roles for antiviral host defense by downstream cell signaling, and transcription of IFN-stimulated genes is started to suppress viral replication. Type I and type III IFNs are verified more responsible for influenza A virus (IAV) infection in respiratory epithelium and Duox2 is required to regulate IFN-related immune responses. Transient overexpression of Duox2 using cationic polymer polyethylenimine (PEI) induces secretion of type I and type III IFNs and significantly attenuated IAV replication in respiratory epithelium. Here, we discuss Duox2-mediated antiviral innate immune responses and the role of Duox2 as a mucosal vaccine to resist respiratory viral infection.

  10. Is thought-action fusion specific to obsessive-compulsive disorder?: a mediating role of negative affect.

    Science.gov (United States)

    Abramowitz, J S; Whiteside, S; Lynam, D; Kalsy, S

    2003-09-01

    Thought-action fusion (TAF) is a cognitive bias presumed to underlie the development of obsessional problems (i.e. obsessive-compulsive disorder; OCD). Previous studies have found that TAF is related to not only OCD, but also to other anxiety disorders. In the present study we compared levels of TAF in OCD patients and in patients with other anxiety disorders, depression, and healthy controls to examine whether TAF is characteristic of individuals with emotional distress in general, as opposed to anxiety disorders per se. We also examined whether negative affect (i.e. anxiety and depression) mediates the relationship between OCD and TAF. Results indicated that OCD patients were characterized by higher scores on likelihood-self and likelihood-other TAF, but that this difference was predominately due to differences in negative affect. These findings support a model in which negative affect mediates the relationship between OCD and TAF.

  11. The relationship between alexithymia and maladaptive perfectionism in eating disorders: a mediation moderation analysis methodology.

    Science.gov (United States)

    Marsero, S; Ruggiero, G M; Scarone, S; Bertelli, S; Sassaroli, S

    2011-09-01

    This work aimed to explore the relationship between alexithymia and maladaptive perfectionism in the psychological process leading to eating disorders (ED). Forty-nine individuals with ED and 49 controls completed the Concern over Mistakes subscale of the Frost Multidimensional Perfectionism Scale, the Perfectionism subscale of the Eating Disorders Inventory, the total score of the Toronto Alexithymia Scale, and the Drive for Thinness, Bulimia, and Body Dissatisfaction subscales of the Eating Disorders Inventory. We tested a model in which alexythimia is the independent variable and perfectionism is the possible mediator or moderator. Analyses confirmed the assumed model. In addition, it emerged that perfectionism played a mediating or moderating role when measured by different instruments. This result suggested that different instruments measured subtly different aspects of the same construct. Results could suggest that alexithymia is a predisposing factor for perfectionism, which in turn may lead to the development of eating disorders.

  12. Mathematical modeling on T-cell mediated adaptive immunity in primary dengue infections.

    Science.gov (United States)

    Sasmal, Sourav Kumar; Dong, Yueping; Takeuchi, Yasuhiro

    2017-09-21

    At present, dengue is the most common mosquito-borne viral disease in the world, and the global dengue incidence is increasing day by day due to climate changing. Here, we present a mathematical model of dengue viruses (DENVs) dynamics in micro-environment (cellular level) consisting of healthy cells, infected cells, virus particles and T-cell mediated adaptive immunity. We have considered the explicit role of cytokines and antibody in our model. We find that the virus load goes down to zero within 6 days as it is common for DENV infection. From our analysis, we have identified the important model parameters and done the numerical simulation with respect to such important parameters. We have shown that the cytokine mediated virus clearance plays a very important role in dengue dynamics. It can change the dynamical behavior of the system and causes essential extinction of the virus. Finally, we have incorporated the antiviral treatment for dengue in our model and shown that the basic reproduction number is directly proportional to the antiviral treatment effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Preliminary Evidence for Cognitive Mediation During Cognitive–Behavioral Therapy of Panic Disorder

    Science.gov (United States)

    Hofmann, Stefan G.; Suvak, Michael K.; Barlow, David H.; Shear, M. Katherine; Meuret, Alicia E.; Rosenfield, David; Gorman, Jack M.; Woods, Scott W.

    2007-01-01

    Cognitive–behavioral therapy (CBT) and pharmacotherapy are similarly effective for treating panic disorder with mild or no agoraphobia, but little is known about the mechanism through which these treatments work. The present study examined some of the criteria for cognitive mediation of treatment change in CBT alone, imipramine alone, CBT plus imipramine, and CBT plus placebo. Ninety-one individuals who received 1 of these interventions were assessed before and after acute treatment, and after a 6-month maintenance period. Multilevel moderated mediation analyses provided preliminary support for the notion that changes in panic-related cognitions mediate changes in panic severity only in treatments that include CBT. PMID:17563154

  14. Autoimmunity in Arabidopsis acd11 is mediated by epigenetic regulation of an immune receptor.

    Directory of Open Access Journals (Sweden)

    Kristoffer Palma

    Full Text Available Certain pathogens deliver effectors into plant cells to modify host protein targets and thereby suppress immunity. These target modifications can be detected by intracellular immune receptors, or Resistance (R proteins, that trigger strong immune responses including localized host cell death. The accelerated cell death 11 (acd11 "lesion mimic" mutant of Arabidopsis thaliana exhibits autoimmune phenotypes such as constitutive defense responses and cell death without pathogen perception. ACD11 encodes a putative sphingosine transfer protein, but its precise role during these processes is unknown. In a screen for lazarus (laz mutants that suppress acd11 death we identified two genes, LAZ2 and LAZ5. LAZ2 encodes the histone lysine methyltransferase SDG8, previously shown to epigenetically regulate flowering time via modification of histone 3 (H3. LAZ5 encodes an RPS4-like R-protein, defined by several dominant negative alleles. Microarray and chromatin immunoprecipitation analyses showed that LAZ2/SDG8 is required for LAZ5 expression and H3 lysine 36 trimethylation at LAZ5 chromatin to maintain a transcriptionally active state. We hypothesize that LAZ5 triggers cell death in the absence of ACD11, and that cell death in other lesion mimic mutants may also be caused by inappropriate activation of R genes. Moreover, SDG8 is required for basal and R protein-mediated pathogen resistance in Arabidopsis, revealing the importance of chromatin remodeling as a key process in plant innate immunity.

  15. Platelets release pathogenic serotonin and return to circulation after immune complex-mediated sequestration.

    Science.gov (United States)

    Cloutier, Nathalie; Allaeys, Isabelle; Marcoux, Genevieve; Machlus, Kellie R; Mailhot, Benoit; Zufferey, Anne; Levesque, Tania; Becker, Yann; Tessandier, Nicolas; Melki, Imene; Zhi, Huiying; Poirier, Guy; Rondina, Matthew T; Italiano, Joseph E; Flamand, Louis; McKenzie, Steven E; Cote, Francine; Nieswandt, Bernhard; Khan, Waliul I; Flick, Matthew J; Newman, Peter J; Lacroix, Steve; Fortin, Paul R; Boilard, Eric

    2018-02-13

    There is a growing appreciation for the contribution of platelets to immunity; however, our knowledge mostly relies on platelet functions associated with vascular injury and the prevention of bleeding. Circulating immune complexes (ICs) contribute to both chronic and acute inflammation in a multitude of clinical conditions. Herein, we scrutinized platelet responses to systemic ICs in the absence of tissue and endothelial wall injury. Platelet activation by circulating ICs through a mechanism requiring expression of platelet Fcγ receptor IIA resulted in the induction of systemic shock. IC-driven shock was dependent on release of serotonin from platelet-dense granules secondary to platelet outside-in signaling by αIIbβ3 and its ligand fibrinogen. While activated platelets sequestered in the lungs and leaky vasculature of the blood-brain barrier, platelets also sequestered in the absence of shock in mice lacking peripheral serotonin. Unexpectedly, platelets returned to the blood circulation with emptied granules and were thereby ineffective at promoting subsequent systemic shock, although they still underwent sequestration. We propose that in response to circulating ICs, platelets are a crucial mediator of the inflammatory response highly relevant to sepsis, viremia, and anaphylaxis. In addition, platelets recirculate after degranulation and sequestration, demonstrating that in adaptive immunity implicating antibody responses, activated platelets are longer lived than anticipated and may explain platelet count fluctuations in IC-driven diseases.

  16. Neuromuscular complications of immune checkpoint inhibitor therapy.

    Science.gov (United States)

    Kolb, Noah A; Trevino, Christopher R; Waheed, Waqar; Sobhani, Fatemeh; Landry, Kara K; Thomas, Alissa A; Hehir, Mike

    2018-01-17

    Immune checkpoint inhibitor (ICPI) therapy unleashes the body's natural immune system to fight cancer. ICPIs improve overall cancer survival, however, the unbridling of the immune system may induce a variety of immune-related adverse events. Neuromuscular immune complications are rare but they can be severe. Myasthenia gravis and inflammatory neuropathy are the most common neuromuscular adverse events but a variety of others including inflammatory myopathy are reported. The pathophysiologic mechanism of these autoimmune disorders may differ from that of non-ICPI-related immune diseases. Accordingly, while the optimal treatment for ICPI-related neuromuscular disorders generally follows a traditional paradigm, there are important novel considerations in selecting appropriate immunosuppressive therapy. This review presents 2 new cases, a summary of neuromuscular ICPI complications, and an approach to the diagnosis and treatment of these disorders. Muscle Nerve, 2018. © 2018 Wiley Periodicals, Inc.

  17. Subtle variation within conserved effector operon gene products contributes to T6SS-mediated killing and immunity.

    Science.gov (United States)

    Alteri, Christopher J; Himpsl, Stephanie D; Zhu, Kevin; Hershey, Haley L; Musili, Ninette; Miller, Jessa E; Mobley, Harry L T

    2017-11-01

    Type VI secretion systems (T6SS) function to deliver lethal payloads into target cells. Many studies have shown that protection against a single, lethal T6SS effector protein requires a cognate antidote immunity protein, both of which are often encoded together in a two-gene operon. The T6SS and an effector-immunity pair is sufficient for both killing and immunity. HereIn this paper we describe a T6SS effector operon that differs from conventional effector-immunity pairs in that eight genes are necessary for lethal effector function, yet can be countered by a single immunity protein. In this study, we investigated the role that the PefE T6SS immunity protein plays in recognition between two strains harboring nearly identical effector operons. Interestingly, despite containing seven of eight identical effector proteins, the less conserved immunity proteins only provided protection against their native effectors, suggesting that specificity and recognition could be dependent on variation within an immunity protein and one effector gene product. The variable effector gene product, PefD, is encoded upstream from pefE, and displays toxic activity that can be countered by PefE independent of T6SS-activity. Interestingly, while the entire pef operon was necessary to exert toxic activity via the T6SS in P. mirabilis, production of PefD and PefE alone was unable to exert this effector activity. Chimeric PefE proteins constructed from two P. mirabilis strains were used to localize immunity function to three amino acids. A promiscuous immunity protein was created using site-directed mutagenesis to change these residues from one variant to another. These findings support the notion that subtle differences between conserved effectors are sufficient for T6SS-mediated kin discrimination and that PefD requires additional factors to function as a T6SS-dependent effector.

  18. Immunization of Mice with a Live Transconjugant Shigella Hybrid Strain Induced Th1 and Th17 Cell-Mediated Immune Responses and Confirmed Passive Protection Against Heterologous Shigellae.

    Science.gov (United States)

    Nag, D; Koley, H; Sinha, R; Mukherjee, P; Sarkar, C; Withey, J H; Gachhui, R

    2016-02-01

    An avirulent, live transconjugant Shigella hybrid (LTSHΔstx) strain was constructed in our earlier study by introducing a plasmid vector, pPR1347, into a Shiga toxin gene deleted Shigella dysenteriae 1. Three successive oral administrations of LTSHΔstx to female adult mice produced comprehensive passive heterologous protection in their offspring against challenge with wild-type shigellae. Production of NO and different cytokines such asIL-12p70, IL-1β and IL-23 in peritoneal mice macrophages indicated that LTSHΔstx induced innate and adaptive immunity in mice. Furthermore, production of IFN-γ, IL-10 and IL-17 in LTSH-primed splenic CD4+ T cell suggested that LTSHΔstx may induce Th1 and Th17 cell-mediated immune responses. Exponential increase of the serum IgG and IgA titre against whole shigellae was observed in immunized adult mice during and after the immunization with the highest peak on day 35. Antigen-specific sIgA was also determined from intestinal lavage of immunized mice. The stomach extracts of neonates from immunized mice, mainly containing mother's milk, contained significant levels of anti-LTSHΔstx immunoglobulin. These studies suggest that the LTSHΔstx could be a new live oral vaccine candidate against shigellosis in the near future. © 2015 The Foundation for the Scandinavian Journal of Immunology.

  19. Intolerance of uncertainty mediates reduced reward anticipation in major depressive disorder.

    Science.gov (United States)

    Nelson, Brady D; Shankman, Stewart A; Proudfit, Greg H

    2014-04-01

    Reduced reward sensitivity has long been considered a fundamental deficit of major depressive disorder (MDD). One way this deficit has been measured is by an asymmetry in electroencephalogram (EEG) activity between left and right frontal brain regions. MDD has been associated with a reduced frontal EEG asymmetry (i.e., decreased left relative to right) while anticipating reward. However, the mechanism (or mediator) of this association is unclear. The present study examined whether intolerance of uncertainty (IU) mediated the association between depression and reduced reward anticipation. Data were obtained from a prior study reporting reduced frontal EEG asymmetry while anticipating reward in early-onset MDD. Participants included 156 individuals with early-onset MDD-only, panic disorder-only, both (comorbids), or controls. Frontal EEG asymmetry was recorded during an uncertain reward anticipation task. Participants completed a self-report measure of IU. All three psychopathology groups reported greater IU relative to controls. Across all participants, greater IU was associated with a reduced frontal EEG asymmetry. Furthermore, IU mediated the relationship between MDD and frontal EEG asymmetry and results remained significant after controlling for neuroticism, suggesting effects were not due to broad negative affectivity. MDD participants were limited to those with early-onset depression. Measures were collected cross-sectionally, precluding causal relationships. IU mediated the relationship between MDD and reduced reward anticipation, independent of neuroticism. Explanations are provided regarding how IU may contribute to reduced reward anticipation in depression. Overall, IU appears to be an important mechanism for the association between depression and reduced reward anticipation. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Inducible nitric-oxide synthase plays a minimal role in lymphocytic choriomeningitis virus-induced, T cell-mediated protective immunity and immunopathology

    DEFF Research Database (Denmark)

    Bartholdy, C; Nansen, A; Christensen, Jeanette Erbo

    1999-01-01

    -mediated immune response was found to be unaltered in iNOS-deficient mice compared with wild-type C57BL/6 mice, and LCMV- induced general immunosuppression was equally pronounced in both strains. In vivo analysis revealed identical kinetics of virus clearance, as well as unaltered clinical severity of systemic......By using mice with a targetted disruption in the gene encoding inducible nitric-oxide synthase (iNOS), we have studied the role of nitric oxide (NO) in lymphocytic choriomeningitis virus (LCMV)-induced, T cell-mediated protective immunity and immunopathology. The afferent phase of the T cell...... LCMV infection in both strains. Concerning the outcome of intracerebral infection, no significant differences were found between iNOS-deficient and wild-type mice in the number or composition of mononuclear cells found in the cerebrospinal fluid on day 6 post-infection. Likewise, NO did not influence...

  1. Converging Pathways in Autism Spectrum Disorders: Interplay Between Synaptic Dysfunction and Immune Responses

    Directory of Open Access Journals (Sweden)

    Irina eVoineagu

    2013-11-01

    Full Text Available Autism spectrum disorders (ASD are highly heritable, yet genetically heterogeneous neurodevelopmental conditions. Recent genome-wide association and gene expression studies have provided evidence supporting the notion that the large number of genetic variants associated with ASD converge toward a core set of dysregulated biological processes. Here we review recent data demonstrating the involvement of synaptic dysfunction and abnormal immune responses in ASD, and discuss the functional interplay between the two phenomena.

  2. Effects of PM2.5 exposure on the Notch signaling pathway and immune imbalance in chronic obstructive pulmonary disease

    International Nuclear Information System (INIS)

    Gu, Xing-yu; Chu, Xu; Zeng, Xiao-Li; Bao, Hai-Rong; Liu, Xiao-Ju

    2017-01-01

    Chronic Obstructive Pulmonary Disease (COPD) is associated with T lymphocytes subset (Th1/Th2, Th17/Treg) imbalance. Notch signaling pathway plays a key role in the development of the adaptive immunity. The immune disorder induced by fine particulate matter (PM2.5) is related to COPD. The aim of this study was to investigate the mechanism by which PM2.5 influences the Notch signaling pathway leading to worsening immune disorder and accelerating COPD development. A COPD mouse model was established by cigarette smoke exposure. PM2.5 exposure was performed by aerosol inhalation. γ-secretase inhibitor (GSI) was given using intraperitoneal injection. Splenic T lymphocytes were purified using a density gradient centrifugation method. CD4 + T lymphocyte subsets (Th1/Th2, Th17/Treg) were detected using flow cytometry. mRNA and proteins of Notch1/2/3/4, Hes1/5, and Hey1 were detected using RT-PCR and Western blot. Serum INF-γ, IL-4, IL-17 and IL-10 concentrations were measured using ELISA. The results showed that in COPD mice Th1% and Th17%, Th1/Th2 and Th17/Treg were increased, and the levels of mRNA and protein in Notch1/2/3/4, Hes1/5, and Hey1 and serum INF-γ and IL-17 concentrations were significantly increased, and Th2%, Treg%, and serum IL-4 and IL-10 concentrations were significantly decreased. COPD Mice have Th1- and Th17-mediated immune disorder, and the Notch signaling pathway is in an overactivated state. PM2.5 promotes the overactivation of the Notch signaling pathway and aggravates the immune disorder of COPD. GSI can partially inhibit the activation of the Notch signaling pathway and alleviate the immune disorder under basal state and the immune disorder of COPD caused by PM2.5. This result suggests that PM2.5 is involved in the immune disorder of mice with COPD by affecting the Notch signaling pathway and that PM2.5 aggravates COPD. - Highlights: • The COPD mice demonstrated Th1 and Th17 dominant immune imbalance. • PM2.5 aggravates the Th1/Th2 and Th

  3. Internalized weight bias mediates the relationship between depressive symptoms and disordered eating behavior among women who think they are overweight.

    Science.gov (United States)

    Sienko, Rachel M; Saules, Karen K; Carr, Meagan M

    2016-08-01

    This study tested the potential mediating role of Internalized Weight Bias (IWB) in the relationship between depressive symptoms (DEP-SX) and disordered eating behavior. In particular, we hypothesized that IWB may be an intervening variable in the well documented association between depression and disordered eating. College women (N=172) who were taking undergraduate psychology courses and who endorsed thinking they were overweight completed the Patient Health Questionnaire depression screener (PHQ-9), the Weight Bias Internalization Scale (WBIS), and the Eating Disorder Examination Questionnaire (EDE-Q). Bootstrapping mediation analyses were conducted to explore the relationships between these variables. IWB was significantly correlated with eating disorder symptoms and DEP-SX, but not Body Mass Index. Mediation analyses supported a model in which IWB mediated the relationship between DEP-SX and disordered eating behavior. Results indicate that individuals with elevated DEP-SX may be likely to internalize weight bias, which may in turn lead to maladaptive approaches to eating and weight control, regardless of one's actual weight status. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Heavy metal mediated innate immune responses of the Indian green frog, Euphlyctis hexadactylus (Anura: Ranidae): Cellular profiles and associated Th1 skewed cytokine response

    International Nuclear Information System (INIS)

    Jayawardena, Uthpala A.; Ratnasooriya, Wanigasekara D.; Wickramasinghe, Deepthi D.; Udagama, Preethi V.

    2016-01-01

    Immune cell and cytokine profiles in relation to metal exposure though much studied in mammals has not been adequately investigated in amphibians, due mainly to lack of suitable reagents for cytokine profiling in non-model species. However, interspecies cross reactivity of cytokines permitted us to assay levels of IFNγ, TNFα, IL6 and IL10in a common anuran, the Indian green frog (Euphlyctis hexadactylus), exposed to heavy metals (Cd, Cr, Cu, Zn and Pb, at ~ 5 ppm each) under field and laboratory settings in Sri Lanka. Enumeration of immune cells in blood and melanomacrophages in the liver, assay of serum and hepatic cytokines, and Th1/Th2 cytokine polarisation were investigated. Immune cell counts indicated overall immunosuppression with decreasing total WBC and splenocyte counts while neutrophil/lymphocyte ratio increased with metal exposure, indicating metal mediated stress. Serum IL6 levels of metal exposed frogs reported the highest (~ 9360 pg/mL) of all cytokines tested. Significantly elevated IFNγ production (P < 0.05) was evident in heavy metal exposed frogs. Th1/Th2 cytokine ratio in both serum and liver tissue homogenates was Th1 skewed due to significantly higher production of pro-inflammatory cytokines, IFNγ in serum and TNFα in the liver (P < 0.01).Metal mediated aggregations of melanomacrophages in the liver were positively and significantly (P < 0.05) correlated with the hepatic expression of TNFα, IL6 and IL10 activity. Overall, Th1 skewed response may well be due to oxidative stress mediated nuclear factor κ-light chain enhancer of activated B cells (NFκB) which enhances the transcription of pro-inflammatory cytokines. Xenobiotic stress has recently imposed an unprecedented level of threat to wildlife, particularly to sensitive species such as amphibians. Therefore, understanding the interactions between physiological stress and related immune responses is fundamental to conserve these environmental sentinels in the face of emerging eco

  5. Heavy metal mediated innate immune responses of the Indian green frog, Euphlyctis hexadactylus (Anura: Ranidae): Cellular profiles and associated Th1 skewed cytokine response

    Energy Technology Data Exchange (ETDEWEB)

    Jayawardena, Uthpala A.; Ratnasooriya, Wanigasekara D.; Wickramasinghe, Deepthi D.; Udagama, Preethi V., E-mail: dappvr@yahoo.com

    2016-10-01

    Immune cell and cytokine profiles in relation to metal exposure though much studied in mammals has not been adequately investigated in amphibians, due mainly to lack of suitable reagents for cytokine profiling in non-model species. However, interspecies cross reactivity of cytokines permitted us to assay levels of IFNγ, TNFα, IL6 and IL10in a common anuran, the Indian green frog (Euphlyctis hexadactylus), exposed to heavy metals (Cd, Cr, Cu, Zn and Pb, at ~ 5 ppm each) under field and laboratory settings in Sri Lanka. Enumeration of immune cells in blood and melanomacrophages in the liver, assay of serum and hepatic cytokines, and Th1/Th2 cytokine polarisation were investigated. Immune cell counts indicated overall immunosuppression with decreasing total WBC and splenocyte counts while neutrophil/lymphocyte ratio increased with metal exposure, indicating metal mediated stress. Serum IL6 levels of metal exposed frogs reported the highest (~ 9360 pg/mL) of all cytokines tested. Significantly elevated IFNγ production (P < 0.05) was evident in heavy metal exposed frogs. Th1/Th2 cytokine ratio in both serum and liver tissue homogenates was Th1 skewed due to significantly higher production of pro-inflammatory cytokines, IFNγ in serum and TNFα in the liver (P < 0.01).Metal mediated aggregations of melanomacrophages in the liver were positively and significantly (P < 0.05) correlated with the hepatic expression of TNFα, IL6 and IL10 activity. Overall, Th1 skewed response may well be due to oxidative stress mediated nuclear factor κ-light chain enhancer of activated B cells (NFκB) which enhances the transcription of pro-inflammatory cytokines. Xenobiotic stress has recently imposed an unprecedented level of threat to wildlife, particularly to sensitive species such as amphibians. Therefore, understanding the interactions between physiological stress and related immune responses is fundamental to conserve these environmental sentinels in the face of emerging eco

  6. The mediational significance of negative/depressive affect in the relationship of childhood maltreatment and eating disorder features in adolescent psychiatric inpatients.

    Science.gov (United States)

    Hopwood, C J; Ansell, E B; Fehon, D C; Grilo, C M

    2011-03-01

    Childhood maltreatment is a risk factor for eating disorder and negative/depressive affect appears to mediate this relation. However, the specific elements of eating- and body-related psychopathology that are influenced by various forms of childhood maltreatment remain unclear, and investigations among adolescents and men/boys have been limited. This study investigated the mediating role of negative affect/depression across multiple types of childhood maltreatment and eating disorder features in hospitalized adolescent boys and girls. Participants were 148 adolescent psychiatric inpatients who completed an assessment battery including measures of specific forms of childhood maltreatment (sexual, emotional, and physical abuse), negative/depressive affect, and eating disorder features (dietary restriction, binge eating, and body dissatisfaction). Findings suggest that for girls, negative/depressive affect significantly mediates the relationships between childhood maltreatment and eating disorder psychopathology, although effects varied somewhat across types of maltreatment and eating disorder features. Generalization of mediation effects to boys was limited.

  7. Parvalbumin overexpression alters immune-mediated increases in intracellular calcium, and delays disease onset in a transgenic model of familial amyotrophic lateral sclerosis

    Science.gov (United States)

    Beers, D. R.; Ho, B. K.; Siklos, L.; Alexianu, M. E.; Mosier, D. R.; Mohamed, A. H.; Otsuka, Y.; Kozovska, M. E.; McAlhany, R. E.; Smith, R. G.; hide

    2001-01-01

    Intracellular calcium is increased in vulnerable spinal motoneurons in immune-mediated as well as transgenic models of amyotrophic lateral sclerosis (ALS). To determine whether intracellular calcium levels are influenced by the calcium-binding protein parvalbumin, we developed transgenic mice overexpressing parvalbumin in spinal motoneurons. ALS immunoglobulins increased intracellular calcium and spontaneous transmitter release at motoneuron terminals in control animals, but not in parvalbumin overexpressing transgenic mice. Parvalbumin transgenic mice interbred with mutant SOD1 (mSOD1) transgenic mice, an animal model of familial ALS, had significantly reduced motoneuron loss, and had delayed disease onset (17%) and prolonged survival (11%) when compared with mice with only the mSOD1 transgene. These results affirm the importance of the calcium binding protein parvalbumin in altering calcium homeostasis in motoneurons. The increased motoneuron parvalbumin can significantly attenuate the immune-mediated increases in calcium and to a lesser extent compensate for the mSOD1-mediated 'toxic-gain-of-function' in transgenic mice.

  8. CD40L induces functional tunneling nanotube networks exclusively in dendritic cells programmed by mediators of type 1 immunity.

    Science.gov (United States)

    Zaccard, Colleen R; Watkins, Simon C; Kalinski, Pawel; Fecek, Ronald J; Yates, Aarika L; Salter, Russell D; Ayyavoo, Velpandi; Rinaldo, Charles R; Mailliard, Robbie B

    2015-02-01

    The ability of dendritic cells (DC) to mediate CD4(+) T cell help for cellular immunity is guided by instructive signals received during DC maturation, as well as the resulting pattern of DC responsiveness to the Th signal, CD40L. Furthermore, the professional transfer of antigenic information from migratory DC to lymph node-residing DC is critical for the effective induction of cellular immune responses. In this study we report that, in addition to their enhanced IL-12p70 producing capacity, human DC matured in the presence of inflammatory mediators of type 1 immunity are uniquely programmed to form networks of tunneling nanotube-like structures in response to CD40L-expressing Th cells or rCD40L. This immunologic process of DC reticulation facilitates intercellular trafficking of endosome-associated vesicles and Ag, but also pathogens such HIV-1, and is regulated by the opposing roles of IFN-γ and IL-4. The initiation of DC reticulation represents a novel helper function of CD40L and a superior mechanism of intercellular communication possessed by type 1 polarized DC, as well as a target for exploitation by pathogens to enhance direct cell-to-cell spread. Copyright © 2015 by The American Association of Immunologists, Inc.

  9. An immune origin of type 2 diabetes?

    DEFF Research Database (Denmark)

    Kolb, H; Mandrup-Poulsen, Thomas

    2005-01-01

    Subclinical, low-grade systemic inflammation has been observed in patients with type 2 diabetes and in those at increased risk of the disease. This may be more than an epiphenomenon. Alleles of genes encoding immune/inflammatory mediators are associated with the disease, and the two major...... environmental factors the contribute to the risk of type 2 diabetes-diet and physical activity-have a direct impact on levels of systemic immune mediators. In animal models, targeting of immune genes enhanced or suppressed the development of obesity or diabetes. Obesity is associated with the infiltration...... and proinflammatory activity of macrophages in adipose tissue, and immune mediators may be important regulators of insulin resistance, mitochondrial function, ectopic lipid storage and beta cell dysfunction or death. Intervention studies targeting these pathways would help to determine the contribution...

  10. Gluten-free diet does not influence the occurrence and the Th1/Th17-Th2 nature of immune-mediated diseases in patients with coeliac disease.

    Science.gov (United States)

    Imperatore, Nicola; Rispo, Antonio; Capone, Pietro; Donetto, Sara; De Palma, Giovanni Domenico; Gerbino, Nicolò; Rea, Matilde; Caporaso, Nicola; Tortora, Raffaella

    2016-07-01

    Coeliac disease (CD) is the most common Th1-mediated enteropathy, frequently associated with other immune-mediated disorders (IMD). To evaluate: (1) the prevalence of IMD at the time of and after CD diagnosis; (2) a possible change in immune response to gluten free diet (GFD); (3) the potential role of GFD in reducing and/or preventing IMD in CD. Prospective study including all consecutive adult CD patients who underwent investigations for Th1-Th17/Th2-IMD at the time of CD diagnosis and after a 5-year follow-up period. 1255 CD were enrolled. Of these, 257 patients (20.5%) showed IMD at the time of CD diagnosis, with 58.4% presenting a Th1/Th17-IMD. After a 5-year follow-up period, 682 patients (54.3%) showed new IMD despite GFD. Of these, 57.3% presented a Th1/Th17-IMD and 42.7% a Th2-IMD (p=0.8). When compared the prevalence of each type of IMD before and after CD diagnosis, we did not identify any significant "switch" from Th1/Th17- to Th2-IMD or vice versa. The number of patients with Th1/Th17- and/or Th2-IMD increased during the GFD period (20.5% vs 54.3%; p<0.01; OR 1.9). The prevalence of IMD at the time of CD diagnosis is high and it seems to increase in the follow-up period despite GFD. Copyright © 2016 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  11. Coping strategies as mediators and moderators between stress and quality of life among parents of children with autistic disorder.

    Science.gov (United States)

    Dardas, Latefa A; Ahmad, Muayyad M

    2015-02-01

    The purpose of this cross-sectional study was to examine coping strategies as mediators and moderators between stress and quality of life (QoL) among parents of children with autistic disorder. The convenience sample of the study consisted of 184 parents of children with autistic disorder. Advanced statistical methods for analyses of mediator and moderator effects of coping strategies were used. The results revealed that 'accepting responsibility' was the only mediator strategy in the relationship between stress and QoL. The results also revealed that only 'seeking social support' and 'escape avoidance' were moderator strategies in the relationship between stress and QoL. This study is perhaps the first to investigate the mediating and moderating effects of coping on QoL of parents of children with autistic disorder. Recommendations for practice and future research are presented. © 2013 John Wiley & Sons, Ltd.

  12. Reliability and responsiveness of a graduated tuning fork in immune mediated polyneuropathies. The Inflammatory Neuropathy Cause and Treatment (INCAT) Group

    NARCIS (Netherlands)

    I.S.J. Merkies (Ingemar); P.I.M. Schmitz (Paul); F.G.A. van der Meché (Frans); P.A. van Doorn (Pieter)

    2000-01-01

    textabstractThe interobserver and intraobserver reliability of the Rydel-Seiffer (RS) graduated tuning fork was evaluated in 113 patients with a clinically stable immune mediated polyneuropathy (83 patients who had had Guillain-Barre syndrome (GBS) in the past, 22 with

  13. Gene Expression by PBMC in Primary Sclerosing Cholangitis: Evidence for Dysregulation of Immune Mediated Genes

    Directory of Open Access Journals (Sweden)

    Christopher A. Aoki

    2006-01-01

    Full Text Available Primary sclerosing cholangitis (PSC is a chronic disease of the bile ducts characterized by an inflammatory infiltrate and obliterative fibrosis. The precise role of the immune system in the pathogenesis of PSC remains unknown. We used RNA microarray analysis to identify immune-related genes and pathways that are differentially expressed in PSC. Messenger RNA (mRNA from peripheral blood mononuclear cells (PBMC was isolated from both patients with PSC and age and sex matched healthy controls. Samples from 5 PSC patients and 5 controls were analyzed by microarray and based upon rigorous statistical analysis of the data, relevant genes were chosen for confirmation by RT-PCR in 10 PSC patients and 10 controls. Using unsupervised hierarchical clustering, gene expression in PSC was statistically different from our control population. Interestingly, genes within the IL-2 receptor beta, IL-6 and MAP Kinase pathways were found to be differently expressed in patients with PSC compared to controls. Further, individual genes, TNF-α induced protein 6 (TNFaip6 and membrane-spanning 4-domains, subfamily A (ms4a were found to be upregulated in PSC while similar to Mothers against decapentaplegic homolog 5 (SMAD 5 was downregulated. In conclusion, several immune-related pathways and genes were differentially expressed in PSC compared to control patients, giving further evidence that this disease is systemic and immune-mediated.

  14. Effects of chronic whole-body gamma irradiation on cell mediated immunity

    International Nuclear Information System (INIS)

    Shifrine, M.; Taylor, N.J.; Wilson, F.D.; DeRock, E.W.; Wiger, N.

    1979-01-01

    The whole blood lymphocyte stimulation test has been used to estimate the effects of chronic, whole-body, gamma irradiation in the dog. At lower dose levels, 0.07 and 0.33 R/day to cumulative dose of about 50 and 250 R, there was no change in cell mediated immunity. Dogs at high dose levels were affected. Dogs which succumbed to aplastic anemia at high doses had reduced immunological responses. Dogs which survived these high doses showed a temporary depression. When aplastic anemia was initially noted, there was a differential response to PHA and Con-A stimulation. The response to the former mitogen was profoundly reduced, but Con-A stimulated cells were unaffected, indicative of the development of radioresistant cell lines. As the dogs progressed toward aplastic anemia, all T lympocytes were negatively affected

  15. Social skills training and play group intervention for children with oppositional-defiant disorders/conduct disorder: Mediating mechanisms in a head-to-head comparison.

    Science.gov (United States)

    Katzmann, Josepha; Goertz-Dorten, Anja; Hautmann, Christopher; Doepfner, Manfred

    2018-01-19

    Social-cognitive information processing, social skills, and social interactions are problem-maintaining variables for aggressive behavior in children. We hypothesized that these factors may be possible mediators of the mechanism of change in the child-centered treatment of conduct disorders (CDs). The aim of the present study (Clinical trials.gov Identifier: NCT01406067) was to examine putative mechanisms of change for the decrease in oppositional-defiant behavior resulting from child-centered treatment of patients with oppositional-defiant disorder (ODD) or CD. 91 children (age 6-12 years) with ODD/CD were randomized to receive either social skills training or to a resource activating play group. Mediator analyses were conducted using path analyses. The assumed mediating effects were not significant. However, alternative models with the putative mediators and outcome in reversed positions showed significant indirect effects of the oppositional-defiant symptoms as mediator for the decrease of disturbance of social-information processing, social skills, and social interactions. The proposed model for mechanisms of change could not be confirmed, with the results pointing to a reversed causality. Variables other than those hypothesized must be responsible for mediating the effects of the intervention on child oppositional-defiant behavior. Possible mechanisms of change were discussed.

  16. The mediating role of mentalizing capacity between parents and peer attachment and adolescent borderline personality disorder.

    Science.gov (United States)

    Beck, Emma; Sharp, Carla; Poulsen, Stig; Bo, Sune; Pedersen, Jesper; Simonsen, Erik

    2017-01-01

    Insecure attachment is a precursor and correlate of borderline personality disorder. According to the mentalization-based theory of borderline personality disorder, the presence of insecure attachment derails the development of the capacity to mentalize, potentially resulting in borderline pathology. While one prior study found support for this notion in adolescents, it neglected a focus on peer attachment. Separation from primary caregivers and formation of stronger bonds to peers are key developmental achievements during adolescence and peer attachment warrants attention as a separate concept. In a cross-sectional study, female outpatients (M age 15.78=, SD = 1.04) who fulfilled DSM-5 criteria for BPD ( N  = 106) or met at least 4 BPD criteria ( N  = 4) completed self-reports on attachment to parents and peers, mentalizing capacity (reflective function) and borderline personality features. Our findings suggest that in a simple mediational model, mentalizing capacity mediated the relation between attachment to peers and borderline features. In the case of attachment to parents, the mediational model was not significant. The current study is the first to evaluate this mediational model with parent and peer attachment as separate concepts and the first to do so in a sample of adolescents who meet full or sub-threshold criteria for borderline personality disorder. Findings incrementally support that mentalizing capacity and attachment insecurity, also in relation to peers, are important concepts in theoretical approaches to the development of borderline personality disorder in adolescence. Clinical implications are discussed.

  17. The risk of eating disorders and bone health in young adults: the mediating role of body composition and fitness.

    Science.gov (United States)

    Garrido-Miguel, Miriam; Torres-Costoso, Ana; Martínez-Andrés, María; Notario-Pacheco, Blanca; Díez-Fernández, Ana; Álvarez-Bueno, Celia; García-Prieto, Jorge Cañete; Martínez-Vizcaíno, Vicente

    2017-11-13

    To analyze the independent relationship between the risk of eating disorders and bone health and to examine whether this relationship is mediated by body composition and cardiorespiratory fitness (CRF). In this cross-sectional study, bone-related variables, lean mass, fat mass (by DXA), risk of eating disorders (SCOFF questionnaire), height, weight, waist circumference and CRF were measured in 487 university students aged 18-30 years from the University of Castilla-La Mancha, Spain. ANCOVA models were estimated to test mean differences in bone mass categorized by body composition, CRF or risk of eating disorders. Subsequently, linear regression models were fitted according to Baron and Kenny's procedures for mediation analysis. The marginal estimated mean ± SE values of total body bone mineral density for the categories "no risk of eating disorders" and "risk of eating disorders" were 1.239 ± 0.126 eating disorders and bone health in young adults. Body composition and CRF mediate the association between the risk of eating disorders and bone health. These findings highlight the importance of maintaining a healthy weight and good CRF for the prevention of the development of eating disorders and for the maintenance of good bone health in young adults. Level V, cross-sectional descriptive study.

  18. The Interaction between the Immune System and Epigenetics in the Etiology of Autism Spectrum Disorders.

    Science.gov (United States)

    Nardone, Stefano; Elliott, Evan

    2016-01-01

    Recent studies have firmly established that the etiology of autism includes both genetic and environmental components. However, we are only just beginning to elucidate the environmental factors that might be involved in the development of autism, as well as the molecular mechanisms through which they function. Mounting epidemiological and biological evidence suggest that prenatal factors that induce a more activated immune state in the mother are involved in the development of autism. In parallel, molecular studies have highlighted the role of epigenetics in brain development as a process susceptible to environmental influences and potentially causative of autism spectrum disorders (ASD). In this review, we will discuss converging evidence for a multidirectional interaction between immune system activation in the mother during pregnancy and epigenetic regulation in the brain of the fetus that may cooperate to produce an autistic phenotype. This interaction includes immune factor-induced changes in epigenetic signatures in the brain, dysregulation of epigenetic modifications specifically in genomic regions that encode immune functions, and aberrant epigenetic regulation of microglia. Overall, the interaction between immune system activation in the mother and the subsequent epigenetic dysregulation in the developing fetal brain may be a main consideration for the environmental factors that cause autism.

  19. Silencing of the Rice Gene LRR1 Compromises Rice Xa21 Transcript Accumulation and XA21-Mediated Immunity.

    Science.gov (United States)

    Caddell, Daniel F; Park, Chang-Jin; Thomas, Nicholas C; Canlas, Patrick E; Ronald, Pamela C

    2017-12-01

    The rice immune receptor XA21 confers resistance to Xanthomonas oryzae pv. oryzae (Xoo), the causal agent of bacterial leaf blight. We previously demonstrated that an auxilin-like protein, XA21 BINDING PROTEIN 21 (XB21), positively regulates resistance to Xoo. To further investigate the function of XB21, we performed a yeast two-hybrid screen. We identified 22 unique XB21 interacting proteins, including LEUCINE-RICH REPEAT PROTEIN 1 (LRR1), which we selected for further analysis. Silencing of LRR1 in the XA21 genetic background (XA21-LRR1Ri) compromises resistance to Xoo compared with control XA21 plants. XA21-LRR1Ri plants have reduced Xa21 transcript levels and reduced expression of genes that serve as markers of XA21-mediated activation. Overexpression of LRR1 is insufficient to alter resistance to Xoo in rice lines lacking XA21. Taken together, our results indicate that LRR1 is required for wild-type Xa21 transcript expression and XA21-mediated immunity.

  20. Allergies and Asthma: Do Atopic Disorders Result from Inadequate Immune Homeostasis arising from Infant Gut Dysbiosis?

    Science.gov (United States)

    Johnson, Christine C; Ownby, Dennis R

    2016-01-01

    Our global hypothesis is that atopic conditions and asthma develop because an individual's immune system is not able to appropriately resolve inflammation resulting from allergen exposures. We propose that the failure to appropriately down-regulate inflammation and produce a toleragenic state results primarily from less robust immune homeostatic processes rather than from a tendency to over-respond to allergenic stimuli. An individual with lower immune homeostatic capacity is unable to rapidly and completely terminate, on average over time, immune responses to innocuous allergens, increasing risk of allergic disease. A lack of robust homeostasis also increases the risk of other inflammatory conditions, such as prolonged respiratory viral infections and obesity, leading to the common co-occurrence of these conditions. Further, we posit that the development of vigorous immune homeostatic mechanisms is an evolutionary adaptation strongly influenced by both 1) exposure to a diverse maternal microbiota through the prenatal period, labor and delivery, and, 2) an orderly assemblage process of the infant's gut microbiota ecosystem shaped by breastfeeding and early exposure to a wide variety of ingested foods and environmental microbes. This early succession of microbial communities together with early allergen exposures orchestrate the development of an immune system with a robust ability to optimally control inflammatory responses and a lowered risk for atopic disorders.

  1. Cesarean Section and Chronic Immune Disorders

    DEFF Research Database (Denmark)

    Sevelsted, Astrid; Stokholm, Jakob; Bønnelykke, Klaus

    2015-01-01

    OBJECTIVES: Immune diseases such as asthma, allergy, inflammatory bowel disease, and type 1 diabetes have shown a parallel increase in prevalence during recent decades in westernized countries. The rate of cesarean delivery has also increased in this period and has been associated with the develo......OBJECTIVES: Immune diseases such as asthma, allergy, inflammatory bowel disease, and type 1 diabetes have shown a parallel increase in prevalence during recent decades in westernized countries. The rate of cesarean delivery has also increased in this period and has been associated...... with the development of some of these diseases. METHODS: Mature children born by cesarean delivery were analyzed for risk of hospital contact for chronic immune diseases recorded in the Danish national registries in the 35-year period 1977-2012. Two million term children participated in the primary analysis. We...... studied childhood diseases with a suspected relation to a deviant immune-maturation and a debut at young age. The effect of cesarean delivery on childhood disease incidences were estimated by means of confounder-adjusted incidence rate ratios with 95% confidence intervals obtained in Poisson regression...

  2. Serum levels of innate immunity cytokines are elevated in dogs with metaphyseal osteopathy (hypertrophic osteodytrophy) during active disease and remission.

    Science.gov (United States)

    Safra, Noa; Hitchens, Peta L; Maverakis, Emanual; Mitra, Anupam; Korff, Courtney; Johnson, Eric; Kol, Amir; Bannasch, Michael J; Pedersen, Niels C; Bannasch, Danika L

    2016-10-15

    Metaphyseal osteopathy (MO) (hypertrophic osteodystrophy) is a developmental disorder of unexplained etiology affecting dogs during rapid growth. Affected dogs experience relapsing episodes of lytic/sclerotic metaphyseal lesions and systemic inflammation. MO is rare in the general dog population; however, some breeds (Weimaraner, Great Dane and Irish Setter) have a much higher incidence, supporting a hereditary etiology. Autoinflammatory childhood disorders of parallel presentation such as chronic recurrent multifocal osteomyelitis (CRMO), and deficiency of interleukin-1 receptor antagonist (DIRA), involve impaired innate immunity pathways and aberrant cytokine production. Given the similarities between these diseases, we hypothesize that MO is an autoinflammatory disease mediated by cytokines involved in innate immunity. To characterize immune dysregulation in MO dogs we measured serum levels of inflammatory markers in 26 MO and 102 control dogs. MO dogs had significantly higher levels (pg/ml) of serum Interleukin-1beta (IL-1β), IL-18, IL-6, Granulocyte-macrophage colony stimulating factor (GM-CSF), C-X-C motif chemokine 10 (CXCL10), tumor necrosis factor (TNF), and IL-10. Notably, recovered MO dogs were not different from dogs during active MO disease, providing a suggestive mechanism for disease predisposition. This is the first documentation of elevated immune markers in MO dogs, uncovering an immune profile similar to comparable autoinflammatory disorders in children. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Maternal steroid therapy for fetuses with second-degree immune-mediated congenital atrioventricular block: a systematic review and meta-analysis.

    Science.gov (United States)

    Ciardulli, Andrea; D'Antonio, Francesco; Magro-Malosso, Elena R; Manzoli, Lamberto; Anisman, Paul; Saccone, Gabriele; Berghella, Vincenzo

    2018-03-07

    To explore the effect of maternal fluorinated steroid therapy on fetuses affected by second-degree immune-mediated congenital atrioventricular block. Studies reporting the outcome of fetuses with second-degree immune-mediated congenital atrioventricular block diagnosed on prenatal ultrasound and treated with fluorinated steroids compared with those not treated were included. The primary outcome was the overall progression of congenital atrioventricular block to either continuous or intermittent third-degree congenital atrioventricular block at birth. Meta-analyses of proportions using random effect model and meta-analyses using individual data random-effect logistic regression were used. Five studies (71 fetuses) were included. The progression rate to congenital atrioventricular block at birth in fetuses treated with steroids was 52% (95% confidence interval 23-79) and in fetuses not receiving steroid therapy 73% (95% confidence interval 39-94). The overall rate of regression to either first-degree, intermittent first-/second-degree or sinus rhythm in fetuses treated with steroids was 25% (95% confidence interval 12-41) compared with 23% (95% confidence interval 8-44) in those not treated. Stable (constant) second-degree congenital atrioventricular block at birth was present in 11% (95% confidence interval 2-27) of cases in the treated group and in none of the newborns in the untreated group, whereas complete regression to sinus rhythm occurred in 21% (95% confidence interval 6-42) of fetuses receiving steroids vs. 9% (95% confidence interval 0-41) of those untreated. There is still limited evidence as to the benefit of administered fluorinated steroids in terms of affecting outcome of fetuses with second-degree immune-mediated congenital atrioventricular block. © 2018 Nordic Federation of Societies of Obstetrics and Gynecology.

  4. Cardiac allograft immune activation: current perspectives

    Directory of Open Access Journals (Sweden)

    Chang D

    2014-12-01

    Full Text Available David Chang, Jon Kobashigawa Cedars-Sinai Heart Institute, Los Angeles, CA, USA Abstract: Heart transplant remains the most durable option for end-stage heart disease. Cardiac allograft immune activation and heart transplant rejection remain among the main complications limiting graft and recipient survival. Mediators of the immune system can cause different forms of rejection post-heart transplant. Types of heart transplant rejection include hyperacute rejection, cellular rejection, antibody-mediated rejection, and chronic rejection. In this review, we will summarize the innate and adaptive immune responses which influence the post-heart transplant recipient. Different forms of rejection and their clinical presentation, detection, and immune monitoring will be discussed. Treatment of heart transplant rejection will be examined. We will discuss potential treatment strategies for preventing rejection post-transplant in immunologically high-risk patients with antibody sensitization. Keywords: heart transplant, innate immunity, adaptive immunity, rejection, immunosuppression

  5. Use of Peer-Mediated Intervention in Children with Attention Deficit Hyperactivity Disorder

    Science.gov (United States)

    Grauvogel-MacAleese, Alicia N.; Wallace, Michele D.

    2010-01-01

    The present experiment extended and replicated the use of functional analysis and a peer-mediated intervention to decrease disruptive behavior displayed by children diagnosed with attention deficit hyperactivity disorder in an afterschool program. After determining that the participants displayed off-task behavior maintained by peer attention via…

  6. Effects of a nutraceutical formulation based on the combination of antioxidants and ω-3 essential fatty acids in the expression of inflammation and immune response mediators in tears from patients with dry eye disorders.

    Science.gov (United States)

    Pinazo-Durán, Maria D; Galbis-Estrada, Carmen; Pons-Vázquez, Sheila; Cantú-Dibildox, Jorge; Marco-Ramírez, Carla; Benítez-del-Castillo, Javier

    2013-01-01

    Women, and those older than 65 years of age, are particularly susceptible to dry eye disorders (DEDs). Inflammation is clearly involved in the pathogenesis of DEDs, and there is mounting evidence on the antioxidant and antiinflammatory properties of essential polyunsaturated fatty acids (EPUFAs). To analyze whether a combined formulation of antioxidants and long-chain EPUFAs may improve the evolution of DEDs. We used a prospective study to address the relationship between risk factors, clinical outcomes, and expression levels of inflammation and immune response (IIR) mediators in human reflex tear samples. Participants included: (1) patients diagnosed with nonsevere DEDs (DED group [DEDG]); and (2) healthy controls (control group [CG]). Participants were randomly assigned to homogeneous subgroups according to daily oral intake (+S) or not (-NS) of antioxidants and long-chain EPUFAs for 3 months. After an interview and a systematized ophthalmic examination, reflex tears were collected simultaneously from both eyes; samples were later subjected to a multiplexed particle-based flow cytometry assay. A specific set of IIR mediators was analyzed. All data were statistically processed through the SPSS 15.0 software program. Significantly higher expressions of interleukin (IL)-1β, IL6, and IL10 and significantly lower vascular endothelial growth factor expressions were found in the DEDG as compared to the CG. In the DEDG, significant negative correlations were detected between the Schirmer test and IL-1β, IL6, IL8, and vascular endothelial growth factor levels, and between the fluorescein breakup time with IL6 and IL8 levels. However, levels of IL-1β, IL6, and IL10 in tears were significantly lower in the DEDG+S versus the DEDG-NS and in the CG+S versus the CG-NS. Subjective symptoms of dry eye significantly improved in the DEDG+S versus the DEDG-NS. IIR mediators showed different expression patterns in DED patients, and these patterns changed in response to a combined

  7. Immune Response to Dengue and Zika.

    Science.gov (United States)

    Ngono, Annie Elong; Shresta, Sujan

    2018-04-26

    Flaviviruses such as dengue (DENV), yellow fever (YFV), West Nile (WNV), and Zika (ZIKV) are human pathogens of global significance. In particular, DENV causes the most prevalent mosquito-borne viral diseases in humans, and ZIKV emerged from obscurity into the spotlight in 2016 as the etiologic agent of congenital Zika syndrome. Owing to the recent emergence of ZIKV as a global pandemic threat, the roles of the immune system during ZIKV infections are as yet unclear. In contrast, decades of DENV research implicate a dual role for the immune system in protection against and pathogenesis of DENV infection. As DENV and ZIKV are closely related, knowledge based on DENV studies has been used to prioritize investigation of ZIKV immunity and pathogenesis, and to accelerate ZIKV diagnostic, therapeutic, and vaccine design. This review discusses the following topics related to innate and adaptive immune responses to DENV and ZIKV: the interferon system as the key mechanism of host defense and viral target for immune evasion, antibody-mediated protection versus antibody-dependent enhancement, and T cell-mediated protection versus original T cell antigenic sin. Understanding the mechanisms that regulate the balance between immune-mediated protection and pathogenesis during DENV and ZIKV infections is critical toward development of safe and effective DENV and ZIKV therapeutics and vaccines.

  8. Is the efficacy of antidepressants in panic disorder mediated by adverse events? A mediational analysis.

    Directory of Open Access Journals (Sweden)

    Irene Bighelli

    Full Text Available It has been hypothesised that the perception of adverse events in placebo-controlled antidepressant clinical trials may induce patients to conclude that they have been randomized to the active arm of the trial, leading to the breaking of blind. This may enhance the expectancies for improvement and the therapeutic response. The main objective of this study is to test the hypothesis that the efficacy of antidepressants in panic disorder is mediated by the perception of adverse events. The present analysis is based on a systematic review of published and unpublished randomised trials comparing antidepressants with placebo for panic disorder. The Baron and Kenny approach was applied to investigate the mediational role of adverse events in the relationship between antidepressants treatment and efficacy. Fourteen placebo-controlled antidepressants trials were included in the analysis. We found that: (a antidepressants treatment was significantly associated with better treatment response (ß = 0.127, 95% CI 0.04 to 0.21, p = 0.003; (b antidepressants treatment was not associated with adverse events (ß = 0.094, 95% CI -0.05 to 0.24, p = 0.221; (c adverse events were negatively associated with treatment response (ß = 0.035, 95% CI -0.06 to -0.05, p = 0.022. Finally, after adjustment for adverse events, the relationship between antidepressants treatment and treatment response remained statistically significant (ß = 0.122, 95% CI 0.01 to 0.23, p = 0.039. These findings do not support the hypothesis that the perception of adverse events in placebo-controlled antidepressant clinical trials may lead to the breaking of blind and to an artificial inflation of the efficacy measures. Based on these results, we argue that the moderate therapeutic effect of antidepressants in individuals with panic disorder is not an artefact, therefore reflecting a genuine effect that doctors can expect to replicate under real-world conditions.

  9. Immune-mediated changes in actinic keratosis following topical treatment with imiquimod 5% cream

    Directory of Open Access Journals (Sweden)

    Raghavan Shalini

    2007-01-01

    Full Text Available Abstract Background The objective of this study was to identify the molecular processes responsible for the anti-lesional activity of imiquimod in subjects with actinic keratosis using global gene expression profiling. Methods A double-blind, placebo-controlled, randomized study was conducted to evaluate gene expression changes in actinic keratosis treated with imiquimod 5% cream. Male subjects (N = 17 with ≥ 5 actinic keratosis on the scalp applied placebo cream or imiquimod 3 times a week on nonconsecutive days for 4 weeks. To elucidate the molecular processes involved in actinic keratosis lesion regression by imiquimod, gene expression analysis using oligonucleotide arrays and real time reverse transcriptase polymerase chain reaction were performed on shave biopsies of lesions taken before and after treatment. Results Imiquimod modulated the expression of a large number of genes important in both the innate and adaptive immune response, including increased expression of interferon-inducible genes with known antiviral, anti-proliferative and immune modulatory activity, as well as various Toll-like receptors. In addition, imiquimod increased the expression of genes associated with activation of macrophages, dendritic cells, cytotoxic T cells, and natural killer cells, as well as activation of apoptotic pathways. Conclusion Data suggest that topical application of imiquimod stimulates cells in the skin to secrete cytokines and chemokines that lead to inflammatory cell influx into the lesions and subsequent apoptotic and immune cell-mediated destruction of lesions.

  10. μ-opioid Receptor-Mediated Alterations of Allergen-Induced Immune Responses of Bronchial Lymph Node Cells in a Murine Model of Stress Asthma

    Directory of Open Access Journals (Sweden)

    Kaori Okuyama

    2012-01-01

    Conclusions: Restraint stress aggravated allergic airway inflammation in association with alterations in local immunity characterized by greater Th2-associated cytokine production and a reduced development of regulatory T cells, mediated by MORs.

  11. Sleep and immune function: glial contributions and consequences of aging.

    Science.gov (United States)

    Ingiosi, Ashley M; Opp, Mark R; Krueger, James M

    2013-10-01

    The reciprocal interactions between sleep and immune function are well-studied. Insufficient sleep induces innate immune responses as evidenced by increased expression of pro-inflammatory mediators in the brain and periphery. Conversely, immune challenges upregulate immunomodulator expression, which alters central nervous system-mediated processes and behaviors, including sleep. Recent studies indicate that glial cells, namely microglia and astrocytes, are active contributors to sleep and immune system interactions. Evidence suggests glial regulation of these interactions is mediated, in part, by adenosine and adenosine 5'-triphosphate actions at purinergic type 1 and type 2 receptors. Furthermore, microglia and astrocytes may modulate declines in sleep-wake behavior and immunity observed in aging. Copyright © 2013. Published by Elsevier Ltd.

  12. Self-stigma and treatment effectiveness in patients with anxiety disorders – a mediation analysis

    Directory of Open Access Journals (Sweden)

    Ociskova M

    2018-01-01

    Full Text Available Marie Ociskova,1 Jan Prasko,1 Kristyna Vrbova,1 Petra Kasalova,1 Michaela Holubova,1 Ales Grambal,1 Klara Machu2 1Department of Psychiatry, Faculty of Medicine and Dentistry, Palacky University, University Hospital, Olomouc, 2Department of Psychology, Faculty of Arts, University of Ostrava, Ostrava, The Czech Republic Goal: The goal of this study was to explore the impact of self-stigma on the treatment outcomes in patients with anxiety disorders and to find possible mediators of this relationship. Method: Two hundred and nine patients with anxiety disorders, who were hospitalized in a psychotherapeutic department, attended the study. The average age was 39.2±12.4 years; two-thirds were women. Most of the patients used a long-term medication. The participants underwent either cognitive behavioral therapy (CBT or short psychodynamic therapy. The selection to the psychotherapy was not randomized. All individuals completed several scales – Beck Depression Inventory, the second edition (BDI-II, Beck Anxiety Inventory (BAI, Dissociative Experience Scale (DES, Sheehan Disability Scale (SDS, subjective Clinical Global Impression (subjCGI, and The Internalized Stigma of Mental Illness Scale (ISMI. A senior psychiatrist filled out the objective CGI (objCGI. Results: The patients significantly improved in the severity of anxiety (BAI, depression (BDI-II, and overall severity of the mental disorder (objCGI. The self-stigma predicted a lower change of the objCGI, but not a change of the anxiety and depressive symptoms severity. Anxiety, depressive symptoms, dissociation, and disability were assessed as possible mediators of the relationship between the self-stigma and the treatment change. None of them were significant. Conclusion: Self-stigma lowers the effectiveness of the combined treatment of anxiety disorders. Future research should explore other possible mediators influencing this relationship. Keywords: self-stigma, anxiety disorders, treatment

  13. Cell-mediated immune responses in the head-associated lymphoid tissues induced to a live attenuated avian coronavirus vaccine.

    Science.gov (United States)

    Gurjar, Rucha S; Gulley, Stephen L; van Ginkel, Frederik W

    2013-12-01

    Humoral immunity is important for controlling viral diseases of poultry, but recent studies have indicated that cytotoxic T cells also play an important role in the immune response to infectious bronchitis virus (IBV). To better understand the cell mediated immune responses to IBV in the mucosal and systemic immune compartments chickens were ocularly vaccinated with IBV. This induced a lymphocyte expansion in head-associated lymphoid tissues (HALT) and to a lesser extent in the spleen, followed by a rapid decline, probably due to homing of lymphocytes out of these organs and contraction of the lymphocyte population. This interpretation was supported by observations that changes in mononuclear cells were mirrored by that in CD3(+)CD44(+) T cell abundance, which presumably represent T effector cells. Increased interferon gamma (IFN-γ) expression was observed in the mucosal immune compartment, i.e., HALT, after primary vaccination, but shifted to the systemic immune compartment after boosting. In contrast, the expression of cytotoxicity-associated genes, i.e., granzyme A (GZMA) and perforin mRNA, remained associated with the HALT after boosting. Thus, an Ark-type IBV ocular vaccine induces a central memory IFN-γ response in the spleen while the cytotoxic effector memory response, as measured by GZMA and perforin mRNA expression, remains associated with CALT after boosting. Copyright © 2013. Published by Elsevier Ltd.

  14. Acquired and innate immunity to polyaromatic hydrocarbons

    International Nuclear Information System (INIS)

    Yusuf, Nabiha; Timares, Laura; Seibert, Megan D.; Xu Hui; Elmets, Craig A.

    2007-01-01

    Polyaromatic hydrocarbons are ubiquitous environmental pollutants that are potent mutagens and carcinogens. Researchers have taken advantage of these properties to investigate the mechanisms by which chemicals cause cancer of the skin and other organs. When applied to the skin of mice, several carcinogenic polyaromatic hydrocarbons have also been shown to interact with the immune system, stimulating immune responses and resulting in the development of antigen-specific T-cell-mediated immunity. Development of cell-mediated immunity is strain-specific and is governed by Ah receptor genes and by genes located within the major histocompatibility complex. CD8 + T cells are effector cells in the response, whereas CD4 + T cells down-regulate immunity. Development of an immune response appears to have a protective effect since strains of mice that develop a cell-mediated immune response to carcinogenic polyaromatic hydrocarbons are less likely to develop tumors when subjected to a polyaromatic hydrocarbon skin carcinogenesis protocol than mice that fail to develop an immune response. With respect to innate immunity, TLR4-deficient C3H/HeJ mice are more susceptible to polyaromatic hydrogen skin tumorigenesis than C3H/HeN mice in which TLR4 is normal. These findings support the hypothesis that immune responses, through their interactions with chemical carcinogens, play an active role in the prevention of chemical skin carcinogenesis during the earliest stages. Efforts to augment immune responses to the chemicals that cause tumors may be a productive approach to the prevention of tumors caused by these agents

  15. Immune-mediated neuropathy with Epstein-Barr virus-positive T-cell lymphoproliferative disease.

    Science.gov (United States)

    Hattori, Takaaki; Arai, Ayako; Yokota, Takanori; Imadome, Ken-Ichi; Tomimitsu, Hiroyuki; Miura, Osamu; Mizusawa, Hidehiro

    2015-01-01

    A 47-year-old man with Epstein-Barr virus (EBV)-positive T/NK- cell lymphoproliferative disease (EBV-T/NK-LPD) developed acute-onset weakness. A nerve conduction study showed a conduction block in both the proximal and most distal segments. Although the patient's neuropathy transiently responded to intravenous immunoglobulin, it was progressive for at least 25 days until the start of prednisolone (PSL) administration, after which it remarkably improved. The neuropathy further improved after allogeneic bone marrow transplantation (BMT). The present patient's clinical course is not consistent with that of typical Guillain-Barré syndrome. This case suggests that EBV-T/NK-LPD can cause progressive immune-mediated neuropathy as a result of chronic EBV antigen presentation and can be treated with PSL and BMT.

  16. Surface receptor Toso controls B cell-mediated regulation of T cell immunity.

    Science.gov (United States)

    Yu, Jinbo; Duong, Vu Huy Hoang; Westphal, Katrin; Westphal, Andreas; Suwandi, Abdulhadi; Grassl, Guntram A; Brand, Korbinian; Chan, Andrew C; Föger, Niko; Lee, Kyeong-Hee

    2018-05-01

    The immune system is tightly controlled by regulatory processes that allow for the elimination of invading pathogens, while limiting immunopathological damage to the host. In the present study, we found that conditional deletion of the cell surface receptor Toso on B cells unexpectedly resulted in impaired proinflammatory T cell responses, which led to impaired immune protection in an acute viral infection model and was associated with reduced immunopathological tissue damage in a chronic inflammatory context. Toso exhibited its B cell-inherent immunoregulatory function by negatively controlling the pool of IL-10-competent B1 and B2 B cells, which were characterized by a high degree of self-reactivity and were shown to mediate immunosuppressive activity on inflammatory T cell responses in vivo. Our results indicate that Toso is involved in the differentiation/maintenance of regulatory B cells by fine-tuning B cell receptor activation thresholds. Furthermore, we showed that during influenza A-induced pulmonary inflammation, the application of Toso-specific antibodies selectively induced IL-10-competent B cells at the site of inflammation and resulted in decreased proinflammatory cytokine production by lung T cells. These findings suggest that Toso may serve as a novel therapeutic target to dampen pathogenic T cell responses via the modulation of IL-10-competent regulatory B cells.

  17. Immune Interventions to Eliminate the HIV Reservoir.

    Science.gov (United States)

    Hsu, Denise C; Ananworanich, Jintanat

    2017-10-26

    Inducing HIV remission is a monumental challenge. A potential strategy is the "kick and kill" approach where latently infected cells are first activated to express viral proteins and then eliminated through cytopathic effects of HIV or immune-mediated killing. However, pre-existing immune responses to HIV cannot eradicate HIV infection due to the presence of escape variants, inadequate magnitude, and breadth of responses as well as immune exhaustion. The two major approaches to boost immune-mediated elimination of infected cells include enhancing cytotoxic T lymphocyte mediated killing and harnessing antibodies to eliminate HIV. Specific strategies include increasing the magnitude and breadth of T cell responses through therapeutic vaccinations, reversing the effects of T cell exhaustion using immune checkpoint inhibition, employing bispecific T cell targeting immunomodulatory proteins or dual-affinity re-targeting molecules to direct cytotoxic T lymphocytes to virus-expressing cells and broadly neutralizing antibody infusions. Methods to steer immune responses to tissue sites where latently infected cells are located need to be further explored. Ultimately, strategies to induce HIV remission must be tolerable, safe, and scalable in order to make a global impact.

  18. Dynamic range of Nef-mediated evasion of HLA class II-restricted immune responses in early HIV-1 infection.

    Science.gov (United States)

    Mahiti, Macdonald; Brumme, Zabrina L; Jessen, Heiko; Brockman, Mark A; Ueno, Takamasa

    2015-07-31

    HLA class II-restricted CD4(+) T lymphocytes play an important role in controlling HIV-1 replication, especially in the acute/early infection stage. But, HIV-1 Nef counteracts this immune response by down-regulating HLA-DR and up-regulating the invariant chain associated with immature HLA-II (Ii). Although functional heterogeneity of various Nef activities, including down-regulation of HLA class I (HLA-I), is well documented, our understanding of Nef-mediated evasion of HLA-II-restricted immune responses during acute/early infection remains limited. Here, we examined the ability of Nef clones from 47 subjects with acute/early progressive infection and 46 subjects with chronic progressive infection to up-regulate Ii and down-regulate HLA-DR and HLA-I from the surface of HIV-infected cells. HLA-I down-regulation function was preserved among acute/early Nef clones, whereas both HLA-DR down-regulation and Ii up-regulation functions displayed relatively broad dynamic ranges. Nef's ability to down-regulate HLA-DR and up-regulate Ii correlated positively at this stage, suggesting they are functionally linked in vivo. Acute/early Nef clones also exhibited higher HLA-DR down-regulation and lower Ii up-regulation functions compared to chronic Nef clones. Taken together, our results support enhanced Nef-mediated HLA class II immune evasion activities in acute/early compared to chronic infection, highlighting the potential importance of these functions following transmission. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Evaluation of humoral and cell-mediated inducible immunity to Haemophilus ducreyi in an animal model of chancroid.

    Science.gov (United States)

    Desjardins, M; Filion, L G; Robertson, S; Kobylinski, L; Cameron, D W

    1996-01-01

    To study the mechanisms of inducible immunity to Haemophilus ducreyi infection in the temperature-dependent rabbit model of chancroid, we conducted passive immunization experiments and characterized the inflammatory infiltrate of chancroidal lesions. Polyclonal immunoglobulin G was purified from immune sera raised against H. ducreyi 35000 whole-cell lysate or a pilus preparation and from naive control rabbits. Rabbits were passively immunized with 24 or 48 mg of purified polyclonal immunoglobulin G intravenously, followed 24 h after infusion by homologous titered infectious challenge. Despite titratable antibody, no significant difference in infection or disease was observed. We then evaluated the immunohistology of lesions produced by homologous-strain challenge in sham-immunized rabbits and those protectively vaccinated by pilus preparation immunization. Immunohistochemical stains for CD5 and CD4 T-lymphocyte markers were performed on lesion sections 4, 10, 15, and 21 days from infection. Lesions of pilus preparation vaccinees compared with those of controls had earlier infiltration with significantly more T lymphocytes (CD5+) and with a greater proportion of CD4+ T lymphocytes at day 4 (33% +/- 55% versus 9.7% +/- 2%; P = 0.002), corroborating earlier sterilization (5.0 +/- 2 versus 13.7 +/- 0.71 days; P < 0.001) and lesion resolution. Intraepithelial challenge of pilus-vaccinated rabbits with 100 micrograms of the pilus preparation alone produced indurated lesions within 48 h with lymphoid and plasmacytoid infiltration, edema, and extravasation of erythrocytes. We conclude that passive immunization may not confer a vaccine effect in this model and that active vaccination with a pilus preparation induces a delayed-type hypersensitivity skin test response and confers protection through cell-mediated immunity seen as an amplified lymphocytic infiltrate and accelerated maturation of the T-lymphocyte response. PMID:8613391

  20. Cutaneous Alternaria infectoria infection in a dog in association with therapeutic immunosuppression for the management of immune-mediated haemolytic anaemia

    NARCIS (Netherlands)

    Dedola, C.; Stuart, A.P.G.; Ridyard, A.E.; Else, R.W.; Van den Broek, T.; Choi, J.S.; de Hoog, G.S.; Thoday, K.L.

    2010-01-01

    A 4-year-old, ovariohysterectomized, English springer spaniel on immunosuppressive therapy was re-examined for the review of its immune-mediated haemolytic anaemia and the recent development of skin lesions. For the 3 months since hospital discharge, the dog had been receiving 1.3 mg/kg prednisolone

  1. Does stress mediate the development of substance use disorders among youth transitioning to young adulthood?

    Science.gov (United States)

    Cornelius, Jack; Kirisci, Levent; Reynolds, Maureen; Tarter, Ralph

    2014-05-01

    Stress is a well-documented factor in the development of addiction. However, no longitudinal studies to date have assessed the role of stress in mediating the development of substance use disorders (SUD). Our previous results have demonstrated that a measure called Transmissible Liability Index (TLI) assessed during pre-adolescent years serves as a significant predictor of risk for substance use disorder among young adults. However, it remains unclear whether life stress mediates the relationship between TLI and SUD, or whether stress predicts SUD. We conducted a longitudinal study involving 191 male subjects to assess whether life stress mediates the relationship between TLI as assessed at age 10-12 and subsequent development of SUD at age 22, after controlling for other relevant factors. Logistic regression demonstrated that the development of SUD at age 22 was associated with stress at age 19. A path analysis demonstrated that stress at age 19 significantly predicted SUD at age 22. However, stress did not mediate the relationship between the TLI assessed at age 10-12 and SUD in young adulthood. These findings confirm that stress plays a role in the development of SUD, but also shows that stress does not mediate the development of SUD. Further studies are warranted to clarify the role of stress in the etiology of SUD.

  2. Regulation of T cell immunity in atopic dermatitis by microbes: The Yin and Yang of cutaneous inflammation

    Directory of Open Access Journals (Sweden)

    Tilo eBiedermann

    2015-07-01

    Full Text Available Atopic dermatitis (AD is a chronic inflammatory skin disease predominantly mediated by T helper cells. While numerous adaptive immune mechanisms in AD pathophysiology have been elucidated in detail, deciphering the impact of innate immunity in AD pathogenesis has made substantial progress in recent years and is currently a fast evolving field. As innate and adaptive immunity are intimately linked cross-talks between these two branches of the immune system are critically influencing the resulting immune response and disease. Innate immune recognition of the cutaneous microbiota was identified to substantially contribute to immune homeostasis and shaping of protective adaptive immunity in the absence of inflammation. Disturbances in the composition of the skin microbiome with reduced microbial diversity and overabundance of Staphylococcus spp. have been shown to be associated with AD inflammation. Distinct S. aureus associated microbial associated molecular patterns (MAMPs binding to TLR2 heterodimers could be identified to initiate long lasting cutaneous inflammation driven by T helper cells and consecutively local immune suppression by induction of myeloid derived suppressor cells (MDSC further favoring secondary skin infections as often seen in AD patients. Moreover dissecting cellular and molecular mechanisms in cutaneous innate immune sensing in AD pathogenesis paved the way for exploiting regulatory and anti-inflammatory pathways to attenuate skin inflammation. Activation of the innate immune system by MAMPs of non-pathogenic bacteria on AD skin alleviated cutaneous inflammation. The induction of tolerogenic dendritic cells, Interleukin-10 expression and regulatory Tr1 cells were shown to mediate this beneficial effect. Thus, activation of innate immunity by MAMPs of non-pathogenic bacteria for induction of regulatory T cell phenotypes seems to be a promising strategy for treatment of inflammatory skin disorders as atopic dermatitis. These

  3. Cytokines as mediators of depression: what can we learn from animal studies?

    Science.gov (United States)

    Dunn, Adrian J; Swiergiel, Artur H; de Beaurepaire, Renaud

    2005-01-01

    It has recently been postulated that cytokines may cause depressive illness in man. This hypothesis is based on the following observations: 1. Treatment of patients with cytokines can produce symptoms of depression; 2. Activation of the immune system is observed in many depressed patients; 3. Depression occurs more frequently in those with medical disorders associated with immune dysfunction; 4. Activation of the immune system, and administration of endotoxin (LPS) or interleukin-1 (IL-1) to animals induces sickness behavior, which resembles depression, and chronic treatment with antidepressants has been shown to inhibit sickness behavior induced by LPS; 5. Several cytokines can activate the hypothalamo-pituitary-adrenocortical axis (HPAA), which is commonly activated in depressed patients; 6. Some cytokines activates cerebral noradrenergic systems, also commonly observed in depressed patients; 7. Some cytokines activate brain serotonergic systems, which have been implicated in major depressive illness and its treatment. The evidence for each of these tenets is reviewed and evaluated along with the effects of cytokines in classical animal tests of depression. Although certain sickness behaviors resemble the symptoms of depression, they are not identical and each has distinct features. Thus the value of sickness behavior as an animal model of major depressive disorder is limited, so that care should be taken in extrapolating results from the model to the human disorder. Nevertheless, the model may provide insight into the etiology and the mechanisms underlying some symptoms of major depressive disorder. It is concluded that immune activation and cytokines may be involved in depressive symptoms in some patients. However, cytokines do not appear to be essential mediators of depressive illness.

  4. MicroRNA-mediated down-regulation of NKG2D ligands contributes to glioma immune escape.

    Science.gov (United States)

    Codo, Paula; Weller, Michael; Meister, Gunter; Szabo, Emese; Steinle, Alexander; Wolter, Marietta; Reifenberger, Guido; Roth, Patrick

    2014-09-15

    Malignant gliomas are intrinsic brain tumors with a dismal prognosis. They are well-adapted to hypoxic conditions and poorly immunogenic. NKG2D is one of the major activating receptors of natural killer (NK) cells and binds to several ligands (NKG2DL). Here we evaluated the impact of miRNA on the expression of NKG2DL in glioma cells including stem-like glioma cells. Three of the candidate miRNA predicted to target NKG2DL were expressed in various glioma cell lines as well as in glioblastomas in vivo: miR-20a, miR-93 and miR-106b. LNA inhibitor-mediated miRNA silencing up-regulated cell surface NKG2DL expression, which translated into increased susceptibility to NK cell-mediated lysis. This effect was reversed by neutralizing NKG2D antibodies, confirming that enhanced lysis upon miRNA silencing was mediated through the NKG2D system. Hypoxia, a hallmark of glioblastomas in vivo, down-regulated the expression of NKG2DL on glioma cells, associated with reduced susceptibility to NK cell-mediated lysis. This process, however, was not mediated through any of the examined miRNA. Accordingly, both hypoxia and the expression of miRNA targeting NKG2DL may contribute to the immune evasion of glioma cells at the level of the NKG2D recognition pathway. Targeting miRNA may therefore represent a novel approach to increase the immunogenicity of glioblastoma.

  5. Clinical Correlates and Mediators of Self-Concept in Youth with Chronic Tic Disorders.

    Science.gov (United States)

    Hanks, Camille E; McGuire, Joseph F; Lewin, Adam B; Storch, Eric A; Murphy, Tanya K

    2016-02-01

    This study investigated the clinical correlates and mediators of self-concept in youth with Chronic Tic Disorders (CTD). Ninety-seven youth aged 6-17 (M = 11.1 ± 2.89; 79.4 % male) with CTD were administered the Yale Global Tic Severity Scale, the Piers-Harris Children's Self-Concept Scale-Second Edition, and self-report and clinician-administered measures assessing behavioral and psychological difficulties and comorbid conditions. Youth with CTD had a slightly below average level of self-concept, with 20 % (n = 19) exhibiting low self-concept. Youth with CTD-only had greater self-concept relative to youth with CTD and obsessive-compulsive disorder (OCD) (p = 0.04) or CTD, OCD, and attention deficit hyperactivity disorder (ADHD) combined (p = 0.009). Medium-to-large-sized associations were observed between youth's self-concept and clinical characteristics (e.g., severity of ADHD, OCD and depressive symptoms). Youth's self-concept partially mediated the relationship between tic severity and depressive symptom severity, and the interaction between tic impairment and youth's reliance on avoidant coping strategies moderated youth's self-concept. Implications, limitations, and recommendations for future interventions are discussed.

  6. Detection of herpes simplex virus type 2 (HSV-2) -specific cell-mediated immune responses in guinea pigs during latent HSV-2 genital infection.

    Science.gov (United States)

    Perry, Clarice L; Banasik, Brianne N; Gorder, Summer R; Xia, Jingya; Auclair, Sarah; Bourne, Nigel; Milligan, Gregg N

    2016-12-01

    Genital infections with herpes simplex virus type 2 (HSV-2) are a source of considerable morbidity and are a health concern for newborns exposed to virus during vaginal delivery. Additionally, HSV-2 infection diminishes the integrity of the vaginal epithelium resulting in increased susceptibility of individuals to infection with other sexually transmitted pathogens. Understanding immune protection against HSV-2 primary infection and immune modulation of virus shedding events following reactivation of the virus from latency is important for the development of effective prophylactic and therapeutic vaccines. Although the murine model of HSV-2 infection is useful for understanding immunity following immunization, it is limited by the lack of spontaneous reactivation of HSV-2 from latency. Genital infection of guinea pigs with HSV-2 accurately models the disease of humans including the spontaneous reactivation of HSV-2 from latency and provides a unique opportunity to examine virus-host interactions during latency. Although the guinea pig represents an accurate model of many human infections, relatively few reagents are available to study the immunological response to infection. To analyze the cell-mediated immune response of guinea pigs at extended periods of time after establishment of HSV-2 latency, we have modified flow-cytometry based proliferation assays and IFN-γ ELISPOT assays to detect and quantify HSV-specific cell-mediated responses during latent infection of guinea pigs. Here we demonstrate that a combination of proliferation and ELISPOT assays can be used to quantify and characterize effecter function of virus-specific immune memory responses during HSV-latency. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Does perfectionism in bipolar disorder pedigrees mediate associations between anxiety/stress and mood symptoms?

    Science.gov (United States)

    Corry, Justine; Green, Melissa; Roberts, Gloria; Fullerton, Janice M; Schofield, Peter R; Mitchell, Philip B

    2017-10-06

    Bipolar disorder (BD) and the anxiety disorders are highly comorbid. The present study sought to examine perfectionism and goal attainment values as potential mechanisms of known associations between anxiety, stress and BD symptomatology. Measures of perfectionism and goal attainment values were administered to 269 members of BD pedigrees, alongside measures of anxiety and stress, and BD mood symptoms. Regression analyses were used to determine whether perfectionism and goal attainment values were related to depressive and (hypo)manic symptoms; planned mediation models were then used to test the potential for perfectionism to mediate associations between anxiety/stress and BD symptoms. Self-oriented perfectionism was associated with chronic depressive symptoms; socially-prescribed perfectionism was associated with chronic (hypo)manic symptoms. Self-oriented perfectionism mediated relationships between anxiety/stress and chronic depressive symptoms even after controlling for chronic hypomanic symptoms. Similarly, socially-prescribed perfectionism mediated associations between anxiety/stress and chronic hypomanic symptoms after controlling for chronic depressive symptoms. Goal attainment beliefs were not uniquely associated with chronic depressive or (hypo)manic symptoms. Cognitive styles of perfectionism may explain the co-occurrence of anxiety and stress symptoms and BD symptoms. Psychological interventions for anxiety and stress symptoms in BD might therefore address perfectionism in attempt to reduce depression and (hypo)manic symptoms in addition to appropriate pharmacotherapy.

  8. Attention deficit hyperactivity disorder may be a highly inflammation and immune-associated disease (Review).

    Science.gov (United States)

    Zhou, Rong-Yi; Wang, Jiao-Jiao; Sun, Ji-Chao; You, Yue; Ying, Jing-Nang; Han, Xin-Min

    2017-10-01

    Attention deficit hyperactivity disorder (ADHD) is a common behavioral disorder. Previous research has indicated that genetic factors, family education, environment and dietary habits are associated with ADHD. It has been determined that in China many children with ADHD also have allergic rhinitis or asthma. These children are more susceptible to the common cold or upper respiratory infections compared with normal healthy children. Additionally, the common cold or an upper respiratory infection may lead to disease recurrence or worsen the symptoms in these children. Previous studies have determined that ADHD may have a close association with allergic disease. Based on the clinically observed phenomenon and previous studies, it was hypothesized that ADHD is a high inflammation and immune‑associated disease. Therefore, the authors designed clinical and animal experiments to test this hypothesis in the future. Immune system disorders may be a novel part of the etiology of ADHD. The current report may have implications for future clinical practice.

  9. Human Milk Oligosaccharides and Associations With Immune-Mediated Disease and Infection in Childhood: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Alice M. Doherty

    2018-04-01

    Full Text Available Complex sugars found in breastmilk, human milk oligosaccharides (HMOs, may assist in early-life immune programming and prevention against infectious diseases. This study aimed to systematically review the associations between maternal levels of HMOs and development of immune-mediated or infectious diseases in the offspring. PubMed and EMBASE databases were searched (last search on 22 February 2018 according to a predetermined search strategy. Original studies published in English examining the effect of HMOs on immune-mediated and infectious disease were eligible for inclusion. Of 847 identified records, 10 articles from 6 original studies were included, with study quality ranging from low to high. Of three studies to examine allergic disease outcomes, one reported a protective effect against cow’s milk allergy (CMA by 18 months of age associated with lower lacto-N-fucopentaose (LNFP III concentrations (OR: 6.7, 95% CI 2.0–22. Another study found higher relative abundance of fucosyloligosaccharides was associated with reduced diarrhea incidence by 2 years, due to (i stable toxin-E. coli infection (p = 0.04 and (ii “all causes” (p = 0.042. Higher LNFP-II concentrations were associated with (i reduced cases of gastroenteritis and respiratory tract infections at 6 weeks (p = 0.004, p = 0.010 and 12 weeks (p = 0.038, p = 0.038 and (ii reduced HIV transmission (OR: 0.45; 95% CI: 0.21–0.97 and mortality risk among HIV-exposed, uninfected infants (HR: 0.33; 95% CI: 0.14–0.74 by 24 months. Due to heterogeneity of the outcomes reported, pooling of results was not possible. There was limited evidence that low concentrations of LNFP-III are associated with CMA and that higher fucosyloligosaccharide levels protect infants against infectious disease. Further research is needed.

  10. Human Milk Oligosaccharides and Associations With Immune-Mediated Disease and Infection in Childhood: A Systematic Review.

    Science.gov (United States)

    Doherty, Alice M; Lodge, Caroline J; Dharmage, Shyamali C; Dai, Xin; Bode, Lars; Lowe, Adrian J

    2018-01-01

    Complex sugars found in breastmilk, human milk oligosaccharides (HMOs), may assist in early-life immune programming and prevention against infectious diseases. This study aimed to systematically review the associations between maternal levels of HMOs and development of immune-mediated or infectious diseases in the offspring. PubMed and EMBASE databases were searched (last search on 22 February 2018) according to a predetermined search strategy. Original studies published in English examining the effect of HMOs on immune-mediated and infectious disease were eligible for inclusion. Of 847 identified records, 10 articles from 6 original studies were included, with study quality ranging from low to high. Of three studies to examine allergic disease outcomes, one reported a protective effect against cow's milk allergy (CMA) by 18 months of age associated with lower lacto- N -fucopentaose (LNFP) III concentrations (OR: 6.7, 95% CI 2.0-22). Another study found higher relative abundance of fucosyloligosaccharides was associated with reduced diarrhea incidence by 2 years, due to (i) stable toxin- E. coli infection ( p  = 0.04) and (ii) "all causes" ( p  = 0.042). Higher LNFP-II concentrations were associated with (i) reduced cases of gastroenteritis and respiratory tract infections at 6 weeks ( p  = 0.004, p  = 0.010) and 12 weeks ( p  = 0.038, p  = 0.038) and (ii) reduced HIV transmission (OR: 0.45; 95% CI: 0.21-0.97) and mortality risk among HIV-exposed, uninfected infants (HR: 0.33; 95% CI: 0.14-0.74) by 24 months. Due to heterogeneity of the outcomes reported, pooling of results was not possible. There was limited evidence that low concentrations of LNFP-III are associated with CMA and that higher fucosyloligosaccharide levels protect infants against infectious disease. Further research is needed.

  11. IFNG-mediated immune responses enhance autophagy against Mycobacterium tuberculosis antigens in patients with active tuberculosis

    Science.gov (United States)

    Rovetta, Ana I; Peña, Delfina; Hernández Del Pino, Rodrigo E; Recalde, Gabriela M; Pellegrini, Joaquín; Bigi, Fabiana; Musella, Rosa M; Palmero, Domingo J; Gutierrez, Marisa; Colombo, María I; García, Verónica E

    2015-01-01

    Protective immunity against Mycobacterium tuberculosis (Mtb) requires IFNG. Besides, IFNG-mediated induction of autophagy suppresses survival of virulent Mtb in macrophage cell lines. We investigated the contribution of autophagy to the defense against Mtb antigen (Mtb-Ag) in cells from tuberculosis patients and healthy donors (HD). Patients were classified as high responders (HR) if their T cells produced significant IFNG against Mtb-Ag; and low responders (LR) when patients showed weak or no T cell responses to Mtb-Ag. The highest autophagy levels were detected in HD cells whereas the lowest quantities were observed in LR patients. Interestingly, upon Mtb-Ag stimulation, we detected a positive correlation between IFNG and MAP1LC3B-II/LC3-II levels. Actually, blockage of Mtb-Ag-induced IFNG markedly reduced autophagy in HR patients whereas addition of limited amounts of IFNG significantly increased autophagy in LR patients. Therefore, autophagy collaborates with human immune responses against Mtb in close association with specific IFNG secreted against the pathogen. PMID:25426782

  12. Immunity to fish rhabdoviruses

    Science.gov (United States)

    Purcell, Maureen K.; Laing, Kerry J.; Winton, James R.

    2012-01-01

    Members of the family Rhabdoviridae are single-stranded RNA viruses and globally important pathogens of wild and cultured fish and thus relatively well studied in their respective hosts or other model systems. Here, we review the protective immune mechanisms that fish mount in response to rhabdovirus infections. Teleost fish possess the principal components of innate and adaptive immunity found in other vertebrates. Neutralizing antibodies are critical for long-term protection from fish rhabdoviruses, but several studies also indicate a role for cell-mediated immunity. Survival of acute rhabdoviral infection is also dependent on innate immunity, particularly the interferon (IFN) system that is rapidly induced in response to infection. Paradoxically, rhabdoviruses are sensitive to the effects of IFN but virulent rhabdoviruses can continue to replicate owing to the abilities of the matrix (M) protein to mediate host-cell shutoff and the non-virion (NV) protein to subvert programmed cell death and suppress functional IFN. While many basic features of the fish immune response to rhabdovirus infections are becoming better understood, much less is known about how factors in the environment affect the ecology of rhabdovirus infections in natural populations of aquatic animals.

  13. Immunity to fish rhabdoviruses.

    Science.gov (United States)

    Purcell, Maureen K; Laing, Kerry J; Winton, James R

    2012-01-01

    Members of the family Rhabdoviridae are single-stranded RNA viruses and globally important pathogens of wild and cultured fish and thus relatively well studied in their respective hosts or other model systems. Here, we review the protective immune mechanisms that fish mount in response to rhabdovirus infections. Teleost fish possess the principal components of innate and adaptive immunity found in other vertebrates. Neutralizing antibodies are critical for long-term protection from fish rhabdoviruses, but several studies also indicate a role for cell-mediated immunity. Survival of acute rhabdoviral infection is also dependent on innate immunity, particularly the interferon (IFN) system that is rapidly induced in response to infection. Paradoxically, rhabdoviruses are sensitive to the effects of IFN but virulent rhabdoviruses can continue to replicate owing to the abilities of the matrix (M) protein to mediate host-cell shutoff and the non‑virion (NV) protein to subvert programmed cell death and suppress functional IFN. While many basic features of the fish immune response to rhabdovirus infections are becoming better understood, much less is known about how factors in the environment affect the ecology of rhabdovirus infections in natural populations of aquatic animals.

  14. Immunity to Fish Rhabdoviruses

    Directory of Open Access Journals (Sweden)

    Maureen K. Purcell

    2012-01-01

    Full Text Available Members of the family Rhabdoviridae are single-stranded RNA viruses and globally important pathogens of wild and cultured fish and thus relatively well studied in their respective hosts or other model systems. Here, we review the protective immune mechanisms that fish mount in response to rhabdovirus infections. Teleost fish possess the principal components of innate and adaptive immunity found in other vertebrates. Neutralizing antibodies are critical for long-term protection from fish rhabdoviruses, but several studies also indicate a role for cell-mediated immunity. Survival of acute rhabdoviral infection is also dependent on innate immunity, particularly the interferon (IFN system that is rapidly induced in response to infection. Paradoxically, rhabdoviruses are sensitive to the effects of IFN but virulent rhabdoviruses can continue to replicate owing to the abilities of the matrix (M protein to mediate host-cell shutoff and the non‑virion (NV protein to subvert programmed cell death and suppress functional IFN. While many basic features of the fish immune response to rhabdovirus infections are becoming better understood, much less is known about how factors in the environment affect the ecology of rhabdovirus infections in natural populations of aquatic animals.

  15. Immune-mediated haemolytic anaemia : possible association with Ancylostoma caninum infection in three dogs : case report

    Directory of Open Access Journals (Sweden)

    R.G. Lobetti

    2001-07-01

    Full Text Available Immune-mediated haemolytic anaemia (IMHA may be primary or secondary. In primary IMHA, no underlying cause can be found, whereas secondary IMHA is triggered by an underlying cause, such as neoplasia, infectious diseases, or drugs. This paper describes 3 dogs with typical signs of IMHA that was possibly associated with the intestinal parasite Ancylostoma caninum. As intestinal helminths can be difficult to diagnose on faecal examination, it would be pertinent to performmultiple faecal examinations on any animal that has IMHA with no apparent underlying cause, as part of the therapy.

  16. Glycan elongation beyond the mucin associated Tn antigen protects tumor cells from immune-mediated killing

    DEFF Research Database (Denmark)

    Madsen, Caroline B; Lavrsen, Kirstine; Steentoft, Catharina

    2013-01-01

    are recognized as cancer associated truncated glycans, and are expressed in many adenocarcinomas, e.g. breast- and pancreatic cancer cells. To investigate the role of the cancer associated glycan truncations in immune-mediated killing we created glyco-engineered breast- and pancreatic cancer cells expressing...... only the shortest possible mucin-like glycans (Tn and STn). Glyco-engineering was performed by zinc finger nuclease (ZFN) knockout (KO) of the Core 1 enzyme chaperone COSMC, thereby preventing glycan elongation beyond the initial GalNAc residue in O-linked glycans. We find that COSMC KO in the breast...

  17. Immune TB Antibody Phage Display Library as a Tool To Study B Cell Immunity in TB Infections.

    Science.gov (United States)

    Hamidon, Nurul Hamizah; Suraiya, Siti; Sarmiento, Maria E; Acosta, Armando; Norazmi, Mohd Nor; Lim, Theam Soon

    2018-03-01

    B cells and in particular antibodies has always played second fiddle to cellular immunity in regard to tuberculosis (TB). However, recent studies has helped position humoral immunity especially antibodies back into the foray in relation to TB immunity. Therefore, the ability to correlate the natural antibody responses of infected individuals toward TB antigens would help strengthen this concept. Phage display is an intriguing approach that can be utilized to study antibody-mediated responses against a particular infection via harvesting the B cell repertoire from infected individuals. The development of disease-specific antibody libraries or immune libraries is useful to better understand antibody-mediated immune responses against specific disease antigens. This study describes the generation of an immune single-chain variable fragment (scFv) library derived from TB-infected individuals. The immune library with an estimated diversity of 10 9 independent clones was then applied for the identification of monoclonal antibodies against Mycobacterium tuberculosis α-crystalline as a model antigen. Biopanning of the library isolated three monoclonal antibodies with unique gene usage. This strengthens the role of antibodies in TB immunity in addition to the role played by cellular immunity. The developed library can be applied against other TB antigens and aid antibody-derived TB immunity studies in the future.

  18. Depressive and anxiety disorders and short leukocyte telomere length: mediating effects of metabolic stress and lifestyle factors.

    Science.gov (United States)

    Révész, D; Verhoeven, J E; Milaneschi, Y; Penninx, B W J H

    2016-08-01

    Depressive and anxiety disorders are associated with shorter leukocyte telomere length (LTL), an indicator of cellular aging. It is, however, unknown which pathways underlie this association. This study examined the extent to which lifestyle factors and physiological changes such as inflammatory or metabolic alterations mediate the relationship. We applied mediation analysis techniques to data from 2750 participants of the Netherlands Study of Depression and Anxiety. LTL was assessed using quantitative polymerase chain reaction. Independent variables were current depressive (30-item Inventory of Depressive Symptoms - Self Report) and anxiety (21-item Beck's Anxiety Inventory) symptoms and presence of a depressive or anxiety disorder diagnosis based on DSM-IV; mediator variables included physiological stress systems, metabolic syndrome components and lifestyle factors. Short LTL was associated with higher symptom severity (B = -2.4, p = 0.002) and current psychiatric diagnosis (B = -63.3, p = 0.024). C-reactive protein, interleukin-6, waist circumference, triglycerides, high-density lipoprotein cholesterol and cigarette smoking were significant mediators in the relationship between psychopathology and LTL. When all significant mediators were included in one model, the effect sizes of the relationships between LTL and symptom severity and current diagnosis were reduced by 36.7 and 32.7%, respectively, and the remaining direct effects were no longer significant. Pro-inflammatory cytokines, metabolic alterations and cigarette smoking are important mediators of the association between depressive and anxiety disorders and LTL. This calls for future research on intervention programs that take into account lifestyle changes in mental health care settings.

  19. Mediation analysis of severity of needs, service performance and outcomes for patients with mental disorders.

    Science.gov (United States)

    Roux, Paul; Passerieux, Christine; Fleury, Marie-Josée

    2016-12-01

    Needs and service performance assessment are key components in improving recovery among individuals with mental disorders. To test the role of service performance as a mediating factor between severity of patients' needs and outcomes. A total of 339 adults with mental disorders were interviewed. A mediation analysis between severity of needs, service performance (adequacy of help, continuity of care and recovery orientation of services) and outcomes (personal recovery and quality of life) was carried out using structural equation modelling. The structural equation model provided a good fit with the data. An increase in needs was associated with lower service performance and worse outcomes, whereas higher service performance was associated with better outcomes. Service performance partially mediated the effect of patient needs on outcomes. Poorer service performance has a negative impact on outcomes for patients with the highest needs. Ensuring more efficient services for patients with high needs may help improve their recovery and quality of life. © The Royal College of Psychiatrists 2016.

  20. Parental Mediation of Television Viewing and Videogaming of Adolescents with Autism Spectrum Disorder and Their Siblings

    Science.gov (United States)

    Kuo, Melissa H.; Magill-Evans, Joyce; Zwaigenbaum, Lonnie

    2015-01-01

    Adolescents with autism spectrum disorder spend considerable time in media activities. Parents play an important role in shaping adolescents' responses to media. This study explored the mediation strategies that parents of adolescents with autism spectrum disorder used to manage television and video game use, factors associated with their use of…

  1. Systemic RNAi-mediated Gene Silencing in Nonhuman Primate and Rodent Myeloid Cells

    Directory of Open Access Journals (Sweden)

    Tatiana I Novobrantseva

    2012-01-01

    Full Text Available Leukocytes are central regulators of inflammation and the target cells of therapies for key diseases, including autoimmune, cardiovascular, and malignant disorders. Efficient in vivo delivery of small interfering RNA (siRNA to immune cells could thus enable novel treatment strategies with broad applicability. In this report, we develop systemic delivery methods of siRNA encapsulated in lipid nanoparticles (LNP for durable and potent in vivo RNA interference (RNAi-mediated silencing in myeloid cells. This work provides the first demonstration of siRNA-mediated silencing in myeloid cell types of nonhuman primates (NHPs and establishes the feasibility of targeting multiple gene targets in rodent myeloid cells. The therapeutic potential of these formulations was demonstrated using siRNA targeting tumor necrosis factor-α (TNFα which induced substantial attenuation of disease progression comparable to a potent antibody treatment in a mouse model of rheumatoid arthritis (RA. In summary, we demonstrate a broadly applicable and therapeutically relevant platform for silencing disease genes in immune cells.

  2. Immune mediators of sea-cucumber Holothuria tubulosa (Echinodermata) as source of novel antimicrobial and anti-staphylococcal biofilm agents.

    Science.gov (United States)

    Schillaci, Domenico; Cusimano, Maria Grazia; Cunsolo, Vincenzo; Saletti, Rosaria; Russo, Debora; Vazzana, Mirella; Vitale, Maria; Arizza, Vincenzo

    2013-06-24

    The present study aims to investigate coelomocytes, immune mediators cells in the echinoderm Holothuria tubulosa, as an unusual source of antimicrobial and antibiofilm agents. The activity of the 5kDa peptide fraction of the cytosol from H. tubulosa coelomocytes (5-HCC) was tested against a reference group of Gram-negative and Gram-positive human pathogens. Minimal inhibitory concentrations (MICs) ranging from 125 to 500 mg/ml were determined against tested strains. The observed biological activity of 5-HCC could be due to two novel peptides, identified by capillary RP-HPLC/nESI-MS/MS, which present the common chemical-physical characteristics of antimicrobial peptides. Such peptides were chemically synthesized and their antimicrobial activity was tested. The synthetic peptides showed broad-spectrum activity at 12.5 mg/ml against the majority of the tested Gram-positive and Gram-negative strains, and they were also able to inhibit biofilm formation in a significant percentage at a concentration of 3.1 mg/ml against staphylococcal and Pseudomonas aeruginosa strains.The immune mediators in H. tubulosa are a source of novel antimicrobial peptides for the development of new agents against biofilm bacterial communities that are often intrinsically resistant to conventional antibiotics.

  3. Influence of maternal age, gestational age and fetal gender on expression of immune mediators in amniotic fluid

    Directory of Open Access Journals (Sweden)

    Weissenbacher Tobias

    2012-07-01

    Full Text Available Abstract Background Variations in cytokine and immune mediator expression patterns in amniotic fluid due to gestational age, maternal age and fetal gender were investigated. Findings Amniotic fluid samples were obtained from 192 women, 82 with a mid-trimester amniocentesis (median gestational age 17 weeks and 110 with a caesarean section not in labor (median gestational age 39 weeks. Amniotic fluid was screened by commercial ELISAs for the TH1/TH2/TH17 cytokines and immune mediators IL-1 beta, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12, IL-15, IL-17, TNF alpha, GRO-alpha, MIP1alpha, MIP1beta, Histone, and IP10. Analysis was by Bonferroni correction for multiple comparisons. None of the 15 examined cytokines revealed any differences in expression patterns regarding fetal gender. Significant differences were found in IL-4, IL-10, IL-12, TNF- alpha, GRO-alpha and MIP1-beta with respect to gestational age and in GRO-alpha regarding maternal age. Conclusion Cytokines utilized as biomarkers in the diagnosis of intrauterine infections are not influenced in their expression pattern by fetal gender but may vary with respect to maternal age and gestational age.

  4. Prospects for treatment of Porphyromonas gingivalis-mediated disease – immune-based therapy

    Directory of Open Access Journals (Sweden)

    Eric C. Reynolds

    2015-09-01

    Full Text Available Chronic periodontitis is an inflammatory disease of the supporting tissues of the teeth associated with a polymicrobial biofilm (subgingival plaque accreted to the tooth which results in destruction of the tooth's supporting tissues. A characteristic feature of the disease-associated plaque is the emergence of proteolytic species. One of these species, Porphyromonas gingivalis has recently been described as a keystone pathogen as it dysregulates the host immune response to favour the polymicrobial biofilm disrupting homeostasis to cause dysbiosis and disease. The level of P. gingivalis in subgingival plaque above threshold levels (~10% of total bacterial cell load has been demonstrated to predict imminent clinical attachment loss (disease progression in humans. Porphyromonas gingivalis is found as microcolonies in the superficial layers of subgingival plaque adjacent to the periodontal pocket epithelium which helps explain the strong association with underlying tissue inflammation and disease at relatively low proportions (10% of the total bacterial cell load of the plaque. The mouse periodontitis model has been used to show that inflammation is essential to allow establishment of P. gingivalis at the levels in plaque (10% or greater of total bacterial cell load necessary to produce dysbiosis and disease. The extracellular proteinases “gingipains” (RgpA/B and Kgp of P. gingivalis have been implicated as major virulence factors that are critical for dysbiosis and disease. This has resulted in the strategy of targeting the gingipains by vaccination. We have produced a recombinant immunogen which induces an immune response in mice that neutralises the proteolytic and host/bacterial binding functions of the gingipains. Using this immunogen as a therapeutic vaccine in mice already infected with P. gingivalis, we have shown that inflammation and alveolar bone loss can be substantially reduced. The protection was characterised by a predominant Th2

  5. Cell-mediated immune responses differentiate infections with Brucella suis from Yersinia enterocolitica serotype O : 9 in pigs

    DEFF Research Database (Denmark)

    Riber, Ulla; Jungersen, Gregers

    2007-01-01

    Due to almost identical lipopolysaccharide (LPS) O-antigens, infections with Yersinia enterocolitica serotype 0:9 (YeO:9) cause false positive serological reactions (FPSR) in tests for Brucella and thus cause problems in National Brucella surveillance programs. As LPS are strong inducers...... of antibody responses it was hypothesized that cell-mediated immune responses to non-LPS antigens of the two bacteria can be used to separate immune responses to these two biologically very different infections. Following subclinical experimental infections with Brucella suis biovar 2, high interferon......-gamma (IFN-gamma) assay responses with a commercial Brucella melitensis antigen preparation (Brucellergene OCB) preceded the development of antibodies. High IFN-gamma responses in the seven B. suis inoculated pigs with serological evidence of infection were consistent throughout a 20-week postinoculation...

  6. Cell-mediated immune response of synovial fluid lymphocytes to ureaplasma antigen in Reiter's syndrome

    Directory of Open Access Journals (Sweden)

    Pavlica Ljiljana

    2003-01-01

    Full Text Available INTRODUCTION Reiter's syndrome (RS is an seronegative arthritis that occurs after urogenital or enteric infection which in addition with occular and/or mucocutaneous manifestations presents complete form of disease. According to previous understanding arthritis in the RS is the reactive one, which means that it is impossible to isolate its causative agent. However, there are the more and more authors suggesting that arthritis in the urogenital form of disease is caused by the infective agent in the affected joint. This suggestion is based on numerous studies on the presence of Chlmaydia trachomatis and Ureaplasma urealyticum in the inflamed joint by using new diagnostic methods in molecular biology published in the recent literature [1-3]. Besides, numerous studies of the humoral and cell-mediated immune response to "triggering" bacteria in the affected joint have supported previous suggestions [4-7]. Aim of the study was to determine whether synovial fluid T-cells specifically recognize the "triggering" bacteria presumably responsible for the Reiter's syndrome. METHOD The 3H-thymidine uptake procedure for measuring lymphocyte responses was applied to lymphocytes derived concurrently from synovial fluid (SF and from peripheral blood (PB [8]. Ureaplasma antigen and mitogen PHA stimulated lymphocytes in 24 RS patients (24 PB samples, 9 SF samples and the results were compared with those found in 10 patients with rheumatoid arthritis (RA (10 PB samples, 5 SF samples. Preparation of ureaplasma antigen. Ureaplasma was cultured on cell-free liquid medium [9]. Sample of 8 ml was heat-inactivated for 15 minutes at 601C and permanently stirred with magnetic mixer. The sample was centrifuged at 2000 x g for 40 minutes and than deposits carefully carried to other sterile glass tubes (Corex and recentrifuged at 9000 x g for 30 minutes. The deposit was washed 3 times in sterile 0.9% NaCl, and final sediment was resuspended in 1.2 ml sterile 0.9% Na

  7. A longitudinal analysis of the vaginal microbiota and vaginal immune mediators in women from sub-Saharan Africa

    OpenAIRE

    Jespers, V.; Kyongo, J.; Joseph, S.; Hardy, L.; Cools, P.; Crucitti, T.; Mwaura, M.; Ndayisaba, G.; Delany-Moretlwe, S.; Buyze, J.; Vanham, G.; van de Wijgert, JHHM

    2017-01-01

    In cross-sectional studies increased vaginal bacterial diversity has been associated with vaginal inflammation which can be detrimental for health. We describe longitudinal changes at 5 visits over 8 weeks in vaginal microbiota and immune mediators in African women. Women (N = 40) with a normal Nugent score at all visits had a stable lactobacilli dominated microbiota with prevailing Lactobacillus iners. Presence of prostate-specific antigen (proxy for recent sex) and being amenorrhoeic (due t...

  8. Parenting practices as mediating variables between parents' psychopathology and oppositional defiant disorder in preschoolers

    OpenAIRE

    Trepat de Ancos, Esther

    2014-01-01

    Background: Oppositional defiant disorder (ODD) is very frequent in preschoolers. The severity and the long-term negative outcomes make the understanding of this disorder a priority. The goal in this study was to assess the mediating role of parenting practices in the relationship between parents’ psychopathology and ODD in preschoolers. Method: A community sample of 622 children was assessed longitudinally at age 3 and age 5. Parents reported on children’s psychopathology through a diagnosti...

  9. Threat Reappraisal as a Mediator of Symptom Change in Cognitive-Behavioral Treatment of Anxiety Disorders: A Systematic Review

    NARCIS (Netherlands)

    Smits, J.A.J.; Julian, K.; Rosenfield, D.; Powers, M.B.

    2012-01-01

    Objective: Identifying mediators of therapeutic change is important to the development of interventions and augmentation strategies. Threat reappraisal is considered a key mediator underlying the effects of cognitive-behavioral therapy (CBT) for anxiety disorders. The present study systematically

  10. Th17 cells in neuromyelitis optica spectrum disorder: a review.

    Science.gov (United States)

    Lin, Jie; Li, Xiang; Xia, Junhui

    2016-12-01

    Neuromyelitis optica spectrum disorder (NMOSD) has been identified as a central nervous system (CNS) autoimmune inflammatory disorder, which has been recognized as a B cell-mediated humoral immune disease. However, cases have been reported indicating that some of the neuromyelitis optica (NMO) patients have been resistant to B cell-related treatments. Recently, more and more evidence has shown that T cell-mediated immunity may take part in the pathogenesis of NMOSD, especially in the Th17 phenotype. In our PUBMED search, we used the following keywords: Th17 cell, Th17 cell-related cytokines, T cells, B cells, B cell-related productions, NMO, NMOSD, recurrent/bilateral optic neuritis, recurrent transverse myelitis and longitudinally extensive transverse myelitis. We systemically reviewed the role of Th17 cells and Th17 cell-related cytokines in NMOSD. We found that Th17 cells and Th17-related cytokines, such as IL-6, IL-1β, IL-17, IL-21, IL-22, IL-23 and TGF-β, are not only directly involved in the pathogenesis but also collaborated with B cells and B cell-related antibody production to induce CNS lesions. Th17 cell-related therapy has also been reviewed in this article, and the data suggested that Th17 may be a new therapeutic target of NMOSD.

  11. The Emerging Role of TLR and Innate Immunity in Cardiovascular Disease

    Directory of Open Access Journals (Sweden)

    Rolf Spirig

    2012-01-01

    Full Text Available Cardiovascular disease is a complex disorder involving multiple pathophysiological processes, several of which involve activation of toll-like receptors (TLRs of the innate immune system. As sentinels of innate immunity TLRs are nonclonally germline-encoded molecular pattern recognition receptors that recognize exogenous as well as tissue-derived molecular dangers signals promoting inflammation. In addition to their expression in immune cells, TLRs are found in other tissues and cell types including cardiomyocytes, endothelial and vascular smooth muscle cells. TLRs are differentially regulated in various cell types by several cardiovascular risk factors such as hypercholesterolemia, hyperlipidemia, and hyperglycemia and may represent a key mechanism linking chronic inflammation, cardiovascular disease progression, and activation of the immune system. Modulation of TLR signaling by specific TLR agonists or antagonists, alone or in combination, may be a useful therapeutic approach to treat various cardiovascular inflammatory conditions such as atherosclerosis, peripheral arterial disease, secondary microvascular complications of diabetes, autoimmune disease, and ischemia reperfusion injury. In this paper we discuss recent developments and current evidence for the role of TLR in cardiovascular disease as well as the therapeutic potential of various compounds on inhibition of TLR-mediated inflammatory responses.

  12. Effect of rosemary (Rosmarinus officinalis extract on weight, hematology and cell-mediated immune response of newborn goat kids

    Directory of Open Access Journals (Sweden)

    Borhan Shokrollahi

    2015-06-01

    Full Text Available This study aimed at evaluating the effects of different levels of rosemary (Rosmarinus officinalis extract on growth rate, hematology and cell-mediated immune response in Markhoz newborn goat kids. Twenty four goat kids (aged 7±3 days were randomly allotted to four groups with six replicates. The groups included: control, T1, T2 and T3 groups which received supplemented-milk with 0, 100, 200 and 400mg aqueous rosemary extract per kg of live body weight per day for 42 days. Body weights of kids were measured weekly until the end of the experiment. On day 42, 10 ml blood samples were collected from each kid through the jugular vein. Cell-mediated immune response was assessed through the double skin thickness after intradermal injection of phyto-hematoglutinin (PHA at day 21 and 42. No significant differences were seen in initial body weight, average daily gain (ADG and total gain. However, significant differences in globulin (P<0.05, and white blood cells (WBC (P<0.001 were observed. There were no significant differences in haemoglobin (Hb, packed cell volume (PCV, red blood cells (RBC, lymphocytes and neutrophils between the treatments. Skin thickness in response to intra dermal injection of PHA significantly increased in the treated groups as compared to the control group at day 42 (P<0.01 with the T3 group showing the highest response to PHA injection. In conclusion, the results indicated that aqueous rosemary extract supplemented-milk had a positive effect on immunity and skin thickness of newborn goat kids.

  13. Hereditary angioedema: a bradykinin-mediated swelling disorder.

    Science.gov (United States)

    Björkqvist, Jenny; Sala-Cunill, Anna; Renné, Thomas

    2013-03-01

    Edema is tissue swelling and is a common symptom in a variety of diseases. Edema form due to accumulation of fluids, either through reduced drainage or increased vascular permeability. There are multiple vascular signalling pathways that regulate vessel permeability. An important mediator that increases vascular leak is the peptide hormone bradykinin, which is the principal agent in the swelling disorder hereditary angioedema. The disease is autosomal dominant inherited and presents clinically with recurrent episodes of acute swelling that can be life-threatening involving the skin, the oropharyngeal, laryngeal, and gastrointestinal mucosa. Three different types of hereditary angiodema exist in patients. The review summarises current knowledge on the pathophysiology of hereditary angiodema and focuses on recent experimental and pharmacological findings that have led to a better understanding and new treatments for the disease.

  14. The roles of special proresolving mediators in pain relief.

    Science.gov (United States)

    Zhang, Lan-Yu; Jia, Ming-Rui; Sun, Tao

    2018-02-08

    The resolution of acute inflammation, once thought to be a passive process, is now recognized as an active one. The productions of endogenous special proresolving mediators (SPMs) are involved in this process. SPMs, including lipoxins, resolvins, protectins, and maresins, are endogenous lipid mediators generated from ω-6 arachidonic acid or ω-3 poly-unsaturated fatty acids during the resolution phase of acute inflammation. They have potent anti-inflammatory and proresolving actions in various inflammatory disorders. Due to the potent proresolving and anti-inflammatory effects, SPMs are also used for pain relief. This review focuses on the mechanisms by which SPMs act on their respective G-protein-coupled receptors in immune cells and nerve cells to normalize pain via regulating inflammatory mediators, transient receptor potential ion channels, and central sensitization. SPMs may offer novel therapeutic approaches for preventing and treating pain conditions associated with inflammation.

  15. STAT6: its role in interleukin 4-mediated biological functions.

    Science.gov (United States)

    Takeda, K; Kishimoto, T; Akira, S

    1997-05-01

    Interleukin (IL) 4 is known to be a cytokine which plays a central role in the regulation of immune response. Studies on cytokine signal transduction have clarified the mechanism by which IL4 exerts its functions. Two cytoplasmic proteins, signal transducer and activator of transcription (STAT) 6 and IL4-induced phosphotyrosine substrate/insulin receptor substrate 2 (4PS/IRS2), are activated in IL4 signal transduction. Recent studies from STAT6-deficient mice have revealed the essential role of STAT6 in IL4-mediated biological actions. In addition, STAT6 has also been demonstrated to be important for the functions mediated by IL13, which is related to IL4. IL4 and IL13 have been shown to induce the production of IgE, which is a major mediator in an allergic response. These findings indicate that STAT6 activation is involved in IL4- and IL13-mediated disorders such as allergy.

  16. A Mediational Model of Autonomy, Self-Esteem, and Eating Disordered Attitudes and Behaviors.

    Science.gov (United States)

    Frederick, Christina M.; Grow, Virginia M.

    1996-01-01

    Findings from a study of the relationships among autonomy deficits, low self-esteem, and eating disorders of 71 college women supported a mediational model in which lack of autonomy was related to decreased global self-esteem, which in turn was associated with bulimia and body dissatisfaction. (SLD)

  17. Induction of human immunodeficiency virus (HIV-1 envelope specific cell-mediated immunity by a non-homologous synthetic peptide.

    Directory of Open Access Journals (Sweden)

    Ammar Achour

    2007-11-01

    Full Text Available Cell mediated immunity, including efficient CTL response, is required to prevent HIV-1 from cell-to-cell transmission. In previous investigations, we have shown that B1 peptide derived by Fourier transformation of HIV-1 primary structures and sharing no sequence homology with the parent proteins was able to generate antiserum which recognizes envelope and Tat proteins. Here we have investigated cellular immune response towards a novel non-homologous peptide, referred to as cA1 peptide.The 20 amino acid sequence of cA1 peptide was predicted using the notion of peptide hydropathic properties; the peptide is encoded by the complementary anti-sense DNA strand to the sense strand of previously described non-homologous A1 peptide. In this report we demonstrate that the cA1 peptide can be a target for major histocompatibility complex (MHC class I-restricted cytotoxic T lymphocytes in HIV-1-infected or envelope-immunized individuals. The cA1 peptide is recognized in association with different MHC class I allotypes and could prime in vitro CTLs, derived from gp160-immunized individuals capable to recognize virus variants.For the first time a theoretically designed immunogen involved in broad-based cell-immune memory activation is described. Our findings may thus contribute to the advance in vaccine research by describing a novel strategy to develop a synthetic AIDS vaccine.

  18. Oral candidosis in relation to oral immunity.

    Science.gov (United States)

    Feller, L; Khammissa, R A G; Chandran, R; Altini, M; Lemmer, J

    2014-09-01

    Symptomatic oral infection with Candida albicans is characterized by invasion of the oral epithelium by virulent hyphae that cause tissue damage releasing the inflammatory mediators that initiate and sustain local inflammation. Candida albicans triggers pattern-recognition receptors of keratinocytes, macrophages, monocytes and dendritic cells, stimulating the production of IL-1β, IL-6 and IL-23. These cytokines induce the differentiation of Th17 cells and the generation of IL-17- and/or IL-22-mediated antifungal protective immuno-inflammatory responses in infected mucosa. Some immune cells including NKT cells, γδ T cells and lymphoid cells that are innate to the oral mucosa have the capacity to produce large quantities of IL-17 in response to C. albicans, sufficient to mediate effective protective immunity against C. albicans. On the other hand, molecular structures of commensal C. albicans blastoconidia, although detected by pattern-recognition receptors, are avirulent, do not invade the oral epithelium, do not elicit inflammatory responses in a healthy host, but induce regulatory immune responses that maintain tissue tolerance to the commensal fungi. The type, specificity and sensitivity of the protective immune response towards C. albicans is determined by the outcome of the integrated interactions between the intracellular signalling pathways of specific combinations of activated pattern-recognition receptors (TLR2, TLR4, Dectin-1 and Dectin-2). IL-17-mediated protective immune response is essential for oral mucosal immunity to C. albicans infection. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Young adults' recollections of parental bonds--does satisfaction with partner relationships mediate the longitudinal association with mental disorders?

    Science.gov (United States)

    Overbeek, Geertjan; Vollebergh, Wilma; Meeus, Wim; de Graaf, Ron; Engels, Rutger C M E

    2004-09-01

    Recollections of cold and overprotective behaviors from parents have been hypothesized to lead to the presence of mental disorders in young adulthood through their detrimental effects on individuals' satisfaction in later partner relationships. Previous studies have not explicitly tested, however, whether partner relationship satisfaction mediates the longitudinal relationship from parental bonds to DSM-III-R disorders in young adults. We examined: (1) whether recollections of parental bonds in the first 16 years of life were related to the prevalence of DSM-III-R mental disorders in young adulthood, and (2) whether young adults' satisfaction with current partner relationships mediated these links. Data were used from 1,581 Dutch young adults aged 18-34 years, who were interviewed in three waves (1996, 1997, and 1999) of a nationwide epidemiological study. Structural Equation Models demonstrated that recollections of caring, non-intrusive parenting behaviors were significantly, negatively associated with the prevalence of mood and anxiety disorders (but not substance disorders) in young adulthood. The satisfaction with current partner relationships did not mediate these negative associations. Results replicate and extend earlier findings from the National Comorbidity Survey (Enns et al. 2002), demonstrating that mental disorders are directly related to people's recollections of parental care and overprotection. Low-quality parental bonds were only related to internalizing types of psychopathology, however, and were of a modest strength. Results may indicate that there is relatively little cross-relationship continuity in the experience of intimacy between relationships with parents and with partners.

  20. Cytokines in the host response to Candida vaginitis: Identifying a role for non-classical immune mediators, S100 alarmins

    Science.gov (United States)

    Yano, Junko; Noverr, Mairi C.; Fidel, Paul L.

    2011-01-01

    Vulvovaginal candidiasis (VVC), caused by Candida albicans, affects a significant number of women during their reproductive years. More than two decades of research have been focused on the mechanisms associated with susceptibility or resistance to symptomatic infection. Adaptive immunity by Th1-type CD4+ T cells and downstream cytokine responses are considered the predominant host defense mechanisms against mucosal Candida infections. However, numerous clinical and animal studies have indicated no or limited protective role of cells and cytokines of the Th1 or Th2 lineage against vaginal infection. The role for Th17 is only now begun to be investigated in-depth for VVC with results already showing significant controversy. On the other hand, a clinical live-challenge study and an established animal model have shown that a symptomatic condition is intimately associated with the vaginal infiltration of polymorphonuclear leukocytes (PMNs) but with no effect on vaginal fungal burden. Subsequent studies identified S100A8 and S100A9 Alarmins as key chemotactic mediators of the acute PMN response. These chemotactic danger signals appear to be secreted by vaginal epithelial cells upon interaction and early adherence of Candida. Thus, instead of a putative immunodeficiency against Candida involving classical immune cells and cytokines of the adaptive response, the pathological inflammation in VVC is now considered a consequence of a non-productive innate response initiated by non-classical immune mediators. PMID:22182685

  1. Do interactions between stress and immune responses lead to symptom exacerbations in irritable bowel syndrome?

    Science.gov (United States)

    O'Malley, Dervla; Quigley, Eamonn M M; Dinan, Timothy G; Cryan, John F

    2011-10-01

    Irritable bowel syndrome (IBS) is a common, debilitating gastrointestinal (GI) disorder, with a worldwide prevalence of between 10% and 20%. This functional gut disorder is characterized by episodic exacerbations of a cluster of symptoms including abdominal pain, bloating and altered bowel habit, including diarrhea and/or constipation. Risk factors for the development of IBS include a family history of the disorder, childhood trauma and prior gastrointestinal infection. It is generally accepted that brain-gut axis dysfunction is fundamental to the development of IBS; however the underlying pathophysiological mechanisms remain elusive. Additional considerations in comprehending the chronic relapsing pattern that typifies IBS symptoms are the effects of both psychosocial and infection-related stresses. Indeed, co-morbidity with mood disorders such as depression and anxiety is common in IBS. Accumulating evidence points to a role for a maladaptive stress response in the initiation, persistence and severity of IBS-associated symptom flare-ups. Moreover, mechanistically, the stress-induced secretion of corticotropin-releasing factor (CRF) is known to mediate changes in GI function. Activation of the immune system also appears to be important in the generation of IBS symptoms and increasing evidence now implicates low-grade inflammation or immune activation in IBS pathophysiology. There is a growing body of research focused on understanding at a molecular, cellular and in vivo level, the relationship between the dysregulated stress response and immune system alterations (either individually or in combination) in the etiology of IBS and to the occurrence of symptoms. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Do Executive and Reactive Disinhibition Mediate the Effects of Familial Substance Use Disorders on Adolescent Externalizing Outcomes?

    Science.gov (United States)

    Handley, Elizabeth D.; Chassin, Laurie; Haller, Moira M.; Bountress, Kaitlin E.; Dandreaux, Danielle; Beltran, Iris

    2011-01-01

    The present study examined the potential mediating roles of executive and reactive disinhibition in predicting conduct problems, ADHD symptoms, and substance use among adolescents with and without a family history of substance use disorders. Using data from 247 high-risk adolescents, parents, and grandparents, structural equation modeling indicated that reactive disinhibition, as measured by sensation seeking, mediated the effect of familial drug use disorders on all facets of the adolescent externalizing spectrum. Executive disinhibition, as measured by response disinhibition, spatial short term memory, and “trait” impulsivity, was associated with ADHD symptoms. Moreover, although executive functioning weakness were unrelated to familial substance use disorders, adolescents with familial alcohol use disorders were at risk for “trait” impulsivity marked by a lack of planning. These results illustrate the importance of “unpacking” the broad temperament style of disinhibition and of studying the processes that underlie the commonality among facets of the externalizing spectrum and processes that that predict specific externalizing outcomes. PMID:21668077

  3. Cell-mediated immune suppression effect of rocket kerosene through dermal exposure in mice

    Directory of Open Access Journals (Sweden)

    Bing-xin XU

    2015-10-01

    Full Text Available Objective To study the effect of cell-mediated immune suppression effect of rocket kerosene (RK through dermal application in mice. Methods Skin delayed type hypersensitivity (DTH was used to observe the relation of the RK amount the skin exposed and the cellular immune inhibitory function. Different amount of the undiluted fuel was smeared directly onto the dorsal skin of mice. Mice in negative and positive control groups were treated with acetone. After the last exposure, all the mice except those in negative control group were allergized by evenly smearing with 1% dinitrofluorobenzene (DNFB solution on their dorsum. Five days after allergy, 1% DNFB solution was smeared onto right ear of all mice to stimulate the allergic reaction. Twenty-four hours after attack, the auricle swelling, spleen index and thymus index in corresponding mice were determined. In the first series of experiments, different dosages of RK were applied once, and the ICR mice were randomly divided into negative control group, positive control group and experimental group (0.5ml/kg.BW×1, 1ml/kg.BW×1 and 2ml/kg.BW×1 group. In the second series of experiments, the certain and same dosage of RK was applied for different times, and the ICR mice were randomly divided into negative control group, positive control group and experimental group (0.5ml/kg.BW×1, 0.5mL/kg.BW×2, 0.5ml/kg.BW×3, 0.5ml/kg.BW×4 and 0.5mL/kg.BW×5 group. In the third series of experiments, the different dosages of RK were applied more than once, and the ICR mice were randomly divided into negative control group, positive control group and experimental group (0.5ml/kg.BW×5, 1ml/kg.BW×5 and 2ml/kg.BW×5 group. Lymphocyte proliferation experiment in vitrowas conducted to observe the persistent time of the cell-mediated immune suppression in mice by RK dermal exposure. The lymphocyte proliferation induced by concanavalin A (Con A was analyzed by MTT assay, and T lymphocyte subsets (CD3+, CD4+ and CD

  4. The Immune System and the Role of Inflammation in Perinatal Depression.

    Science.gov (United States)

    Leff-Gelman, Philippe; Mancilla-Herrera, Ismael; Flores-Ramos, Mónica; Cruz-Fuentes, Carlos; Reyes-Grajeda, Juan Pablo; García-Cuétara, María Del Pilar; Bugnot-Pérez, Marielle Danitza; Pulido-Ascencio, David Ellioth

    2016-08-01

    Major depression during pregnancy is a common psychiatric disorder that arises from a complex and multifactorial etiology. Psychosocial stress, sex, hormones, and genetic vulnerability increase the risk for triggering mood disorders. Microglia and toll-like receptor 4 play a crucial role in triggering wide and varied stress-induced responses mediated through activation of the inflammasome; this leads to the secretion of inflammatory cytokines, increased serotonin metabolism, and reduction of neurotransmitter availability along with hypothalamic-pituitary-adrenal axis hyperactivity. Dysregulation of this intricate neuroimmune communication network during pregnancy modifies the maternal milieu, enhancing the emergence of depressive symptoms and negative obstetric and neuropsychiatric outcomes. Although several studies have clearly demonstrated the role of the innate immune system in major depression, it is still unclear how the placenta, the brain, and the monoaminergic and neuroendocrine systems interact during perinatal depression. Thus, in the present review we describe the cellular and molecular interactions between these systems in major depression during pregnancy, proposing that the same stress-related mechanisms involved in the activation of the NLRP3 inflammasome in microglia and peripheral myeloid cells in depressed patients operate in a similar fashion in the neuroimmune placenta during perinatal depression. Thus, activation of Toll-like receptor 2 and 4 signaling and the NLRP3 inflammasome in placental immune cells may promote a shift of the Th1/Th2 bias towards a predominant Th1/Th17 inflammatory response, associated with increased secretion of pro-inflammatory cytokines, among other secreted autocrine and paracrine mediators, which play a crucial role in triggering and/or exacerbating depressive symptoms during pregnancy.

  5. Parent Expectations Mediate Outcomes for Young Adults with Autism Spectrum Disorder.

    Science.gov (United States)

    Kirby, Anne V

    2016-05-01

    Understanding the complex relationships among factors that may predict the outcomes of young adults with autism spectrum disorder (ASD) is of utmost importance given the increasing population undergoing and anticipating the transition to adulthood. With a sample of youth with ASD (n = 1170) from the National Longitudinal Transition Study-2, structural equation modeling techniques were used to test parent expectations as a mediator of young adult outcomes (i.e., employment, residential independence, social participation) in a longitudinal analysis. The mediation hypothesis was confirmed; family background and functional performance variables significantly predicted parent expectations which significantly predicted outcomes. These findings add context to previous studies examining the role of parent expectations on young adult outcomes and inform directions for family-centered interventions and future research.

  6. The specificity of immune priming in silkworm, Bombyx mori, is mediated by the phagocytic ability of granular cells.

    Science.gov (United States)

    Wu, Gongqing; Li, Mei; Liu, Yi; Ding, Ying; Yi, Yunhong

    2015-10-01

    In the past decade, the phenomenon of immune priming was documented in many invertebrates in a large number of studies; however, in most of these studies, behavioral evidence was used to identify the immune priming. The underlying mechanism and the degree of specificity of the priming response remain unclear. We studied the mechanism of immune priming in the larvae of the silkworm, Bombyx mori, and analyzed the specificity of the priming response using two closely related Gram-negative pathogenic bacteria (Photorhabdus luminescens TT01 and P. luminescens H06) and one Gram-positive pathogenic bacterium (Bacillus thuringiensis HD-1). Primed with heat-killed bacteria, the B. mori larvae were more likely to survive subsequent homologous exposure (the identical bacteria used in the priming and in the subsequent challenge) than heterologous (different bacteria used in the priming and subsequent exposure) exposure to live bacteria. This result indicated that the B. mori larvae possessed a strong immune priming response and revealed a degree of specificity to TT01, H06 and HD-1 bacteria. The degree of enhanced immune protection was positively correlated with the level of phagocytic ability of the granular cells and the antibacterial activity of the cell-free hemolymph. Moreover, the granular cells of the immune-primed larvae increased the phagocytosis of a previously encountered bacterial strain compared with other bacteria. Thus, the enhanced immune protection of the B. mori larvae after priming was mediated by the phagocytic ability of the granular cells and the antibacterial activity of the hemolymph; the specificity of the priming response was primarily attributed to the phagocytosis of bacteria by the granular cells. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Gut Microbiota Promotes Obesity-Associated Liver Cancer through PGE2-Mediated Suppression of Antitumor Immunity.

    Science.gov (United States)

    Loo, Tze Mun; Kamachi, Fumitaka; Watanabe, Yoshihiro; Yoshimoto, Shin; Kanda, Hiroaki; Arai, Yuriko; Nakajima-Takagi, Yaeko; Iwama, Atsushi; Koga, Tomoaki; Sugimoto, Yukihiko; Ozawa, Takayuki; Nakamura, Masaru; Kumagai, Miho; Watashi, Koichi; Taketo, Makoto M; Aoki, Tomohiro; Narumiya, Shuh; Oshima, Masanobu; Arita, Makoto; Hara, Eiji; Ohtani, Naoko

    2017-05-01

    Obesity increases the risk of cancers, including hepatocellular carcinomas (HCC). However, the precise molecular mechanisms through which obesity promotes HCC development are still unclear. Recent studies have shown that gut microbiota may influence liver diseases by transferring its metabolites and components. Here, we show that the hepatic translocation of obesity-induced lipoteichoic acid (LTA), a Gram-positive gut microbial component, promotes HCC development by creating a tumor-promoting microenvironment. LTA enhances the senescence-associated secretory phenotype (SASP) of hepatic stellate cells (HSC) collaboratively with an obesity-induced gut microbial metabolite, deoxycholic acid, to upregulate the expression of SASP factors and COX2 through Toll-like receptor 2. Interestingly, COX2-mediated prostaglandin E 2 (PGE 2 ) production suppresses the antitumor immunity through a PTGER4 receptor, thereby contributing to HCC progression. Moreover, COX2 overexpression and excess PGE 2 production were detected in HSCs in human HCCs with noncirrhotic, nonalcoholic steatohepatitis (NASH), indicating that a similar mechanism could function in humans. Significance: We showed the importance of the gut-liver axis in obesity-associated HCC. The gut microbiota-driven COX2 pathway produced the lipid mediator PGE 2 in senescent HSCs in the tumor microenvironment, which plays a pivotal role in suppressing antitumor immunity, suggesting that PGE 2 and its receptor may be novel therapeutic targets for noncirrhotic NASH-associated HCC. Cancer Discov; 7(5); 522-38. ©2017 AACR. This article is highlighted in the In This Issue feature, p. 443 . ©2017 American Association for Cancer Research.

  8. Does relational dysfunction mediate the association between anxiety disorders and later depression? Testing an interpersonal model of comorbidity.

    Science.gov (United States)

    Starr, Lisa R; Hammen, Constance; Connolly, Nicole Phillips; Brennan, Patricia A

    2014-01-01

    Anxiety disorders tend to precede onset of comorbid depression. Several researchers have suggested a causal role for anxiety in promoting depressive episodes, but few studies have identified specific mechanisms. The current study proposes an interpersonal model of comorbidity, where anxiety disorders disrupt interpersonal functioning, which in turn elevates risk for depression. At age 15 (T1), 815 adolescents oversampled for maternal depression completed diagnostic interviews, social chronic stress interviews, and self-report measures. At age 20 (T2), participants repeated all measures and reported on self-perceived interpersonal problems. At approximately age 23 (T3), a subset of participants (n = 475) completed a self-report depressive symptoms measure. Consistent with other samples, anxiety disorders largely preceded depressive disorders. Low sociability and interpersonal oversensitivity mediated the association between T1 social anxiety disorder and later depression (including T2 depressive diagnosis and T3 depressive symptoms), controlling for baseline. Interpersonal oversensitivity and social chronic stress similarly mediated the association between generalized anxiety disorder before age 15 and later depression. Interpersonal dysfunction may be one mechanism through which anxiety disorders promote later depression, contributing to high comorbidity rates. © 2013 Wiley Periodicals, Inc.

  9. Eosinophils mediate protective immunity against secondary nematode infection.

    Science.gov (United States)

    Huang, Lu; Gebreselassie, Nebiat G; Gagliardo, Lucille F; Ruyechan, Maura C; Luber, Kierstin L; Lee, Nancy A; Lee, James J; Appleton, Judith A

    2015-01-01

    Eosinophils are versatile cells that regulate innate and adaptive immunity, influence metabolism and tissue repair, and contribute to allergic lung disease. Within the context of immunity to parasitic worm infections, eosinophils are prominent yet highly varied in function. We have shown previously that when mice undergo primary infection with the parasitic nematode Trichinella spiralis, eosinophils play an important immune regulatory role that promotes larval growth and survival in skeletal muscle. In this study, we aimed to address the function of eosinophils in secondary infection with T. spiralis. By infecting eosinophil-ablated mice, we found that eosinophils are dispensable for immunity that clears adult worms or controls fecundity in secondary infection. In contrast, eosinophil ablation had a pronounced effect on secondary infection of skeletal muscle by migratory newborn larvae. Restoring eosinophils to previously infected, ablated mice caused them to limit muscle larvae burdens. Passive immunization of naive, ablated mice with sera or Ig from infected donors, together with transfer of eosinophils, served to limit the number of newborn larvae that migrated in tissue and colonized skeletal muscle. Results from these in vivo studies are consistent with earlier findings that eosinophils bind to larvae in the presence of Abs in vitro. Although our previous findings showed that eosinophils protect the parasite in primary infection, these new data show that eosinophils protect the host in secondary infection. Copyright © 2014 by The American Association of Immunologists, Inc.

  10. Immune markers and correlates of protection for vaccine induced immune responses

    DEFF Research Database (Denmark)

    Thakur, Aneesh; Pedersen, Lasse Eggers; Jungersen, Gregers

    2012-01-01

    of an appropriate humoral response currently remain the best validated correlates of protective immunity after vaccination. Despite advancements in the field of immunology over the past few decades currently there are, however, no sufficiently validated immune correlates of vaccine induced protection against......-specific production of interferon-gamma (IFN-γ) has been promoted as a quantitative marker of protective cell-mediated immune responses over the past couple of decades. More recently, however, evidence from several infections has pointed towards the quality of the immune response, measured through increased levels...... of antigen-specific polyfunctional T cells capable of producing a triad of relevant cytokines, as a better correlate of sustained protective immunity against this type of infections. Also the possibilities to measure antigen-specific cytotoxic T cells (CTL) during infection or in response to vaccination...

  11. Depression in obese patients with primary fibromyalgia: the mediating role of poor sleep and eating disorder features.

    Science.gov (United States)

    Senna, Mohammed K; Ahmad, Hamada S; Fathi, Warda

    2013-03-01

    Depression is a prominent feature in fibromyalgia syndrome. Patients with fibromyalgia syndrome who are obese, with poor sleep quality, and those who have recurrent episodes of binge eating are at greater risk to develop depression. The aim of this cross-sectional study was to examine the hypothesis that the relationship between obesity and depression in patients with primary fibromyalgia syndrome is mediated by poor sleep, binge eating disorder (BED), and weight and shape concern. This study included 131 patients with primary fibromyalgia syndrome. Participants completed the following questionnaires: Pittsburgh Sleep Quality Index, Beck Depression Inventory-II, Eating Disorder questionnaire, and Fibromyalgia Impact Questionnaire. Body mass index (BMI) provided the primary indicator of obesity. Sobel test showed that the conditions for complete mediation were satisfied on the weight and shape concern as mediator between BMI and depression because the association between BMI and depression score became insignificant after controlling of weight and shape concern. However, since the association between BMI and depression remained significant after BED and poor sleep score were controlled, thus for both mediators, the conditions for partial mediation on the depression were satisfied. The findings suggest that in patients with primary fibromyalgia syndrome, weight and shape concern, BED, and poor sleep quality are important mediators of the relationship between obesity and depression. We suggest that a greater focus on these mediators in depression treatment may be indicated.

  12. Recent Advances in Aptamers Targeting Immune System.

    Science.gov (United States)

    Hu, Piao-Ping

    2017-02-01

    The immune system plays important role in protecting the organism by recognizing non-self molecules from pathogen such as bacteria, parasitic worms, and viruses. When the balance of the host defense system is disturbed, immunodeficiency, autoimmunity, and inflammation occur. Nucleic acid aptamers are short single-stranded DNA (ssDNA) or RNA ligands that interact with complementary molecules with high specificity and affinity. Aptamers that target the molecules involved in immune system to modulate their function have great potential to be explored as new diagnostic and therapeutic agents for immune disorders. This review summarizes recent advances in the development of aptamers targeting immune system. The selection of aptamers with superior chemical and biological characteristics will facilitate their application in the diagnosis and treatment of immune disorders.

  13. The Protective Effects of Extra Virgin Olive Oil on Immune-mediated Inflammatory Responses.

    Science.gov (United States)

    Casas, Rosa; Estruch, Ramon; Sacanella, Emilio

    2018-01-01

    The increasing interest in the Mediterranean diet (MeDiet) hinges on the relevant role it plays in inflammatory diseases. Several clinical, epidemiological and experimental evidences suggest that consumption of the MeDiet reduces the incidence of certain pathologies related to oxidative stress, chronic inflammation and immune system diseases such as cancer, atherosclerosis and cardiovascular disease (CVD). These reductions can be partially attributed to extra virgin olive oil (EVOO) consumption which has been described as a key bioactive food because of its high nutritional quality and its particular composition of fatty acids, vitamins and polyphenols. Indeed, the beneficial effects of EVOO have been linked to its fatty acid composition, which is very rich in monounsaturated fatty acids (MUFA), and has moderate saturated and polyunsaturated fatty acids (PUFA). The current knowledge available on the beneficial effects of EVOO and its phenolic compounds, specifically its biological properties and antioxidant capacity against immune-mediated inflammatory responses (atherosclerosis, rheumatoid arthritis, diabetes, obesity, cancer, inflammatory bowel disease or neurodegenerative disease, among others) in addition to its potential clinical applications. The increasing body of studies carried out provides compelling evidence that olive polyphenols are potential candidates to combat chronic inflammatory states. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Convergence of the innate and adaptive immunity during human aging

    Directory of Open Access Journals (Sweden)

    Branca Isabel Pereira

    2016-11-01

    Full Text Available Aging is associated with profound changes in the human immune system, a phenomenon referred to as immunosenescence. This complex immune remodeling affects the adaptive immune system and the CD8+ T cell compartment in particular, leading to the accumulation of terminally differentiated T cells, which can rapidly exert their effector functions at the expenses of a limited proliferative potential. In this review we will discuss evidence suggesting that senescent αβCD8+ T cells acquire the hallmarks of innate-like T cells and use recently acquired NK cell receptors as an alternative mechanism to mediate rapid effector functions. These cells concomitantly lose expression of co-stimulatory receptors and exhibit decreased TCR signaling suggesting a functional shift away from antigen specific activation. The convergence of innate and adaptive features in senescent T cells challenges the classic division between innate and adaptive immune systems. Innate-like T cells are particularly important for stress and tumor surveillance and we propose a new role for these cells in aging, where the acquisition of innate-like functions may represent a beneficial adaptation to an increased burden of malignancy with age, although it may also pose a higher risk of autoimmune disorders.

  15. Age-related changes in humoral and cell-mediated immunity in Down syndrome children living at home.

    Science.gov (United States)

    Lockitch, G; Singh, V K; Puterman, M L; Godolphin, W J; Sheps, S; Tingle, A J; Wong, F; Quigley, G

    1987-11-01

    Abnormalities of humoral and cell-mediated immunity have been described in Down syndrome but reported findings have been inconsistent. Confounding factors have included age, institutional versus home life, hepatitis B antigenemia, and zinc deficiency. To clarify this problem, we studied 64 children with Down syndrome (DS) compared with an age-matched control group. All children had always lived at home. All the DS children were negative for hepatitis B surface antigen. Serum zinc concentration in the DS group was on average 12 micrograms/dl lower than age-matched control children. They also had significantly lower levels of immunoglobulin M, total lymphocyte count, T and B lymphocytes, and T helper and suppressor cells. In vitro lymphocyte response to phytohemagglutinin and concanavalin A was significantly reduced at all ages in the DS group. Lymphocyte response to pokeweed mitogen increased with age in control children but decreased in the DS children. By 18 yr, the mean response for DS was 60000 cpm lower than controls. The DS group had significantly higher concentrations of immunoglobulins A and G than controls and the difference increased with age. Complement fractions C3 and C4 were also higher in the DS group at all ages. The number of HNK-1 positive cells was higher in the DS group than controls at all ages. When hepatitis and institutionalization are excluded as confounding factors, DS children still differ in both humoral and cell-mediated immunity from an age-matched control group.

  16. RESULTS OF THE IMMUNIZATION ACCORDING TO THE NATIONAL CALENDAR ASSOCIATED WITH VACCINATION AGAINST INFLUENZA IN CHILDREN WITH SOMATIC DISORDERS AND IMMUNODEFICIENCY

    Directory of Open Access Journals (Sweden)

    S. M. Kharit

    2014-01-01

    Full Text Available Aim: to study safety and immunological efficacy of vaccination against influenza in separate and associated immunization according to the National Calendar. Patients and methods: 100 children with various disorders as well as children with HIV subjected to revaccination against diphtheria, tetanus, measles, parotiditis and rubella, were included into the study. Children were divided into 5 groups of 20 persons each: groups of separate or associated vaccination. In order to assess safety of vaccination children were observed for 30 days after vaccination. In order to analyze immunologic efficacy participants were taken serum tests before and on the 30th day after vaccination. Results: the study demonstrated high safety of the vaccine against influenza. Mild and moderate topical and general reactions were observed in isolated instances and did not differ in comparison groups. Simultaneous vaccination against influenza with immunization against diphtheria, parotiditis and rubella did not influence synthesis of antibodies, while synthesis of antibodies against measles was decreased; immunization against diphtheria and measles when associated with vaccination against influenza depressed synthesis of antibodies against A/H3N2 influenza. Conclusions: vaccine against influenza has low reactivity, high safety and can be used in association with immunization according to the National calendar in independence to somatic disorders of patients. 

  17. Pro-inflammatory cytokine/chemokine production by reovirus treated melanoma cells is PKR/NF-κB mediated and supports innate and adaptive anti-tumour immune priming

    Directory of Open Access Journals (Sweden)

    Coffey Matt

    2011-02-01

    Full Text Available Abstract Background As well as inducing direct oncolysis, reovirus treatment of melanoma is associated with activation of innate and adaptive anti-tumour immune responses. Results Here we characterise the effects of conditioned media from reovirus-infected, dying human melanoma cells (reoTCM, in the absence of live virus, to address the immune bystander potential of reovirus therapy. In addition to RANTES, IL-8, MIP-1α and MIP-1β, reovirus-infected melanoma cells secreted eotaxin, IP-10 and the type 1 interferon IFN-β. To address the mechanisms responsible for the inflammatory composition of reoTCM, we show that IL-8 and IFN-β secretion by reovirus-infected melanoma cells was associated with activation of NF-κB and decreased by pre-treatment with small molecule inhibitors of NF-κB and PKR; specific siRNA-mediated knockdown further confirmed a role for PKR. This pro-inflammatory milieu induced a chemotactic response in isolated natural killer (NK cells, dendritic cells (DC and anti-melanoma cytotoxic T cells (CTL. Following culture in reoTCM, NK cells upregulated CD69 expression and acquired greater lytic potential against tumour targets. Furthermore, melanoma cell-loaded DC cultured in reoTCM were more effective at priming adaptive anti-tumour immunity. Conclusions These data demonstrate that the PKR- and NF-κB-dependent induction of pro-inflammatory molecules that accompanies reovirus-mediated killing can recruit and activate innate and adaptive effector cells, thus potentially altering the tumour microenvironment to support bystander immune-mediated therapy as well as direct viral oncolysis.

  18. Dim light at night interferes with the development of the short-day phenotype and impairs cell-mediated immunity in Siberian hamsters (Phodopus sungorus).

    Science.gov (United States)

    Aubrecht, Taryn G; Weil, Zachary M; Nelson, Randy J

    2014-10-01

    Winter is a challenging time to survive and breed outside of the tropics. Animals use day length (photoperiod) to regulate seasonally appropriate adaptations in anticipation of challenging winter conditions. The net result of these photoperiod-mediated adjustments is enhanced immune function and increased survival. Thus, the ability to discriminate day length information is critical for survival and reproduction in small animals. However, during the past century, urban and suburban development has rapidly expanded and filled the night sky with light from various sources, obscuring crucial light-dark signals, which alters physiological interpretation of day lengths. Furthermore, reduced space, increased proximity to people, and the presence of light at night may act as stressors for small animals. Whereas acute stressors typically enhance immune responses, chronic exposure to stressors often impairs immune responses. Therefore, we hypothesized that the combination of dim light at night and chronic stress interferes with enhanced cell-mediated immunity observed during short days. Siberian hamsters (Phodopus sungorus) were assigned to short or long days with dark nights (0 lux) or dim (5 lux) light at night for 10 weeks. Following 2 weeks of chronic restraint (6 hr/day), a model of chronic stress, delayed type hypersensitivity (DTH) responses were assessed. Both dim light at night and restraint reduced the DTH response. Dim light at night during long nights produced an intermediate short day phenotype. These results suggest the constant presence of light at night could negatively affect survival of photoperiodic rodents by disrupting the timing of breeding and immune responses. © 2014 Wiley Periodicals, Inc.

  19. Computer-mediated communication in adults with high-functioning autism spectrum disorders and controls

    NARCIS (Netherlands)

    van der Aa, Christine; Pollmann, Monique; Plaat, Aske; van der Gaag, Rutger Jan

    2016-01-01

    It has been suggested that people with Autism Spectrum Disorders (ASD) are attracted to computer-mediated communication (CMC). In this study, we compare CMC use in adults with high-functioning ASD (N = 113) and a control group (N = 72). We find that people with ASD spend more time on CMC than

  20. CD301b⁺ dermal dendritic cells drive T helper 2 cell-mediated immunity.

    Science.gov (United States)

    Kumamoto, Yosuke; Linehan, Melissa; Weinstein, Jason S; Laidlaw, Brian J; Craft, Joseph E; Iwasaki, Akiko

    2013-10-17

    Unlike other types of T helper (Th) responses, whether the development of Th2 cells requires instruction from particular subset of dendritic cells (DCs) remains unclear. By using an in vivo depletion approach, we have shown that DCs expressing CD301b were required for the generation of Th2 cells after subcutaneous immunization with ovalbumin (OVA) along with papain or alum. CD301b⁺ DCs are distinct from epidermal or CD207⁺ dermal DCs (DDCs) and were responsible for transporting antigen injected subcutaneously with Th2-type adjuvants. Transient depletion of CD301b⁺ DCs resulted in less effective accumulation and decreased expression of CD69 by polyclonal CD4⁺ T cells in the lymph node. Moreover, despite intact cell division and interferon-γ production, CD301b⁺ DC depletion led to blunted interleukin-4 production by OVA-specific OT-II transgenic CD4⁺ T cells and significantly impaired Th2 cell development upon infection with Nippostrongylus brasiliensis. These results reveal CD301b⁺ DDCs as the key mediators of Th2 immunity. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Origins of adaptive immunity.

    Science.gov (United States)

    Liongue, Clifford; John, Liza B; Ward, Alister

    2011-01-01

    Adaptive immunity, involving distinctive antibody- and cell-mediated responses to specific antigens based on "memory" of previous exposure, is a hallmark of higher vertebrates. It has been argued that adaptive immunity arose rapidly, as articulated in the "big bang theory" surrounding its origins, which stresses the importance of coincident whole-genome duplications. Through a close examination of the key molecules and molecular processes underpinning adaptive immunity, this review suggests a less-extreme model, in which adaptive immunity emerged as part of longer evolutionary journey. Clearly, whole-genome duplications provided additional raw genetic materials that were vital to the emergence of adaptive immunity, but a variety of other genetic events were also required to generate some of the key molecules, whereas others were preexisting and simply co-opted into adaptive immunity.

  2. CD54-Mediated Interaction with Pro-inflammatory Macrophages Increases the Immunosuppressive Function of Human Mesenchymal Stromal Cells

    Directory of Open Access Journals (Sweden)

    Nicolas Espagnolle

    2017-04-01

    Full Text Available Summary: Mesenchymal stromal cells (MSCs sense and modulate inflammation and represent potential clinical treatment for immune disorders. However, many details of the bidirectional interaction of MSCs and the innate immune compartment are still unsolved. Here we describe an unconventional but functional interaction between pro-inflammatory classically activated macrophages (M1MΦ and MSCs, with CD54 playing a central role. CD54 was upregulated and enriched specifically at the contact area between M1MФ and MSCs. Moreover, the specific interaction induced calcium signaling and increased the immunosuppressive capacities of MSCs dependent on CD54 mediation. Our data demonstrate that MSCs can detect an inflammatory microenvironment via a direct and physical interaction with innate immune cells. This finding opens different perspectives for MSC-based cell therapy. : Mesenchymal stromal cells (MSCs are promising for cell-based therapy in inflammatory disorders by switching off the immune response. Varin and colleagues demonstrate that MSCs and inflammatory macrophages communicate via an unconventional but functional interaction that strongly increases the immunosuppressive capacities of MSCs. This new communication between the innate immune system and MSCs opens new perspectives for MSC-based cell therapy. Keywords: macrophages, bone marrow mesenchymal stromal cells, functional interaction, CD54, immunosuppression, indoleamine 2,3-dioxygenase, cell therapy

  3. Posttraumatic stress disorder (PTSD) and the dermatology patient.

    Science.gov (United States)

    Gupta, Madhulika A; Jarosz, Patricia; Gupta, Aditya K

    Dermatologic symptoms can be associated with posttraumatic stress disorder (PTSD) in several situations: (1) as features of some core PTSD symptoms, such as intrusion symptoms manifesting as cutaneous sensory flashbacks, as autonomic arousal manifesting as night sweats and idiopathic urticaria, and as dissociation manifesting as numbness and dermatitis artefacta; (2) the cutaneous psychosomatic effects of emotional and physical neglect and sexual abuse (eg, infantile eczema, cutaneous self-injury, and body-focused repetitive behaviors such as trichotillomania and skin picking disorder) and eating disorders, which can have dermatologic effects; (3) the direct effect of physical or sexual abuse or catastrophic life events (eg, earthquakes) on the skin; and (4) as a result of significant alterations in hypothalamic-pituitary-adrenal and sympatho-adrenal medullary axes, which can affect neuroendocrine and immune functions, and can lead to exacerbations of stress-reactive inflammatory dermatoses such as psoriasis, chronic urticaria, and atopic dermatitis. Elevated levels of inflammatory biomarkers and impaired epidermal barrier function have been reported in situations involving sustained psychologic stress and sleep deprivation. Some PTSD patients show hypothalamic-pituitary-adrenal axis hyporesponsiveness and higher circulating T lymphocytes, which can exacerbate immune-mediated dermatologic disorders. PTSD should be considered an underlying factor in the chronic, recurrent, or treatment-resistant stress-reactive dermatoses and in patients with self-induced dermatoses. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. The kinase TBK1 functions in dendritic cells to regulate T cell homeostasis, autoimmunity, and antitumor immunity.

    Science.gov (United States)

    Xiao, Yichuan; Zou, Qiang; Xie, Xiaoping; Liu, Ting; Li, Haiyan S; Jie, Zuliang; Jin, Jin; Hu, Hongbo; Manyam, Ganiraju; Zhang, Li; Cheng, Xuhong; Wang, Hui; Marie, Isabelle; Levy, David E; Watowich, Stephanie S; Sun, Shao-Cong

    2017-05-01

    Dendritic cells (DCs) are crucial for mediating immune responses but, when deregulated, also contribute to immunological disorders, such as autoimmunity. The molecular mechanism underlying the function of DCs is incompletely understood. In this study, we have identified TANK-binding kinase 1 (TBK1), a master innate immune kinase, as an important regulator of DC function. DC-specific deletion of Tbk1 causes T cell activation and autoimmune symptoms and also enhances antitumor immunity in animal models of cancer immunotherapy. The TBK1-deficient DCs have up-regulated expression of co-stimulatory molecules and increased T cell-priming activity. We further demonstrate that TBK1 negatively regulates the induction of a subset of genes by type I interferon receptor (IFNAR). Deletion of IFNAR1 could largely prevent aberrant T cell activation and autoimmunity in DC-conditional Tbk1 knockout mice. These findings identify a DC-specific function of TBK1 in the maintenance of immune homeostasis and tolerance. © 2017 Xiao et al.

  5. Mast cell-mediated and associated disorders in pregnancy: a risky game with an uncertain outcome?

    Science.gov (United States)

    Woidacki, Katja; Zenclussen, Ana Claudia; Siebenhaar, Frank

    2014-01-01

    During pregnancy, the maternal organism is under the influence of tremendous endocrine as well as immunological changes as an adaptation to the implanted and developing fetus. In most cases, the maternal adaptations to pregnancy ensure both, the protection against harmful pathogens and the tolerance toward the growing semi-allogeneic fetus. However, under certain circumstances the unique hormonal milieu during pregnancy is causative of a shift into an unfavorable direction. Of particular importance are cellular disorders previous to pregnancy that involve cell types known for their susceptibility to hormones. One interesting cell type is the mast cell (MC), one of the key figures in allergic disorders. While physiological numbers of MCs were shown to positively influence pregnancy outcome, at least in mouse models, uncontrolled augmentations in quantity, and/or activation can lead to pregnancy complications. Women that have the desire of getting pregnant and been diagnosed with MC mediated disorders such as urticaria and mastocytosis or chronic inflammatory diseases in which MCs are involved, including atopic dermatitis, asthma, or psoriasis, may benefit from specialized medical assistance to ensure a positive pregnancy outcome. In the present review, we address the course of pregnancy in women affected by MC mediated or associated disorders.

  6. Lipocalin 2 is a novel immune mediator of experimental autoimmune encephalomyelitis pathogenesis and is modulated in multiple sclerosis.

    Science.gov (United States)

    Berard, Jennifer L; Zarruk, Juan G; Arbour, Nathalie; Prat, Alexandre; Yong, V Wee; Jacques, Francois H; Akira, Shizuo; David, Samuel

    2012-07-01

    Experimental autoimmune encephalomyelitis (EAE) is a widely used animal model of multiple sclerosis (MS), an inflammatory, demyelinating disease of the central nervous system (CNS). EAE pathogenesis involves various cell types, cytokines, chemokines, and adhesion molecules. Given the complexity of the inflammatory response in EAE, it is likely that many immune mediators still remain to be discovered. To identify novel immune mediators of EAE pathogenesis, we performed an Affymetrix gene array screen on the spinal cords of mice at the onset stage of disease. This screening identified the gene encoding lipocalin 2 (Lcn2) as being significantly upregulated. Lcn2 is a multi-functional protein that plays a role in glial activation, matrix metalloproteinase (MMP) stabilization, and cellular iron flux. As many of these processes have been implicated in EAE, we characterized the expression and role of Lcn2 in this disease in C57BL/6 mice. We show that Lcn2 is significantly upregulated in the spinal cord throughout EAE and is expressed predominantly by monocytes and reactive astrocytes. The Lcn2 receptor, 24p3R, is also expressed on monocytes, macrophages/microglia, and astrocytes in EAE. In addition, we show that EAE severity is increased in Lcn2(-/-) mice as compared with wild-type controls. Finally, we demonstrate that elevated levels of Lcn2 are detected in the plasma and cerebrospinal fluid (CSF) in MS and in immune cells in CNS lesions in MS tissue sections. These data indicate that Lcn2 is a modulator of EAE pathogenesis and suggest that it may also play a role in MS. Copyright © 2012 Wiley Periodicals, Inc.

  7. Adherence to systemic therapies for immune-mediated inflammatory diseases in Lebanon: a physicians' survey from three medical specialties.

    Science.gov (United States)

    Ammoury, Alfred; Okais, Jad; Hobeika, Mireille; Sayegh, Raymond B; Shayto, Rani H; Sharara, Ala I

    2017-01-01

    Immune-mediated inflammatory diseases (IMIDs) are chronic conditions that may cause tissue damage and disability, reduced quality of life and increased mortality. Various treatments have been developed for IMIDs, including immune modulators and targeted biologic agents. However, adherence remains suboptimal. An adherence survey was used to evaluate physicians' beliefs about adherence to medication in IMID and to evaluate if and how they manage adherence. The survey was distributed to 100 randomly selected physicians from three different specialties. Results were analyzed by four academic experts commissioned to develop an action plan to address practical and perceptual barriers to adherence, integrating it into treatment goals to maximize outcomes in IMID, thereby elevating local standards of care. Eighty-two physicians participated in this study and completed the questionnaire. Most defined adherence as compliance with prescribed treatment. Although the majority of surveyed physicians (74%) did not systematically measure adherence in their practice, 54% identified adherence as a treatment goal of equal or greater importance to therapeutic endpoints. Lack of time and specialized nursing support was reported as an important barrier to measuring adherence. The expert panel identified four key areas for action: 360° education (patient-nurse-physician), patient-physician communication, patient perception and concerns, and market access/cost. An action plan was developed centered on education and awareness, enhanced benefit-risk communication, development of adherence assessment tools and promotion of patient support programs. Nonadherence to medication is a commonly underestimated problem with important consequences. A customized target-based strategy to address the root causes of non-adherence is essential in the management of chronic immune-mediated diseases.

  8. Broadening the Scope of Peer-Mediated Intervention for Individuals with Autism Spectrum Disorders

    Science.gov (United States)

    Platos, Mateusz; Wojaczek, Kinga

    2018-01-01

    Peer-mediated intervention (PMI) is most commonly defined as a treatment approach that engages typically developing peers to teach children with autism spectrum disorders (ASD) social skills and increase their social interactions, mainly in a school setting. In this letter, we address the limitations of such understanding of PMI and review the…

  9. Perceived Immune Status and Sleep: A Survey among Dutch Students

    Directory of Open Access Journals (Sweden)

    Anouk A. M. T. Donners

    2015-01-01

    Full Text Available Reduced immune functioning may have a negative impact on sleep and health, and vice versa. A survey among Dutch young adults (18–35 years old was administered to collect information on perception of reduced immunity and its relationship to sleep disorders, sleep duration, and quality. Sleep disorders were assessed with the SLEEP-50 questionnaire subscales of sleep apnea, insomnia, circadian rhythm disorder, and daily functioning. Dutch young adults (N = 574 completed the survey. Among them, subjects (N = 209; 36.4% reported perceived reduced immunity. Relative to those with a normal immune status, subjects reporting reduced immunity had significantly higher scores (p=0.0001 on sleep apnea (2.6 versus 3.6, insomnia (5.1 versus 6.8, and circadian rhythm disorder (2.1 versus 2.7. Subjects reporting reduced immunity also had significantly poorer daily functioning scores (5.4 versus 7.6, p=0.0001. No differences were observed in total sleep time, but those reporting reduced immunity had significantly poorer ratings of sleep quality (6.8 versus 7.2, p=0.0001. Our findings suggest that perceived reduced immunity is associated with sleep disturbances, impaired daily functioning, and a poorer sleep quality. Experimental studies including the assessment of immune biomarkers and objective measures of sleep (polysomnography should confirm the current observations.

  10. Posttraumatic stress and worry as mediators and moderators between political stressors and emotional and behavioral disorders in Palestinian children.

    Science.gov (United States)

    Khamis, Vivian

    2012-01-01

    This study was designed to assess whether the symptoms of posttraumatic stress mediate or moderate the relationship between political stressors and emotional and behavioral disorders in Palestinian children. It was hypothesized that (a) posttraumatic stress and worry mediate the effect of political stressors on behavioral and emotional disorders and (b) the relationship between political stressors and behavioral and emotional disorders should be attenuated for children with low levels of worry and posttraumatic stress and strengthened for children with high levels of worry and posttraumatic stress. The total sample was 1267 school age children of both sexes with a mean age of 11.97 years. Interviews were conducted with children at school. As hypothesized, the results indicated that posttraumatic stress and worry mediated and moderated the relationship between political stressors and emotional and behavioral disorders in children. Cognitive-behavioral therapy may be used to reduce the incidence of posttraumatic stress and decrease self-reported worry, somatic symptoms, general anxiety, and depression among children exposed to political trauma. Cognitive-behavioral treatment that exclusively targets excessive worry can lead to clinical change in the other interacting subsystems at the cognitive, physiological, affective and behavioral levels.

  11. Adaptive maternal immune deviations as a ground for autism spectrum disorders development in children.

    Science.gov (United States)

    Poletaev, Alexander B; Poletaeva, Alina A; Pukhalenko, Alexander I; Zamaleeva, Roza S; Cherepanova, Natalia A; Frizin, Dmitry V

    2014-01-01

    Autism is a vexed problem today. Overall, there is a high frequency of birth children (1:80 - 1:150) with late diagnosed autism spectrum disorders (ASD) and this trend is getting progressively stronger. The causes for the currently increased frequency of ASD and the pathogenesis of ASD are not fully understood yet. One of the most likely mechanisms inducing ASD may be a maternal immune imprinting. This phenomenon is based on transplacental translocation of maternal antibodies of IgG class and, as a consequence, on the epigenetic "tuning" of immune system of the fetus and child. This mechanism provides development of child's anti-infection resistance before meeting with microorganisms, but it can be also a cause of inborn pathology including the ASD appearance. The quantitative changes in maternal blood serum autoantibodies depend on a specific microbial population, or are induced by environmental chemical pollutants in association with some individual features of the maternal metabolism. These immune changes are adaptive in most cases for the maternal organism, but can be pathogenic for the fetus in some cases. We discuss in the present paper the possibilities to predict the risk from abnormal development of nervous system in fetus and early diagnosis of ASD in high-risk group of children.

  12. Pediatric Tourette Syndrome: A Tic Disorder with a Tricky Presentation

    OpenAIRE

    Qurratul Warsi; Caroline Kirby; Mirza Beg

    2017-01-01

    Dysphagia is a condition in which disruption of the swallowing process interferes with a patient's ability to eat. This may result in coughing or choking while swallowing, food sticking in the throat, or globus sensation. Eosinophilic esophagitis (EoE) is a chronic immune-mediated disease with a varied clinical spectrum of symptoms including dysphagia. Tourette syndrome (TS) is an inherited neurological disorder that manifests itself as a series of motor and vocal tics and may include orophar...

  13. Socioeconomic status and Oppositional Defiant Disorder in preschoolers: parenting practices and executive functioning as mediating variables

    OpenAIRE

    Roser eGranero; Roser eGranero; Leonie eLouwaars; Lourdes eEzpeleta; Lourdes eEzpeleta

    2015-01-01

    Objectives. To investigate the mediating mechanisms of oppositional defiant disorder (ODD) in preschoolers through pathways analysis, considering the family socioeconomic status (SES) as the independent variable and the parenting style and the children’s executive functioning (EF) as the mediating factors.Method. Sample included 622 three years-old children from the general population. Multi-informant reports from parents and teachers were analyzed.Results. Structural Equation Modeling showed...

  14. Chemokine-mediated immune responses in the female genital tract mucosa.

    Science.gov (United States)

    Deruaz, Maud; Luster, Andrew D

    2015-04-01

    The genital tract mucosa is the site where sexually transmitted infections gain entry to the host. The immune response at this site is thus critical to provide innate protection against pathogens that are seen for the very first time as well as provide long-term pathogen-specific immunity, which would be required for an effective vaccine against sexually transmitted infection. A finely regulated immune response is therefore required to provide an effective barrier against pathogens without compromising the capacity of the genital tract to allow for successful conception and fetal development. We review recent developments in our understanding of the immune response in the female genital tract to infectious pathogens, using herpes simplex virus-2, human immunodeficiency virus-1 and Chlamydia trachomatis as examples, with a particular focus on the role of chemokines in orchestrating immune cell migration necessary to achieve effective innate and adaptive immune responses in the female genital tract.

  15. The CD8+ T Cell-Mediated Immunity Induced by HPV-E6 Uploaded in Engineered Exosomes Is Improved by ISCOMATRIXTM Adjuvant

    Science.gov (United States)

    Manfredi, Francesco; di Bonito, Paola; Ridolfi, Barbara; Anticoli, Simona; Arenaccio, Claudia; Chiozzini, Chiara; Baz Morelli, Adriana; Federico, Maurizio

    2016-01-01

    We recently described the induction of an efficient CD8+ T cell-mediated immune response against a tumor-associated antigen (TAA) uploaded in engineered exosomes used as an immunogen delivery tool. This immune response cleared tumor cells inoculated after immunization, and controlled the growth of tumors implanted before immunization. We looked for new protocols aimed at increasing the CD8+ T cell specific response to the antigen uploaded in engineered exosomes, assuming that an optimized CD8+ T cell immune response would correlate with a more effective depletion of tumor cells in the therapeutic setting. By considering HPV-E6 as a model of TAA, we found that the in vitro co-administration of engineered exosomes and ISCOMATRIXTM adjuvant, i.e., an adjuvant composed of purified ISCOPREPTM saponin, cholesterol, and phospholipids, led to a stronger antigen cross-presentation in both B- lymphoblastoid cell lines ( and monocyte-derived immature dendritic cells compared with that induced by the exosomes alone. Consistently, the co-inoculation in mice of ISCOMATRIXTM adjuvant and engineered exosomes induced a significant increase of TAA-specific CD8+ T cells compared to mice immunized with the exosomes alone. This result holds promise for effective usage of exosomes as well as alternative nanovesicles in anti-tumor therapeutic approaches. PMID:27834857

  16. Prenatal programing: at the intersection of maternal stress and immune activation.

    Science.gov (United States)

    Howerton, Christopher L; Bale, Tracy L

    2012-08-01

    Exposure to prenatal insults such as maternal stress and pathogenic infections has been associated with an increased risk for neurodevelopmental disorders. The mechanisms by which these programing events occur likely involve complex interactions between the maternal hormonal milieu, the placenta, and the developing fetus, in addition to compounding factors such as fetal sex and gestational stage of development. Despite the diverse biological processes involved, examination of common pathways in maternal stress and immune activation offers intriguing possibilities for elucidation of mechanistic insight. Further, the endocrine and sex-specific placenta is a tissue poised to be a key mediator in fetal programing, located at the intersection of the maternal and embryonic environments. In this review, we will discuss the potential shared mechanisms of maternal stress and immune pathway activation, with a particular focus on the important contribution and role of the placenta. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. The role of the immune system in central nervous system plasticity after acute injury.

    Science.gov (United States)

    Peruzzotti-Jametti, Luca; Donegá, Matteo; Giusto, Elena; Mallucci, Giulia; Marchetti, Bianca; Pluchino, Stefano

    2014-12-26

    Acute brain injuries cause rapid cell death that activates bidirectional crosstalk between the injured brain and the immune system. In the acute phase, the damaged CNS activates resident and circulating immune cells via the local and systemic release of soluble mediators. This early immune activation is necessary to confine the injured tissue and foster the clearance of cellular debris, thus bringing the inflammatory reaction to a close. In the chronic phase, a sustained immune activation has been described in many CNS disorders, and the degree of this prolonged response has variable effects on spontaneous brain regenerative processes. The challenge for treating acute CNS damage is to understand how to optimally engage and modify these immune responses, thus providing new strategies that will compensate for tissue lost to injury. Herein we have reviewed the available information regarding the role and function of the innate and adaptive immune responses in influencing CNS plasticity during the acute and chronic phases of after injury. We have examined how CNS damage evolves along the activation of main cellular and molecular pathways that are associated with intrinsic repair, neuronal functional plasticity and facilitation of tissue reorganization. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. Indoleamine 2,3-dioxygenase and immune changes under antidepressive treatment in major depression in females.

    Science.gov (United States)

    Zoga, Margarita; Oulis, Panagiotis; Chatzipanagiotou, Stylianos; Masdrakis, Vasilios G; Pliatsika, Paraskevi; Boufidou, Fotini; Foteli, Stefania; Soldatos, Constantin R; Nikolaou, Chryssoula; Papageorgiou, Charalampos

    2014-01-01

    Indoleamine 2, 3-dioxygenase (IDO) induction has been suggested as a mechanism by which immune activation affects tryptophan metabolism and serotonin synthesis in major depressive disorder (MDD). We investigated IDO and changes in inflammatory mediators in patients with MDD undergoing effective treatment. Forty female patients with MDD and 40 controls were recruited. Serum IDO was assessed by enzyme-linked immunosorbent assay (ELISA). We also determined tumor necrosis factor-α (TNFα), interferon-γ (IFNγ), C-reactive protein (CRP) and serotonin concentrations. Patients' baseline concentrations of IDO and immune mediators were higher and serotonin concentrations were lower compared to controls. IDO and TNFα concentrations decreased under treatment and IDO changes were positively correlated with patient improvement. IFNγ and CRP concentrations remained unchanged. Serotonin concentration tended to increase. IDO might play an important role in the pathophysiology of MDD. Moreover, antidepressant therapy might reduce IDO production through an IFNγ-independent pathway. Finally, peripheral concentration of IDO assessed by ELISA might be a useful marker of MDD. Copyright © 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  19. Immune-mediated competition in rodent malaria is most likely caused by induced changes in innate immune clearance of merozoites.

    Directory of Open Access Journals (Sweden)

    Jayanthi Santhanam

    2014-01-01

    Full Text Available Malarial infections are often genetically diverse, leading to competitive interactions between parasites. A quantitative understanding of the competition between strains is essential to understand a wide range of issues, including the evolution of virulence and drug resistance. In this study, we use dynamical-model based Bayesian inference to investigate the cause of competitive suppression of an avirulent clone of Plasmodium chabaudi (AS by a virulent clone (AJ in immuno-deficient and competent mice. We test whether competitive suppression is caused by clone-specific differences in one or more of the following processes: adaptive immune clearance of merozoites and parasitised red blood cells (RBCs, background loss of merozoites and parasitised RBCs, RBC age preference, RBC infection rate, burst size, and within-RBC interference. These processes were parameterised in dynamical mathematical models and fitted to experimental data. We found that just one parameter μ, the ratio of background loss rate of merozoites to invasion rate of mature RBCs, needed to be clone-specific to predict the data. Interestingly, μ was found to be the same for both clones in single-clone infections, but different between the clones in mixed infections. The size of this difference was largest in immuno-competent mice and smallest in immuno-deficient mice. This explains why competitive suppression was alleviated in immuno-deficient mice. We found that competitive suppression acts early in infection, even before the day of peak parasitaemia. These results lead us to argue that the innate immune response clearing merozoites is the most likely, but not necessarily the only, mediator of competitive interactions between virulent and avirulent clones. Moreover, in mixed infections we predict there to be an interaction between the clones and the innate immune response which induces changes in the strength of its clearance of merozoites. What this interaction is unknown, but

  20. [Bone marrow stromal damage mediated by immune response activity].

    Science.gov (United States)

    Vojinović, J; Kamenov, B; Najman, S; Branković, Lj; Dimitrijević, H

    1994-01-01

    The aim of this work was to estimate influence of activated immune response on hematopoiesis in vitro, using the experimental model of BCG immunized BALB/c mice and in patients with chronic immunoactivation: long-lasting infections, autoimmunity or malignancy. We correlated changes in long term bone marrow cultures (Dexter) and NBT reduction with appearance of anemia in patients and experimental model of immunization by BCG. Increased spontaneous NBT reduction pointed out role of macrophage activation in bone marrow stroma damage. Long-term bone marrow cultures showed reduced number of hematopoietic cells, with predomination of fibroblasts and loss of fat cells. This results correlated with anemia and leucocytosis with stimulated myelopoiesis in peripheral blood. Activation of immune response, or acting of any agent that directly changes extracellular matrix and cellularity of bone marrow, may result in microenviroment bone marrow damage that modify hematopoiesis.

  1. Locus of control fails to mediate between stress and anxiety and depression in parents of children with a developmental disorder.

    Science.gov (United States)

    Hamlyn-Wright, Sarah; Draghi-Lorenz, Riccardo; Ellis, Jason

    2007-11-01

    Stress, anxiety and depression are raised amongst parents of children with a developmental disorder. However, the processes by which stress leads to depression and anxiety are poorly understood. In a cross-sectional survey, levels of parental stress, depression and anxiety were compared between parents of children with an autistic disorder, children with Down's syndrome and children with no disorder (N = 619) and the mediational role of locus of control was examined. Anxiety and depression were higher in parents of children with a disorder, and highest in parents of children with autism. Locus of control was more external in parents of children with autism. Locus of control failed to mediate the relationship between stress and both anxiety and depression in parents of children with a disorder. This suggests that help for parents of a child with a disorder may be effective if focused on the sources of stress rather than perceived control over events.

  2. Assessing brain immune activation in psychiatric disorders : Clinical and preclinical PET imaging studies of the 18-kDa translocator protein

    NARCIS (Netherlands)

    van der Doef, Thalia F; Doorduin, Janine; van Berckel, Bart N M; Cervenka, Simon

    2015-01-01

    Accumulating evidence from different lines of research suggests an involvement of the immune system in the pathophysiology of several psychiatric disorders. During recent years, a series of positron emission tomography (PET) studies have been published using radioligands for the translocator protein

  3. Isotope-based immunological techniques. Their use in assessment of immune competence and the study of immune responses to pathogens

    International Nuclear Information System (INIS)

    Duffus, W.P.H.

    1984-01-01

    The influence of isotope-based techniques on both assessment of immune competence and immune response to pathogens is discussed. Immunodeficiencies acquired as a result of factors like malnutrition and concomitant disease can severely affect not only attempts to intensify and improve production but also successful immune response against important vaccines such as rinderpest and foot-and-mouth disease. Isotope-based techniques, with their accuracy, speed and small sample volume, are ideally suited for assessing immunocompetence. One of the main drawbacks remains antigen purity, an area where research should now be concentrated. Lymphocyte transformation is widely used to assess cell-mediated immuno-competence but techniques to assess biological functions such as phagocytosis and cell-mediated cytotoxicity could more usefully reflect immune status. These latter techniques utilize isotopes such as 3 H, 14 C, 32 P and 125 I. Investigation of specific cell-mediated immune response often requires a labelled target. Suitable isotopes such as 51 Cr, 99 Tcsup(m), 75 Se and 3 H are compared for their capacity to label both mammalian and parasite targets. Suggestions are made on a number of areas of research that might usefully be encouraged and supported in order to improve applied veterinary immunology in tropical countries. (author)

  4. Two Distinct Mediated Pathways to Disordered Eating in Response to Weight Stigmatization and Their Application to Prevention Programs

    Science.gov (United States)

    Simone, Melissa; Lockhart, Ginger

    2016-01-01

    Objective: Disordered eating behaviors among undergraduate women are common and, thus, are an important public health concern. Weight stigmatization, stress, and social withdrawal are often associated with disordered eating behaviors; however, it is unclear whether stress and social withdrawal act as mediators between weight stigmatization and…

  5. Negative affect mediates effects of psychological stress on disordered eating in young Chinese women.

    Directory of Open Access Journals (Sweden)

    Jue Chen

    Full Text Available BACKGROUND: The bi-relationships between psychological stress, negative affect and disordered eating has been well studied in western culture, while tri-relationship among them, i.e. how some of those factors influence these bi-relationships, has rarely been studied. However, there has been little related study in the different Chinese culture. This study was conducted to investigate the bi-relationships and tri-relationship between psychological stress, negative affect, and disordered eating attitudes and behaviors in young Chinese women. METHODOLOGY: A total of 245 young Chinese policewomen employed to carry out health and safety checks at the 2010 Shanghai World Expo were recruited in this study. The Chinese version of the Perceived Stress Scale (PSS-10, Beck Depression Inventory Revised (BDI-II, Beck Anxiety Inventory (BAI, and Eating Attitude Test (EAT-26 were administered to all participants. PRINCIPAL FINDINGS: The total scores of PSS-10, BDI-II and BAI were all highly correlated with that of EAT-26. The PSS-10 score significantly correlated with both BDI-II and BAI scores. There was no statistically significant direct effect from perceived stress to disordered eating (-0.012, 95%CI: -.038~0.006, p=0.357, however, the indirect effects from PSS-10 via affect factors were statistically significant, e.g. the estimated mediation effects from PSS to EAT-26 via depression and anxiety were 0.036 (95%CI: 0.022~0.044, p<0.001 and 0.015 (95%CI: 0.005~0.023, p<0.01, respectively. CONCLUSIONS: Perceived stress and negative affects of depression and anxiety were demonstrated to be strongly associated with disordered eating. Negative affect mediated the relationship between perceived stress and disordered eating. The findings suggest that effective interventions and preventative programmes for disordered eating should pay more attention to depression and anxiety among the young Chinese female population.

  6. Immune function genes CD99L2, JARID2 and TPO show association with autism spectrum disorder

    Directory of Open Access Journals (Sweden)

    Ramos Paula S

    2012-06-01

    Full Text Available Abstract Background A growing number of clinical and basic research studies have implicated immunological abnormalities as being associated with and potentially responsible for the cognitive and behavioral deficits seen in autism spectrum disorder (ASD children. Here we test the hypothesis that immune-related gene loci are associated with ASD. Findings We identified 2,012 genes of known immune-function via Ingenuity Pathway Analysis. Family-based tests of association were computed on the 22,904 single nucleotide polymorphisms (SNPs from the 2,012 immune-related genes on 1,510 trios available at the Autism Genetic Resource Exchange (AGRE repository. Several SNPs in immune-related genes remained statistically significantly associated with ASD after adjusting for multiple comparisons. Specifically, we observed significant associations in the CD99 molecule-like 2 region (CD99L2, rs11796490, P = 4.01 × 10-06, OR = 0.68 (0.58-0.80, in the jumonji AT rich interactive domain 2 (JARID2 gene (rs13193457, P = 2.71 × 10-06, OR = 0.61 (0.49-0.75, and in the thyroid peroxidase gene (TPO (rs1514687, P = 5.72 × 10-06, OR = 1.46 (1.24-1.72. Conclusions This study suggests that despite the lack of a general enrichment of SNPs in immune function genes in ASD children, several novel genes with known immune functions are associated with ASD.

  7. TLR4, NOD1 and NOD2 mediate immune recognition of putative newly identified periodontal pathogens.

    Science.gov (United States)

    Marchesan, Julie; Jiao, Yizu; Schaff, Riley A; Hao, Jie; Morelli, Thiago; Kinney, Janet S; Gerow, Elizabeth; Sheridan, Rachel; Rodrigues, Vinicius; Paster, Bruce J; Inohara, Naohiro; Giannobile, William V

    2016-06-01

    Periodontitis is a polymicrobial inflammatory disease that results from the interaction between the oral microbiota and the host immunity. Although the innate immune response is important for disease initiation and progression, the innate immune receptors that recognize both classical and putative periodontal pathogens that elicit an immune response have not been elucidated. By using the Human Oral Microbe Identification Microarray (HOMIM), we identified multiple predominant oral bacterial species in human plaque biofilm that strongly associate with severe periodontitis. Ten of the identified species were evaluated in greater depth, six being classical pathogens and four putative novel pathogens. Using human peripheral blood monocytes (HPBM) and murine bone-marrow-derived macrophages (BMDM) from wild-type (WT) and Toll-like receptor (TLR)-specific and MyD88 knockouts (KOs), we demonstrated that heat-killed Campylobacter concisus, Campylobacter rectus, Selenomonas infelix, Porphyromonas endodontalis, Porphyromonas gingivalis, and Tannerella forsythia mediate high immunostimulatory activity. Campylobacter concisus, C. rectus, and S. infelix exhibited robust TLR4 stimulatory activity. Studies using mesothelial cells from WT and NOD1-specific KOs and NOD2-expressing human embryonic kidney cells demonstrated that Eubacterium saphenum, Eubacterium nodatum and Filifactor alocis exhibit robust NOD1 stimulatory activity, and that Porphyromonas endodontalis and Parvimonas micra have the highest NOD2 stimulatory activity. These studies allowed us to provide important evidence on newly identified putative pathogens in periodontal disease pathogenesis showing that these bacteria exhibit different immunostimulatory activity via TLR4, NOD1, and NOD2 (Clinicaltrials.gov NCT01154855). © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. TLR4, NOD1 and NOD2 Mediate Immune Recognition of Putative Newly-Identified Periodontal Pathogens

    Science.gov (United States)

    Schaff, Riley A.; Hao, Jie; Morelli, Thiago; Kinney, Janet S.; Gerow, Elizabeth; Sheridan, Rachel; Rodrigues, Vinicius; Paster, Bruce J.; Inohara, Naohiro; Giannobile, William V.

    2015-01-01

    SUMMARY Periodontitis is a polymicrobial inflammatory disease that results from the interaction between the oral microbiota and the host immunity. While the innate immune response is important for disease initiation and progression, the innate immune receptors that recognize both classical and putative periodontal pathogens that elicit an immune response have not been elucidated. By using the Human Oral Microbe Identification Microarray (HOMIM), we identified multiple predominant oral bacterial species in human plaque biofilm that strongly associate with severe periodontitis. Ten of the identified species were evaluated in greater depth, 6 being classical pathogens and 4 putative novel pathogens. Using human peripheral blood monocytes (HPBM) and murine bone marrow–derived macrophages (BMDM) from wild-type (WT) and toll-like receptor (TLR)-specific and MyD88 knockouts (KOs), we demonstrated that heat-killed Campylobacter concisus, Campylobacter rectus, Selenomonas infelix, Porphyromonas endodontalis, Porphyromonas gingivalis, and Tannerella forsythia mediate high immunostimulatory activity. C. concisus, C. rectus, and S. infelix exhibited robust TLR4 stimulatory activity. Studies using mesothelial cells from WT and NOD1-specific KOs and NOD2-expressing human embryonic kidney (HEK) cells demonstrated that Eubacterium saphenum, Eubacterium nodatum and Filifactor alocis exhibit robust NOD1 stimulatory activity, and that Porphyromonas endodontalis and Parvimonas micra have the highest NOD2-stimulatory activity. These studies allowed us to provide important evidence on newly-identified putative pathogens in periodontal disease pathogenesis showing that these bacteria exhibit different immunostimulatory activity via TLR4, NOD1, and NOD2 (Clinicaltrials.gov NCT01154855). PMID:26177212

  9. Associated and mediating variables related to quality of life among service users with mental disorders.

    Science.gov (United States)

    Fleury, Marie-Josée; Grenier, Guy; Bamvita, Jean-Marie

    2018-02-01

    This study aimed to identify variables associated with quality of life (QoL) and mediating variables among 338 service users with mental disorders in Quebec (Canada). Data were collected using nine standardized questionnaires and participant medical records. Quality of life was assessed with the Satisfaction with Life Domains Scale. Independent variables were organized into a six-block conceptual framework. Using structural equation modeling, associated and mediating variables related to QoL were identified. Lower seriousness of needs was the strongest variable associated with QoL, followed by recovery, greater service continuity, gender (male), adequacy of help received, not living alone, absence of substance use or mood disorders, and higher functional status, in that order. Recovery was the single mediating variable linking lower seriousness of needs, higher service continuity, and reduced alcohol use with QoL. Findings suggest that greater service continuity creates favorable conditions for recovery, reducing seriousness of needs and increasing QoL among service users. Lack of recovery-oriented services may affect QoL among alcohol users, as substance use disorders were associated directly and negatively with QoL. Decision makers and mental health professionals should promote service continuity, and closer collaboration between primary care and specialized services, while supporting recovery-oriented services that encourage service user involvement in their treatment and follow-up. Community-based organizations should aim to reduce the seriousness of needs particularly for female service users and those living alone.

  10. Crosstalk between Inflammation and ROCK/MLCK Signaling Pathways in Gastrointestinal Disorders with Intestinal Hyperpermeability

    Directory of Open Access Journals (Sweden)

    Lijun Du

    2016-01-01

    Full Text Available The barrier function of the intestine is essential for maintaining the normal homeostasis of the gut and mucosal immune system. Abnormalities in intestinal barrier function expressed by increased intestinal permeability have long been observed in various gastrointestinal disorders such as Crohn’s disease (CD, ulcerative colitis (UC, celiac disease, and irritable bowel syndrome (IBS. Imbalance of metabolizing junction proteins and mucosal inflammation contributes to intestinal hyperpermeability. Emerging studies exploring in vitro and in vivo model system demonstrate that Rho-associated coiled-coil containing protein kinase- (ROCK- and myosin light chain kinase- (MLCK- mediated pathways are involved in the regulation of intestinal permeability. With this perspective, we aim to summarize the current state of knowledge regarding the role of inflammation and ROCK-/MLCK-mediated pathways leading to intestinal hyperpermeability in gastrointestinal disorders. In the near future, it may be possible to specifically target these specific pathways to develop novel therapies for gastrointestinal disorders associated with increased gut permeability.

  11. Immune interactions in endometriosis

    Science.gov (United States)

    Herington, Jennifer L; Bruner-Tran, Kaylon L; Lucas, John A; Osteen, Kevin G

    2011-01-01

    Endometriosis is a common, complex gynecologic disorder characterized by the presence of endometrial glands and stroma at extrauterine (ectopic) sites. In women who develop this disease, alterations in specific biological processes involving both the endocrine and immune systems have been observed, which may explain the survival and growth of displaced endometrial tissue in affected women. In the past decade, a considerable amount of research has implicated a role for alterations in progesterone action at both eutopic and ectopic sites of endometrial growth which may contribute to the excessive inflammation associated with progression of endometriosis; however, it remains unclear whether these anomalies induce the condition or are simply a consequence of the disease process. In this article, we summarize current knowledge of alterations within the immune system of endometriosis patients and discuss how endometrial cells from women with this disease not only have the capacity to escape immunosurveillance, but also use inflammatory mechanisms to promote their growth within the peritoneal cavity. Finally, we discuss evidence that exposure to an environmental endocrine disruptor, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin, can mediate the development of an endometrial phenotype that exhibits both reduced progesterone responsiveness and hypersensitivity to proinflammatory stimuli mimicking the endometriosis phenotype. Future studies in women with endometriosis should consider whether a heightened inflammatory response within the peritoneal microenvironment contributes to the development and persistence of this disease. PMID:21895474

  12. The LasB Elastase of Pseudomonas aeruginosa Acts in Concert with Alkaline Protease AprA To Prevent Flagellin-Mediated Immune Recognition.

    Science.gov (United States)

    Casilag, Fiordiligie; Lorenz, Anne; Krueger, Jonas; Klawonn, Frank; Weiss, Siegfried; Häussler, Susanne

    2016-01-01

    The opportunistic pathogen Pseudomonas aeruginosa is capable of establishing severe and persistent infections in various eukaryotic hosts. It encodes a wide array of virulence factors and employs several strategies to evade immune detection. In the present study, we screened the Harvard Medical School transposon mutant library of P. aeruginosa PA14 for bacterial factors that modulate interleukin-8 responses in A549 human airway epithelial cells. We found that in addition to the previously identified alkaline protease AprA, the elastase LasB is capable of degrading exogenous flagellin under calcium-replete conditions and prevents flagellin-mediated immune recognition. Our results indicate that the production of two proteases with anti-flagellin activity provides a failsafe mechanism for P. aeruginosa to ensure the maintenance of protease-dependent immune-modulating functions. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  13. Lewis Lung Cancer Cells Promote SIGNR1(CD209b)-Mediated Macrophages Polarization Induced by IL-4 to Facilitate Immune Evasion.

    Science.gov (United States)

    Yan, Xiaolong; Li, Wenhai; Pan, Lei; Fu, Enqing; Xie, Yonghong; Chen, Min; Mu, Deguang

    2016-05-01

    Tumor-associated macrophages are a prominent component of lung cancer and contribute to tumor progression by facilitating the immune evasion of cancer cells. DC-SIGN (CD209) assists in the immune evasion of a broad spectrum of pathogens and neoplasms by inhibiting the maturation of DCs and subsequent cytokines production. However, the expression of DC-SIGN in macrophages and its role in mediating immune evasion in lung cancer and the underlying mechanism remain unclear. Our study aimed to identify the immunosuppressive role of SIGNR1 in murine macrophage differentiation and lung cancer progression. We found that SIGNR1-positive RAW264.7 macrophages were enriched in mixed cultures with Lewis lung cancer cells (LLC) (ratio of RAW 264.7 to LLC being 1:1) after stimulation with IL-4. Moreover, LLC-educated macrophages exhibited significantly higher levels of IL-10 but lower IL-12 in response to IL-4 treatment as determined by RT-PCR and ELISA. However, inhibition of SIGNR1 markedly hampered the production of IL-10, indicating that SIGNR1 was indispensable for IL-4+LLC induced macrophage polarization towards the M2 subtype. Furthermore, polarized M2 cells immersed in a tumor microenvironment promoted the migration of LLCs, as measured by transwell assays, but migration was suppressed after blockade of SIGNR1 using CD209b antibody. In addition, IL-4+LLC-educated macrophages reduced the proliferation of the activated T cells and reduced IFN-γ-mediated Th1 response in T cells, while SIGNR1 inhibition rescued Th1 cell functions. In conclusion, murine SIGNR1 expressed in LLC-educated macrophages appears to mediate IL-4-induced RAW264.7 macrophage polarization and thus facilitate lung cancer evasion. © 2015 Wiley Periodicals, Inc.

  14. Psychoneuroimmunology of mental disorders.

    Science.gov (United States)

    Soria, Virginia; Uribe, Javiera; Salvat-Pujol, Neus; Palao, Diego; Menchón, José Manuel; Labad, Javier

    The immune system is a key element in the organism's defence system and participates in the maintenance of homeostasis. There is growing interest in the aetiopathogenic and prognostic implications of the immune system in mental disorders, as previous studies suggest the existence of a dysregulation of the immune response and a pro-inflammatory state in patients with mental disorders, as well as an increased prevalence of neuropsychiatric symptoms in patients suffering from autoimmune diseases or receiving immune treatments. This study aims to conduct a narrative review of the scientific literature on the role of Psychoneuroimmunology in mental disorders, with special focus on diagnostic, prognostic and therapeutic issues. The development of this body of knowledge may bring in the future important advances in the vulnerability, aetiopathogenic mechanisms, diagnosis and treatment of some mental disorders. Copyright © 2017 SEP y SEPB. Publicado por Elsevier España, S.L.U. All rights reserved.

  15. [Stress and auto-immunity].

    Science.gov (United States)

    Delévaux, I; Chamoux, A; Aumaître, O

    2013-08-01

    The etiology of auto-immune disorders is multifactorial. Stress is probably a participating factor. Indeed, a high proportion of patients with auto-immune diseases report uncommon stress before disease onset or disease flare. The biological consequences of stress are increasingly well understood. Glucocorticoids and catecholamines released by hypothalamic-pituitary-adrenal axis during stress will alter the balance Th1/Th2 and the balance Th17/Treg. Stress impairs cellular immunity, decreases immune tolerance and stimulates humoral immunity exposing individuals to autoimmune disease among others. The treatment for autoimmune disease should include stress management. Copyright © 2012 Société nationale française de médecine interne (SNFMI). Published by Elsevier SAS. All rights reserved.

  16. Organizational strategies mediate nonverbal memory impairment in obsessive-compulsive disorder.

    Science.gov (United States)

    Savage, C R; Baer, L; Keuthen, N J; Brown, H D; Rauch, S L; Jenike, M A

    1999-04-01

    Previous neuropsychological studies of obsessive-compulsive disorder (OCD) have indicated impaired executive functioning and nonverbal memory. The extent to which impaired executive functioning impacts nonverbal memory has not been established. The current study investigated the mediating effects of organizational strategies used when copying a figure on subsequent nonverbal memory for that figure. We examined neuropsychological performance in 20 unmedicated subjects with OCD and 20 matched normal control subjects. Subjects were administered the Rey-Osterrieth Complex Figure Test (RCFT) and neuropsychological tests assessing various aspects of executive function. OCD subjects differed significantly from healthy control subjects in the organizational strategies used to copy the RCFT figure, and they recalled significantly less information on both immediate and delayed testing. Multiple regression analyses indicated that group differences in immediate percent recall were significantly mediated by copy organizational strategies. Further exploratory analyses indicated that organizational problems in OCD may be related to difficulties shifting mental and/or spatial set. Immediate nonverbal memory problems in OCD subjects were mediated by impaired organizational strategies used during the initial copy of the RCFT figure. Thus, the primary deficit was one affecting executive function, which then had a secondary effect on immediate memory. These findings are consistent with current theories proposing frontal-striatal system dysfunction in OCD.

  17. Tumor immune evasion arises through loss of TNF sensitivity.

    Science.gov (United States)

    Kearney, Conor J; Vervoort, Stephin J; Hogg, Simon J; Ramsbottom, Kelly M; Freeman, Andrew J; Lalaoui, Najoua; Pijpers, Lizzy; Michie, Jessica; Brown, Kristin K; Knight, Deborah A; Sutton, Vivien; Beavis, Paul A; Voskoboinik, Ilia; Darcy, Phil K; Silke, John; Trapani, Joseph A; Johnstone, Ricky W; Oliaro, Jane

    2018-05-18

    Immunotherapy has revolutionized outcomes for cancer patients, but the mechanisms of resistance remain poorly defined. We used a series of whole-genome clustered regularly interspaced short palindromic repeat (CRISPR)-based screens performed in vitro and in vivo to identify mechanisms of tumor immune evasion from cytotoxic lymphocytes [CD8 + T cells and natural killer (NK) cells]. Deletion of key genes within the tumor necrosis factor (TNF) signaling, interferon-γ (IFN-γ) signaling, and antigen presentation pathways provided protection of tumor cells from CD8 + T cell-mediated killing and blunted antitumor immune responses in vivo. Deletion of a number of genes in the TNF pathway also emerged as the key mechanism of immune evasion from primary NK cells. Our screens also identified that the metabolic protein 2-aminoethanethiol dioxygenase (Ado) modulates sensitivity to TNF-mediated killing by cytotoxic lymphocytes and is required for optimal control of tumors in vivo. Remarkably, we found that tumors delete the same genes when exposed to perforin-deficient CD8 + T cells, demonstrating that the dominant immune evasion strategy used by tumor cells is acquired resistance to T cell-derived cytokine-mediated antitumor effects. We demonstrate that TNF-mediated bystander killing is a potent T cell effector mechanism capable of killing antigen-negative tumor cells. In addition to highlighting the importance of TNF in CD8 + T cell- and NK cell-mediated killing of tumor cells, our study also provides a comprehensive picture of the roles of the TNF, IFN, and antigen presentation pathways in immune-mediated tumor surveillance. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  18. Appearance-based rejection sensitivity as a mediator of the relationship between symptoms of social anxiety and disordered eating cognitions and behaviors.

    Science.gov (United States)

    Linardon, Jake; Braithwaite, Rachel; Cousins, Rachel; Brennan, Leah

    2017-12-01

    Previous research has established a robust relationship between symptoms of social anxiety and disordered eating. However, the mechanisms that may underpin this relationship are unclear. Appearance-based rejection sensitivity (ABRS)-the tendency to anxiously expect and overreact to signs of appearance-based rejection-may be a crucial explanatory mechanism, as ABRS has been shown to maintain social anxiety symptoms and predict disordered eating. We therefore tested whether ABRS mediated the relationship between social anxiety symptoms and various indices of disordered eating (over-evaluation of weight/shape, restraint, binge eating, compulsive exercise, and vomiting). Data from community-based females (n=299) and males (n=87) were analyzed. ABRS was shown to mediate the relationship between social anxiety and the over-evaluation, restraint, binge eating, and compulsive exercise frequency, but not vomiting. These effects also occurred for both females and males separately. Findings demonstrated that ABRS may be an important mechanism explaining why socially anxious individuals report elevated symptoms of disordered eating. Future research testing all proposed mediating variables of the social anxiety-disordered eating link in a single, integrative model is required to identify the most influential mechanisms driving this relationship. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Dynamic Nature of Noncoding RNA Regulation of Adaptive Immune Response

    Directory of Open Access Journals (Sweden)

    Franca Citarella

    2013-08-01

    Full Text Available Immune response plays a fundamental role in protecting the organism from infections; however, dysregulation often occurs and can be detrimental for the organism, leading to a variety of immune-mediated diseases. Recently our understanding of the molecular and cellular networks regulating the immune response, and, in particular, adaptive immunity, has improved dramatically. For many years, much of the focus has been on the study of protein regulators; nevertheless, recent evidence points to a fundamental role for specific classes of noncoding RNAs (ncRNAs in regulating development, activation and homeostasis of the immune system. Although microRNAs (miRNAs are the most comprehensive and well-studied, a number of reports suggest the exciting possibility that long ncRNAs (lncRNAs could mediate host response and immune function. Finally, evidence is also accumulating that suggests a role for miRNAs and other small ncRNAs in autocrine, paracrine and exocrine signaling events, thus highlighting an elaborate network of regulatory interactions mediated by different classes of ncRNAs during immune response. This review will explore the multifaceted roles of ncRNAs in the adaptive immune response. In particular, we will focus on the well-established role of miRNAs and on the emerging role of lncRNAs and circulating ncRNAs, which all make indispensable contributions to the understanding of the multilayered modulation of the adaptive immune response.

  20. Extensive immune-mediated hippocampal damage in mice surviving infection with neuroadapted Sindbis virus

    International Nuclear Information System (INIS)

    Kimura, Takashi; Griffin, Diane E.

    2003-01-01

    Viral infections of the central nervous system and immune responses to these infections cause a variety of neurological diseases. Infection of weanling mice with Sindbis virus causes acute nonfatal encephalomyelitis followed by clearance of infectious virus, but persistence of viral RNA. Infection with a neuroadapted strain of Sindbis virus (NSV) causes fatal encephalomyelitis, but passive transfer of immune serum after infection protects from fatal disease and infectious virus is cleared. To determine whether persistent NSV RNA is associated with neurological damage, we examined the brains of recovered mice and found progressive loss of the hippocampal gyrus, adjacent white matter, and deep cerebral cortex associated with mononuclear cell infiltration. Mice deficient in CD4 + T cells showed less tissue loss, while mice lacking CD8 + T cells showed lesions comparable to those in immunocompetent mice. Mice deficient in both CD4 + and CD8 + T cells developed severe tissue loss similar to immunocompetent mice and this was associated with extensive infiltration of macrophages. The number of CD4 + cells and macrophage/microglial cells, but not CD8 + cells, infiltrating the hippocampal gyrus was correlated with the number of terminal deoxynucleotidyltransferase-mediated dUTP nick end-labeling positive pyramidal neurons. These results suggest that CD4 + T cells can promote progressive neuronal death and tissue injury, despite clearance of infectious virus

  1. The role of microbiome in central nervous system disorders

    Science.gov (United States)

    Wang, Yan; Kasper, Lloyd H.

    2014-01-01

    Mammals live in a co-evolutionary association with the plethora of microorganisms that reside at a variety of tissue microenvironments. The microbiome represents the collective genomes of these co-existing microorganisms, which is shaped by host factors such as genetics and nutrients but in turn is able to influence host biology in health and disease. Niche-specific microbiome, prominently the gut microbiome, has the capacity to effect both local and distal sites within the host. The gut microbiome has played a crucial role in the bidirectional gut-brain axis that integrates the gut and central nervous system (CNS) activities, and thus the concept of microbiome-gut-brain axis is emerging. Studies are revealing how diverse forms of neuro-immune and neuro-psychiatric disorders are correlated with or modulated by variations of microbiome, microbiota-derived products and exogenous antibiotics and probiotics. The microbiome poises the peripheral immune homeostasis and predisposes host susceptibility to CNS autoimmune diseases such as multiple sclerosis. Neural, endocrine and metabolic mechanisms are also critical mediators of the microbiome-CNS signaling, which are more involved in neuro-psychiatric disorders such as autism, depression, anxiety, stress. Research on the role of microbiome in CNS disorders deepens our academic knowledge about host-microbiome commensalism in central regulation and in practicality, holds conceivable promise for developing novel prognostic and therapeutic avenues for CNS disorders. PMID:24370461

  2. Role of Cortistatin in the Stressed Immune System.

    Science.gov (United States)

    Delgado, Mario; Gonzalez-Rey, Elena

    2017-01-01

    The immune system is faced with the daunting job of defending the organism against invading pathogens, while at the same time preserving the body integrity and maintaining tolerance to its own tissues. Loss of self-tolerance compromises immune homeostasis and leads to the onset of autoimmune disorders. The identification of endogenous factors that control immune tolerance and inflammation is a key goal for immunologists. Evidences from the last decade indicate that the neuropeptide cortistatin is one of the endogenous factors. Cortistatin is produced by immune cells and through its binding to various receptors, it exerts potent anti-inflammatory actions and participates in the maintenance of immune tolerance at multiple levels, especially in immunological disorders. Cortistatin emerges as a key element in the bidirectional communication between the neuroendocrine and immune systems aimed at regulating body homeostasis. © 2017 S. Karger AG, Basel.

  3. Chinese Herbal Formula, Modified Danggui Buxue Tang, Attenuates Apoptosis of Hematopoietic Stem Cells in Immune-Mediated Aplastic Anemia Mouse Model

    Directory of Open Access Journals (Sweden)

    Jingwei Zhou

    2017-01-01

    Full Text Available A derivative formula, DGBX, which is composed of three herbs (Radix astragali, Radix Angelicae sinensis, and Coptis chinensis Franch, is derived from a famous Chinese herbal formula, Danggui Buxue Tang (DBT (Radix astragali and Radix Angelicae sinensis. We aimed to investigate the effects of DGBX on the regulation of the balance between proliferation and apoptosis of hematopoietic stem cells (HSCs due to the aberrant immune response in a mouse model of aplastic anemia (AA. Cyclosporine (CsA, an immunosuppressor, was used as the positive control. Our results indicated that DGBX could downregulate the production of IFNγ in bone marrow cells by interfering with the binding between SLAM and SAP and the expressions of Fyn and T-bet. This herbal formula can also inhibit the activation of Fas-mediated apoptosis, interferon regulatory factor-1-induced JAK/Stat, and eukaryotic initiation factor 2 signaling pathways and thereby induce proliferation and attenuate apoptosis of HSCs. In conclusion, DGBX can relieve the immune-mediated destruction of HSCs, repair hematopoietic failure, and recover the hematopoietic function of HSCs in hematogenesis. Therefore, DGBX can be used in traditional medicine against AA as a complementary and alternative immunosuppressive therapeutic formula.

  4. Pancreatic Tissue Transplanted in TheraCyte Encapsulation Devices Is Protected and Prevents Hyperglycemia in a Mouse Model of Immune-Mediated Diabetes.

    Science.gov (United States)

    Boettler, Tobias; Schneider, Darius; Cheng, Yang; Kadoya, Kuniko; Brandon, Eugene P; Martinson, Laura; von Herrath, Matthias

    2016-01-01

    Type 1 diabetes (T1D) is characterized by destruction of glucose-responsive insulin-producing pancreatic β-cells and exhibits immune infiltration of pancreatic islets, where CD8 lymphocytes are most prominent. Curative transplantation of pancreatic islets is seriously hampered by the persistence of autoreactive immune cells that require high doses of immunosuppressive drugs. An elegant approach to confer graft protection while obviating the need for immunosuppression is the use of encapsulation devices that allow for the transfer of oxygen and nutrients, yet prevent immune cells from making direct contact with the islet grafts. Here we demonstrate that macroencapsulation devices (TheraCyte) loaded with neonatal pancreatic tissue and transplanted into RIP-LCMV.GP mice prevented disease onset in a model of virus-induced diabetes mellitus. Histological analyses revealed that insulin-producing cells survived within the device in animal models of diabetes. Our results demonstrate that these encapsulation devices can protect from an immune-mediated attack and can contain a sufficient amount of insulin-producing cells to prevent overt hyperglycemia.

  5. Use of radioactive double labelling technique in the chemical analysis of the mediators of cellular immunity

    International Nuclear Information System (INIS)

    Sorg, C.

    1978-01-01

    Radioactive double labelling was adapted for the analysis of mediators of cellular immunity. Two identical lymphocyte cultures were simultaneously labelled with [ 3 H]- or [ 14 C] leucine. Each of the cultures was stimulated with antigen or mitogen. The combined supernatants were then subjected to various fractionation procedures. By determining the isotope ratio in each fraction it is possible to identify those products of activated lymphocytes that have been produced either de novo or in increased amounts. The method proved sensitive enough to detect lymphocyte activation products in supernatants of activated lymphocyte cultures from guinea pig, mouse, and man

  6. Dopamine Mediates the Vagal Modulation of the Immune System by Electroacupuncture

    Science.gov (United States)

    Torres-Rosas, Rafael; Yehia, Ghassan; Peña, Geber; Mishra, Priya; del Rocio Thompson-Bonilla, Maria; Moreno-Eutimio, Mario Adán; Arriaga-Pizano, Lourdes Andrea; Isibasi, Armando; Ulloa, Luis

    2014-01-01

    Previous anti-inflammatory strategies against sepsis, a leading cause of death in hospitals, had limited efficacy in clinical trials, in part because they targeted single cytokines and the experimental models failed to mimic clinical settings1-3. Neuronal networks represent physiological mechanisms selected by evolution to control inflammation that can be exploited for the treatment of inflammatory and infectious disorders3. Here, we report that sciatic nerve activation with electroacupuncture controls systemic inflammation and rescues mice from polymicrobial peritonitis. Electroacupuncture at the sciatic nerve controls systemic inflammation by inducing a vagal activation of DOPA decarboxylase leading to the production of dopamine in the adrenal medulla. Experimental models with adrenolectomized animals mimic clinical adrenal insufficiency4, increase the susceptibility to sepsis, and prevent the anti-inflammatory potential of electroacupuncture. Dopamine inhibits cytokine production via dopaminergic type-1 receptors. Dopaminergic D1-agonists suppress systemic inflammation and rescue mice from polymicrobial peritonitis in animals with adrenal insufficiency. Our results suggest a novel anti-inflammatory mechanism mediated by the sciatic and the vagus nerves modulating the production of catecholamines in the adrenal glands. From a pharmacological perspective, selective dopaminergic agonists mimic the anti-inflammatory potential of electroacupuncture and can provide therapeutic advantages to control inflammation in infectious and inflammatory disorders. PMID:24562381

  7. Initial experience with laparoscopic splenectomy for immune ...

    African Journals Online (AJOL)

    Immune thrombocytopenic purpura (ITP) is an immune- mediated disease characterised by thrombocytopenia, the degree of which determines the increased risk of bleeding.[1] It can be primary (idiopathic) or secondary. Secondary ITP can occur with systemic lupus erythematosus, chronic lymphocytic leukaemia,.

  8. Tensor decomposition-based unsupervised feature extraction identifies candidate genes that induce post-traumatic stress disorder-mediated heart diseases.

    Science.gov (United States)

    Taguchi, Y-H

    2017-12-21

    Although post-traumatic stress disorder (PTSD) is primarily a mental disorder, it can cause additional symptoms that do not seem to be directly related to the central nervous system, which PTSD is assumed to directly affect. PTSD-mediated heart diseases are some of such secondary disorders. In spite of the significant correlations between PTSD and heart diseases, spatial separation between the heart and brain (where PTSD is primarily active) prevents researchers from elucidating the mechanisms that bridge the two disorders. Our purpose was to identify genes linking PTSD and heart diseases. In this study, gene expression profiles of various murine tissues observed under various types of stress or without stress were analyzed in an integrated manner using tensor decomposition (TD). Based upon the obtained features, ∼ 400 genes were identified as candidate genes that may mediate heart diseases associated with PTSD. Various gene enrichment analyses supported biological reliability of the identified genes. Ten genes encoding protein-, DNA-, or mRNA-interacting proteins-ILF2, ILF3, ESR1, ESR2, RAD21, HTT, ATF2, NR3C1, TP53, and TP63-were found to be likely to regulate expression of most of these ∼ 400 genes and therefore are candidate primary genes that cause PTSD-mediated heart diseases. Approximately 400 genes in the heart were also found to be strongly affected by various drugs whose known adverse effects are related to heart diseases and/or fear memory conditioning; these data support the reliability of our findings. TD-based unsupervised feature extraction turned out to be a useful method for gene selection and successfully identified possible genes causing PTSD-mediated heart diseases.

  9. siRNA and innate immunity.

    Science.gov (United States)

    Robbins, Marjorie; Judge, Adam; MacLachlan, Ian

    2009-06-01

    Canonical small interfering RNA (siRNA) duplexes are potent activators of the mammalian innate immune system. The induction of innate immunity by siRNA is dependent on siRNA structure and sequence, method of delivery, and cell type. Synthetic siRNA in delivery vehicles that facilitate cellular uptake can induce high levels of inflammatory cytokines and interferons after systemic administration in mammals and in primary human blood cell cultures. This activation is predominantly mediated by immune cells, normally via a Toll-like receptor (TLR) pathway. The siRNA sequence dependency of these pathways varies with the type and location of the TLR involved. Alternatively nonimmune cell activation may also occur, typically resulting from siRNA interaction with cytoplasmic RNA sensors such as RIG1. As immune activation by siRNA-based drugs represents an undesirable side effect due to the considerable toxicities associated with excessive cytokine release in humans, understanding and abrogating this activity will be a critical component in the development of safe and effective therapeutics. This review describes the intracellular mechanisms of innate immune activation by siRNA, the design of appropriate sequences and chemical modification approaches, and suitable experimental methods for studying their effects, with a view toward reducing siRNA-mediated off-target effects.

  10. Balancing immune protection and immune pathology by CD8+ T cell responses to influenza infection

    Directory of Open Access Journals (Sweden)

    Susu eDuan

    2016-02-01

    Full Text Available Influenza A virus (IAV is a significant human pathogen causing annual epidemics and periodic pandemics. CD8+ cytotoxic T lymphocyte (CTL-mediated immunity contributes to clearance of virus-infected cells; CTL immunity targeting the conserved internal proteins of IAVs is a key protection mechanism when neutralizing antibodies are absent during heterosubtypic IAV infection. However, CTL infiltration into the airways, their cytotoxicity, and the effects of produced pro-inflammatory cytokines can cause severe lung tissue injury, thereby contributing to immunopathology. Studies have discovered complicated and exquisite stimulatory and inhibitory mechanisms that regulate CTL magnitude and effector activities during IAV infection. Here, we review the state of knowledge on the roles of IAV-specific CTLs in immune protection and immunopathology during IAV infection in animal models, highlighting the key findings of various requirements and constraints regulating the balance of immune protection and pathology involved in CTL immunity. We also discuss the evidence of cross-reactive CTL immunity as a positive correlate of cross-subtype protection during secondary IAV infection in both animal and human studies. We argue that the effects of CTL immunity on protection and immunopathology depend on multiple layers of host and viral factors, including complex host mechanisms to regulate CTL magnitude and effector activity, the pathogenic nature of the IAV, the innate response milieu, and the host historical immune context of influenza infection. Future efforts are needed to further understand these key host and viral factors, especially to differentiate those that constrain optimally effective CTL anti-viral immunity from those necessary to restrain CTL-mediated nonspecific immunopathology in the various contexts of IAV infection, in order to develop better vaccination and therapeutic strategies for modifying protective CTL immunity.

  11. Efficacy of Caregiver-Mediated Joint Engagement Intervention for Young Children with Autism Spectrum Disorders

    Science.gov (United States)

    Chiang, Chung-Hsin; Chu, Ching-Lin; Lee, Tsung-Chin

    2016-01-01

    Joint attention intervention for children with autism spectrum disorders was focused on improving joint engagement and joint attention skills. The purpose of this study was to develop a caregiver-mediated joint engagement intervention program combined with body movement play to investigate the effects of joint engagement/joint attention skills in…

  12. Mediated Moderation in Combined Cognitive Behavioral Therapy versus Component Treatments for Generalized Anxiety Disorder

    Science.gov (United States)

    Newman, Michelle G.; Fisher, Aaron J.

    2013-01-01

    Objective: This study examined (a) duration of generalized anxiety disorder (GAD) as a moderator of cognitive behavioral therapy (CBT) versus its components (cognitive therapy and self-control desensitization) and (b) increases in dynamic flexibility of anxious symptoms during the course of psychotherapy as a mediator of this moderation. Degree of…

  13. Cutaneous Manifestations of Scleroderma and Scleroderma-Like Disorders: a Comprehensive Review.

    Science.gov (United States)

    Ferreli, Caterina; Gasparini, Giulia; Parodi, Aurora; Cozzani, Emanuele; Rongioletti, Franco; Atzori, Laura

    2017-12-01

    Scleroderma refers to an autoimmune connective tissue fibrosing disease, including three different subsets: localized scleroderma, limited cutaneous systemic sclerosis, and diffuse cutaneous systemic sclerosis with divergent patterns of organ involvement, autoantibody profiles, management, and prognostic implications. Although systemic sclerosis is considered the disease prototype that causes cutaneous sclerosis, there are many other conditions that can mimic and be confused with SSc. They can be classified into immune-mediated/inflammatory, immune-mediated/inflammatory with abnormal deposit (mucinoses), genetic, drug-induced and toxic, metabolic, panniculitis/vascular, and (para)neoplastic disorders according to clinico-pathological and pathogenetic correlations. This article reviews the clinical presentation with emphasis on cutaneous disease, etiopathogenesis, diagnosis, and treatment options available for the different forms of scleroderma firstly and for scleroderma-like disorders, including scleromyxedema, scleredema, nephrogenic systemic fibrosis, eosinophilic fasciitis, chronic graft-versus-host disease, porphyria cutanea tarda, diabetic stiff-hand syndrome (diabetic cheiroartropathy), and other minor forms. This latter group of conditions, termed also scleroderma mimics, sclerodermiform diseases, or pseudosclerodermas, shares the common thread of skin thickening but presents with distinct cutaneous manifestations, skin histology, and systemic implications or disease associations, differentiating each entity from the others and from scleroderma. The lack of Raynaud's phenomenon, capillaroscopic abnormalities, or scleroderma-specific autoantibodies is also important diagnostic clues. As cutaneous involvement is the earliest, most frequent and characteristic manifestation of scleroderma and sclerodermoid disorders, dermatologists are often the first-line doctors who must be able to promptly recognize skin symptoms to provide the affected patient a correct

  14. Effects of in ovo exposure to PCBs (coplanar congener, kanechlor mixture, hydroxylated metabolite) on the developing cell-mediated immunity in chickens

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, J.; Matsuda, M.; Kawano, M.; Wakimoto, T. [Faculty of Agriculture, Ehime Univ., Matsuyama, Ehime (Japan); Kashima, Y. [Dept. of Hygiene, Yokohama City Univ. School of Medicine, Yokohama (Japan)

    2004-09-15

    Polychlorinated biphenyls (PCBs) are wide spread environmental contaminants and known to cause various adverse effects on health of human and wildlife. Immune system is one of the several targets for toxic effects of PCBs and its normal balance is often disrupted by the exposure of the compounds. For example, PCBs may induce immune suppression and result in increased susceptibility to bacterial and viral infections, or conversely, excessive immune enhancement may cause adverse outcomes including as autoimmune disease and anergy. Therefore immune function is regarded as one of an important endpoint in toxicological risk assessment. There are a number of studies shown that neonatal organisms perinatally exposed to polyhalogenated aromatic hydrocarbons (PHAHs) such as PCBs have severer effects on their immune system than adult. Dioxins and coplanar PCB congeners, structurally planar PHAHs are known to have high affinity for aryl hydrocarbon receptor (AhR). 2,3,7,8-tetrachlorinated dibenzo-p-dioxin (TCDD) have the strongest affinity among such compounds and these are considered to act on immune system through AhR. On the other hand, such as non-planar PCB congeners with low affinity for AhR, which are abundantly contained in commercial PCB preparations have non-additive (antagonistic) effects on immune function. Prenatal exposure of TCDD to rodent induced abnormal lymphoid development in the thymus and thymus-dependent immune functions were remarkably disturbed. Although several experimental studies in mammals have been carried out on the developmental immunotoxicity of PCBs, there are still limited information available on avian species. Thus in this study, prenatal exposure to low level of PCBs and the effects on the developing immune system were investigated with chicken as a model animal of avian species, especially it is focused on the cell-mediated immune function.

  15. Depression in Adults with Attention-Deficit/Hyperactivity Disorder (ADHD): The Mediating Role of Cognitive-Behavioral Factors

    Science.gov (United States)

    Zvorsky, Ivori; Safren, Steven A.

    2015-01-01

    Adults with Attention-Deficit/Hyperactivity Disorder (ADHD) are at increased risk for depressive disorders but little is known about the potential cognitive and behavioral mechanisms of risk that could shape treatment. This study evaluated the degree to which cognitive-behavioral constructs associated with depression and its treatment—dysfunctional attitudes and cognitive-behavioral avoidance—accounted for variance in depressive symptoms and disorder in adults with ADHD. 77 adults clinically diagnosed with ADHD completed self-report questionnaires, diagnostic interviews, and clinician-administered symptom rating scales. Statistical mediation analysis was employed and indirect effects assessed using bootstrap analysis and bias-corrected confidence intervals. Controlling for recent negative life events, dysfunctional attitudes and cognitive-behavioral avoidance fully accounted for the variance between ADHD symptoms and depressive symptoms. Each independent variable partially mediated the other in accounting for depression symptoms suggesting overlapping and unique variance. Cognitive-behavioral avoidance, however, was more strongly related to meeting diagnostic criteria for a depressive disorder than were dysfunctional attitudes. Processes that are targeted in cognitive behavior therapy (CBT) for depression were associated with symptoms in adults with ADHD. Current CBT approaches for ADHD incorporate active coping skills and cognitive restructuring and such approaches could be further tailored to address the ADHD-depression comorbidity. PMID:26089578

  16. Complement anaphylatoxins as immune regulators in cancer

    OpenAIRE

    Sayegh, Eli T; Bloch, Orin; Parsa, Andrew T

    2014-01-01

    The role of the complement system in innate immunity is well characterized. However, a recent body of research implicates the complement anaphylatoxins C3a and C5a as insidious propagators of tumor growth and progression. It is now recognized that certain tumors elaborate C3a and C5a and that complement, as a mediator of chronic inflammation and regulator of immune function, may in fact foster rather than defend against tumor growth. A putative mechanism for this function is complement-mediat...

  17. Long-term effect of whole-body X-irradiation on cell-mediated immune reaction in mice

    International Nuclear Information System (INIS)

    Norimura, Toshiyuki; Tsuchiya, Takehiko

    1989-01-01

    Age-related change in immunological activity was examined at 10 to 91 weeks following whole-body irradiation by determining the specific anti-tumor cell-mediated immunity in host mice induced and/or enhanced by local irradiation to transplanted tumor. Median survival time of the non-irradiated C3H/He female mice was 98.6 weeks while the median life-span of the mice exposed to two and four Gy of 250 kVp X-rays at the age of 10-12 weeks was shortened by 14.9 and 23.4 weeks, respectively. The rate of tumor reduction within two weeks after local irradiation to tumor and the growth inhibitory activitiy of spleen cells from tumor irradiated mice were reduced in a dose-dependent manner when assessed 10 weeks after whole-body irradiation, but recovered to the near-complete level of the non-irradiated controls within a few months, then gradually decreased with normal aging. These results suggest that the age-dependent decline of this immunological activity apears earlier in the irradiated mice as a result of whole-body X-irradiation at a young age, suggesting accelerated aging of the immune system. (author)

  18. Features of Acquired Immunity in Malaria Endemic Areas

    Indian Academy of Sciences (India)

    ... of Acquired Immunity in Malaria Endemic Areas. Adults (>15 years) do not suffer from the disease. Concomitant presence of low levels of P. falciparum in immune persons. This immunity is lost within 6-12 months if a person moves out of endemic area. Antibodies mediate protection for the asexual stages of P. falciparum.

  19. Immunometabolic Pathways in BCG-Induced Trained Immunity

    NARCIS (Netherlands)

    Arts, R.J.; Carvalho, A.; Rocca, C. La; Palma, C.; Rodrigues, F.; Silvestre, R.; Kleinnijenhuis, J.; Lachmandas, E.; Goncalves, L.G.; Belinha, A.; Cunha, C.; Oosting, M.; Joosten, L.A.; Matarese, G.; Crevel, R. van; Netea, M.G.

    2016-01-01

    The protective effects of the tuberculosis vaccine Bacillus Calmette-Guerin (BCG) on unrelated infections are thought to be mediated by long-term metabolic changes and chromatin remodeling through histone modifications in innate immune cells such as monocytes, a process termed trained immunity.

  20. Distinguishing Between Risk Factors for Bulimia Nervosa, Binge Eating Disorder, and Purging Disorder.

    Science.gov (United States)

    Allen, Karina L; Byrne, Susan M; Crosby, Ross D

    2015-08-01

    Binge eating disorder and purging disorder have gained recognition as distinct eating disorder diagnoses, but risk factors for these conditions have not yet been established. This study aimed to evaluate a prospective, mediational model of risk for the full range of binge eating and purging eating disorders, with attention to possible diagnostic differences. Specific aims were to determine, first, whether eating, weight and shape concerns at age 14 would mediate the relationship between parent-perceived childhood overweight at age 10 and a binge eating or purging eating disorder between age 15 and 20, and, second, whether this mediational model would differ across bulimia nervosa, binge eating disorder, and purging disorder. Participants (N = 1,160; 51 % female) were drawn from the Western Australian Pregnancy Cohort (Raine) Study, which has followed children from pre-birth to age 20. Eating disorders were assessed via self-report questionnaires when participants were aged 14, 17 and 20. There were 146 participants (82 % female) with a binge eating or purging eating disorder with onset between age 15 and 20 [bulimia nervosa = 81 (86 % female), binge eating disorder = 43 (74 % female), purging disorder = 22 (77 % female)]. Simple mediation analysis with bootstrapping was used to test the hypothesized model of risk, with early adolescent eating, weight and shape concerns positioned as a mediator between parent-perceived childhood overweight and later onset of a binge eating or purging eating disorder. Subsequently, a conditional process model (a moderated mediation model) was specified to determine if model pathways differed significantly by eating disorder diagnosis. In the simple mediation model, there was a significant indirect effect of parent-perceived childhood overweight on risk for a binge eating or purging eating disorder in late adolescence, mediated by eating, weight and shape concerns in early adolescence. In the conditional process model

  1. Neurotic Personality Traits and Risk for Adverse Alcohol Outcomes: Chained Mediation through Emotional Disorder Symptoms and Drinking to Cope.

    Science.gov (United States)

    Chinneck, A; Thompson, K; Dobson, K S; Stuart, H; Teehan, M; Stewart, S H

    2018-02-02

    Rates of alcohol abuse are high on Canadian postsecondary campuses. Individual trait differences have been linked to indices of alcohol use/misuse, including neurotic traits like anxiety sensitivity (AS) and hopelessness (HOP). We know little, though, about how these traits confer vulnerability. AS and HOP are related to anxiety and depression, respectively, and to drinking to cope with symptoms of those disorders. Neurotic personality may therefore increase risk of alcohol use/abuse via (1) emotional disorder symptoms and/or (2) coping drinking motives. Allan and colleagues (2014) found chained mediation through AS-generalized anxiety-coping motives-alcohol problems and AS-depression-coping motives-alcohol problems. We sought to expand their research by investigating how emotional disorder symptoms (anxiety, depression) and specific coping motives (drinking to cope with anxiety, depression) may sequentially mediate the AS/HOP-to-hazardous alcohol use/drinking harms relationships among university students. This study used cross-sectional data collected in Fall 2014 as part of the Movember-funded Caring Campus Project (N = 1,883). The survey included the SURPS, adapted DMQ-R SF, and AUDIT-3. AS and HOP were both related to hazardous alcohol and drinking harms via emotional disorder symptoms and, in turn, coping drinking motives. All indirect pathways incorporating both mediators were statistically significant, and additional evidence of partial specificity was found. Conclusions/Importance: The study's results have important implications for personality-matched interventions for addictive disorders.

  2. A neuro-immune, neuro-oxidative and neuro-nitrosative model of prenatal and postpartum depression.

    Science.gov (United States)

    Roomruangwong, Chutima; Anderson, George; Berk, Michael; Stoyanov, Drozdstoy; Carvalho, André F; Maes, Michael

    2018-02-02

    A large body of evidence indicates that major affective disorders are accompanied by activated neuro-immune, neuro-oxidative and neuro-nitrosative stress (IO&NS) pathways. Postpartum depression is predicted by end of term prenatal depressive symptoms whilst a lifetime history of mood disorders appears to increase the risk for both prenatal and postpartum depression. This review provides a critical appraisal of available evidence linking IO&NS pathways to prenatal and postpartum depression. The electronic databases Google Scholar, PubMed and Scopus were sources for this narrative review focusing on keywords, including perinatal depression, (auto)immune, inflammation, oxidative, nitric oxide, nitrosative, tryptophan catabolites (TRYCATs), kynurenine, leaky gut and microbiome. Prenatal depressive symptoms are associated with exaggerated pregnancy-specific changes in IO&NS pathways, including increased C-reactive protein, advanced oxidation protein products and nitric oxide metabolites, lowered antioxidant levels, such as zinc, as well as lowered regulatory IgM-mediated autoimmune responses. The latter pathways coupled with lowered levels of endogenous anti-inflammatory compounds, including ω3 polyunsaturated fatty acids, may also underpin the pathophysiology of postpartum depression. Although increased bacterial translocation, lipid peroxidation and TRYCAT pathway activation play a role in mood disorders, similar changes do not appear to be relevant in perinatal depression. Some IO&NS biomarker characteristics of mood disorders are found in prenatal depression indicating that these pathways partly contribute to the association of a lifetime history of mood disorders and perinatal depression. However, available evidence suggests that some IO&NS pathways differ significantly between perinatal depression and mood disorders in general. This review provides a new IO&NS model of prenatal and postpartum depression. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. RNA interference-mediated intrinsic antiviral immunity in invertebrates.

    Science.gov (United States)

    Nayak, Arabinda; Tassetto, Michel; Kunitomi, Mark; Andino, Raul

    2013-01-01

    In invertebrates such as insects and nematodes, RNA interference (RNAi) provides RNA-based protection against viruses. This form of immunity restricts viral replication and dissemination from infected cells and viruses, in turn, have evolved evasion mechanisms or RNAi suppressors to counteract host defenses. Recent advances indicate that, in addition to RNAi, other related small RNA pathways contribute to antiviral functions in invertebrates. This has led to a deeper understanding of fundamental aspects of small RNA-based antiviral immunity in invertebrates and its contribution to viral spread and pathogenesis.

  4. Rice Snl6, a cinnamoyl-CoA reductase-like gene family member, is required for NH1-mediated immunity to Xanthomonas oryzae pv. oryzae.

    Directory of Open Access Journals (Sweden)

    Rebecca S Bart

    2010-09-01

    Full Text Available Rice NH1 (NPR1 homolog 1 is a key mediator of innate immunity. In both plants and animals, the innate immune response is often accompanied by rapid cell death at the site of pathogen infection. Over-expression of NH1 in rice results in resistance to the bacterial pathogen, Xanthomonas oryzae pv. oryzae (Xoo, constitutive expression of defense related genes and enhanced benzothiadiazole (BTH- mediated cell death. Here we describe a forward genetic screen that identified a suppressor of NH1-mediated lesion formation and resistance, snl6. Comparative genome hybridization and fine mapping rapidly identified the genomic location of the Snl6 gene. Snl6 is a member of the cinnamoyl-CoA reductase (CCR-like gene family. We show that Snl6 is required for NH1-mediated resistance to Xoo. Further, we show that Snl6 is required for pathogenesis-related gene expression. In contrast to previously described CCR family members, disruption of Snl6 does not result in an obvious morphologic phenotype. Snl6 mutants have reduced lignin content and increased sugar extractability, an important trait for the production of cellulosic biofuels. These results suggest the existence of a conserved group of CCR-like genes involved in the defense response, and with the potential to alter lignin content without affecting development.

  5. Anti-Donor Immune Responses Elicited by Allogeneic Mesenchymal Stem Cells and Their Extracellular Vesicles: Are We Still Learning?

    Directory of Open Access Journals (Sweden)

    Paul Lohan

    2017-11-01

    Full Text Available Mesenchymal stromal cells (MSC have been used to treat a broad range of disease indications such as acute and chronic inflammatory disorders, autoimmune diseases, and transplant rejection due to their potent immunosuppressive/anti-inflammatory properties. The breadth of their usage is due in no small part to the vast quantity of published studies showing their ability to modulate multiple immune cell types of both the innate and adaptive immune response. While patient-derived (autologous MSC may be the safer choice in terms of avoiding unwanted immune responses, factors including donor comorbidities may preclude these cells from use. In these situations, allogeneic MSC derived from genetically unrelated individuals must be used. While allogeneic MSC were initially believed to be immune-privileged, substantial evidence now exists to prove otherwise with multiple studies documenting specific cellular and humoral immune responses against donor antigens following administration of these cells. In this article, we will review recent published studies using non-manipulated, inflammatory molecule-activated (licensed and differentiated allogeneic MSC, as well as MSC extracellular vesicles focusing on the immune responses to these cells and whether or not such responses have an impact on allogeneic MSC-mediated safety and efficacy.

  6. Recurrent Vulvovaginal Candidiasis: Could It Be Related to Cell-Mediated Immunity Defect in Response to Candida Antigen?

    Directory of Open Access Journals (Sweden)

    Zahra Talaei

    2017-09-01

    Full Text Available Background Recurrent vulvovaginal candidiasis (RVVC is a common cause of morbidity affecting millions of women worldwide. Patients with RVVC are thought to have an underlying immunologic defect. This study has been established to evaluate cell-mediated immunity defect in response to candida antigen in RVVC cases. Materials and Methods Our cross-sectional study was performed in 3 groups of RVVC patients (cases, healthy individuals (control I and known cases of chronic mucocutaneous candidiasis (CMC (control II. Patients who met the inclusion criteria of RVVC were selected consecutively and were allocated in the case group. Peripheral blood mononuclear cells were isolated and labeled with CFSE and proliferation rate was measured in exposure to candida antigen via flow cytometry. Results T lymphocyte proliferation in response to candida was significantly lower in RVVC cases (n=24 and CMC patients (n=7 compared to healthy individuals (n=20, P0.05. Family history of primary immunodeficiency diseases (PID differed significantly among groups (P=0.01, RVVC patients has family history of PID more than control I (29.2 vs. 0%, P=0.008 but not statistically different from CMC patients (29.2 vs. 42.9%, P>0.05. Prevalence of atopy was greater in RVVC cases compared to healthy individuals (41.3 vs. 15%, P=0.054. Lymphoproliferative activity and vaginal symptoms were significantly different among RVVC cases with and without allergy (P=0.01, P=0.02. Conclusion Our findings revealed that T cells do not actively proliferate in response to Candida antigen in some RVVC cases. So it is concluded that patients with cell-mediated immunity defect are more susceptible to recurrent fungal infections of vulva and vagina. Nonetheless, some other cases of RVVC showed normal function of T cells. Further evaluations showed that these patients suffer from atopy. It is hypothesized that higher frequency of VVC in patients with history of atopy might be due to allergic response

  7. A retinoic acid-dependent checkpoint in the development of CD4+ T cell-mediated immunity.

    Science.gov (United States)

    Pino-Lagos, Karina; Guo, Yanxia; Brown, Chrysothemis; Alexander, Matthew P; Elgueta, Raúl; Bennett, Kathryn A; De Vries, Victor; Nowak, Elizabeth; Blomhoff, Rune; Sockanathan, Shanthini; Chandraratna, Roshantha A; Dmitrovsky, Ethan; Noelle, Randolph J

    2011-08-29

    It is known that vitamin A and its metabolite, retinoic acid (RA), are essential for host defense. However, the mechanisms for how RA controls inflammation are incompletely understood. The findings presented in this study show that RA signaling occurs concurrent with the development of inflammation. In models of vaccination and allogeneic graft rejection, whole body imaging reveals that RA signaling is temporally and spatially restricted to the site of inflammation. Conditional ablation of RA signaling in T cells significantly interferes with CD4(+) T cell effector function, migration, and polarity. These findings provide a new perspective of the role of RA as a mediator directly controlling CD4(+) T cell differentiation and immunity. © 2011 Pino-Lagos et al.

  8. Eosinophils in mucosal immune responses

    Science.gov (United States)

    Travers, J; Rothenberg, M E

    2015-01-01

    Eosinophils, multifunctional cells that contribute to both innate and adaptive immunity, are involved in the initiation, propagation and resolution of immune responses, including tissue repair. They achieve this multifunctionality by expression of a diverse set of activation receptors, including those that directly recognize pathogens and opsonized targets, and by their ability to store and release preformed cytotoxic mediators that participate in host defense, to produce a variety of de novo pleotropic mediators and cytokines and to interact directly and indirectly with diverse cell types, including adaptive and innate immunocytes and structural cells. Herein, we review the basic biology of eosinophils and then focus on new emerging concepts about their role in mucosal immune homeostasis, particularly maintenance of intestinal IgA. We review emerging data about their development and regulation and describe new concepts concerning mucosal eosinophilic diseases. We describe recently developed therapeutic strategies to modify eosinophil levels and function and provide collective insight about the beneficial and detrimental functions of these enigmatic cells. PMID:25807184

  9. The commensal microbiota drives immune homeostasis

    Directory of Open Access Journals (Sweden)

    Marie-Claire eArrieta

    2012-03-01

    Full Text Available For millions of years, microbes have coexisted with eukaryotic cells at the mucosal surfaces of vertebrates in a complex, yet usually harmonious symbiosis. An ever-expanding number of reports describe how eliminating or shifting the intestinal microbiota has profound effects on the development and functionality of the mucosal and systemic immune systems. Here, we examine some of the mechanisms by which bacterial signals affect immune homeostasis. Focusing on the strategies that microbes use to keep our immune system healthy, as opposed to trying to correct the immune imbalances caused by dysbiosis, may prove to be a more astute and efficient way of treating immune-mediated disease.

  10. IDO2: A Pathogenic Mediator of Inflammatory Autoimmunity

    Directory of Open Access Journals (Sweden)

    Lauren M.F. Merlo

    2016-01-01

    Full Text Available Indoleamine 2,3-dioxygenase 2 (IDO2, a homolog of the better-studied tryptophan-catabolizing enzyme IDO1, is an immunomodulatory molecule with potential effects on various diseases including cancer and autoimmunity. Here, we review what is known about the direct connections between IDO2 and immune function, particularly in relationship to autoimmune inflammatory disorders such as rheumatoid arthritis and lupus. Accumulating evidence indicates that IDO2 acts as a pro-inflammatory mediator of autoimmunity, with a functional phenotype distinct from IDO1. IDO2 is expressed in antigen-presenting cells, including B cells and dendritic cells, but affects inflammatory responses in the autoimmune context specifically by acting in B cells to modulate T cell help in multiple model systems. Given that expression of IDO2 can lead to exacerbation of inflammatory responses, IDO2 should be considered a potential therapeutic target for autoimmune disorders.

  11. Innate Immunity and Saliva in Candida albicans–mediated Oral Diseases

    Science.gov (United States)

    Salvatori, O.; Puri, S.; Tati, S.; Edgerton, M.

    2016-01-01

    The oral cavity is a unique niche where Candida albicans infections occur in immunocompetent as well as immunosuppressed individuals. Here we critically review the significance of human innate immune response in preventing oral candidiasis. One important line of defense against oropharyngeal candidiasis is the oral microbiota that prevents infection by competing for space and nutrients as well as by secreting antagonistic molecules and triggering local inflammatory responses. C. albicans is able to induce mucosal defenses through activation of immune cells and production of cytokines. Also, saliva contains various proteins that affect C. albicans growth positively by promoting mucosal adherence and negatively through immune exclusion and direct fungicidal activity. We further discuss the role of saliva in unifying host innate immune defenses against C. albicans as a communicating medium and how C. albicans overgrowth in the oral cavity may be a result of aberrations ranging from microbial dysbiosis and salivary dysfunction to epithelial damage. Last we underscore select oral diseases in which C. albicans is a contributory microorganism in immune-competent individuals. PMID:26747422

  12. Characteristic and functional analysis of toll-like receptors (TLRs in the lophotrocozoan, Crassostrea gigas, reveals ancient origin of TLR-mediated innate immunity.

    Directory of Open Access Journals (Sweden)

    Yang Zhang

    Full Text Available The evolution of TLR-mediated innate immunity is a fundamental question in immunology. Here, we report the characterization and functional analysis of four TLR members in the lophotrochozoans Crassostreagigas (CgTLRs. All CgTLRs bear a conserved domain organization and have a close relationship with TLRs in ancient non-vertebrate chordates. In HEK293 cells, every CgTLR could constitutively activate NF-κB responsive reporter, but none of the PAMPs tested could stimulate CgTLR-activated NF-κB induction. Subcellular localization showed that CgTLR members have similar and dual distribution on late endosomes and plasma membranes. Moreover, CgTLRs and CgMyD88 mRNA show a consistent response to multiple PAMP challenges in oyster hemocytes. As CgTLR-mediated NF-κB activation is dependent on CgMyD88, we designed a blocking peptide for CgTLR signaling that would inhibit CgTLR-CgMyD88 dependent NF-κB activation. This was used to demonstrate that a Vibrio parahaemolyticus infection-induced enhancement of degranulation and increase of cytokines TNF mRNA in hemocytes, could be inhibited by blocking CgTLR signaling. In summary, our study characterized the primitive TLRs in the lophotrocozoan C. gigas and demonstrated a fundamental role of TLR signaling in infection-induced hemocyte activation. This provides further evidence for an ancient origin of TLR-mediated innate immunity.

  13. Development of CD4 T cell dependent immunity against N. brasiliensis infection

    Directory of Open Access Journals (Sweden)

    Marina eHarvie

    2013-03-01

    Full Text Available Of all the microbial infections relevant to mammals the relationship between parasitic worms and what constitutes and regulates a host protective immune response is perhaps the most complex and evolved. Nippostrongylus brasiliensis is a tissue migrating parasitic roundworm of rodents that exemplifies many of the salient features of parasitic worm infection, including parasite development through sequential larval stages as it migrates through specific tissue sites. Immune competent hosts respond to infection by N. brasiliensis with a rapid and selective development of a profound Th2 immune response that appears able to confer life long protective immunity against reinfection. This review details how the lung can be the site of migrating nematode immune killing and the gut a site of rapid immune mediated clearance of worms. Furthermore it appears that N. brasiliensis induced responses in the lung are sufficient for conferring immunity in lung and gut while infection of the gut only confers immunity in the gut. This review also covers the role of IL-4, STAT6 and the innate cytokines IL-25, IL-33 and TSLP in the generation of CD4-mediated immunity against N. brasiliensis reinfection and discusses what cytokines might be involved in mediated killing or expulsion of helminth parasites.

  14. Newly identified CpG ODNs, M5-30 and M6-395, stimulate mouse immune cells to secrete TNF-alpha and enhance Th1-mediated immunity.

    Science.gov (United States)

    Choi, Sun-Shim; Chung, Eunkyung; Jung, Yu-Jin

    2010-08-01

    Bacterial CpG motifs are known to induce both innate and adaptive immunity in infected hosts via toll-like receptor 9 (TLR9). Because small oligonucleotides (ODNs) mimicking bacterial CpG motifs are easily synthesized, they have found use as immunomodulatory agents in a number of disease models. We have developed a novel bioinformatics approach to identify effective CpG ODN sequences and evaluate their function as TLR9 ligands in a murine system. Among the CpG ODNs we identified, M5-30 and M6-395 showed significant ability to stimulate TNF-alpha and IFN-gamma production in a mouse macrophage cell line and mouse splenocytes, respectively. We also found that these CpG ODNs activated cells through the canonical NF-kappa B signaling pathway. Moreover, both CpG ODNs were able to induce Th1-mediated immunity in Mycobacterium tuberculosis (Mtb)-infected mice. Our results demonstrate that M5-30 and M6-395 function as TLR9-specific ligands, making them useful in the study of TLR9 functionality and signaling in mice.

  15. Hydrodynamic delivery of plasmid DNA encoding human Fc?R-Ig dimers blocks immune-complex mediated inflammation in mice

    OpenAIRE

    Shashidharamurthy, Rangaiah; Machiah, Deepa; Bozeman, Erica N.; Srivatsan, Sanjay; Patel, Jaina; Cho, Alice; Jacob, Joshy; Selvaraj, Periasamy

    2011-01-01

    Therapeutic use and function of recombinant molecules can be studied by the expression of foreign genes in mice. In this study, we have expressed human Fcgamma receptor ?Ig fusion molecules (Fc?R-Igs) in mice by administering Fc?R-Ig plasmid DNAs hydrodynamically and compared their effectiveness to purified molecules in blocking immune-complex (IC) mediated inflammation in mice. The concentration of hydrodynamically expressed Fc?R-Igs (CD16AF-Ig, CD32AR-Ig and CD32AH-Ig) reached a maximum of ...

  16. Single-Cell RNA Sequencing Reveals T Helper Cells Synthesizing Steroids De Novo to Contribute to Immune Homeostasis

    Directory of Open Access Journals (Sweden)

    Bidesh Mahata

    2014-05-01

    Full Text Available T helper 2 (Th2 cells regulate helminth infections, allergic disorders, tumor immunity, and pregnancy by secreting various cytokines. It is likely that there are undiscovered Th2 signaling molecules. Although steroids are known to be immunoregulators, de novo steroid production from immune cells has not been previously characterized. Here, we demonstrate production of the steroid pregnenolone by Th2 cells in vitro and in vivo in a helminth infection model. Single-cell RNA sequencing and quantitative PCR analysis suggest that pregnenolone synthesis in Th2 cells is related to immunosuppression. In support of this, we show that pregnenolone inhibits Th cell proliferation and B cell immunoglobulin class switching. We also show that steroidogenic Th2 cells inhibit Th cell proliferation in a Cyp11a1 enzyme-dependent manner. We propose pregnenolone as a “lymphosteroid,” a steroid produced by lymphocytes. We speculate that this de novo steroid production may be an intrinsic phenomenon of Th2-mediated immune responses to actively restore immune homeostasis.

  17. Dominant effects of the diet on the microbiome and the local and systemic immune response in mice.

    Directory of Open Access Journals (Sweden)

    Jot Hui Ooi

    Full Text Available Outside the nutrition community the effects of diet on immune-mediated diseases and experimental outcomes have not been appreciated. Investigators that study immune-mediated diseases and/or the microbiome have overlooked the potential of diet to impact disease phenotype. We aimed to determine the effects of diet on the bacterial microbiota and immune-mediated diseases. Three different laboratory diets were fed to wild-type mice for 2 weeks and resulted in three distinct susceptibilities to dextran sodium sulfate (DSS-induc