WorldWideScience

Sample records for mediate bacterial killing

  1. Cigarette Smoke Exposure Inhibits Bacterial Killing via TFEB-Mediated Autophagy Impairment and Resulting Phagocytosis Defect

    Directory of Open Access Journals (Sweden)

    Garrett Pehote

    2017-01-01

    Full Text Available Introduction. Cigarette smoke (CS exposure is the leading risk factor for COPD-emphysema pathogenesis. A common characteristic of COPD is impaired phagocytosis that causes frequent exacerbations in patients leading to increased morbidity. However, the underlying mechanism is unclear. Hence, we investigated if CS exposure causes autophagy impairment as a mechanism for diminished bacterial clearance via phagocytosis by utilizing murine macrophages (RAW264.7 cells and Pseudomonas aeruginosa (PA01-GFP as an experimental model. Methods. Briefly, RAW cells were treated with cigarette smoke extract (CSE, chloroquine (autophagy inhibitor, TFEB-shRNA, CFTR(inh-172, and/or fisetin prior to bacterial infection for functional analysis. Results. Bacterial clearance of PA01-GFP was significantly impaired while its survival was promoted by CSE (p<0.01, autophagy inhibition (p<0.05; p<0.01, TFEB knockdown (p<0.01; p<0.001, and inhibition of CFTR function (p<0.001; p<0.01 in comparison to the control group(s that was significantly recovered by autophagy-inducing antioxidant drug, fisetin, treatment (p<0.05; p<0.01; and p<0.001. Moreover, investigations into other pharmacological properties of fisetin show that it has significant mucolytic and bactericidal activities (p<0.01; p<0.001, which warrants further investigation. Conclusions. Our data suggests that CS-mediated autophagy impairment as a critical mechanism involved in the resulting phagocytic defect, as well as the therapeutic potential of autophagy-inducing drugs in restoring is CS-impaired phagocytosis.

  2. Igg Subclasses Targeting the Flagella of Salmonella enterica Serovar Typhimurium Can Mediate Phagocytosis and Bacterial Killing

    Science.gov (United States)

    Goh, Yun Shan; Armour, Kathryn L; Clark, Michael R; Grant, Andrew J; Mastroeni, Pietro

    2016-01-01

    Invasive non-typhoidal Salmonella are a common cause of invasive disease in immuno-compromised individuals and in children. Multi-drug resistance poses challenges to disease control, with a critical need for effective vaccines. Flagellin is an attractive vaccine candidate due to surface exposure and high epitope copy number, but its potential as a target for opsonophacytic antibodies is unclear. We examined the effect of targeting flagella with different classes of IgG on the interaction between Salmonella Typhimurium and a human phagocyte-like cell line, THP-1. We tagged the FliC flagellar protein with a foreign CD52 mimotope (TSSPSAD) and bacteria were opsonized with a panel of humanised CD52 antibodies with the same antigen-binding V-region, but different constant regions. We found that IgG binding to flagella increases bacterial phagocytosis and reduces viable intracellular bacterial numbers. Opsonisation with IgG3, followed by IgG1, IgG4, and IgG2, resulted in the highest level of bacterial uptake and in the highest reduction in the intracellular load of viable bacteria. Taken together, our data provide proof-of-principle evidence that targeting flagella with antibodies can increase the antibacterial function of host cells, with IgG3 being the most potent subclass. These data will assist the rational design of urgently needed, optimised vaccines against iNTS disease. PMID:27366588

  3. Dynamics of Human Complement–Mediated Killing of Klebsiella pneumoniae

    Science.gov (United States)

    Nypaver, Christina M.; Thornton, Margaret M.; Yin, Suellen M.; Bracho, David O.; Nelson, Patrick W.; Jones, Alan E.; Bortz, David M.; Younger, John G.

    2010-01-01

    With an in vitro system that used a luminescent strain of Klebsiella pneumoniae to assess bacterial metabolic activity in near-real-time, we investigated the dynamics of complement-mediated attack in healthy individuals and in patients presenting to the emergency department with community-acquired severe sepsis. A novel mathematical/statistical model was developed to simplify light output trajectories over time into two fitted parameters, the rate of complement activation and the delay from activation to the onset of killing. Using Factor B–depleted serum, the alternative pathway was found to be the primary bactericidal effector: In the absence of B, C3 opsonization as measured by flow cytometry did not progress and bacteria proliferated near exponentially. Defects in bacterial killing were easily demonstrable in patients with severe sepsis compared with healthy volunteers. In most patients with sepsis, the rate of activation was higher than in normal subjects but was associated with a prolonged delay between activation and bacterial killing (P < 0.05 for both). Theoretical modeling suggested that this combination of accentuated but delayed function should allow successful bacterial killing but with significantly greater complement activation. The use of luminescent bacteria allowed for the development of a novel and powerful tool for assessing complement immunology for the purposes of mechanistic study and patient evaluation. PMID:20008281

  4. Dynamics of human complement-mediated killing of Klebsiella pneumoniae.

    Science.gov (United States)

    Nypaver, Christina M; Thornton, Margaret M; Yin, Suellen M; Bracho, David O; Nelson, Patrick W; Jones, Alan E; Bortz, David M; Younger, John G

    2010-11-01

    With an in vitro system that used a luminescent strain of Klebsiella pneumoniae to assess bacterial metabolic activity in near-real-time, we investigated the dynamics of complement-mediated attack in healthy individuals and in patients presenting to the emergency department with community-acquired severe sepsis. A novel mathematical/statistical model was developed to simplify light output trajectories over time into two fitted parameters, the rate of complement activation and the delay from activation to the onset of killing. Using Factor B-depleted serum, the alternative pathway was found to be the primary bactericidal effector: In the absence of B, C3 opsonization as measured by flow cytometry did not progress and bacteria proliferated near exponentially. Defects in bacterial killing were easily demonstrable in patients with severe sepsis compared with healthy volunteers. In most patients with sepsis, the rate of activation was higher than in normal subjects but was associated with a prolonged delay between activation and bacterial killing (P < 0.05 for both). Theoretical modeling suggested that this combination of accentuated but delayed function should allow successful bacterial killing but with significantly greater complement activation. The use of luminescent bacteria allowed for the development of a novel and powerful tool for assessing complement immunology for the purposes of mechanistic study and patient evaluation.

  5. Bacterial Killing by Dry Metallic Copper Surfaces▿

    OpenAIRE

    Santo, Christophe Espírito; Lam, Ee Wen; Elowsky, Christian G.; Quaranta, Davide; Domaille, Dylan W.; Chang, Christopher J.; Grass, Gregor

    2010-01-01

    Metallic copper surfaces rapidly and efficiently kill bacteria. Cells exposed to copper surfaces accumulated large amounts of copper ions, and this copper uptake was faster from dry copper than from moist copper. Cells suffered extensive membrane damage within minutes of exposure to dry copper. Further, cells removed from copper showed loss of cell integrity. Acute contact with metallic copper surfaces did not result in increased mutation rates or DNA lesions. These findings are important fir...

  6. S1PR3 Signaling Drives Bacterial Killing and Is Required for Survival in Bacterial Sepsis.

    Science.gov (United States)

    Hou, JinChao; Chen, QiXing; Wu, XiaoLiang; Zhao, DongYan; Reuveni, Hadas; Licht, Tamar; Xu, MengLong; Hu, Hu; Hoeft, Andreas; Ben-Sasson, Shmuel A; Shu, Qiang; Fang, XiangMing

    2017-12-15

    Efficient elimination of pathogenic bacteria is a critical determinant in the outcome of sepsis. Sphingosine-1-phosphate receptor 3 (S1PR3) mediates multiple aspects of the inflammatory response during sepsis, but whether S1PR3 signaling is necessary for eliminating the invading pathogens remains unknown. To investigate the role of S1PR3 in antibacterial immunity during sepsis. Loss- and gain-of-function experiments were performed using cell and murine models. S1PR3 levels were determined in patients with sepsis and healthy volunteers. S1PR3 protein levels were up-regulated in macrophages upon bacterial stimulation. S1pr3 -/- mice showed increased mortality and increased bacterial burden in multiple models of sepsis. The transfer of wild-type bone marrow-derived macrophages rescued S1pr3 -/- mice from lethal sepsis. S1PR3-overexpressing macrophages further ameliorated the mortality rate of sepsis. Loss of S1PR3 led to markedly decreased bacterial killing in macrophages. Enhancing endogenous S1PR3 activity using a peptide agonist potentiated the macrophage bactericidal function and improved survival rates in multiple models of sepsis. Mechanically, the reactive oxygen species levels were decreased and phagosome maturation was delayed in S1pr3 -/- macrophages due to impaired recruitment of vacuolar protein-sorting 34 to the phagosomes. In addition, S1RP3 expression levels were elevated in monocytes from patients with sepsis. Higher levels of monocytic S1PR3 were associated with efficient intracellular bactericidal activity, better immune status, and preferable outcomes. S1PR3 signaling drives bacterial killing and is essential for survival in bacterial sepsis. Interventions targeting S1PR3 signaling could have translational implications for manipulating the innate immune response to combat pathogens.

  7. Determination of Complement-Mediated Killing of Bacteria by Viability Staining and Bioluminescence

    OpenAIRE

    Virta, Marko; Lineri, Sanna; Kankaanpää, Pasi; Karp, Matti; Peltonen, Karita; Nuutila, Jari; Lilius, Esa-Matti

    1998-01-01

    Complement-mediated killing of bacteria was monitored by flow cytometric, luminometric, and conventional plate counting methods. A flow cytometric determination of bacterial viability was carried out by using dual staining with a LIVE/DEAD BacLight bacterial viability kit. In addition to the viable cell population, several other populations emerged in the fluorescence histogram, and there was a dramatic decrease in the total cell count in the light-scattering histogram in the course of the co...

  8. Killing mediated spatial structure in V. Cholerae biofilms

    Science.gov (United States)

    Yanni, David

    Most bacteria live in biofilms, which are implicated in 60 - 80 % of microbial infections in the body. The spatial structure of a biofilm confers advantages to its member-cells, such as antibiotic resistance, and is strongly affected by competition between strains and taxa. However, A complete picture of how competition affects the self-organized structure of these complex, far-from-equilibrium systems, is yet to emerge. To that end, we investigate phase separation dynamics driven by T6SS-facilitated bacterial warfare in a system composed of two strains of mutually antagonistic V. cholerae. T6SS is a contact mediated killing mechanism present in 25 % of all gram negative bacteria, and has been shown by recent work to play a major role in the spatial assortment of biofilms. T6SS events induce lysis, causing variations in local mechanical pressure, and acting as thermalizing events. We study cells immobilized in biofilms at the air-solid interface, so our experimental system represents a different type active matter, wherein activity is due to cell death and reproduction, not mobility. Here, we show how that activity imposes a constraint of minimal curvature on strain-strain interfaces; an effective Laplace pressure is characterized which governs interfacial dynamics.

  9. Grepafloxacin in Patients with Acute Bacterial Exacerbations of Chronic Bronchitis - a Question of Speed in Bacterial Killing

    Directory of Open Access Journals (Sweden)

    Jerome J Schentag

    1998-01-01

    Full Text Available OBJECTIVE: To characterize the population pharmacokinetics and pharmacodynamics of oral grepafloxacin in patients with acute bacterial exacerbations of chronic bronchitis (ABECB, with particular attention to the speed of bacterial killing. This was possible because the study design incorporated daily cultures of the patients’ sputum.

  10. Mechanisms of Bacterial (Serratia marcescens) Attachment to, Migration along, and Killing of Fungal Hyphae.

    Science.gov (United States)

    Hover, Tal; Maya, Tal; Ron, Sapir; Sandovsky, Hani; Shadkchan, Yana; Kijner, Nitzan; Mitiagin, Yulia; Fichtman, Boris; Harel, Amnon; Shanks, Robert M Q; Bruna, Roberto E; García-Véscovi, Eleonora; Osherov, Nir

    2016-05-01

    We have found a remarkable capacity for the ubiquitous Gram-negative rod bacterium Serratia marcescens to migrate along and kill the mycelia of zygomycete molds. This migration was restricted to zygomycete molds and several basidiomycete species. No migration was seen on any molds of the phylum Ascomycota. S. marcescens migration did not require fungal viability or surrounding growth medium, as bacteria migrated along aerial hyphae as well.S. marcescens did not exhibit growth tropism toward zygomycete mycelium. Bacterial migration along hyphae proceeded only when the hyphae grew into the bacterial colony. S. marcescens cells initially migrated along the hyphae, forming attached microcolonies that grew and coalesced to generate a biofilm that covered and killed the mycelium. Flagellum-defective strains of S. marcescens were able to migrate along zygomycete hyphae, although they were significantly slower than the wild-type strain and were delayed in fungal killing. Bacterial attachment to the mycelium does not necessitate type 1 fimbrial adhesion, since mutants defective in this adhesin migrated equally well as or faster than the wild-type strain. Killing does not depend on the secretion of S. marcescens chitinases, as mutants in which all three chitinase genes were deleted retained wild-type killing abilities. A better understanding of the mechanisms by which S. marcescens binds to, spreads on, and kills fungal hyphae might serve as an excellent model system for such interactions in general; fungal killing could be employed in agricultural fungal biocontrol. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  11. Mitophagy confers resistance to siderophore-mediated killing by Pseudomonas aeruginosa.

    Science.gov (United States)

    Kirienko, Natalia V; Ausubel, Frederick M; Ruvkun, Gary

    2015-02-10

    In the arms race of bacterial pathogenesis, bacteria produce an array of toxins and virulence factors that disrupt core host processes. Hosts mitigate the ensuing damage by responding with immune countermeasures. The iron-binding siderophore pyoverdin is a key virulence mediator of the human pathogen Pseudomonas aeruginosa, but its pathogenic mechanism has not been established. Here we demonstrate that pyoverdin enters Caenorhabditis elegans and that it is sufficient to mediate host killing. Moreover, we show that iron chelation disrupts mitochondrial homeostasis and triggers mitophagy both in C. elegans and mammalian cells. Finally, we show that mitophagy provides protection both against the extracellular pathogen P. aeruginosa and to treatment with a xenobiotic chelator, phenanthroline, in C. elegans. Although autophagic machinery has been shown to target intracellular bacteria for degradation (a process known as xenophagy), our report establishes a role for authentic mitochondrial autophagy in the innate immune defense against P. aeruginosa.

  12. Surface-Selective Preferential Production of Reactive Oxygen Species on Piezoelectric Ceramics for Bacterial Killing.

    Science.gov (United States)

    Tan, Guoxin; Wang, Shuangying; Zhu, Ye; Zhou, Lei; Yu, Peng; Wang, Xiaolan; He, Tianrui; Chen, Junqi; Mao, Chuanbin; Ning, Chengyun

    2016-09-21

    Reactive oxygen species (ROS) can be used to kill bacterial cells, and thus the selective generation of ROS from material surfaces is an emerging direction in antibacterial material discovery. We found the polarization of piezoelectric ceramic causes the two sides of the disk to become positively and negatively charged, which translate into cathode and anode surfaces in an aqueous solution. Because of the microelectrolysis of water, ROS are preferentially formed on the cathode surface. Consequently, the bacteria are selectively killed on the cathode surface. However, the cell experiment suggested that the level of ROS is safe for normal mammalian cells.

  13. A host defense mechanism involving CFTR-mediated bicarbonate secretion in bacterial prostatitis.

    Directory of Open Access Journals (Sweden)

    Chen Xie

    Full Text Available BACKGROUND: Prostatitis is associated with a characteristic increase in prostatic fluid pH; however, the underlying mechanism and its physiological significance have not been elucidated. METHODOLOGY/PRINCIPAL FINDINGS: In this study a primary culture of rat prostatic epithelial cells and a rat prostatitis model were used. Here we reported the involvement of CFTR, a cAMP-activated anion channel conducting both Cl(- and HCO(3(-, in mediating prostate HCO(3(- secretion and its possible role in bacterial killing. Upon Escherichia coli (E. coli-LPS challenge, the expression of CFTR and carbonic anhydrase II (CA II, along with several pro-inflammatory cytokines was up-regulated in the primary culture of rat prostate epithelial cells. Inhibiting CFTR function in vitro or in vivo resulted in reduced bacterial killing by prostate epithelial cells or the prostate. High HCO(3(- content (>50 mM, rather than alkaline pH, was found to be responsible for bacterial killing. The direct action of HCO(3(- on bacterial killing was confirmed by its ability to increase cAMP production and suppress bacterial initiation factors in E. coli. The relevance of the CFTR-mediated HCO(3(- secretion in humans was demonstrated by the upregulated expression of CFTR and CAII in human prostatitis tissues. CONCLUSIONS/SIGNIFICANCE: The CFTR and its mediated HCO(3(- secretion may be up-regulated in prostatitis as a host defense mechanism.

  14. Surface-Selective Preferential Production of Reactive Oxygen Species on Piezoelectric Ceramics for Bacterial Killing

    OpenAIRE

    Tan, Guoxin; Wang, Shuangying; Zhu, Ye; Zhou, Lei; Yu, Peng; Wang, Xiaolan; He, Tianrui; Chen, Junqi; Mao, Chuanbin; Ning, Chengyun

    2016-01-01

    Reactive oxygen species (ROS) can be used to kill bacterial cells, and thus the selective generation of ROS from material surfaces is an emerging direction in antibacterial material discovery. We found the polarization of piezoelectric ceramic causes the two sides of the disk to become positively and negatively charged, which translate into cathode and anode surfaces in an aqueous solution. Because of the microelectrolysis of water, ROS are preferentially formed on the cathode surface. Conseq...

  15. Microbial ecology of bacterially mediated PCB biodegradation

    International Nuclear Information System (INIS)

    Pettigrew, C.A. Jr.

    1989-01-01

    The roles of plasmid mediated and consortia mediated polychlorinated biphenyl (PCB) biodegradation by bacterial populations isolated from PCB contaminated freshwater sediments were investigated. PCB degrading bacteria were isolated by DNA:DNA colony hybridization, batch enrichments, and chemostat enrichment. Analysis of substrate removal and metabolite production were done using chlorinated biphenyl spray plates, reverse phase high pressure liquid chromatography, Cl - detection, and 14 C-labeled substrate mineralization methods. A bacterial consortium, designated LPS10, involved in a concerted metabolic attack on chlorinated biphenyls, was shown to mineralize 4-chlorobiphenyl (4CB) and 4,4'-dichlorobiphenyl (4,4' CB). The LPS10 consortium was isolated by both batch and chemostat enrichment using 4CB and biphenyl (BP) as sole carbon source and was found to have tree bacterial isolates that predominated; these included: Pseudomonas, testosteroni LPS10A which mediated the breakdown of 4CB and 4,4' CB to the putative meta-cleavage product and subsequently to 4-chlorobenzoic acid (4CBA), an isolate tentatively identified as an Arthrobacter sp. LPS10B which mediated 4CBA degradation, and Pseudomonas putida by A LPS10C whose role in the consortium has not been determined

  16. A rapid microtiter plate serum bactericidal assay method for determining serum complement-mediated killing of Mannheimia haemolytica.

    Science.gov (United States)

    Ayalew, Sahlu; Confer, Anthony W; Shrestha, Binu; Payton, Mark E

    2012-05-01

    In this study, we describe a rapid microtiter serum bactericidal assay (RMSBA) that can be used to measure the functionality of immune sera. It quantifies bactericidal activity of immune sera in the presence of complement against a homologous bacterium, M. haemolytica in this case. There is high correlation between data from RMSBA and standard complement-mediated bacterial killing assay (r=0.756; p<0.0001). The RMSBA activity of sera can be generated in less than 5 h instead of overnight incubation. RMSBA costs substantially less in terms of time, labor, and resources and is highly reproducible. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Fluoro-luminometric real-time measurement of bacterial viability and killing.

    Science.gov (United States)

    Lehtinen, Janne; Virta, Marko; Lilius, Esa Matti

    2003-10-01

    The viability and killing of Escherichia coli was measured on a real-time basis using a fluoro-luminometric device, which allows successive measurements of fluorescence and bioluminescence without user intervention. Bacteria were made fluorescent and bioluminescent by expression of gfp and insect luciferase (lucFF) genes. The green fluorescent protein (GFP) is a highly fluorescent, extremely stable protein, which accumulates in cells during growth, and therefore the measured fluorescence signal was proportional to the total number of cells. The luciferase reaction is dependent of ATP produced by living cells, so that the bioluminescence level was a direct measure of the viable cells. In contrast to the bacterial luciferase, the insect luciferase uses a water-soluble and nonvolatile substrate, which makes automated multi-well microplate assay possible. For the validation of the assay, the proportion of living and dead cell populations was experimentally modified by incubating E. coli cells in the presence of various ethanol concentrations. Bacterial viability and killing measured by a fluoro-luminometric assay correlated fairly well with the reference methods: conventional plate counting, optical density measurement and various flow cytometric analyses. The real-time assay described here allows following the changes in bacterial cultures and assessing the bactericidal and other effects of various chemical, immunological and physical agents simultaneously in large numbers of samples.

  18. Surfactant protein-A suppresses eosinophil-mediated killing of Mycoplasma pneumoniae in allergic lungs.

    Directory of Open Access Journals (Sweden)

    Julie G Ledford

    Full Text Available Surfactant protein-A (SP-A has well-established functions in reducing bacterial and viral infections but its role in chronic lung diseases such as asthma is unclear. Mycoplasma pneumoniae (Mp frequently colonizes the airways of chronic asthmatics and is thought to contribute to exacerbations of asthma. Our lab has previously reported that during Mp infection of non-allergic airways, SP-A aides in maintaining airway homeostasis by inhibiting an overzealous TNF-alpha mediated response and, in allergic mice, SP-A regulates eosinophilic infiltration and inflammation of the airway. In the current study, we used an in vivo model with wild type (WT and SP-A(-/- allergic mice challenged with the model antigen ovalbumin (Ova that were concurrently infected with Mp (Ova+Mp to test the hypothesis that SP-A ameliorates Mp-induced stimulation of eosinophils. Thus, SP-A could protect allergic airways from injury due to release of eosinophil inflammatory products. SP-A deficient mice exhibit significant increases in inflammatory cells, mucus production and lung damage during concurrent allergic airway disease and infection (Ova+Mp as compared to the WT mice of the same treatment group. In contrast, SP-A deficient mice have significantly decreased Mp burden compared to WT mice. The eosinophil specific factor, eosinophil peroxidase (EPO, which has been implicated in pathogen killing and also in epithelial dysfunction due to oxidative damage of resident lung proteins, is enhanced in samples from allergic/infected SP-A(-/- mice as compared to WT mice. In vitro experiments using purified eosinophils and human SP-A suggest that SP-A limits the release of EPO from Mp-stimulated eosinophils thereby reducing their killing capacity. These findings are the first to demonstrate that although SP-A interferes with eosinophil-mediated biologic clearance of Mp by mediating the interaction of Mp with eosinophils, SP-A simultaneously benefits the airway by limiting inflammation

  19. Bacteria killing nanotechnology Bio-Kil effectively reduces bacterial burden in intensive care units.

    Science.gov (United States)

    Hsueh, P-R; Huang, H-C; Young, T-G; Su, C-Y; Liu, C-S; Yen, M-Y

    2014-04-01

    A contaminated hospital environment has been identified as an important reservoir of pathogens causing healthcare-associated infections. This study is to evaluate the efficacy of bacteria killing nanotechnology Bio-Kil on reducing bacterial counts in an intensive care unit (ICU). Two single-bed rooms (S-19 and S-20) in the ICU were selected from 7 April to 27 May 2011. Ten sets of new textiles (pillow cases, bed sheets, duvet cover, and patient clothing) used by patients in the two single-bed rooms were provided by the sponsors. In the room S-20, the 10 sets of new textiles were washed with Bio-Kil; the room walls, ceiling, and air-conditioning filters were treated with Bio-Kil; and the surfaces of instruments (respirator, telephone, and computer) were covered with Bio-Kil-embedded silicon pads. Room S-19 served as the control. We compared the bacterial count on textiles and environment surfaces as well as air samples between the two rooms. A total of 1,364 samples from 22 different sites in each room were collected. The mean bacterial count on textiles and environmental surfaces in room S-20 was significantly lower than that in room S-19 (10.4 vs 49.6 colony-forming units [CFU]/100 cm(2); P < 0.001). Room S-20 had lower bacterial counts in air samples than room S-19 (33.4-37.6 vs 21.6-25.7 CFU/hour/plate; P < 0.001). The density of microbial isolations was significantly greater among patients admitted to room S-19 than those to room S-20 (9.15 vs 5.88 isolates per 100 patient-days, P < 0.05). Bio-Kil can significantly reduce bacterial burden in the environment of the ICU.

  20. Silver ion-mediated killing of a food pathogen: Melting curve analysis data of silver resistance genes and growth curve data

    OpenAIRE

    Kuppan Gokulan; Katherine Williams; Sangeeta Khare

    2017-01-01

    Limited antibacterial activity of silver ions leached from silver-impregnated food contact materials could be due to: 1) the presence of silver resistance genes in tested bacteria; or 2) lack of susceptibility to silver ion-mediated killing in the bacterial strain (K. Williams, L. Valencia, K. Gokulan, R. Trbojevich, S. Khare, 2016 [1]). This study contains data to address the specificity of silver resistance genes in Salmonella Typhimurium during the real time PCR using melting curve analysi...

  1. Charge properties and bacterial contact-killing of hyperbranched polyurea-polyethyleneimine coatings with various degrees of alkylation

    International Nuclear Information System (INIS)

    Roest, Steven; Mei, Henny C. van der; Loontjens, Ton J.A.; Busscher, Henk J.

    2015-01-01

    Highlights: • Cationic charge density does not reflect bacterial contact-killing by QUAT coatings. • Charge carrier and density reflect bacterial killing by QUAT coatings. • Fluorescein staining cannot distinguish charge carriers in cationic coatings. • Charge carrier and density of QUAT coatings are reflected in the N401.3 eV XPS peak. • The at.% N401.3 eV should be more than 0.45% for effective bacterial contact-killing. - Abstract: Coatings of immobilized-quaternary-ammonium-ions (QUAT) uniquely kill adhering bacteria upon contact. QUAT-coatings require a minimal cationic-charge surface density for effective contact-killing of adhering bacteria of around 10 14 cm −2 . Quaternization of nitrogen is generally achieved through alkylation. Here, we investigate the contribution of additional alkylation with methyl-iodide to the cationic-charge density of hexyl-bromide alkylated, hyperbranched polyurea-polyethyleneimine coatings measuring charge density with fluorescein staining. X-ray-photoelectron-spectroscopy was used to determine the at.% alkylated-nitrogen. Also streaming potentials, water contact-angles and bacterial contact-killing were measured. Cationic-charge density increased with methyl-iodide alkylation times up to 18 h, accompanied by an increase in the at.% alkylated-nitrogen. Zeta-potentials became more negative upon alkylation as a result of shielding of cationiccharges by hydrophobic alkyl-chains. Contact-killing of Gram-positive Staphylococci only occurred when the cationic-charge density exceeded 10 16 cm −2 and was carried by alkylated-nitrogen (electron-binding energy 401.3 eV). Gram-negative Escherichia coli was not killed upon contact with the coatings. There with this study reveals that cationic-charge density is neither appropriate nor sufficient to determine the ability of QUAT-coatings to kill adhering bacteria. Alternatively, the at.% of alkylated-nitrogen at 401.3 eV is proposed, as it reflects both cationic-charge and its

  2. Charge properties and bacterial contact-killing of hyperbranched polyurea-polyethyleneimine coatings with various degrees of alkylation

    Energy Technology Data Exchange (ETDEWEB)

    Roest, Steven [University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, AntoniusDeusinglaan 1, 9713 AV Groningen (Netherlands); Mei, Henny C. van der, E-mail: h.c.van.der.mei@umcg.nl [University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, AntoniusDeusinglaan 1, 9713 AV Groningen (Netherlands); Loontjens, Ton J.A. [University of Groningen, Zernike Institute for Advanced Materials, Department of Polymer Chemistry, Nijenborgh 4, 9747 AG Groningen (Netherlands); Busscher, Henk J. [University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, AntoniusDeusinglaan 1, 9713 AV Groningen (Netherlands)

    2015-11-30

    Highlights: • Cationic charge density does not reflect bacterial contact-killing by QUAT coatings. • Charge carrier and density reflect bacterial killing by QUAT coatings. • Fluorescein staining cannot distinguish charge carriers in cationic coatings. • Charge carrier and density of QUAT coatings are reflected in the N401.3 eV XPS peak. • The at.% N401.3 eV should be more than 0.45% for effective bacterial contact-killing. - Abstract: Coatings of immobilized-quaternary-ammonium-ions (QUAT) uniquely kill adhering bacteria upon contact. QUAT-coatings require a minimal cationic-charge surface density for effective contact-killing of adhering bacteria of around 10{sup 14} cm{sup −2}. Quaternization of nitrogen is generally achieved through alkylation. Here, we investigate the contribution of additional alkylation with methyl-iodide to the cationic-charge density of hexyl-bromide alkylated, hyperbranched polyurea-polyethyleneimine coatings measuring charge density with fluorescein staining. X-ray-photoelectron-spectroscopy was used to determine the at.% alkylated-nitrogen. Also streaming potentials, water contact-angles and bacterial contact-killing were measured. Cationic-charge density increased with methyl-iodide alkylation times up to 18 h, accompanied by an increase in the at.% alkylated-nitrogen. Zeta-potentials became more negative upon alkylation as a result of shielding of cationiccharges by hydrophobic alkyl-chains. Contact-killing of Gram-positive Staphylococci only occurred when the cationic-charge density exceeded 10{sup 16} cm{sup −2} and was carried by alkylated-nitrogen (electron-binding energy 401.3 eV). Gram-negative Escherichia coli was not killed upon contact with the coatings. There with this study reveals that cationic-charge density is neither appropriate nor sufficient to determine the ability of QUAT-coatings to kill adhering bacteria. Alternatively, the at.% of alkylated-nitrogen at 401.3 eV is proposed, as it reflects both

  3. Unusual adaptive, cross protection responses and growth phase resistance against peroxide killing in a bacterial shrimp pathogen, Vibrio harveyi.

    Science.gov (United States)

    Vattanaviboon, P; Mongkolsuk, S

    2001-06-12

    Oxidant induced protection against peroxide killing was investigated in a prawn bacterial pathogen, Vibrio harveyi. Exposure to 250 microM H(2)O(2) induced adaptive protection against subsequent exposure to killing concentrations of H(2)O(2). In addition, 200 microM t-butyl hydroperoxide (tBOOH) induced cross protection to H(2)O(2) killing. On the other hand, peroxide pretreatment did not induce protection against tBOOH killing. Peroxide induced adaptive and cross protection responses required new protein synthesis and were abolished by addition of a protein synthesis inhibitor. Pretreatments of V. harveyi with 250 microM H(2)O(2) and 200 microM tBOOH induced an increase in peroxide scavenging enzymes, catalase and alkyl hydroperoxide reductase subunit C. In addition, stationary phase cells of V. harveyi were more resistant to H(2)O(2) and iodoacetamide killing but highly susceptible to tBOOH killing compared to exponential phase cells. Many aspects of the oxidative stress response of V. harveyi are different from those of other bacteria and these factors may be important for bacterial survival in the environment and during interactions with host shrimp.

  4. Complement-mediated killing of Borrelia burgdorferi by nonimmune sera from sika deer.

    Science.gov (United States)

    Nelson, D R; Rooney, S; Miller, N J; Mather, T N

    2000-12-01

    Various species of cervid deer are the preferred hosts for adult, black-legged ticks (Ixodes scapularis and Ixodes pacificus) in the United States. Although frequently exposed to the agent of Lyme disease (Borrelia burgdorferi), these animals, for the most part, are incompetent as transmission reservoirs. We examined the borreliacidal activity of normal and B. burgdorferi-immune sera from sika deer (Cervus nippon) maintained in a laboratory setting and compared it to that of similar sera from reservoir-competent mice and rabbits. All normal deer sera (NDS) tested killed > 90% of B. burgdorferi cells. In contrast, normal mouse and rabbit sera killed feeding exhibited IFA titers of 1:256, whereas sera from mice and rabbits similarly exposed had titers of > 1:1,024. Heat treatment (56 C, 30 min) of NDS reduced borreliacidal activity, with complement-mediated killing. The chelators EGTA and EDTA were used to block the classical or both the classical and alternative complement pathways, respectively. Addition of 10 mM EGTA to NDS had a negligible effect on borreliacidal activity, with > 90% of the cells killed. Addition of 10 mM EDTA reduced the killing to approximately 30%, whereas the addition of Mg2+ (10 mM) restored borreliacidal activity to NDS. The addition of zymosan A, an activator of the alternative pathway, increased the survival of B. burgdorferi cells to approximately 80% in NDS. These data suggest that the alternative complement activation pathway plays a major role in the borreliacidal activity of NDS. Additionally, 10 mM EGTA had almost no effect on the killing activity of B. burgdorferi-exposed deer sera, suggesting that the classical pathway is not involved in Borrelia killing, even in sera from B. burgdorferi-exposed deer.

  5. Role of nitric oxide in Salmonella typhimurium-mediated cancer cell killing

    International Nuclear Information System (INIS)

    Barak, Yoram; Schreiber, Frank; Thorne, Steve H; Contag, Christopher H; DeBeer, Dirk; Matin, A

    2010-01-01

    Bacterial targeting of tumours is an important anti-cancer strategy. We previously showed that strain SL7838 of Salmonella typhimurium targets and kills cancer cells. Whether NO generation by the bacteria has a role in SL7838 lethality to cancer cells is explored. This bacterium has the mechanism for generating NO, but also for decomposing it. Mechanism underlying Salmonella typhimurium tumour therapy was investigated through in vitro and in vivo studies. NO measurements were conducted either by chemical assays (in vitro) or using Biosensors (in vivo). Cancer cells cytotoxic assay were done by using MTS. Bacterial cell survival and tumour burden were determined using molecular imaging techniques. SL7838 generated nitric oxide (NO) in anaerobic cell suspensions, inside infected cancer cells in vitro and in implanted 4T1 tumours in live mice, the last, as measured using microsensors. Thus, under these conditions, the NO generating pathway is more active than the decomposition pathway. The latter was eliminated, in strain SL7842, by the deletion of hmp- and norV genes, making SL7842 more proficient at generating NO than SL7838. SL7842 killed cancer cells more effectively than SL7838 in vitro, and this was dependent on nitrate availability. This strain was also ca. 100% more effective in treating implanted 4T1 mouse tumours than SL7838. NO generation capability is important in the killing of cancer cells by Salmonella strains

  6. Charge properties and bacterial contact-killing of hyperbranched polyurea-polyethyleneimine coatings with various degrees of alkylation

    Science.gov (United States)

    Roest, Steven; van der Mei, Henny C.; Loontjens, Ton J. A.; Busscher, Henk J.

    2015-11-01

    Coatings of immobilized-quaternary-ammonium-ions (QUAT) uniquely kill adhering bacteria upon contact. QUAT-coatings require a minimal cationic-charge surface density for effective contact-killing of adhering bacteria of around 1014 cm-2. Quaternization of nitrogen is generally achieved through alkylation. Here, we investigate the contribution of additional alkylation with methyl-iodide to the cationic-charge density of hexyl-bromide alkylated, hyperbranched polyurea-polyethyleneimine coatings measuring charge density with fluorescein staining. X-ray-photoelectron-spectroscopy was used to determine the at.% alkylated-nitrogen. Also streaming potentials, water contact-angles and bacterial contact-killing were measured. Cationic-charge density increased with methyl-iodide alkylation times up to 18 h, accompanied by an increase in the at.% alkylated-nitrogen. Zeta-potentials became more negative upon alkylation as a result of shielding of cationiccharges by hydrophobic alkyl-chains. Contact-killing of Gram-positive Staphylococci only occurred when the cationic-charge density exceeded 1016 cm-2 and was carried by alkylated-nitrogen (electron-binding energy 401.3 eV). Gram-negative Escherichia coli was not killed upon contact with the coatings. There with this study reveals that cationic-charge density is neither appropriate nor sufficient to determine the ability of QUAT-coatings to kill adhering bacteria. Alternatively, the at.% of alkylated-nitrogen at 401.3 eV is proposed, as it reflects both cationic-charge and its carrier. The at.% N401.3 eV should be above 0.45 at.% for Gram-positive bacterial contact-killing.

  7. Killing of intracellular Mycobacterium tuberculosis by receptor-mediated drug delivery

    International Nuclear Information System (INIS)

    Majumdar, S.; Basu, S.K.

    1991-01-01

    p-Aminosalicylic acid (PAS) conjugated to maleylated bovine serum albumin (MBSA) was taken up efficiently through high-affinity MBSA-binding sites on macrophages. Binding of the radiolabeled conjugate to cultured mouse peritoneal macrophages at 4 degrees C was competed for by MBSA but not by PAS. At 37 degrees C, the radiolabeled conjugate was rapidly degraded by the macrophages, leading to release of acid-soluble degradation products in the medium. The drug conjugate was nearly 100 times as effective as free PAS in killing the intracellular mycobacteria in mouse peritoneal macrophages infected in culture with Mycobacterium tuberculosis. The killing of intracellular mycobacteria mediated by the drug conjugate was effectively prevented by simultaneous addition of excess MBSA (100 micrograms/ml) or chloroquine (3 microM) to the medium, whereas these agents did not affect the microbicidal action of free PAS. These results suggest that (i) uptake of the PAS-MBSA conjugate was mediated by cell surface receptors on macrophages which recognize MBSA and (ii) lysosomal hydrolysis of the internalized conjugate resulted in intracellular release of a pharmacologically active form of the drug, which led to selective killing of the M. tuberculosis harbored by mouse macrophages infected in culture. This receptor-mediated modality of delivering drugs to macrophages could contribute to greater therapeutic efficacy and minimization of toxic side effects in the management of tuberculosis and other intracellular mycobacterial infections

  8. Glycan elongation beyond the mucin associated Tn antigen protects tumor cells from immune-mediated killing.

    Directory of Open Access Journals (Sweden)

    Caroline B Madsen

    Full Text Available Membrane bound mucins are up-regulated and aberrantly glycosylated during malignant transformation in many cancer cells. This results in a negatively charged glycoprotein coat which may protect cancer cells from immune surveillance. However, only limited data have so far demonstrated the critical steps in glycan elongation that make aberrantly glycosylated mucins affect the interaction between cancer cells and cytotoxic effector cells of the immune system. Tn (GalNAc-Ser/Thr, STn (NeuAcα2-6GalNAc-Ser/Thr, T (Galβ1-3GalNAc-Ser/Thr, and ST (NeuAcα2-6Galβ1-3GalNAc-Ser/Thr antigens are recognized as cancer associated truncated glycans, and are expressed in many adenocarcinomas, e.g. breast- and pancreatic cancer cells. To investigate the role of the cancer associated glycan truncations in immune-mediated killing we created glyco-engineered breast- and pancreatic cancer cells expressing only the shortest possible mucin-like glycans (Tn and STn. Glyco-engineering was performed by zinc finger nuclease (ZFN knockout (KO of the Core 1 enzyme chaperone COSMC, thereby preventing glycan elongation beyond the initial GalNAc residue in O-linked glycans. We find that COSMC KO in the breast and pancreatic cancer cell lines T47D and Capan-1 increases sensitivity to both NK cell mediated antibody-dependent cellular-cytotoxicity (ADCC and cytotoxic T lymphocyte (CTL-mediated killing. In addition, we investigated the association between total cell surface expression of MUC1/MUC16 and NK or CTL mediated killing, and observed an inverse correlation between MUC16/MUC1 expression and the sensitivity to ADCC and CTL-mediated killing. Together, these data suggest that up-regulation of membrane bound mucins protects cells from immune mediated killing, and that particular glycosylation steps, as demonstrated for glycan elongation beyond Tn and STn, can be important for fine tuning of the immune escape mechanisms in cancer cells.

  9. Bacterial mediated amelioration of drought stress in drought tolerant ...

    African Journals Online (AJOL)

    Bacterial mediated amelioration of drought stress in drought tolerant and susceptible cultivars of rice ( Oryza sativa L.) ... and IR-64 (drought sensitive) cultivars of rice (Oryza sativa L.) under different level of drought stress. ... from 32 Countries:.

  10. HIF-1α is essential for effective PMN bacterial killing, antimicrobial peptide production and apoptosis in Pseudomonas aeruginosa keratitis.

    Directory of Open Access Journals (Sweden)

    Elizabeth A Berger

    Full Text Available Hypoxia-inducible factor (HIF-1α, is a transcription factor that controls energy metabolism and angiogenesis under hypoxic conditions, and a potent regulator of innate immunity. The studies described herein examined the role of HIF-1α in disease resolution in BALB/c (resistant, cornea heals mice after ocular infection with Pseudomonas (P. aeruginosa. Furthermore, the current studies focused on the neutrophil (PMN, the predominant cell infiltrate in keratitis. Using both siRNA and an antagonist (17-DMAG, the role of HIF-1α was assessed in P. aeruginosa-infected BALB/c mice. Clinical score and slit lamp photography indicated HIF-1α inhibition exacerbated disease and corneal destruction. Real time RT-PCR, immunohistochemistry, ELISA, Greiss and MPO assays, bacterial load, intracellular killing, phagocytosis and apoptosis assays further tested the regulatory role of HIF-1α. Despite increased pro-inflammatory cytokine expression and increased MPO levels after knocking down HIF-1α expression, in vivo studies revealed a decrease in NO production and higher bacterial load. In vitro studies using PMN provided evidence that although inhibition of HIF-1α did not affect phagocytosis, both bacterial killing and apoptosis were significantly affected, as was production of antimicrobial peptides. Overall, data provide evidence that inhibition of HIF-1α converts a normally resistant disease response to susceptible (corneal thinning and perforation after induction of bacterial keratitis. Although this inhibition does not appear to affect PMN transmigration or phagocytosis, both in vivo and in vitro approaches indicate that the transcriptional factor is essential for effective bacterial killing, apoptosis and antimicrobial peptide production.

  11. Silver ion-mediated killing of a food pathogen: Melting curve analysis data of silver resistance genes and growth curve data

    Directory of Open Access Journals (Sweden)

    Kuppan Gokulan

    2017-04-01

    Full Text Available Limited antibacterial activity of silver ions leached from silver-impregnated food contact materials could be due to: 1 the presence of silver resistance genes in tested bacteria; or 2 lack of susceptibility to silver ion-mediated killing in the bacterial strain (K. Williams, L. Valencia, K. Gokulan, R. Trbojevich, S. Khare, 2016 [1]. This study contains data to address the specificity of silver resistance genes in Salmonella Typhimurium during the real time PCR using melting curve analysis and an assessment of the minimum inhibitory concentration of silver ions for Salmonella.

  12. Silver ion-mediated killing of a food pathogen: Melting curve analysis data of silver resistance genes and growth curve data.

    Science.gov (United States)

    Gokulan, Kuppan; Williams, Katherine; Khare, Sangeeta

    2017-04-01

    Limited antibacterial activity of silver ions leached from silver-impregnated food contact materials could be due to: 1) the presence of silver resistance genes in tested bacteria ; or 2) lack of susceptibility to silver ion-mediated killing in the bacterial strain (K. Williams, L. Valencia, K. Gokulan, R. Trbojevich, S. Khare, 2016 [1]). This study contains data to address the specificity of silver resistance genes in Salmonella Typhimurium during the real time PCR using melting curve analysis and an assessment of the minimum inhibitory concentration of silver ions for Salmonella .

  13. Glycan elongation beyond the mucin associated Tn antigen protects tumor cells from immune-mediated killing

    DEFF Research Database (Denmark)

    Madsen, Caroline B; Lavrsen, Kirstine; Steentoft, Catharina

    2013-01-01

    are recognized as cancer associated truncated glycans, and are expressed in many adenocarcinomas, e.g. breast- and pancreatic cancer cells. To investigate the role of the cancer associated glycan truncations in immune-mediated killing we created glyco-engineered breast- and pancreatic cancer cells expressing...... only the shortest possible mucin-like glycans (Tn and STn). Glyco-engineering was performed by zinc finger nuclease (ZFN) knockout (KO) of the Core 1 enzyme chaperone COSMC, thereby preventing glycan elongation beyond the initial GalNAc residue in O-linked glycans. We find that COSMC KO in the breast...

  14. Antibody Fc engineering improves frequency and promotes kinetic boosting of serial killing mediated by NK cells

    Science.gov (United States)

    Romain, Gabrielle; Senyukov, Vladimir; Rey-Villamizar, Nicolas; Merouane, Amine; Kelton, William; Liadi, Ivan; Mahendra, Ankit; Charab, Wissam; Georgiou, George; Roysam, Badrinath; Lee, Dean A.

    2014-01-01

    The efficacy of most therapeutic monoclonal antibodies (mAbs) targeting tumor antigens results primarily from their ability to elicit potent cytotoxicity through effector-mediated functions. We have engineered the fragment crystallizable (Fc) region of the immunoglobulin G (IgG) mAb, HuM195, targeting the leukemic antigen CD33, by introducing the triple mutation Ser293Asp/Ala330Leu/Ile332Glu (DLE), and developed Time-lapse Imaging Microscopy in Nanowell Grids to analyze antibody-dependent cell-mediated cytotoxicity kinetics of thousands of individual natural killer (NK) cells and mAb-coated target cells. We demonstrate that the DLE-HuM195 antibody increases both the quality and the quantity of NK cell-mediated antibody-dependent cytotoxicity by endowing more NK cells to participate in cytotoxicity via accrued CD16-mediated signaling and by increasing serial killing of target cells. NK cells encountering targets coated with DLE-HuM195 induce rapid target cell apoptosis by promoting simultaneous conjugates to multiple target cells and induce apoptosis in twice the number of target cells within the same period as the wild-type mAb. Enhanced target killing was also associated with increased frequency of NK cells undergoing apoptosis, but this effect was donor-dependent. Antibody-based therapies targeting tumor antigens will benefit from a better understanding of cell-mediated tumor elimination, and our work opens further opportunities for the therapeutic targeting of CD33 in the treatment of acute myeloid leukemia. PMID:25232058

  15. A cardinal role for cathepsin d in co-ordinating the host-mediated apoptosis of macrophages and killing of pneumococci.

    Directory of Open Access Journals (Sweden)

    Martin A Bewley

    2011-01-01

    Full Text Available The bactericidal function of macrophages against pneumococci is enhanced by their apoptotic demise, which is controlled by the anti-apoptotic protein Mcl-1. Here, we show that lysosomal membrane permeabilization (LMP and cytosolic translocation of activated cathepsin D occur prior to activation of a mitochondrial pathway of macrophage apoptosis. Pharmacological inhibition or knockout of cathepsin D during pneumococcal infection blocked macrophage apoptosis. As a result of cathepsin D activation, Mcl-1 interacted with its ubiquitin ligase Mule and expression declined. Inhibition of cathepsin D had no effect on early bacterial killing but inhibited the late phase of apoptosis-associated killing of pneumococci in vitro. Mice bearing a cathepsin D(-/- hematopoietic system demonstrated reduced macrophage apoptosis in vivo, with decreased clearance of pneumococci and enhanced recruitment of neutrophils to control pulmonary infection. These findings establish an unexpected role for a cathepsin D-mediated lysosomal pathway of apoptosis in pulmonary host defense and underscore the importance of apoptosis-associated microbial killing to macrophage function.

  16. Direct bacterial killing in vitro by recombinant Nod2 is compromised by Crohn's disease-associated mutations.

    Directory of Open Access Journals (Sweden)

    Laurent-Herve Perez

    2010-06-01

    Full Text Available A homeostatic relationship with the intestinal microflora is increasingly appreciated as essential for human health and wellbeing. Mutations in the leucine-rich repeat (LRR domain of Nod2, a bacterial recognition protein, are associated with development of the inflammatory bowel disorder, Crohn's disease. We investigated the molecular mechanisms underlying disruption of intestinal symbiosis in patients carrying Nod2 mutations.In this study, using purified recombinant LRR domains, we demonstrate that Nod2 is a direct antimicrobial agent and this activity is generally deficient in proteins carrying Crohn's-associated mutations. Wild-type, but not Crohn's-associated, Nod2 LRR domains directly interacted with bacteria in vitro, altered their metabolism and disrupted the integrity of the plasma membrane. Antibiotic activity was also expressed by the LRR domains of Nod1 and other pattern recognition receptors suggesting that the LRR domain is a conserved anti-microbial motif supporting innate cellular immunity.The lack of anti-bacterial activity demonstrated with Crohn's-associated Nod2 mutations in vitro, supports the hypothesis that a deficiency in direct bacterial killing contributes to the association of Nod2 polymorphisms with the disease.

  17. Hematoporphyrin monomethyl ether-mediated photodynamic therapy selectively kills sarcomas by inducing apoptosis.

    Directory of Open Access Journals (Sweden)

    Hui Zeng

    Full Text Available We investigated the antitumor effect and mechanism of hematoporphyrin monomethyl ether-mediated photodynamic therapy (HMME-PDT in sarcomas. Intracellular uptake of HMME by osteosarcoma cells (LM8 and K7 was time- and dose-dependent, while this was not observed for myoblast cells (C2C12 and fibroblast cells (NIH/3T3. HMME-PDT markedly inhibited the proliferation of sarcoma cell lines (LM8, MG63, Saos-2, SW1353, TC71, and RD (P<0.05, and the killing effect was improved with increased HMME concentration and energy intensity. Flow cytometry analysis revealed that LM8, MG63, and Saos-2 cells underwent apoptosis after treatment with HMME-PDT. Additionally, apoptosis was induced after HMME-PDT in a three-dimensional culture of osteosarcoma cells. Hoechst 33342 staining confirmed apoptosis. Cell death caused by PDT was rescued by an irreversible inhibitor (Z-VAD-FMK of caspase. However, cell viability was not markedly decreased compared with the HMME-PDT group. Expression levels of caspase-1, caspase-3, caspase-6, caspase-9, and poly (ADP-ribose polymerase (PARP proteins were markedly up-regulated in the treatment groups and increased with HMME concentration as determined by western blot analysis. In vivo, tumor volume markedly decreased at 7-16 days post-PDT. Hematoxylin and eosin staining revealed widespread necrotic and infiltrative inflammatory cells in the HMME-PDT group. Immunohistochemistry analysis also showed that caspase-1, caspase-3, caspase-6, caspase-9, and PARP proteins were significantly increased in the HMME-PDT group. These results indicate that HMME-PDT has a potent killing effect on osteosarcoma cells in vitro and significantly inhibits tumor growth in vivo, which is associated with the caspase-dependent pathway.

  18. The osmolyte xylitol reduces the salt concentration of airway surface liquid and may enhance bacterial killing

    Science.gov (United States)

    Zabner, Joseph; Seiler, Michael P.; Launspach, Janice L.; Karp, Philip H.; Kearney, William R.; Look, Dwight C.; Smith, Jeffrey J.; Welsh, Michael J.

    2000-10-01

    The thin layer of airway surface liquid (ASL) contains antimicrobial substances that kill the small numbers of bacteria that are constantly being deposited in the lungs. An increase in ASL salt concentration inhibits the activity of airway antimicrobial factors and may partially explain the pathogenesis of cystic fibrosis (CF). We tested the hypothesis that an osmolyte with a low transepithelial permeability may lower the ASL salt concentration, thereby enhancing innate immunity. We found that the five-carbon sugar xylitol has a low transepithelial permeability, is poorly metabolized by several bacteria, and can lower the ASL salt concentration in both CF and non-CF airway epithelia in vitro. Furthermore, in a double-blind, randomized, crossover study, xylitol sprayed for 4 days into each nostril of normal volunteers significantly decreased the number of nasal coagulase-negative Staphylococcus compared with saline control. Xylitol may be of value in decreasing ASL salt concentration and enhancing the innate antimicrobial defense at the airway surface.

  19. Phenolic acids potentiate colistin-mediated killing of Acinetobacter baumannii by inducing redox imbalance.

    Science.gov (United States)

    Ajiboye, Taofeek O; Skiebe, Evelyn; Wilharm, Gottfried

    2018-05-01

    Phenolic acids with catechol groups are good prooxidants because of their low redox potential. In this study, we provided data showing that phenolic acids, caffeic acid, gallic acid and protocatechuic acid, enhanced colistin-mediated bacterial death by inducing redox imbalance. The minimum inhibitory concentrations of these phenolic acids against Acinetobacter baumannii AB5075 were considerably lowered for ΔsodB and ΔkatG mutants. Checkerboard assay shows synergistic interactions between colistin and phenolic acids. The phenolic acids exacerbated colistin-induced oxidative stress in A. baumannii AB5075 through increased superoxide anion generation, NAD + /NADH and ADP/ATP ratio. In parallel, the level of reduced glutathione was significantly lowered. We conclude that phenolic acids potentiate colistin-induced oxidative stress in A. baumannii AB5075 by increasing ROS generation, energy metabolism and electron transport chain activity with a concomitant decrease in glutathione. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  20. Ozone killing action against bacterial and fungal species; microbiological testing of a domestic ozone generator.

    Science.gov (United States)

    Dyas, A; Boughton, B J; Das, B C

    1983-10-01

    The action of ozone generated from a small domestic device was examined with a view to using it in clinical isolation units accommodating immunosuppressed patients. Over a six-hour period in an average size room the device did not generate sufficient ozone to suppress bacterial and fungal growth. A useful bactericidal action, against a variety of human pathogens was achieved with ozone concentrations between 0.3 to 0.9 ppm. Bactericidal ozone concentrations are close to the limit permitted for human exposure however and further experiments are indicated.

  1. Effect of pulsed ultrasound in combination with gentamicin on bacterial killing of biofilms on bone cements in vivo

    Science.gov (United States)

    Ensing, G.T.; Roeder, B.L.; Nelson, J.L.; van Horn, J.R.; van der Mei, H.C.; Busscher, H.J.; Pitt, W.G.

    2008-01-01

    Aim The aim of this study is to investigate whether pulsed ultrasound in combination with gentamicin yields increased killing of bacterial biofilms on bone cements in vivo. Methods and Results Bacterial survival on bone cement in the presence and absence of ultrasound was compared in a rabbit model. Two bone cement samples with E. coli ATCC 10798 biofilm were implanted in a total of nine rabbits. In two groups bone cement disks loaded with gentamicin were used, and in one group unloaded bone cement disks in combination with systemically administered gentamicin were used. Pulsed ultrasound with a mean acoustic intensity of 167 mW cm−2 and a maximum acoustic intensity of 500 mW cm−2 was applied from 24 h till 72 h post surgery on one of the two implanted disks. After euthanization, the bacteria removed from the disk were quantified. Application of ultrasound, combined with gentamicin, reduced the biofilm in all three groups varying between 58 to 69% compared to the negative control. Ultrasound proved to be safe with respect to creating skin lesions. Conclusions Ultrasound resulted in an tendency of improved efficacy of gentamicin, either applied locally or systemically. Significance and impact of Study This study implies that ultrasound could improve the prevention of infection, especially because the biomaterials, gentamicin and ultrasound used in this model are all in clinical usage, but not yet combined in clinical practice. PMID:16108785

  2. Xylitol-supplemented nutrition enhances bacterial killing and prolongs survival of rats in experimental pneumococcal sepsis

    Science.gov (United States)

    Renko, Marjo; Valkonen, Päivi; Tapiainen, Terhi; Kontiokari, Tero; Mattila, Pauli; Knuuttila, Matti; Svanberg, Martti; Leinonen, Maija; Karttunen, Riitta; Uhari, Matti

    2008-01-01

    Background Xylitol has antiadhesive effects on Streptococcus pneumoniae and inhibits its growth, and has also been found to be effective in preventing acute otitis media and has been used in intensive care as a valuable source of energy. Results We evaluated the oxidative burst of neutrophils in rats fed with and without xylitol. The mean increase in the percentage of activated neutrophils from the baseline was higher in the xylitol-exposed group than in the control group (58.1% vs 51.4%, P = 0.03 for the difference) and the mean induced increase in the median strength of the burst per neutrophil was similarly higher in the xylitol group (159.6 vs 140.3, P = 0.04). In two pneumococcal sepsis experiments rats were fed either a basal powder diet (control group) or the same diet supplemented with 10% or 20% xylitol and infected with an intraperitoneal inoculation of S. pneumoniae after two weeks. The mean survival time was 48 hours in the xylitol groups and 34 hours in the control groups (P Xylitol has beneficial effects on both the oxidative killing of bacteria in neutrophilic leucocytes and on the survival of rats with experimental pneumococcal sepsis. PMID:18334022

  3. The bacterial parasite Pasteuria ramosa is not killed if it fails to infect: implications for coevolution.

    Science.gov (United States)

    King, Kayla C; Auld, Stuart K J R; Wilson, Philip J; James, Janna; Little, Tom J

    2013-02-01

    Strong selection on parasites, as well as on hosts, is crucial for fueling coevolutionary dynamics. Selection will be especially strong if parasites that encounter resistant hosts are destroyed and diluted from the local environment. We tested whether spores of the bacterial parasite Pasteuria ramosa were passed through the gut (the route of infection) of their host, Daphnia magna, and whether passaged spores remained viable for a "second chance" at infecting a new host. In particular, we tested if this viability (estimated via infectivity) depended on host genotype, whether or not the genotype was susceptible, and on initial parasite dose. Our results show that Pasteuria spores generally remain viable after passage through both susceptible and resistant Daphnia. Furthermore, these spores remained infectious even after being frozen for several weeks. If parasites can get a second chance at infecting hosts in the wild, selection for infection success in the first instance will be reduced. This could also weaken reciprocal selection on hosts and slow the coevolutionary process.

  4. Interleukin-15 stimulates natural killer cell-mediated killing of both human pancreatic cancer and stellate cells

    Science.gov (United States)

    Van Audenaerde, Jonas R.M.; De Waele, Jorrit; Marcq, Elly; Van Loenhout, Jinthe; Lion, Eva; Van den Bergh, Johan M.J.; Jesenofsky, Ralf; Masamune, Atsushi; Roeyen, Geert; Pauwels, Patrick; Lardon, Filip; Peeters, Marc; Smits, Evelien L.J.

    2017-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is the 4th leading cause of cancer-related death in Western countries with a 5-year survival rate below 5%. One of the hallmarks of this cancer is the strong desmoplastic reaction within the tumor microenvironment (TME), orchestrated by activated pancreatic stellate cells (PSC). This results in a functional and mechanical shield which causes resistance to conventional therapies. Aiming to overcome this resistance by tackling the stromal shield, we assessed for the first time the capacity of IL-15 stimulated natural killer (NK) cells to kill PSC and pancreatic cancer cells (PCC). The potency of IL-15 to promote NK cell-mediated killing was evaluated phenotypically and functionally. In addition, NK cell and immune checkpoint ligands on PSC were charted. We demonstrate that IL-15 activated NK cells kill both PCC and PSC lines (range 9-35% and 20-50%, respectively) in a contact-dependent manner and significantly higher as compared to resting NK cells. Improved killing of these pancreatic cell lines is, at least partly, dependent on IL-15 induced upregulation of TIM-3 and NKG2D. Furthermore, we confirm significant killing of primary PSC by IL-15 activated NK cells in an ex vivo autologous system. Screening for potential targets for immunotherapeutic strategies, we demonstrate surface expression of both inhibitory (PD-L1, PD-L2) and activating (MICA/B, ULBPs and Galectin-9) ligands on primary PSC. These data underscore the therapeutic potential of IL-15 to promote NK cell-mediated cytotoxicity as a treatment of pancreatic cancer and provide promising future targets to tackle remaining PSC. PMID:28915646

  5. In vitro bacterial cytotoxicity of CNTs: reactive oxygen species mediate cell damage edges over direct physical puncturing.

    Science.gov (United States)

    Rajavel, Krishnamoorthy; Gomathi, Rajkumar; Manian, Sellamuthu; Rajendra Kumar, Ramasamy Thangavelu

    2014-01-21

    Understanding the bacterial cytotoxicity of CNTs is important for a wide variety of applications in the biomedical, environmental, and health sectors. A majority of the earlier reports attributed the bactericidal cytotoxicity of CNTs to bacterial cell membrane damage by direct physical puncturing. Our results reveal that bacterial cell death via bacterial cell membrane damage is induced by reactive oxygen species (ROS) produced from CNTs and is not due to direct physical puncturing by CNTs. To understand the actual mechanism of bacterial killing, we elucidated the bacterial cytotoxicity of SWCNTs and MWCNTs against Gram-negative human pathogenic bacterial species Escherichia coli, Shigella sonnei, Klebsiella pneumoniae, and Pseudomonas aeruginosa and its amelioration upon functionalizing the CNTs with antioxidant tannic acid (TA). Interestingly, the bacterial cells treated with CNTs exhibited severe cell damage under laboratory (ambient) and sunlight irradiation conditions. However, CNTs showed no cytotoxicity to the bacterial cells when incubated in the dark. The quantitative assessments carried out by us made it explicit that CNTs are effective generators of ROS such as (1)O2, O2(•-), and (•)OH in an aqueous medium under both ambient and sunlight-irradiated conditions. Both naked and TA-functionalized CNTs showed negligible ROS production in the dark. Furthermore, strong correlations were obtained between ROS produced by CNTs and the bacterial cell mortality (with the correlation coefficient varying between 0.7618 and 0.9891) for all four tested pathogens. The absence of bactericidal cytotoxicity in both naked and functionalized CNTs in the dark reveals that the presence of ROS is the major factor responsible for the bactericidal action compared to direct physical puncturing. This understanding of the bactericidal activity of the irradiated CNTs, mediated through the generation of ROS, could be interesting for novel applications such as regulated ROS delivery

  6. Hyperglycemia Impairs Neutrophil-Mediated Bacterial Clearance in Mice Infected with the Lyme Disease Pathogen.

    Directory of Open Access Journals (Sweden)

    Ashkan Javid

    Full Text Available Insulin-insufficient type 1 diabetes is associated with attenuated bactericidal function of neutrophils, which are key mediators of innate immune responses to microbes as well as pathological inflammatory processes. Neutrophils are central to immune responses to the Lyme pathogen Borrelia burgdorferi. The effect of hyperglycemia on host susceptibility to and outcomes of B. burgdorferi infection has not been examined. The present study investigated the impact of sustained obesity-independent hyperglycemia in mice on bacterial clearance, inflammatory pathology and neutrophil responses to B. burgdorferi. Hyperglycemia was associated with reduced arthritis incidence but more widespread tissue colonization and reduced clearance of bacterial DNA in multiple tissues including brain, heart, liver, lung and knee joint. B. burgdorferi uptake and killing were impaired in neutrophils isolated from hyperglycemic mice. Thus, attenuated neutrophil function in insulin-insufficient hyperglycemia was associated with reduced B. burgdorferi clearance in target organs. These data suggest that investigating the effects of comorbid conditions such as diabetes on outcomes of B. burgdorferi infections in humans may be warranted.

  7. A computer investigation of chemically mediated detachment in bacterial biofilms.

    Science.gov (United States)

    Hunt, Stephen M; Hamilton, Martin A; Sears, John T; Harkin, Gary; Reno, Jason

    2003-05-01

    A three-dimensional computer model was used to evaluate the effect of chemically mediated detachment on biofilm development in a negligible-shear environment. The model, BacLAB, combines conventional diffusion-reaction equations for chemicals with a cellular automata algorithm to simulate bacterial growth, movement and detachment. BacLAB simulates the life cycle of a bacterial biofilm from its initial colonization of a surface to the development of a mature biofilm with cell areal densities comparable to those in the laboratory. A base model founded on well established transport equations that are easily adaptable to investigate conjectures at the biological level has been created. In this study, the conjecture of a detachment mechanism involving a bacterially produced chemical detachment factor in which high local concentrations of this detachment factor cause the bacteria to detach from the biofilm was examined. The results show that the often observed 'mushroom'-shaped structure can occur if detachment events create voids so that the remaining attached cells look like mushrooms.

  8. Chronic Iron Overload Results in Impaired Bacterial Killing of THP-1 Derived Macrophage through the Inhibition of Lysosomal Acidification

    Science.gov (United States)

    Kao, Jun-Kai; Wang, Shih-Chung; Ho, Li-Wei; Huang, Shi-Wei; Chang, Shu-Hao; Yang, Rei-Cheng; Ke, Yu-Yuan; Wu, Chun-Ying; Wang, Jiu-Yao; Shieh, Jeng-Jer

    2016-01-01

    Iron is essential for living organisms and the disturbance of iron homeostasis is associated with altered immune function. Additionally, bacterial infections can cause major complications in instances of chronic iron overload, such as patients with transfusion-dependent thalassemia. Monocytes and macrophages play important roles in maintaining systemic iron homoeostasis and in defense against invading pathogens. However, the effect of iron overload on the function of monocytes and macrophages is unclear. We elucidated the effects of chronic iron overload on human monocytic cell line (THP-1) and THP-1 derived macrophages (TDM) by continuously exposing them to high levels of iron (100 μM) to create I-THP-1 and I-TDM, respectively. Our results show that iron overload did not affect morphology or granularity of I-THP-1, but increased the granularity of I-TDM. Bactericidal assays for non-pathogenic E. coli DH5α, JM109 and pathogenic P. aeruginosa all revealed decreased efficiency with increasing iron concentration in I-TDM. The impaired P. aeruginosa killing ability of human primary monocyte derived macrophages (hMDM) was also found when cells are cultured in iron contained medium. Further studies on the bactericidal activity of I-TDM revealed lysosomal dysfunction associated with the inhibition of lysosomal acidification resulting in increasing lysosomal pH, the impairment of post-translational processing of cathepsins (especially cathepsin D), and decreased autophagic flux. These findings may explain the impaired innate immunity of thalassemic patients with chronic iron overload, suggesting the manipulation of lysosomal function as a novel therapeutic approach. PMID:27244448

  9. Magnesium isotope fractionation in bacterial mediated carbonate precipitation experiments

    Science.gov (United States)

    Parkinson, I. J.; Pearce, C. R.; Polacskek, T.; Cockell, C.; Hammond, S. J.

    2012-12-01

    Magnesium is an essential component of life, with pivotal roles in the generation of cellular energy as well as in plant chlorophyll [1]. The bio-geochemical cycling of Mg is associated with mass dependant fractionation (MDF) of the three stable Mg isotopes [1]. The largest MDF of Mg isotopes has been recorded in carbonates, with foraminiferal tests having δ26Mg compositions up to 5 ‰ lighter than modern seawater [2]. Magnesium isotopes may also be fractionated during bacterially mediated carbonate precipitation and such carbonates are known to have formed in both modern and ancient Earth surface environments [3, 4], with cyanobacteria having a dominant role in carbonate formation during the Archean. In this study, we aim to better constrain the extent to which Mg isotope fractionation occurs during cellular processes, and to identify when, and how, this signal is transferred to carbonates. To this end we have undertaken biologically-mediated carbonate precipitation experiments that were performed in artificial seawater, but with the molar Mg/Ca ratio set to 0.6 and with the solution spiked with 0.4% yeast extract. The bacterial strain used was marine isolate Halomonas sp. (gram-negative). Experiments were run in the dark at 21 degree C for two to three months and produced carbonate spheres of various sizes up to 300 μm in diameter, but with the majority have diameters of ~100 μm. Control experiments run in sterile controls (`empty` medium without bacteria) yielded no precipitates, indicating a bacterial control on the precipitation. The carbonate spheres are produced are amenable to SEM, EMP and Mg isotopic analysis by MC-ICP-MS. Our new data will shed light on tracing bacterial signals in carbonates from the geological record. [1] Young & Galy (2004). Rev. Min. Geochem. 55, p197-230. [2] Pogge von Strandmann (2008). Geochem. Geophys. Geosys. 9 DOI:10.1029/2008GC002209. [3] Castanier, et al. (1999). Sed. Geol. 126, 9-23. [4] Cacchio, et al. (2003

  10. Charge properties and bacterial contact-killing of hyperbranched polyurea-polyethyleneimine coatings with various degrees of alkylation

    NARCIS (Netherlands)

    Roest, Steven; van der Mei, Henny C.; Loontjens, Ton J. A.; Busscher, Henk J.

    2015-01-01

    Coatings of immobilized-quaternary-ammonium-ions (QUAT) uniquely kill adhering bacteria upon contact. QUAT-coatings require a minimal cationic-charge surface density for effective contact-killing of adhering bacteria of around 10(14) cm(-2). Quaternization of nitrogen is generally achieved through

  11. Killing of Brain Tumor Cells by Hypoxia-Responsive Element Mediated Expression of BAX

    Directory of Open Access Journals (Sweden)

    Hangjun Ruan

    1999-11-01

    Full Text Available The presence of radioresistant hypoxic cells in human brain tumors limits the overall effectiveness of conventional fractionated radiation therapy. Tumor-specific therapies that target hypoxic cells are clearly needed. We have investigated the expression of suicide genes under hypoxia by a hypoxia-responsive element (HRE, which can be activated through hypoxia-inducible factor-1 (HIF-1. We transfected plasmids containing multiple copies of HIRE into U-87 MG and U-251 MG-NCI human brain tumor cells and tested their ability to induce LacZ gene expression under anoxia. Gene expression under anoxia versus oxia was increased about 12-fold for U-87 MG cells and about fourfold for U-251 MG-NCI cells. At intermediate hypoxic conditions, increased LacZ gene expression in U-87 MG cells was induced by the plasmid that contained three HREs, but not by the plasmid with two HREs. Lastly, when we placed a suicide gene BAX under the control of HREs, cells transfected with the BAX plasmids were preferentially killed through apoptosis under anoxia. Our studies demonstrate that HRE-regulated gene expression is active in brain tumor cells, and that the amount of increased gene expression obtained is dependent on the cell line, the HIRE copy number, and the degree of hypoxia.

  12. ROS accumulation by PEITC selectively kills ovarian cancer cells via UPR-mediated apoptosis

    Directory of Open Access Journals (Sweden)

    Yoon-hee eHong

    2015-07-01

    Full Text Available Unfolded protein response (UPR is crucial for both survival and death of mammalian cells, which is regulated by reactive oxygen species (ROS and nutrient depletion. In this study, we demonstrated the effect of ROS-accumulation, induced by β-phenethyl isothiocyanate (PEITC, on UPR mediated apoptosis in ovarian cancer cells. We used ovarian cancer cell lines, PA-1 and SKOV-3, with different p53 status (wild- and null- type, respectively. PEITC caused increased ROS-accumulation and inhibited proliferation selectively in ovarian cancer cells, and glutathione (GSH depletion in SKOV-3. However, PEITC did not cause any effect in normal ovarian epithelial cells and peripheral blood mononuclear cells. After 48 h of PEITC treatment (5 µM, apoptotic cell death was shown to increase significantly in the ovarian cancer cells and not in the normal cells. The key regulator of UPR-mediated apoptosis, CHOP/GADD153 and ER resident chaperone BiP/GRP78 were parallely up-regulated with activation of two major sensors of the UPR (PERK and ATF-6 in PA-1; PERK, and IRE1α in SKOV-3 in response to ROS accumulation induced by PEITC (5 µM. ROS scavenger, N-acetyl-cysteine (NAC, attenuated the effect of PEITC on UPR signatures (P-PERK, IRE1α, CHOP/GADD153, and BiP/GRP78, suggesting the involvement of ROS in UPR-mediated apoptosis. Altogether, PEITC induces UPR-mediated apoptosis in ovarian cancer cells via accumulation of ROS in a cancer-specific manner.

  13. Socially mediated induction and suppression of antibiosis during bacterial coexistence

    NARCIS (Netherlands)

    Abrudan, Monica I.; Smakman, Fokko; Grimbergen, Ard Jan; Westhoff, Sanne; Miller, Eric L.; van Wezel, Gilles P.; Rozen, Daniel E.

    2015-01-01

    Despite their importance for humans, there is little consensus on the function of antibiotics in nature for the bacteria that produce them. Classical explanations suggest that bacteria use antibiotics as weapons to kill or inhibit competitors, whereas a recent alternative hypothesis states that

  14. Bacterial bioluminescence onset and quenching: a dynamical model for a quorum sensing-mediated property

    OpenAIRE

    Side, Domenico Delle; Nassisi, Vincenzo; Pennetta, Cecilia; Alifano, Pietro; Di Salvo, Marco; Talà, Adelfia; Chechkin, Aleksei; Seno, Flavio; Trovato, Antonio

    2017-01-01

    We present an effective dynamical model for the onset of bacterial bioluminescence, one of the most studied quorum sensing-mediated traits. Our model is built upon simple equations that describe the growth of the bacterial colony, the production and accumulation of autoinducer signal molecules, their sensing within bacterial cells, and the ensuing quorum activation mechanism that triggers bioluminescent emission. The model is directly tested to quantitatively reproduce the experimental distri...

  15. DNA-mediated bacterial aggregation is dictated by acid-base interactions

    NARCIS (Netherlands)

    Das, Theerthankar; Krom, Bastiaan P.; van der Mei, Henny C.; Busscher, Henk J.; Sharma, Prashant K.

    2011-01-01

    Extracellular DNA (eDNA) plays a significant role in bacterial biofilm formation and aggregation. Here, for the first time, we present a physico-chemical analysis of the DNA-mediated aggregation for three bacterial strains (Streptococcus mutans LT11, Pseudomonas aeruginosa PAO1 and Staphylococcus

  16. CRISPR-mediated control of the bacterial initiation of replication

    NARCIS (Netherlands)

    Wiktor, J.M.; Lesterlin, Christian; Sherratt, David J.; Dekker, C.

    2016-01-01

    Programmable control of the cell cycle has been shown to be a powerful tool in cell-biology studies. Here, we develop a novel system for controlling the bacterial cell cycle, based on binding of CRISPR/dCas9 to the origin-of-replication locus. Initiation of replication of bacterial chromosomes is

  17. Application of a loading dose of colistin methanesulfonate in critically ill patients: population pharmacokinetics, protein binding, and prediction of bacterial kill.

    Science.gov (United States)

    Mohamed, Ami F; Karaiskos, Ilias; Plachouras, Diamantis; Karvanen, Matti; Pontikis, Konstantinos; Jansson, Britt; Papadomichelakis, Evangelos; Antoniadou, Anastasia; Giamarellou, Helen; Armaganidis, Apostolos; Cars, Otto; Friberg, Lena E

    2012-08-01

    A previous pharmacokinetic study on dosing of colistin methanesulfonate (CMS) at 240 mg (3 million units [MU]) every 8 h indicated that colistin has a long half-life, resulting in insufficient concentrations for the first 12 to 48 h after initiation of treatment. A loading dose would therefore be beneficial. The aim of this study was to evaluate CMS and colistin pharmacokinetics following a 480-mg (6-MU) loading dose in critically ill patients and to explore the bacterial kill following the use of different dosing regimens obtained by predictions from a pharmacokinetic-pharmacodynamic model developed from an in vitro study on Pseudomonas aeruginosa. The unbound fractions of colistin A and colistin B were determined using equilibrium dialysis and considered in the predictions. Ten critically ill patients (6 males; mean age, 54 years; mean creatinine clearance, 82 ml/min) with infections caused by multidrug-resistant Gram-negative bacteria were enrolled in the study. The pharmacokinetic data collected after the first and eighth doses were analyzed simultaneously with the data from the previous study (total, 28 patients) in the NONMEM program. For CMS, a two-compartment model best described the pharmacokinetics, and the half-lives of the two phases were estimated to be 0.026 and 2.2 h, respectively. For colistin, a one-compartment model was sufficient and the estimated half-life was 18.5 h. The unbound fractions of colistin in the patients were 26 to 41% at clinical concentrations. Colistin A, but not colistin B, had a concentration-dependent binding. The predictions suggested that the time to 3-log-unit bacterial kill for a 480-mg loading dose was reduced to half of that for the dose of 240 mg.

  18. Adaptation of the neutral bacterial comet assay to assess antimicrobial-mediated DNA double-strand breaks in Escherichia coli

    Science.gov (United States)

    SOLANKY, DIPESH; HAYDEL, SHELLEY E.

    2012-01-01

    This study aimed to determine the mechanism of action of a natural antibacterial clay mineral mixture, designated CB, by investigating the induction of DNA double-strand breaks (DSBs) in Escherichia coli. To quantify DNA damage upon exposure to soluble antimicrobial compounds, we modified a bacterial neutral comet assay, which primarily associates the general length of an electrophoresed chromosome, or comet, with the degree of DSB-associated DNA damage. To appropriately account for antimicrobial-mediated strand fragmentation, suitable control reactions consisting of exposures to water, ethanol, kanamycin, and bleomycin were developed and optimized for the assay. Bacterial exposure to the CB clay resulted in significantly longer comet lengths, compared to water and kanamycin exposures, suggesting that the induction of DNA DSBs contributes to the killing activity of this antibacterial clay mineral mixture. The comet assay protocol described herein provides a general technique for evaluating soluble antimicrobial-derived DNA damage and for comparing DNA fragmentation between experimental and control assays. PMID:22940101

  19. Burkholderia pseudomallei Evades Nramp1 (Slc11a1- and NADPH Oxidase-Mediated Killing in Macrophages and Exhibits Nramp1-Dependent Virulence Gene Expression

    Directory of Open Access Journals (Sweden)

    Veerachat Muangsombut

    2017-08-01

    Full Text Available Bacterial survival in macrophages can be affected by the natural resistance-associated macrophage protein 1 (Nramp1; also known as solute carrier family 11 member a1 or Slc11a1 which localizes to phagosome membranes and transports divalent cations, including iron. Little is known about the role of Nramp1 in Burkholderia infection, in particular whether this differs for pathogenic species like Burkholderia pseudomallei causing melioidosis or non-pathogenic species like Burkholderia thailandensis. Here we show that transfected macrophages stably expressing wild-type Nramp1 (Nramp1+ control the net replication of B. thailandensis, but not B. pseudomallei. Control of B. thailandensis was associated with increased cytokine responses, and could be abrogated by blocking NADPH oxidase-mediated production of reactive oxygen species but not by blocking generation of reactive nitrogen species. The inability of Nramp1+ macrophages to control B. pseudomallei was associated with rapid escape of bacteria from phagosomes, as indicated by decreased co-localization with LAMP1 compared to B. thailandensis. A B. pseudomallei bipB mutant impaired in escape from phagosomes was controlled to a greater extent than the parent strain in Nramp1+ macrophages, but was also attenuated in Nramp1− cells. Consistent with reduced escape from phagosomes, B. thailandensis formed fewer multinucleated giant cells in Nramp1+ macrophages at later time points compared to B. pseudomallei. B. pseudomallei exhibited elevated transcription of virulence-associated genes of Type VI Secretion System cluster 1 (T6SS-1, the Bsa Type III Secretion System (T3SS-3 and the bimA gene required for actin-based motility in Nramp1+ macrophages. Nramp1+ macrophages were found to contain decreased iron levels that may impact on expression of such genes. Our data show that B. pseudomallei is able to evade Nramp1- and NADPH oxidase-mediated killing in macrophages and that expression of virulence

  20. Subtle variation within conserved effector operon gene products contributes to T6SS-mediated killing and immunity.

    Science.gov (United States)

    Alteri, Christopher J; Himpsl, Stephanie D; Zhu, Kevin; Hershey, Haley L; Musili, Ninette; Miller, Jessa E; Mobley, Harry L T

    2017-11-01

    Type VI secretion systems (T6SS) function to deliver lethal payloads into target cells. Many studies have shown that protection against a single, lethal T6SS effector protein requires a cognate antidote immunity protein, both of which are often encoded together in a two-gene operon. The T6SS and an effector-immunity pair is sufficient for both killing and immunity. HereIn this paper we describe a T6SS effector operon that differs from conventional effector-immunity pairs in that eight genes are necessary for lethal effector function, yet can be countered by a single immunity protein. In this study, we investigated the role that the PefE T6SS immunity protein plays in recognition between two strains harboring nearly identical effector operons. Interestingly, despite containing seven of eight identical effector proteins, the less conserved immunity proteins only provided protection against their native effectors, suggesting that specificity and recognition could be dependent on variation within an immunity protein and one effector gene product. The variable effector gene product, PefD, is encoded upstream from pefE, and displays toxic activity that can be countered by PefE independent of T6SS-activity. Interestingly, while the entire pef operon was necessary to exert toxic activity via the T6SS in P. mirabilis, production of PefD and PefE alone was unable to exert this effector activity. Chimeric PefE proteins constructed from two P. mirabilis strains were used to localize immunity function to three amino acids. A promiscuous immunity protein was created using site-directed mutagenesis to change these residues from one variant to another. These findings support the notion that subtle differences between conserved effectors are sufficient for T6SS-mediated kin discrimination and that PefD requires additional factors to function as a T6SS-dependent effector.

  1. CRISPR-mediated control of the bacterial initiation of replication.

    Science.gov (United States)

    Wiktor, Jakub; Lesterlin, Christian; Sherratt, David J; Dekker, Cees

    2016-05-05

    Programmable control of the cell cycle has been shown to be a powerful tool in cell-biology studies. Here, we develop a novel system for controlling the bacterial cell cycle, based on binding of CRISPR/dCas9 to the origin-of-replication locus. Initiation of replication of bacterial chromosomes is accurately regulated by the DnaA protein, which promotes the unwinding of DNA at oriC We demonstrate that the binding of CRISPR/dCas9 to any position within origin or replication blocks the initiation of replication. Serial-dilution plating, single-cell fluorescence microscopy, and flow-cytometry experiments show that ongoing rounds of chromosome replication are finished upon CRISPR/dCas9 binding, but no new rounds are initiated. Upon arrest, cells stay metabolically active and accumulate cell mass. We find that elevating the temperature from 37 to 42°C releases the CRISR/dCas9 replication inhibition, and we use this feature to recover cells from the arrest. Our simple and robust method of controlling the bacterial cell cycle is a useful asset for synthetic biology and DNA-replication studies in particular. The inactivation of CRISPR/dCas9 binding at elevated temperatures may furthermore be of wide interest for CRISPR/Cas9 applications in genomic engineering. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. A simple and novel modification of comet assay for determination of bacteriophage mediated bacterial cell lysis.

    Science.gov (United States)

    Khairnar, Krishna; Sanmukh, Swapnil; Chandekar, Rajshree; Paunikar, Waman

    2014-07-01

    The comet assay is the widely used method for in vitro toxicity testing which is also an alternative to the use of animal models for in vivo testing. Since, its inception in 1984 by Ostling and Johansson, it is being modified frequently for a wide range of application. In spite of its wide applicability, unfortunately there is no report of its application in bacteriophages research. In this study, a novel application of comet assay for the detection of bacteriophage mediated bacterial cell lysis was described. The conventional methods in bacteriophage research for studying bacterial lysis by bacteriophages are plaque assay method. It is time consuming, laborious and costly. The lytic activity of bacteriophage devours the bacterial cell which results in the release of bacterial genomic material that gets detected by ethidium bromide staining method by the comet assay protocol. The objective of this study was to compare efficacy of comet assay with different assay used to study phage mediated bacterial lysis. The assay was performed on culture isolates (N=80 studies), modified comet assay appear to have relatively higher sensitivity and specificity than other assay. The results of the study showed that the application of comet assay can be an economical, time saving and less laborious alternative to conventional plaque assay for the detection of bacteriophage mediated bacterial cell lysis. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Enhanced killing of chordoma cells by antibody-dependent cell-mediated cytotoxicity employing the novel anti-PD-L1 antibody avelumab.

    Science.gov (United States)

    Fujii, Rika; Friedman, Eitan R; Richards, Jacob; Tsang, Kwong Y; Heery, Christopher R; Schlom, Jeffrey; Hodge, James W

    2016-06-07

    Chordoma, a rare bone tumor derived from the notochord, has been shown to be resistant to conventional therapies. Checkpoint inhibition has shown great promise in immune-mediated therapy of diverse cancers. The anti-PD-L1 mAb avelumab is unique among checkpoint inhibitors in that it is a fully human IgG1 capable of mediating antibody-dependent cell-mediated cytotoxicity (ADCC) of PD-L1-expressing tumor cells. Here, we investigated avelumab as a potential therapy for chordoma. We examined 4 chordoma cell lines, first for expression of PD-L1, and in vitro for ADCC killing using NK cells and avelumab. PD-L1 expression was markedly upregulated by IFN-γ in all 4 chordoma cell lines, which significantly increased sensitivity to ADCC. Brachyury is a transcription factor that is uniformly expressed in chordoma. Clinical trials are ongoing in which chordoma patients are treated with brachyury-specific vaccines. Co-incubating chordoma cells with brachyury-specific CD8+ T cells resulted in significant upregulation of PD-L1 on the tumor cells, mediated by the CD8+ T cells' IFN-γ production, and increased sensitivity of chordoma cells to avelumab-mediated ADCC. Residential cancer stem cell subpopulations of chordoma cells were also killed by avelumab-mediated ADCC to the same degree as non-cancer stem cell populations. These findings suggest that as a monotherapy for chordoma, avelumab may enable endogenous NK cells, while in combination with T-cell immunotherapy, such as a vaccine, avelumab may enhance NK-cell killing of chordoma cells via ADCC.

  4. Bacterial mediated amelioration of drought stress in drought tolerant ...

    African Journals Online (AJOL)

    yogendra

    2015-02-23

    Feb 23, 2015 ... for a beneficial effect of PGPRs application in enhancing drought tolerance of rice under water deficit conditions. ..... involvement of PGPRs in ROS metabolism in rice plants. ... osmoregulatory solute in plants (Kumar et al., 2011). ..... Pseudomonas fluorescens mediated saline resistance in groundnut.

  5. Leaf bacterial diversity mediates plant diversity and ecosystem function relationships.

    Science.gov (United States)

    Laforest-Lapointe, Isabelle; Paquette, Alain; Messier, Christian; Kembel, Steven W

    2017-06-01

    Research on biodiversity and ecosystem functioning has demonstrated links between plant diversity and ecosystem functions such as productivity. At other trophic levels, the plant microbiome has been shown to influence host plant fitness and function, and host-associated microbes have been proposed to influence ecosystem function through their role in defining the extended phenotype of host organisms However, the importance of the plant microbiome for ecosystem function has not been quantified in the context of the known importance of plant diversity and traits. Here, using a tree biodiversity-ecosystem functioning experiment, we provide strong support for the hypothesis that leaf bacterial diversity is positively linked to ecosystem productivity, even after accounting for the role of plant diversity. Our results also show that host species identity, functional identity and functional diversity are the main determinants of leaf bacterial community structure and diversity. Our study provides evidence of a positive correlation between plant-associated microbial diversity and terrestrial ecosystem productivity, and a new mechanism by which models of biodiversity-ecosystem functioning relationships can be improved.

  6. Curcumin Quantum Dots Mediated Degradation of Bacterial Biofilms

    Directory of Open Access Journals (Sweden)

    Ashish K. Singh

    2017-08-01

    Full Text Available Bacterial biofilm has been reported to be associated with more than 80% of bacterial infections. Curcumin, a hydrophobic polyphenol compound, has anti-quorum sensing activity apart from having antimicrobial action. However, its use is limited by its poor aqueous solubility and rapid degradation. In this study, we attempted to prepare quantum dots of the drug curcumin in order to achieve enhanced solubility and stability and investigated for its antimicrobial and antibiofilm activity. We utilized a newer two-step bottom up wet milling approach to prepare Curcumin Quantum Dots (CurQDs using acetone as a primary solvent. Minimum inhibitory concentration against select Gram-positive and Gram-negative bacteria was performed. The antibiofilm assay was performed at first using 96-well tissue culture plate and subsequently validated by Confocal Laser Scanning Microscopy. Further, biofilm matrix protein was isolated using formaldehyde sludge and TCA/Acetone precipitation method. Protein extracted was incubated with varying concentration of CurQDs for 4 h and was subjected to SDS–PAGE. Molecular docking study was performed to observe interaction between curcumin and phenol soluble modulins as well as curli proteins. The biophysical evidences obtained from TEM, SEM, UV-VIS, fluorescence, Raman spectroscopy, and zeta potential analysis confirmed the formation of curcumin quantum dots with increased stability and solubility. The MICs of curcumin quantum dots, as observed against both select gram positive and negative bacterial isolates, was observed to be significantly lower than native curcumin particles. On TCP assay, Curcumin observed to be having antibiofilm as well as biofilm degrading activity. Results of SDS–PAGE and molecular docking have shown interaction between biofilm matrix proteins and curcumin. The results indicate that aqueous solubility and stability of Curcumin can be achieved by preparing its quantum dots. The study also demonstrates

  7. Extracellular traps are associated with human and mouse neutrophil and macrophage mediated killing of larval Strongyloides stercoralis.

    Science.gov (United States)

    Bonne-Année, Sandra; Kerepesi, Laura A; Hess, Jessica A; Wesolowski, Jordan; Paumet, Fabienne; Lok, James B; Nolan, Thomas J; Abraham, David

    2014-06-01

    Neutrophils are multifaceted cells that are often the immune system's first line of defense. Human and murine cells release extracellular DNA traps (ETs) in response to several pathogens and diseases. Neutrophil extracellular trap (NET) formation is crucial to trapping and killing extracellular pathogens. Aside from neutrophils, macrophages and eosinophils also release ETs. We hypothesized that ETs serve as a mechanism of ensnaring the large and highly motile helminth parasite Strongyloides stercoralis thereby providing a static target for the immune response. We demonstrated that S. stercoralis larvae trigger the release of ETs by human neutrophils and macrophages. Analysis of NETs revealed that NETs trapped but did not kill larvae. Induction of NETs was essential for larval killing by human but not murine neutrophils and macrophages in vitro. In mice, extracellular traps were induced following infection with S. stercoralis larvae and were present in the microenvironment of worms being killed in vivo. These findings demonstrate that NETs ensnare the parasite facilitating larval killing by cells of the immune system. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  8. NK-cell-dependent killing of colon carcinoma cells is mediated by natural cytotoxicity receptors (NCRs) and stimulated by parvovirus infection of target cells

    International Nuclear Information System (INIS)

    Bhat, Rauf; Rommelaere, Jean

    2013-01-01

    Investigating how the immune system functions during malignancies is crucial to developing novel therapeutic strategies. Natural killer (NK) cells, an important component of the innate immune system, play a vital role in immune defense against tumors and virus-infected cells. The poor survival rate in colon cancer makes it particularly important to develop novel therapeutic strategies. Oncolytic viruses, in addition to lysing tumor cells, may have the potential to augment antitumor immune responses. In the present study, we investigate the role of NK cells and how parvovirus H-1PV can modulate NK-cell mediated immune responses against colon carcinoma. Human NK cells were isolated from the blood of healthy donors. The cytotoxicity and antibody-mediated inhibition of NK cells were measured in chromium release assays. Phenotypic assessment of colon cancer and dendritic cells was done by FACS. The statistical significance of the results was calculated with Student’s t test (*p <0.05; **, p < 0.01; ***, p < 0.001). We show that IL-2-activated human NK cells can effectively kill colon carcinoma cells. Killing of colon carcinoma cells by NK cells was further enhanced upon infection of the former cells with parvovirus H-1PV. H-1PV has potent oncolytic activity against various tumors, yet its direct killing effect on colon carcinoma cells is limited. The cytotoxicity of NK cells towards colon carcinoma cells, both mock- and H-1PV-infected, was found to be mostly mediated by a combination of natural cytotoxicity receptors (NCRs), namely NKp30, 44, and 46. Colon carcinoma cells displayed low to moderate expression of NK cell ligands, and this expression was modulated upon H-1PV infection. Lysates of H-1PV-infected colon carcinoma cells were found to increase MHC class II expression on dendritic cells. Altogether, these data suggest that IL-2-activated NK cells actively kill colon carcinoma cells and that this killing is mediated by several natural cytotoxicity receptors

  9. Epidemiology of bacterial toxin-mediated foodborne gastroenteritis outbreaks in Australia, 2001 to 2013.

    Science.gov (United States)

    May, Fiona J; Polkinghorne, Benjamin G; Fearnley, Emily J

    2016-12-24

    Bacterial toxin-mediated foodborne outbreaks, such as those caused by Clostridium perfringens, Staphylococcus aureus and Bacillus cereus, are an important and preventable cause of morbidity and mortality. Due to the short incubation period and duration of illness, these outbreaks are often under-reported. This is the first study to describe the epidemiology of bacterial toxin-mediated outbreaks in Australia. Using data collected between 2001 and 2013, we identify high risk groups and risk factors to inform prevention measures. Descriptive analyses of confirmed bacterial toxin-mediated outbreaks between 2001 and 2013 were undertaken using data extracted from the OzFoodNet Outbreak Register, a database of all outbreaks of gastrointestinal disease investigated by public health authorities in Australia. A total of 107 laboratory confirmed bacterial toxin-mediated outbreaks were reported between 2001 and 2013, affecting 2,219 people, including 47 hospitalisations and 13 deaths. Twelve deaths occurred in residents of aged care facilities. Clostridium perfringens was the most commonly reported aetiological agent (81 outbreaks, 76%). The most commonly reported food preparation settings were commercial food preparation services (51 outbreaks, 48%) and aged care facilities (42 outbreaks, 39%). Bacterial toxin outbreaks were rarely associated with food preparation in the home (2 outbreaks, 2%). In all outbreaks, the primary factor contributing to the outbreak was inadequate temperature control of the food. Public health efforts aimed at improving storage and handling practices for pre-cooked and re-heated foods, especially in commercial food preparation services and aged care facilities, could help to reduce the magnitude of bacterial toxin outbreaks.

  10. Killing malignant melanoma cells with protoporphyrin IX-loaded polymersome-mediated photodynamic therapy and cold atmospheric plasma

    Directory of Open Access Journals (Sweden)

    Wang M

    2017-05-01

    Full Text Available Mian Wang,1 Benjamin M Geilich,2 Michael Keidar,3 Thomas J Webster1,4 1Department of Chemical Engineering, 2Department of Bioengineering, Northeastern University, Boston, MA, 3Department of Mechanical and Aerospace Engineering, George Washington University, Washington, DC, USA; 4Wenzhou Institute of Biomaterials and Engineering, Wenzhou Medical University, Wenzhou, People’s Republic of China Abstract: Traditional cancer treatments contain several limitations such as incomplete ablation and multidrug resistance. It is known that photodynamic therapy (PDT is an effective treatment for several tumor types especially melanoma cells. During the PDT process, protoporphyrin IX (PpIX, an effective photosensitizer, can selectively kill cancer cells by activating a special light source. When tumor cells encapsulate a photosensitizer, they can be easily excited into an excited state by a light source. In this study, cold atmospheric plasma (CAP was used as a novel light source. Results of some studies have showed that cancer cells can be effectively killed by using either a light source or an individual treatment due to the generation of reactive oxygen species and electrons from a wide range of wavelengths, which suggest that CAP can act as a potential light source for anticancer applications compared with UV light sources. Results of the present in vitro study indicated for the first time that PpIX can be successfully loaded into polymersomes. Most importantly, cell viability studies revealed that PpIX-loaded polymersomes had a low toxicity to healthy fibroblasts (20% were killed at a concentration of 400 µg/mL, but they showed a great potential to selectively kill melanoma cells (almost 50% were killed. With the application of CAP posttreatment, melanoma cell viability significantly decreased (80% were killed compared to not using a light source (45% were killed or using a UV light source (65% were killed. In summary, these results indicated for the

  11. Killing of Pseudomonas aeruginosa by Chicken Cathelicidin-2 Is Immunogenically Silent, Preventing Lung Inflammation In Vivo

    Science.gov (United States)

    Coorens, Maarten; Banaschewski, Brandon J. H.; Baer, Brandon J.; Yamashita, Cory; van Dijk, Albert; Veldhuizen, Ruud A. W.; Veldhuizen, Edwin J. A.

    2017-01-01

    ABSTRACT The development of antibiotic resistance by Pseudomonas aeruginosa is a major concern in the treatment of bacterial pneumonia. In the search for novel anti-infective therapies, the chicken-derived peptide cathelicidin-2 (CATH-2) has emerged as a potential candidate, with strong broad-spectrum antimicrobial activity and the ability to limit inflammation by inhibiting Toll-like receptor 2 (TLR2) and TLR4 activation. However, as it is unknown how CATH-2 affects inflammation in vivo, we investigated how CATH-2-mediated killing of P. aeruginosa affects lung inflammation in a murine model. First, murine macrophages were used to determine whether CATH-2-mediated killing of P. aeruginosa reduced proinflammatory cytokine production in vitro. Next, a murine lung model was used to analyze how CATH-2-mediated killing of P. aeruginosa affects neutrophil and macrophage recruitment as well as cytokine/chemokine production in the lung. Our results show that CATH-2 kills P. aeruginosa in an immunogenically silent manner both in vitro and in vivo. Treatment with CATH-2-killed P. aeruginosa showed reduced neutrophil recruitment to the lung as well as inhibition of cytokine and chemokine production, compared to treatment with heat- or gentamicin-killed bacteria. Together, these results show the potential for CATH-2 as a dual-activity antibiotic in bacterial pneumonia, which can both kill P. aeruginosa and prevent excessive inflammation. PMID:28947647

  12. Hydrogen Peroxide- and Nitric Oxide-mediated Disease Control of Bacterial Wilt in Tomato Plants

    Directory of Open Access Journals (Sweden)

    Jeum Kyu Hong

    2013-12-01

    Full Text Available Reactive oxygen species (ROS generation in tomato plants by Ralstonia solanacearum infection and the role of hydrogen peroxide (H₂O₂ and nitric oxide in tomato bacterial wilt control were demonstrated. During disease development of tomato bacterial wilt, accumulation of superoxide anion (O₂− and H₂O₂ was observed and lipid peroxidation also occurred in the tomato leaf tissues. High doses of H₂O₂and sodium nitroprusside (SNP nitric oxide donor showed phytotoxicity to detached tomato leaves 1 day after petiole feeding showing reduced fresh weight. Both H₂O₂and SNP have in vitro antibacterial activities against R. solanacearum in a dose-dependent manner, as well as plant protection in detached tomato leaves against bacterial wilt by 10⁶ and 10⁷ cfu/ml of R. solanacearum. H₂O₂- and SNP-mediated protection was also evaluated in pots using soil-drench treatment with the bacterial inoculation, and relative ‘area under the disease progressive curve (AUDPC’ was calculated to compare disease protection by H₂O₂ and/or SNP with untreated control. Neither H₂O₂ nor SNP protect the tomato seedlings from the bacterial wilt, but H₂O₂+ SNP mixture significantly decreased disease severity with reduced relative AUDPC. These results suggest that H₂O₂ and SNP could be used together to control bacterial wilt in tomato plants as bactericidal agents.

  13. A novel CCR-2/TLR-2 triggered signaling in murine peritoneal macrophages intensifies bacterial (Staphylococcus aureus) killing by reactive oxygen species through TNF-R1.

    Science.gov (United States)

    Nandi, Ajeya; Bishayi, Biswadev

    2017-10-01

    Macrophages are remarkably versatile in their ability to recognize and respond to a wide range of stimuli by expressing a variety of surface and intracellular receptors and triggering multiple signal transduction pathways. The onset of microbial infection is primarily determined by the initial contacts made by the microbes with the host macrophages. Although there prevail a relationship between the chemokine receptor and Toll like receptors during disease, particularly TLR-2 and CCR-2 signaling interdependence on each other has not been yet investigated during acute staphylococcal infection. Thus, the present study was aimed to trace possible interaction between CCR-2 and TLR-2 in peritoneal macrophages during acute Staphylococcus aureus infection. We found that neutralization of CCR-2 attenuates TLR-2 expression and restricts S. aureus burden but TLR-2 neutralization augments CCR-2 expression in macrophages, along with compromised host-derived reactive oxygen species production. S. aureus infection to CCR-2 intact but TLR-2 neutralized macrophages triggered production of IL-1β, TNF-α, IL-6, IFN-γ, MCP-1 and expression of iNOS, TNFR-1 and GPx with concomitant decrease in IL-10 production. Further, study with NG-monomethyl-l-arginine (L-NMMA) [iNOS blocker] and buthionine sulfoximine (BSO) [GPx blocker] revealed that S. aureus infection enhanced TLR-2 expression in CCR-2 intact and TLR-2 neutralized macrophages possibly via iNOS and TNFR-1 up regulation and GPx down regulation. Overall, our data indicate that targeting CCR-2 with neutralizing antibody in the early phase of S. aureus infection could restrict excessive inflammation with less compromised bacterial killing. It certainly would be a therapeutic strategy in S. aureus induced inflammatory and infective diseases. Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  14. The Killing

    DEFF Research Database (Denmark)

    Agger, Gunhild

    2013-01-01

    This article tracks the uncanny locations of The Killing (2007–2012), relating them to place, space and atmosphere, putting bits and pieces from the topographic puzzle together with cues from the symbolic space in order to see how they fit into the overall pattern of Nordic Noir. In The Killing......, the abstract level of space and atmosphere meets the concrete level of place, both influencing the notion of location. This meeting, I suggest, has contributed towards the simultaneous domestic and international appeal of The Killing....

  15. Electroporation driven delivery of both an IL-12 expressing plasmid and cisplatin synergizes to inhibit B16 melanoma tumor growth through an NK cell mediated tumor killing mechanism.

    Science.gov (United States)

    Kim, Ha; Sin, Jeong-Im

    2012-11-01

    Combined therapy using chemotherapeutic drugs and immunotherapeutics offers some promise for treating patients with cancer. In this study, we evaluated whether cisplatin delivered by intratumoral (IT)-electroporation (EP) might enhance antitumor activity against established B16 melanoma and whether further addition of intramuscular (IM)-EP of IL-12 cDNA to IT-EP of cisplatin might augment antitumor therapeutic activity, with a focus on the underlining antitumor mechanism(s). When tumor (7 mm)-bearing animals were treated locally with cisplatin by IT-EP, they showed tumor growth inhibition significantly more than those without IT-EP. Moreover, IL-12 cDNA delivered by IM-EP was also able to inhibit tumor growth significantly more than control vector delivery. This tumor growth inhibition was mediated by NK cells, but not CD4+ T or CD8+ T cells, as determined by immune cell subset depletion and IFN-γ induction. Moreover, concurrent therapy using IT-EP of cisplatin plus IM-EP of IL-12 cDNA displayed antitumor therapeutic synergy. This therapeutic synergy appeared to be mediated by increased sensitivity of cisplatin-treated tumors to NK cell-mediated tumor killing. Taken together, these data support that cisplatin delivery by IT-EP plus IL-12 gene delivery by IM-EP are more effective at inducing antitumor therapeutic responses through increased sensitivity of cisplatin-treated tumors to NK cell-mediated tumor killing. This combined approach might have some implication for treating melanoma in patients.

  16. Moxifloxacin susceptibility mediates the relationship between causative organism and clinical outcome in bacterial keratitis.

    Science.gov (United States)

    Oldenburg, Catherine E; Lalitha, Prajna; Srinivasan, Muthiah; Manikandan, Palanisamy; Bharathi, M Jayahar; Rajaraman, Revathi; Ravindran, Meenakshi; Mascarenhas, Jeena; Nardone, Natalie; Ray, Kathryn J; Glidden, David V; Acharya, Nisha R; Lietman, Thomas M

    2013-02-28

    Bacterial keratitis is a sight-threatening infection of the cornea that is one of the leading causes of blindness globally. In this report, we analyze the role of moxifloxacin susceptibility in the relationship between causative organisms and clinical outcome in bacteria keratitis. A mediation analysis is used to assess the role of moxifloxacin susceptibility in the relationship between causative organisms and clinical outcome in bacterial keratitis using data collected in a randomized, controlled trial. In the Steroids for Corneal Ulcers Trial (SCUT), 500 corneal infections were treated with topical moxifloxacin. The outcome of 3-week best spectacle-corrected visual acuity was significantly associated with an organism (Streptococcus pneumoniae, Pseudomonas aeruginosa, etc., P = 0.008). An indirect effects mediation model suggests that MIC accounted for approximately 13% (95% confidence interval, 3%-24%, P = 0.015) of the effect of the organism on 3-week visual acuity. Moxifloxacin mediates the relationship between causative organisms and clinical outcome in bacterial keratitis, and is likely on the causal pathway between the organism and outcome. (ClinicalTrials.gov number, NCT00324168.).

  17. Selfish restriction modification genes: resistance of a resident R/M plasmid to displacement by an incompatible plasmid mediated by host killing.

    Science.gov (United States)

    Naito, Y; Naito, T; Kobayashi, I

    1998-01-01

    Previous work from this laboratory demonstrated that plasmids carrying a type II restriction-modification gene complex are not easily lost from their bacterial host because plasmid-free segregant cells are killed through chromosome cleavage. Here, we have followed the course of events that takes place when an Escherichia coli rec BC sbcA strain carrying a plasmid coding for the PaeR7I restriction-modification (R/M) gene complex is transformed by a plasmid with an identical origin of replication. The number of transformants that appeared was far fewer than with the restriction-minus (r-) control. Most of the transformants were very small. After prolonged incubation, the number and the size of the colonies increased, but this increase never attained the level of the r- control. Most of the transformed colonies retained the drug-resistance of the resident, r+ m+ plasmid. These results indicate that post-segregational host killing occurs when a plasmid bearing an R/M gene complex is displaced by an incompatible plasmid. Such cell killing eliminates the competitor plasmid along with the host and, thus, would allow persistence of the R/M plasmid in the neighboring, clonal host cells in nature. This phenomenon is reminiscent of mammalian apoptosis and other forms of altruistic cell death strategy against infection. This type of resistance to displacement was also studied in a wild type Escherichia coli strain that was normal for homologous recombination (rec+). A number of differences between the recBC sbcA strain and the rec+ strain were observed and these will be discussed.

  18. Multiscale modeling of bacterial colonies: how pili mediate the dynamics of single cells and cellular aggregates

    Science.gov (United States)

    Pönisch, Wolfram; Weber, Christoph A.; Juckeland, Guido; Biais, Nicolas; Zaburdaev, Vasily

    2017-01-01

    Neisseria gonorrhoeae is the causative agent of one of the most common sexually transmitted diseases, gonorrhea. Over the past two decades there has been an alarming increase of reported gonorrhea cases where the bacteria were resistant to the most commonly used antibiotics thus prompting for alternative antimicrobial treatment strategies. The crucial step in this and many other bacterial infections is the formation of microcolonies, agglomerates consisting of up to several thousands of cells. The attachment and motility of cells on solid substrates as well as the cell-cell interactions are primarily mediated by type IV pili, long polymeric filaments protruding from the surface of cells. While the crucial role of pili in the assembly of microcolonies has been well recognized, the exact mechanisms of how they govern the formation and dynamics of microcolonies are still poorly understood. Here, we present a computational model of individual cells with explicit pili dynamics, force generation and pili-pili interactions. We employ the model to study a wide range of biological processes, such as the motility of individual cells on a surface, the heterogeneous cell motility within the large cell aggregates, and the merging dynamics and the self-assembly of microcolonies. The results of numerical simulations highlight the central role of pili generated forces in the formation of bacterial colonies and are in agreement with the available experimental observations. The model can quantify the behavior of multicellular bacterial colonies on biologically relevant temporal and spatial scales and can be easily adjusted to include the geometry and pili characteristics of various bacterial species. Ultimately, the combination of the microbiological experimental approach with the in silico model of bacterial colonies might provide new qualitative and quantitative insights on the development of bacterial infections and thus pave the way to new antimicrobial treatments.

  19. Interplay between daily rhythmic serum-mediated bacterial killing activity and immune defence factors in rainbow trout (Oncorhynchus mykiss)

    DEFF Research Database (Denmark)

    Lazado, Carlo Cabacang; Gesto, Manuel; Madsen, Lone

    2018-01-01

    manifested variations during the LD cycle, where anti-protease (ANTI) and myeloperoxidase (MPO) activities exhibited significant daily oscillation. However, there were no remarkable differences in the daily changes of serum factors amongst emergence fractions. Acrophase analysis revealed that the peaks...

  20. Psoralen-mediated virus photoinactivation in platelet concentrates: enhanced specificity of virus kill in the absence of shorter UVA wavelengths

    International Nuclear Information System (INIS)

    Margolis-Nunno, Henrietta; Robinson, Richard; Horowitz, Bernard; Ben-Hur, Ehud; Geacintov, N.E.

    1995-01-01

    Treatments with psoralens and long-wavelength ultraviolet radiation (UVA, 320-400 nm; PUVA) have shown efficacy for virus sterilization of platelet concentrates (PC). We have employed the psoralen derivative 4'-aminomethyl-4,5',8-trimethylpsoralen (AMT), and have found that platelet integrity is best preserved when rutin, a flavonoid that quenches multiple reactive oxygen species, is present during AMT/UVA treatment of PC. In this report, we examine the effects of different UVA spectra under our standard PC treatment conditions (i.e. 50 μg/mL AMT, 0.35 mM rutin and 38 J/cm 2 UVA). Added vesicular stomatitis virus (VSV; ≥ 5.5 log 10 ) was completely inactivated with the simultaneous maintenance of the platelet aggregation response (> 90% of control) when a UVA light source with transmission mainly between 360 and 370 nm (narrow UVA1) was used. In contrast, with a broad-band UVA (320-400 nm; broad UVA) light source, the aggregation response was greatly compromised (< 50% of control) with only a minor increase in the rate of VSV kill. With this lamp, platelet function could be improved to about 75% of the control by adding a long-pass filter, which reduced the transmission of shorter (≤ 345 nm) UVA wavelengths (340-400 nm; UVA1). At equivalent levels of virus kill, aggregation function was always best preserved when narrow UVA1 was used for PUVA treatment. Even in the absence of AMT, and with or without rutin present, narrow UVA1 irradiation was better tolerated by platelets than was broad UVA. (author)

  1. Intracellular Bacterial Infections: A Challenge for Developing Cellular Mediated Immunity Vaccines for Farmed Fish

    Directory of Open Access Journals (Sweden)

    Hetron Mweemba Munang’andu

    2018-04-01

    Full Text Available Aquaculture is one of the most rapidly expanding farming systems in the world. Its rapid expansion has brought with it several pathogens infecting different fish species. As a result, there has been a corresponding expansion in vaccine development to cope with the increasing number of infectious diseases in aquaculture. The success of vaccine development for bacterial diseases in aquaculture is largely attributed to empirical vaccine designs based on inactivation of whole cell (WCI bacteria vaccines. However, an upcoming challenge in vaccine design is the increase of intracellular bacterial pathogens that are not responsive to WCI vaccines. Intracellular bacterial vaccines evoke cellular mediated immune (CMI responses that “kill” and eliminate infected cells, unlike WCI vaccines that induce humoral immune responses whose protective mechanism is neutralization of extracellular replicating pathogens by antibodies. In this synopsis, I provide an overview of the intracellular bacterial pathogens infecting different fish species in aquaculture, outlining their mechanisms of invasion, replication, and survival intracellularly based on existing data. I also bring into perspective the current state of CMI understanding in fish together with its potential application in vaccine development. Further, I highlight the immunological pitfalls that have derailed our ability to produce protective vaccines against intracellular pathogens for finfish. Overall, the synopsis put forth herein advocates for a shift in vaccine design to include CMI-based vaccines against intracellular pathogens currently adversely affecting the aquaculture industry.

  2. The bystander cell-killing effect mediated by nitric oxide in normal human fibroblasts varies with irradiation dose but not with radiation quality.

    Science.gov (United States)

    Yokota, Yuichiro; Funayama, Tomoo; Mutou-Yoshihara, Yasuko; Ikeda, Hiroko; Kobayashi, Yasuhiko

    2015-05-01

    To investigate the dependence of the bystander cell-killing effect on radiation dose and quality, and to elucidate related molecular mechanisms. Normal human fibroblast WI-38 cells were irradiated with 0.125 - 2 Gy of γ-rays or carbon ions and were co-cultured with non-irradiated cells. Survival rates of bystander cells were investigated using the colony formation assays, and nitrite concentrations in the medium were measured using the modified Saltzman method. Survival rates of bystander cells decreased with doses of γ-rays and carbon ions of ≤ 0.5 Gy. Treatment of the specific nitric oxide (NO) radical scavenger prevented reductions in survival rates of bystander cells. Moreover, nitrite concentrations increased with doses of less than 0.25 Gy (γ-rays) and 1 Gy (carbon ions). The dose responses of increased nitrite concentrations as well as survival reduction were similar between γ-rays and carbon ions. In addition, negative relationships were observed between survival rates and nitrite concentrations. The bystander cell-killing effect mediated by NO radicals in normal human fibroblasts depends on irradiation doses of up to 0.5 Gy, but not on radiation quality. NO radical production appears to be an important determinant of γ-ray- and carbon-ion-induced bystander effects.

  3. Killing Range

    Science.gov (United States)

    Asal, Victor; Rethemeyer, R. Karl; Horgan, John

    2015-01-01

    This paper presents an analysis of the Provisional Irish Republican Army's (PIRA) brigade level behavior during the Northern Ireland Conflict (1970-1998) and identifies the organizational factors that impact a brigade's lethality as measured via terrorist attacks. Key independent variables include levels of technical expertise, cadre age, counter-terrorism policies experienced, brigade size, and IED components and delivery methods. We find that technical expertise within a brigade allows for careful IED usage, which significantly minimizes civilian casualties (a specific strategic goal of PIRA) while increasing the ability to kill more high value targets with IEDs. Lethal counter-terrorism events also significantly affect a brigade's likelihood of killing both civilians and high-value targets but in different ways. Killing PIRA members significantly decreases IED fatalities but also significantly decreases the possibility of zero civilian IED-related deaths in a given year. Killing innocent Catholics in a Brigade's county significantly increases total and civilian IED fatalities. Together the results suggest the necessity to analyze dynamic situational variables that impact terrorist group behavior at the sub-unit level. PMID:25838603

  4. The serotonin receptor mediates changes in autonomic neurotransmission and gastrointestinal transit induced by heat-killed Lactobacillus brevis SBC8803.

    Science.gov (United States)

    Horii, Y; Nakakita, Y; Misonou, Y; Nakamura, T; Nagai, K

    2015-01-01

    Lactobacilli exhibit several health benefits in mammals, including humans. Our previous reports established that heat-killed Lactobacillus brevis SBC8803 (SBC8803) increased both efferent gastric vagal nerve activity and afferent intestinal vagal nerve activity in rats. We speculated that this strain could be useful for the treatment of gastrointestinal (GI) disorders. In this study, we examined the effects of SBC8803 on peristalsis and the activity of the efferent celiac vagal nerve innervating the intestine in rats. First, we examined the effects of intraduodenal (ID) administration of SBC8803 on efferent celiac vagal nerve activity (efferent CVNA) in urethane-anesthetised rats using electrophysiological studies. The effects of intravenous injection of the serotonin 5-HT3 receptor antagonist granisetron on changes in efferent CVNA due to ID administration of SBC8803 were also investigated. Finally, the effects of oral gavage of SBC8803 on GI transit were analysed using the charcoal propulsion method in conscious rats treated with or without granisetron. ID administration of SBC8803 increased efferent CVNA. Pretreatment with granisetron eliminated SBC8803-dependent changes in efferent CVNA. Furthermore, oral gavage of SBC8803 significantly accelerated GI transit, while pretreatment with granisetron inhibited GI transit. Our findings suggested that SBC8803 increased efferent CVNA and GI transit of charcoal meal via 5-HT3 receptors. Moreover, SBC8803 enhanced the activity of efferent vagal nerve innervating the intestine and promoted peristalsis via 5-HT3 receptors.

  5. Killing tensors and conformal Killing tensors from conformal Killing vectors

    International Nuclear Information System (INIS)

    Rani, Raffaele; Edgar, S Brian; Barnes, Alan

    2003-01-01

    Koutras has proposed some methods to construct reducible proper conformal Killing tensors and Killing tensors (which are, in general, irreducible) when a pair of orthogonal conformal Killing vectors exist in a given space. We give the completely general result demonstrating that this severe restriction of orthogonality is unnecessary. In addition, we correct and extend some results concerning Killing tensors constructed from a single conformal Killing vector. A number of examples demonstrate that it is possible to construct a much larger class of reducible proper conformal Killing tensors and Killing tensors than permitted by the Koutras algorithms. In particular, by showing that all conformal Killing tensors are reducible in conformally flat spaces, we have a method of constructing all conformal Killing tensors, and hence all the Killing tensors (which will in general be irreducible) of conformally flat spaces using their conformal Killing vectors

  6. Bacteriophage Mediated Killing of Staphylococcus aureus In Vitro on Orthopaedic K Wires in Presence of Linezolid Prevents Implant Colonization

    Science.gov (United States)

    Kaur, Sandeep; Harjai, Kusum; Chhibber, Sanjay

    2014-01-01

    Background Infections of bone and joint tissues following arthroplasty surgeries remain a major challenge in orthopaedic settings. Methicillin resistant Staphylococcus aureus (MRSA) is recognised as an established pathogen in such infections. Combination therapy using linezolid and bacteriophage impregnated in biopolymer was investigated in the present study as an alternative strategy to prevent MRSA colonisation on the orthopaedic implant surface. Methodology Coating of stainless steel orthopaedic grade K-wires was achieved using hydroxypropylmethlycellulose (HPMC) mixed with phage alone, linezolid alone and phage and linezolid together. The potential of these agents to inhibit adhesion of S.aureus (MRSA) 43300 on K-wires was assessed. Coated and naked wires were analysed by scanning electron microscopy (SEM) and fluorescent staining. Result Significant reduction in bacterial adhesion was achieved on phage/linezolid wires in comparison to naked as well as HPMC coated wires. However, maximum reduction in bacterial adherence (∼4 log cycles) was observed on the wires coated with phage-linezolid combination. The frequency of emergence of resistant mutants was also negligible in presence of both the agents. Conclusion This study provides evidence to confirm that local delivery system employing linezolid (a potent protein synthesis inhibitor) along with a broad spectrum lytic bacteriophage (capable of self-multiplication) is able to attack the adhered as well as surrounding bacteria present near the implant site. Unlike other antibiotic based therapies, this combination has the potential to significantly restrict the emergence of resistant mutants, thus paving the way for effective treatment of MRSA associated infection of medical implants. PMID:24594764

  7. Biomechanical Loading Modulates Proinflammatory and Bone Resorptive Mediators in Bacterial-Stimulated PDL Cells

    Directory of Open Access Journals (Sweden)

    Andressa Vilas Boas Nogueira

    2014-01-01

    Full Text Available The present study aimed to evaluate in vitro whether biomechanical loading modulates proinflammatory and bone remodeling mediators production by periodontal ligament (PDL cells in the presence of bacterial challenge. Cells were seeded on BioFlex culture plates and exposed to Fusobacterium nucleatum ATCC 25586 and/or cyclic tensile strain (CTS of low (CTSL and high (CTSH magnitudes for 1 and 3 days. Synthesis of cyclooxygenase-2 (COX2 and prostaglandin E2 (PGE2 was evaluated by ELISA. Gene expression and protein secretion of osteoprotegerin (OPG and receptor activator of nuclear factor kappa-B ligand (RANKL were evaluated by quantitative RT-PCR and ELISA, respectively. F. nucleatum increased the production of COX2 and PGE2, which was further increased by CTS. F. nucleatum-induced increase of PGE2 synthesis was significantly (P<0.05 increased when CTSH was applied at 1 and 3 days. In addition, CTSH inhibited the F. nucleatum-induced upregulation of OPG at 1 and 3 days, thereby increasing the RANKL/OPG ratio. OPG and RANKL mRNA results correlated with the protein results. In summary, our findings provide original evidence that CTS can enhance bacterial-induced syntheses of molecules associated with inflammation and bone resorption by PDL cells. Therefore, biomechanical, such as orthodontic or occlusal, loading may enhance the bacterial-induced inflammation and destruction in periodontitis.

  8. Macrophage and NK-mediated killing of precursor-B acute lymphoblastic leukemia cells targeted with a-fucosylated anti-CD19 humanized antibodies.

    Science.gov (United States)

    Matlawska-Wasowska, K; Ward, E; Stevens, S; Wang, Y; Herbst, R; Winter, S S; Wilson, B S

    2013-06-01

    This work reports the tumoricidal effects of a novel investigational humanized anti-CD19 monoclonal antibody (Medi-551). An a-fucosylated antibody with increased affinity for human FcγRIIIA, Medi-551 is shown to mediate both antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP). Medi-551/CD19 complexes internalize slowly (>5 h) and thus remain accessible to effector cells for prolonged periods. We evaluated in vitro ADCC and ADCP activities of primary human natural killer (NK) cells and macrophages against precursor-B (pre-B) acute lymphoblastic leukemia (ALL) cell lines and pediatric patient blasts. Fluorescent imaging studies document immunological synapses formed between anti-CD19-bound target leukemia cells and effector cells and capture the kinetics of both NK-mediated killing and macrophage phagocytosis. Genetic polymorphisms in FcγRIIIA-158F/V modulate in vitro activities of effector cells, with FcγRIIIA-158V homozygotes or heterozygotes showing the strongest activity. Medi-551 treatment of severe combined immunodeficiency (SCID) mice engrafted with human pre-B cells led to prolonged animal survival and markedly reduced disease burden in blood, liver and bone marrow. These data show that anti-CD19 antibodies effectively recruit immune cells to pre-B ALL cells and support a move forward to early phase trials in this disease.

  9. Progress in Understanding Algal Bloom-Mediated Fish Kills: The Role of Superoxide Radicals, Phycotoxins and Fatty Acids.

    Directory of Open Access Journals (Sweden)

    Juan José Dorantes-Aranda

    Full Text Available Quantification of the role of reactive oxygen species, phycotoxins and fatty acids in fish toxicity by harmful marine microalgae remains inconclusive. An in vitro fish gill (from rainbow trout Oncorhynchus mykiss assay was used to simultaneously assess the effect in superoxide dismutase, catalase and lactate dehydrogenase enzymatic activities caused by seven species of ichthyotoxic microalgae (Chattonella marina, Fibrocapsa japonica, Heterosigma akashiwo, Karenia mikimotoi, Alexandrium catenella, Karlodinium veneficum, Prymnesium parvum. Quantification of superoxide production by these algae was also performed. The effect of purified phycotoxins and crude extracts was compared, and the effect of fatty acids is discussed. The raphidophyte Chattonella was the most ichthyotoxic (gill cell viability down to 35% and also the major producer of superoxide radicals (14 pmol cell-1 hr-1 especially after cell lysis. The raphidophyte Heterosigma and dinoflagellate Alexandrium were the least toxic and had low superoxide production, except when A. catenella was lysed (5.6 pmol cell-1 hr-1. Catalase showed no changes in activity in all the treatments. Superoxide dismutase (SOD and lactate dehydrogenase exhibited significant activity increases of ≤23% and 51.2% TCC (total cellular content, respectively, after exposure to C. marina, but SOD showed insignificant changes with remaining algal species. A strong relationship between gill cell viability and superoxide production or superoxide dismutase was not observed. Purified brevetoxins PbTx-2 and -3 (from Karenia brevis, LC50 of 22.1 versus 35.2 μg mL-1 and karlotoxin KmTx-2 (from Karlodinium; LC50 = 380 ng mL-1 could almost entirely account for the fish killing activity by those two dinoflagellates. However, the paralytic shellfish toxins (PST GTX1&4, C1&C2, and STX did not account for Alexandrium ichthyotoxicity. Only aqueous extracts of Alexandrium were cytotoxic (≤65% decrease of viability, whereas

  10. Phytoplankton-bacterial interactions mediate micronutrient colimitation at the coastal Antarctic sea ice edge.

    Science.gov (United States)

    Bertrand, Erin M; McCrow, John P; Moustafa, Ahmed; Zheng, Hong; McQuaid, Jeffrey B; Delmont, Tom O; Post, Anton F; Sipler, Rachel E; Spackeen, Jenna L; Xu, Kai; Bronk, Deborah A; Hutchins, David A; Allen, Andrew E

    2015-08-11

    Southern Ocean primary productivity plays a key role in global ocean biogeochemistry and climate. At the Southern Ocean sea ice edge in coastal McMurdo Sound, we observed simultaneous cobalamin and iron limitation of surface water phytoplankton communities in late Austral summer. Cobalamin is produced only by bacteria and archaea, suggesting phytoplankton-bacterial interactions must play a role in this limitation. To characterize these interactions and investigate the molecular basis of multiple nutrient limitation, we examined transitions in global gene expression over short time scales, induced by shifts in micronutrient availability. Diatoms, the dominant primary producers, exhibited transcriptional patterns indicative of co-occurring iron and cobalamin deprivation. The major contributor to cobalamin biosynthesis gene expression was a gammaproteobacterial population, Oceanospirillaceae ASP10-02a. This group also contributed significantly to metagenomic cobalamin biosynthesis gene abundance throughout Southern Ocean surface waters. Oceanospirillaceae ASP10-02a displayed elevated expression of organic matter acquisition and cell surface attachment-related genes, consistent with a mutualistic relationship in which they are dependent on phytoplankton growth to fuel cobalamin production. Separate bacterial groups, including Methylophaga, appeared to rely on phytoplankton for carbon and energy sources, but displayed gene expression patterns consistent with iron and cobalamin deprivation. This suggests they also compete with phytoplankton and are important cobalamin consumers. Expression patterns of siderophore- related genes offer evidence for bacterial influences on iron availability as well. The nature and degree of this episodic colimitation appear to be mediated by a series of phytoplankton-bacterial interactions in both positive and negative feedback loops.

  11. Bacterial magnetic particles improve testes-mediated transgene efficiency in mice.

    Science.gov (United States)

    Wang, Chao; Sun, Guanghong; Wang, Ye; Kong, Nana; Chi, Yafei; Yang, Leilei; Xin, Qiliang; Teng, Zhen; Wang, Xu; Wen, Yujun; Li, Ying; Xia, Guoliang

    2017-11-01

    Nano-scaled materials have been proved to be ideal DNA carriers for transgene. Bacterial magnetic particles (BMPs) help to reduce the toxicity of polyethylenimine (PEI), an efficient gene-transferring agent, and assist tissue transgene ex vivo. Here, the effectiveness of the BMP-PEI complex-conjugated foreign DNAs (BPDs) in promoting testes-mediated gene transfer (TMGT) in mouse was compared with that of liposome-conjugated foreign DNAs. The results proved that through testes injection, the clusters of BPDs successfully reached the cytoplasm and the nuclear of spermatogenesis cell, and expressed in testes of transgene founder mice. Additionally, the ratio of founder mice obtained from BPDs (88%) is about 3 times higher than the control (25%) (p mice from BPD group were significantly improved, as compared with the control (p mice within the first filial was significantly higher in BPDs compared with the control (73.8% versus 11.6%, p mice in vivo.

  12. Tumor Cells Surviving Exposure to Proton or Photon Radiation Share a Common Immunogenic Modulation Signature, Rendering Them More Sensitive to T Cell–Mediated Killing

    Energy Technology Data Exchange (ETDEWEB)

    Gameiro, Sofia R.; Malamas, Anthony S. [Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (United States); Bernstein, Michael B. [Division of Radiation Oncology, M. D. Anderson Cancer Center, Houston, Texas (United States); Tsang, Kwong Y. [Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (United States); Vassantachart, April; Sahoo, Narayan; Tailor, Ramesh; Pidikiti, Rajesh [Division of Radiation Oncology, M. D. Anderson Cancer Center, Houston, Texas (United States); Guha, Chandan P. [Department of Radiation Oncology, Montefiore Medical Center, Bronx, New York (United States); Hahn, Stephen M.; Krishnan, Sunil [Division of Radiation Oncology, M. D. Anderson Cancer Center, Houston, Texas (United States); Hodge, James W., E-mail: jh241d@nih.gov [Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (United States)

    2016-05-01

    Purpose: To provide the foundation for combining immunotherapy to induce tumor antigen–specific T cells with proton radiation therapy to exploit the activity of those T cells. Methods and Materials: Using cell lines of tumors frequently treated with proton radiation, such as prostate, breast, lung, and chordoma, we examined the effect of proton radiation on the viability and induction of immunogenic modulation in tumor cells by flow cytometric and immunofluorescent analysis of surface phenotype and the functional immune consequences. Results: These studies show for the first time that (1) proton and photon radiation induced comparable up-regulation of surface molecules involved in immune recognition (histocompatibility leukocyte antigen, intercellular adhesion molecule 1, and the tumor-associated antigens carcinoembryonic antigen and mucin 1); (2) proton radiation mediated calreticulin cell-surface expression, increasing sensitivity to cytotoxic T-lymphocyte killing of tumor cells; and (3) cancer stem cells, which are resistant to the direct cytolytic activity of proton radiation, nonetheless up-regulated calreticulin after radiation in a manner similar to non-cancer stem cells. Conclusions: These findings offer a rationale for the use of proton radiation in combination with immunotherapy, including for patients who have failed radiation therapy alone or have limited treatment options.

  13. Inhibition of Hsp90 acts synergistically with topoisomerase II poisons to increase the apoptotic killing of cells due to an increase in topoisomerase II mediated DNA damage.

    Science.gov (United States)

    Barker, Catherine R; McNamara, Anne V; Rackstraw, Stephen A; Nelson, David E; White, Mike R; Watson, Alastair J M; Jenkins, John R

    2006-01-01

    Topoisomerase II plays a crucial role during chromosome condensation and segregation in mitosis and meiosis and is a highly attractive target for chemotherapeutic agents. We have identified previously topoisomerase II and heat shock protein 90 (Hsp90) as part of a complex. In this paper we demonstrate that drug combinations targeting these two enzymes cause a synergistic increase in apoptosis. The objective of our study was to identify the mode of cell killing and the mechanism behind the increase in topoisomerase II mediated DNA damage. Importantly we demonstrate that Hsp90 inhibition results in an increased topoiosmerase II activity but not degradation of topoisomerase II and it is this, in the presence of a topoisomerase II poison that causes the increase in cell death. Our results suggest a novel mechanism of action where the inhibition of Hsp90 disrupts the Hsp90-topoisomerase II interaction leading to an increase in and activation of unbound topoisomerase II, which, in the presence of a topoisomerase II poison leads to the formation of an increased number of cleavable complexes ultimately resulting in rise in DNA damage and a subsequent increase cell death.

  14. Bacterially-mediated weathering of crystalline and amorphous Cu-slags

    International Nuclear Information System (INIS)

    Potysz, Anna; Grybos, Malgorzata; Kierczak, Jakub; Guibaud, Gilles; Lens, Piet N.L.; Hullebusch, Eric D. van

    2016-01-01

    Two types of Cu-slags (CS: crystalline massive slag and GS: granulated amorphous slag) exhibiting a different chemical and mineral phase composition were compared with respect to their susceptibility to bacterial weathering using Pseudomonas aeruginosa (n° CIP 105094). Abiotic conditions e.g. sterile growth medium and ultrapure water were used for comparison. The experiments were extended up to 112 days with a systematic liquid phase renewal every 14 days. The results revealed significant release of elements in the bacterially mediated weathering experiments. Concentrations of elements (Si, Fe, Cu, Zn and Pb) in the biotic solutions were increased at least by 20% up to 99% compared to abiotic ones. From 3 to 77% of the leached elements were associated to the fraction >0.22 μm. Scanning electron microscope observations demonstrated greater weathering of mineral phases in biotic experiments than in abiotic ones which is in accordance with the solution chemistry exhibiting higher concentrations of elements leached in biotic set-ups. In the case of CS, glass and sulfides weathering was yet observed in abiotic experiment, whereas partial dissolution of fayalite (Fe_2SiO_4) was solely affected by the presence of bacteria. GS having a higher bulk content of metallic elements was found to be more stable than sulfide-bearing CS, while its (GS) glass matrix was found to weather easier under biotic conditions. - Highlights: • Pseudomonas aeruginosa significantly enhance the release of elements from Cu-slags. • Bacteria and/or associated metabolites assist as biosorbent (e.g. Zn). • Amorphous slag is more susceptible to bio-weathering. • Metal carriers of crystalline slag are prone to dissolution. • Fe-bearing fayalite is altered solely due to the presence of bacteria.

  15. Plant cyclopeptide RA-V kills human breast cancer cells by inducing mitochondria-mediated apoptosis through blocking PDK1–AKT interaction

    International Nuclear Information System (INIS)

    Fang, Xian-Ying; Chen, Wei; Fan, Jun-Ting; Song, Ran; Wang, Lu; Gu, Yan-Hong; Zeng, Guang-Zhi; Shen, Yan; Wu, Xue-Feng; Tan, Ning-Hua; Xu, Qiang; Sun, Yang

    2013-01-01

    In the present paper, we examined the effects of a natural cyclopeptide RA-V on human breast cancer cells and the underlying mechanisms. RA-V significantly inhibited the growth of human breast cancer MCF-7, MDA-MB-231 cells and murine breast cancer 4T1 cells. In addition, RA-V triggered mitochondrial apoptotic pathway which was indicated by the loss of mitochondrial membrane potential, the release of cytochrome c, and the activation of caspase cascade. Further study showed that RA-V dramatically inhibited phosphorylation of AKT and 3-phosphoinositide dependent protein kinase 1 (PDK1) in MCF-7 cells. Moreover, RA-V disrupted the interaction between PDK1 and AKT in MCF-7 cells. Furthermore, RA-V-induced apoptosis could be enhanced by phosphatidylinositol 3-kinase inhibitor or attenuated by over-expression of AKT in all the three kinds of breast cancer cells. Taken together, this study shows that RA-V, which can induce mitochondria-mediated apoptosis, exerts strong anti-tumor activity against human breast cancer. The underlying anti-cancer mechanism of RA-V is related to the blockage of the interaction between PDK1 and AKT. - Highlights: ► Plant cyclopeptide RA-V kills human breast cancer cells. ► RA-V triggered mitochondrial apoptotic pathway in human breast cancer cells. ► RA-V inhibited phosphorylation of AKT and PDK1 in breast cancer MCF-7 cells. ► Its mechanism is related to the blockage of the interaction between PDK1 and AKT

  16. Plant cyclopeptide RA-V kills human breast cancer cells by inducing mitochondria-mediated apoptosis through blocking PDK1–AKT interaction

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Xian-Ying; Chen, Wei [State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Han Kou Road, Nanjing (China); Fan, Jun-Ting [State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming (China); Song, Ran; Wang, Lu [State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Han Kou Road, Nanjing (China); Gu, Yan-Hong [Department of Clinical Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing (China); Zeng, Guang-Zhi [State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming (China); Shen, Yan; Wu, Xue-Feng [State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Han Kou Road, Nanjing (China); Tan, Ning-Hua, E-mail: nhtan@mail.kib.ac.cn [State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming (China); Xu, Qiang, E-mail: molpharm@163.com [State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Han Kou Road, Nanjing (China); Sun, Yang, E-mail: yangsun@nju.edu.cn [State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Han Kou Road, Nanjing (China)

    2013-02-15

    In the present paper, we examined the effects of a natural cyclopeptide RA-V on human breast cancer cells and the underlying mechanisms. RA-V significantly inhibited the growth of human breast cancer MCF-7, MDA-MB-231 cells and murine breast cancer 4T1 cells. In addition, RA-V triggered mitochondrial apoptotic pathway which was indicated by the loss of mitochondrial membrane potential, the release of cytochrome c, and the activation of caspase cascade. Further study showed that RA-V dramatically inhibited phosphorylation of AKT and 3-phosphoinositide dependent protein kinase 1 (PDK1) in MCF-7 cells. Moreover, RA-V disrupted the interaction between PDK1 and AKT in MCF-7 cells. Furthermore, RA-V-induced apoptosis could be enhanced by phosphatidylinositol 3-kinase inhibitor or attenuated by over-expression of AKT in all the three kinds of breast cancer cells. Taken together, this study shows that RA-V, which can induce mitochondria-mediated apoptosis, exerts strong anti-tumor activity against human breast cancer. The underlying anti-cancer mechanism of RA-V is related to the blockage of the interaction between PDK1 and AKT. - Highlights: ► Plant cyclopeptide RA-V kills human breast cancer cells. ► RA-V triggered mitochondrial apoptotic pathway in human breast cancer cells. ► RA-V inhibited phosphorylation of AKT and PDK1 in breast cancer MCF-7 cells. ► Its mechanism is related to the blockage of the interaction between PDK1 and AKT.

  17. Bacterially mediated mineralisation processes lead to biodeterioration of artworks in Maltese catacombs

    International Nuclear Information System (INIS)

    Zammit, Gabrielle; Sanchez-Moral, Sergio; Albertano, Patrizia

    2011-01-01

    Mineral structures formed by bacterial and microalgal biofilms growing on the archaeological surface in Maltese hypogea were studied using Energy Dispersive X-Ray Spectroscopy (EDS) coupled to Environmental Scanning Electron Microscopy (ESEM), X-ray micro-diffraction (XRD) and X-ray fluorescence (XRF). These techniques have shown that mineral structures having different morphologies and chemical composition were associated with the microorganisms in the subaerophytic biofilm. Salt efflorescences and mineral deposits on the archaeological surface were often formed from gypsum (CaSO 4 · 2H 2 O), halite (NaCl) and calcite (CaCO 3 ). Biogenic carbonates produced by microbial activities were a common occurrence. These assumed different forms, such as the production of mineral coats around cyanobacterial sheaths and the occurrence of calcite fibres with different morphologies on the surface of the biofilms. Moreover, vaterite (CaCO 3 ) spherulites which appeared hollow in cross-section were observed. The presence of struvite was recorded from one catacomb site. These investigations have facilitated the study of the neoformation of metastable minerals by microbially mediated processes, which potentially contribute to a better understanding of the biodeterioration of artworks in Maltese palaeo-Christian catacombs. - Research highlights: → Mineral structures formed by subaerial biofilms growing in hypogea were examined. → Efflorescences and mineral deposits were often formed from gypsum, halite, and calcite. → Biogenic carbonates assumed different forms e.g. vaterite spherulite, calcite fibres. → The formation of rare minerals e.g. struvite was mediated by bacteria. → Understanding biomineralisation processes facilitates the conservation of artworks.

  18. A bacterial cyclic dinucleotide activates the cytosolic surveillance pathway and mediates innate resistance to tuberculosis.

    Science.gov (United States)

    Dey, Bappaditya; Dey, Ruchi Jain; Cheung, Laurene S; Pokkali, Supriya; Guo, Haidan; Lee, Jong-Hee; Bishai, William R

    2015-04-01

    Detection of cyclic-di-adenosine monophosphate (c-di-AMP), a bacterial second messenger, by the host cytoplasmic surveillance pathway (CSP) is known to elicit type I interferon (IFN) responses, which are crucial to antimicrobial defense. However, the mechanisms and role of c-di-AMP signaling in Mycobacterium tuberculosis virulence remain unclear. Here we show that resistance to tuberculosis requires CSP-mediated detection of c-di-AMP produced by M. tuberculosis and that levels of c-di-AMP modulate the fate of infection. We found that a di-adenylate cyclase (disA or dacA)-overexpressing M. tuberculosis strain that secretes excess c-di-AMP activates the interferon regulatory factor (IRF) pathway with enhanced levels of IFN-β, elicits increased macrophage autophagy, and exhibits substantial virulence attenuation in mice. We show that c-di-AMP-mediated IFN-β induction during M. tuberculosis infection requires stimulator of interferon genes (STING)-signaling. We observed that c-di-AMP induction of IFN-β is independent of the cytosolic nucleic acid receptor cyclic GMP-AMP (cGAMP) synthase (cGAS), but cGAS nevertheless contributes substantially to the overall IFN-β response to M. tuberculosis infection. In sum, our results reveal c-di-AMP to be a key mycobacterial pathogen-associated molecular pattern (PAMP) driving host type I IFN responses and autophagy. These findings suggest that modulating the levels of this small molecule may lead to novel immunotherapeutic strategies against tuberculosis.

  19. Bacterially mediated mineralisation processes lead to biodeterioration of artworks in Maltese catacombs

    Energy Technology Data Exchange (ETDEWEB)

    Zammit, Gabrielle, E-mail: gabrielle.zammit@gmail.com [Dept. of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta (Malta); Sanchez-Moral, Sergio [Dept. de Geologia, Museo Nacional de Ciencias Naturales, CSIC, Madrid (Spain); Albertano, Patrizia [Dept. of Biology, Faculty of Science, University of Rome ' Tor Vergata' , Rome (Italy)

    2011-06-15

    Mineral structures formed by bacterial and microalgal biofilms growing on the archaeological surface in Maltese hypogea were studied using Energy Dispersive X-Ray Spectroscopy (EDS) coupled to Environmental Scanning Electron Microscopy (ESEM), X-ray micro-diffraction (XRD) and X-ray fluorescence (XRF). These techniques have shown that mineral structures having different morphologies and chemical composition were associated with the microorganisms in the subaerophytic biofilm. Salt efflorescences and mineral deposits on the archaeological surface were often formed from gypsum (CaSO{sub 4}{center_dot} 2H{sub 2}O), halite (NaCl) and calcite (CaCO{sub 3}). Biogenic carbonates produced by microbial activities were a common occurrence. These assumed different forms, such as the production of mineral coats around cyanobacterial sheaths and the occurrence of calcite fibres with different morphologies on the surface of the biofilms. Moreover, vaterite (CaCO{sub 3}) spherulites which appeared hollow in cross-section were observed. The presence of struvite was recorded from one catacomb site. These investigations have facilitated the study of the neoformation of metastable minerals by microbially mediated processes, which potentially contribute to a better understanding of the biodeterioration of artworks in Maltese palaeo-Christian catacombs. - Research highlights: {yields} Mineral structures formed by subaerial biofilms growing in hypogea were examined. {yields} Efflorescences and mineral deposits were often formed from gypsum, halite, and calcite. {yields} Biogenic carbonates assumed different forms e.g. vaterite spherulite, calcite fibres. {yields} The formation of rare minerals e.g. struvite was mediated by bacteria. {yields} Understanding biomineralisation processes facilitates the conservation of artworks.

  20. Loop-mediated isothermal amplification assays for screening of bacterial integrons

    Directory of Open Access Journals (Sweden)

    Guangchao Yu

    2014-01-01

    Full Text Available BACKGROUND: The occurrence and prevalence of integrons in clinical microorganisms and their role played in antimicrobial resistance have been well studied recently. As screening and detection of integrons are concerned, current diagnostic methodologies are restricted by significant drawbacks and novel methods are required for integrons detection. RESULTS: In this study, three loop-mediated isothermal amplification (LAMP assays targeting on class 1, 2 and 3 integrons were implemented and evaluated. Optimization of these detection assays were performed, including studing on the reaction temperature, volume, time, sensitivity and specificity (both primers and targets. Application of the established LAMP assays were further verified on a total of 1082 isolates (previously identified to be 397 integron-positive and 685 integron-negative strains. According to the results, the indispensability of each primer had been confirmed and the optimal reaction temperature, volume and time were found to be 65°C, 45 min and 25 µL, respectively. As application was concerned, 361, 28 and 8 isolates carrying intI1, intI2 and intI3 yielded positive amplicons, respectively. Other 685 integron-negative bacteria were negative for the integron-screening LAMP assays, totaling the detection rate and specificity to be 100%. CONCLUSIONS: The intI1-, intI2- and intI3-LAMP assays established in this study were demonstrated to be the valid and rapid detection methodologies for the screening of bacterial integrons.

  1. Murine Colitis is Mediated by Vimentin

    OpenAIRE

    Mor-Vaknin, Nirit; Legendre, Maureen; Yu, Yue; Serezani, Carlos H. C.; Garg, Sanjay K.; Jatzek, Anna; Swanson, Michael D.; Gonzalez-Hernandez, Marta J.; Teitz-Tennenbaum, Seagal; Punturieri, Antonello; Engleberg, N. Cary; Banerjee, Ruma; Peters-Golden, Marc; Kao, John Y.; Markovitz, David M.

    2013-01-01

    Vimentin, an abundant intermediate filament protein, presumably has an important role in stabilizing intracellular architecture, but its function is otherwise poorly understood. In a vimentin knockout (Vim KO) mouse model, we note that Vim KO mice challenged with intraperitoneal Escherichia coli control bacterial infection better than do wild-type (WT) mice. In vitro, Vim KO phagocytes show significantly increased capacity to mediate bacterial killing by abundant production of reactive oxygen...

  2. Pressure to kill or pressure to boost: a review on the various effects and applications of hydrostatic pressure in bacterial biotechnology.

    Science.gov (United States)

    Follonier, Stéphanie; Panke, Sven; Zinn, Manfred

    2012-03-01

    Much knowledge has been gained for the last 30 years about the effects of pressure on bacteria, and various pressure-based technologies have been designed. The development of modern molecular biology techniques (e.g., DNA microarrays) as well as the technological advances realized in the manufacturing of robust sampling and high-pressure devices has allowed these advances. Not only the direct effects on cell components (membranes, proteins, and nucleic acids) have been unraveled, but also the cellular response to pressure has been investigated by means of transcriptome and proteome analyses. Initially, research was performed by marine biologists who studied the microorganisms living in the deep sea at pressures of 1,000 bar. In parallel, food technologists developed pressure-based methods for inactivating microorganisms without altering the food properties as much as with temperature treatment. The preservation of specific product properties is also the rationale for pressure-based methods for the disinfection of biomaterials and for vaccine production. Therefore, attention was first focused on the “killing” potential of high pressure. On the other hand, there has been a growing interest in using elevated pressures (up to ~10 bar) for enhancing the productivity of bioprocesses. In this case, no killing effect was sought, but pressure was applied to “boost” the process by enhancing the oxygen transfer to the cell culture. This paper gives an overview on the effects of pressures in the range of 1 bar to 10 kbar on bacteria and presents the major and most recent achievements realized in the development of pressure-based biotechnological applications.

  3. Chemical mediation of bacterial surface colonisation by secondary metabolites from the red alga Delisea pulchra

    DEFF Research Database (Denmark)

    Maximilien, Ria; de Nys, Rocky; Holmström, Carola

    1998-01-01

    -occurring algal species, all of which lack furanones. There was also a strong inverse correlation between bacterial abundance and furanone content (previously determined) for different sections of the thallus of D. pulchra, consistent with inhibition of bacteria by furanones. Based on these observations we....... pulchra the most. As inhibition of growth did not provide an adequate explanation for the inverse relationship between levels of furanones and bacteria abundance on D. pulchra, we proceeded to investigate the effects of these metabolites on other bacterial characteristics relevant to colonisation...... of different bacterial isolates or phenotypes by furanones, as well as affecting overall bacterial abundance on the alga, should have strong effects on the species composition of the bacterial community on the alga's surface. The effects of furanones on specific bacterial colonisation traits are discussed...

  4. Prophage-mediated dynamics of 'Candidatus Liberibacter asiaticus' populations, the destructive bacterial pathogens of citrus huanglongbing.

    Directory of Open Access Journals (Sweden)

    Lijuan Zhou

    Full Text Available Prophages are highly dynamic components in the bacterial genome and play an important role in intraspecies variations. There are at least two prophages in the chromosomes of Candidatus Liberibacter asiaticus' (Las Floridian isolates. Las is both unculturable and the most prevalent species of Liberibacter pathogens that cause huanglongbing (HLB, a worldwide destructive disease of citrus. In this study, seven new prophage variants resulting from two hyper-variable regions were identified by screening clone libraries of infected citrus, periwinkle and psyllids. Among them, Types A and B share highly conserved sequences and localize within the two prophages, FP1 and FP2, respectively. Although Types B and C were abundant in all three libraries, Type A was much more abundant in the libraries from the Las-infected psyllids than from the Las-infected plants, and Type D was only identified in libraries from the infected host plants but not from the infected psyllids. Sequence analysis of these variants revealed that the variations may result from recombination and rearrangement events. Conventional PCR results using type-specific molecular markers indicated that A, B, C and D are the four most abundant types in Las-infected citrus and periwinkle. However, only three types, A, B and C are abundant in Las-infected psyllids. Typing results for Las-infected citrus field samples indicated that mixed populations of Las bacteria present in Floridian isolates, but only the Type D population was correlated with the blotchy mottle symptom. Extended cloning and sequencing of the Type D region revealed a third prophage/phage in the Las genome, which may derive from the recombination of FP1 and FP2. Dramatic variations in these prophage regions were also found among the global Las isolates. These results are the first to demonstrate the prophage/phage-mediated dynamics of Las populations in plant and insect hosts, and their correlation with insect transmission and

  5. Prophage-mediated dynamics of 'Candidatus Liberibacter asiaticus' populations, the destructive bacterial pathogens of citrus huanglongbing.

    Science.gov (United States)

    Zhou, Lijuan; Powell, Charles A; Li, Wenbin; Irey, Mike; Duan, Yongping

    2013-01-01

    Prophages are highly dynamic components in the bacterial genome and play an important role in intraspecies variations. There are at least two prophages in the chromosomes of Candidatus Liberibacter asiaticus' (Las) Floridian isolates. Las is both unculturable and the most prevalent species of Liberibacter pathogens that cause huanglongbing (HLB), a worldwide destructive disease of citrus. In this study, seven new prophage variants resulting from two hyper-variable regions were identified by screening clone libraries of infected citrus, periwinkle and psyllids. Among them, Types A and B share highly conserved sequences and localize within the two prophages, FP1 and FP2, respectively. Although Types B and C were abundant in all three libraries, Type A was much more abundant in the libraries from the Las-infected psyllids than from the Las-infected plants, and Type D was only identified in libraries from the infected host plants but not from the infected psyllids. Sequence analysis of these variants revealed that the variations may result from recombination and rearrangement events. Conventional PCR results using type-specific molecular markers indicated that A, B, C and D are the four most abundant types in Las-infected citrus and periwinkle. However, only three types, A, B and C are abundant in Las-infected psyllids. Typing results for Las-infected citrus field samples indicated that mixed populations of Las bacteria present in Floridian isolates, but only the Type D population was correlated with the blotchy mottle symptom. Extended cloning and sequencing of the Type D region revealed a third prophage/phage in the Las genome, which may derive from the recombination of FP1 and FP2. Dramatic variations in these prophage regions were also found among the global Las isolates. These results are the first to demonstrate the prophage/phage-mediated dynamics of Las populations in plant and insect hosts, and their correlation with insect transmission and disease development.

  6. Anti-protozoal and anti-bacterial antibiotics that inhibit protein synthesis kill cancer subtypes enriched for stem cell-like properties.

    Science.gov (United States)

    Cuyàs, Elisabet; Martin-Castillo, Begoña; Corominas-Faja, Bruna; Massaguer, Anna; Bosch-Barrera, Joaquim; Menendez, Javier A

    2015-01-01

    Key players in translational regulation such as ribosomes might represent powerful, but hitherto largely unexplored, targets to eliminate drug-refractory cancer stem cells (CSCs). A recent study by the Lisanti group has documented how puromycin, an old antibiotic derived from Streptomyces alboniger that inhibits ribosomal protein translation, can efficiently suppress CSC states in tumorspheres and monolayer cultures. We have used a closely related approach based on Biolog Phenotype Microarrays (PM), which contain tens of lyophilized antimicrobial drugs, to assess the chemosensitivity profiles of breast cancer cell lines enriched for stem cell-like properties. Antibiotics directly targeting active sites of the ribosome including emetine, puromycin and cycloheximide, inhibitors of ribosome biogenesis such as dactinomycin, ribotoxic stress agents such as daunorubicin, and indirect inhibitors of protein synthesis such as acriflavine, had the largest cytotoxic impact against claudin-low and basal-like breast cancer cells. Thus, biologically aggressive, treatment-resistant breast cancer subtypes enriched for stem cell-like properties exhibit exacerbated chemosensitivities to anti-protozoal and anti-bacterial antibiotics targeting protein synthesis. These results suggest that old/existing microbicides might be repurposed not only as new cancer therapeutics, but also might provide the tools and molecular understanding needed to develop second-generation inhibitors of ribosomal translation to eradicate CSC traits in tumor tissues.

  7. A Numbers Game: Ribosome Densities, Bacterial Growth, and Antibiotic-Mediated Stasis and Death

    Directory of Open Access Journals (Sweden)

    Bruce R. Levin

    2017-02-01

    Full Text Available We postulate that the inhibition of growth and low rates of mortality of bacteria exposed to ribosome-binding antibiotics deemed bacteriostatic can be attributed almost uniquely to these drugs reducing the number of ribosomes contributing to protein synthesis, i.e., the number of effective ribosomes. We tested this hypothesis with Escherichia coli K-12 MG1655 and constructs that had been deleted for 1 to 6 of the 7 rRNA (rrn operons. In the absence of antibiotics, constructs with fewer rrn operons have lower maximum growth rates and longer lag phases than those with more ribosomal operons. In the presence of the ribosome-binding “bacteriostatic” antibiotics tetracycline, chloramphenicol, and azithromycin, E. coli strains with 1 and 2 rrn operons are killed at a substantially higher rate than those with more rrn operons. This increase in the susceptibility of E. coli with fewer rrn operons to killing by ribosome-targeting bacteriostatic antibiotics is not reflected in their greater sensitivity to killing by the bactericidal antibiotic ciprofloxacin, which does not target ribosomes, but also to killing by gentamicin, which does. Finally, when such strains are exposed to these ribosome-targeting bacteriostatic antibiotics, the time before these bacteria start to grow again when the drugs are removed, referred to as the post-antibiotic effect (PAE, is markedly greater for constructs with fewer rrn operons than for those with more rrn operons. We interpret the results of these other experiments reported here as support for the hypothesis that the reduction in the effective number of ribosomes due to binding to these structures provides a sufficient explanation for the action of bacteriostatic antibiotics that target these structures.

  8. Inhibition of Hsp90 acts synergistically with topoisomerase II poisons to increase the apoptotic killing of cells due to an increase in topoisomerase II mediated DNA damage

    OpenAIRE

    Barker, Catherine R.; McNamara, Anne V.; Rackstraw, Stephen A.; Nelson, David E.; White, Mike R.; Watson, Alastair J. M.; Jenkins, John R.

    2006-01-01

    Topoisomerase II plays a crucial role during chromosome condensation and segregation in mitosis and meiosis and is a highly attractive target for chemotherapeutic agents. We have identified previously topoisomerase II and heat shock protein 90 (Hsp90) as part of a complex. In this paper we demonstrate that drug combinations targeting these two enzymes cause a synergistic increase in apoptosis. The objective of our study was to identify the mode of cell killing and the mechanism behind the inc...

  9. Fiber mediated receptor masking in non-infected bystander cells restricts adenovirus cell killing effect but promotes adenovirus host co-existence.

    Directory of Open Access Journals (Sweden)

    Johan Rebetz

    Full Text Available The basic concept of conditionally replicating adenoviruses (CRAD as oncolytic agents is that progenies generated from each round of infection will disperse, infect and kill new cancer cells. However, CRAD has only inhibited, but not eradicated tumor growth in xenograft tumor therapy, and CRAD therapy has had only marginal clinical benefit to cancer patients. Here, we found that CRAD propagation and cancer cell survival co-existed for long periods of time when infection was initiated at low multiplicity of infection (MOI, and cancer cell killing was inefficient and slow compared to the assumed cell killing effect upon infection at high MOI. Excessive production of fiber molecules from initial CRAD infection of only 1 to 2% cancer cells and their release prior to the viral particle itself caused a tropism-specific receptor masking in both infected and non-infected bystander cells. Consequently, the non-infected bystander cells were inefficiently bound and infected by CRAD progenies. Further, fiber overproduction with concomitant restriction of adenovirus spread was observed in xenograft cancer therapy models. Besides the CAR-binding Ad4, Ad5, and Ad37, infection with CD46-binding Ad35 and Ad11 also caused receptor masking. Fiber overproduction and its resulting receptor masking thus play a key role in limiting CRAD functionality, but potentially promote adenovirus and host cell co-existence. These findings also give important clues for understanding mechanisms underlying the natural infection course of various adenoviruses.

  10. Direct analysis by time-of-flight secondary ion mass spectrometry reveals action of bacterial laccase-mediator systems on both hardwood and softwood samples.

    Science.gov (United States)

    Goacher, Robyn E; Braham, Erick J; Michienzi, Courtney L; Flick, Robert M; Yakunin, Alexander F; Master, Emma R

    2017-12-29

    The modification and degradation of lignin play a vital role in carbon cycling as well as production of biofuels and bioproducts. The possibility of using bacterial laccases for the oxidation of lignin offers a route to utilize existing industrial protein expression techniques. However, bacterial laccases are most frequently studied on small model compounds that do not capture the complexity of lignocellulosic materials. This work studied the action of laccases from Bacillus subtilis and Salmonella typhimurium (EC 1.10.3.2) on ground wood samples from yellow birch (Betula alleghaniensis) and red spruce (Picea rubens). The ability of bacterial laccases to modify wood can be facilitated by small molecule mediators. Herein, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), gallic acid and sinapic acid mediators were tested. Direct analysis of the wood samples was achieved by time-of-flight secondary ion mass spectrometry (ToF-SIMS), a surface sensitive mass spectrometry technique that has characteristic peaks for H, G and S lignin. The action of the bacterial laccases on both wood samples was demonstrated and revealed a strong mediator influence. The ABTS mediator led to delignification, evident in an overall increase of polysaccharide peaks in the residual solid, along with equal loss of G and S-lignin peaks. The gallic acid mediator demonstrated minimal laccase activity. Meanwhile, the sinapic acid mediator altered the S/G peak ratio consistent with mediator attaching to the wood solids. The current investigation demonstrates the action of bacterial laccase-mediator systems directly on woody materials, and the potential of using ToF-SIMS to uncover the fundamental and applied role of bacterial enzymes in lignocellulose conversion. © 2017 Scandinavian Plant Physiology Society.

  11. Exposure of Bacterial Biofilms to Electrical Current Leads to Cell Death Mediated in Part by Reactive Oxygen Species.

    Science.gov (United States)

    Brinkman, Cassandra L; Schmidt-Malan, Suzannah M; Karau, Melissa J; Greenwood-Quaintance, Kerryl; Hassett, Daniel J; Mandrekar, Jayawant N; Patel, Robin

    2016-01-01

    Bacterial biofilms may form on indwelling medical devices such as prosthetic joints, heart valves and catheters, causing challenging-to-treat infections. We have previously described the 'electricidal effect', in which bacterial biofilms are decreased following exposure to direct electrical current. Herein, we sought to determine if the decreased bacterial quantities are due to detachment of biofilms or cell death and to investigate the role that reactive oxygen species (ROS) play in the observed effect. Using confocal and electron microscopy and flow cytometry, we found that direct current (DC) leads to cell death and changes in the architecture of biofilms formed by Gram-positive and Gram-negative bacteria. Reactive oxygen species (ROS) appear to play a role in DC-associated cell death, as there was an increase in ROS-production by Staphylococcus aureus and Staphylococcus epidermidis biofilms following exposure to DC. An increase in the production of ROS response enzymes catalase and superoxide dismutase (SOD) was observed for S. aureus, S. epidermidis and Pseudomonas aeruginosa biofilms following exposure to DC. Additionally, biofilms were protected from cell death when supplemented with antioxidants and oxidant scavengers, including catalase, mannitol and Tempol. Knocking out SOD (sodAB) in P. aeruginosa led to an enhanced DC effect. Microarray analysis of P. aeruginosa PAO1 showed transcriptional changes in genes related to the stress response and cell death. In conclusion, the electricidal effect results in death of bacteria in biofilms, mediated, at least in part, by production of ROS.

  12. Effect of gyrB-mediated changes in chromosome structure on killing of Escherichia coli by ultraviolet light: experiments with strains differing in deoxyribonucleic acid repair capacity

    International Nuclear Information System (INIS)

    von Wright, A.; Bridges, B.A.

    1981-01-01

    Mutations at the gyrB locus were found to decrease the degree of supercoiling of the Escherichia coli chromosome. The effect of a gyrB mutation on the repair of ultraviolet-induced deoxyribonucleic acid damage was studied by following the killing of strains of E. coli K-12 proficient and deficient in deoxyribonucleic acid repair. The effectiveness of both excision and postreplication types of deoxyribonucleic acid repair was found to be altered by this mutation, the former being apparently enhanced and the latter impaired

  13. L-arginine mediated renaturation enhances yield of human, α6 Type IV collagen non-collagenous domain from bacterial inclusion bodies.

    Science.gov (United States)

    Gunda, Venugopal; Boosani, Chandra Shekhar; Verma, Raj Kumar; Guda, Chittibabu; Sudhakar, Yakkanti Akul

    2012-10-01

    The anti-angiogenic, carboxy terminal non-collagenous domain (NC1) derived from human Collagen type IV alpha 6 chain, [α6(IV)NC1] or hexastatin, was earlier obtained using different recombinant methods of expression in bacterial systems. However, the effect of L-arginine mediated renaturation in enhancing the relative yields of this protein from bacterial inclusion bodies has not been evaluated. In the present study, direct stirring and on-column renaturation methods using L-arginine and different size exclusion chromatography matrices were applied for enhancing the solubility in purifying the recombinant α6(IV)NC1 from bacterial inclusion bodies. This methodology enabled purification of higher quantities of soluble protein from inclusion bodies, which inhibited endothelial cell proliferation, migration and tube formation. Thus, the scope for L-arginine mediated renaturation in obtaining higher yields of soluble, biologically active NC1 domain from bacterial inclusion bodies was evaluated.

  14. Enhanced killing of chordoma cells by antibody-dependent cell-mediated cytotoxicity employing the novel anti-PD-L1 antibody avelumab

    OpenAIRE

    Fujii, Rika; Friedman, Eitan R.; Richards, Jacob; Tsang, Kwong Y.; Heery, Christopher R.; Schlom, Jeffrey; Hodge, James W.

    2016-01-01

    Chordoma, a rare bone tumor derived from the notochord, has been shown to be resistant to conventional therapies. Checkpoint inhibition has shown great promise in immune-mediated therapy of diverse cancers. The anti-PD-L1 mAb avelumab is unique among checkpoint inhibitors in that it is a fully human IgG1 capable of mediating antibody-dependent cell-mediated cytotoxicity (ADCC) of PD-L1-expressing tumor cells. Here, we investigated avelumab as a potential therapy for chordoma. We examined 4 ch...

  15. Elongation factor P mediates a novel post-transcriptional regulatory pathway critical for bacterial virulence

    DEFF Research Database (Denmark)

    Zou, S Betty; Roy, Hervé; Ibba, Michael

    2012-01-01

    Bacterial pathogens detect and integrate multiple environmental signals to coordinate appropriate changes in gene expression including the selective expression of virulence factors, changes to metabolism and the activation of stress response systems. Mutations that abolish the ability of the path......Bacterial pathogens detect and integrate multiple environmental signals to coordinate appropriate changes in gene expression including the selective expression of virulence factors, changes to metabolism and the activation of stress response systems. Mutations that abolish the ability...... our laboratory and others now suggests that EF-P, previously thought to be essential, instead plays an ancillary role in translation by regulating the synthesis of a relatively limited subset of proteins. Other observations suggest that the eukaryotic homolog of EF-P, eIF5A, may illicit similar...

  16. Bacterial discrimination by means of a universal array approach mediated by LDR (ligase detection reaction

    Directory of Open Access Journals (Sweden)

    Consolandi Clarissa

    2002-09-01

    Full Text Available Abstract Background PCR amplification of bacterial 16S rRNA genes provides the most comprehensive and flexible means of sampling bacterial communities. Sequence analysis of these cloned fragments can provide a qualitative and quantitative insight of the microbial population under scrutiny although this approach is not suited to large-scale screenings. Other methods, such as denaturing gradient gel electrophoresis, heteroduplex or terminal restriction fragment analysis are rapid and therefore amenable to field-scale experiments. A very recent addition to these analytical tools is represented by microarray technology. Results Here we present our results using a Universal DNA Microarray approach as an analytical tool for bacterial discrimination. The proposed procedure is based on the properties of the DNA ligation reaction and requires the design of two probes specific for each target sequence. One oligo carries a fluorescent label and the other a unique sequence (cZipCode or complementary ZipCode which identifies a ligation product. Ligated fragments, obtained in presence of a proper template (a PCR amplified fragment of the 16s rRNA gene contain either the fluorescent label or the unique sequence and therefore are addressed to the location on the microarray where the ZipCode sequence has been spotted. Such an array is therefore "Universal" being unrelated to a specific molecular analysis. Here we present the design of probes specific for some groups of bacteria and their application to bacterial diagnostics. Conclusions The combined use of selective probes, ligation reaction and the Universal Array approach yielded an analytical procedure with a good power of discrimination among bacteria.

  17. Transition metal ions mediated tyrosine based short peptide amphiphile nanostructures inhibit bacterial growth.

    Science.gov (United States)

    Joshi, Khashti Ballabh; Singh, Ramesh; Mishra, Narendra Kumar; Kumar, Vikas; Vinayak, Vandana

    2018-05-17

    We report the design and synthesis of biocompatible small peptide based molecule for the controlled and targeted delivery of the encapsulated bioactive metal ions via transforming their internal nanostructures. Tyrosine based short peptide amphiphile (sPA) was synthesized which self-assembled into β-sheet like secondary structures. The self assembly of the designed sPA was modulated by using different bioactive transition metal ions which is confirmed by spectroscopic and microscopic techniques. These bioactive metal ions conjugated sPA hybrid structures are further used to develop antibacterial materials. It is due to the excellent antibacterial activity of zinc ions that the growth of clinically relevant bacteria such as E. Coli was inhibited in the presence of zinc-sPA conjugate. The bacterial test demonstrated that owing to high biocompatibility with bacterial cell, the designed sPA worked as metal ions delivery agent and therefore it can show great potential in locally addressing bacterial infections. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Cell shape can mediate the spatial organization of the bacterial cytoskeleton

    Science.gov (United States)

    Wang, Siyuan; Wingreen, Ned

    2013-03-01

    The bacterial cytoskeleton guides the synthesis of cell wall and thus regulates cell shape. Since spatial patterning of the bacterial cytoskeleton is critical to the proper control of cell shape, it is important to ask how the cytoskeleton spatially self-organizes in the first place. In this work, we develop a quantitative model to account for the various spatial patterns adopted by bacterial cytoskeletal proteins, especially the orientation and length of cytoskeletal filaments such as FtsZ and MreB in rod-shaped cells. We show that the combined mechanical energy of membrane bending, membrane pinning, and filament bending of a membrane-attached cytoskeletal filament can be sufficient to prescribe orientation, e.g. circumferential for FtsZ or helical for MreB, with the accuracy of orientation increasing with the length of the cytoskeletal filament. Moreover, the mechanical energy can compete with the chemical energy of cytoskeletal polymerization to regulate filament length. Notably, we predict a conformational transition with increasing polymer length from smoothly curved to end-bent polymers. Finally, the mechanical energy also results in a mutual attraction among polymers on the same membrane, which could facilitate tight polymer spacing or bundling. The predictions of the model can be verified through genetic, microscopic, and microfluidic approaches.

  19. TLR-mediated inflammatory responses to Streptococcus pneumoniae are highly dependent on surface expression of bacterial lipoproteins.

    Science.gov (United States)

    Tomlinson, Gillian; Chimalapati, Suneeta; Pollard, Tracey; Lapp, Thabo; Cohen, Jonathan; Camberlein, Emilie; Stafford, Sian; Periselneris, Jimstan; Aldridge, Christine; Vollmer, Waldemar; Picard, Capucine; Casanova, Jean-Laurent; Noursadeghi, Mahdad; Brown, Jeremy

    2014-10-01

    Streptococcus pneumoniae infections induce inflammatory responses that contribute toward both disease pathogenesis and immunity, but the host-pathogen interactions that mediate these effects are poorly defined. We used the surface lipoprotein-deficient ∆lgt pneumococcal mutant strain to test the hypothesis that lipoproteins are key determinants of TLR-mediated immune responses to S. pneumoniae. We show using reporter assays that TLR2 signaling is dependent on pneumococcal lipoproteins, and that macrophage NF-κB activation and TNF-α release were reduced in response to the ∆lgt strain. Differences in TNF-α responses between Δlgt and wild-type bacteria were abrogated for macrophages from TLR2- but not TLR4-deficient mice. Transcriptional profiling of human macrophages revealed attenuated TLR2-associated responses to ∆lgt S. pneumoniae, comprising many NF-κB-regulated proinflammatory cytokine and chemokine genes. Importantly, non-TLR2-associated responses were preserved. Experiments using leukocytes from IL-1R-associated kinase-4-deficient patients and a mouse pneumonia model confirmed that proinflammatory responses were lipoprotein dependent. Our data suggest that leukocyte responses to bacterial lipoproteins are required for TLR2- and IL-1R-associated kinase-4-mediated inflammatory responses to S. pneumoniae. Copyright © 2014 The Authors.

  20. Effects of solar radiation on the abiotic and bacterially mediated carbon flux in aquatic ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Anesio, A.M.

    2000-05-01

    In this thesis, I studied some of the current aspects of organic matter photochemistry. I analyzed abiotic photo transformations of several types of dissolved (DOM) and particulate organic matter (POM). I also evaluated the effects of photo transformation of several types of DOM on bacteria. Finally, in a field experiment, I analyzed net effects of solar radiation on organic matter decomposition. DOM undergoes several transformations due to solar irradiation. One such transformation is photooxidation of organic matter into inorganic carbon. Results of this Thesis show that photooxidation is ubiquitous to all kinds of organic matter in both dissolved and particulate forms. The intensity of this process depends on several factors, including DOM composition, radiation type and time of exposure. Besides mineralization to inorganic carbon, DOM undergoes other chemical transformations due to UV radiation, with profound consequences to DOM availability for bacteria. Bioavailability was tested by measuring bacterial growth and respiration on irradiated and nonirradiated DOM from several types of humic matter and plant leachates. Irradiation of freshly-leached DOM often produced negative effects on bacteria, whereas irradiation of humic material was followed by stimulation of bacterial growth. The degree of stimulation seems to be related to the initial bioavailability of the DOM and to the capability of the DOM to produce hydrogen peroxide upon irradiation. Other factors also accounted for differences in bacterial response to photochemical modification of DOM, including length and type of irradiation exposure. The effects of solar radiation on litter decomposition were also evaluated using experiments that more closely mimic natural conditions. I could not observe differences between dry weight loss of leaves and culms exposed to solar radiation or kept in darkness, which may be explained by the fact that abiotic decomposition under solar radiation is counterbalanced by

  1. Bacterial and iron oxide aggregates mediate secondary iron mineral formation: green rust versus magnetite.

    Science.gov (United States)

    Zegeye, A; Mustin, C; Jorand, F

    2010-06-01

    In the presence of methanoate as electron donor, Shewanella putrefaciens, a Gram-negative, facultative anaerobe, is able to transform lepidocrocite (gamma-FeOOH) to secondary Fe (II-III) minerals such as carbonated green rust (GR1) and magnetite. When bacterial cells were added to a gamma-FeOOH suspension, aggregates were produced consisting of both bacteria and gamma-FeOOH particles. Recently, we showed that the production of secondary minerals (GR1 vs. magnetite) was dependent on bacterial cell density and not only on iron reduction rates. Thus, gamma-FeOOH and S. putrefaciens aggregation pattern was suggested as the main mechanism driving mineralization. In this study, lepidocrocite bioreduction experiments, in the presence of anthraquinone disulfonate, were conducted by varying the [cell]/[lepidocrocite] ratio in order to determine whether different types of aggregate are formed, which may facilitate precipitation of GR1 as opposed to magnetite. Confocal laser scanning microscopy was used to analyze the relative cell surface area and lepidocrocite concentration within the aggregates and captured images were characterized by statistical methods for spatial data (i.e. variograms). These results suggest that the [cell]/[lepidocrocite] ratio influenced both the aggregate structure and the nature of the secondary iron mineral formed. Subsequently, a [cell]/[lepidocrocite] ratio above 1 x 10(7) cells mmol(-1) leads to densely packed aggregates and to the formation of GR1. Below this ratio, looser aggregates are formed and magnetite was systematically produced. The data presented in this study bring us closer to a more comprehensive understanding of the parameters governing the formation of minerals in dense bacterial suspensions and suggest that screening mineral-bacteria aggregate structure is critical to understanding (bio)mineralization pathways.

  2. Role of bacterial virulence proteins in Agrobacterium-mediated transformation of Aspergillus awamori

    NARCIS (Netherlands)

    Michielse, C.B.; Ram, A.F.J.; Hooykaas, P.J.J.; Hondel, C.A.M.J.J. van den

    2004-01-01

    The Agrobacterium-mediated transformation of Aspergillus awamori was optimized using defined co-cultivation conditions, which resulted in a reproducible and efficient transformation system. Optimal co-cultivation conditions were used to study the role of Agrobacterium tumefaciens virulence proteins

  3. RNA-Seq analysis reveals insight into enhanced rice Xa7-mediated bacterial blight resistance at high temperature.

    Directory of Open Access Journals (Sweden)

    Stephen P Cohen

    Full Text Available Plant disease is a major challenge to agriculture worldwide, and it is exacerbated by abiotic environmental factors. During some plant-pathogen interactions, heat stress allows pathogens to overcome host resistance, a phenomenon which could severely impact crop productivity considering the global warming trends associated with climate change. Despite the importance of this phenomenon, little is known about the underlying molecular mechanisms. To better understand host plant responses during simultaneous heat and pathogen stress, we conducted a transcriptomics experiment for rice plants (cultivar IRBB61 containing Xa7, a bacterial blight disease resistance (R gene, that were infected with Xanthomonas oryzae, the bacterial blight pathogen of rice, during high temperature stress. Xa7-mediated resistance is unusual relative to resistance mediated by other R genes in that it functions better at high temperatures. Using RNA-Seq technology, we identified 8,499 differentially expressed genes as temperature responsive in rice cultivar IRBB61 experiencing susceptible and resistant interactions across three time points. Notably, genes in the plant hormone abscisic acid biosynthesis and response pathways were up-regulated by high temperature in both mock-treated plants and plants experiencing a susceptible interaction and were suppressed by high temperature in plants exhibiting Xa7-mediated resistance. Genes responsive to salicylic acid, an important plant hormone for disease resistance, were down-regulated by high temperature during both the susceptible and resistant interactions, suggesting that enhanced Xa7-mediated resistance at high temperature is not dependent on salicylic acid signaling. A DNA sequence motif similar to known abscisic acid-responsive cis-regulatory elements was identified in the promoter region upstream of genes up-regulated in susceptible but down-regulated in resistant interactions. The results of our study suggest that the plant

  4. Reversing bacterial resistance to antibiotics by phage-mediated delivery of dominant sensitive genes.

    Science.gov (United States)

    Edgar, Rotem; Friedman, Nir; Molshanski-Mor, Shahar; Qimron, Udi

    2012-02-01

    Pathogen resistance to antibiotics is a rapidly growing problem, leading to an urgent need for novel antimicrobial agents. Unfortunately, development of new antibiotics faces numerous obstacles, and a method that resensitizes pathogens to approved antibiotics therefore holds key advantages. We present a proof of principle for a system that restores antibiotic efficiency by reversing pathogen resistance. This system uses temperate phages to introduce, by lysogenization, the genes rpsL and gyrA conferring sensitivity in a dominant fashion to two antibiotics, streptomycin and nalidixic acid, respectively. Unique selective pressure is generated to enrich for bacteria that harbor the phages carrying the sensitizing constructs. This selection pressure is based on a toxic compound, tellurite, and therefore does not forfeit any antibiotic for the sensitization procedure. We further demonstrate a possible way of reducing undesirable recombination events by synthesizing dominant sensitive genes with major barriers to homologous recombination. Such synthesis does not significantly reduce the gene's sensitization ability. Unlike conventional bacteriophage therapy, the system does not rely on the phage's ability to kill pathogens in the infected host, but instead, on its ability to deliver genetic constructs into the bacteria and thus render them sensitive to antibiotics prior to host infection. We believe that transfer of the sensitizing cassette by the constructed phage will significantly enrich for antibiotic-treatable pathogens on hospital surfaces. Broad usage of the proposed system, in contrast to antibiotics and phage therapy, will potentially change the nature of nosocomial infections toward being more susceptible to antibiotics rather than more resistant.

  5. Malaria-induced NLRP12/NLRP3-dependent caspase-1 activation mediates inflammation and hypersensitivity to bacterial superinfection.

    Directory of Open Access Journals (Sweden)

    Marco A Ataide

    2014-01-01

    Full Text Available Cyclic paroxysm and high fever are hallmarks of malaria and are associated with high levels of pyrogenic cytokines, including IL-1β. In this report, we describe a signature for the expression of inflammasome-related genes and caspase-1 activation in malaria. Indeed, when we infected mice, Plasmodium infection was sufficient to promote MyD88-mediated caspase-1 activation, dependent on IFN-γ-priming and the expression of inflammasome components ASC, P2X7R, NLRP3 and/or NLRP12. Pro-IL-1β expression required a second stimulation with LPS and was also dependent on IFN-γ-priming and functional TNFR1. As a consequence of Plasmodium-induced caspase-1 activation, mice produced extremely high levels of IL-1β upon a second microbial stimulus, and became hypersensitive to septic shock. Therapeutic intervention with IL-1 receptor antagonist prevented bacterial-induced lethality in rodents. Similar to mice, we observed a significantly increased frequency of circulating CD14(+CD16(-Caspase-1(+ and CD14(dimCD16(+Caspase-1(+ monocytes in peripheral blood mononuclear cells from febrile malaria patients. These cells readily produced large amounts of IL-1β after stimulation with LPS. Furthermore, we observed the presence of inflammasome complexes in monocytes from malaria patients containing either NLRP3 or NLRP12 pyroptosomes. We conclude that NLRP12/NLRP3-dependent activation of caspase-1 is likely to be a key event in mediating systemic production of IL-1β and hypersensitivity to secondary bacterial infection during malaria.

  6. Bioavailability of hydrocarbons to bacterial consortia during Triton X-100 mediated biodegradation in aqueous media.

    Science.gov (United States)

    Pęziak, Daria; Piotrowska, Aleksandra; Marecik, Roman; Lisiecki, Piotr; Woźniak, Marta; Szulc, Alicja; Ławniczak, Łukasz; Chrzanowski, Łukasz

    2013-01-01

    The aim of our study was to investigate the effect of Triton X-100 on the biodegradation efficiency of hexadecane and phenanthrene carried out by two bacterial consortia. It was established that the tested consortia were not able to directly uptake compounds closed in micelles. It was observed that in micellar systems the nonionic synthetic surfactant was preferentially degraded (the degradation efficiency of Triton X-100 after 21 days was 70% of the initial concentration - 500 mg/l), followed by a lesser decomposition of hydrocarbon released from the micelles (30% for hexadecane and 20% for phenanthrene). However, when hydrocarbons were used as the sole carbon source, 70% of hexadecane and 30% of phenanthrene were degraded. The degradation of the surfactant did not contribute to notable shifts in bacterial community dynamics, as determined by Real-Time PCR. The obtained results suggest that if surfactant-supplementation is to be used as an integral part of a bioremediation process, then possible bioavailability decrease due to entrapment of the contaminant into surfactant micelles should also be taken into consideration, as this phenomenon may have a negative impact on the biodegradation efficiency. Surfactant-induced mobilization of otherwise recalcitrant hydrocarbons may contribute to the spreading of contaminants in the environment and prevent their biodegradation.

  7. Biofilm-mediated Antibiotic-resistant Oral Bacterial Infections: Mechanism and Combat Strategies.

    Science.gov (United States)

    Kanwar, Indulata; Sah, Abhishek K; Suresh, Preeti K

    2017-01-01

    Oral diseases like dental caries and periodontal disease are directly associated with the capability of bacteria to form biofilm. Periodontal diseases have been associated to anaerobic Gram-negative bacteria forming a subgingival plaque (Porphyromonas gingivalis, Actinobacillus, Prevotella and Fusobacterium). Biofilm is a complex bacterial community that is highly resistant to antibiotics and human immunity. Biofilm communities are the causative agents of biological developments such as dental caries, periodontitis, peri-implantitis and causing periodontal tissue breakdown. The review recapitulates the latest advancements in treatment of clinical biofilm infections and scientific investigations, while these novel anti-biofilm strategies are still in nascent phases of development, efforts dedicated to these technologies could ultimately lead to anti-biofilm therapies that are superior to the current antibiotic treatment. This paper provides a review of the literature focusing on the studies on biofilm in the oral cavity, formation of dental plaque biofilm, drug resistance of bacterial biofilm and the antibiofilm approaches as biofilm preventive agents in dentistry, and their mechanism of biofilm inhibition. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Cloning, killing, and identity.

    Science.gov (United States)

    McMahan, J

    1999-01-01

    One potentially valuable use of cloning is to provide a source of tissues or organs for transplantation. The most important objection to this use of cloning is that a human clone would be the sort of entity that it would be seriously wrong to kill. I argue that entities of the sort that you and I essentially are do not begin to exist until around the seventh month of fetal gestation. Therefore to kill a clone prior to that would not be to kill someone like you or me but would be only to prevent one of us from existing. And even after one of us begins to exist, the objections to killing it remain comparatively weak until its psychological capacities reach a certain level of maturation. These claims support the permissibility of killing a clone during the early stages of its development in order to use its organs for transplantation. PMID:10226909

  9. Interaction of Uranium with Bacterial Cell Surfaces: Inferences from Phosphatase-Mediated Uranium Precipitation

    Science.gov (United States)

    Kulkarni, Sayali; Misra, Chitra Seetharam; Gupta, Alka; Ballal, Anand

    2016-01-01

    ABSTRACT Deinococcus radiodurans and Escherichia coli expressing either PhoN, a periplasmic acid phosphatase, or PhoK, an extracellular alkaline phosphatase, were evaluated for uranium (U) bioprecipitation under two specific geochemical conditions (GCs): (i) a carbonate-deficient condition at near-neutral pH (GC1), and (ii) a carbonate-abundant condition at alkaline pH (GC2). Transmission electron microscopy revealed that recombinant cells expressing PhoN/PhoK formed cell-associated uranyl phosphate precipitate under GC1, whereas the same cells displayed extracellular precipitation under GC2. These results implied that the cell-bound or extracellular location of the precipitate was governed by the uranyl species prevalent at that particular GC, rather than the location of phosphatase. MINTEQ modeling predicted the formation of predominantly positively charged uranium hydroxide ions under GC1 and negatively charged uranyl carbonate-hydroxide complexes under GC2. Both microbes adsorbed 6- to 10-fold more U under GC1 than under GC2, suggesting that higher biosorption of U to the bacterial cell surface under GC1 may lead to cell-associated U precipitation. In contrast, at alkaline pH and in the presence of excess carbonate under GC2, poor biosorption of negatively charged uranyl carbonate complexes on the cell surface might have resulted in extracellular precipitation. The toxicity of U observed under GC1 being higher than that under GC2 could also be attributed to the preferential adsorption of U on cell surfaces under GC1. This work provides a vivid description of the interaction of U complexes with bacterial cells. The findings have implications for the toxicity of various U species and for developing biological aqueous effluent waste treatment strategies. IMPORTANCE The present study provides illustrative insights into the interaction of uranium (U) complexes with recombinant bacterial cells overexpressing phosphatases. This work demonstrates the effects of aqueous

  10. Bacterial Cell Enlargement Requires Control of Cell Wall Stiffness Mediated by Peptidoglycan Hydrolases.

    Science.gov (United States)

    Wheeler, Richard; Turner, Robert D; Bailey, Richard G; Salamaga, Bartłomiej; Mesnage, Stéphane; Mohamad, Sharifah A S; Hayhurst, Emma J; Horsburgh, Malcolm; Hobbs, Jamie K; Foster, Simon J

    2015-07-28

    Most bacterial cells are enclosed in a single macromolecule of the cell wall polymer, peptidoglycan, which is required for shape determination and maintenance of viability, while peptidoglycan biosynthesis is an important antibiotic target. It is hypothesized that cellular enlargement requires regional expansion of the cell wall through coordinated insertion and hydrolysis of peptidoglycan. Here, a group of (apparent glucosaminidase) peptidoglycan hydrolases are identified that are together required for cell enlargement and correct cellular morphology of Staphylococcus aureus, demonstrating the overall importance of this enzyme activity. These are Atl, SagA, ScaH, and SagB. The major advance here is the explanation of the observed morphological defects in terms of the mechanical and biochemical properties of peptidoglycan. It was shown that cells lacking groups of these hydrolases have increased surface stiffness and, in the absence of SagB, substantially increased glycan chain length. This indicates that, beyond their established roles (for example in cell separation), some hydrolases enable cellular enlargement by making peptidoglycan easier to stretch, providing the first direct evidence demonstrating that cellular enlargement occurs via modulation of the mechanical properties of peptidoglycan. Understanding bacterial growth and division is a fundamental problem, and knowledge in this area underlies the treatment of many infectious diseases. Almost all bacteria are surrounded by a macromolecule of peptidoglycan that encloses the cell and maintains shape, and bacterial cells must increase the size of this molecule in order to enlarge themselves. This requires not only the insertion of new peptidoglycan monomers, a process targeted by antibiotics, including penicillin, but also breakage of existing bonds, a potentially hazardous activity for the cell. Using Staphylococcus aureus, we have identified a set of enzymes that are critical for cellular enlargement. We

  11. Rickettsial retinitis: Direct bacterial infection or an immune-mediated response?

    Directory of Open Access Journals (Sweden)

    Rohan Chawla

    2017-01-01

    Full Text Available Infectious retinitis postfebrile illness is known to be caused by chikungunya, dengue, West Nile virus, Bartonella, Lyme's disease, Rift Valley fever, rickettsia, Herpes viruses etc. Rickettsia is Gram-negative bacteria transmitted by arthropods vectors. Ocular involvement is common including conjunctivitis, keratitis, anterior uveitis, panuveitis, retinitis, retinal vascular changes, and optic nerve involvement. Retinitis lesions in rickettsia can occur because of an immunological response to the bacteria or because of direct invasion and proliferation of bacteria in the inner retina. We report such a case of bilateral rickettsial retinitis proven by serology which worsened on systemic steroids and responded dramatically to therapy with oral doxycycline and steroid taper. We thus believe that direct bacterial invasion plays a major role in the pathogenesis of rickettsial retinitis.

  12. CD8+CD122+CD49dlow regulatory T cells maintain T-cell homeostasis by killing activated T cells via Fas/FasL-mediated cytotoxicity.

    Science.gov (United States)

    Akane, Kazuyuki; Kojima, Seiji; Mak, Tak W; Shiku, Hiroshi; Suzuki, Haruhiko

    2016-03-01

    The Fas/FasL (CD95/CD178) system is required for immune regulation; however, it is unclear in which cells, when, and where Fas/FasL molecules act in the immune system. We found that CD8(+)CD122(+) cells, which are mostly composed of memory T cells in comparison with naïve cells in the CD8(+)CD122(-) population, were previously shown to include cells with regulatory activity and could be separated into CD49d(low) cells and CD49d(high) cells. We established in vitro and in vivo experimental systems to evaluate the regulatory activity of CD122(+) cells. Regulatory activity was observed in CD8(+)CD122(+)CD49d(low) but not in CD8(+)CD122(+)CD49d(high) cells, indicating that the regulatory cells in the CD8(+)CD122(+) population could be narrowed down to CD49d(low) cells. CD8(+)CD122(-) cells taken from lymphoproliferation (lpr) mice were resistant to regulation by normal CD122(+) Tregs. CD122(+) Tregs taken from generalized lymphoproliferative disease (gld) mice did not regulate wild-type CD8(+)CD122(-) cells, indicating that the regulation by CD122(+) Tregs is Fas/FasL-dependent. CD122(+) Tregs taken from IL-10-deficient mice could regulate CD8(+)CD122(-) cells as equally as wild-type CD122(+) Tregs both in vitro and in vivo. MHC class I-missing T cells were not regulated by CD122(+) Tregs in vitro. CD122(+) Tregs also regulated CD4(+) cells in a Fas/FasL-dependent manner in vitro. These results suggest an essential role of Fas/FasL as a terminal effector of the CD122(+) Tregs that kill activated T cells to maintain immune homeostasis.

  13. Treatment with 5-Aza-2'-Deoxycytidine Induces Expression of NY-ESO-1 and Facilitates Cytotoxic T Lymphocyte-Mediated Tumor Cell Killing.

    Directory of Open Access Journals (Sweden)

    Agnes S Klar

    Full Text Available NY-ESO-1 belongs to the cancer/testis antigen (CTA family and represents an attractive target for cancer immunotherapy. Its expression is induced in a variety of solid tumors via DNA demethylation of the promoter of CpG islands. However, NY-ESO-1 expression is usually very low or absent in some tumors such as breast cancer or multiple myeloma. Therefore, we established an optimized in vitro treatment protocol for up-regulation of NY-ESO-1 expression by tumor cells using the hypomethylating agent 5-aza-2'-deoxycytidine (DAC.We demonstrated de novo induction of NY-ESO-1 in MCF7 breast cancer cells and significantly increased expression in U266 multiple myeloma cells. This effect was time- and dose-dependent with the highest expression of NY-ESO-1 mRNA achieved by the incubation of 10 μM DAC for 72 hours. NY-ESO-1 activation was also confirmed at the protein level as shown by Western blot, flow cytometry, and immunofluorescence staining. The detection and quantification of single NY-ESO-1 peptides presented at the tumor cell surface in the context of HLA-A*0201 molecules revealed an increase of 100% and 50% for MCF7 and U266 cells, respectively. Moreover, the enhanced expression of NY-ESO-1 derived peptides at the cell surface was accompanied by an increased specific lysis of MCF7 and U266 cells by HLA-A*0201/NY-ESO-1(157-165 peptide specific chimeric antigen receptor (CAR CD8+ T cells. In addition, the killing activity of CAR T cells correlated with the secretion of higher IFN-gamma levels.These results indicate that NY-ESO-1 directed immunotherapy with specific CAR T cells might benefit from concomitant DAC treatment.

  14. Macrophage migration inhibitory factor deficiency is associated with impaired killing of gram-negative bacteria by macrophages and increased susceptibility to Klebsiella pneumoniae sepsis.

    Science.gov (United States)

    Roger, Thierry; Delaloye, Julie; Chanson, Anne-Laure; Giddey, Marlyse; Le Roy, Didier; Calandra, Thierry

    2013-01-15

    The cytokine macrophage migration inhibitory factor (MIF) is an important component of the early proinflammatory response of the innate immune system. However, the antimicrobial defense mechanisms mediated by MIF remain fairly mysterious. In the present study, we examined whether MIF controls bacterial uptake and clearance by professional phagocytes, using wild-type and MIF-deficient macrophages. MIF deficiency did not affect bacterial phagocytosis, but it strongly impaired the killing of gram-negative bacteria by macrophages and host defenses against gram-negative bacterial infection, as shown by increased mortality in a Klebsiella pneumonia model. Consistent with MIF's regulatory role of Toll-like 4 expression in macrophages, MIF-deficient cells stimulated with lipopolysaccharide or Escherichia coli exhibited reduced nuclear factor κB activity and tumor necrosis factor (TNF) production. Addition of recombinant MIF or TNF corrected the killing defect of MIF-deficient macrophages. Together, these data show that MIF is a key mediator of host responses against gram-negative bacteria, acting in part via a modulation of bacterial killing by macrophages.

  15. Antibody-mediated immunity to the obligate intracellular bacterial pathogen Coxiella burnetii is Fc receptor- and complement-independent

    Directory of Open Access Journals (Sweden)

    Heinzen Robert A

    2009-05-01

    Full Text Available Abstract Background The obligate intracellular bacterial pathogen Coxiella burnetii causes the zoonosis Q fever. The intracellular niche of C. burnetii has led to the assumption that cell-mediated immunity is the most important immune component for protection against this pathogen. However, passive immunization with immune serum can protect naïve animals from challenge with virulent C. burnetii, indicating a role for antibody (Ab in protection. The mechanism of this Ab-mediated protection is unknown. Therefore, we conducted a study to determine whether Fc receptors (FcR or complement contribute to Ab-mediated immunity (AMI to C. burnetii. Results Virulent C. burnetii infects and replicates within human dendritic cells (DC without inducing their maturation or activation. We investigated the effects of Ab opsonized C. burnetii on human monocyte-derived and murine bone marrow-derived DC. Infection of DC with Ab-opsonized C. burnetii resulted in increased expression of maturation markers and inflammatory cytokine production. Bacteria that had been incubated with naïve serum had minimal effect on DC, similar to virulent C. burnetii alone. The effect of Ab opsonized C. burnetii on DC was FcR dependent as evidenced by a reduced response of DC from FcR knockout (FcR k/o compared to C57Bl/6 (B6 mice. To address the potential role of FcR in Ab-mediated protection in vivo, we compared the response of passively immunized FcR k/o mice to the B6 controls. Interestingly, we found that FcR are not essential for AMI to C. burnetii in vivo. We subsequently examined the role of complement in AMI by passively immunizing and challenging several different strains of complement-deficient mice and found that AMI to C. burnetii is also complement-independent. Conclusion Despite our data showing FcR-dependent stimulation of DC in vitro, Ab-mediated immunity to C. burnetii in vivo is FcR-independent. We also found that passive immunity to this pathogen is independent of

  16. A survival-reproduction trade-off in entomopathogenic nematodes mediated by their bacterial symbionts.

    Science.gov (United States)

    Emelianoff, Vanya; Chapuis, Elodie; Le Brun, Nathalie; Chiral, Magali; Moulia, Catherine; Ferdy, Jean-Baptiste

    2008-04-01

    In this work, we investigate the investment of entomopathogenic Steinernema nematodes (Rhabditidae) in their symbiotic association with Xenorhabdus bacteria (Enterobacteriaceae). Their life cycle comprises two phases: (1) a free stage in the soil, where infective juveniles (IJs) of the nematode carry bacteria in a digestive vesicle and search for insect hosts, and (2) a parasitic stage into the insect where bacterial multiplication, nematode reproduction, and production of new IJs occur. Previous studies clearly showed benefits to the association for the nematode during the parasitic stage, but preliminary data suggest the existence of costs to the association for the nematode in free stage. IJs deprived from their bacteria indeed survive longer than symbiotic ones. Here we show that those bacteria-linked costs and benefits lead to a trade-off between fitness traits of the symbiotic nematodes. Indeed IJs mortality positively correlates with their parasitic success in the insect host for symbiotic IJs and not for aposymbiotic ones. Moreover mortality and parasitic success both positively correlate with the number of bacteria carried per IJ, indicating that the trade-off is induced by symbiosis. Finally, the trade-off intensity depends on parental effects and, more generally, is greater under restrictive environmental conditions.

  17. Bacterial Exopolysaccharide mediated heavy metal removal: A Review on biosynthesis, mechanism and remediation strategies.

    Science.gov (United States)

    Gupta, Pratima; Diwan, Batul

    2017-03-01

    Heavy metal contamination has been recognized as a major public health risk, particularly in developing countries and their toxicological manifestations are well known. Conventional remediation strategies are either expensive or they generate toxic by-products, which adversely affect the environment. Therefore, necessity for an environmentally safe strategy motivates interest towards biological techniques. One of such most profoundly driven approach in recent times is biosorption through microbial biomass and their products. Extracellular polymeric substances are such complex blend of high molecular weight microbial (prokaryotic and eukaryotic) biopolymers. They are mainly composed of proteins, polysaccharides, uronic acids, humic substances, lipids etc. One of its essential constituent is the exopolysaccharide (EPS) released out of self defense against harsh conditions of starvation, pH and temperature, hence it displays exemplary physiological, rheological and physio-chemical properties. Its net anionic makeup allows the biopolymer to effectively sequester positively charged heavy metal ions. The polysaccharide has been expounded deeply in this article with reference to its biosynthesis and emphasizes heavy metal sorption abilities of polymer in terms of mechanism of action and remediation. It reports current investigation and strategic advancements in dealing bacterial cells and their EPS in diverse forms - mixed culture EPS, single cell EPS, live, dead or immobilized EPS. A significant scrutiny is also involved highlighting the existing challenges that still lie in the path of commercialization. The article enlightens the potential of EPS to bring about bio-detoxification of heavy metal contaminated terrestrial and aquatic systems in highly sustainable, economic and eco-friendly manner.

  18. Midgut microbiota and host immunocompetence underlie Bacillus thuringiensis killing mechanism

    Science.gov (United States)

    Caccia, Silvia; Di Lelio, Ilaria; La Storia, Antonietta; Marinelli, Adriana; Varricchio, Paola; Franzetti, Eleonora; Banyuls, Núria; Tettamanti, Gianluca; Casartelli, Morena; Giordana, Barbara; Ferré, Juan; Gigliotti, Silvia; Pennacchio, Francesco

    2016-01-01

    Bacillus thuringiensis is a widely used bacterial entomopathogen producing insecticidal toxins, some of which are expressed in insect-resistant transgenic crops. Surprisingly, the killing mechanism of B. thuringiensis remains controversial. In particular, the importance of the septicemia induced by the host midgut microbiota is still debated as a result of the lack of experimental evidence obtained without drastic manipulation of the midgut and its content. Here this key issue is addressed by RNAi-mediated silencing of an immune gene in a lepidopteran host Spodoptera littoralis, leaving the midgut microbiota unaltered. The resulting cellular immunosuppression was characterized by a reduced nodulation response, which was associated with a significant enhancement of host larvae mortality triggered by B. thuringiensis and a Cry toxin. This was determined by an uncontrolled proliferation of midgut bacteria, after entering the body cavity through toxin-induced epithelial lesions. Consequently, the hemolymphatic microbiota dramatically changed upon treatment with Cry1Ca toxin, showing a remarkable predominance of Serratia and Clostridium species, which switched from asymptomatic gut symbionts to hemocoelic pathogens. These experimental results demonstrate the important contribution of host enteric flora in B. thuringiensis-killing activity and provide a sound foundation for developing new insect control strategies aimed at enhancing the impact of biocontrol agents by reducing the immunocompetence of the host. PMID:27506800

  19. Heat-killed Lactobacillus spp. cells enhance survivals of Caenorhabditis elegans against Salmonella and Yersinia infections.

    Science.gov (United States)

    Lee, J; Choe, J; Kim, J; Oh, S; Park, S; Kim, S; Kim, Y

    2015-12-01

    This study examined the effect of feeding heat-killed Lactobacillus cells on the survival of Caenorhabditis elegans nematodes after Salmonella Typhimurium and Yersinia enterocolitica infection. The feeding of heat-killed Lactobacillus plantarum 133 (LP133) and Lactobacillus fermentum 21 (LP21) cells to nematodes was shown to significantly increase the survival rate as well as stimulate the expression of pmk-1 gene that key factor for C. elegans immunity upon infection compared with control nematodes that were only fed Escherichia coli OP50 (OP50) cells. These results suggest that heat-killed LP133 and LF21 cells exert preventive or protective effects against the Gram-negative bacteria Salm. Typhimurium and Y. enterocolitica. To better understand the mechanisms underlying the LF21-mediated and LP133-mediated protection against bacterial infection in nematodes, transcriptional profiling was performed for each experimental group. These experiments showed that genes related to energy generation and ageing, regulators of insulin/IGF-1-like signalling, DAF genes, oxidation and reduction processes, the defence response and/or the innate immune response, and neurological processes were upregulated in nematodes that had been fed heat-killed Lactobacillus cells compared with nematodes that had been fed E. coli cells. In this study, the feeding of heat-killed Lactobacillus bacteria to Caenorhabditis elegans nematodes was shown to decrease infection by Gram-negative bacteria and increase the host lifespan. C. elegans has a small, well-organized genome and is an excellent in vivo model organism; thus, these results will potentially shed light on important Lactobacillus-host interactions. © 2015 The Society for Applied Microbiology.

  20. Killing Effect of Ad5/F35-APE1 siRNA Recombinant Adenovirus in Combination with Hematoporphrphyrin Derivative-Mediated Photodynamic Therapy on Human Nonsmall Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Lei Xia

    2013-01-01

    Full Text Available The main goal of this work is to investigate the killing effects and molecular mechanism of photodynamic therapy (PDT mediated by the Ad5/F35-APE1 siRNA recombinant adenovirus in combination with a hematoporphrphyrin derivative (HpD in the A549 human lung adenocarcinoma cell line in vitro to provide a theoretical reference for treating lung cancer by HpD-PDT. By using the technologies of MTT, flow cytometry, ELISA, and western blot, we observed that the proliferation inhibition and apoptosis of the A549 cells were significantly higher than the control group ( after HpD-PDT was performed. The inhibitory efficiency is dependent on the HpD concentration and laser intensity dose. The inhibitory effect on the proliferation of A549 cells of Ad5/F35-APE1 siRNA is more significant after combining with PDT, as indicated by a significant elevation of the intracellular ROS level and the expression of inflammatory factors (. The HpD-PDT-induced expression of the APE1 protein reached the peak after 24 h in A549 cells. The inhibition of APE1 expression in A549 cells was most significant after 48 hours of infection by Ad5/F35-APE1 siRNA recombinant adenovirus (10 MOI. In conclusion, the Ad5/F35-APE1 siRNA recombinant adenovirus could efficiently inhibit the HpD-PDT-induced APE1 expression hence could significantly enhance the killing effect of HpD-PDT in lung cancer cells.

  1. Bacterial Exopolysaccharide mediated heavy metal removal: A Review on biosynthesis, mechanism and remediation strategies

    Directory of Open Access Journals (Sweden)

    Pratima Gupta

    2017-03-01

    Full Text Available Heavy metal contamination has been recognized as a major public health risk, particularly in developing countries and their toxicological manifestations are well known. Conventional remediation strategies are either expensive or they generate toxic by-products, which adversely affect the environment. Therefore, necessity for an environmentally safe strategy motivates interest towards biological techniques. One of such most profoundly driven approach in recent times is biosorption through microbial biomass and their products. Extracellular polymeric substances are such complex blend of high molecular weight microbial (prokaryotic and eukaryotic biopolymers. They are mainly composed of proteins, polysaccharides, uronic acids, humic substances, lipids etc. One of its essential constituent is the exopolysaccharide (EPS released out of self defense against harsh conditions of starvation, pH and temperature, hence it displays exemplary physiological, rheological and physio-chemical properties. Its net anionic makeup allows the biopolymer to effectively sequester positively charged heavy metal ions. The polysaccharide has been expounded deeply in this article with reference to its biosynthesis and emphasizes heavy metal sorption abilities of polymer in terms of mechanism of action and remediation. It reports current investigation and strategic advancements in dealing bacterial cells and their EPS in diverse forms – mixed culture EPS, single cell EPS, live, dead or immobilized EPS. A significant scrutiny is also involved highlighting the existing challenges that still lie in the path of commercialization. The article enlightens the potential of EPS to bring about bio-detoxification of heavy metal contaminated terrestrial and aquatic systems in highly sustainable, economic and eco-friendly manner.

  2. Structural insights into GDP-mediated regulation of a bacterial acyl-CoA thioesterase.

    Science.gov (United States)

    Khandokar, Yogesh B; Srivastava, Parul; Cowieson, Nathan; Sarker, Subir; Aragao, David; Das, Shubagata; Smith, Kate M; Raidal, Shane R; Forwood, Jade K

    2017-12-15

    Thioesterases catalyze the cleavage of thioester bonds within many activated fatty acids and acyl-CoA substrates. They are expressed ubiquitously in both prokaryotes and eukaryotes and are subdivided into 25 thioesterase families according to their catalytic active site, protein oligomerization, and substrate specificity. Although many of these enzyme families are well-characterized in terms of function and substrate specificity, regulation across most thioesterase families is poorly understood. Here, we characterized a TE6 thioesterase from the bacterium Neisseria meningitidis Structural analysis with X-ray crystallographic diffraction data to 2.0-Å revealed that each protein subunit harbors a hot dog-fold and that the TE6 enzyme forms a hexamer with D3 symmetry. An assessment of thioesterase activity against a range of acyl-CoA substrates revealed the greatest activity against acetyl-CoA, and structure-guided mutagenesis of putative active site residues identified Asn 24 and Asp 39 as being essential for activity. Our structural analysis revealed that six GDP nucleotides bound the enzyme in close proximity to an intersubunit disulfide bond interactions that covalently link thioesterase domains in a double hot dog dimer. Structure-guided mutagenesis of residues within the GDP-binding pocket identified Arg 93 as playing a key role in the nucleotide interaction and revealed that GDP is required for activity. All mutations were confirmed to be specific and not to have resulted from structural perturbations by X-ray crystallography. This is the first report of a bacterial GDP-regulated thioesterase and of covalent linkage of thioesterase domains through a disulfide bond, revealing structural similarities with ADP regulation in the human ACOT12 thioesterase. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Molecular processes as basis for plasmid-mediated bacterial UV-light resistance and mutagenesis

    International Nuclear Information System (INIS)

    Aleshkin, G.I.; Brukhanskij, G.V.; Skavronskaya, A.G.

    1985-01-01

    The increase of UV-resistance and UV-induced mutagenesis by lambda 1 pint intmid as well as molecular-genetic mechanisms of plasmid participation in reparation and DNA replication and its degradation after UV-irradiation in plasmid cells on pKM101 plasmid model have been investigated. Data testifying to the necessity of intmid integration in chromosome as obligatory stage of intmid participation in increasing UV-resistance of bacterial cells are obtained. It has been found that intmid raises UV-resistance of cells and increases respectively the UV-induced reverants efficiency. On the basis of the experiment data the conclusion is drawn that the intmid capacity to raise UV-resistance and, possibly, mutagenesis is bound not only with its integration into chromosome but also with pol A + chromosome replication by dependendent imtmid replication complex. It is shown that pKM101 plasmid ensures functioning in E coli cells of inducible, chloroamphenicol-resistant DNA replication, highly resistant to UV-light harmful effect and that the volume of excision reparation in E. coli cells carrying pKM101 plasmid is increased as compared with the volume of reparation in plasmid legs cells. The combination of the data obtained gives grounds to the authors to assume that inducible replication, inducible reparation of DNA and inducible decrease of DNA degradation determined by pKM101 plasmid may serve as recA + lexA + basis dependent increase of UV-resistance and mutagenesis and that these processes provide the possibility of functioning of integrative replication mechanism of plasmid participation in ensuring UV-resistance and mutagenesis of plants

  4. Bacterial bio-mediated calcite precipitation for monumental stones conservation: methods of evaluation.

    Science.gov (United States)

    Tiano, P; Biagiotti, L; Mastromei, G

    1999-05-01

    The weathering of monumental stones is a complex process inserted in the more general 'matter transformation cycle' operated by physical, chemical and biological factors. The consequence of these combined actions is a loss of cohesion with dwindling and scaling of stone material and the induction of a progressive mineral matrix dissolution. In the case of calcareous stones, calcite leaching increases the material porosity and decreases its mechanical features with a general weakening of the superficial structural strength. Attempts to stop, or at least to slow down, deterioration of monumental stones has been made by conservative treatments with both inorganic or organic products. More recent studies show a new approach to hinder these phenomena by inducing a bio-mediated precipitation of calcite directly inside the stone porosity. This can be achieved either through the application of organic matrix macromolecules extracted from sea shells or of living bacteria. The effectiveness of the treatment using calcinogenic bacteria has been evaluated with laboratory tests specifically developed to evaluate the parameters such as : porosity, superficial strength and chromatic changes, influenced by the treatment itself. The results obtained seem to indicate that this type of treatment might not be suitable for monumental stone conservation.

  5. Modeling and validation of autoinducer-mediated bacterial gene expression in microfluidic environments

    Science.gov (United States)

    Austin, Caitlin M.; Stoy, William; Su, Peter; Harber, Marie C.; Bardill, J. Patrick; Hammer, Brian K.; Forest, Craig R.

    2014-01-01

    Biosensors exploiting communication within genetically engineered bacteria are becoming increasingly important for monitoring environmental changes. Currently, there are a variety of mathematical models for understanding and predicting how genetically engineered bacteria respond to molecular stimuli in these environments, but as sensors have miniaturized towards microfluidics and are subjected to complex time-varying inputs, the shortcomings of these models have become apparent. The effects of microfluidic environments such as low oxygen concentration, increased biofilm encapsulation, diffusion limited molecular distribution, and higher population densities strongly affect rate constants for gene expression not accounted for in previous models. We report a mathematical model that accurately predicts the biological response of the autoinducer N-acyl homoserine lactone-mediated green fluorescent protein expression in reporter bacteria in microfluidic environments by accommodating these rate constants. This generalized mass action model considers a chain of biomolecular events from input autoinducer chemical to fluorescent protein expression through a series of six chemical species. We have validated this model against experimental data from our own apparatus as well as prior published experimental results. Results indicate accurate prediction of dynamics (e.g., 14% peak time error from a pulse input) and with reduced mean-squared error with pulse or step inputs for a range of concentrations (10 μM–30 μM). This model can help advance the design of genetically engineered bacteria sensors and molecular communication devices. PMID:25379076

  6. A Bacterial Parasite Effector Mediates Insect Vector Attraction in Host Plants Independently of Developmental Changes

    Science.gov (United States)

    Orlovskis, Zigmunds; Hogenhout, Saskia A.

    2016-01-01

    Parasites can take over their hosts and trigger dramatic changes in host appearance and behavior that are typically interpreted as extended phenotypes that promote parasite survival and fitness. For example, Toxoplasma gondii is thought to manipulate the behaviors of infected rodents to aid transmission to cats and parasitic trematodes of the genus Ribeiroia alter limb development in their amphibian hosts to facilitate predation of the latter by birds. Plant parasites and pathogens also reprogram host development and morphology. However, whereas some parasite-induced morphological alterations may have a direct benefit to the fitness of the parasite and may therefore be adaptive, other host alterations may be side effects of parasite infections having no adaptive effects on parasite fitness. Phytoplasma parasites of plants often induce the development of leaf-like flowers (phyllody) in their host plants, and we previously found that the phytoplasma effector SAP54 generates these leaf-like flowers via the degradation of plant MADS-box transcription factors (MTFs), which regulate all major aspects of development in plants. Leafhoppers prefer to reproduce on phytoplasma-infected and SAP54-trangenic plants leading to the hypothesis that leafhopper vectors are attracted to plants with leaf-like flowers. Surprisingly, here we show that leafhopper attraction occurs independently of the presence of leaf-like flowers. First, the leafhoppers were also attracted to SAP54 transgenic plants without leaf-like flowers and to single leaves of these plants. Moreover, leafhoppers were not attracted to leaf-like flowers of MTF-mutant plants without the presence of SAP54. Thus, the primary role of SAP54 is to attract leafhopper vectors, which spread the phytoplasmas, and the generation of leaf-like flowers may be secondary or a side effect of the SAP54-mediated degradation of MTFs. PMID:27446117

  7. β-lactam antibiotics promote bacterial mutagenesis via an RpoS-mediated reduction in replication fidelity

    Science.gov (United States)

    Gutierrez, A.; Laureti, L.; Crussard, S.; Abida, H.; Rodríguez-Rojas, A.; Blázquez, J.; Baharoglu, Z.; Mazel, D.; Darfeuille, F.; Vogel, J.; Matic, I.

    2013-01-01

    Regardless of their targets and modes of action, subinhibitory concentrations of antibiotics can have an impact on cell physiology and trigger a large variety of cellular responses in different bacterial species. Subinhibitory concentrations of β-lactam antibiotics cause reactive oxygen species production and induce PolIV-dependent mutagenesis in Escherichia coli. Here we show that subinhibitory concentrations of β-lactam antibiotics induce the RpoS regulon. RpoS-regulon induction is required for PolIV-dependent mutagenesis because it diminishes the control of DNA-replication fidelity by depleting MutS in E. coli, Vibrio cholerae and Pseudomonas aeruginosa. We also show that in E. coli, the reduction in mismatch-repair activity is mediated by SdsR, the RpoS-controlled small RNA. In summary, we show that mutagenesis induced by subinhibitory concentrations of antibiotics is a genetically controlled process. Because this mutagenesis can generate mutations conferring antibiotic resistance, it should be taken into consideration for the development of more efficient antimicrobial therapeutic strategies. PMID:23511474

  8. Biocontrol of Bacterial Fruit Blotch by Bacillus subtilis 9407 via Surfactin-Mediated Antibacterial Activity and Colonization

    Science.gov (United States)

    Fan, Haiyan; Zhang, Zhanwei; Li, Yan; Zhang, Xun; Duan, Yongming; Wang, Qi

    2017-01-01

    In this study, Bacillus subtilis 9407 showed a strong antibacterial activity against Acidovorax citrulli in vitro and 61.7% biocontrol efficacy on melon seedlings 4 days post inoculation under greenhouse conditions. To understand the biocontrol mechanism of B. subtilis 9407, identify the primary antibacterial compound and determine its role in controlling bacterial fruit blotch (BFB), a srfAB deletion mutant (ΔsrfAB) was constructed. The ΔsrfAB which was deficient in production of surfactin, not only showed almost no ability to inhibit growth of A. citrulli but also decreased biofilm formation and reduced swarming motility. Colonization assay demonstrated that B. subtilis 9407 could conlonize on melon roots and leaves in a large population, while ΔsrfAB showed a four- to ten-fold reduction in colonization of melon roots and leaves. Furthermore, a biocontrol assay showed that ΔsrfAB lost the biocontrol efficacy. In summary, our results indicated that surfactin, which consists of C13- to C16-surfactin A was the primary antibacterial compound of B. subtilis 9407, and it played a major role in biofilm formation, swarming motility, colonization and suppressing BFB. We propose that the biocontrol activity of B. subtilis 9407 is the results of the coordinated action of surfactin-mediated antibacterial activity and colonization. This study reveals for the first time that the use of a B. subtilis strain as a potential biological control agent could efficiently control BFB by producing surfactin. PMID:29075242

  9. TH17 cells promote microbial killing and innate immune sensing of DNA via interleukin 26

    KAUST Repository

    Meller, Stephan; Di Domizio, Jeremy; Voo, Kui S; Friedrich, Heike C; Chamilos, Georgios; Ganguly, Dipyaman; Conrad, Curdin; Gregorio, Josh; Le Roy, Didier; Roger, Thierry; Ladbury, John E; Homey, Bernhard; Watowich, Stanley; Modlin, Robert L; Kontoyiannis, Dimitrios P; Liu, Yong-Jun; Arold, Stefan T.; Gilliet, Michel

    2015-01-01

    Interleukin 17-producing helper T cells (TH 17 cells) have a major role in protection against infections and in mediating autoimmune diseases, yet the mechanisms involved are incompletely understood. We found that interleukin 26 (IL-26), a human TH17 cell-derived cytokine, is a cationic amphipathic protein that kills extracellular bacteria via membrane-pore formation. Furthermore, TH17 cell-derived IL-26 formed complexes with bacterial DNA and self-DNA released by dying bacteria and host cells. The resulting IL-26-DNA complexes triggered the production of type I interferon by plasmacytoid dendritic cells via activation of Toll-like receptor 9, but independently of the IL-26 receptor. These findings provide insights into the potent antimicrobial and proinflammatory function of TH17 cells by showing that IL-26 is a natural human antimicrobial that promotes immune sensing of bacterial and host cell death. © 2015 Nature America, Inc.

  10. TH17 cells promote microbial killing and innate immune sensing of DNA via interleukin 26

    KAUST Repository

    Meller, Stephan

    2015-07-13

    Interleukin 17-producing helper T cells (TH 17 cells) have a major role in protection against infections and in mediating autoimmune diseases, yet the mechanisms involved are incompletely understood. We found that interleukin 26 (IL-26), a human TH17 cell-derived cytokine, is a cationic amphipathic protein that kills extracellular bacteria via membrane-pore formation. Furthermore, TH17 cell-derived IL-26 formed complexes with bacterial DNA and self-DNA released by dying bacteria and host cells. The resulting IL-26-DNA complexes triggered the production of type I interferon by plasmacytoid dendritic cells via activation of Toll-like receptor 9, but independently of the IL-26 receptor. These findings provide insights into the potent antimicrobial and proinflammatory function of TH17 cells by showing that IL-26 is a natural human antimicrobial that promotes immune sensing of bacterial and host cell death. © 2015 Nature America, Inc.

  11. Mitochondrial-Targeted Decyl-Triphenylphosphonium Enhances 2-Deoxy-D-Glucose Mediated Oxidative Stress and Clonogenic Killing of Multiple Myeloma Cells.

    Directory of Open Access Journals (Sweden)

    Jeanine Schibler

    Full Text Available Therapeutic advances have markedly prolonged overall survival in multiple myeloma (MM but the disease currently remains incurable. In a panel of MM cell lines (MM.1S, OPM-2, H929, and U266, using CD138 immunophenotyping, side population staining, and stem cell-related gene expression, we demonstrate the presence of stem-like tumor cells. Hypoxic culture conditions further increased CD138low stem-like cells with upregulated expression of OCT4 and NANOG. Compared to MM cells, these stem-like cells maintained lower steady-state pro-oxidant levels with increased uptake of the fluorescent deoxyglucose analog. In primary human MM samples, increased glycolytic gene expression correlated with poorer overall and event-free survival outcomes. Notably, stem-like cells showed increased mitochondrial mass, rhodamine 123 accumulation, and orthodox mitochondrial configuration while more condensed mitochondria were noted in the CD138high cells. Glycolytic inhibitor 2-deoxyglucose (2-DG induced ER stress as detected by qPCR (BiP, ATF4 and immunoblotting (BiP, CHOP and increased dihydroethidium probe oxidation both CD138low and CD138high cells. Treatment with a mitochondrial-targeting agent decyl-triphenylphosphonium (10-TPP increased intracellular steady-state pro-oxidant levels in stem-like and mature MM cells. Furthermore, 10-TPP mediated increases in mitochondrial oxidant production were suppressed by ectopic expression of manganese superoxide dismutase. Relative to 2-DG or 10-TPP alone, 2-DG plus 10-TPP combination showed increased caspase 3 activation in MM cells with minimal toxicity to the normal hematopoietic progenitor cells. Notably, treatment with polyethylene glycol conjugated catalase significantly reduced 2-DG and/or 10-TPP-induced apoptosis of MM cells. Also, the combination of 2-DG with 10-TPP decreased clonogenic survival of MM cells. Taken together, this study provides a novel strategy of metabolic oxidative stress-induced cytotoxicity of MM

  12. Modulating the bacterial surface with small RNAs: a new twist on PhoP/Q-mediated lipopolysaccharide modification

    DEFF Research Database (Denmark)

    Overgaard, Martin; Kallipolitis, Birgitte; Valentin-Hansen, Poul

    2009-01-01

    Summary In recent years, small non-coding RNAs have emerged as important regulatory components in bacterial stress responses and in bacterial virulence. Many of these are conserved in related species and act on target mRNAs by sequence complementarity. They are tightly controlled at the transcrip...... in enterobacteria and reinforces the idea that one central role of bacterial small regulatory RNAs is to modulate and fine-tune cell surface composition and structure....

  13. Use of UV-irradiated bacteriophage T6 to kill extracellular bacteria in tissue culture infectivity assays

    International Nuclear Information System (INIS)

    Shaw, D.R.; Maurelli, A.T.; Goguen, J.D.; Straley, S.C.; Curtiss, R. III

    1983-01-01

    The authors have utilized 'lysis from without' mediated by UV-inactivated bacteriophage T6 to eliminate extracellular bacteria in experiments measuring the internalization, intracellular survival and replication of Yersinia pestis within mouse peritoneal macrophages and of Shigella flexneri within a human intestinal epithelial cell line. The technique described has the following characteristics: (a) bacterial killing is complete within 15 min at 37 0 C, with a >10 3 -fold reduction in colony-forming units (CFU); (b) bacteria within cultured mammalian cells are protected from killing by UV-inactivated T6; (c) the mammalian cells are not observably affected by exposure to UV-inactivated T6. This technique has several advantages over the use of antibiotics to eliminate extracellular bacteria and is potentially widely applicable in studies of the interactions between pathogenic bacteria and host phagocytic cells as well as other target tissues. (Auth.)

  14. Theriocide: Naming Animal Killing

    Directory of Open Access Journals (Sweden)

    Piers Beirne

    2014-08-01

    Full Text Available In this essay I recommend ‘theriocide’ as the name for those diverse human actions that cause the deaths of animals. Like the killing of one human by another, theriocide may be socially acceptable or unacceptable, legal or illegal. It may be intentional or unintentional and may involve active maltreatment or passive neglect. Theriocide may occur one-on-one, in small groups or in large-scale social institutions. The numerous and sometimes intersecting sites of theriocide include intensive rearing regimes; hunting and fishing; trafficking; vivisection; militarism; pollution; and human-induced climate change. If the killing of animals by humans is as harmful to them as homicide is to humans, then the proper naming of such deaths offers a remedy, however small, to the extensive privileging of human lives over those of other animals. Inevitably, the essay leads to a shocking question: Is theriocide murder?

  15. Oil is killing Africa

    International Nuclear Information System (INIS)

    Paris, H.

    2007-09-01

    Sub-Saharan Africa, with its mining and petroleum resources, is still the object of covetous desires from developed countries. The Gulf of Guinea is a promising area and probably the future battlefield of the 21. century. The fighters of this war are the African people and the big powers, the USA and China at the head, who call upon mercenaries to get their share of this fabulous treasure. Oil was a chance for Africa, but now oil is killing it

  16. Killing MRSA in Wounds

    Science.gov (United States)

    2013-07-01

    humans and serious infections such as pneumonia, meningitis, endocarditis , and osteomyelitis. Methicillin-resistant Staphylococcus aureus (MRSA) has... manifests as suppurative skin and soft-tissue infections. CA-MRSA is of particular importance to the military, as soldiers are counted among the...6,399,098 34. Composition for treatment of ocular bacterial infection # 6,406,692 35. Composition for treatment of a bacterial infection of

  17. A Nuclease from Streptococcus mutans Facilitates Biofilm Dispersal and Escape from Killing by Neutrophil Extracellular Traps.

    Science.gov (United States)

    Liu, Jia; Sun, Luping; Liu, Wei; Guo, Lihong; Liu, Zhaohui; Wei, Xi; Ling, Junqi

    2017-01-01

    Streptococcus mutans is the primary etiologic agent of dental caries and occasionally infective endocarditis, with the ability to form biofilms and disperse cells into distal sites to exacerbate and spread infection. In this study, we identified a nuclease (DeoC) as a S. mutans biofilm dispersal modulating factor through microarray analysis. In vitro assays revealed a dispersal defect of a deoC deletion mutant, and functional studies with purified protein were indicative of the biofilm dispersal activity of DeoC. Neutrophils are a key host response factor restraining bacterial spreading through the formation of neutrophil extracellular traps (NETs), which consist of a nuclear DNA backbone associated with antimicrobial peptides. Therefore, we hypothesized that the dispersed S. mutans might utilize DeoC to degrade NETs and escape killing by the immune system. It was found that S. mutans induced NET formation upon contact with neutrophils, while the presence of NETs in turn enhanced the deoC expression of S. mutans . Fluorescence microscopy inspection showed that deoC deletion resulted in a decreased NET degradation ability of S. mutans and enhanced susceptibility to neutrophil killing. Data obtained from this study assigned two important roles for DeoC in S. mutans : contributing to the spread of infection through mediating biofilm dispersal, and facilitating the escape of S. mutans from neutrophil killing through NET degradation.

  18. Recombination-mediated genetic engineering of a bacterial artificial chromosome clone of modified vaccinia virus Ankara (MVA.

    Directory of Open Access Journals (Sweden)

    Matthew G Cottingham

    2008-02-01

    Full Text Available The production, manipulation and rescue of a bacterial artificial chromosome clone of Vaccinia virus (VAC-BAC in order to expedite construction of expression vectors and mutagenesis of the genome has been described (Domi & Moss, 2002, PNAS99 12415-20. The genomic BAC clone was 'rescued' back to infectious virus using a Fowlpox virus helper to supply transcriptional machinery. We apply here a similar approach to the attenuated strain Modified Vaccinia virus Ankara (MVA, now widely used as a safe non-replicating recombinant vaccine vector in mammals, including humans. Four apparently full-length, rescuable clones were obtained, which had indistinguishable immunogenicity in mice. One clone was shotgun sequenced and found to be identical to the parent. We employed GalK recombination-mediated genetic engineering (recombineering of MVA-BAC to delete five selected viral genes. Deletion of C12L, A44L, A46R or B7R did not significantly affect CD8(+ T cell immunogenicity in BALB/c mice, but deletion of B15R enhanced specific CD8(+ T cell responses to one of two endogenous viral epitopes (from the E2 and F2 proteins, in accordance with published work (Staib et al., 2005, J. Gen. Virol.86, 1997-2006. In addition, we found a higher frequency of triple-positive IFN-gamma, TNF-alpha and IL-2 secreting E3-specific CD8+ T-cells 8 weeks after vaccination with MVA lacking B15R. Furthermore, a recombinant vaccine capable of inducing CD8(+ T cells against an epitope from Plasmodium berghei was created using GalK counterselection to insert an antigen expression cassette lacking a tandem marker gene into the traditional thymidine kinase locus of MVA-BAC. MVA continues to feature prominently in clinical trials of recombinant vaccines against diseases such as HIV-AIDS, malaria and tuberculosis. Here we demonstrate in proof-of-concept experiments that MVA-BAC recombineering is a viable route to more rapid and efficient generation of new candidate mutant and recombinant

  19. Evaluation of an Internally Controlled Multiplex Tth Endonuclease Cleavage Loop-Mediated Isothermal Amplification (TEC-LAMP Assay for the Detection of Bacterial Meningitis Pathogens

    Directory of Open Access Journals (Sweden)

    Owen Higgins

    2018-02-01

    Full Text Available Bacterial meningitis infection is a leading global health concern for which rapid and accurate diagnosis is essential to reduce associated morbidity and mortality. Loop-mediated isothermal amplification (LAMP offers an effective low-cost diagnostic approach; however, multiplex LAMP is difficult to achieve, limiting its application. We have developed novel real-time multiplex LAMP technology, TEC-LAMP, using Tth endonuclease IV and a unique LAMP primer/probe. This study evaluates the analytical specificity, limit of detection (LOD and clinical application of an internally controlled multiplex TEC-LAMP assay for detection of leading bacterial meningitis pathogens: Streptococcus pneumoniae, Neisseria meningitidis and Haemophilus influenzae. Analytical specificities were established by testing 168 bacterial strains, and LODs were determined using Probit analysis. The TEC-LAMP assay was 100% specific, with LODs for S. pneumoniae, N. meningitidis and H. influenzae of 39.5, 17.3 and 25.9 genome copies per reaction, respectively. Clinical performance was evaluated by testing 65 archived PCR-positive samples. Compared to singleplex real-time PCR, the multiplex TEC-LAMP assay demonstrated diagnostic sensitivity and specificity of 92.3% and 100%, respectively. This is the first report of a single-tube internally controlled multiplex LAMP assay for bacterial meningitis pathogen detection, and the first report of Tth endonuclease IV incorporation into nucleic acid amplification diagnostic technology.

  20. Evaluation of an Internally Controlled Multiplex Tth Endonuclease Cleavage Loop-Mediated Isothermal Amplification (TEC-LAMP) Assay for the Detection of Bacterial Meningitis Pathogens

    Science.gov (United States)

    Clancy, Eoin; Cormican, Martin; Boo, Teck Wee; Cunney, Robert

    2018-01-01

    Bacterial meningitis infection is a leading global health concern for which rapid and accurate diagnosis is essential to reduce associated morbidity and mortality. Loop-mediated isothermal amplification (LAMP) offers an effective low-cost diagnostic approach; however, multiplex LAMP is difficult to achieve, limiting its application. We have developed novel real-time multiplex LAMP technology, TEC-LAMP, using Tth endonuclease IV and a unique LAMP primer/probe. This study evaluates the analytical specificity, limit of detection (LOD) and clinical application of an internally controlled multiplex TEC-LAMP assay for detection of leading bacterial meningitis pathogens: Streptococcus pneumoniae, Neisseria meningitidis and Haemophilus influenzae. Analytical specificities were established by testing 168 bacterial strains, and LODs were determined using Probit analysis. The TEC-LAMP assay was 100% specific, with LODs for S. pneumoniae, N. meningitidis and H. influenzae of 39.5, 17.3 and 25.9 genome copies per reaction, respectively. Clinical performance was evaluated by testing 65 archived PCR-positive samples. Compared to singleplex real-time PCR, the multiplex TEC-LAMP assay demonstrated diagnostic sensitivity and specificity of 92.3% and 100%, respectively. This is the first report of a single-tube internally controlled multiplex LAMP assay for bacterial meningitis pathogen detection, and the first report of Tth endonuclease IV incorporation into nucleic acid amplification diagnostic technology. PMID:29425124

  1. Antibacterial surface design - Contact kill

    Science.gov (United States)

    Kaur, Rajbir; Liu, Song

    2016-08-01

    Designing antibacterial surfaces has become extremely important to minimize Healthcare Associated Infections which are a major cause of mortality worldwide. A previous biocide-releasing approach is based on leaching of encapsulated biocides such as silver and triclosan which exerts negative impacts on the environment and potentially contributes to the development of bacterial resistance. This drawback of leachable compounds led to the shift of interest towards a more sustainable and environmentally friendly approach: contact-killing surfaces. Biocides that can be bound onto surfaces to give the substrates contact-active antibacterial activity include quaternary ammonium compounds (QACs), quaternary phosphoniums (QPs), carbon nanotubes, antibacterial peptides, and N-chloramines. Among the above, QACs and N-chloramines are the most researched contact-active biocides. We review the engineering of contact-active surfaces using QACs or N-chloramines, the modes of actions as well as the test methods. The charge-density threshold of cationic surfaces for desired antibacterial efficacy and attempts to combine various biocides for the generation of new contact-active surfaces are discussed in detail. Surface positive charge density is identified as a key parameter to define antibacterial efficacy. We expect that this research field will continue to attract more research interest in view of the potential impact of self-disinfective surfaces on healthcare-associated infections, food safety and corrosion/fouling resistance required on industrial surfaces such as oil pipes and ship hulls.

  2. Analysing the Wrongness of Killing

    DEFF Research Database (Denmark)

    Di Nucci, Ezio

    2014-01-01

    This article provides an in-depth analysis of the wrongness of killing by comparing different versions of three influential views: the traditional view that killing is always wrong; the liberal view that killing is wrong if and only if the victim does not want to be killed; and Don Marquis‟ future...... of value account of the wrongness of killing. In particular, I illustrate the advantages that a basic version of the liberal view and a basic version of the future of value account have over competing alternatives. Still, ultimately none of the views analysed here are satisfactory; but the different...

  3. Mediatization

    DEFF Research Database (Denmark)

    Hjarvard, Stig

    2017-01-01

    Mediatization research shares media effects studies' ambition of answering the difficult questions with regard to whether and how media matter and influence contemporary culture and society. The two approaches nevertheless differ fundamentally in that mediatization research seeks answers...... to these general questions by distinguishing between two concepts: mediation and mediatization. The media effects tradition generally considers the effects of the media to be a result of individuals being exposed to media content, i.e. effects are seen as an outcome of mediated communication. Mediatization...... research is concerned with long-term structural changes involving media, culture, and society, i.e. the influences of the media are understood in relation to how media are implicated in social and cultural changes and how these processes come to create new conditions for human communication and interaction...

  4. Efficient generation of recombinant RNA viruses using targeted recombination-mediated mutagenesis of bacterial artificial chromosomes containing full-length cDNA

    DEFF Research Database (Denmark)

    Rasmussen, Thomas Bruun; Risager, Peter Christian; Fahnøe, Ulrik

    2013-01-01

    Background Infectious cDNA clones are a prerequisite for directed genetic manipulation of RNA viruses. Here, a strategy to facilitate manipulation and rescue of classical swine fever viruses (CSFVs) from full-length cDNAs present within bacterial artificial chromosomes (BACs) is described....... This strategy allows manipulation of viral cDNA by targeted recombination-mediated mutagenesis within bacteria. Results A new CSFV-BAC (pBeloR26) derived from the Riems vaccine strain has been constructed and subsequently modified in the E2 coding sequence, using the targeted recombination strategy to enable...

  5. Pseudomonas Exotoxin A: optimized by evolution for effective killing

    Directory of Open Access Journals (Sweden)

    Marta eMichalska

    2015-09-01

    Full Text Available Pseudomonas Exotoxin A (PE is the most toxic virulence factor of the pathogenic bacterium Pseudomonas aeruginosa. This review describes current knowledge about the intoxication pathways of PE. Moreover, PE represents a remarkable example for pathoadaptive evolution, how bacterial molecules have been structurally and functionally optimized under evolutionary pressure to effectively impair and kill their host cells.

  6. In vitro time kill assessment of crude methanol extract of ...

    African Journals Online (AJOL)

    The in vitro antibacterial activities and time kill regimes of crude methanol extract of Helichrysum pedunculatum was assessed using standard microbiological procedures. The experiment was conducted against a panel of bacterial species made up of clinical, environmental and reference strains. The extract was active ...

  7. Anti-Pseudomonas aeruginosa IgY Antibodies Induce Specific Bacterial Aggregation and Internalization in Human Polymorphonuclear Neutrophils

    DEFF Research Database (Denmark)

    Thomsen, K.; Christophersen, L.; Bjarnsholt, T.

    2015-01-01

    with P. aeruginosa by augmenting the phagocytic competence of PMNs may postpone the deteriorating chronic biofilm infection. Anti-P. aeruginosa IgY antibodies significantly increase the PMN-mediated respiratory burst and subsequent bacterial killing of P. aeruginosa in vitro. The mode of action...... is attributed to IgY-facilitated formation of immobilized bacteria in aggregates, as visualized by fluorescence microscopy and the induction of increased bacterial hydrophobicity. Thus, the present study demonstrates that avian egg yolk immunoglobulins (IgY) targeting P. aeruginosa modify bacterial fitness...

  8. Peptidoglycan recognition proteins kill bacteria by inducing oxidative, thiol, and metal stress.

    Directory of Open Access Journals (Sweden)

    Des Raj Kashyap

    2014-07-01

    Full Text Available Mammalian Peptidoglycan Recognition Proteins (PGRPs are a family of evolutionary conserved bactericidal innate immunity proteins, but the mechanism through which they kill bacteria is unclear. We previously proposed that PGRPs are bactericidal due to induction of reactive oxygen species (ROS, a mechanism of killing that was also postulated, and later refuted, for several bactericidal antibiotics. Here, using whole genome expression arrays, qRT-PCR, and biochemical tests we show that in both Escherichia coli and Bacillus subtilis PGRPs induce a transcriptomic signature characteristic of oxidative stress, as well as correlated biochemical changes. However, induction of ROS was required, but not sufficient for PGRP killing. PGRPs also induced depletion of intracellular thiols and increased cytosolic concentrations of zinc and copper, as evidenced by transcriptome changes and supported by direct measurements. Depletion of thiols and elevated concentrations of metals were also required, but by themselves not sufficient, for bacterial killing. Chemical treatment studies demonstrated that efficient bacterial killing can be recapitulated only by the simultaneous addition of agents leading to production of ROS, depletion of thiols, and elevation of intracellular metal concentrations. These results identify a novel mechanism of bacterial killing by innate immunity proteins, which depends on synergistic effect of oxidative, thiol, and metal stress and differs from bacterial killing by antibiotics. These results offer potential targets for developing new antibacterial agents that would kill antibiotic-resistant bacteria.

  9. How to kill creativity.

    Science.gov (United States)

    Amabile, T M

    1998-01-01

    In today's knowledge economy, creativity is more important than ever. But many companies unwittingly employ managerial practices that kill it. How? By crushing their employees' intrinsic motivation--the strong internal desire to do something based on interests and passions. Managers don't kill creativity on purpose. Yet in the pursuit of productivity, efficiency, and control--all worthy business imperatives--they undermine creativity. It doesn't have to be that way, says Teresa Amabile. Business imperatives can comfortably coexist with creativity. But managers will have to change their thinking first. Specifically, managers will need to understand that creativity has three parts: expertise, the ability to think flexibly and imaginatively, and motivation. Managers can influence the first two, but doing so is costly and slow. It would be far more effective to increase employees' intrinsic motivation. To that end, managers have five levers to pull: the amount of challenge they give employees, the degree of freedom they grant around process, the way they design work groups, the level of encouragement they give, and the nature of organizational support. Take challenge as an example. Intrinsic motivation is high when employees feel challenged but not overwhelmed by their work. The task for managers, therefore, becomes matching people to the right assignments. Consider also freedom. Intrinsic motivation--and thus creativity--soars when managers let people decide how to achieve goals, not what goals to achieve. Managers can make a difference when it comes to employee creativity. The result can be truly innovative companies in which creativity doesn't just survive but actually thrives.

  10. The rhizosphere and PAH amendment mediate impacts on functional and structural bacterial diversity in sandy peat soil

    International Nuclear Information System (INIS)

    Yrjaelae, Kim; Keskinen, Anna-Kaisa; Akerman, Marja-Leena; Fortelius, Carola; Sipilae, Timo P.

    2010-01-01

    To reveal the degradation capacity of bacteria in PAH polluted soil and rhizosphere we combined bacterial extradiol ring-cleavage dioxygenase and 16S rRNA analysis in Betula pubescens rhizoremediation. Characterisation of the functional bacterial community by RFLP revealed novel environmental dioxygenases, and their putative hosts were studied by 16S rRNA amplification. Plant rhizosphere and PAH amendment effects were detected by the RFLP/T-RFLP analysis. Functional species richness increased in the birch rhizosphere and PAH amendment impacted the compositional diversity of the dioxygenases and the structural 16S rRNA community. A shift from an Acidobacteria and Verrucomicrobia dominated to an Alpha- and Betaproteobacteria dominated community structure was detected in polluted soil. Clone sequence analysis indicated catabolic significance of Burkholderia in PAH polluted soil. These results advance our understanding of rhizoremediation and unveil the extent of uncharacterized functional bacteria to benefit bioremediation by facilitating the development of the molecular tool box to monitor bacterial populations in biodegradation. - The bacterial community analysis using 16S rRNA and extradiol dioxygenase marker genes in rhizoremediation revealed both a rhizosphere and a PAH-pollution effect.

  11. 'David and Goliath' of the soil food web - Flagellates that kill nematodes

    DEFF Research Database (Denmark)

    Strandmark, Lisa Bjørnlund; Rønn, Regin

    2008-01-01

    Nematodes and flagellates are important bacterial predators in soil and sediments. Generally, these organisms are considered to be competitors for bacterial food. We studied the interaction among flagellates and nematodes using axenic liquid cultures amended with heat-killed bacteria as food...... and showed for the first time that a small and common soil flagellate (Cercomonas sp.) is able to attack and kill the much larger nematode Caenorhabditis elegans. The killing process is not caused by soluble metabolites but requires direct contact between the flagellate cells and the nematode surface...... and occurs rapidly (within a few hours) at high flagellate density. At lower flagellate density, adult nematodes sometimes avoid attachment of flagellates, feed on them and become the dominant bacterial predator. Considering that bacterial feeders affect bacterial communities differently, and that one...

  12. Archivists Killed for Political Reasons

    NARCIS (Netherlands)

    de Baets, Antoon

    2015-01-01

    This essay, Archivists Killed for Political Reasons, offers an overview of archivists who were killed for political reasons through the ages. After determining the criteria for inclusion, sixteen such political murders of archivists are briefly discussed. These cases were distributed over six

  13. Chlamydia trachomatis intercepts Golgi-derived sphingolipids through a Rab14-mediated transport required for bacterial development and replication.

    Directory of Open Access Journals (Sweden)

    Anahí Capmany

    2010-11-01

    Full Text Available Chlamydia trachomatis are obligate intracellular bacteria that survive and replicate in a bacterial-modified phagosome called inclusion. As other intracellular parasites, these bacteria subvert the phagocytic pathway to avoid degradation in phagolysosomes and exploit trafficking pathways to acquire both energy and nutrients essential for their survival. Rabs are host proteins that control intracellular vesicular trafficking. Rab14, a Golgi-related Rab, controls Golgi to endosomes transport. Since Chlamydia establish a close relationship with the Golgi apparatus, the recruitment and participation of Rab14 on inclusion development and bacteria growth were analyzed. Time course analysis revealed that Rab14 associated with inclusions by 10 h post infection and was maintained throughout the entire developmental cycle. The recruitment was bacterial protein synthesis-dependent but independent of microtubules and Golgi integrity. Overexpression of Rab14 dominant negative mutants delayed inclusion enlargement, and impaired bacteria replication as determined by IFU. Silencing of Rab14 by siRNA also decreased bacteria multiplication and infectivity. By electron microscopy, aberrant bacteria were observed in cells overexpressing the cytosolic negative Rab14 mutant. Our results showed that Rab14 facilitates the delivery of sphingolipids required for bacterial development and replication from the Golgi to chlamydial inclusions. Novel anti-chlamydial therapies could be developed based on the knowledge of how bacteria subvert host vesicular transport events through Rabs manipulation.

  14. Chlamydia trachomatis intercepts Golgi-derived sphingolipids through a Rab14-mediated transport required for bacterial development and replication.

    Science.gov (United States)

    Capmany, Anahí; Damiani, María Teresa

    2010-11-22

    Chlamydia trachomatis are obligate intracellular bacteria that survive and replicate in a bacterial-modified phagosome called inclusion. As other intracellular parasites, these bacteria subvert the phagocytic pathway to avoid degradation in phagolysosomes and exploit trafficking pathways to acquire both energy and nutrients essential for their survival. Rabs are host proteins that control intracellular vesicular trafficking. Rab14, a Golgi-related Rab, controls Golgi to endosomes transport. Since Chlamydia establish a close relationship with the Golgi apparatus, the recruitment and participation of Rab14 on inclusion development and bacteria growth were analyzed. Time course analysis revealed that Rab14 associated with inclusions by 10 h post infection and was maintained throughout the entire developmental cycle. The recruitment was bacterial protein synthesis-dependent but independent of microtubules and Golgi integrity. Overexpression of Rab14 dominant negative mutants delayed inclusion enlargement, and impaired bacteria replication as determined by IFU. Silencing of Rab14 by siRNA also decreased bacteria multiplication and infectivity. By electron microscopy, aberrant bacteria were observed in cells overexpressing the cytosolic negative Rab14 mutant. Our results showed that Rab14 facilitates the delivery of sphingolipids required for bacterial development and replication from the Golgi to chlamydial inclusions. Novel anti-chlamydial therapies could be developed based on the knowledge of how bacteria subvert host vesicular transport events through Rabs manipulation.

  15. "The Killing Fields" of Innovation

    DEFF Research Database (Denmark)

    Ingerslev, Karen

    2014-01-01

    to clustering of ideas, a design strategy which seemed to kill unique ideas. The reframing of innovation as a radical endeavor killed learning from others for being not innovative. The findings of this paper supplement theories of deliberate killing of ideas by suggesting framing, design and facilitation......This paper points to seemingly contradicted processes of framing innovation, idea generation and killing ideas. It reports from a yearlong innovation project, where health care professionals explored problems and tested ideas for solutions, regarding a future downsizing of the case hospital....... Theories in various ways describe the opening and closing phases of innovation. Exploration and idea generation opens a field of interest, which is then closed by making choices of ideas to further explore in the next opening phase. These choices deliberately kill a lot of ideas. In the innovation project...

  16. Photoexcited quantum dots for killing multidrug-resistant bacteria

    Science.gov (United States)

    Courtney, Colleen M.; Goodman, Samuel M.; McDaniel, Jessica A.; Madinger, Nancy E.; Chatterjee, Anushree; Nagpal, Prashant

    2016-05-01

    Multidrug-resistant bacterial infections are an ever-growing threat because of the shrinking arsenal of efficacious antibiotics. Metal nanoparticles can induce cell death, yet the toxicity effect is typically nonspecific. Here, we show that photoexcited quantum dots (QDs) can kill a wide range of multidrug-resistant bacterial clinical isolates, including methicillin-resistant Staphylococcus aureus, carbapenem-resistant Escherichia coli, and extended-spectrum β-lactamase-producing Klebsiella pneumoniae and Salmonella typhimurium. The killing effect is independent of material and controlled by the redox potentials of the photogenerated charge carriers, which selectively alter the cellular redox state. We also show that the QDs can be tailored to kill 92% of bacterial cells in a monoculture, and in a co-culture of E. coli and HEK 293T cells, while leaving the mammalian cells intact, or to increase bacterial proliferation. Photoexcited QDs could be used in the study of the effect of redox states on living systems, and lead to clinical phototherapy for the treatment of infections.

  17. Recombination-mediated genetic engineering of a bacterial artificial chromosome clone of modified vaccinia virus Ankara (MVA)

    DEFF Research Database (Denmark)

    Cottingham, Matthew G; Andersen, Rikke F; Spencer, Alexandra J

    2008-01-01

    -length, rescuable clones were obtained, which had indistinguishable immunogenicity in mice. One clone was shotgun sequenced and found to be identical to the parent. We employed GalK recombination-mediated genetic engineering (recombineering) of MVA-BAC to delete five selected viral genes. Deletion of C12L, A44L, A...

  18. Notes on super Killing tensors

    Energy Technology Data Exchange (ETDEWEB)

    Howe, P.S. [Department of Mathematics, King’s College London,The Strand, London WC2R 2LS (United Kingdom); Lindström, University [Department of Physics and Astronomy, Theoretical Physics, Uppsala University,SE-751 20 Uppsala (Sweden); Theoretical Physics, Imperial College London,Prince Consort Road, London SW7 2AZ (United Kingdom)

    2016-03-14

    The notion of a Killing tensor is generalised to a superspace setting. Conserved quantities associated with these are defined for superparticles and Poisson brackets are used to define a supersymmetric version of the even Schouten-Nijenhuis bracket. Superconformal Killing tensors in flat superspaces are studied for spacetime dimensions 3,4,5,6 and 10. These tensors are also presented in analytic superspaces and super-twistor spaces for 3,4 and 6 dimensions. Algebraic structures associated with superconformal Killing tensors are also briefly discussed.

  19. Dissecting Bacterial Cell Wall Entry and Signaling in Eukaryotic Cells: an Actin-Dependent Pathway Parallels Platelet-Activating Factor Receptor-Mediated Endocytosis.

    Science.gov (United States)

    Loh, Lip Nam; Gao, Geli; Tuomanen, Elaine I

    2017-01-03

    The Gram-positive bacterial cell wall (CW) peptidoglycan-teichoic acid complex is released into the host environment during bacterial metabolism or death. It is a highly inflammatory Toll-like receptor 2 (TLR2) ligand, and previous in vivo studies have demonstrated its ability to recapitulate pathological features of pneumonia and meningitis. We report that an actin-dependent pathway is involved in the internalization of the CW by epithelial and endothelial cells, in addition to the previously described platelet-activating factor receptor (PAFr)-dependent uptake pathway. Unlike the PAFr-dependent pathway, which is mediated by clathrin and dynamin and does not lead to signaling, the alternative pathway is sensitive to 5-(N-ethyl-N-isopropyl) amiloride (EIPA) and engenders Rac1, Cdc42, and phosphatidylinositol 3-kinase (PI3K) signaling. Upon internalization by this macropinocytosis-like pathway, CW is trafficked to lysosomes. Intracellular CW trafficking is more complex than previously recognized and suggests multiple points of interaction with and without innate immune signaling. Streptococcus pneumoniae is a major human pathogen infecting the respiratory tract and brain. It is an established model organism for understanding how infection injures the host. During infection or bacterial growth, bacteria shed their cell wall (CW) into the host environment and trigger inflammation. A previous study has shown that CW enters and crosses cell barriers by interacting with a receptor on the surfaces of host cells, termed platelet-activating factor receptor (PAFr). In the present study, by using cells that are depleted of PAFr, we identified a second pathway with features of macropinocytosis, which is a receptor-independent fluid uptake mechanism by cells. Each pathway contributes approximately the same amount of cell wall trafficking, but the PAFr pathway is silent, while the new pathway appears to contribute to the host inflammatory response to CW insult. Copyright © 2017

  20. Atorvastatin along with imipenem attenuates acute lung injury in sepsis through decrease in inflammatory mediators and bacterial load.

    Science.gov (United States)

    Choudhury, Soumen; Kandasamy, Kannan; Maruti, Bhojane Somnath; Addison, M Pule; Kasa, Jaya Kiran; Darzi, Sazad A; Singh, Thakur Uttam; Parida, Subhashree; Dash, Jeevan Ranjan; Singh, Vishakha; Mishra, Santosh Kumar

    2015-10-15

    Lung is one of the vital organs which is affected during the sequential development of multi-organ dysfunction in sepsis. The purpose of the present study was to examine whether combined treatment with atorvastatin and imipenem could attenuate sepsis-induced lung injury in mice. Sepsis was induced by caecal ligation and puncture. Lung injury was assessed by the presence of lung edema, increased vascular permeability, increased inflammatory cell infiltration and cytokine levels in broncho-alveolar lavage fluid (BALF). Treatment with atorvastatin along with imipenem reduced the lung bacterial load and pro-inflammatory cytokines (IL-1β and TNFα) level in BALF. The markers of pulmonary edema such as microvascular leakage and wet-dry weight ratio were also attenuated. This was further confirmed by the reduced activity of MPO and ICAM-1 mRNA expression, indicating the lesser infiltration and adhesion of inflammatory cells to the lungs. Again, expression of mRNA and protein level of iNOS in lungs was also reduced in the combined treatment group. Based on the above findings it can be concluded that, combined treatment with atorvastatin and imipenem dampened the inflammatory response and reduced the bacterial load, thus seems to have promising therapeutic potential in sepsis-induced lung injury in mice. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Cysteamine-mediated clearance of antibiotic-resistant pathogens in human cystic fibrosis macrophages.

    Directory of Open Access Journals (Sweden)

    Chandra L Shrestha

    Full Text Available Members of the Burkholderia cepacia complex are virulent, multi-drug resistant pathogens that survive and replicate intracellularly in patients with cystic fibrosis (CF. We have discovered that B. cenocepacia cannot be cleared from CF macrophages due to defective autophagy, causing continued systemic inflammation and infection. Defective autophagy in CF is mediated through constitutive reactive oxygen species (ROS activation of transglutaminase-2 (TG2, which causes the sequestration (accumulation of essential autophagy initiating proteins. Cysteamine is a TG2 inhibitor and proteostasis regulator with the potential to restore autophagy. Therefore, we sought to examine the impact of cysteamine on CF macrophage autophagy and bacterial killing. Human peripheral blood monocyte-derived macrophages (MDMs and alveolar macrophages were isolated from CF and non-CF donors. Macrophages were infected with clinical isolates of relevant CF pathogens. Cysteamine caused direct bacterial growth killing of live B. cenocepacia, B. multivorans, P. aeruginosa and MRSA in the absence of cells. Additionally, B. cenocepacia, B. multivorans, and P. aeruginosa invasion were significantly decreased in CF MDMs treated with cysteamine. Finally, cysteamine decreased TG2, p62, and beclin-1 accumulation in CF, leading to increased Burkholderia uptake into autophagosomes, increased macrophage CFTR expression, and decreased ROS and IL-1β production. Cysteamine has direct anti-bacterial growth killing and improves human CF macrophage autophagy resulting in increased macrophage-mediated bacterial clearance, decreased inflammation, and reduced constitutive ROS production. Thus, cysteamine may be an effective adjunct to antibiotic regimens in CF.

  2. Killing Horizons as Equipotential Hypersurfaces

    OpenAIRE

    Smolić, Ivica

    2012-01-01

    In this note we present a new proof that Killing horizons are equipotential hypersurfaces for the electric and the magnetic scalar potential, that makes no use of gravitational field equations or the assumption about the existence of bifurcation surface.

  3. Phantom metrics with Killing spinors

    Directory of Open Access Journals (Sweden)

    W.A. Sabra

    2015-11-01

    Full Text Available We study metric solutions of Einstein–anti-Maxwell theory admitting Killing spinors. The analogue of the IWP metric which admits a space-like Killing vector is found and is expressed in terms of a complex function satisfying the wave equation in flat (2+1-dimensional space–time. As examples, electric and magnetic Kasner spaces are constructed by allowing the solution to depend only on the time coordinate. Euclidean solutions are also presented.

  4. Spacetimes foliated by Killing horizons

    International Nuclear Information System (INIS)

    Pawlowski, Tomasz; Lewandowski, Jerzy; Jezierski, Jacek

    2004-01-01

    It seems to be expected that a horizon of a quasi-local type, such as a Killing or an isolated horizon, by analogy with a globally defined event horizon, should be unique in some open neighbourhood in the spacetime, provided the vacuum Einstein or the Einstein-Maxwell equations are satisfied. The aim of our paper is to verify whether that intuition is correct. If one can extend a so-called Kundt metric, in such a way that its null, shear-free surfaces have spherical spacetime sections, the resulting spacetime is foliated by so-called non-expanding horizons. The obstacle is Kundt's constraint induced at the surfaces by the Einstein or the Einstein-Maxwell equations, and the requirement that a solution be globally defined on the sphere. We derived a transformation (reflection) that creates a solution to Kundt's constraint out of data defining an extremal isolated horizon. Using that transformation, we derived a class of exact solutions to the Einstein or Einstein-Maxwell equations of very special properties. Each spacetime we construct is foliated by a family of the Killing horizons. Moreover, it admits another, transversal Killing horizon. The intrinsic and extrinsic geometries of the transversal Killing horizon coincide with the one defined on the event horizon of the extremal Kerr-Newman solution. However, the Killing horizon in our example admits yet another Killing vector tangent to and null at it. The geometries of the leaves are given by the reflection

  5. Rapid and efficient introduction of a foreign gene into bacterial artificial chromosome-cloned varicella vaccine by Tn7-mediated site-specific transposition

    International Nuclear Information System (INIS)

    Somboonthum, Pranee; Koshizuka, Tetsuo; Okamoto, Shigefumi; Matsuura, Masaaki; Gomi, Yasuyuki; Takahashi, Michiaki; Yamanishi, Koichi; Mori, Yasuko

    2010-01-01

    Using a rapid and reliable system based on Tn7-mediated site-specific transposition, we have successfully constructed a recombinant Oka varicella vaccine (vOka) expressing the mumps virus (MuV) fusion protein (F). The backbone of the vector was our previously reported vOka-BAC (bacterial artificial chromosome) genome. We inserted the transposon Tn7 attachment sequence, LacZα-mini-attTn7, into the region between ORF12 and ORF13 to generate a vOka-BAC-Tn genome. The MuV-F expressing cassette was transposed into the vOka-BAC genome at the mini-attTn7 transposition site. MuV-F protein was expressed in recombinant virus, rvOka-F infected cells. In addition, the MuV-F protein was cleaved in the rvOka-F infected cells as in MuV-infected cells. The growth of rvOka-F was similar to that of the original recombinant vOka without the F gene. Thus, we show that Tn7-mediated transposition is an efficient method for introducing a foreign gene expression cassette into the vOka-BAC genome as a live virus vector.

  6. Role of nitric oxide and superoxide in Giardia lamblia killing

    Directory of Open Access Journals (Sweden)

    P.D. Fernandes

    1997-01-01

    Full Text Available Giardia lamblia trophozoites were incubated for 2 h with activated murine macrophages, nitric oxide (NO donors or a superoxide anion generator (20 mU/ml xanthine oxidase plus 1 mM xanthine. Activated macrophages were cytotoxic to Giardia trophozoites (~60% dead trophozoites. This effect was inhibited (>90% by an NO synthase inhibitor (200 µM and unaffected by superoxide dismutase (SOD, 300 U/ml. Giardia trophozoites were killed by the NO donors, S-nitroso-acetyl-penicillamine (SNAP and sodium nitroprusside (SNP in a dose-dependent manner (LD50 300 and 50 µM, respectively. A dual NO-superoxide anion donor, 3-morpholino-sydnonimine hydrochloride (SIN-1, did not have a killing effect in concentrations up to 1 mM. However, when SOD (300 U/ml was added simultaneously with SIN-1 to Giardia, a significant trophozoite-killing effect was observed (~35% dead trophozoites at 1 mM. The mixture of SNAP or SNP with superoxide anion, which yields peroxynitrite, abolished the trophozoite killing induced by NO donors. Authentic peroxynitrite only killed trophozoites at very high concentrations (3 mM. These results indicate that NO accounts for Giardia trophozoite killing and this effect is not mediated by peroxynitrite

  7. Kill rate of mastitis pathogens by a combination of cefalexin and kanamycin.

    Science.gov (United States)

    Maneke, E; Pridmore, A; Goby, L; Lang, I

    2011-01-01

    To assess the bacterial killing rate produced by a combination of cefalexin and kanamycin at two different concentration ratios. Time-kill kinetics of cefalexin and kanamycin, individually and in combination, were determined against one strain each of Escherichia coli, Staphylococcus aureus, Streptococcus agalactiae, Streptococcus dysgalactiae and Streptococcus uberis. The combination was tested using two fixed ratios (cefalexin : kanamycin ratios of 1·25 : 1 and 1 : 2·3) and two concentrations of each ratio. Time-kill curves produced with either ratio were quite similar. Against most bacterial species, higher concentrations produced faster kill. In all cases, the combination of cefalexin and kanamycin showed faster and greater kill at lower antibiotic concentrations than those observed with either drug alone. The combination of cefalexin and kanamycin results in a fast initial killing of major mastitis pathogens at both concentration ratios. The combination of cefalexin and kanamycin achieved rapid bacterial kill at concentrations and ratios that can be achieved in vivo following intramammary infusion of a mastitis treatment. © 2010 Boehringer Ingelheim Vetmedica GmbH. Journal of Applied Microbiology © 2010 The Society for Applied Microbiology.

  8. The Adc/Lmb System Mediates Zinc Acquisition in Streptococcus agalactiae and Contributes to Bacterial Growth and Survival.

    Science.gov (United States)

    Moulin, Pauline; Patron, Kévin; Cano, Camille; Zorgani, Mohamed Amine; Camiade, Emilie; Borezée-Durant, Elise; Rosenau, Agnès; Mereghetti, Laurent; Hiron, Aurélia

    2016-12-15

    The Lmb protein of Streptococcus agalactiae is described as an adhesin that binds laminin, a component of the human extracellular matrix. In this study, we revealed a new role for this protein in zinc uptake. We also identified two Lmb homologs, AdcA and AdcAII, redundant binding proteins that combine with the AdcCB translocon to form a zinc-ABC transporter. Expression of this transporter is controlled by the zinc concentration in the medium through the zinc-dependent regulator AdcR. Triple deletion of lmb, adcA, and adcAII, or that of the adcCB genes, impaired growth and cell separation in a zinc-restricted environment. Moreover, we found that this Adc zinc-ABC transporter promotes S. agalactiae growth and survival in some human biological fluids, suggesting that it contributes to the infection process. These results indicated that zinc has biologically vital functions in S. agalactiae and that, under the conditions tested, the Adc/Lmb transporter constitutes the main zinc acquisition system of the bacterium. A zinc transporter, composed of three redundant binding proteins (Lmb, AdcA, and AdcAII), was characterized in Streptococcus agalactiae This system was shown to be essential for bacterial growth and morphology in zinc-restricted environments, including human biological fluids. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  9. A lower isoelectric point increases signal sequence-mediated secretion of recombinant proteins through a bacterial ABC transporter.

    Science.gov (United States)

    Byun, Hyunjong; Park, Jiyeon; Kim, Sun Chang; Ahn, Jung Hoon

    2017-12-01

    Efficient protein production for industrial and academic purposes often involves engineering microorganisms to produce and secrete target proteins into the culture. Pseudomonas fluorescens has a TliDEF ATP-binding cassette transporter, a type I secretion system, which recognizes C-terminal LARD3 signal sequence of thermostable lipase TliA. Many proteins are secreted by TliDEF in vivo when recombined with LARD3, but there are still others that cannot be secreted by TliDEF even when LARD3 is attached. However, the factors that determine whether or not a recombinant protein can be secreted through TliDEF are still unknown. Here, we recombined LARD3 with several proteins and examined their secretion through TliDEF. We found that the proteins secreted via LARD3 are highly negatively charged with highly-acidic isoelectric points (pI) lower than 5.5. Attaching oligo-aspartate to lower the pI of negatively-charged recombinant proteins improved their secretion, and attaching oligo-arginine to negatively-charged proteins blocked their secretion by LARD3. In addition, negatively supercharged green fluorescent protein (GFP) showed improved secretion, whereas positively supercharged GFP did not secrete. These results disclosed that proteins' acidic pI and net negative charge are major factors that determine their secretion through TliDEF. Homology modeling for TliDEF revealed that TliD dimer forms evolutionarily-conserved positively-charged clusters in its pore and substrate entrance site, which also partially explains the pI dependence of the TliDEF-dependent secretions. In conclusion, lowering the isoelectric point improved LARD3-mediated protein secretion, both widening the range of protein targets for efficient production via secretion and signifying an important aspect of ABC transporter-mediated secretions. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Killing, letting die and euthanasia.

    Science.gov (United States)

    Husak, D N

    1979-12-01

    Medical ethicists debate whether or not the moral assessment of cases of euthanasia should depend on whether the patient is 'killed' or 'allowed to die'. The usual presupposition is that a clear distinction between killing and letting die can be drawn so that this substantive question is not begged. I contend that the categorisation of cases of instances of killing rather than as instances of letting die depends in part on a prior moral assessment of the case. Hence is it trivially rather than substantively true that the distinction has moral significance. But even if a morally neutral (ie non-question begging) distinction could be drawn, its application to the euthanasia controversy is problematic. I illustrate the difficulties of employing this distinction to reach moral conclusions by critically discussing Philippa Foot's recent treatment of euthanasia. I conclude that even if an act of euthanasia is an instance of killing, and there exists a prima facie moral duty not to kill, and no more stringent duty overrides this duty, one still cannot determine such an act to be morally impermissible.

  11. Killing, letting die and euthanasia.

    Science.gov (United States)

    Husak, D N

    1979-01-01

    Medical ethicists debate whether or not the moral assessment of cases of euthanasia should depend on whether the patient is 'killed' or 'allowed to die'. The usual presupposition is that a clear distinction between killing and letting die can be drawn so that this substantive question is not begged. I contend that the categorisation of cases of instances of killing rather than as instances of letting die depends in part on a prior moral assessment of the case. Hence is it trivially rather than substantively true that the distinction has moral significance. But even if a morally neutral (ie non-question begging) distinction could be drawn, its application to the euthanasia controversy is problematic. I illustrate the difficulties of employing this distinction to reach moral conclusions by critically discussing Philippa Foot's recent treatment of euthanasia. I conclude that even if an act of euthanasia is an instance of killing, and there exists a prima facie moral duty not to kill, and no more stringent duty overrides this duty, one still cannot determine such an act to be morally impermissible. PMID:541821

  12. "Guns do not kill, people do!"

    DEFF Research Database (Denmark)

    Lemche, Niels Peter

    2011-01-01

    The Bible does not kill, but many people who have read the Bible (in their way) have killed, virtually or in real.......The Bible does not kill, but many people who have read the Bible (in their way) have killed, virtually or in real....

  13. tmRNA-mediated trans-translation as the major ribosome rescue system in a bacterial cell

    Directory of Open Access Journals (Sweden)

    Hyouta eHimeno

    2014-04-01

    Full Text Available tmRNA (transfer messenger RNA; also known as 10Sa RNA or SsrA RNA is a small RNA molecule that is conserved among bacteria. It has structural and functional similarities to tRNA: it has an upper half of the tRNA-like structure, its 5’ end is processed by RNase P, it has typical tRNA-specific base modifications, it is aminoacylated with alanine, it binds to EF-Tu after aminoacylation and it enters the ribosome with EF-Tu and GTP. However, tmRNA lacks an anticodon, and instead it has a coding sequence for a short peptide called tag-peptide. An elaborate interplay of actions of tmRNA as both tRNA and mRNA with the help of a tmRNA-binding protein, SmpB, facilitates trans-translation, which produces a single polypeptide from two mRNA molecules. Initially alanyl-tmRNA in complex with EF-Tu and SmpB enters the vacant A-site of the stalled ribosome like aminoacyl-tRNA but without a codon-anticodon interaction, and subsequently truncated mRNA is replaced with the tag-encoding region of tmRNA. During these processes, not only tmRNA but also SmpB structurally and functionally mimics both tRNA and mRNA. Thus trans-translation rescues the stalled ribosome, thereby allowing recycling of the ribosome. Since the tag-peptide serves as a target of AAA+ proteases, the trans-translation products are preferentially degraded so that they do not accumulate in the cell. Although alternative rescue systems have recently been revealed, trans-translation is the only system that universally exists in bacteria. Furthermore, it is unique in that it employs a small RNA and that it prevents accumulation of nonfunctional proteins from truncated mRNA in the cell. It might play the major role in rescuing the stalled translation in the bacterial cell.

  14. Regulatory RNAs in Bacillus subtilis: a Gram-Positive Perspective on Bacterial RNA-Mediated Regulation of Gene Expression

    Science.gov (United States)

    Mars, Ruben A. T.; Nicolas, Pierre; Denham, Emma L.

    2016-01-01

    SUMMARY Bacteria can employ widely diverse RNA molecules to regulate their gene expression. Such molecules include trans-acting small regulatory RNAs, antisense RNAs, and a variety of transcriptional attenuation mechanisms in the 5′ untranslated region. Thus far, most regulatory RNA research has focused on Gram-negative bacteria, such as Escherichia coli and Salmonella. Hence, there is uncertainty about whether the resulting insights can be extrapolated directly to other bacteria, such as the Gram-positive soil bacterium Bacillus subtilis. A recent study identified 1,583 putative regulatory RNAs in B. subtilis, whose expression was assessed across 104 conditions. Here, we review the current understanding of RNA-based regulation in B. subtilis, and we categorize the newly identified putative regulatory RNAs on the basis of their conservation in other bacilli and the stability of their predicted secondary structures. Our present evaluation of the publicly available data indicates that RNA-mediated gene regulation in B. subtilis mostly involves elements at the 5′ ends of mRNA molecules. These can include 5′ secondary structure elements and metabolite-, tRNA-, or protein-binding sites. Importantly, sense-independent segments are identified as the most conserved and structured potential regulatory RNAs in B. subtilis. Altogether, the present survey provides many leads for the identification of new regulatory RNA functions in B. subtilis. PMID:27784798

  15. Regulatory RNAs in Bacillus subtilis: a Gram-Positive Perspective on Bacterial RNA-Mediated Regulation of Gene Expression.

    Science.gov (United States)

    Mars, Ruben A T; Nicolas, Pierre; Denham, Emma L; van Dijl, Jan Maarten

    2016-12-01

    Bacteria can employ widely diverse RNA molecules to regulate their gene expression. Such molecules include trans-acting small regulatory RNAs, antisense RNAs, and a variety of transcriptional attenuation mechanisms in the 5' untranslated region. Thus far, most regulatory RNA research has focused on Gram-negative bacteria, such as Escherichia coli and Salmonella. Hence, there is uncertainty about whether the resulting insights can be extrapolated directly to other bacteria, such as the Gram-positive soil bacterium Bacillus subtilis. A recent study identified 1,583 putative regulatory RNAs in B. subtilis, whose expression was assessed across 104 conditions. Here, we review the current understanding of RNA-based regulation in B. subtilis, and we categorize the newly identified putative regulatory RNAs on the basis of their conservation in other bacilli and the stability of their predicted secondary structures. Our present evaluation of the publicly available data indicates that RNA-mediated gene regulation in B. subtilis mostly involves elements at the 5' ends of mRNA molecules. These can include 5' secondary structure elements and metabolite-, tRNA-, or protein-binding sites. Importantly, sense-independent segments are identified as the most conserved and structured potential regulatory RNAs in B. subtilis. Altogether, the present survey provides many leads for the identification of new regulatory RNA functions in B. subtilis. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  16. Computational analyses of an evolutionary arms race between mammalian immunity mediated by immunoglobulin A and its subversion by bacterial pathogens.

    Directory of Open Access Journals (Sweden)

    Ana Pinheiro

    Full Text Available IgA is the predominant immunoglobulin isotype in mucosal tissues and external secretions, playing important roles both in defense against pathogens and in maintenance of commensal microbiota. Considering the complexity of its interactions with the surrounding environment, IgA is a likely target for diversifying or positive selection. To investigate this possibility, the action of natural selection on IgA was examined in depth with six different methods: CODEML from the PAML package and the SLAC, FEL, REL, MEME and FUBAR methods implemented in the Datamonkey webserver. In considering just primate IgA, these analyses show that diversifying selection targeted five positions of the Cα1 and Cα2 domains of IgA. Extending the analysis to include other mammals identified 18 positively selected sites: ten in Cα1, five in Cα2 and three in Cα3. All but one of these positions display variation in polarity and charge. Their structural locations suggest they indirectly influence the conformation of sites on IgA that are critical for interaction with host IgA receptors and also with proteins produced by mucosal pathogens that prevent their elimination by IgA-mediated effector mechanisms. Demonstrating the plasticity of IgA in the evolution of different groups of mammals, only two of the eighteen selected positions in all mammals are included in the five selected positions in primates. That IgA residues subject to positive selection impact sites targeted both by host receptors and subversive pathogen ligands highlights the evolutionary arms race playing out between mammals and pathogens, and further emphasizes the importance of IgA in protection against mucosal pathogens.

  17. Role of the DmpR-mediated regulatory circuit in bacterial biodegradation properties in methylphenol-amended soils.

    Science.gov (United States)

    Sarand, I; Skärfstad, E; Forsman, M; Romantschuk, M; Shingler, V

    2001-01-01

    Pathway substrates and some structural analogues directly activate the regulatory protein DmpR to promote transcription of the dmp operon genes encoding the (methyl)phenol degradative pathway of Pseudomonas sp. strain CF600. While a wide range of phenols can activate DmpR, the location and nature of substituents on the basic phenolic ring can limit the level of activation and thus utilization of some compounds as assessed by growth on plates. Here we address the role of the aromatic effector response of DmpR in determining degradative properties in two soil matrices that provide different nutritional conditions. Using the wild-type system and an isogenic counterpart containing a DmpR mutant with enhanced ability to respond to para-substituted phenols, we demonstrate (i) that the enhanced in vitro biodegradative capacity of the regulator mutant strain is manifested in the two different soil types and (ii) that exposure of the wild-type strain to 4-methylphenol-contaminated soil led to rapid selection of a subpopulation exhibiting enhanced capacities to degrade the compound. Genetic and functional analyses of 10 of these derivatives demonstrated that all harbored a single mutation in the sensory domain of DmpR that mediated the phenotype in each case. These findings establish a dominating role for the aromatic effector response of DmpR in determining degradation properties. Moreover, the results indicate that the ability to rapidly adapt regulator properties to different profiles of polluting compounds may underlie the evolutionary success of DmpR-like regulators in controlling aromatic catabolic pathways.

  18. Mulberry leaf extract mediated synthesis of gold nanoparticles and its anti-bacterial activity against human pathogens

    International Nuclear Information System (INIS)

    Adavallan, K; Krishnakumar, N

    2014-01-01

    Gold nanoparticles (Au-NPs) were synthesized at room temperature using Morus alba (mulberry) leaf extract as reducing and stabilizing agent. The development of plant mediated synthesis of nanoparticles is gaining importance due to its simplicity, low cost, non-toxicity, eco-friendliness, long term stability and reproducible aqueous synthesis method to obtain a self-assembly of nearly monodispersed Au-NPs. The formation and morphology of biosynthesized nanoparticles are investigated with the help of UV-Vis spectroscopy, dynamic light scattering (DLS), transmission electron microscopy (TEM), atomic force microscopy (AFM), x-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR) techniques. Au-NPs formation was screened by UV-Vis spectroscopy through color conversion due to surface plasmon resonance band at 538 nm for Au-NPs. DLS studies revealed that the average size of Au-NPs was 50 nm. TEM studies showed the particles to be nearly spherical with few irregular shapes and particle size ranges 15−53 nm. The AFM image clearly shows the surface morphology of the well-dispersed Au-NPs with less than 50 nm. The high crystallinity of nanoparticles is evident from bright circular spots in the selected area electron diffraction (SAED) pattern. X-ray diffraction pattern showed high purity and face-centered cubic structure of Au-NPs. The FT-IR results indicate the presence of different functional groups present in the biomolecule capping the nanoparticles. Further, biosynthesized Au-NPs show strong zone of inhibition against Vibrio cholera (gram-negative) and Staphylococcus aureus (gram-positive) whereas, chemically synthesized Au-NPs and mulberry leaf extract exhibit a fair zone of inhibition. (papers)

  19. Mulberry leaf extract mediated synthesis of gold nanoparticles and its anti-bacterial activity against human pathogens

    Science.gov (United States)

    Adavallan, K.; Krishnakumar, N.

    2014-06-01

    Gold nanoparticles (Au-NPs) were synthesized at room temperature using Morus alba (mulberry) leaf extract as reducing and stabilizing agent. The development of plant mediated synthesis of nanoparticles is gaining importance due to its simplicity, low cost, non-toxicity, eco-friendliness, long term stability and reproducible aqueous synthesis method to obtain a self-assembly of nearly monodispersed Au-NPs. The formation and morphology of biosynthesized nanoparticles are investigated with the help of UV-Vis spectroscopy, dynamic light scattering (DLS), transmission electron microscopy (TEM), atomic force microscopy (AFM), x-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR) techniques. Au-NPs formation was screened by UV-Vis spectroscopy through color conversion due to surface plasmon resonance band at 538 nm for Au-NPs. DLS studies revealed that the average size of Au-NPs was 50 nm. TEM studies showed the particles to be nearly spherical with few irregular shapes and particle size ranges 15-53 nm. The AFM image clearly shows the surface morphology of the well-dispersed Au-NPs with less than 50 nm. The high crystallinity of nanoparticles is evident from bright circular spots in the selected area electron diffraction (SAED) pattern. X-ray diffraction pattern showed high purity and face-centered cubic structure of Au-NPs. The FT-IR results indicate the presence of different functional groups present in the biomolecule capping the nanoparticles. Further, biosynthesized Au-NPs show strong zone of inhibition against Vibrio cholera (gram-negative) and Staphylococcus aureus (gram-positive) whereas, chemically synthesized Au-NPs and mulberry leaf extract exhibit a fair zone of inhibition.

  20. Monoclonal TCR-redirected tumor cell killing.

    Science.gov (United States)

    Liddy, Nathaniel; Bossi, Giovanna; Adams, Katherine J; Lissina, Anna; Mahon, Tara M; Hassan, Namir J; Gavarret, Jessie; Bianchi, Frayne C; Pumphrey, Nicholas J; Ladell, Kristin; Gostick, Emma; Sewell, Andrew K; Lissin, Nikolai M; Harwood, Naomi E; Molloy, Peter E; Li, Yi; Cameron, Brian J; Sami, Malkit; Baston, Emma E; Todorov, Penio T; Paston, Samantha J; Dennis, Rebecca E; Harper, Jane V; Dunn, Steve M; Ashfield, Rebecca; Johnson, Andy; McGrath, Yvonne; Plesa, Gabriela; June, Carl H; Kalos, Michael; Price, David A; Vuidepot, Annelise; Williams, Daniel D; Sutton, Deborah H; Jakobsen, Bent K

    2012-06-01

    T cell immunity can potentially eradicate malignant cells and lead to clinical remission in a minority of patients with cancer. In the majority of these individuals, however, there is a failure of the specific T cell receptor (TCR)–mediated immune recognition and activation process. Here we describe the engineering and characterization of new reagents termed immune-mobilizing monoclonal TCRs against cancer (ImmTACs). Four such ImmTACs, each comprising a distinct tumor-associated epitope-specific monoclonal TCR with picomolar affinity fused to a humanized cluster of differentiation 3 (CD3)-specific single-chain antibody fragment (scFv), effectively redirected T cells to kill cancer cells expressing extremely low surface epitope densities. Furthermore, these reagents potently suppressed tumor growth in vivo. Thus, ImmTACs overcome immune tolerance to cancer and represent a new approach to tumor immunotherapy.

  1. Enzyme-mediated bacterial biodegradation of an azo dye (C.I. Acid blue 113): reuse of treated dye wastewater in post-tanning operations.

    Science.gov (United States)

    Senthilvelan, T; Kanagaraj, J; Panda, R C

    2014-11-01

    "Dyeing" is a common practice used to color the hides during the post-tanning operations in leather processing generating plenty of wastewater. The waste stream containing dye as pollutant is severely harmful to living beings. An azo dye (C.I. Acid Blue 113) has been biodegraded effectively by bacterial culture mediated with azoreductase enzyme to reduce the pollution load in the present investigation. The maximum rate of dye degradation was found to be 96 ± 4 and 92 ± 4 % for the initial concentrations of 100 and 200 mg/l, respectively. The enzyme activity was measured using NADH as a substrate. Fourier transform infrared spectroscopy (FT-IR) analysis was confirmed that the transformation of azo linkage could be transformed into N2 or NH3 or incorporated into complete biomass. Breaking down of dye molecules to various metabolites (such as aniline, naphthalene-1,4-diamine, 3-aminobenzenesulfonic acid, naphthalene-1-sulfonic acid, 8-aminonaphthalene-1-sulfonic acid, 5,8-diaminonaphthalene-1-sulfonic acid) was confirmed by gas chromatography and mass spectra (GC-MS) and mass (electrospray ionization (ESI)) spectra analysis. The treated wastewater could be reused for dyeing operation in the leather processing, and the properties of produced leather were evaluated by conventional methods that revealed to have improved dye penetration into the grain layer of experimental leather sample and resulted in high levelness of dyeing, which helps to obtain the desired smoothness and soft leather properties.

  2. Direct bacterial loop-mediated isothermal amplification detection on the pathogenic features of the nosocomial pathogen - Methicillin resistant Staphylococcus aureus strains with respiratory origins.

    Science.gov (United States)

    Lin, Qun; Xu, Pusheng; Li, Jiaowu; Chen, Yin; Feng, Jieyi

    2017-08-01

    Loop-mediated isothermal amplification based detection assays using bacterial culture or colony for direct detection of methicillin resistant Staphylococcus aureus(MRSA) had been developed and evaluated, followed by its extensive application on a large scale of clinical MRSA isolated from respiratory origins, including nasal swabs and sputums. Six primers, including outer primers, inner primers and loop primers, were specifically designed for recognizing eight distinct sequences on four targets: 16SrRNA, femA, mecA and orfX. Twenty-seven reference strains were used to develop, evaluate and optimize this assay. Then, a total of 532 clinical MRSA isolates were employed for each detected targets. And the results were determined through both visual observation of the color change by naked eye and electrophoresis. The specific of each primer had been confirmed, and the optimal amplification was obtained under 65 °C for 40 min. The limit of detections (LOD) of bacteria culture LAMP assays were determined to be 10 4  CFU/ml for 16S rRNA, femA, as well as orfX and 10 5  CFU/ml for mecA, respectively. The established novel assays on MRSA detection may provide new strategies for rapid detection of foodborne pathogens. Copyright © 2017. Published by Elsevier Ltd.

  3. political killings in South Africa

    African Journals Online (AJOL)

    mainly occurred in KwaZulu-Natal, with a much smaller number occurring in Mpumalanga and ... Though the problem is concentrated in specific provinces it is likely to impact on political life ... killings that are the focus of the article, including.

  4. To kill a mockingbird robot

    NARCIS (Netherlands)

    Bartneck, C.; Verbunt, M.N.C.; Mubin, O.; Al Mahmud, A.

    2007-01-01

    Robots are being introduced in our society but their social status is still unclear. A critical issue is if the robot's exhibition of intelligent life-like behavior leads to the users' perception of animacy. The ultimate test for the life-likeness of a robot is to kill it. We therefore conducted an

  5. Killing horizons as equipotential hypersurfaces

    International Nuclear Information System (INIS)

    Smolić, Ivica

    2012-01-01

    In this note we present a new proof that Killing horizons are equipotential hypersurfaces for the electric and the magnetic scalar potential, which makes no use of gravitational field equations or the assumption about the existence of a bifurcation surface. (note)

  6. Multiple factors and processes involved in host cell killing by bacteriophage Mu: characterization and mapping.

    Science.gov (United States)

    Waggoner, B T; Marrs, C F; Howe, M M; Pato, M L

    1984-07-15

    The regions of bacteriophage Mu involved in host cell killing were determined by infection of a lambda-immune host with 12 lambda pMu-transducing phages carrying different amounts of Mu DNA beginning at the left end. Infecting lambda pMu phages containing 5.0 (+/- 0.2) kb or less of the left end of Mu DNA did not kill the lambda-immune host, whereas lambda pMu containing 5.1 kb did kill, thus locating the right end of the kil gene between approximately 5.0 and 5.1 kb. For the Kil+ phages the extent of killing increased as the multiplicity of infection (m.o.i.) increased. In addition, killing was also affected by the presence of at least two other regions of Mu DNA: one, located between 5.1 and 5.8 kb, decreased the extent of killing; the other, located between 6.3 and 7.9 kb, greatly increased host cell killing. Killing was also assayed after lambda pMu infection of a lambda-immune host carrying a mini-Mu deleted for most of the B gene and the middle region of Mu DNA. Complementation of mini-Mu replication by infecting B+ lambda pMu phages resulted in killing of the lambda-immune, mini-Mu-containing host, regardless of the presence or absence of the Mu kil gene. The extent of host cell killing increased as the m.o.i. of the infecting lambda pMu increased, and was further enhanced by both the presence of the kil gene and the region located between 6.3 and 7.9 kb. These distinct processes of kil-mediated killing in the absence of replication and non-kil-mediated killing in the presence of replication were also observed after induction of replication-deficient and kil mutant prophages, respectively.

  7. Inflammasome and Fas-Mediated IL-1β Contributes to Th17/Th1 Cell Induction in Pathogenic Bacterial Infection In Vivo.

    Science.gov (United States)

    Uchiyama, Ryosuke; Yonehara, Shin; Taniguchi, Shun'ichiro; Ishido, Satoshi; Ishii, Ken J; Tsutsui, Hiroko

    2017-08-01

    CD4 + Th cells play crucial roles in orchestrating immune responses against pathogenic microbes, after differentiating into effector subsets. Recent research has revealed the importance of IFN-γ and IL-17 double-producing CD4 + Th cells, termed Th17/Th1 cells, in the induction of autoimmune and inflammatory diseases. In addition, Th17/Th1 cells are involved in the regulation of infection caused by the intracellular bacterium Mycobacterium tuberculosis in humans. However, the precise mechanism of Th17/Th1 induction during pathogen infection is unclear. In this study, we showed that the inflammasome and Fas-dependent IL-1β induces Th17/Th1 cells in mice, in response to infection with the pathogenic intracellular bacterium Listeria monocytogenes In the spleens of infected wild-type mice, Th17/Th1 cells were induced, and expressed T-bet and Rorγt. In Pycard -/- mice, which lack the adaptor molecule of the inflammasome (apoptosis-associated speck-like protein containing a caspase recruitment domain), Th17/Th1 induction was abolished. In addition, the Fas-mediated IL-1β production was required for Th17/Th1 induction during bacterial infection: Th17/Th1 induction was abolished in Fas -/- mice, whereas supplementation with recombinant IL-1β restored Th17/Th1 induction via IL-1 receptor 1 (IL-1R1), and rescued the mortality of Fas -/- mice infected with Listeria IL-1R1, but not apoptosis-associated speck-like protein containing a caspase recruitment domain or Fas on T cells, was required for Th17/Th1 induction, indicating that IL-1β stimulates IL-1R1 on T cells for Th17/Th1 induction. These results indicate that IL-1β, produced by the inflammasome and Fas-dependent mechanisms, contributes cooperatively to the Th17/Th1 induction during bacterial infection. This study provides a deeper understanding of the molecular mechanisms underlying Th17/Th1 induction during pathogenic microbial infections in vivo. Copyright © 2017 by The American Association of Immunologists

  8. WOMEN'S RIGHTS VIOLATION: HONOUR KILLINGS

    Directory of Open Access Journals (Sweden)

    CRISTINA OTOVESCU FRASIE

    2011-04-01

    Full Text Available In this study I have presented the domestic violence concept and the situation regarding the observing of woman’s rights in Syria. We have also evidenced the juridical aspects regarding the honor killing directed against women after the modification of the article 548 from the Penal Code changed by the President al-Asad on July the 1st 2009. The data offered by NGOs have been of great help for the elaboration of the study as also the statistic data presented in Thara E-Magazine regarding the cities where had been done the honor killings and their number, the instrument of the murder, the age of the victim, and the motives for the murders. It must be noticed that, lately, the Government fought for the observing of the woman’s rights and promoted he gender equality by appointing women in leading positions, including the vice-president one.

  9. Evolution equations for Killing fields

    International Nuclear Information System (INIS)

    Coll, B.

    1977-01-01

    The problem of finding necessary and sufficient conditions on the Cauchy data for Einstein equations which insure the existence of Killing fields in a neighborhood of an initial hypersurface has been considered recently by Berezdivin, Coll, and Moncrief. Nevertheless, it can be shown that the evolution equations obtained in all these cases are of nonstrictly hyperbolic type, and, thus, the Cauchy data must belong to a special class of functions. We prove here that, for the vacuum and Einstein--Maxwell space--times and in a coordinate independent way, one can always choose, as evolution equations for the Killing fields, a strictly hyperbolic system: The above theorems can be thus extended to all Cauchy data for which the Einstein evolution problem has been proved to be well set

  10. Histones as mediators of host defense, inflammation and thrombosis.

    Science.gov (United States)

    Hoeksema, Marloes; van Eijk, Martin; Haagsman, Henk P; Hartshorn, Kevan L

    2016-01-01

    Histones are known for their ability to bind to and regulate expression of DNA. However, histones are also present in cytoplasm and extracellular fluids where they serve host defense functions and promote inflammatory responses. Histones are a major component of neutrophil extracellular traps that contribute to bacterial killing but also to inflammatory injury. Histones can act as antimicrobial peptides and directly kill bacteria, fungi, parasites and viruses, in vitro and in a variety of animal hosts. In addition, histones can trigger inflammatory responses in some cases acting through Toll-like receptors or inflammasome pathways. Extracellular histones mediate organ injury (lung, liver), sepsis physiology, thrombocytopenia and thrombin generation and some proteins can bind histones and reduce these potentially harmful effects.

  11. Wind power and bird kills

    International Nuclear Information System (INIS)

    Raynolds, M.

    1998-01-01

    The accidental killing of birds by wind generators, and design improvements in the towers that support the turbines that might cut down on the bird killings were discussed. The first problem for the industry began in the late 1980s when the California Energy Commission reported as many as 160 birds (the majority being raptors, including the protected golden eagle) killed in one year in the vicinity of wind power plants. The key factor identified was the design of the towers as birds of prey are attracted to lattice towers as a place to hunt from. Tubular towers do not provide a place for the birds to perch, therefore they reduce the potential for bird strikes. Bird strikes also have been reported in Spain and the siting of the towers have been considered as the principal cause of the bird strikes. In view of these incidents, the wind power industry is developing standards for studying the potential of bird strikes and is continuing to study bird behaviour leading to collisions, the impact of topography, cumulative impacts and new techniques to reduce bird strikes. Despite the reported incidents, the risk of bird strikes by wind turbines, compared to other threats to birds such as pollution, oil spills, and other threats from fossil and nuclear fuels, is considered to be negligible. With continuing efforts to minimize incidents by proper design and siting, wind power can continue to grow as an environmentally sound and efficient source of energy

  12. Wind power and bird kills

    Energy Technology Data Exchange (ETDEWEB)

    Raynolds, M.

    1998-12-01

    The accidental killing of birds by wind generators, and design improvements in the towers that support the turbines that might cut down on the bird killings were discussed. The first problem for the industry began in the late 1980s when the California Energy Commission reported as many as 160 birds (the majority being raptors, including the protected golden eagle) killed in one year in the vicinity of wind power plants. The key factor identified was the design of the towers as birds of prey are attracted to lattice towers as a place to hunt from. Tubular towers do not provide a place for the birds to perch, therefore they reduce the potential for bird strikes. Bird strikes also have been reported in Spain and the siting of the towers have been considered as the principal cause of the bird strikes. In view of these incidents, the wind power industry is developing standards for studying the potential of bird strikes and is continuing to study bird behaviour leading to collisions, the impact of topography, cumulative impacts and new techniques to reduce bird strikes. Despite the reported incidents, the risk of bird strikes by wind turbines, compared to other threats to birds such as pollution, oil spills, and other threats from fossil and nuclear fuels, is considered to be negligible. With continuing efforts to minimize incidents by proper design and siting, wind power can continue to grow as an environmentally sound and efficient source of energy.

  13. Isolated Horizon, Killing Horizon and Event Horizon

    OpenAIRE

    Date, G.

    2001-01-01

    We consider space-times which in addition to admitting an isolated horizon also admit Killing horizons with or without an event horizon. We show that an isolated horizon is a Killing horizon provided either (1) it admits a stationary neighbourhood or (2) it admits a neighbourhood with two independent, commuting Killing vectors. A Killing horizon is always an isolated horizon. For the case when an event horizon is definable, all conceivable relative locations of isolated horizon and event hori...

  14. Postviral Complications: Bacterial Pneumonia.

    Science.gov (United States)

    Prasso, Jason E; Deng, Jane C

    2017-03-01

    Secondary bacterial pneumonia after viral respiratory infection remains a significant source of morbidity and mortality. Susceptibility is mediated by a variety of viral and bacterial factors, and complex interactions with the host immune system. Prevention and treatment strategies are limited to influenza vaccination and antibiotics/antivirals respectively. Novel approaches to identifying the individuals with influenza who are at increased risk for secondary bacterial pneumonias are urgently needed. Given the threat of further pandemics and the heightened prevalence of these viruses, more research into the immunologic mechanisms of this disease is warranted with the hope of discovering new potential therapies. Published by Elsevier Inc.

  15. Bacterial cooperation in the wild and in the clinic: are pathogen social behaviours relevant outside the laboratory?

    Science.gov (United States)

    Harrison, Freya

    2013-02-01

    Individual bacterial cells can communicate via quorum sensing, cooperate to harvest nutrients from their environment, form multicellular biofilms, compete over resources and even kill one another. When the environment that bacteria inhabit is an animal host, these social behaviours mediate virulence. Over the last decade, much attention has focussed on the ecology, evolution and pathology of bacterial cooperation, and the possibility that it could be exploited or destabilised to treat infections. But how far can we really extrapolate from theoretical predictions and laboratory experiments to make inferences about 'cooperative' behaviours in hosts and reservoirs? To determine the likely importance and evolution of cooperation 'in the wild', several questions must be addressed. A recent paper that reports the dynamics of bacterial cooperation and virulence in a field experiment provides an excellent nucleus for bringing together key empirical and theoretical results which help us to frame - if not completely to answer - these questions. Copyright © 2013 WILEY Periodicals, Inc.

  16. 33 CFR 117.801 - Newtown Creek, Dutch Kills, English Kills and their tributaries.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Newtown Creek, Dutch Kills, English Kills and their tributaries. 117.801 Section 117.801 Navigation and Navigable Waters COAST GUARD....801 Newtown Creek, Dutch Kills, English Kills and their tributaries. (a) The following requirements...

  17. Killing-Yano tensors and Nambu mechanics

    International Nuclear Information System (INIS)

    Baleanu, D.

    1998-01-01

    Killing-Yano tensors were introduced in 1952 by Kentaro-Yano from mathematical point of view. The physical interpretation of Killing-Yano tensors of rank higher than two was unclear. We found that all Killing-Yano tensors η i 1 i 2 . .. i n with covariant derivative zero are Nambu tensors. We found that in the case of flat space case all Killing-Yano tensors are Nambu tensors. In the case of Taub-NUT and Kerr-Newmann metric Killing-Yano tensors of order two generate Nambu tensors of rank 3

  18. ω-Hydroxyemodin Limits Staphylococcus aureus Quorum Sensing-Mediated Pathogenesis and Inflammation

    Science.gov (United States)

    Daly, Seth M.; Elmore, Bradley O.; Kavanaugh, Jeffrey S.; Triplett, Kathleen D.; Figueroa, Mario; Raja, Huzefa A.; El-Elimat, Tamam; Crosby, Heidi A.; Femling, Jon K.; Cech, Nadja B.; Horswill, Alexander R.; Oberlies, Nicholas H.

    2015-01-01

    Antibiotic-resistant pathogens are a global health threat. Small molecules that inhibit bacterial virulence have been suggested as alternatives or adjuncts to conventional antibiotics, as they may limit pathogenesis and increase bacterial susceptibility to host killing. Staphylococcus aureus is a major cause of invasive skin and soft tissue infections (SSTIs) in both the hospital and community settings, and it is also becoming increasingly antibiotic resistant. Quorum sensing (QS) mediated by the accessory gene regulator (agr) controls virulence factor production essential for causing SSTIs. We recently identified ω-hydroxyemodin (OHM), a polyhydroxyanthraquinone isolated from solid-phase cultures of Penicillium restrictum, as a suppressor of QS and a compound sought for the further characterization of the mechanism of action. At concentrations that are nontoxic to eukaryotic cells and subinhibitory to bacterial growth, OHM prevented agr signaling by all four S. aureus agr alleles. OHM inhibited QS by direct binding to AgrA, the response regulator encoded by the agr operon, preventing the interaction of AgrA with the agr P2 promoter. Importantly, OHM was efficacious in a mouse model of S. aureus SSTI. Decreased dermonecrosis with OHM treatment was associated with enhanced bacterial clearance and reductions in inflammatory cytokine transcription and expression at the site of infection. Furthermore, OHM treatment enhanced the immune cell killing of S. aureus in vitro in an agr-dependent manner. These data suggest that bacterial disarmament through the suppression of S. aureus QS may bolster the host innate immune response and limit inflammation. PMID:25645827

  19. Contact-killing of adhering streptococci by a quaternary ammonium compound incorporated in an acrylic resin

    NARCIS (Netherlands)

    Mei, Li; Ren, Yijin; Loontjens, Ton J. A.; van der Mei, Henny C.; Busscher, Henk J.

    2012-01-01

    Purpose: Acrylates for bonding of joint prostheses and stainless-steel brackets in orthopedics and orthodontics are prone to bacterial adhesion and biofilm formation, respectively, leading to serious infectious complications. Here we describe the preparation of a contact-killing acrylic resin by

  20. Antiviral activity and specific modes of action of bacterial prodigiosin against Bombyx mori nucleopolyhedrovirus in vitro.

    Science.gov (United States)

    Zhou, Wei; Zeng, Cheng; Liu, RenHua; Chen, Jie; Li, Ru; Wang, XinYan; Bai, WenWen; Liu, XiaoYuan; Xiang, TingTing; Zhang, Lin; Wan, YongJi

    2016-05-01

    Prodigiosin, the tripyrrole red pigment, is a bacterial secondary metabolite with multiple bioactivities; however, the antiviral activity has not been reported yet. In the present study, we found the antiviral activity of bacterial prodigiosin on Bombyx mori nucleopolyhedrovirus (BmNPV)-infected cells in vitro, with specific modes of action. Prodigiosin at nontoxic concentrations selectively killed virus-infected cells, inhibited viral gene transcription, especially viral early gene ie-1, and prevented virus-mediated membrane fusion. Under prodigiosin treatment, both progeny virus production and viral DNA replication were significantly inhibited. Fluorescent assays showed that prodigiosin predominantly located in cytoplasm which suggested it might interact with cytoplasm factors to inhibit virus replication. In conclusion, the present study clearly indicates that prodigiosin possesses significant antiviral activity against BmNPV.

  1. Effects of lead on the killing mechanisms of polymorphonuclear leukocytes

    International Nuclear Information System (INIS)

    Silberstein, C.F.

    1984-01-01

    The effects of lead on the killing mechanisms of rat polymorphonuclear leukocytes (PMN) were investigated, using male Long-Evans rats exposed to 1% lead acetate in the drinking water for varying periods of time to achieve blood lead levels ranging from 20-200 μg/dl. Studies of PMN bacterial and fungal killing activity, chemotaxis and phagocytosis demonstrated that: 1) bactericidal activity of PMN from rats exposed to lead was not altered; 2) chemotactic activity remained within normal limits; 3) the phagocytic ability of the PMN also remained unaltered. In addition to these normal findings, one major abnormality was demonstrated: a significant decrease in the ability of PMN from rats exposed to lead to kill Candida albicans. This defect was not related to age or to length of exposure. It could not be produced by addition of lead to the test system in vitro. Further investigation revealed significant decreases in PMN glucose-6-phosphate dehydrogenase, catalase, and myeloperoxidase activities. These data support two possible mechanisms for the abnormal fungicidal activity of PMN from lead-exposed rats: decrease in ability to reduce oxygen to active metabolites, or reduction in myeloperoxidase activity due to diminshed synthesis of the heme moiety required for its function

  2. Prevaccination with SRL172 (heat-killed Mycobacterium vaccae) inhibits experimental periodontal disease in Wistar rats

    Science.gov (United States)

    Breivik, T; Rook, G A W

    2000-01-01

    Periodontal disease is a bacterial dental plaque-induced destructive inflammatory condition of the tooth-supporting tissues, which is thought to be mediated by T lymphocytes secreting T helper 2 (Th2) cytokines, resulting in recruitment of high numbers of antibody-producing B lymphocytes/plasma cells as well as polymorphonuclear leucocytes (PMN) secreting tissue-destructive components, such at matrix metalloproteinases and reactive oxygen metabolites into the gingival connective tissues. One treatment strategy may be to down-regulate the Th2 response to those dental plaque microorganisms which induce the destructive inflammatory response. In this study we have examined the effects of a potent down-regulator of Th2 responses on ligature-induced periodontal disease in an experimental rat model. A single s.c. injection into Wistar rats of 0·1 or 1 mg of SRL172, a preparation of heat-killed Mycobacterium vaccae (NCTC 11659), 13 days before application of the ligature, significantly reduced the subsequent destruction of the tooth-supporting tissues, as measured by loss of periodontal attachment fibres (P < 0·001) and bone (P < 0·002). This protective effect occurred not only on the experimental (ligatured) side but also on the control unligatured side. SRL172 has undergone extensive toxicological studies and safety assessments in humans, and it is suggested that it may provide a safe and novel therapeutic approach to periodontal disease. PMID:10844524

  3. Bacterial meningitis

    NARCIS (Netherlands)

    Roos, Karen L.; van de Beek, Diederik

    2010-01-01

    Bacterial meningitis is a neurological emergency. Empiric antimicrobial and adjunctive therapy should be initiated as soon as a single set of blood cultures has been obtained. Clinical signs suggestive of bacterial meningitis include fever, headache, meningismus, vomiting, photophobia, and an

  4. Timelike Killing spinors in seven dimensions

    International Nuclear Information System (INIS)

    Cariglia, Marco; Conamhna, Oisin A.P. Mac

    2004-01-01

    We employ the G-structure formalism to study supersymmetric solutions of minimal and SU(2) gauged supergravities in seven dimensions admitting Killing spinors with an associated timelike Killing vector. The most general such Killing spinor defines a SU(3) structure. We deduce necessary and sufficient conditions for the existence of a timelike Killing spinor on the bosonic fields of the theories, and find that such configurations generically preserve one out of 16 supersymmetries. Using our general supersymmetric ansatz we obtain numerous new solutions, including squashed or deformed anti-de Sitter solutions of the gauged theory, and a large class of Goedel-like solutions with closed timelike curves

  5. Evaluation of Honour Killings in Turkey

    OpenAIRE

    Celbis, Osman; Ozdemir, Bora; Oruc, Mucahit; Dogan, Mustafa; Egri, Mucahit

    2013-01-01

    Honour killings are still pervasive in many societies.  The aim of this study is to reveal the characteristics of the victims of honour killings and honour killers in Malatya province between 2000 and 2004, and to review the concept of honour killings in Turkey.  Data are collected from the records of Malatya Higher Criminal Court.  The results are discussed in the light of the data obtained from Turkish Republic Ministry of Justice.  There were 36 honour killings in Malatya between 2000 and ...

  6. In vitro activity of difloxacin against canine bacterial isolates

    NARCIS (Netherlands)

    Hoven, van den J.R.; Wagenaar, J.A.; Walker, R.D.

    2000-01-01

    The in vitro activity of difloxacin against canine bacterial isolates from clinical cases was studied in the United States and The Netherlands. Minimal inhibitory concentrations (MIC), the postantibiotic effect, the effect of pH on antimicrobial activity, and the bacterial killing rate tests were

  7. Advances in treatment of bacterial meningitis

    NARCIS (Netherlands)

    van de Beek, Diederik; Brouwer, Matthijs C.; Thwaites, Guy E.; Tunkel, Allan R.

    2012-01-01

    Bacterial meningitis kills or maims about a fifth of people with the disease. Early antibiotic treatment improves outcomes, but the effectiveness of widely available antibiotics is threatened by global emergence of multidrug-resistant bacteria. New antibiotics, such as fluoroquinolones, could have a

  8. On integrability of the Killing equation

    Science.gov (United States)

    Houri, Tsuyoshi; Tomoda, Kentaro; Yasui, Yukinori

    2018-04-01

    Killing tensor fields have been thought of as describing the hidden symmetry of space(-time) since they are in one-to-one correspondence with polynomial first integrals of geodesic equations. Since many problems in classical mechanics can be formulated as geodesic problems in curved space and spacetime, solving the defining equation for Killing tensor fields (the Killing equation) is a powerful way to integrate equations of motion. Thus it has been desirable to formulate the integrability conditions of the Killing equation, which serve to determine the number of linearly independent solutions and also to restrict the possible forms of solutions tightly. In this paper, we show the prolongation for the Killing equation in a manner that uses Young symmetrizers. Using the prolonged equations, we provide the integrability conditions explicitly.

  9. Germ killing by ultraviolet radiation

    International Nuclear Information System (INIS)

    Wawrik, O.

    1975-01-01

    Short-wave UV radiation, in particular the range about 250 nm, has a high germ reducing effect. Corresponding UV burners which above all emit radiation at the line of 254 nm can therefore be used effectively in all cases where the least possible content of germs in the air is aimed at. Apart from this it is also possible to reduce by this process the germs on surfaces and liquids. Especially in the most various ranges of pharmaceutical production one is steadily striving for efficient and last not least economic procedures by which it is possible to reduce the germs present in the air of a room. Numerous scientific investigations have sufficiently proved that short-wave UV radiation is extremely well appropriate for such purposes. Absolutely germ-free air in a room can only be obtained under laboratory conditions. In practice, however, the aim is not to achieve a 100 per cent killing of the germs present in a room but to make sure that the germ rate in certain rooms is constantly reduced to the lowest possible level. If in this connection it is referred to a germ reduction of 100 or 99 per cent this is but theory. (orig.) [de

  10. Effects of titanium dioxide mediated dairy waste activated sludge deflocculation on the efficiency of bacterial disintegration and cost of sludge management.

    Science.gov (United States)

    Godvin Sharmila, V; Kavitha, S; Rajashankar, K; Yeom, Ick Tae; Rajesh Banu, J

    2015-12-01

    This investigation explores the influence of titanium dioxide (TiO2) in deflocculating (removal of extracellular polymeric substance - EPS) the sludge and subsequent biomass disintegration by bacterial pretreatment. The EPS removed at an optimized TiO2 dosage of 0.03g/g of SS of TiO2 and a solar radiation exposure time of 15min to enhance the subsequent bacterial disintegration. The outcomes of the bacterial pretreatment reveal SS reduction and COD solubilization for the deflocculated (EPS removed and bacterially pretreated) sludge was observed to be 22.8% and 22.9% which was comparatively greater than flocculated (raw sludge inoculated with bacteria) and control (raw) sludge. The higher methane production potential of about 0.43(gCOD/gVSS) was obtained in deflocculated sludge than the flocculated (0.20gCOD/gVSS) and control (0.073gCOD/gVSS). Economic assessment of this study provides a net profit of about 131.9USD/Ton in deflocculated sludge. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. IMPACT OF SIPHONING ACTIVITY AND NATURALLY SUSPENDED PARTICLE LOAD ON MUSSEL KILL by PSEUDOMONAS FLUORESCENS

    International Nuclear Information System (INIS)

    Daniel Molloy

    2003-01-01

    Under this USDOE-NETL contract, the bacterium Pseudomonas fluorescens is being developed as a biocontrol agent for zebra mussels. The specific purpose of the contract is to identify biotic and abiotic factors that affect mussel kill. Ingestion of these bacteria by zebra mussels is required to achieve kill, and tests evaluating factors that relate to mussel feeding are contained in this report. Specifically the impact of the following two factors were investigated: (1) Mussel siphoning behavior--In nature, zebra mussels typically have their two shells spread apart and their inhalant siphon tube extended from between their shells for taking food particles into their mantle cavities (Fig. 1). Our tests indicated that there is a direct correlation between mussel siphoning activity and mussel mortality achieved by a bacterial treatment. Therefore, to encourage mussel feeding on bacteria, future pipe treatments within power plants should be carried out using procedures which minimize disturbance to mussel siphoning. 2. Naturally suspended particle loads--Since bacterial cells are lethal only if ingested by mussels, waters containing very high levels of naturally suspended particles might reduce the mortality that can be achieved by a bacterial treatment. If true, this inhibition might occur as a result of particle exclusion, i.e., there could be reduced ingestion of bacterial cells since they represent a reduced percentage of all particles ingested. Our tests indicated that a range of particle concentrations that might naturally exist in a turbid river did not inhibit mussel kill by the bacterial cells, but that an artificially high load of natural particles was capable of causing a reduction in kill. To be conservative, therefore, future pipe treatments should be timed to occur when intake waters have relatively low quantities of naturally suspended particulate matter

  12. IMPACT OF SIPHONING ACTIVITY AND NATURALLY SUSPENDED PARTICLE LOAD ON MUSSEL KILL by PSEUDOMONAS FLUORESCENS

    Energy Technology Data Exchange (ETDEWEB)

    Daniel Molloy

    2003-08-04

    Under this USDOE-NETL contract, the bacterium Pseudomonas fluorescens is being developed as a biocontrol agent for zebra mussels. The specific purpose of the contract is to identify biotic and abiotic factors that affect mussel kill. Ingestion of these bacteria by zebra mussels is required to achieve kill, and tests evaluating factors that relate to mussel feeding are contained in this report. Specifically the impact of the following two factors were investigated: (1) Mussel siphoning behavior--In nature, zebra mussels typically have their two shells spread apart and their inhalant siphon tube extended from between their shells for taking food particles into their mantle cavities (Fig. 1). Our tests indicated that there is a direct correlation between mussel siphoning activity and mussel mortality achieved by a bacterial treatment. Therefore, to encourage mussel feeding on bacteria, future pipe treatments within power plants should be carried out using procedures which minimize disturbance to mussel siphoning. 2. Naturally suspended particle loads--Since bacterial cells are lethal only if ingested by mussels, waters containing very high levels of naturally suspended particles might reduce the mortality that can be achieved by a bacterial treatment. If true, this inhibition might occur as a result of particle exclusion, i.e., there could be reduced ingestion of bacterial cells since they represent a reduced percentage of all particles ingested. Our tests indicated that a range of particle concentrations that might naturally exist in a turbid river did not inhibit mussel kill by the bacterial cells, but that an artificially high load of natural particles was capable of causing a reduction in kill. To be conservative, therefore, future pipe treatments should be timed to occur when intake waters have relatively low quantities of naturally suspended particulate matter.

  13. Rapid kill-novel endodontic sealer and Enterococcus faecalis.

    Directory of Open Access Journals (Sweden)

    Nurit Beyth

    Full Text Available With growing concern over bacterial resistance, the identification of new antimicrobial means is paramount. In the oral cavity microorganisms are essential to the development of periradicular diseases and are the major causative factors associated with endodontic treatment failure. As quaternary ammonium compounds have the ability to kill a wide array of bacteria through electrostatic interactions with multiple anionic targets on the bacterial surface, it is likely that they can overcome bacterial resistance. Melding these ideas, we investigated the potency of a novel endodontic sealer in limiting Enterococcus faecalis growth. We used a polyethyleneimine scaffold to synthesize nano-sized particles, optimized for incorporation into an epoxy-based endodontic sealer. The novel endodontic sealer was tested for its antimicrobial efficacy and evaluated for biocompatibility and physical eligibility. Our results show that the novel sealer foundation affixes the nanoparticles, achieving surface bactericidal properties, but at the same time impeding nanoparticle penetration into eukaryotic cells and thereby mitigating a possible toxic effect. Moreover, adequate physical properties are maintained. The nanosized quaternary amine particles interact within minutes with bacteria, triggering cell death across wide pH values. Throughout this study we demonstrate a new antibacterial perspective for endodontic sealers; a novel antibacterial, effective and safe antimicrobial means.

  14. Anti-Pseudomonas aeruginosa IgY antibodies promote bacterial opsonization and augment the phagocytic activity of polymorphonuclear neutrophils

    DEFF Research Database (Denmark)

    Thomsen, Kim; Christophersen, Lars; Jensen, Peter Østrup

    2016-01-01

    Moderation of polymorphonuclear neutrophils (PMNs) as part of a critical defense against invading pathogens may offer a promising therapeutic approach to supplement the antibiotic eradication of Pseudomonas aeruginosa infection in non-chronically infected cystic fibrosis (CF) patients. We have...... observed that egg yolk antibodies (IgY) harvested from White leghorn chickens that target P. aeruginosa opsonize the pathogen and enhance the PMN-mediated respiratory burst and subsequent bacterial killing in vitro. The effects on PMN phagocytic activity were observed in different Pseudomonas aeruginosa...

  15. Honor Killing: Where Pride Defeats Reason.

    Science.gov (United States)

    Kanchan, Tanuj; Tandon, Abhishek; Krishan, Kewal

    2016-12-01

    Honor killings are graceless and ferocious murders by chauvinists with an antediluvian mind. These are categorized separately because these killings are committed for the prime reason of satisfying the ego of the people whom the victim trusts and always looks up to for support and protection. It is for this sole reason that honor killings demand strict and stern punishment, not only for the person who committed the murder but also for any person who contributed or was party to the act. A positive change can occur with stricter legislation and changes in the ethos of the society we live in today.

  16. Some basic properties of Killing spinors

    International Nuclear Information System (INIS)

    Hacyan, S.; Plebanski, J.

    1976-01-01

    The concept of Killing spinor is analyzed in a general way by using the spinorial formalism. It is shown, among other things, that higher derivatives of Killing spinors can be expressed in terms of lower order derivatives. Conformal Killing vectors are studied in some detail in the light of spinorial analysis: Classical results are formulated in terms of spinors. A theorem on Lie derivatives of Debever--Penrose vectors is proved, and it is shown that conformal motion in vacuum with zero cosmological constant must be homothetic, unless the conformal tensor vanishes or is of type N. Our results are valid for either real or complex space--time manifolds

  17. Conventional CD4+ T cells present bacterial antigens to induce cytotoxic and memory CD8+ T cell responses.

    Science.gov (United States)

    Cruz-Adalia, Aránzazu; Ramirez-Santiago, Guillermo; Osuna-Pérez, Jesús; Torres-Torresano, Mónica; Zorita, Virgina; Martínez-Riaño, Ana; Boccasavia, Viola; Borroto, Aldo; Martínez Del Hoyo, Gloria; González-Granado, José María; Alarcón, Balbino; Sánchez-Madrid, Francisco; Veiga, Esteban

    2017-11-17

    Bacterial phagocytosis and antigen cross-presentation to activate CD8 + T cells are principal functions of professional antigen presenting cells. However, conventional CD4 + T cells also capture and kill bacteria from infected dendritic cells in a process termed transphagocytosis (also known as transinfection). Here, we show that transphagocytic T cells present bacterial antigens to naive CD8 + T cells, which proliferate and become cytotoxic in response. CD4 + T-cell-mediated antigen presentation also occurs in vivo in the course of infection, and induces the generation of central memory CD8 + T cells with low PD-1 expression. Moreover, transphagocytic CD4 + T cells induce protective anti-tumour immune responses by priming CD8 + T cells, highlighting the potential of CD4 + T cells as a tool for cancer immunotherapy.

  18. Homefucking is Killing Prostitution / Taavi Eelmaa

    Index Scriptorium Estoniae

    Eelmaa, Taavi, 1971-

    2008-01-01

    Mis jääb vaatajale teatrietendusest meelde? Ilmus Kris Moori raamat "Homefucking is Killing Prostitution". Raamat sisaldab tekste ja Erki Lauri fotosid Von Krahli Teatri samanimelisest etendusest, mida kordagi ei mängitud

  19. KILLING, VIEWED FROM A CONFLICT RESOLUTION PERSPECTIVE

    African Journals Online (AJOL)

    DODO

    2017-07-01

    Jul 1, 2017 ... ... million people were killed as part of the industrial policy of Belgium's ..... the seeds of hate and further conspiracies against others, the entire .... International Commission On Intervention and State Sovereignty (ICISS) 2001.

  20. Effect of Legionella pneumophila sonicate on killing of Listeria monocytogenes by human polymorphonuclear neutrophils and monocytes

    DEFF Research Database (Denmark)

    Rechnitzer, C; Bangsborg, Jette Marie; Shand, G H

    1993-01-01

    Legionella pneumophila shares with other intracellular pathogens the ability to resist intracellular killing within phagocytes. An increasing number of cellular components of L. pneumophila are proposed as pathogenic factors of the organism. At the site of infection, the phagocytic cells will be ......Legionella pneumophila shares with other intracellular pathogens the ability to resist intracellular killing within phagocytes. An increasing number of cellular components of L. pneumophila are proposed as pathogenic factors of the organism. At the site of infection, the phagocytic cells...... are most likely to represent the inhibitory factors. The inhibitory activity of L. pneumophila sonic extract appears to be related to inhibition of killing mechanisms since uptake of Listeria was not affected by the sonicate. Our observations indicate that as Legionella infection progresses, bacterial...

  1. Cryptococcus neoformans modulates extracellular killing by neutrophils

    Directory of Open Access Journals (Sweden)

    Asfia eQureshi

    2011-09-01

    Full Text Available We recently established a key role for host sphingomyelin synthase (SMS in the regulation of the killing activity of neutrophils against Cryptococcus neoformans. In this work, we studied the effect of C. neoformans on the killing activity of neutrophils and whether SMS would still be a player against C. neoformans in immunocompromised mice lacking T and NK cells (Tgε26 mice. To this end, we analyzed whether C. neoformans would have any effect on neutrophil survival and killing in vitro and in vivo. We show that unlike C. albicans, neither the presence nor the capsule size of C. neoformans cells have any effect on neutrophil viability. Interestingly, melanized C. neoformans cells totally abrogated the killing activity of neutrophils. Next, we monitored how exposure of neutrophils to C. neoformans cells would interfere with any further killing activity of the medium and found that pre-incubation with live but not heat-killed fungal cells significantly inhibits further killing activity of the medium. We next studied whether activation of SMS at the site of C. neoformans infection is dependent on T and NK cells. Using matrix-assisted laser desorption-ionization (MALDI tissue imaging in infected lung we found that similarly to previous observations in the isogenic wild type CBA/J mice, SM 16:0 levels are significantly elevated at the site of infection in mice lacking T and NK cells but only at early time points. This study highlights that C. neoformans may negatively regulate the killing activity of neutrophils and that SMS activation in neutrophils appears to be partially independent of T and/or NK cells.

  2. Targeted Killings in Bangladesh: Diversity at Stake

    OpenAIRE

    Syed, Jawad

    2016-01-01

    Since 2013, Bangladesh has repeatedly been in headline news across the world due to systematic and incessant targeted killings. In the mainstream media, both in South Asia and the West, the focus has been generally on high profile murders of secular and progressive bloggers. This includes the recent worldwide broad coverage on the tragic murder of Xulhaz Mannan, editor of Bangladesh's first LGBT rights magazine. However, not many know that these killings are only one part of the story. Secula...

  3. Contagion in Mass Killings and School Shootings

    OpenAIRE

    Towers, Sherry; Gomez-Lievano, Andres; Khan, Maryam; Mubayi, Anuj; Castillo-Chavez, Carlos

    2015-01-01

    Background Several past studies have found that media reports of suicides and homicides appear to subsequently increase the incidence of similar events in the community, apparently due to the coverage planting the seeds of ideation in at-risk individuals to commit similar acts. Methods Here we explore whether or not contagion is evident in more high-profile incidents, such as school shootings and mass killings (incidents with four or more people killed). We fit a contagion model to recent dat...

  4. Dirac operators and Killing spinors with torsion

    International Nuclear Information System (INIS)

    Becker-Bender, Julia

    2012-01-01

    On a Riemannian spin manifold with parallel skew torsion, we use the twistor operator to obtain an eigenvalue estimate for the Dirac operator with torsion. We consider the equality case in dimensions four and six. In odd dimensions we describe Sasaki manifolds on which equality in the estimate is realized by Killing spinors with torsion. In dimension five we characterize all Killing spinors with torsion and obtain certain naturally reductive spaces as exceptional cases.

  5. Technical Aspects of Cyber Kill Chain

    OpenAIRE

    Yadav, Tarun; Mallari, Rao Arvind

    2016-01-01

    Recent trends in targeted cyber-attacks has increased the interest of research in the field of cyber security. Such attacks have massive disruptive effects on rganizations, enterprises and governments. Cyber kill chain is a model to describe cyber-attacks so as to develop incident response and analysis capabilities. Cyber kill chain in simple terms is an attack chain, the path that an intruder takes to penetrate information systems over time to execute an attack on the target. This paper broa...

  6. Killing-Yano tensors, rank-2 Killing tensors, and conserved quantities in higher dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Krtous, Pavel [Institute of Theoretical Physics, Charles University, V Holesovickach 2, Prague (Czech Republic); Kubiznak, David [Institute of Theoretical Physics, Charles University, V Holesovickach 2, Prague (Czech Republic); Page, Don N. [Theoretical Physics Institute, University of Alberta, Edmonton T6G 2G7, Alberta (Canada); Frolov, Valeri P. [Theoretical Physics Institute, University of Alberta, Edmonton T6G 2G7, Alberta (Canada)

    2007-02-15

    From the metric and one Killing-Yano tensor of rank D-2 in any D-dimensional spacetime with such a principal Killing-Yano tensor, we show how to generate k = [(D+1)/2] Killing-Yano tensors, of rank D-2j for all 0 {<=} j {<=} k-1, and k rank-2 Killing tensors, giving k constants of geodesic motion that are in involution. For the example of the Kerr-NUT-AdS spacetime (hep-th/0604125) with its principal Killing-Yano tensor (gr-qc/0610144), these constants and the constants from the k Killing vectors give D independent constants in involution, making the geodesic motion completely integrable (hep-th/0611083). The constants of motion are also related to the constants recently obtained in the separation of the Hamilton-Jacobi and Klein-Gordon equations (hep-th/0611245)

  7. Killing-Yano tensors, rank-2 Killing tensors, and conserved quantities in higher dimensions

    International Nuclear Information System (INIS)

    Krtous, Pavel; Kubiznak, David; Page, Don N.; Frolov, Valeri P.

    2007-01-01

    From the metric and one Killing-Yano tensor of rank D-2 in any D-dimensional spacetime with such a principal Killing-Yano tensor, we show how to generate k = [(D+1)/2] Killing-Yano tensors, of rank D-2j for all 0 ≤ j ≤ k-1, and k rank-2 Killing tensors, giving k constants of geodesic motion that are in involution. For the example of the Kerr-NUT-AdS spacetime (hep-th/0604125) with its principal Killing-Yano tensor (gr-qc/0610144), these constants and the constants from the k Killing vectors give D independent constants in involution, making the geodesic motion completely integrable (hep-th/0611083). The constants of motion are also related to the constants recently obtained in the separation of the Hamilton-Jacobi and Klein-Gordon equations (hep-th/0611245)

  8. Identification of Pseudomonas aeruginosa phenazines that kill Caenorhabditis elegans.

    Science.gov (United States)

    Cezairliyan, Brent; Vinayavekhin, Nawaporn; Grenfell-Lee, Daniel; Yuen, Grace J; Saghatelian, Alan; Ausubel, Frederick M

    2013-01-01

    Pathogenic microbes employ a variety of methods to overcome host defenses, including the production and dispersal of molecules that are toxic to their hosts. Pseudomonas aeruginosa, a Gram-negative bacterium, is a pathogen of a diverse variety of hosts including mammals and the nematode Caenorhabditis elegans. In this study, we identify three small molecules in the phenazine class that are produced by P. aeruginosa strain PA14 that are toxic to C. elegans. We demonstrate that 1-hydroxyphenazine, phenazine-1-carboxylic acid, and pyocyanin are capable of killing nematodes in a matter of hours. 1-hydroxyphenazine is toxic over a wide pH range, whereas the toxicities of phenazine-1-carboxylic acid and pyocyanin are pH-dependent at non-overlapping pH ranges. We found that acidification of the growth medium by PA14 activates the toxicity of phenazine-1-carboxylic acid, which is the primary toxic agent towards C. elegans in our assay. Pyocyanin is not toxic under acidic conditions and 1-hydroxyphenazine is produced at concentrations too low to kill C. elegans. These results suggest a role for phenazine-1-carboxylic acid in mammalian pathogenesis because PA14 mutants deficient in phenazine production have been shown to be defective in pathogenesis in mice. More generally, these data demonstrate how diversity within a class of metabolites could affect bacterial toxicity in different environmental niches.

  9. Identification of Pseudomonas aeruginosa phenazines that kill Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Brent Cezairliyan

    2013-01-01

    Full Text Available Pathogenic microbes employ a variety of methods to overcome host defenses, including the production and dispersal of molecules that are toxic to their hosts. Pseudomonas aeruginosa, a Gram-negative bacterium, is a pathogen of a diverse variety of hosts including mammals and the nematode Caenorhabditis elegans. In this study, we identify three small molecules in the phenazine class that are produced by P. aeruginosa strain PA14 that are toxic to C. elegans. We demonstrate that 1-hydroxyphenazine, phenazine-1-carboxylic acid, and pyocyanin are capable of killing nematodes in a matter of hours. 1-hydroxyphenazine is toxic over a wide pH range, whereas the toxicities of phenazine-1-carboxylic acid and pyocyanin are pH-dependent at non-overlapping pH ranges. We found that acidification of the growth medium by PA14 activates the toxicity of phenazine-1-carboxylic acid, which is the primary toxic agent towards C. elegans in our assay. Pyocyanin is not toxic under acidic conditions and 1-hydroxyphenazine is produced at concentrations too low to kill C. elegans. These results suggest a role for phenazine-1-carboxylic acid in mammalian pathogenesis because PA14 mutants deficient in phenazine production have been shown to be defective in pathogenesis in mice. More generally, these data demonstrate how diversity within a class of metabolites could affect bacterial toxicity in different environmental niches.

  10. Bacterial prostatitis.

    Science.gov (United States)

    Gill, Bradley C; Shoskes, Daniel A

    2016-02-01

    The review provides the infectious disease community with a urologic perspective on bacterial prostatitis. Specifically, the article briefly reviews the categorization of prostatitis by type and provides a distillation of new findings published on bacterial prostatitis over the past year. It also highlights key points from the established literature. Cross-sectional prostate imaging is becoming more common and may lead to more incidental diagnoses of acute bacterial prostatitis. As drug resistance remains problematic in this condition, the reemergence of older antibiotics such as fosfomycin, has proven beneficial. With regard to chronic bacterial prostatitis, no clear clinical risk factors emerged in a large epidemiological study. However, bacterial biofilm formation has been associated with more severe cases. Surgery has a limited role in bacterial prostatitis and should be reserved for draining of a prostatic abscess or the removal of infected prostatic stones. Prostatitis remains a common and bothersome clinical condition. Antibiotic therapy remains the basis of treatment for both acute and chronic bacterial prostatitis. Further research into improving prostatitis treatment is indicated.

  11. Soil water availability and microsite mediate fungal and bacterial phospholipid fatty acid biomarker abundances in Mojave Desert soils exposed to elevated atmospheric CO2

    Science.gov (United States)

    Jin, V. L.; Schaeffer, S. M.; Ziegler, S. E.; Evans, R. D.

    2011-06-01

    Changes in the rates of nitrogen (N) cycling, microbial carbon (C) substrate use, and extracellular enzyme activities in a Mojave Desert ecosystem exposed to elevated atmospheric CO2 suggest shifts in the size and/or functional characteristics of microbial assemblages in two dominant soil microsites: plant interspaces and under the dominant shrub Larrea tridentata. We used ester-linked phospholipid fatty acid (PLFA) biomarkers as a proxy for microbial biomass to quantify spatial and temporal differences in soil microbial communities from February 2003 to May 2005. Further, we used the 13C signature of the fossil CO2 source for elevated CO2 plots to trace recent plant C inputs into soil organic matter (SOM) and broad microbial groups using δ13C (‰). Differences between individual δ13CPLFA and δ13CSOM for fungal biomarkers indicated active metabolism of newer C in elevated CO2 soils. Total PLFA-C was greater in shrub microsites compared to plant interspaces, and CO2 treatment differences within microsites increased under higher soil water availability. Total, fungal, and bacterial PLFA-C increased with decreasing soil volumetric water content (VWC) in both microsites, suggesting general adaptations to xeric desert conditions. Increases in fungal-to-bacterial PLFA-C ratio with decreasing VWC reflected functional group-specific responses to changing soil water availability. While temporal and spatial extremes in resource availability in desert ecosystems contribute to the difficulty in identifying common trends or mechanisms driving microbial responses in less extreme environments, we found that soil water availability and soil microsite interacted with elevated CO2 to shift fungal and bacterial biomarker abundances in Mojave Desert soils.

  12. PESAN MORAL DALAM FILM TO KILL A MOCKINGBIRD (ANALISIS SEMIOTIKA PADA FILM TO KILL A MOCKINGBIRD

    OpenAIRE

    RENYOET, JAQUILINE MELISSA

    2014-01-01

    2014 JAQUILINE MELISSA RENYOET. Pesan Moral Dalam Film To Kill A Mockingbird (Analisis Semiotika Pada Film To Kill A Mockingbird). (Dibimbing oleh Muh. Nadjib dan Alem Febri Sonni). Tujuan Penelitian ini adalah mengidentifikasi bentuk pesan moral dan memahami makna pesan moral dalam film To Kill A Mockingbird. Penelitian ini dilakukan selama kurang lebih 2 bulan yaitu Maret ??? Mei 2014. Metode yang digunakan untuk penelitian ini adalah metode penelitian kualitatif den...

  13. Mevalonate 5-diphosphate mediates ATP binding to the mevalonate diphosphate decarboxylase from the bacterial pathogen Enterococcus faecalis

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chun-Liang; Mermoud, James C.; Paul, Lake N.; Steussy, Calvin Nicklaus; Stauffacher, Cynthia V. (Purdue)

    2017-10-12

    The mevalonate pathway produces isopentenyl diphosphate (IPP), a building block for polyisoprenoid synthesis, and is a crucial pathway for growth of the human bacterial pathogen Enterococcus faecalis. The final enzyme in this pathway, mevalonate diphosphate decarboxylase (MDD), acts on mevalonate diphosphate (MVAPP) to produce IPP while consuming ATP. This essential enzyme has been suggested as a therapeutic target for the treatment of drug-resistant bacterial infections. Here, we report functional and structural studies on the mevalonate diphosphate decarboxylase from E. faecalis (MDDEF). The MDDEF crystal structure in complex with ATP (MDDEF–ATP) revealed that the phosphate-binding loop (amino acids 97–105) is not involved in ATP binding and that the phosphate tail of ATP in this structure is in an outward-facing position pointing away from the active site. This suggested that binding of MDDEF to MVAPP is necessary to guide ATP into a catalytically favorable position. Enzymology experiments show that the MDDEF performs a sequential ordered bi-substrate reaction with MVAPP as the first substrate, consistent with the isothermal titration calorimetry (ITC) experiments. On the basis of ITC results, we propose that this initial prerequisite binding of MVAPP enhances ATP binding. In summary, our findings reveal a substrate-induced substrate-binding event that occurs during the MDDEF-catalyzed reaction. The disengagement of the phosphate-binding loop concomitant with the alternative ATP-binding configuration may provide the structural basis for antimicrobial design against these pathogenic enterococci.

  14. Bacterial Vaginosis

    Science.gov (United States)

    ... Archive STDs Home Page Bacterial Vaginosis (BV) Chlamydia Gonorrhea Genital Herpes Hepatitis HIV/AIDS & STDs Human Papillomavirus ( ... of getting other STDs, such as chlamydia and gonorrhea . These bacteria can sometimes cause pelvic inflammatory disease ( ...

  15. Chemically enhanced sunlight for killing bacteria

    International Nuclear Information System (INIS)

    Block, S.S.; Goswami, D.Y.

    1995-01-01

    Solar ultraviolet (UV) photocatalyzed oxidation of chemicals with titanium dioxide (TiO 2 ) has received considerable attention. Much less recognized, however, is the ability of the same system to destroy bacteria. This study examined this phenomenon and the conditions that affect it. Bacteria in aqueous solution were given solar exposure with titanium dioxide and their survival with time was determined. Lamps with a predominantly solar ultraviolet spectrum were also used in the experiments. Without exposure to UV light, TiO 2 had no deleterious effect on the bacteria. However, several common bacteria on solar exposure in the presence of TiO 2 were killed in just a few minutes, whereas without TiO 2 it took over an hour to destroy them. A concentration of 0.01% TiO 2 was most effective in killing bacteria and 10-fold concentrations lower or higher were successively less effective. Inorganic and organic compounds in solution, even in small amounts, interfered with the efficiency of killing. Alkaline solution also reduced the bactericidal activity. Circulation and agitation provided by stirring to keep the TiO 2 particles suspended reduced the time necessary to kill the bacteria. Time-intensity curves for killing bacteria were the same general shape with or without TiO 2 , indicating that TiO 2 served merely as a catalyst to increase the rate of the reaction but that the mechanism of action was not changed. The shape of the curves show that the organisms are sensitized with a minimum intensity of radiation and that an increase doesn't greatly increase the rate of kill. Below this critical intensity, however, the time required for killing markedly increases as the intensity is decreased

  16. Lactoferricin Peptides Increase Macrophages' Capacity To Kill Mycobacterium avium.

    Science.gov (United States)

    Silva, Tânia; Moreira, Ana C; Nazmi, Kamran; Moniz, Tânia; Vale, Nuno; Rangel, Maria; Gomes, Paula; Bolscher, Jan G M; Rodrigues, Pedro N; Bastos, Margarida; Gomes, Maria Salomé

    2017-01-01

    Mycobacterial infections cause a significant burden of disease and death worldwide. Their treatment is long, toxic, costly, and increasingly prone to failure due to bacterial resistance to currently available antibiotics. New therapeutic options are thus clearly needed. Antimicrobial peptides represent an important source of new antimicrobial molecules, both for their direct activity and for their immunomodulatory potential. We have previously reported that a short version of the bovine antimicrobial peptide lactoferricin with amino acids 17 to 30 (LFcin17-30), along with its variants obtained by specific amino acid substitutions, killed Mycobacterium avium in broth culture. In the present work, those peptides were tested against M. avium living inside its natural host cell, the macrophage. We found that the peptides increased the antimicrobial action of the conventional antibiotic ethambutol inside macrophages. Moreover, the d-enantiomer of the lactoferricin peptide (d-LFcin17-30) was more stable and induced significant killing of intracellular mycobacteria by itself. Interestingly, d-LFcin17-30 did not localize to M. avium -harboring phagosomes but induced the production of proinflammatory cytokines and increased the formation of lysosomes and autophagosome-like vesicles. These results lead us to conclude that d-LFcin17-30 primes macrophages for intracellular microbial digestion through phagosomal maturation and/or autophagy, culminating in mycobacterial killing. IMPORTANCE The genus Mycobacterium comprises several pathogenic species, including M. tuberculosis , M. leprae , M. avium , etc. Infections caused by these bacteria are particularly difficult to treat due to their intrinsic impermeability, low growth rate, and intracellular localization. Antimicrobial peptides are increasingly acknowledged as potential treatment tools, as they have a high spectrum of activity, low tendency to induce bacterial resistance, and immunomodulatory properties. In this study, we

  17. Bystander Host Cell Killing Effects of Clostridium perfringens Enterotoxin

    Directory of Open Access Journals (Sweden)

    Archana Shrestha

    2016-12-01

    Full Text Available Clostridium perfringens enterotoxin (CPE binds to claudin receptors, e.g., claudin-4, and then forms a pore that triggers cell death. Pure cultures of host cells that do not express claudin receptors, e.g., fibroblasts, are unaffected by pathophysiologically relevant CPE concentrations in vitro. However, both CPE-insensitive and CPE-sensitive host cells are present in vivo. Therefore, this study tested whether CPE treatment might affect fibroblasts when cocultured with CPE-sensitive claudin-4 fibroblast transfectants or Caco-2 cells. Under these conditions, immunofluorescence microscopy detected increased death of fibroblasts. This cytotoxic effect involved release of a toxic factor from the dying CPE-sensitive cells, since it could be reproduced using culture supernatants from CPE-treated sensitive cells. Supernatants from CPE-treated sensitive cells, particularly Caco-2 cells, were found to contain high levels of membrane vesicles, often containing a CPE species. However, most cytotoxic activity remained in those supernatants even after membrane vesicle depletion, and CPE was not detected in fibroblasts treated with supernatants from CPE-treated sensitive cells. Instead, characterization studies suggest that a major cytotoxic factor present in supernatants from CPE-treated sensitive cells may be a 10- to 30-kDa host serine protease or require the action of that host serine protease. Induction of caspase-3-mediated apoptosis was found to be important for triggering release of the cytotoxic factor(s from CPE-treated sensitive host cells. Furthermore, the cytotoxic factor(s in these supernatants was shown to induce a caspase-3-mediated killing of fibroblasts. This bystander killing effect due to release of cytotoxic factors from CPE-treated sensitive cells could contribute to CPE-mediated disease.

  18. Preventing bacterial growth on implanted device with an interfacial metallic film and penetrating X-rays.

    Science.gov (United States)

    An, Jincui; Sun, An; Qiao, Yong; Zhang, Peipei; Su, Ming

    2015-02-01

    Device-related infections have been a big problem for a long time. This paper describes a new method to inhibit bacterial growth on implanted device with tissue-penetrating X-ray radiation, where a thin metallic film deposited on the device is used as a radio-sensitizing film for bacterial inhibition. At a given dose of X-ray, the bacterial viability decreases as the thickness of metal film (bismuth) increases. The bacterial viability decreases with X-ray dose increases. At X-ray dose of 2.5 Gy, 98% of bacteria on 10 nm thick bismuth film are killed; while it is only 25% of bacteria are killed on the bare petri dish. The same dose of X-ray kills 8% fibroblast cells that are within a short distance from bismuth film (4 mm). These results suggest that penetrating X-rays can kill bacteria on bismuth thin film deposited on surface of implant device efficiently.

  19. Killing superalgebras for Lorentzian four-manifolds

    International Nuclear Information System (INIS)

    Medeiros, Paul de; Figueroa-O’Farrill, José; Santi, Andrea

    2016-01-01

    We determine the Killing superalgebras underpinning field theories with rigid unextended supersymmetry on Lorentzian four-manifolds by re-interpreting them as filtered deformations of ℤ-graded subalgebras with maximum odd dimension of the N=1 Poincaré superalgebra in four dimensions. Part of this calculation involves computing a Spencer cohomology group which, by analogy with a similar result in eleven dimensions, prescribes a notion of Killing spinor, which we identify with the defining condition for bosonic supersymmetric backgrounds of minimal off-shell supergravity in four dimensions. We prove that such Killing spinors always generate a Lie superalgebra, and that this Lie superalgebra is a filtered deformation of a subalgebra of the N=1 Poincaré superalgebra in four dimensions. Demanding the flatness of the connection defining the Killing spinors, we obtain equations satisfied by the maximally supersymmetric backgrounds. We solve these equations, arriving at the classification of maximally supersymmetric backgrounds whose associated Killing superalgebras are precisely the filtered deformations we classify in this paper.

  20. Killing superalgebras for Lorentzian four-manifolds

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, Paul de [Department of Mathematics and Natural Sciences, University of Stavanger,4036 Stavanger (Norway); Figueroa-O’Farrill, José; Santi, Andrea [Maxwell Institute and School of Mathematics, The University of Edinburgh,James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh EH9 3FD, Scotland (United Kingdom)

    2016-06-20

    We determine the Killing superalgebras underpinning field theories with rigid unextended supersymmetry on Lorentzian four-manifolds by re-interpreting them as filtered deformations of ℤ-graded subalgebras with maximum odd dimension of the N=1 Poincaré superalgebra in four dimensions. Part of this calculation involves computing a Spencer cohomology group which, by analogy with a similar result in eleven dimensions, prescribes a notion of Killing spinor, which we identify with the defining condition for bosonic supersymmetric backgrounds of minimal off-shell supergravity in four dimensions. We prove that such Killing spinors always generate a Lie superalgebra, and that this Lie superalgebra is a filtered deformation of a subalgebra of the N=1 Poincaré superalgebra in four dimensions. Demanding the flatness of the connection defining the Killing spinors, we obtain equations satisfied by the maximally supersymmetric backgrounds. We solve these equations, arriving at the classification of maximally supersymmetric backgrounds whose associated Killing superalgebras are precisely the filtered deformations we classify in this paper.

  1. Female serial killing: review and case report.

    Science.gov (United States)

    Frei, Andreas; Völlm, Birgit; Graf, Marc; Dittmann, Volker

    2006-01-01

    Single homicide committed by women is rare. Serial killing is very infrequent, and the perpetrators are usually white, intelligent males with sadistic tendencies. Serial killing by women has, however, also been described. To conduct a review of published literature on female serial killers and consider its usefulness in assessing a presenting case. A literature review was conducted, after searching EMBASE, MEDLINE and PsycINFO. The presenting clinical case is described in detail in the context of the literature findings. Results The literature search revealed few relevant publications. Attempts to categorize the phenomenon of female serial killing according to patterns of and motives for the homicides have been made by some authors. The most common motive identified was material gain or similar extrinsic gratification while the 'hedonistic' sadistic or sexual serial killer seems to be extremely rare in women. There is no consistent theory of serial killing by women, but psychopathic personality traits and abusive childhood experiences have consistently been observed. The authors' case did not fit the description of a 'typical' female serial killer. In such unusual circumstances as serial killing by a woman, detailed individual case formulation is required to make sense of the psychopathology in each case. Publication of cases in scientific journals should be encouraged to advance our understanding of this phenomenon. Copyright (c) 2006 John Wiley & Sons, Ltd.

  2. Amplification of pico-scale DNA mediated by bacterial carrier DNA for small-cell-number transcription factor ChIP-seq

    DEFF Research Database (Denmark)

    Jakobsen, Janus S; Bagger, Frederik O; Hasemann, Marie S

    2015-01-01

    BACKGROUND: Chromatin-Immunoprecipitation coupled with deep sequencing (ChIP-seq) is used to map transcription factor occupancy and generate epigenetic profiles genome-wide. The requirement of nano-scale ChIP DNA for generation of sequencing libraries has impeded ChIP-seq on in vivo tissues of low...... transcription factor (CEBPA) and histone mark (H3K4me3) ChIP. We further demonstrate that genomic profiles are highly resilient to changes in carrier DNA to ChIP DNA ratios. CONCLUSIONS: This represents a significant advance compared to existing technologies, which involve either complex steps of pre...... cell numbers. RESULTS: We describe a robust, simple and scalable methodology for ChIP-seq of low-abundant cell populations, verified down to 10,000 cells. By employing non-mammalian genome mapping bacterial carrier DNA during amplification, we reliably amplify down to 50 pg of ChIP DNA from...

  3. 75 FR 62469 - Drawbridge Operation Regulations; Newtown Creek, Dutch Kills, English Kills, and Their...

    Science.gov (United States)

    2010-10-12

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 117 [Docket No. USCG-2010-0907] Drawbridge Operation Regulations; Newtown Creek, Dutch Kills, English Kills, and Their Tributaries, NY, Maintenance AGENCY: Coast Guard, DHS. ACTION: Notice of temporary deviation from regulations. SUMMARY: The Commander...

  4. 75 FR 30299 - Drawbridge Operation Regulations; Newtown Creek, Dutch Kills, English Kills, and Their...

    Science.gov (United States)

    2010-06-01

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 117 [Docket No. USCG-2010-0355] Drawbridge Operation Regulations; Newtown Creek, Dutch Kills, English Kills, and Their Tributaries, NY, Maintenance AGENCY: Coast Guard, DHS. ACTION: Notice of temporary deviation from regulations. SUMMARY: The Commander...

  5. 9 CFR 113.206 - Wart Vaccine, Killed Virus.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Wart Vaccine, Killed Virus. 113.206... AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.206 Wart Vaccine, Killed Virus. Wart Vaccine, Killed Virus, shall be prepared...

  6. 9 CFR 113.213 - Pseudorabies Vaccine, Killed Virus.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Pseudorabies Vaccine, Killed Virus..., DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.213 Pseudorabies Vaccine, Killed Virus. Pseudorabies Vaccine, Killed...

  7. 9 CFR 113.209 - Rabies Vaccine, Killed Virus.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Rabies Vaccine, Killed Virus. 113.209... Killed Virus Vaccines § 113.209 Rabies Vaccine, Killed Virus. Rabies Vaccine (Killed Virus) shall be prepared from virus-bearing cell cultures or nerve tissues obtained from animals that have developed rabies...

  8. Enabling fast electron transfer through both bacterial outer-membrane redox centers and endogenous electron mediators by polyaniline hybridized large-mesoporous carbon anode for high-performance microbial fuel cells

    International Nuclear Information System (INIS)

    Zou, Long; Qiao, Yan; Zhong, Canyu; Li, Chang Ming

    2017-01-01

    Both physical structure and chemical property of an electrode play critical roles in extracellular electron transfer from microbes to electrodes in microbial fuel cells (MFCs). Herein a novel polyaniline hybridized large mesoporous carbon (PANI-LMC) anode is fabricated from natural biomass by nanostructured CaCO 3 template-assisted carbonization followed by in situ chemical polymerizing PANI to enable fast extracellular electron transfer, in which the LMC with rich disorder-interconnected large mesopores (∼20−50 nm) and large surface area facilitates a fast mediated electron transfer through electron mediators, while the decorated PANI on LMC surface enables the direct electron transfer via bacterial outer-membrane redox centers. Owing to the unique synergistic effect from both excellent electron transfer paths, the PANI-LMC hybrid anode harvests high power electricity with a maximum output power density of 1280 mW m −2 in Shewanella putrefaciens CN32 MFCs, 10-fold higher than that of conventional carbon cloth. The findings from this work suggest a new insight on design of high-efficient anode according to the multiple and flexible electrochemical process for practical MFC applications.

  9. Conformal Killing horizons and their thermodynamics

    Science.gov (United States)

    Nielsen, Alex B.; Shoom, Andrey A.

    2018-05-01

    Certain dynamical black hole solutions can be mapped to static spacetimes by conformal metric transformations. This mapping provides a physical link between the conformal Killing horizon of the dynamical black hole and the Killing horizon of the static spacetime. Using the Vaidya spacetime as an example, we show how this conformal relation can be used to derive thermodynamic properties of such dynamical black holes. Although these horizons are defined quasi-locally and can be located by local experiments, they are distinct from other popular notions of quasi-local horizons such as apparent horizons. Thus in the dynamical Vaidya spacetime describing constant accretion of null dust, the conformal Killing horizon, which is null by construction, is the natural horizon to describe the black hole.

  10. Bacterial cheating limits antibiotic resistance

    Science.gov (United States)

    Xiao Chao, Hui; Yurtsev, Eugene; Datta, Manoshi; Artemova, Tanya; Gore, Jeff

    2012-02-01

    The widespread use of antibiotics has led to the evolution of resistance in bacteria. Bacteria can gain resistance to the antibiotic ampicillin by acquiring a plasmid carrying the gene beta-lactamase, which inactivates the antibiotic. This inactivation may represent a cooperative behavior, as the entire bacterial population benefits from removing the antibiotic. The cooperative nature of this growth suggests that a cheater strain---which does not contribute to breaking down the antibiotic---may be able to take advantage of cells cooperatively inactivating the antibiotic. Here we find experimentally that a ``sensitive'' bacterial strain lacking the plasmid conferring resistance can invade a population of resistant bacteria, even in antibiotic concentrations that should kill the sensitive strain. We observe stable coexistence between the two strains and find that a simple model successfully explains the behavior as a function of antibiotic concentration and cell density. We anticipate that our results will provide insight into the evolutionary origin of phenotypic diversity and cooperative behaviors.

  11. Structure-Based Design and Synthesis of a Small Molecule that Exhibits Anti-inflammatory Activity by Inhibition of MyD88-mediated Signaling to Bacterial Toxin Exposure.

    Science.gov (United States)

    Alam, Shahabuddin; Javor, Sacha; Degardin, Melissa; Ajami, Dariush; Rebek, Mitra; Kissner, Teri L; Waag, David M; Rebek, Julius; Saikh, Kamal U

    2015-08-01

    Both Gram-positive and Gram-negative pathogens or pathogen-derived components, such as staphylococcal enterotoxins (SEs) and endotoxin (LPS) exposure, activate MyD88-mediated pro-inflammatory cellular immunity for host defense. However, dysregulated MyD88-mediated signaling triggers exaggerated immune response that often leads to toxic shock and death. Previously, we reported a small molecule compound 1 mimicking BB-loop structure of MyD88 was capable of inhibiting pro-inflammatory response to SEB exposure in mice. In this study, we designed a dimeric structure compound 4210 covalently linked with compound 1 by a non-polar cyclohexane linker which strongly inhibited the production of pro-inflammatory cytokines in human primary cells to SEB (IC50 1-50 μm) or LPS extracted from Francisella tularensis, Escherichia coli, or Burkholderia mallei (IC50 10-200 μm). Consistent with cytokine inhibition, in a ligand-induced cell-based reporter assay, compound 4210 inhibited Burkholderia mallei or LPS-induced MyD88-mediated NF-kB-dependent expression of reporter activity (IC50 10-30 μm). Furthermore, results from a newly expressed MyD88 revealed that 4210 inhibited MyD88 dimer formation which is critical for pro-inflammatory signaling. Importantly, a single administration of compound 4210 in mice showed complete protection from lethal toxin challenge. Collectively, these results demonstrated that compound 4210 inhibits toxin-induced inflated pro-inflammatory immune signaling, thus displays a potential bacterial toxin therapeutic. © 2014 John Wiley & Sons A/S.

  12. "Drone Killings in Principle and in Practice"

    DEFF Research Database (Denmark)

    Dige, Morten

    2017-01-01

    to argue that what we see in the real world cases of drone killings is not merely an accidental or contingent use of drone technology. The real life use reflects to a large extent features that are inherent of the dominant drone systems that has been developed to date. What is being imagined "in principle......" is thus to a large extent drone killings in dreamland. I use an historic example as a point of reference and departure: the debate over the lawfulness of nuclear weapons....

  13. Antimicrobial properties of Kalanchoe blossfeldiana: a focus on drug resistance with particular reference to quorum sensing-mediated bacterial biofilm formation.

    Science.gov (United States)

    Sarkar, Ratul; Mondal, Chaitali; Bera, Rammohan; Chakraborty, Sumon; Barik, Rajib; Roy, Paramita; Kumar, Alekh; Yadav, Kirendra K; Choudhury, Jayanta; Chaudhary, Sushil K; Samanta, Samir K; Karmakar, Sanmoy; Das, Satadal; Mukherjee, Pulok K; Mukherjee, Joydeep; Sen, Tuhinadri

    2015-07-01

    This study attempts to investigate the antimicrobial properties of Kalanchoe blossfeldiana with a particular reference to quorum sensing (QS)-mediated biofilm formation. The methanol extract of K. blossfeldiana leaves (MEKB) was evaluated for antimicrobial properties including QS-controlled production of biofilm (including virulence factor, motility and lactone formation) in Pseudomonas aeruginosa. Methanol extract of K. blossfeldiana was also evaluated for anti-cytokine (tumour necrosis factor-alpha, interleukin-6 and interleukin-1 beta) properties in peripheral blood mononuclear cells (PBMC). Methanol extract of K. blossfeldiana exhibited antimicrobial effect on clinical isolates, as well as standard reference strains. Pseudomonas aeruginosa exposed to MEKB (subminimum inhibitory concentration (MIC)) displayed reduced biofilm formation, whereas supra-MIC produced destruction of preformed biofilms. Methanol extract of K. blossfeldiana reduced the secretion of virulence factors (protease and pyoverdin) along with generation of acyl homoserine lactone (AHL). Confocal laser scanning microscopy images indicate reduction of biofilm thickness. The extract also reduced cytokine formation in lipopolysaccharide-stimulated PBMC. Kalanchoe blossfeldiana was found to interfere with AHL production, which in turn may be responsible for downregulating QS-mediated production of biofilm and virulence. This first report on the antibiofilm and anticytokine properties of this plant may open up new vistas for future exploration of this plant for combating biofilm-related resistant infections. © 2015 Royal Pharmaceutical Society.

  14. BACTERIAL CONSORTIUM

    Directory of Open Access Journals (Sweden)

    Payel Sarkar

    2013-01-01

    Full Text Available Petroleum aromatic hydrocarbons like benzen e, toluene, ethyl benzene and xylene, together known as BTEX, has almost the same chemical structure. These aromatic hydrocarbons are released as pollutants in th e environment. This work was taken up to develop a solvent tolerant bacterial cons ortium that could degrade BTEX compounds as they all share a common chemical structure. We have isolated almost 60 different types of bacterial strains from different petroleum contaminated sites. Of these 60 bacterial strains almost 20 microorganisms were screene d on the basis of capability to tolerate high concentration of BTEX. Ten differe nt consortia were prepared and the compatibility of the bacterial strains within the consortia was checked by gram staining and BTEX tolerance level. Four successful mi crobial consortia were selected in which all the bacterial strains concomitantly grew in presence of high concentration of BTEX (10% of toluene, 10% of benzene 5% ethyl benzene and 1% xylene. Consortium #2 showed the highest growth rate in pr esence of BTEX. Degradation of BTEX by consortium #2 was monitored for 5 days by gradual decrease in the volume of the solvents. The maximum reduction observed wa s 85% in 5 days. Gas chromatography results also reveal that could completely degrade benzene and ethyl benzene within 48 hours. Almost 90% degradation of toluene and xylene in 48 hours was exhibited by consortium #2. It could also tolerate and degrade many industrial solvents such as chloroform, DMSO, acetonitrile having a wide range of log P values (0.03–3.1. Degradation of aromatic hydrocarbon like BTEX by a solvent tolerant bacterial consortium is greatly significant as it could degrade high concentration of pollutants compared to a bacterium and also reduces the time span of degradation.

  15. Role of antimicrobial peptides in controlling symbiotic bacterial populations.

    Science.gov (United States)

    Mergaert, P

    2018-04-25

    Covering: up to 2018 Antimicrobial peptides (AMPs) have been known for well over three decades as crucial mediators of the innate immune response in animals and plants, where they are involved in the killing of infecting microbes. However, AMPs have now also been found to be produced by eukaryotic hosts during symbiotic interactions with bacteria. These symbiotic AMPs target the symbionts and therefore have a more subtle biological role: not eliminating the microbial symbiont population but rather keeping it in check. The arsenal of AMPs and the symbionts' adaptations to resist them are in a careful balance, which contributes to the establishment of the host-microbe homeostasis. Although in many cases the biological roles of symbiotic AMPs remain elusive, for a number of symbiotic interactions, precise functions have been assigned or proposed to the AMPs, which are discussed here. The microbiota living on epithelia in animals, from the most primitive ones to the mammals, are challenged by a cocktail of AMPs that determine the specific composition of the bacterial community as well as its spatial organization. In the symbiosis of legume plants with nitrogen-fixing rhizobium bacteria, the host deploys an extremely large panel of AMPs - called nodule-specific cysteine-rich (NCR) peptides - that drive the bacteria into a terminally differentiated state and manipulate the symbiont physiology to maximize the benefit for the host. The NCR peptides are used as tools to enslave the bacterial symbionts, limiting their reproduction but keeping them metabolically active for nitrogen fixation. In the nutritional symbiotic interactions of insects and protists that have vertically transmitted bacterial symbionts with reduced genomes, symbiotic AMPs could facilitate the integration of the endosymbiont and host metabolism by favouring the flow of metabolites across the symbiont membrane through membrane permeabilization.

  16. Succession of bacterial and fungal communities during a traditional pot fermentation of rice vinegar assessed by PCR-mediated denaturing gradient gel electrophoresis.

    Science.gov (United States)

    Haruta, Shin; Ueno, Shintaro; Egawa, Isao; Hashiguchi, Kazunori; Fujii, Akira; Nagano, Masanobu; Ishii, Masaharu; Igarashi, Yasuo

    2006-05-25

    Denaturing gradient gel electrophoresis (DGGE) based on small subunit rRNA gene was applied to a traditional rice vinegar fermentation process in which the conversion of rice starch into acetic acid proceeded in a pot. The fungal DGGE profile indicated that the transition from Aspergillus oryzae to Saccharomyces sp. took place at the initial stage at which alcohol production was observed. The early stage was characterized by the coexistence of Saccharomyces sp. and lactic acid bacteria. Almost all of the bacterial DGGE bands related to lactic acid bacteria were replaced by bands derived from Lactobacillus acetotolerance and Acetobacter pasteurianus at the stage at which acetic acid started to accumulate. The microbial succession, tested in three different pots, was found to be essentially identical. Among the bacteria isolated at the early stage, some species differed from those detected by DGGE. This is the first report to reveal the microbial community succession that occurs during a unique vinegar fermentation process, as determined by a culture-independent method.

  17. Phage “delay” towards enhancing bacterial escape from biofilms: a more comprehensive way of viewing resistance to bacteriophages

    Directory of Open Access Journals (Sweden)

    Stephen T. Abedon

    2017-03-01

    Full Text Available In exploring bacterial resistance to bacteriophages, emphasis typically is placed on those mechanisms which completely prevent phage replication. Such resistance can be detected as extensive reductions in phage ability to form plaques, that is, reduced efficiency of plating. Mechanisms include restriction-modification systems, CRISPR/Cas systems, and abortive infection systems. Alternatively, phages may be reduced in their “vigor” when infecting certain bacterial hosts, that is, with phages displaying smaller burst sizes or extended latent periods rather than being outright inactivated. It is well known, as well, that most phages poorly infect bacteria that are less metabolically active. Extracellular polymers such as biofilm matrix material also may at least slow phage penetration to bacterial surfaces. Here I suggest that such “less-robust” mechanisms of resistance to bacteriophages could serve bacteria by slowing phage propagation within bacterial biofilms, that is, delaying phage impact on multiple bacteria rather than necessarily outright preventing such impact. Related bacteria, ones that are relatively near to infected bacteria, e.g., roughly 10+ µm away, consequently may be able to escape from biofilms with greater likelihood via standard dissemination-initiating mechanisms including erosion from biofilm surfaces or seeding dispersal/central hollowing. That is, given localized areas of phage infection, so long as phage spread can be reduced in rate from initial points of contact with susceptible bacteria, then bacterial survival may be enhanced due to bacteria metaphorically “running away” to more phage-free locations. Delay mechanisms—to the extent that they are less specific in terms of what phages are targeted—collectively could represent broader bacterial strategies of phage resistance versus outright phage killing, the latter especially as require specific, evolved molecular recognition of phage presence. The

  18. Individual and co-operative roles of lactic acid and hydrogen peroxide in the killing activity of enteric strain Lactobacillus johnsonii NCC933 and vaginal strain Lactobacillus gasseri KS120.1 against enteric, uropathogenic and vaginosis-associated pathogens.

    Science.gov (United States)

    Atassi, Fabrice; Servin, Alain L

    2010-03-01

    The mechanism underlying the killing activity of Lactobacillus strains against bacterial pathogens appears to be multifactorial. Here, we investigate the respective contributions of hydrogen peroxide and lactic acid in killing bacterial pathogens associated with the human vagina, urinary tract or intestine by two hydrogen peroxide-producing strains. In co-culture, the human intestinal strain Lactobacillus johnsonii NCC933 and human vaginal strain Lactobacillus gasseri KS120.1 strains killed enteric Salmonella enterica serovar Typhimurium SL1344, vaginal Gardnerella vaginalis DSM 4944 and urinary tract Escherichia coli CFT073 pathogens. The cell-free culture supernatants (CFCSs) produced the same reduction in SL1344, DSM 4944 and CFT073 viability, whereas isolated bacteria had no effect. The killing activity of CFCSs was heat-stable. In the presence of Dulbecco's modified Eagle's minimum essential medium inhibiting the lactic acid-dependent killing activity, CFCSs were less effective at killing of the pathogens. Catalase-treated CFCSs displayed a strong decreased activity. Tested alone, hydrogen peroxide triggered a concentration-dependent killing activity against all three pathogens. Lactic acid alone developed a killing activity only at concentrations higher than that present in CFCSs. In the presence of lactic acid at a concentration present in Lactobacillus CFCSs, hydrogen peroxide displayed enhanced killing activity. Collectively, these results demonstrate that for hydrogen peroxide-producing Lactobacillus strains, the main metabolites of Lactobacillus, lactic acid and hydrogen peroxide, act co-operatively to kill enteric, vaginosis-associated and uropathogenic pathogens.

  19. Killing Hitler: A Writer's Journey and Angst.

    Science.gov (United States)

    Thaler, Paul

    2002-01-01

    Describes the author's experiences in preparing a talk that "evokes the specter" of Adolf Hitler and in writing an historical account of a British plot to kill Hitler. Address the question of why the British allowed him to live that final year of the war. Muses on why scholars write, and the impact of violence and terrorism. (SG)

  20. Integrating Poetry and "To Kill a Mockingbird."

    Science.gov (United States)

    Jolley, Susan Arpajian

    2002-01-01

    Outlines a method of teaching "To Kill a Mockingbird" along with the study of poetry. Notes that this method allows students to consider the themes of courage and developing compassion. Concludes that teaching such a multigenre unit allows students to look for connections among fact and fiction, the past and present, their own lives and…

  1. School Shootings; Standards Kill Students and Society

    Science.gov (United States)

    Angert, Betsy L.

    2008-01-01

    School shootings have been in the news of late. People ponder what occurs in classrooms today. Why would a young person wish to take a life? Within educational institutions, the killings are a concern. In our dire attempt to teach the children and ensure student success, it seems many of our offspring are lost. Some students feel separate from…

  2. Mass killings and detection of impacts

    Science.gov (United States)

    McLaren, Digby J.

    Highly energetic bolide impacts occur and their flux is known. For larger bodies the energy release is greater than for any other short-term global phenomenon. Such impacts produce or release a large variety of shock induced changes including major atmospheric, sedimentologic, seismic and volcanic events. These events must necessarily leave a variety of records in the stratigraphic column, including mass killings resulting in major changes in population density and reduction or extinction of many taxonomic groups, followed by characteristic patterns of faunal and flora replacement. Of these effects, mass killings, marked by large-scale loss of biomass, are the most easily detected evidence in the field but must be manifest on a near-global scale. Such mass killings that appear to be approximately synchronous and involve disappearance of biomass at a bedding plane in many sedimentologically independent sections globally suggest a common cause and probable synchroneity. Mass killings identify an horizon which may be examined for evidence of cause. Geochemical markers may be ephemeral and absence may not be significant. There appears to be no reason why ongoing phenomena such as climate and sea-level changes are primary causes of anomolous episodic events.

  3. Differential Killing of Salmonella enterica Serovar Typhi by Antibodies Targeting Vi and Lipopolysaccharide O:9 Antigen.

    Directory of Open Access Journals (Sweden)

    Peter J Hart

    Full Text Available Salmonella enterica serovar Typhi expresses a capsule of Vi polysaccharide, while most Salmonella serovars, including S. Enteritidis and S. Typhimurium, do not. Both S. Typhi and S. Enteritidis express the lipopolysaccharide O:9 antigen, yet there is little evidence of cross-protection from anti-O:9 antibodies. Vaccines based on Vi polysaccharide have efficacy against typhoid fever, indicating that antibodies against Vi confer protection. Here we investigate the role of Vi capsule and antibodies against Vi and O:9 in antibody-dependent complement- and phagocyte-mediated killing of Salmonella. Using isogenic Vi-expressing and non-Vi-expressing derivatives of S. Typhi and S. Typhimurium, we show that S. Typhi is inherently more sensitive to serum and blood than S. Typhimurium. Vi expression confers increased resistance to both complement- and phagocyte-mediated modalities of antibody-dependent killing in human blood. The Vi capsule is associated with reduced C3 and C5b-9 deposition, and decreased overall antibody binding to S. Typhi. However, purified human anti-Vi antibodies in the presence of complement are able to kill Vi-expressing Salmonella, while killing by anti-O:9 antibodies is inversely related to Vi expression. Human serum depleted of antibodies to antigens other than Vi retains the ability to kill Vi-expressing bacteria. Our findings support a protective role for Vi capsule in preventing complement and phagocyte killing of Salmonella that can be overcome by specific anti-Vi antibodies, but only to a limited extent by anti-O:9 antibodies.

  4. Differential Killing of Salmonella enterica Serovar Typhi by Antibodies Targeting Vi and Lipopolysaccharide O:9 Antigen.

    Science.gov (United States)

    Hart, Peter J; O'Shaughnessy, Colette M; Siggins, Matthew K; Bobat, Saeeda; Kingsley, Robert A; Goulding, David A; Crump, John A; Reyburn, Hugh; Micoli, Francesca; Dougan, Gordon; Cunningham, Adam F; MacLennan, Calman A

    2016-01-01

    Salmonella enterica serovar Typhi expresses a capsule of Vi polysaccharide, while most Salmonella serovars, including S. Enteritidis and S. Typhimurium, do not. Both S. Typhi and S. Enteritidis express the lipopolysaccharide O:9 antigen, yet there is little evidence of cross-protection from anti-O:9 antibodies. Vaccines based on Vi polysaccharide have efficacy against typhoid fever, indicating that antibodies against Vi confer protection. Here we investigate the role of Vi capsule and antibodies against Vi and O:9 in antibody-dependent complement- and phagocyte-mediated killing of Salmonella. Using isogenic Vi-expressing and non-Vi-expressing derivatives of S. Typhi and S. Typhimurium, we show that S. Typhi is inherently more sensitive to serum and blood than S. Typhimurium. Vi expression confers increased resistance to both complement- and phagocyte-mediated modalities of antibody-dependent killing in human blood. The Vi capsule is associated with reduced C3 and C5b-9 deposition, and decreased overall antibody binding to S. Typhi. However, purified human anti-Vi antibodies in the presence of complement are able to kill Vi-expressing Salmonella, while killing by anti-O:9 antibodies is inversely related to Vi expression. Human serum depleted of antibodies to antigens other than Vi retains the ability to kill Vi-expressing bacteria. Our findings support a protective role for Vi capsule in preventing complement and phagocyte killing of Salmonella that can be overcome by specific anti-Vi antibodies, but only to a limited extent by anti-O:9 antibodies.

  5. Double suicide genes selectively kill human umbilical vein endothelial cells

    Directory of Open Access Journals (Sweden)

    Liu Lunxu

    2011-02-01

    Full Text Available Abstract Background To construct a recombinant adenovirus containing CDglyTK double suicide genes and evaluate the killing effect of the double suicide genes driven by kinase domain insert containing receptor (KDR promoter on human umbilical vein endothelial cells. Methods Human KDR promoter, Escherichia coli (E. coli cytosine deaminase (CD gene and the herpes simplex virus-thymidine kinase (TK gene were cloned using polymerase chain reaction (PCR. Plasmid pKDR-CDglyTK was constructed with the KDR promoter and CDglyTK genes. A recombinant adenoviral plasmid AdKDR-CDglyTK was then constructed and transfected into 293 packaging cells to grow and harvest adenoviruses. KDR-expressing human umbilical vein endothelial cells (ECV304 and KDR-negative liver cancer cell line (HepG2 were infected with the recombinant adenoviruses at different multiplicity of infection (MOI. The infection rate was measured by green fluorescent protein (GFP expression. The infected cells were cultured in culture media containing different concentrations of prodrugs ganciclovir (GCV and/or 5-fluorocytosine (5-FC. The killing effects were measured using two different methods, i.e. annexin V-FITC staining and terminal transferase-mediated dUTP nick end-labeling (TUNEL staining. Results Recombinant adenoviruses AdKDR-CDglyTK were successfully constructed and they infected ECV304 and HepG2 cells efficiently. The infection rate was dependent on MOI of recombinant adenoviruses. ECV304 cells infected with AdKDR-CDglyTK were highly sensitive to GCV and 5-FC. The cell survival rate was dependent on both the concentration of the prodrugs and the MOI of recombinant adenoviruses. In contrast, there were no killing effects in the HepG2 cells. The combination of two prodrugs was much more effective in killing ECV304 cells than GCV or 5-FC alone. The growth of transgenic ECV304 cells was suppressed in the presence of prodrugs. Conclusion AdKDR-CDglyTK/double prodrog system may be a useful

  6. A novel approach to parasite population genetics: experimental infection reveals geographic differentiation, recombination and host-mediated population structure in Pasteuria ramosa, a bacterial parasite of Daphnia.

    Science.gov (United States)

    Andras, J P; Ebert, D

    2013-02-01

    The population structure of parasites is central to the ecology and evolution of host-parasite systems. Here, we investigate the population genetics of Pasteuria ramosa, a bacterial parasite of Daphnia. We used natural P. ramosa spore banks from the sediments of two geographically well-separated ponds to experimentally infect a panel of Daphnia magna host clones whose resistance phenotypes were previously known. In this way, we were able to assess the population structure of P. ramosa based on geography, host resistance phenotype and host genotype. Overall, genetic diversity of P. ramosa was high, and nearly all infected D. magna hosted more than one parasite haplotype. On the basis of the observation of recombinant haplotypes and relatively low levels of linkage disequilibrium, we conclude that P. ramosa engages in substantial recombination. Isolates were strongly differentiated by pond, indicating that gene flow is spatially restricted. Pasteuria ramosa isolates within one pond were segregated completely based on the resistance phenotype of the host-a result that, to our knowledge, has not been previously reported for a nonhuman parasite. To assess the comparability of experimental infections with natural P. ramosa isolates, we examined the population structure of naturally infected D. magna native to one of the two source ponds. We found that experimental and natural infections of the same host resistance phenotype from the same source pond were indistinguishable, indicating that experimental infections provide a means to representatively sample the diversity of P. ramosa while reducing the sampling bias often associated with studies of parasite epidemics. These results expand our knowledge of this model parasite, provide important context for the large existing body of research on this system and will guide the design of future studies of this host-parasite system. © 2012 Blackwell Publishing Ltd.

  7. Silver oxide nanoparticles embedded silk fibroin spuns: Microwave mediated preparation, characterization and their synergistic wound healing and anti-bacterial activity.

    Science.gov (United States)

    Babu, Punuri Jayasekhar; Doble, Mukesh; Raichur, Ashok M

    2018-03-01

    The synergistic wound healing and antibacterial activity of silver oxide nanoparticles embedded silk fibroin (Ag 2 O-SF) spuns is reported here. UV-Vis spectro photometric analysis of these spuns showed the surface plasmon resonance (SPR) confirming the formation of the silver oxide nanoparticles (Ag 2 O NPs) on the surface of the silk fibroin (SF). Scanning electron microscope (SEM) and Differential scanning calorimetry (DSC) also confirmed the presence of Ag 2 O NPs on surface of SF. X-ray diffraction (XRD) analysis revealed the crystalline nature of both SF and Ag 2 O-SF. Fourier transform infrared spectroscopy (FT-IR) results showed the different forms of silk (I and II) and their corresponding protein (amide I, II, III) confirmations. Biodegradation study revealed insignificant changes in the morphology of Ag 2 O-SF spuns even after 14 days of immersion in phosphate buffered saline (PBS). Ag 2 O-SF spuns showed excellent antibacterial activity against both pathogen (S. aureus and M. tuberculosis) and non-pathogen (E. coli) bacteria. More importantly, In vitro wound healing (scratch assay) assay revealed fast migration of the T3T fibroblast cells through the scratch area treated with extract of Ag 2 O-SF spuns and the area was completely covered within 24 h. Cytotoxicity assay confirmed the biocompatible nature of the Ag 2 O-SF spuns, thus suggesting an ideal material for wound healing and anti-bacterial applications. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Bacterial Adhesion & Blocking Bacterial Adhesion

    DEFF Research Database (Denmark)

    Vejborg, Rebecca Munk

    2008-01-01

    , which influence the transition from a planktonic lifestyle to a sessile lifestyle, have been studied. Protein conditioning film formation was found to influence bacterial adhesion and subsequent biofilm formation considerable, and an aqueous extract of fish muscle tissue was shown to significantly...... tract to the microbial flocs in waste water treatment facilities. Microbial biofilms may however also cause a wide range of industrial and medical problems, and have been implicated in a wide range of persistent infectious diseases, including implantassociated microbial infections. Bacterial adhesion...... is the first committing step in biofilm formation, and has therefore been intensely scrutinized. Much however, still remains elusive. Bacterial adhesion is a highly complex process, which is influenced by a variety of factors. In this thesis, a range of physico-chemical, molecular and environmental parameters...

  9. Bacterial meningitis

    NARCIS (Netherlands)

    Heckenberg, Sebastiaan G. B.; Brouwer, Matthijs C.; van de Beek, Diederik

    2014-01-01

    Bacterial meningitis is a neurologic emergency. Vaccination against common pathogens has decreased the burden of disease. Early diagnosis and rapid initiation of empiric antimicrobial and adjunctive therapy are vital. Therapy should be initiated as soon as blood cultures have been obtained,

  10. Bacterial lipases

    NARCIS (Netherlands)

    Jaeger, Karl-Erich; Ransac, Stéphane; Dijkstra, Bauke W.; Colson, Charles; Heuvel, Margreet van; Misset, Onno

    Many different bacterial species produce lipases which hydrolyze esters of glycerol with preferably long-chain fatty acids. They act at the interface generated by a hydrophobic lipid substrate in a hydrophilic aqueous medium. A characteristic property of lipases is called interfacial activation,

  11. Bacterial stress

    Indian Academy of Sciences (India)

    First page Back Continue Last page Graphics. Bacterial stress. Physicochemical and chemical parameters: temperature, pressure, pH, salt concentration, oxygen, irradiation. Nutritional depravation: nutrient starvation, water shortage. Toxic compounds: Antibiotics, heavy metals, toxins, mutagens. Interactions with other cells: ...

  12. Male killing Spiroplasma protects Drosophila melanogaster against two parasitoid wasps

    Science.gov (United States)

    Xie, J; Butler, S; Sanchez, G; Mateos, M

    2014-01-01

    Maternally transmitted associations between endosymbiotic bacteria and insects are diverse and widespread in nature. Owing to imperfect vertical transmission, many heritable microbes have evolved compensational mechanisms to enhance their persistence in host lineages, such as manipulating host reproduction and conferring fitness benefits to host. Symbiont-mediated defense against natural enemies of hosts is increasingly recognized as an important mechanism by which endosymbionts enhance host fitness. Members of the genus Spiroplasma associated with distantly related Drosophila hosts are known to engage in either reproductive parasitism (i.e., male killing) or defense against natural enemies (the parasitic wasp Leptopilina heterotoma and a nematode). A male-killing strain of Spiroplasma (strain Melanogaster Sex Ratio Organism (MSRO)) co-occurs with Wolbachia (strain wMel) in certain wild populations of the model organism Drosophila melanogaster. We examined the effects of Spiroplasma MSRO and Wolbachia wMel on Drosophila survival against parasitism by two common wasps, Leptopilina heterotoma and Leptopilina boulardi, that differ in their host ranges and host evasion strategies. The results indicate that Spiroplasma MSRO prevents successful development of both wasps, and confers a small, albeit significant, increase in larva-to-adult survival of flies subjected to wasp attacks. We modeled the conditions under which defense can contribute to Spiroplasma persistence. Wolbachia also confers a weak, but significant, survival advantage to flies attacked by L. heterotoma. The host protective effects exhibited by Spiroplasma and Wolbachia are additive and may provide the conditions for such cotransmitted symbionts to become mutualists. Occurrence of Spiroplasma-mediated protection against distinct parasitoids in divergent Drosophila hosts suggests a general protection mechanism. PMID:24281548

  13. Serum killing of Ureaplasma parvum shows serovar-determined susceptibility for normal individuals and common variable immuno-deficiency patients.

    Science.gov (United States)

    Beeton, Michael L; Daha, Mohamed R; El-Shanawany, Tariq; Jolles, Stephen R; Kotecha, Sailesh; Spiller, O Brad

    2012-02-01

    Many Gram-negative bacteria, unlike Gram-positive, are directly lysed by complement. Ureaplasma can cause septic arthritis and meningitis in immunocompromised individuals and induce premature birth. Ureaplasma has no cell wall, cannot be Gram-stain classified and its serum susceptibility is unknown. Survival of Ureaplasma serovars (SV) 1, 3, 6 and 14 (collectively Ureaplasma parvum) were measured following incubation with normal or immunoglobulin-deficient patient serum (relative to heat-inactivated controls). Blocking monoclonal anti-C1q antibody and depletion of calcium, immunoglobulins, or lectins were used to determine the complement pathway responsible for killing. Eighty-three percent of normal sera killed SV1, 67% killed SV6 and 25% killed SV14; greater killing correlating to strong immunoblot identification of anti-Ureaplasma antibodies; killing was abrogated following ProteinA removal of IgG1. All normal sera killed SV3 in a C1q-dependent fashion, irrespective of immunoblot identification of anti-Ureaplasma antibodies; SV3 killing was unaffected by total IgG removal by ProteinG, where complement activity was retained. Only one of four common variable immunodeficient (CVID) patient sera failed to kill SV3, despite profound IgM and IgG deficiency for all; however, killing of SV3 and SV1 was restored with therapeutic intravenous immunoglobulin therapy. Only the classical complement pathway mediated Ureaplasma-cidal activity, sometimes in the absence of observable immunoblot reactive bands. Copyright © 2011 Elsevier GmbH. All rights reserved.

  14. Contagion in Mass Killings and School Shootings.

    Directory of Open Access Journals (Sweden)

    Sherry Towers

    Full Text Available Several past studies have found that media reports of suicides and homicides appear to subsequently increase the incidence of similar events in the community, apparently due to the coverage planting the seeds of ideation in at-risk individuals to commit similar acts.Here we explore whether or not contagion is evident in more high-profile incidents, such as school shootings and mass killings (incidents with four or more people killed. We fit a contagion model to recent data sets related to such incidents in the US, with terms that take into account the fact that a school shooting or mass murder may temporarily increase the probability of a similar event in the immediate future, by assuming an exponential decay in contagiousness after an event.We find significant evidence that mass killings involving firearms are incented by similar events in the immediate past. On average, this temporary increase in probability lasts 13 days, and each incident incites at least 0.30 new incidents (p = 0.0015. We also find significant evidence of contagion in school shootings, for which an incident is contagious for an average of 13 days, and incites an average of at least 0.22 new incidents (p = 0.0001. All p-values are assessed based on a likelihood ratio test comparing the likelihood of a contagion model to that of a null model with no contagion. On average, mass killings involving firearms occur approximately every two weeks in the US, while school shootings occur on average monthly. We find that state prevalence of firearm ownership is significantly associated with the state incidence of mass killings with firearms, school shootings, and mass shootings.

  15. Contagion in Mass Killings and School Shootings.

    Science.gov (United States)

    Towers, Sherry; Gomez-Lievano, Andres; Khan, Maryam; Mubayi, Anuj; Castillo-Chavez, Carlos

    2015-01-01

    Several past studies have found that media reports of suicides and homicides appear to subsequently increase the incidence of similar events in the community, apparently due to the coverage planting the seeds of ideation in at-risk individuals to commit similar acts. Here we explore whether or not contagion is evident in more high-profile incidents, such as school shootings and mass killings (incidents with four or more people killed). We fit a contagion model to recent data sets related to such incidents in the US, with terms that take into account the fact that a school shooting or mass murder may temporarily increase the probability of a similar event in the immediate future, by assuming an exponential decay in contagiousness after an event. We find significant evidence that mass killings involving firearms are incented by similar events in the immediate past. On average, this temporary increase in probability lasts 13 days, and each incident incites at least 0.30 new incidents (p = 0.0015). We also find significant evidence of contagion in school shootings, for which an incident is contagious for an average of 13 days, and incites an average of at least 0.22 new incidents (p = 0.0001). All p-values are assessed based on a likelihood ratio test comparing the likelihood of a contagion model to that of a null model with no contagion. On average, mass killings involving firearms occur approximately every two weeks in the US, while school shootings occur on average monthly. We find that state prevalence of firearm ownership is significantly associated with the state incidence of mass killings with firearms, school shootings, and mass shootings.

  16. New players in the same old game: a system level in silico study to predict type III secretion system and effector proteins in bacterial genomes reveals common themes in T3SS mediated pathogenesis.

    Science.gov (United States)

    Sadarangani, Vineet; Datta, Sunando; Arunachalam, Manonmani

    2013-07-26

    Type III secretion system (T3SS) plays an important role in virulence or symbiosis of many pathogenic or symbiotic bacteria [CHM 2:291-294, 2007; Physiology (Bethesda) 20:326-339, 2005]. T3SS acts like a tunnel between a bacterium and its host through which the bacterium injects 'effector' proteins into the latter [Nature 444:567-573, 2006; COSB 18:258-266, 2008]. The effectors spatially and temporally modify the host signalling pathways [FEMS Microbiol Rev 35:1100-1125, 2011; Cell Host Microbe5:571-579, 2009]. In spite its crucial role in host-pathogen interaction, the study of T3SS and the associated effectors has been limited to a few bacteria [Cell Microbiol 13:1858-1869, 2011; Nat Rev Microbiol 6:11-16, 2008; Mol Microbiol 80:1420-1438, 2011]. Before one set out to perform systematic experimental studies on an unknown set of bacteria it would be beneficial to identify the potential candidates by developing an in silico screening algorithm. A system level study would also be advantageous over traditional laboratory methods to extract an overriding theme for host-pathogen interaction, if any, from the vast resources of data generated by sequencing multiple bacterial genomes. We have developed an in silico protocol in which the most conserved set of T3SS proteins was used as the query against the entire bacterial database with increasingly stringent search parameters. It enabled us to identify several uncharacterized T3SS positive bacteria. We adopted a similar strategy to predict the presence of the already known effectors in the newly identified T3SS positive bacteria. The huge resources of biochemical data [FEMS Microbiol Rev 35:1100-1125, 2011; Cell Host Microbe 5:571-579, 2009; BMC Bioinformatics 7(11):S4, 2010] on the T3SS effectors enabled us to search for the common theme in T3SS mediated pathogenesis. We identified few cellular signalling networks in the host, which are manipulated by most of the T3SS containing pathogens. We went on to look for

  17. Characterization of cell lysis in Pseudomonas putida induced upon expression of heterologous killing genes

    DEFF Research Database (Denmark)

    Ronchel, M.C.; Molina, L.; Witte, A.

    1998-01-01

    Active biological containment systems are based on the controlled expression of killing genes. These systems are of interest for the Pseudomonadaceae because of the potential applications of these microbes as bioremediation agents and biopesticides, The physiological effects that lead to cell dea...... protein was the killing agent. In both cases, cell death occurred as a result of impaired respiration, altered membrane permeability, and the release of some cytoplasmic contents to the extracellular medium.......Active biological containment systems are based on the controlled expression of killing genes. These systems are of interest for the Pseudomonadaceae because of the potential applications of these microbes as bioremediation agents and biopesticides, The physiological effects that lead to cell death......, respectively. Expression of the killing genes is controlled by the LacI protein, whose expression is initiated from the XylS-dependent Pm promoter. Under induced conditions, killing of P. putida CMC12 cells mediated by phi X174 lysis protein E was faster than that observed for P. putida CMC4, for which the Gef...

  18. Comprehensive Evaluation of the MBT STAR-BL Module for Simultaneous Bacterial Identification and β-Lactamase-Mediated Resistance Detection in Gram-Negative Rods from Cultured Isolates and Positive Blood Cultures

    Directory of Open Access Journals (Sweden)

    Annie W. T. Lee

    2018-02-01

    Full Text Available Objective: This study evaluated the capability of a MALDI Biotyper system equipped with the newly introduced MBT STAR-BL module to simultaneously perform species identification and β-lactamase-mediated resistance detection in bacteremia -causing bacteria isolated from cultured isolates and patient-derived blood cultures (BCs.Methods: Two hundred retrospective cultured isolates and 153 prospective BCs containing Gram-negative rods (GNR were collected and subjected to direct bacterial identification, followed by the measurement of β-lactamase activities against ampicillin, piperacillin, cefotaxime, ceftazidime, and meropenem using the MBT STAR-BL module. The results and turnaround times were compared with those of routine microbiological processing. All strains were also characterized by beta-lactamase PCR and sequencing.Results: Using the saponin-based extraction method, MALDI-TOF MS correctly identified bacteria in 116/134 (86.6% monomicrobial BCs. The detection sensitivities for β-lactamase activities against ampicillin, piperacillin, third-generation cephalosporin and meropenem were 91.3, 100, 97.9, and 100% for cultured isolates, and 80.4, 100, 68.8, and 40% for monomicrobial BCs (n = 134 respectively. The overall specificities ranged from 91.5 to 100%. Furthermore, the MBT STAR-BL and conventional drug susceptibility test results were concordant in 14/19 (73.7% polymicrobial cultures. Reducing the logRQ cut-off value from 0.4 to 0.2 increased the direct detection sensitivities for β-lactamase activities against ampicillin, cefotaxime and meropenem in BCs to 85.7, 87.5, and 100% respectively. The MBT STAR-BL test enabled the reporting of β-lactamase-producing GNR at 14.16 and 47.64 h before the interim and final reports of routine BCs processing, respectively, were available.Conclusion: The MALDI Biotyper system equipped with the MBT STAR-BL module enables the simultaneous rapid identification of bacterial species and β-lactamase-mediated

  19. Comprehensive Evaluation of the MBT STAR-BL Module for Simultaneous Bacterial Identification and β-Lactamase-Mediated Resistance Detection in Gram-Negative Rods from Cultured Isolates and Positive Blood Cultures.

    Science.gov (United States)

    Lee, Annie W T; Lam, Johnson K S; Lam, Ricky K W; Ng, Wan H; Lee, Ella N L; Lee, Vicky T Y; Sze, Po P; Rajwani, Rahim; Fung, Kitty S C; To, Wing K; Lee, Rodney A; Tsang, Dominic N C; Siu, Gilman K H

    2018-01-01

    Objective: This study evaluated the capability of a MALDI Biotyper system equipped with the newly introduced MBT STAR-BL module to simultaneously perform species identification and β-lactamase-mediated resistance detection in bacteremia -causing bacteria isolated from cultured isolates and patient-derived blood cultures (BCs). Methods: Two hundred retrospective cultured isolates and 153 prospective BCs containing Gram-negative rods (GNR) were collected and subjected to direct bacterial identification, followed by the measurement of β-lactamase activities against ampicillin, piperacillin, cefotaxime, ceftazidime, and meropenem using the MBT STAR-BL module. The results and turnaround times were compared with those of routine microbiological processing. All strains were also characterized by beta-lactamase PCR and sequencing. Results: Using the saponin-based extraction method, MALDI-TOF MS correctly identified bacteria in 116/134 (86.6%) monomicrobial BCs. The detection sensitivities for β-lactamase activities against ampicillin, piperacillin, third-generation cephalosporin and meropenem were 91.3, 100, 97.9, and 100% for cultured isolates, and 80.4, 100, 68.8, and 40% for monomicrobial BCs ( n = 134) respectively. The overall specificities ranged from 91.5 to 100%. Furthermore, the MBT STAR-BL and conventional drug susceptibility test results were concordant in 14/19 (73.7%) polymicrobial cultures. Reducing the logRQ cut-off value from 0.4 to 0.2 increased the direct detection sensitivities for β-lactamase activities against ampicillin, cefotaxime and meropenem in BCs to 85.7, 87.5, and 100% respectively. The MBT STAR-BL test enabled the reporting of β-lactamase-producing GNR at 14.16 and 47.64 h before the interim and final reports of routine BCs processing, respectively, were available. Conclusion: The MALDI Biotyper system equipped with the MBT STAR-BL module enables the simultaneous rapid identification of bacterial species and β-lactamase-mediated

  20. Dirac operators and Killing spinors with torsion; Dirac-Operatoren und Killing-Spinoren mit Torsion

    Energy Technology Data Exchange (ETDEWEB)

    Becker-Bender, Julia

    2012-12-17

    On a Riemannian spin manifold with parallel skew torsion, we use the twistor operator to obtain an eigenvalue estimate for the Dirac operator with torsion. We consider the equality case in dimensions four and six. In odd dimensions we describe Sasaki manifolds on which equality in the estimate is realized by Killing spinors with torsion. In dimension five we characterize all Killing spinors with torsion and obtain certain naturally reductive spaces as exceptional cases.

  1. Killing machines: three pore-forming proteins of the immune system

    Science.gov (United States)

    McCormack, Ryan; de Armas, Lesley; Shiratsuchi, Motoaki

    2014-01-01

    The evolution of early multicellular eukaryotes 400–500 million years ago required a defensive strategy against microbial invasion. Pore-forming proteins containing the membrane-attack-complex-perforin (MACPF) domain were selected as the most efficient means to destroy bacteria or virally infected cells. The mechanism of pore formation by the MACPF domain is distinctive in that pore formation is purely physical and unspecific. The MACPF domain polymerizes, refolds, and inserts itself into bilayer membranes or bacterial outer cell walls. The displacement of surface lipid/carbohydrate molecules by the polymerizing MACPF domain creates clusters of large, water-filled holes that destabilize the barrier function and provide access for additional anti-bacterial or anti-viral effectors to sensitive sites that complete the destruction of the invader via enzymatic or chemical attack. The highly efficient mechanism of anti-microbial defense by a combined physical and chemical strategy using pore-forming MACPF-proteins has been retargeted during evolution of vertebrates and mammals for three purposes: (1) to kill extracellular bacteria C9/polyC9 evolved in conjunction with complement, (2) to kill virus infected and cancer cells perforin-1/polyperforin-1 CTL evolved targeted by NK and CTL, and (3) to kill intracellular bacteria transmembrane perforin-2/putative polyperforin-2 evolved targeted by phagocytic and nonphagocytic cells. Our laboratory has been involved in the discovery and description of each of the three pore-formers that will be reviewed here. PMID:24293008

  2. Toxin Mediates Sepsis Caused by Methicillin-Resistant Staphylococcus epidermidis.

    Directory of Open Access Journals (Sweden)

    Li Qin

    2017-02-01

    Full Text Available Bacterial sepsis is a major killer in hospitalized patients. Coagulase-negative staphylococci (CNS with the leading species Staphylococcus epidermidis are the most frequent causes of nosocomial sepsis, with most infectious isolates being methicillin-resistant. However, which bacterial factors underlie the pathogenesis of CNS sepsis is unknown. While it has been commonly believed that invariant structures on the surface of CNS trigger sepsis by causing an over-reaction of the immune system, we show here that sepsis caused by methicillin-resistant S. epidermidis is to a large extent mediated by the methicillin resistance island-encoded peptide toxin, PSM-mec. PSM-mec contributed to bacterial survival in whole human blood and resistance to neutrophil-mediated killing, and caused significantly increased mortality and cytokine expression in a mouse sepsis model. Furthermore, we show that the PSM-mec peptide itself, rather than the regulatory RNA in which its gene is embedded, is responsible for the observed virulence phenotype. This finding is of particular importance given the contrasting roles of the psm-mec locus that have been reported in S. aureus strains, inasmuch as our findings suggest that the psm-mec locus may exert effects in the background of S. aureus strains that differ from its original role in the CNS environment due to originally "unintended" interferences. Notably, while toxins have never been clearly implied in CNS infections, our tissue culture and mouse infection model data indicate that an important type of infection caused by the predominant CNS species is mediated to a large extent by a toxin. These findings suggest that CNS infections may be amenable to virulence-targeted drug development approaches.

  3. [Bacterial vaginosis].

    Science.gov (United States)

    Romero Herrero, Daniel; Andreu Domingo, Antonia

    2016-07-01

    Bacterial vaginosis (BV) is the main cause of vaginal dysbacteriosis in the women during the reproductive age. It is an entity in which many studies have focused for years and which is still open for discussion topics. This is due to the diversity of microorganisms that cause it and therefore, its difficult treatment. Bacterial vaginosis is probably the result of vaginal colonization by complex bacterial communities, many of them non-cultivable and with interdependent metabolism where anaerobic populations most likely play an important role in its pathogenesis. The main symptoms are an increase of vaginal discharge and the unpleasant smell of it. It can lead to serious consequences for women, such as an increased risk of contracting sexually transmitted infections including human immunodeficiency virus and upper genital tract and pregnancy complications. Gram stain is the gold standard for microbiological diagnosis of BV, but can also be diagnosed using the Amsel clinical criteria. It should not be considered a sexually transmitted disease but it is highly related to sex. Recurrence is the main problem of medical treatment. Apart from BV, there are other dysbacteriosis less characterized like aerobic vaginitis of which further studies are coming slowly but are achieving more attention and consensus among specialists. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.

  4. Deprive to kill: Glutamine closes the gate to anticancer monocarboxylic drugs

    OpenAIRE

    Cardaci, Simone; Ciriolo, Maria Rosa

    2012-01-01

    Killing properties of antitumor drugs can be enhanced by strategies targeting biochemical adaptations of cancer cells. Recently, we reported that depriving cancer cells of glutamine is a feasible approach to enhance antitumor effects of the alkylating analog of pyruvic acid, 3-bromopyruvate, which rely on the induction of autophagic cell death by metabolic-oxidative stress. 3-bromopyruvate chemopotentiation is the result of its increased intracellular uptake mediated by the monocarboxylate tr...

  5. Intergenomic arms races: detection of a nuclear rescue gene of male-killing in a ladybird.

    Directory of Open Access Journals (Sweden)

    Tamsin M O Majerus

    Full Text Available Many species of arthropod are infected by deleterious inherited micro-organisms. Typically these micro-organisms are inherited maternally. Consequently, some, particularly bacteria of the genus Wolbachia, employ a variety of strategies that favour female over male hosts. These strategies include feminisation, induction of parthenogenesis and male-killing. These strategies result in female biased sex ratios in host populations, which lead to selection for host factors that promote male production. In addition, the intra-genomic conflict produced by the difference in transmission of these cytoplasmic endosymbionts and nuclear factors will impose a pressure favouring nuclear factors that suppress the effects of the symbiont. During investigations of the diversity of male-killing bacteria in ladybirds (Coccinellidae, unexpected patterns of vertical transmission of a newly discovered male-killing taxon were observed in the ladybird Cheilomenes sexmaculata. Initial analysis suggested that the expression of the bacterial male-killing trait varies according to the male(s a female has mated with. By swapping males between females, a male influence on the expression of the male-killing trait was confirmed. Experiments were then performed to determine the nature of the interaction. These studies showed that a single dominant allele, which rescues male progeny of infected females from the pathological effect of the male-killer, exists in this species. The gene shows typical Mendelian autosomal inheritance and is expressed irrespective of the parent from which it is inherited. Presence of the rescue gene in either parent does not significantly affect the inheritance of the symbiont. We conclude that C. sexmaculata is host to a male-killing gamma-proteobacterium. Further, this beetle is polymorphic for a nuclear gene, the dominant allele of which rescues infected males from the pathogenic effects of the male-killing agent. These findings represent the first

  6. ASSESSING THE IMPACT OF CONTINUOUS BACTERIAL TREATMENTS OVER A TWO-WEEK PERIOD ON ZEBRA MUSSEL MORTALITY

    Energy Technology Data Exchange (ETDEWEB)

    Daniel P. Molloy

    2001-07-17

    These experiments indicated that in waters at 23 C the window of opportunity to kill zebra mussels with bacterial strain CL0145A is limited to the first two days of treatment. Treatments beyond two days will not increase mortality.

  7. Epirubicin-adsorbed nanodiamonds kill chemoresistant hepatic cancer stem cells.

    Science.gov (United States)

    Wang, Xin; Low, Xinyi Casuarine; Hou, Weixin; Abdullah, Lissa Nurrul; Toh, Tan Boon; Mohd Abdul Rashid, Masturah; Ho, Dean; Chow, Edward Kai-Hua

    2014-12-23

    Chemoresistance is a primary cause of treatment failure in cancer and a common property of tumor-initiating cancer stem cells. Overcoming mechanisms of chemoresistance, particularly in cancer stem cells, can markedly enhance cancer therapy and prevent recurrence and metastasis. This study demonstrates that the delivery of Epirubicin by nanodiamonds is a highly effective nanomedicine-based approach to overcoming chemoresistance in hepatic cancer stem cells. The potent physical adsorption of Epirubicin to nanodiamonds creates a rapidly synthesized and stable nanodiamond-drug complex that promotes endocytic uptake and enhanced tumor cell retention. These attributes mediate the effective killing of both cancer stem cells and noncancer stem cells in vitro and in vivo. Enhanced treatment of both tumor cell populations results in an improved impairment of secondary tumor formation in vivo compared with treatment by unmodified chemotherapeutics. On the basis of these results, nanodiamond-mediated drug delivery may serve as a powerful method for overcoming chemoresistance in cancer stem cells and markedly improving overall treatment against hepatic cancers.

  8. Liming Poultry Manures to Kill Pathogens and Decrease Soluble Phosphorus

    International Nuclear Information System (INIS)

    Maguire, R.; Hesterberg, D.; Gernat, A.; Anderson, K.; Wineland, M.; Grimes, J.

    2006-01-01

    Received for publication September 9, 2005. Stabilizing phosphorus (P) in poultry waste to reduce P losses from manured soils is important to protect surface waters, while pathogens in manures are an emerging issue. This study was conducted to evaluate CaO and Ca(OH) 2 for killing manure bacterial populations (pathogens) and stabilizing P in poultry wastes and to investigate the influence on soils following amendment with the treated wastes. Layer manure and broiler litter varying in moisture content were treated with CaO and Ca(OH) 2 at rates of 2.5, 5, 10, and 15% by weight. All treated wastes were analyzed for microbial plate counts, pH, and water-soluble phosphorus (WSP), while a few selected layer manures were analyzed by phosphorus X-ray absorption near edge structure (XANES). A loamy sand and a silt loam were amended with broiler litter and layer manure treated with CaO at rates of 0, 2.5, 5, 10, and 15% and soil WSP and pH were measured at times 1, 8, and 29 d. Liming reduced bacterial populations, with greater rates of lime leading to greater reductions; for example 10% CaO applied to 20% solids broiler litter reduced the plate counts from 793 000 to 6500 mL -1 . Liming also reduced the WSP in the manures by over 90% in all cases where at least 10% CaO was added. Liming the manures also reduced WSP in soils immediately following application and raised soil pH. The liming process used successfully reduced plate counts and concerns about P losses in runoff following land application of these limed products due to decreased WSP

  9. It's not just conflict that motivates killing of orangutans.

    Directory of Open Access Journals (Sweden)

    Jacqueline T Davis

    Full Text Available We investigated why orangutans are being killed in Kalimantan, Indonesia, and the role of conflict in these killings. Based on an analysis of interview data from over 5,000 respondents in over 450 villages, we also assessed the socio-ecological factors associated with conflict and non-conflict killings. Most respondents never kill orangutans. Those who reported having personally killed an orangutan primarily did so for non-conflict reasons; for example, 56% of these respondents said that the reason they had killed an orangutan was to eat it. Of the conflict-related reasons for killing, the most common reasons orangutans were killed was fear of orangutans or in self-defence. A similar pattern was evident among reports of orangutan killing by other people in the villages. Regression analyses indicated that religion and the percentage of intact forest around villages were the strongest socio-ecological predictors of whether orangutans were killed for conflict or non-conflict related reasons. Our data indicate that between 44,170 and 66,570 orangutans were killed in Kalimantan within the respondents' active hunting lifetimes: between 12,690 and 29,024 for conflict reasons (95%CI and between 26,361 and 41,688 for non-conflict reasons (95% CI. These findings confirm that habitat protection alone will not ensure the survival of orangutans in Indonesian Borneo, and that effective reduction of orangutan killings is urgently needed.

  10. It's not just conflict that motivates killing of orangutans.

    Science.gov (United States)

    Davis, Jacqueline T; Mengersen, Kerrie; Abram, Nicola K; Ancrenaz, Marc; Wells, Jessie A; Meijaard, Erik

    2013-01-01

    We investigated why orangutans are being killed in Kalimantan, Indonesia, and the role of conflict in these killings. Based on an analysis of interview data from over 5,000 respondents in over 450 villages, we also assessed the socio-ecological factors associated with conflict and non-conflict killings. Most respondents never kill orangutans. Those who reported having personally killed an orangutan primarily did so for non-conflict reasons; for example, 56% of these respondents said that the reason they had killed an orangutan was to eat it. Of the conflict-related reasons for killing, the most common reasons orangutans were killed was fear of orangutans or in self-defence. A similar pattern was evident among reports of orangutan killing by other people in the villages. Regression analyses indicated that religion and the percentage of intact forest around villages were the strongest socio-ecological predictors of whether orangutans were killed for conflict or non-conflict related reasons. Our data indicate that between 44,170 and 66,570 orangutans were killed in Kalimantan within the respondents' active hunting lifetimes: between 12,690 and 29,024 for conflict reasons (95%CI) and between 26,361 and 41,688 for non-conflict reasons (95% CI). These findings confirm that habitat protection alone will not ensure the survival of orangutans in Indonesian Borneo, and that effective reduction of orangutan killings is urgently needed.

  11. 9 CFR 113.201 - Canine Distemper Vaccine, Killed Virus.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Canine Distemper Vaccine, Killed Virus... REQUIREMENTS Killed Virus Vaccines § 113.201 Canine Distemper Vaccine, Killed Virus. Canine Distemper Vaccine... canine distemper susceptible dogs (20 vaccinates and 5 controls) shall be used as test animals. Blood...

  12. 9 CFR 113.208 - Avian Encephalomyelitis Vaccine, Killed Virus.

    Science.gov (United States)

    2010-01-01

    ..., Killed Virus. 113.208 Section 113.208 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.208 Avian Encephalomyelitis Vaccine, Killed Virus. Avian...

  13. 9 CFR 113.204 - Mink Enteritis Vaccine, Killed Virus.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Mink Enteritis Vaccine, Killed Virus..., DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.204 Mink Enteritis Vaccine, Killed Virus. Mink Enteritis Vaccine...

  14. 9 CFR 113.212 - Bursal Disease Vaccine, Killed Virus.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Bursal Disease Vaccine, Killed Virus..., DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.212 Bursal Disease Vaccine, Killed Virus. Bursal Disease Vaccine...

  15. Road-Killed Animals as Resources for Ecological Studies.

    Science.gov (United States)

    Adams, Clark E.

    1983-01-01

    Summarizes 19 literature sources identifying road-killed vertebrates and frequency of kill by numbers. Examples of how these animals can be incorporated into curricula (integrating biology, society, people, and values) are given, followed by an illustrated example of how a road-killed raccoon's skull demonstrated a human/wildlife interaction prior…

  16. Killing vectors in empty space algebraically special metrics. II

    International Nuclear Information System (INIS)

    Held, A.

    1976-01-01

    Empty space algebraically special metrics possessing an expanding degenerate principal null vector and Killing vectors are investigated. Attention is centered on that class of Killing vector (called nonpreferred) which is necessarily spacelike in the asymptotic region. A detailed analysis of the relationship between the Petrov--Penrose classification and these Killing vectors is carried out

  17. Carriage of λ Latent Virus Is Costly for Its Bacterial Host due to Frequent Reactivation in Monoxenic Mouse Intestine.

    Directory of Open Access Journals (Sweden)

    Marianne De Paepe

    2016-02-01

    Full Text Available Temperate phages, the bacterial viruses able to enter in a dormant prophage state in bacterial genomes, are present in the majority of bacterial strains for which the genome sequence is available. Although these prophages are generally considered to increase their hosts' fitness by bringing beneficial genes, studies demonstrating such effects in ecologically relevant environments are relatively limited to few bacterial species. Here, we investigated the impact of prophage carriage in the gastrointestinal tract of monoxenic mice. Combined with mathematical modelling, these experimental results provided a quantitative estimation of key parameters governing phage-bacteria interactions within this model ecosystem. We used wild-type and mutant strains of the best known host/phage pair, Escherichia coli and phage λ. Unexpectedly, λ prophage caused a significant fitness cost for its carrier, due to an induction rate 50-fold higher than in vitro, with 1 to 2% of the prophage being induced. However, when prophage carriers were in competition with isogenic phage susceptible bacteria, the prophage indirectly benefited its carrier by killing competitors: infection of susceptible bacteria led to phage lytic development in about 80% of cases. The remaining infected bacteria were lysogenized, resulting overall in the rapid lysogenization of the susceptible lineage. Moreover, our setup enabled to demonstrate that rare events of phage gene capture by homologous recombination occurred in the intestine of monoxenic mice. To our knowledge, this study constitutes the first quantitative characterization of temperate phage-bacteria interactions in a simplified gut environment. The high prophage induction rate detected reveals DNA damage-mediated SOS response in monoxenic mouse intestine. We propose that the mammalian gut, the most densely populated bacterial ecosystem on earth, might foster bacterial evolution through high temperate phage activity.

  18. Bacterial mitosis

    DEFF Research Database (Denmark)

    Møller-Jensen, Jakob; Borch, Jonas; Dam, Mette

    2003-01-01

    Bacterial DNA segregation takes place in an active and ordered fashion. In the case of Escherichia coli plasmid R1, the partitioning system (par) separates paired plasmid copies and moves them to opposite cell poles. Here we address the mechanism by which the three components of the R1 par system...... act together to generate the force required for plasmid movement during segregation. ParR protein binds cooperatively to the centromeric parC DNA region, thereby forming a complex that interacts with the filament-forming actin-like ParM protein in an ATP-dependent manner, suggesting that plasmid...

  19. Arsenic uptake in bacterial calcite

    Science.gov (United States)

    Catelani, Tiziano; Perito, Brunella; Bellucci, Francesco; Lee, Sang Soo; Fenter, Paul; Newville, Matthew; Rimondi, Valentina; Pratesi, Giovanni; Costagliola, Pilario

    2018-02-01

    Bio-mediated processes for arsenic (As) uptake in calcite were investigated by means of X-ray Diffraction (XRD) and X-ray Absorption Spectroscopy (XAS) coupled with X-ray Fluorescence measurements. The environmental bacterial strain Bacillus licheniformis BD5, sampled at the Bullicame Hot Springs (Viterbo, Central Italy), was used to synthesize calcite from As-enriched growth media. Both liquid and solid cultures were applied to simulate planktonic and biofilm community environments, respectively. Bacterial calcite samples cultured in liquid media had an As enrichment factor (Kd) 50 times higher than that from solid media. The XRD analysis revealed an elongation of the crystal lattice along the c axis (by 0.03 Å) for biogenic calcite, which likely resulted from the substitution of larger arsenate for carbonate in the crystal. The XAS data also showed a clear difference in the oxidation state of sorbed As between bacterial and abiotic calcite. Abiotic chemical processes yielded predominantly As(V) uptake whereas bacterial precipitation processes led to the uptake of both As(III) and As(V). The presence of As(III) in bacterial calcite is proposed to result from subsequent reduction of arsenate to arsenite by bacterial activities. To the best of our knowledge, this is the first experimental observation of the incorporation of As(III) in the calcite crystal lattice, revealing a critical role of biochemical processes for the As cycling in nature.

  20. Arsenic uptake in bacterial calcite

    Energy Technology Data Exchange (ETDEWEB)

    Catelani, Tiziano; Perito, Brunella; Bellucci, Francesco; Lee, Sang Soo; Fenter, Paul; Newville, Matthew G.; Rimondi, Valentina; Pratesi, Giovanni; Costagliola, Pilario

    2018-02-01

    Bio-mediated processes for arsenic (As) uptake in calcite were investigated by means of X-ray Diffraction (XRD) and Xray Absorption Spectroscopy (XAS) coupled with X-ray Fluorescence measurements. The environmental bacterial strain Bacillus licheniformis BD5, sampled at the Bullicame Hot Springs (Viterbo, Central Italy), was used to synthesize calcite from As-enriched growth media. Both liquid and solid cultures were applied to simulate planktonic and biofilm community environments, respectively. Bacterial calcite samples cultured in liquid media had an As enrichment factor (Kd) 50 times higher than that from solid media. The XRD analysis revealed an elongation of the crystal lattice along the c axis (by 0.03Å) for biogenic calcite, which likely resulted from the substitution of larger arsenate for carbonate in the crystal. The XAS data also showed a clear difference in the oxidation state of sorbed As between bacterial and abiotic calcite. Abiotic chemical processes yielded predominantly As(V) uptake whereas bacterial precipitation processes led to the uptake of both As(III) and As(V). The presence of As(III) in bacterial calcite is proposed to result from subsequent reduction of arsenate to arsenite by bacterial activities. To the best of our knowledge, this is the first experimental observation of the incorporation of As(III) in the calcite crystal lattice, revealing a critical role of biochemical processes for the As cycling in nature.

  1. An Fc engineering approach that modulates antibody-dependent cytokine release without altering cell-killing functions.

    Science.gov (United States)

    Kinder, Michelle; Greenplate, Allison R; Strohl, William R; Jordan, Robert E; Brezski, Randall J

    2015-01-01

    Cytotoxic therapeutic monoclonal antibodies (mAbs) often mediate target cell-killing by eliciting immune effector functions via Fc region interactions with cellular and humoral components of the immune system. Key functions include antibody-dependent cell-mediated cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP), and complement-dependent cytotoxicity (CDC). However, there has been increased appreciation that along with cell-killing functions, the induction of antibody-dependent cytokine release (ADCR) can also influence disease microenvironments and therapeutic outcomes. Historically, most Fc engineering approaches have been aimed toward modulating ADCC, ADCP, or CDC. In the present study, we describe an Fc engineering approach that, while not resulting in impaired ADCC or ADCP, profoundly affects ADCR. As such, when peripheral blood mononuclear cells are used as effector cells against mAb-opsonized tumor cells, the described mAb variants elicit a similar profile and quantity of cytokines as IgG1. In contrast, although the variants elicit similar levels of tumor cell-killing as IgG1 with macrophage effector cells, the variants do not elicit macrophage-mediated ADCR against mAb-opsonized tumor cells. This study demonstrates that Fc engineering approaches can be employed to uncouple macrophage-mediated phagocytic and subsequent cell-killing functions from cytokine release.

  2. Melanoma stem cells in experimental melanoma are killed by radioimmunotherapy

    International Nuclear Information System (INIS)

    Jandl, Thomas; Revskaya, Ekaterina; Jiang, Zewei; Harris, Matthew; Dorokhova, Olena; Tsukrov, Dina; Casadevall, Arturo; Dadachova, Ekaterina

    2013-01-01

    Introduction: In spite of recently approved B-RAF inhibitors and immunomodulating antibodies, metastatic melanoma has poor prognosis and novel treatments are needed. Melanoma stem cells (MSC) have been implicated in the resistance of this tumor to chemotherapy. Recently we demonstrated in a Phase I clinical trial in patients with metastatic melanoma that radioimmunotherapy (RIT) with 188-Rhenium( 188 Re)-6D2 antibody to melanin was a safe and effective modality. Here we investigated the interaction of MSC with RIT as a possible mechanism for RIT efficacy. Methods: Mice bearing A2058 melanoma xenografts were treated with either 1.5 mCi 188 Re-6D2 antibody, saline, unlabeled 6D2 antibody or 188 Re-labeled non-specific IgM. Results: On Day 28 post-treatment the tumor size in the RIT group was 4-times less than in controls (P < 0.001). The tumors were analyzed by immunohistochemistry and FACS for two MSC markers — chemoresistance mediator ABCB5 and H3K4 demethylase JARID1B. There were no significant differences between RIT and control groups in percentage of ABCB5 or JARID1B-positive cells in the tumor population. Our results demonstrate that unlike chemotherapy, which kills tumor cells but leaves behind MSC leading to recurrence, RIT kills MSC at the same rate as the rest of tumor cells. Conclusions: These results have two main implications for melanoma treatment and possibly other cancers. First, the susceptibility of ABCB5 + and JARID1B + cells to RIT in melanoma might be indicative of their susceptibility to antibody-targeted radiation in other cancers where they are present as well. Second, specifically targeting cancer stem cells with radiolabeled antibodies to ABCB5 or JARID1B might help to completely eradicate cancer stem cells in various cancers

  3. Vibrio cholerae interactions with Mytilus galloprovincialis hemocytes mediated by serum components.

    Directory of Open Access Journals (Sweden)

    Laura eCanesi

    2013-12-01

    Full Text Available Edible bivalves (e.g., mussels, oysters can accumulate large amount of bacteria in their tissues and act as passive carriers of pathogens to humans. Bacterial persistence inside bivalves depends, at least in part, on hemolymph anti-bacterial activity that is exerted by both serum soluble factors and phagocytic cells (i.e., the hemocytes. It was previously shown that Mytilus galloprovincialis hemolymph serum contains opsonins that mediate D-mannose-sensitive interactions between hemocytes and V. cholerae O1 El Tor bacteria that carry the Mannose–Sensitive Hemagglutinin (MSHA. These opsonins enhance phagocytosis and killing of vibrios by facilitating their binding to hemocytes. Since V. cholerae strains not carrying the MSHA ligand (O1 classical, non O1/O139 are present in coastal water and can be entrapped by mussels, we studied whether in mussel serum, in addition to opsonins directed towards MSHA, other components can mediate opsonization of these bacteria. By comparing interactions of O1 classical and non O1/O139 strains with hemocytes in ASW and serum, it was found that M. galloprovincialis serum contains components that increase by at approximately two fold their adhesion to, association with and killing by hemocytes. Experiments conducted with high and low molecular mass fractions obtained by serum ultrafiltration indicated that these compounds have molecular mass higher than 5000 Da. Serum exposure to high temperature (80°C abolished its opsonizing capability suggesting that the involved serum active components are of protein nature. Further studies are needed to define the chemical properties and specificity of both the involved bacterial ligands and hemolymph opsonins. This information will be central not only to better understand V. cholerae ecology, but also to improve current bivalve depuration practices and properly protect human health.

  4. Non-Monotonic Survival of Staphylococcus aureus with Respect to Ciprofloxacin Concentration Arises from Prophage-Dependent Killing of Persisters

    Directory of Open Access Journals (Sweden)

    Elizabeth L. Sandvik

    2015-11-01

    Full Text Available Staphylococcus aureus is a notorious pathogen with a propensity to cause chronic, non-healing wounds. Bacterial persisters have been implicated in the recalcitrance of S. aureus infections, and this motivated us to examine the persistence of S. aureus to ciprofloxacin, a quinolone antibiotic. Upon treatment of exponential phase S. aureus with ciprofloxacin, we observed that survival was a non-monotonic function of ciprofloxacin concentration. Maximal killing occurred at 1 µg/mL ciprofloxacin, which corresponded to survival that was up to ~40-fold lower than that obtained with concentrations ≥ 5 µg/mL. Investigation of this phenomenon revealed that the non-monotonic response was associated with prophage induction, which facilitated killing of S. aureus persisters. Elimination of prophage induction with tetracycline was found to prevent cell lysis and persister killing. We anticipate that these findings may be useful for the design of quinolone treatments.

  5. The role of T cell subsets and cytokines in the regulation of intracellular bacterial infection

    Directory of Open Access Journals (Sweden)

    Oliveira S.C.

    1998-01-01

    Full Text Available Cellular immune responses are a critical part of the host's defense against intracellular bacterial infections. Immunity to Brucella abortus crucially depends on antigen-specific T cell-mediated activation of macrophages, which are the major effectors of cell-mediated killing of this organism. T lymphocytes that proliferate in response to B. abortus were characterized for phenotype and cytokine activity. Human, murine, and bovine T lymphocytes exhibited a type 1 cytokine profile, suggesting an analogous immune response in these different hosts. In vivo protection afforded by a particular cell type is dependent on the antigen presented and the mechanism of antigen presentation. Studies using MHC class I and class II knockout mice infected with B. abortus have demonstrated that protective immunity to brucellosis is especially dependent on CD8+ T cells. To target MHC class I presentation we transfected ex vivo a murine macrophage cell line with B. abortus genes and adoptively transferred them to BALB/c mice. These transgenic macrophage clones induced partial protection in mice against experimental brucellosis. Knowing the cells required for protection, vaccines can be designed to activate the protective T cell subset. Lastly, as a new strategy for priming a specific class I-restricted T cell response in vivo, we used genetic immunization by particle bombardment-mediated gene transfer

  6. Time-kill assay and Etest evaluation for synergy with polymyxin B and fluconazole against Candida glabrata.

    Science.gov (United States)

    Pankey, George; Ashcraft, Deborah; Kahn, Heather; Ismail, Abdulrahim

    2014-10-01

    Fluconazole-resistant Candida glabrata is an emerging pathogen that causes fungemia. Polymyxin B, a last-resort antibiotic used to treat multidrug-resistant Gram-negative bacterial infections, has been found to possess in vitro fungicidal activity and showed synergy with fluconazole against a single strain of C. glabrata. Since both agents may be used simultaneously in intensive care unit (ICU) patients, this study was performed to test for possible synergy of this combination against 35 C. glabrata blood isolates, using 2 methods: a time-kill assay and an experimental MIC-MIC Etest method. Thirty-five genetically unique C. glabrata bloodstream isolates were collected from 2009 to 2011, identified using an API 20C system, and genotyped by repetitive sequence-based PCR (rep-PCR). MICs were determined by Etest and broth microdilution methods. Synergy testing was performed using a modified bacterial Etest synergy method and time-kill assay, with final results read at 24 h. The Etest method showed synergy against 19/35 (54%) isolates; the time-kill assay showed synergy against 21/35 (60%) isolates. Isolates not showing drug synergy had an indifferent status. Concordance between methods was 60%. In vitro synergy of polymyxin B and fluconazole against the majority of C. glabrata isolates was demonstrated by both methods. The bacterial Etest synergy method adapted well when used with C. glabrata. Etest was easier to perform than time-kill assay and may be found to be an acceptable alternative to time-kill assay with antifungals. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  7. Roman Lyariev, How to Skin Your Kill

    OpenAIRE

    Gedeeva, Darina; Ubushieva, Bamba; Babaev, Andrei

    2016-01-01

    Roman explains how to skin a fox. First, one needs to prepare the ground by trampling it. Skinning should be done with a small sharp knife. A freshly killed fox skins easily. Then one needs to treat the skin with an anti-flea spray. At home the skin should be stretched on a triangular wooden panel called in Russian pravilka and left in a dry room for up to five days. People usually go hunting when foxes are on heat and are busy fighting with each other for females. When the wind is strong, fo...

  8. Micro-sociology of mass rampage killings.

    Science.gov (United States)

    Collins, Randall

    2014-01-01

    Spectacular but very rare violent events such as mass killings by habitual non-criminals cannot be explained by factors which are very widespread, such as possession of firearms, being a victim of bullying, an introvert, or a career failure. A stronger clue is clandestine preparation of attack by one or two individuals, against randomly chosen representatives of a hated collective identity. Mass killers develop a deep back-stage, obsessed with planning their attack, overcoming social inferiority and isolation by an emotion of clandestine excitement.

  9. Hyperglycemic conditions inhibit C3-mediated immunologic control of Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Hair Pamela S

    2012-03-01

    Full Text Available Abstract Background Diabetic patients are at increased risk for bacterial infections; these studies provide new insight into the role of the host defense complement system in controlling bacterial pathogens in hyperglycemic environments. Methods The interactions of complement C3 with bacteria in elevated glucose were assayed for complement activation to opsonic forms, phagocytosis and bacterial killing. C3 was analyzed in euglycemic and hyperglycemic conditions by mass spectrometry to measure glycation and structural differences. Results Elevated glucose inhibited S. aureus activation of C3 and deposition of C3b and iC3b on the bacterial surface. S. aureus-generated C5a and serum-mediated phagocytosis by neutrophils were both decreased in elevated glucose conditions. Interestingly, elevated glucose increased the binding of unactivated C3 to S. aureus, which was reversible on return to normal glucose concentrations. In a model of polymicrobial infection, S. aureus in elevated glucose conditions depleted C3 from serum resulting in decreased complement-mediated killing of E. coli. To investigate the effect of differing glucose concentration on C3 structure and glycation, purified C3 incubated with varying glucose concentrations was analyzed by mass spectrometry. Glycation was limited to the same three lysine residues in both euglycemic and hyperglycemic conditions over one hour, thus glycation could not account for observed changes between glucose conditions. However, surface labeling of C3 with sulfo-NHS-biotin showed significant changes in the surface availability of seven lysine residues in response to increasing glucose concentrations. These results suggest that the tertiary structure of C3 changes in response to hyperglycemic conditions leading to an altered interaction of C3 with bacterial pathogens. Conclusions These results demonstrate that hyperglycemic conditions inhibit C3-mediated complement effectors important in the immunological

  10. Bacterial Ecology

    DEFF Research Database (Denmark)

    Fenchel, Tom

    2011-01-01

    compounds these must first be undergo extracellular hydrolysis. Bacteria have a great diversity with respect to types of metabolism that far exceeds the metabolic repertoire of eukaryotic organisms. Bacteria play a fundamental role in the biosphere and certain key processes such as, for example......, the production and oxidation of methane, nitrate reduction and fixation of atmospheric nitrogen are exclusively carried out by different groups of bacteria. Some bacterial species – ‘extremophiles’ – thrive in extreme environments in which no eukaryotic organisms can survive with respect to temperature, salinity...... biogeochemical processes are carried exclusively by bacteria. * Bacteria play an important role in all types of habitats including some that cannot support eukaryotic life....

  11. Bacterial Actins.

    Science.gov (United States)

    Izoré, Thierry; van den Ent, Fusinita

    2017-01-01

    A diverse set of protein polymers, structurally related to actin filaments contributes to the organization of bacterial cells as cytomotive or cytoskeletal filaments. This chapter describes actin homologs encoded by bacterial chromosomes. MamK filaments, unique to magnetotactic bacteria, help establishing magnetic biological compasses by interacting with magnetosomes. Magnetosomes are intracellular membrane invaginations containing biomineralized crystals of iron oxide that are positioned by MamK along the long-axis of the cell. FtsA is widespread across bacteria and it is one of the earliest components of the divisome to arrive at midcell, where it anchors the cell division machinery to the membrane. FtsA binds directly to FtsZ filaments and to the membrane through its C-terminus. FtsA shows altered domain architecture when compared to the canonical actin fold. FtsA's subdomain 1C replaces subdomain 1B of other members of the actin family and is located on the opposite side of the molecule. Nevertheless, when FtsA assembles into protofilaments, the protofilament structure is preserved, as subdomain 1C replaces subdomain IB of the following subunit in a canonical actin filament. MreB has an essential role in shape-maintenance of most rod-shaped bacteria. Unusually, MreB filaments assemble from two protofilaments in a flat and antiparallel arrangement. This non-polar architecture implies that both MreB filament ends are structurally identical. MreB filaments bind directly to membranes where they interact with both cytosolic and membrane proteins, thereby forming a key component of the elongasome. MreB filaments in cells are short and dynamic, moving around the long axis of rod-shaped cells, sensing curvature of the membrane and being implicated in peptidoglycan synthesis.

  12. Designing Antibacterial Peptides with Enhanced Killing Kinetics

    Directory of Open Access Journals (Sweden)

    Faiza H. Waghu

    2018-02-01

    Full Text Available Antimicrobial peptides (AMPs are gaining attention as substitutes for antibiotics in order to combat the risk posed by multi-drug resistant pathogens. Several research groups are engaged in design of potent anti-infective agents using natural AMPs as templates. In this study, a library of peptides with high sequence similarity to Myeloid Antimicrobial Peptide (MAP family were screened using popular online prediction algorithms. These peptide variants were designed in a manner to retain the conserved residues within the MAP family. The prediction algorithms were found to effectively classify peptides based on their antimicrobial nature. In order to improve the activity of the identified peptides, molecular dynamics (MD simulations, using bilayer and micellar systems could be used to design and predict effect of residue substitution on membranes of microbial and mammalian cells. The inference from MD simulation studies well corroborated with the wet-lab observations indicating that MD-guided rational design could lead to discovery of potent AMPs. The effect of the residue substitution on membrane activity was studied in greater detail using killing kinetic analysis. Killing kinetics studies on Gram-positive, negative and human erythrocytes indicated that a single residue change has a drastic effect on the potency of AMPs. An interesting outcome was a switch from monophasic to biphasic death rate constant of Staphylococcus aureus due to a single residue mutation in the peptide.

  13. The 1990 Arthur Kill oil spills

    International Nuclear Information System (INIS)

    Astor, P.H.

    1990-01-01

    On January 1-2, 1990, Exxon discharged 567,000 gallons of No. 2 heating oil in the Arthur Kill, the strait separating Staten Island, New York from New Jersey. Lawsuits against Exxon were filed by the State of New Jersey, New York City, and the City of Elizabeth. They seek to force Exxon to reimburse the municipalities and the state for cleanup costs and to restore damaged wetlands and other natural resources. The three plaintiffs, joined by New York State and the federal government, initiated a three-tiered natural resource damage assessment study (Tier II), currently underway, includes sampling and chemical analysis of sediments and benthic invertebrates, mapping of impacted wetlands and measurement of direct impacts on water birds and their prey. The purposes of the study are to quantify the damages and determine the presence of Exxon's oil in the sediments. Since the Exxon spill, there have been two major spills and an intermediate-size spill. During the first size months of 1990, over one million gallons of petroleum products have been discharged into the Arthur Kill and nearby waters. This paper reports that a review of these incidents provides lessons for the prevention, investigation, and cleanup of spills in urban estuaries

  14. Efficacy of cleansing agents in killing microorganisms in mixed species biofilms present on silicone facial prostheses-an in vitro study

    NARCIS (Netherlands)

    Ariani, Nina; Visser, Anita; Teulings, Margot R. I. M.; Dijk, Melissa; Rahardjo, Tri Budi W.; Vissink, Arjan; van der Mei, Henny C.

    2015-01-01

    The purpose of this study was to assess the efficacy of different cleansing agents in killing mixed species biofilms on silicone facial prostheses. Two bacterial and three yeast strains, isolated from silicone facial prostheses, were selected for the mixed species biofilms. A variety of agents used

  15. Where and How Wolves (Canis lupus Kill Beavers (Castor canadensis.

    Directory of Open Access Journals (Sweden)

    Thomas D Gable

    Full Text Available Beavers (Castor canadensis can be a significant prey item for wolves (Canis lupus in boreal ecosystems due to their abundance and vulnerability on land. How wolves hunt beavers in these systems is largely unknown, however, because observing predation is challenging. We inferred how wolves hunt beavers by identifying kill sites using clusters of locations from GPS-collared wolves in Voyageurs National Park, Minnesota. We identified 22 sites where wolves from 4 different packs killed beavers. We classified these kill sites into 8 categories based on the beaver-habitat type near which each kill occurred. Seasonal variation existed in types of kill sites as 7 of 12 (58% kills in the spring occurred at sites below dams and on shorelines, and 8 of 10 (80% kills in the fall occurred near feeding trails and canals. From these kill sites we deduced that the typical hunting strategy has 3 components: 1 waiting near areas of high beaver use (e.g., feeding trails until a beaver comes near shore or ashore, 2 using vegetation, the dam, or other habitat features for concealment, and 3 immediately attacking the beaver, or ambushing the beaver by cutting off access to water. By identifying kill sites and inferring hunting behavior we have provided the most complete description available of how and where wolves hunt and kill beavers.

  16. Synthetic furanones inhibit quorum-sensing and enhance bacterial clearance in Pseudomonas aeruginosa lung infection in mice

    DEFF Research Database (Denmark)

    Wu, H.; Song, Z.; Hentzer, Morten

    2004-01-01

    Introduction: Antibiotics are used to treat bacterial infections by killing the bacteria or inhibiting their growth, but resistance to antibiotics can develop readily. The discovery that bacterial quorum-sensing regulates bacterial virulence as well as the formation of biofilms opens up new ways...... to control certain bacterial infections. Furanone compounds capable of inhibiting bacterial quorum-sensing systems have been isolated from the marine macro alga Delisea pulchra. Objectives: Two synthetic furanones were tested for their ability to attenuate bacterial virulence in the mouse models of chronic...

  17. Heterosigma bloom and associated fish kill

    Science.gov (United States)

    Hershberger, P.K.; Rensel, J.E.; Postel, J.R.; Taub, F.B.

    1997-01-01

    A bloom of the harmful marine phytoplankton, Heterosigma carterae occurred in upper Case Inlet, south Puget Sound, Washington in late September, 1994, correlating with the presence of at least 35 dead salmon. This marks the first time that this alga has been closely correlated with a wild fish kill; in the past it was thought to be associated with kills of penned fish at fish farms only. We were informed of the presence of a possible harmful algal bloom and dead salinois Ilear the town of Allyn on 27 September and a team was formed to investigate. We arrived at the Allyn waterfront at 17:30 hours the same day. Prior to our arrival, state agency personnel walked approximatcly two miles of shoreline from the powerlines north of the dock, to the mouth of Sherwood Creek and conducted the only official count of dead fish present along the shore consisting of 12 coho salmon (Oncorhynchus kisutch), 11 chum salmon (Oncorhynchus keta), 12 chinook salmon (Oncorhynchus tschawytscha), one flat fish, and one sculpin on the morning of 9/27. Since previous harmful blooms of Heterosigma have resultedin the majority of net penreared salmon sinking to the bottom of pens, and only approximately two miles of shoreline were sampled, it is suspected that many more exposed fish may have succumbed than were counted. Witnesses who explored the east side of the bay reported seeing many dead salmon there as well, but no counts were made. State agency personnel who observed the fish kill reported seeing “dying fish coming to the beach, gulping at the surface, trying to get out of the water” Scavengers were seen consuming the salmon carcasses; these included two harbor seals, a house cat, and Hymenopteran insects. None suffered any noticeable acute ill effects. Although precise cause of death has not been ascertained, visual inspection of the reproductive organs from a deceased male chum salmon found on the shore at Allyn confirmed that the fish was not yet reproductively mature and

  18. Discovery and identification of a male-killing agent in the Japanese ladybird Propylea japonica (Coleoptera: Coccinellidae

    Directory of Open Access Journals (Sweden)

    Majerus Michael EN

    2010-02-01

    Full Text Available Abstract Background Endosymbionts that manipulate the reproduction of their hosts have been reported widely in invertebrates. One such group of endosymbionts is the male-killers. To date all male-killers reported are bacterial in nature, but comprise a diverse group. Ladybirds have been described as a model system for the study of male-killing, which has been reported in multiple species from widespread geographic locations. Whilst criteria of low egg hatch-rate and female-biased progenic sex ratio have been used to identify female hosts of male-killers, variation in vertical transmission efficiency and host genetic factors may result in variation in these phenotypic indicators of male-killer presence. Molecular identification of bacteria and screening for bacterial presence provide us with a more accurate method than breeding data alone to link the presence of the bacteria to the male-killing phenotype. In addition, by identifying the bacteria responsible we may find evidence for horizontal transfer between endosymbiont hosts and can gain insight into the evolutionary origins of male-killing. Phylogenetic placement of male-killing bacteria will allow us to address the question of whether male-killing is a potential strategy for only some, or all, maternally inherited bacteria. Together, phenotypic and molecular characterisation of male-killers will allow a deeper insight into the interactions between host and endosymbiont, which ultimately may lead to an understanding of how male-killers identify and kill male-hosts. Results A male-killer was detected in the Japanese coccinellid, Propylea japonica (Thunberg a species not previously known to harbour male-killers. Families produced by female P. japonica showed significantly female-biased sex ratios. One female produced only daughters. This male-killer trait was maternally inherited and antibiotic treatment produced a full, heritable cure. Molecular analysis identified Rickettsia to be associated

  19. Acquisition of C1 inhibitor by Bordetella pertussis virulence associated gene 8 results in C2 and C4 consumption away from the bacterial surface.

    Science.gov (United States)

    Hovingh, Elise S; van den Broek, Bryan; Kuipers, Betsy; Pinelli, Elena; Rooijakkers, Suzan H M; Jongerius, Ilse

    2017-07-01

    Whooping cough, or pertussis, is a contagious disease of the respiratory tract that is re-emerging worldwide despite high vaccination coverage. The causative agent of this disease is the Gram-negative Bordetella pertussis. Knowledge on complement evasion strategies of this pathogen is limited. However, this is of great importance for future vaccine development as it has become apparent that a novel pertussis vaccine is needed. Here, we unravel the effect of Virulence associated gene 8 (Vag8) of B. pertussis on the human complement system at the molecular level. We show that both recombinant and endogenously secreted Vag8 inhibit complement deposition on the bacterial surface at the level of C4b. We reveal that Vag8 binding to human C1-inhibitor (C1-inh) interferes with the binding of C1-inh to C1s, C1r and MASP-2, resulting in the release of active proteases that subsequently cleave C2 and C4 away from the bacterial surface. We demonstrate that the depletion of these complement components in the bacterial surrounding and subsequent decreased deposition on B. pertussis leads to less complement-mediated bacterial killing. Vag8 is the first protein described that specifically prevents C1s, C1r and MASP-2 binding to C1-inh and thereby mediates complement consumption away from the bacterial surface. Unravelling the mechanism of this unique complement evasion strategy of B. pertussis is one of the first steps towards understanding the interactions between the first line of defense complement and B. pertussis.

  20. Acquisition of C1 inhibitor by Bordetella pertussis virulence associated gene 8 results in C2 and C4 consumption away from the bacterial surface

    Science.gov (United States)

    Hovingh, Elise S.; Kuipers, Betsy; Pinelli, Elena; Rooijakkers, Suzan H. M.

    2017-01-01

    Whooping cough, or pertussis, is a contagious disease of the respiratory tract that is re-emerging worldwide despite high vaccination coverage. The causative agent of this disease is the Gram-negative Bordetella pertussis. Knowledge on complement evasion strategies of this pathogen is limited. However, this is of great importance for future vaccine development as it has become apparent that a novel pertussis vaccine is needed. Here, we unravel the effect of Virulence associated gene 8 (Vag8) of B. pertussis on the human complement system at the molecular level. We show that both recombinant and endogenously secreted Vag8 inhibit complement deposition on the bacterial surface at the level of C4b. We reveal that Vag8 binding to human C1-inhibitor (C1-inh) interferes with the binding of C1-inh to C1s, C1r and MASP-2, resulting in the release of active proteases that subsequently cleave C2 and C4 away from the bacterial surface. We demonstrate that the depletion of these complement components in the bacterial surrounding and subsequent decreased deposition on B. pertussis leads to less complement-mediated bacterial killing. Vag8 is the first protein described that specifically prevents C1s, C1r and MASP-2 binding to C1-inh and thereby mediates complement consumption away from the bacterial surface. Unravelling the mechanism of this unique complement evasion strategy of B. pertussis is one of the first steps towards understanding the interactions between the first line of defense complement and B. pertussis. PMID:28742139

  1. Conformal Killing vectors in Robertson-Walker spacetimes

    International Nuclear Information System (INIS)

    Maartens, R.; Maharaj, S.d.

    1986-01-01

    It is well known that Robertson-Walker spacetimes admit a conformal Killingl vector normal to the spacelike homogeneous hypersurfaces. Because these spacetimes are conformally flat, there are a further eight conformal Killing vectors, which are neither normal nor tangent to the homogeneous hypersurfaces. The authors find these further conformal Killing vectors and the Lie algebra of the full G 15 of conformal motions. Conditions on the metric scale factor are determined which reduce some of the conformal Killing vectors to homothetic Killing vectors or Killing vectors, allowing one to regain in a unified way the known special geometries. The non-normal conformal Killing vectors provide a counter-example to show that conformal motions do not, in general, map a fluid flow conformally. These non-normal vectors are also used to find the general solution of the null geodesic equation and photon Liouville equation. (author)

  2. The eyeball killer: serial killings with postmortem globe enucleation.

    Science.gov (United States)

    Coyle, Julie; Ross, Karen F; Barnard, Jeffrey J; Peacock, Elizabeth; Linch, Charles A; Prahlow, Joseph A

    2015-05-01

    Although serial killings are relatively rare, they can be the cause of a great deal of anxiety while the killer remains at-large. Despite the fact that the motivations for serial killings are typically quite complex, the psychological analysis of a serial killer can provide valuable insight into how and why certain individuals become serial killers. Such knowledge may be instrumental in preventing future serial killings or in solving ongoing cases. In certain serial killings, the various incidents have a variety of similar features. Identification of similarities between separate homicidal incidents is necessary to recognize that a serial killer may be actively killing. In this report, the authors present a group of serial killings involving three prostitutes who were shot to death over a 3-month period. Scene and autopsy findings, including the unusual finding of postmortem enucleation of the eyes, led investigators to recognize the serial nature of the homicides. © 2015 American Academy of Forensic Sciences.

  3. Vesicle-associated membrane protein 7 (VAMP-7) is essential for target cell killing in a natural killer cell line

    International Nuclear Information System (INIS)

    Marcet-Palacios, Marcelo; Odemuyiwa, Solomon O.; Coughlin, Jason J.; Garofoli, Daniella; Ewen, Catherine; Davidson, Courtney E.; Ghaffari, Mazyar; Kane, Kevin P.; Lacy, Paige; Logan, Michael R.; Befus, A. Dean; Bleackley, R. Chris; Moqbel, Redwan

    2008-01-01

    Natural killer cells recognize and induce apoptosis in foreign, transformed or virus-infected cells through the release of perforin and granzymes from secretory lysosomes. Clinically, NK-cell mediated killing is a major limitation to successful allo- and xenotransplantation. The molecular mechanisms that regulate the fusion of granzyme B-containing secretory lysosomes to the plasma membrane in activated NK cells, prior to target cell killing, are not fully understood. Using the NK cell line YT-Indy as a model, we have investigated the expression of SNAP REceptors (SNAREs), both target (t-) and vesicular (v-) SNAREs, and their function in granzyme B-mediated target cell killing. Our data showed that YT-Indy cells express VAMP-7 and SNAP-23, but not VAMP-2. VAMP-7 was associated with granzyme B-containing lysosomal granules. Using VAMP-7 small interfering RNA (siRNA), we successfully knocked down the expression of VAMP-7 protein in YT-Indy to less than 10% of untreated cells in 24 h. VAMP7-deficient YT-Indy cells activated via co-culture with Jurkat cells released <1 ng/mL of granzyme B, compared to 1.5-2.5 μg/mL from controls. Using Jurkat cells as targets, we showed a 7-fold reduction in NK cell-mediated killing by VAMP-7 deficient YT-Indy cells. Our results show that VAMP-7 is a crucial component of granzyme B release and target cell killing in the NK cell line YT-Indy. Thus, targeting VAMP-7 expression specifically with siRNA, following transplantation, may be a viable strategy for preventing NK cell-mediated transplant rejection, in vivo

  4. Killing vectors in algebraically special space-times

    International Nuclear Information System (INIS)

    Torres del Castillo, G.F.

    1984-01-01

    The form of the isometric, homothetic, and conformal Killing vectors for algebraically special metrics which admit a shear-free congruence of null geodesics is obtained by considering their complexification, using the existence of a congruence of null strings. The Killing equations are partially integrated and the reasons which permit this reduction are exhibited. In the case where the congruence of null strings has a vanishing expansion, the Killing equations are reduced to a single master equation

  5. The kinematics of cytotoxic lymphocytes influence their ability to kill target cells.

    Directory of Open Access Journals (Sweden)

    Purnima Bhat

    Full Text Available Cytotoxic lymphocytes (CTL have been reported to show a range of motility patterns from rapid long-range tracking to complete arrest, but how and whether these kinematics affect their ability to kill target cells is not known. Many in vitro killing assays utilize cell lines and tumour-derived cells as targets, which may be of limited relevance to the kinetics of CTL-mediated killing of somatic cells. Here, live-cell microscopy is used to examine the interactions of CTL and primary murine skin cells presenting antigens. We developed a qualitative and quantitative killing assay using extended-duration fluorescence time-lapse microscopy coupled with large-volume objective software-based data analysis to obtain population data of cell-to-cell interactions, motility and apoptosis. In vivo and ex vivo activated antigen-specific cytotoxic lymphocytes were added to primary keratinocyte targets in culture with fluorometric detection of caspase-3 activation in targets as an objective determinant of apoptosis. We found that activated CTL achieved contact-dependent apoptosis of non-tumour targets after a period of prolonged attachment - on average 21 hours - which was determined by target cell type, amount of antigen, and activation status of CTL. Activation of CTL even without engagement of the T cell receptor was sufficient to mobilise cells significantly above baseline, while the addition of cognate antigen further enhanced their motility. Highly activated CTL showed markedly increased vector displacement, and velocity, and lead to increased antigen-specific target cell death. These data show that the inherent kinematics of CTL correlate directly with their ability to kill non-tumour cells presenting cognate antigen.

  6. Spacelike conformal Killing vectors and spacelike congruences

    International Nuclear Information System (INIS)

    Mason, D.P.; Tsamparlis, M.

    1985-01-01

    Necessary and sufficient conditions are derived for space-time to admit a spacelike conformal motion with symmetry vector parallel to a unit spacelike vector field n/sup a/. These conditions are expressed in terms of the shear and expansion of the spacelike congruence generated by n/sup a/ and in terms of the four-velocity of the observer employed at any given point of the congruence. It is shown that either the expansion or the rotation of this spacelike congruence must vanish if Dn/sup a//dp = 0, where p denotes arc length measured along the integral curves of n/sup a/, and also that there exist no proper spacelike homothetic motions with constant expansion. Propagation equations for the projection tensor and the rotation tensor are derived and it is proved that every isometric spacelike congruence is rigid. Fluid space-times are studied in detail. A relation is established between spacelike conformal motions and material curves in the fluid: if a fluid space-time admits a spacelike conformal Killing vector parallel to n/sup a/ and n/sub a/u/sup a/ = 0, where u/sup a/ is the fluid four-velocity, then the integral curves of n/sup a/ are material curves in an irrotational fluid, while if the fluid vorticity is nonzero, then the integral curves of n/sup a/ are material curves if and only if they are vortex lines. An alternative derivation, based on the theory of spacelike congruences, of some of the results of Collins [J. Math. Phys. 25, 995 (1984)] on conformal Killing vectors parallel to the local vorticity vector in shear-free perfect fluids with zero magnetic Weyl tensor is given

  7. Effectiveness of irradiation in killing pathogens

    International Nuclear Information System (INIS)

    Yeager, J.G.; Ward, R.L.

    1980-01-01

    United States Environmental Protection Agency regulations include gamma ray irradiation of sludge as an approved Process to Further Reduce Pathogens (PFRP) prior to land application. Research at Sandia National Laboratories on pathogen inactivation in sludge by gamma irradiation has demonstrated that the 1 Mrad PFRP dose is capable, by itself, of eliminating bacterial, fungal, and parasitic pathogens from sludge. Gamma irradiation of sludge in conjunction with the required Processes to Significantly Reduce Pathogens (PSRP) should also eliminate the viral hazard from wastewater sludges

  8. Antibacterial activity of silver-killed bacteria: the "zombies" effect

    Science.gov (United States)

    Wakshlak, Racheli Ben-Knaz; Pedahzur, Rami; Avnir, David

    2015-04-01

    We report a previously unrecognized mechanism for the prolonged action of biocidal agents, which we denote as the zombies effect: biocidally-killed bacteria are capable of killing living bacteria. The concept is demonstrated by first killing Pseudomonas aeruginosa PAO1 with silver nitrate and then challenging, with the dead bacteria, a viable culture of the same bacterium: Efficient antibacterial activity of the killed bacteria is observed. A mechanism is suggested in terms of the action of the dead bacteria as a reservoir of silver, which, due to Le-Chatelier's principle, is re-targeted to the living bacteria. Langmuirian behavior, as well as deviations from it, support the proposed mechanism.

  9. Killing spinors as a characterisation of rotating black hole spacetimes

    International Nuclear Information System (INIS)

    Cole, Michael J; Kroon, Juan A Valiente

    2016-01-01

    We investigate the implications of the existence of Killing spinors in a spacetime. In particular, we show that in vacuum and electrovacuum a Killing spinor, along with some assumptions on the associated Killing vector in an asymptotic region, guarantees that the spacetime is locally isometric to the Kerr or Kerr–Newman solutions. We show that the characterisation of these spacetimes in terms of Killing spinors is an alternative expression of characterisation results of Mars (Kerr) and Wong (Kerr–Newman) involving restrictions on the Weyl curvature and matter content. (paper)

  10. Recyclable Escherichia coli-Specific-Killing AuNP-Polymer (ESKAP) Nanocomposites.

    Science.gov (United States)

    Yuan, Yuqi; Liu, Feng; Xue, Lulu; Wang, Hongwei; Pan, Jingjing; Cui, Yuecheng; Chen, Hong; Yuan, Lin

    2016-05-11

    Escherichia coli plays a crucial role in various inflammatory diseases and infections that pose significant threats to both human health and the global environment. Specifically inhibiting the growth of pathogenic E. coli is of great and urgent concern. By modifying gold nanoparticles (AuNPs) with both poly[2-(methacrylamido)glucopyranose] (pMAG) and poly[2-(methacryloyloxy)ethyl trimethylammonium iodide] (pMETAI), a novel recyclable E. coli-specific-killing AuNP-polymer (ESKAP) nanocomposite is proposed in this study, which based on both the high affinity of glycopolymers toward E. coli pili and the merits of antibacterial quaternized polymers attached to gold nanoparticles. The properties of nanocomposites with different ratios of pMAG to pMETAI grafted onto AuNPs are studied. With a pMAG:pMETAI feed ratio of 1:3, the nanocomposite appeared to specifically adhere to E. coli and highly inhibit the bacterial cells. After addition of mannose, which possesses higher affinity for the lectin on bacterial pili and has a competitive advantage over pMAG for adhesion to pili, the nanocomposite was able to escape from dead E. coli cells, becoming available for repeat use. The recycled nanocomposite retained good antibacterial activity for at least three cycles. Thus, this novel ESKAP nanocomposite is a promising, highly effective, and readily recyclable antibacterial agent that specifically kills E. coli. This nanocomposite has potential applications in biological sensing, biomedical diagnostics, biomedical imaging, drug delivery, and therapeutics.

  11. Population cycles and species diversity in dynamic Kill-the-Winner model of microbial ecosystems

    Science.gov (United States)

    Maslov, Sergei; Sneppen, Kim

    2017-01-01

    Determinants of species diversity in microbial ecosystems remain poorly understood. Bacteriophages are believed to increase the diversity by the virtue of Kill-the-Winner infection bias preventing the fastest growing organism from taking over the community. Phage-bacterial ecosystems are traditionally described in terms of the static equilibrium state of Lotka-Volterra equations in which bacterial growth is exactly balanced by losses due to phage predation. Here we consider a more dynamic scenario in which phage infections give rise to abrupt and severe collapses of bacterial populations whenever they become sufficiently large. As a consequence, each bacterial population in our model follows cyclic dynamics of exponential growth interrupted by sudden declines. The total population of all species fluctuates around the carrying capacity of the environment, making these cycles cryptic. While a subset of the slowest growing species in our model is always driven towards extinction, in general the overall ecosystem diversity remains high. The number of surviving species is inversely proportional to the variation in their growth rates but increases with the frequency and severity of phage-induced collapses. Thus counter-intuitively we predict that microbial communities exposed to more violent perturbations should have higher diversity. PMID:28051127

  12. Antimicrobial Photodynamic Therapy to Kill Gram-negative Bacteria

    Science.gov (United States)

    Sperandio, Felipe F; Huang, Ying-Ying; Hamblin, Michael R

    2013-01-01

    Antimicrobial photodynamic therapy (PDT) or photodynamic inactivation (PDI) is a new promising strategy to eradicate pathogenic microorganisms such as Gram-positive and Gram-negative bacteria, yeasts and fungi. The search for new approaches that can kill bacteria but do not induce the appearance of undesired drug-resistant strains suggests that PDT may have advantages over traditional antibiotic therapy. PDT is a non-thermal photochemical reaction that involves the simultaneous presence of visible light, oxygen and a dye or photosensitizer (PS). Several PS have been studied for their ability to bind to bacteria and efficiently generate reactive oxygen species (ROS) upon photostimulation. ROS are formed through type I or II mechanisms and may inactivate several classes of microbial cells including Gram-negative bacteria such as Pseudomonas aeruginosa, which are typically characterized by an impermeable outer cell membrane that contains endotoxins and blocks antibiotics, dyes, and detergents, protecting the sensitive inner membrane and cell wall. This review covers significant peer-reviewed articles together with US and World patents that were filed within the past few years and that relate to the eradication of Gram-negative bacteria via PDI or PDT. It is organized mainly according to the nature of the PS involved and includes natural or synthetic food dyes; cationic dyes such as methylene blue and toluidine blue; tetrapyrrole derivatives such as phthalocyanines, chlorins, porphyrins, chlorophyll and bacteriochlorophyll derivatives; functionalized fullerenes; nanoparticles combined with different PS; other formulations designed to target PS to bacteria; photoactive materials and surfaces; conjugates between PS and polycationic polymers or antibodies; and permeabilizing agents such as EDTA, PMNP and CaCl2. The present review also covers the different laboratory animal models normally used to treat Gram-negative bacterial infections with antimicrobial PDT. PMID

  13. 40 CFR 798.5500 - Differential growth inhibition of repair proficient and repair deficient bacteria: “Bacterial DNA...

    Science.gov (United States)

    2010-07-01

    ... repair proficient and repair deficient bacteria: âBacterial DNA damage or repair tests.â 798.5500 Section... inhibition of repair proficient and repair deficient bacteria: “Bacterial DNA damage or repair tests.” (a... killing or growth inhibition of repair deficient bacteria in a set of repair proficient and deficient...

  14. Polymyxin B in Combination with Enrofloxacin Exerts Synergistic Killing against Extensively Drug-Resistant Pseudomonas aeruginosa.

    Science.gov (United States)

    Lin, Yu-Wei; Yu, Heidi H; Zhao, Jinxin; Han, Mei-Ling; Zhu, Yan; Akter, Jesmin; Wickremasinghe, Hasini; Walpola, Hasini; Wirth, Veronika; Rao, Gauri G; Forrest, Alan; Velkov, Tony; Li, Jian

    2018-06-01

    Polymyxins are increasingly used as a last-resort class of antibiotics against extensively drug-resistant (XDR) Gram-negative bacteria. However, resistance to polymyxins can emerge with monotherapy. As nephrotoxicity is the major dose-limiting factor for polymyxin monotherapy, dose escalation to suppress the emergence of polymyxin resistance is not a viable option. Therefore, novel approaches are needed to preserve this last-line class of antibiotics. This study aimed to investigate the antimicrobial synergy of polymyxin B combined with enrofloxacin against Pseudomonas aeruginosa Static time-kill studies were conducted over 24 h with polymyxin B (1 to 4 mg/liter) and enrofloxacin (1 to 4 mg/liter) alone or in combination. Additionally, in vitro one-compartment model (IVM) and hollow-fiber infection model (HFIM) experiments were performed against P. aeruginosa 12196. Polymyxin B and enrofloxacin in monotherapy were ineffective against all of the P. aeruginosa isolates examined, whereas polymyxin B-enrofloxacin in combination was synergistic against P. aeruginosa , with ≥2 to 4 log 10 kill at 24 h in the static time-kill studies. In both IVM and HFIM, the combination was synergistic, and the bacterial counting values were below the limit of quantification on day 5 in the HFIM. A population analysis profile indicated that the combination inhibited the emergence of polymyxin resistance in P. aeruginosa 12196. The mechanism-based modeling suggests that the synergistic killing is a result of the combination of mechanistic and subpopulation synergy. Overall, this is the first preclinical study to demonstrate that the polymyxin-enrofloxacin combination is of considerable utility for the treatment of XDR P. aeruginosa infections and warrants future clinical evaluations. Copyright © 2018 American Society for Microbiology.

  15. Application of bacterial cytological profiling to crude natural product extracts reveals the antibacterial arsenal of Bacillus subtilis.

    Science.gov (United States)

    Nonejuie, Poochit; Trial, Rachelle M; Newton, Gerald L; Lamsa, Anne; Ranmali Perera, Varahenage; Aguilar, Julieta; Liu, Wei-Ting; Dorrestein, Pieter C; Pogliano, Joe; Pogliano, Kit

    2016-05-01

    Although most clinically used antibiotics are derived from natural products, identifying new antibacterial molecules from natural product extracts is difficult due to the complexity of these extracts and the limited tools to correlate biological activity with specific molecules. Here, we show that bacterial cytological profiling (BCP) provides a rapid method for mechanism of action determination on plates and in complex natural product extracts and for activity-guided purification. We prepared an extract from Bacillus subtilis 3610 that killed the Escherichia coli lptD mutant and used BCP to observe two types of bioactivities in the unfractionated extract: inhibition of translation and permeablization of the cytoplasmic membrane. We used BCP to guide purification of the molecules responsible for each activity, identifying the translation inhibitors bacillaene and bacillaene B (glycosylated bacillaene) and demonstrating that two molecules contribute to cell permeabilitization, the bacteriocin subtilosin and the cyclic peptide sporulation killing factor. Our results suggest that bacillaene mediates translational arrest, and show that bacillaene B has a minimum inhibitory concentration 10 × higher than unmodified bacillaene. Finally, we show that BCP can be used to screen strains on an agar plate without the need for extract preparation, greatly saving time and improving throughput. Thus, BCP simplifies the isolation of novel natural products, by identifying strains, crude extracts and fractions with interesting bioactivities even when multiple activities are present, allowing investigators to focus labor-intensive steps on those with desired activities.

  16. Histones as mediators of host defense, inflammation and thrombosis

    OpenAIRE

    Hoeksema, Marloes; van Eijk, Martin; Haagsman, Henk P; Hartshorn, Kevan L

    2016-01-01

    Histones are known for their ability to bind to and regulate expression of DNA. However, histones are also present in cytoplasm and extracellular fluids where they serve host defense functions and promote inflammatory responses. Histones are a major component of neutrophil extracellular traps that contribute to bacterial killing but also to inflammatory injury. Histones can act as antimicrobial peptides and directly kill bacteria, fungi, parasites and viruses, in vitro and in a variety of ani...

  17. Control of Influenza and Poliomyelitis with Killed Virus Vaccines

    Science.gov (United States)

    Salk, Jonas; Salk, Darrell

    1977-01-01

    Discusses control of poliomyelitis and influenza by live and killed virus vaccines. Considered are the etiological agents, pathogenic mechanisms and epidemiology of each disease. Reviews recent scientific studies of the diseases. Recommends use of killed virus vaccines in controlling both diseases. (CS)

  18. 9 CFR 113.210 - Feline Calicivirus Vaccine, Killed Virus.

    Science.gov (United States)

    2010-01-01

    ... Virus. 113.210 Section 113.210 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.210 Feline Calicivirus Vaccine, Killed Virus. Feline Calicivirus...

  19. 9 CFR 113.205 - Newcastle Disease Vaccine, Killed Virus.

    Science.gov (United States)

    2010-01-01

    ... Virus. 113.205 Section 113.205 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.205 Newcastle Disease Vaccine, Killed Virus. Newcastle Disease Vaccine...

  20. 9 CFR 113.211 - Feline Rhinotracheitis Vaccine, Killed Virus.

    Science.gov (United States)

    2010-01-01

    ... Virus. 113.211 Section 113.211 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.211 Feline Rhinotracheitis Vaccine, Killed Virus. Feline...

  1. 9 CFR 113.216 - Bovine Rhinotracheitis Vaccine, Killed Virus.

    Science.gov (United States)

    2010-01-01

    ... Virus. 113.216 Section 113.216 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.216 Bovine Rhinotracheitis Vaccine, Killed Virus. Infectious Bovine...

  2. 9 CFR 113.203 - Feline Panleukopenia Vaccine, Killed Virus.

    Science.gov (United States)

    2010-01-01

    ... Virus. 113.203 Section 113.203 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS STANDARD REQUIREMENTS Killed Virus Vaccines § 113.203 Feline Panleukopenia Vaccine, Killed Virus. Feline Panleukopenia...

  3. Pseudomonas piscicida kills vibrios by two distinct mechanisms

    Science.gov (United States)

    Pseudoalteromonas piscicida is a naturally-occurring marine bacterium which kills competing bacteria, including vibrios. In studies by Richards et al. (AEM00175-17), three strains of P. piscicida were isolated and characterized. Strains secreted proteolytic enzymes which likely killed competing or...

  4. 9 CFR 113.214 - Parvovirus Vaccine, Killed Virus (Canine).

    Science.gov (United States)

    2010-01-01

    ... REQUIREMENTS Killed Virus Vaccines § 113.214 Parvovirus Vaccine, Killed Virus (Canine). Parvovirus Vaccine... antibody against canine parvovirus to determine susceptibility. A constant virus-varying serum... vaccinates and the controls shall be challenged with virulent canine parvovirus furnished or approved by...

  5. Killing Unwanted West Indies Mahogany Trees by Peeling and Frilling

    Science.gov (United States)

    R. W. Nobles; C. B. Briscoe

    1966-01-01

    Peeling and frilling each killed approximately 70 percent of treated West Indies mahogany, but peeling killed a higher percentage of trees between 18 and 33 centimeters (7 and 13 inches) than did frilling. Essentially all mortality occurred within the first 15 months following treatment.

  6. Selective replication of oncolytic virus M1 results in a bystander killing effect that is potentiated by Smac mimetics.

    Science.gov (United States)

    Cai, Jing; Lin, Yuan; Zhang, Haipeng; Liang, Jiankai; Tan, Yaqian; Cavenee, Webster K; Yan, Guangmei

    2017-06-27

    Oncolytic virotherapy is a treatment modality that uses native or genetically modified viruses that selectively replicate in and kill tumor cells. Viruses represent a type of pathogen-associated molecular pattern and thereby induce the up-regulation of dozens of cytokines via activating the host innate immune system. Second mitochondria-derived activator of caspases (Smac) mimetic compounds (SMCs), which antagonize the function of inhibitor of apoptosis proteins (IAPs) and induce apoptosis, sensitize tumor cells to multiple cytokines. Therefore, we sought to determine whether SMCs sensitize tumor cells to cytokines induced by the oncolytic M1 virus, thus enhancing a bystander killing effect. Here, we report that SMCs potentiate the oncolytic effect of M1 in vitro, in vivo, and ex vivo. This strengthened oncolytic efficacy resulted from the enhanced bystander killing effect caused by the M1 virus via cytokine induction. Through a microarray analysis and subsequent validation using recombinant cytokines, we identified IL-8, IL-1A, and TRAIL as the key cytokines in the bystander killing effect. Furthermore, SMCs increased the replication of M1, and the accumulation of virus protein induced irreversible endoplasmic reticulum stress- and c-Jun N-terminal kinase-mediated apoptosis. Nevertheless, the combined treatment with M1 and SMCs had little effect on normal and human primary cells. Because SMCs selectively and significantly enhance the bystander killing effect and the replication of oncolytic virus M1 specifically in cancer cells, this combined treatment may represent a promising therapeutic strategy.

  7. Killing (absorption) versus survival in random motion

    Science.gov (United States)

    Garbaczewski, Piotr

    2017-09-01

    We address diffusion processes in a bounded domain, while focusing on somewhat unexplored affinities between the presence of absorbing and/or inaccessible boundaries. For the Brownian motion (Lévy-stable cases are briefly mentioned) model-independent features are established of the dynamical law that underlies the short-time behavior of these random paths, whose overall lifetime is predefined to be long. As a by-product, the limiting regime of a permanent trapping in a domain is obtained. We demonstrate that the adopted conditioning method, involving the so-called Bernstein transition function, works properly also in an unbounded domain, for stochastic processes with killing (Feynman-Kac kernels play the role of transition densities), provided the spectrum of the related semigroup operator is discrete. The method is shown to be useful in the case, when the spectrum of the generator goes down to zero and no isolated minimal (ground state) eigenvalue is in existence, like in the problem of the long-term survival on a half-line with a sink at origin.

  8. Novel innate cancer killing activity in humans

    Directory of Open Access Journals (Sweden)

    Lovato James

    2011-08-01

    Full Text Available Abstract Background In this study, we pilot tested an in vitro assay of cancer killing activity (CKA in circulating leukocytes of 22 cancer cases and 25 healthy controls. Methods Using a human cervical cancer cell line, HeLa, as target cells, we compared the CKA in circulating leukocytes, as effector cells, of cancer cases and controls. The CKA was normalized as percentages of total target cells during selected periods of incubation time and at selected effector/target cell ratios in comparison to no-effector-cell controls. Results Our results showed that CKA similar to that of our previous study of SR/CR mice was present in human circulating leukocytes but at profoundly different levels in individuals. Overall, males have a significantly higher CKA than females. The CKA levels in cancer cases were lower than that in healthy controls (mean ± SD: 36.97 ± 21.39 vs. 46.28 ± 27.22. Below-median CKA was significantly associated with case status (odds ratio = 4.36; 95% Confidence Interval = 1.06, 17.88 after adjustment of gender and race. Conclusions In freshly isolated human leukocytes, we were able to detect an apparent CKA in a similar manner to that of cancer-resistant SR/CR mice. The finding of CKA at lower levels in cancer patients suggests the possibility that it may be of a consequence of genetic, physiological, or pathological conditions, pending future studies with larger sample size.

  9. Combinatorial stresses kill pathogenic Candida species

    Science.gov (United States)

    Kaloriti, Despoina; Tillmann, Anna; Cook, Emily; Jacobsen, Mette; You, Tao; Lenardon, Megan; Ames, Lauren; Barahona, Mauricio; Chandrasekaran, Komelapriya; Coghill, George; Goodman, Daniel; Gow, Neil A. R.; Grebogi, Celso; Ho, Hsueh-Lui; Ingram, Piers; McDonagh, Andrew; De Moura, Alessandro P. S.; Pang, Wei; Puttnam, Melanie; Radmaneshfar, Elahe; Romano, Maria Carmen; Silk, Daniel; Stark, Jaroslav; Stumpf, Michael; Thiel, Marco; Thorne, Thomas; Usher, Jane; Yin, Zhikang; Haynes, Ken; Brown, Alistair J. P.

    2012-01-01

    Pathogenic microbes exist in dynamic niches and have evolved robust adaptive responses to promote survival in their hosts. The major fungal pathogens of humans, Candida albicans and Candida glabrata, are exposed to a range of environmental stresses in their hosts including osmotic, oxidative and nitrosative stresses. Significant efforts have been devoted to the characterization of the adaptive responses to each of these stresses. In the wild, cells are frequently exposed simultaneously to combinations of these stresses and yet the effects of such combinatorial stresses have not been explored. We have developed a common experimental platform to facilitate the comparison of combinatorial stress responses in C. glabrata and C. albicans. This platform is based on the growth of cells in buffered rich medium at 30°C, and was used to define relatively low, medium and high doses of osmotic (NaCl), oxidative (H 2O2) and nitrosative stresses (e.g., dipropylenetriamine (DPTA)-NONOate). The effects of combinatorial stresses were compared with the corresponding individual stresses under these growth conditions. We show for the first time that certain combinations of combinatorial stress are especially potent in terms of their ability to kill C. albicans and C. glabrata and/or inhibit their growth. This was the case for combinations of osmotic plus oxidative stress and for oxidative plus nitrosative stress. We predict that combinatorial stresses may be highly signif cant in host defences against these pathogenic yeasts. PMID:22463109

  10. Protection against hyperthermic cell killing by alanine

    International Nuclear Information System (INIS)

    Cunningham, A.; Henle, K.J.; Moss, A.J.; Nagle, W.A.

    1987-01-01

    Compounds capable of protecting cells against hyperthermia may provide new insights into potential mechanisms of thermotolerance and cellular heat death. The authors characterized heat protection by alanine and related compounds as a function of concentration, temperature and preincubation time. Alanine was added either to complete medium or to HBSS before hyperthermia. Maximal heat protection required 3 hr, 37 0 ; longer preincubation intervals resulted in lower levels of protection. Addition of alanine to medium after hyperthermia had no protective effect. Protection was concentration dependent with a 20- or 200-fold increase in cell survival after 40 min, 45 0 C at 60 mM in medium or in HBSS, respectively. Higher alanine concentrations up to 120mM did not significantly increase heat protection. A 45 0 -heat survival curve showed that 100mM alanine increased the D/sub q/ by approx. 12 min with little change in the D/sub o/. Hyperthermia of 1 hr at temperatures between 42 0 and 45 0 indicated that 100mM alanine shifted the isotoxic temperature by 0.5 Celsius degrees. Polymers of either L or D,L alanine and related compounds, like pyruvate, also protected cells against heat killing. These results indicate that heat protection by alanine shows characteristics that are not shared by polyhydroxy compounds

  11. Hypertonic saline enhances host response to bacterial challenge by augmenting receptor-independent neutrophil intracellular superoxide formation.

    LENUS (Irish Health Repository)

    Shields, Conor J

    2012-02-03

    OBJECTIVE: This study sought to determine whether hypertonic saline (HTS) infusion modulates the host response to bacterial challenge. METHODS: Sepsis was induced in 30 Balb-C mice by intraperitoneal injection of Escherichia coli (5 x 107 organisms per animal). In 10 mice, resuscitation was performed at 0 and 24 hours with a 4 mL\\/kg bolus of HTS (7.5% NaCl), 10 animals received 4 mL\\/kg of normal saline (0.9% NaCl), and the remaining animals received 30 mL\\/kg of normal saline. Samples of blood, spleen, and lung were cultured at 8 and 36 hours. Polymorphonucleocytes were incubated in isotonic or hypertonic medium before culture with E. coli. Phagocytosis was assessed by flow cytometry, whereas intracellular bacterial killing was measured after inhibition of phagocytosis with cytochalasin B. Intracellular formation of free radicals was assessed by the molecular probe CM-H(2)DCFDA. Mitogen-activated protein (MAP) kinase p38 and ERK-1 phosphorylation, and nuclear factor kappa B (NFkappaB) activation were determined. Data are represented as means (SEM), and an analysis of variance test was performed to gauge statistical significance. RESULTS: Significantly reduced bacterial culture was observed in the animals resuscitated with HTS when compared with their NS counterparts, in blood (51.8 +\\/- 4.3 vs. 82.0 +\\/- 3.3 and 78.4 +\\/- 4.8, P = 0.005), lung (40.0 +\\/- 4.1 vs. 93.2 +\\/- 2.1 and 80.9 +\\/- 4.7, P = 0.002), and spleen (56.4 +\\/- 3.8 vs. 85.4 +\\/- 4.2 and 90.1 +\\/- 5.9, P = 0.05). Intracellular killing of bacteria increased markedly (P = 0.026) and superoxide generation was enhanced upon exposure to HTS (775.78 +\\/- 23.6 vs. 696.57 +\\/- 42.2, P = 0.017) despite inhibition of MAP kinase and NFkappaB activation. CONCLUSIONS: HTS significantly enhances intracellular killing of bacteria while attenuating receptor-mediated activation of proinflammatory cascades.

  12. Identification and structural analysis of an L-asparaginase enzyme from guinea pig with putative tumor cell killing properties.

    Science.gov (United States)

    Schalk, Amanda M; Nguyen, Hien-Anh; Rigouin, Coraline; Lavie, Arnon

    2014-11-28

    The initial observation that guinea pig serum kills lymphoma cells marks the serendipitous discovery of a new class of anti-cancer agents. The serum cell killing factor was shown to be an enzyme with L-asparaginase (ASNase) activity. As a direct result of this observation, several bacterial L-asparaginases were developed and are currently approved by the Food and Drug Administration for the treatment of the subset of hematological malignancies that are dependent on the extracellular pool of the amino acid asparagine. As drugs, these enzymes act to hydrolyze asparagine to aspartate, thereby starving the cancer cells of this amino acid. Prior to the work presented here, the precise identity of this guinea pig enzyme has not been reported in the peer-reviewed literature. We discovered that the guinea pig enzyme annotated as H0W0T5_CAVPO, which we refer to as gpASNase1, has the required low Km property consistent with that possessed by the cell-killing guinea pig serum enzyme. Elucidation of the ligand-free and aspartate complex gpASNase1 crystal structures allows a direct comparison with the bacterial enzymes and serves to explain the lack of L-glutaminase activity in the guinea pig enzyme. The structures were also used to generate a homology model for the human homolog hASNase1 and to help explain its vastly different kinetic properties compared with gpASNase1, despite a 70% sequence identity. Given that the bacterial enzymes frequently present immunogenic and other toxic side effects, this work suggests that gpASNase1 could be a promising alternative to these bacterial enzymes. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. ALGICIDAL BACTERIA ACTIVE AGAINST GYMNODINIUM BREVE (DINOPHYCEAE). BACTERIAL ISOLATION AND CHARACTERIZATION OF KILLING ACTIVITY. (R827085)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  14. Bacterial and fungal killing by iontophoresis with long-lived electrodes.

    OpenAIRE

    Davis, C P; Wagle, N; Anderson, M D; Warren, M M

    1991-01-01

    Iontophoresis with gold, carbon, and platinum electrodes was shown to effectively reduce or eliminate gram-positive, gram-negative, and Candida albicans inocula in synthetic urine. Platinum and gold electrodes were more effective than carbon electrodes, but platinum showed the best longevity and may reduce or eliminate microbial colonization of catheters.

  15. Managing Threat, Cost, and Incentive to Kill: The Short- and Long-Term Effects of Intervention in Mass Killings

    Science.gov (United States)

    Kathman, Jacob D.; Wood, Reed M.

    2011-01-01

    How do third-party interventions affect the severity of mass killings? The authors theorize that episodes of mass killing are the consequence of two factors: (1) the threat perceptions of the perpetrators and (2) the cost of implementing genocidal policies relative to other alternatives. To reduce genocidal hostilities, interveners must address…

  16. A Lipopeptide Facilitate Induction of Mycobacterium leprae Killing in Host Cells

    Science.gov (United States)

    Maeda, Yumi; Tamura, Toshiki; Fukutomi, Yasuo; Mukai, Tetsu; Kai, Masanori; Makino, Masahiko

    2011-01-01

    Little is known of the direct microbicidal activity of T cells in leprosy, so a lipopeptide consisting of the N-terminal 13 amino acids lipopeptide (LipoK) of a 33-kD lipoprotein of Mycobacterium leprae, was synthesized. LipoK activated M. leprae infected human dendritic cells (DCs) to induce the production of IL-12. These activated DCs stimulated autologous CD4+ or CD8+ T cells towards type 1 immune response by inducing interferon-gamma secretion. T cell proliferation was also evident from the CFSE labeling of target CD4+ or CD8+ T cells. The direct microbicidal activity of T cells in the control of M. leprae multiplication is not well understood. The present study showed significant production of granulysin, granzyme B and perforin from these activated CD4+ and CD8+ T cells when stimulated with LipoK activated, M. leprae infected DCs. Assessment of the viability of M. leprae in DCs indicated LipoK mediated T cell-dependent killing of M. leprae. Remarkably, granulysin as well as granzyme B could directly kill M. leprae in vitro. Our results provide evidence that LipoK could facilitate M. leprae killing through the production of effector molecules granulysin and granzyme B in T cells. PMID:22132248

  17. Psychological traits underlying different killing methods among Malaysian male murderers.

    Science.gov (United States)

    Kamaluddin, Mohammad Rahim; Shariff, Nadiah Syariani; Nurfarliza, Siti; Othman, Azizah; Ismail, Khaidzir H; Mat Saat, Geshina Ayu

    2014-04-01

    Murder is the most notorious crime that violates religious, social and cultural norms. Examining the types and number of different killing methods that used are pivotal in a murder case. However, the psychological traits underlying specific and multiple killing methods are still understudied. The present study attempts to fill this gap in knowledge by identifying the underlying psychological traits of different killing methods among Malaysian murderers. The study adapted an observational cross-sectional methodology using a guided self-administered questionnaire for data collection. The sampling frame consisted of 71 Malaysian male murderers from 11 Malaysian prisons who were selected using purposive sampling method. The participants were also asked to provide the types and number of different killing methods used to kill their respective victims. An independent sample t-test was performed to establish the mean score difference of psychological traits between the murderers who used single and multiple types of killing methods. Kruskal-Wallis tests were carried out to ascertain the psychological trait differences between specific types of killing methods. The results suggest that specific psychological traits underlie the type and number of different killing methods used during murder. The majority (88.7%) of murderers used a single method of killing. Multiple methods of killing was evident in 'premeditated' murder compared to 'passion' murder, and revenge was a common motive. Examples of multiple methods are combinations of stabbing and strangulation or slashing and physical force. An exception was premeditated murder committed with shooting, when it was usually a single method, attributed to the high lethality of firearms. Shooting was also notable when the motive was financial gain or related to drug dealing. Murderers who used multiple killing methods were more aggressive and sadistic than those who used a single killing method. Those who used multiple methods or

  18. Killing a Peacock: A Case Study of the Targeted Killing of Admiral Isoroku Yamamoto

    Science.gov (United States)

    2015-03-24

    assertions by-in-large fell on deaf ears in the United States, Yamamoto nevertheless took special interest in Mitchell’s claims, and returned to Japan in...deliberations on April 17.106 Upon receiving an update brief of the planning order, Viccellio immediately identified a problem . He knew that the P-38’s fuel...what, it all happened all too fast to know and he was content on calling it a “team kill.”152 Instead, he left resolution of the issue to Barber and

  19. Kill a brand, keep a customer.

    Science.gov (United States)

    Kumar, Nirmalya

    2003-12-01

    Most brands don't make much money. Year after year, businesses generate 80% to 90% of their profits from less than 20% of their brands. Yet most companies tend to ignore loss-making brands, unaware of the hidden costs they incur. That's because executives believe it's easy to erase a brand; they have only to stop investing in it, they assume, and it will die a natural death. But they're wrong. When companies drop brands clumsily, they antagonize loyal customers: Research shows that seven times out of eight, when firms merge two brands, the market share of the new brand never reaches the combined share of the two original ones. It doesn't have to be that way. Smart companies use a four-step process to kill brands methodically. First, CEOs make the case for rationalization by getting groups of senior executives to conduct joint audits of the brand portfolio. These audits make the need to prune brands apparent throughout the organization. In the next stage, executives need to decide how many brands will be retained, which they do either by setting broad parameters that all brands must meet or by identifying the brands they need in order to cater to all the customer segments in their markets. Third, executives must dispose of the brands they've decided to drop, deciding in each case whether it is appropriate to merge, sell, milk, or just eliminate the brand outright. Finally, it's critical that executives invest the resources they've freed to grow the brands they've retained. Done right, dropping brands will result in a company poised for new growth from the source where it's likely to be found--its profitable brands.

  20. Did Vertigo Kill America's Forgotten Astronaut?

    Science.gov (United States)

    Bendrick, Gregg A.; Merlin, Peter W.

    2007-01-01

    On November 15, 1967, U.S. Air Force test pilot Major Michael J. Adams was killed while flying the X-15 rocket-propelled research vehicle in a parabolic spaceflight profile. This flight was part of a joint effort with NASA. An electrical short in one of the experiments aboard the vehicle caused electrical transients, resulting in excessive workload by the pilot. At altitude Major Adams inappropriately initiated a flat spin that led to a series of unusual aircraft attitudes upon atmospheric re-entry, ultimately causing structural failure of the airframe. Major Adams was known to experience vertigo (i.e. spatial disorientation) while flying the X-15, but all X-15 pilots most likely experienced vertigo (i.e. somatogravic, or "Pitch-Up", illusion) as a normal physiologic response to the accelerative forces involved. Major Adams probably experienced vertigo to a greater degree than did others, since prior aeromedical testing for astronaut selection at Brooks AFB revealed that he had an unusually high degree of labyrinthine sensitivity. Subsequent analysis reveals that after engine burnout, and through the zenith of the flight profile, he likely experienced the oculoagravic ("Elevator") illusion. Nonetheless, painstaking investigation after the mishap revealed that spatial disorientation (Type II, Recognized) was NOT the cause, but rather, a contributing factor. The cause was in fact the misinterpretation of a dual-use flight instrument (i.e. Loss of Mode Awareness), resulting in confusion between yaw and roll indications, with subsequent flight control input that was inappropriate. Because of the altitude achieved on this flight, Major Adams was awarded Astronaut wings posthumously. Understanding the potential for spatial disorientation, particularly the oculoagravic illusion, associated with parabolic spaceflight profiles, and understanding the importance of maintaining mode awareness in the context of automated cockpit design, are two lessons that have direct

  1. Staphylococcus epidermidis strategies to avoid killing by human neutrophils.

    Directory of Open Access Journals (Sweden)

    Gordon Y C Cheung

    2010-10-01

    Full Text Available Staphylococcus epidermidis is a leading nosocomial pathogen. In contrast to its more aggressive relative S. aureus, it causes chronic rather than acute infections. In highly virulent S. aureus, phenol-soluble modulins (PSMs contribute significantly to immune evasion and aggressive virulence by their strong ability to lyse human neutrophils. Members of the PSM family are also produced by S. epidermidis, but their role in immune evasion is not known. Notably, strong cytolytic capacity of S. epidermidis PSMs would be at odds with the notion that S. epidermidis is a less aggressive pathogen than S. aureus, prompting us to examine the biological activities of S. epidermidis PSMs. Surprisingly, we found that S. epidermidis has the capacity to produce PSMδ, a potent leukocyte toxin, representing the first potent cytolysin to be identified in that pathogen. However, production of strongly cytolytic PSMs was low in S. epidermidis, explaining its low cytolytic potency. Interestingly, the different approaches of S. epidermidis and S. aureus to causing human disease are thus reflected by the adaptation of biological activities within one family of virulence determinants, the PSMs. Nevertheless, S. epidermidis has the capacity to evade neutrophil killing, a phenomenon we found is partly mediated by resistance mechanisms to antimicrobial peptides (AMPs, including the protease SepA, which degrades AMPs, and the AMP sensor/resistance regulator, Aps (GraRS. These findings establish a significant function of SepA and Aps in S. epidermidis immune evasion and explain in part why S. epidermidis may evade elimination by innate host defense despite the lack of cytolytic toxin expression. Our study shows that the strategy of S. epidermidis to evade elimination by human neutrophils is characterized by a passive defense approach and provides molecular evidence to support the notion that S. epidermidis is a less aggressive pathogen than S. aureus.

  2. Killing of Serratia marcescens biofilms with chloramphenicol.

    Science.gov (United States)

    Ray, Christopher; Shenoy, Anukul T; Orihuela, Carlos J; González-Juarbe, Norberto

    2017-03-29

    Serratia marcescens is a Gram-negative bacterium with proven resistance to multiple antibiotics and causative of catheter-associated infections. Bacterial colonization of catheters mainly involves the formation of biofilm. The objectives of this study were to explore the susceptibility of S. marcescens biofilms to high doses of common antibiotics and non-antimicrobial agents. Biofilms formed by a clinical isolate of S. marcescens were treated with ceftriaxone, kanamycin, gentamicin, and chloramphenicol at doses corresponding to 10, 100 and 1000 times their planktonic minimum inhibitory concentration. In addition, biofilms were also treated with chemical compounds such as polysorbate-80 and ursolic acid. S. marcescens demonstrated susceptibility to ceftriaxone, kanamycin, gentamicin, and chloramphenicol in its planktonic form, however, only chloramphenicol reduced both biofilm biomass and biofilm viability. Polysorbate-80 and ursolic acid had minimal to no effect on either planktonic and biofilm grown S. marcescens. Our results suggest that supratherapeutic doses of chloramphenicol can be used effectively against established S. marcescens biofilms.

  3. Generalized Killing-Yano equations in D=5 gauged supergravity

    International Nuclear Information System (INIS)

    Kubiznak, David; Kunduri, Hari K.; Yasui, Yukinori

    2009-01-01

    We propose a generalization of the (conformal) Killing-Yano equations relevant to D=5 minimal gauged supergravity. The generalization stems from the fact that the dual of the Maxwell flux, the 3-form *F, couples naturally to particles in the background as a 'torsion'. Killing-Yano tensors in the presence of torsion preserve most of the properties of the standard Killing-Yano tensors - exploited recently for the higher-dimensional rotating black holes of vacuum gravity with cosmological constant. In particular, the generalized closed conformal Killing-Yano 2-form gives rise to the tower of generalized closed conformal Killing-Yano tensors of increasing rank which in turn generate the tower of Killing tensors. An example of a generalized Killing-Yano tensor is found for the Chong-Cvetic-Lue-Pope black hole spacetime [Z.W. Chong, M. Cvetic, H. Lu, C.N. Pope, (hep-th/0506029)]. Such a tensor stands behind the separability of the Hamilton-Jacobi, Klein-Gordon, and Dirac equations in this background.

  4. The Tick Salivary Protein Salp15 Inhibits the Killing of Serum-Sensitive Borrelia burgdorferi Sensu Lato Isolates▿

    OpenAIRE

    Schuijt, Tim J.; Hovius, Joppe W. R.; van Burgel, Nathalie D.; Ramamoorthi, Nandhini; Fikrig, Erol; van Dam, Alje P.

    2008-01-01

    Borrelia burgdorferi, the agent of Lyme disease, is transmitted by ticks. During transmission from the tick to the host, spirochetes are delivered with tick saliva, which contains the salivary protein Salp15. Salp15 has been shown to protect spirochetes against B. burgdorferi-specific antibodies. We now show that Salp15 from both Ixodes ricinus and Ixodes scapularis protects serum-sensitive isolates of Borrelia burgdorferi sensu lato against complement-mediated killing. I. ricinus Salp15 show...

  5. Enzyme-driven Bacillus spore coat degradation leading to spore killing.

    Science.gov (United States)

    Mundra, Ruchir V; Mehta, Krunal K; Wu, Xia; Paskaleva, Elena E; Kane, Ravi S; Dordick, Jonathan S

    2014-04-01

    The bacillus spore coat confers chemical and biological resistance, thereby protecting the core from harsh environments. The primarily protein-based coat consists of recalcitrant protein crosslinks that endow the coat with such functional protection. Proteases are present in the spore coat, which play a putative role in coat degradation in the environment. However these enzymes are poorly characterized. Nonetheless given the potential for proteases to catalyze coat degradation, we screened 10 commercially available proteases for their ability to degrade the spore coats of B. cereus and B. anthracis. Proteinase K and subtilisin Carlsberg, for B. cereus and B. anthracis spore coats, respectively, led to a morphological change in the otherwise impregnable coat structure, increasing coat permeability towards cortex lytic enzymes such as lysozyme and SleB, thereby initiating germination. Specifically in the presence of lysozyme, proteinase K resulted in 14-fold faster enzyme induced germination and exhibited significantly shorter lag times, than spores without protease pretreatment. Furthermore, the germinated spores were shown to be vulnerable to a lytic enzyme (PlyPH) resulting in effective spore killing. The spore surface in response to proteolytic degradation was probed using scanning electron microscopy (SEM), which provided key insights regarding coat degradation. The extent of coat degradation and spore killing using this enzyme-based pretreatment approach is similar to traditional, yet far harsher, chemical decoating methods that employ detergents and strong denaturants. Thus the enzymatic route reduces the environmental burden of chemically mediated spore killing, and demonstrates that a mild and environmentally benign biocatalytic spore killing is achievable. © 2013 Wiley Periodicals, Inc.

  6. Mechanism of killing of streptococcus mutans by light-activated drugs

    Science.gov (United States)

    Burns, Tracy; Wilson, Michael; Pearson, G. J.

    1996-01-01

    Recent studies have shown that cariogenic bacteria can be killed when exposed to low power laser light in the presence of a photosensitizing agent. The purpose of this study was to determine the mechanism by which the cariogenic bacterium Streptococcus mutans can be killed by toluidine blue O and helium neon laser light. To determine whether membrane damage occurred, suspensions of sensitized S. mutans were exposed to a 7.3 mW HeNe laser for 30 mins and samples removed every 5 mins. Survivors were enumerated by viable counting on tryptone soya agar plates and cell free filtrates were assayed for phosphate and (beta) -galactosidase. Lipid peroxidation was assessed by assaying for malondialdehyde, a by- product of lipid peroxidation. The role of oxygen and reactive oxygen species was studied by exposing sensitized bacteria to laser light (1) under different atmospheric conditions, (2) in the presence of deuterium oxide, and (3) in the presence of inhibitors of reactive oxygen species. Following exposure of sensitizede S. mutans to 13.2 J of HeNe laser light, 2.6 nmoles of phosphate and 228 nmoles of (beta) -galactosidase were detected in the cell free filtrates. Ten micrometers oles of malondialdehyde were also detected. When the sensitized bacteria were exposed to laser light under anaerobic conditions there was no significant decrease in the viable count compared to a 60% kill in the presence of oxygen. In the presence of D2O there was a 15-fold increase in the numbers of bacteria killed. O.1 M methionine and 0.5 M sodium azide each afforded 98% protection from lethal photosensitization. These results imply that lethal photosensitization results from membrane damage due to lipid peroxidation and that reactive oxygen species are mediators of this process.

  7. Bacterial Acclimation Inside an Aqueous Battery.

    Science.gov (United States)

    Dong, Dexian; Chen, Baoling; Chen, P

    2015-01-01

    Specific environmental stresses may lead to induced genomic instability in bacteria, generating beneficial mutants and potentially accelerating the breeding of industrial microorganisms. The environmental stresses inside the aqueous battery may be derived from such conditions as ion shuttle, pH gradient, free radical reaction and electric field. In most industrial and medical applications, electric fields and direct currents are used to kill bacteria and yeast. However, the present study focused on increasing bacterial survival inside an operating battery. Using a bacterial acclimation strategy, both Escherichia coli and Bacillus subtilis were acclimated for 10 battery operation cycles and survived in the battery for over 3 days. The acclimated bacteria changed in cell shape, growth rate and colony color. Further analysis indicated that electrolyte concentration could be one of the major factors determining bacterial survival inside an aqueous battery. The acclimation process significantly improved the viability of both bacteria E. coli and B. subtilis. The viability of acclimated strains was not affected under battery cycle conditions of 0.18-0.80 mA cm(-2) and 1.4-2.1 V. Bacterial addition within 1.0×10(10) cells mL(-1) did not significantly affect battery performance. Because the environmental stress inside the aqueous battery is specific, the use of this battery acclimation strategy may be of great potential for the breeding of industrial microorganisms.

  8. Factors influencing bacterial adhesion to contact lenses.

    Science.gov (United States)

    Dutta, Debarun; Cole, Nerida; Willcox, Mark

    2012-01-01

    The process of any contact lens related keratitis generally starts with the adhesion of opportunistic pathogens to contact lens surface. This article focuses on identifying the factors which have been reported to affect bacterial adhesion to contact lenses. Adhesion to lenses differs between various genera/species/strains of bacteria. Pseudomonas aeruginosa, which is the predominant causative organism, adheres in the highest numbers to both hydrogel and silicone hydrogel lenses in vitro. The adhesion of this strain reaches maximum numbers within 1h in most in vitro studies and a biofilm has generally formed within 24 h of cells adhering to the lens surface. Physical and chemical properties of contact lens material affect bacterial adhesion. The water content of hydroxyethylmethacrylate (HEMA)-based lenses and their iconicity affect the ability of bacteria to adhere. The higher hydrophobicity of silicone hydrogel lenses compared to HEMA-based lenses has been implicated in the higher numbers of bacteria that can adhere to their surfaces. Lens wear has different effects on bacterial adhesion, partly due to differences between wearers, responses of bacterial strains and the ability of certain tear film proteins when bound to a lens surface to kill certain types of bacteria.

  9. Some spacetimes with higher rank Killing-Staeckel tensors

    International Nuclear Information System (INIS)

    Gibbons, G.W.; Houri, T.; Kubiznak, D.; Warnick, C.M.

    2011-01-01

    By applying the lightlike Eisenhart lift to several known examples of low-dimensional integrable systems admitting integrals of motion of higher-order in momenta, we obtain four- and higher-dimensional Lorentzian spacetimes with irreducible higher-rank Killing tensors. Such metrics, we believe, are first examples of spacetimes admitting higher-rank Killing tensors. Included in our examples is a four-dimensional supersymmetric pp-wave spacetime, whose geodesic flow is superintegrable. The Killing tensors satisfy a non-trivial Poisson-Schouten-Nijenhuis algebra. We discuss the extension to the quantum regime.

  10. HIV transcription is induced with some forms of cell killing

    International Nuclear Information System (INIS)

    Woloschak, G.E.; Schreck, S.; Chang-Liu, C.-M.; Libertin, C.R.

    1996-01-01

    Using HeLa cells stably transfected with an HIV-LTR-CAT construct', we demonstrated a peak in CAT induction that occurs in viable (but not necessarily cell-division-competent) cells 24 h following exposure to some cell-killing agents. Γ rays were the only cell-killing agent which did not induce HIV transcription; this can be attributed to the fact that γ-ray-induced apoptotic death requires function p53, which is missing in HeLa cells. For all other agents, HIV-LTR induction was dose-dependent and correlated with the amount of cell killing that occurred in the culture

  11. Factors Affecting Zebra Mussel Kill by the Bacterium Pseudomonas fluorescens

    Energy Technology Data Exchange (ETDEWEB)

    Daniel P. Molloy

    2004-02-24

    The specific purpose of this research project was to identify factors that affect zebra mussel kill by the bacterium Pseudomonas fluorescens. Test results obtained during this three-year project identified the following key variables as affecting mussel kill: treatment concentration, treatment duration, mussel siphoning activity, dissolved oxygen concentration, water temperature, and naturally suspended particle load. Using this latter information, the project culminated in a series of pipe tests which achieved high mussel kill inside power plants under once-through conditions using service water in artificial pipes.

  12. 40 CFR 180.1107 - Delta endotoxin of Bacillus thuringiensis variety kurstaki encapsulated into killed Pseudomonas...

    Science.gov (United States)

    2010-07-01

    ... thuringiensis variety kurstaki encapsulated into killed Pseudomonas fluorescens; exemption from the requirement... killed Pseudomonas fluorescens; exemption from the requirement of a tolerance. The delta endotoxin of Bacillus thuringiensis variety kurstaki encapsulated into killed Pseudomonas fluorescens is exempt from the...

  13. An O antigen capsule modulates bacterial pathogenesis in Shigella sonnei.

    Science.gov (United States)

    Caboni, Mariaelena; Pédron, Thierry; Rossi, Omar; Goulding, David; Pickard, Derek; Citiulo, Francesco; MacLennan, Calman A; Dougan, Gordon; Thomson, Nicholas R; Saul, Allan; Sansonetti, Philippe J; Gerke, Christiane

    2015-03-01

    Shigella is the leading cause for dysentery worldwide. Together with several virulence factors employed for invasion, the presence and length of the O antigen (OAg) of the lipopolysaccharide (LPS) plays a key role in pathogenesis. S. flexneri 2a has a bimodal OAg chain length distribution regulated in a growth-dependent manner, whereas S. sonnei LPS comprises a monomodal OAg. Here we reveal that S. sonnei, but not S. flexneri 2a, possesses a high molecular weight, immunogenic group 4 capsule, characterized by structural similarity to LPS OAg. We found that a galU mutant of S. sonnei, that is unable to produce a complete LPS with OAg attached, can still assemble OAg material on the cell surface, but a galU mutant of S. flexneri 2a cannot. High molecular weight material not linked to the LPS was purified from S. sonnei and confirmed by NMR to contain the specific sugars of the S. sonnei OAg. Deletion of genes homologous to the group 4 capsule synthesis cluster, previously described in Escherichia coli, abolished the generation of the high molecular weight OAg material. This OAg capsule strongly affects the virulence of S. sonnei. Uncapsulated knockout bacteria were highly invasive in vitro and strongly inflammatory in the rabbit intestine. But, the lack of capsule reduced the ability of S. sonnei to resist complement-mediated killing and to spread from the gut to peripheral organs. In contrast, overexpression of the capsule decreased invasiveness in vitro and inflammation in vivo compared to the wild type. In conclusion, the data indicate that in S. sonnei expression of the capsule modulates bacterial pathogenesis resulting in balanced capabilities to invade and persist in the host environment.

  14. An O antigen capsule modulates bacterial pathogenesis in Shigella sonnei.

    Directory of Open Access Journals (Sweden)

    Mariaelena Caboni

    2015-03-01

    Full Text Available Shigella is the leading cause for dysentery worldwide. Together with several virulence factors employed for invasion, the presence and length of the O antigen (OAg of the lipopolysaccharide (LPS plays a key role in pathogenesis. S. flexneri 2a has a bimodal OAg chain length distribution regulated in a growth-dependent manner, whereas S. sonnei LPS comprises a monomodal OAg. Here we reveal that S. sonnei, but not S. flexneri 2a, possesses a high molecular weight, immunogenic group 4 capsule, characterized by structural similarity to LPS OAg. We found that a galU mutant of S. sonnei, that is unable to produce a complete LPS with OAg attached, can still assemble OAg material on the cell surface, but a galU mutant of S. flexneri 2a cannot. High molecular weight material not linked to the LPS was purified from S. sonnei and confirmed by NMR to contain the specific sugars of the S. sonnei OAg. Deletion of genes homologous to the group 4 capsule synthesis cluster, previously described in Escherichia coli, abolished the generation of the high molecular weight OAg material. This OAg capsule strongly affects the virulence of S. sonnei. Uncapsulated knockout bacteria were highly invasive in vitro and strongly inflammatory in the rabbit intestine. But, the lack of capsule reduced the ability of S. sonnei to resist complement-mediated killing and to spread from the gut to peripheral organs. In contrast, overexpression of the capsule decreased invasiveness in vitro and inflammation in vivo compared to the wild type. In conclusion, the data indicate that in S. sonnei expression of the capsule modulates bacterial pathogenesis resulting in balanced capabilities to invade and persist in the host environment.

  15. A New Pharmacological Agent (AKB-4924) Stabilizes Hypoxia Inducible Factor (HIF) and Increases Skin Innate Defenses Against Bacterial Infection

    Science.gov (United States)

    Okumura, Cheryl Y.M.; Hollands, Andrew; Tran, Dan N.; Olson, Joshua; Dahesh, Samira; von Köckritz-Blickwede, Maren; Thienphrapa, Wdee; Corle, Courtney; Jeung, Seung Nam; Kotsakis, Anna; Shalwitz, Robert A.; Johnson, Randall S.; Nizet, Victor

    2013-01-01

    Hypoxia inducible factor-1 (HIF-1) is a transcription factor that is a major regulator of energy homeostasis and cellular adaptation to low oxygen stress. HIF-1 is also activated in response to bacterial pathogens and supports the innate immune response of both phagocytes and keratinocytes. In this work, we show that a new pharmacological compound AKB-4924 (Akebia Therapeutics) increases HIF-1α levels and enhances the antibacterial activity of phagocytes and keratinocytes against both methicillin-sensitive and -resistant strains of Staphylococcus aureus in vitro. AKB-4924 is also effective in stimulating the killing capacity of keratinocytes against the important opportunistic skin pathogens Pseudomonas aeruginosa and Acinitobacter baumanii. The effect of AKB-4924 is mediated through the activity of host cells, as the compound exerts no direct antimicrobial activity. Administered locally as a single agent, AKB-4924 limits S. aureus proliferation and lesion formation in a mouse skin abscess model. This approach to pharmacologically boost the innate immune response via HIF-1 stabilization may serve as a useful adjunctive treatment for antibiotic-resistant bacterial infections. PMID:22371073

  16. Combination of Cold Atmospheric Plasma and Vitamin C Effectively Disrupts Bacterial Biofilms

    DEFF Research Database (Denmark)

    Pandit, Santosh; Mokkapati, Venkata R. S. S.; Helgadóttir, Saga Huld

    2017-01-01

    limitation is the susceptibility of the surrounding healthy tissues to higher doses. We have recently demonstrated that vitamin C, a natural food supplement, can be used to destabilize bacterial biofilms and render them more susceptible to the CAP killing treatment. Here we discuss the possible impact...... that a pre-treatment with vitamin C could have on CAP applications in medicine. Specifically, we argue that vitamin C could enhance the effectiveness of CAP treatments against both the bacterial biofilms and some selected tumors....

  17. The antimicrobial polymer PHMB enters cells and selectively condenses bacterial chromosomes

    DEFF Research Database (Denmark)

    Chindera, Kantaraja; Mahato, Manohar; Sharma, Ashwani Kumar

    2016-01-01

    To combat infection and antimicrobial resistance, it is helpful to elucidate drug mechanism(s) of action. Here we examined how the widely used antimicrobial polyhexamethylene biguanide (PHMB) kills bacteria selectively over host cells. Contrary to the accepted model of microbial membrane disrupti...... to bacterial and mammalian cellular DNA and selectively binds and condenses bacterial chromosomes. Because acquired resistance to PHMB has not been reported, selective chromosome condensation provides an unanticipated paradigm for antimicrobial action that may not succumb to resistance....

  18. Selective Killing of Prostate Tumor Cells by Cytocidal Viruses

    National Research Council Canada - National Science Library

    Lyles, Douglas

    2003-01-01

    .... The novelty in our approach is our ability to enhance the selectivity of killing of tumor cells versus normal cells by manipulating the viral genes that control the antiviral interferon response...

  19. Selective Killing of Prostate Tumor Cells by Cytocidal Viruses

    National Research Council Canada - National Science Library

    Lyles, Douglas

    2004-01-01

    .... The novelty in our approach is our ability to enhance the selectivity of killing of tumor cells versus normal cells by manipulating the viral genes that control the antiviral interferon response...

  20. On Discrete Killing Vector Fields and Patterns on Surfaces

    KAUST Repository

    Ben-Chen, Mirela; Butscher, Adrian; Solomon, Justin; Guibas, Leonidas

    2010-01-01

    , and show how to discretize these concepts for generating such vector fields on a triangulated mesh. We discuss the properties of approximate Killing Vector Fields, and propose an application to utilize them for texture and geometry synthesis. Journal

  1. Selective Killing of Prostate Tumor Cells by Cytocidal Viruses

    National Research Council Canada - National Science Library

    Lyles, Douglas S

    2005-01-01

    ...). The novelty in our approach is our ability to enhance the selectivity of VSV-induced killing of tumor cells versus normal cells by manipulating the viral genes that control the antiviral interferon response...

  2. Thou Shalt Not Kill: Conscientious Objection and the Decalogue

    Science.gov (United States)

    2012-04-01

    used to condone animal cruelty .66 Second, n¥1 (ratsach) is not used in the context of proper punishment for a crime.67 Alan Cole explains...used to refer to the killing animals for food and sacrifices.63 Scripture records that God allowed the killing of animals for food.64 God also allowed...the slaying of animals for sacrifices.65 Consequently, the sixth commandment cannot be used to support the practice of vegetarianism nor can it be

  3. Vertebrate road kill survey on a highway in southern Brazil

    Directory of Open Access Journals (Sweden)

    Luiz Liberato Costa Corrêa

    2017-06-01

    Full Text Available Highways are a major factor acting in the decline of several wildlife populations. Impact occurs due to the continuous flow of motor vehicles over tracks and collision with animals using the same area. This study aimed to list road killed wild vertebrates found in highways in the Pampa Biome, state of Rio Grande do Sul, over an entire year. The taxa found (amphibians, reptiles, birds and mammals were identified to species level and their frequency of occurrence was seasonally registered. Along 2,160 km, we found 318 road killed individuals, totaling 65 species. This number represents an average of 0.147 road killed specimens by kilometer (that is, 1 individual each 7 km. Of these, seven species are under threat of extinction in the state of Rio Grande do Sul. We also found a seasonal pattern among road kills, in which the highest number of road killed animals was registered in the summer and spring months. These results contribute to increase knowledge about which species are most impacted by road kill on highways of the Pampa Biome. Such data can be used as an indicator for the implementation of measures by competent bodies to mitigate impacts of highways in the state of Rio Grande do Sul.

  4. Colistin-Tobramycin Combinations Are Superior to Monotherapy Concerning the Killing of Biofilm Pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    Herrmann, G.; Yang, Liang; Wu, H.

    2010-01-01

    Background. Antibiotic combination therapy might be more efficient than single antibiotics to combat Pseudomonas aeruginosa biofilms in the airways of patients with cystic fibrosis. We tested the ability of colistin sulphatetobramycin combinations and single antibiotics to kill P. aeruginosa...... biofilms. Methods. P. aeruginosa biofilms were generated in vitro and in rat lungs. In a pilot study, 5 patients with cystic fibrosis inhaled colistin and then tobramycin for 4 weeks. The changes in P. aeruginosa counts and lung function were assessed before and after therapy. Results. Antibiotic...... combination therapy significantly reduced the number of P. aeruginosa cells in P. aeruginosa biofilm models in vitro. When rats were challenged with 1 x 10(7) cfu of P. aeruginosa, which was embedded in alginate beads, mortality rates, lung pathologic findings, and bacterial colony-forming unit counts were...

  5. Karr’s Kill Cult: Virtual Cults and Pseudo-Killing in the Digital Age

    Directory of Open Access Journals (Sweden)

    Jeremy Biles

    2012-03-01

    Full Text Available Most readers will recall the 1996 tragedy in which six-year-old beauty-pageant princess JonBenét Ramsey was found bound, gagged, and strangled in the basement of her parents’ home, inciting an orgy of media coverage. What readers may not know is that John Mark Karr—the imminently creepy individual who falsely confessed to the killing, and whose sordid past includes an arrest for possession of child pornography—has continued to make news as an alleged cyberstalker and would-be cult leader. This article claims that whereas a real serial killer is compelled to murder again and again with different victims, Karr is compelled to repeat the singular murder of JonBenét Ramsey the only way he can—in a virtual reality constituted by writing.

  6. Antibacterial Surface Design of Titanium-Based Biomaterials for Enhanced Bacteria-Killing and Cell-Assisting Functions Against Periprosthetic Joint Infection.

    Science.gov (United States)

    Wang, Jiaxing; Li, Jinhua; Qian, Shi; Guo, Geyong; Wang, Qiaojie; Tang, Jin; Shen, Hao; Liu, Xuanyong; Zhang, Xianlong; Chu, Paul K

    2016-05-04

    Periprosthetic joint infection (PJI) is one of the formidable and recalcitrant complications after orthopedic surgery, and inhibiting biofilm formation on the implant surface is considered crucial to prophylaxis of PJI. However, it has recently been demonstrated that free-floating biofilm-like aggregates in the local body fluid and bacterial colonization on the implant and peri-implant tissues can coexist and are involved in the pathogenesis of PJI. An effective surface with both contact-killing and release-killing antimicrobial capabilities can potentially abate these concerns and minimize PJI caused by adherent/planktonic bacteria. Herein, Ag nanoparticles (NPs) are embedded in titania (TiO2) nanotubes by anodic oxidation and plasma immersion ion implantation (PIII) to form a contact-killing surface. Vancomycin is then incorporated into the nanotubes by vacuum extraction and lyophilization to produce the release-killing effect. A novel clinical PJI model system involving both in vitro and in vivo use of methicillin-resistant Staphylococcus aureus (MRSA) ST239 is established to systematically evaluate the antibacterial properties of the hybrid surface against planktonic and sessile bacteria. The vancomycin-loaded and Ag-implanted TiO2 nanotubular surface exhibits excellent antimicrobial and antibiofilm effects against planktonic/adherent bacteria without appreciable silver ion release. The fibroblasts/bacteria cocultures reveal that the surface can help fibroblasts to combat bacteria. We first utilize the nanoarchitecture of implant surface as a bridge between the inorganic bactericide (Ag NPs) and organic antibacterial agent (vancomycin) to achieve total victory in the battle of PJI. The combination of contact-killing and release-killing together with cell-assisting function also provides a novel and effective strategy to mitigate bacterial infection and biofilm formation on biomaterials and has large potential in orthopedic applications.

  7. Collective decisions among bacterial viruses

    Science.gov (United States)

    Joh, Richard; Mileyko, Yuriy; Voit, Eberhard; Weitz, Joshua

    2010-03-01

    For many temperate bacteriophages, the decision of whether to kill hosts or enter a latent state depends on the multiplicity of infection. In this talk, I present a quantitative model of gene regulatory dynamics to describe how phages make collective decisions within host cells. Unlike most previous studies, the copy number of viral genomes is treated as a variable. In the absence of feedback loops, viral mRNA transcription is expected to be proportional to the viral copy number. However, when there are nonlinear feedback loops in viral gene regulation, our model shows that gene expression patterns are sensitive to changes in viral copy number and there can be a domain of copy number where the system becomes bistable. Hence, the viral copy number is a key control parameter determining host cell fates. This suggests that bacterial viruses can respond adaptively to changes in population dynamics, and can make alternative decisions as a bet-hedging strategy. Finally, I present a stochastic version of viral gene regulation and discuss speed-accuracy trade-offs in the context of cell fate determination by viruses.

  8. The benefits of soluble non-bacterial fraction of kefir on blood pressure and cardiac hypertrophy in hypertensive rats are mediated by an increase in baroreflex sensitivity and decrease in angiotensin-converting enzyme activity.

    Science.gov (United States)

    Brasil, Girlandia Alexandre; Silva-Cutini, Mirian de Almeida; Moraes, Flávia de Souza Andrade; Pereira, Thiago de Melo Costa; Vasquez, Elisardo Corral; Lenz, Dominik; Bissoli, Nazaré Souza; Endringer, Denise Coutinho; de Lima, Ewelyne Miranda; Biancardi, Vinícia Campana; Maia, June Ferreira; de Andrade, Tadeu Uggere

    We aimed to evaluate whether long-term treatment with the soluble non-bacterial fraction of kefir affects mean arterial pressure (MAP) and cardiac hypertrophy through the modulation of baroreflex sensitivity, ACE activity, and the inflammatory-to-anti-inflammatory cytokine ratio in spontaneously hypertensive rats (SHRs). SHRs were treated with the soluble non-bacterial kefir fraction (SHR-kefir) or with kefir vehicle (SHR-soluble fraction of milk). Normotensive control Wistar Kyoto animals received the soluble fraction of milk. All treatments were administered by gavage (0.3 mL/100g/body weight), once daily for eight weeks. At the end, after basal MAP and Heart Rate (HT) measurement, barorreflex sensitivity was evaluated through in bolus administrations of sodium nitroprusside and phenylephrine (AP 50 [arterial pressure 50%], the lower plateau, and HR range were measured). ACE activity and cytokines (TNF-α and IL-10) were evaluated by ELISA. Cardiac hypertrophy was analysed morphometrically. Compared to SHR control, SHR-kefir exhibited a significant decrease in both MAP (SHR: 184 ± 5; SHR-Kefir: 142 ± 8 mmHg), and HR (SHR: 360 ± 10; SHR-kefir: 310 ± 14 bpm). The non-bacterial fraction of kefir also reduced cardiac hypertrophy, TNF-α-to-IL10 ratio, and ACE activity in SHRs. SHR-kefir baroreflex sensitivity, resulted in a partial but significant recovery of baroreflex gain, as demonstrated by improvements in AP 50 , the lower plateau, and HR range. In summary, our results indicate that long-term administration of the non-bacterial fraction of kefir promotes a significant decrease in both MAP and HR, by improving baroreflex, and reduces cardiac hypertrophy in SHRs, likely via ACE inhibition, and reduction of the TNF-α-to-IL10 ratio. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Measurement of bacterial capture and phagosome maturation of Kupffer cells by intravital microscopy

    NARCIS (Netherlands)

    Surewaard, Bas G.J.; Kubes, Paul

    2017-01-01

    It is central to the field of bacterial pathogenesis to define how bacteria are killed by phagocytic cells. During phagocytosis, the microbe is localized to the phagolysosome where crucial defense mechanisms such as acidification and production of reactive oxygen species (ROS) are initiated. This

  10. Depletion of dendritic cells enhances innate anti-bacterial host defense through modulation of phagocyte homeostasis.

    Directory of Open Access Journals (Sweden)

    Stella E Autenrieth

    2012-02-01

    Full Text Available Dendritic cells (DCs as professional antigen-presenting cells play an important role in the initiation and modulation of the adaptive immune response. However, their role in the innate immune response against bacterial infections is not completely defined. Here we have analyzed the role of DCs and their impact on the innate anti-bacterial host defense in an experimental infection model of Yersinia enterocolitica (Ye. We used CD11c-diphtheria toxin (DT mice to deplete DCs prior to severe infection with Ye. DC depletion significantly increased animal survival after Ye infection. The bacterial load in the spleen of DC-depleted mice was significantly lower than that of control mice throughout the infection. DC depletion was accompanied by an increase in the serum levels of CXCL1, G-CSF, IL-1α, and CCL2 and an increase in the numbers of splenic phagocytes. Functionally, splenocytes from DC-depleted mice exhibited an increased bacterial killing capacity compared to splenocytes from control mice. Cellular studies further showed that this was due to an increased production of reactive oxygen species (ROS by neutrophils. Adoptive transfer of neutrophils from DC-depleted mice into control mice prior to Ye infection reduced the bacterial load to the level of Ye-infected DC-depleted mice, suggesting that the increased number of phagocytes with additional ROS production account for the decreased bacterial load. Furthermore, after incubation with serum from DC-depleted mice splenocytes from control mice increased their bacterial killing capacity, most likely due to enhanced ROS production by neutrophils, indicating that serum factors from DC-depleted mice account for this effect. In summary, we could show that DC depletion triggers phagocyte accumulation in the spleen and enhances their anti-bacterial killing capacity upon bacterial infection.

  11. Patterning bacterial communities on epithelial cells.

    Directory of Open Access Journals (Sweden)

    Mohammed Dwidar

    Full Text Available Micropatterning of bacteria using aqueous two phase system (ATPS enables the localized culture and formation of physically separated bacterial communities on human epithelial cell sheets. This method was used to compare the effects of Escherichia coli strain MG1655 and an isogenic invasive counterpart that expresses the invasin (inv gene from Yersinia pseudotuberculosis on the underlying epithelial cell layer. Large portions of the cell layer beneath the invasive strain were killed or detached while the non-invasive E. coli had no apparent effect on the epithelial cell layer over a 24 h observation period. In addition, simultaneous testing of the localized effects of three different bacterial species; E. coli MG1655, Shigella boydii KACC 10792 and Pseudomonas sp DSM 50906 on an epithelial cell layer is also demonstrated. The paper further shows the ability to use a bacterial predator, Bdellovibriobacteriovorus HD 100, to selectively remove the E. coli, S. boydii and P. sp communities from this bacteria-patterned epithelial cell layer. Importantly, predation and removal of the P. Sp was critical for maintaining viability of the underlying epithelial cells. Although this paper focuses on a few specific cell types, the technique should be broadly applicable to understand a variety of bacteria-epithelial cell interactions.

  12. Neutrophils kill the parasite Trichomonas vaginalis using trogocytosis

    Science.gov (United States)

    Mercer, Frances; Ng, Shek Hang; Brown, Taylor M.; Boatman, Grace; Johnson, Patricia J.

    2018-01-01

    T. vaginalis, a human-infective parasite, causes the most common nonviral sexually transmitted infection (STI) worldwide and contributes to adverse inflammatory disorders. The immune response to T. vaginalis is poorly understood. Neutrophils (polymorphonuclear cells [PMNs]) are the major immune cell present at the T. vaginalis–host interface and are thought to clear T. vaginalis. However, the mechanism of PMN clearance of T. vaginalis has not been characterized. We demonstrate that human PMNs rapidly kill T. vaginalis in a dose-dependent, contact-dependent, and neutrophil extracellular trap (NET)-independent manner. In contrast to phagocytosis, we observed that PMN killing of T. vaginalis involves taking “bites” of T. vaginalis prior to parasite death, using trogocytosis to achieve pathogen killing. Both trogocytosis and parasite killing are dependent on the presence of PMN serine proteases and human serum factors. Our analyses provide the first demonstration, to our knowledge, of a mammalian phagocyte using trogocytosis for pathogen clearance and reveal a novel mechanism used by PMNs to kill a large, highly motile target. PMID:29408891

  13. Structural equations for Killing tensors of order two. II

    International Nuclear Information System (INIS)

    Hauser, I.; Malhiot, R.J.

    1975-01-01

    In a preceding paper, a new form of the structural equations for any Killing tensor of order two have been derived; these equations constitute a system analogous to the Killing vector equations Nabla/sub alpha/ K/sub beta/ = ω/sub alpha beta/ = -ω/sub beta alpha/ and Nabla/sub gamma/ ω/sub alpha beta = R/sub alpha beta gamma delta/ K/sup delta/. The first integrability condition for the Killing tensor structural equations is now derived. The structural equations and the integrability condition have forms which can readily be expressed in terms of a null tetrad to furnish a Killing tensor parallel of the Newman--Penrose equations; this is briefly described. The integrability condition implies the new result, for any given space--time, that the dimension of the set of second-order Killing tensors attains its maximum possible value of 50 only if the space--time is of constant curvature. Potential applications of the structural equations are discussed

  14. Prairie dogs increase fitness by killing interspecific competitors.

    Science.gov (United States)

    Hoogland, John L; Brown, Charles R

    2016-03-30

    Interspecific competition commonly selects for divergence in ecology, morphology or physiology, but direct observation of interspecific competition under natural conditions is difficult. Herbivorous white-tailed prairie dogs (Cynomys leucurus) employ an unusual strategy to reduce interspecific competition: they kill, but do not consume, herbivorous Wyoming ground squirrels (Urocitellus elegans) encountered in the prairie dog territories. Results from a 6-year study in Colorado, USA, revealed that interspecific killing of ground squirrels by prairie dogs was common, involving 47 different killers; 19 prairie dogs were serial killers in the same or consecutive years, and 30% of female prairie dogs killed at least one ground squirrel over their lifetimes. Females that killed ground squirrels had significantly higher annual and lifetime fitness than non-killers, probably because of decreased interspecific competition for vegetation. Our results document the first case of interspecific killing of competing individuals unrelated to predation (IK) among herbivorous mammals in the wild, and show that IK enhances fitness for animals living under natural conditions. © 2016 The Author(s).

  15. Bacterial toxin-antitoxin systems: more than selfish entities?

    Science.gov (United States)

    Van Melderen, Laurence; Saavedra De Bast, Manuel

    2009-03-01

    Bacterial toxin-antitoxin (TA) systems are diverse and widespread in the prokaryotic kingdom. They are composed of closely linked genes encoding a stable toxin that can harm the host cell and its cognate labile antitoxin, which protects the host from the toxin's deleterious effect. TA systems are thought to invade bacterial genomes through horizontal gene transfer. Some TA systems might behave as selfish elements and favour their own maintenance at the expense of their host. As a consequence, they may contribute to the maintenance of plasmids or genomic islands, such as super-integrons, by post-segregational killing of the cell that loses these genes and so suffers the stable toxin's destructive effect. The function of the chromosomally encoded TA systems is less clear and still open to debate. This Review discusses current hypotheses regarding the biological roles of these evolutionarily successful small operons. We consider the various selective forces that could drive the maintenance of TA systems in bacterial genomes.

  16. Bacterial lung abscess

    International Nuclear Information System (INIS)

    Groskin, S.A.; Panicek, D.M.; Ewing, D.K.; Rivera, F.; Math, K.; Teixeira, J.; Heitzman, E.R.

    1987-01-01

    A retrospective review of patients with bacterial lung abscess was carried out. Demographic, clinical, and radiographical features of this patient group are compared with similar data from patients with empyema and/or cavitated lung carcinoma; differential diagnostic points are stressed. The entity of radiographically occult lung abscess is discussed. Complications associated with bacterial lung abscess are discussed. Current therapeutic options and treatment philosophy for patients with bacterial lung abscess are noted

  17. 77 FR 10960 - Security Zone, East River and Bronx Kill; Randalls and Wards Islands, NY

    Science.gov (United States)

    2012-02-24

    ...'' W (Port Morris Stacks), and all waters of the Bronx Kill southeast of the Bronx Kill Rail Road...-AA87 Security Zone, East River and Bronx Kill; Randalls and Wards Islands, NY AGENCY: Coast Guard, DHS... waters of the East River and Bronx Kill, in the vicinity of Randalls and Wards Islands, New York. This...

  18. Peritonitis - spontaneous bacterial

    Science.gov (United States)

    Spontaneous bacterial peritonitis (SBP); Ascites - peritonitis; Cirrhosis - peritonitis ... who are on peritoneal dialysis for kidney failure. Peritonitis may have other causes . These include infection from ...

  19. Metformin kills and radiosensitizes cancer cells and preferentially kills cancer stem cells

    Science.gov (United States)

    Song, Chang W.; Lee, Hyemi; Dings, Ruud P. M.; Williams, Brent; Powers, John; Santos, Troy Dos; Choi, Bo-Hwa; Park, Heon Joo

    2012-01-01

    The anti-cancer effects of metformin, the most widely used drug for type 2 diabetes, alone or in combination with ionizing radiation were studied with MCF-7 human breast cancer cells and FSaII mouse fibrosarcoma cells. Clinically achievable concentrations of metformin caused significant clonogenic death in cancer cells. Importantly, metformin was preferentially cytotoxic to cancer stem cells relative to non-cancer stem cells. Metformin increased the radiosensitivity of cancer cells in vitro, and significantly enhanced the radiation-induced growth delay of FSaII tumors (s.c.) in the legs of C3H mice. Both metformin and ionizing radiation activated AMPK leading to inactivation of mTOR and suppression of its downstream effectors such as S6K1 and 4EBP1, a crucial signaling pathway for proliferation and survival of cancer cells, in vitro as well as in the in vivo tumors. Conclusion: Metformin kills and radiosensitizes cancer cells and eradicates radioresistant cancer stem cells by activating AMPK and suppressing mTOR. PMID:22500211

  20. Inflatable kill packers used in working over Kuwaiti wells

    Energy Technology Data Exchange (ETDEWEB)

    Miller, D. (Baker Oil Tools, Houston, TX (US)); Conover, G. (Baker Service Tools, Houston, TX (US))

    1992-03-09

    This paper reports on inflatable packers which are being used with great success in post-well capping workover operations in Kuwait oil fields. In mid-January, about one kill packer was being run per day. Use is expected to increase in March when a second post-capping crew arrives. Of several thousand unconventional ideas submitted to Kuwait Oil Co. (KOC) for controlling the well fires left in the aftermath of lst year's Gulf War, only about a dozen were actually used. Inflatable kill packers, designed and manufactured by Baker Service Tools and marketed by Baker Oil Tools, were one of the ideas that proved effective. The kill packers are modifications of Baker's inflatable packers that have successfully been used in capping producers on many blowouts throughout the world, including the Piper Alpha disaster in the North Sea and the Saga blowout offshore Norway.

  1. γ-rays kill grasshopper primary spermatocytes in groups

    International Nuclear Information System (INIS)

    Al-Taweel, A.A.; Shawkit, M.A.; Fox, D.P.

    1985-01-01

    Primary spermatocyte killing by γ-rays was studied in the grasshopper Heteracris littoralis in which spermatogenic development occurs in cysts containing a maximum of 64 cells during the first meiotic division. Cell killing at this stage is not random and mainly involves the death of whole cysts. The dose-response curve for cell killing has complex kinetics with at least two components but lacks any shoulder at low doses, thus indicating no repair of the lethal damage. Cell loss is apparent from surviving cysts as early as 45 min post irradiation but loss of > 24 cells is incompatible with cyst survival. Loss of fewer than 24 cells also is not random since certain values for cell loss are frequently observed while other, interspersed values are not seen at all. (Auth.)

  2. Supersymmetric backgrounds, the Killing superalgebra, and generalised special holonomy

    Energy Technology Data Exchange (ETDEWEB)

    Coimbra, André [Institut des Hautes Études Scientifiques, Le Bois-Marie,35 route de Chartres, F-91440 Bures-sur-Yvette (France); Strickland-Constable, Charles [Institut des Hautes Études Scientifiques, Le Bois-Marie,35 route de Chartres, F-91440 Bures-sur-Yvette (France); Institut de physique théorique, Université Paris Saclay, CEA, CNRS,Orme des Merisiers, F-91191 Gif-sur-Yvette (France)

    2016-11-10

    We prove that, for M theory or type II, generic Minkowski flux backgrounds preserving N supersymmetries in dimensions D≥4 correspond precisely to integrable generalised G{sub N} structures, where G{sub N} is the generalised structure group defined by the Killing spinors. In other words, they are the analogues of special holonomy manifolds in E{sub d(d)}×ℝ{sup +} generalised geometry. In establishing this result, we introduce the Kosmann-Dorfman bracket, a generalisation of Kosmann’s Lie derivative of spinors. This allows us to write down the internal sector of the Killing superalgebra, which takes a rather simple form and whose closure is the key step in proving the main result. In addition, we find that the eleven-dimensional Killing superalgebra of these backgrounds is necessarily the supertranslational part of the N-extended super-Poincaré algebra.

  3. On Discrete Killing Vector Fields and Patterns on Surfaces

    KAUST Repository

    Ben-Chen, Mirela

    2010-09-21

    Symmetry is one of the most important properties of a shape, unifying form and function. It encodes semantic information on one hand, and affects the shape\\'s aesthetic value on the other. Symmetry comes in many flavors, amongst the most interesting being intrinsic symmetry, which is defined only in terms of the intrinsic geometry of the shape. Continuous intrinsic symmetries can be represented using infinitesimal rigid transformations, which are given as tangent vector fields on the surface - known as Killing Vector Fields. As exact symmetries are quite rare, especially when considering noisy sampled surfaces, we propose a method for relaxing the exact symmetry constraint to allow for approximate symmetries and approximate Killing Vector Fields, and show how to discretize these concepts for generating such vector fields on a triangulated mesh. We discuss the properties of approximate Killing Vector Fields, and propose an application to utilize them for texture and geometry synthesis. Journal compilation © 2010 The Eurographics Association and Blackwell Publishing Ltd.

  4. Heat-Killed Lactobacillus salivarius and Lactobacillus johnsonii Reduce Liver Injury Induced by Alcohol In Vitro and In Vivo.

    Science.gov (United States)

    Chuang, Cheng-Hung; Tsai, Cheng-Chih; Lin, En-Shyh; Huang, Chin-Shiu; Lin, Yun-Yu; Lan, Chuan-Ching; Huang, Chun-Chih

    2016-10-31

    The aim of the present study was to determine whether Lactobacillus salivarius (LS) and Lactobacillus johnsonii (LJ) prevent alcoholic liver damage in HepG2 cells and rat models of acute alcohol exposure. In this study, heat-killed LS and LJ were screened from 50 Lactobacillus strains induced by 100 mM alcohol in HepG2 cells. The severity of alcoholic liver injury was determined by measuring the levels of aspartate transaminase (AST), alanine transaminase (ALT), gamma-glutamyl transferase (γ-GT), lipid peroxidation, triglyceride (TG) and total cholesterol. Our results indicated that heat-killed LS and LJ reduced AST, ALT, γ-GT and malondialdehyde (MDA) levels and outperformed other bacterial strains in cell line studies. We further evaluated these findings by administering these strains to rats. Only LS was able to reduce serum AST levels, which it did by 26.2%. In addition LS significantly inhibited serum TG levels by 39.2%. However, both strains were unable to inhibit ALT levels. In summary, we demonstrated that heat-killed LS and LJ possess hepatoprotective properties induced by alcohol both in vitro and in vivo.

  5. Heat-Killed Lactobacillus salivarius and Lactobacillus johnsonii Reduce Liver Injury Induced by Alcohol In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Cheng-Hung Chuang

    2016-10-01

    Full Text Available The aim of the present study was to determine whether Lactobacillus salivarius (LS and Lactobacillus johnsonii (LJ prevent alcoholic liver damage in HepG2 cells and rat models of acute alcohol exposure. In this study, heat-killed LS and LJ were screened from 50 Lactobacillus strains induced by 100 mM alcohol in HepG2 cells. The severity of alcoholic liver injury was determined by measuring the levels of aspartate transaminase (AST, alanine transaminase (ALT, gamma-glutamyl transferase (γ-GT, lipid peroxidation, triglyceride (TG and total cholesterol. Our results indicated that heat-killed LS and LJ reduced AST, ALT, γ-GT and malondialdehyde (MDA levels and outperformed other bacterial strains in cell line studies. We further evaluated these findings by administering these strains to rats. Only LS was able to reduce serum AST levels, which it did by 26.2%. In addition LS significantly inhibited serum TG levels by 39.2%. However, both strains were unable to inhibit ALT levels. In summary, we demonstrated that heat-killed LS and LJ possess hepatoprotective properties induced by alcohol both in vitro and in vivo.

  6. Functional drug screening reveals anticonvulsants as enhancers of mTOR-independent autophagic killing of Mycobacterium tuberculosis through inositol depletion.

    Science.gov (United States)

    Schiebler, Mark; Brown, Karen; Hegyi, Krisztina; Newton, Sandra M; Renna, Maurizio; Hepburn, Lucy; Klapholz, Catherine; Coulter, Sarah; Obregón-Henao, Andres; Henao Tamayo, Marcela; Basaraba, Randall; Kampmann, Beate; Henry, Katherine M; Burgon, Joseph; Renshaw, Stephen A; Fleming, Angeleen; Kay, Robert R; Anderson, Karen E; Hawkins, Phillip T; Ordway, Diane J; Rubinsztein, David C; Floto, Rodrigo Andres

    2015-02-01

    Mycobacterium tuberculosis (MTB) remains a major challenge to global health made worse by the spread of multidrug resistance. We therefore examined whether stimulating intracellular killing of mycobacteria through pharmacological enhancement of macroautophagy might provide a novel therapeutic strategy. Despite the resistance of MTB to killing by basal autophagy, cell-based screening of FDA-approved drugs revealed two anticonvulsants, carbamazepine and valproic acid, that were able to stimulate autophagic killing of intracellular M. tuberculosis within primary human macrophages at concentrations achievable in humans. Using a zebrafish model, we show that carbamazepine can stimulate autophagy in vivo and enhance clearance of M. marinum, while in mice infected with a highly virulent multidrug-resistant MTB strain, carbamazepine treatment reduced bacterial burden, improved lung pathology and stimulated adaptive immunity. We show that carbamazepine induces antimicrobial autophagy through a novel, evolutionarily conserved, mTOR-independent pathway controlled by cellular depletion of myo-inositol. While strain-specific differences in susceptibility to in vivo carbamazepine treatment may exist, autophagy enhancement by repurposed drugs provides an easily implementable potential therapy for the treatment of multidrug-resistant mycobacterial infection. © 2014 The Authors. Published under the terms of the CC BY 4.0 license.

  7. Role of copper oxides in contact killing of bacteria.

    Science.gov (United States)

    Hans, Michael; Erbe, Andreas; Mathews, Salima; Chen, Ying; Solioz, Marc; Mücklich, Frank

    2013-12-31

    The potential of metallic copper as an intrinsically antibacterial material is gaining increasing attention in the face of growing antibiotics resistance of bacteria. However, the mechanism of the so-called "contact killing" of bacteria by copper surfaces is poorly understood and requires further investigation. In particular, the influences of bacteria-metal interaction, media composition, and copper surface chemistry on contact killing are not fully understood. In this study, copper oxide formation on copper during standard antimicrobial testing was measured in situ by spectroscopic ellipsometry. In parallel, contact killing under these conditions was assessed with bacteria in phosphate buffered saline (PBS) or Tris-Cl. For comparison, defined Cu2O and CuO layers were thermally generated and characterized by grazing incidence X-ray diffraction. The antibacterial properties of these copper oxides were tested under the conditions used above. Finally, copper ion release was recorded for both buffer systems by inductively coupled plasma atomic absorption spectroscopy, and exposed copper samples were analyzed for topographical surface alterations. It was found that there was a fairly even growth of CuO under wet plating conditions, reaching 4-10 nm in 300 min, but no measurable Cu2O was formed during this time. CuO was found to significantly inhibit contact killing, compared to pure copper. In contrast, thermally generated Cu2O was essentially as effective in contact killing as pure copper. Copper ion release from the different surfaces roughly correlated with their antibacterial efficacy and was highest for pure copper, followed by Cu2O and CuO. Tris-Cl induced a 10-50-fold faster copper ion release compared to PBS. Since the Cu2O that primarily forms on copper under ambient conditions is as active in contact killing as pure copper, antimicrobial objects will retain their antimicrobial properties even after oxide formation.

  8. Single-hit mechanism of tumour cell killing by radiation.

    Science.gov (United States)

    Chapman, J D

    2003-02-01

    To review the relative importance of the single-hit mechanism of radiation killing for tumour response to 1.8-2.0 Gy day(-1) fractions and to low dose-rate brachytherapy. Tumour cell killing by ionizing radiation is well described by the linear-quadratic equation that contains two independent components distinguished by dose kinetics. Analyses of tumour cell survival curves that contain six or more dose points usually provide good estimates of the alpha- and beta-inactivation coefficients. Superior estimates of tumour cell intrinsic radiosensitivity are obtained when synchronized populations are employed. The characteristics of single-hit inactivation of tumour cells are reviewed and compared with the characteristics of beta-inactivation. Potential molecular targets associated with single-hit inactivation are discussed along with strategies for potentiating cell killing by this mechanism. The single-hit mechanism of tumour cell killing shows no dependence on dose-rate and, consequently, no evidence of sublethal damage repair. It is uniquely potentiated by high linear-energy-transfer radiation, exhibits a smaller oxygen enhancement ratio and exhibits a larger indirect effect by hydroxyl radicals than the beta-mechanism. alpha-inactivation coefficients vary slightly throughout interphase but mitotic cells exhibit extremely high alpha-coefficients in the range of those observed for lymphocytes and some repair-deficient cells. Evidence is accumulating to suggest that chromatin in compacted form could be a radiation-hypersensitive target associated with single-hit radiation killing. Analyses of tumour cell survival curves demonstrate that it is the single-hit mechanism (alpha) that determines the majority of cell killing after doses of 2Gy and that this mechanism is highly variable between tumour cell lines. The characteristics of single-hit inactivation are qualitatively and quantitatively distinct from those of beta-inactivation. Compacted chromatin in tumour cells

  9. Intercultural Mediation

    OpenAIRE

    Dragos Marian Radulescu; Denisa Mitrut

    2012-01-01

    The Intercultural Mediator facilitates exchanges between people of different socio-cultural backgrounds and acts as a bridge between immigrants and national and local associations, health organizations, services and offices in order to foster integration of every single individual. As the use mediation increases, mediators are more likely to be involved in cross-cultural mediation, but only the best mediators have the opportunity to mediate cross border business disputes or international poli...

  10. It?s Not Just Conflict That Motivates Killing of Orangutans

    OpenAIRE

    Davis, Jacqueline T.; Mengersen, Kerrie; Abram, Nicola K.; Ancrenaz, Marc; Wells, Jessie A.; Meijaard, Erik

    2013-01-01

    We investigated why orangutans are being killed in Kalimantan, Indonesia, and the role of conflict in these killings. Based on an analysis of interview data from over 5,000 respondents in over 450 villages, we also assessed the socio-ecological factors associated with conflict and non-conflict killings. Most respondents never kill orangutans. Those who reported having personally killed an orangutan primarily did so for non-conflict reasons; for example, 56% of these respondents said that the ...

  11. Traffics and wildlife: A preliminary study on road-kill

    OpenAIRE

    Rustiati, Elly Lestari

    2012-01-01

    This paper presents the preliminary finding on road kill survey by direct observations onthe high ways. The road-kills recorded of small wildlife, including medium size-mammal (2.50%, n =1), birds (5.00%, n = 2) and small mammals (92.50%, n = 37). The small mammals include the mostcommon mammals in the areas, squirrels, raccoons, skunks and woodchuck. Of mammals, squirrels(35.00%) were the highest recorded, followed by woodchucks (25.00%), mice/shrew (17.50%),raccoons (10.00%), skunk (5.00%) ...

  12. Perturbative stability of the approximate Killing field eigenvalue problem

    International Nuclear Information System (INIS)

    Beetle, Christopher; Wilder, Shawn

    2014-01-01

    An approximate Killing field may be defined on a compact, Riemannian geometry by solving an eigenvalue problem for a certain elliptic operator. This paper studies the effect of small perturbations in the Riemannian metric on the resulting vector field. It shows that small metric perturbations, as measured using a Sobolev-type supremum norm on the space of Riemannian geometries on a fixed manifold, yield small perturbations in the approximate Killing field, as measured using a Hilbert-type square integral norm. It also discusses applications to the problem of computing the spin of a generic black hole in general relativity. (paper)

  13. A radiolabel release microassay for phagocytic killing of Candida albicans

    International Nuclear Information System (INIS)

    Bistoni, F.; Baccarini, M.; Blasi, E.; Marconi, P.; Puccetti, P.

    1982-01-01

    The chromium-51 release technique for quantifying intracellular killing of radiolabelled Candida albicans particles was exploited in a microassay in which murine and human phagocytes acted as effectors under peculiarly simple conditions. At appropriate effector: target ratios and with a 4 h incubation, up to 50% specific chromium release could be detected in the supernatant with no need for opsonization or lysis of phagocytes. This simple microassay permits easy-to-perform, simultaneous testing of a variety of different phagocytes even if only available in limited amounts, and provides an objective measurement of intracellular killing of Candida albicans. (Auth.)

  14. Keberanian Dalam Novel to Kill a Mockingbird Karya Harper Lee

    OpenAIRE

    Tiolemba, Melissa

    2013-01-01

    The skripsi is entitled “Keberanian dalam Novel To Kill a Mockingbird by Harper Lee”. The objective of this research is to analyze the bravery as the main theme in the novel To Kill a Mockingbird. The data are collected by focusing on the character, plot and setting which describe about the main theme in the story. This research uses the theory of Stanton (1965) in analyzing the data. The writer uses descriptive method intrinsically. Intrinsic approach is to examine the elements within the no...

  15. Estimation in Discretely Observed Diffusions Killed at a Threshold

    DEFF Research Database (Denmark)

    Bibbona, Enrico; Ditlevsen, Susanne

    2013-01-01

    are modelled as discretely observed diffusions which are killed when the threshold is reached. Statistical inference is often based on a misspecified likelihood ignoring the presence of the threshold causing severe bias, e.g. the bias incurred in the drift parameters of the Ornstein–Uhlenbeck model...... for biological relevant parameters can be up to 25–100 per cent. We compute or approximate the likelihood function of the killed process. When estimating from a single trajectory, considerable bias may still be present, and the distribution of the estimates can be heavily skewed and with a huge variance...

  16. Hijacking Complement Regulatory Proteins for Bacterial Immune Evasion.

    Science.gov (United States)

    Hovingh, Elise S; van den Broek, Bryan; Jongerius, Ilse

    2016-01-01

    The human complement system plays an important role in the defense against invading pathogens, inflammation and homeostasis. Invading microbes, such as bacteria, directly activate the complement system resulting in the formation of chemoattractants and in effective labeling of the bacteria for phagocytosis. In addition, formation of the membrane attack complex is responsible for direct killing of Gram-negative bacteria. In turn, bacteria have evolved several ways to evade complement activation on their surface in order to be able to colonize and invade the human host. One important mechanism of bacterial escape is attraction of complement regulatory proteins to the microbial surface. These molecules are present in the human body for tight regulation of the complement system to prevent damage to host self-surfaces. Therefore, recruitment of complement regulatory proteins to the bacterial surface results in decreased complement activation on the microbial surface which favors bacterial survival. This review will discuss recent advances in understanding the binding of complement regulatory proteins to the bacterial surface at the molecular level. This includes, new insights that have become available concerning specific conserved motives on complement regulatory proteins that are favorable for microbial binding. Finally, complement evasion molecules are of high importance for vaccine development due to their dominant role in bacterial survival, high immunogenicity and homology as well as their presence on the bacterial surface. Here, the use of complement evasion molecules for vaccine development will be discussed.

  17. Characterization of a Staphylococcus aureus surface virulence factor that promotes resistance to oxidative killing and infectious endocarditis.

    Science.gov (United States)

    Malachowa, Natalia; Kohler, Petra L; Schlievert, Patrick M; Chuang, Olivia N; Dunny, Gary M; Kobayashi, Scott D; Miedzobrodzki, Jacek; Bohach, Gregory A; Seo, Keun Seok

    2011-01-01

    Staphylococcus aureus is a prominent human pathogen and a leading cause of community- and hospital-acquired bacterial infections worldwide. Herein, we describe the identification and characterization of the S. aureus 67.6-kDa hypothetical protein, named for the surface factor promoting resistance to oxidative killing (SOK) in this study. Sequence analysis showed that the SOK gene is conserved in all sequenced S. aureus strains and homologous to the myosin cross-reactive antigen of Streptococcus pyogenes. Immunoblotting and immunofluorescence analysis showed that SOK was copurified with membrane fractions and was exposed on the surface of S. aureus Newman and RN4220. Comparative analysis of wild-type S. aureus and an isogenic deletion strain indicated that SOK contributes to both resistance to killing by human neutrophils and to oxidative stress. In addition, the S. aureus sok deletion strain showed dramatically reduced aortic valve vegetation and bacterial cell number in a rabbit endocarditis model. These results, plus the suspected role of the streptococcal homologue in certain diseases such as acute rheumatic fever, suggest that SOK plays an important role in cardiovascular and other staphylococcal infections.

  18. Complex interactions of caffeine and its structural analogs with ultraviolet light in cell killing

    International Nuclear Information System (INIS)

    Chan, G.L.; Little, J.B.

    1981-01-01

    We measured the clonogenic survival response of cultured mouse 10 Tsup(1/2) cells exposed to UV light and caffeine post-treatment. When 0.5 and 1 mM caffeine were present for 24 h immediately following UV, the D 0 values of the biphasic survival curves suggest that one subpopulation was sensitized and one subpopulation was protected from killing by UV light. A cloned survivor from the radioprotected subpopulation responded to UV plus caffeine in identical manner as the parent cells. When the caffeine exposure was prolonged to 48 h, only the radiosensitizing effect was observed. Two demethylated analogs of caffeine were also tested. The response of 10 Tsup(1/2) cells to 1 mM theophylline present for 24 h after UV irradiation was approximately the same as that for the same treatment with 1 mM caffeine. However, prolonging the theophylline exposure to 48 h failed to produce the same kind of potentiation of cell killing as that observed for caffeine. Xanthine by itself was a toxic to 10 Tsup(1/2) cells as caffeine, but had no synergistic effect as caffeine when given to UV-irradiated cells for 24 or 48 h. It is therefore unlikely that all the effects of caffeine on UV-irradiated cells are mediated by its demethylated metabolites. (orig.)

  19. Prevention of bacterial adhesion

    DEFF Research Database (Denmark)

    Klemm, Per; Vejborg, Rebecca Munk; Hancock, Viktoria

    2010-01-01

    . As such, adhesion represents the Achilles heel of crucial pathogenic functions. It follows that interference with adhesion can reduce bacterial virulence. Here, we illustrate this important topic with examples of techniques being developed that can inhibit bacterial adhesion. Some of these will become...

  20. Cars kill chimpanzees: case report of a wild chimpanzee killed on a road at Bulindi, Uganda.

    Science.gov (United States)

    McLennan, Matthew R; Asiimwe, Caroline

    2016-07-01

    Roads have broadly adverse impacts on wildlife, including nonhuman primates. One direct effect is mortality from collisions with vehicles. While highly undesirable, roadkills provide valuable information on the health and condition of endangered species. We present a case report of a wild chimpanzee (Pan troglodytes schweinfurthii) killed crossing a road in Bulindi, Uganda, where chimpanzees inhabit forest fragments amid farmland. Details of the collision are constructed from eyewitness accounts of pedestrians. Physical examination of the cadaver indicated good overall body condition; at 40 kg, the deceased female was heavier than usual for an adult female East African chimpanzee. No external wounds or fractures were noted. Coprological assessment demonstrated infection by several gastrointestinal parasites commonly reported in living wild chimpanzees. Histopathology revealed eosinophilic enteritis and biliary hyperplasia potentially caused by parasite infection. However, eosinophilia was not widely spread into the submucosa, while egg/cyst counts suggested low-intensity parasite infections compared to healthy female chimpanzees of similar age in nearby Budongo Forest. No behavioral indicators of ill health were noted in the deceased female in the month prior to the accident. We conclude that cause of death was acute, i.e., shock from the collision, and was probably unrelated to parasite infection or any other underlying health condition. Notably, this female had asymmetrical polythelia, and, while nursing at the time of her death, had one functioning mammary gland only. In Uganda, where primates often inhabit human-dominated landscapes, human population growth and economic development has given rise to increasing motor traffic, while road development is enabling motorists to travel at greater speeds. Thus, the danger of roads to apes and other wildlife is rising, necessitating urgent strategies to reduce risks. Installation of simple speed-bumps-common on Ugandan

  1. Green-fuel-mediated synthesis of self-assembled NiO nano-sticks for dual applications—photocatalytic activity on Rose Bengal dye and antimicrobial action on bacterial strains

    Science.gov (United States)

    Iyyappa Rajan, P.; Vijaya, J. Judith; Jesudoss, S. K.; Kaviyarasu, K.; Kennedy, L. John; Jothiramalingam, R.; Al-Lohedan, Hamad A.; Vaali-Mohammed, Mansoor-Ali

    2017-08-01

    With aim of promoting the employability of green fuels in the synthesis of nano-scaled materials with new kinds of morphologies for multiple applications, successful synthesis of self-assembled NiO nano-sticks was achieved through a 100% green-fuel-mediated hot-plate combustion reaction. The synthesized NiO nano-sticks show excellent photocatalytic activity on Rose Bengal dye and superior antibacterial potential towards both Gram-positive and Gram-negative bacteria.

  2. IgM-mediated opsonization and cytotoxicity in the shark.

    Science.gov (United States)

    McKinney, E C; Flajnik, M F

    1997-02-01

    Two types of cytotoxic reactions have been observed using cells from the nurse shark: spontaneous cytotoxicity mediated by cells of the macrophage lineage and antibody-dependent killing carried out by a different effector cell population. Previous data showed that removal of phagocytic cells using iron particles abolished macrophage-mediated killing, but not antibody-dependent reactions. The current study used single cell assays and showed that the effector of antibody-driven reactions was the neutrophil. Surprisingly, the mechanism of killing was shown to be phagocytosis mediated by both 7S and 19S immunoglobulin M (IgM). Reactions proceeded with as little as 0.01 microg of purified 19S or 7S IgM and were complete within 4-6 h. In contrast, purified immunoglobulin did not adsorb to macrophages and had no effect on target cell binding or cytotoxicity. Pretreatment of cells with cytochalasin D abolished the phagocytic reaction, but not spontaneous cytotoxicity. These data show that antibody-mediated killing results from opsonization and phagocytosis; the mechanism of macrophage killing is currently unknown. In addition, these data show that the shark neutrophil, not the macrophage lineage, carries a receptor for Fc mu.

  3. Autoproteolytic Activation of Bacterial Toxins

    Directory of Open Access Journals (Sweden)

    Aimee Shen

    2010-05-01

    Full Text Available Protease domains within toxins typically act as the primary effector domain within target cells. By contrast, the primary function of the cysteine protease domain (CPD in Multifunctional Autoprocessing RTX-like (MARTX and Clostridium sp. glucosylating toxin families is to proteolytically cleave the toxin and release its cognate effector domains. The CPD becomes activated upon binding to the eukaryotic-specific small molecule, inositol hexakisphosphate (InsP6, which is found abundantly in the eukaryotic cytosol. This property allows the CPD to spatially and temporally regulate toxin activation, making it a prime candidate for developing anti-toxin therapeutics. In this review, we summarize recent findings related to defining the regulation of toxin function by the CPD and the development of inhibitors to prevent CPD-mediated activation of bacterial toxins.

  4. IIB solutions with N>28 Killing spinors are maximally supersymmetric

    International Nuclear Information System (INIS)

    Gran, U.; Gutowski, J.; Papadopoulos, G.; Roest, D.

    2007-01-01

    We show that all IIB supergravity backgrounds which admit more than 28 Killing spinors are maximally supersymmetric. In particular, we find that for all N>28 backgrounds the supercovariant curvature vanishes, and that the quotients of maximally supersymmetric backgrounds either preserve all 32 or N<29 supersymmetries

  5. Denaturation of membrane proteins and hyperthermic cell killing

    NARCIS (Netherlands)

    Burgman, Paulus Wilhelmus Johannes Jozef

    1993-01-01

    Summarizing: heat induced denaturation of membrane proteins is probably related to hyperthermic cell killing. Induced resistance of heat sensitive proteins seems to be involved in the development of thermotolerance. Although many questions remain still to be answered, it appears that HSP72, when

  6. Self-dual metrics with self-dual Killing vectors

    International Nuclear Information System (INIS)

    Tod, K.P.; Ward, R.S.

    1979-01-01

    Twistor methods are used to derive a class of solutions to Einstein's vacuum equations, with anti-self dual Weyl tensor. In particular, all metrics with a Killing vector whose derivative is anti-self-dual and which admit a real positive-definite section are exhibited and shown to coincide with the metrics of Hawking. (author)

  7. Prevent Tipping Furniture from Injuring or Killing Young Children

    Science.gov (United States)

    ... more upsetting than the sudden death of a child — killed by a piece of a furniture, appliance or a television falling on them. “It can happen in a ... be secured. Check with home improvement stores or child retail stores and ask experts what they ... television and computer equipment low to the ground. Do ...

  8. Kill Shakespeare – This Bard contains graphic language!

    Directory of Open Access Journals (Sweden)

    Mauro Gentile

    2017-11-01

    Full Text Available Today, adapting Shakespearean plays into comic books or graphic novels appears to be a well-established literary practice in contemporary storytelling. One of the most interesting examples is ÒKill ShakespeareÓ, a graphic novel written by Anthony Del Col and Conor McCreery and illustrated by Andy Belanger. In ÒKill ShakespeareÓ, the authors abandon the idea of adapting a single play to create a Shakespearian mashup in which Hamlet and Juliet fight such villains as Richard III and Lady Macbeth who try to kill a wizard named William Shakespeare.This is the premise for a compelling narration that intertwines various elements of the Shakespearean tradition and attempts to convey an idea of Elizabethan language to contemporary readers. While the characters are familiar, the quest is wholly new and triggers a series of transformations in the narrative, turning upside down the well-established images of Hamlet, Juliet and Othello. Beside the intriguing depictions of the female characters, especially Lady Macbeth,whose image poses questions about the representation of women in comic books, one of the most fertile narrative elements in Kill Shakespeare is the actual presence of William Shakespeare as a character. In conclusion, Del Col and McCreery prove they know their Shakespeare, surprising readers with a fresh approach which, hopefully, will enlarge the Shakespearean audience.

  9. Efficacy of Killed Adjuvanted FMD Vaccine Developed with ...

    African Journals Online (AJOL)

    In this study the potency of killed Foot and Mouth Disease (FMD) vaccines serotypes SAT1 (Nig 1/98) and SAT 2 (Nig 2/97) virus isolates, formulated with montanide ISA 206 adjuvant was determined in guinea pigs and cattle by antibody assay using Complement Fixation and Serum Neutralization tests. The antibody titres ...

  10. What Is John Dewey Doing in "To Kill a Mockingbird"?

    Science.gov (United States)

    Frank, Jeff

    2015-01-01

    Harper Lee's novel "To Kill a Mockingbird" is taught in countless public schools and is beloved by many teachers and future teachers. Embedded within this novel--interestingly--is a strong criticism of an approach to education mockingly referred to as the "Dewey Decimal System." In this essay I explore Lee's criticism of…

  11. Developing a Critical Literacy Approach with "To Kill a Mockingbird."

    Science.gov (United States)

    Spires, Marian

    2000-01-01

    Ponders why the novel "To Kill a Mockingbird" has held a place in the secondary school canon for 40 years. Describes a 10-week unit for year 10 English students that takes a critical literacy approach to the novel. Outlines a set of pre-reading activities, during reading activities and post-reading activities. (SR)

  12. Suppression of mouse-killing in rats following irradiation

    International Nuclear Information System (INIS)

    O'Boyle, M.

    1976-01-01

    Suppression of mouse-killing was produced following pairings of mouse-presentations (CS) with 96 roentgens of ionizing radiation (US) at 0 (less than 2 min.) and 30 min. US-CS interstimulus intervals. No suppression was found at CS-US intervals of 30 min., 1 hr., and 2 hr., or at US-CS intervals of 1 hr. and 2 hr

  13. Fish Kill in the Philippines—Déjà Vu

    Directory of Open Access Journals (Sweden)

    Gil Jacinto

    2011-12-01

    Full Text Available Almost ten years ago today, the country woke up toscreaming headlines— “Massive Fish Kill inPangasinan” or something akin to that. The fish killphenomenon, familiar to fishers in freshwater andcoastal bodies of water where fish farming was beingpursued, was suddenly manifested at a scale that hadheretofore not been experienced.

  14. The algebra of Killing vectors in five-dimensional space

    International Nuclear Information System (INIS)

    Rcheulishvili, G.L.

    1990-01-01

    This paper presents algebras which are formed by the found earlier Killing vectors in the space with linear element ds. Under some conditions, an explicit dependence of r is given for the functions entering in linear element ds. The curvature two-forms are described. 7 refs

  15. Killing for Girls: Predation Play and Female Empowerment

    Science.gov (United States)

    Bertozzi, Elena

    2012-01-01

    Predation games--games in which the player is actively encouraged and often required to hunt and kill in order to survive--have historically been the purview of male players. Females, though now much more involved in digital games than before, generally play games that stress traditionally feminine values such as socializing with others, shopping,…

  16. Targeted killing with drones? Old arguments, new technologies

    Directory of Open Access Journals (Sweden)

    Meisels Tamar

    2018-01-01

    Full Text Available The question of how to contend with terrorism in keeping with our preexisting moral and legal commitments now challenges Europe as well as Israel and the United States: how do we apply Just War Theory and International Law to asymmetrical warfare, specifically to our counter terrorism measures? What can the classic moral argument in Just and Unjust Wars teach us about contemporary targeted killings with drones? I begin with a defense of targeted killing, arguing for the advantages of pin pointed attacks over any alternative measure available for combatting terrorism. Assuming the legitimacy of killing combatants in wartime, I argue, there is nothing wrong, and in fact much that is right, with targeting particular terrorists selected by name, as long as their assassinations can be reasonably expected to reduce terrorist hostilities rather than increase it. Subsequently, I offer some further thoughts and comments on the use of remotely piloted aircrafts to carry out targeted killings, and address the various sources for discomfort with this practice identified by Michael Walzer and others.

  17. Partner Killing by Men in Cohabiting and Marital Relationships

    Science.gov (United States)

    Shackelford, Todd K.; Mouzos, Jenny

    2005-01-01

    Using a national-level U.S. database, T. K. Shackelford (2001) calculated rates of uxoricide (the murder of a woman by her romantic partner) by relationship type (cohabiting or marital), by ages of the partners, and by the age difference between partners. Women in cohabiting relationships were 9 times more likely to be killed by their partner than…

  18. Nordic Noir on Television: The Killing I-III

    DEFF Research Database (Denmark)

    Agger, Gunhild

    2012-01-01

    The Nordic Noir has been applied by many countries as a slightly distorting mirror of tendencies in their own societies. On the background of its international appeal, the article analyses the prevalent genre of The Killing – the thriller – and relates it to the genres of crime fiction, political...

  19. Benzothiazinones kill Mycobacterium tuberculosis by blocking arabinan synthesis

    DEFF Research Database (Denmark)

    Makarov, Vadim; Manina, Giulia; Mikusova, Katarina

    2009-01-01

    New drugs are required to counter the tuberculosis (TB) pandemic. Here, we describe the synthesis and characterization of 1,3-benzothiazin-4-ones (BTZs), a new class of antimycobacterial agents that kill Mycobacterium tuberculosis in vitro, ex vivo, and in mouse models of TB. Using genetics...

  20. Illegal killing for ivory drives global decline in African elephants.

    Science.gov (United States)

    Wittemyer, George; Northrup, Joseph M; Blanc, Julian; Douglas-Hamilton, Iain; Omondi, Patrick; Burnham, Kenneth P

    2014-09-09

    Illegal wildlife trade has reached alarming levels globally, extirpating populations of commercially valuable species. As a driver of biodiversity loss, quantifying illegal harvest is essential for conservation and sociopolitical affairs but notoriously difficult. Here we combine field-based carcass monitoring with fine-scale demographic data from an intensively studied wild African elephant population in Samburu, Kenya, to partition mortality into natural and illegal causes. We then expand our analytical framework to model illegal killing rates and population trends of elephants at regional and continental scales using carcass data collected by a Convention on International Trade in Endangered Species program. At the intensively monitored site, illegal killing increased markedly after 2008 and was correlated strongly with the local black market ivory price and increased seizures of ivory destined for China. More broadly, results from application to continental data indicated illegal killing levels were unsustainable for the species between 2010 and 2012, peaking to ∼ 8% in 2011 which extrapolates to ∼ 40,000 elephants illegally killed and a probable species reduction of ∼ 3% that year. Preliminary data from 2013 indicate overharvesting continued. In contrast to the rest of Africa, our analysis corroborates that Central African forest elephants experienced decline throughout the last decade. These results provide the most comprehensive assessment of illegal ivory harvest to date and confirm that current ivory consumption is not sustainable. Further, our approach provides a powerful basis to determine cryptic mortality and gain understanding of the demography of at-risk species.

  1. [Killing effect of polymorphonuclear neutrophils on Trichomonas vaginalis].

    Science.gov (United States)

    Zhao, Jian-Ling; Gao, Xing-Zheng; Qu, Ming

    2008-10-30

    To study the killing effect of polymorphonuclear neutrophils (PMNs) on Trichomonas vaginalis. The vaginal secretion from a patient with vaginitis was incubated in the liver infusion liquid medium to get T. vaginalis. One ml serum was collected from the patient and heated for 30 min at 56 degrees C to inactivate complement in serum, and was absorbed three times with the parasites at 0 degree C to make the serum free of antibodies. PMNs were separated from the patient's blood and purified with density gradient centrifugation and polymer accelerating sedimentation. NBT and safranin O were used to stain the sample. The interaction between PMNs and the parasites was observed under microscope. 300 trichomonads and 3x10(4) PMNs were incubated for 10, 20, 30, 40, 50, 60 minutes under the conditions of aerobic or anaerobic, with superoxide dismutase (SOD) and catalase (CAT) or without SOD and CAT, and with complement or without complement. They were then inoculated in solid medium for another five days under the anaerobic condition, and surviving organisms were enumerated. PMNs were observed to surround and kill a single trichomonad. In the petri-dish containing PMNs, the surviving rate of the parasites in anaerobic condition was 85%, only 3% in aerobic condition (P<0.01). SOD and CAT reduced the killing effect of PMNs, with a surviving rate of 98% and 94% respectively after 60 min incubation. Without SOD and CAT, the surviving rate is only 2% (P<0.05). PMNs in the serum without antibodies killed all the parasites, while the complement-inactivated serum fail to kill them. The trichomonacidal activity of PMNs relies on the presence of oxygen and complement in the serum of patient.

  2. Trastuzumab triggers phagocytic killing of high HER2 cancer cells in vitro and in vivo by interaction with Fcγ receptors on macrophages.

    Science.gov (United States)

    Shi, Yun; Fan, Xuejun; Deng, Hui; Brezski, Randall J; Rycyzyn, Michael; Jordan, Robert E; Strohl, William R; Zou, Quanming; Zhang, Ningyan; An, Zhiqiang

    2015-05-01

    Trastuzumab has been used for the treatment of HER2-overexpressing breast cancer for more than a decade, but the mechanisms of action for the therapy are still being actively investigated. Ab-dependent cell-mediated cytotoxicity mediated by NK cells is well recognized as one of the key mechanisms of action for trastuzumab, but trastuzumab-mediated Ab-dependent cellular phagocytosis (ADCP) has not been established. In this study, we demonstrate that macrophages, by way of phagocytic engulfment, can mediate ADCP and cancer cell killing in the presence of trastuzumab. Increased infiltration of macrophages in the tumor tissue was associated with enhanced efficacy of trastuzumab whereas depletion of macrophages resulted in reduced antitumor efficacy in mouse xenograft tumor models. Among the four mouse FcγRs, FcγRIV exhibits the strongest binding affinity to trastuzumab. Knockdown of FcγRIV in mouse macrophages reduced cancer cell killing and ADCP activity triggered by trastuzumab. Consistently, an upregulation of FcγRIV expression by IFN-γ triggered an increased ADCP activity by trastuzumab. In an analogous fashion, IFN-γ priming of human macrophages increased the expression of FcγRIII, the ortholog of murine FcγRIV, and increased trastuzumab-mediated cancer cell killing. Thus, in two independent systems, the results indicated that activation of macrophages in combination with trastuzumab can serve as a therapeutic strategy for treating high HER2 breast cancer by boosting ADCP killing of cancer cells. Copyright © 2015 by The American Association of Immunologists, Inc.

  3. A new pharmacological agent (AKB-4924) stabilizes hypoxia inducible factor-1 (HIF-1) and increases skin innate defenses against bacterial infection.

    Science.gov (United States)

    Okumura, Cheryl Y M; Hollands, Andrew; Tran, Dan N; Olson, Joshua; Dahesh, Samira; von Köckritz-Blickwede, Maren; Thienphrapa, Wdee; Corle, Courtney; Jeung, Seung Nam; Kotsakis, Anna; Shalwitz, Robert A; Johnson, Randall S; Nizet, Victor

    2012-09-01

    Hypoxia inducible factor-1 (HIF-1) is a transcription factor that is a major regulator of energy homeostasis and cellular adaptation to low oxygen stress. HIF-1 is also activated in response to bacterial pathogens and supports the innate immune response of both phagocytes and keratinocytes. In this work, we show that a new pharmacological compound AKB-4924 increases HIF-1 levels and enhances the antibacterial activity of phagocytes and keratinocytes against both methicillin-sensitive and methicillin-resistant strains of Staphylococcus aureus in vitro. AKB-4924 is also effective in stimulating the killing capacity of keratinocytes against the important opportunistic skin pathogens Pseudomonas aeruginosa and Acinetobacter baumanii. The effect of AKB-4924 is mediated through the activity of host cells, as the compound exerts no direct antimicrobial activity. Administered locally as a single agent, AKB-4924 limits S. aureus proliferation and lesion formation in a mouse skin abscess model. This approach to pharmacologically boost the innate immune response via HIF-1 stabilization may serve as a useful adjunctive treatment for antibiotic-resistant bacterial infections.

  4. Bacterial membrane activity of a-peptide/b-peptoid chimeras: Influence of amino acid composition and chain length on the activity against different bacterial strains

    DEFF Research Database (Denmark)

    Hein-Kristensen, Line; Knapp, Kolja M; Franzyk, Henrik

    2011-01-01

    and subsequent killing is usually not tested. In this report, six α-peptide/β-peptoid chimeras were examined for the effect of amino acid/peptoid substitutions and chain length on the membrane perturbation and subsequent killing of food-borne and clinical bacterial isolates. RESULTS: All six AMP analogues...... acid only had a minor effect on MIC values, whereas chain length had a profound influence on activity. All chimeras were less active against Serratia marcescens (MICs above 46 μM). The chimeras were bactericidal and induced leakage of ATP from Staphylococcus aureus and S. marcescens with similar time...... of onset and reduction in the number of viable cells. EDTA pre-treatment of S. marcescens and E. coli followed by treatment with chimeras resulted in pronounced killing indicating that disintegration of the Gram-negative outer membrane eliminated innate differences in susceptibility. Chimera chain length...

  5. Trypanosoma brucei Co-opts NK Cells to Kill Splenic B2 B Cells.

    Directory of Open Access Journals (Sweden)

    Deborah Frenkel

    2016-07-01

    Full Text Available After infection with T. brucei AnTat 1.1, C57BL/6 mice lost splenic B2 B cells and lymphoid follicles, developed poor parasite-specific antibody responses, lost weight, became anemic and died with fulminating parasitemia within 35 days. In contrast, infected C57BL/6 mice lacking the cytotoxic granule pore-forming protein perforin (Prf1-/- retained splenic B2 B cells and lymphoid follicles, developed high-titer antibody responses against many trypanosome polypeptides, rapidly suppressed parasitemia and did not develop anemia or lose weight for at least 60 days. Several lines of evidence show that T. brucei infection-induced splenic B cell depletion results from natural killer (NK cell-mediated cytotoxicity: i B2 B cells were depleted from the spleens of infected intact, T cell deficient (TCR-/- and FcγRIIIa deficient (CD16-/- C57BL/6 mice excluding a requirement for T cells, NKT cell, or antibody-dependent cell-mediated cytotoxicity; ii administration of NK1.1 specific IgG2a (mAb PK136 but not irrelevant IgG2a (myeloma M9144 prevented infection-induced B cell depletion consistent with a requirement for NK cells; iii splenic NK cells but not T cells or NKT cells degranulated in infected C57BL/6 mice co-incident with B cell depletion evidenced by increased surface expression of CD107a; iv purified NK cells from naïve C57BL/6 mice killed purified splenic B cells from T. brucei infected but not uninfected mice in vitro indicating acquisition of an NK cell activating phenotype by the post-infection B cells; v adoptively transferred C57BL/6 NK cells prevented infection-induced B cell population growth in infected Prf1-/- mice consistent with in vivo B cell killing; vi degranulated NK cells in infected mice had altered gene and differentiation antigen expression and lost cytotoxic activity consistent with functional exhaustion, but increased in number as infection progressed indicating continued generation. We conclude that NK cells in T. brucei

  6. Broadening the future of value account of the wrongness of killing

    DEFF Research Database (Denmark)

    Di Nucci, Ezio

    2015-01-01

    On Don Marquis's future of value account of the wrongness of killing, 'what makes it wrong to kill those individuals we all believe it is wrong to kill, is that killing them deprives them of their future of value'. Marquis has recently argued for a narrow interpretation of his future of value...... account of the wrongness of killing and against the broad interpretation that I had put forward in response to Carson Strong. In this article I argue that the narrow view is problematic because it violates some basic principles of equality and because it allows for some of the very killing that Marquis...

  7. Killing of trypanosomatid parasites by a modified bovine host defense peptide, BMAP-18.

    Directory of Open Access Journals (Sweden)

    Lee R Haines

    Full Text Available BACKGROUND: Tropical diseases caused by parasites continue to cause socioeconomic devastation that reverberates worldwide. There is a growing need for new control measures for many of these diseases due to increasing drug resistance exhibited by the parasites and problems with drug toxicity. One new approach is to apply host defense peptides (HDP; formerly called antimicrobial peptides to disease control, either to treat infected hosts, or to prevent disease transmission by interfering with parasites in their insect vectors. A potent anti-parasite effector is bovine myeloid antimicrobial peptide-27 (BMAP-27, a member of the cathelicidin family. Although BMAP-27 is a potent inhibitor of microbial growth, at higher concentrations it also exhibits cytotoxicity to mammalian cells. We tested the anti-parasite activity of BMAP-18, a truncated peptide that lacks the hydrophobic C-terminal sequence of the BMAP-27 parent molecule, an alteration that confers reduced toxicity to mammalian cells. METHODOLOGY/PRINCIPAL FINDINGS: BMAP-18 showed strong growth inhibitory activity against several species and life cycle stages of African trypanosomes, fish trypanosomes and Leishmania parasites in vitro. When compared to native BMAP-27, the truncated BMAP-18 peptide showed reduced cytotoxicity on a wide variety of mammalian and insect cells and on Sodalis glossindius, a bacterial symbiont of the tsetse vector. The fluorescent stain rhodamine 123 was used in immunofluorescence microscopy and flow cytometry experiments to show that BMAP-18 at low concentrations rapidly disrupted mitochondrial potential without obvious alteration of parasite plasma membranes, thus inducing death by apoptosis. Scanning electron microscopy revealed that higher concentrations of BMAP-18 induced membrane lesions in the parasites as early as 15 minutes after exposure, thus killing them by necrosis. In addition to direct killing of parasites, BMAP-18 was shown to inhibit LPS

  8. Bacterial vaginosis - aftercare

    Science.gov (United States)

    Bacterial vaginosis (BV) is a type of vaginal infection. The vagina normally contains both healthy bacteria and unhealthy bacteria. BV occurs when more unhealthy bacteria grow than healthy bacteria. No one knows ...

  9. Bacterial surface adaptation

    Science.gov (United States)

    Utada, Andrew

    2014-03-01

    Biofilms are structured multi-cellular communities that are fundamental to the biology and ecology of bacteria. Parasitic bacterial biofilms can cause lethal infections and biofouling, but commensal bacterial biofilms, such as those found in the gut, can break down otherwise indigestible plant polysaccharides and allow us to enjoy vegetables. The first step in biofilm formation, adaptation to life on a surface, requires a working knowledge of low Reynolds number fluid physics, and the coordination of biochemical signaling, polysaccharide production, and molecular motility motors. These crucial early stages of biofilm formation are at present poorly understood. By adapting methods from soft matter physics, we dissect bacterial social behavior at the single cell level for several prototypical bacterial species, including Pseudomonas aeruginosa and Vibrio cholerae.

  10. Bacterial intermediate filaments

    DEFF Research Database (Denmark)

    Charbon, Godefroid; Cabeen, M.; Jacobs-Wagner, C.

    2009-01-01

    Crescentin, which is the founding member of a rapidly growing family of bacterial cytoskeletal proteins, was previously proposed to resemble eukaryotic intermediate filament (IF) proteins based on structural prediction and in vitro polymerization properties. Here, we demonstrate that crescentin...

  11. Diagnosis of bacterial infection

    African Journals Online (AJOL)

    direct or indirect evidence of a compatible bacterial pathogen. Inflammation may be .... cardinal features (fever, confusion, headache and neck stiffness). .... specificity, inappropriate indications or poor sampling technique may diminish this ...

  12. Male-killing bacteria as agents of insect pest control

    International Nuclear Information System (INIS)

    Berec, Ludek; Maxin, Daniel; Bernhauerová, Veronika

    2016-01-01

    1. Continual effort is needed to reduce the impact of exotic species in the context of increased globalization. Any innovation in this respect would be an asset. 2. We assess the potential of combining two pest control techniques: the well-established sterile insect technique (SIT) and a novel male-killing technique (MKT), which comprises inoculation of a pest population with bacteria that kill the infected male embryos. 3. Population models are developed to assess the efficiency of using the MKT for insect pest control, either alone or together with the SIT. We seek for conditions under which the MKT weakens requirements on the SIT. 4. Regarding the SIT, we consider both non-heritable and inherited sterility. In both cases, the MKT and SIT benefit one another. The MKT may prevent the SIT from failing when not enough sterilized males are released due to high production costs and/or uncertainty on their mating ability following a high irradiation dose. Conversely, with already established SIT, pest eradication can be achieved after introduction of male-killing bacteria with lower vertical transmission efficiency than if the MKT was applied alone. 5. For tephritid fruit flies with non-heritable sterility, maximal impact of the SIT is achieved when the released males are fully sterile. Conversely, for lepidopterans with inherited sterility, maximal impact of the SIT is achieved for intermediate irradiation doses. In both cases, increasing vertical transmission efficiency of male-killing bacteria benefits the SIT; high enough vertical transmission efficiency allows for pest eradication where the SIT is absent or induces only pest suppression when used alone. 6. Synthesis and applications. While both techniques can suppress or eliminate the pest on their own, combined application of the male-killing technique and the sterile insect technique substantially increases pest control efficiency. If male-killing bacteria are already established in the pest, any assessment of

  13. Mediation Analysis with Multiple Mediators.

    Science.gov (United States)

    VanderWeele, T J; Vansteelandt, S

    2014-01-01

    Recent advances in the causal inference literature on mediation have extended traditional approaches to direct and indirect effects to settings that allow for interactions and non-linearities. In this paper, these approaches from causal inference are further extended to settings in which multiple mediators may be of interest. Two analytic approaches, one based on regression and one based on weighting are proposed to estimate the effect mediated through multiple mediators and the effects through other pathways. The approaches proposed here accommodate exposure-mediator interactions and, to a certain extent, mediator-mediator interactions as well. The methods handle binary or continuous mediators and binary, continuous or count outcomes. When the mediators affect one another, the strategy of trying to assess direct and indirect effects one mediator at a time will in general fail; the approach given in this paper can still be used. A characterization is moreover given as to when the sum of the mediated effects for multiple mediators considered separately will be equal to the mediated effect of all of the mediators considered jointly. The approach proposed in this paper is robust to unmeasured common causes of two or more mediators.

  14. Bacteriocin-mediated competition in cystic fibrosis lung infections

    DEFF Research Database (Denmark)

    Ghoul, Melanie; West, Stuart A.; Johansen, Helle Krogh

    2015-01-01

    Bacteriocins are toxins produced by bacteria to kill competitors of the same species. Theory and laboratory experiments suggest that bacteriocin production and immunity play a key role in the competitive dynamics of bacterial strains. The extent to which this is the case in natural populations......, especially human pathogens, remains to be tested. We examined the role of bacteriocins in competition using Pseudomonas aeruginosa strains infecting lungs of humans with cystic fibrosis (CF). We assessed the ability of different strains to kill each other using phenotypic assays, and sequenced their genomes...

  15. Bacterial transmission from lens storage cases to contact lenses - Effects of lens care solutions and silver impregnation of cases

    NARCIS (Netherlands)

    Vermeltfoort, Pit B. J.; Hooymans, Johanna M. M.; Busscher, Henk J.; van der Mei, Henny C.

    2008-01-01

    The killing efficacies of multipurpose lens care solutions on planktonic and biofilm bacteria grown in polypropylene contact lens storage cases with and without silver impregnation and effects on bacterial transmission from storage cases to silicone hydrogel contact lenses were investigated. For

  16. A Red Blood Cell Membrane-Camouflaged Nanoparticle Counteracts Streptolysin O-Mediated Virulence Phenotypes of Invasive Group A Streptococcus

    Directory of Open Access Journals (Sweden)

    Tamara Escajadillo

    2017-07-01

    Full Text Available Group A Streptococcus (GAS, an important human-specific Gram-positive bacterial pathogen, is associated with a broad spectrum of disease, ranging from mild superficial infections such as pharyngitis and impetigo, to serious invasive infections including necrotizing fasciitis and streptococcal toxic shock syndrome. The GAS pore-forming streptolysin O (SLO is a well characterized virulence factor produced by nearly all GAS clinical isolates. High level expression of SLO is epidemiologically linked to intercontinental dissemination of hypervirulent clonotypes and poor clinical outcomes. SLO can trigger macrophage and neutrophil cell death and/or the inactivation of immune cell functions, and promotes tissue injury and bacterial survival in animal models of infection. In the present work, we describe how the pharmacological presentation of red blood cell (RBC derived biomimetic nanoparticles (“nanosponges” can sequester SLO and block the ability of GAS to damage host cells, thereby preserving innate immune function and increasing bacterial clearance in vitro and in vivo. Nanosponge administration protected human neutrophils, macrophages, and keratinocytes against SLO-mediated cytotoxicity. This therapeutic intervention prevented SLO-induced macrophage apoptosis and increased neutrophil extracellular trap formation, allowing increased GAS killing by the respective phagocytic cell types. In a murine model of GAS necrotizing skin infection, local administration of the biomimetic nanosponges was associated with decreased lesion size and reduced bacterial colony-forming unit recovery. Utilization of a toxin decoy and capture platform that inactivates the secreted SLO before it contacts the host cell membrane, presents a novel virulence factor targeted strategy that could be a powerful adjunctive therapy in severe GAS infections where morbidity and mortality are high despite antibiotic treatment.

  17. Scientific projection paper for mutagenesis, transformation and cell killing

    International Nuclear Information System (INIS)

    Todd, P.

    1980-01-01

    Our knowledge about mutagenesis, transformation, and cell killing by ionizing radiation consists of large bodies of data, which are potentially useful in terms of application to human risk assessment and to the constructive use of radiation, as in cancer treatment. The three end-points discussed above are united by at least five significant concepts in radiation research strategy: (1) The inter-relationships among the important end-points, mutation, carcinogenesis, and cell killing. Research on one is meaningful only in the context of information about the other two. (2) The interaction of radiations with other agents in producing these end-points. (3) The mechanisms of action of other environmental mutagenic, carcinogenic, and cytotoxic agents. (4) The use of repair deficient human mutant cells. (5) The study of radiation damage mechanisms. There is no better way to extrapolate laboratory data to the clinical and public worlds than to understand the underlying biological mechanisms that produced the data

  18. "Reversed" intraguild predation: red fox cubs killed by pine marten.

    Science.gov (United States)

    Brzeziński, Marcin; Rodak, Lukasz; Zalewski, Andrzej

    2014-01-01

    Camera traps deployed at a badger Meles meles set in mixed pine forest in north-eastern Poland recorded interspecific killing of red fox Vulpes vulpes cubs by pine marten Martes martes . The vixen and her cubs settled in the set at the beginning of May 2013, and it was abandoned by the badgers shortly afterwards. Five fox cubs were recorded playing in front of the den each night. Ten days after the first recording of the foxes, a pine marten was filmed at the set; it arrived in the morning, made a reconnaissance and returned at night when the vixen was away from the set. The pine marten entered the den several times and killed at least two fox cubs. It was active at the set for about 2 h. This observation proves that red foxes are not completely safe from predation by smaller carnivores, even those considered to be subordinate species in interspecific competition.

  19. Kill ratio calculation for in-line yield prediction

    Science.gov (United States)

    Lorenzo, Alfonso; Oter, David; Cruceta, Sergio; Valtuena, Juan F.; Gonzalez, Gerardo; Mata, Carlos

    1999-04-01

    The search for better yields in IC manufacturing calls for a smarter use of the vast amount of data that can be generated by a world class production line.In this scenario, in-line inspection processes produce thousands of wafer maps, number of defects, defect type and pictures every day. A step forward is to correlate these with the other big data- generator area: test. In this paper, we present how these data can be put together and correlated to obtain a very useful yield predicting tool. This correlation will first allow us to calculate the kill ratio, i.e. the probability for a defect of a certain size in a certain layer to kill the die. Then we will use that number to estimate the cosmetic yield that a wafer will have.

  20. Great tits search for, capture, kill and eat hibernating bats

    Science.gov (United States)

    Estók, Péter; Zsebők, Sándor; Siemers, Björn M.

    2010-01-01

    Ecological pressure paired with opportunism can lead to surprising innovations in animal behaviour. Here, we report predation of great tits (Parus major) on hibernating pipistrelle bats (Pipistrellus pipistrellus) at a Hungarian cave. Over two winters, we directly observed 18 predation events. The tits specifically and systematically searched for and killed bats for food. A substantial decrease in predation on bats after experimental provisioning of food to the tits further supports the hypothesis that bat-killing serves a foraging purpose in times of food scarcity. We finally conducted a playback experiment to test whether tits would eavesdrop on calls of awakening bats to find them in rock crevices. The tits could clearly hear the calls and were attracted to the loudspeaker. Records for tit predation on bats at this cave now span more than ten years and thus raise the question of whether cultural transmission plays a role for the spread of this foraging innovation. PMID:19740892

  1. A Research for Massive Fish Kills in Lake Bafa (Turkey

    Directory of Open Access Journals (Sweden)

    Murat Yabanlı

    2011-06-01

    Full Text Available As there were massive fish kills in Lake Bafa which is a lagoon situated in Southwestern Turkey in October, 2006, water and fish samples were taken from the region. Water samples were analysed physicochemically, toxicologically and microbiologically and fish samples were subjected to toxicological analysis. The analyses of lake water revealed on oxygen value of approximately 5.0 mg/L, salinity 16.2 ‰, nitrogen from ammonia 0.1 mg/L, nitrogen nitrite 0.013 mg/L, and total organic carbon 13 mg/L. Total coliform count was 1100 MPN/100 ml and faecal coliform count was 28 MPN/100 ml. There was no detection of any pesticide residues in fish and water samples. Massive fish kills are thought to be due to the decrease in water quality.

  2. The killing of African trypanosomes by ethidium bromide.

    Directory of Open Access Journals (Sweden)

    Arnab Roy Chowdhury

    2010-12-01

    Full Text Available Introduced in the 1950s, ethidium bromide (EB is still used as an anti-trypanosomal drug for African cattle although its mechanism of killing has been unclear and controversial. EB has long been known to cause loss of the mitochondrial genome, named kinetoplast DNA (kDNA, a giant network of interlocked minicircles and maxicircles. However, the existence of viable parasites lacking kDNA (dyskinetoplastic led many to think that kDNA loss could not be the mechanism of killing. When recent studies indicated that kDNA is indeed essential in bloodstream trypanosomes and that dyskinetoplastic cells survive only if they have a compensating mutation in the nuclear genome, we investigated the effect of EB on kDNA and its replication. We here report some remarkable effects of EB. Using EM and other techniques, we found that binding of EB to network minicircles is low, probably because of their association with proteins that prevent helix unwinding. In contrast, covalently-closed minicircles that had been released from the network for replication bind EB extensively, causing them, after isolation, to become highly supertwisted and to develop regions of left-handed Z-DNA (without EB, these circles are fully relaxed. In vivo, EB causes helix distortion of free minicircles, preventing replication initiation and resulting in kDNA loss and cell death. Unexpectedly, EB also kills dyskinetoplastic trypanosomes, lacking kDNA, by inhibiting nuclear replication. Since the effect on kDNA occurs at a >10-fold lower EB concentration than that on nuclear DNA, we conclude that minicircle replication initiation is likely EB's most vulnerable target, but the effect on nuclear replication may also contribute to cell killing.

  3. Targeted Killing: Managing American Perceptions On Unmanned Aerial Vehicle Operations

    Science.gov (United States)

    2016-02-01

    Requirements Proposal Advisor: Dr. Patricia Williams Lessane Project Advisor: Dr. Andrew Niesiobedzki Maxwell AFB, AL February 2016...epistemology of remote fighting." Ethics and Information Technology 15. no. 2. 87-98. Cullen , Peter. 2008. "The Role of Targeted Killing in the...in the Sky." New Statesman 19-25. June. 48. Patterson, Margot. 2015. "Are We Safer." America 212. no. 204. 12. Raven-Hansen, William C. Banks and

  4. Comments on conformal Killing vector fields and quantum field theory

    International Nuclear Information System (INIS)

    Brown, M.R.; Ottewill, A.C.; Siklos, S.T.C.

    1982-01-01

    We give a comprehensive analysis of those vacuums for flat and conformally flat space-times which can be defined by timelike, hypersurface-orthogonal, conformal Killing vector fields. We obtain formulas for the difference in stress-energy density between any two such states and display the correspondence with the renormalized stress tensors. A brief discussion is given of the relevance of these results to quantum-mechanical measurements made by noninertial observers moving through flat space

  5. Midgut microbiota and host immunocompetence underlie Bacillus thuringiensis killing mechanism

    OpenAIRE

    Caccia, Silvia; Di Lelio, Ilaria; La Storia, Antonietta; Marinelli, Adriana; Varricchio, Paola; Franzetti, Eleonora; Banyuls, Núria; Tettamanti, Gianluca; Casartelli, Morena; Giordana, Barbara; Ferré, Juan; Gigliotti, Silvia; Ercolini, Danilo; Pennacchio, Francesco

    2016-01-01

    Bacillus thuringiensis and its toxins are widely used for insect control. Notwithstanding the remarkable importance of this insect pathogen, its killing mechanism has yet to be fully elucidated. Here we show that the microbiota resident in the host midgut triggers a lethal septicemia. The infection process is enhanced by reducing the host immune response and its control on replication of midgut bacteria invading the body cavity through toxin-induced epithelial lesions. The experimental approa...

  6. Does Host Complement Kill Borrelia burgdorferi within Ticks?

    OpenAIRE

    Rathinavelu, Sivaprakash; Broadwater, Anne; de Silva, Aravinda M.

    2003-01-01

    The Lyme disease spirochete, Borrelia burgdorferi, inhabits the gut lumen of the tick vector. At this location the spirochete is exposed to host blood when a tick feeds. We report here on studies that were done with normal and complement-deficient (C3-knockout) mice to determine if the host complement system killed spirochetes within the vector. We found that spirochete numbers within feeding nymphs were not influenced by complement, most likely because host complement was inactivated within ...

  7. Shearfree congruences of null geodesics and Killing tensors

    International Nuclear Information System (INIS)

    Dietz, W.; Ruediger, R.

    1980-01-01

    In this communication, the mutual connections between quantities that are generalizations of the notion of a a Killing vector field are investigated. A classification of these quantities in terms of a complex vector field αsub(a) is given. A common feature of all these quantities is that they imply the existence of a pair of shearfree geodetic null congruences. There are no explicit restrictions posed on the Ricci tensor. (author)

  8. From Attitudes to Actions: Predictors of Lion Killing by Maasai Warriors.

    Science.gov (United States)

    Hazzah, Leela; Bath, Alistair; Dolrenry, Stephanie; Dickman, Amy; Frank, Laurence

    2017-01-01

    Despite legal protection, deliberate killing by local people is one of the major threats to the conservation of lions and other large carnivores in Africa. Addressing this problem poses particular challenges, mainly because it is difficult to uncover illicit behavior. This article examined two groups of Maasai warriors: individuals who have killed African lions (Panthera leo) and those who have not. We conducted interviews to explore the relationship between attitudes, intentions and known lion killing behavior. Factor analysis and logistic regression revealed that lion killing was mainly determined by: (a) general attitudes toward lions, (b) engagement in traditional customs, (c) lion killing intentions to defend property, and (d) socio-cultural killing intentions. Our results indicated that general attitudes toward lions were the strongest predictor of lion killing behavior. Influencing attitudes to encourage pro-conservation behavior may help reduce killing.

  9. Leadership Matters : The Effects of Targeted Killings on Militant Group Tactics

    NARCIS (Netherlands)

    Abrahms, Max; Mierau, Jochen

    2017-01-01

    Targeted killings have become a central component of counter-terrorism strategy. In response to the unprecedented prevalence of this strategy around the world, numerous empirical studies have recently examined whether "decapitating" militant groups with targeted killings is strategically effective.

  10. Default risk modeling with position-dependent killing

    Science.gov (United States)

    Katz, Yuri A.

    2013-04-01

    Diffusion in a linear potential in the presence of position-dependent killing is used to mimic a default process. Different assumptions regarding transport coefficients, initial conditions, and elasticity of the killing measure lead to diverse models of bankruptcy. One “stylized fact” is fundamental for our consideration: empirically default is a rather rare event, especially in the investment grade categories of credit ratings. Hence, the action of killing may be considered as a small parameter. In a number of special cases we derive closed-form expressions for the entire term structure of the cumulative probability of default, its hazard rate, and intensity. Comparison with historical data on aggregate global corporate defaults confirms the validity of the perturbation method for estimations of long-term probability of default for companies with high credit quality. On a single company level, we implement the derived formulas to estimate the one-year likelihood of default of Enron on a daily basis from August 2000 to August 2001, three months before its default, and compare the obtained results with forecasts of traditional structural models.

  11. Killing effect of carboranyl uridine on boron neutron capture reaction

    International Nuclear Information System (INIS)

    Takagaki, M.; Oda, Y.; Zhang, Z.

    1994-01-01

    This paper deals with the killing effect of carboranyl uridine (CU) on thermal neutron capture reaction in cultured glioma cell line (C6). The tumoricidal effect of CU for boron neutron capture therapy in the cultured cell system is presented. To assess the uptake of CU, the number of germ cells was determined by comparing protein concentrations of C6 cells in vitro with that of intracranially transplanted C6 tumor cells in vivo. To assess tumoricidal effects of CU, human glioma cells (T98G), containing 25 ppm natural boron of CU, were irradiated with various doses of thermal neutrons at a constant fluence rate. The uptake and killing effects of mercaptoboron and boric acid were also investigated as controls. Subcellular boron concentrations confirmed the selective affinity to the nucleic acid synthesis. CU was found to have an affinity to nucleic acid synthesis and to be accumulated into nucleus of tumor cells. The irradiation dose which yielded 37% survival rate in the case of CU and control were 3.78+12E nvt and 5.80+12E nvt, respectively. The killing effect of CU was slightly higher than that of B-SH or BA. The effective way of CU injection should be further studied to obtain the uniform CU uptake in tumor cells. (N.K.)

  12. Intestinal mucus protects Giardia lamblia from killing by human milk.

    Science.gov (United States)

    Zenian, A J; Gillin, F D

    1987-02-01

    We have previously shown that nonimmune human milk kills Giardia lamblia trophozoites in vitro. Killing requires a bile salt and the activity of the milk bile salt-stimulated lipase. We now show that human small-intestinal mucus protects trophozoites from killing by milk. Parasite survival increased with mucus concentration, but protection was overcome during longer incubation times or with greater milk concentrations. Trophozoites preincubated with mucus and then washed were not protected. Protective activity was associated with non-mucin CsCl density gradient fractions. Moreover, it was heat-stable, non-dialyzable, and non-lipid. Whereas whole mucus inhibited milk lipolytic activity, protective mucus fractions did not inhibit the enzyme. Furthermore, mucus partially protected G. lamblia trophozoites against the toxicity of oleic acid, a fatty acid which is released from milk triglycerides by lipase. These studies show that mucus protects G. lamblia both by inhibiting lipase activity and by decreasing the toxicity of products of lipolysis. The ability of mucus to protect G. lamblia from toxic lipolytic products may help to promote intestinal colonization by this parasite.

  13. Polyanhydride Nanoparticle Delivery Platform Dramatically Enhances Killing of Filarial Worms.

    Directory of Open Access Journals (Sweden)

    Andrea M Binnebose

    Full Text Available Filarial diseases represent a significant social and economic burden to over 120 million people worldwide and are caused by endoparasites that require the presence of symbiotic bacteria of the genus Wolbachia for fertility and viability of the host parasite. Targeting Wolbachia for elimination is a therapeutic approach that shows promise in the treatment of onchocerciasis and lymphatic filariasis. Here we demonstrate the use of a biodegradable polyanhydride nanoparticle-based platform for the co-delivery of the antibiotic doxycycline with the antiparasitic drug, ivermectin, to reduce microfilarial burden and rapidly kill adult worms. When doxycycline and ivermectin were co-delivered within polyanhydride nanoparticles, effective killing of adult female Brugia malayi filarial worms was achieved with approximately 4,000-fold reduction in the amount of drug used. Additionally the time to death of the macrofilaria was also significantly reduced (five-fold when the anti-filarial drug cocktail was delivered within polyanhydride nanoparticles. We hypothesize that the mechanism behind this dramatically enhanced killing of the macrofilaria is the ability of the polyanhydride nanoparticles to behave as a Trojan horse and penetrate the cuticle, bypassing excretory pumps of B. malayi, and effectively deliver drug directly to both the worm and Wolbachia at high enough microenvironmental concentrations to cause death. These provocative findings may have significant consequences for the reduction in the amount of drug and the length of treatment required for filarial infections in terms of patient compliance and reduced cost of treatment.

  14. Two interdependent mechanisms of antimicrobial activity allow for efficient killing in nylon-3-based polymeric mimics of innate immunity peptides.

    Science.gov (United States)

    Lee, Michelle W; Chakraborty, Saswata; Schmidt, Nathan W; Murgai, Rajan; Gellman, Samuel H; Wong, Gerard C L

    2014-09-01

    Novel synthetic mimics of antimicrobial peptides have been developed to exhibit structural properties and antimicrobial activity similar to those of natural antimicrobial peptides (AMPs) of the innate immune system. These molecules have a number of potential advantages over conventional antibiotics, including reduced bacterial resistance, cost-effective preparation, and customizable designs. In this study, we investigate a family of nylon-3 polymer-based antimicrobials. By combining vesicle dye leakage, bacterial permeation, and bactericidal assays with small-angle X-ray scattering (SAXS), we find that these polymers are capable of two interdependent mechanisms of action: permeation of bacterial membranes and binding to intracellular targets such as DNA, with the latter necessarily dependent on the former. We systemically examine polymer-induced membrane deformation modes across a range of lipid compositions that mimic both bacteria and mammalian cell membranes. The results show that the polymers' ability to generate negative Gaussian curvature (NGC), a topological requirement for membrane permeation and cellular entry, in model Escherichia coli membranes correlates with their ability to permeate membranes without complete membrane disruption and kill E. coli cells. Our findings suggest that these polymers operate with a concentration-dependent mechanism of action: at low concentrations permeation and DNA binding occur without membrane disruption, while at high concentrations complete disruption of the membrane occurs. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Getting the "Kill" into "Shock and Kill": Strategies to Eliminate Latent HIV.

    Science.gov (United States)

    Kim, Youry; Anderson, Jenny L; Lewin, Sharon R

    2018-01-10

    Despite the success of antiretroviral therapy (ART), there is currently no HIV cure and treatment is life long. HIV persists during ART due to long-lived and proliferating latently infected CD4+ T cells. One strategy to eliminate latency is to activate virus production using latency reversing agents (LRAs) with the goal of triggering cell death through virus-induced cytolysis or immune-mediated clearance. However, multiple studies have demonstrated that activation of viral transcription alone is insufficient to induce cell death and some LRAs may counteract cell death by promoting cell survival. Here, we review new approaches to induce death of latently infected cells through apoptosis and inhibition of pathways critical for cell survival, which are often hijacked by HIV proteins. Given advances in the commercial development of compounds that induce apoptosis in cancer chemotherapy, these agents could move rapidly into clinical trials, either alone or in combination with LRAs, to eliminate latent HIV infection. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Synergistic Malaria Parasite Killing by Two Types of Plasmodial Surface Anion Channel Inhibitors.

    Directory of Open Access Journals (Sweden)

    Margaret Pain

    Full Text Available Malaria parasites increase their host erythrocyte's permeability to a broad range of ions and organic solutes. The plasmodial surface anion channel (PSAC mediates this uptake and is an established drug target. Development of therapies targeting this channel is limited by several problems including interactions between known inhibitors and permeating solutes that lead to incomplete channel block. Here, we designed and executed a high-throughput screen to identify a novel class of PSAC inhibitors that overcome this solute-inhibitor interaction. These new inhibitors differ from existing blockers and have distinct effects on channel-mediated transport, supporting a model of two separate routes for solute permeation though PSAC. Combinations of inhibitors specific for the two routes had strong synergistic action against in vitro parasite propagation, whereas combinations acting on a single route produced only additive effects. The magnitude of synergism depended on external nutrient concentrations, consistent with an essential role of the channel in parasite nutrient acquisition. The identified inhibitors will enable a better understanding of the channel's structure-function and may be starting points for novel combination therapies that produce synergistic parasite killing.

  17. It’s Not Just Conflict That Motivates Killing of Orangutans

    Science.gov (United States)

    Davis, Jacqueline T.; Mengersen, Kerrie; Abram, Nicola K.; Ancrenaz, Marc; Wells, Jessie A.; Meijaard, Erik

    2013-01-01

    We investigated why orangutans are being killed in Kalimantan, Indonesia, and the role of conflict in these killings. Based on an analysis of interview data from over 5,000 respondents in over 450 villages, we also assessed the socio-ecological factors associated with conflict and non-conflict killings. Most respondents never kill orangutans. Those who reported having personally killed an orangutan primarily did so for non-conflict reasons; for example, 56% of these respondents said that the reason they had killed an orangutan was to eat it. Of the conflict-related reasons for killing, the most common reasons orangutans were killed was fear of orangutans or in self-defence. A similar pattern was evident among reports of orangutan killing by other people in the villages. Regression analyses indicated that religion and the percentage of intact forest around villages were the strongest socio-ecological predictors of whether orangutans were killed for conflict or non-conflict related reasons. Our data indicate that between 44,170 and 66,570 orangutans were killed in Kalimantan within the respondents’ active hunting lifetimes: between 12,690 and 29,024 for conflict reasons (95%CI) and between 26,361 and 41,688 for non-conflict reasons (95% CI). These findings confirm that habitat protection alone will not ensure the survival of orangutans in Indonesian Borneo, and that effective reduction of orangutan killings is urgently needed. PMID:24130707

  18. Preliminary study of killing the larva of plodia interpunella by irradiation

    International Nuclear Information System (INIS)

    Wang Jide; Ma Xiaoping

    1994-01-01

    The results of killing the larva of plodia interpunella in the fruit by 60 Co γ-irradiation are described. The lowest effective dose for killing larva by irradiation is ca. 2000 Gy; the effective dose for immediately killing larva is 3000 Gy. The method is simple and easy and also suitable for the study of commercial irradiation of dry-fruit

  19. Dispersal networks for enhancing bacterial degradation in heterogeneous environments

    International Nuclear Information System (INIS)

    Banitz, Thomas; Wick, Lukas Y.; Fetzer, Ingo; Frank, Karin; Harms, Hauke; Johst, Karin

    2011-01-01

    Successful biodegradation of organic soil pollutants depends on their bioavailability to catabolically active microorganisms. In particular, environmental heterogeneities often limit bacterial access to pollutants. Experimental and modelling studies revealed that fungal networks can facilitate bacterial dispersal and may thereby improve pollutant bioavailability. Here, we investigate the influence of such bacterial dispersal networks on biodegradation performance under spatially heterogeneous abiotic conditions using a process-based simulation model. To match typical situations in polluted soils, two types of abiotic conditions are studied: heterogeneous bacterial dispersal conditions and heterogeneous initial resource distributions. The model predicts that networks facilitating bacterial dispersal can enhance biodegradation performance for a wide range of these conditions. Additionally, the time horizon over which this performance is assessed and the network's spatial configuration are key factors determining the degree of biodegradation improvement. Our results support the idea of stimulating the establishment of fungal mycelia for enhanced bioremediation of polluted soils. - Highlights: → Bacterial dispersal networks can considerably improve biodegradation performance. → They facilitate bacterial access to dispersal-limited areas and remote resources. → Abiotic conditions, time horizon and network structure govern the improvements. → Stimulating the establishment of fungal mycelia promises enhanced soil remediation. - Simulation modelling demonstrates that fungus-mediated bacterial dispersal can considerably improve the bioavailability of organic pollutants under spatially heterogeneous abiotic conditions typical for water-unsaturated soils.

  20. Dispersal networks for enhancing bacterial degradation in heterogeneous environments

    Energy Technology Data Exchange (ETDEWEB)

    Banitz, Thomas, E-mail: thomas.banitz@ufz.de [Department of Ecological Modelling, UFZ - Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig (Germany); Wick, Lukas Y.; Fetzer, Ingo [Department of Environmental Microbiology, UFZ - Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig (Germany); Frank, Karin [Department of Ecological Modelling, UFZ - Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig (Germany); Harms, Hauke [Department of Environmental Microbiology, UFZ - Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig (Germany); Johst, Karin [Department of Ecological Modelling, UFZ - Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig (Germany)

    2011-10-15

    Successful biodegradation of organic soil pollutants depends on their bioavailability to catabolically active microorganisms. In particular, environmental heterogeneities often limit bacterial access to pollutants. Experimental and modelling studies revealed that fungal networks can facilitate bacterial dispersal and may thereby improve pollutant bioavailability. Here, we investigate the influence of such bacterial dispersal networks on biodegradation performance under spatially heterogeneous abiotic conditions using a process-based simulation model. To match typical situations in polluted soils, two types of abiotic conditions are studied: heterogeneous bacterial dispersal conditions and heterogeneous initial resource distributions. The model predicts that networks facilitating bacterial dispersal can enhance biodegradation performance for a wide range of these conditions. Additionally, the time horizon over which this performance is assessed and the network's spatial configuration are key factors determining the degree of biodegradation improvement. Our results support the idea of stimulating the establishment of fungal mycelia for enhanced bioremediation of polluted soils. - Highlights: > Bacterial dispersal networks can considerably improve biodegradation performance. > They facilitate bacterial access to dispersal-limited areas and remote resources. > Abiotic conditions, time horizon and network structure govern the improvements. > Stimulating the establishment of fungal mycelia promises enhanced soil remediation. - Simulation modelling demonstrates that fungus-mediated bacterial dispersal can considerably improve the bioavailability of organic pollutants under spatially heterogeneous abiotic conditions typical for water-unsaturated soils.