WorldWideScience

Sample records for medial entorhinal neurons

  1. Cellular properties of principal neurons in the rat entorhinal cortex. II. The medial entorhinal cortex

    Canto, C.B.; Witter, M.P.

    2012-01-01

    Principal neurons in different medial entorhinal cortex (MEC) layers show variations in spatial modulation that stabilize between 15 and 30 days postnatally. These in vivo variations are likely due to differences in intrinsic membrane properties and integrative capacities of neurons. The latter

  2. Transient optogenetic inactivation of the medial entorhinal cortex biases the active population of hippocampal neurons.

    Rueckemann, Jon W; DiMauro, Audrey J; Rangel, Lara M; Han, Xue; Boyden, Edward S; Eichenbaum, Howard

    2016-02-01

    The mechanisms that enable the hippocampal network to express the appropriate spatial representation for a particular circumstance are not well understood. Previous studies suggest that the medial entorhinal cortex (MEC) may have a role in reproducibly selecting the hippocampal representation of an environment. To examine how ongoing MEC activity is continually integrated by the hippocampus, we performed transient unilateral optogenetic inactivations of the MEC while simultaneously recording place cell activity in CA1. Inactivation of the MEC caused a partial remapping in the CA1 population without diminishing the degree of spatial tuning across the active cell assembly. These changes remained stable irrespective of intermittent disruption of MEC input, indicating that while MEC input is integrated over long time scales to bias the active population, there are mechanisms for stabilizing the population of active neurons independent of the MEC. We find that MEC inputs to the hippocampus shape its ongoing activity by biasing the participation of the neurons in the active network, thereby influencing how the hippocampus selectively represents information. © 2015 Wiley Periodicals, Inc.

  3. Comparison of properties of medial entorhinal cortex layer II neurons in two anatomical dimensions with and without cholinergic activation.

    Yoshida, Motoharu; Jochems, Arthur; Hasselmo, Michael E

    2013-01-01

    Mechanisms underlying grid cell firing in the medial entorhinal cortex (MEC) still remain unknown. Computational modeling studies have suggested that cellular properties such as spike frequency adaptation and persistent firing might underlie the grid cell firing. Recent in vivo studies also suggest that cholinergic activation influences grid cell firing. Here we investigated the anatomical distribution of firing frequency adaptation, the medium spike after hyperpolarization potential (mAHP), subthreshold membrane potential oscillations, sag potential, input resistance and persistent firing, in MEC layer II principal cells using in vitro whole-cell patch clamp recordings in rats. Anatomical distributions of these properties were compared along both the dorso-ventral and medio-lateral axes, both with and without the cholinergic receptor agonist carbachol. We found that spike frequency adaptation is significantly stronger in ventral than in dorsal neurons both with and without carbachol. Spike frequency adaptation was significantly correlated with the duration of the mAHP, which also showed a gradient along the dorso-ventral axis. In carbachol, we found that about 50% of MEC layer II neurons show persistent firing which lasted more than 30 seconds. Persistent firing of MEC layer II neurons might contribute to grid cell firing by providing the excitatory drive. Dorso-ventral differences in spike frequency adaptation we report here are opposite from previous predictions by a computational model. We discuss an alternative mechanism as to how dorso-ventral differences in spike frequency adaptation could contribute to different scales of grid spacing.

  4. Downstream effects of hippocampal sharp wave ripple oscillations on medial entorhinal cortex layer V neurons in vitro.

    Roth, Fabian C; Beyer, Katinka M; Both, Martin; Draguhn, Andreas; Egorov, Alexei V

    2016-12-01

    The entorhinal cortex (EC) is a critical component of the medial temporal lobe (MTL) memory system. Local networks within the MTL express a variety of state-dependent network oscillations that are believed to organize neuronal activity during memory formation. The peculiar pattern of sharp wave-ripple complexes (SPW-R) entrains neurons by a very fast oscillation at ∼200 Hz in the hippocampal areas CA3 and CA1 and then propagates through the "output loop" into the EC. The precise mechanisms of SPW-R propagation and the resulting cellular input patterns in the mEC are, however, largely unknown. We therefore investigated the activity of layer V (LV) principal neurons of the medial EC (mEC) during SPW-R oscillations in horizontal mouse brain slices. Intracellular recordings in the mEC were combined with extracellular monitoring of propagating network activity. SPW-R in CA1 were regularly followed by negative field potential deflections in the mEC. Propagation of SPW-R activity from CA1 to the mEC was mostly monosynaptic and excitatory, such that synaptic input to mEC LV neurons directly reflected unit activity in CA1. Comparison with propagating network activity from CA3 to CA1 revealed a similar role of excitatory long-range connections for both regions. However, SPW-R-induced activity in CA1 involved strong recruitment of rhythmic synaptic inhibition and corresponding fast field oscillations, in contrast to the mEC. These differences between features of propagating SPW-R emphasize the differential processing of network activity by each local network of the hippocampal output loop. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. Cellular properties of principal neurons in the rat entorhinal cortex. I. The lateral entorhinal cortex

    Canto, C.B.; Witter, M.P.

    2012-01-01

    The lateral entorhinal cortex (LEC) provides a major cortical input to the hippocampal formation, equaling that of the medial entorhinal cortex (MEC). To understand the functional contributions made by LEC, basic knowledge of individual neurons, in the context of the intrinsic network, is needed.

  6. Multiple running speed signals in medial entorhinal cortex

    Hinman, James R.; Brandon, Mark P.; Climer, Jason R.; Chapman, G. William; Hasselmo, Michael E.

    2016-01-01

    Grid cells in medial entorhinal cortex (MEC) can be modeled using oscillatory interference or attractor dynamic mechanisms that perform path integration, a computation requiring information about running direction and speed. The two classes of computational models often use either an oscillatory frequency or a firing rate that increases as a function of running speed. Yet it is currently not known whether these are two manifestations of the same speed signal or dissociable signals with potentially different anatomical substrates. We examined coding of running speed in MEC and identified these two speed signals to be independent of each other within individual neurons. The medial septum (MS) is strongly linked to locomotor behavior and removal of MS input resulted in strengthening of the firing rate speed signal, while decreasing the strength of the oscillatory speed signal. Thus two speed signals are present in MEC that are differentially affected by disrupted MS input. PMID:27427460

  7. Conserved size and periodicity of pyramidal patches in layer 2 of medial/caudal entorhinal cortex.

    Naumann, Robert K; Ray, Saikat; Prokop, Stefan; Las, Liora; Heppner, Frank L; Brecht, Michael

    2016-03-01

    To understand the structural basis of grid cell activity, we compare medial entorhinal cortex architecture in layer 2 across five mammalian species (Etruscan shrews, mice, rats, Egyptian fruit bats, and humans), bridging ∼100 million years of evolutionary diversity. Principal neurons in layer 2 are divided into two distinct cell types, pyramidal and stellate, based on morphology, immunoreactivity, and functional properties. We confirm the existence of patches of calbindin-positive pyramidal cells across these species, arranged periodically according to analyses techniques like spatial autocorrelation, grid scores, and modifiable areal unit analysis. In rodents, which show sustained theta oscillations in entorhinal cortex, cholinergic innervation targeted calbindin patches. In bats and humans, which only show intermittent entorhinal theta activity, cholinergic innervation avoided calbindin patches. The organization of calbindin-negative and calbindin-positive cells showed marked differences in entorhinal subregions of the human brain. Layer 2 of the rodent medial and the human caudal entorhinal cortex were structurally similar in that in both species patches of calbindin-positive pyramidal cells were superimposed on scattered stellate cells. The number of calbindin-positive neurons in a patch increased from ∼80 in Etruscan shrews to ∼800 in humans, only an ∼10-fold over a 20,000-fold difference in brain size. The relatively constant size of calbindin patches differs from cortical modules such as barrels, which scale with brain size. Thus, selective pressure appears to conserve the distribution of stellate and pyramidal cells, periodic arrangement of calbindin patches, and relatively constant neuron number in calbindin patches in medial/caudal entorhinal cortex. © 2015 The Authors. The Journal of Comparative Neurology Published by Wiley Periodicals, Inc.

  8. Conserved size and periodicity of pyramidal patches in layer 2 of medial/caudal entorhinal cortex

    Naumann, Robert K.; Ray, Saikat; Prokop, Stefan; Las, Liora; Heppner, Frank L.

    2016-01-01

    ABSTRACT To understand the structural basis of grid cell activity, we compare medial entorhinal cortex architecture in layer 2 across five mammalian species (Etruscan shrews, mice, rats, Egyptian fruit bats, and humans), bridging ∼100 million years of evolutionary diversity. Principal neurons in layer 2 are divided into two distinct cell types, pyramidal and stellate, based on morphology, immunoreactivity, and functional properties. We confirm the existence of patches of calbindin‐positive pyramidal cells across these species, arranged periodically according to analyses techniques like spatial autocorrelation, grid scores, and modifiable areal unit analysis. In rodents, which show sustained theta oscillations in entorhinal cortex, cholinergic innervation targeted calbindin patches. In bats and humans, which only show intermittent entorhinal theta activity, cholinergic innervation avoided calbindin patches. The organization of calbindin‐negative and calbindin‐positive cells showed marked differences in entorhinal subregions of the human brain. Layer 2 of the rodent medial and the human caudal entorhinal cortex were structurally similar in that in both species patches of calbindin‐positive pyramidal cells were superimposed on scattered stellate cells. The number of calbindin‐positive neurons in a patch increased from ∼80 in Etruscan shrews to ∼800 in humans, only an ∼10‐fold over a 20,000‐fold difference in brain size. The relatively constant size of calbindin patches differs from cortical modules such as barrels, which scale with brain size. Thus, selective pressure appears to conserve the distribution of stellate and pyramidal cells, periodic arrangement of calbindin patches, and relatively constant neuron number in calbindin patches in medial/caudal entorhinal cortex. J. Comp. Neurol. 524:783–806, 2016. © 2015 The Authors. The Journal of Comparative Neurology Published by Wiley Periodicals, Inc. PMID:26223342

  9. Anatomical and Electrophysiological Clustering of Superficial Medial Entorhinal Cortex Interneurons

    2017-01-01

    Abstract Local GABAergic interneurons regulate the activity of spatially-modulated principal cells in the medial entorhinal cortex (MEC), mediating stellate-to-stellate connectivity and possibly enabling grid formation via recurrent inhibitory circuitry. Despite the important role interneurons seem to play in the MEC cortical circuit, the combination of low cell counts and functional diversity has made systematic electrophysiological studies of these neurons difficult. For these reasons, there remains a paucity of knowledge on the electrophysiological profiles of superficial MEC interneuron populations. Taking advantage of glutamic acid decarboxylase 2 (GAD2)-IRES-tdTomato and PV-tdTomato transgenic mice, we targeted GABAergic interneurons for whole-cell patch-clamp recordings and characterized their passive membrane features, basic input/output properties and action potential (AP) shape. These electrophysiologically characterized cells were then anatomically reconstructed, with emphasis on axonal projections and pial depth. K-means clustering of interneuron anatomical and electrophysiological data optimally classified a population of 106 interneurons into four distinct clusters. The first cluster is comprised of layer 2- and 3-projecting, slow-firing interneurons. The second cluster is comprised largely of PV+ fast-firing interneurons that project mainly to layers 2 and 3. The third cluster contains layer 1- and 2-projecting interneurons, and the fourth cluster is made up of layer 1-projecting horizontal interneurons. These results, among others, will provide greater understanding of the electrophysiological characteristics of MEC interneurons, help guide future in vivo studies, and may aid in uncovering the mechanism of grid field formation. PMID:29085901

  10. Stellate Cells in the Medial Entorhinal Cortex Are Required for Spatial Learning

    Sarah A. Tennant

    2018-01-01

    Full Text Available Spatial learning requires estimates of location that may be obtained by path integration or from positional cues. Grid and other spatial firing patterns of neurons in the superficial medial entorhinal cortex (MEC suggest roles in behavioral estimation of location. However, distinguishing the contributions of path integration and cue-based signals to spatial behaviors is challenging, and the roles of identified MEC neurons are unclear. We use virtual reality to dissociate linear path integration from other strategies for behavioral estimation of location. We find that mice learn to path integrate using motor-related self-motion signals, with accuracy that decreases steeply as a function of distance. We show that inactivation of stellate cells in superficial MEC impairs spatial learning in virtual reality and in a real world object location recognition task. Our results quantify contributions of path integration to behavior and corroborate key predictions of models in which stellate cells contribute to location estimation.

  11. Medial Entorhinal Cortex Lesions Only Partially Disrupt Hippocampal Place Cells and Hippocampus-Dependent Place Memory

    Jena B. Hales

    2014-11-01

    Full Text Available The entorhinal cortex provides the primary cortical projections to the hippocampus, a brain structure critical for memory. However, it remains unclear how the precise firing patterns of medial entorhinal cortex (MEC cells influence hippocampal physiology and hippocampus-dependent behavior. We found that complete bilateral lesions of the MEC resulted in a lower proportion of active hippocampal cells. The remaining active cells had place fields, but with decreased spatial precision and decreased long-term spatial stability. In addition, MEC rats were as impaired in the water maze as hippocampus rats, while rats with combined MEC and hippocampal lesions had an even greater deficit. However, MEC rats were not impaired on other hippocampus-dependent tasks, including those in which an object location or context was remembered. Thus, the MEC is not necessary for all types of spatial coding or for all types of hippocampus-dependent memory, but it is necessary for the normal acquisition of place memory.

  12. Optical coherence tomography visualizes neurons in human entorhinal cortex

    Magnain, Caroline; Augustinack, Jean C.; Konukoglu, Ender; Frosch, Matthew P.; Sakadžić, Sava; Varjabedian, Ani; Garcia, Nathalie; Wedeen, Van J.; Boas, David A.; Fischl, Bruce

    2015-01-01

    Abstract. The cytoarchitecture of the human brain is of great interest in diverse fields: neuroanatomy, neurology, neuroscience, and neuropathology. Traditional histology is a method that has been historically used to assess cell and fiber content in the ex vivo human brain. However, this technique suffers from significant distortions. We used a previously demonstrated optical coherence microscopy technique to image individual neurons in several square millimeters of en-face tissue blocks from layer II of the human entorhinal cortex, over 50  μm in depth. The same slices were then sectioned and stained for Nissl substance. We registered the optical coherence tomography (OCT) images with the corresponding Nissl stained slices using a nonlinear transformation. The neurons were then segmented in both images and we quantified the overlap. We show that OCT images contain information about neurons that is comparable to what can be obtained from Nissl staining, and thus can be used to assess the cytoarchitecture of the ex vivo human brain with minimal distortion. With the future integration of a vibratome into the OCT imaging rig, this technique can be scaled up to obtain undistorted volumetric data of centimeter cube tissue blocks in the near term, and entire human hemispheres in the future. PMID:25741528

  13. Histamine Enhances Theta-Coupled Spiking and Gamma Oscillations in the Medial Entorhinal Cortex Consistent With Successful Spatial Recognition.

    Chen, Quanhui; Luo, Fenlan; Yue, Faguo; Xia, Jianxia; Xiao, Qin; Liao, Xiang; Jiang, Jun; Zhang, Jun; Hu, Bo; Gao, Dong; He, Chao; Hu, Zhian

    2017-06-07

    Encoding of spatial information in the superficial layers of the medial entorhinal cortex (sMEC) involves theta-modulated spiking and gamma oscillations, as well as spatially tuned grid cells and border cells. Little is known about the role of the arousal-promoting histaminergic system in the modification of information encoded in the sMEC in vivo, and how such histamine-regulated information correlates with behavioral functions. Here, we show that histamine upregulates the neural excitability of a significant proportion of neurons (16.32%, 39.18%, and 52.94% at 30 μM, 300 μM, and 3 mM, respectively) and increases local theta (4-12 Hz) and gamma power (low: 25-48 Hz; high: 60-120 Hz) in the sMEC, through activation of histamine receptor types 1 and 3. During spatial exploration, the strength of theta-modulated firing of putative principal neurons and high gamma oscillations is enhanced about 2-fold by histamine. The histamine-mediated increase of theta phase-locking of spikes and high gamma power is consistent with successful spatial recognition. These results, for the first time, reveal possible mechanisms involving the arousal-promoting histaminergic system in the modulation of spatial cognition. Published by Oxford University Press 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  14. Modulation of Network Oscillatory Activity and GABAergic Synaptic Transmission by CB1 Cannabinoid Receptors in the Rat Medial Entorhinal Cortex

    Nicola H. Morgan

    2008-01-01

    Full Text Available Cannabinoids modulate inhibitory GABAergic neurotransmission in many brain regions. Within the temporal lobe, cannabinoid receptors are highly expressed, and are located presynaptically at inhibitory terminals. Here, we have explored the role of type-1 cannabinoid receptors (CB1Rs at the level of inhibitory synaptic currents and field-recorded network oscillations. We report that arachidonylcyclopropylamide (ACPA; 10 M, an agonist at CB1R, inhibits GABAergic synaptic transmission onto both superficial and deep medial entorhinal (mEC neurones, but this has little effect on network oscillations in beta/gamma frequency bands. By contrast, the CB1R antagonist/inverse agonist LY320135 (500 nM, increased GABAergic synaptic activity and beta/gamma oscillatory activity in superficial mEC, was suppressed, whilst that in deep mEC was enhanced. These data indicate that cannabinoid-mediated effects on inhibitory synaptic activity may be constitutively active in vitro, and that modulation of CB1R activation using inverse agonists unmasks complex effects of CBR function on network activity.

  15. Rebound spiking in layer II medial entorhinal cortex stellate cells: Possible mechanism of grid cell function

    Shay, Christopher F.; Ferrante, Michele; Chapman, G. William; Hasselmo, Michael E.

    2015-01-01

    Rebound spiking properties of medial entorhinal cortex (mEC) stellate cells induced by inhibition may underlie their functional properties in awake behaving rats, including the temporal phase separation of distinct grid cells and differences in grid cell firing properties. We investigated rebound spiking properties using whole cell patch recording in entorhinal slices, holding cells near spiking threshold and delivering sinusoidal inputs, superimposed with realistic inhibitory synaptic inputs to test the capacity of cells to selectively respond to specific phases of inhibitory input. Stellate cells showed a specific phase range of hyperpolarizing inputs that elicited spiking, but non-stellate cells did not show phase specificity. In both cell types, the phase range of spiking output occurred between the peak and subsequent descending zero crossing of the sinusoid. The phases of inhibitory inputs that induced spikes shifted earlier as the baseline sinusoid frequency increased, while spiking output shifted to later phases. Increases in magnitude of the inhibitory inputs shifted the spiking output to earlier phases. Pharmacological blockade of h-current abolished the phase selectivity of hyperpolarizing inputs eliciting spikes. A network computational model using cells possessing similar rebound properties as found in vitro produces spatially periodic firing properties resembling grid cell firing when a simulated animal moves along a linear track. These results suggest that the ability of mEC stellate cells to fire rebound spikes in response to a specific range of phases of inhibition could support complex attractor dynamics that provide completion and separation to maintain spiking activity of specific grid cell populations. PMID:26385258

  16. Defects in the medial entorhinal cortex and dentate gyrus in the mouse model of Sanfilippo syndrome type B.

    Kazuhiro Ohmi

    Full Text Available Sanfilippo syndrome type B (MPS IIIB is characterized by profound mental retardation in childhood, dementia and death in late adolescence; it is caused by deficiency of α-N-acetylglucosaminidase and resulting lysosomal storage of heparan sulfate. A mouse model, generated by homologous recombination of the Naglu gene, was used to study pathological changes in the brain. We found earlier that neurons in the medial entorhinal cortex (MEC and the dentate gyrus showed a number of secondary defects, including the presence of hyperphosphorylated tau (Ptau detected with antibodies raised against Ptau in Alzheimer disease brain. By further use of immunohistochemistry, we now show staining in neurons of the same area for beta amyloid, extending the resemblance to Alzheimer disease. Ptau inclusions in the dentate gyrus of MPS IIIB mice were reduced in number when the mice were administered LiCl, a specific inhibitor of Gsk3β. Additional proteins found elevated in MEC include proteins involved in autophagy and the heparan sulfate proteoglycans, glypicans 1 and 5, the latter closely related to the primary defect. The level of secondary accumulations was associated with elevation of glypican, as seen by comparing brains of mice at different ages or with different mucopolysaccharide storage diseases. The MEC of an MPS IIIA mouse had the same intense immunostaining for glypican 1 and other markers as MPS IIIB, while MEC of MPS I and MPS II mice had weak staining, and MEC of an MPS VI mouse had no staining at all for the same proteins. A considerable amount of glypican was found in MEC of MPS IIIB mice outside of lysosomes. We propose that it is the extralysosomal glypican that would be harmful to neurons, because its heparan sulfate branches could potentiate the formation of Ptau and beta amyloid aggregates, which would be toxic as well as difficult to degrade.

  17. Initiation of electrographic seizures by neuronal networks in entorhinal and perirhinal cortices in vitro.

    de Guzman, P; D'Antuono, M; Avoli, M

    2004-01-01

    The hippocampus is often considered to play a major role in the pathophysiology of mesial temporal lobe epilepsy. However, emerging clinical and experimental evidence suggests that parahippocampal areas may contribute to a greater extent to limbic seizure initiation, and perhaps epileptogenesis. To date, little is known about the participation of entorhinal and perirhinal networks to epileptiform synchronization. Here, we addressed this issue by using simultaneous field potential recordings in horizontal rat brain slices containing interconnected limbic structures that included the hippocampus proper. Epileptiform discharges were disclosed by bath applying the convulsant drug 4-aminopyridine (50 microM) or by superfusing Mg(2+)-free medium. In the presence of 4-aminopyridine, slow interictal- (duration=2.34+/-0.29 s; interval of occurrence=25.75+/-2.11 s, n=16) and ictal-like (duration=31.25+/-3.34 s; interval of occurrence=196.96+/-21.56 s, n=17) discharges were recorded in entorhinal and perirhinal cortices after abating the propagation of CA3-driven interictal activity to these areas following extended hippocampal knife cuts. Simultaneous recordings obtained from the medial and lateral entorhinal cortex, and from the perirhinal cortex revealed that interictal and ictal discharges could initiate from any of these areas and propagate to the neighboring structure with delays of 8-66 ms. However, slow interictal- and ictal-like events more often originated in the medial entorhinal cortex and perirhinal cortex, respectively. Cutting the connections between entorhinal and perirhinal cortices (n=10), or functional inactivation of cortical areas by local application of a glutamatergic receptor antagonist (n=11) made independent epileptiform activity occur in all areas. These procedures also shortened ictal discharge duration in the entorhinal cortices, but not in the perirhinal area. Similar results could be obtained by applying Mg(2+)-free medium (n=7). These findings

  18. Initiation and slow propagation of epileptiform activity from ventral to dorsal medial entorhinal cortex is constrained by an inhibitory gradient.

    Ridler, Thomas; Matthews, Peter; Phillips, Keith G; Randall, Andrew D; Brown, Jonathan T

    2018-03-31

    The medial entorhinal cortex (mEC) has an important role in initiation and propagation of seizure activity. Several anatomical relationships exist in neurophysiological properties of mEC neurons; however, in the context of hyperexcitability, previous studies often considered it as a homogeneous structure. Using multi-site extracellular recording techniques, ictal-like activity was observed along the dorso-ventral axis of the mEC in vitro in response to various ictogenic stimuli. This originated predominantly from ventral areas, spreading to dorsal mEC with a surprisingly slow velocity. Modulation of inhibitory tone was capable of changing the slope of ictal initiation, suggesting seizure propagation behaviours are highly dependent on levels of GABAergic function in this region. A distinct disinhibition model also showed, in the absence of inhibition, a prevalence for interictal-like initiation in ventral mEC, reflecting the intrinsic differences in mEC neurons. These findings suggest the ventral mEC is more prone to hyperexcitable discharge than the dorsal mEC, which may be relevant under pathological conditions. The medial entorhinal cortex (mEC) has an important role in the generation and propagation of seizure activity. The organization of the mEC is such that a number of dorso-ventral relationships exist in neurophysiological properties of neurons. These range from intrinsic and synaptic properties to density of inhibitory connectivity. We examined the influence of these gradients on generation and propagation of epileptiform activity in the mEC. Using a 16-shank silicon probe array to record along the dorso-ventral axis of the mEC in vitro, we found 4-aminopyridine application produces ictal-like activity originating predominantly in ventral areas. This activity spreads to dorsal mEC at a surprisingly slow velocity (138 μm s -1 ), while cross-site interictal-like activity appeared relatively synchronous. We propose that ictal propagation is constrained by

  19. Laminar and dorsoventral molecular organization of the medial entorhinal cortex revealed by large-scale anatomical analysis of gene expression.

    Helen L Ramsden

    2015-01-01

    Full Text Available Neural circuits in the medial entorhinal cortex (MEC encode an animal's position and orientation in space. Within the MEC spatial representations, including grid and directional firing fields, have a laminar and dorsoventral organization that corresponds to a similar topography of neuronal connectivity and cellular properties. Yet, in part due to the challenges of integrating anatomical data at the resolution of cortical layers and borders, we know little about the molecular components underlying this organization. To address this we develop a new computational pipeline for high-throughput analysis and comparison of in situ hybridization (ISH images at laminar resolution. We apply this pipeline to ISH data for over 16,000 genes in the Allen Brain Atlas and validate our analysis with RNA sequencing of MEC tissue from adult mice. We find that differential gene expression delineates the borders of the MEC with neighboring brain structures and reveals its laminar and dorsoventral organization. We propose a new molecular basis for distinguishing the deep layers of the MEC and show that their similarity to corresponding layers of neocortex is greater than that of superficial layers. Our analysis identifies ion channel-, cell adhesion- and synapse-related genes as candidates for functional differentiation of MEC layers and for encoding of spatial information at different scales along the dorsoventral axis of the MEC. We also reveal laminar organization of genes related to disease pathology and suggest that a high metabolic demand predisposes layer II to neurodegenerative pathology. In principle, our computational pipeline can be applied to high-throughput analysis of many forms of neuroanatomical data. Our results support the hypothesis that differences in gene expression contribute to functional specialization of superficial layers of the MEC and dorsoventral organization of the scale of spatial representations.

  20. Interactions between entorhinal axons and target hippocampal neurons: a role for glutamate in the development of hippocampal circuitry.

    Mattson, M P; Lee, R E; Adams, M E; Guthrie, P B; Kater, S B

    1988-11-01

    A coculture system consisting of input axons from entorhinal cortex explants and target hippocampal pyramidal neurons was used to demonstrate that glutamate, released spontaneously from afferent axons, can influence both dendritic geometry of target neurons and formation of presumptive synaptic sites. Dendritic outgrowth was reduced in hippocampal neurons growing on entorhinal axons when compared with neurons growing off the axons. Presumptive presynaptic sites were observed in association with hippocampal neuron dendrites and somas. HPLC analysis showed that glutamate was released from the explants in an activity- and Ca2(+)-dependent manner. The general glutamate receptor antagonist D-glutamylglycine significantly increased dendritic outgrowth in pyramidal neurons associated with entorhinal axons and reduced presumptive presynaptic sites. Tetrodotoxin and reduction of extracellular Ca2+ also promoted dendritic outgrowth and reduced the formation of presumptive synaptic sites. The results suggest that the neurotransmitter glutamate may play important roles in the development of hippocampal circuitry.

  1. Imidacloprid toxicity impairs spatial memory of echolocation bats through neural apoptosis in hippocampal CA1 and medial entorhinal cortex areas.

    Hsiao, Chun-Jen; Lin, Ching-Lung; Lin, Tian-Yu; Wang, Sheue-Er; Wu, Chung-Hsin

    2016-04-13

    It has been reported that the decimation of honey bees was because of pesticides of imidacloprid. The imidacloprid is a wildly used neonicotinoid insecticide. However, whether imidacloprid toxicity interferes with the spatial memory of echolocation bats is still unclear. Thus, we compared the spatial memory of Formosan leaf-nosed bats, Hipposideros terasensis, before and after chronic treatment with a low dose of imidacloprid. We observed that stereotyped flight patterns of echolocation bats that received chronic imidacloprid treatment were quite different from their originally learned paths. We further found that neural apoptosis in hippocampal CA1 and medial entorhinal cortex areas of echolocation bats that received imidacloprid treatment was significantly enhanced in comparison with echolocation bats that received sham treatment. Thus, we suggest that imidacloprid toxicity may interfere with the spatial memory of echolocation bats through neural apoptosis in hippocampal CA1 and medial entorhinal cortex areas. The results provide direct evidence that pesticide toxicity causes a spatial memory disorder in echolocation bats. This implies that agricultural pesticides may pose severe threats to the survival of echolocation bats.

  2. Phasic and tonic neuron ensemble codes for stimulus-environment conjunctions in the lateral entorhinal cortex.

    Pilkiw, Maryna; Insel, Nathan; Cui, Younghua; Finney, Caitlin; Morrissey, Mark D; Takehara-Nishiuchi, Kaori

    2017-07-06

    The lateral entorhinal cortex (LEC) is thought to bind sensory events with the environment where they took place. To compare the relative influence of transient events and temporally stable environmental stimuli on the firing of LEC cells, we recorded neuron spiking patterns in the region during blocks of a trace eyeblink conditioning paradigm performed in two environments and with different conditioning stimuli. Firing rates of some neurons were phasically selective for conditioned stimuli in a way that depended on which room the rat was in; nearly all neurons were tonically selective for environments in a way that depended on which stimuli had been presented in those environments. As rats moved from one environment to another, tonic neuron ensemble activity exhibited prospective information about the conditioned stimulus associated with the environment. Thus, the LEC formed phasic and tonic codes for event-environment associations, thereby accurately differentiating multiple experiences with overlapping features.

  3. How reduction of theta rhythm by medial septum inactivation may covary with disruption of entorhinal grid cell responses due to reduced cholinergic transmission

    Praveen K. Pilly

    2013-10-01

    Full Text Available Oscillations in the coordinated firing of brain neurons have been proposed to play important roles in perception, cognition, attention, learning, navigation, and sensory-motor control. The network theta rhythm has been associated with properties of spatial navigation, as has the firing of entorhinal grid cells and hippocampal place cells. Two recent studies reduced the theta rhythm by inactivating the medial septum (MS and demonstrated a correlated reduction in the characteristic hexagonal spatial firing patterns of grid cells. These results, along with properties of intrinsic membrane potential oscillations (MPOs in slice preparations of entorhinal cells, have been interpreted to support oscillatory interference models of grid cell firing. The current article shows that an alternative self-organizing map model of grid cells can explain these data about intrinsic and network oscillations without invoking oscillatory interference. In particular, the adverse effects of MS inactivation on grid cells can be understood in terms of how the concomitant reduction in cholinergic inputs may increase the conductances of leak potassium (K+ and slow and medium after-hyperpolarization (sAHP and mAHP channels. This alternative model can also explain data that are problematic for oscillatory interference models, including how knockout of the HCN1 gene in mice, which flattens the dorsoventral gradient in MPO frequency and resonance frequency, does not affect the development of the grid cell dorsoventral gradient of spatial scales, and how hexagonal grid firing fields in bats can occur even in the absence of theta band modulation. These results demonstrate how models of grid cell self-organization can provide new insights into the relationship between brain learning, oscillatory dynamics, and navigational behaviors.

  4. Spiking neurons in a hierarchical self-organizing map model can learn to develop spatial and temporal properties of entorhinal grid cells and hippocampal place cells.

    Praveen K Pilly

    Full Text Available Medial entorhinal grid cells and hippocampal place cells provide neural correlates of spatial representation in the brain. A place cell typically fires whenever an animal is present in one or more spatial regions, or places, of an environment. A grid cell typically fires in multiple spatial regions that form a regular hexagonal grid structure extending throughout the environment. Different grid and place cells prefer spatially offset regions, with their firing fields increasing in size along the dorsoventral axes of the medial entorhinal cortex and hippocampus. The spacing between neighboring fields for a grid cell also increases along the dorsoventral axis. This article presents a neural model whose spiking neurons operate in a hierarchy of self-organizing maps, each obeying the same laws. This spiking GridPlaceMap model simulates how grid cells and place cells may develop. It responds to realistic rat navigational trajectories by learning grid cells with hexagonal grid firing fields of multiple spatial scales and place cells with one or more firing fields that match neurophysiological data about these cells and their development in juvenile rats. The place cells represent much larger spaces than the grid cells, which enable them to support navigational behaviors. Both self-organizing maps amplify and learn to categorize the most frequent and energetic co-occurrences of their inputs. The current results build upon a previous rate-based model of grid and place cell learning, and thus illustrate a general method for converting rate-based adaptive neural models, without the loss of any of their analog properties, into models whose cells obey spiking dynamics. New properties of the spiking GridPlaceMap model include the appearance of theta band modulation. The spiking model also opens a path for implementation in brain-emulating nanochips comprised of networks of noisy spiking neurons with multiple-level adaptive weights for controlling autonomous

  5. Processing of spatial and non-spatial information in rats with lesions of the medial and lateral entorhinal cortex: Environmental complexity matters.

    Rodo, Christophe; Sargolini, Francesca; Save, Etienne

    2017-03-01

    The entorhinal-hippocampal circuitry has been suggested to play an important role in episodic memory but the contribution of the entorhinal cortex remains elusive. Predominant theories propose that the medial entorhinal cortex (MEC) processes spatial information whereas the lateral entorhinal cortex (LEC) processes non spatial information. A recent study using an object exploration task has suggested that the involvement of the MEC and LEC spatial and non-spatial information processing could be modulated by the amount of information to be processed, i.e. environmental complexity. To address this hypothesis we used an object exploration task in which rats with excitotoxic lesions of the MEC and LEC had to detect spatial and non-spatial novelty among a set of objects and we varied environmental complexity by decreasing the number of objects or amount of object diversity. Reducing diversity resulted in restored ability to process spatial and non-spatial information in MEC and LEC groups, respectively. Reducing the number of objects yielded restored ability to process non-spatial information in the LEC group but not the ability to process spatial information in the MEC group. The findings indicate that the MEC and LEC are not strictly necessary for spatial and non-spatial processing but that their involvement depends on the complexity of the information to be processed. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Morphology and kainate-receptor immunoreactivity of identified neurons within the entorhinal cortex projecting to superior temporal sulcus in the cynomolgus monkey

    Good, P. F.; Morrison, J. H.; Bloom, F. E. (Principal Investigator)

    1995-01-01

    Projections of the entorhinal cortex to the hippocampus are well known from the classical studies of Cajal (Ramon y Cajal, 1904) and Lorente de No (1933). Projections from the entorhinal cortex to neocortical areas are less well understood. Such connectivity is likely to underlie the consolidation of long-term declarative memory in neocortical sites. In the present study, a projection arising in layer V of the entorhinal cortex and terminating in a polymodal association area of the superior temporal gyrus has been identified with the use of retrograde tracing. The dendritic arbors of neurons giving rise to this projection were further investigated by cell filling and confocal microscopy with computer reconstruction. This analysis demonstrated that the dendritic arbor of identified projection neurons was largely confined to layer V, with the exception of a solitary, simple apical dendrite occasionally ascending to superficial laminae but often confined to the lamina dissecans (layer IV). Finally, immunoreactivity for glutamate-receptor subunit proteins GluR 5/6/7 of the dendritic arbor of identified entorhinal projection neurons was examined. The solitary apical dendrite of identified entorhinal projection neurons was prominently immunolabeled for GluR 5/6/7, as was the dendritic arbor of basilar dendrites of these neurons. The restriction of the large bulk of the dendritic arbor of identified entorhinal projection neurons to layer V implies that these neurons are likely to be heavily influenced by hippocampal output arriving in the deep layers of the entorhinal cortex. Immunoreactivity for GluR 5/6/7 throughout the dendritic arbor of such neurons indicates that this class of glutamate receptor is in a position to play a prominent role in mediating excitatory neurotransmission within hippocampal-entorhinal circuits.

  7. Synaptic conductances during interictal discharges in pyramidal neurons of rat entorhinal cortex

    Dmitry V. Amakhin

    2016-10-01

    Full Text Available In epilepsy, the balance of excitation and inhibition underlying the basis of neural network activity shifts, resulting in neuronal network hyperexcitability and recurrent seizure-associated discharges. Mechanisms involved in ictal and interictal events are not fully understood, in particular, because of controversial data regarding the dynamics of excitatory and inhibitory synaptic conductances. In the present study, we estimated AMPAR-, NMDAR-, and GABAAR-mediated conductances during two distinct types of interictal discharge (IID in pyramidal neurons of rat entorhinal cortex in cortico-hippocampal slices. Repetitively emerging seizure-like events and IIDs were recorded in high extracellular potassium, 4-aminopyridine, and reduced magnesium-containing solution. An original procedure for estimating synaptic conductance during IIDs was based on the differences among the current-voltage characteristics of the synaptic components. The synaptic conductance dynamics obtained revealed that the first type of IID is determined by activity of GABAAR channels with depolarized reversal potential. The second type of IID is determined by the interplay between excitation and inhibition, with prominent early AMPAR and prolonged depolarized GABAAR and NMDAR-mediated components. The study then validated the contribution of these components to IIDs by intracellular pharmacological isolation. These data provide new insights into the mechanisms of seizures generation, development, and cessation.

  8. The mechanism of abrupt transition between theta and hyper-excitable spiking activity in medial entorhinal cortex layer II stellate cells.

    Tilman Kispersky

    2010-11-01

    Full Text Available Recent studies have shown that stellate cells (SCs of the medial entorhinal cortex become hyper-excitable in animal models of temporal lobe epilepsy. These studies have also demonstrated the existence of recurrent connections among SCs, reduced levels of recurrent inhibition in epileptic networks as compared to control ones, and comparable levels of recurrent excitation among SCs in both network types. In this work, we investigate the biophysical and dynamic mechanism of generation of the fast time scale corresponding to hyper-excitable firing and the transition between theta and fast firing frequency activity in SCs. We show that recurrently connected minimal networks of SCs exhibit abrupt, threshold-like transition between theta and hyper-excitable firing frequencies as the result of small changes in the maximal synaptic (AMPAergic conductance. The threshold required for this transition is modulated by synaptic inhibition. Similar abrupt transition between firing frequency regimes can be observed in single, self-coupled SCs, which represent a network of recurrently coupled neurons synchronized in phase, but not in synaptically isolated SCs as the result of changes in the levels of the tonic drive. Using dynamical systems tools (phase-space analysis, we explain the dynamic mechanism underlying the genesis of the fast time scale and the abrupt transition between firing frequency regimes, their dependence on the intrinsic SC's currents and synaptic excitation. This abrupt transition is mechanistically different from others observed in similar networks with different cell types. Most notably, there is no bistability involved. 'In vitro' experiments using single SCs self-coupled with dynamic clamp show the abrupt transition between firing frequency regimes, and demonstrate that our theoretical predictions are not an artifact of the model. In addition, these experiments show that high-frequency firing is burst-like with a duration modulated by an M-current.

  9. Two-population model for medial temporal lobe neurons: The vast majority are almost silent.

    Magyar, Andrew; Collins, John

    2015-07-01

    Recordings in the human medial temporal lobe have found many neurons that respond to pictures (and related stimuli) of just one particular person of those presented. It has been proposed that these are concept cells, responding to just a single concept. However, a direct experimental test of the concept cell idea appears impossible, because it would need the measurement of the response of each cell to enormous numbers of other stimuli. Here we propose a new statistical method for analysis of the data that gives a more powerful way to analyze how close data are to the concept-cell idea. Central to the model is the neuronal sparsity, defined as the total fraction of stimuli that elicit an above-threshold response in the neuron. The model exploits the large number of sampled neurons to give sensitivity to situations where the average response sparsity is much less than one response for the number of presented stimuli. We show that a conventional model where a single sparsity is postulated for all neurons gives an extremely poor fit to the data. In contrast, a model with two dramatically different populations gives an excellent fit to data from the hippocampus and entorhinal cortex. In the hippocampus, one population has 7% of the cells with a 2.6% sparsity. But a much larger fraction (93%) respond to only 0.1% of the stimuli. This can result in an extreme bias in the responsiveness of reported neurons compared with a typical neuron. Finally, we show how to allow for the fact that some identified units correspond to multiple neurons and find that our conclusions at the neural level are quantitatively changed but strengthened, with an even stronger difference between the two populations.

  10. Single-neuron correlates of subjective vision in the human medial temporal lobe

    Kreiman, Gabriel; Fried, Itzhak; Koch, Christof

    2002-01-01

    Visual information from the environment is transformed into perceptual sensations through several stages of neuronal processing. Flash suppression constitutes a striking example in which the same retinal input can give rise to two different conscious visual percepts. We directly recorded the responses of individual neurons during flash suppression in the human amygdala, entorhinal cortex, hippocampus, and parahippocampal gyrus, allowing us to explore the neuronal responses in untrained subjec...

  11. The medial prefrontal cortex-lateral entorhinal cortex circuit is essential for episodic-like memory and associative object-recognition.

    Chao, Owen Y; Huston, Joseph P; Li, Jay-Shake; Wang, An-Li; de Souza Silva, Maria A

    2016-05-01

    The prefrontal cortex directly projects to the lateral entorhinal cortex (LEC), an important substrate for engaging item-associated information and relaying the information to the hippocampus. Here we ask to what extent the communication between the prefrontal cortex and LEC is critically involved in the processing of episodic-like memory. We applied a disconnection procedure to test whether the interaction between the medial prefrontal cortex (mPFC) and LEC is essential for the expression of recognition memory. It was found that male rats that received unilateral NMDA lesions of the mPFC and LEC in the same hemisphere, exhibited intact episodic-like (what-where-when) and object-recognition memories. When these lesions were placed in the opposite hemispheres (disconnection), episodic-like and associative memories for object identity, location and context were impaired. However, the disconnection did not impair the components of episodic memory, namely memory for novel object (what), object place (where) and temporal order (when), per se. Thus, the present findings suggest that the mPFC and LEC are a critical part of a neural circuit that underlies episodic-like and associative object-recognition memory. © 2015 Wiley Periodicals, Inc.

  12. Medial Entorhinal Grid Cells and Head Direction Cells Rotate with a T-Maze More Often During Less Recently Experienced Rotations

    Gupta, Kishan; Beer, Nathan J.; Keller, Lauren A.; Hasselmo, Michael E.

    2014-01-01

    Prior studies of head direction (HD) cells indicate strong landmark control over the preferred firing direction of these cells, with few studies exhibiting shifts away from local reference frames over time. We recorded spiking activity of grid and HD cells in the medial entorhinal cortex of rats, testing correlations of local environmental cues with the spatial tuning curves of these cells' firing fields as animals performed continuous spatial alternation on a T-maze that shared the boundaries of an open-field arena. The environment was rotated into configurations the animal had either seen or not seen in the past recording week. Tuning curves of both cell types demonstrated commensurate shifts of tuning with T-maze rotations during less recent rotations, more so than recent rotations. This strongly suggests that animals are shifting their reference frame away from the local environmental cues over time, learning to use a different reference frame more likely reliant on distal or idiothetic cues. In addition, grid fields demonstrated varying levels of “fragmentation” on the T-maze. The propensity for fragmentation does not depend on grid spacing and grid score, nor animal trajectory, indicating the cognitive treatment of environmental subcompartments is likely driven by task demands. PMID:23382518

  13. Age-related Changes in Lateral Entorhinal and CA3 Neuron Allocation Predict Poor Performance on Object Discrimination

    Andrew P. Maurer

    2017-06-01

    Full Text Available Age-related memory deficits correlate with dysfunction in the CA3 subregion of the hippocampus, which includes both hyperactivity and overly rigid activity patterns. While changes in intrinsic membrane currents and interneuron alterations are involved in this process, it is not known whether alterations in afferent input to CA3 also contribute. Neurons in layer II of the lateral entorhinal cortex (LEC project directly to CA3 through the perforant path, but no data are available regarding the effects of advanced age on LEC activity and whether these activity patterns update in response to environmental change. Furthermore, it is not known the extent to which age-related deficits in sensory discrimination relate to the inability of aged CA3 neurons to update in response to new environments. Young and aged rats were pre-characterized on a LEGO© object discrimination task, comparable to behavioral tests in humans in which CA3 hyperactivity has been linked to impairments. The cellular compartment analysis of temporal activity with fluorescence in situ hybridization for the immediate-early gene Arc was then used to identify the principal cell populations that were active during two distinct epochs of random foraging in different environments. This approach enabled the extent to which rats could discriminate two similar objects to be related to the ability of CA3 neurons to update across different environments. In both young and aged rats, there were animals that performed poorly on the LEGO object discrimination task. In the aged rats only, however, the poor performers had a higher percent of CA3 neurons that were active during random foraging in a novel environment, but this is not related to the ability of CA3 neurons to remap when the environment changed. Afferent neurons to CA3 in LEC, as identified with the retrograde tracer choleratoxin B (CTB, also showed a higher percentage of cells that were positive for Arc mRNA in aged poor performing rats

  14. Shared rhythmic subcortical GABAergic input to the entorhinal cortex and presubiculum.

    Viney, Tim James; Salib, Minas; Joshi, Abhilasha; Unal, Gunes; Berry, Naomi; Somogyi, Peter

    2018-04-05

    Rhythmic theta frequency (~5-12 Hz) oscillations coordinate neuronal synchrony and higher frequency oscillations across the cortex. Spatial navigation and context-dependent episodic memories are represented in several interconnected regions including the hippocampal and entorhinal cortices, but the cellular mechanisms for their dynamic coupling remain to be defined. Using monosynaptically-restricted retrograde viral tracing in mice, we identified a subcortical GABAergic input from the medial septum that terminated in the entorhinal cortex, with collaterals innervating the dorsal presubiculum. Extracellularly recording and labeling GABAergic entorhinal-projecting neurons in awake behaving mice show that these subcortical neurons, named orchid cells, fire in long rhythmic bursts during immobility and locomotion. Orchid cells discharge near the peak of hippocampal and entorhinal theta oscillations, couple to entorhinal gamma oscillations, and target subpopulations of extra-hippocampal GABAergic interneurons. Thus, orchid cells are a specialized source of rhythmic subcortical GABAergic modulation of 'upstream' and 'downstream' cortico-cortical circuits involved in mnemonic functions. © 2018, Viney et al.

  15. Sonic hedgehog expressing and responding cells generate neuronal diversity in the medial amygdala

    Machold Robert P

    2010-05-01

    Full Text Available Abstract Background The mammalian amygdala is composed of two primary functional subdivisions, classified according to whether the major output projection of each nucleus is excitatory or inhibitory. The posterior dorsal and ventral subdivisions of the medial amygdala, which primarily contain inhibitory output neurons, modulate specific aspects of innate socio-sexual and aggressive behaviors. However, the development of the neuronal diversity of this complex and important structure remains to be fully elucidated. Results Using a combination of genetic fate-mapping and loss-of-function analyses, we examined the contribution and function of Sonic hedgehog (Shh-expressing and Shh-responsive (Nkx2-1+ and Gli1+ neurons in the medial amygdala. Specifically, we found that Shh- and Nkx2-1-lineage cells contribute differentially to the dorsal and ventral subdivisions of the postnatal medial amygdala. These Shh- and Nkx2-1-lineage neurons express overlapping and non-overlapping inhibitory neuronal markers, such as Calbindin, FoxP2, nNOS and Somatostatin, revealing diverse fate contributions in discrete medial amygdala nuclear subdivisions. Electrophysiological analysis of the Shh-derived neurons additionally reveals an important functional diversity within this lineage in the medial amygdala. Moreover, inducible Gli1CreER(T2 temporal fate mapping shows that early-generated progenitors that respond to Shh signaling also contribute to medial amygdala neuronal diversity. Lastly, analysis of Nkx2-1 mutant mice demonstrates a genetic requirement for Nkx2-1 in inhibitory neuronal specification in the medial amygdala distinct from the requirement for Nkx2-1 in cerebral cortical development. Conclusions Taken together, these data reveal a differential contribution of Shh-expressing and Shh-responding cells to medial amygdala neuronal diversity as well as the function of Nkx2-1 in the development of this important limbic system structure.

  16. Prenatal cocaine exposure decreases parvalbumin-immunoreactive neurons and GABA-to-projection neuron ratio in the medial prefrontal cortex.

    McCarthy, Deirdre M; Bhide, Pradeep G

    2012-01-01

    Cocaine abuse during pregnancy produces harmful effects not only on the mother but also on the unborn child. The neurotransmitters dopamine and serotonin are known as the principal targets of the action of cocaine in the fetal and postnatal brain. However, recent evidence suggests that cocaine can impair cerebral cortical GABA neuron development and function. We sought to analyze the effects of prenatal cocaine exposure on the number and distribution of GABA and projection neurons (inhibitory interneurons and excitatory output neurons, respectively) in the mouse cerebral cortex. We found that the prenatal cocaine exposure decreased GABA neuron numbers and GABA-to-projection neuron ratio in the medial prefrontal cortex of 60-day-old mice. The neighboring prefrontal cortex did not show significant changes in either of these measures. However, there was a significant increase in projection neuron numbers in the prefrontal cortex but not in the medial prefrontal cortex. Thus, the effects of cocaine on GABA and projection neurons appear to be cortical region specific. The population of parvalbumin-immunoreactive GABA neurons was decreased in the medial prefrontal cortex following the prenatal cocaine exposure. The cocaine exposure also delayed the developmental decline in the volume of the medial prefrontal cortex. Thus, prenatal cocaine exposure produced persisting and region-specific effects on cortical cytoarchitecture and impaired the physiological balance between excitatory and inhibitory neurotransmission. These structural changes may underlie the electrophysiological and behavioral effects of prenatal cocaine exposure observed in animal models and human subjects. Copyright © 2012 S. Karger AG, Basel.

  17. Encoding and retrieval of artificial visuoauditory memory traces in the auditory cortex requires the entorhinal cortex.

    Chen, Xi; Guo, Yiping; Feng, Jingyu; Liao, Zhengli; Li, Xinjian; Wang, Haitao; Li, Xiao; He, Jufang

    2013-06-12

    Damage to the medial temporal lobe impairs the encoding of new memories and the retrieval of memories acquired immediately before the damage in human. In this study, we demonstrated that artificial visuoauditory memory traces can be established in the rat auditory cortex and that their encoding and retrieval depend on the entorhinal cortex of the medial temporal lobe in the rat. We trained rats to associate a visual stimulus with electrical stimulation of the auditory cortex using a classical conditioning protocol. After conditioning, we examined the associative memory traces electrophysiologically (i.e., visual stimulus-evoked responses of auditory cortical neurons) and behaviorally (i.e., visual stimulus-induced freezing and visual stimulus-guided reward retrieval). The establishment of a visuoauditory memory trace in the auditory cortex, which was detectable by electrophysiological recordings, was achieved over 20-30 conditioning trials and was blocked by unilateral, temporary inactivation of the entorhinal cortex. Retrieval of a previously established visuoauditory memory was also affected by unilateral entorhinal cortex inactivation. These findings suggest that the entorhinal cortex is necessary for the encoding and involved in the retrieval of artificial visuoauditory memory in the auditory cortex, at least during the early stages of memory consolidation.

  18. Entorhinal Cortex: Antemortem Cortical Thickness and Postmortem Neurofibrillary Tangles and Amyloid Pathology.

    Thaker, A A; Weinberg, B D; Dillon, W P; Hess, C P; Cabral, H J; Fleischman, D A; Leurgans, S E; Bennett, D A; Hyman, B T; Albert, M S; Killiany, R J; Fischl, B; Dale, A M; Desikan, R S

    2017-05-01

    The entorhinal cortex, a critical gateway between the neocortex and hippocampus, is one of the earliest regions affected by Alzheimer disease-associated neurofibrillary tangle pathology. Although our prior work has automatically delineated an MR imaging-based measure of the entorhinal cortex, whether antemortem entorhinal cortex thickness is associated with postmortem tangle burden within the entorhinal cortex is still unknown. Our objective was to evaluate the relationship between antemortem MRI measures of entorhinal cortex thickness and postmortem neuropathological measures. We evaluated 50 participants from the Rush Memory and Aging Project with antemortem structural T1-weighted MR imaging and postmortem neuropathologic assessments. Here, we focused on thickness within the entorhinal cortex as anatomically defined by our previously developed MR imaging parcellation system (Desikan-Killiany Atlas in FreeSurfer). Using linear regression, we evaluated the association between entorhinal cortex thickness and tangles and amyloid-β load within the entorhinal cortex and medial temporal and neocortical regions. We found a significant relationship between antemortem entorhinal cortex thickness and entorhinal cortex ( P = .006) and medial temporal lobe tangles ( P = .002); we found no relationship between entorhinal cortex thickness and entorhinal cortex ( P = .09) and medial temporal lobe amyloid-β ( P = .09). We also found a significant association between entorhinal cortex thickness and cortical tangles ( P = .003) and amyloid-β ( P = .01). We found no relationship between parahippocampal gyrus thickness and entorhinal cortex ( P = .31) and medial temporal lobe tangles ( P = .051). Our findings indicate that entorhinal cortex-associated in vivo cortical thinning may represent a marker of postmortem medial temporal and neocortical Alzheimer disease pathology. © 2017 by American Journal of Neuroradiology.

  19. Entorhinal volume, aerobic fitness, and recognition memory in healthy young adults: A voxel-based morphometry study.

    Whiteman, Andrew S; Young, Daniel E; Budson, Andrew E; Stern, Chantal E; Schon, Karin

    2016-02-01

    Converging evidence supports the hypothesis effects of aerobic exercise and environmental enrichment are beneficial for cognition, in particular for hippocampus-supported learning and memory. Recent work in humans suggests that exercise training induces changes in hippocampal volume, but it is not known if aerobic exercise and fitness also impact the entorhinal cortex. In animal models, aerobic exercise increases expression of growth factors, including brain derived neurotrophic factor (BDNF). This exercise-enhanced expression of growth hormones may boost synaptic plasticity, and neuronal survival and differentiation, potentially supporting function and structure in brain areas including but not limited to the hippocampus. Here, using voxel based morphometry and a standard graded treadmill test to determine cardio-respiratory fitness (Bruce protocol; ·VO2 max), we examined if entorhinal and hippocampal volumes were associated with cardio-respiratory fitness in healthy young adults (N=33). In addition, we examined if volumes were modulated by recognition memory performance and by serum BDNF, a putative marker of synaptic plasticity. Our results show a positive association between volume in right entorhinal cortex and cardio-respiratory fitness. In addition, average gray matter volume in the entorhinal cortex, bilaterally, was positively associated with memory performance. These data extend prior work on the cerebral effects of aerobic exercise and fitness to the entorhinal cortex in healthy young adults thus providing compelling evidence for a relationship between aerobic fitness and structure of the medial temporal lobe memory system. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Estrogen receptor-a in medial amygdala neurons regulates body weight

    Estrogen receptor–a (ERa) activity in the brain prevents obesity in both males and females. However, the ERa-expressing neural populations that regulate body weight remain to be fully elucidated. Here we showed that single-minded–1 (SIM1) neurons in the medial amygdala (MeA) express abundant levels ...

  1. Prenatal Nicotine Exposure Impairs the Proliferation of Neuronal Progenitors, Leading to Fewer Glutamatergic Neurons in the Medial Prefrontal Cortex

    Aoyama, Yuki; Toriumi, Kazuya; Mouri, Akihiro; Hattori, Tomoya; Ueda, Eriko; Shimato, Akane; Sakakibara, Nami; Soh, Yuka; Mamiya, Takayoshi; Nagai, Taku; Kim, Hyoung-Chun; Hiramatsu, Masayuki; Nabeshima, Toshitaka; Yamada, Kiyofumi

    2016-01-01

    Cigarette smoking during pregnancy is associated with various disabilities in the offspring such as attention deficit/hyperactivity disorder, learning disabilities, and persistent anxiety. We have reported that nicotine exposure in female mice during pregnancy, in particular from embryonic day 14 (E14) to postnatal day 0 (P0), induces long-lasting behavioral deficits in offspring. However, the mechanism by which prenatal nicotine exposure (PNE) affects neurodevelopment, resulting in behavioral deficits, has remained unclear. Here, we report that PNE disrupted the proliferation of neuronal progenitors, leading to a decrease in the progenitor pool in the ventricular and subventricular zones. In addition, using a cumulative 5-bromo-2′-deoxyuridine labeling assay, we evaluated the rate of cell cycle progression causing the impairment of neuronal progenitor proliferation, and uncovered anomalous cell cycle kinetics in mice with PNE. Accordingly, the density of glutamatergic neurons in the medial prefrontal cortex (medial PFC) was reduced, implying glutamatergic dysregulation. Mice with PNE exhibited behavioral impairments in attentional function and behavioral flexibility in adulthood, and the deficits were ameliorated by microinjection of D-cycloserine into the PFC. Collectively, our findings suggest that PNE affects the proliferation and maturation of progenitor cells to glutamatergic neuron during neurodevelopment in the medial PFC, which may be associated with cognitive deficits in the offspring. PMID:26105135

  2. Multiple functional attributes of glucose-monitoring neurons in the medial orbitofrontal (ventrolateral prefrontal) cortex.

    Szabó, István; Hormay, Edina; Csetényi, Bettina; Nagy, Bernadett; Lénárd, László; Karádi, Zoltán

    2018-02-01

    Multiple functional attributes of glucose-monitoring neurons in the medial orbitofrontal (ventrolateral prefrontal) cortex. NEUROSCI BIOBEHAV REV 73(1) XXX-XXX, 2017.- Special chemosensory cells, the glucose-monitoring (GM) neurons, reportedly involved in the central feeding control, exist in the medial orbitofrontal (ventrolateral prefrontal) cortex (mVLPFC). Electrophysiological, metabolic and behavioral studies reveal complex functional attributes of these cells and raise their homeostatic significance. Single neuron recordings, by means of the multibarreled microelectrophoretic technique, elucidate differential sensitivities of limbic forebrain neurons in the rat and the rhesus monkey to glucose and other chemicals, whereas gustatory stimulations demonstrate their distinct taste responsiveness. Metabolic examinations provide evidence for alteration of blood glucose level in glucose tolerance test and elevation of plasma triglyceride concentration after destruction of the local GM cells by streptozotocin (STZ). In behavioral studies, STZ microinjection into the mVLPFC fails to interfere with the acquisition of saccharin conditioned taste avoidance, does cause, however, taste perception deficit in taste reactivity tests. Multiple functional attributes of GM neurons in the mVLPFC, within the frame of the hierarchically organized central GM neuronal network, appear to play important role in the maintenance of the homeostatic balance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Strategic neuronal encoding in medial prefrontal cortex of spatial working memory in the T-maze.

    Yang, Yang; Mailman, Richard B

    2018-05-02

    Strategic neuronal encoding in the medial prefrontal cortex (mPFC) of the rat was correlated with spatial working memory (sWM) assessed by behavior in the T-maze. Neurons increased their firing rate around choice, with the increase largely occurring before choice as a prospective encode of behavior. This could be classified as sensitive-to-spatial information or sensitive-to-choice outcome. The sensitivity-to-spatial choice was defined by distinct firing rate changes before left- or right-choice. The percentage of left-choice sensitive neurons was not different from the percentage of right-choice sensitive neurons. There was also location-related neuronal activity in which neurons fired at distinct rates when rats were in a left- or right-location. More neurons were sensitive to left-location, as most of them were recorded from rats preferring to enter the right-location. The sensitivity to outcome was defined by a distinct firing rate around correct or error choice. Significantly more neurons were sensitive to error outcome, and, among these, more preferred to encode prospectively, increasing firing in advance of an error outcome. Similar to single neuron activity, the mPFC enhanced its neuronal network as measured by the oscillation of local field potential. The maximum power of oscillation was around choice, and occurred slightly earlier before error versus before correct outcome. Thus, sWM modulation in the mPFC includes not only spatial, but also outcome-related inputs, and neuronal ensembles monitor behavioral outcome to make strategic adjustments ensuring successful task performance. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Architecture of the Entorhinal Cortex A Review of Entorhinal Anatomy in Rodents with Some Comparative Notes

    Menno P. Witter

    2017-06-01

    Full Text Available The entorhinal cortex (EC is the major input and output structure of the hippocampal formation, forming the nodal point in cortico-hippocampal circuits. Different division schemes including two or many more subdivisions have been proposed, but here we will argue that subdividing EC into two components, the lateral EC (LEC and medial EC (MEC might suffice to describe the functional architecture of EC. This subdivision then leads to an anatomical interpretation of the different phenotypes of LEC and MEC. First, we will briefly summarize the cytoarchitectonic differences and differences in hippocampal projection patterns on which the subdivision between LEC and MEC traditionally is based and provide a short comparative perspective. Second, we focus on main differences in cortical connectivity, leading to the conclusion that the apparent differences may well correlate with the functional differences. Cortical connectivity of MEC is features interactions with areas such as the presubiculum, parasubiculum, retrosplenial cortex (RSC and postrhinal cortex, all areas that are considered to belong to the “spatial processing domain” of the cortex. In contrast, LEC is strongly connected with olfactory areas, insular, medial- and orbitofrontal areas and perirhinal cortex. These areas are likely more involved in processing of object information, attention and motivation. Third, we will compare the intrinsic networks involving principal- and inter-neurons in LEC and MEC. Together, these observations suggest that the different phenotypes of both EC subdivisions likely depend on the combination of intrinsic organization and specific sets of inputs. We further suggest a reappraisal of the notion of EC as a layered input-output structure for the hippocampal formation.

  5. Medial septal GABAergic projection neurons promote object exploration behavior and type 2 theta rhythm

    Gangadharan, Gireesh; Shin, Jonghan; Kim, Seong-Wook; Kim, Angela; Paydar, Afshin; Kim, Duk-Soo; Miyazaki, Taisuke; Watanabe, Masahiko; Yanagawa, Yuchio; Kim, Jinhyun; Kim, Yeon-Soo; Kim, Daesoo; Shin, Hee-Sup

    2016-01-01

    Exploratory drive is one of the most fundamental emotions, of all organisms, that are evoked by novelty stimulation. Exploratory behavior plays a fundamental role in motivation, learning, and well-being of organisms. Diverse exploratory behaviors have been described, although their heterogeneity is not certain because of the lack of solid experimental evidence for their distinction. Here we present results demonstrating that different neural mechanisms underlie different exploratory behaviors. Localized Cav3.1 knockdown in the medial septum (MS) selectively enhanced object exploration, whereas the null mutant (KO) mice showed enhanced-object exploration as well as open-field exploration. In MS knockdown mice, only type 2 hippocampal theta rhythm was enhanced, whereas both type 1 and type 2 theta rhythm were enhanced in KO mice. This selective effect was accompanied by markedly increased excitability of septo-hippocampal GABAergic projection neurons in the MS lacking T-type Ca2+ channels. Furthermore, optogenetic activation of the septo-hippocampal GABAergic pathway in WT mice also selectively enhanced object exploration behavior and type 2 theta rhythm, whereas inhibition of the same pathway decreased the behavior and the rhythm. These findings define object exploration distinguished from open-field exploration and reveal a critical role of T-type Ca2+ channels in the medial septal GABAergic projection neurons in this behavior. PMID:27208094

  6. Increased neuronal firing in resting and sleep in areas of the macaque medial prefrontal cortex.

    Gabbott, Paul L; Rolls, Edmund T

    2013-06-01

    The medial prefrontal cortex (mPFC) of humans and macaques is an integral part of the default mode network and is a brain region that shows increased activation in the resting state. A previous paper from our laboratory reported significantly increased firing rates of neurons in the macaque subgenual cingulate cortex, Brodmann area (BA) 25, during disengagement from a task and also during slow wave sleep [E.T. Rolls et al. (2003) J. Neurophysiology, 90, 134-142]. Here we report the finding that there are neurons in other areas of mPFC that also increase their firing rates during disengagement from a task, drowsiness and eye-closure. During the neurophysiological recording of single mPFC cells (n = 249) in BAs 9, 10, 13 m, 14c, 24b and especially pregenual area 32, populations of neurons were identified whose firing rates altered significantly with eye-closure compared with eye-opening. Three types of neuron were identified: Type 1 cells (28.1% of the total population) significantly increased (mean + 329%; P ≪ 0.01) their average firing rate with eye-closure, from 3.1 spikes/s when awake to 10.2 spikes/s when asleep; Type 2 cells (6.0%) significantly decreased (mean -68%; P areas of mPFC, implicated in the anterior default mode network, there is a substantial population of neurons that significantly increase their firing rates during periods of eye-closure. Such neurons may be part of an interconnected network of distributed brain regions that are more active during periods of relaxed wakefulness than during attention-demanding tasks. © 2013 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  7. Mediodorsal Thalamic Neurons Mirror the Activity of Medial Prefrontal Neurons Responding to Movement and Reinforcement during a Dynamic DNMTP Task.

    Miller, Rikki L A; Francoeur, Miranda J; Gibson, Brett M; Mair, Robert G

    2017-01-01

    The mediodorsal nucleus (MD) interacts with medial prefrontal cortex (mPFC) to support learning and adaptive decision-making. MD receives driver (layer 5) and modulatory (layer 6) projections from PFC and is the main source of driver thalamic projections to middle cortical layers of PFC. Little is known about the activity of MD neurons and their influence on PFC during decision-making. We recorded MD neurons in rats performing a dynamic delayed nonmatching to position (dDNMTP) task and compared results to a previous study of mPFC with the same task (Onos et al., 2016). Criterion event-related responses were observed for 22% (254/1179) of neurons recorded in MD, 237 (93%) of which exhibited activity consistent with mPFC response types. More MD than mPFC neurons exhibited responses related to movement (45% vs. 29%) and reinforcement (51% vs. 27%). MD had few responses related to lever presses, and none related to preparation or memory delay, which constituted 43% of event-related activity in mPFC. Comparison of averaged normalized population activity and population response times confirmed the broad similarity of common response types in MD and mPFC and revealed differences in the onset and offset of some response types. Our results show that MD represents information about actions and outcomes essential for decision-making during dDNMTP, consistent with evidence from lesion studies that MD supports reward-based learning and action-selection. These findings support the hypothesis that MD reinforces task-relevant neural activity in PFC that gives rise to adaptive behavior.

  8. Neurosteroid modulation of neuronal excitability and synaptic transmission in the rat medial vestibular nuclei.

    Grassi, Silvarosa; Frondaroli, Adele; Dieni, Cristina; Dutia, Mayank B; Pettorossi, Vito E

    2007-07-01

    In rat brainstem slices, we investigated the influence of the neurosteroids tetrahydrodeoxycorticosterone (THDOC) and allopregnanolone (ALLO) on the synaptically driven and spontaneous activity of vestibular neurons, by analysing their effects on the amplitude of the field potentials evoked in the medial vestibular nuclei (MVN) by vestibular afferent stimulation and on the spontaneous firing rate of MVN neurons. Furthermore, the interaction with gamma-aminobutyric acid (GABA) and glutamate receptors was analysed by using specific antagonists for GABA(A) (bicuculline), alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/ kainate [2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo(f)quinoxaline-7-sulphonamide disodium salt (NBQX)], N-methyl-D-aspartate (NMDA) [D-(-)-2-amino-5-phosphonopentanoic acid (AP-5)] and group I metabotropic glutamate receptors (mGlu-I) [(R,S)-1-aminoindan-1,5-dicarboxylic acid (AIDA)] receptors. THDOC and ALLO evoked two opposite long-lasting effects, consisting of either a potentiation or a reduction of field potential and firing rate, which showed early and late components, occurring in conjunction or separately after neurosteroid application. The depressions depended on GABA(A) receptors, as they were abolished by bicuculline, while early potentiation involved glutamate AMPA/kainate receptors, as NBQX markedly reduced the incidence of early firing rate enhancement and, in the case of ALLO, even provoked depression. This suggests that THDOC and ALLO enhance the GABA(A) inhibitory influence on the MVN neurons and facilitate the AMPA/kainate facilitatory one. Conversely, a late potentiation effect, which was still induced after glutamate and GABA(A) receptor blockade, might involve a different mechanism. We conclude that the modulation of neuronal activity in the MVN by THDOC and ALLO, through their actions on GABA(A) and AMPA/kainate receptors, may have a physiological role in regulating the vestibular system function under normal

  9. Kisspeptin neurones in the posterodorsal medial amygdala modulate sexual partner preference and anxiety in male mice.

    Adekunbi, D A; Li, X F; Lass, G; Shetty, K; Adegoke, O A; Yeo, S H; Colledge, W H; Lightman, S L; O'Byrne, K T

    2018-03-01

    The posterodorsal medial amygdala (MePD) is a neural site in the limbic brain involved in regulating emotional and sexual behaviours. There is, however, limited information available on the specific neuronal cell type in the MePD functionally mediating these behaviours in rodents. The recent discovery of a significant kisspeptin neurone population in the MePD has raised interest in the possible role of kisspeptin and its cognate receptor in sexual behaviour. The present study therefore tested the hypothesis that the MePD kisspeptin neurone population is involved in regulating attraction towards opposite sex conspecifics, sexual behaviour, social interaction and the anxiety response by selectively stimulating these neurones using the novel pharmacosynthetic DREADDs (designer receptors exclusively activated by designer drugs) technique. Adult male Kiss-Cre mice received bilateral stereotaxic injections of a stimulatory DREADD viral construct (AAV-hSyn-DIO-hM 3 D(Gq)-mCherry) targeted to the MePD, with subsequent activation by i.p. injection of clozapine-N-oxide (CNO). Socio-sexual behaviours were assessed in a counter-balanced fashion after i.p. injection of either saline or CNO (5 mg kg -1 ). Selective activation of MePD kisspeptin neurones by CNO significantly increased the time spent by male mice in investigating an oestrous female, as well as the duration of social interaction. Additionally, after CNO injection, the mice appeared less anxious, as indicated by a longer exploratory time in the open arms of the elevated plus maze. However, levels of copulatory behaviour were comparable between CNO and saline-treated controls. These data indicate that DREADD-induced activation of MePD kisspeptin neurones enhances both sexual partner preference in males and social interaction and also decreases anxiety, suggesting a key role played by MePD kisspeptin in sexual motivation and social behaviour. © 2018 The Authors. Journal of Neuroendocrinology published by John Wiley

  10. Mechanisms Underlying Serotonergic Excitation of Callosal Projection Neurons in the Mouse Medial Prefrontal Cortex

    Emily K. Stephens

    2018-01-01

    Full Text Available Serotonin (5-HT selectively excites subpopulations of pyramidal neurons in the neocortex via activation of 5-HT2A (2A receptors coupled to Gq subtype G-protein alpha subunits. Gq-mediated excitatory responses have been attributed primarily to suppression of potassium conductances, including those mediated by KV7 potassium channels (i.e., the M-current, or activation of non-specific cation conductances that underlie calcium-dependent afterdepolarizations (ADPs. However, 2A-dependent excitation of cortical neurons has not been extensively studied, and no consensus exists regarding the underlying ionic effector(s involved. In layer 5 of the mouse medial prefrontal cortex, we tested potential mechanisms of serotonergic excitation in commissural/callosal (COM projection neurons, a subpopulation of pyramidal neurons that exhibits 2A-dependent excitation in response to 5-HT. In baseline conditions, 5-HT enhanced the rate of action potential generation in COM neurons experiencing suprathreshold somatic current injection. This serotonergic excitation was occluded by activation of muscarinic acetylcholine (ACh receptors, confirming that 5-HT acts via the same Gq-signaling cascades engaged by ACh. Like ACh, 5-HT promoted the generation of calcium-dependent ADPs following spike trains. However, calcium was not necessary for serotonergic excitation, as responses to 5-HT were enhanced (by >100%, rather than reduced, by chelation of intracellular calcium with 10 mM BAPTA. This suggests intracellular calcium negatively regulates additional ionic conductances gated by 2A receptors. Removal of extracellular calcium had no effect when intracellular calcium signaling was intact, but suppressed 5-HT response amplitudes, by about 50%, when BAPTA was included in patch pipettes. This suggests that 2A excitation involves activation of a non-specific cation conductance that is both calcium-sensitive and calcium-permeable. M-current suppression was found to be a third

  11. Autoradiographic study of the efferent connections of the entorhinal cortex in the rat

    Wyss, J.M.

    1981-01-01

    The major findings can be summarized as follows. Whereas the projection of the lateral entorhinal area (LEA) to the dentate gyrus is broad in its longitudinal extent, the medial entorhinal area (MEA), and especially the ventral portion of this zone, projects in a more lamellar fashion. In the transverse plane the LEA preferentially projects to the inner (dorsal) blade of the dentate gyrus, while the MEA innervates both blades equally. Within the radial dimension, the entorhinal cortex projects to the dentate gyrus according to a medial to lateral gradient, with lateral portions of the LEA projecting along the pial surface and successively more medial portions of the entorhinal projecting closer to the granule cells. The commissural entorhinal to dentate projections are similar to the ipsilateral projections in location; however, they are considerably reduced in septotemporal extent and do not arise from cells in the ventral half of either LEA or the intermediate entorhinal area (IEA). The projection of the entorhinal cortex to Ammon's horn reflects the same longitudinal characteristics as the dentate projections. An alvear input which extends only to the pyramidal cells at the CA1-subicular junction was most noticeable at ventral hippocampal levels. The extrahippocampal projections arise predominantly from cells in the LEA and project forward along the angular bundle to the piriform and periamygdaloid cortices, as well as the endopiriform nucleus, the lateral, basolateral, and cortical amygdaloid nuclei, the nucleus of the lateral olfactory tract, the olfactory tubercle, the anterior olfactory nucleus, the taenia tecta, and the indusium griseum

  12. Involvement of serotonin 2A receptor activation in modulating medial prefrontal cortex and amygdala neuronal activation during novelty-exposure.

    Hervig, Mona El-Sayed; Jensen, Nadja Cecilie Hvid; Rasmussen, Nadja Bredo; Rydbirk, Rasmus; Olesen, Mikkel Vestergaard; Hay-Schmidt, Anders; Pakkenberg, Bente; Aznar, Susana

    2017-05-30

    The medial prefrontal cortex (PFC) plays a major role in executive function by exerting a top-down control onto subcortical areas. Novelty-induced frontal cortex activation is 5-HT 2A receptor (5-HT 2A R) dependent. Here, we further investigated how blockade of 5-HT 2A Rs in mice exposed to a novel open-field arena affects medial PFC activation and basolateral amygdala (BLA) reactivity. We used c-Fos immunoreactivity (IR) as a marker of neuronal activation and stereological quantification for obtaining the total number of c-Fos-IR neurons as a measure of regional activation. We further examined the impact of 5-HT 2A R blockade on the striatal-projecting BLA neurons. Systemic administration of ketanserin (0.5mg/kg) prior to novel open-field exposure resulted in reduced total numbers of c-Fos-IR cells in dorsomedial PFC areas and the BLA. Moreover, there was a positive correlation between the relative time spent in the centre of the open-field and BLA c-Fos-IR in the ketanserin-treated animals. Unilateral medial PFC lesions blocked this effect, ascertaining an involvement of this frontal cortex area. On the other hand, medial PFC lesioning exacerbated the more anxiogenic-like behaviour of the ketanserin-treated animals, upholding its involvement in modulating averseness. Ketanserin did not affect the number of activated striatal-projecting BLA neurons (measured by number of Cholera Toxin b (CTb) retrograde labelled neurons also being c-Fos-IR) following CTb injection in the ventral striatum. These results support a role of 5-HT 2A R activation in modulating mPFC and BLA activation during exposure to a novel environment, which may be interrelated. Conversely, 5-HT 2A R blockade does not seem to affect the amygdala-striatal projection. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Activation of 5-HT7 receptors reverses NMDA-R-dependent LTD by activating PKA in medial vestibular neurons.

    Li, Yan-Hai; Han, Lei; Wu, Kenneth Lap Kei; Chan, Ying-Shing

    2017-09-01

    The medial vestibular nucleus (MVN) is a major output station for neurons that project to the vestibulo-spinal pathway. MVN neurons show capacity for long-term depression (LTD) during the juvenile period. We investigated LTD of MVN neurons using whole-cell patch-clamp recordings. High frequency stimulation (HFS) robustly induced LTD in 90% of type B neurons in the MVN, while only 10% of type A neurons were responsive, indicating that type B neurons are the major contributors to LTD in the MVN. The neuromodulator serotonin (5-HT) is known to modulate LTD in neural circuits of the cerebral cortex and the hippocampus. We therefore aim to determine the action of 5-HT on the LTD of type B MVN neurons and elucidate the relevant 5-HT receptor subtypes responsible for its action. Using specific agonists and antagonists of 5-HT receptors, we found that selective activation of 5-HT 7 receptor in type B neurons in the MVN of juvenile (P13-16) rats completely abolished NMDA-receptor-mediated LTD in a protein kinase A (PKA)-dependent manner. Our finding that 5-HT restricts plasticity of type B MVN neurons via 5-HT 7 receptors offers a mechanism whereby vestibular tuning contributes to the maturation of the vestibulo-spinal circuit and highlights the role of 5-HT in postural control. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Characterizing context-dependent differential firing activity in the hippocampus and entorhinal cortex.

    Prerau, Michael J; Lipton, Paul A; Eichenbaum, Howard B; Eden, Uri T

    2014-04-01

    The rat hippocampus and entorhinal cortex have been shown to possess neurons with place fields that modulate their firing properties under different behavioral contexts. Such context-dependent changes in neural activity are commonly studied through electrophysiological experiments in which a rat performs a continuous spatial alternation task on a T-maze. Previous research has analyzed context-based differential firing during this task by describing differences in the mean firing activity between left-turn and right-turn experimental trials. In this article, we develop qualitative and quantitative methods to characterize and compare changes in trial-to-trial firing rate variability for sets of experimental contexts. We apply these methods to cells in the CA1 region of hippocampus and in the dorsocaudal medial entorhinal cortex (dcMEC), characterizing the context-dependent differences in spiking activity during spatial alternation. We identify a subset of cells with context-dependent changes in firing rate variability. Additionally, we show that dcMEC populations encode turn direction uniformly throughout the T-maze stem, whereas CA1 populations encode context at major waypoints in the spatial trajectory. Our results suggest scenarios in which individual cells that sparsely provide information on turn direction might combine in the aggregate to produce a robust population encoding. Copyright © 2014 Wiley Periodicals, Inc.

  15. [Glucose-monitoring neurons of the medial ventrolateral prefrontal (orbitofrontal) cortex are involved in the maintenance of homeostasis].

    Szabó, István; Hormay, Edina; Csetényi, Bettina; Nagy, Bernadett; Karádi, Zoltán

    2017-05-01

    The medial orbitofrontal cortex is involved in the regulation of feeding and metabolism. Little is known, however, about the role of local glucose-monitoring neurons in these processes, and our knowledge is also poor about characteristics of these cells. The functional significance of these chemosensory neurons was to be elucidated. Electrophysiology, by the multibarreled microelectrophoretic technique, and metabolic investigations, after streptozotocin induced selective destruction of the chemosensory neurons, were employed. Fifteen percent of the neurons responded to glucose, and these chemosensory cells displayed differential neurotransmitter and taste sensitivities. In acute glucose tolerance test, at the 30th and 60th minutes, blood glucose level in the streptozotocin-treated rats was significantly higher than that in the controls. The plasma triglyceride concentrations were also higher in the streptozotocin-treated group. Glucose-monitoring neurons of the medial orbitofrontal cortex integrate internal and external environmental signals, and monitor metabolic processes, thus, are indispensable to maintain the healthy homeostasis. Orv Hetil. 2017; 158(18): 692-700.

  16. Medial septal dysfunction by Aβ-induced KCNQ channel-block in glutamatergic neurons

    Leão, Richardson N.; Colom, Luis V.; Borgius, Lotta

    2012-01-01

    (MS) neurons in mice. In glutamatergic neurons Aβ increases firing frequency and blocks the A- and the M-current (IA and IM, respectively). While the IA block is similar in other MS neuron classes, the block of IM is specific to glutamatergic neurons. IM block and a simulated Aβ block mimic the Aβ......-induced increase in spontaneous firing in glutamatergic neurons. Calcium imaging shows that under control conditions glutamatergic neurons rarely fire while nonglutamatergic neurons fire coherently at theta frequencies. Aβ increases the firing rate of glutamatergic neurons while nonglutamatergic neurons lose theta...... firing coherence. Our results demonstrate that Aβ-induced dysfunction of glutamatergic neurons via IM decrease diminishes MS rhythmicity, which may negatively affect hippocampal rhythmogenesis and underlie the memory loss observed in Alzheimer's disease....

  17. Protein malnutrition during gestation and early life decreases neuronal size in the medial prefrontal cortex of post-pubertal rats

    Roelf J. Cruz-Rizzolo

    2017-12-01

    Full Text Available Retrospective studies in human populations indicate that protein deprivation during pregnancy and early life (early protein malnutrition, EPM is associated with cognitive impairments, learning disabilities and may represent a risk factor for the late onset of some psychiatric disorders, fundamentally schizophrenia, a condition where the prefrontal cortex plays an important role. The purpose of this study was to analyze whether EPM affects structural aspects of the rat medial prefrontal cortex (mPFC, such as cortical volume, neuronal density and neuronal soma size, which seem altered in patients with schizophrenia. For this, a rat model of EPM (5% casein from conception to postnatal day 60 was adopted and the rat mPFC volume, total number of neurons and average neuronal volume were evaluated on postnatal day 60 (post-pubertal animals by histo- and immunohistochemical techniques using unbiased stereological analysis. EPM did not alter the number of NeuN+ neurons in the rat mPFC. However, a very significant decrease in mPFC volume and average neuronal size was observed in malnourished rats. Although the present study does not establish causal relationships between malnutrition and schizophrenia, our results may indicate a similar structural phenomenon in these two situations.

  18. Effects of 17beta-estradiol on glutamate synaptic transmission and neuronal excitability in the rat medial vestibular nuclei.

    Grassi, S; Frondaroli, A; Scarduzio, M; Dutia, M B; Dieni, C; Pettorossi, V E

    2010-02-17

    We investigated the effects of the neurosteroid 17beta-estradiol (E(2)) on the evoked and spontaneous activity of rat medial vestibular nucleus (MVN) neurons in brainstem slices. E(2) enhances the synaptic response to vestibular nerve stimulation in type B neurons and depresses the spontaneous discharge in both type A and B neurons. The amplitude of the field potential, as well as the excitatory post-synaptic potential (EPSP) and current (EPSC), in type B neurons, are enhanced by E(2). Both effects are long-term phenomena since they outlast the drug washout. The enhancement of synaptic response is mainly due to facilitation of glutamate release mediated by pre-synaptic N-methyl-D-aspartate receptors (NMDARs), since the reduction of paired pulse ratio (PPR) and the increase of miniature EPSC frequency after E(2) are abolished under D-(-)-2-amino-5-phosphonopentanoic acid (AP-5). E(2) also facilitates post-synaptic NMDARs, but it does not affect directly alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) and group I-metabotropic glutamate receptors (mGluRs-I). In contrast, the depression of the spontaneous discharge of type A and type B neurons appears to depend on E(2) modulation of intrinsic ion conductances, as the effect remains after blockade of glutamate, GABA and glycine receptors (GlyRs). The net effect of E(2) is to enhance the signal-to-noise ratio of the synaptic response in type B neurons, relative to resting activity of all MVN neurons. These findings provide evidence for a novel potential mechanism to modulate the responsiveness of vestibular neurons to afferent inputs, and so regulate vestibular function in vivo.

  19. Development of inhibitory synaptic inputs on layer 2/3 pyramidal neurons in the rat medial prefrontal cortex

    Virtanen, Mari A.; Lacoh, Claudia Marvine; Fiumelli, Hubert; Kosel, Markus; Tyagarajan, Shiva; de Roo, Mathias; Vutskits, Laszlo

    2018-01-01

    Inhibitory control of pyramidal neurons plays a major role in governing the excitability in the brain. While spatial mapping of inhibitory inputs onto pyramidal neurons would provide important structural data on neuronal signaling, studying their distribution at the single cell level is difficult due to the lack of easily identifiable anatomical proxies. Here, we describe an approach where in utero electroporation of a plasmid encoding for fluorescently tagged gephyrin into the precursors of pyramidal cells along with ionotophoretic injection of Lucifer Yellow can reliably and specifically detect GABAergic synapses on the dendritic arbour of single pyramidal neurons. Using this technique and focusing on the basal dendritic arbour of layer 2/3 pyramidal cells of the medial prefrontal cortex, we demonstrate an intense development of GABAergic inputs onto these cells between postnatal days 10 and 20. While the spatial distribution of gephyrin clusters was not affected by the distance from the cell body at postnatal day 10, we found that distal dendritic segments appeared to have a higher gephyrin density at later developmental stages. We also show a transient increase around postnatal day 20 in the percentage of spines that are carrying a gephyrin cluster, indicative of innervation by a GABAergic terminal. Since the precise spatial arrangement of synaptic inputs is an important determinant of neuronal responses, we believe that the method described in this work may allow a better understanding of how inhibition settles together with excitation, and serve as basics for further modelling studies focusing on the geometry of dendritic inhibition during development.

  20. Development of inhibitory synaptic inputs on layer 2/3 pyramidal neurons in the rat medial prefrontal cortex

    Virtanen, Mari A.

    2018-01-10

    Inhibitory control of pyramidal neurons plays a major role in governing the excitability in the brain. While spatial mapping of inhibitory inputs onto pyramidal neurons would provide important structural data on neuronal signaling, studying their distribution at the single cell level is difficult due to the lack of easily identifiable anatomical proxies. Here, we describe an approach where in utero electroporation of a plasmid encoding for fluorescently tagged gephyrin into the precursors of pyramidal cells along with ionotophoretic injection of Lucifer Yellow can reliably and specifically detect GABAergic synapses on the dendritic arbour of single pyramidal neurons. Using this technique and focusing on the basal dendritic arbour of layer 2/3 pyramidal cells of the medial prefrontal cortex, we demonstrate an intense development of GABAergic inputs onto these cells between postnatal days 10 and 20. While the spatial distribution of gephyrin clusters was not affected by the distance from the cell body at postnatal day 10, we found that distal dendritic segments appeared to have a higher gephyrin density at later developmental stages. We also show a transient increase around postnatal day 20 in the percentage of spines that are carrying a gephyrin cluster, indicative of innervation by a GABAergic terminal. Since the precise spatial arrangement of synaptic inputs is an important determinant of neuronal responses, we believe that the method described in this work may allow a better understanding of how inhibition settles together with excitation, and serve as basics for further modelling studies focusing on the geometry of dendritic inhibition during development.

  1. Internally generated preactivation of single neurons in human medial frontal cortex predicts volition

    Fried, Itzhak; Mukamel, Roy; Kreiman, Gabriel

    2011-01-01

    Understanding how self-initiated behavior is encoded by neuronal circuits in the human brain remains elusive. We recorded the activity of 1019 neurons while twelve subjects performed self-initiated finger movement. We report progressive neuronal recruitment over ∼1500 ms before subjects report making the decision to move. We observed progressive increase or decrease in neuronal firing rate, particularly in the supplementary motor area (SMA), as the reported time of decision was approached. A ...

  2. Vasoactive intestinal polypeptide excites medial pontine reticular formation neurons in the brainstem rapid eye movement sleep-induction zone

    Kohlmeier, Kristi Anne; Reiner, P B

    1999-01-01

    Although it has long been known that microinjection of the cholinergic agonist carbachol into the medial pontine reticular formation (mPRF) induces a state that resembles rapid eye movement (REM) sleep, it is likely that other transmitters contribute to mPRF regulation of behavioral states. A key...... candidate is the peptide vasoactive intestinal polypeptide (VIP), which innervates the mPRF and induces REM sleep when injected into this region of the brainstem. To begin understanding the cellular mechanisms underlying this phenomenon, we examined the effects of VIP on mPRF cells using whole-cell patch...... conclude that VIP excites mPRF neurons by activation of a sodium current. This effect is mediated at least in part by G-protein stimulation of adenylyl cyclase, cAMP, and protein kinase A. These data suggest that VIP may play a physiological role in REM induction by its actions on mPRF neurons....

  3. Competitor suppresses neuronal representation of food reward in the nucleus accumbens/medial striatum of domestic chicks.

    Amita, Hidetoshi; Matsushima, Toshiya

    2014-07-15

    To investigate the role of social contexts in controlling the neuronal representation of food reward, we recorded single neuron activity in the medial striatum/nucleus accumbens of domestic chicks and examined whether activities differed between two blocks with different contexts. Chicks were trained in an operant task to associate light-emitting diode color cues with three trial types that differed in the type of food reward: no reward (S-), a small reward/short-delay option (SS), and a large reward/long-delay alternative (LL). Amount and duration of reward were set such that both of SS and LL were chosen roughly equally. Neurons showing distinct cue-period activity in rewarding trials (SS and LL) were identified during an isolation block, and activity patterns were compared with those recorded from the same neuron during a subsequent pseudo-competition block in which another chick was allowed to forage in the same area, but was separated by a transparent window. In some neurons, cue-period activity was lower in the pseudo-competition block, and the difference was not ascribed to the number of repeated trials. Comparison at neuronal population level revealed statistically significant suppression in the pseudo-competition block in both SS and LL trials, suggesting that perceived competition generally suppressed the representation of cue-associated food reward. The delay- and reward-period activities, however, did not significantly different between blocks. These results demonstrate that visual perception of a competitive forager per se weakens the neuronal representation of predicted food reward. Possible functional links to impulse control are discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. GABAergic Neurons in the Rat Medial Septal Complex Express Relaxin-3 Receptor (RXFP3 mRNA

    Hector Albert-Gascó

    2018-01-01

    Full Text Available The medial septum (MS complex modulates hippocampal function and related behaviors. Septohippocampal projections promote and control different forms of hippocampal synchronization. Specifically, GABAergic and cholinergic projections targeting the hippocampal formation from the MS provide bursting discharges to promote theta rhythm, or tonic activity to promote gamma oscillations. In turn, the MS is targeted by ascending projections from the hypothalamus and brainstem. One of these projections arises from the nucleus incertus in the pontine tegmentum, which contains GABA neurons that co-express the neuropeptide relaxin-3 (Rln3. Both stimulation of the nucleus incertus and septal infusion of Rln3 receptor agonist peptides promotes hippocampal theta rhythm. The Gi/o-protein-coupled receptor, relaxin-family peptide receptor 3 (RXFP3, is the cognate receptor for Rln3 and identification of the transmitter phenotype of neurons expressing RXFP3 in the septohippocampal system can provide further insights into the role of Rln3 transmission in the promotion of septohippocampal theta rhythm. Therefore, we used RNAscope multiplex in situ hybridization to characterize the septal neurons expressing Rxfp3 mRNA in the rat. Our results demonstrate that Rxfp3 mRNA is abundantly expressed in vesicular GABA transporter (vGAT mRNA- and parvalbumin (PV mRNA-positive GABA neurons in MS, whereas ChAT mRNA-positive acetylcholine neurons lack Rxfp3 mRNA. Approximately 75% of Rxfp3 mRNA-positive neurons expressed vGAT mRNA (and 22% were PV mRNA-positive, while the remaining 25% expressed Rxfp3 mRNA only, consistent with a potential glutamatergic phenotype. Similar proportions were observed in the posterior septum. The occurrence of RXFP3 in PV-positive GABAergic neurons gives support to a role for the Rln3-RXFP3 system in septohippocampal theta rhythm.

  5. Long-term potentiation of synaptic response and intrinsic excitability in neurons of the rat medial vestibular nuclei.

    Pettorossi, V E; Dieni, C V; Scarduzio, M; Grassi, S

    2011-07-28

    Using intracellular recordings, we investigated the effects of high frequency stimulation (HFS) of the primary vestibular afferents on the evoked excitatory postsynaptic potential (EPSP) and intrinsic excitability (IE) of type-A and type-B neurons of the medial vestibular nucleus (MVN), in male rat brainstem slices. HFS induces long-term potentiation (LTP) of both EPSP and IE, which may occur in combination or separately. Synaptic LTP is characterized by an increase in the amplitude, slope and decay time constant of EPSP and IE-LTP through enhancements of spontaneous and evoked neuron firing and of input resistance (Rin). Moreover, IE-LTP is associated with a decrease in action potential afterhyperpolarization (AHP) amplitude and an increase in interspike slope steepness (ISS). The more frequent effects of HFS are EPSP-LTP in type-B neurons and IE-LTP in type-A neurons. In addition, the development of EPSP-LTP is fast in type-B neurons but slow in type-A, whereas IE-LTP develops slowly in both types. We have demonstrated that activation of N-methyl-d aspartate receptors (NMDARs) is only required for EPSP-LTP induction, whereas metabotropic glutamate receptors type-1 (mGluR1) are necessary for IE-LTP induction as well as the full development and maintenance of EPSP-LTP. Taken together, these findings demonstrate that brief and intense activation of vestibular afferent input to the MVN neurons may provoke synaptic LTP and/or IE-LTP that, induced in combination or separately, may assure the different selectivity of the MVN neuron response enhancement to the afferent signals. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. Involvement of serotonin 2A receptor activation in modulating medial prefrontal cortex and amygdala neuronal activation during novelty-exposure

    Hervig, Mona El-Sayed; Jensen, Nadja Cecilie Hvid; Rasmussen, Nadja Bredo

    2017-01-01

    The medial prefrontal cortex (PFC) plays a major role in executive function by exerting a top-down control onto subcortical areas. Novelty-induced frontal cortex activation is 5-HT2A receptor (5-HT2AR) dependent. Here, we further investigated how blockade of 5-HT2ARs in mice exposed to a novel open-field...... of 5-HT2AR blockade on the striatal-projecting BLA neurons. Systemic administration of ketanserin (0.5 mg/kg) prior to novel open-field exposure resulted in reduced total numbers of c-Fos-IR cells in dorsomedial PFC areas and the BLA. Moreover, there was a positive correlation between the relative time...... spent in the centre of the open-field and BLA c-Fos-IR in the ketanserin-treated animals. Unilateral medial PFC lesions blocked this effect, ascertaining an involvement of this frontal cortex area. On the other hand, medial PFC lesioning exacerbated the more anxiogenic-like behaviour of the ketanserin...

  7. Internally generated preactivation of single neurons in human medial frontal cortex predicts volition

    Fried, Itzhak; Mukamel, Roy; Kreiman, Gabriel

    2011-01-01

    Understanding how self-initiated behavior is encoded by neuronal circuits in the human brain remains elusive. We recorded the activity of 1019 neurons while twelve subjects performed self-initiated finger movement. We report progressive neuronal recruitment over ~1500 ms before subjects report making the decision to move. We observed progressive increase or decrease in neuronal firing rate, particularly in the supplementary motor area (SMA), as the reported time of decision was approached. A population of 256 SMA neurons is sufficient to predict in single trials the impending decision to move with accuracy greater than 80% already 700 ms prior to subjects’ awareness. Furthermore, we predict, with a precision of a few hundred ms, the actual time point of this voluntary decision to move. We implement a computational model whereby volition emerges once a change in internally generated firing rate of neuronal assemblies crosses a threshold. PMID:21315264

  8. Shift in the intrinsic excitability of medial prefrontal cortex neurons following training in impulse control and cued-responding tasks.

    Scott J Hayton

    Full Text Available Impulse control is an executive process that allows animals to inhibit their actions until an appropriate time. Previously, we reported that learning a simple response inhibition task increases AMPA currents at excitatory synapses in the prelimbic region of the medial prefrontal cortex (mPFC. Here, we examined whether modifications to intrinsic excitability occurred alongside the synaptic changes. To that end, we trained rats to obtain a food reward in a response inhibition task by withhold responding on a lever until they were signaled to respond. We then measured excitability, using whole-cell patch clamp recordings in brain slices, by quantifying action potentials generated by the injection of depolarizing current steps. Training in this task depressed the excitability of layer V pyramidal neurons of the prelimbic, but not infralimbic, region of the mPFC relative to behavioral controls. This decrease in maximum spiking frequency was significantly correlated with performance on the final session of the task. This change in intrinsic excitability may represent a homeostatic mechanism counterbalancing increased excitatory synaptic inputs onto those neurons in trained rats. Interestingly, subjects trained with a cue that predicted imminent reward availability had increased excitability in infralimbic, but not the prelimbic, pyramidal neurons. This dissociation suggests that both prelimbic and infralimbic neurons are involved in directing action, but specialized for different types of information, inhibitory or anticipatory, respectively.

  9. Social Isolation During Postweaning Development Causes Hypoactivity of Neurons in the Medial Nucleus of the Male Rat Amygdala

    Adams, Thomas; Rosenkranz, J Amiel

    2016-01-01

    Children exposed to neglect or social deprivation are at heightened risk for psychiatric disorders and abnormal social patterns as adults. There is also evidence that prepubertal neglect in children causes abnormal metabolic activity in several brain regions, including the amygdala area. The medial nucleus of the amygdala (MeA) is a key region for performance of social behaviors and still undergoes maturation during the periadolescent period. As such, the normal development of this region may be disrupted by social deprivation. In rodents, postweaning social isolation causes a range of deficits in sexual and agonistic behaviors that normally rely on the posterior MeA (MeAp). However, little is known about the effects of social isolation on the function of MeA neurons. In this study, we tested whether postweaning social isolation caused abnormal activity of MeA neurons. We found that postweaning social isolation caused a decrease of in vivo firing activity of MeAp neurons, and reduced drive from excitatory afferents. In vitro electrophysiological studies found that postweaning social isolation caused a presynaptic impairment of excitatory input to the dorsal MeAp, but a progressive postsynaptic reduction of membrane excitability in the ventral MeAp. These results demonstrate discrete, subnucleus-specific effects of social deprivation on the physiology of MeAp neurons. This pathophysiology may contribute to the disruption of social behavior after developmental social deprivation, and may be a novel target to facilitate the treatment of social disorders. PMID:26677945

  10. Social Isolation During Postweaning Development Causes Hypoactivity of Neurons in the Medial Nucleus of the Male Rat Amygdala.

    Adams, Thomas; Rosenkranz, J Amiel

    2016-06-01

    Children exposed to neglect or social deprivation are at heightened risk for psychiatric disorders and abnormal social patterns as adults. There is also evidence that prepubertal neglect in children causes abnormal metabolic activity in several brain regions, including the amygdala area. The medial nucleus of the amygdala (MeA) is a key region for performance of social behaviors and still undergoes maturation during the periadolescent period. As such, the normal development of this region may be disrupted by social deprivation. In rodents, postweaning social isolation causes a range of deficits in sexual and agonistic behaviors that normally rely on the posterior MeA (MeAp). However, little is known about the effects of social isolation on the function of MeA neurons. In this study, we tested whether postweaning social isolation caused abnormal activity of MeA neurons. We found that postweaning social isolation caused a decrease of in vivo firing activity of MeAp neurons, and reduced drive from excitatory afferents. In vitro electrophysiological studies found that postweaning social isolation caused a presynaptic impairment of excitatory input to the dorsal MeAp, but a progressive postsynaptic reduction of membrane excitability in the ventral MeAp. These results demonstrate discrete, subnucleus-specific effects of social deprivation on the physiology of MeAp neurons. This pathophysiology may contribute to the disruption of social behavior after developmental social deprivation, and may be a novel target to facilitate the treatment of social disorders.

  11. Hippocampal Ghrelin-positive neurons directly project to arcuate hypothalamic and medial amygdaloid nuclei. Could they modulate food-intake?

    Russo, Cristina; Russo, Antonella; Pellitteri, Rosalia; Stanzani, Stefania

    2017-07-13

    Feeding is a process controlled by a complex of associations between external and internal stimuli. The processes that involve learning and memory seem to exert a strong control over appetite and food intake, which is modulated by a gastrointestinal hormone, Ghrelin (Ghre). Recent studies claim that Ghre is involved in cognitive and neurobiological mechanisms that underlie the conditioning of eating behaviors. The expression of Ghre increases in anticipation of food intake based on learned behaviors. The hippocampal Ghre-containing neurons neurologically influence the orexigenic hypothalamus and consequently the learned feeding behavior. The CA1 field of Ammon's horn of the hippocampus (H-CA1) constitutes the most important neural substrate to control both appetitive and ingestive behavior. It also innervates amygdala regions that in turn innervate the hypothalamus. A recent study also implies that Ghre effects on cue-potentiated feeding behavior occur, at the least, via indirect action on the amygdala. In the present study, we investigate the neural substrates through which endogenous Ghre communicates conditioned appetite and feeding behavior within the CNS. We show the existence of a neural Ghre dependent pathway whereby peripherally-derived Ghre activates H-CA1 neurons, which in turn activate Ghre-expressing hypothalamic and amygdaloid neurons to stimulate appetite and feeding behavior. To highlight this pathway, we use two fluorescent retrograde tracers (Fluoro Gold and Dil) and immunohistochemical detection of Ghre expression in the hippocampus. Triple fluorescent-labeling has determined the presence of H-CA1 Ghre-containing collateralized neurons that project to the hypothalamus and amygdala monosynaptically. We hypothesize that H-Ghre-containing neurons in H-CA1 modulate food-intake behavior through direct pathways to the arcuate hypothalamic nucleus and medial amygdaloid nucleus. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Lateralized Spatial and Object Memory Encoding in Entorhinal and Perirhinal Cortices

    Bellgowan, Patrick S. F.; Buffalo, Elizabeth A.; Bodurka, Jerzy; Martin, Alex

    2009-01-01

    The perirhinal and entorhinal cortices are critical components of the medial temporal lobe (MTL) declarative memory system. Study of their specific functions using blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI), however, has suffered from severe magnetic susceptibility signal dropout resulting in poor…

  13. Kinetic properties and adrenergic control of TREK-2-like channels in rat medial prefrontal cortex (mPFC) pyramidal neurons.

    Ładno, W; Gawlak, M; Szulczyk, P; Nurowska, E

    2017-06-15

    TREK-2-like channels were identified on the basis of electrophysiological and pharmacological tests performed on freshly isolated and enzymatically/mechanically dispersed pyramidal neurons of the rat medial prefrontal cortex (mPFC). Single-channel currents were recorded in cell-attached configuration and the impact of adrenergic receptors (α 1 , α 2 , β) stimulation on spontaneously appearing TREK-2-like channel activity was tested. The obtained results indicate that noradrenaline decreases the mean open probability of TREK-2-like channel currents by activation of β 1 but not of α 1 - and α 2 -adrenergic receptors. Mean open time and channel conductance were not affected. The system of intracellular signaling pathways depends on the activation of protein kinase A. We also show that adrenergic control of TREK-2-like channel currents by adrenergic receptors was similar in pyramidal neurons isolated from young, adolescent, and adult rats. Immunofluorescent confocal scans of mPFC slices confirmed the presence of the TREK-2 protein, which was abundant in layer V pyramidal neurons. The role of TREK-2-like channel control by adrenergic receptors is discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Central projections of gustatory receptor neurons in the medial and the lateral sensilla styloconica of Helicoverpa armigera larvae.

    Qing-Bo Tang

    Full Text Available Food selection behavior of lepidopteran larvae is predominantly governed by the activation of taste neurons present in two sensilla styloconica located on the galea of the maxilla. In this study, we present the ultrastructure of the sensilla styloconica and the central projection pattern of their associated receptor neurons in larvae of the heliothine moth, Helicoverpa armigera. By means of light microscopy and scanning electron microscopy, the previous findings of two morphologically fairly similar sensilla comprising a socketed conic tip inserted into a large peg were confirmed. However, the peg size of the medial sensillum was found to be significantly bigger than that of the lateral sensillum. The sensory neurons derived from each sensillum styloconicum were mapped separately using anterograde staining experiments combined with confocal laser-scanning microscopy. For determining the afferents' target regions relative to each other, we reconstructed the labeled axons and placed them into a common reference framework. The sensory axons from both sensilla projected via the ipsilateral maxillary nerve to the suboesophageal ganglion and further through the ipsilateral circumoesophageal connective to the brain. In the suboesophageal ganglion, the sensory projections targeted two areas of the ipsilateral maxillary neuropil, one located in the ventrolateral neuromere and the other adjacent to the neuromere midline. In the brain, the axon terminals targeted the dorso-anterior area of the ipsilateral tritocerebrum. As confirmed by the three-dimensional reconstructions, the target regions of the neural projections originating from each of the two sensilla styloconica were identical.

  15. Central projections of gustatory receptor neurons in the medial and the lateral sensilla styloconica of Helicoverpa armigera larvae.

    Tang, Qing-Bo; Zhan, Huan; Cao, Huan; Berg, Bente G; Yan, Feng-Ming; Zhao, Xin-Cheng

    2014-01-01

    Food selection behavior of lepidopteran larvae is predominantly governed by the activation of taste neurons present in two sensilla styloconica located on the galea of the maxilla. In this study, we present the ultrastructure of the sensilla styloconica and the central projection pattern of their associated receptor neurons in larvae of the heliothine moth, Helicoverpa armigera. By means of light microscopy and scanning electron microscopy, the previous findings of two morphologically fairly similar sensilla comprising a socketed conic tip inserted into a large peg were confirmed. However, the peg size of the medial sensillum was found to be significantly bigger than that of the lateral sensillum. The sensory neurons derived from each sensillum styloconicum were mapped separately using anterograde staining experiments combined with confocal laser-scanning microscopy. For determining the afferents' target regions relative to each other, we reconstructed the labeled axons and placed them into a common reference framework. The sensory axons from both sensilla projected via the ipsilateral maxillary nerve to the suboesophageal ganglion and further through the ipsilateral circumoesophageal connective to the brain. In the suboesophageal ganglion, the sensory projections targeted two areas of the ipsilateral maxillary neuropil, one located in the ventrolateral neuromere and the other adjacent to the neuromere midline. In the brain, the axon terminals targeted the dorso-anterior area of the ipsilateral tritocerebrum. As confirmed by the three-dimensional reconstructions, the target regions of the neural projections originating from each of the two sensilla styloconica were identical.

  16. Methamphetamine facilitates female sexual behavior and enhances neuronal activation in the medial amygdala and ventromedial nucleus of the hypothalamus.

    Holder, Mary K; Hadjimarkou, Maria M; Zup, Susan L; Blutstein, Tamara; Benham, Rebecca S; McCarthy, Margaret M; Mong, Jessica A

    2010-02-01

    Methamphetamine (MA) abuse has reached epidemic proportions in the United States. Users of MA report dramatic increases in sexual drive that have been associated with increased engagement in risky sexual behavior leading to higher rates of sexually transmitted diseases and unplanned pregnancies. The ability of MA to enhance sexual drive in females is enigmatic since related psychostimulants like amphetamine and cocaine appear not to affect sexual drive in women, and in rodents models, amphetamine has been reported to be inhibitory to female sexual behavior. Examination of MA's effects on female sexual behavior in an animal model is lacking. Here, using a rodent model, we have demonstrated that MA enhanced female sexual behavior. MA (5mg/kg) or saline vehicle was administered once daily for 3 days to adult ovariectomized rats primed with ovarian steroids. MA treatment significantly increased the number of proceptive events and the lordosis response compared to hormonally primed, saline controls. The effect of MA on the neural circuitry underlying the motivation for sexual behavior was examined using Fos immunoreactivity. In the medial amygdala and the ventromedial nucleus of the hypothalamus, nuclei implicated in motivated behaviors, ovarian hormones and MA independently enhance the neuronal activation, but more striking was the significantly greater activation induced by their combined administration. Increases in dopamine neurotransmission may underlie the MA/hormone mediated increase in neuronal activation. In support of this possibility, ovarian hormones significantly increased tyrosine hydroxylase (the rate limiting enzyme in dopamine synthesis) immunoreactivity in the medial amygdala. Thus our present data suggest that the interactions of MA and ovarian hormones leads to changes in the neural substrate of key nuclei involved in mediating female sexual behaviors, and these changes may underlie MA's ability to enhance these behaviors. 2009 Elsevier Ltd. All

  17. The influence of increased rearing density on medial protocerebral neurosecretory neurons of Lymantria dispar L. caterpillars

    Ilijin Larisa

    2010-01-01

    Full Text Available Morphometric changes of A1, A1' and A2 protocerebral dorsomedial neurosecretory neurons, total brain protein content and brain protein profiles were analyzed in 4th instar Lymantria dispar larvae under elevated rearing density, i.e. under intense stress when 5 larvae were kept in a petri dish (V = 80 ml, less intense stress when 5 larvae were kept in a plastic cup (V = 300 ml. In the control samples the larvae were reared in isolated conditions. Protein pattern changes in the brain were observed. Proteins with the following molecular masses: 30, 14, 10 and 3.4-2.5 kD were detected in the experimental groups. The size and cytological characteristics of protocerebral dorsomedial neurosecretory neurons were changed under elevated rearing density.

  18. A million-plus neuron model of the hippocampal dentate gyrus: Dependency of spatio-temporal network dynamics on topography.

    Hendrickson, Phillip J; Yu, Gene J; Song, Dong; Berger, Theodore W

    2015-01-01

    This paper describes a million-plus granule cell compartmental model of the rat hippocampal dentate gyrus, including excitatory, perforant path input from the entorhinal cortex, and feedforward and feedback inhibitory input from dentate interneurons. The model includes experimentally determined morphological and biophysical properties of granule cells, together with glutamatergic AMPA-like EPSP and GABAergic GABAA-like IPSP synaptic excitatory and inhibitory inputs, respectively. Each granule cell was composed of approximately 200 compartments having passive and active conductances distributed throughout the somatic and dendritic regions. Modeling excitatory input from the entorhinal cortex was guided by axonal transport studies documenting the topographical organization of projections from subregions of the medial and lateral entorhinal cortex, plus other important details of the distribution of glutamatergic inputs to the dentate gyrus. Results showed that when medial and lateral entorhinal cortical neurons maintained Poisson random firing, dentate granule cells expressed, throughout the million-cell network, a robust, non-random pattern of spiking best described as spatiotemporal "clustering". To identify the network property or properties responsible for generating such firing "clusters", we progressively eliminated from the model key mechanisms such as feedforward and feedback inhibition, intrinsic membrane properties underlying rhythmic burst firing, and/or topographical organization of entorhinal afferents. Findings conclusively identified topographical organization of inputs as the key element responsible for generating a spatio-temporal distribution of clustered firing. These results uncover a functional organization of perforant path afferents to the dentate gyrus not previously recognized: topography-dependent clusters of granule cell activity as "functional units" that organize the processing of entorhinal signals.

  19. Involvement of GSK3 in the formation of the leading process and migration of neurons from the embryonic rat medial ganglionic eminence in vitro.

    Niimura, Yuri; Aminaka, Yuichi; Hayashi, Kensuke

    2015-03-04

    Migrating neurons have leading processes that direct cell movement in response to guidance cues. We investigated the involvement of glycogen synthase kinase 3 (GSK3) in the formation of leading processes and migration of neurons in vitro. We used embryonic rat medial ganglionic eminence (MGE) neurons, which are precursors of inhibitory neurons that migrate into the cerebral cortex. When MGE neurons were placed on an astrocyte layer, they migrated freely with the highest speed among neurons from other parts of the embryonic forebrain. When they were cultured alone, they showed bipolar morphology and extended leading processes within 20 h. Their leading processes had large growth cones, but did not elongate during 3 days in culture, indicating that leading processes are distinct from short axons. Next, we examined the effect of GSK3 inhibitors on leading processes and the migratory behavior of MGE neurons. MGE neurons treated with GSK3 inhibitors showed multipolar morphology and altered process shapes. Moreover, migration of MGE neurons on the astrocyte layer was significantly decreased in the presence of GSK3 inhibitors. These data suggest that GSK3 is involved in the formation of leading processes and in the migration of MGE neurons.

  20. Direct Electrical Stimulation of the Human Entorhinal Region and Hippocampus Impairs Memory.

    Jacobs, Joshua; Miller, Jonathan; Lee, Sang Ah; Coffey, Tom; Watrous, Andrew J; Sperling, Michael R; Sharan, Ashwini; Worrell, Gregory; Berry, Brent; Lega, Bradley; Jobst, Barbara C; Davis, Kathryn; Gross, Robert E; Sheth, Sameer A; Ezzyat, Youssef; Das, Sandhitsu R; Stein, Joel; Gorniak, Richard; Kahana, Michael J; Rizzuto, Daniel S

    2016-12-07

    Deep brain stimulation (DBS) has shown promise for treating a range of brain disorders and neurological conditions. One recent study showed that DBS in the entorhinal region improved the accuracy of human spatial memory. Based on this line of work, we performed a series of experiments to more fully characterize the effects of DBS in the medial temporal lobe on human memory. Neurosurgical patients with implanted electrodes performed spatial and verbal-episodic memory tasks. During the encoding periods of both tasks, subjects received electrical stimulation at 50 Hz. In contrast to earlier work, electrical stimulation impaired memory performance significantly in both spatial and verbal tasks. Stimulation in both the entorhinal region and hippocampus caused decreased memory performance. These findings indicate that the entorhinal region and hippocampus are causally involved in human memory and suggest that refined methods are needed to use DBS in these regions to improve memory. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Non-linear Membrane Properties in Entorhinal Cortical Stellate Cells Reduce Modulation of Input-Output Responses by Voltage Fluctuations

    Fernandez, Fernando R.; Malerba, Paola; White, John A.

    2015-01-01

    The presence of voltage fluctuations arising from synaptic activity is a critical component in models of gain control, neuronal output gating, and spike rate coding. The degree to which individual neuronal input-output functions are modulated by voltage fluctuations, however, is not well established across different cortical areas. Additionally, the extent and mechanisms of input-output modulation through fluctuations have been explored largely in simplified models of spike generation, and with limited consideration for the role of non-linear and voltage-dependent membrane properties. To address these issues, we studied fluctuation-based modulation of input-output responses in medial entorhinal cortical (MEC) stellate cells of rats, which express strong sub-threshold non-linear membrane properties. Using in vitro recordings, dynamic clamp and modeling, we show that the modulation of input-output responses by random voltage fluctuations in stellate cells is significantly limited. In stellate cells, a voltage-dependent increase in membrane resistance at sub-threshold voltages mediated by Na+ conductance activation limits the ability of fluctuations to elicit spikes. Similarly, in exponential leaky integrate-and-fire models using a shallow voltage-dependence for the exponential term that matches stellate cell membrane properties, a low degree of fluctuation-based modulation of input-output responses can be attained. These results demonstrate that fluctuation-based modulation of input-output responses is not a universal feature of neurons and can be significantly limited by subthreshold voltage-gated conductances. PMID:25909971

  2. Extraction of Inter-Aural Time Differences Using a Spiking Neuron Network Model of the Medial Superior Olive

    Jörg Encke

    2018-03-01

    Full Text Available The mammalian auditory system is able to extract temporal and spectral features from sound signals at the two ears. One important cue for localization of low-frequency sound sources in the horizontal plane are inter-aural time differences (ITDs which are first analyzed in the medial superior olive (MSO in the brainstem. Neural recordings of ITD tuning curves at various stages along the auditory pathway suggest that ITDs in the mammalian brainstem are not represented in form of a Jeffress-type place code. An alternative is the hemispheric opponent-channel code, according to which ITDs are encoded as the difference in the responses of the MSO nuclei in the two hemispheres. In this study, we present a physiologically-plausible, spiking neuron network model of the mammalian MSO circuit and apply two different methods of extracting ITDs from arbitrary sound signals. The network model is driven by a functional model of the auditory periphery and physiological models of the cochlear nucleus and the MSO. Using a linear opponent-channel decoder, we show that the network is able to detect changes in ITD with a precision down to 10 μs and that the sensitivity of the decoder depends on the slope of the ITD-rate functions. A second approach uses an artificial neuronal network to predict ITDs directly from the spiking output of the MSO and ANF model. Using this predictor, we show that the MSO-network is able to reliably encode static and time-dependent ITDs over a large frequency range, also for complex signals like speech.

  3. ERG voltage-gated K+ channels regulate excitability and discharge dynamics of the medial vestibular nucleus neurones.

    Pessia, Mauro; Servettini, Ilenio; Panichi, Roberto; Guasti, Leonardo; Grassi, Silvarosa; Arcangeli, Annarosa; Wanke, Enzo; Pettorossi, Vito Enrico

    2008-10-15

    The discharge properties of the medial vestibular nucleus neurones (MVNn) critically depend on the activity of several ion channel types. In this study we show, immunohistochemically, that the voltage-gated K(+) channels ERG1A, ERG1B, ERG2 and ERG3 are highly expressed within the vestibular nuclei of P10 and P60 mice. The role played by these channels in the spike-generating mechanisms of the MVNn and in temporal information processing was investigated electrophysiologically from mouse brain slices, in vitro, by analysing the spontaneous discharge and the response to square-, ramp- and sinusoid-like intracellular DC current injections in extracellular and whole-cell patch-clamp studies. We show that more than half of the recorded MVNn were responsive to ERG channel block (WAY-123,398, E4031), displaying an increase in spontaneous activity and discharge irregularity. The response to step and ramp current injection was also modified by ERG block showing a reduction of first spike latency, enhancement of discharge rate and reduction of the slow spike-frequency adaptation process. ERG channels influence the interspike slope without affecting the spike shape. Moreover, in response to sinusoid-like current, ERG channel block caused frequency-dependent gain enhancement and phase-lead shift. Taken together, the data demonstrate that ERG channels control the excitability of MVNn, their discharge regularity and probably their resonance properties.

  4. Entorhinal Tau Pathology, Episodic Memory Decline, and Neurodegeneration in Aging.

    Maass, Anne; Lockhart, Samuel N; Harrison, Theresa M; Bell, Rachel K; Mellinger, Taylor; Swinnerton, Kaitlin; Baker, Suzanne L; Rabinovici, Gil D; Jagust, William J

    2018-01-17

    The medial temporal lobe (MTL) is an early site of tau accumulation and MTL dysfunction may underlie episodic-memory decline in aging and dementia. Postmortem data indicate that tau pathology in the transentorhinal cortex is common by age 60, whereas spread to neocortical regions and worsening of cognition is associated with β-amyloid (Aβ). We used [ 18 F]AV-1451 and [ 11 C]PiB positron emission tomography, structural MRI, and neuropsychological assessment to investigate how in vivo tau accumulation in temporal lobe regions, Aβ, and MTL atrophy contribute to episodic memory in cognitively normal older adults ( n = 83; age, 77 ± 6 years; 58% female). Stepwise regressions identified tau in MTL regions known to be affected in old age as the best predictor of episodic-memory performance independent of Aβ status. There was no interactive effect of MTL tau with Aβ on memory. Higher MTL tau was related to higher age in the subjects without evidence of Aβ. Among temporal lobe subregions, episodic memory was most strongly related to tau-tracer uptake in the parahippocampal gyrus, particularly the posterior entorhinal cortex, which in our parcellation includes the transentorhinal cortex. In subjects with longitudinal MRI and cognitive data ( n = 57), entorhinal atrophy mirrored patterns of tau pathology and their relationship with memory decline. Our data are consistent with neuropathological studies and further suggest that entorhinal tau pathology underlies memory decline in old age even without Aβ. SIGNIFICANCE STATEMENT Tau tangles and β-amyloid (Aβ) plaques are key lesions in Alzheimer's disease (AD) but both pathologies also occur in cognitively normal older people. Neuropathological data indicate that tau tangles in the medial temporal lobe (MTL) underlie episodic-memory impairments in AD dementia. However, it remains unclear whether MTL tau pathology also accounts for memory impairments often seen in elderly people and how Aβ affects this relationship

  5. Dorsal Medial Habenula Regulation of Mood-Related Behaviors and Primary Reinforcement by Tachykinin-Expressing Habenula Neurons

    Hsu, Yun-Wei A.

    2016-01-01

    Abstract Animal models have been developed to investigate aspects of stress, anxiety, and depression, but our understanding of the circuitry underlying these models remains incomplete. Prior studies of the habenula, a poorly understood nucleus in the dorsal diencephalon, suggest that projections to the medial habenula (MHb) regulate fear and anxiety responses, whereas the lateral habenula (LHb) is involved in the expression of learned helplessness, a model of depression. Tissue-specific deletion of the transcription factor Pou4f1 in the dorsal MHb (dMHb) results in a developmental lesion of this subnucleus. These dMHb-ablated mice show deficits in voluntary exercise, a possible correlate of depression. Here we explore the role of the dMHb in mood-related behaviors and intrinsic reinforcement. Lesions of the dMHb do not elicit changes in contextual conditioned fear. However, dMHb-lesioned mice exhibit shorter immobility time in the tail suspension test, another model of depression. dMHb-lesioned mice also display increased vulnerability to the induction of learned helplessness. However, this effect is not due specifically to the dMHb lesion, but appears to result from Pou4f1 haploinsufficiency elsewhere in the nervous system. Pou4f1 haploinsufficiency does not produce the other phenotypes associated with dMHb lesions. Using optogenetic intracranial self-stimulation, intrinsic reinforcement by the dMHb can be mapped to a specific population of neurokinin-expressing habenula neurons. Together, our data show that the dMHb is involved in the regulation of multiple mood-related behaviors, but also support the idea that these behaviors do not reflect a single functional pathway. PMID:27482535

  6. Parasympathetic neurons in the cranial medial ventricular fat pad on the dog heart selectively decrease ventricular contractility.

    Dickerson, L W; Rodak, D J; Fleming, T J; Gatti, P J; Massari, V J; McKenzie, J C; Gillis, R A

    1998-05-28

    We hypothesized that selective control of ventricular contractility might be mediated by postganglionic parasympathetic neurons in the cranial medial ventricular (CMV) ganglion plexus located in a fat pad at the base of the aorta. Sinus rate, atrioventricular (AV) conduction (ventricular rate during atrial pacing), and left ventricular contractile force (LV dP/dt during right ventricular pacing) were measured in eight chloralose-anesthetized dogs both before and during bilateral cervical vagus stimulation (20-30 V, 0.5 ms pulses, 15-20 Hz). Seven of these dogs were tested under beta-adrenergic blockade (propranolol, 0.8 mg kg(-1) i.v.). Control responses included sinus node bradycardia or arrest during spontaneous rhythm, high grade AV block or complete heart block, and a 30% decrease in contractility from 2118 +/- 186 to 1526 +/- 187 mm Hg s(-1) (P 0.05) decrease in contractility but still elicited the same degree of sinus bradycardia and AV block (N = 8, P < 0.05). Five dogs were re-tested 3 h after trimethaphan fat pad injection, at which time blockade of vagally-induced negative inotropy was partially reversed, as vagal stimulation decreased LV dP/dt by 19%. The same dose of trimethaphan given either locally into other fat pads (PVFP or IVC-ILA) or systemically (i.v.) had no effect on vagally-induced negative inotropy. Thus, parasympathetic ganglia located in the CMV fat pad mediated a decrease in ventricular contractility during vagal stimulation. Blockade of the CMV fat pad had no effect on vagally-mediated slowing of sinus rate or AV conduction.

  7. Differential Activation of Fast-Spiking and Regular-Firing Neuron Populations During Movement and Reward in the Dorsal Medial Frontal Cortex

    Insel, Nathan; Barnes, Carol A.

    2015-01-01

    The medial prefrontal cortex is thought to be important for guiding behavior according to an animal's expectations. Efforts to decode the region have focused not only on the question of what information it computes, but also how distinct circuit components become engaged during behavior. We find that the activity of regular-firing, putative projection neurons contains rich information about behavioral context and firing fields cluster around reward sites, while activity among putative inhibitory and fast-spiking neurons is most associated with movement and accompanying sensory stimulation. These dissociations were observed even between adjacent neurons with apparently reciprocal, inhibitory–excitatory connections. A smaller population of projection neurons with burst-firing patterns did not show clustered firing fields around rewards; these neurons, although heterogeneous, were generally less selective for behavioral context than regular-firing cells. The data suggest a network that tracks an animal's behavioral situation while, at the same time, regulating excitation levels to emphasize high valued positions. In this scenario, the function of fast-spiking inhibitory neurons is to constrain network output relative to incoming sensory flow. This scheme could serve as a bridge between abstract sensorimotor information and single-dimensional codes for value, providing a neural framework to generate expectations from behavioral state. PMID:24700585

  8. Estradiol upregulates progesterone receptor and orphanin FQ colocalization in arcuate nucleus neurons and opioid receptor-like receptor-1 expression in proopiomelanocortin neurons that project to the medial preoptic nucleus in the female rat

    Sanathara, Nayna M.; Moreas, Justine; Mahavongtrakul, Matthew; Sinchak, Kevin

    2014-01-01

    Background Ovarian steroids regulate sexual receptivity in the female rat by acting on neurons that converge on proopiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus (ARH) that project to the medial preoptic nucleus (MPN). Estradiol rapidly activates these neurons to release β-endorphin that activates MPN μ-opioid receptors (MOP) to inhibit lordosis. Lordosis is facilitated by the subsequent action of progesterone that deactivates the estradiol-induced MPN MOP activation. Orphanin FQ (OFQ/N; aka nociceptin) infusions into the ARH, like progesterone, deactivate MPN MOP and facilitate lordosis in estradiol-primed rats. OFQ/N reduces the activity of ARH β-endorphin neurons through post- and presynaptic mechanisms via its cognate receptor, ORL-1. Methods We tested the hypotheses that progesterone receptors (PR) are expressed in ARH OFQ/N neurons by immunohistochemistry and ORL-1 is expressed in POMC neurons that project to the MPN by combining Fluoro-Gold injection into the MPN and double-label fluorescent in situ hybridization (FISH). We also hypothesized that estradiol increases coexpression of PR-OFQ/N and ORL-1-POMC in ARH neurons of ovariectomized rats. Results The number of PR and OFQ/N immunopositive ARH neurons was increased as was their colocalization by estradiol treatment. FISH for ORL-1 and POMC mRNA revealed a subpopulation of ARH neurons that was triple-labeled indicating these neurons project to the MPN and coexpress ORL-1 and POMC mRNA. Estradiol was shown to upregulate ORL-1 and POMC expression in MPN-projecting ARH neurons. Conclusion Estradiol upregulates the ARH OFQ/N-ORL-1 system projecting to the MPN that regulates lordosis. PMID:24821192

  9. Hippocampal N-methyl-d-aspartate and kainate binding in response to entorhinal cortex aspiration or 192 IgG-saporin lesions of the basal forebrain

    Gallagher, M.; Gill, T.M.; Shivers, A.; Nicolle, M.M.

    1997-01-01

    Lesion models in the rat were used to examine the effects of removing innervation of the hippocampal formation on glutamate receptor binding in that system. Bilateral aspiration of the entorhinal cortex was used to remove the cortical innervation of the hippocampal formation and the dentate gyrus. The subcortical input to the hippocampus from cholinergic neurons of the basal forebrain was lesioned by microinjection of the immunotoxin 192 IgG-saporin into the medial septum and vertical limb of diagonal band. After a 30-day postlesion survival, the effects of these lesions on N-methyl-d-aspartate-displaceable [ 3 H]glutamate and [ 3 H]kainate binding in the hippocampus were quantified using in vitro autoradiography. The bilateral entorhinal lesion induced a sprouting response in the dentate gyrus, measured by an increase in the width of [ 3 H]kainate binding. It also induced an increase in the density of [ 3 H]kainate binding in CA3 stratum lucidum and an increase in N-methyl-d-aspartate binding throughout the hippocampus proper and the dentate gyrus. The selective lesion of cholinergic septal input did not have any effect on hippocampal [ 3 H]kainate binding and induced only a moderate decrease in N-methyl-d-aspartate binding that was not statistically reliable.The entorhinal and cholinergic lesions were used as in vivo models of the degeneration of hippocampal input that occurs in normal aging and Alzheimer's disease. The results from the present lesion study suggest that some, but not all, of the effects on hippocampal [ 3 H]kainate and N-methyl-d-aspartate binding induced by the lesions are consistent with the status of binding to these receptors in aging and Alzheimer's disease. Consistent with the effects of aging and Alzheimer's disease is an altered topography of [ 3 H]kainate binding after entorhinal cortex lesion and a modest decline in N-methyl-d-aspartate binding after lesions of the cholinergic septal input to the hippocampus. (Copyright (c) 1997

  10. Stimulation of entorhinal cortex-dentate gyrus circuitry is antidepressive.

    Yun, Sanghee; Reynolds, Ryan P; Petrof, Iraklis; White, Alicia; Rivera, Phillip D; Segev, Amir; Gibson, Adam D; Suarez, Maiko; DeSalle, Matthew J; Ito, Naoki; Mukherjee, Shibani; Richardson, Devon R; Kang, Catherine E; Ahrens-Nicklas, Rebecca C; Soler, Ivan; Chetkovich, Dane M; Kourrich, Saïd; Coulter, Douglas A; Eisch, Amelia J

    2018-04-16

    Major depressive disorder (MDD) is considered a 'circuitopathy', and brain stimulation therapies hold promise for ameliorating MDD symptoms, including hippocampal dysfunction. It is unknown whether stimulation of upstream hippocampal circuitry, such as the entorhinal cortex (Ent), is antidepressive, although Ent stimulation improves learning and memory in mice and humans. Here we show that molecular targeting (Ent-specific knockdown of a psychosocial stress-induced protein) and chemogenetic stimulation of Ent neurons induce antidepressive-like effects in mice. Mechanistically, we show that Ent-stimulation-induced antidepressive-like behavior relies on the generation of new hippocampal neurons. Thus, controlled stimulation of Ent hippocampal afferents is antidepressive via increased hippocampal neurogenesis. These findings emphasize the power and potential of Ent glutamatergic afferent stimulation-previously well-known for its ability to influence learning and memory-for MDD treatment.

  11. Influence of nerve growth factor on developing dorso-medial and ventro-lateral neurons of chick and mouse trigeminal ganglia.

    Davies, A; Lumsden, A

    1983-01-01

    Trigeminal ganglia have been removed from five, six, seven and eight day chick embryos and explants of the dorso-medial (DM) and ventro-lateral (VL) parts of the maxillomandibular lobe were grown in tissue culture. Quantitative methods were used to assess the influence of nerve growth factor (NGF) on fiber outgrowth from these explants. At all ages outgrowth from DM explants was significantly greater than from VL explants, the difference being most pronounced between the extreme DM and VL poles of the maxillomandibular lobe. These observations are interpreted as indicating the existence of two distinct populations of neurons in terms of their response to NGF rather than the consequence of the asynchronous differentiation and maturation of the VL and DM neurons. A similar study of 10, 11 and 12 day embryonic mouse trigeminal ganglia revealed no significant difference in neurite outgrowth between DM and VL regions grown in the presence or absence of NGF. Copyright © 1983. Published by Elsevier Ltd.

  12. Trace Fear Conditioning Differentially Modulates Intrinsic Excitability of Medial Prefrontal Cortex-Basolateral Complex of Amygdala Projection Neurons in Infralimbic and Prelimbic Cortices.

    Song, Chenghui; Ehlers, Vanessa L; Moyer, James R

    2015-09-30

    Neuronal activity in medial prefrontal cortex (mPFC) is critical for the formation of trace fear memory, yet the cellular mechanisms underlying these memories remain unclear. One possibility involves the modulation of intrinsic excitability within mPFC neurons that project to the basolateral complex of amygdala (BLA). The current study used a combination of retrograde labeling and in vitro whole-cell patch-clamp recordings to examine the effect of trace fear conditioning on the intrinsic excitability of layer 5 mPFC-BLA projection neurons in adult rats. Trace fear conditioning significantly enhanced the intrinsic excitability of regular spiking infralimbic (IL) projection neurons, as evidenced by an increase in the number of action potentials after current injection. These changes were also associated with a reduction in spike threshold and an increase in h current. In contrast, trace fear conditioning reduced the excitability of regular spiking prelimbic (PL) projection neurons, through a learning-related decrease of input resistance. Interestingly, the amount of conditioned freezing was (1) positively correlated with excitability of IL-BLA projection neurons after conditioning and (2) negatively correlated with excitability of PL-BLA projection neurons after extinction. Trace fear conditioning also significantly enhanced the excitability of burst spiking PL-BLA projection neurons. In both regions, conditioning-induced plasticity was learning specific (observed in conditioned but not in pseudoconditioned rats), flexible (reversed by extinction), and transient (lasted extinction of trace fear conditioning. Significance statement: Frontal lobe-related function is vital for a variety of important behaviors, some of which decline during aging. This study involves a novel combination of electrophysiological recordings from fluorescently labeled mPFC-to-amygdala projection neurons in rats with acquisition and extinction of trace fear conditioning to determine how

  13. Independent delta/theta rhythms in the human hippocampus and entorhinal cortex

    Florian Mormann

    2008-05-01

    Full Text Available Theta oscillations in the medial temporal lobe (MTL of mammals are involved in various functions such as spatial navigation, sensorimotor integration, and cognitive processing. While the theta rhythm was originally assumed to originate in the medial septum, more recent studies suggest autonomous theta generation in the MTL. Although coherence between entorhinal and hippocampal theta activity has been found to influence memory formation, it remains unclear whether these two structures can generate theta independently. In this study we analyzed intracranial electroencephalographic (EEG recordings from 22 patients with unilateral hippocampal sclerosis undergoing presurgical evaluation prior to resection of the epileptic focus. Using a wavelet-based, frequency-band-specific measure of phase synchronization, we quantified synchrony between 10 different recording sites along the longitudinal axis of the hippocampal formation in the non-epileptic brain hemisphere. We compared EEG synchrony between adjacent recording sites (i within the entorhinal cortex, (ii within the hippocampus, and (iii between the hippocampus and entorhinal cortex. We observed a significant interregional gap in synchrony for the delta and theta band, indicating the existence of independent delta/theta rhythms in different subregions of the human MTL. The interaction of these rhythms could represent the temporal basis for the information processing required for mnemonic encoding and retrieval.

  14. Activation of pyramidal neurons in mouse medial prefrontal cortex enhances food seeking behavior while reducing impulsivity in the absence of an effect on food intake

    Daniel McAllister Warthen

    2016-03-01

    Full Text Available The medial prefrontal cortex (mPFC is involved in a wide range of executive cognitive functions, including reward evaluation, decision-making, memory extinction, mood, and task switching. Manipulation of the mPFC has been shown to alter food intake and food reward valuation, but whether exclusive stimulation of mPFC pyramidal neurons, which form the principle output of the mPFC, is sufficient to mediate food rewarded instrumental behavior is unknown. We sought to determine the behavioral consequences of manipulating mPFC output by exciting pyramidal neurons in mouse mPFC during performance of a panel of behavioral assays, focusing on food reward. We found that increasing mPFC pyramidal cell output using Designer Receptors Exclusively Activated by Designer Drugs (DREADD enhanced performance in instrumental food reward assays that assess food seeking behavior, while sparing effects in affect and food intake. Specifically, activation of mPFC pyramidal neurons enhanced operant responding for food reward, reinstatement of palatable food seeking, and suppression of impulsive responding for food reward. Conversely, activation of mPFC pyramidal neurons had no effect on unconditioned food intake, social interaction, or behavior in an open field. Furthermore, we found that behavioral outcome is influenced by the degree of mPFC activation, with a low drive sufficient to enhance operant responding and a higher drive required to alter impulsivity. Additionally, we provide data demonstrating that DREADD stimulation involves a nitric oxide synthase dependent pathway, similar to endogenous muscarinic M3 receptor stimulation, a finding that provides novel mechanistic insight into an increasingly widespread method of remote neuronal control.

  15. Damage of GABAergic neurons in the medial septum impairs spatial working memory and extinction of active avoidance: effects on proactive interference.

    Pang, Kevin C H; Jiao, Xilu; Sinha, Swamini; Beck, Kevin D; Servatius, Richard J

    2011-08-01

    The medial septum and diagonal band (MSDB) are important in spatial learning and memory. On the basis of the excitotoxic damage of GABAergic MSDB neurons, we have recently suggested a role for these neurons in controlling proactive interference. Our study sought to test this hypothesis in different behavioral procedures using a new GABAergic immunotoxin. GABA-transporter-saporin (GAT1-SAP) was administered into the MSDB of male Sprague-Dawley rats. Following surgery, rats were trained in a reference memory water maze procedure for 5 days, followed by a working memory (delayed match to position) water maze procedure. Other rats were trained in a lever-press avoidance procedure after intraseptal GAT1-SAP or sham surgery. Intraseptal GAT1-SAP extensively damaged GABAergic neurons while sparing most cholinergic MSDB neurons. Rats treated with GAT1-SAP were not impaired in acquiring a spatial reference memory, learning the location of the escape platform as rapidly as sham rats. In contrast, GAT1-SAP rats were slower than sham rats to learn the platform location in a delayed match to position procedure, in which the platform location was changed every day. Moreover, GAT1-SAP rats returned to previous platform locations more often than sham rats. In the active avoidance procedure, intraseptal GAT1-SAP impaired extinction but not acquisition of the avoidance response. Using a different neurotoxin and behavioral procedures than previous studies, the results of this study paint a similar picture that GABAergic MSDB neurons are important for controlling proactive interference. Copyright © 2010 Wiley-Liss, Inc.

  16. The Stressed Female Brain: Neuronal activity in the prelimbic but not infralimbic region of the medial prefrontal cortex suppresses learning after acute stress

    Lisa Y. Maeng

    2013-12-01

    Full Text Available Women are nearly twice as likely as men to suffer from anxiety and post-traumatic stress disorder (PTSD, indicating that many females are especially vulnerable to stressful life experience. A profound sex difference in the response to stress is also observed in laboratory animals. Acute exposure to an uncontrollable stressful event disrupts associative learning during classical eyeblink conditioning in female rats but enhances this same type of learning process in males. These sex differences in response to stress are dependent on neuronal activity in similar but also different brain regions. Neuronal activity in the basolateral nucleus of the amygdala (BLA is necessary in both males and females. However, neuronal activity in the medial prefrontal cortex (mPFC during the stressor is necessary to modify learning in females but not in males. The mPFC is often divided into its prelimbic (PL and infralimbic (IL subregions, which differ both in structure and function. Through its connections to the BLA, we hypothesized that neuronal activity within the PL, but not IL, during the stressor is necessary to suppress learning in females. To test this hypothesis, either the PL or IL of adult female rats was bilaterally inactivated with GABAA agonist muscimol during acute inescapable swim stress. 24h later, all subjects were trained with classical eyeblink conditioning. Though stressed, females without neuronal activity in the PL learned well. In contrast, females with IL inactivation during the stressor did not learn well, behaving similar to stressed vehicle-treated females. These data suggest that exposure to a stressful event critically engages the PL, but not IL, to disrupt associative learning in females. Together with previous studies, these data indicate that the PL communicates with the BLA to suppress learning after a stressful experience in females. This circuit may be similarly engaged in women who become cognitively impaired after stressful

  17. Zinc release in the lateral nucleus of the amygdala by stimulation of the entorhinal cortex.

    Takeda, Atsushi; Imano, Sachie; Itoh, Hiromasa; Oku, Naoto

    2006-11-06

    Zinc release in the lateral nucleus of the amygdala was examined using rat brain slices. The lateral and basolateral nuclei in the amygdala were evidently stained by Timm's sulfide-silver staining method. When the amygdala including both the nuclei was stimulated with 100 mM KCl by means of in vivo microdialysis, extracellular zinc concentration was increased significantly. Zinc release in the lateral nucleus of the amygdala innervated by the entorhinal cortex was next examined in brain slices double-stained with zinc and calcium indicators. Extracellular zinc signal (ZnAF-2) in the lateral nucleus was increased with intracellular calcium signal (calcium orange) during delivery of tetanic stimuli to the entorhinal cortex. Both the increases were completely inhibited by addition of 1 micro M tetrodotoxin, a sodium channel blocker. Furthermore, calcium signal in the lateral nucleus during delivery of tetanic stimuli to the entorhinal cortex was increased in the presence of 10 micro M CNQX, an AMPA/KA receptor antagonist, and this increase was facilitated by addition of 1 mM CaEDTA, a membrane-impermeable zinc chelator. The present study suggested that zinc is released in the lateral nucleus of the amygdala by depolarization of the entorhinal neurons. In the lateral nucleus, zinc released may suppress the increase in presynaptic calcium signal.

  18. How Does the Modular Organization of Entorhinal Grid Cells Develop?

    Stephen eGrossberg

    2014-06-01

    Full Text Available The entorhinal-hippocampal system plays a crucial role in spatial cognition and navigation. Since the discovery of grid cells in layer II of medial entorhinal cortex (MEC, several types of models have been proposed to explain their development and operation; namely, continuous attractor network models, oscillatory interference models, and self-organizing map (SOM models. Recent experiments revealing the in vivo intracellular signatures of grid cells (Domnisoru et al., 2013; Schmidt-Heiber & Hausser, 2013, the primarily inhibitory recurrent connectivity of grid cells (Couey et al., 2013; Pastoll et al., 2013, and the topographic organization of grid cells within anatomically overlapping modules of multiple spatial scales along the dorsoventral axis of MEC (Stensola et al., 2012 provide strong constraints and challenges to existing grid cell models. This article provides a computational explanation for how MEC cells can emerge through learning with grid cell properties in modular structures. Within this SOM model, grid cells with different rates of temporal integration learn modular properties with different spatial scales. Model grid cells learn in response to inputs from multiple scales of directionally-selective stripe cells (Krupic et al., 2012; Mhatre et al., 2012 that perform path integration of the linear velocities that are experienced during navigation. Slower rates of grid cell temporal integration support learned associations with stripe cells of larger scales. The explanatory and predictive capabilities of the three types of grid cell models are comparatively analyzed in light of recent data to illustrate how the SOM model overcomes problems that other types of models have not yet handled.

  19. Subiculum-entorhinal cortex interactions during in vitro ictogenesis.

    Herrington, Rochelle; Lévesque, Maxime; Avoli, Massimo

    2015-09-01

    Our aim was to establish the contribution of neuronal networks located in the entorhinal cortex (EC) and subiculum to the generation of interictal and ictal onset patterns recorded in vitro. We employed field potential recordings of epileptiform activity in rat brain slices induced with the application of the K(+) channel blocker 4-aminopyridine. Local connections between the EC and subiculum were severed to understand how EC-subicular circuits contribute to patterns of epileptiform synchronization. First, we found that ictal discharges occurred synchronously in these two structures, initiating from either the EC or subiculum, and were characterized by low voltage fast (LVF) or sudden onsets. Second, sudden onset ictal events initiated more frequently in the EC, whereas LVF onset ictal discharges appeared more likely to initiate in the subiculum (Psynchronization and, specifically, to ictogenesis in this in vitro model. Copyright © 2015 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  20. Context-dependent spatially periodic activity in the human entorhinal cortex.

    Nadasdy, Zoltan; Nguyen, T Peter; Török, Ágoston; Shen, Jason Y; Briggs, Deborah E; Modur, Pradeep N; Buchanan, Robert J

    2017-04-25

    The spatially periodic activity of grid cells in the entorhinal cortex (EC) of the rodent, primate, and human provides a coordinate system that, together with the hippocampus, informs an individual of its location relative to the environment and encodes the memory of that location. Among the most defining features of grid-cell activity are the 60° rotational symmetry of grids and preservation of grid scale across environments. Grid cells, however, do display a limited degree of adaptation to environments. It remains unclear if this level of environment invariance generalizes to human grid-cell analogs, where the relative contribution of visual input to the multimodal sensory input of the EC is significantly larger than in rodents. Patients diagnosed with nontractable epilepsy who were implanted with entorhinal cortical electrodes performing virtual navigation tasks to memorized locations enabled us to investigate associations between grid-like patterns and environment. Here, we report that the activity of human entorhinal cortical neurons exhibits adaptive scaling in grid period, grid orientation, and rotational symmetry in close association with changes in environment size, shape, and visual cues, suggesting scale invariance of the frequency, rather than the wavelength, of spatially periodic activity. Our results demonstrate that neurons in the human EC represent space with an enhanced flexibility relative to neurons in rodents because they are endowed with adaptive scalability and context dependency.

  1. Gating of hippocampal activity, plasticity, and memory by entorhinal cortex long-range inhibition.

    Basu, Jayeeta; Zaremba, Jeffrey D; Cheung, Stephanie K; Hitti, Frederick L; Zemelman, Boris V; Losonczy, Attila; Siegelbaum, Steven A

    2016-01-08

    The cortico-hippocampal circuit is critical for storage of associational memories. Most studies have focused on the role in memory storage of the excitatory projections from entorhinal cortex to hippocampus. However, entorhinal cortex also sends inhibitory projections, whose role in memory storage and cortico-hippocampal activity remains largely unexplored. We found that these long-range inhibitory projections enhance the specificity of contextual and object memory encoding. At the circuit level, these γ-aminobutyric acid (GABA)-releasing projections target hippocampal inhibitory neurons and thus act as a disinhibitory gate that transiently promotes the excitation of hippocampal CA1 pyramidal neurons by suppressing feedforward inhibition. This enhances the ability of CA1 pyramidal neurons to fire synaptically evoked dendritic spikes and to generate a temporally precise form of heterosynaptic plasticity. Long-range inhibition from entorhinal cortex may thus increase the precision of hippocampal-based long-term memory associations by assessing the salience of mnemonormation to the immediate sensory input. Copyright © 2016, American Association for the Advancement of Science.

  2. THC alters alters morphology of neurons in medial prefrontal cortex, orbital prefrontal cortex, and nucleus accumbens and alters the ability of later experience to promote structural plasticity.

    Kolb, Bryan; Li, Yilin; Robinson, Terry; Parker, Linda A

    2018-03-01

    Psychoactive drugs have the ability to alter the morphology of neuronal dendrites and spines and to influence later experience-dependent structural plasticity. If rats are given repeated injections of psychomotor stimulants (amphetamine, cocaine, nicotine) prior to being placed in complex environments, the drug experience interferes with the ability of the environment to increase dendritic arborization and spine density. Repeated exposure to Delta 9-Tetrahydrocannabinol (THC) changes the morphology of dendrites in medial prefrontal cortex (mPFC) and nucleus accumbens (NAcc). To determine if drugs other than psychomotor stimulants will also interfere with later experience-dependent structural plasticity we gave Long-Evans rats THC (0.5 mg/kg) or saline for 11 days before placing them in complex environments or standard laboratory caging for 90 days. Brains were subsequently processed for Golgi-Cox staining and analysis of dendritic morphology and spine density mPFC, orbital frontal cortex (OFC), and NAcc. THC altered both dendritic arborization and spine density in all three regions, and, like psychomotor stimulants, THC influenced the effect of later experience in complex environments to shape the structure of neurons in these three regions. We conclude that THC may therefore contribute to persistent behavioral and cognitive deficits associated with prolonged use of the drug. © 2017 Wiley Periodicals, Inc.

  3. Axonal recordings from medial superior olive neurons obtained from the lateral lemniscus of the chinchilla (Chinchilla laniger).

    Bremen, Peter; Joris, Philip X

    2013-10-30

    Interaural time differences (ITDs) are a major cue for localizing low-frequency (binaural beats and dichotic noise bursts to characterize the best delay versus characteristic frequency distribution, and compared the data to recordings we obtained in the inferior colliculus (IC). In contrast to most reports in other rodents, many best delays were close to zero ITD, both in MSO and IC, with a majority of the neurons recorded in the LL firing maximally within the presumed ethological ITD range.

  4. Characterization of excitatory and inhibitory neuron activation in the mouse medial prefrontal cortex following palatable food ingestion and food driven exploratory behavior

    Ronald P Gaykema

    2014-07-01

    Full Text Available The medial prefrontal cortex (mPFC is implicated in aspects of executive function, that include the modulation of attentional and memory processes involved in goal selection. Food-seeking behavior has been shown to involve activation of the mPFC, both during the execution of strategies designed to obtain food and during the consumption of food itself. As these behaviors likely require differential engagement of the prefrontal cortex, we hypothesized that the pattern of neuronal activation would also be behavior dependent. In this study we describe, for the first time, the expression of Fos in different layers and cell types of the infralimbic/dorsal peduncular (IL/DP and prelimbic/anterior cingulate (PL/AC subdivisions of mouse mPFC following both the consumption of palatable food and following exploratory activity of the animal directed at obtaining food reward. While both manipulations led to increases of Fos expression in principal excitatory neurons relative to control, food-directed exploratory activity produced a significantly greater increase in Fos expression than observed in the food intake condition. Consequently, we hypothesized that mPFC interneuron activation would also be differentially engaged by these manipulations. Interestingly, Fos expression patterns differed substantially between treatments and interneuron subtype, illustrating how the differential engagement of subsets of mPFC interneurons depends on the behavioral state. In our experiments, both vasoactive intestinal peptide- and parvalbumin-expressing neurons showed enhanced Fos expression only during the food-dependent exploratory task and not during food intake. Conversely, elevations in arcuate and paraventricular hypothalamic fos expression were only observed following food intake and not following food driven exploration. Our data suggest that activation of select mPFC interneurons may be required to support high cognitive demand states while being dispensable during

  5. Mechanism of Estradiol-Induced Block of Voltage-Gated K+ Currents in Rat Medial Preoptic Neurons

    Druzin, Michael; Malinina, Evgenya; Grimsholm, Ola; Johansson, Staffan

    2011-01-01

    The present study was conducted to characterize possible rapid effects of 17-β-estradiol on voltage-gated K+ channels in preoptic neurons and, in particular, to identify the mechanisms by which 17-β-estradiol affects the K+ channels. Whole-cell currents from dissociated rat preoptic neurons were studied by perforated-patch recording. 17-β-estradiol rapidly (within seconds) and reversibly reduced the K+ currents, showing an EC50 value of 9.7 µM. The effect was slightly voltage dependent, but independent of external Ca2+, and not sensitive to an estrogen-receptor blocker. Although 17-α-estradiol also significantly reduced the K+ currents, membrane-impermeant forms of estradiol did not reduce the K+ currents and other estrogens, testosterone and cholesterol were considerably less effective. The reduction induced by estradiol was overlapping with that of the KV-2-channel blocker r-stromatoxin-1. The time course of K+ current in 17-β-estradiol, with a time-dependent inhibition and a slight dependence on external K+, suggested an open-channel block mechanism. The properties of block were predicted from a computational model where 17-β-estradiol binds to open K+ channels. It was concluded that 17-β-estradiol rapidly reduces voltage-gated K+ currents in a way consistent with an open-channel block mechanism. This suggests a new mechanism for steroid action on ion channels. PMID:21625454

  6. Selective retrograde labeling of cholinergic neurons with [3H]choline

    Bagnoli, P.; Beaudet, A.; Stella, M.; Cuenod, M.

    1981-01-01

    Evidence is presented which is consistent with a specific retrograde labeling of cholinergic neurons following [ 3 H]choline application in their zone of termination. [ 3 H]Choline injection in the rat hippocampus leads to perikaryal retrograde labeling in the ipsilateral medial septal nuclease and nucleus of the diagonal band, thus delineating an established cholinergic pathway, while only diffuse presumably anterograde labeling was observed in the lateral septum, the entorhinal cortex, and the opposite hippocampus. After [ 3 H]choline injection in the pigeon visual Wulst, only the ipsilateral thalamic relay, of all inputs, showed similar perikaryal retrograde labeling, an observation supporting the suggestion that at least some thalamo-Wulst neurons are cholinergic

  7. Does the entorhinal cortex use the Fourier transform?

    Orchard, Jeff; Yang, Hao; Ji, Xiang

    2013-01-01

    Some neurons in the entorhinal cortex (EC) fire bursts when the animal occupies locations organized in a hexagonal grid pattern in their spatial environment. Place cells have also been observed, firing bursts only when the animal occupies a particular region of the environment. Both of these types of cells exhibit theta-cycle modulation, firing bursts in the 4–12 Hz range. Grid cells fire bursts of action potentials that precess with respect to the theta cycle, a phenomenon dubbed “theta precession.” Various models have been proposed to explain these phenomena, and how they relate to navigation. Among the most promising are the oscillator interference models. The bank-of-oscillators model proposed by Welday et al. (2011) exhibits all these features. However, their simulations are based on theoretical oscillators, and not implemented entirely with spiking neurons. We extend their work in a number of ways. First, we place the oscillators in a frequency domain and reformulate the model in terms of Fourier theory. Second, this perspective suggests a division of labor for implementing spatial maps: position vs. map layout. The animal's position is encoded in the phases of the oscillators, while the spatial map shape is encoded implicitly in the weights of the connections between the oscillators and the read-out nodes. Third, it reveals that the oscillator phases all need to conform to a linear relationship across the frequency domain. Fourth, we implement a partial model of the EC using spiking leaky integrate-and-fire (LIF) neurons. Fifth, we devise new coupling mechanisms, enlightened by the global phase constraint, and show they are capable of keeping spiking neural oscillators in consistent formation. Our model demonstrates place cells, grid cells, and phase precession. The Fourier model also gives direction for future investigations, such as integrating sensory feedback to combat drift, or explaining why grid cells exist at all. PMID:24376415

  8. Linear Look-ahead in Conjunctive Cells: An Entorhinal Mechanism for Vector-Based Navigation

    John L Kubie

    2012-04-01

    Full Text Available The crisp organization of the firing bumps of entorhinal grid cells and conjunctive cells leads to the notion that the entorhinal cortex may compute linear navigation routes. Specifically, we propose a process, termed linear look-ahead, by which a stationary animal could compute a series of locations in the direction it is facing. We speculate that this computation could be achieved through learned patterns of connection strengths among entorhinal neurons. This paper has three sections. First, we describe the minimal grid cell properties that will be built into our network. Specifically, the network relies of rigid modules of neurons, where all members have identical grid scale and orientation, but differ in spatial phase. Additionally, these neurons must be densely interconnected with synapses that are modifiable early in the animal’s life. Second, we investigate whether plasticity during short bouts of locomotion could induce patterns of connections amongst grid cells or conjunctive cells. Finally, we run a simulation to test whether the learned connection patterns can exhibit linear look-ahead. Our results are straightforward. A simulated 30-minute walk produces weak strengthening of synapses between grid cells that do not support linear look-ahead. Similar training in a conjunctive-cell module produces a small subset of very strong connections between cells. These strong pairs have three properties: The pre- and post-synaptic cells have similar heading direction. The cell pairs have neighboring grid bumps. Finally, the spatial offset of firing bumps of the cell pair is in the direction of the common heading preference. Such a module can produce strong and accurate linear look ahead starting in any location and extending in any direction. We speculate that this process may: 1. compute linear paths to goals; 2. update grid cell firing during navigation; and 3. stabilize the rigid modules of grid cells and conjunctive cells.

  9. Arginine vasopressin antagonizes the effects of prostaglandin E2 on the spontaneous activity of warm-sensitive and temperature-insensitive neurons in the medial preoptic area in rats.

    Xu, Jian-Hui; Hou, Xiao-Yu; Tang, Yu; Luo, Rong; Zhang, Jie; Liu, Chang; Yang, Yong-Lu

    2018-01-01

    Arginine vasopressin (AVP) plays an important role in thermoregulation and antipyresis. We have demonstrated that AVP could change the spontaneous activity of thermosensitive and temperature insensitive neurons in the preoptic area. However, whether AVP influences the effects of prostaglandin E 2 (PGE 2 ) on the spontaneous activity of neurons in the medial preoptic area (MPO) remains unclear. Our experiment showed that PGE 2 decreased the spontaneous activity of warm-sensitive neurons, and increased that of low-slope temperature-insensitive neurons in the MPO. AVP attenuated the inhibitory effect of PGE 2 on warm-sensitive neurons, and reversed the excitatory effect of PGE 2 on low-slope temperature-insensitive neurons, demonstrating that AVP antagonized the effects of PGE 2 on the spontaneous activity of these neurons. The effect of AVP was suppressed by an AVP V 1a receptor antagonist, suggesting that V 1a receptor mediated the action of AVP. We also demonstrated that AVP attenuated the PGE 2 -induced decrease in the prepotential's rate of rise in warm-sensitive neurons and the PGE 2 -induced increase in that in low-slope temperature-insensitive neurons through the V 1a receptor. Together, these data indicated that AVP antagonized the PGE 2 -induced change in the spontaneous activity of warm-sensitive and low-slope temperature-insensitive neurons in the MPO partly by reducing the PGE 2 -induced change in the prepotential of these neurons in a V 1a receptor-dependent manner. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Entorhinal-CA3 Dual-Input Control of Spike Timing in the Hippocampus by Theta-Gamma Coupling.

    Fernández-Ruiz, Antonio; Oliva, Azahara; Nagy, Gergő A; Maurer, Andrew P; Berényi, Antal; Buzsáki, György

    2017-03-08

    Theta-gamma phase coupling and spike timing within theta oscillations are prominent features of the hippocampus and are often related to navigation and memory. However, the mechanisms that give rise to these relationships are not well understood. Using high spatial resolution electrophysiology, we investigated the influence of CA3 and entorhinal inputs on the timing of CA1 neurons. The theta-phase preference and excitatory strength of the afferent CA3 and entorhinal inputs effectively timed the principal neuron activity, as well as regulated distinct CA1 interneuron populations in multiple tasks and behavioral states. Feedback potentiation of distal dendritic inhibition by CA1 place cells attenuated the excitatory entorhinal input at place field entry, coupled with feedback depression of proximal dendritic and perisomatic inhibition, allowing the CA3 input to gain control toward the exit. Thus, upstream inputs interact with local mechanisms to determine theta-phase timing of hippocampal neurons to support memory and spatial navigation. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Effects of entorhinal cortex lesions on memory in different tasks

    G.P. Gutierrez-Figueroa

    1997-06-01

    Full Text Available Lesions of the entorhinal cortex produce retrograde memory impairment in both animals and humans. Here we report the effects of bilateral entorhinal cortex lesions caused by the stereotaxic infusion of N-methyl-D-aspartate (NMDA in rats at two different moments, before or after the training session, on memory of different tasks: two-way shuttle avoidance, inhibitory avoidance and habituation to an open field. Pre- or post-training entorhinal cortex lesions caused an impairment of performance in the shuttle avoidance task, which agrees with the previously described role of this area in the processing of memories acquired in successive sessions. In the inhibitory avoidance task, only the post-training lesions had an effect (amnesia. No effect was observed on the open field task. The findings suggest that the role of the entorhinal cortex in memory processing is task-dependent, perhaps related to the complexity of each task

  12. Unilateral lateral entorhinal inactivation impairs memory expression in trace eyeblink conditioning.

    Stephanie E Tanninen

    Full Text Available Memory in trace eyeblink conditioning is mediated by an inter-connected network that involves the hippocampus (HPC, several neocortical regions, and the cerebellum. This network reorganizes after learning as the center of the network shifts from the HPC to the medial prefrontal cortex (mPFC. Despite the network reorganization, the lateral entorhinal cortex (LEC plays a stable role in expressing recently acquired HPC-dependent memory as well as remotely acquired mPFC-dependent memory. Entorhinal involvement in recent memory expression may be attributed to its previously proposed interactions with the HPC. In contrast, it remains unknown how the LEC participates in memory expression after the network disengages from the HPC. The present study tested the possibility that the LEC and mPFC functionally interact during remote memory expression by examining the impact of pharmacological inactivation of the LEC in one hemisphere and the mPFC in the contralateral hemisphere on memory expression in rats. Memory expression one day and one month after learning was significantly impaired after LEC-mPFC inactivation; however, the degree of impairment was comparable to that after unilateral LEC inactivation. Unilateral mPFC inactivation had no effect on recent or remote memory expression. These results suggest that the integrity of the LEC in both hemispheres is necessary for memory expression. Functional interactions between the LEC and mPFC should therefore be tested with an alternative design.

  13. Neurochemical Characterization of PSA-NCAM+ Cells in the Human Brain and Phenotypic Quantification in Alzheimer's Disease Entorhinal Cortex.

    Murray, Helen C; Swanson, Molly E V; Dieriks, B Victor; Turner, Clinton; Faull, Richard L M; Curtis, Maurice A

    2018-02-21

    Polysialylated neural cell adhesion molecule (PSA-NCAM) is widely expressed in the adult human brain and facilitates structural remodeling of cells through steric inhibition of intercellular NCAM adhesion. We previously showed that PSA-NCAM immunoreactivity is decreased in the entorhinal cortex in Alzheimer's disease (AD). Based on available evidence, we hypothesized that a loss of PSA-NCAM + interneurons may underlie this reduction. PSA-NCAM expression by interneurons has previously been described in the human medial prefrontal cortex. Here we used postmortem human brain tissue to provide further evidence of PSA-NCAM + interneurons throughout the human hippocampal formation and additional cortical regions. Furthermore, PSA-NCAM + cell populations were assessed in the entorhinal cortex of normal and AD cases using fluorescent double labeling and manual cell counting. We found a significant decrease in the number of PSA-NCAM + cells per mm 2 in layer II and V of the entorhinal cortex, supporting our previous description of reduced PSA-NCAM immunoreactivity. Additionally, we found a significant decrease in the proportion of PSA-NCAM + cells that co-labeled with NeuN and parvalbumin, but no change in the proportion that co-labeled with calbindin or calretinin. These results demonstrate that PSA-NCAM is expressed by a variety of interneuron populations throughout the brain. Furthermore, that loss of PSA-NCAM expression by NeuN + cells predominantly contributes to the reduced PSA-NCAM immunoreactivity in the AD entorhinal cortex. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  14. Impaired expression of GABA transporters in the human Alzheimer's disease hippocampus, subiculum, entorhinal cortex and superior temporal gyrus.

    Fuhrer, Tessa E; Palpagama, Thulani H; Waldvogel, Henry J; Synek, Beth J L; Turner, Clinton; Faull, Richard L; Kwakowsky, Andrea

    2017-05-20

    Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the brain and plays an important role in regulating neuronal excitability. GABA reuptake from the synapse is dependent on specific transporters - mainly GAT-1, GAT-3 and BGT-1 (GATs). This study is the first to show alterations in the expression of the GATs in the Alzheimer's disease (AD) hippocampus, entorhinal cortex and superior temporal gyrus. We found a significant increase in BGT-1 expression associated with AD in all layers of the dentate gyrus, in the stratum oriens of the CA2 and CA3 and the superior temporal gyrus. In AD there was a significant decrease in GAT-1 expression in the entorhinal cortex and superior temporal gyrus. We also found a significant decrease in GAT-3 immunoreactivity in the stratum pyramidale of the CA1 and CA3, the subiculum and entorhinal cortex. These observations indicate that the expression of the GATs shows brain-region- and layer-specific alterations in AD, suggesting a complex activation pattern of different GATs during the course of the disease. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  15. Prenatal exposure to an NMDA receptor antagonist, MK-801 reduces density of parvalbumin-immunoreactive GABAergic neurons in the medial prefrontal cortex and enhances phencyclidine-induced hyperlocomotion but not behavioral sensitization to methamphetamine in postpubertal rats.

    Abekawa, Tomohiro; Ito, Koki; Nakagawa, Shin; Koyama, Tsukasa

    2007-06-01

    Neurodevelopmental deficits of parvalbumin-immunoreactive gamma-aminobutyric acid (GABA)ergic interneurons in prefrontal cortex have been reported in schizophrenia. Glutamate influences the proliferation of this type of interneuron by an N-methyl-D-aspartate (NMDA)-receptor-mediated mechanism. The present study hypothesized that prenatal blockade of NMDA receptors would disrupt GABAergic neurodevelopment, resulting in differences in effects on behavioral responses to a noncompetitive NMDA antagonist, phencyclidine (PCP), and a dopamine releaser, methamphetamine (METH). GABAergic neurons were immunohistochemically stained with parvalbumin antibody. Psychostimulant-induced hyperlocomotion was measured using an infrared sensor. Prenatal exposure (E15-E18) to the NMDA receptor antagonist MK-801 reduced the density of parvalbumin-immunoreactive neurons in rat medial prefrontal cortex on postnatal day 63 (P63) and enhanced PCP-induced hyperlocomotion but not the acute effects of METH on P63 or the development of behavioral sensitization. Prenatal exposure to MK-801 reduced the number of parvalbumin-immunoreactive neurons even on postnatal day 35 (P35) and did not enhance PCP-induced hyperlocomotion, the acute effects of METH on P35, or the development of behavioral sensitization to METH. These findings suggest that prenatal blockade of NMDA receptors disrupts GABAergic neurodevelopment in medial prefrontal cortex, and that this disruption of GABAergic development may be related to the enhancement of the locomotion-inducing effect of PCP in postpubertal but not juvenile offspring. GABAergic deficit is unrelated to the effects of METH. This GABAergic neurodevelopmental disruption and the enhanced PCP-induced hyperlocomotion in adult offspring prenatally exposed to MK-801 may prove useful as a new model of the neurodevelopmental process of pathogenesis of treatment-resistant schizophrenia via an NMDA-receptor-mediated hypoglutamatergic mechanism.

  16. Control of clustered action potential firing in a mathematical model of entorhinal cortex stellate cells.

    Tait, Luke; Wedgwood, Kyle; Tsaneva-Atanasova, Krasimira; Brown, Jon T; Goodfellow, Marc

    2018-07-14

    The entorhinal cortex is a crucial component of our memory and spatial navigation systems and is one of the first areas to be affected in dementias featuring tau pathology, such as Alzheimer's disease and frontotemporal dementia. Electrophysiological recordings from principle cells of medial entorhinal cortex (layer II stellate cells, mEC-SCs) demonstrate a number of key identifying properties including subthreshold oscillations in the theta (4-12 Hz) range and clustered action potential firing. These single cell properties are correlated with network activity such as grid firing and coupling between theta and gamma rhythms, suggesting they are important for spatial memory. As such, experimental models of dementia have revealed disruption of organised dorsoventral gradients in clustered action potential firing. To better understand the mechanisms underpinning these different dynamics, we study a conductance based model of mEC-SCs. We demonstrate that the model, driven by extrinsic noise, can capture quantitative differences in clustered action potential firing patterns recorded from experimental models of tau pathology and healthy animals. The differential equation formulation of our model allows us to perform numerical bifurcation analyses in order to uncover the dynamic mechanisms underlying these patterns. We show that clustered dynamics can be understood as subcritical Hopf/homoclinic bursting in a fast-slow system where the slow sub-system is governed by activation of the persistent sodium current and inactivation of the slow A-type potassium current. In the full system, we demonstrate that clustered firing arises via flip bifurcations as conductance parameters are varied. Our model analyses confirm the experimentally suggested hypothesis that the breakdown of clustered dynamics in disease occurs via increases in AHP conductance. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Hippocampal subfield and medial temporal cortical persistent activity during working memory reflects ongoing encoding

    Rachel K Nauer

    2015-03-01

    Full Text Available Previous neuroimaging studies support a role for the medial temporal lobes (MTL in maintaining novel stimuli over brief working memory (WM delays, and suggest delay period activity predicts subsequent memory. Additionally, slice recording studies have demonstrated neuronal persistent spiking in entorhinal cortex (EC, perirhinal cortex (PrC, and hippocampus (CA1, CA3, subiculum. These data have led to computational models that suggest persistent spiking in parahippocampal regions could sustain neuronal representations of sensory information over many seconds. This mechanism may support both WM maintenance and encoding of information into long term episodic memory. The goal of the current study was to use high-resolution fMRI to elucidate the contributions of the MTL cortices and hippocampal subfields to WM maintenance as it relates to later episodic recognition memory. We scanned participants while they performed a delayed match to sample task with novel scene stimuli, and assessed their memory for these scenes post-scan. We hypothesized stimulus-driven activation that persists into the delay period—a putative correlate of persistent spiking—would predict later recognition memory. Our results suggest sample and delay period activation in the parahippocampal cortex (PHC, PrC, and subiculum (extending into DG/CA3 and CA1 was linearly related to increases in subsequent memory strength. These data extend previous neuroimaging studies that have constrained their analysis to either the sample or delay period by modeling these together as one continuous ongoing encoding process, and support computational frameworks that predict persistent activity underlies both WM and episodic encoding.

  18. Thickness in Entorhinal and Subicular Cortex Predicts Episodic Memory Decline in Mild Cognitive Impairment

    A. C. Burggren

    2011-01-01

    Full Text Available Identifying subjects with mild cognitive impairment (MCI most likely to decline in cognition over time is a major focus in Alzheimer's disease (AD research. Neuroimaging biomarkers that predict decline would have great potential for increasing the efficacy of early intervention. In this study, we used high-resolution MRI, combined with a cortical unfolding technique to increase visibility of the convoluted medial temporal lobe (MTL, to assess whether gray matter thickness in subjects with MCI correlated to decline in cognition over two years. We found that thickness in the entorhinal (ERC and subicular (Sub cortices of MCI subjects at initial assessment correlated to change in memory encoding over two years (ERC: r=0.34; P=.003 and Sub (r=0.26; P=.011 but not delayed recall performance. Our findings suggest that aspects of memory performance may be differentially affected in the early stages of AD. Given the MTL's involvement in early stages of neurodegeneration in AD, clarifying the relationship of these brain regions and the link to resultant cognitive decline is critical in understanding disease progression.

  19. How entorhinal grid cells may learn multiple spatial scales from a dorsoventral gradient of cell response rates in a self-organizing map.

    Stephen Grossberg

    Full Text Available Place cells in the hippocampus of higher mammals are critical for spatial navigation. Recent modeling clarifies how this may be achieved by how grid cells in the medial entorhinal cortex (MEC input to place cells. Grid cells exhibit hexagonal grid firing patterns across space in multiple spatial scales along the MEC dorsoventral axis. Signals from grid cells of multiple scales combine adaptively to activate place cells that represent much larger spaces than grid cells. But how do grid cells learn to fire at multiple positions that form a hexagonal grid, and with spatial scales that increase along the dorsoventral axis? In vitro recordings of medial entorhinal layer II stellate cells have revealed subthreshold membrane potential oscillations (MPOs whose temporal periods, and time constants of excitatory postsynaptic potentials (EPSPs, both increase along this axis. Slower (faster subthreshold MPOs and slower (faster EPSPs correlate with larger (smaller grid spacings and field widths. A self-organizing map neural model explains how the anatomical gradient of grid spatial scales can be learned by cells that respond more slowly along the gradient to their inputs from stripe cells of multiple scales, which perform linear velocity path integration. The model cells also exhibit MPO frequencies that covary with their response rates. The gradient in intrinsic rhythmicity is thus not compelling evidence for oscillatory interference as a mechanism of grid cell firing. A response rate gradient combined with input stripe cells that have normalized receptive fields can reproduce all known spatial and temporal properties of grid cells along the MEC dorsoventral axis. This spatial gradient mechanism is homologous to a gradient mechanism for temporal learning in the lateral entorhinal cortex and its hippocampal projections. Spatial and temporal representations may hereby arise from homologous mechanisms, thereby embodying a mechanistic "neural relativity" that

  20. MRI parcellation of ex vivo medial temporal lobe.

    Augustinack, Jean C; Magnain, Caroline; Reuter, Martin; van der Kouwe, André J W; Boas, David; Fischl, Bruce

    2014-06-01

    Recent advancements in radio frequency coils, field strength and sophisticated pulse sequences have propelled modern brain mapping and have made validation to biological standards - histology and pathology - possible. The medial temporal lobe has long been established as a pivotal brain region for connectivity, function and unique structure in the human brain, and reveals disconnection in mild Alzheimer's disease. Specific brain mapping of mesocortical areas affected with neurofibrillary tangle pathology early in disease progression provides not only an accurate description for location of these areas but also supplies spherical coordinates that allow comparison between other ex vivo cases and larger in vivo datasets. We have identified several cytoarchitectonic features in the medial temporal lobe with high resolution ex vivo MRI, including gray matter structures such as the entorhinal layer II 'islands', perirhinal layer II-III columns, presubicular 'clouds', granule cell layer of the dentate gyrus as well as lamina of the hippocampus. Localization of Brodmann areas 28 and 35 (entorhinal and perirhinal, respectively) demonstrates MRI based area boundaries validated with multiple methods and histological stains. Based on our findings, both myelin and Nissl staining relate to contrast in ex vivo MRI. Precise brain mapping serves to create modern atlases for cortical areas, allowing accurate localization with important applications to detecting early disease processes. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Functional inactivation of hypocretin 1 receptors in the medial prefrontal cortex affects the pyramidal neuron activity and gamma oscillations: An in vivo multiple-channel single-unit recording study.

    He, C; Chen, Q-H; Ye, J-N; Li, C; Yang, L; Zhang, J; Xia, J-X; Hu, Z-A

    2015-06-25

    The hypocretin signaling is thought to play a critical role in maintaining wakefulness via stimulating the subcortical arousal pathways. Although the cortical areas, including the medial prefrontal cortex (mPFC), receive dense hypocretinergic fibers and express its receptors, it remains unclear whether the hypocretins can directly regulate the neural activity of the mPFC in vivo. In the present study, using multiple-channel single-unit recording study, we found that infusion of the SB-334867, a blocker for the Hcrtr1, beside the recording sites within the mPFC substantially exerted an inhibitory effect on the putative pyramidal neuron (PPN) activity in naturally behaving rats. In addition, functional blockade of the Hcrtr1 also selectively reduced the power of the gamma oscillations. The PPN activity and the power of the neural oscillations were not affected after microinjection of the TCS-OX2-29, a blocker for the Hcrtr2, within the mPFC. Together, these data indicate that endogenous hypocretins acting on the Hcrtr1 are required for the normal neural activity in the mPFC in vivo, and thus might directly contribute cortical arousal and mPFC-dependent cognitive processes. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. The cortical structure of consolidated memory: a hypothesis on the role of the cingulate-entorhinal cortical connection.

    Insel, Nathan; Takehara-Nishiuchi, Kaori

    2013-11-01

    Daily experiences are represented by networks of neurons distributed across the neocortex, bound together for rapid storage and later retrieval by the hippocampus. While the hippocampus is necessary for retrieving recent episode-based memory associations, over time, consolidation processes take place that enable many of these associations to be expressed independent of the hippocampus. It is generally thought that mechanisms of consolidation involve synaptic weight changes between cortical regions; or, in other words, the formation of "horizontal" cortico-cortical connections. Here, we review anatomical, behavioral, and physiological data which suggest that the connections in and between the entorhinal and cingulate cortices may be uniquely important for the long-term storage of memories that initially depend on the hippocampus. We propose that current theories of consolidation that divide memory into dual systems of hippocampus and neocortex might be improved by introducing a third, middle layer of entorhinal and cingulate allocortex, the synaptic weights within which are necessary and potentially sufficient for maintaining initially hippocampus-dependent associations over long time periods. This hypothesis makes a number of still untested predictions, and future experiments designed to address these will help to fill gaps in the current understanding of the cortical structure of consolidated memory. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. A protocol for preparation and transfection of rat entorhinal cortex organotypic cultures for electrophysiological whole-cell recordings

    Nicholas I. Cilz

    2017-01-01

    Full Text Available Understanding how neuromodulators influence synaptic transmission and intrinsic excitability within the entorhinal cortex (EC is critical to furthering our understanding of the molecular and cellular aspects of this region. Organotypic cultures can provide a cost-effective means to employ selective molecular biological strategies in elucidating cellular mechanisms of neuromodulation in the EC. We therefore adapted our acute slice model for organotypic culture applications and optimized a protocol for the preparation and biolistic transfection of cultured horizontal EC slices. Here, we present our detailed protocol for culturing EC slices. Using an n-methyl-d-glucamine (NMDG-containing cutting solution, we obtain healthy EC slice cultures for electrophysiological recordings. We also present our protocol for the preparation of “bullets” carrying one or more constructs and demonstrate successful transfection of EC slices. We build upon previous methods and highlight specific aspects in our method that greatly improved the quality of our results. We validate our methods using immunohistochemical, imaging, and electrophysiological techniques. The novelty of this method is that it provides a description of culturing and transfection of EC neurons for specifically addressing their functionality. This method will enable researchers interested in entorhinal function to quickly adopt a similar slice culture transfection system for their own investigations.

  4. Medial Amygdala and Aggressive Behavior : Interaction Between Testosterone and Vasopressin

    Koolhaas, J.M.; Roozendaal, B.; Boorsma, F.; Van Den Brink, T.H.C.

    1990-01-01

    This paper considers the functional significance of the testosterone-dependent vasopressinergic neurons of the medial amygdala (Ame) in intermale aggressive behavior of rats. Local microinfusion of vasopressin into the medial amygdala causes an increase in offensive behavior both in gonadally intact

  5. Activation of Phosphatidylinositol-Linked Dopamine Receptors Induces a Facilitation of Glutamate-Mediated Synaptic Transmission in the Lateral Entorhinal Cortex.

    Iulia Glovaci

    Full Text Available The lateral entorhinal cortex receives strong inputs from midbrain dopamine neurons that can modulate its sensory and mnemonic function. We have previously demonstrated that 1 µM dopamine facilitates synaptic transmission in layer II entorhinal cortex cells via activation of D1-like receptors, increased cAMP-PKA activity, and a resulting enhancement of AMPA-receptor mediated currents. The present study assessed the contribution of phosphatidylinositol (PI-linked D1 receptors to the dopaminergic facilitation of transmission in layer II of the rat entorhinal cortex, and the involvement of phospholipase C activity and release of calcium from internal stores. Whole-cell patch-clamp recordings of glutamate-mediated evoked excitatory postsynaptic currents were obtained from pyramidal and fan cells. Activation of D1-like receptors using SKF38393, SKF83959, or 1 µM dopamine induced a reversible facilitation of EPSCs which was abolished by loading cells with either the phospholipase C inhibitor U-73122 or the Ca2+ chelator BAPTA. Neither the L-type voltage-gated Ca2+ channel blocker nifedipine, nor the L/N-type channel blocker cilnidipine, blocked the facilitation of synaptic currents. However, the facilitation was blocked by blocking Ca2+ release from internal stores via inositol 1,4,5-trisphosphate (InsP3 receptors or ryanodine receptors. Follow-up studies demonstrated that inhibiting CaMKII activity with KN-93 failed to block the facilitation, but that application of the protein kinase C inhibitor PKC(19-36 completely blocked the dopamine-induced facilitation. Overall, in addition to our previous report indicating a role for the cAMP-PKA pathway in dopamine-induced facilitation of synaptic transmission, we demonstrate here that the dopaminergic facilitation of synaptic responses in layer II entorhinal neurons also relies on a signaling cascade dependent on PI-linked D1 receptors, PLC, release of Ca2+ from internal stores, and PKC activation which is

  6. Laminar activity in the hippocampus and entorhinal cortex related to novelty and episodic encoding

    Maass, Anne; Schütze, Hartmut; Speck, Oliver; Yonelinas, Andrew; Tempelmann, Claus; Heinze, Hans-Jochen; Berron, David; Cardenas-Blanco, Arturo; Brodersen, Kay H.; Enno Stephan, Klaas; Düzel, Emrah

    2014-01-01

    The ability to form long-term memories for novel events depends on information processing within the hippocampus (HC) and entorhinal cortex (EC). The HC–EC circuitry shows a quantitative segregation of anatomical directionality into different neuronal layers. Whereas superficial EC layers mainly project to dentate gyrus (DG), CA3 and apical CA1 layers, HC output is primarily sent from pyramidal CA1 layers and subiculum to deep EC layers. Here we utilize this directionality information by measuring encoding activity within HC/EC subregions with 7 T high resolution functional magnetic resonance imaging (fMRI). Multivariate Bayes decoding within HC/EC subregions shows that processing of novel information most strongly engages the input structures (superficial EC and DG/CA2–3), whereas subsequent memory is more dependent on activation of output regions (deep EC and pyramidal CA1). This suggests that while novelty processing is strongly related to HC–EC input pathways, the memory fate of a novel stimulus depends more on HC–EC output. PMID:25424131

  7. Lesions of entorhinal cortex produce a calpain-mediated degradation of brain spectrin in dentate gyrus. I. Biochemical studies.

    Seubert, P; Ivy, G; Larson, J; Lee, J; Shahi, K; Baudry, M; Lynch, G

    1988-09-06

    Lesions of the rat entorhinal cortex cause extensive synaptic restructuring and perturbation of calcium regulation in the dentate gyrus of hippocampus. Calpain is a calcium-activated protease which has been implicated in degenerative phenomena in muscles and in peripheral nerves. In addition, calpain degrades several major structural neuronal proteins and has been proposed to play a critical role in the morphological changes observed following deafferentation. In this report we present evidence that lesions of the entorhinal cortex produce a marked increase in the breakdown of brain spectrin, a substrate for calpain, in the dentate gyrus. Two lines of evidence indicate that this effect is due to calpain activation: (i) the spectrin breakdown products observed following the lesion are indistinguishable from calpain-generated spectrin fragments in vitro; and (ii) their appearance can be reduced by prior intraventricular in fusion of leupeptin, a calpain inhibitor. Levels of spectrin breakdown products are increased as early as 4 h post-lesion, reach maximal values at 2 days, and remain above normal to some degree for at least 27 days. In addition, a small but significant increase in spectrin proteolysis is also observed in the hippocampus contralateral to the lesioned side in the first week postlesion. At 2 days postlesion the total spectrin immunoreactivity (native polypeptide plus breakdown products) increases by 40%, suggesting that denervation of the dentate gyrus produces not only an increased rate of spectrin degradation but also an increased rate of spectrin synthesis. These results indicate that calpain activation and spectrin degradation are early biochemical events following deafferentation and might well participate in the remodelling of postsynaptic structures. Finally, the magnitude of the observed effects as well as the stable nature of the breakdown products provide a sensitive assay for neuronal pathology.

  8. Disruption of amygdala-entorhinal-hippocampal network in late-life depression.

    Leal, Stephanie L; Noche, Jessica A; Murray, Elizabeth A; Yassa, Michael A

    2017-04-01

    Episodic memory deficits are evident in late-life depression (LLD) and are associated with subtle synaptic and neurochemical changes in the medial temporal lobes (MTL). However, the particular mechanisms by which memory impairment occurs in LLD are currently unknown. We tested older adults with (DS+) and without (DS-) depressive symptoms using high-resolution fMRI that is capable of discerning signals in hippocampal subfields and amygdala nuclei. Scanning was conducted during performance of an emotional discrimination task used previously to examine the relationship between depressive symptoms and amygdala-mediated emotional modulation of hippocampal pattern separation in young adults. We found that hippocampal dentate gyrus (DG)/CA3 activity was reduced during correct discrimination of negative stimuli and increased during correct discrimination of neutral items in DS+ compared to DS- adults. The extent of the latter increase was correlated with symptom severity. Furthermore, DG/CA3 and basolateral amygdala (BLA) activity predicted discrimination performance on negative trials, a relationship that depended on symptom severity. The impact of the BLA on depressive symptom severity was mediated by the DG/CA3 during discrimination of neutral items, and by the lateral entorhinal cortex (LEC) during false recognition of positive items. These results shed light on a novel mechanistic account for amygdala-hippocampal network changes and concurrent alterations in emotional episodic memory in LLD. The BLA-LEC-DG/CA3 network, which comprises a key pathway by which emotion modulates memory, is specifically implicated in LLD. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. What Does the Anatomical Organization of the Entorhinal Cortex Tell Us?

    Cathrin B. Canto

    2008-01-01

    Full Text Available The entorhinal cortex is commonly perceived as a major input and output structure of the hippocampal formation, entertaining the role of the nodal point of cortico-hippocampal circuits. Superficial layers receive convergent cortical information, which is relayed to structures in the hippocampus, and hippocampal output reaches deep layers of entorhinal cortex, that project back to the cortex. The finding of the grid cells in all layers and reports on interactions between deep and superficial layers indicate that this rather simplistic perception may be at fault. Therefore, an integrative approach on the entorhinal cortex, that takes into account recent additions to our knowledge database on entorhinal connectivity, is timely. We argue that layers in entorhinal cortex show different functional characteristics most likely not on the basis of strikingly different inputs or outputs, but much more likely on the basis of differences in intrinsic organization, combined with very specific sets of inputs. Here, we aim to summarize recent anatomical data supporting the notion that the traditional description of the entorhinal cortex as a layered input-output structure for the hippocampal formation does not give the deserved credit to what this structure might be contributing to the overall functions of cortico-hippocampal networks.

  10. Integrating what and when across the primate medial temporal lobe.

    Naya, Yuji; Suzuki, Wendy A

    2011-08-05

    Episodic memory or memory for the detailed events in our lives is critically dependent on structures of the medial temporal lobe (MTL). A fundamental component of episodic memory is memory for the temporal order of items within an episode. To understand the contribution of individual MTL structures to temporal-order memory, we recorded single-unit activity and local field potential from three MTL areas (hippocampus and entorhinal and perirhinal cortex) and visual area TE as monkeys performed a temporal-order memory task. Hippocampus provided incremental timing signals from one item presentation to the next, whereas perirhinal cortex signaled the conjunction of items and their relative temporal order. Thus, perirhinal cortex appeared to integrate timing information from hippocampus with item information from visual sensory area TE.

  11. Effect of Prenatal Protein Malnutrition on Long-Term Potentiation and BDNF Protein Expression in the Rat Entorhinal Cortex after Neocortical and Hippocampal Tetanization

    Alejandro Hernández

    2008-01-01

    Full Text Available Reduction of the protein content from 25 to 8% casein in the diet of pregnant rats results in impaired neocortical long-term potentiation (LTP of the offspring together with lower visuospatial memory performance. The present study was aimed to investigate whether this type of maternal malnutrition could result in modification of plastic capabilities of the entorhinal cortex (EC in the adult progeny. Unlike normal eutrophic controls, 55–60-day-old prenatally malnourished rats were unable to develop LTP in the medial EC to tetanizing stimulation delivered to either the ipsilateral occipital cortex or the CA1 hippocampal region. Tetanizing stimulation of CA1 also failed to increase the concentration of brain-derived neurotrophic factor (BDNF in the EC of malnourished rats. Impaired capacity of the EC of prenatally malnourished rats to develop LTP and to increase BDNF levels during adulthood may be an important factor contributing to deficits in learning performance having adult prenatally malnourished animals.

  12. Effect of prenatal protein malnutrition on long-term potentiation and BDNF protein expression in the rat entorhinal cortex after neocortical and hippocampal tetanization.

    Hernández, Alejandro; Burgos, Héctor; Mondaca, Mauricio; Barra, Rafael; Núñez, Héctor; Pérez, Hernán; Soto-Moyano, Rubén; Sierralta, Walter; Fernández, Victor; Olivares, Ricardo; Valladares, Luis

    2008-01-01

    Reduction of the protein content from 25 to 8% casein in the diet of pregnant rats results in impaired neocortical long-term potentiation (LTP) of the offspring together with lower visuospatial memory performance. The present study was aimed to investigate whether this type of maternal malnutrition could result in modification of plastic capabilities of the entorhinal cortex (EC) in the adult progeny. Unlike normal eutrophic controls, 55-60-day-old prenatally malnourished rats were unable to develop LTP in the medial EC to tetanizing stimulation delivered to either the ipsilateral occipital cortex or the CA1 hippocampal region. Tetanizing stimulation of CA1 also failed to increase the concentration of brain-derived neurotrophic factor (BDNF) in the EC of malnourished rats. Impaired capacity of the EC of prenatally malnourished rats to develop LTP and to increase BDNF levels during adulthood may be an important factor contributing to deficits in learning performance having adult prenatally malnourished animals.

  13. Aberrant Wnt signaling pathway in medial temporal lobe structures of Alzheimer's disease

    Riise, Jesper; Plath, Niels; Pakkenberg, Bente

    2015-01-01

    alterations of the intracellular Wnt pathway signaling components β-catenin, Gsk3β and Tcf7l1/Tcf3 and the phosphorylation state of β-catenin and Gsk3β in the hippocampus suggestive of a link between AD and aberrant canonical activity. Alterations in Gsk3β co-appeared with hippocampal kinase...... on isolated Wnt pathway components. Here, we provide the first comprehensive pathway-focused evaluation of the Wnt pathway in the entorhinal cortex and hippocampus of AD brains. Our data demonstrate altered Wnt pathway gene expression at all levels of the pathway in both medial temporal lobe regions...

  14. Early Astrocytic Atrophy in the Entorhinal Cortex of a Triple Transgenic Animal Model of Alzheimer's Disease

    Chia-Yu Yeh

    2011-11-01

    Full Text Available The EC (entorhinal cortex is fundamental for cognitive and mnesic functions. Thus damage to this area appears as a key element in the progression of AD (Alzheimer's disease, resulting in memory deficits arising from neuronal and synaptic alterations as well as glial malfunction. In this paper, we have performed an in-depth analysis of astroglial morphology in the EC by measuring the surface and volume of the GFAP (glial fibrillary acidic protein profiles in a triple transgenic mouse model of AD [3xTg-AD (triple transgenic mice of AD]. We found significant reduction in both the surface and volume of GFAP-labelled profiles in 3xTg-AD animals from very early ages (1 month when compared with non-Tg (non-transgenic controls (48 and 54%, reduction respectively, which was sustained for up to 12 months (33 and 45% reduction respectively. The appearance of Aβ (amyloid β-peptide depositions at 12 months of age did not trigger astroglial hypertrophy; nor did it result in the close association of astrocytes with senile plaques. Our results suggest that the AD progressive cognitive deterioration can be associated with an early reduction of astrocytic arborization and shrinkage of the astroglial domain, which may affect synaptic connectivity within the EC and between the EC and other brain regions. In addition, the EC seems to be particularly vulnerable to AD pathology because of the absence of evident astrogliosis in response to Aβ accumulation. Thus we can consider that targeting astroglial atrophy may represent a therapeutic strategy which might slow down the progression of AD.

  15. Delayed clearance of cerebrospinal fluid tracer from entorhinal cortex in idiopathic normal pressure hydrocephalus: A glymphatic magnetic resonance imaging study.

    Eide, Per K; Ringstad, Geir

    2018-01-01

    The glymphatic system plays a key role for clearance of waste solutes from the rodent brain. We recently found evidence of glymphatic circulation in the human brain when using magnetic resonance imaging (MRI) contrast agent as cerebrospinal fluid (CSF) tracer in conjunction with multiple MRI acquisitions (gMRI). The present study explored the hypothesis that reduced glymphatic clearance in entorhinal cortex (ERC) may be instrumental in idiopathic normal pressure hydrocephalus (iNPH) dementia. gMRI acquisitions were obtained over a 24-48 h time span in cognitively affected iNPH patients and non-cognitively affected patients with suspected CSF leaks. The CSF tracer enrichment was determined as changes in normalized MRI T1 signal units. The study included 30 patients with iNPH and 8 individuals with suspected CSF leaks (i.e. reference individuals). Compared to reference individuals, iNPH patients presented with higher medial temporal lobe atrophy score and Evan's index and inferior ERC thickness. We found delayed clearance of the intrathecal CSF tracer gadobutrol from CSF, the ERC and adjacent white matter, suggesting impaired glymphatic circulation. Reduced clearance and accumulation of toxic waste product such as amyloid-β may be a mechanism behind dementia in iNPH. Glymphatic MRI (gMRI) may become a tool for assessment of early dementia.

  16. Ipsilateral Medial and Lateral Discoid Meniscus with Medial Meniscus Tear

    Shimozaki, Kengo; Nakase, Junsuke; Ohashi, Yoshinori; Numata, Hitoaki; Oshima, Takeshi; Takata, Yasushi; Tsuchiya, Hiroyuki

    2016-01-01

    Introduction: Discoid meniscus is a well-documented knee pathology, and there are many cases of medial or lateral discoid meniscus reported in the literature. However, ipsilateral concurrent medial and lateral discoid meniscus is very rare, and only a few cases have been reported. Herein, we report a case of concurrent medial and lateral discoid meniscus. Case Report: A 27-year-old Japanese man complained of pain on medial joint space in his right knee that was diagnosed as a complete medial ...

  17. Arthroscopic partial medial meniscectomy

    Dašić Žarko

    2011-01-01

    Full Text Available Background/Aim. Meniscal injuries are common in professional or recreational sports as well as in daily activities. If meniscal lesions lead to physical impairment they usually require surgical treatment. Arthroscopic treatment of meniscal injuries is one of the most often performed orthopedic operative procedures. Methods. The study analyzed the results of arthroscopic partial medial meniscectomy in 213 patients in a 24-month period, from 2006, to 2008. Results. In our series of arthroscopically treated medial meniscus tears we noted 78 (36.62% vertical complete bucket handle lesions, 19 (8.92% vertical incomplete lesions, 18 (8.45% longitudinal tears, 35 (16.43% oblique tears, 18 (8.45% complex degenerative lesions, 17 (7.98% radial lesions and 28 (13.14% horisontal lesions. Mean preoperative International Knee Documentation Committee (IKDC score was 49.81%, 1 month after the arthroscopic partial medial meniscectomy the mean IKDC score was 84.08%, and 6 months after mean IKDC score was 90.36%. Six months after the procedure 197 (92.49% of patients had good or excellent subjective postoperative clinical outcomes, while 14 (6.57% patients subjectively did not notice a significant improvement after the intervention, and 2 (0.93% patients had no subjective improvement after the partial medial meniscectomy at all. Conclusion. Arthroscopic partial medial meniscetomy is minimally invasive diagnostic and therapeutic procedure and in well selected cases is a method of choice for treatment of medial meniscus injuries when repair techniques are not a viable option. It has small rate of complications, low morbidity and fast rehabilitation.

  18. Animal model of dementia induced by entorhinal synaptic damage and partial restoration of cognitive deficits by BDNF and carnitine.

    Ando, Susumu; Kobayashi, Satoru; Waki, Hatsue; Kon, Kazuo; Fukui, Fumiko; Tadenuma, Tomoko; Iwamoto, Machiko; Takeda, Yasuo; Izumiyama, Naotaka; Watanabe, Kazutada; Nakamura, Hiroaki

    2002-11-01

    A rat dementia model with cognitive deficits was generated by synapse-specific lesions using botulinum neurotoxin (BoNTx) type B in the entorhinal cortex. To detect cognitive deficits, different tasks were needed depending upon the age of the model animals. Impaired learning and memory with lesions were observed in adult rats using the Hebb-Williams maze, AKON-1 maze and a continuous alternation task in T-maze. Cognitive deficits in lesioned aged rats were detected by a continuous alternation and delayed non-matching-to-sample tasks in T-maze. Adenovirus-mediated BDNF gene expression enhanced neuronal plasticity, as revealed by behavioral tests and LTP formation. Chronic administration of carnitine over time pre- and post-lesions seemed to partially ameliorate the cognitive deficits caused by the synaptic lesion. The carnitine-accelerated recovery from synaptic damage was observed by electron microscopy. These results demonstrate that the BoNTx-lesioned rat can be used as a model for dementia and that cognitive deficits can be alleviated in part by BDNF gene transfer or carnitine administration. Copyright 2002 Wiley-Liss, Inc.

  19. Healthy versus Entorhinal Cortical Atrophy Identification in Asymptomatic APOE4 Carriers at Risk for Alzheimer's Disease.

    Konishi, Kyoko; Joober, Ridha; Poirier, Judes; MacDonald, Kathleen; Chakravarty, Mallar; Patel, Raihaan; Breitner, John; Bohbot, Véronique D

    2018-01-01

    Early detection of Alzheimer's disease (AD) has been challenging as current biomarkers are invasive and costly. Strong predictors of future AD diagnosis include lower volume of the hippocampus and entorhinal cortex, as well as the ɛ4 allele of the Apolipoprotein E gene (APOE) gene. Therefore, studying functions that are critically mediated by the hippocampus and entorhinal cortex, such as spatial memory, in APOE ɛ4 allele carriers, may be key to the identification of individuals at risk of AD, prior to the manifestation of cognitive impairments. Using a virtual navigation task developed in-house, specifically designed to assess spatial versus non-spatial strategies, the current study is the first to differentiate functional and structural differences within APOE ɛ4 allele carriers. APOE ɛ4 allele carriers that predominantly use non-spatial strategies have decreased fMRI activity in the hippocampus and increased atrophy in the hippocampus, entorhinal cortex, and fimbria compared to APOE ɛ4 allele carriers who use spatial strategies. In contrast, APOE ɛ4 allele carriers who use spatial strategies have grey matter levels comparable to non-APOE ɛ4 allele carriers. Furthermore, in a leave-one-out analysis, grey matter in the entorhinal cortex could predict navigational strategy with 92% accuracy.

  20. Two Alzheimer’s disease risk genes increase entorhinal cortex volume in young adults

    Amanda Marie Dibattista

    2014-10-01

    Full Text Available Alzheimer’s disease (AD risk genes alter brain structure and function decades before disease onset. Apolipoprotein E (APOE is the strongest known genetic risk factor for Alzheimer’s disease, and a related gene, apolipoprotein J (APOJ, also affects disease risk. However, the extent to which these genes affect brain structure in young adults remains unclear. Here, we report that AD risk alleles of these two genes, APOE-ε4 and APOJ-C, cumulatively alter brain volume in young adults. Using voxel-based morphometry in 57 individuals, we examined the entorhinal cortex, one of the earliest brain regions affected in AD pathogenesis. APOE-ε4 carriers exhibited higher right entorhinal cortex volume compared to non-carriers. Interestingly, APOJ-C risk genotype was associated with higher bilateral entorhinal cortex volume in non-APOE-ε4 carriers. To determine the combined disease risk of APOE and APOJ status per subject, we used cumulative odds ratios as regressors for volumetric measurements. Higher disease risk corresponded to greater right entorhinal cortex volume. These results suggest that, years before disease onset, two key AD genetic risk factors may exert influence on the structure of a brain region where AD pathogenesis takes root.

  1. Two Alzheimer’s disease risk genes increase entorhinal cortex volume in young adults

    DiBattista, Amanda Marie; Stevens, Benson W.; Rebeck, G. William; Green, Adam E.

    2014-01-01

    Alzheimer’s disease (AD) risk genes alter brain structure and function decades before disease onset. Apolipoprotein E (APOE) is the strongest known genetic risk factor for AD, and a related gene, apolipoprotein J (APOJ), also affects disease risk. However, the extent to which these genes affect brain structure in young adults remains unclear. Here, we report that AD risk alleles of these two genes, APOE-ε4 and APOJ-C, cumulatively alter brain volume in young adults. Using voxel-based morphometry (VBM) in 57 individuals, we examined the entorhinal cortex, one of the earliest brain regions affected in AD pathogenesis. Apolipoprotein E-ε4 carriers exhibited higher right entorhinal cortex volume compared to non-carriers. Interestingly, APOJ-C risk genotype was associated with higher bilateral entorhinal cortex volume in non-APOE-ε4 carriers. To determine the combined disease risk of APOE and APOJ status per subject, we used cumulative odds ratios as regressors for volumetric measurements. Higher disease risk corresponded to greater right entorhinal cortex volume. These results suggest that, years before disease onset, two key AD genetic risk factors may exert influence on the structure of a brain region where AD pathogenesis takes root. PMID:25339884

  2. The medial patellofemoral complex.

    Loeb, Alexander E; Tanaka, Miho J

    2018-06-01

    The purpose of this review is to describe the current understanding of the medial patellofemoral complex, including recent anatomic advances, evaluation of indications for reconstruction with concomitant pathology, and surgical reconstruction techniques. Recent advances in our understanding of MPFC anatomy have found that there are fibers that insert onto the deep quadriceps tendon as well as the patella, thus earning the name "medial patellofemoral complex" to allow for the variability in its anatomy. In MPFC reconstruction, anatomic origin and insertion points and appropriate graft length are critical to prevent overconstraint of the patellofemoral joint. The MPFC is a crucial soft tissue checkrein to lateral patellar translation, and its repair or reconstruction results in good restoration of patellofemoral stability. As our understanding of MPFC anatomy evolves, further studies are needed to apply its relevance in kinematics and surgical applications to its role in maintaining patellar stability.

  3. Regional Specific Evidence for Memory-Load Dependent Activity in the Dorsal Subiculum and the Lateral Entorhinal Cortex

    Shih-pi Ku

    2017-07-01

    Full Text Available The subiculum and the lateral entorhinal cortex (LEC are the main output areas of the hippocampus which contribute to spatial and non-spatial memory. The proximal part of the subiculum (bordering CA1 receives heavy projections from the perirhinal cortex and the distal part of CA1 (bordering the subiculum, both known for their ties to object recognition memory. However, the extent to which the proximal subiculum contributes to non-spatial memory is still unclear. Comparatively, the involvement of the LEC in non-spatial information processing is quite well known. However, very few studies have investigated its role within the frame of memory function. Thus, it is not known whether its contribution depends on memory load. In addition, the deep layers of the EC have been shown to be predictive of subsequent memory performance, but not its superficial layers. Hence, here we tested the extent to which the proximal part of the subiculum and the superficial and deep layers of the LEC contribute to non-spatial memory, and whether this contribution depends on the memory load of the task. To do so, we imaged brain activity at cellular resolution in these areas in rats performing a delayed nonmatch to sample task based on odors with two different memory loads (5 or 10 odors. This imaging technique is based on the detection of the RNA of the immediate-early gene Arc, which is especially tied to synaptic plasticity and behavioral demands, and is commonly used to map activity in the medial temporal lobe. We report for the first time that the proximal part of the subiculum is recruited in a memory-load dependent manner and the deep layers of the LEC engaged under high memory load conditions during the retrieval of non-spatial memory, thus shedding light on the specific networks contributing to non-spatial memory retrieval.

  4. Regional Specific Evidence for Memory-Load Dependent Activity in the Dorsal Subiculum and the Lateral Entorhinal Cortex.

    Ku, Shih-Pi; Nakamura, Nozomu H; Maingret, Nicolas; Mahnke, Liv; Yoshida, Motoharu; Sauvage, Magdalena M

    2017-01-01

    The subiculum and the lateral entorhinal cortex (LEC) are the main output areas of the hippocampus which contribute to spatial and non-spatial memory. The proximal part of the subiculum (bordering CA1) receives heavy projections from the perirhinal cortex and the distal part of CA1 (bordering the subiculum), both known for their ties to object recognition memory. However, the extent to which the proximal subiculum contributes to non-spatial memory is still unclear. Comparatively, the involvement of the LEC in non-spatial information processing is quite well known. However, very few studies have investigated its role within the frame of memory function. Thus, it is not known whether its contribution depends on memory load. In addition, the deep layers of the EC have been shown to be predictive of subsequent memory performance, but not its superficial layers. Hence, here we tested the extent to which the proximal part of the subiculum and the superficial and deep layers of the LEC contribute to non-spatial memory, and whether this contribution depends on the memory load of the task. To do so, we imaged brain activity at cellular resolution in these areas in rats performing a delayed nonmatch to sample task based on odors with two different memory loads (5 or 10 odors). This imaging technique is based on the detection of the RNA of the immediate-early gene Arc , which is especially tied to synaptic plasticity and behavioral demands, and is commonly used to map activity in the medial temporal lobe. We report for the first time that the proximal part of the subiculum is recruited in a memory-load dependent manner and the deep layers of the LEC engaged under high memory load conditions during the retrieval of non-spatial memory, thus shedding light on the specific networks contributing to non-spatial memory retrieval.

  5. Regional Specific Evidence for Memory-Load Dependent Activity in the Dorsal Subiculum and the Lateral Entorhinal Cortex

    Ku, Shih-pi; Nakamura, Nozomu H.; Maingret, Nicolas; Mahnke, Liv; Yoshida, Motoharu; Sauvage, Magdalena M.

    2017-01-01

    The subiculum and the lateral entorhinal cortex (LEC) are the main output areas of the hippocampus which contribute to spatial and non-spatial memory. The proximal part of the subiculum (bordering CA1) receives heavy projections from the perirhinal cortex and the distal part of CA1 (bordering the subiculum), both known for their ties to object recognition memory. However, the extent to which the proximal subiculum contributes to non-spatial memory is still unclear. Comparatively, the involvement of the LEC in non-spatial information processing is quite well known. However, very few studies have investigated its role within the frame of memory function. Thus, it is not known whether its contribution depends on memory load. In addition, the deep layers of the EC have been shown to be predictive of subsequent memory performance, but not its superficial layers. Hence, here we tested the extent to which the proximal part of the subiculum and the superficial and deep layers of the LEC contribute to non-spatial memory, and whether this contribution depends on the memory load of the task. To do so, we imaged brain activity at cellular resolution in these areas in rats performing a delayed nonmatch to sample task based on odors with two different memory loads (5 or 10 odors). This imaging technique is based on the detection of the RNA of the immediate-early gene Arc, which is especially tied to synaptic plasticity and behavioral demands, and is commonly used to map activity in the medial temporal lobe. We report for the first time that the proximal part of the subiculum is recruited in a memory-load dependent manner and the deep layers of the LEC engaged under high memory load conditions during the retrieval of non-spatial memory, thus shedding light on the specific networks contributing to non-spatial memory retrieval. PMID:28790897

  6. Accounting for the Confound of Meninges in Segmenting Entorhinal and Perirhinal Cortices in T1-Weighted MRI.

    Xie, Long; Wisse, Laura E M; Das, Sandhitsu R; Wang, Hongzhi; Wolk, David A; Manjón, Jose V; Yushkevich, Paul A

    2016-10-01

    Quantification of medial temporal lobe (MTL) cortices, including entorhinal cortex (ERC) and perirhinal cortex (PRC), from in vivo MRI is desirable for studying the human memory system as well as in early diagnosis and monitoring of Alzheimer's disease. However, ERC and PRC are commonly over-segmented in T1-weighted (T1w) MRI because of the adjacent meninges that have similar intensity to gray matter in T1 contrast. This introduces errors in the quantification and could potentially confound imaging studies of ERC/PRC. In this paper, we propose to segment MTL cortices along with the adjacent meninges in T1w MRI using an established multi-atlas segmentation framework together with super-resolution technique. Experimental results comparing the proposed pipeline with existing pipelines support the notion that a large portion of meninges is segmented as gray matter by existing algorithms but not by our algorithm. Cross-validation experiments demonstrate promising segmentation accuracy. Further, agreement between the volume and thickness measures from the proposed pipeline and those from the manual segmentations increase dramatically as a result of accounting for the confound of meninges. Evaluated in the context of group discrimination between patients with amnestic mild cognitive impairment and normal controls, the proposed pipeline generates more biologically plausible results and improves the statistical power in discriminating groups in absolute terms comparing to other techniques using T1w MRI. Although the performance of the proposed pipeline is inferior to that using T2-weighted MRI, which is optimized to image MTL sub-structures, the proposed pipeline could still provide important utilities in analyzing many existing large datasets that only have T1w MRI available.

  7. Hyperglycemia decreased medial amygdala projections to medial preoptic area in experimental model of Diabetes Mellitus.

    Yousef Mohamadi

    2015-01-01

    Full Text Available In Wistar rats, reproductive behavior is controlled in a neural circuit of ventral forebrain including the medial amygdala (Me, bed nucleus of the stria terminalis (BNST and medial preoptic area (MPOA via perception of social odors. Diabetes Mellitus (DM is a widespread metabolic disease that affects many organs in a variety of levels. DM can cause central neuropathies such as neuronal apoptosis, dendritic atrophy, neurochemical alterations and also causes reproductive dysfunctions. So we hypothesized damage to the nuclei of this circuit can cause reproductive dysfunctions. Therefore in this project we assessed diabetic effect on these nuclei. For this purpose neuron tracing technique and TUNEL assay were used. We injected HRP in the MPOA and counted labeled cells in the Me and BNST to evaluate the reduction of neurons in diabetic animals. Also, coronal sections were analyzed with the TMB histochemistry method. Animals in this study were adult male Wistar rats (230 ± 8g divided to control and 10-week streptozotocin-induced diabetic groups. After data analysis by SPSS 16 software, a significant reduction of HRP-labeled neurons was shown in both Me and BNST nuclei in the diabetic group. Moreover, apoptotic cells were significantly observed in diabetic animals in contrast to control the group. In conclusion, these alterations of the circuit as a result of diabetes might be one of the reasons for reproductive dysfunctions.

  8. Background synaptic activity in rat entorhinal cortex shows a progressively greater dominance of inhibition over excitation from deep to superficial layers.

    Stuart David Greenhill

    Full Text Available The entorhinal cortex (EC controls hippocampal input and output, playing major roles in memory and spatial navigation. Different layers of the EC subserve different functions and a number of studies have compared properties of neurones across layers. We have studied synaptic inhibition and excitation in EC neurones, and we have previously compared spontaneous synaptic release of glutamate and GABA using patch clamp recordings of synaptic currents in principal neurones of layers II (L2 and V (L5. Here, we add comparative studies in layer III (L3. Such studies essentially look at neuronal activity from a presynaptic viewpoint. To correlate this with the postsynaptic consequences of spontaneous transmitter release, we have determined global postsynaptic conductances mediated by the two transmitters, using a method to estimate conductances from membrane potential fluctuations. We have previously presented some of this data for L3 and now extend to L2 and L5. Inhibition dominates excitation in all layers but the ratio follows a clear rank order (highest to lowest of L2>L3>L5. The variance of the background conductances was markedly higher for excitation and inhibition in L2 compared to L3 or L5. We also show that induction of synchronized network epileptiform activity by blockade of GABA inhibition reveals a relative reluctance of L2 to participate in such activity. This was associated with maintenance of a dominant background inhibition in L2, whereas in L3 and L5 the absolute level of inhibition fell below that of excitation, coincident with the appearance of synchronized discharges. Further experiments identified potential roles for competition for bicuculline by ambient GABA at the GABAA receptor, and strychnine-sensitive glycine receptors in residual inhibition in L2. We discuss our results in terms of control of excitability in neuronal subpopulations of EC neurones and what these may suggest for their functional roles.

  9. Medial temporal lobe

    Silver, A.J.; Cross, D.T.; Friedman, D.P.; Bello, J.A.; Hilal, S.K.

    1989-01-01

    To better define the MR appearance of hippocampal sclerosis, the authors have reviewed over 500 MR coronal images of the temporal lobes. Many cysts were noted that analysis showed were of choroid-fissure (arachnoid) origin. Their association with seizures was low. A few nontumorous, static, medial temporal lesions, noted on T2-weighted coronal images, were poorly visualized on T1-weighted images and did not enhance with gadolinium. The margins were irregular, involved the hippocampus, and were often associated with focal atrophy. The lesions usually were associated with seizure disorders and specific electroencephalographic changes, and the authors believe they represented hippocampal sclerosis

  10. 6-Hydroxydopamine and radiofrequency lesions of the lateral entorhinal cortex facilitate an operant appetitive conditioning task in mice.

    Gauthier, M; Soumireu-Mourat, B

    1981-07-02

    The entorhinal cortex seems heterogeneous as dopaminergic terminals are present only in the anterior part of the lateral entorhinal cortex. In order to clarify the interaction of this cortex with the hippocampus in memory processes, the effects of either 6-hydroxydopamine or radiofrequency bilateral lesions were compared. Both lesions enhance the retention of a Skinner task with continuous reinforcement schedule. Involvement of dopamine in memory processes is discussed.

  11. Atraumatic medial collateral ligament oedema in medial compartment knee osteoarthritis

    Bergin, D.; Keogh, C.; O'Connell, M.; Zoga, A.; Rowe, D.; Shah, B.; Eustace, S.

    2002-01-01

    Objective: To describe and determine the prevalence of atraumatic medial collateral oedema identified in patients with medial compartment osteoarthritis. Design and patients: Sixty patients, 30 patients with medial compartment knee osteoarthritis (Kellgren and Lawrence grade 2 to 4) and 30 age-matched patients with atraumatic knee pain without osteoarthritis, referred for MR imaging over a 2 year period were included in the study. In each case, severity of osteoarthritis was recorded on radiographs and correlated with the presence or absence of medial collateral ligament oedema at MR imaging. Results: Medial collateral oedema was identified in 27 of the 30 patients with osteoarthritis, of whom 14 had grade 1 oedema and 13 had grade 2 oedema compared with the presence of medial collateral ligament oedema (grade 1) in only two of the 30 control patients without osteoarthritis (P<<0.0001). Conclusion: Medial collateral oedema is common in patients with osteoarthritis in the absence of trauma. When identified, medial collateral ligament oedema should be considered to be a feature of osteoarthritis and should not be incorrectly attributed to an acute traumatic injury. (orig.)

  12. Fragmented medial coronoid process

    Juhasz, Cs.; Juhasz, T.

    1997-01-01

    Fragmented medial coronoid process: (FCP) is often considered to be part of the osteochondrosis dissecans complex, but trauma and growth discrepancies between the radius and ulna are proposed as causes. There is little to clinically differentiate FCP, from osteochondrosis dissecans (OCD) of the elbow. Pain on, flexion-extension of the elbow and lateral rotation of the paw is a little more consistent in FCP. Radiographic examination of the elbow is important despite the, fact that radiographic signs of the FCP are often nonspecific. Excessive osteoarthrosis and superimposition of the radial head and coronoid process make identification of the FCP difficult. Craniocaudal, flexed mediolateral and 25 degree craniocaudal-lateromedial views are necessary for diagnosis. Osteophyte production is more dramatic with FCP than with OCD and suggests therefore the occurrence of OCP in many cases. Although the detached process may be seen on any view, the oblique projection offers the least obstructed view. Exposure of the joint is identical to that for OCD, that means a medial approach with osteotomy of the epicondyle. In most cases the process is loose enough to be readily apparent, but in some it is necessary to exert force on the process in order to find the cleavage plane. It is necessary to remove the osteophytes as well and to inspect and irrigate the joint carefully to remove cartilage fragments before closure. Confinement is advisable for 4 weeks before returning the dog to normal activity. The outlook for function is good if the FCP is removed before secondary degenerative joint disease is well established

  13. Selective involvement of the lateral entorhinal cortex in the control of the olfactory memory trace during conditioned odor aversion in the rat.

    Ferry, Barbara; Ferreira, Guillaume; Traissard, Natalia; Majchrzak, Monique

    2006-10-01

    Evidence from the effect of aspiration lesions of the entorhinal cortex (EC) has shown that this region is involved in conditioned odor-aversion (COA) learning--that is, the avoidance of an odorized tasteless solution the ingestion of which precedes toxicosis--by rendering COA tolerant to long odor-toxicosis delay. The present study examined whether neurotoxic lesions restricted to the lateral or medial parts of the EC, in comparison with large aspiration lesions, were sufficient to produce this effect. Male Long-Evans rats received odor-intoxication pairing with either a short (5-min) or long (120-min) delay between the presentation of the odor and toxicosis. All groups, including sham-lesioned controls, showed COA at the 5-min odor-toxicosis delay interval, but only rats with lateral EC damage displayed COA at the longer delay. These data show that the lateral EC is part of the substrate involved in the control of the olfactory memory trace during COA.

  14. Shearing-induced asymmetry in entorhinal grid cells.

    Stensola, Tor; Stensola, Hanne; Moser, May-Britt; Moser, Edvard I

    2015-02-12

    Grid cells are neurons with periodic spatial receptive fields (grids) that tile two-dimensional space in a hexagonal pattern. To provide useful information about location, grids must be stably anchored to an external reference frame. The mechanisms underlying this anchoring process have remained elusive. Here we show in differently sized familiar square enclosures that the axes of the grids are offset from the walls by an angle that minimizes symmetry with the borders of the environment. This rotational offset is invariably accompanied by an elliptic distortion of the grid pattern. Reversing the ellipticity analytically by a shearing transformation removes the angular offset. This, together with the near-absence of rotation in novel environments, suggests that the rotation emerges through non-coaxial strain as a function of experience. The systematic relationship between rotation and distortion of the grid pattern points to shear forces arising from anchoring to specific geometric reference points as key elements of the mechanism for alignment of grid patterns to the external world.

  15. Functional circuits of new neurons in the dentate gyrus

    Carmen eVivar

    2013-02-01

    Full Text Available The hippocampus is crucial for memory formation. New neurons are added throughout life to the hippocampal dentate gyrus (DG, a brain area considered important for differential storage of similar experiences and contexts. To better understand the functional contribution of adult neurogenesis to pattern separation processes, we recently used a novel synapse specific trans-neuronal tracing approach to identify the (sub cortical inputs to new dentate granule cells. It was observed that newly born neurons receive sequential innervation from structures important for memory function. Initially, septal-hippocampal cells provide input to new neurons, followed after about one month by perirhinal and lateral entorhinal cortex. These cortical areas are deemed relevant to encoding of novel environmental information and may enable pattern separation. Here, we review the developmental time-course and proposed functional relevance of new neurons, within the context of their unique neural circuitry.  

  16. Vocal fold injection medialization laryngoplasty.

    Modi, Vikash K

    2012-01-01

    Unilateral vocal fold paralysis (UVFP) can cause glottic insufficiency that can result in hoarseness, chronic cough, dysphagia, and/or aspiration. In rare circumstances, UVFP can cause airway obstruction necessitating a tracheostomy. The treatment options for UVFP include observation, speech therapy, vocal fold injection medialization laryngoplasty, thyroplasty, and laryngeal reinnervation. In this chapter, the author will discuss the technique of vocal fold injection for medialization of a UVFP. Copyright © 2012 S. Karger AG, Basel.

  17. Amount of lifetime video gaming is positively associated with entorhinal, hippocampal and occipital volume.

    Kühn, S; Gallinat, J

    2014-07-01

    Playing video games is a popular leisure activity among children and adults, and may therefore potentially influence brain structure. We have previously shown a positive association between probability of gray matter (GM) volume in the ventral striatum and frequent video gaming in adolescence. Here we set out to investigate structural correlates of video gaming in adulthood, as the effects observed in adolescents may reflect only a fraction of the potential neural long-term effects seen in adults. On magnetic resonance imaging (MRI) scans of 62 male adults, we computed voxel-based morphometry to explore the correlation of GM with the lifetime amount of video gaming (termed joystick years). We found a significant positive association between GM in bilateral parahippocamal region (entorhinal cortex) and left occipital cortex/inferior parietal lobe and joystick years (Pvideo game genres played, such as logic/puzzle games and platform games contributing positively, and action-based role-playing games contributing negatively. Furthermore, joystick years were positively correlated with hippocampus volume. The association of lifetime amount of video game playing with bilateral entorhinal cortex, hippocampal and occipital GM volume could reflect adaptive neural plasticity related to navigation and visual attention.

  18. Preventing effect of L-type calcium channel blockade on electrophysiological alterations in dentate gyrus granule cells induced by entorhinal amyloid pathology.

    Hamid Gholami Pourbadie

    Full Text Available The entorhinal cortex (EC is one of the earliest affected brain regions in Alzheimer's disease (AD. EC-amyloid pathology induces synaptic failure in the dentate gyrus (DG with resultant behavioral impairment, but there is little known about its impact on neuronal properties in the DG. It is believed that calcium dyshomeostasis plays a pivotal role in the etiology of AD. Here, the effect of the EC amyloid pathogenesis on cellular properties of DG granule cells and also possible neuroprotective role of L-type calcium channel blockers (CCBs, nimodipine and isradipine, were investigated. The amyloid beta (Aβ 1-42 was injected bilaterally into the EC of male rats and one week later, electrophysiological properties of DG granule cells were assessed. Voltage clamp recording revealed appearance of giant sIPSC in combination with a decrease in sEPSC frequency which was partially reversed by CCBs in granule cells from Aβ treated rats. EC amyloid pathogenesis induced a significant reduction of input resistance (Rin accompanied by a profound decreased excitability in the DG granule cells. However, daily administration of CCBs, isradipine or nimodipine (i.c.v. for 6 days, almost preserved the normal excitability against Aβ. In conclusion, lower tendency to fire AP along with reduced Rin suggest that DG granule cells might undergo an alteration in the membrane ion channel activities which finally lead to the behavioral deficits observed in animal models and patients with early-stage Alzheimer's disease.

  19. The relationship between chondromalacia patella, medial meniscal tear and medial periarticular bursitis in patients with osteoarthritis

    Resorlu Mustafa

    2017-11-01

    Full Text Available This study investigated the presence of bursitis in the medial compartment of the knee (pes anserine, semimembranosus-tibial collateral ligament, and medial collateral ligament bursa in osteoarthritis, chondromalacia patella and medial meniscal tears.

  20. Healthy versus Entorhinal Cortical Atrophy Identification in Asymptomatic APOE4 Carriers at Risk for Alzheimer’s Disease

    Konishi, Kyoko; Joober, Ridha; Poirier, Judes; MacDonald, Kathleen; Chakravarty, Mallar; Patel, Raihaan; Breitner, John; Bohbot, Véronique D.

    2018-01-01

    Early detection of Alzheimer’s disease (AD) has been challenging as current biomarkers are invasive and costly. Strong predictors of future AD diagnosis include lower volume of the hippocampus and entorhinal cortex, as well as the ɛ4 allele of the Apolipoprotein E gene (APOE) gene. Therefore, studying functions that are critically mediated by the hippocampus and entorhinal cortex, such as spatial memory, in APOE ɛ4 allele carriers, may be key to the identification of individuals at risk of AD, prior to the manifestation of cognitive impairments. Using a virtual navigation task developed in-house, specifically designed to assess spatial versus non-spatial strategies, the current study is the first to differentiate functional and structural differences within APOE ɛ4 allele carriers. APOE ɛ4 allele carriers that predominantly use non-spatial strategies have decreased fMRI activity in the hippocampus and increased atrophy in the hippocampus, entorhinal cortex, and fimbria compared to APOE ɛ4 allele carriers who use spatial strategies. In contrast, APOE ɛ4 allele carriers who use spatial strategies have grey matter levels comparable to non-APOE ɛ4 allele carriers. Furthermore, in a leave-one-out analysis, grey matter in the entorhinal cortex could predict navigational strategy with 92% accuracy. PMID:29278888

  1. RAT HIPPOCAMPAL LACTATE EFFLUX DURING ELECTROCONVULSIVE SHOCK OR STRESS IS DIFFERENTLY DEPENDENT ON ENTORHINAL CORTEX AND ADRENAL INTEGRITY

    KRUGERS, HJ; JAARSMA, D; KORF, J

    The role of the entorhinal cortex and the adrenal gland in rat hippocampal lactate formation was assessed during and after a short-lasting immobilization stress and electroconvulsive shock (ECS). Extracellular lactate was measured on-line using microdialysis and enzyme reactions (a technique named

  2. Injerto libre braquial medial Free medial arm graft

    P. Martos Díaz

    2007-12-01

    Full Text Available Introducción. Entre las reconstrucciones de defectos titulares de cabeza y cuello, el injerto libre microvascularizado braquial medial no ha adquirido mucha popularidad debido a las variaciones anatómicas que se reflejan en la vascularización de éste. Nuestro objetivo es realizar una descripción de la anatomía y técnica quirúrgica, así como una revisión de la literatura describiendo las ventajas y desventajas de este tipo de injerto. Material y método. Presentamos el caso de una paciente con carcinoma epidermoide de mucosa yugal izquierda con afectación ganglionar ipsilateral. Se procedió a su resección con márgenes más disección cervical funcional. La reconstrucción del defecto se llevó a cabo mediante un injerto libre microvascularizado braquial medial de brazo izquierdo. Discusión. Pensamos que el injerto libre braquial medial de brazo se trata de una opción más segura a la hora de la reconstrucción de defectos cervicofaciales, aportando una serie de ventajas entre las que destacan: no sacrificio de una arteria terminal, cierre primario de la zona donante, mínimo defecto estético, y poseer una piel fina, elástica y sin vello.Introduction. Free medial microvascularized arm grafts have not become very popular for the reconstruction of head and neck defects due to anatomic variations in their vascularization. Our objective was to describe the anatomy and surgical technique and to review the literature on the advantages and disadvantages of free medial arm grafts. Material and methods. We report the case of a patient with squamous cell carcinoma of the left jugal mucosa with same-side lymph node involvement. The tumor was resected with margins and a functional cervical dissection was performed. The defect was reconstructed using a free medial microvascularized graft from the left arm. Discussion. We believe that free medial arm grafts are a safer option for the reconstruction of cervicofacial defects and that they offer

  3. GABAergic contributions to gating, timing, and phase precession of hippocampal neuronal activity during theta oscillations.

    Cutsuridis, Vassilis; Hasselmo, Michael

    2012-07-01

    Successful spatial exploration requires gating, storage, and retrieval of spatial memories in the correct order. The hippocampus is known to play an important role in the temporal organization of spatial information. Temporally ordered spatial memories are encoded and retrieved by the firing rate and phase of hippocampal pyramidal cells and inhibitory interneurons with respect to ongoing network theta oscillations paced by intra- and extrahippocampal areas. Much is known about the anatomical, physiological, and molecular characteristics as well as the connectivity and synaptic properties of various cell types in the hippocampal microcircuits, but how these detailed properties of individual neurons give rise to temporal organization of spatial memories remains unclear. We present a model of the hippocampal CA1 microcircuit based on observed biophysical properties of pyramidal cells and six types of inhibitory interneurons: axo-axonic, basket, bistratistified, neurogliaform, ivy, and oriens lacunosum-moleculare cells. The model simulates a virtual rat running on a linear track. Excitatory transient inputs come from the entorhinal cortex (EC) and the CA3 Schaffer collaterals and impinge on both the pyramidal cells and inhibitory interneurons, whereas inhibitory inputs from the medial septum impinge only on the inhibitory interneurons. Dopamine operates as a gate-keeper modulating the spatial memory flow to the PC distal dendrites in a frequency-dependent manner. A mechanism for spike-timing-dependent plasticity in distal and proximal PC dendrites consisting of three calcium detectors, which responds to the instantaneous calcium level and its time course in the dendrite, is used to model the plasticity effects. The model simulates the timing of firing of different hippocampal cell types relative to theta oscillations, and proposes functional roles for the different classes of the hippocampal and septal inhibitory interneurons in the correct ordering of spatial memories

  4. MR volumetric measurement of medial temporal lobe in differentiating Alzheimer disease and subcortical ischemic vascular dementia

    Wang Liang; Li Kuncheng; Liu Shuliang

    2003-01-01

    Objective: To evaluate the value of measurement of medial temporal structure by MR imaging volumetry in the differential diagnosis for patients with Alzheimer's disease (AD) and subcortical ischemic vascular dementia (SIVD). Methods: Thirty-three probable patients of AD, 33 normal controls, and 17 patients suspected with SIVD had been scanned by MRI, and volumetric measurements of amygdala (AMY), hippocampal formations (HF), entorhinal cortices (EC), parahippocampal gyri (PHG), and temporal horn of lateral ventricle (TH) were done on a serial reconstructed MR images. Results: Both atrophy of HF and dilatation of TH were significant (P<0.05) in SIVD group compared with that in control group. All the measurements with the exception of TH were atrophied significantly (P<0.001) in AD group compared with that in SIVD group and could significantly discriminate the two group. Among these indexes, the left EC provided the best discrimination with the specificity of 82.4%, sensitivity of 87.9%, and accuracy of 86.0%, respectively, and the average accuracy of bilateral EC in discrimination was 85%. Conclusion: The MR imaging volumetric measurements of medial temporal structure could offer useful information in discriminating individuals with AD from that with SIVD. Meanwhile, it should be understood that the AD-type pathological changes could also be induced by cerebrovascular disease

  5. Histamine facilitates GABAergic transmission in the rat entorhinal cortex: Roles of H1 and H2 receptors, Na+ -permeable cation channels, and inward rectifier K+ channels.

    Cilz, Nicholas I; Lei, Saobo

    2017-05-01

    In the brain, histamine (HA) serves as a neuromodulator and a neurotransmitter released from the tuberomammillary nucleus (TMN). HA is involved in wakefulness, thermoregulation, energy homeostasis, nociception, and learning and memory. The medial entorhinal cortex (MEC) receives inputs from the TMN and expresses HA receptors (H 1 , H 2 , and H 3 ). We investigated the effects of HA on GABAergic transmission in the MEC and found that HA significantly increased the frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) with an EC 50 of 1.3 µM, but failed to significantly alter sIPSC amplitude. HA-induced increases in sIPSC frequency were sensitive to tetrodotoxin (TTX), required extracellular Ca 2+ , and persisted when GDP-β-S, a G-protein inactivator, was applied postsynaptically via the recording pipettes, indicating that HA increased GABA release by facilitating the excitability of GABAergic interneurons in the MEC. Recordings from local MEC interneurons revealed that HA significantly increased their excitability as determined by membrane depolarization, generation of an inward current at -65 mV, and augmentation of action potential firing frequency. Both H 1 and H 2 receptors were involved in HA-induced increases in sIPSCs and interneuron excitability. Immunohistochemical staining showed that both H 1 and H 2 receptors are expressed on GABAergic interneurons in the MEC. HA-induced depolarization of interneurons involved a mixed ionic mechanism including activation of a Na + -permeable cation channel and inhibition of a cesium-sensitive inward rectifier K + channel, although HA also inhibited the delayed rectifier K + channels. Our results may provide a cellular mechanism, at least partially, to explain the roles of HA in the brain. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  6. Linking Cellular Mechanisms to Behavior: Entorhinal Persistent Spiking and Membrane Potential Oscillations May Underlie Path Integration, Grid Cell Firing, and Episodic Memory

    Michael E. Hasselmo

    2008-01-01

    Full Text Available The entorhinal cortex plays an important role in spatial memory and episodic memory functions. These functions may result from cellular mechanisms for integration of the afferent input to entorhinal cortex. This article reviews physiological data on persistent spiking and membrane potential oscillations in entorhinal cortex then presents models showing how both these cellular mechanisms could contribute to properties observed during unit recording, including grid cell firing, and how they could underlie behavioural functions including path integration. The interaction of oscillations and persistent firing could contribute to encoding and retrieval of trajectories through space and time as a mechanism relevant to episodic memory.

  7. Intralaminar and medial thalamic influence on cortical synchrony, information transmission and cognition

    Yuri B Saalmann

    2014-05-01

    Full Text Available The intralaminar and medial thalamic nuclei are part of the higher-order thalamus, which receives little sensory input, and instead forms extensive cortico-thalamo-cortical pathways. The large mediodorsal thalamic nucleus predominantly connects with the prefrontal cortex, the adjacent intralaminar nuclei connect with fronto-parietal cortex, and the midline thalamic nuclei connect with medial prefrontal cortex and medial temporal lobe. Taking into account this connectivity pattern, it is not surprising that the intralaminar and medial thalamus has been implicated in a variety of cognitive functions, including memory processing, attention and orienting, as well as reward-based behavior. This review addresses how the intralaminar and medial thalamus may regulate information transmission in cortical circuits. A key neural mechanism may involve intralaminar and medial thalamic neurons modulating the degree of synchrony between different groups of cortical neurons according to behavioral demands. Such a thalamic-mediated synchronization mechanism may give rise to large-scale integration of information across multiple cortical circuits, consequently influencing the level of arousal and consciousness. Overall, the growing evidence supports a general role for the higher-order thalamus in the control of cortical information transmission and cognitive processing.

  8. Human amnesia and the medial temporal lobe illuminated by neuropsychological and neurohistological findings for patient E.P.

    Insausti, Ricardo; Annese, Jacopo; Amaral, David G.; Squire, Larry R.

    2013-01-01

    We present neurohistological information for a case of bilateral, symmetrical damage to the medial temporal lobe and well-documented memory impairment. E.P. developed profound memory impairment at age 70 y and then was studied for 14 y He had no capacity for learning facts and events and had retrograde amnesia covering several decades. He also had a modest impairment of semantic knowledge. Neurohistological analysis revealed bilaterally symmetrical lesions of the medial temporal lobe that eliminated the temporal pole, the amygdala, the entorhinal cortex, the hippocampus, the perirhinal cortex, and rostral parahippocampal cortex. The lesion also extended laterally to involve the fusiform gyrus substantially. Last, the superior, inferior, and middle temporal gyri were atrophic, and subjacent white matter was gliotic. Several considerations indicate that E.P.’s severe memory impairment was caused by his medial temporal lesions, whereas his impaired semantic knowledge was caused by lateral temporal damage. His lateral temporal damage also may have contributed to his extensive retrograde amnesia. The findings illuminate the anatomical relationship between memory, perception, and semantic knowledge. PMID:23620517

  9. Disruption of the Perineuronal Net in the Hippocampus or Medial Prefrontal Cortex Impairs Fear Conditioning

    Hylin, Michael J.; Orsi, Sara A.; Moore, Anthony N.; Dash, Pramod K.

    2013-01-01

    The perineuronal net (PNN) surrounds neurons in the central nervous system and is thought to regulate developmental plasticity. A few studies have shown an involvement of the PNN in hippocampal plasticity and memory storage in adult animals. In addition to the hippocampus, plasticity in the medial prefrontal cortex (mPFC) has been demonstrated to…

  10. Medial Canthoplasty Combined with Conjunctivodacryocystorhinostomy for the Treatment of Delayed Medial Telecanthal Deformity

    Hua Sun

    2017-01-01

    Conclusions: Medial canthoplasty combined with CDCR is an effective surgical method for treatment of patients with medial telecanthal deformity and lacrimal drainage system obstruction. The study indicates that medial canthoplasty combined with CDCR surgery rebuilds normal appearance of eyelid and contour of the medial canthus and successfully repairs the function of the lacrimal drainage system.

  11. Medial tibial “spackling” to lessen chronic medial tibial soft tissue irritation

    J. Ryan Martin, MD

    2016-09-01

    Full Text Available We describe a unique, utilitarian reconstructive treatment option known as tibial “spackling” for chronic, localized medial joint line pain corresponding with progressive radiographic peripheral medial tibial bone loss beneath a well-fixed revision total knee arthroplasty tibial baseplate. It is believed that this localized pain is due to chronic irritation of the medial capsule and collateral ligament from the prominent medial edge of the tibial component. In the setting of failed nonoperative treatment, our experience with utilizing bone cement to reconstruct the medial tibial bone defect and create a smooth medial tibial surface has been successful in eliminating chronic medial soft tissue irritation.

  12. Effects of the medial or basolateral amygdala upon social anxiety and social recognition in mice.

    Wang, Yu; Zhao, Shanshan; Liu, Xu; Fu, Qunying

    2014-01-01

    Though social anxiety and social recognition have been studied extensively, the roles of the medial or basolateral amygdala in the control of social anxiety and social recognition remain to be determined. This study investigated the effects of excitotoxic bilateral medial or basolateral amygdala lesions upon social anxiety and social recognition in-mice. Animals at 9 weeks of age were given bilateral medial or basolateral amygdala lesions via infusion of N-methyl- D-aspartate and then were used for behavioral tests: anxiety-related tests (including open-field test, light-dark test, and elevated-plus maze test), social behavior test in a novel environment, social recognition test, and flavor recognition test. Medial or basolateral amygdala-lesioned mice showed lower levels of anxiety and increased social behaviors in a novel environment. Destruction of the medial or basolateral amygdala neurons impaired social recognition but not flavor recognition. The medial or basolateral amygdala is involved in the control of anxiety-related behavior (social anxiety and social behaviors) in mice. Moreover, both the medial and the basolateral amygdala are essential for social recognition but not flavor recognition in mice.

  13. Monoclonal antibody identification of subpopulations of cerebral cortical neurons affected in Alzheimer's disease

    Miller, C.A.; Rudnicka, M.; Hinton, D.R.; Blanks, J.C.; Kozlowski, M.

    1987-01-01

    Neuronal degeneration is one of the hallmarks of Alzheimer's disease (AD). Given the paucity of molecular markers available for the identification of neuronal subtypes, the specificity of neuronal loss within the cerebral cortex has been difficult to evaluate. With a panel of four monoclonal antibodies (mAbs) applied to central nervous system tissues from AD patients, the authors have immunocytochemically identified a population of vulnerable cortical neurons; a subpopulation of pyramidal neurons is recognized by mAbs 3F12 and 44.1 in the hippocampus and neocortex, and clusters of multipolar neurons in the entorhinal cortex reactive with mAb 44.1 show selective degeneration. Closely adjacent stellate-like neurons in these regions, identified by mAb 6A2, show striking preservation in AD. The neurons recognized by mAbs 3F12 and 44.1 do not comprise a single known neurotransmitter system. mAb 3A4 identifies a phosphorylated antigen that is undetectable in normal brain but accumulates early in the course of AD in somas of vulnerable neurons. Antigen 3A4 is distinct from material reactive with thioflavin S or antibody generated against paired helical filaments. Initially, antigen 3A4 is localized to neurons in the entorhinal cortex and subiculum, later in the association neocortex, and, ultimately in cases of long duration, in primary sensory cortical regions. mAb 3F12 recognizes multiple bands of immunoblots of homogenates of normal and AD cortical tissues, whereas mAb 3A4 does not bind to immunoblots containing neurofilament proteins or brain homogenates from AD patients. Ultrastructurally, antigen 3A4 is localized to paired-helical filaments. Using these mAbs, further molecular characterization of the affected cortical neurons is now possible

  14. Neurochemistry of olivocochlear neurons in the hamster.

    Reuss, Stefan; Disque-Kaiser, Ursula; Antoniou-Lipfert, Patricia; Gholi, Maryam Najaf; Riemann, Elke; Riemann, Randolf

    2009-04-01

    The present study was conducted to characterize the superior olivary complex (SOC) of the lower brain stem in the pigmented Djungarian hamster Phodopus sungorus. Using Nissl-stained serial cryostat sections from fresh-frozen brains, we determined the borders of the SOC nuclei. We also identified olivocochlear (OC) neurons by retrograde neuronal tracing upon injection of Fluoro-Gold into the scala tympani. To evaluate the SOC as a putative source of neuronal nitric oxide synthase (nNOS), arginine-vasopressin (AVP), oxytocin (OT), vasoactive intestinal polypeptide (VIP), or pituitary adenylate cyclase-activating polypeptide (PACAP) that were all found in the cochlea, we conducted immunohistochemistry on sections exhibiting retrogradely labeled neurons. We did not observe AVP-, OT-, or VIP-immunoreactivity, neither in OC neurons nor in the SOC at all, revealing that cochlear AVP, OT, and VIP are of nonolivary origin. However, we found nNOS, the enzyme responsible for nitric oxide synthesis in neurons, and PACAP in neuronal perikarya of the SOC. Retrogradely labeled neurons of the lateral olivocochlear (LOC) system in the lateral superior olive did not contain PACAP and were only infrequently nNOS-immunoreactive. In contrast, some shell neurons and some of the medial OC (MOC) system exhibited immunofluorescence for either substance. Our data obtained from the dwarf hamster Phodopus sungorus confirm previous observations that a part of the LOC system is nitrergic. They further demonstrate that the medial olivocochlear system is partly nitrergic and use PACAP as neurotransmitter or modulator.

  15. Age-related functional changes in domain-specific medial temporal lobe pathways.

    Berron, David; Neumann, Katja; Maass, Anne; Schütze, Hartmut; Fliessbach, Klaus; Kiven, Verena; Jessen, Frank; Sauvage, Magdalena; Kumaran, Dharshan; Düzel, Emrah

    2018-05-01

    There is now converging evidence from studies in animals and humans that the medial temporal lobes (MTLs) harbor anatomically distinct processing pathways for object and scene information. Recent functional magnetic resonance imaging studies in humans suggest that this domain-specific organization may be associated with a functional preference of the anterior-lateral part of the entorhinal cortex (alErC) for objects and the posterior-medial entorhinal cortex (pmErC) for scenes. As MTL subregions are differentially affected by aging and neurodegenerative diseases, the question was raised whether aging may affect the 2 pathways differentially. To address this possibility, we developed a paradigm that allows the investigation of object memory and scene memory in a mnemonic discrimination task. A group of young (n = 43) and healthy older subjects (n = 44) underwent functional magnetic resonance imaging recordings during this novel task, while they were asked to discriminate exact repetitions of object and scene stimuli from novel stimuli that were similar but modified versions of the original stimuli ("lures"). We used structural magnetic resonance images to manually segment anatomical components of the MTL including alErC and pmErC and used these segmented regions to analyze domain specificity of functional activity. Across the entire sample, object processing was associated with activation of the perirhinal cortex (PrC) and alErC, whereas for scene processing, activation was more predominant in the parahippocampal cortex and pmErC. Functional activity related to mnemonic discrimination of object and scene lures from exact repetitions was found to overlap between processing pathways and suggests that while the PrC-alErC pathway was more involved in object discrimination, both pathways were involved in the discrimination of similar scenes. Older adults were behaviorally less accurate than young adults in discriminating similar lures from exact repetitions, but this

  16. Young APOE[subscript 4] Targeted Replacement Mice Exhibit Poor Spatial Learning and Memory, with Reduced Dendritic Spine Density in the Medial Entorhinal Cortex

    Rodriguez, Gustavo A.; Burns, Mark P.; Weeber, Edwin J.; Rebeck, G. William

    2013-01-01

    The apolipoprotein E4 ("APOE-[epsilon]4") allele is the strongest genetic risk factor for developing late-onset Alzheimer's disease, and may predispose individuals to Alzheimer's-related cognitive decline by affecting normal brain function early in life. To investigate the impact of human APOE alleles on cognitive performance in mice, we trained…

  17. Differences in Visual-Spatial Input May Underlie Different Compression Properties of Firing Fields for Grid Cell Modules in Medial Entorhinal Cortex

    2015-11-19

    funders had no role in study design, data collection and analysis , decision to publish, or preparation of the manuscript. a box. In contrast, grid cells...of grid cells. This visualization and analysis of compression effects does not depend on the type of grid cell model used. The results are the same...that of a grid cell. The grid pattern for the static feature system remains intact (Fig 4P ). Thus, the grid cells driven by the static feature system

  18. Parallel processing of information about location in the amygdala, entorhinal cortex and hippocampus.

    Gaskin, Stephane; White, Norman M

    2013-11-01

    The conditioned cue preference paradigm was used to study how rats use extra-maze cues to discriminate between 2 adjacent arms on an 8-arm radial maze, a situation in which most of the same cues can be seen from both arms but only one arm contains food. Since the food-restricted rats eat while passively confined on the food-paired arm no responses are reinforced, so the discrimination is due to Pavlovian stimulus-reward (or outcome) learning. Consistent with other evidence that rats must move around in an environment to acquire a spatial map, we found that learning the adjacent arms CCP (ACCP) required a minimum amount of active exploration of the maze with no reinforcers present prior to passive pairing of the extra-maze cues with the food reinforcer, an instance of latent learning. Temporary inactivation of the hippocampus during the pre-exposure sessions had no effect on ACCP learning, confirming other evidence that the hippocampus is not involved in latent learning. A series of experiments indentified a circuit involving fimbria-fornix and dorsal entorhinal cortex as the neural basis of latent learning in this situation. In contrast, temporary inactivation of the entorhinal cortex or hippocampus during passive training or during testing blocked ACCP learning and expression, respectively, suggesting that these two structures co-operate in using spatial information to learn the location of food on the maze during passive pairing and to express this combined information during testing. In parallel with these processes we found that the amygdala processes information leading to an equal tendency to enter both adjacent arms (even though only one was paired with food) suggesting that the stimulus information available to this structure is not sufficiently precise to discriminate between the ambiguous cues visible from the adjacent arms. Expression of the ACCP in normal rats depends on hippocampus-based learning to avoid the unpaired arm which competes with the

  19. Medial vestibular connections with the hypocretin (orexin) system

    Horowitz, Seth S.; Blanchard, Jane; Morin, Lawrence P.

    2005-01-01

    The mammalian medial vestibular nucleus (MVe) receives input from all vestibular endorgans and provides extensive projections to the central nervous system. Recent studies have demonstrated projections from the MVe to the circadian rhythm system. In addition, there are known projections from the MVe to regions considered to be involved in sleep and arousal. In this study, afferent and efferent subcortical connectivity of the medial vestibular nucleus of the golden hamster (Mesocricetus auratus) was evaluated using cholera toxin subunit-B (retrograde), Phaseolus vulgaris leucoagglutinin (anterograde), and pseudorabies virus (transneuronal retrograde) tract-tracing techniques. The results demonstrate MVe connections with regions mediating visuomotor and postural control, as previously observed in other mammals. The data also identify extensive projections from the MVe to regions mediating arousal and sleep-related functions, most of which receive immunohistochemically identified projections from the lateral hypothalamic hypocretin (orexin) neurons. These include the locus coeruleus, dorsal and pedunculopontine tegmental nuclei, dorsal raphe, and lateral preoptic area. The MVe itself receives a projection from hypocretin cells. CTB tracing demonstrated reciprocal connections between the MVe and most brain areas receiving MVe efferents. Virus tracing confirmed and extended the MVe afferent connections identified with CTB and additionally demonstrated transneuronal connectivity with the suprachiasmatic nucleus and the medial habenular nucleus. These anatomical data indicate that the vestibular system has access to a broad array of neural functions not typically associated with visuomotor, balance, or equilibrium, and that the MVe is likely to receive information from many of the same regions to which it projects.

  20. Acute Medial Plantar Fascia Tear.

    Pascoe, Stephanie C; Mazzola, Timothy J

    2016-06-01

    A 32-year-old man who participated in competitive soccer came to physical therapy via direct access for a chief complaint of plantar foot pain. The clinical examination findings and mechanism of injury raised a concern for a plantar fascia tear, so the patient was referred to the physician and magnetic resonance imaging was obtained. The magnetic resonance image confirmed a high-grade, partial-thickness, proximal plantar fascia tear with localized edema at the location of the medial band. J Orthop Sports Phys Ther 2016;46(6):495. doi:10.2519/jospt.2016.0409.

  1. Medial-lateral organization of the orbitofrontal cortex.

    Rich, Erin L; Wallis, Jonathan D

    2014-07-01

    Emerging evidence suggests that specific cognitive functions localize to different subregions of OFC, but the nature of these functional distinctions remains unclear. One prominent theory, derived from human neuroimaging, proposes that different stimulus valences are processed in separate orbital regions, with medial and lateral OFC processing positive and negative stimuli, respectively. Thus far, neurophysiology data have not supported this theory. We attempted to reconcile these accounts by recording neural activity from the full medial-lateral extent of the orbital surface in monkeys receiving rewards and punishments via gain or loss of secondary reinforcement. We found no convincing evidence for valence selectivity in any orbital region. Instead, we report differences between neurons in central OFC and those on the inferior-lateral orbital convexity, in that they encoded different sources of value information provided by the behavioral task. Neurons in inferior convexity encoded the value of external stimuli, whereas those in OFC encoded value information derived from the structure of the behavioral task. We interpret these results in light of recent theories of OFC function and propose that these distinctions, not valence selectivity, may shed light on a fundamental organizing principle for value processing in orbital cortex.

  2. Retrograde and anterograde memory following selective damage to the dorsolateral entorhinal cortex.

    Gervais, Nicole J; Barrett-Bernstein, Meagan; Sutherland, Robert J; Mumby, Dave G

    2014-12-01

    Anatomical and electrophysiological evidence suggest the dorsolateral entorhinal cortex (DLEC) is involved in processing spatial information, but there is currently no consensus on whether its functions are necessary for normal spatial learning and memory. The present study examined the effects of excitotoxic lesions of the DLEC on retrograde and anterograde memory on two tests of allocentric spatial learning: a hidden fixed-platform watermaze task, and a novelty-preference-based dry-maze test. Deficits were observed on both tests when training occurred prior to but not following n-methyl d-aspartate (NMDA) lesions of DLEC, suggesting retrograde memory impairment in the absence of anterograde impairments for the same information. The retrograde memory impairments were temporally-graded; rats that received DLEC lesions 1-3 days following training displayed deficits, while those that received lesions 7-10 days following training performed like a control group that received sham surgery. The deficits were not attenuated by co-infusion of tetrodotoxin, suggesting they are not due to disruption of neural processing in structures efferent to the DLEC, such as the hippocampus. The present findings provide evidence that the DLEC is involved in the consolidation of allocentric spatial information. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Propagation of cortical spreading depression into the hippocampus: The role of the entorhinal cortex.

    Martens-Mantai, Tanja; Speckmann, Erwin-Josef; Gorji, Ali

    2014-07-22

    Propagation of cortical spreading depression (CSD) to the subcortical structures could be the underlying mechanism of some neurological deficits in migraine with aura. The entorhinal cortex (EC) as a gray matter bridge between the neocortex and subcortical regions plays an important role in this propagation. In vitro combined neocortex-hippocampus brain slices were used to study the propagation pattern of CSD between the neocortex and the hippocampus. The effects of different compounds as well as tetanic electrical stimulations in the EC on propagation of CSD to the hippocampus were investigated. Repetitive induction of CSD by KCl injection in the somatosensory cortex enhanced the probability of CSD entrance to the hippocampus via EC. Local application of AMPA receptor blocker CNQX and cannabinoid receptor agonist WIN 55212-2 in EC facilitated the propagation of CSD to the hippocampus, whereas application of NMDA receptor blocker APV and GABA A receptor blocker bicuculline in this region reduced the probability of CSD penetration to the hippocampus. Application of tetanic stimulation in EC also facilitated the propagation of CSD entrance to the hippocampus. Our data suggest the importance of synaptic plasticity of EC in filtering the propagation of CSD into subcortical structures and possibly the occurrence of concomitant neurological deficits. Synapse, 2014. © 2014 Wiley Periodicals, Inc. © 2014 Wiley Periodicals, Inc.

  4. Snapping Knee Caused by Medial Meniscal Cyst

    Tsuyoshi Ohishi

    2014-01-01

    Full Text Available Snapping phenomenon around the medial aspect of the knee is rare. We present this case of snapping knee caused by the sartorius muscle over a large medial meniscal cyst in a 66-year-old female. Magnetic resonance images demonstrated a large medial meniscal cyst with a horizontal tear of the medial meniscus. Arthroscopic cyst decompression with limited meniscectomy resulted in the disappearance of snapping, and no recurrence of the cyst was observed during a 2-year follow-up period.

  5. Medial subtalar dislocation: Case report

    Manojlović Radovan

    2010-01-01

    Full Text Available Introduction. Subtalar dislocation (SI is a term that refers to an injury in which there is dislocation of the talonavicular and talocalcanear joint, although the tibiotalar joint is intact. Case Outline. A case of medial subtalar dislocation as a result of basketball injury, so-called 'basketball foot', is presented. Closed reposition in i.v. anaesthesia was performed with the patient in supine position and a knee flexed at 90 degrees. Longitudinal manual traction in line of deformity was carried out in plantar flexion. The reposition continued with abduction and eversion simultaneously increasing dorsiflexion. It was made in the first attempt and completed instantly. Rehabilitation was initiated after 5 weeks of immobilization. One year after the injury, the functional outcome was excellent with full range of motion and the patient was symptom-free. For better interpretation of roentgenogram, bone model of subtalar dislocation was made using the cadaver bone. Conclusion. Although the treatment of such injury is usually successful, diagnosis can be difficult because it is a rare injury, and moreover, X-ray of the injury can be confusing due to superposition of bones. Radiograms revealed superposition of the calcaneus, tarsal and metatarsal bones which was radiographically visualized in the anterior-posterior projection as one osseous block inward from the talus, and on the lateral view as in an osteal block below the tibial bone. Prompt recognition of these injuries followed by proper, delicately closed reduction under anaesthesia is crucial for achieving a good functional result in case of medial subtalar dislocation.

  6. Effects of medial temporal lobe degeneration on brain perfusion in amnestic MCI of AD type: deafferentation and functional compensation?

    Guedj, Eric; Barbeau, Emmanuel J.; Didic, Mira; Poncet, Michel; Ceccaldi, Mathieu; Felician, Olivier; Laforte, Catherine de; Mundler, Olivier; Ranjeva, Jean-Philippe; Cozzone, Patrick J.

    2009-01-01

    Cortical atrophy is correlated with the progression of neuropathological lesions within the medial temporal lobes (MTL) in Alzheimer's disease (AD). Our aim was to determine which local and remote functional changes result from MTL volume loss at the predementia stage. We studied the relationship between entorhinal and hippocampal MR volumes and whole-brain SPECT perfusion via a voxel-based correlative analysis in 19 patients with amnestic mild cognitive impairment with a memory profile suggestive of early AD. Right MTL volumes were positively correlated with remote posterior perfusion of the posterior cingulate cortex, and negatively correlated with remote anterior perfusion of the right medial and dorsolateral prefrontal cortex. There was no local correlation between volumes and perfusion within the MTL. These findings provide further insight into functional changes that result from MTL volume loss during the predementia stage of AD. The positive correlation between MTL volumes and posterior cingulate perfusion may reflect the deafferentation of a temporocingulate network due to mediotemporal degeneration. The paradoxical negative correlation between MTL volumes and prefrontal perfusion may result from recruitment of an alternative anterior temporofrontal network. It remains to be investigated how the ''net sum'' of this perfusion modulation affects memory and other cognitive domains through a possible compensatory perspective. (orig.)

  7. Effects of medial temporal lobe degeneration on brain perfusion in amnestic MCI of AD type: deafferentation and functional compensation?

    Guedj, Eric [Centre Hospitalo-Universitaire de la Timone, Service Central de Biophysique et de Medecine Nucleaire, Marseille Cedex 5 (France); Universite de la Mediterranee Aix-Marseille II, Laboratoire de Neurophysiologie et Neuropsychologie, Inserm U751, Faculte de Medecine, Marseille (France); Universite de la Mediterranee Aix-Marseille II, Centre de Resonance Magnetique Biologique et Medicale (CRMBM), UMR CNRS 6612, Faculte de Medecine, Marseille (France); Barbeau, Emmanuel J. [CNRS - Universite Paul Sabatier Toulouse 3, Centre de Recherche Cerveau et Cognition, UMR-5549, Toulouse (France); Didic, Mira; Poncet, Michel; Ceccaldi, Mathieu [CHU Timone, Service de Neurologie et de Neuropsychologie, Marseille (France); Universite de la Mediterranee Aix-Marseille II, Laboratoire de Neurophysiologie et Neuropsychologie, Inserm U751, Faculte de Medecine, Marseille (France); Felician, Olivier [CHU Timone, Service de Neurologie et de Neuropsychologie, Marseille (France); Universite de la Mediterranee Aix-Marseille II, Laboratoire de Neurophysiologie et Neuropsychologie, Inserm U751, Faculte de Medecine, Marseille (France); Centre Saint-Charles, Laboratoire de Neurobiologie Integrative et Adaptative, UMR CNRS 6149, Marseille (France); Laforte, Catherine de; Mundler, Olivier [Centre Hospitalo-Universitaire de la Timone, Service Central de Biophysique et de Medecine Nucleaire, Marseille Cedex 5 (France); Ranjeva, Jean-Philippe; Cozzone, Patrick J. [Universite de la Mediterranee Aix-Marseille II, Centre de Resonance Magnetique Biologique et Medicale (CRMBM), UMR CNRS 6612, Faculte de Medecine, Marseille (France)

    2009-07-15

    Cortical atrophy is correlated with the progression of neuropathological lesions within the medial temporal lobes (MTL) in Alzheimer's disease (AD). Our aim was to determine which local and remote functional changes result from MTL volume loss at the predementia stage. We studied the relationship between entorhinal and hippocampal MR volumes and whole-brain SPECT perfusion via a voxel-based correlative analysis in 19 patients with amnestic mild cognitive impairment with a memory profile suggestive of early AD. Right MTL volumes were positively correlated with remote posterior perfusion of the posterior cingulate cortex, and negatively correlated with remote anterior perfusion of the right medial and dorsolateral prefrontal cortex. There was no local correlation between volumes and perfusion within the MTL. These findings provide further insight into functional changes that result from MTL volume loss during the predementia stage of AD. The positive correlation between MTL volumes and posterior cingulate perfusion may reflect the deafferentation of a temporocingulate network due to mediotemporal degeneration. The paradoxical negative correlation between MTL volumes and prefrontal perfusion may result from recruitment of an alternative anterior temporofrontal network. It remains to be investigated how the ''net sum'' of this perfusion modulation affects memory and other cognitive domains through a possible compensatory perspective. (orig.)

  8. Functional neuroimaging studies of episodic memory. Functional dissociation in the medial temporal lobe structures

    Tsukiura, Takashi

    2008-01-01

    Previous functional neuroimaging studies have demonstrated the critical role of the medial temporal lobe (MTL) regions in the encoding and retrieval of episodic memory. It has also been shown that an emotional factor in human memory enhances episodic encoding and retrieval. However, there is little evidence regarding the specific contribution of each MTL region to the relational, contextual, and emotional processes of episodic memory. The goal of this review article is to identify differential activation patterns of the processes between MTL regions. Results from functional neuroimaging studies of episodic memory show that the hippocampus is involved in encoding the relation between memory items, whereas the entorhinal and perirhinal cortices (anterior parahippocampal gyrus) contribute to the encoding of a single item. Additionally, the parahippocampal cortex (posterior parahippocampal gyrus) is selectively activated during the processing of contextual information of episodic memory. A similar pattern of functional dissociation is found in episodic memory retrieval. Functional neuroimaging has also shown that emotional information of episodic memory enhances amygdala-MTL correlations and that this enhancement is observed during both the encoding and retrieval of emotional memories. These findings from pervious neuroimaging studies suggest that different MTL regions could organize memory for personally experienced episodes via the 'relation' and 'context' factors of episodic memory, and that the emotional factor of episodes could modulate the functional organization in the MTL regions. (author)

  9. Outside-In Deep Medial Collateral Ligament Release During Arthroscopic Medial Meniscus Surgery.

    Todor, Adrian; Caterev, Sergiu; Nistor, Dan Viorel

    2016-08-01

    Arthroscopic partial medial meniscectomy is a very common orthopaedic procedure performed for symptomatic, irreparable meniscus tears. It is usually associated with a very good outcome and minimal complications. In some patients with tight medial compartment, the posterior horn of the medial meniscus can be difficult to visualize, and access in this area with instruments may be challenging. To increase the opening of the medial compartment, after valgus-extension stress position of the knee, different techniques of deep medial collateral ligament release have been described. The outside-in pie-crusting technique shown in this technical note has documented effectiveness and good outcomes with minimal or no morbidity.

  10. Differential regulation of amyloid-β-protein mRNA expression within hippocampal neuronal subpopulations in Alzheimer disease

    Higgins, G.A.; Lewis, D.A.; Bahmanyar, S.; Goldgaber, D.; Gajdusek, D.C.; Young, W.G.; Morrison, J.H.; Wilson, M.C.

    1988-01-01

    The authors have mapped the neuroanatomical distribution of amyloid-β-protein mRNA within neuronal subpopulations of the hippocampal formation in the cynomolgus monkey (Macaca fascicularis), normal aged human, and patients with Alzheimer disease. Amyloid-β-protein mRNA appears to be expressed in all hippocampal neurons, but at different levels of abundance. In the central nervous system of monkey and normal aged human, image analysis shows that neurons of the dentate gyrus and cornu Ammonis fields contain a 2.5-times-greater hybridization signal than is present in neurons of the subiculum and entorhinal cortex. In contrast, in the Alzheimer disease hippocampal formation, the levels of amyloid-β-protein mRNA in the cornu Ammonis field 3 and parasubiculum are equivalent. These findings suggest that within certain neuronal subpopulations cell type-specific regulation of amyloid-β-protein gene expression may be altered in Alzheimer disease

  11. Automated Volumetry and Regional Thickness Analysis of Hippocampal Subfields and Medial Temporal Cortical Structures in Mild Cognitive Impairment

    Yushkevich, Paul A.; Pluta, John B.; Wang, Hongzhi; Xie, Long; Ding, Song-Lin; Gertje, E. C.; Mancuso, Lauren; Kliot, Daria; Das, Sandhitsu R.; Wolk, David A.

    2014-01-01

    We evaluate a fully automatic technique for labeling hippocampal subfields and cortical subregions in the medial temporal lobe (MTL) in in vivo 3 Tesla MRI. The method performs segmentation on a T2-weighted MRI scan with 0.4 × 0.4 × 2.0 mm3 resolution, partial brain coverage, and oblique orientation. Hippocampal subfields, entorhinal cortex, and perirhinal cortex are labeled using a pipeline that combines multi-atlas label fusion and learning-based error correction. In contrast to earlier work on automatic subfield segmentation in T2-weighted MRI (Yushkevich et al., 2010), our approach requires no manual initialization, labels hippocampal subfields over a greater anterior-posterior extent, and labels the perirhinal cortex, which is further subdivided into Brodmann areas 35 and 36. The accuracy of the automatic segmentation relative to manual segmentation is measured using cross-validation in 29 subjects from a study of amnestic Mild Cognitive Impairment (aMCI), and is highest for the dentate gyrus (Dice coefficient is 0.823), CA1 (0.803), perirhinal cortex (0.797) and entorhinal cortex (0.786) labels. A larger cohort of 83 subjects is used to examine the effects of aMCI in the hippocampal region using both subfield volume and regional subfield thickness maps. Most significant differences between aMCI and healthy aging are observed bilaterally in the CA1 subfield and in the left Brodmann area 35. Thickness analysis results are consistent with volumetry, but provide additional regional specificity and suggest non-uniformity in the effects of aMCI on hippocampal subfields and MTL cortical subregions. PMID:25181316

  12. Morphometric characteristics of the neurons of the human subiculum proper

    Živanović-Mačužić Ivana

    2012-01-01

    Full Text Available The human subiculum is a significant part of the hippocampal formation positioned between the hippocampus proper and the entorhinal and other cortices. It plays an important role in spatial navigation, memory processing and control of the response to stress. The aim of our study was identification of the morphometric characteristics of the neurons of the human subiculum proper: the maximum length and width of cell body and total dendritic length and volume of cell body. Comparing the measured parameters of different types of subicular neurons (bipolar, multipolar, pyramidal neurons with triangular-shaped soma and neurons with oval-shaped soma, we can conclude that bipolar neurons have the lowest values of the measured parameters: the maximum length of their cell body is 14.1 ± 0.2 µm, the maximum width is 13.9 ± 0.5 µm, and total dendritic length is 14597 ± 3.1 µm. The lowest volume value was observed in bipolar neurons; the polymorphic layer is 1152.99 ± 662.69 µm3. The pyramidal neurons of the pyramidal layer have the highest value for the maximal length of the cell body (44.43 ± 7.94 µm, maximum width (23.64 ± 1.89 µm, total dendritic length (1830 ± 466.3 µm and volume (11768.65±4004.9 µm3 These characteristics of the pyramidal neurons indicate their importance, because the axons of these neurons make up the greatest part of the fornix, along with the axons of neurons of the CA1 hippocampal field.

  13. Ensemble encoding of nociceptive stimulus intensity in the rat medial and lateral pain systems

    Woodward Donald J

    2011-08-01

    Full Text Available Abstract Background The ability to encode noxious stimulus intensity is essential for the neural processing of pain perception. It is well accepted that the intensity information is transmitted within both sensory and affective pathways. However, it remains unclear what the encoding patterns are in the thalamocortical brain regions, and whether the dual pain systems share similar responsibility in intensity coding. Results Multichannel single-unit recordings were used to investigate the activity of individual neurons and neuronal ensembles in the rat brain following the application of noxious laser stimuli of increasing intensity to the hindpaw. Four brain regions were monitored, including two within the lateral sensory pain pathway, namely, the ventral posterior lateral thalamic nuclei and the primary somatosensory cortex, and two in the medial pathway, namely, the medial dorsal thalamic nuclei and the anterior cingulate cortex. Neuron number, firing rate, and ensemble spike count codings were examined in this study. Our results showed that the noxious laser stimulation evoked double-peak responses in all recorded brain regions. Significant correlations were found between the laser intensity and the number of responsive neurons, the firing rates, as well as the mass spike counts (MSCs. MSC coding was generally more efficient than the other two methods. Moreover, the coding capacities of neurons in the two pathways were comparable. Conclusion This study demonstrated the collective contribution of medial and lateral pathway neurons to the noxious intensity coding. Additionally, we provide evidence that ensemble spike count may be the most reliable method for coding pain intensity in the brain.

  14. Selective serotonergic excitation of callosal projection neurons

    Daniel eAvesar

    2012-03-01

    Full Text Available Serotonin (5-HT acting as a neurotransmitter in the cerebral cortex is critical for cognitive function, yet how 5-HT regulates information processing in cortical circuits is not well understood. We tested the serotonergic responsiveness of layer 5 pyramidal neurons (L5PNs of the mouse medial prefrontal cortex (mPFC, and found 3 distinct response types: long-lasting 5-HT1A (1A receptor-dependent inhibitory responses (84% of L5PNs, 5-HT2A (2A receptor-dependent excitatory responses (9%, and biphasic responses in which 2A-dependent excitation followed brief inhibition (5%. Relative to 5-HT-inhibited neurons, those excited by 5-HT had physiological properties characteristic of callosal/commissural (COM neurons that project to the contralateral cortex. We tested whether serotonergic responses in cortical pyramidal neurons are correlated with their axonal projection pattern using retrograde fluorescent labeling of COM and corticopontine-projecting (CPn neurons. 5-HT generated excitatory or biphasic responses in all 5-HT-responsive layer 5 COM neurons. Conversely, CPn neurons were universally inhibited by 5-HT. Serotonergic excitation of COM neurons was blocked by the 2A antagonist MDL 11939, while serotonergic inhibition of CPn neurons was blocked by the 1A antagonist WAY 100635, confirming a role for these two receptor subtypes in regulating pyramidal neuron activity. Selective serotonergic excitation of COM neurons was not layer-specific, as COM neurons in layer 2/3 were also selectively excited by 5-HT relative to their non-labeled pyramidal neuron neighbors. Because neocortical 2A receptors are implicated in the etiology and pathophysiology of schizophrenia, we propose that COM neurons may represent a novel cellular target for intervention in psychiatric disease.

  15. Oxytocin signaling in the medial amygdala is required for sex discrimination of social cues

    Yao, Shenqin; Bergan, Joseph; Lanjuin, Anne; Dulac, Catherine

    2017-01-01

    The neural control of social behaviors in rodents requires the encoding of pheromonal cues by the vomeronasal system. Here we show that the typical preference of male mice for females is eliminated in mutants lacking oxytocin, a neuropeptide modulating social behaviors in many species. Ablation of the oxytocin receptor in aromatase-expressing neurons of the medial amygdala (MeA) fully recapitulates the elimination of female preference in males. Further, single-unit recording in the MeA uncove...

  16. Oxytocin Signaling in the Medial Amygdala is required for Sex Discrimination of Social Cues

    Bergan, Joseph; Yao, Shenqin; Lanjuin, Anne; Dulac, Catherine

    2017-01-01

    The neural control of social behaviors in rodents requires the encoding of pheromonal cues by the vomeronasal system. Here we show that the typical preference of male mice for females is eliminated in mutants lacking oxytocin, a neuropeptide modulating social behaviors in many species. Ablation of the oxytocin receptor in aromatase expressing neurons of the medial amygdala (MeA) fully recapitulates the elimination of female preference in males. Further, single unit recording in the MeA uncove...

  17. Endoscopic medial maxillectomy breaking new frontiers.

    Mohanty, Sanjeev; Gopinath, M

    2013-07-01

    Endoscopy has changed the perspective of rhinologist towards the nose. It has revolutionised the surgical management of sinonasal disorders. Sinus surgeries were the first to get the benefit of endoscope. Gradually the domain of endoscopic surgery extended to the management of sino nasal tumours. Traditionally medial maxillectomy was performed through lateral rhinotomy or mid facial degloving approach. Endoscopic medial maxillectomy has been advocated by a number of authors in the management of benign sino-nasal tumours. We present our experience of endoscopic medial maxillectomy in the management of sinonasal pathologies.

  18. Complex Medial Meniscus Tears Are Associated With a Biconcave Medial Tibial Plateau.

    Barber, F Alan; Getelman, Mark H; Berry, Kathy L

    2017-04-01

    To determine whether an association exists between a biconcave medial tibial plateau and complex medial meniscus tears. A consecutive series of stable knees undergoing arthroscopy were evaluated retrospectively with the use of preoperative magnetic resonance imaging (MRI), radiographs, and arthroscopy documented by intraoperative videos. Investigators independently performed blinded reviews of the MRI or videos. Based on the arthroscopy findings, medial tibial plateaus were classified as either biconcave or not biconcave. A transverse coronal plane ridge, separating the front of the tibial plateau from the back near the inner margin of the posterior body of the medial meniscus, was defined as biconcave. The medial plateau slope was calculated with MRI sagittal views. General demographic information, body mass index, and arthroscopically confirmed knee pathology were recorded. A total of 179 consecutive knees were studied from July 2014 through August 2015; 49 (27.2%) biconcave medial tibial plateaus and 130 (72.8%) controls were identified at arthroscopy. Complex medial meniscus tears were found in 103. Patients with a biconcave medial tibial plateau were found to have more complex medial meniscus tears (69.4%) than those without a biconcavity (53.1%) (P = .049) despite having lower body mass index (P = .020). No difference in medial tibial plateau slope was observed for biconcavities involving both cartilage and bone, bone only, or an indeterminate group (P = .47). Biconcave medial tibial plateaus were present in 27.4% of a consecutive series of patients undergoing knee arthroscopy. A biconcave medial tibial plateau was more frequently associated with a complex medial meniscus tear. Level III, case-control study. Copyright © 2016 Arthroscopy Association of North America. All rights reserved.

  19. Neurons of the dentate molecular layer in the rabbit hippocampus.

    Francisco J Sancho-Bielsa

    Full Text Available The molecular layer of the dentate gyrus appears as the main entrance gate for information into the hippocampus, i.e., where the perforant path axons from the entorhinal cortex synapse onto the spines and dendrites of granule cells. A few dispersed neuronal somata appear intermingled in between and probably control the flow of information in this area. In rabbits, the number of neurons in the molecular layer increases in the first week of postnatal life and then stabilizes to appear permanent and heterogeneous over the individuals' life span, including old animals. By means of Golgi impregnations, NADPH histochemistry, immunocytochemical stainings and intracellular labelings (lucifer yellow and biocytin injections, eight neuronal morphological types have been detected in the molecular layer of developing adult and old rabbits. Six of them appear as interneurons displaying smooth dendrites and GABA immunoreactivity: those here called as globoid, vertical, small horizontal, large horizontal, inverted pyramidal and polymorphic. Additionally there are two GABA negative types: the sarmentous and ectopic granular neurons. The distribution of the somata and dendritic trees of these neurons shows preferences for a definite sublayer of the molecular layer: small horizontal, sarmentous and inverted pyramidal neurons are preferably found in the outer third of the molecular layer; vertical, globoid and polymorph neurons locate the intermediate third, while large horizontal and ectopic granular neurons occupy the inner third or the juxtagranular molecular layer. Our results reveal substantial differences in the morphology and electrophysiological behaviour between each neuronal archetype in the dentate molecular layer, allowing us to propose a new classification for this neural population.

  20. [Tibial periostitis ("medial tibial stress syndrome")].

    Fournier, Pierre-Etienne

    2003-06-01

    Medial tibial stress syndrome is characterised by complaints along the posteromedial tibia. Runners and athletes involved in jumping activities may develop this syndrome. Increased stress to stabilize the foot especially when excessive pronation is present explain the occurrence this lesion.

  1. Endoscopic Medial Maxillectomy Breaking New Frontiers

    Mohanty, Sanjeev; Gopinath, M.

    2011-01-01

    Endoscopy has changed the perspective of rhinologist towards the nose. It has revolutionised the surgical management of sinonasal disorders. Sinus surgeries were the first to get the benefit of endoscope. Gradually the domain of endoscopic surgery extended to the management of sino nasal tumours. Traditionally medial maxillectomy was performed through lateral rhinotomy or mid facial degloving approach. Endoscopic medial maxillectomy has been advocated by a number of authors in the management ...

  2. The relationship between chondromalacia patella, medial meniscal tear and medial periarticular bursitis in patients with osteoarthritis

    Resorlu Mustafa; Doner Davut; Karatag Ozan; Toprak Canan Akgun

    2017-01-01

    Abstract Background This study investigated the presence of bursitis in the medial compartment of the knee (pes anserine, semimembranosus-tibial collateral ligament, and medial collateral ligament bursa) in osteoarthritis, chondromalacia patella and medial meniscal tears. Patients and methods Radiological findings of 100 patients undergoing magnetic resonance imaging with a preliminary diagnosis of knee pain were retrospectively evaluated by two radiologists. The first radiologist assessed al...

  3. Medial Olivocochlear Reflex Interneurons Are Located in the Posteroventral Cochlear Nucleus: A Kainic Acid Lesion Study in Guinea Pigs

    De VENECIA, RONALD K.; LIBERMAN, M. CHARLES; GUINAN, JOHN J.; BROWN, M. CHRISTIAN

    2005-01-01

    The medial olivocochlear (MOC) reflex arc is probably a three-neuron pathway consisting of type I spiral ganglion neurons, reflex interneurons in the cochlear nucleus, and MOC neurons that project to the outer hair cells of the cochlea. We investigated the identity of MOC reflex interneurons in the cochlear nucleus by assaying their regional distribution using focal injections of kainic acid. Our reflex metric was the amount of change in the distortion product otoacoustic emission (at 2f1–f2)...

  4. UMAPRM: Uniformly sampling the medial axis

    Yeh, Hsin-Yi Cindy

    2014-05-01

    © 2014 IEEE. Maintaining clearance, or distance from obstacles, is a vital component of successful motion planning algorithms. Maintaining high clearance often creates safer paths for robots. Contemporary sampling-based planning algorithms That utilize The medial axis, or The set of all points equidistant To Two or more obstacles, produce higher clearance paths. However, They are biased heavily Toward certain portions of The medial axis, sometimes ignoring parts critical To planning, e.g., specific Types of narrow passages. We introduce Uniform Medial Axis Probabilistic RoadMap (UMAPRM), a novel planning variant That generates samples uniformly on The medial axis of The free portion of Cspace. We Theoretically analyze The distribution generated by UMAPRM and show its uniformity. Our results show That UMAPRM\\'s distribution of samples along The medial axis is not only uniform but also preferable To other medial axis samplers in certain planning problems. We demonstrate That UMAPRM has negligible computational overhead over other sampling Techniques and can solve problems The others could not, e.g., a bug Trap. Finally, we demonstrate UMAPRM successfully generates higher clearance paths in The examples.

  5. Hippocampus, caudate nucleus and entorhinal cortex volumetric MRI measurements in discrimination between Alzheimer’s disease, mild cognitive impairment, and normal aging

    Rasha Elshafey

    2014-06-01

    Conclusion: Semi-automated MR volumetric measurements can be used to determine atrophy in hippocampus, caudate nucleus and entorhinal cortex which aided in discrimination of healthy elderly control subjects from subjects with AD and MCI and predict clinical decline of MCI leading to increase the efficiency of clinical treatments, delay institutionalization and improve cognition and behavioral symptoms.

  6. Medial reward and lateral non-reward orbitofrontal cortex circuits change in opposite directions in depression.

    Cheng, Wei; Rolls, Edmund T; Qiu, Jiang; Liu, Wei; Tang, Yanqing; Huang, Chu-Chung; Wang, XinFa; Zhang, Jie; Lin, Wei; Zheng, Lirong; Pu, JunCai; Tsai, Shih-Jen; Yang, Albert C; Lin, Ching-Po; Wang, Fei; Xie, Peng; Feng, Jianfeng

    2016-12-01

    The first brain-wide voxel-level resting state functional connectivity neuroimaging analysis of depression is reported, with 421 patients with major depressive disorder and 488 control subjects. Resting state functional connectivity between different voxels reflects correlations of activity between those voxels and is a fundamental tool in helping to understand the brain regions with altered connectivity and function in depression. One major circuit with altered functional connectivity involved the medial orbitofrontal cortex Brodmann area 13, which is implicated in reward, and which had reduced functional connectivity in depression with memory systems in the parahippocampal gyrus and medial temporal lobe, especially involving the perirhinal cortex Brodmann area 36 and entorhinal cortex Brodmann area 28. The Hamilton Depression Rating Scale scores were correlated with weakened functional connectivity of the medial orbitofrontal cortex Brodmann area 13. Thus in depression there is decreased reward-related and memory system functional connectivity, and this is related to the depressed symptoms. The lateral orbitofrontal cortex Brodmann area 47/12, involved in non-reward and punishing events, did not have this reduced functional connectivity with memory systems. Second, the lateral orbitofrontal cortex Brodmann area 47/12 had increased functional connectivity with the precuneus, the angular gyrus, and the temporal visual cortex Brodmann area 21. This enhanced functional connectivity of the non-reward/punishment system (Brodmann area 47/12) with the precuneus (involved in the sense of self and agency), and the angular gyrus (involved in language) is thus related to the explicit affectively negative sense of the self, and of self-esteem, in depression. A comparison of the functional connectivity in 185 depressed patients not receiving medication and 182 patients receiving medication showed that the functional connectivity of the lateral orbitofrontal cortex Brodmann

  7. A Subset of Palisade Endings Only in the Medial and Inferior Rectus Muscle in Monkey Contain Calretinin

    Lienbacher, Karoline; Ono, Seiji; Fleuriet, Jérome; Mustari, Michael; Horn, Anja K. E.

    2018-01-01

    Purpose To further chemically characterize palisade endings in extraocular muscles in rhesus monkeys. Methods Extraocular muscles of three rhesus monkeys were studied for expression of the calcium-binding protein calretinin (CR) in palisade endings and multiple endings. The complete innervation was visualized with antibodies against the synaptosomal-associated protein of 25 kDa and combined with immunofluorescence for CR. Six rhesus monkeys received tracer injections of choleratoxin subunit B or wheat germ agglutinin into either the belly or distal myotendinous junction of the medial or inferior rectus muscle to allow retrograde tracing in the C-group of the oculomotor nucleus. Double-immunofluorescence methods were used to study the CR content in retrogradely labeled neurons in the C-group. Results A subgroup of palisade and multiple endings was found to express CR, only in the medial and inferior rectus muscle. In contrast, the en plaque endings lacked CR. Accordingly, within the tracer-labeled neurons of the C-group, a subgroup expressed CR. Conclusions The study indicates that two different neuron populations targeting nontwitch muscle fibers are present within the C-group for inferior rectus and medial rectus, respectively, one expressing CR, one lacking CR. It is possible that the CR-negative neurons represent the basic population for all extraocular muscles, whereas the CR-positive neurons giving rise to CR-positive palisade endings represent a specialized, perhaps more excitable type of nerve ending in the medial and inferior rectus muscles, being more active in vergence. The malfunction of this CR-positive population of neurons that target nontwitch muscle fibers could play a significant role in strabismus.

  8. Entorhinal cortex volume measured with 3T MRI is positively correlated with the Wechsler memory scale-revised logical/verbal memory score for healthy subjects

    Goto, Masami; Abe, Osamu; Takao, Hidemasa; Inano, Sachiko; Mori, Harushi; Kunimatsu, Akira; Ohtomo, Kuni; Miyati, Tosiaki; Yoshikawa, Takeharu; Hayashi, Naoto; Kabasawa, Hiroyuki; Aoki, Shigeki; Ino, Kenji; Iida, Kyouhito; Yano, Keiichi

    2011-01-01

    Previous studies revealed a correlation between local brain volume and cognitive function. The aim of the present study was to investigate the correlation between local gray matter volume and the Wechsler Memory Scale-Revised (WMS-R) logical/verbal memory (WMS-R-verbal) score in healthy adults using a 3 Tesla magnetic resonance scanner and voxel-based morphometry (VBM). T1-weighted magnetic resonance images were obtained in 1,169 healthy adults. The T1-weighted images in native space were bias-corrected, spatially normalized, and segmented into gray matter, white matter, and cerebrospinal fluid images with Statistical Parametric Mapping 5. To investigate regionally the specific effects of the WMS-R-verbal score on the gray matter images, simple regression analysis was performed by VBM treating age, total intracranial volume, and gender as confounding covariates. A P value of less than 0.05 corrected with false discovery rate in voxel difference was considered to be statistically significant. Our study showed a significant positive correlation between the WMS-R-verbal score and the bilateral entorhinal cortex volume. In the right entorhinal, T value is 4.75, and the size of the clusters is 155 voxels. In the left entorhinal, T value is 4.08, and the size of the clusters is 23 voxels. A significant negative correlation was not found. To our knowledge, this is the first VBM study showing that entorhinal cortex volume is positively correlated with the WMS-R-verbal score for healthy subjects. Therefore, in our structural neuroimaging study, we add evidence to the hypothesis that the entorhinal cortex is involved in verbal memory processing. (orig.)

  9. Entorhinal cortex volume measured with 3T MRI is positively correlated with the Wechsler memory scale-revised logical/verbal memory score for healthy subjects

    Goto, Masami [University of Tokyo Hospital, Department of Radiological Technology, Graduate School of Medicine, Tokyo (Japan); Kanazawa University, Tsunomatyou, Graduate School of Medical Science, Kanazawa (Japan); Abe, Osamu; Takao, Hidemasa; Inano, Sachiko; Mori, Harushi; Kunimatsu, Akira; Ohtomo, Kuni [University of Tokyo Hospital, Department of Radiology, Tokyo (Japan); Miyati, Tosiaki [Kanazawa University, Tsunomatyou, Graduate School of Medical Science, Kanazawa (Japan); Yoshikawa, Takeharu; Hayashi, Naoto [University of Tokyo Hospital, Department of Computational Diagnostic Radiology and Preventive Medicine, Tokyo (Japan); Kabasawa, Hiroyuki [GE Healthcare, Japan Applied Science Laboratory, Hino (Japan); Aoki, Shigeki [Juntendo University, Department of Radiology, Tokyo (Japan); Ino, Kenji; Iida, Kyouhito; Yano, Keiichi [University of Tokyo Hospital, Department of Radiological Technology, Graduate School of Medicine, Tokyo (Japan)

    2011-08-15

    Previous studies revealed a correlation between local brain volume and cognitive function. The aim of the present study was to investigate the correlation between local gray matter volume and the Wechsler Memory Scale-Revised (WMS-R) logical/verbal memory (WMS-R-verbal) score in healthy adults using a 3 Tesla magnetic resonance scanner and voxel-based morphometry (VBM). T1-weighted magnetic resonance images were obtained in 1,169 healthy adults. The T1-weighted images in native space were bias-corrected, spatially normalized, and segmented into gray matter, white matter, and cerebrospinal fluid images with Statistical Parametric Mapping 5. To investigate regionally the specific effects of the WMS-R-verbal score on the gray matter images, simple regression analysis was performed by VBM treating age, total intracranial volume, and gender as confounding covariates. A P value of less than 0.05 corrected with false discovery rate in voxel difference was considered to be statistically significant. Our study showed a significant positive correlation between the WMS-R-verbal score and the bilateral entorhinal cortex volume. In the right entorhinal, T value is 4.75, and the size of the clusters is 155 voxels. In the left entorhinal, T value is 4.08, and the size of the clusters is 23 voxels. A significant negative correlation was not found. To our knowledge, this is the first VBM study showing that entorhinal cortex volume is positively correlated with the WMS-R-verbal score for healthy subjects. Therefore, in our structural neuroimaging study, we add evidence to the hypothesis that the entorhinal cortex is involved in verbal memory processing. (orig.)

  10. Motor Neurons

    Hounsgaard, Jorn

    2017-01-01

    Motor neurons translate synaptic input from widely distributed premotor networks into patterns of action potentials that orchestrate motor unit force and motor behavior. Intercalated between the CNS and muscles, motor neurons add to and adjust the final motor command. The identity and functional...... in in vitro preparations is far from complete. Nevertheless, a foundation has been provided for pursuing functional significance of intrinsic response properties in motoneurons in vivo during motor behavior at levels from molecules to systems....

  11. Cortical Divergent Projections in Mice Originate from Two Sequentially Generated, Distinct Populations of Excitatory Cortical Neurons with Different Initial Axonal Outgrowth Characteristics.

    Hatanaka, Yumiko; Namikawa, Tomohiro; Yamauchi, Kenta; Kawaguchi, Yasuo

    2016-05-01

    Excitatory cortical neurons project to various subcortical and intracortical regions, and exhibit diversity in their axonal connections. Although this diversity may develop from primary axons, how many types of axons initially occur remains unknown. Using a sparse-labeling in utero electroporation method, we investigated the axonal outgrowth of these neurons in mice and correlated the data with axonal projections in adults. Examination of lateral cortex neurons labeled during the main period of cortical neurogenesis (E11.5-E15.5) indicated that axonal outgrowth commonly occurs in the intermediate zone. Conversely, the axonal direction varied; neurons labeled before E12.5 and the earliest cortical plate neurons labeled at E12.5 projected laterally, whereas neurons labeled thereafter projected medially. The expression of Ctip2 and Satb2 and the layer destinations of these neurons support the view that lateral and medial projection neurons are groups of prospective subcortical and callosal projection neurons, respectively. Consistently, birthdating experiments demonstrated that presumptive lateral projection neurons were generated earlier than medial projection neurons, even within the same layer. These results suggest that the divergent axonal connections of excitatory cortical neurons begin from two types of primary axons, which originate from two sequentially generated distinct subpopulations: early-born lateral (subcortical) and later-born medial (callosal) projection neuron groups. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. Differential efferent projections of the anterior, posteroventral and posterodorsal subdivisions of the medial amygdala in mice

    Cecília ePardo-Bellver

    2012-08-01

    Full Text Available The medial amygdaloid nucleus (Me is a key structure in the control of sociosexual behaviour in mice. It receives direct projections from the main and accessory olfactory bulbs, as well as an important hormonal input. To better understand its behavioural role, in this work we investigate the structures receiving information from the Me, by analysing the efferent projections from its anterior (MeA, posterodorsal (MePD and posteroventral (MePV subdivisions, using anterograde neuronal tracing with biotinylated and tetrametylrhodamine-conjugated dextranamines.The Me is strongly interconnected with the rest of the chemosensory amygdala, but shows only moderate projections to the central nucleus and light projections to the associative nuclei of the basolateral amygdaloid complex. In addition, the MeA originates a strong feedback projection to the deep mitral cell layer of the accessory olfactory bulb, whereas the MePV projects to its granule cell layer. The medial amygdaloid nucleus (especially the MeA has also moderate projections to different olfactory structures, including the piriform cortex. The densest outputs of the Me target the bed nucleus of the stria terminalis (BST and the hypothalamus. The MeA and MePV project to key structures of the circuit involved in the defensive response against predators (medial posterointermediate BST, anterior hypothalamic area, dorsomedial aspect of the ventromedial hypothalamic nucleus, although less dense projections also innervate reproductive-related nuclei. In contrast, the MePD projects mainly to structures that control reproductive behaviours (medial posteromedial BST, medial preoptic nucleus, and ventrolateral aspect of the ventromedial hypothalamic nucleus, although less dense projections to defensive-related nuclei also exist. These results confirm and extend previous results in other rodents and suggest that the medial amygdala is anatomically and functionally compartmentalized.

  13. BAD and KATP channels regulate neuron excitability and epileptiform activity.

    Martínez-François, Juan Ramón; Fernández-Agüera, María Carmen; Nathwani, Nidhi; Lahmann, Carolina; Burnham, Veronica L; Danial, Nika N; Yellen, Gary

    2018-01-25

    Brain metabolism can profoundly influence neuronal excitability. Mice with genetic deletion or alteration of Bad ( B CL-2 a gonist of cell d eath) exhibit altered brain-cell fuel metabolism, accompanied by resistance to acutely induced epileptic seizures; this seizure protection is mediated by ATP-sensitive potassium (K ATP ) channels. Here we investigated the effect of BAD manipulation on K ATP channel activity and excitability in acute brain slices. We found that BAD's influence on neuronal K ATP channels was cell-autonomous and directly affected dentate granule neuron (DGN) excitability. To investigate the role of neuronal K ATP channels in the anticonvulsant effects of BAD, we imaged calcium during picrotoxin-induced epileptiform activity in entorhinal-hippocampal slices. BAD knockout reduced epileptiform activity, and this effect was lost upon knockout or pharmacological inhibition of K ATP channels. Targeted BAD knockout in DGNs alone was sufficient for the antiseizure effect in slices, consistent with a 'dentate gate' function that is reinforced by increased K ATP channel activity. © 2018, Martínez-François et al.

  14. Medial Orbitofrontal Cortex Mediates Effort-related Responding in Rats.

    Münster, Alexandra; Hauber, Wolfgang

    2017-11-17

    The medial orbitofrontal cortex (mOFC) is known to support flexible control of goal-directed behavior. However, limited evidence suggests that the mOFC also mediates the ability of organisms to work with vigor towards a selected goal, a hypothesis that received little consideration to date. Here we show that excitotoxic mOFC lesion increased responding under a progressive ratio (PR) schedule of reinforcement, that is, the highest ratio achieved, and increased the preference for the high effort-high reward option in an effort-related decision-making task, but left intact outcome-selective Pavlovian-instrumental transfer and outcome-specific devaluation. Moreover, pharmacological inhibition of the mOFC increased, while pharmacological stimulation reduced PR responding. In addition, pharmacological mOFC stimulation attenuated methylphenidate-induced increase of PR responding. Intact rats tested for PR responding displayed higher numbers of c-Fos positive mOFC neurons than appropriate controls; however, mOFC neurons projecting to the nucleus accumbens did not show a selective increase in neuronal activation implying that they may not play a major role in regulating PR responding. Collectively, these results suggest that the mOFC plays a major role in mediating effort-related motivational functions. Moreover, our data demonstrate for the first time that the mOFC modulates effort-related effects of psychostimulant drugs. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. The Relationship between Chondromalacia Patella, Medial Meniscal Tear and Medial Periarticular Bursitis in Patients with Osteoarthritis.

    Resorlu, Mustafa; Doner, Davut; Karatag, Ozan; Toprak, Canan Akgun

    2017-12-01

    This study investigated the presence of bursitis in the medial compartment of the knee (pes anserine, semimembranosus-tibial collateral ligament, and medial collateral ligament bursa) in osteoarthritis, chondromalacia patella and medial meniscal tears. Radiological findings of 100 patients undergoing magnetic resonance imaging with a preliminary diagnosis of knee pain were retrospectively evaluated by two radiologists. The first radiologist assessed all patients in terms of osteoarthritis, chondromalacia patella and medial meniscal tear. The second radiologist was blinded to these results and assessed the presence of bursitis in all patients. Mild osteoarthritis (grade I and II) was determined in 55 patients and severe osteoarthritis (grade III and IV) in 45 cases. At retropatellar cartilage evaluation, 25 patients were assessed as normal, while 29 patients were diagnosed with mild chondromalacia patella (grade I and II) and 46 with severe chondromalacia patella (grade III and IV). Medial meniscus tear was determined in 51 patients. Severe osteoarthritis and chondromalacia patella were positively correlated with meniscal tear (p chondromalacia patella (p = 0.023 and p = 0.479, respectively). Evaluation of lateral compartment bursae revealed lateral collateral ligament bursitis in 2 patients and iliotibial bursitis in 5 patients. We observed a greater prevalence of bursitis in the medial compartment of the knee in patients with severe osteoarthritis and medial meniscus tear.

  16. The Relationship between Chondromalacia Patella, Medial Meniscal Tear and Medial Periarticular Bursitis in Patients with Osteoarthritis

    Doner, Davut; Karatag, Ozan; Toprak, Canan Akgun

    2017-01-01

    Abstract Background This study investigated the presence of bursitis in the medial compartment of the knee (pes anserine, semimembranosus-tibial collateral ligament, and medial collateral ligament bursa) in osteoarthritis, chondromalacia patella and medial meniscal tears. Patients and methods Radiological findings of 100 patients undergoing magnetic resonance imaging with a preliminary diagnosis of knee pain were retrospectively evaluated by two radiologists. The first radiologist assessed all patients in terms of osteoarthritis, chondromalacia patella and medial meniscal tear. The second radiologist was blinded to these results and assessed the presence of bursitis in all patients. Results Mild osteoarthritis (grade I and II) was determined in 55 patients and severe osteoarthritis (grade III and IV) in 45 cases. At retropatellar cartilage evaluation, 25 patients were assessed as normal, while 29 patients were diagnosed with mild chondromalacia patella (grade I and II) and 46 with severe chondromalacia patella (grade III and IV). Medial meniscus tear was determined in 51 patients. Severe osteoarthritis and chondromalacia patella were positively correlated with meniscal tear (p chondromalacia patella (p = 0.023 and p = 0.479, respectively). Evaluation of lateral compartment bursae revealed lateral collateral ligament bursitis in 2 patients and iliotibial bursitis in 5 patients. Conclusions We observed a greater prevalence of bursitis in the medial compartment of the knee in patients with severe osteoarthritis and medial meniscus tear. PMID:29333118

  17. Volumetric analysis of medial temporal lobe structures in brain development from childhood to adolescence.

    Hu, Shiyan; Pruessner, Jens C; Coupé, Pierrick; Collins, D Louis

    2013-07-01

    Puberty is an important stage of development as a child's sexual and physical characteristics mature because of hormonal changes. To better understand puberty-related effects on brain development, we investigated the magnetic resonance imaging (MRI) data of 306 subjects from 4 to 18 years of age. Subjects were grouped into before and during puberty groups according to their sexual maturity levels measured by the puberty scores. An appearance model-based automatic segmentation method with patch-based local refinement was employed to segment the MRI data and extract the volumes of medial temporal lobe (MTL) structures including the amygdala (AG), the hippocampus (HC), the entorhinal/perirhinal cortex (EPC), and the parahippocampal cortex (PHC). Our analysis showed age-related volumetric changes for the AG, HC, right EPC, and left PHC but only before puberty. After onset of puberty, these volumetric changes then correlate more with sexual maturity level, as measured by the puberty score. When normalized for brain volume, the volumes of the right HC decrease for boys; the volumes of the left HC increase for girls; and the volumes of the left and right PHC decrease for boys. These findings suggest that the rising levels of testosterone in boys and estrogen in girls might have opposite effects, especially for the HC and the PHC. Our findings on sex-specific and sexual maturity-related volumes may be useful in better understanding the MTL developmental differences and related learning, memory, and emotion differences between boys and girls during puberty. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Medial structure generation for registration of anatomical structures

    Vera, Sergio; Gil, Debora; Kjer, Hans Martin

    2017-01-01

    structures. Methods for generation of medial structures, however, are prone to the generation of medial artifacts (spurious branches) that traditionally need to be pruned before the medial structure can be used for further computations. The act of pruning can affect main sections of the medial surface......Medial structures (skeletons and medial manifolds) have shown capacity to describe shape in a compact way. In the field of medical imaging, they have been employed to enrich the description of organ anatomy, to improve segmentation, or to describe the organ position in relation to surrounding...

  19. Lateral Transorbital Endoscopic Access to the Hippocampus, Amygdala, and Entorhinal Cortex: Initial Clinical Experience.

    Chen, H Isaac; Bohman, Leif-Erik; Emery, Lyndsey; Martinez-Lage, Maria; Richardson, Andrew G; Davis, Kathryn A; Pollard, John R; Litt, Brian; Gausas, Roberta E; Lucas, Timothy H

    2015-01-01

    Transorbital approaches traditionally have focused on skull base and cavernous sinus lesions medial to the globe. Lateral orbital approaches to the temporal lobe have not been widely explored despite several theoretical advantages compared to open craniotomy. Recently, we demonstrated the feasibility of the lateral transorbital technique in cadaveric specimens with endoscopic visualization. We describe our initial clinical experience with the endoscope-assisted lateral transorbital approach to lesions in the temporal lobe. Two patients with mesial temporal lobe pathology presenting with seizures underwent surgery. The use of a transpalpebral or Stallard-Wright eyebrow incision enabled access to the intraorbital compartment, and a lateral orbital wall 'keyhole' opening permitted visualization of the anterior temporal pole. This approach afforded adequate access to the surgical target and surrounding structures and was well tolerated by the patients. To the best of our knowledge, this report constitutes the first case series describing the endoscope-assisted lateral transorbital approach to the temporal lobe. We discuss the limits of exposure, the nuances of opening and closing, and comparisons to open craniotomy. Further prospective investigation of this approach is warranted for comparison to traditional approaches to the mesial temporal lobe. © 2015 S. Karger AG, Basel.

  20. Multiregional Age-Associated Reduction of Brain Neuronal Reserve Without Association With Neurofibrillary Degeneration or β-Amyloidosis.

    Wegiel, Jerzy; Flory, Michael; Kuchna, Izabela; Nowicki, Krzysztof; Yong Ma, Shuang; Wegiel, Jarek; Badmaev, Eulalia; Silverman, Wayne P; de Leon, Mony; Reisberg, Barry; Wisniewski, Thomas

    2017-06-01

    Increase in human life expectancy has resulted in the rapid growth of the elderly population with minimal or no intellectual deterioration. The aim of this stereological study of 10 structures and 5 subdivisions with and without neurofibrillary degeneration in the brains of 28 individuals 25-102-years-old was to establish the pattern of age-associated neurodegeneration and neuronal loss in the brains of nondemented adults and elderly. The study revealed the absence of significant neuronal loss in 7 regions and topographically selective reduction of neuronal reserve over 77 years in 8 brain structures including the entorhinal cortex (EC) (-33.3%), the second layer of the EC (-54%), cornu Ammonis sector 1 (CA1) (-28.5%), amygdala, (-45.8%), thalamus (-40.5%), caudate nucleus (-35%), Purkinje cells (-48.3%), and neurons in the dentate nucleus (40.1%). A similar rate of neuronal loss in adults and elderly, without signs of accelerating neuronal loss in agers or super-agers, appears to indicate age-associated brain remodeling with significant reduction of neuronal reserve in 8 brain regions. Multivariate analysis demonstrates the absence of a significant association between neuronal loss and the severity of neurofibrillary degeneration and β-amyloidosis, and a similar rate of age-associated neuronal loss in structures with and without neurofibrillary degeneration. © 2017 American Association of Neuropathologists, Inc. All rights reserved.

  1. [Mirror neurons].

    Rubia Vila, Francisco José

    2011-01-01

    Mirror neurons were recently discovered in frontal brain areas of the monkey. They are activated when the animal makes a specific movement, but also when the animal observes the same movement in another animal. Some of them also respond to the emotional expression of other animals of the same species. These mirror neurons have also been found in humans. They respond to or "reflect" actions of other individuals in the brain and are thought to represent the basis for imitation and empathy and hence the neurobiological substrate for "theory of mind", the potential origin of language and the so-called moral instinct.

  2. Medial branch neurotomy in low back pain

    Masala, Salvatore; Mammucari, Matteo; Simonetti, Giovanni [Interventional Radiology and Radiotherapy University ' ' Tor Vergata' ' , Department of Diagnostic and Molecular Imaging, Rome (Italy); Nano, Giovanni [Interventional Radiology and Radiotherapy University ' ' Tor Vergata' ' , Department of Diagnostic and Molecular Imaging, Rome (Italy); University ' ' Tor Vergata' ' , Department of Radiology, Rome (Italy); Marcia, Stefano [S. Giovanni di Dio Hospital, Department of Diagnostic and Molecular Imaging, Cagliari (Italy)

    2012-07-15

    This study aimed to assess the effectiveness of pulsed radiofrequency medial branch dorsal ramus neurotomy in patients with facet joint syndrome. From January 2008 to April 2010, 92 patients with facet joint syndrome diagnosed by strict inclusion criteria and controlled diagnostic blocks undergone medial branch neurotomy. We did not exclude patients with failed back surgery syndrome (FBSS). Electrodes (20G) with 5-mm active tip were placed under fluoroscopy guide parallel to medial branch. Patients were followed up by physical examination and by Visual Analog Scale and Oswestry Disability Index at 1, 6, and 12 months. In all cases, pain improvement was statistically significant and so quality of life. Three non-FBSS patients had to undergo a second neurotomy because of non-satisfactory pain decrease. Complications were reported in no case. Medial branch radiofrequency neurotomy has confirmed its well-established effectiveness in pain and quality of life improvement as long as strict inclusion criteria be fulfilled and nerve ablation be accomplished by parallel electrode positioning. This statement can be extended also to FBSS patients. (orig.)

  3. Medial branch neurotomy in low back pain

    Masala, Salvatore; Mammucari, Matteo; Simonetti, Giovanni; Nano, Giovanni; Marcia, Stefano

    2012-01-01

    This study aimed to assess the effectiveness of pulsed radiofrequency medial branch dorsal ramus neurotomy in patients with facet joint syndrome. From January 2008 to April 2010, 92 patients with facet joint syndrome diagnosed by strict inclusion criteria and controlled diagnostic blocks undergone medial branch neurotomy. We did not exclude patients with failed back surgery syndrome (FBSS). Electrodes (20G) with 5-mm active tip were placed under fluoroscopy guide parallel to medial branch. Patients were followed up by physical examination and by Visual Analog Scale and Oswestry Disability Index at 1, 6, and 12 months. In all cases, pain improvement was statistically significant and so quality of life. Three non-FBSS patients had to undergo a second neurotomy because of non-satisfactory pain decrease. Complications were reported in no case. Medial branch radiofrequency neurotomy has confirmed its well-established effectiveness in pain and quality of life improvement as long as strict inclusion criteria be fulfilled and nerve ablation be accomplished by parallel electrode positioning. This statement can be extended also to FBSS patients. (orig.)

  4. Medial tibial stress syndrome: a critical review

    Moen, Maarten H.; Tol, Johannes L.; Weir, Adam; Steunebrink, Miriam; de Winter, Theodorus C.

    2009-01-01

    Medial tibial stress syndrome (MTSS) is one of the most common leg injuries in athletes and soldiers. The incidence of MTSS is reported as being between 4% and 35% in military personnel and athletes. The name given to this condition refers to pain on the posteromedial tibial border during exercise,

  5. Acute compartment syndrome after medial gastrocnemius tear.

    Sit, Yan Kit; Lui, Tun Hing

    2015-02-01

    Acute compartment syndrome after medial gastrocnemius tear is very rare. It can involve the superficial posterior compartment alone or progress to involve all the 4 compartments of the lower legs. Those patients with high pain tolerance and minor trauma can lead to delayed presentation. Immediate fasciotomy is the treatment of choice. Therapeutic Level IV, Case Study. © 2014 The Author(s).

  6. Rheo: Japanese Sound Art Interrogating Digital Mediality

    Vandsø, Anette

    2014-01-01

    THe article asks in what way the Japanese sound artist Ryoichi Kurokawa's audiovisual installation Rheo 5 Horisonz (2010) is 'digital'. Using Professor Lars Elleströms concept of 'mediality, the main claim in this article is that Rheo no only uses digital tehcnology, but also interrogates digital...

  7. Functional Connectome Analysis of Dopamine Neuron Glutamatergic Connections in Forebrain Regions.

    Mingote, Susana; Chuhma, Nao; Kusnoor, Sheila V; Field, Bianca; Deutch, Ariel Y; Rayport, Stephen

    2015-12-09

    In the ventral tegmental area (VTA), a subpopulation of dopamine neurons express vesicular glutamate transporter 2 and make glutamatergic connections to nucleus accumbens (NAc) and olfactory tubercle (OT) neurons. However, their glutamatergic connections across the forebrain have not been explored systematically. To visualize dopamine neuron forebrain projections and to enable photostimulation of their axons independent of transmitter status, we virally transfected VTA neurons with channelrhodopsin-2 fused to enhanced yellow fluorescent protein (ChR2-EYFP) and used DAT(IREScre) mice to restrict expression to dopamine neurons. ChR2-EYFP-expressing neurons almost invariably stained for tyrosine hydroxylase, identifying them as dopaminergic. Dopamine neuron axons visualized by ChR2-EYFP fluorescence projected most densely to the striatum, moderately to the amygdala and entorhinal cortex (ERC), sparsely to prefrontal and cingulate cortices, and rarely to the hippocampus. Guided by ChR2-EYFP fluorescence, we recorded systematically from putative principal neurons in target areas and determined the incidence and strength of glutamatergic connections by activating all dopamine neuron terminals impinging on recorded neurons with wide-field photostimulation. This revealed strong glutamatergic connections in the NAc, OT, and ERC; moderate strength connections in the central amygdala; and weak connections in the cingulate cortex. No glutamatergic connections were found in the dorsal striatum, hippocampus, basolateral amygdala, or prefrontal cortex. These results indicate that VTA dopamine neurons elicit widespread, but regionally distinct, glutamatergic signals in the forebrain and begin to define the dopamine neuron excitatory functional connectome. Dopamine neurons are important for the control of motivated behavior and are involved in the pathophysiology of several major neuropsychiatric disorders. Recent studies have shown that some ventral midbrain dopamine neurons are

  8. Medial temporal lobe structure and cognition in individuals with schizophrenia and in their non-psychotic siblings.

    Karnik-Henry, Meghana S; Wang, Lei; Barch, Deanna M; Harms, Michael P; Campanella, Carolina; Csernansky, John G

    2012-07-01

    Medial temporal lobe (MTL) structures play a central role in episodic memory. Prior studies suggest that individuals with schizophrenia have deficits in episodic memory as well as structural abnormalities of the medial temporal lobe (MTL). While correlations have been reported between MTL volume loss and episodic memory deficits in such individuals, it is not clear whether such correlations reflect the influence of the disease state or of underlying genetic influences that might contribute to risk. We used high resolution magnetic resonance imaging and probabilistic algorithms for image analysis to determine whether MTL structure, episodic memory performance and the relationship between the two differed among groups of 47 healthy control subjects, 50 control siblings, 39 schizophrenia subjects, and 33 siblings of schizophrenia subjects. High-dimensional large deformation brain mapping was used to obtain volume measures of the hippocampus. Cortical distance mapping was used to obtain volume and thickness measures of the parahippocampal gyrus (PHG) and its substructures: the entorhinal cortex (ERC), the perirhinal cortex (PRC), and the parahippocampal cortex (PHC). Neuropsychological data was used to establish an episodic memory domain score for each subject. Both schizophrenia subjects and their siblings displayed abnormalities in episodic memory performance. Siblings of individuals with schizophrenia, and to a lesser extent, individuals with schizophrenia themselves, displayed abnormalities in measures of MTL structure (volume loss or cortical thinning) as compared to control groups. Further, we observed correlations between structural measures and memory performance in both schizophrenia subjects and their siblings, but not in their respective control groups. These findings suggest that disease-specific genetic factors present in both patients and their relatives may be responsible for correlated abnormalities of MTL structure and memory impairment. The observed

  9. The timing of associative memory formation: frontal lobe and anterior medial temporal lobe activity at associative binding predicts memory

    Hales, J. B.

    2011-01-01

    The process of associating items encountered over time and across variable time delays is fundamental for creating memories in daily life, such as for stories and episodes. Forming associative memory for temporally discontiguous items involves medial temporal lobe structures and additional neocortical processing regions, including prefrontal cortex, parietal lobe, and lateral occipital regions. However, most prior memory studies, using concurrently presented stimuli, have failed to examine the temporal aspect of successful associative memory formation to identify when activity in these brain regions is predictive of associative memory formation. In the current study, functional MRI data were acquired while subjects were shown pairs of sequentially presented visual images with a fixed interitem delay within pairs. This design allowed the entire time course of the trial to be analyzed, starting from onset of the first item, across the 5.5-s delay period, and through offset of the second item. Subjects then completed a postscan recognition test for the items and associations they encoded during the scan and their confidence for each. After controlling for item-memory strength, we isolated brain regions selectively involved in associative encoding. Consistent with prior findings, increased regional activity predicting subsequent associative memory success was found in anterior medial temporal lobe regions of left perirhinal and entorhinal cortices and in left prefrontal cortex and lateral occipital regions. The temporal separation within each pair, however, allowed extension of these findings by isolating the timing of regional involvement, showing that increased response in these regions occurs during binding but not during maintenance. PMID:21248058

  10. Toxoplasma gondii infection reduces predator aversion in rats through epigenetic modulation in the host medial amygdala.

    Hari Dass, Shantala Arundhati; Vyas, Ajai

    2014-12-01

    Male rats (Rattus novergicus) infected with protozoan Toxoplasma gondii relinquish their innate aversion to the cat odours. This behavioural change is postulated to increase transmission of the parasite to its definitive felid hosts. Here, we show that the Toxoplasma gondii infection institutes an epigenetic change in the DNA methylation of the arginine vasopressin promoter in the medial amygdala of male rats. Infected animals exhibit hypomethylation of arginine vasopressin promoter, leading to greater expression of this nonapeptide. The infection also results in the greater activation of the vasopressinergic neurons after exposure to the cat odour. Furthermore, we show that loss of fear in the infected animals can be rescued by the systemic hypermethylation and recapitulated by directed hypomethylation in the medial amygdala. These results demonstrate an epigenetic proximate mechanism underlying the extended phenotype in the Rattus novergicus-Toxoplasma gondii association. © 2014 John Wiley & Sons Ltd.

  11. Synaptic Remodeling in the Dentate Gyrus, CA3, CA1, Subiculum, and Entorhinal Cortex of Mice: Effects of Deprived Rearing and Voluntary Running

    Andrea T. U. Schaefers

    2010-01-01

    Full Text Available Hippocampal cell proliferation is strongly increased and synaptic turnover decreased after rearing under social and physical deprivation in gerbils (Meriones unguiculatus. We examined if a similar epigenetic effect of rearing environment on adult neuroplastic responses can be found in mice (Mus musculus. We examined synaptic turnover rates in the dentate gyrus, CA3, CA1, subiculum, and entorhinal cortex. No direct effects of deprived rearing on rates of synaptic turnover were found in any of the studied regions. However, adult wheel running had the effect of leveling layer-specific differences in synaptic remodeling in the dentate gyrus, CA3, and CA1, but not in the entorhinal cortex and subiculum of animals of both rearing treatments. Epigenetic effects during juvenile development affected adult neural plasticity in mice, but seemed to be less pronounced than in gerbils.

  12. Medial frontal cortex and response conflict: Evidence from human intracranial EEG and medial frontal cortex lesion

    Cohen, M.X.; Ridderinkhof, K.R.; Haupt, S.; Elger, C.E.; Fell, J.

    2008-01-01

    The medial frontal cortex (MFC) has been implicated in the monitoring and selection of actions in the face of competing alternatives, but much remains unknown about its functional properties, including electrophysiological oscillations, during response conflict tasks. Here, we recorded intracranial

  13. Stimulation of the medial amygdala enhances medial preoptic dopamine release: implications for male rat sexual behavior.

    Dominguez, J M; Hull, E M

    2001-11-02

    Increased dopamine (DA) in the medial preoptic area (MPOA) facilitates male sexual behavior. A major source of innervation to the MPOA is the medial amygdala (MeA). We now report that chemical stimulation of the MeA enhanced levels of extracellular MPOA DA in anesthetized male rats. These results suggest that DA activity in the MPOA can be regulated by input from the MeA to the MPOA.

  14. Differential efferent projections of the anterior, posteroventral, and posterodorsal subdivisions of the medial amygdala in mice.

    Pardo-Bellver, Cecília; Cádiz-Moretti, Bernardita; Novejarque, Amparo; Martínez-García, Fernando; Lanuza, Enrique

    2012-01-01

    The medial amygdaloid nucleus (Me) is a key structure in the control of sociosexual behavior in mice. It receives direct projections from the main and accessory olfactory bulbs (AOB), as well as an important hormonal input. To better understand its behavioral role, in this work we investigate the structures receiving information from the Me, by analysing the efferent projections from its anterior (MeA), posterodorsal (MePD) and posteroventral (MePV) subdivisions, using anterograde neuronal tracing with biotinylated and tetrametylrhodamine-conjugated dextranamines. The Me is strongly interconnected with the rest of the chemosensory amygdala, but shows only moderate projections to the central nucleus and light projections to the associative nuclei of the basolateral amygdaloid complex. In addition, the MeA originates a strong feedback projection to the deep mitral cell layer of the AOB, whereas the MePV projects to its granule cell layer. The Me (especially the MeA) has also moderate projections to different olfactory structures, including the piriform cortex (Pir). The densest outputs of the Me target the bed nucleus of the stria terminalis (BST) and the hypothalamus. The MeA and MePV project to key structures of the circuit involved in the defensive response against predators (medial posterointermediate BST, anterior hypothalamic area, dorsomedial aspect of the ventromedial hypothalamic nucleus), although less dense projections also innervate reproductive-related nuclei. In contrast, the MePD projects mainly to structures that control reproductive behaviors [medial posteromedial BST, medial preoptic nucleus, and ventrolateral aspect of the ventromedial hypothalamic nucleus], although less dense projections to defensive-related nuclei also exist. These results confirm and extend previous results in other rodents and suggest that the medial amygdala is anatomically and functionally compartmentalized.

  15. Natural history of medial clavicle fractures.

    Salipas, Andrew; Kimmel, Lara A; Edwards, Elton R; Rakhra, Sandeep; Moaveni, Afshin Kamali

    2016-10-01

    Fractures of the medial third of the clavicle comprise less than 3% of all clavicle fractures. The natural history and optimal management of these rare injuries are unknown. The aim of our study is to describe the demographics, management and outcomes of patients with medial clavicle fractures treated at a Level 1 Trauma Centre. A retrospective review was conducted of patients presenting to our institution between January 2008 and March 2013 with a medial third clavicle fracture. Clinical and radiographic data were recorded including mechanism of injury, fracture pattern and displacement, associated injuries, management and complications. Functional outcomes were assessed using the Glasgow Outcome Scale Extended (GOS-E) scores from the Victorian Orthopaedic Trauma Outcomes Registry (VOTOR). Shoulder outcomes were assessed using two patient reported outcomes scores, the American Shoulder and Elbow Society Score (ASES) and the Subjective Shoulder Value (SSV). Sixty eight medial clavicle fractures in 68 patients were evaluated. The majority of patients were male (n=53), with a median age of 53.5 years (interquartile range (IQR) 37.5-74.5 years). The most common mechanism of injury was motor vehicle accident (n=28). The in-hospital mortality rate was 4.4%. The fracture pattern was almost equally distributed between extra articular (n=35) and intra-articular (n=33). Fifty-five fractures (80.9%) had minimal or no displacement. Associated injuries were predominantly thoracic (n=31). All fractures were initially managed non-operatively, with a broad arm sling. Delayed operative fixation was performed for painful atrophic delayed union in two patients (2.9%). Both patients were under 65 years of age and had a severely displaced fracture of the medial clavicle. One intra-operative vascular complication was seen, with no adverse long-term outcome. Follow-up was obtained in 85.0% of the surviving cohort at an average of three years post injury (range 1-6 years). The mean ASES

  16. Fear Expression Suppresses Medial Prefrontal Cortical Firing in Rats.

    Thomas F Giustino

    Full Text Available The medial prefrontal cortex (mPFC plays a crucial role in emotional learning and memory in rodents and humans. While many studies suggest a differential role for the prelimbic (PL and infralimbic (IL subdivisions of mPFC, few have considered the relationship between neural activity in these two brain regions recorded simultaneously in behaving animals. Importantly, how concurrent PL and IL activity relate to conditioned freezing behavior is largely unknown. Here we used single-unit recordings targeting PL and IL in awake, behaving rats during the acquisition and expression of conditioned fear. On Day 1, rats received either signaled or unsignaled footshocks in the recording chamber; an auditory conditioned stimulus (CS preceded signaled footshocks. Twenty-four hours later, animals were returned to the recording chamber (modified to create a novel context where they received 5 CS-alone trials. After fear conditioning, both signaled and unsignaled rats exhibited high levels of post-shock freezing that was associated with an enduring suppression of mPFC spontaneous firing, particularly in the IL of signaled rats. Twenty-four hours later, CS presentation produced differential conditioned freezing in signaled and unsignaled rats: freezing increased in rats that had received signaled shocks, but decreased in animals in the unsignaled condition (i.e., external inhibition. This group difference in CS-evoked freezing was mirrored in the spontaneous firing rate of neurons in both PL and IL. Interestingly, differences in PL and IL firing rate highly correlated with freezing levels. In other words, in the signaled group IL spontaneous rates were suppressed relative to PL, perhaps limiting IL-mediated suppression of fear and allowing PL activity to dominate performance, resulting in high levels of freezing. This was not observed in the unsignaled group, which exhibited low freezing. These data reveal that the activity of mPFC neurons is modulated by both

  17. Retrograde monosynaptic tracing reveals the temporal evolution of inputs onto new neurons in the adult dentate gyrus and olfactory bulb

    Deshpande, Aditi; Bergami, Matteo; Ghanem, Alexander; Conzelmann, Karl-Klaus; Lepier, Alexandra; Götz, Magdalena; Berninger, Benedikt

    2013-01-01

    Identifying the connectome of adult-generated neurons is essential for understanding how the preexisting circuitry is refined by neurogenesis. Changes in the pattern of connectivity are likely to control the differentiation process of newly generated neurons and exert an important influence on their unique capacity to contribute to information processing. Using a monosynaptic rabies virus-based tracing technique, we studied the evolving presynaptic connectivity of adult-generated neurons in the dentate gyrus (DG) of the hippocampus and olfactory bulb (OB) during the first weeks of their life. In both neurogenic zones, adult-generated neurons first receive local connections from multiple types of GABAergic interneurons before long-range projections become established, such as those originating from cortical areas. Interestingly, despite fundamental similarities in the overall pattern of evolution of presynaptic connectivity, there were notable differences with regard to the development of cortical projections: although DG granule neuron input originating from the entorhinal cortex could be traced starting only from 3 to 5 wk on, newly generated neurons in the OB received input from the anterior olfactory nucleus and piriform cortex already by the second week. This early glutamatergic input onto newly generated interneurons in the OB was matched in time by the equally early innervations of DG granule neurons by glutamatergic mossy cells. The development of connectivity revealed by our study may suggest common principles for incorporating newly generated neurons into a preexisting circuit. PMID:23487772

  18. The neurobiology of thalamic amnesia: Contributions of medial thalamus and prefrontal cortex to delayed conditional discrimination.

    Mair, Robert G; Miller, Rikki L A; Wormwood, Benjamin A; Francoeur, Miranda J; Onos, Kristen D; Gibson, Brett M

    2015-07-01

    Although medial thalamus is well established as a site of pathology associated with global amnesia, there is uncertainty about which structures are critical and how they affect memory function. Evidence from human and animal research suggests that damage to the mammillothalamic tract and the anterior, mediodorsal (MD), midline (M), and intralaminar (IL) nuclei contribute to different signs of thalamic amnesia. Here we focus on MD and the adjacent M and IL nuclei, structures identified in animal studies as critical nodes in prefrontal cortex (PFC)-related pathways that are necessary for delayed conditional discrimination. Recordings of PFC neurons in rats performing a dynamic delayed non-matching-to position (DNMTP) task revealed discrete populations encoding information related to planning, execution, and outcome of DNMTP-related actions and delay-related activity signaling previous reinforcement. Parallel studies recording the activity of MD and IL neurons and examining the effects of unilateral thalamic inactivation on the responses of PFC neurons demonstrated a close coupling of central thalamic and PFC neurons responding to diverse aspects of DNMTP and provide evidence that thalamus interacts with PFC neurons to give rise to complex goal-directed behavior exemplified by the DNMTP task. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Neuroanatomy of pars intercerebralis neurons with special reference to their connections with neurons immunoreactive for pigment-dispersing factor in the blow fly Protophormia terraenovae.

    Yasuyama, Kouji; Hase, Hiroaki; Shiga, Sakiko

    2015-10-01

    Input regions of pars intercerebralis (PI) neurons are examined by confocal and electron microscopies with special reference to their connections with neurons immunoreactive for pigment-dispersing factor (PDF) in the blow fly, Protophormia terraenovae. PI neurons are a prerequisite for ovarian development under long-day conditions. Backfills from the cardiac recurrent nerve after severance of the posterior lateral tracts labeled thin fibers derived from the PI neurons in the superior medial protocerebrum. These PI fibers were mainly synapsin-negative and postsynaptic to unknown varicose profiles containing dense-core vesicles. Backfilled fibers in the periesophageal neuropils, derived from the PI neurons or neurons with somata in the subesophageal zone, were varicose and some were synapsin-positive. Electron microscopy revealed the presence of both presynaptic and postsynaptic sites in backfilled fibers in the periesophageal neuropils. Many PDF-immunoreactive varicosities were found in the superior medial and lateral protocerebrum and double-labeling showed that 60-88 % of PDF-immunoreactive varicosities were also synapsin-immunoreactive. Double-labeling with the backfills and PDF immunocytochemistry showed that the PI fibers and PDF-immunoreactive varicosities were located close to each other in the superior medial protocerebrum. Results of triple-labeling of PI neurons, PDF-immunoreactive neurons and synapsin-immunoreactive terminals demonstrated that the synapsin-positive PDF-immunoreactive varicosities contacted the PI fibers. These data suggest that PI neurons receive synaptic contacts from PDF-immunoreactive fibers, which are derived from circadian clock neurons, of small ventral lateral neurons (previously called OL2) or posterior dorsal (PD) neurons with somata in the pars lateralis.

  20. Pediatric Glial Heterotopia in the Medial Canthus.

    Kim, Soung Min; Amponsah, Emmanuel Kofi; Eo, Mi Young; Cho, Yun Ju; Lee, Suk Keun

    2017-11-01

    Glial heterotopias are rare, benign, congenital, midline, and nonteratomatous extracranial glial tissue. They may be confused as encephalocele or dermoid cysts and are mostly present in the nose.An 8-month-old African female child presented with a slow growing paranasal mass. The mass had been present at the left upper medial canthus since birth and had slowly and progressively enlarged. There was no communication between the mass and the cranial cavity during the operational procedure. The mass was immunohistochemically positive for S-100 protein as well as for glial fibrillary acidic protein, but negative for proliferating cell nuclear antigen. This suggested that the mass was composed of benign glial tissues with many astrocytes.The purpose of this report is to demonstrate the first patient with pediatric glial heterotopic tissue in the medial canthus and to report the clinical importance of its immunohistochemical findings.

  1. Neuromuscular Exercise Post Partial Medial Meniscectomy

    Hall, Michelle; Hinman, Rana S; Wrigley, Tim V

    2015-01-01

    PURPOSE: To evaluate the effects of a 12-week, home-based, physiotherapist-guided neuromuscular exercise program on the knee adduction moment (an indicator of mediolateral knee load distribution) in people with a medial arthroscopic partial meniscectomy within the past 3-12 months. METHODS......: An assessor-blinded, randomised controlled trial including people aged 30-50 years with no to mild pain following medial arthroscopic partial meniscectomy was conducted. Participants were randomly allocated to either a 12-week neuromuscular exercise program that targeted neutral lower limb alignment...... or a control group with no exercise. The exercise program included eight individual sessions with one of seven physiotherapists in private clinics, together with home exercises. Primary outcomes were the peak external knee adduction moment during normal pace walking and during a one-leg sit-to-stand. Secondary...

  2. [SECOT consensus on medial femorotibial osteoarthritis].

    Moreno, A; Silvestre, A; Carpintero, P

    2013-01-01

    A consensus, prepared by SECOT, is presented on the management of medial knee compartment osteoarthritis, in order to establish clinical criteria and recommendations directed at unifying the criteria in its management, dealing with the factors involved in the pathogenesis of medial femorotibial knee osteoarthritis, the usefulness of diagnostic imaging techniques, and the usefulness of arthroscopy. Conservative and surgical treatments are also analysed. The experts consulted showed a consensus (agreed or disagreed) in 65.8% of the items considered, leaving 14items where no consensus was found, which included the aetiopathogenesis of the osteoarthritis, the value of NMR in degenerative disease, the usefulness of COX-2 and the chondroprotective drugs, as well as on the ideal valgus tibial osteotomy technique. © 2013 SECOT. Published by Elsevier Espana. All rights reserved.

  3. Foot medial longitudinal-arch deformation during quiet standing and gait in subjects with medial tibial stress syndrome

    Bandholm, Thomas Quaade; Boysen, Lisbeth; Haugaard, Stine

    2008-01-01

    The objective of this study was to investigate (1) if subjects with medial tibial stress syndrome demonstrate increased navicular drop and medial longitudinal-arch deformation during quiet standing and gait compared with healthy subjects, and (2) the relationship between medial longitudinal-arch ...

  4. Unicameral Bone Cyst of the Medial Cuneiform.

    Schick, Faith A; Daniel, Joseph N; Miller, Juliane S

    2016-09-02

    A unicameral bone cyst is a relatively uncommon, benign bone tumor found in the metaphysis of long bones, such as the humerus and the femur, in skeletally immature persons. In the foot, these benign, fluid-filled cavities are most commonly found within the os calcis. We present a case report of a 10-year-old female with a unicameral bone cyst of the medial cuneiform.

  5. Osteoligamentous injuries of the medial ankle joint.

    Lötscher, P; Lang, T H; Zwicky, L; Hintermann, B; Knupp, M

    2015-12-01

    Injuries of the ankle joint have a high incidence in daily life and sports, thus, playing an important socioeconomic role. Therefore, proper diagnosis and adequate treatment are mandatory. While most of the ligament injuries around the ankle joint are treated conservatively, great controversy exists on how to treat deltoid ligament injuries in ankle fractures. Missed injuries and inadequate treatment of the medial ankle lead to inferior outcome with instability, progressive deformity, and ankle joint osteoarthritis.

  6. The Medial Ventrothalamic Circuitry: Cells Implicated in a Bimodal Network

    Tomas Vega-Zuniga

    2018-02-01

    Full Text Available Previous avian thalamic studies have shown that the medial ventral thalamus is composed of several nuclei located close to the lateral wall of the third ventricle. Although the general connectivity is known, detailed morphology and connectivity pattern in some regions are still elusive. Here, using the intracellular filling technique in the chicken, we focused on two neural structures, namely, the retinorecipient neuropil of the n. geniculatus lateralis pars ventralis (GLv, and the adjacent n. intercalatus thalami (ICT. We found that the GLv-ne cells showed two different neuronal types: projection cells and horizontal interneurons. The projection cells showed variable morphologies and dendritic arborizations with axons that targeted the n. lentiformis mesencephali (LM, griseum tectale (GT, ICT, n. principalis precommissuralis (PPC, and optic tectum (TeO. The horizontal cells showed a widespread mediolateral neural process throughout the retinorecipient GLv-ne. The ICT cells, on the other hand, had multipolar somata with wide dendritic fields that extended toward the lamina interna of the GLv, and a projection pattern that targeted the n. laminaris precommissuralis (LPC. Together, these results elucidate the rich complexity of the connectivity pattern so far described between the GLv, ICT, pretectum, and tectum. Interestingly, the implication of some of these neural structures in visuomotor and somatosensory roles strongly suggests that the GLv and ICT are part of a bimodal circuit that may be involved in the generation/modulation of saccades, gaze control, and space perception.

  7. Inhibition of projections from the basolateral amygdala to the entorhinal cortex disrupts the acquisition of contextual fear

    Dennis R. Sparta

    2014-05-01

    Full Text Available The development of excessive fear and/or stress responses to environmental cues such as contexts associated with a traumatic event is a hallmark of post-traumatic stress disorder (PTSD. The basolateral amygdala (BLA has been implicated as a key structure mediating contextual fear conditioning. In addition, the hippocampus has an integral role in the encoding and processing of contexts associated with strong, salient stimuli such as fear. Given that both the BLA and hippocampus play an important role in the regulation of contextual fear conditioning, examining the functional connectivity between these two structures may elucidate a role for this pathway in the development of PTSD. Here, we used optogenetic strategies to demonstrate that the BLA sends a strong glutamatergic projection to the hippocampal formation through the entorhinal cortex (EC. Next, we photoinhibited glutamatergic fibers from the BLA terminating in the EC during the acquisition or expression of contextual fear conditioning. In mice that received optical inhibition of the BLA-to-EC pathway during the acquisition session, we observed a significant decrease in freezing behavior in a context re-exposure session. In contrast, we observed no differences in freezing behavior in mice that were only photoinhibited during the context re-exposure session. These data demonstrate an important role for the BLA-to-EC glutamatergic pathway in the acquisition of contextual fear conditioning.

  8. Computational model of neuron-astrocyte interactions during focal seizure generation

    Davide eReato

    2012-10-01

    Full Text Available Empirical research in the last decade revealed that astrocytes can respond to neurotransmitters with Ca2+ elevations and generate feedback signals to neurons which modulate synaptic transmission and neuronal excitability. This discovery changed our basic understanding of brain function and provided new perspectives for how astrocytes can participate not only to information processing, but also to the genesis of brain disorders, such as epilepsy. Epilepsy is a neurological disorder characterized by recurrent seizures that can arise focally at restricted areas and propagate throughout the brain. Studies in brain slice models suggest that astrocytes contribute to epileptiform activity by increasing neuronal excitability through a Ca2+-dependent release of glutamate. The underlying mechanism remains, however, unclear. In this study, we implemented a parsimonious network model of neurons and astrocytes. The model consists of excitatory and inhibitory neurons described by Izhikevich's neuron dynamics. The experimentally observed Ca2+ change in astrocytes in response to neuronal activity was modeled with linear equations. We considered that glutamate is released from astrocytes above certain intracellular Ca2+ concentrations thus providing a non-linear positive feedback signal to neurons. Propagating seizure-like ictal discharges (IDs were reliably evoked in our computational model by repeatedly exciting a small area of the network, which replicates experimental results in a slice model of focal ID in entorhinal cortex. We found that the threshold of focal ID generation was lowered when an excitatory feedback-loop between astrocytes and neurons was included. Simulations show that astrocytes can contribute to ID generation by directly affecting the excitatory/inhibitory balance of the neuronal network. Our model can be used to obtain mechanistic insights into the distinct contributions of the different signaling pathways to the generation and

  9. Neurons other than motor neurons in motor neuron disease.

    Ruffoli, Riccardo; Biagioni, Francesca; Busceti, Carla L; Gaglione, Anderson; Ryskalin, Larisa; Gambardella, Stefano; Frati, Alessandro; Fornai, Francesco

    2017-11-01

    Amyotrophic lateral sclerosis (ALS) is typically defined by a loss of motor neurons in the central nervous system. Accordingly, morphological analysis for decades considered motor neurons (in the cortex, brainstem and spinal cord) as the neuronal population selectively involved in ALS. Similarly, this was considered the pathological marker to score disease severity ex vivo both in patients and experimental models. However, the concept of non-autonomous motor neuron death was used recently to indicate the need for additional cell types to produce motor neuron death in ALS. This means that motor neuron loss occurs only when they are connected with other cell types. This concept originally emphasized the need for resident glia as well as non-resident inflammatory cells. Nowadays, the additional role of neurons other than motor neurons emerged in the scenario to induce non-autonomous motor neuron death. In fact, in ALS neurons diverse from motor neurons are involved. These cells play multiple roles in ALS: (i) they participate in the chain of events to produce motor neuron loss; (ii) they may even degenerate more than and before motor neurons. In the present manuscript evidence about multi-neuronal involvement in ALS patients and experimental models is discussed. Specific sub-classes of neurons in the whole spinal cord are reported either to degenerate or to trigger neuronal degeneration, thus portraying ALS as a whole spinal cord disorder rather than a disease affecting motor neurons solely. This is associated with a novel concept in motor neuron disease which recruits abnormal mechanisms of cell to cell communication.

  10. Bidirectional control of social hierarchy by synaptic efficacy in medial prefrontal cortex.

    Wang, Fei; Zhu, Jun; Zhu, Hong; Zhang, Qi; Lin, Zhanmin; Hu, Hailan

    2011-11-04

    Dominance hierarchy has a profound impact on animals' survival, health, and reproductive success, but its neural circuit mechanism is virtually unknown. We found that dominance ranking in mice is transitive, relatively stable, and highly correlates among multiple behavior measures. Recording from layer V pyramidal neurons of the medial prefrontal cortex (mPFC) showed higher strength of excitatory synaptic inputs in mice with higher ranking, as compared with their subordinate cage mates. Furthermore, molecular manipulations that resulted in an increase and decrease in the synaptic efficacy in dorsal mPFC neurons caused an upward and downward movement in the social rank, respectively. These results provide direct evidence for mPFC's involvement in social hierarchy and suggest that social rank is plastic and can be tuned by altering synaptic strength in mPFC pyramidal cells.

  11. Is there a medial nucleus of the trapezoid body in humans?

    Richter, Erik; Norris, B E; Fullerton, B C

    1983-01-01

    The medial nucleus of the trapezoid body (MNTB) appears to be a prominent auditory structure in many mammals. However, the presence of an MNTB in the human brain has not been clearly established. One of the most characteristic features of the cat MNTB is the presence of large somatic endings...... with multiple synaptic sites, the calyces of Held. We examined adult human brains at both light and electron microscopic levels and found neurons with unusually large endings in a location that is similar to that for the MNTB in other animals. Moreover, the sizes and shapes of some cells in this area...... are similar to the principal cells of the cat MNTB. These observations support the idea that humans have cells that resemble MNTB neurons in other species. It has been suggested that the cat MNTB may be involved in the generation of wave 3 of its brainstem auditory evoked potentials, so the presence...

  12. Differential expression and function of nicotinic acetylcholine receptors in subdivisions of medial habenula.

    Shih, Pei-Yu; Engle, Staci E; Oh, Gyeon; Deshpande, Purnima; Puskar, Nyssa L; Lester, Henry A; Drenan, Ryan M

    2014-07-16

    Neuronal nAChRs in the medial habenula (MHb) to the interpeduncular nucleus (IPN) pathway are key mediators of nicotine's aversive properties. In this paper, we report new details regarding nAChR anatomical localization and function in MHb and IPN. A new group of knock-in mice were created that each expresses a single nAChR subunit fused to GFP, allowing high-resolution mapping. We find that α3 and β4 nAChR subunit levels are strong throughout the ventral MHb (MHbV). In contrast, α6, β2, β3, and α4 subunits are selectively found in some, but not all, areas of MHbV. All subunits were found in both ChAT-positive and ChAT-negative cells in MHbV. Next, we examined functional properties of neurons in the lateral and central part of MHbV (MHbVL and MHbVC) using brain slice patch-clamp recordings. MHbVL neurons were more excitable than MHbVC neurons, and they also responded more strongly to puffs of nicotine. In addition, we studied firing responses of MHbVL and MHbVC neurons in response to bath-applied nicotine. Cells in MHbVL, but not those in MHbVC, increased their firing substantially in response to 1 μm nicotine. Additionally, MHbVL neurons from mice that underwent withdrawal from chronic nicotine were less responsive to nicotine application compared with mice withdrawn from chronic saline. Last, we characterized rostral and dorsomedial IPN neurons that receive input from MHbVL axons. Together, our data provide new details regarding neurophysiology and nAChR localization and function in cells within the MHbV. Copyright © 2014 the authors 0270-6474/14/349789-14$15.00/0.

  13. Radiographic evaluation of the canine elbow joint with special reference to the medial humeral condyle and the medial coronoid process

    Voorhout, G.; Hazewinkel, H.A.W.

    1987-01-01

    The results of radiographic examination of clinically affected elbow joints in 14 young, large-breed dogs, including standard and oblique projections and linear tomography, were compared with the findings of medial arthrotomy. Radiographs revealed arthrosis (13 dogs), osteochondrosis of the medial humeral condyle (2 dogs), fragmentation of the medial coronoid process (5 dogs), and a combination of osteochondrosis of the medial humeral condyle and fragmentation of the medial coronoid process (2 dogs). In one dog fissures in the medial coronoid process and in another dog a linear radiopacity along the articular surface of the medial coronoid process were found. In three dogs both medial humeral condyle and medial coronoid process appeared normal. The radiographic findings were confirmed during surgery in 11 dogs. Cartilage erosion of the medial humeral condyle in two dogs and of the medial coronoid process in one dog had not resulted in radiographically visible abnormalities. Radiographic examination of the elbow joints in young, large-breed dogs should include standard mediolateral and craniocaudal projections, a mediolateral projection with the joint maximally extended and the leg supinated 15°, and a craniolateral-to-caudomedial projection

  14. TRPV1 marks synaptic segregation of multiple convergent afferents at the rat medial solitary tract nucleus.

    James H Peters

    Full Text Available TRPV1 receptors are expressed on most but not all central terminals of cranial visceral afferents in the caudal solitary tract nucleus (NTS. TRPV1 is associated with unmyelinated C-fiber afferents. Both TRPV1+ and TRPV1- afferents enter NTS but their precise organization remains poorly understood. In horizontal brainstem slices, we activated solitary tract (ST afferents and recorded ST-evoked glutamatergic excitatory synaptic currents (ST-EPSCs under whole cell voltage clamp conditions from neurons of the medial subnucleus. Electrical shocks to the ST produced fixed latency EPSCs (jitter<200 µs that identified direct ST afferent innervation. Graded increases in shock intensity often recruited more than one ST afferent and ST-EPSCs had consistent threshold intensity, latency to onset, and unique EPSC waveforms that characterized each unitary ST afferent contact. The TRPV1 agonist capsaicin (100 nM blocked the evoked TRPV1+ ST-EPSCs and defined them as either TRPV1+ or TRPV1- inputs. No partial responses to capsaicin were observed so that in NTS neurons that received one or multiple (2-5 direct ST afferent inputs--all were either blocked by capsaicin or were unaltered. Since TRPV1 mediates asynchronous release following TRPV1+ ST-evoked EPSCs, we likewise found that recruiting more than one ST afferent further augmented the asynchronous response and was eliminated by capsaicin. Thus, TRPV1+ and TRPV1- afferents are completely segregated to separate NTS neurons. As a result, the TRPV1 receptor augments glutamate release only within unmyelinated afferent pathways in caudal medial NTS and our work indicates a complete separation of C-type from A-type afferent information at these first central neurons.

  15. Enlargement of Axo-Somatic Contacts Formed by GAD-Immunoreactive Axon Terminals onto Layer V Pyramidal Neurons in the Medial Prefrontal Cortex of Adolescent Female Mice Is Associated with Suppression of Food Restriction-Evoked Hyperactivity and Resilience to Activity-Based Anorexia.

    Chen, Yi-Wen; Wable, Gauri Satish; Chowdhury, Tara Gunkali; Aoki, Chiye

    2016-06-01

    Many, but not all, adolescent female mice that are exposed to a running wheel while food restricted (FR) become excessive wheel runners, choosing to run even during the hours of food availability, to the point of death. This phenomenon is called activity-based anorexia (ABA). We used electron microscopic immunocytochemistry to ask whether individual differences in ABA resilience may correlate with the lengths of axo-somatic contacts made by GABAergic axon terminals onto layer 5 pyramidal neurons (L5P) in the prefrontal cortex. Contact lengths were, on average, 40% greater for the ABA-induced mice, relative to controls. Correspondingly, the proportion of L5P perikaryal plasma membrane contacted by GABAergic terminals was 45% greater for the ABA mice. Contact lengths in the anterior cingulate cortex correlated negatively and strongly with the overall wheel activity after FR (R = -0.87, P resilience through suppression of wheel running, a behavior that is intrinsically rewarding and helpful for foraging but maladaptive within a cage. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. Hippocampome.org: a knowledge base of neuron types in the rodent hippocampus.

    Wheeler, Diek W; White, Charise M; Rees, Christopher L; Komendantov, Alexander O; Hamilton, David J; Ascoli, Giorgio A

    2015-09-24

    Hippocampome.org is a comprehensive knowledge base of neuron types in the rodent hippocampal formation (dentate gyrus, CA3, CA2, CA1, subiculum, and entorhinal cortex). Although the hippocampal literature is remarkably information-rich, neuron properties are often reported with incompletely defined and notoriously inconsistent terminology, creating a formidable challenge for data integration. Our extensive literature mining and data reconciliation identified 122 neuron types based on neurotransmitter, axonal and dendritic patterns, synaptic specificity, electrophysiology, and molecular biomarkers. All ∼3700 annotated properties are individually supported by specific evidence (∼14,000 pieces) in peer-reviewed publications. Systematic analysis of this unprecedented amount of machine-readable information reveals novel correlations among neuron types and properties, the potential connectivity of the full hippocampal circuitry, and outstanding knowledge gaps. User-friendly browsing and online querying of Hippocampome.org may aid design and interpretation of both experiments and simulations. This powerful, simple, and extensible neuron classification endeavor is unique in its detail, utility, and completeness.

  17. Neuronal and astrocytic metabolism in a transgenic rat model of Alzheimer's disease.

    Nilsen, Linn Hege; Witter, Menno P; Sonnewald, Ursula

    2014-05-01

    Regional hypometabolism of glucose in the brain is a hallmark of Alzheimer's disease (AD). However, little is known about the specific alterations of neuronal and astrocytic metabolism involved in homeostasis of glutamate and GABA in AD. Here, we investigated the effects of amyloid β (Aβ) pathology on neuronal and astrocytic metabolism and glial-neuronal interactions in amino acid neurotransmitter homeostasis in the transgenic McGill-R-Thy1-APP rat model of AD compared with healthy controls at age 15 months. Rats were injected with [1-(13)C]glucose and [1,2-(13)C]acetate, and extracts of the hippocampal formation as well as several cortical regions were analyzed using (1)H- and (13)C nuclear magnetic resonance spectroscopy and high-performance liquid chromatography. Reduced tricarboxylic acid cycle turnover was evident for glutamatergic and GABAergic neurons in hippocampal formation and frontal cortex, and for astrocytes in frontal cortex. Pyruvate carboxylation, which is necessary for de novo synthesis of amino acids, was decreased and affected the level of glutamine in hippocampal formation and those of glutamate, glutamine, GABA, and aspartate in the retrosplenial/cingulate cortex. Metabolic alterations were also detected in the entorhinal cortex. Overall, perturbations in energy- and neurotransmitter homeostasis, mitochondrial astrocytic and neuronal metabolism, and aspects of the glutamate-glutamine cycle were found in McGill-R-Thy1-APP rats.

  18. Isolation and culture of adult mouse vestibular nucleus neurons

    Him, Aydın; Altuntaş, Serap; Öztürk, Gürkan; Erdoğan, Ender; Cengiz, Nureddin

    2017-12-19

    Background/aim: Isolated cell cultures are widely used to study neuronal properties due to their advantages. Although embryonic animals are preferred for culturing, their morphological or electrophysiological properties may not reflect adult neurons, which may be important in neurodegenerative diseases. This paper aims to develop a method for preparing isolated cell cultures of medial vestibular nucleus (MVN) from adult mice and describe its morphological and electrophysiological properties.Materials and methods: Vestibular nucleus neurons were mechanically and enzymatically isolated and cultured using a defined medium with known growth factors. Cell survival was measured with propidium iodide, and electrophysiological properties were investigated with current-clamp recording.Results: Vestibular neurons grew neurites in cultures, gaining adult-like morphological properties, and stayed viable for 3 days in culture. Adding bovine calf serum, nerve growth factor, or insulin-like growth factor into the culture medium enhanced neuronal viability. Current-clamp recording of the cultured neurons revealed tonic and phasic-type neurons with similar input resistance, resting membrane potential, action potential amplitude, and duration. Conclusion: Vestibular neurons from adult mice can be cultured, and regenerate axons in a medium containing appropriate growth factors. Culturing adult vestibular neurons provides a new method to study age-related pathologies of the vestibular system.

  19. GABAA receptor subunit expression changes in the human Alzheimer's disease hippocampus, subiculum, entorhinal cortex and superior temporal gyrus.

    Kwakowsky, Andrea; Calvo-Flores Guzmán, Beatriz; Pandya, Madhavi; Turner, Clinton; Waldvogel, Henry J; Faull, Richard L

    2018-02-27

    Gamma-aminobutyric acid (GABA) is the primary inhibitory neurotransmitter in the central nervous system. GABA type A receptors (GABA A Rs) are severely affected in Alzheimer's disease (AD). However, the distribution and subunit composition of GABA A Rs in the AD brain are not well understood. This is the first comprehensive study to show brain region- and cell layer-specific alterations in the expression of the GABA A R subunits α1-3, α5, β1-3 and γ2 in the human AD hippocampus, entorhinal cortex and superior temporal gyrus (STG). In late-stage AD tissue samples using immunohistochemistry we found significant alteration of all investigated GABA A Rs subunits except for α3 and β1 that were well preserved. The most prominent changes include an increase in GABA A R α1 expression associated with AD in all layers of the CA3 region, in the stratum (str.) granulare and hilus of the dentate gyrus (DG). We found a significant increase in GABA A R α2 expression in the str. oriens of the CA1-3, str. radiatum of the CA2,3 and decrease in the str. pyramidale of the CA1 region in AD cases. In AD there was a significant increase in GABA A R α5 subunit expression in str. pyramidale, str. oriens of the CA1 region and decrease in the STG. We also found a significant decrease in the GABA A R β3 subunit immunoreactivity in the str. oriens of the CA2, str. granulare and str. moleculare of the DG. In conclusion, these findings indicate that the expression of the GABA A R subunits shows brain region- and layer-specific alterations in AD, and these changes could significantly influence and alter GABA A R function in the disease. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  20. Protective role of curcumin against sulfite-induced structural changes in rats' medial prefrontal cortex.

    Noorafshan, Ali; Asadi-Golshan, Reza; Abdollahifar, Mohammad-Amin; Karbalay-Doust, Saied

    2015-08-01

    Sodium metabisulfite as a food preservative can affect the central nervous system. Curcumin, the main ingredient of turmeric has neuroprotective activity. This study was designed to evaluate the effects of sulfite and curcumin on the medial prefrontal cortex (mPFC) using stereological methods. Thirty rats were randomly divided into five groups. The rats in groups I-V received distilled water, olive oil, curcumin (100 mg/kg/day), sodium metabisulfite (25 mg/kg/day), and sulfite + curcumin, respectively, for 8 weeks. The brains were subjected to the stereological methods. Cavalieri and optical disector techniques were used to estimate the total volume of mPFC and the number of neurons and glial cells. Intersections counting were applied on the thick vertical uniform random sections to estimate the dendrites length, and classify the spines. Non-parametric tests were used to analyze the data. The mean mPFC volume, neurons number, glia number, dendritic length, and total spines per neuron were 3.7 mm(3), 365,000, 180,000, 1820 µm, and 1700 in distilled water group, respectively. A reduction was observed in the volume of mPFC (∼8%), number of neurons (∼15%), and number of glia (∼14%) in mPFC of the sulfite group compared to the control groups (P curcumin had a protective role against the changes in the rats.

  1. Interlayer neurones in the rat superior colliculus: a tracer study using Dil/Di-ASP.

    Hilbig, H; Schierwagen, A

    1994-01-12

    Five different populations of interlayer neurones (ILNs) can be described after DiI/Di-ASP tracing in rat superior colliculus (SC). All of these labelled neurones preferentially lay in the rostro-medial part of the SC. Most of them are located in the stratum opticum and in the stratum griseum superficiale. Our results indicate that ILNs represent a minority of neurones in the superficial layers but may constitute a substantial population of neurones in the stratum opticum connecting the visual and the multimodal collicular layers.

  2. Selective enhancement of main olfactory input to the medial amygdala by GnRH.

    Blake, Camille Bond; Meredith, Michael

    2010-03-04

    In male hamsters mating behavior is dependent on chemosensory input from the main olfactory and vomeronasal systems, whose central pathways contain cell bodies and fibers of gonadotropin-releasing hormone (GnRH) neurons. In sexually naive males, vomeronasal organ removal (VNX), but not main olfactory lesions, impairs mating behavior. Intracerebroventricular (i.c.v.)-GnRH restores mating in sexually naive VNX males and enhances medial amygdala (Me) immediate-early gene activation by chemosensory stimulation. In sexually experienced males, VNX does not impair mating and i.c.v.-GnRH suppresses Me activation. Thus, the main olfactory system is sufficient for mating in experienced-VNX males, but not in naive-VNX males. We investigated the possibility that GnRH enhances main olfactory input to the amygdala in naive-VNX males using i.c.v.-GnRH and pharmacological stimulation (bicuculline/D,L-homocysteic acid mixture) of the main olfactory bulb (MOB). In sexually naive intact males there was a robust increase of Fos protein expression in the anteroventral medial amygdala (MeAv) with MOB stimulation, but no effect of GnRH. There was no effect of stimulation or GnRH in posterodorsal medial amygdala (MePd). In naive-VNX animals, GnRH increased Fos in MeAv and MePv. Only combined MOB stimulation and i.c.v.-GnRH produced a significant increase in Fos in the dorsal (reproduction-related) portion of MeP (MePd). When the animals were sexually experienced before VNX, a condition in which GnRH does not enhance mating, i.c.v.-GnRH combined with MOB stimulation suppressed Fos expression in MePd. This suggests a more selective effect of GnRH on olfactory input in MePd than elsewhere in medial amygdala of VNX males. 2009 Elsevier B.V. All rights reserved.

  3. Electrophysiological analysis of pathways connecting the medial preoptic area with the mesencephalic central grey matter in rats.

    MacLeod, N K; Mayer, M L

    1980-01-01

    1. An electrophysiological study of ascending and descending connexions between the dorsal raphe region of the mesencephalic periaqueductal grey matter and the medial preoptic area has been performed in dioestrous female rats anaesthetized with urethane. 2. Extracellular action potentials recorded from 208 neurones in the medial preoptic area were analysed for a change in excitability following stimulation of the periaqueductal grey matter. 174 neurones were also tested for changes in excitability following stimulation of the mediobasal hypothalamus. 3. Stimulation of the periaqueductal grey matter at 1 Hz was rarely effective, but short trains of pulses (three at 100 Hz) usually caused an initial inhibition (62.5% of 208) of both projection identified and adjacent neurones of the medial preoptic area, at latencies of 5--90 msec (mean 34.1 +/- 1.4 msec). Inhibition following stimulation of the mediobasal hypothalamus occurred less frequently (34%) and at shorter latency (mean 12.0 +/- 1.8 msec; n = 48). 4. Less frequently (10.6%) periaqueductal grey matter stimulation caused an initial excitation of preoptic neurones at latencies of 15--180 msec, (mean 35.3 +/- 7.2). Initial excitation following mediobasal hypothalamus stimulation was stronger, occurred more frequently (29%) and at shorter latencies (range 3--60 msec, mean 13.1 +/- 1.5). Following such initial excitation, inhibition of spontaneous or ionophoretically evoked activity occurred more frequently following mediobasal hypothalamic stimulation, than after periaqueductal grey matter stimulation. 5. Twenty-four neurones displayed antidromic invasion following periaqueductal grey matter stimulation. Latencies for invasion ranged from 13 to 50 msec (mean 25.5 +/- 2.0 msec) and are suggestive of an unmyelinated projection. Occasionally an abrupt decrease in latency followed an increase in stimulus intensity. Antidromic invasion from mediobasal hypothalamus was characterized by a shorter latency (mean 12.5 +/- 0

  4. Rheo: Japanese sound art interrogating digital mediality

    Vandsø Anette

    2014-12-01

    Full Text Available The article asks in what way the Japanese sound artist, Ryoichi Kurokawa’s audiovisual installation, Rheo: 5 Horisonz (2010, is “digital.” Using professor Lars Elleström’s concept of “mediality,” the main claim in this article is that Rheo not only uses digital technology but also interrogates digital mediality as such. This argument is pursued in an analysis of Rheo that draws in various descriptions of digital media by N. Catherine Hayles, Lev Manovic, Bolter, and Grusin among other. The article will show how the critical potential in Rheo is directed both towards digital media as a language (Meyrowitz (or a place for representation and towards the digital as a milieu (Meyrowitz or as our culture (Gere. The overall goal of the article is not just analyse this singular art work, but also to show how such a sound art work can contribute to our understanding of our own contemporary culture as a digital culture.

  5. Arthroscopic treatment of symptomatic type D medial plica

    Uysal, Mustafa; Asik, Mehmet; Akpinar, Sercan; Ciftci, Feyyaz; Cesur, Necip; Tandogan, Reha N.

    2007-01-01

    We aimed to review the results of subtotal arthroscopic resection of symptomatic type D medial plica. We retrospectively evaluated 23 knees with symptomatic type D medial plica in 22 patients without other intra-articular pathology. All patients complained of chronic knee pain that had not been alleviated by medical treatment or physical therapy. In only three (13%) of the patients studied was the plica diagnosed pre-operatively with magnetic resonance imaging. The type D medial plicae in our...

  6. The medial tibial stress syndrome. A cause of shin splints.

    Mubarak, S J; Gould, R N; Lee, Y F; Schmidt, D A; Hargens, A R

    1982-01-01

    The medial tibial stress syndrome is a symptom complex seen in athletes who complain of exercise-induced pain along the distal posterior-medial aspect of the tibia. Intramuscular pressures within the posterior compartments of the leg were measured in 12 patients with this disorder. These pressures were not elevated and therefore this syndrome is a not a compartment syndrome. Available information suggests that the medial tibial stress syndrome most likely represents a periostitis at this location of the leg.

  7. Functional results after external vocal fold medialization thyroplasty with the titanium vocal fold medialization implant.

    Schneider, Berit; Denk, Doris-Maria; Bigenzahn, Wolfgang

    2003-04-01

    A persistent insufficiency of glottal closure is mostly a consequence of a unilateral vocal fold movement impairment. It can also be caused by vocal fold atrophy or scarring processes with regular bilateral respiratory vocal fold function. Because of consequential voice, breathing, and swallowing impairments, a functional surgical treatment is required. The goal of the study was to outline the functional results after medialization thyroplasty with the titanium vocal fold medialization implant according to Friedrich. In the period of 1999 to 2001, an external vocal fold medialization using the titanium implant was performed on 28 patients (12 women and 16 men). The patients were in the age range of 19 to 84 years. Twenty-two patients had a paralysis of the left-side vocal fold, and six patients, of the right-side vocal fold. Detailed functional examinations were executed on all patients before and after the surgery: perceptive voice sound analysis according to the "roughness, breathiness, and hoarseness" method, judgment of the s/z ratio and voice dysfunction index, voice range profile measurements, videostroboscopy, and pulmonary function tests. In case of dysphagia/aspiration, videofluoroscopy of swallowing was also performed. The respective data were statistically analyzed (paired t test, Wilcoxon-test). All patients reported on improvement of voice, swallowing, and breathing functions postoperatively. Videostroboscopy revealed an almost complete glottal closure after surgery in all of the patients. All voice-related parameters showed a significant improvement. An increase of the laryngeal resistance by the medialization procedure could be excluded by analysis of the pulmonary function test. The results confirm the external medialization of the vocal folds as an adequate method in the therapy of voice, swallowing, and breathing impairment attributable to an insufficient glottal closure. The titanium implant offers, apart from good tissue tolerability, the

  8. Individual Neurons Confined to Distinct Antennal-Lobe Tracts in the Heliothine Moth: Morphological Characteristics and Global Projection Patterns

    Ian, Elena; Zhao, Xin C.; Lande, Andreas; Berg, Bente G.

    2016-01-01

    To explore fundamental principles characterizing chemosensory information processing, we have identified antennal-lobe projection neurons in the heliothine moth, including several neuron types not previously described. Generally, odor information is conveyed from the primary olfactory center of the moth brain, the antennal lobe, to higher brain centers via projection neuron axons passing along several parallel pathways, of which the medial, mediolateral, and lateral antennal-lobe tract are considered the classical ones. Recent data have revealed the projections of the individual tracts more in detail demonstrating three main target regions in the protocerebrum; the calyces are innervated mainly by the medial tract, the superior intermediate protocerebrum by the lateral tract exclusively, and the lateral horn by all tracts. In the present study, we have identified, via iontophoretic intracellular staining combined with confocal microscopy, individual projection neurons confined to the tracts mentioned above, plus two additional ones. Further, using the visualization software AMIRA, we reconstructed the stained neurons and registered the models into a standard brain atlas, which allowed us to compare the termination areas of individual projection neurons both across and within distinct tracts. The data demonstrate a morphological diversity of the projection neurons within distinct tracts. Comparison of the output areas of the neurons confined to the three main tracts in the lateral horn showed overlapping terminal regions for the medial and mediolateral tracts; the lateral tract neurons, on the contrary, targeted mostly other output areas in the protocerebrum. PMID:27822181

  9. A protocol for manual segmentation of medial temporal lobe subregions in 7 Tesla MRI

    D. Berron

    2017-01-01

    Full Text Available Recent advances in MRI and increasing knowledge on the characterization and anatomical variability of medial temporal lobe (MTL anatomy have paved the way for more specific subdivisions of the MTL in humans. In addition, recent studies suggest that early changes in many neurodegenerative and neuropsychiatric diseases are better detected in smaller subregions of the MTL rather than with whole structure analyses. Here, we developed a new protocol using 7 Tesla (T MRI incorporating novel anatomical findings for the manual segmentation of entorhinal cortex (ErC, perirhinal cortex (PrC; divided into area 35 and 36, parahippocampal cortex (PhC, and hippocampus; which includes the subfields subiculum (Sub, CA1, CA2, as well as CA3 and dentate gyrus (DG which are separated by the endfolial pathway covering most of the long axis of the hippocampus. We provide detailed instructions alongside slice-by-slice segmentations to ease learning for the untrained but also more experienced raters. Twenty-two subjects were scanned (19–32 yrs, mean age = 26 years, 12 females with a turbo spin echo (TSE T2-weighted MRI sequence with high-resolution oblique coronal slices oriented orthogonal to the long axis of the hippocampus (in-plane resolution 0.44×0.44 mm2 and 1.0 mm slice thickness. The scans were manually delineated by two experienced raters, to assess intra- and inter-rater reliability. The Dice Similarity Index (DSI was above 0.78 for all regions and the Intraclass Correlation Coefficients (ICC were between 0.76 to 0.99 both for intra- and inter-rater reliability. In conclusion, this study presents a fine-grained and comprehensive segmentation protocol for MTL structures at 7 T MRI that closely follows recent knowledge from anatomical studies. More specific subdivisions (e.g. area 35 and 36 in PrC, and the separation of DG and CA3 may pave the way for more precise delineations thereby enabling the detection of early volumetric changes in dementia and

  10. Neural Plasticity: Single Neuron Models for Discrimination and Generalization and AN Experimental Ensemble Approach.

    Munro, Paul Wesley

    A special form for modification of neuronal response properties is described in which the change in the synaptic state vector is parallel to the vector of afferent activity. This process is termed "parallel modification" and its theoretical and experimental implications are examined. A theoretical framework has been devised to describe the complementary functions of generalization and discrimination by single neurons. This constitutes a basis for three models each describing processes for the development of maximum selectivity (discrimination) and minimum selectivity (generalization) by neurons. Strengthening and weakening of synapses is expressed as a product of the presynaptic activity and a nonlinear modulatory function of two postsynaptic variables--namely a measure of the spatially integrated activity of the cell and a temporal integration (time-average) of that activity. Some theorems are given for low-dimensional systems and computer simulation results from more complex systems are discussed. Model neurons that achieve high selectivity mimic the development of cat visual cortex neurons in a wide variety of rearing conditions. A role for low-selectivity neurons is proposed in which they provide inhibitory input to neurons of the opposite type, thereby suppressing the common component of a pattern class and enhancing their selective properties. Such contrast-enhancing circuits are analyzed and supported by computer simulation. To enable maximum selectivity, the net inhibition to a cell must become strong enough to offset whatever excitation is produced by the non-preferred patterns. Ramifications of parallel models for certain experimental paradigms are analyzed. A methodology is outlined for testing synaptic modification hypotheses in the laboratory. A plastic projection from one neuronal population to another will attain stable equilibrium under periodic electrical stimulation of constant intensity. The perturbative effect of shifting this intensity level

  11. Medialized repair for retracted rotator cuff tears.

    Kim, Young-Kyu; Jung, Kyu-Hak; Won, Jun-Sung; Cho, Seung-Hyun

    2017-08-01

    The purpose of this study was to evaluate the functional outcomes of medialized rotator cuff repair and the continuity of repaired tendon in chronic retracted rotator cuff tears. Thirty-five consecutive patients were selected from 153 cases that underwent arthroscopic rotator cuff repair for more than medium-sized posterosuperior rotator cuff tears between July 2009 and July 2012 performed with the medialized repair. All cases were available for at least 2 years of postoperative follow-up. The visual analog scale of pain, muscle strength, Constant score, American Shoulder and Elbow Surgeons (ASES) score, and University of California-Los Angeles score were evaluated. At the final follow-up, all clinical outcomes were significantly improved. The visual analog scale score for pain improved from 6 ± 1 preoperatively to 2 ± 1 postoperatively. The range of motion increased from preoperatively to postoperatively: active forward elevation, from 134° ± 49° to 150° ± 16°; active external rotation at the side, from 47° ± 15° to 55° ± 10°; and active internal rotation, from L3 to L1. The shoulder score also improved: Constant score, from 53.5 ± 16.7 to 79 ± 10; American Shoulder and Elbow Surgeons score, from 51 ± 15 to 82 ± 8; and University of California-Los Angeles score, from 14 ± 4 to 28 ± 4. The retear cases at the final follow-up were 6 (17%). Medialized repair may be useful in cases in which anatomic bone-to-tendon repair would be difficult because of the excessive tension of the repaired tendon and a torn tendon that does not reach the anatomic insertion. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  12. Noradrenaline decreases spike voltage threshold and induces electrographic sharp waves in turtle medial cortex in vitro.

    Lorenzo, Daniel; Velluti, Julio C

    2004-01-01

    The noradrenergic modulation of neuronal properties has been described at different levels of the mammalian brain. Although the anatomical characteristics of the noradrenergic system are well known in reptiles, functional data are scarce. In our study the noradrenergic modulation of cortical electrogenesis in the turtle medial cortex was studied in vitro using a combination of field and intracellular recordings. Turtle EEG consists of a low voltage background interspersed by spontaneous large sharp waves (LSWs). Noradrenaline (NA, 5-40 microM) induced (or enhanced) the generation of LSWs in a dose-dependent manner. Pharmacological experiments suggest the participation of alpha and beta receptors in this effect. In medial cortex neurons NA induced a hyperpolarization of the resting potential and a decrease of input resistance. Both effects were observed also after TTX treatment. Noradrenaline increased the response of the cells to depolarizing pulses, resulting in an upward shift of the frequency/current relation. In most cells the excitability change was mediated by a decrease of the spike voltage threshold resulting in the reduction of the amount of depolarization needed to fire the cell (voltage threshold minus resting potential). As opposed to the mechanisms reported in mammalian neurons, no changes in the frequency adaptation or the post-train afterhyperpolarization were observed. The NA effects at the cellular level were not reproduced by noradrenergic agonists. Age- and species-dependent properties in the pharmacology of adrenergic receptors could be involved in this result. Cellular effects of NA in turtle cortex are similar to those described in mammals, although the increase in cellular excitability seems to be mediated by a different mechanism. Copyright 2004 S. Karger AG, Basel

  13. Anatomical pathways for auditory memory II: Information from rostral superior temporal gyrus to dorsolateral temporal pole and medial temporal cortex.

    Monica eMunoz-Lopez

    2015-05-01

    Full Text Available Auditory recognition memory in non-human primates differs from recognition memory in other sensory systems. Monkeys learn the rule for visual and tactile delayed matching-to-sample within a few sessions, and then show one-trial recognition memory lasting 10-20 minutes. In contrast, monkeys require hundreds of sessions to master the rule for auditory recognition, and then show retention lasting no longer than 30-40 seconds. Moreover, unlike the severe effects of rhinal lesions on visual memory, such lesions have no effect on the monkeys’ auditory memory performance. It is possible, therefore, that the anatomical pathways differ. Long-term visual recognition memory requires anatomical connections from the visual association area TE with areas 35 and 36 of the perirhinal cortex (PRC. We examined whether there is a similar anatomical route for auditory processing, or that poor auditory recognition memory may reflect the lack of such a pathway. Our hypothesis is that an auditory pathway for recognition memory originates in the higher order processing areas of the rostral superior temporal gyrus (rSTG, and then connects via the dorsolateral temporal pole to access the rhinal cortex of the medial temporal lobe. To test this, we placed retrograde (3% FB and 2% DY and anterograde (10% BDA 10,000 MW tracer injections in rSTG and the dorsolateral area 38DL of the temporal pole. Results showed that area 38DL receives dense projections from auditory association areas Ts1, TAa, TPO of the rSTG, from the rostral parabelt and, to a lesser extent, from areas Ts2-3 and PGa. In turn, area 38DL projects densely to area 35 of PRC, entorhinal cortex, and to areas TH/TF of the posterior parahippocampal cortex. Significantly, this projection avoids most of area 36r/c of PRC. This anatomical arrangement may contribute to our understanding of the poor auditory memory of rhesus monkeys.

  14. Anatomical pathways for auditory memory II: information from rostral superior temporal gyrus to dorsolateral temporal pole and medial temporal cortex.

    Muñoz-López, M; Insausti, R; Mohedano-Moriano, A; Mishkin, M; Saunders, R C

    2015-01-01

    Auditory recognition memory in non-human primates differs from recognition memory in other sensory systems. Monkeys learn the rule for visual and tactile delayed matching-to-sample within a few sessions, and then show one-trial recognition memory lasting 10-20 min. In contrast, monkeys require hundreds of sessions to master the rule for auditory recognition, and then show retention lasting no longer than 30-40 s. Moreover, unlike the severe effects of rhinal lesions on visual memory, such lesions have no effect on the monkeys' auditory memory performance. The anatomical pathways for auditory memory may differ from those in vision. Long-term visual recognition memory requires anatomical connections from the visual association area TE with areas 35 and 36 of the perirhinal cortex (PRC). We examined whether there is a similar anatomical route for auditory processing, or that poor auditory recognition memory may reflect the lack of such a pathway. Our hypothesis is that an auditory pathway for recognition memory originates in the higher order processing areas of the rostral superior temporal gyrus (rSTG), and then connects via the dorsolateral temporal pole to access the rhinal cortex of the medial temporal lobe. To test this, we placed retrograde (3% FB and 2% DY) and anterograde (10% BDA 10,000 mW) tracer injections in rSTG and the dorsolateral area 38 DL of the temporal pole. Results showed that area 38DL receives dense projections from auditory association areas Ts1, TAa, TPO of the rSTG, from the rostral parabelt and, to a lesser extent, from areas Ts2-3 and PGa. In turn, area 38DL projects densely to area 35 of PRC, entorhinal cortex (EC), and to areas TH/TF of the posterior parahippocampal cortex. Significantly, this projection avoids most of area 36r/c of PRC. This anatomical arrangement may contribute to our understanding of the poor auditory memory of rhesus monkeys.

  15. Quadriceps Tendon Autograft Medial Patellofemoral Ligament Reconstruction.

    Fink, Christian; Steensen, Robert; Gföller, Peter; Lawton, Robert

    2018-06-01

    Critically evaluate the published literature related to quadriceps tendon (QT) medial patellofemoral ligament (MPFL) reconstruction. Hamstring tendon (HT) MPFL reconstruction techniques have been shown to successfully restore patella stability, but complications including patella fracture are reported. Quadriceps tendon (QT) reconstruction techniques with an intact graft pedicle on the patella side have the advantage that patella bone tunnel drilling and fixation are no longer needed, reducing risk of patella fracture. Several QT MPFL reconstruction techniques, including minimally invasive surgical (MIS) approaches, have been published with promising clinical results and fewer complications than with HT techniques. Parallel laboratory studies have shown macroscopic anatomy and biomechanical properties of QT are more similar to native MPFL than hamstring (HS) HT, suggesting QT may more accurately restore native joint kinematics. Quadriceps tendon MPFL reconstruction, via both open and MIS techniques, have promising clinical results and offer valuable alternatives to HS grafts for primary and revision MPFL reconstruction in both children and adults.

  16. Inactivation of the Lateral Entorhinal Area Increases the Influence of Visual Cues on Hippocampal Place Cell Activity

    Kristin M. Scaplen

    2017-05-01

    Full Text Available The hippocampus is important for both navigation and associative learning. We previously showed that the hippocampus processes two-dimensional (2D landmarks and objects differently. Our findings suggested that landmarks are more likely to be used for orientation and navigation, whereas objects are more likely to be used for associative learning. The process by which cues are recognized as relevant for navigation or associative learning, however, is an open question. Presumably both spatial and nonspatial information are necessary for classifying cues as landmarks or objects. The lateral entorhinal area (LEA is a good candidate for participating in this process as it is implicated in the processing of three-dimensional (3D objects and object location. Because the LEA is one synapse upstream of the hippocampus and processes both spatial and nonspatial information, it is reasonable to hypothesize that the LEA modulates how the hippocampus uses 2D landmarks and objects. To test this hypothesis, we temporarily inactivated the LEA ipsilateral to the dorsal hippocampal recording site using fluorophore-conjugated muscimol (FCM 30 min prior to three foraging sessions in which either the 2D landmark or the 2D object was back-projected to the floor of an open field. Prior to the second session we rotated the 2D cue by 90°. Cues were returned to the original configuration for the third session. Compared to the Saline treatment, FCM inactivation increased the percentage of rotation responses to manipulations of the landmark cue, but had no effect on information content of place fields. In contrast, FCM inactivation increased information content of place fields in the presence of the object cue, but had no effect on rotation responses to the object cue. Thus, LEA inactivation increased the influence of visual cues on hippocampal activity, but the impact was qualitatively different for cues that are useful for navigation vs. cues that may not be useful for

  17. Stress fracture of the medial clavicle secondary to nervous tic

    Yamada, K.; Sugiura, H.; Suzuki, Y.

    2004-01-01

    The clinical and radiological characteristics of swelling in the region of the medial clavicle may suggest the presence of a neoplastic or inflammatory lesion. This report describes a 27-year-old man with a painful tumor-like lesion over the medial clavicle, which was found to be a stress fracture caused by a nervous tic resulting from mental stress. (orig.)

  18. Anatomical and magnetic resonance imaging study of the medial ...

    Introduction: The medial collateral ligament of the ankle joint also known as the deltoid ligament, is a multifascicular group of ligaments. It can be divided into a superficial and deep group of fibers originating from the medial malleolus to insert in the talus, calcaneus, and navicular bones. Wide variations have been noted in ...

  19. Medial shoe-ground pressure and specific running injuries

    Brund, René B K; Rasmussen, Sten; Nielsen, Rasmus O

    2017-01-01

    pressure. Foot balance was categorized into those which presented a higher lateral shod pressure (LP) than medial pressure, and those which presented a higher medial shod pressure (MP) than lateral pressure during the stance phase. A time-to-event model was used to compare differences in incidence between...

  20. Trochleoplasty and medial patellofemoral ligament reconstruction for recurrent patellar dislocation

    K Raghuveer Reddy

    2012-01-01

    Full Text Available We report a case of recurrent patellar dislocation with high-grade trochlear dysplasia which persisted despite two previous operations. We did a Dejour′s sulcus deepening trochleoplasty, medial patellofemoral ligament reconstruction, and lateral retinacular release. Trochleoplasty and medial patellofemoral ligament reconstruction is required in patients with high grade trochlear dysplasia.

  1. Low implant migration of the SIGMA® medial unicompartmental knee arthroplasty

    Koppens, Daan; Stilling, Maiken; Munk, Stig

    2017-01-01

    The purpose of this study was to evaluate implant migration of the fixed-bearing Sigma® medial unicompartmental knee arthroplasty (UKA). UKA is a regularly used treatment for patients with medial osteoarthritis (OA) of the knee. UKA has a higher revision rate than total knee arthroplasty. Implant...

  2. Intrinsic factors associated with medial tibial stress syndrome in ...

    Intrinsic factors associated with medial tibial stress syndrome in athletes: A large case-control study. ... Medial tibial stress syndrome (MTSS) is the most common lower-leg injury in athletes, and is thought to be caused by ... from 32 Countries:.

  3. Traumatic posterior root tear of the medial meniscus in patients with severe medial instability of the knee.

    Ra, Ho Jong; Ha, Jeong Ku; Jang, Ho Su; Kim, Jin Goo

    2015-10-01

    To examine the incidence and diagnostic rate of traumatic medial meniscus posterior root tear associated with severe medial instability and to evaluate the effectiveness of pullout repair. From 2007 to 2011, 51 patients who underwent operation due to multiple ligament injuries including medial collateral ligament rupture were reviewed retrospectively. The International Knee Documentation Committee (IKDC) subjective and Lysholm score were evaluated pre- and postoperatively. Postoperative magnetic resonance imaging (MRI) was performed, and if indicated, a second-look arthroscopic examination was conducted. Fourteen out of 51 patients were associated with severe medial instability. Seven patients were diagnosed with traumatic medial meniscus posterior root tear and underwent arthroscopic pullout repair. Five of them were missed at initial diagnosis using MRI. In seven patients, the mean Lysholm and IKDC subjective scores improved from 74.6 ± 10.3 and 47.6 ± 7.3 to 93.0 ± 3.7 and 91.6 ± 2.6, respectively. All showed complete healing of meniscus root on follow-up MRI and second-look arthroscopy. Medial meniscus posterior root tear may occur in severe medial instability from trauma. It is a common mistake that surgeons may not notice on the diagnosis of those injuries using MRI. Therefore, a high index of suspicion is required for the diagnosis of medial meniscus posterior root tear in this type of injuries. The traumatic medial meniscus posterior root tear could be healed successfully using arthroscopic pullout repair technique. The possibility of the medial meniscus posterior root tear should be considered in severe medial instability and arthroscopic pullout repair can be an effective option for treatment. Case series with no comparison group, Level IV.

  4. PSA-NCAM is Expressed in Immature, but not Recently Generated, Neurons in the Adult Cat Cerebral Cortex Layer II.

    Varea, Emilio; Belles, Maria; Vidueira, Sandra; Blasco-Ibáñez, José M; Crespo, Carlos; Pastor, Angel M; Nacher, Juan

    2011-01-01

    Neuronal production persists during adulthood in the dentate gyrus and the olfactory bulb, where substantial numbers of immature neurons can be found. These cells can also be found in the paleocortex layer II of adult rodents, but in this case most of them have been generated during embryogenesis. Recent reports have described the presence of similar cells, with a wider distribution, in the cerebral cortex of adult cats and primates and have suggested that they may develop into interneurons. The objective of this study is to verify this hypothesis and to explore the origin of these immature neurons in adult cats. We have analyzed their distribution using immunohistochemical analysis of the polysialylated form of the neural cell adhesion molecule (PSA-NCAM) and their phenotype using markers of mature neurons and different interneuronal populations. Additionally, we have explored the origin of these cells administering 5'bromodeoxyuridine (5'BrdU) during adulthood. Immature neurons were widely dispersed in the cerebral cortex layers II and upper III, being specially abundant in the piriform and entorhinal cortices, in the ventral portions of the frontal and temporoparietal lobes, but relatively scarce in dorsal regions, such as the primary visual areas. Only a small fraction of PSA-NCAM expressing cells in layer II expressed the mature neuronal marker NeuN and virtually none of them expressed calcium binding proteins or neuropeptides. By contrast, most, if not all of these cells expressed the transcription factor Tbr-1, specifically expressed by pallium-derived principal neurons, but not CAMKII, a marker of mature excitatory neurons. Absence of PSA-NCAM/5'BrdU colocalization suggests that, as in rats, these cells were not generated during adulthood. Together, these results indicate that immature neurons in the adult cat cerebral cortex layer II are not recently generated and that they may differentiate into principal neurons.

  5. PSA-NCAM is expressed in immature, but not recently generated, neurons in the adult cat cerebral cortex layer II

    Emilio eVarea

    2011-02-01

    Full Text Available Neuronal production persists during adulthood in the dentate gyrus and the olfactory bulb, where substantial numbers of immature neurons can be found. These cells can also be found in the paleocortex layer II of adult rodents, but in this case most of them have been generated during embryogenesis. Recent reports have described the presence of similar cells, with a wider distribution, in the cerebral cortex of adult cats and primates and have suggested that they may develop into interneurons. The objective of this study is to verify this hypothesis and to explore the origin of these immature neurons in adult cats. We have analysed their distribution using immunohistochemical analysis of the polysialylated form of the neural cell adhesion molecule (PSA-NCAM and their phenotype using markers of mature neurons and different interneuronal populations. Additionally, we have explored the origin of these cells administering 5'bromodeoxyuridine (5’BrdU during adulthood. Immature neurons were widely dispersed in the cerebral cortex layers II and upper III, being specially abundant in the piriform and entorhinal cortices, in the ventral portions of the frontal and temporoparietal lobes, but relatively scarce in dorsal regions, such as the primary visual areas. Only a small fraction of PSA-NCAM expressing cells in layer II expressed the mature neuronal marker NeuN and virtually none of them expressed calcium binding proteins or neuropeptides. By contrast, most, if not all of these cells expressed the transcription factor Tbr-1, specifically expressed by pallium-derived principal neurons, but not CAMKII, a marker of mature excitatory neurons. Absence of PSA-NCAM/5’BrdU co-localization suggests that, as in rats, these cells were not generated during adulthood. Together, these results indicate that immature neurons in the adult cat cerebral cortex layer II are not recently generated and that they may differentiate into principal neurons.

  6. The circuitry of olfactory projection neurons in the brain of the honeybee, Apis mellifera

    Hanna Zwaka

    2016-09-01

    Full Text Available In the honeybee brain, two prominent tracts - the medial and the lateral antennal lobe tract - project from the primary olfactory center, the antennal lobes, to the central brain, the mushroom bodies, and the protocerebral lobe. Intracellularly stained uniglomerular projection neurons (uPN were reconstructed, registered to the 3D honeybee standard brain atlas, and then used to derive the spatial properties and quantitative morphology of the neurons of both tracts. We evaluated putative synaptic contacts of projection neurons using confocal microscopy. Analysis of the patterns of axon terminals revealed a domain-like innervation within the mushroom body lip neuropil. Projection neurons of the lateral tract arborized more sparsely within the lips and exhibited fewer synaptic boutons, while medial tract neurons occupied broader regions in the mushroom body calyces and the protocerebral lobe. Our data show that uPNs from the medial and lateral tract innervate both the core and the cortex of the ipsilateral mushroom body lip but differ in their innervation patterns in these regions. In the mushroombody neuropil collar we found evidence for ALT boutons suggesting the collar as a multi modal input site including olfactory input similar to lip and basal ring. In addition, our data support the conclusion drawn in previous studies that reciprocal synapses exist between projection neurons, octopaminergic-, and GABAergic cells in the mushroom body calyces. For the first time, we found evidence for connections between both tracts within the antennal lobe.

  7. Centralization of extruded medial meniscus delays cartilage degeneration in rats.

    Ozeki, Nobutake; Muneta, Takeshi; Kawabata, Kenichi; Koga, Hideyuki; Nakagawa, Yusuke; Saito, Ryusuke; Udo, Mio; Yanagisawa, Katsuaki; Ohara, Toshiyuki; Mochizuki, Tomoyuki; Tsuji, Kunikazu; Saito, Tomoyuki; Sekiya, Ichiro

    2017-05-01

    Meniscus extrusion often observed in knee osteoarthritis has a strong correlation with the progression of cartilage degeneration and symptom in the patients. We recently reported a novel procedure "arthroscopic centralization" in which the capsule was sutured to the edge of the tibial plateau to reduce meniscus extrusion in the human knee. However, there is no animal model to study the efficacy of this procedure. The purposes of this study were [1] to establish a model of centralization for the extruded medial meniscus in a rat model; and [2] to investigate the chondroprotective effect of this procedure. Medial meniscus extrusion was induced by the release of the anterior synovial capsule and the transection of the meniscotibial ligament. Centralization was performed by the pulled-out suture technique. Alternatively, control rats had only the medial meniscus extrusion surgery. Medial meniscus extrusion was evaluated by micro-CT and macroscopic findings. Cartilage degeneration of the medial tibial plateau was evaluated macroscopically and histologically. By micro-CT analysis, the medial meniscus extrusion was significantly improved in the centralization group in comparison to the extrusion group throughout the study. Both macroscopically and histologically, the cartilage lesion of the medial tibial plateau was prevented in the centralization group but was apparent in the control group. We developed medial meniscus extrusion in a rat model, and centralization of the extruded medial meniscus by the pull-out suture technique improved the medial meniscus extrusion and delayed cartilage degeneration, though the effect was limited. Centralization is a promising treatment to prevent the progression of osteoarthritis. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Medial thalamic 18-FDG uptake following inescapable shock correlates with subsequent learned helpless behavior

    Mirrione, M.M.; Schulz, D.; Dewey, S.L.; Henn, F.A.

    2009-01-01

    in additional regions analyzed including the nucleus accumbens, caudate putamen, substantia nigra, and amygdala. These data suggest that medial thalamic 18-FDG uptake during inescapable shock may contribute to subsequent escape deficits, and are not confounded by shock effects per se, since all animals received the same treatment prior to scanning. We have previously explored 18-FDG differences following the escape test session which also showed hyperactivity in the medial thalamus of learned helpless animals compared to non-learned helpless, and included additional cortical-limbic changes. Given the neuroanatomical connections between the medial thalamus (and habenula) with the prefrontal cortex and monoaminergic brain stem, one possible speculation is that abnormal neuronal activity in these areas during stress may set in motion circuitry changes that correlate with learned helpless behavior.

  9. Role of the medial medullary reticular formation in relaying vestibular signals to the diaphragm and abdominal muscles

    Mori, R. L.; Bergsman, A. E.; Holmes, M. J.; Yates, B. J.

    2001-01-01

    Changes in posture can affect the resting length of respiratory muscles, requiring alterations in the activity of these muscles if ventilation is to be unaffected. Recent studies have shown that the vestibular system contributes to altering respiratory muscle activity during movement and changes in posture. Furthermore, anatomical studies have demonstrated that many bulbospinal neurons in the medial medullary reticular formation (MRF) provide inputs to phrenic and abdominal motoneurons; because this region of the reticular formation receives substantial vestibular and other movement-related input, it seems likely that medial medullary reticulospinal neurons could adjust the activity of respiratory motoneurons during postural alterations. The objective of the present study was to determine whether functional lesions of the MRF affect inspiratory and expiratory muscle responses to activation of the vestibular system. Lidocaine or muscimol injections into the MRF produced a large increase in diaphragm and abdominal muscle responses to vestibular stimulation. These vestibulo-respiratory responses were eliminated following subsequent chemical blockade of descending pathways in the lateral medulla. However, inactivation of pathways coursing through the lateral medulla eliminated excitatory, but not inhibitory, components of vestibulo-respiratory responses. The simplest explanation for these data is that MRF neurons that receive input from the vestibular nuclei make inhibitory connections with diaphragm and abdominal motoneurons, whereas a pathway that courses laterally in the caudal medulla provides excitatory vestibular inputs to these motoneurons.

  10. Activation of Supraoptic Oxytocin Neurons by Secretin Facilitates Social Recognition.

    Takayanagi, Yuki; Yoshida, Masahide; Takashima, Akihide; Takanami, Keiko; Yoshida, Shoma; Nishimori, Katsuhiko; Nishijima, Ichiko; Sakamoto, Hirotaka; Yamagata, Takanori; Onaka, Tatsushi

    2017-02-01

    Social recognition underlies social behavior in animals, and patients with psychiatric disorders associated with social deficits show abnormalities in social recognition. Oxytocin is implicated in social behavior and has received attention as an effective treatment for sociobehavioral deficits. Secretin receptor-deficient mice show deficits in social behavior. The relationship between oxytocin and secretin concerning social behavior remains to be determined. Expression of c-Fos in oxytocin neurons and release of oxytocin from their dendrites after secretin application were investigated. Social recognition was examined after intracerebroventricular or local injection of secretin, oxytocin, or an oxytocin receptor antagonist in rats, oxytocin receptor-deficient mice, and secretin receptor-deficient mice. Electron and light microscopic immunohistochemical analysis was also performed to determine whether oxytocin neurons extend their dendrites into the medial amygdala. Supraoptic oxytocin neurons expressed the secretin receptor. Secretin activated supraoptic oxytocin neurons and facilitated oxytocin release from dendrites. Secretin increased acquisition of social recognition in an oxytocin receptor-dependent manner. Local application of secretin into the supraoptic nucleus facilitated social recognition, and this facilitation was blocked by an oxytocin receptor antagonist injected into, but not outside of, the medial amygdala. In the medial amygdala, dendrite-like thick oxytocin processes were found to extend from the supraoptic nucleus. Furthermore, oxytocin treatment restored deficits of social recognition in secretin receptor-deficient mice. The results of our study demonstrate that secretin-induced dendritic oxytocin release from supraoptic neurons enhances social recognition. The newly defined secretin-oxytocin system may lead to a possible treatment for social deficits. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights

  11. Glutamate and GABA in vestibulo-sympathetic pathway neurons

    Gay R Holstein

    2016-02-01

    Full Text Available The vestibulo-sympathetic reflex actively modulates blood pressure during changes in posture. This reflex allows humans to stand up and quadrupeds to rear or climb without a precipitous decline in cerebral perfusion. The vestibulo-sympathetic reflex pathway conveys signals from the vestibular end organs to the caudal vestibular nuclei. These cells, in turn, project to pre-sympathetic neurons in the rostral and caudal ventrolateral medulla (RVLM and CVLM, respectively. The present study assessed glutamate- and GABA-related immunofluorescence associated with central vestibular neurons of the vestibulo-sympathetic reflex pathway in rats. Retrograde FluoroGold tract tracing was used to label vestibular neurons with projections to RVLM or CVLM, and sinusoidal galvanic vestibular stimulation was employed to activate these pathways. Central vestibular neurons of the vestibulo-sympathetic reflex were identified by co-localization of FluoroGold and cFos protein, which accumulates in some vestibular neurons following galvanic stimulation. Triple-label immunofluorescence was used to co-localize glutamate- or GABA- labeling in the identified vestibulo-sympathetic reflex pathway neurons. Most activated projection neurons displayed intense glutamate immunofluorescence, suggestive of glutamatergic neurotransmission. To support this, anterograde tracer was injected into the caudal vestibular nuclei. Vestibular axons and terminals in RVLM and CVLM co-localized the anterograde tracer and vesicular glutamate transporter-2 signals. Other retrogradely-labeled cFos-positive neurons displayed intense GABA immunofluorescence. Vestibulo-sympathetic reflex pathway neurons of both phenotypes were present in the caudal medial and spinal vestibular nuclei, and projected to both RVLM and CVLM. As a group, however, triple-labeled vestibular cells with intense glutamate immunofluorescence were located more rostrally in the vestibular nuclei than the GABAergic neurons. Only the

  12. Synaptic Modifications in the Medial Prefrontal Cortex in Susceptibility and Resilience to Stress

    Wang, Minghui; Perova, Zinaida; Arenkiel, Benjamin R.

    2014-01-01

    When facing stress, most individuals are resilient whereas others are prone to developing mood disorders. The brain mechanisms underlying such divergent behavioral responses remain unclear. Here we used the learned helplessness procedure in mice to examine the role of the medial prefrontal cortex (mPFC), a brain region highly implicated in both clinical and animal models of depression, in adaptive and maladaptive behavioral responses to stress. We found that uncontrollable and inescapable stress induced behavioral state-dependent changes in the excitatory synapses onto a subset of mPFC neurons: those that were activated during behavioral responses as indicated by their expression of the activity reporter c-Fos. Whereas synaptic potentiation was linked to learned helplessness, a depression-like behavior, synaptic weakening, was associated with resilience to stress. Notably, enhancing the activity of mPFC neurons using a chemical–genetic method was sufficient to convert the resilient behavior into helplessness. Our results provide direct evidence that mPFC dysfunction is linked to maladaptive behavioral responses to stress, and suggest that enhanced excitatory synaptic drive onto mPFC neurons may underlie the previously reported hyperactivity of this brain region in depression. PMID:24872553

  13. Regulation of GABA and benzodiazepine receptors following neurotoxin-induced striatal and medial forebrain bundle lesions

    Pan, H.S.I.

    1985-01-01

    GABA, a major inhibitory transmitter, is used by many projection neurons of the striatum. To investigate the role of GABA in striatal function, the GABA receptor complex was studied after lesions of the striatum or the nigrostriatal neurons. Quantitative receptor autoradiography using thaw-mounted tissue slices was developed for the study of GABA and benzodiazepine (BDZ) receptors. With the technique established, binding to GABA and BDZ receptors after unilateral striatal kainate lesions was examined. Subsequently, changes in GABA and BDZ receptors were studied following the destruction of dopaminergic nigrostriatal cells by unilateral 6-hydroxydopamine lesion of the medial forebrain bundle. In summary, quantitative receptor autoradiography allowed the detection of GABA and BDZ receptor changes in multiple small areas in each lesioned brain. This technique made it feasible to carry out kinetic saturation, and competition studies using less than 1 mg of tissue. The data suggest that dopamine is functionally inhibitory on striatopallidal neurons but is functionally excitatory on striatoentopeduncular and striatonigral cells which in turn inhibit the thalamus. This quantitative autoradiographic technique can be generalized to study other transmitter receptors and can be combined with 2-deoxyglucose uptake studies

  14. Modulation of Hippocampal Theta Oscillations and Spatial Memory by Relaxin-3 Neurons of the Nucleus Incertus

    Ma, Sherie; Olucha-Bordonau, Francisco E.; Hossain, M. Akhter; Lin, Feng; Kuei, Chester; Liu, Changlu; Wade, John D.; Sutton, Steven W.; Nunez, Angel; Gundlach, Andrew L.

    2009-01-01

    Hippocampal theta rhythm is thought to underlie learning and memory, and it is well established that "pacemaker" neurons in medial septum (MS) modulate theta activity. Recent studies in the rat demonstrated that brainstem-generated theta rhythm occurs through a multisynaptic pathway via the nucleus incertus (NI), which is the primary source of the…

  15. Lateral Orbitofrontal Cortical Modulation on the Medial Prefrontal Cortex-Amygdala Pathway: Differential Regulation of Intra-Amygdala GABAA and GABAB Receptors.

    Chang, Chun-Hui

    2017-07-01

    The basolateral complex of the amygdala receives inputs from neocortical areas, including the medial prefrontal cortex and lateral orbitofrontal cortex. Earlier studies have shown that lateral orbitofrontal cortex activation exerts an inhibitory gating on medial prefrontal cortex-amygdala information flow. Here we examined the individual role of GABAA and GABAB receptors in this process. In vivo extracellular single-unit recordings were done in anesthetized rats. We searched amygdala neurons that fire in response to medial prefrontal cortex activation, tested lateral orbitofrontal cortex gating at different delays (lateral orbitofrontal cortex-medial prefrontal cortex delays: 25, 50, 100, 250, 500, and 1000 milliseconds), and examined differential contribution of GABAA and GABAB receptors with iontophoresis. Relative to baseline, lateral orbitofrontal cortex stimulation exerted an inhibitory modulatory gating on the medial prefrontal cortex-amygdala pathway and was effective up to a long delay of 500 ms (long-delay latencies at 100, 250, and 500 milliseconds). Moreover, blockade of intra-amygdala GABAA receptors with bicuculline abolished the lateral orbitofrontal cortex inhibitory gating at both short- (25 milliseconds) and long-delay (100 milliseconds) intervals, while blockade of GABAB receptors with saclofen reversed the inhibitory gating at long delay (100 milliseconds) only. Among the majority of the neurons examined (8 of 9), inactivation of either GABAA or GABAB receptors during baseline did not change evoked probability per se, suggesting that local feed-forward inhibitory mechanism is pathway specific. Our results suggest that the effect of lateral orbitofrontal cortex inhibitory modulatory gating was effective up to 500 milliseconds and that intra-amygdala GABAA and GABAB receptors differentially modulate the short- and long-delay lateral orbitofrontal cortex inhibitory gating on the medial prefrontal cortex-amygdala pathway. © The Author 2017

  16. Fragmentation of the medial malleolus of dogs with and without tarsal osteochondrosis

    Newell, S.M.; Mahaffey, M.B.; Aron, D.N.

    1994-01-01

    Fragmentation of the medial malleolus of the tibia was found radiographically in 5 canine tarsi which did not have evidence of osteochondrosis of the medial trochlear ridge. An additional 5 tarsi were found where both medial malleolar fragmentation and osteochondrosis of the medial trochlear ridge were present. Radiographic evidence of degenerative joint disease was present in 3 of 5 dogs with medial malleolar fragmentation alone, and 5 of 5 dogs with medial malleolar fragmentation and medial trochlear ridge osteochondrosis. Eight of the 9 dogs were Rottweilers. Considering the sites of occurrence of osteochondrosis in other species, the authors propose that medial malleolar fragmentation could be secondary to osteochondrosis of the medial malleolus. Osteochondrosis of the medial malleolus has not been previously reported in dogs. Histological examination of the medial malleolar fragmentation was unavailable because surgery was not performed, therefore the hypothesis that the medial malleolar fragmentation is due to osteochondrosis was not proven

  17. Identifying specific prefrontal neurons that contribute to autism-associated abnormalities in physiology and social behavior

    Brumback, A C; Ellwood, I T; Kjaerby, C

    2017-01-01

    Functional imaging and gene expression studies both implicate the medial prefrontal cortex (mPFC), particularly deep-layer projection neurons, as a potential locus for autism pathology. Here, we explored how specific deep-layer prefrontal neurons contribute to abnormal physiology and behavior...... in mouse models of autism. First, we find that across three etiologically distinct models-in utero valproic acid (VPA) exposure, CNTNAP2 knockout and FMR1 knockout-layer 5 subcortically projecting (SC) neurons consistently exhibit reduced input resistance and action potential firing. To explore how altered...... SC neuron physiology might impact behavior, we took advantage of the fact that in deep layers of the mPFC, dopamine D2 receptors (D2Rs) are mainly expressed by SC neurons, and used D2-Cre mice to label D2R+ neurons for calcium imaging or optogenetics. We found that social exploration preferentially...

  18. Medial cortex activity, self-reflection and depression.

    Johnson, Marcia K; Nolen-Hoeksema, Susan; Mitchell, Karen J; Levin, Yael

    2009-12-01

    Using functional magnetic resonance imaging, we investigated neural activity associated with self-reflection in depressed [current major depressive episode (MDE)] and healthy control participants, focusing on medial cortex areas previously shown to be associated with self-reflection. Both the MDE and healthy control groups showed greater activity in anterior medial cortex (medial frontal gyrus, anterior cingulate gyrus) when cued to think about hopes and aspirations compared with duties and obligations, and greater activity in posterior medial cortex (precuneus, posterior cingulate) when cued to think about duties and obligations (Experiment 1). However, the MDE group showed less activity than controls in the same area of medial frontal cortex when self-referential cues were more ambiguous with respect to valence (Experiment 2), and less deactivation in a non-self-referential condition in both experiments. Furthermore, individual differences in rumination were positively correlated with activity in both anterior and posterior medial cortex during non-self-referential conditions. These results provide converging evidence for a dissociation of anterior and posterior medial cortex depending on the focus of self-relevant thought. They also provide neural evidence consistent with behavioral findings that depression is associated with disruption of positively valenced thoughts in response to ambiguous cues, and difficulty disengaging from self-reflection when it is appropriate to do so.

  19. Spatio-temporal specialization of GABAergic septo-hippocampal neurons for rhythmic network activity.

    Unal, Gunes; Crump, Michael G; Viney, Tim J; Éltes, Tímea; Katona, Linda; Klausberger, Thomas; Somogyi, Peter

    2018-03-03

    Medial septal GABAergic neurons of the basal forebrain innervate the hippocampus and related cortical areas, contributing to the coordination of network activity, such as theta oscillations and sharp wave-ripple events, via a preferential innervation of GABAergic interneurons. Individual medial septal neurons display diverse activity patterns, which may be related to their termination in different cortical areas and/or to the different types of innervated interneurons. To test these hypotheses, we extracellularly recorded and juxtacellularly labeled single medial septal neurons in anesthetized rats in vivo during hippocampal theta and ripple oscillations, traced their axons to distant cortical target areas, and analyzed their postsynaptic interneurons. Medial septal GABAergic neurons exhibiting different hippocampal theta phase preferences and/or sharp wave-ripple related activity terminated in restricted hippocampal regions, and selectively targeted a limited number of interneuron types, as established on the basis of molecular markers. We demonstrate the preferential innervation of bistratified cells in CA1 and of basket cells in CA3 by individual axons. One group of septal neurons was suppressed during sharp wave-ripples, maintained their firing rate across theta and non-theta network states and mainly fired along the descending phase of CA1 theta oscillations. In contrast, neurons that were active during sharp wave-ripples increased their firing significantly during "theta" compared to "non-theta" states, with most firing during the ascending phase of theta oscillations. These results demonstrate that specialized septal GABAergic neurons contribute to the coordination of network activity through parallel, target area- and cell type-selective projections to the hippocampus.

  20. Catenin-dependent cadherin function drives divisional segregation of spinal motor neurons.

    Bello, Sanusi M; Millo, Hadas; Rajebhosale, Manisha; Price, Stephen R

    2012-01-11

    Motor neurons that control limb movements are organized as a neuronal nucleus in the developing ventral horn of the spinal cord called the lateral motor column. Neuronal migration segregates motor neurons into distinct lateral and medial divisions within the lateral motor column that project axons to dorsal or ventral limb targets, respectively. This migratory phase is followed by an aggregation phase whereby motor neurons within a division that project to the same muscle cluster together. These later phases of motor neuron organization depend on limb-regulated differential cadherin expression within motor neurons. Initially, all motor neurons display the same cadherin expression profile, which coincides with the migratory phase of motor neuron segregation. Here, we show that this early, pan-motor neuron cadherin function drives the divisional segregation of spinal motor neurons in the chicken embryo by controlling motor neuron migration. We manipulated pan-motor neuron cadherin function through dissociation of cadherin binding to their intracellular partners. We found that of the major intracellular transducers of cadherin signaling, γ-catenin and α-catenin predominate in the lateral motor column. In vivo manipulations that uncouple cadherin-catenin binding disrupt divisional segregation via deficits in motor neuron migration. Additionally, reduction of the expression of cadherin-7, a cadherin predominantly expressed in motor neurons only during their migration, also perturbs divisional segregation. Our results show that γ-catenin-dependent cadherin function is required for spinal motor neuron migration and divisional segregation and suggest a prolonged role for cadherin expression in all phases of motor neuron organization.

  1. [Effects of stimulation of dorso-medial area of nucleus facialis on respiration related units in ventro-lateral region of nucleus tractus solitaris in rabbits].

    Gao, J X; Liu, L

    1990-10-01

    In urethane-anesthetized, vagotomized and paralyzed rabbits, effects of electrical stimulation of the dorso-medial area of the nucleus facialis (DMNF) on the respiration-related units (RRUs) in ventro-lateral region of nucleus tractus solitaris (VLNTS) were observed. The experimental results showed that during electrical stimulation of DMNF the majority of the inspiratory (I) neurons (64.4%) were increased in frequency and duration of discharge, some to a marked extent. During electrical stimulation of DMNF the expiratory neurons (35%) were decreased in their frequency and duration of discharge, some to a marked extent too. The responses of RRUs in ipsilateral and contralateral VLNTS to stimulation of DMNF was not statistically significant (P greater than 0.05). It is suggested that DMNF may have a facilitating effect on the inspiratory neurons and an inhibiting effect on the expiratory neurons in VLNTS.

  2. Episodic reinstatement in the medial temporal lobe.

    Staresina, Bernhard P; Henson, Richard N A; Kriegeskorte, Nikolaus; Alink, Arjen

    2012-12-12

    The essence of episodic memory is our ability to reexperience past events in great detail, even in the absence of external stimulus cues. Does the phenomenological reinstatement of past experiences go along with reinstating unique neural representations in the brain? And if so, how is this accomplished by the medial temporal lobe (MTL), a brain region intimately linked to episodic memory? Computational models suggest that such reinstatement (also termed "pattern completion") in cortical regions is mediated by the hippocampus, a key region of the MTL. Although recent functional magnetic resonance imaging studies demonstrated reinstatement of coarse item properties like stimulus category or task context across different brain regions, it has not yet been shown whether reinstatement can be observed at the level of individual, discrete events-arguably the defining feature of episodic memory-nor whether MTL structures like the hippocampus support this "true episodic" reinstatement. Here we show that neural activity patterns for unique word-scene combinations encountered during encoding are reinstated in human parahippocampal cortex (PhC) during retrieval. Critically, this reinstatement occurs when word-scene combinations are successfully recollected (even though the original scene is not visually presented) and does not encompass other stimulus domains (such as word-color associations). Finally, the degree of PhC reinstatement across retrieval events correlated with hippocampal activity, consistent with a role of the hippocampus in coordinating pattern completion in cortical regions.

  3. Early correlation of microglial activation with enhanced tumor necrosis factor-alpha and monocyte chemoattractant protein-1 expression specifically within the entorhinal cortex of triple transgenic Alzheimer's disease mice

    LaFerla Frank M

    2005-10-01

    Full Text Available Abstract Background Alzheimer's disease is a complex neurodegenerative disorder characterized pathologically by a temporal and spatial progression of beta-amyloid (Aβ deposition, neurofibrillary tangle formation, and synaptic degeneration. Inflammatory processes have been implicated in initiating and/or propagating AD-associated pathology within the brain, as inflammatory cytokine expression and other markers of inflammation are pronounced in individuals with AD pathology. The current study examines whether inflammatory processes are evident early in the disease process in the 3xTg-AD mouse model and if regional differences in inflammatory profiles exist. Methods Coronal brain sections were used to identify Aβ in 2, 3, and 6-month 3xTg-AD and non-transgenic control mice. Quantitative real-time RT-PCR was performed on microdissected entorhinal cortex and hippocampus tissue of 2, 3, and 6-month 3xTg-AD and non-transgenic mice. Microglial/macrophage cell numbers were quantified using unbiased stereology in 3xTg-AD and non-transgenic entorhinal cortex and hippocampus containing sections. Results We observed human Aβ deposition at 3 months in 3xTg-AD mice which is enhanced by 6 months of age. Interestingly, we observed a 14.8-fold up-regulation of TNF-α and 10.8-fold up-regulation of MCP-1 in the entorhinal cortex of 3xTg-AD mice but no change was detected over time in the hippocampus or in either region of non-transgenic mice. Additionally, this increase correlated with a specific increase in F4/80-positive microglia and macrophages in 3xTg-AD entorhinal cortex. Conclusion Our data provide evidence for early induction of inflammatory processes in a model that develops amyloid and neurofibrillary tangle pathology. Additionally, our results link inflammatory processes within the entorhinal cortex, which represents one of the earliest AD-affected brain regions.

  4. Appearance of medial plica of the knee on MR images

    Barton, J.; Pope, C.F.; Jokl, P.; Lynch, K.

    1989-01-01

    To assess the appearance of the abnormal plica, a rare but important cause of knee pain, the authors have reviewed 1.5-T MR images of 17 patients (mean age, 33 years) who had arthroscopically confirmed abnormal plicae involving the medial aspect of the patella pouch. Asymmetry in the medial wall of the patella pouch was seen in 17 of 17; 10 of 17 had a discernible edge, and four of 17 had sufficient fluid to surround the plica. When sufficient intraarticular fluid was present, the plica was easily detected. Asymmetry in the medial wall of the patella pouch was a helpful MR characteristic to account for unexplained knee pain

  5. Cartilage Delamination Flap Mimicking a Torn Medial Meniscus

    Gan Zhi-Wei Jonathan

    2016-01-01

    Full Text Available We report a case of a chondral delamination lesion due to medial parapatellar plica friction syndrome involving the medial femoral condyle. This mimicked a torn medial meniscus in clinical and radiological presentation. Arthroscopy revealed a chondral delamination flap, which was debrided. Diagnosis of chondral lesions in the knee can be challenging. Clinical examination and MRI have good accuracy for diagnosis and should be used in tandem. Early diagnosis and treatment of chondral lesions are important to prevent progression to early osteoarthritis.

  6. Modified tension band wiring of medial malleolar ankle fractures.

    Georgiadis, G M; White, D B

    1995-02-01

    Twenty-two displaced medial malleolar ankle fractures that were treated surgically using the modified tension band method of Cleak and Dawson were retrospectively reviewed at an average follow-up of 25 months. The technique involves the use of a screw to anchor a figure-of-eight wire. There were no malreductions and all fractures healed. Problems with the technique included technical errors with hardware placement, medial ankle pain, and asymptomatic wire migration. Despite this, modified tension band wiring remains an acceptable method for fixation of selected displaced medial malleolar fractures. It is especially suited for small fracture fragments and osteoporotic bone.

  7. Radiographic anatomy of the medial coronoid process of dogs

    Miyabayashi, T.; Takiguchi, M.; Schrader, S.C.; Biller, D.S.

    1995-01-01

    Mediolateral, flexed mediolateral, mediocaudal-laterocranial 15 degrees oblique (extended and supinated mediolateral), and craniolateral-caudomedial 20 degrees to 30 degrees oblique radiographs of 16 elbow-joint specimens were produced to study the radiographic anatomy of the medial coronoid process. On the mediolateral view, the cranial point of the coronoid process was at the level of the distal one-third of the radial epiphysis. Degree of superimposition of the proximal radius and ulna determined how the medial coronoid process was projected on the radiographs. Mediocaudal-laterocranial oblique radiographs best showed the cranial outline of the medial coronoid process with moderate superimposition of the proximal radius and ulna

  8. Descending brain neurons in larval lamprey: Spinal projection patterns and initiation of locomotion

    Shaw, Albert C.; Jackson, Adam W.; Holmes, Tamra; Thurman, Suzie; Davis, G.R.; McClellan, Andrew D.

    2010-01-01

    In larval lamprey, partial lesions were made in the rostral spinal cord to determine which spinal tracts are important for descending activation of locomotion and to identify descending brain neurons that project in these tracts. In whole animals and in vitro brain/spinal cord preparations, brain-initiated spinal locomotor activity was present when the lateral or intermediate spinal tracts were spared but usually was abolished when the medial tracts were spared. We previously showed that descending brain neurons are located in eleven cell groups, including reticulospinal (RS) neurons in the mesenecephalic reticular nucleus (MRN) as well as the anterior (ARRN), middle (MRRN), and posterior (PRRN) rhombencephalic reticular nuclei. Other descending brain neurons are located in the diencephalic (Di) as well as the anterolateral (ALV), dorsolateral (DLV), and posterolateral (PLV) vagal groups. In the present study, the Mauthner and auxillary Mauthner cells, most neurons in the Di, ALV, DLV, and PLV cell groups, and some neurons in the ARRN and PRRN had crossed descending axons. The majority of neurons projecting in medial spinal tracts included large identified Müller cells and neurons in the Di, MRN, ALV, and DLV. Axons of individual descending brain neurons usually did not switch spinal tracts, have branches in multiple tracts, or cross the midline within the rostral cord. Most neurons that projected in the lateral/intermediate spinal tracts were in the ARRN, MRRN, and PRRN. Thus, output neurons of the locomotor command system are distributed in several reticular nuclei, whose neurons project in relatively wide areas of the cord. PMID:20510243

  9. Charles Bonnet Syndrome in a Patient With Right Medial Occipital Lobe Infarction: Epileptic or Deafferentation Phenomenon?

    Kumral, Emre; Uluakay, Arzu; Dönmez, İlknur

    2015-07-01

    Charles Bonnet syndrome (CBS) is an uncommon disorder characterized by complex and recurrent visual hallucinations in patients with visual pathway pathologic defects. To describe a patient who experienced complex visual hallucinations following infarction in the right occipital lobe and epileptic seizure who was diagnosed as having CBS. A 65-year-old man presented acute ischemic stroke caused by artery to artery embolism involving the right occipital lobe. Following ischemic stroke, complex visual hallucinations in the left visual field not associated with loss of consciousness or delusion developed in the patient. Hallucinations persisted for >1 month and during hallucination, no electrographic seizures were recorded through 24 hours of videoelectroencephalographic monitoring. CBS may develop in a patient with occipital lobe infarction following an embolic event. CBS associated with medial occipital lobe infarction and epilepsy may coexist and reflects the abnormal functioning of an integrated neuronal network.

  10. Lack of spatial segregation in the representation of pheromones and kairomones in the mouse medial amygdala.

    Vinicius Miessler de Andrade Carvalho

    2015-08-01

    Full Text Available The nervous system is organized to detect, internally represent and process sensory information to generate appropriate behaviors. Despite the crucial importance of odors that elicit instinctive behaviors, such as pheromones and kairomones, their neural representation remains little characterized in the mammalian brain. Here we used expression of the immediate early gene product c-Fos as a marker of neuronal activity to find that a wide range of pheromones and kairomones produces activation in the medial nucleus of the amygdala, a brain area anatomically connected with the olfactory sensory organs. We see that activity in this nucleus depends on vomeronasal organ input, and that distinct vomeronasal stimuli activate a dispersed ensemble of cells, without any apparent spatial segregation. This activity pattern does not reflect the chemical category of the stimuli, their valence or the induced behaviors. These findings will help build a complete understanding of how odor information is processed in the brain to generate instinctive behaviors.

  11. The Modulation of Error Processing in the Medial Frontal Cortex by Transcranial Direct Current Stimulation

    Lisa Bellaïche

    2013-01-01

    Full Text Available Background. In order to prevent future errors, we constantly control our behavior for discrepancies between the expected (i.e., intended and the real action outcome and continuously adjust our behavior accordingly. Neurophysiological correlates of this action-monitoring process can be studied with event-related potentials (error-related negativity (ERN and error positivity (Pe originating from the medial prefrontal cortex (mPFC. Patients with neuropsychiatric diseases often show performance monitoring dysfunctions potentially caused by pathological changes of cortical excitability; therefore, a modulation of the underlying neuronal activity might be a valuable therapeutic tool. One technique which allows us to explore cortical modulation of neural networks is transcranial direct current stimulation (tDCS. Therefore, we tested the effect of medial-prefrontal tDCS on error-monitoring potentials in 48 healthy subjects randomly assigned to anodal, cathodal, or sham stimulation. Results. We found that cathodal stimulation attenuated Pe amplitudes compared to both anodal and sham stimulation, but no effect for the ERN. Conclusions. Our results indicate that cathodal tDCS over the mPFC results in an attenuated cortical excitability leading to decreased Pe amplitudes. We therefore conclude that tDCS has a neuromodulatory effect on error-monitoring systems suggesting a future approach to modify the sensitivity of corresponding neural networks in patients with action-monitoring deficits.

  12. Neuronal Migration Disorders

    ... Understanding Sleep The Life and Death of a Neuron Genes At Work In The Brain Order Publications ... birth defects caused by the abnormal migration of neurons in the developing brain and nervous system. In ...

  13. Motor Neuron Diseases

    ... and other neurodegenerative diseases to better understand the function of neurons and other support cells and identify candidate therapeutic ... and other neurodegenerative diseases to better understand the function of neurons and other support cells and identify candidate therapeutic ...

  14. Isolated partial tear and partial avulsion of the medial head of gastrocnemius tendon presenting as posterior medial knee pain

    Watura, Christopher; Ward, Anthony; Harries, William

    2010-01-01

    We present a case of medial head of gastrocnemius tendon tear. The type of injury widely reported in the literature is tear of the medial head of gastrocnemius muscle or ‘tennis leg’. We previously reported an isolated partial tear and longitudinal split of the tendon to the medial head of gastrocnemius at its musculotendinous junction. The case we now present has notable differences; the tear was interstitial and at the proximal (femoral attachment) part of the tendon, the patient’s symptoms...

  15. Segregated populations of hippocampal principal CA1 neurons mediating conditioning and extinction of contextual fear.

    Tronson, Natalie C; Schrick, Christina; Guzman, Yomayra F; Huh, Kyu Hwan; Srivastava, Deepak P; Penzes, Peter; Guedea, Anita L; Gao, Can; Radulovic, Jelena

    2009-03-18

    Learning processes mediating conditioning and extinction of contextual fear require activation of several key signaling pathways in the hippocampus. Principal hippocampal CA1 neurons respond to fear conditioning by a coordinated activation of multiple protein kinases and immediate early genes, such as cFos, enabling rapid and lasting consolidation of contextual fear memory. The extracellular signal-regulated kinase (Erk) additionally acts as a central mediator of fear extinction. It is not known however, whether these molecular events take place in overlapping or nonoverlapping neuronal populations. By using mouse models of conditioning and extinction of fear, we set out to determine the time course of cFos and Erk activity, their cellular overlap, and regulation by afferent cholinergic input from the medial septum. Analyses of cFos(+) and pErk(+) cells by immunofluorescence revealed predominant nuclear activation of either protein during conditioning and extinction of fear, respectively. Transgenic cFos-LacZ mice were further used to label in vivo Fos(+) hippocampal cells during conditioning followed by pErk immunostaining after extinction. The results showed that these signaling molecules were activated in segregated populations of hippocampal principal neurons. Furthermore, immunotoxin-induced lesions of medial septal neurons, providing cholinergic input into the hippocampus, selectively abolished Erk activation and extinction of fear without affecting cFos responses and conditioning. These results demonstrate that extinction mechanisms based on Erk signaling involve a specific population of CA1 principal neurons distinctively regulated by afferent cholinergic input from the medial septum.

  16. Isolated medial meniscal tear in a Border Collie.

    Ridge, P A

    2006-01-01

    A three-year-old, female Border Collie was successfully treated for an isolated, torn, medial meniscus by arthroscopic meniscal tear resection. The dog returned to agility competition without recurrence of lameness.

  17. Medial tibial stress syndrome: a critical review.

    Moen, Maarten H; Tol, Johannes L; Weir, Adam; Steunebrink, Miriam; De Winter, Theodorus C

    2009-01-01

    Medial tibial stress syndrome (MTSS) is one of the most common leg injuries in athletes and soldiers. The incidence of MTSS is reported as being between 4% and 35% in military personnel and athletes. The name given to this condition refers to pain on the posteromedial tibial border during exercise, with pain on palpation of the tibia over a length of at least 5 cm. Histological studies fail to provide evidence that MTSS is caused by periostitis as a result of traction. It is caused by bony resorption that outpaces bone formation of the tibial cortex. Evidence for this overloaded adaptation of the cortex is found in several studies describing MTSS findings on bone scan, magnetic resonance imaging (MRI), high-resolution computed tomography (CT) scan and dual energy x-ray absorptiometry. The diagnosis is made based on physical examination, although only one study has been conducted on this subject. Additional imaging such as bone, CT and MRI scans has been well studied but is of limited value. The prevalence of abnormal findings in asymptomatic subjects means that results should be interpreted with caution. Excessive pronation of the foot while standing and female sex were found to be intrinsic risk factors in multiple prospective studies. Other intrinsic risk factors found in single prospective studies are higher body mass index, greater internal and external ranges of hip motion, and calf girth. Previous history of MTSS was shown to be an extrinsic risk factor. The treatment of MTSS has been examined in three randomized controlled studies. In these studies rest is equal to any intervention. The use of neoprene or semi-rigid orthotics may help prevent MTSS, as evidenced by two large prospective studies.

  18. Kainate receptors in the rat hippocampus: A distribution and time course of changes in response to unilateral lesions of the entorhinal cortex

    Ulas, J.; Monaghan, D.T.; Cotman, C.W.

    1990-01-01

    The response of kainate receptors to deafferentation and subsequent reinnervation following unilateral entorhinal cortex lesions was studied in the rat hippocampus using quantitative in vitro autoradiography. The binding levels of [3H]kainic acid (KA) and changes in the distribution of KA sites were investigated in the dentate gyrus molecular layer (ML) and in various terminal zones in the CA1 field at 1, 3, 7, 14, 21, 30, and 60 d postlesion. The data from both the ipsilateral and contralateral hippocampus were compared with those from unoperated controls. The first changes in KA receptor distribution were observed 21 d postlesion when the dense band of KA receptors occupying the inner one-third of the ML expanded into the denervated outer two-thirds of the ipsilateral ML. The spreading of the KA receptor field into previously unoccupied zones continued 30 and 60 d postlesion. At these time points, the zone enriched in [3H]KA binding sites became significantly (on average 50%) wider than in unoperated controls. No changes were observed in either the distribution or binding levels in other hippocampal areas or in the contralateral hippocampus at any studied time point. Saturation analysis of binding in the ipsilateral ML 60 d postlesion revealed changes in the maximum number of receptor sites (Bmax) without changes in KA receptor affinity (Kd). The data suggest that the elevation of the [3H]KA binding in the outer two-thirds of the ML reflects an increase in the number of both low and high affinity receptor binding sites. The pattern of KA receptor redistribution was similar to the well-characterized pattern of sprouting of commissural/associational systems from the inner one-third into the outer two-thirds of the ML after entorhinal lesions

  19. The medial collateral ligament of the elbow joint

    Floris, S; Olsen, Bo Sanderhoff; Dalstra, Michel

    1998-01-01

    Eighteen osteoligamentous elbow joint specimens were included in a study of the medial collateral ligament complex (MCL). The morphologic characteristics of the MCL were examined, and three-dimensional kinematic measurements were taken after selective ligament dissections were performed. On morph......Eighteen osteoligamentous elbow joint specimens were included in a study of the medial collateral ligament complex (MCL). The morphologic characteristics of the MCL were examined, and three-dimensional kinematic measurements were taken after selective ligament dissections were performed...

  20. Selective alterations of neurons and circuits related to early memory loss in Alzheimer's disease

    María eLlorens-Martín

    2014-05-01

    Full Text Available A progressive loss of episodic memory is a well-known clinical symptom that characterizes Alzheimer’s disease (AD. The beginning of this loss of memory has been associated with the very early, pathological accumulation of tau and neuronal degeneration observed in the entorhinal cortex (EC. Tau-related pathology is thought to then spread progressively to the hippocampal formation and other brain areas as the disease progresses. The major cortical afferent source of the hippocampus and dentate gyrus is the EC through the perforant pathway. At least two main circuits participate in the connection between EC and the hippocampus; one originating in layer II and the other in layer III of the EC giving rise to the classical trisynaptic (ECII→dentate gyrus→CA3→CA1 and monosynaptic (ECIII→CA1 circuits. Thus, the study of the early pathological changes in these circuits is of great interest. In this review, we will discuss mainly the alterations of the granule cell neurons of the dentate gyrus and the atrophy of CA1 pyramidal neurons that occur in AD in relation to the possible differential alterations of these two main circuits.

  1. Neuronal Activation After Prolonged Immobilization: Do the Same or Different Neurons Respond to a Novel Stressor?

    Marín-Blasco, Ignacio; Muñoz-Abellán, Cristina; Andero, Raül; Nadal, Roser; Armario, Antonio

    2018-04-01

    Despite extensive research on the impact of emotional stressors on brain function using immediate-early genes (e.g., c-fos), there are still important questions that remain unanswered such as the reason for the progressive decline of c-fos expression in response to prolonged stress and the neuronal populations activated by different stressors. This study tackles these 2 questions by evaluating c-fos expression in response to 2 different emotional stressors applied sequentially, and performing a fluorescent double labeling of c-Fos protein and c-fos mRNA on stress-related brain areas. Results were complemented with the assessment of the hypothalamic-pituitary-adrenal axis activation. We showed that the progressive decline of c-fos expression could be related to 2 differing mechanisms involving either transcriptional repression or changes in stimulatory inputs. Moreover, the neuronal populations that respond to the different stressors appear to be predominantly separated in high-level processing areas (e.g., medial prefrontal cortex). However, in low-hierarchy areas (e.g., paraventricular nucleus of the hypothalamus) neuronal populations appear to respond unspecifically. The data suggest that the distinct physiological and behavioral consequences of emotional stressors, and their implication in the development of psychopathologies, are likely to be closely associated with neuronal populations specifically activated by each stressor.

  2. Feed-forward and feedback projections of midbrain reticular formation neurons in the cat

    Eddie ePerkins

    2014-01-01

    Full Text Available Gaze changes involving the eyes and head are orchestrated by brainstem gaze centers found within the superior colliculus (SC, paramedian pontine reticular formation (PPRF, and medullary reticular formation (MdRF. The mesencephalic reticular formation (MRF also plays a role in gaze. It receives a major input from the ipsilateral SC and contains cells that fire in relation to gaze changes. Moreover, it provides a feedback projection to the SC and feed-forward projections to the PPRF and MdRF. We sought to determine whether these MRF feedback and feed-forward projections originate from the same or different neuronal populations by utilizing paired fluorescent retrograde tracers in cats. Specifically, we tested: 1. whether MRF neurons that control eye movements form a single population by injecting the SC and PPRF with different tracers, and 2. whether MRF neurons that control head movements form a single population by injecting the SC and MdRF with different tracers. In neither case were double labeled neurons observed, indicating that feedback and feed-forward projections originate from separate MRF populations. In both cases, the labeled reticulotectal and reticuloreticular neurons were distributed bilaterally in the MRF. However, neurons projecting to the MdRF were generally constrained to the medial half of the MRF, while those projecting to the PPRF, like MRF reticulotectal neurons, were spread throughout the mediolateral axis. Thus, the medial MRF may be specialized for control of head movements, with control of eye movements being more widespread in this structure.

  3. Learning an operant conditioning task differentially induces gliogenesis in the medial prefrontal cortex and neurogenesis in the hippocampus.

    Maximiliano Rapanelli

    Full Text Available Circuit modification associated with learning and memory involves multiple events, including the addition and remotion of newborn cells trough adulthood. Adult neurogenesis and gliogenesis were mainly described in models of voluntary exercise, enriched environments, spatial learning and memory task; nevertheless, it is unknown whether it is a common mechanism among different learning paradigms, like reward dependent tasks. Therefore, we evaluated cell proliferation, neurogenesis, astrogliogenesis, survival and neuronal maturation in the medial prefrontal cortex (mPFC and the hippocampus (HIPP during learning an operant conditioning task. This was performed by using endogenous markers of cell proliferation, and a bromodeoxiuridine (BrdU injection schedule in two different phases of learning. Learning an operant conditioning is divided in two phases: a first phase when animals were considered incompletely trained (IT, animals that were learning the task when they performed between 50% and 65% of the responses, and a second phase when animals were considered trained (Tr, animals that completely learned the task when they reached 100% of the responses with a latency time lower than 5 seconds. We found that learning an operant conditioning task promoted cell proliferation in both phases of learning in the mPFC and HIPP. Additionally, the results presented showed that astrogliogenesis was induced in the medial prefrontal cortex (mPFC in both phases, however, the first phase promoted survival of these new born astrocytes. On the other hand, an increased number of new born immature neurons was observed in the HIPP only in the first phase of learning, whereas, decreased values were observed in the second phase. Finally, we found that neuronal maturation was induced only during the first phase. This study shows for the first time that learning a reward-dependent task, like the operant conditioning, promotes neurogenesis, astrogliogenesis, survival and

  4. Differential roles for medial prefrontal and medial temporal cortices in schema-dependent encoding: From congruent to incongruent

    Kesteren, M.T.R. van; Beul, S.F.; Takashima, A.; Henson, R.N.; Ruiter, D.J.

    2013-01-01

    Information that is congruent with prior knowledge is generally remembered better than incongruent information. This effect of congruency on memory has been attributed to a facilitatory influence of activated schemas on memory encoding and consolidation processes, and hypothesised to reflect a shift between processing in medial temporal lobes (MTL) towards processing in medial prefrontal cortex (mPFC). To investigate this shift, we used functional magnetic resonance imaging (fMRI) to compare ...

  5. [SPECIFIC DIAGNOSTIC SIGNIFICANCE OF "RIPPLE SIGN" OF MEDIAL FEMORAL CONDYLE UNDER ARTHROSCOPE IN MEDIAL LONGITUDINAL MENISCAL TEARS].

    Ren Shiyou; Sun, Limang; Chen, Guofei; Jiang, Changqing; Zhang, Xintao; Zhang Wentao

    2015-01-01

    To investigate the reliability of the "ripple sign" on the upper surface of the medial femoral condyle in the diagnosis of medial longitudinal meniscal tears under arthroscope. Between June 2013 and June 2014, 56 patients with knee injuries were included. There were 35 males and 21 females with an average age of 22.2 years (range, 12-38 years). The causes of injury were sports in 40 cases, falling in 10 cases, and traffic accident in 6 cases. The injury was located at the left knee in 22 cases and at the right knee in 34 cases. The disease duration was 10-40 days (mean, 20.2 days). Of 56 patients, 15 cases had simple medial meniscal injury; 41 cases had combined injuries, including anterior cruciate ligament injury in 38 cases, posterior cruciate ligament injury in 2 cases, and patellar dislocation in 1 case. The "ripple sign" was observed under arthroscope before operation. Repair of medial meniscal injury and reconstruction of cruciate ligament were performed. The positive "ripple sign" was seen under arthroscope in all patients, who were diagnosed to have longitudinal meniscal tears, including 23 cases of mild "ripple sign" , 28 cases of moderate "ripple sign", and 5 cases of severe "ripple sign". The "ripple sign" on the upper surface of the medial femoral condyle is a reliable diagnostic evidence of medial longitudinal meniscal tears.

  6. TCDD alters medial epithelial cell differentiation during palatogenesis

    Abbott, B.D.; Birnbaum, L.S.

    1989-01-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a widely distributed, persistent environmental contaminant that is teratogenic in mice, where it induces hydronephrosis and cleft palate. The incidence of clefting has been shown to be dose dependent after exposure on either gestation Day (GD) 10 or 12, although the embryo is more susceptible on GD 12. TCDD-exposed palatal shelves meet but do not fuse, and programmed cell death of the medial epithelial cells is inhibited. The mechanism of action through which TCDD alters the program of medial cell development has not been examined in earlier studies, and it is not known whether the mechanism is the same regardless of the dose or developmental stage of exposure. In this study, C57BL/6N mice, a strain sensitive to TCDD, were dosed orally on GD 10 or 12 with 0, 6, 12, 24, or 30 micrograms/kg body wt, in 10 ml corn oil/kg. Embryonic palatal shelves were examined on GD 14, 15, or 16. The degree of palatal closure, epithelial surface morphology, and cellular ultrastructure, the incorporation of [3H]TdR, the expression of EGF receptors, and the binding of 125I-EGF were assessed. After exposure on GD 10 or 12, TCDD altered the differentiation pathway of the medial epithelial cells. The palatal shelves were of normal size and overall morphology, but fusion of the medial epithelia of the opposing shelves did not occur. TCDD prevented programmed cell death of the medial peridermal cells. The expression of EGF receptors by medial cells continued through Day 16 and the receptors were able to bind ligand. The medial cells differentiated into a stratified, squamous, keratinizing epithelium. The shift in phenotype to an oral-like epithelium occurred after exposure on either GD 10 or 12. At the lower dose (6 micrograms/kg), fewer cleft palates were produced, but those shelves which did respond had a fully expressed shift in differentiation

  7. Major contribution of the medial amygdala to hypertension in BPH/2J genetically hypertensive mice.

    Jackson, Kristy L; Palma-Rigo, Kesia; Nguyen-Huu, Thu-Phuc; Davern, Pamela J; Head, Geoffrey A

    2014-04-01

    BPH/2J mice are recognized as a neurogenic model of hypertension primarily based on overactivity of the sympathetic nervous system and greater neuronal activity in key autonomic cardiovascular regulatory brain regions. The medial amygdala (MeAm) is a forebrain region that integrates the autonomic response to stress and is the only region found to have greater Fos during the night and daytime in BPH/2J compared with BPN/3J mice. To determine the contribution of the MeAm to hypertension, the effect of neuronal ablation on blood pressure (BP) was assessed in BPH/2J (n=7) and normotensive BPN/3J mice (n=7). Mice were preimplanted with radiotelemetry devices to measure 24-hour BP and cardiovascular responses to stress, before and 1 to 3 weeks after bilateral lesions of the MeAm. Baseline BP was 121±4 mm Hg in BPH/2J and 101±2 mm Hg in BPN/3J mice (PstrainBPH/2J mice (PlesionBPH/2J mice was similar during both day and night, suggesting that the MeAm has tonic effects on BP, but the pressor response to stress was maintained in both strains. Midfrequency BP power was attenuated in both strains (PlesionBPH/2J mice (PlesionBPH/2J mice, which is independent of its role in stress reactivity or circadian BP influences.

  8. Age-related synaptic loss of the medial olivocochlear efferent innervation

    Schrader Angela

    2010-11-01

    Full Text Available Abstract Age-related functional decline of the nervous system is consistently observed, though cellular and molecular events responsible for this decline remain largely unknown. One of the most prevalent age-related functional declines is age-related hearing loss (presbycusis, a major cause of which is the loss of outer hair cells (OHCs and spiral ganglion neurons. Previous studies have also identified an age-related functional decline in the medial olivocochlear (MOC efferent system prior to age-related loss of OHCs. The present study evaluated the hypothesis that this functional decline of the MOC efferent system is due to age-related synaptic loss of the efferent innervation of the OHCs. To this end, we used a recently-identified transgenic mouse line in which the expression of yellow fluorescent protein (YFP, under the control of neuron-specific elements from the thy1 gene, permits the visualization of the synaptic connections between MOC efferent fibers and OHCs. In this model, there was a dramatic synaptic loss between the MOC efferent fibers and the OHCs in older mice. However, age-related loss of efferent synapses was independent of OHC status. These data demonstrate for the first time that age-related loss of efferent synapses may contribute to the functional decline of the MOC efferent system and that this synaptic loss is not necessary for age-related loss of OHCs.

  9. Long-term potentiation and depression after unilateral labyrinthectomy in the medial vestibular nucleus of rats.

    Pettorossi, Vito Enrico; Dutia, Mayank; Frondaroli, Adele; Dieni, Cristina; Grassi, Silvarosa

    2003-01-01

    We previously demonstrated in rat brainstem slices that high-frequency stimulation (HFS) of the vestibular afferents induces long-term potentiation (LTP) in the ventral part (Vp) of the medial vestibular nucleus (MVN) and long-term depression (LTD) in the dorsal part (Dp). Both LTP and LTD depend on N-methyl-D-aspartate receptor activation, which increases synaptic efficacy; however, in the Dp, LTP reverses to LTD because of the activation of gamma-aminobutyric acid-ergic neurons. Here we show that the probability of inducing long-term effects in the MVN of rat brainstem slices is altered after unilateral labyrinthectomy (UL). In fact, LTP occurs less frequently in the ventral contra-lesional side compared with sham-operated rats. In the dorsal ipsi-lesional side, LTD is reduced and LTP enhanced, while the opposite occurs in the dorsal contra-lesional side. These changes in synaptic plasticity may be useful for re-balancing the tonic discharge of the MVN of the two sides during vestibular compensation, and for enhancing the dynamic responses of the deafferented MVN neurons in the long term.

  10. Influence of testosterone on synaptic transmission in the rat medial vestibular nuclei: estrogenic and androgenic effects.

    Grassi, S; Frondaroli, A; Di Mauro, M; Pettorossi, V E

    2010-12-15

    In brainstem slices of young male rat, we investigated the influence of the neuroactive steroid testosterone (T) on the synaptic responses by analyzing the field potential evoked in the medial vestibular nucleus (MVN) by vestibular afferent stimulation. T induced three distinct and independent long-term synaptic changes: fast long-lasting potentiation (fLP), slow long-lasting potentiation (sLP) and long-lasting depression (LD). The fLP was mediated by 17β-estradiol (E(2)) since it was abolished by blocking the estrogen receptors (ERs) or the enzyme converting T to E(2). Conversely, sLP and LD were mediated by 5α-dihydrotestosterone (DHT) since they were prevented by blocking the androgen receptors (ARs) or the enzyme converting T to DHT. Therefore, the synaptic effects of T were mediated by its androgenic or estrogenic metabolites. The pathways leading to estrogenic and androgenic conversion of T might be co-localized since, the occurrence of fLP under block of androgenic pathway, and that of sLP and LD under estrogenic block, were higher than those observed without blocks. In case of co-localization, the effect on synaptic transmission should depend on the prevailing enzymatic activity. We conclude that circulating and neuronal T can remarkably influence synaptic responses of the vestibular neurons in different and opposite ways, depending on its conversion to estrogenic or androgenic metabolites. Copyright © 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. Signalling properties of identified deep cerebellar nuclear neurons related to eye and head movements in the alert cat.

    Gruart, A; Delgado-García, J M

    1994-07-01

    1. The spike activity of deep cerebellar nuclear neurons was recorded in the alert cat during spontaneous and during vestibularly and visually induced eye movements. 2. Neurons were classified according to their location in the nuclei, their antidromic activation from projection sites, their sensitivity to eye position and velocity during spontaneous eye movements, and their responses to vestibular and optokinetic stimuli. 3. Type I EPV (eye position and velocity) neurons were located mainly in the posterior part of the fastigial nucleus and activated antidromically almost exclusively from the medial longitudinal fasciculus close to the oculomotor complex. These neurons, reported here for the first time, increased their firing rate during saccades and eye fixations towards the contralateral hemifield. Their position sensitivity to eye fixations in the horizontal plane was 5.3 +/- 2.6 spikes s-1 deg-1 (mean +/- S.D.). Eye velocity sensitivity during horizontal saccades was 0.71 +/- 0.52 spikes s-1 deg-1 s-1. Variability of their firing rate during a given eye fixation was higher than that shown by abducens motoneurons. 4. Type I EPV neurons increased their firing rate during ipsilateral head rotations at 0.5 Hz with a mean phase lead over eye position of 95.3 +/- 9.5 deg. They were also activated by contralateral optokinetic stimulation at 30 deg s-1. Their sensitivity to eye position and velocity in the horizontal plane during vestibular and optokinetic stimuli yielded values similar to those obtained for spontaneous eye movements. 5. Type II neurons were located in both fastigial and dentate nuclei and were activated antidromically from the restiform body, the medial longitudinal fasciculus close to the oculomotor complex, the red nucleus and the pontine nuclei. Type II neurons were not related to spontaneous eye movements. These neurons increased their firing rate in response to contralateral head rotation and during ipsilateral optokinetic stimulation, and

  12. Repeated Blockade of NMDA Receptors during Adolescence Impairs Reversal Learning and Disrupts GABAergic Interneurons in Rat Medial Prefrontal Cortex

    Jitao eLi

    2016-03-01

    Full Text Available Adolescence is of particular significance to schizophrenia, since psychosis onset typically occurs in this critical period. Based on the N-methyl-D-aspartate (NMDA receptor hypofunction hypothesis of schizophrenia, in this study, we investigated whether and how repeated NMDA receptor blockade during adolescence would affect GABAergic interneurons in rat medial prefrontal cortex (mPFC and mPFC-mediated cognitive functions. Specifically, adolescent rats were subjected to intraperitoneal administration of MK-801 (0.1, 0.2, 0.4 mg/kg, a non-competitive NMDA receptor antagonist, for 14 days and then tested for reference memory and reversal learning in the water maze. The density of parvabumin (PV-, calbindin (CB- and calretinin (CR-positive neurons in mPFC were analyzed at either 24 hours or 7 days after drug cessation. We found that MK-801 treatment delayed reversal learning in the water maze without affecting initial acquisition. Strikingly, MK-801 treatment also significantly reduced the density of PV+ and CB+ neurons, and this effect persisted for 7 days after drug cessation at the dose of 0.2 mg/kg. We further demonstrated that the reduction in PV+ and CB+ neuron densities was ascribed to a downregulation of the expression levels of PV and CB, but not to neuronal death. These results parallel the behavioral and neuropathological changes of schizophrenia and provide evidence that adolescent NMDA receptors antagonism offers a useful tool for unraveling the etiology of the disease.

  13. Synaptic plasticity in the medial vestibular nuclei: role of glutamate receptors and retrograde messengers in rat brainstem slices.

    Grassi, S; Pettorossi, V E

    2001-08-01

    The analysis of cellular-molecular events mediating synaptic plasticity within vestibular nuclei is an attempt to explain the mechanisms underlying vestibular plasticity phenomena. The present review is meant to illustrate the main results, obtained in vitro, on the mechanisms underlying long-term changes in synaptic strength within the medial vestibular nuclei. The synaptic plasticity phenomena taking place at the level of vestibular nuclei could be useful for adapting and consolidating the efficacy of vestibular neuron responsiveness to environmental requirements, as during visuo-vestibular recalibration and vestibular compensation. Following a general introduction on the most salient features of vestibular compensation and visuo-vestibular adaptation, which are two plastic events involving neuronal circuitry within the medial vestibular nuclei, the second and third sections describe the results from rat brainstem slice studies, demonstrating the possibility to induce long-term potentiation and depression in the medial vestibular nuclei, following high frequency stimulation of the primary vestibular afferents. In particular the mechanisms sustaining the induction and expression of vestibular long-term potentiation and depression, such as the role of various glutamate receptors and retrograde messengers have been described. The relevant role of the interaction between the platelet-activating factor, acting as a retrograde messenger, and the presynaptic metabotropic glutamate receptors, in determining the full expression of vestibular long-term potentiation is also underlined. In addition, the mechanisms involved in vestibular long-term potentiation have been compared with those leading to long-term potentiation in the hippocampus to emphasize the most significant differences emerging from vestibular studies. The fourth part, describes recent results demonstrating the essential role of nitric oxide, another retrograde messenger, in the induction of vestibular

  14. Epidemiology of lateral and medial epicondylitis in a military population.

    Wolf, Jennifer Moriatis; Mountcastle, Sally; Burks, Robert; Sturdivant, Rodney X; Owens, Brett D

    2010-05-01

    To determine the epidemiology of lateral and medial epicondylitis in the U.S. military. The Defense Medical Epidemiology Database was queried for ICD-9 codes 726.32 (lateral epicondylitis) and 726.33 (medial epicondylitis) for the years 1998-2006. Multivariate Poisson regression was used to calculate incidence rates (IR) and rate ratios (RR) among demographic groups. The IRs for lateral and medial epicondylitis were 2.98 and 0.81 per 1000 person-years. For lateral epicondylitis, women had a higher incidence (RR = 1.22, 95% CI 1.19-1.26). In both groups, analysis by age showed higher incidence in the > or = 40-year-old group. White compared with black race was a risk factor for both lateral (RR = 1.68, 95% CI, 1.63-1.74) and medial epicondylitis (RR = 1.11, 95% CI 1.05-1.17). Female gender was a risk factor for lateral but not medial epicondylitis. Age greater than 40 and white race were significant risk factors for both conditions.

  15. [Mirror movement due to the medial frontal lobe lesion].

    Takahashi, N; Kawamura, M; Hirayama, K

    1995-01-01

    We reported a case with acquired mirror movement in upper limbs due to the lesion of right medial frontal lobe including supplementary motor area, and also discussed a possible mechanism underlying it. A 59-year-old right-handed woman developed left hemiparesis caused by cerebral hemorrhage in the right frontoparietal lobe, on April 5, 1981. She had right hemiparesis and right hemianopsia due to cerebral hemorrhage in the left parieto-occipital lobe, 13 days later. As the patient was recovering from paresis, mirror movement appeared on upper limbs. The features of the mirror movement of this case are summarized as follows: (1) it appeared when using both proximal and distal region of upper limbs; (2) it appeared on left upper limb when the patient intended to move right upper limb or on right upper limb when intended to move left upper limb, while it appeared predominantly in the former; and (3) it was more remarkably found in habitual movement using gesture and pantomimic movement for the use of objects, and it was found in lower degree when actual object was used or when the patient tried to imitate the gesture of the examiner. The lesions in MRI were found in medial region of right frontal lobe (supplementary motor area, medial region of motor area, and cingulate gyrus), right medial parietal lobe, posterior region of right occipital lobe, and medial regions of left parietal and occipital lobes. There was no apparent abnormality in corpus callosum.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Morphometry of medial gaps of human brain artery branches.

    Canham, Peter B; Finlay, Helen M

    2004-05-01

    The bifurcation regions of the major human cerebral arteries are vulnerable to the formation of saccular aneurysms. A consistent feature of these bifurcations is a discontinuity of the tunica media at the apex of the flow divider. The objective was to measure the 3-dimensional geometry of these medial gaps or "medial defects." Nineteen bifurcations and 2 junctions of human cerebral arteries branches (from 4 male and 2 female subjects) were formalin-fixed at physiological pressure and processed for longitudinal serial sectioning. The apex and adjacent regions were examined and measurements were made from high-magnification photomicrographs, or projection microscope images, of the gap dimensions at multiple levels through the bifurcation. Plots were made of the width of the media as a function of distance from the apex. The media at each edge of the medial gap widened over a short distance, reaching the full width of the media of the contiguous daughter vessel. Medial gap dimensions were compared with the planar angle of the bifurcation, and a strong negative correlation was found, ie, the acute angled branches have the more prominent medial gaps. A discontinuity of the media at the apex was seen in all the bifurcations examined and was also found in the junction regions of brain arteries. We determined that the gap width is continuous with well-defined dimensions throughout its length and average length-to-width ratio of 6.9. The gaps were generally centered on the prominence of the apical ridge.

  17. Bilateral Vocal Fold Medialization: A Treatment for Abductor Spasmodic Dysphonia.

    Dewan, Karuna; Berke, Gerald S

    2017-11-10

    Abductor spasmodic dysphonia, a difficult-to-treat laryngologic condition, is characterized by spasms causing the vocal folds to remain abducted despite efforts to adduct them during phonation. Traditional treatment for abductor spasmodic dysphonia-botulinum toxin injection into the posterior cricoarytenoid muscle-can be both technically challenging and uncomfortable. Due to the difficulty of needle placement, it is often unsuccessful. The purpose of this investigation is to present a previously undescribed treatment for abductor spasmodic dysphonia-bilateral vocal fold medialization. A retrospective case review of all cases of abductor spasmodic dysphonia treated in a tertiary care laryngology practice with bilateral vocal fold medialization over a 10-year period was performed. The Voice Handicap Index and the Voice-Related Quality of Life surveys were utilized to assess patient satisfaction with voice outcome. Six patients with abductor spasmodic dysphonia treated with bilateral vocal fold medialization were identified. Disease severity ranged from mild to severe. All six patients reported statistically significant improvement in nearly all Voice Handicap Index and Voice-Related Quality of Life parameters. They reported fewer voice breaks and greater ease of communication. Results were noted immediately and symptoms continue to be well controlled for many years following medialization. Bilateral vocal fold medialization is a safe and effective treatment for abductor spasmodic dysphonia. It is performed under local anesthesia and provides phonation improvement in the short and long term. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  18. Ultrastructure of medial rectus muscles in patients with intermittent exotropia.

    Yao, J; Wang, X; Ren, H; Liu, G; Lu, P

    2016-01-01

    PURPOSE To study the ultrastructure of the medial rectus in patients with intermittent exotropia at different ages.PATIENTS AND METHODS The medial recti were harvested surgically from 20 patients with intermittent exotropia. Patients were divided into adolescent (age18 years, n=10). The normal control group included five patients without strabismus and undergoing eye enucleation. Hematoxylin and eosin staining and transmission electron microscopy were used to visualize the medial recti. Western blot was used to determine the levels of myosin and actin.RESULTS Varying fiber thickness, atrophy, and misalignment of the medial recti were visualized under optical microscope in patients with exotropia. Electron microscopy revealed sarcomere destruction, myofilament disintegration, unclear dark and light bands, collagen proliferation, and fibrosis. The adolescent group manifested significantly higher levels of myosin and actin than the adult group (Pstronger contraction of the medial recti compared with older patients. Our findings suggest that childhood was the appropriate time for surgery as the benefit of the intervention was better than in adulthood.

  19. An in vitro analysis of medial structures and a medial soft tissue reconstruction in a constrained condylar total knee arthroplasty.

    Athwal, Kiron K; El Daou, Hadi; Inderhaug, Eivind; Manning, William; Davies, Andrew J; Deehan, David J; Amis, Andrew A

    2017-08-01

    The aim of this study was to quantify the medial soft tissue contributions to stability following constrained condylar (CC) total knee arthroplasty (TKA) and determine whether a medial reconstruction could restore stability to a soft tissue-deficient, CC-TKA knee. Eight cadaveric knees were mounted in a robotic system and tested at 0°, 30°, 60°, and 90° of flexion with ±50 N anterior-posterior force, ±8 Nm varus-valgus, and ±5 Nm internal-external torque. The deep and superficial medial collateral ligaments (dMCL, sMCL) and posteromedial capsule (PMC) were transected and their relative contributions to stabilising the applied loads were quantified. After complete medial soft tissue transection, a reconstruction using a semitendinosus tendon graft was performed, and the effect on kinematic behaviour under equivocal conditions was measured. In the CC-TKA knee, the sMCL was the major medial restraint in anterior drawer, internal-external, and valgus rotation. No significant differences were found between the rotational laxities of the reconstructed knee to the pre-deficient state for the arc of motion examined. The relative contribution of the reconstruction was higher in valgus rotation at 60° than the sMCL; otherwise, the contribution of the reconstruction was similar to that of the sMCL. There is contention whether a CC-TKA can function with medial deficiency or more constraint is required. This work has shown that a CC-TKA may not provide enough stability with an absent sMCL. However, in such cases, combining the CC-TKA with a medial soft tissue reconstruction may be considered as an alternative to a hinged implant.

  20. Separate groups of dopamine neurons innervate caudate head and tail encoding flexible and stable value memories

    Hyoung F Kim

    2014-10-01

    Full Text Available Dopamine neurons are thought to be critical for reward value-based learning by modifying synaptic transmissions in the striatum. Yet, different regions of the striatum seem to guide different kinds of learning. Do dopamine neurons contribute to the regional differences of the striatum in learning? As a first step to answer this question, we examined whether the head and tail of the caudate nucleus of the monkey (Macaca mulatta receive inputs from the same or different dopamine neurons. We chose these caudate regions because we previously showed that caudate head neurons learn values of visual objects quickly and flexibly, whereas caudate tail neurons learn object values slowly but retain them stably. Here we confirmed the functional difference by recording single neuronal activity while the monkey performed the flexible and stable value tasks, and then injected retrograde tracers in the functional domains of caudate head and tail. The projecting dopaminergic neurons were identified using tyrosine hydroxylase immunohistochemistry. We found that two groups of dopamine neurons in the substantia nigra pars compacta project largely separately to the caudate head and tail. These groups of dopamine neurons were mostly separated topographically: head-projecting neurons were located in the rostral-ventral-medial region, while tail-projecting neurons were located in the caudal-dorsal-lateral regions of the substantia nigra. Furthermore, they showed different morphological features: tail-projecting neurons were larger and less circular than head-projecting neurons. Our data raise the possibility that different groups of dopamine neurons selectively guide learning of flexible (short-term and stable (long-term memories of object values.

  1. Typing of MRI in medial meniscus degeneration in relation to radiological grade in medial compartmental osteoarthritis of the knee

    Nagata, Nobuhito; Koshino, Tomihisa; Saito, Tomoyuki; Sakai, Naotaka; Takagi, Toshitaka; Takeuchi, Ryohei [Yokohama City Univ. (Japan). School of Medicine

    1998-10-01

    The advancement of degeneration of 50 medial menisci in patients with medial compartmental osteoarthritic knees (OA) were evaluated with magnetic resonance imaging (MRI). The average age of the patients was 66.6 years (range, 39 to 86). According to a radiographical grading system, 6 knees were classified as Grade 1, 24 as Grade 2, 16 as Grade 3, and 4 as Grade 4. The extent and the location of a high intensity region in MRI were observed in 3 parts of the meniscus, namely, the anterior, middle and posterior part. In Grade 1, no high intensity region was observed in 3 knees, and a high intensity region was observed only in the posterior part in 2 knees. A high intensity region was observed from the medial to the posterior part in 13 knees, and only in the posterior part in 10 knees of Grade 2; from the medial to the posterior part in 12 knees, and only in the posterior part in 3 knees of Grade 3, and from the anterior to the posterior part in 2 knees of Grade 4. The shape of the high intensity region in the medial meniscus was classified into 5 types, as follows: Type 1, there was no high intensity region; Type 2, the high intensity region was observed to be restricted within the meniscus; Type 3, the high intensity region resembled a horizontal tear; Type 4, the high intensity region was observed as all of the medial joint space without a marginal area; Type 5, the high intensity region was observed as all of the medial joint space. In Grade 1, 3 knees were classified as Type 1, and 2 knees as Type 2; in Grade 2, 7 knees as Type 2, and 13 knees as Type 3, and 4 knees into Type 4; in Grade 3, 6 knees as Type 3, and 7 knees as Type 4; and in Grade 4, 2 knees as Type 4, and 2 knees as Type 5. These findings might suggest that the degeneration of medial meniscus in the medial type of OA was accelerated by mechanical stress due to varus deformity. (author)

  2. Typing of MRI in medial meniscus degeneration in relation to radiological grade in medial compartmental osteoarthritis of the knee

    Nagata, Nobuhito; Koshino, Tomihisa; Saito, Tomoyuki; Sakai, Naotaka; Takagi, Toshitaka; Takeuchi, Ryohei

    1998-01-01

    The advancement of degeneration of 50 medial menisci in patients with medial compartmental osteoarthritic knees (OA) were evaluated with magnetic resonance imaging (MRI). The average age of the patients was 66.6 years (range, 39 to 86). According to a radiographical grading system, 6 knees were classified as Grade 1, 24 as Grade 2, 16 as Grade 3, and 4 as Grade 4. The extent and the location of a high intensity region in MRI were observed in 3 parts of the meniscus, namely, the anterior, middle and posterior part. In Grade 1, no high intensity region was observed in 3 knees, and a high intensity region was observed only in the posterior part in 2 knees. A high intensity region was observed from the medial to the posterior part in 13 knees, and only in the posterior part in 10 knees of Grade 2; from the medial to the posterior part in 12 knees, and only in the posterior part in 3 knees of Grade 3, and from the anterior to the posterior part in 2 knees of Grade 4. The shape of the high intensity region in the medial meniscus was classified into 5 types, as follows: Type 1, there was no high intensity region; Type 2, the high intensity region was observed to be restricted within the meniscus; Type 3, the high intensity region resembled a horizontal tear; Type 4, the high intensity region was observed as all of the medial joint space without a marginal area; Type 5, the high intensity region was observed as all of the medial joint space. In Grade 1, 3 knees were classified as Type 1, and 2 knees as Type 2; in Grade 2, 7 knees as Type 2, and 13 knees as Type 3, and 4 knees into Type 4; in Grade 3, 6 knees as Type 3, and 7 knees as Type 4; and in Grade 4, 2 knees as Type 4, and 2 knees as Type 5. These findings might suggest that the degeneration of medial meniscus in the medial type of OA was accelerated by mechanical stress due to varus deformity. (author)

  3. Subquadratic medial-axis approximation in $\\mathbb{R}^3$

    Christian Scheffer

    2015-09-01

    Full Text Available We present an algorithm that approximates the medial axis of a smooth manifold in $\\mathbb{R}^3$ which is given by a sufficiently dense point sample. The resulting, non-discrete approximation is shown to converge to the medial axis as the sampling density approaches infinity. While all previous algorithms guaranteeing convergence have a running time quadratic in the size $n$ of the point sample, we achieve a running time of at most $\\mathcal{O}(n\\log^3 n$. While there is no subquadratic upper bound on the output complexity of previous algorithms for non-discrete medial axis approximation, the output of our algorithm is guaranteed to be of linear size.

  4. A subset of dopamine neurons signals reward for odour memory in Drosophila.

    Liu, Chang; Plaçais, Pierre-Yves; Yamagata, Nobuhiro; Pfeiffer, Barret D; Aso, Yoshinori; Friedrich, Anja B; Siwanowicz, Igor; Rubin, Gerald M; Preat, Thomas; Tanimoto, Hiromu

    2012-08-23

    Animals approach stimuli that predict a pleasant outcome. After the paired presentation of an odour and a reward, Drosophila melanogaster can develop a conditioned approach towards that odour. Despite recent advances in understanding the neural circuits for associative memory and appetitive motivation, the cellular mechanisms for reward processing in the fly brain are unknown. Here we show that a group of dopamine neurons in the protocerebral anterior medial (PAM) cluster signals sugar reward by transient activation and inactivation of target neurons in intact behaving flies. These dopamine neurons are selectively required for the reinforcing property of, but not a reflexive response to, the sugar stimulus. In vivo calcium imaging revealed that these neurons are activated by sugar ingestion and the activation is increased on starvation. The output sites of the PAM neurons are mainly localized to the medial lobes of the mushroom bodies (MBs), where appetitive olfactory associative memory is formed. We therefore propose that the PAM cluster neurons endow a positive predictive value to the odour in the MBs. Dopamine in insects is known to mediate aversive reinforcement signals. Our results highlight the cellular specificity underlying the various roles of dopamine and the importance of spatially segregated local circuits within the MBs.

  5. A unique combination of anatomy and physiology in cells of the rat paralaminar thalamic nuclei adjacent to the medial geniculate body

    Smith, Philip H.; Bartlett, Edward L.; Kowalkowski, Anna

    2010-01-01

    The medial geniculate body (MGB) has three major subdivisions - ventral (MGV), dorsal (MGD) and medial (MGM). MGM is linked with paralaminar nuclei that are situated medial and ventral to MGV/MGD. Paralaminar nuclei have unique inputs and outputs when compared with MGV and MGD and have been linked to circuitry underlying some important functional roles. We recorded intracellularly from cells in the paralaminar nuclei in vitro. We found that they possess an unusual combination of anatomical and physiological features when compared to those reported for “standard” thalamic neurons seen in the MGV/MGD and elsewhere in the thalamus. Compared to MGV/MGD neurons, anatomically, 1) paralaminar cell dendrites can be long, branch sparingly and encompass a much larger area. 2) their dendrites may be smooth but can have well defined spines and 3) their axons can have collaterals that branch locally within the same or nearby paralaminar nuclei. When compared to MGV/MGD neurons physiologically 1) their spikes are larger in amplitude and can be shorter in duration and 2) can have dual afterhyperpolarizations with fast and slow components and 3) they can have a reduction or complete absence of the low threshold, voltage-sensitive calcium conductance that reduces or eliminates the voltage-dependent burst response. We also recorded from cells in the parafascicular nucleus, a nucleus of the posterior intralaminar nuclear group, because they have unusual anatomical features that are similar to some of our paralaminar cells. Like the labeled paralaminar cells, parafascicular cells had physiological features distinguishing them from typical thalamic neurons. PMID:16566009

  6. Efficiency of Medial Rectus Advancement Surgery in Consecutive Exotropia

    Kemal Yar

    2015-12-01

    Full Text Available Purpose: To evaluate the efficiency of medial rectus advancement surgery in consecutive exotropia. Material and Methods: The study group consisted of 20 cases, 10 male, 10 female, who were diagnosed as consecutive exotropia and underwent surgery between 2008-2013 at Cukurova University Medical Faculty Ophthalmology Department. Records of the patients were investigated retrospectively. We evaluated best corrected visual acuity, existence of ambliopia, postoperative duration following the first surgery and applied surgical procedures. Postoperative deviation lower than 10 PD were assesed as successful. Mean follow up period was 29,8 +/- 21,36 (8-80 months, patients with inadequate follow up period were dismissed from the study group. Results: We only applied bilateral medial rectus advancement surgery to 6 and unilateral medial rectus advancement surgery to 5 patients and obtained intended surgical result in these 11 cases. The other patients underwent lateral rectus recession or/and medial rectus resection operations inorder to reach projected deviation degrees. Deviation was found to be 46,4+/-9,24 (40-70 PD in cases who only underwent advancement surgery and was 65,56 +/- 18,78 (40-90 PD in cases who underwent additional surgical procedure. 16 (%80 of the cases had hypermetropi various dioptries and 7 (%35 had ambliopia. Discussion: Consecutive exotropia can appear years after surgery and is an important late period complication. In this study achievement of %55 success with medial rectus advancement surgery indicates that this is a preferable procedure. But in wide angle deviations additional lateral rectus recession or/and medial rectus resection operations can be applied inorder to reach intended adjustment. Accurrate prediction of the propotion of advancement surgery and adjustment is not always possible because of intensive fybrosis in operated muscles and enviroment tissue. [Cukurova Med J 2015; 40(4.000: 707-713

  7. Magnetic resonance imaging findings in patients with medial epicondylitis

    Kijowski, Richard; Smet, Arthur A. De [University of Wisconsin Hospital, Department of Radiology, Madison (United States)

    2005-04-01

    To compare the MR imaging findings of 13 patients with clinically diagnosed medial epicondylitis with the MR imaging findings of 26 patients of similar age with no clinical evidence of medial epicondylitis. The study group consisted of 13 patients with clinically diagnosed medial epicondylitis. The control group consisted of 26 patients of similar age with no clinical evidence of medial epicondylitis. The medical records and MR imaging findings of these patients were retrospectively reviewed by two fellowship-trained musculoskeletal radiologists. Eleven of the 13 patients in the study group had thickening and increased signal intensity of the common flexor tendon on both T1-weighted and T2-weighted images. The remaining two patients in the study group had soft tissue edema around a normal-appearing common flexor tendon. Twenty-one of the 26 patients in the control group had a normal-appearing common flexor tendon on MR imaging. Three patients in the control group had a thickened common flexor tendon which was of intermediate signal intensity on T1-weighted images but of uniform low signal intensity on T2-weighted images. Two patients in the control group had a thickened common flexor tendon which was of intermediate signal intensity on both T1-weighted and T2-weighted images. None of the patients in the control group had soft tissue edema around the common flexor tendon. MR imaging findings of patients with clinically diagnosed medial epicondylitis included thickening and increased T1 and T2 signal intensity of the common flexor tendon and soft tissue edema around the common flexor tendon. The presence of intermediate to high T2 signal intensity or high T2 signal intensity within the common flexor tendon and the presence of paratendinous soft tissue edema were the most specific findings of medial epicondylitis on MR imaging. (orig.)

  8. Medial circumflex femoral artery flap for ischial pressure sore

    Palanivelu S

    2009-01-01

    Full Text Available A new axial pattern flap based on the terminal branches of the medial circumflex femoral artery is described for coverage of ischial pressure sore. Based on the terminal branches of the transverse branch of medial circumflex femoral artery, which exit through the gap between the quadratus femoris muscle above and the upper border of adductor magnus muscle below, this fascio cutaneous flap is much smaller than the posterior thigh flap but extremely useful to cover ischeal pressure sores. The skin redundancy below the gluteal fold allows a primary closure of the donor defect. It can also be used in combination with biceps femoris muscle flap.

  9. Communication between radial nerve and medial cutaneous nerve of forearm

    R R Marathe

    2010-01-01

    Full Text Available Radial nerve is usually a branch of the posterior cord of the brachial plexus. It innervates triceps, anconeous, brachialis, brachioradialis, extensor carpi radialis longus muscles and gives the posterior cutaneous nerve of the arm, lower lateral cutaneous nerve of arm, posterior cutaneous nerve of forearm; without exhibiting any communication with the medial cutaneous nerve of forearm or any other nerve. We report communication between the radial nerve and medial cutaneous nerve of forearm on the left side in a 58-year-old male cadaver. The right sided structures were found to be normal. Neurosurgeons should keep such variations in mind while performing the surgeries of axilla and upper arm.

  10. Medial vs lateral unicompartmental knee arthrroplasty: clinical results.

    Fiocchi, Andrea; Condello, Vincenzo; Madonna, Vincenzo; Bonomo, M; Zorzi, Claudio

    2017-06-07

    Unicompartmental Knee Arthroplasty (UKA) is a common procedure for the management of isolated osteoarthritis. UKA is considered less invasive compared to total knee arthroplasty, associated with less operative time, blood loss and faster recovery. Isolated lateral osteoarthritis is a relatively uncommon clinical problem, with an incidence about ten times lower than the medial compartment. In fact, lateral UKA are about 5-10% of the total amount of the UKAs. In addition, it's historically considered more challenging and with poorer results. The aim of this paper was to compare current indications, modes of failure, survivorship and clinical results of medial and lateral UKA by a narrative review of the latest literature.

  11. Medial patellofemoral ligament: Research progress in anatomy and injury imaging

    Zheng Lei; Zhao Bin

    2013-01-01

    The medial patellofemoral ligament (MPFL) is considered as the most important soft tissue restraint providing medial stability of the patellofemoral joint. During patellar dislocation, the MPFL is subjected to severe stretching forces, resulting in injuries of the ligament in the most patients. With the development of medical imaging technology, a variety of non-invasive diagnostic imaging methods have been becoming important means in diagnosis of MPFL injury. In this paper, MPFL anatomy, the applications of medical imaging technology in diagnosis of MPFL injury and the distributions of MPFL injury site were reviewed. (authors)

  12. Subpopulations of somatostatin-immunoreactive nonpyramidal neurons in the amygdala and adjacent external capsule project to the basal forebrain: evidence for the existence of GABAergic projection neurons in the cortical nuclei and basolateral nuclear complex

    Alexander J. McDonald

    2012-07-01

    Full Text Available The hippocampus and amygdala are key structures of the limbic system whose connections include reciprocal interactions with the basal forebrain (BF. The hippocampus receives both cholinergic and GABAergic afferents from the medial septal area of the BF. Hippocampal projections back to the medial septal area arise from nonpyramidal GABAergic neurons that express somatostatin (SOM, calbindin (CB, and neuropeptide Y (NPY. Recent experiments in our lab have demonstrated that the basolateral amygdala, like the hippocampus, receives both cholinergic and GABAergic afferents from the BF. These projections arise from neurons in the substantia innominata and ventral pallidum. It remained to be determined, however, whether the amygdala has projections back to the BF that arise from GABAergic nonpyramidal neurons. This question was investigated in the present study by combining Fluorogold (FG retrograde tract tracing with immunohistochemistry for GABAergic nonpyramidal cell markers, including SOM, CB, NPY, parvalbumin, calretinin, and glutamic acid decarboxylase (GAD. FG injections into the basal forebrain produced a diffuse array of retrogradely labeled neurons in many nuclei of the amygdala. The great majority of amygdalar FG+ neurons did not express nonpyramidal cell markers. However, a subpopulation of nonpyramidal SOM+ neurons, termed long range nonpyramidal neurons (LRNP neurons, in the external capsule, basolateral amygdala, and cortical and medial amygdalar nuclei were FG+. About one-third of the SOM+ LRNP neurons were CB+ or NPY+, and one-half were GAD+. It remains to be determined if these inhibitory amygdalar projections to the BF, like those from the hippocampus, are important for regulating synchronous oscillations in the amygdalar-BF network.

  13. Kappe neurons, a novel population of olfactory sensory neurons

    Ahuja, Gaurav; Nia, Shahrzad Bozorg; Zapilko, Veronika; Shiriagin, Vladimir; Kowatschew, Daniel; Oka, Yuichiro; Korsching, Sigrun I.

    2014-01-01

    Perception of olfactory stimuli is mediated by distinct populations of olfactory sensory neurons, each with a characteristic set of morphological as well as functional parameters. Beyond two large populations of ciliated and microvillous neurons, a third population, crypt neurons, has been identified in teleost and cartilaginous fishes. We report here a novel, fourth olfactory sensory neuron population in zebrafish, which we named kappe neurons for their characteristic shape. Kappe neurons ar...

  14. Specific responses of human hippocampal neurons are associated with better memory.

    Suthana, Nanthia A; Parikshak, Neelroop N; Ekstrom, Arne D; Ison, Matias J; Knowlton, Barbara J; Bookheimer, Susan Y; Fried, Itzhak

    2015-08-18

    A population of human hippocampal neurons has shown responses to individual concepts (e.g., Jennifer Aniston) that generalize to different instances of the concept. However, recordings from the rodent hippocampus suggest an important function of these neurons is their ability to discriminate overlapping representations, or pattern separate, a process that may facilitate discrimination of similar events for successful memory. In the current study, we explored whether human hippocampal neurons can also demonstrate the ability to discriminate between overlapping representations and whether this selectivity could be directly related to memory performance. We show that among medial temporal lobe (MTL) neurons, certain populations of neurons are selective for a previously studied (target) image in that they show a significant decrease in firing rate to very similar (lure) images. We found that a greater proportion of these neurons can be found in the hippocampus compared with other MTL regions, and that memory for individual items is correlated to the degree of selectivity of hippocampal neurons responsive to those items. Moreover, a greater proportion of hippocampal neurons showed selective firing for target images in good compared with poor performers, with overall memory performance correlated with hippocampal selectivity. In contrast, selectivity in other MTL regions was not associated with memory performance. These findings show that a substantial proportion of human hippocampal neurons encode specific memories that support the discrimination of overlapping representations. These results also provide previously unidentified evidence consistent with a unique role of the human hippocampus in orthogonalization of representations in declarative memory.

  15. Neuronal plasticity and multisensory integration in filial imprinting.

    Town, Stephen Michael; McCabe, Brian John

    2011-03-10

    Many organisms sample their environment through multiple sensory systems and the integration of multisensory information enhances learning. However, the mechanisms underlying multisensory memory formation and their similarity to unisensory mechanisms remain unclear. Filial imprinting is one example in which experience is multisensory, and the mechanisms of unisensory neuronal plasticity are well established. We investigated the storage of audiovisual information through experience by comparing the activity of neurons in the intermediate and medial mesopallium of imprinted and naïve domestic chicks (Gallus gallus domesticus) in response to an audiovisual imprinting stimulus and novel object and their auditory and visual components. We find that imprinting enhanced the mean response magnitude of neurons to unisensory but not multisensory stimuli. Furthermore, imprinting enhanced responses to incongruent audiovisual stimuli comprised of mismatched auditory and visual components. Our results suggest that the effects of imprinting on the unisensory and multisensory responsiveness of IMM neurons differ and that IMM neurons may function to detect unexpected deviations from the audiovisual imprinting stimulus.

  16. Spike-Timing of Orbitofrontal Neurons Is Synchronized With Breathing.

    Kőszeghy, Áron; Lasztóczi, Bálint; Forro, Thomas; Klausberger, Thomas

    2018-01-01

    The orbitofrontal cortex (OFC) has been implicated in a multiplicity of complex brain functions, including representations of expected outcome properties, post-decision confidence, momentary food-reward values, complex flavors and odors. As breathing rhythm has an influence on odor processing at primary olfactory areas, we tested the hypothesis that it may also influence neuronal activity in the OFC, a prefrontal area involved also in higher order processing of odors. We recorded spike timing of orbitofrontal neurons as well as local field potentials (LFPs) in awake, head-fixed mice, together with the breathing rhythm. We observed that a large majority of orbitofrontal neurons showed robust phase-coupling to breathing during immobility and running. The phase coupling of action potentials to breathing was significantly stronger in orbitofrontal neurons compared to cells in the medial prefrontal cortex. The characteristic synchronization of orbitofrontal neurons with breathing might provide a temporal framework for multi-variable processing of olfactory, gustatory and reward-value relationships.

  17. Spike-Timing of Orbitofrontal Neurons Is Synchronized With Breathing

    Áron Kőszeghy

    2018-04-01

    Full Text Available The orbitofrontal cortex (OFC has been implicated in a multiplicity of complex brain functions, including representations of expected outcome properties, post-decision confidence, momentary food-reward values, complex flavors and odors. As breathing rhythm has an influence on odor processing at primary olfactory areas, we tested the hypothesis that it may also influence neuronal activity in the OFC, a prefrontal area involved also in higher order processing of odors. We recorded spike timing of orbitofrontal neurons as well as local field potentials (LFPs in awake, head-fixed mice, together with the breathing rhythm. We observed that a large majority of orbitofrontal neurons showed robust phase-coupling to breathing during immobility and running. The phase coupling of action potentials to breathing was significantly stronger in orbitofrontal neurons compared to cells in the medial prefrontal cortex. The characteristic synchronization of orbitofrontal neurons with breathing might provide a temporal framework for multi-variable processing of olfactory, gustatory and reward-value relationships.

  18. Neuronal Plasticity and Multisensory Integration in Filial Imprinting

    Town, Stephen Michael; McCabe, Brian John

    2011-01-01

    Many organisms sample their environment through multiple sensory systems and the integration of multisensory information enhances learning. However, the mechanisms underlying multisensory memory formation and their similarity to unisensory mechanisms remain unclear. Filial imprinting is one example in which experience is multisensory, and the mechanisms of unisensory neuronal plasticity are well established. We investigated the storage of audiovisual information through experience by comparing the activity of neurons in the intermediate and medial mesopallium of imprinted and naïve domestic chicks (Gallus gallus domesticus) in response to an audiovisual imprinting stimulus and novel object and their auditory and visual components. We find that imprinting enhanced the mean response magnitude of neurons to unisensory but not multisensory stimuli. Furthermore, imprinting enhanced responses to incongruent audiovisual stimuli comprised of mismatched auditory and visual components. Our results suggest that the effects of imprinting on the unisensory and multisensory responsiveness of IMM neurons differ and that IMM neurons may function to detect unexpected deviations from the audiovisual imprinting stimulus. PMID:21423770

  19. Dissociation between unconscious motor response facilitation and conflict in medial frontal areas.

    D'Ostilio, Kevin; Garraux, Gaëtan

    2012-01-01

    Masked prime tasks have shown that sensory information that has not been consciously perceived can nevertheless modulate behavior. The neuronal correlates of behavioral manifestations of visuomotor priming remain debated, particularly with respect to the distribution and direction (i.e. increase or decrease) of activity changes in medial frontal areas. Here, we predicted that these discrepant results could be accounted for by two automatic and unconscious processes embedded in this task: response conflict and facilitation. We used event-related functional magnetic resonance imaging (fMRI), as 24 healthy participants had to respond, as fast as possible, to a target arrow presented immediately after a subliminal masked prime arrow. There were three experimental conditions defined by the prime-target relationship: compatible, incompatible, and neutral. The classical visuomotor priming effect was reproduced, with relatively longer reaction times (RTs) in incompatible trials. Longer RTs in incompatible than in neutral trials were specifically associated with stronger blood oxygen level-dependent (BOLD) activity in a conflict-related network comprising the anterior cingulate cortex and right frontal associative areas. Motor response facilitation as shown by shorter RTs in compatible than in neutral trials was associated with reduced activation in a motor preparation network including the medial and lateral premotor cortices, as a result of the repetition suppression of the fMRI BOLD signal. The present results provide new insights into automatic and unconscious visuomotor priming processes, suggesting an involvement of either a cognitive or motor network, depending on the prime-target relationship. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  20. NEURON and Python.

    Hines, Michael L; Davison, Andrew P; Muller, Eilif

    2009-01-01

    The NEURON simulation program now allows Python to be used, alone or in combination with NEURON's traditional Hoc interpreter. Adding Python to NEURON has the immediate benefit of making available a very extensive suite of analysis tools written for engineering and science. It also catalyzes NEURON software development by offering users a modern programming tool that is recognized for its flexibility and power to create and maintain complex programs. At the same time, nothing is lost because all existing models written in Hoc, including graphical user interface tools, continue to work without change and are also available within the Python context. An example of the benefits of Python availability is the use of the xml module in implementing NEURON's Import3D and CellBuild tools to read MorphML and NeuroML model specifications.

  1. Neuronal coupling by endogenous electric fields: cable theory and applications to coincidence detector neurons in the auditory brain stem.

    Goldwyn, Joshua H; Rinzel, John

    2016-04-01

    The ongoing activity of neurons generates a spatially and time-varying field of extracellular voltage (Ve). This Ve field reflects population-level neural activity, but does it modulate neural dynamics and the function of neural circuits? We provide a cable theory framework to study how a bundle of model neurons generates Ve and how this Ve feeds back and influences membrane potential (Vm). We find that these "ephaptic interactions" are small but not negligible. The model neural population can generate Ve with millivolt-scale amplitude, and this Ve perturbs the Vm of "nearby" cables and effectively increases their electrotonic length. After using passive cable theory to systematically study ephaptic coupling, we explore a test case: the medial superior olive (MSO) in the auditory brain stem. The MSO is a possible locus of ephaptic interactions: sounds evoke large (millivolt scale)Vein vivo in this nucleus. The Ve response is thought to be generated by MSO neurons that perform a known neuronal computation with submillisecond temporal precision (coincidence detection to encode sound source location). Using a biophysically based model of MSO neurons, we find millivolt-scale ephaptic interactions consistent with the passive cable theory results. These subtle membrane potential perturbations induce changes in spike initiation threshold, spike time synchrony, and time difference sensitivity. These results suggest that ephaptic coupling may influence MSO function. Copyright © 2016 the American Physiological Society.

  2. Neuronal reorganization in adult rats neonatally exposed to (±-3,4-methylenedioxymethamphetamine

    Michael T. Williams

    2014-01-01

    Full Text Available The abuse of methylenedioxymethamphetamine (MDMA during pregnancy is of concern. MDMA treatment of rats during a period of brain growth analogous to late human gestation leads to neurochemical and behavioral changes. MDMA from postnatal day (P11–20 in rats produces reductions in serotonin and deficits in spatial and route-based navigation. In this experiment we examined the impact of MDMA from P11 to P20 (20 mg/kg twice daily, 8 h apart on neuronal architecture. Golgi impregnated sections showed significant changes. In the nucleus accumbens, the dendrites were shorter with fewer spines, whereas in the dentate gyrus the dendritic length was decreased but with more spines, and for the entorhinal cortex, reductions in basilar and apical dendritic lengths in MDMA animals compared with saline animals were seen. The data show that neuronal cytoarchitectural changes are long-lasting following developmental MDMA exposure and are in regions consistent with the learning and memory deficits observed in such animals.

  3. Inhibitory neuron and hippocampal circuit dysfunction in an aged mouse model of Alzheimer's disease.

    Anupam Hazra

    Full Text Available In Alzheimer's disease (AD, a decline in explicit memory is one of the earliest signs of disease and is associated with hippocampal dysfunction. Amyloid protein exerts a disruptive impact on neuronal function, but the specific effects on hippocampal network activity are not well known. In this study, fast voltage-sensitive dye imaging and extracellular and whole-cell electrophysiology were used on entorhinal cortical-hippocampal slice preparations to characterize hippocampal network activity in 12-16 month old female APPswe/PSEN1DeltaE9 (APdE9 mice mice. Aged APdE9 mice exhibited profound disruptions in dentate gyrus circuit activation. High frequency stimulation of the perforant pathway in the dentate gyrus (DG area of APdE9 mouse tissue evoked abnormally large field potential responses corresponding to the wider neural activation maps. Whole-cell patch clamp recordings of the identified inhibitory interneurons in the molecular layer of DG revealed that they fail to reliably fire action potentials. Taken together, abnormal DG excitability and an inhibitory neuron failure to generate action potentials are suggested to be important contributors to the underlying cellular mechanisms of early-stage Alzheimer's disease pathophysiology.

  4. Monoamine oxidase B is elevated in Alzheimer disease neurons, is associated with γ-secretase and regulates neuronal amyloid β-peptide levels.

    Schedin-Weiss, Sophia; Inoue, Mitsuhiro; Hromadkova, Lenka; Teranishi, Yasuhiro; Yamamoto, Natsuko Goto; Wiehager, Birgitta; Bogdanovic, Nenad; Winblad, Bengt; Sandebring-Matton, Anna; Frykman, Susanne; Tjernberg, Lars O

    2017-08-01

    Increased levels of the pathogenic amyloid β-peptide (Aβ), released from its precursor by the transmembrane protease γ-secretase, are found in Alzheimer disease (AD) brains. Interestingly, monoamine oxidase B (MAO-B) activity is also increased in AD brain, but its role in AD pathogenesis is not known. Recent neuroimaging studies have shown that the increased MAO-B expression in AD brain starts several years before the onset of the disease. Here, we show a potential connection between MAO-B, γ-secretase and Aβ in neurons. MAO-B immunohistochemistry was performed on postmortem human brain. Affinity purification of γ-secretase followed by mass spectrometry was used for unbiased identification of γ-secretase-associated proteins. The association of MAO-B with γ-secretase was studied by coimmunoprecipitation from brain homogenate, and by in-situ proximity ligation assay (PLA) in neurons as well as mouse and human brain sections. The effect of MAO-B on Aβ production and Notch processing in cell cultures was analyzed by siRNA silencing or overexpression experiments followed by ELISA, western blot or FRET analysis. Methodology for measuring relative intraneuronal MAO-B and Aβ42 levels in single cells was developed by combining immunocytochemistry and confocal microscopy with quantitative image analysis. Immunohistochemistry revealed MAO-B staining in neurons in the frontal cortex, hippocampus CA1 and entorhinal cortex in postmortem human brain. Interestingly, the neuronal staining intensity was higher in AD brain than in control brain in these regions. Mass spectrometric data from affinity purified γ-secretase suggested that MAO-B is a γ-secretase-associated protein, which was confirmed by immunoprecipitation and PLA, and a neuronal location of the interaction was shown. Strikingly, intraneuronal Aβ42 levels correlated with MAO-B levels, and siRNA silencing of MAO-B resulted in significantly reduced levels of intraneuronal Aβ42. Furthermore, overexpression of

  5. Spinal cord: motor neuron diseases.

    Rezania, Kourosh; Roos, Raymond P

    2013-02-01

    Spinal cord motor neuron diseases affect lower motor neurons in the ventral horn. This article focuses on the most common spinal cord motor neuron disease, amyotrophic lateral sclerosis, which also affects upper motor neurons. Also discussed are other motor neuron diseases that only affect the lower motor neurons. Despite the identification of several genes associated with familial amyotrophic lateral sclerosis, the pathogenesis of this complex disease remains elusive. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Abnormalities in the fatty acid composition of the postmortem entorhinal cortex of patients with schizophrenia, bipolar disorder, and major depressive disorder.

    Hamazaki, Kei; Hamazaki, Tomohito; Inadera, Hidekuni

    2013-11-30

    Previous studies of postmortem orbitofrontal cortex have shown abnormalities in levels of n-3 polyunsaturated fatty acids (PUFAs), especially docosahexaenoic acid (DHA), in individuals with schizophrenia, bipolar disorder, and major depressive disorder (MDD). We have previously measured PUFA levels in the postmortem hippocampus from patients with schizophrenia or bipolar disorder and control subjects; however, we found no significant differences between the groups except for small changes in n-6 PUFAs. Furthermore, our study of the postmortem amygdala showed no significant differences in major PUFAs in individuals with schizophrenia, bipolar disorder, or MDD in comparison with controls. In the present study, we investigated whether there were any changes in PUFAs in the entorhinal cortexes of patients with schizophrenia (n=15), bipolar disorder (n=15), or MDD (n=15) compared with unaffected controls (n=15) matched for characteristics including age and sex. In contrast to previous studies of the orbitofrontal cortex and hippocampus, we found no significant differences in major PUFAs. However, we found a 34.3% decrease in docosapentaenoic acid (DPA) (22:5n-3) in patients with MDD and an 8.7% decrease in docosatetraenoic acid (22:4n-6) in those with schizophrenia, compared with controls. Changes in PUFAs in patients with these psychiatric disorders may be specific to certain brain regions. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  7. Neuropathological findings in entorhinal cortex of subjects aged 50 years or older and their correlation with dementia in a sample from Southern Brazil

    Edson Rodrigues Neto

    Full Text Available ABSTRACT Introduction: The aims of this study were to survey neurodegenerative changes detected by abnormal protein deposits in the Entorhinal Cortex (EC of subjects aged 50 years or older and to correlate these findings with suspected dementia, as detected by the IQCODE (Informant Questionnaire on Cognitive Decline in the Elderly . Methods: Fourteen brains were submitted to the immunohistochemistry technique for different proteins (beta-amyloid, tau, -synuclein and phospho-TDP-43 and data obtained compared with IQCODE scores. Results: Fifty-seven percent of the individuals exhibited IQCODE results compatible with dementia, being classified into the demented group (DG: 87.5% of patients had neuropathological findings corresponding to Alzheimer's-like brain pathology (ALBP. Of the patients in the non-demented group (NDG, 16.7% met neuropathological criteria for ALBP. All individuals in the DG showed deposits of more than one kind of protein in the EC. The most common association was hyperphosphorylated tau and beta-amyloid protein (87.5%. Discussion: Most individuals with dementia had neuropathological findings of ALBP, as did one individual with no signs of dementia, characterizing a preclinical stage. The results of this study suggest that deposits of a single type of anomalous protein are normal findings in an aging brain, while more than one kind of protein or the combined presence of anomalous protein deposits indicate the presence of dementia.

  8. Transnasal endoscopic medial maxillectomy in recurrent maxillary sinus inverted papilloma.

    Kamel, Reda H; Abdel Fattah, Ahmed F; Awad, Ayman G

    2014-12-01

    Maxillary sinus inverted papilloma entails medial maxillectomy and is associated with high incidence of recurrence. To study the impact of prior surgery on recurrence rate after transnasal endoscopic medial maxillectomy. Eighteen patients with primary and 33 with recurrent maxillary sinus inverted papilloma underwent transnasal endoscopic medial maxillectomy. Caldwell-Luc operation was the primary surgery in 12 patients, transnasal endoscopic resection in 20, and midfacial degloving technique in one. The follow-up period ranged between 2 to 19.5 years with an average of 8.8 years. Recurrence was detected in 8/51 maxillary sinus inverted papilloma patients (15.7 %), 1/18 of primary cases (5.5 %), 7/33 of recurrent cases (21.2 %); 3/20 of the transnasal endoscopic resection group (15%) and 4/12 of the Caldwell-Luc group (33.3%). Redo transnasal endoscopic medial maxillectomy was followed by a single recurrence in the Caldwell-Luc group (25%), and no recurrence in the other groups. Recurrence is more common in recurrent maxillary sinus inverted papilloma than primary lesions. Recurrent maxillary sinus inverted papilloma after Caldwell-Luc operation has higher incidence of recurrence than after transnasal endoscopic resection.

  9. Default network connectivity in medial temporal lobe amnesia.

    Hayes, Scott M; Salat, David H; Verfaellie, Mieke

    2012-10-17

    There is substantial overlap between the brain regions supporting episodic memory and the default network. However, in humans, the impact of bilateral medial temporal lobe (MTL) damage on a large-scale neural network such as the default mode network is unknown. To examine this issue, resting fMRI was performed with amnesic patients and control participants. Seed-based functional connectivity analyses revealed robust default network connectivity in amnesia in cortical default network regions such as medial prefrontal cortex, posterior medial cortex, and lateral parietal cortex, as well as evidence of connectivity to residual MTL tissue. Relative to control participants, decreased posterior cingulate cortex connectivity to MTL and increased connectivity to cortical default network regions including lateral parietal and medial prefrontal cortex were observed in amnesic patients. In contrast, somatomotor network connectivity was intact in amnesic patients, indicating that bilateral MTL lesions may selectively impact the default network. Changes in default network connectivity in amnesia were largely restricted to the MTL subsystem, providing preliminary support from MTL amnesic patients that the default network can be fractionated into functionally and structurally distinct components. To our knowledge, this is the first examination of the default network in amnesia.

  10. Medial peritalar fracture dislocation of the talar body

    Jacob B. Stirton

    2015-04-01

    Full Text Available Peritalar fracture dislocations typically involve the talar neck and are classified according to Hawkins. To our knowledge, peritalar fracture dislocation involving the talar body has not been formally reported. In this article, we describe a case of peritalar fracture dislocation of the talar body. Keywords: Peritalar dislocation, Talus fracture, Talar body fracture dislocation, Medial subtalar dislocation

  11. MR imaging findings of medial tibial crest friction

    Klontzas, Michail E.; Akoumianakis, Ioannis D.; Vagios, Ilias; Karantanas, Apostolos H.

    2013-01-01

    Objective: Medial tibial condyle bone marrow edema (BME), associated with soft tissue edema (STe) surrounding the medial collateral ligament, was incidentally observed in MRI examinations of young and athletic individuals. The aim of the present study was to 1. Prospectively investigate the association between these findings and coexistence of localized pain, and 2. Explore the possible contribution of the tibial morphology to its pathogenesis. Methods: The medial tibial condyle crest was evaluated in 632 knee MRI examinations. The angle and depth were measured by two separate evaluators. The presence of STe and BME was recorded. A third evaluator blindly assessed the presence of pain at this site. Results: BME associated with STe was found in 24 patients (with no history of previous trauma, osteoarthritis, tumor or pes anserine bursitis). The mean crest angle was 151.3° (95%CI 147.4–155.3°) compared to 159.4° (95%CI 158.8–160°) in controls (Mann–Whitney test, P < 0.0001). MRI findings were highly predictive of localized pain (sensitivity 92% specificity 99%, Fisher's exact test, P < 0.0001). Conclusion: Friction at the medial tibial condyle crest is a painful syndrome. MRI is a highly specific and sensitive imaging modality for its diagnosis

  12. Comparison of Medial and Posterior Surgical Approaches in ...

    2017-10-26

    Oct 26, 2017 ... extremity fractures in the pediatric population aged 3-10 years old. ... pins wire fixation was applied with either a medial or ... The grading system defined by Flynn et al.[15] .... control of both aspects of fracture site (anterior and.

  13. Medial Tibial Stress Syndrome : Diagnosis, Treatment and Outcome Assessment

    Winters, M.

    2017-01-01

    Medial tibial stress syndrome (MTSS), also known as shin splints, is one of the most common sports injuries. Although 20% of the jumping and running athletes have MTSS at some point while engaging in sporting activities, we know little about it. There is a lack of knowledge regarding making the

  14. Aetiology, imaging and treatment of medial tibial stress syndrome

    Moen, M.H.

    2012-01-01

    The work contained is this thesis discusses aetiology, imaging and treatment of a common leg injury: medial tibial stress syndrome (MTSS). Although a common injury, the number of scientific articles on this topic is relatively low as is explained in chapter 1. This chapter also highlights that the

  15. Anatomical segmentation of the human medial prefrontal cortex

    Corcoles-Parada, M.; Müller, N.C.J.; Ubero, M.; Serrano-Del-Pueblo, V.M.; Mansilla, F.; Marcos-Rabal, P.; Artacho-Perula, E.; Dresler, M.; Insausti, R.; Fernandez, G.; Munoz-Lopez, M.

    2017-01-01

    The medial prefrontal areas 32, 24, 14, and 25 (mPFC) form part of the limbic memory system, but little is known about their functional specialization in humans. To add anatomical precision to structural and functional magnetic resonance imaging (MRI) data, we aimed to identify these mPFC subareas

  16. [Medial unicompartmental knee prosthesis for patients with unicompartmental gonarthrosis

    Kort, N.P.; Deutman, R.; Raay, J.J. van; Horn, J.R. van

    2004-01-01

    The function and survival time of unicompartmental knee prostheses for patients with severe gonarthrosis have been improved the past few years by developments in their design, the instrumentarium and the surgical technique. A medial unicompartmental knee prosthesis may be indicated in patients with

  17. Ecological divergence and medial cuneiform morphology in gorillas.

    Tocheri, Matthew W; Solhan, Christyna R; Orr, Caley M; Femiani, John; Frohlich, Bruno; Groves, Colin P; Harcourt-Smith, William E; Richmond, Brian G; Shoelson, Brett; Jungers, William L

    2011-02-01

    Gorillas are more closely related to each other than to any other extant primate and are all terrestrial knuckle-walkers, but taxa differ along a gradient of dietary strategies and the frequency of arboreality in their behavioral repertoire. In this study, we test the hypothesis that medial cuneiform morphology falls on a morphocline in gorillas that tracks function related to hallucial abduction ability and relative frequency of arboreality. This morphocline predicts that western gorillas, being the most arboreal, should display a medial cuneiform anatomy that reflects the greatest hallucial abduction ability, followed by grauer gorillas, and then by mountain gorillas. Using a three-dimensional methodology to measure angles between articular surfaces, relative articular and nonarticular areas, and the curvatures of the hallucial articular surface, the functional predictions are partially confirmed in separating western gorillas from both eastern gorillas. Western gorillas are characterized by a more medially oriented, proportionately larger, and more mediolaterally curved hallucial facet than are eastern gorillas. These characteristics follow the predictions for a more prehensile hallux in western gorillas relative to a more stable, plantigrade hallux in eastern gorillas. The characteristics that distinguish eastern gorilla taxa from one another appear unrelated to hallucial abduction ability or frequency of arboreality. In total, this reexamination of medial cuneiform morphology suggests differentiation between eastern and western gorillas due to a longstanding ecological divergence and more recent and possibly non-adaptive differences between eastern taxa. Published by Elsevier Ltd.

  18. Medial Malleolar Fractures: An Anatomic Survey Determining the ...

    However, the literature lacks a defined method for selecting lag screw length, relying more ... Aim: The aim of this study is to help define the ideal lag screw length for medial melleolar fracture fixation. .... Biometrics 1977;33:159‑74. 8. Ricci WM ...

  19. MR imaging findings of medial tibial crest friction

    Klontzas, Michail E., E-mail: miklontzas@gmail.com; Akoumianakis, Ioannis D., E-mail: ioannis.akoumianakis@gmail.com; Vagios, Ilias, E-mail: iliasvagios@gmail.com; Karantanas, Apostolos H., E-mail: akarantanas@gmail.com

    2013-11-01

    Objective: Medial tibial condyle bone marrow edema (BME), associated with soft tissue edema (STe) surrounding the medial collateral ligament, was incidentally observed in MRI examinations of young and athletic individuals. The aim of the present study was to 1. Prospectively investigate the association between these findings and coexistence of localized pain, and 2. Explore the possible contribution of the tibial morphology to its pathogenesis. Methods: The medial tibial condyle crest was evaluated in 632 knee MRI examinations. The angle and depth were measured by two separate evaluators. The presence of STe and BME was recorded. A third evaluator blindly assessed the presence of pain at this site. Results: BME associated with STe was found in 24 patients (with no history of previous trauma, osteoarthritis, tumor or pes anserine bursitis). The mean crest angle was 151.3° (95%CI 147.4–155.3°) compared to 159.4° (95%CI 158.8–160°) in controls (Mann–Whitney test, P < 0.0001). MRI findings were highly predictive of localized pain (sensitivity 92% specificity 99%, Fisher's exact test, P < 0.0001). Conclusion: Friction at the medial tibial condyle crest is a painful syndrome. MRI is a highly specific and sensitive imaging modality for its diagnosis.

  20. Medial supracondylar stress fracture in an adolescent pitcher

    Chang, Eric Y.; Chung, Christine B. [VA San Diego Healthcare System, San Diego, CA (United States); University of California, San Diego Medical Center, San Diego, CA (United States); Fronek, Jan [Scripps Healthcare, La Jolla, CA (United States)

    2014-01-15

    We report the occurrence of a medial supracondylar stress fracture in an adolescent pitcher. To our knowledge, this fracture has not been described in the literature, and awareness of this entity allows initiation of therapy and precludes further unnecessary work-up. The radiographic, computed tomography, and magnetic resonance imaging appearances are reviewed and the mechanism of injury is discussed. (orig.)

  1. Neuronal-glial trafficking

    Bachelard, H.S.

    2001-01-01

    Full text: The name 'glia' originates from the Greek word for glue, because astro glia (or astrocytes) were thought only to provide an anatomical framework for the electrically-excitable neurones. However, awareness that astrocytes perform vital roles in protecting the neurones, which they surround, emerged from evidence that they act as neuroprotective K + -sinks, and that they remove potentially toxic extracellular glutamate from the vicinity of the neurones. The astrocytes convert the glutamate to non-toxic glutamine which is returned to the neurones and used to replenish transmitter glutamate. This 'glutamate-glutamine cycle' (established in the 1960s by Berl and his colleagues) also contributes to protecting the neurones against a build-up of toxic ammonia. Glial cells also supply the neurones with components for free-radical scavenging glutathione. Recent studies have revealed that glial cells play a more positive interactive role in furnishing the neurones with fuels. Studies using radioactive 14 C, 13 C-MRS and 15 N-GCMS have revealed that glia produce alanine, lactate and proline for consumption by neurones, with increased formation of neurotransmitter glutamate. On neuronal activation the release of NH 4 + and glutamate from the neurones stimulates glucose uptake and glycolysis in the glia to produce more alanine, which can be regarded as an 'alanine-glutamate cycle' Use of 14 C-labelled precursors provided early evidence that neurotransmitter GABA may be partly derived from glial glutamine, and this has been confirmed recently in vivo by MRS isotopomer analysis of the GABA and glutamine labelled from 13 C-acetate. Relative rates of intermediary metabolism in glia and neurones can be calculated using a combination of [1- 13 C] glucose and [1,2- 13 C] acetate. When glutamate is released by neurones there is a net neuronal loss of TCA intermediates which have to be replenished. Part of this is derived from carboxylation of pyruvate, (pyruvate carboxylase

  2. Effects of immunotoxic and electrolytic lesions of medial septal area on spatial short-term memory in rats.

    Dashiani, M G; Kruashvili, L B; Rusadze, Kh Z; Matatradze, S B; Beselia, G V

    2015-02-01

    In the present study electrolytic and the immunotoxins (192 IgG saporin and GAT1-SAP) lesions of medial septal area (MS) were used to investigate the importance of cholinergic and GABAergic MS neurons in spatial working memory using spatial alternation task. In our experiments electrolytic lesions destroyed on average 69% of the intact MS. Examination of the AChE stained sections showed that after injections of 192 IgG saporin into the MS, animals exhibited significantly less AChE staining in MS as compared to sections obtained from control animals. Intraseptal GAT1-SAP preferentially reduced GABAergic neurons as compared to cholinergic neurons in the MS. The results of present study indicate that spatial short-term memory is affected only by electrolytic but not 192 IgG saporin or GAT1-SAP lesions. The behavioral testing showed that 192 IgG saporin treated rats, relative to control rats, had a significantly lower level in the number of arms entered during the testing session. However, the groups did not differ in the level of alternation behavior. GAT1-SAP lesioned rats showed that the percent alternation scores and the number of arms that the rat entered in the maze were not significantly different from control rats. These findings indicate that deficits observed after septal electrolytic lesions cannot be accounted solely to the loss of cholinergic or GABAergic septohippocampal projections. To determine more definitively whether septohippocampal projection neurons are required for the spatial short-term memory it would be ideal to produce in future combined lesions of the cholinergic and GABA-ergic septohippocampal projection neurons using 192 IgG-saporin and GAT1-SAP.

  3. The Contingency of Cocaine Administration Accounts for Structural and Functional Medial Prefrontal Deficits and Increased Adrenocortical Activation

    Anderson, Rachel M.; Cosme, Caitlin V.; Glanz, Ryan M.; Miller, Mary C.; Romig-Martin, Sara A.; LaLumiere, Ryan T.

    2015-01-01

    The prelimbic region (PL) of the medial prefrontal cortex (mPFC) is implicated in the relapse of drug-seeking behavior. Optimal mPFC functioning relies on synaptic connections involving dendritic spines in pyramidal neurons, whereas prefrontal dysfunction resulting from elevated glucocorticoids, stress, aging, and mental illness are each linked to decreased apical dendritic branching and spine density in pyramidal neurons in these cortical fields. The fact that cocaine use induces activation of the stress-responsive hypothalamo-pituitary-adrenal axis raises the possibility that cocaine-related impairments in mPFC functioning may be manifested by similar changes in neuronal architecture in mPFC. Nevertheless, previous studies have generally identified increases, rather than decreases, in structural plasticity in mPFC after cocaine self-administration. Here, we use 3D imaging and analysis of dendritic spine morphometry to show that chronic cocaine self-administration leads to mild decreases of apical dendritic branching, prominent dendritic spine attrition in PL pyramidal neurons, and working memory deficits. Importantly, these impairments were largely accounted for in groups of rats that self-administered cocaine compared with yoked-cocaine- and saline-matched counterparts. Follow-up experiments failed to demonstrate any effects of either experimenter-administered cocaine or food self-administration on structural alterations in PL neurons. Finally, we verified that the cocaine self-administration group was distinguished by more protracted increases in adrenocortical activity compared with yoked-cocaine- and saline-matched controls. These studies suggest a mechanism whereby increased adrenocortical activity resulting from chronic cocaine self-administration may contribute to regressive prefrontal structural and functional plasticity. SIGNIFICANCE STATEMENT Stress, aging, and mental illness are each linked to decreased prefrontal plasticity. Here, we show that chronic

  4. Amygdala Contributions to Stimulus–Reward Encoding in the Macaque Medial and Orbital Frontal Cortex during Learning

    Averbeck, Bruno B.

    2017-01-01

    Orbitofrontal cortex (OFC), medial frontal cortex (MFC), and amygdala mediate stimulus–reward learning, but the mechanisms through which they interact are unclear. Here, we investigated how neurons in macaque OFC and MFC signaled rewards and the stimuli that predicted them during learning with and without amygdala input. Macaques performed a task that required them to evaluate two stimuli and then choose one to receive the reward associated with that option. Four main findings emerged. First, amygdala lesions slowed the acquisition and use of stimulus–reward associations. Further analyses indicated that this impairment was due, at least in part, to ineffective use of negative feedback to guide subsequent decisions. Second, the activity of neurons in OFC and MFC rapidly evolved to encode the amount of reward associated with each stimulus. Third, amygdalectomy reduced encoding of stimulus–reward associations during the evaluation of different stimuli. Reward encoding of anticipated and received reward after choices were made was not altered. Fourth, amygdala lesions led to an increase in the proportion of neurons in MFC, but not OFC, that encoded the instrumental response that monkeys made on each trial. These correlated changes in behavior and neural activity after amygdala lesions strongly suggest that the amygdala contributes to the ability to learn stimulus–reward associations rapidly by shaping encoding within OFC and MFC. SIGNIFICANCE STATEMENT Altered functional interactions among orbital frontal cortex (OFC), medial frontal cortex (MFC), and amygdala are thought to underlie several psychiatric conditions, many related to reward learning. Here, we investigated the causal contribution of the amygdala to the development of neuronal activity in macaque OFC and MFC related to rewards and the stimuli that predict them during learning. Without amygdala inputs, neurons in both OFC and MFC showed decreased encoding of stimulus–reward associations. MFC also

  5. Amygdala Contributions to Stimulus-Reward Encoding in the Macaque Medial and Orbital Frontal Cortex during Learning.

    Rudebeck, Peter H; Ripple, Joshua A; Mitz, Andrew R; Averbeck, Bruno B; Murray, Elisabeth A

    2017-02-22

    Orbitofrontal cortex (OFC), medial frontal cortex (MFC), and amygdala mediate stimulus-reward learning, but the mechanisms through which they interact are unclear. Here, we investigated how neurons in macaque OFC and MFC signaled rewards and the stimuli that predicted them during learning with and without amygdala input. Macaques performed a task that required them to evaluate two stimuli and then choose one to receive the reward associated with that option. Four main findings emerged. First, amygdala lesions slowed the acquisition and use of stimulus-reward associations. Further analyses indicated that this impairment was due, at least in part, to ineffective use of negative feedback to guide subsequent decisions. Second, the activity of neurons in OFC and MFC rapidly evolved to encode the amount of reward associated with each stimulus. Third, amygdalectomy reduced encoding of stimulus-reward associations during the evaluation of different stimuli. Reward encoding of anticipated and received reward after choices were made was not altered. Fourth, amygdala lesions led to an increase in the proportion of neurons in MFC, but not OFC, that encoded the instrumental response that monkeys made on each trial. These correlated changes in behavior and neural activity after amygdala lesions strongly suggest that the amygdala contributes to the ability to learn stimulus-reward associations rapidly by shaping encoding within OFC and MFC. SIGNIFICANCE STATEMENT Altered functional interactions among orbital frontal cortex (OFC), medial frontal cortex (MFC), and amygdala are thought to underlie several psychiatric conditions, many related to reward learning. Here, we investigated the causal contribution of the amygdala to the development of neuronal activity in macaque OFC and MFC related to rewards and the stimuli that predict them during learning. Without amygdala inputs, neurons in both OFC and MFC showed decreased encoding of stimulus-reward associations. MFC also showed

  6. Distribution of glutamatergic, GABAergic, and glycinergic neurons in the auditory pathways of macaque monkeys.

    Ito, T; Inoue, K; Takada, M

    2015-12-03

    Macaque monkeys use complex communication calls and are regarded as a model for studying the coding and decoding of complex sound in the auditory system. However, little is known about the distribution of excitatory and inhibitory neurons in the auditory system of macaque monkeys. In this study, we examined the overall distribution of cell bodies that expressed mRNAs for VGLUT1, and VGLUT2 (markers for glutamatergic neurons), GAD67 (a marker for GABAergic neurons), and GLYT2 (a marker for glycinergic neurons) in the auditory system of the Japanese macaque. In addition, we performed immunohistochemistry for VGLUT1, VGLUT2, and GAD67 in order to compare the distribution of proteins and mRNAs. We found that most of the excitatory neurons in the auditory brainstem expressed VGLUT2. In contrast, the expression of VGLUT1 mRNA was restricted to the auditory cortex (AC), periolivary nuclei, and cochlear nuclei (CN). The co-expression of GAD67 and GLYT2 mRNAs was common in the ventral nucleus of the lateral lemniscus (VNLL), CN, and superior olivary complex except for the medial nucleus of the trapezoid body, which expressed GLYT2 alone. In contrast, the dorsal nucleus of the lateral lemniscus, inferior colliculus, thalamus, and AC expressed GAD67 alone. The absence of co-expression of VGLUT1 and VGLUT2 in the medial geniculate, medial superior olive, and VNLL suggests that synaptic responses in the target neurons of these nuclei may be different between rodents and macaque monkeys. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. Monkey pulvinar neurons fire differentially to snake postures.

    Le, Quan Van; Isbell, Lynne A; Matsumoto, Jumpei; Le, Van Quang; Hori, Etsuro; Tran, Anh Hai; Maior, Rafael S; Tomaz, Carlos; Ono, Taketoshi; Nishijo, Hisao

    2014-01-01

    There is growing evidence from both behavioral and neurophysiological approaches that primates are able to rapidly discriminate visually between snakes and innocuous stimuli. Recent behavioral evidence suggests that primates are also able to discriminate the level of threat posed by snakes, by responding more intensely to a snake model poised to strike than to snake models in coiled or sinusoidal postures (Etting and Isbell 2014). In the present study, we examine the potential for an underlying neurological basis for this ability. Previous research indicated that the pulvinar is highly sensitive to snake images. We thus recorded pulvinar neurons in Japanese macaques (Macaca fuscata) while they viewed photos of snakes in striking and non-striking postures in a delayed non-matching to sample (DNMS) task. Of 821 neurons recorded, 78 visually responsive neurons were tested with the all snake images. We found that pulvinar neurons in the medial and dorsolateral pulvinar responded more strongly to snakes in threat displays poised to strike than snakes in non-threat-displaying postures with no significant difference in response latencies. A multidimensional scaling analysis of the 78 visually responsive neurons indicated that threat-displaying and non-threat-displaying snakes were separated into two different clusters in the first epoch of 50 ms after stimulus onset, suggesting bottom-up visual information processing. These results indicate that pulvinar neurons in primates discriminate between poised to strike from those in non-threat-displaying postures. This neuronal ability likely facilitates behavioral discrimination and has clear adaptive value. Our results are thus consistent with the Snake Detection Theory, which posits that snakes were instrumental in the evolution of primate visual systems.

  8. The medial tibial stress syndrome score: Item generation for a new ...

    The medial tibial stress syndrome score: Item generation for a new patient reported outcome measure. ... instrument that evaluates injury severity and treatment effects for medial tibial stress syndrome (MTSS) patients. ... from 32 Countries:.

  9. Role of the dorsal medial habenula in the regulation of voluntary activity, motor function, hedonic state, and primary reinforcement.

    Hsu, Yun-Wei A; Wang, Si D; Wang, Shirong; Morton, Glenn; Zariwala, Hatim A; de la Iglesia, Horacio O; Turner, Eric E

    2014-08-20

    The habenular complex in the epithalamus consists of distinct regions with diverse neuronal populations. Past studies have suggested a role for the habenula in voluntary exercise motivation and reinforcement of intracranial self-stimulation but have not assigned these effects to specific habenula subnuclei. Here, we have developed a genetic model in which neurons of the dorsal medial habenula (dMHb) are developmentally eliminated, via tissue-specific deletion of the transcription factor Pou4f1 (Brn3a). Mice with dMHb lesions perform poorly in motivation-based locomotor behaviors, such as voluntary wheel running and the accelerating rotarod, but show only minor abnormalities in gait and balance and exhibit normal levels of basal locomotion. These mice also show deficits in sucrose preference, but not in the forced swim test, two measures of depression-related phenotypes in rodents. We have also used Cre recombinase-mediated expression of channelrhodopsin-2 and halorhodopsin to activate dMHb neurons or silence their output in freely moving mice, respectively. Optical activation of the dMHb in vivo supports intracranial self-stimulation, showing that dMHb activity is intrinsically reinforcing, whereas optical silencing of dMHb outputs is aversive. Together, our findings demonstrate that the dMHb is involved in exercise motivation and the regulation of hedonic state, and is part of an intrinsic reinforcement circuit. Copyright © 2014 the authors 0270-6474/14/3411366-19$15.00/0.

  10. Medial olivocochlear reflex interneurons are located in the posteroventral cochlear nucleus: a kainic acid lesion study in guinea pigs.

    de Venecia, Ronald K; Liberman, M Charles; Guinan, John J; Brown, M Christian

    2005-07-11

    The medial olivocochlear (MOC) reflex arc is probably a three-neuron pathway consisting of type I spiral ganglion neurons, reflex interneurons in the cochlear nucleus, and MOC neurons that project to the outer hair cells of the cochlea. We investigated the identity of MOC reflex interneurons in the cochlear nucleus by assaying their regional distribution using focal injections of kainic acid. Our reflex metric was the amount of change in the distortion product otoacoustic emission (at 2f(1)-f(2)) just after onset of the primary tones. This metric for MOC reflex strength has been shown to depend on an intact reflex pathway. Lesions involving the posteroventral cochlear nucleus (PVCN), but not the other subdivisions, produced long-term decreases in MOC reflex strength. The degree of cell loss within the dorsal part of the PVCN was a predictor of whether the lesion affected MOC reflex strength. We suggest that multipolar cells within the PVCN have the distribution and response characteristics appropriate to be the MOC reflex interneurons. (c) 2005 Wiley-Liss, Inc.

  11. Laminar and Cellular Distribution of Monoamine Receptors in Rat Medial Prefrontal Cortex

    Noemí Santana

    2017-09-01

    Full Text Available The prefrontal cortex (PFC is deeply involved in higher brain functions, many of which are altered in psychiatric conditions. The PFC exerts a top-down control of most cortical and subcortical areas through descending pathways and is densely innervated by axons emerging from the brainstem monoamine cell groups, namely, the dorsal and median raphe nuclei (DR and MnR, respectively, the ventral tegmental area and the locus coeruleus (LC. In turn, the activity of these cell groups is tightly controlled by afferent pathways arising from layer V PFC pyramidal neurons. The reciprocal connectivity between PFC and monoamine cell groups is of interest to study the pathophysiology and treatment of severe psychiatric disorders, such as major depression and schizophrenia, inasmuch as antidepressant and antipsychotic drugs target monoamine receptors/transporters expressed in these areas. Here we review previous reports examining the presence of monoamine receptors in pyramidal and GABAergic neurons of the PFC using double in situ hybridization. Additionally, we present new data on the quantitative layer distribution (layers I, II–III, V, and VI of monoamine receptor-expressing cells in the cingulate (Cg, prelimbic (PrL and infralimbic (IL subfields of the medial PFC (mPFC. The receptors examined include serotonin 5-HT1A, 5-HT2A, 5-HT2C, and 5-HT3, dopamine D1 and D2 receptors, and α1A-, α1B-, and α1D-adrenoceptors. With the exception of 5-HT3 receptors, selectively expressed by layers I–III GABA interneurons, the rest of monoamine receptors are widely expressed by pyramidal and GABAergic neurons in intermediate and deep layers of mPFC (5-HT2C receptors are also expressed in layer I. This complex distribution suggests that monoamines may modulate the communications between PFC and cortical/subcortical areas through the activation of receptors expressed by neurons in intermediate (e.g., 5-HT1A, 5-HT2A, α1D-adrenoceptors, dopamine D1 receptors and deep

  12. Single neuron computation

    McKenna, Thomas M; Zornetzer, Steven F

    1992-01-01

    This book contains twenty-two original contributions that provide a comprehensive overview of computational approaches to understanding a single neuron structure. The focus on cellular-level processes is twofold. From a computational neuroscience perspective, a thorough understanding of the information processing performed by single neurons leads to an understanding of circuit- and systems-level activity. From the standpoint of artificial neural networks (ANNs), a single real neuron is as complex an operational unit as an entire ANN, and formalizing the complex computations performed by real n

  13. Mesmerising mirror neurons.

    Heyes, Cecilia

    2010-06-01

    Mirror neurons have been hailed as the key to understanding social cognition. I argue that three currents of thought-relating to evolution, atomism and telepathy-have magnified the perceived importance of mirror neurons. When they are understood to be a product of associative learning, rather than an adaptation for social cognition, mirror neurons are no longer mesmerising, but they continue to raise important questions about both the psychology of science and the neural bases of social cognition. Copyright 2010 Elsevier Inc. All rights reserved.

  14. The mirror neuron system.

    Cattaneo, Luigi; Rizzolatti, Giacomo

    2009-05-01

    Mirror neurons are a class of neurons, originally discovered in the premotor cortex of monkeys, that discharge both when individuals perform a given motor act and when they observe others perform that same motor act. Ample evidence demonstrates the existence of a cortical network with the properties of mirror neurons (mirror system) in humans. The human mirror system is involved in understanding others' actions and their intentions behind them, and it underlies mechanisms of observational learning. Herein, we will discuss the clinical implications of the mirror system.

  15. Striatal and Tegmental Neurons Code Critical Signals for Temporal-Difference Learning of State Value in Domestic Chicks

    Chentao Wen

    2016-11-01

    Full Text Available To ensure survival, animals must update the internal representations of their environment in a trial-and-error fashion. Psychological studies of associative learning and neurophysiological analyses of dopaminergic neurons have suggested that this updating process involves the temporal-difference (TD method in the basal ganglia network. However, the way in which the component variables of the TD method are implemented at the neuronal level is unclear. To investigate the underlying neural mechanisms, we trained domestic chicks to associate color cues with food rewards. We recorded neuronal activities from the medial striatum or tegmentum in a freely behaving condition and examined how reward omission changed neuronal firing. To compare neuronal activities with the signals assumed in the TD method, we simulated the behavioral task in the form of a finite sequence composed of discrete steps of time. The three signals assumed in the simulated task were the prediction signal, the target signal for updating, and the TD-error signal. In both the medial striatum and tegmentum, the majority of recorded neurons were categorized into three types according to their fitness for three models, though these neurons tended to form a continuum spectrum without distinct differences in the firing rate. Specifically, two types of striatal neurons successfully mimicked the target signal and the prediction signal. A linear summation of these two types of striatum neurons was a good fit for the activity of one type of tegmental neurons mimicking the TD-error signal. The present study thus demonstrates that the striatum and tegmentum can convey the signals critically required for the TD method. Based on the theoretical and neurophysiological studies, together with tract-tracing data, we propose a novel model to explain how the convergence of signals represented in the striatum could lead to the computation of TD error in tegmental dopaminergic neurons.

  16. Functional architecture of reward learning in mushroom body extrinsic neurons of larval Drosophila.

    Saumweber, Timo; Rohwedder, Astrid; Schleyer, Michael; Eichler, Katharina; Chen, Yi-Chun; Aso, Yoshinori; Cardona, Albert; Eschbach, Claire; Kobler, Oliver; Voigt, Anne; Durairaja, Archana; Mancini, Nino; Zlatic, Marta; Truman, James W; Thum, Andreas S; Gerber, Bertram

    2018-03-16

    The brain adaptively integrates present sensory input, past experience, and options for future action. The insect mushroom body exemplifies how a central brain structure brings about such integration. Here we use a combination of systematic single-cell labeling, connectomics, transgenic silencing, and activation experiments to study the mushroom body at single-cell resolution, focusing on the behavioral architecture of its input and output neurons (MBINs and MBONs), and of the mushroom body intrinsic APL neuron. Our results reveal the identity and morphology of almost all of these 44 neurons in stage 3 Drosophila larvae. Upon an initial screen, functional analyses focusing on the mushroom body medial lobe uncover sparse and specific functions of its dopaminergic MBINs, its MBONs, and of the GABAergic APL neuron across three behavioral tasks, namely odor preference, taste preference, and associative learning between odor and taste. Our results thus provide a cellular-resolution study case of how brains organize behavior.

  17. Electrophysiological characterization of male goldfish (Carassius auratus ventral preoptic area neurons receiving olfactory inputs

    Wudu E. Lado

    2014-06-01

    Full Text Available Chemical communication via sex pheromones is critical for successful reproduction but the underlying neural mechanisms are not well-understood. The goldfish is a tractable model because sex pheromones have been well-characterized in this species. We used male goldfish forebrain explants in vitro and performed whole-cell current clamp recordings from single neurons in the ventral preoptic area (vPOA to characterize their membrane properties and synaptic inputs from the olfactory bulbs (OB. Principle component and cluster analyses based on intrinsic membrane properties of vPOA neurons (N = 107 revealed five (I-V distinct cell groups. These cells displayed differences in their input resistance (Rinput: I II = IV > III = V. Evidence from electrical stimulation of the OB and application of receptor antagonists suggests that vPOA neurons receive monosynaptic glutamatergic inputs via the medial olfactory tract, with connectivity varying among neuronal groups [I (24%, II (40%, III (0%, IV (34% and V (2%].

  18. Distinct roles of basal forebrain cholinergic neurons in spatial and object recognition memory

    Kana Okada; Kayo Nishizawa; Tomoko Kobayashi; Shogo Sakata; Kazuto Kobayashi

    2015-01-01

    Recognition memory requires processing of various types of information such as objects and locations. Impairment in recognition memory is a prominent feature of amnesia and a symptom of Alzheimer?s disease (AD). Basal forebrain cholinergic neurons contain two major groups, one localized in the medial septum (MS)/vertical diagonal band of Broca (vDB), and the other in the nucleus basalis magnocellularis (NBM). The roles of these cell groups in recognition memory have been debated, and it remai...

  19. Excitatory Neuronal Hubs Configure Multisensory Integration of Slow Waves in Association Cortex

    Satoshi Kuroki

    2018-03-01

    Full Text Available Summary: Multisensory integration (MSI is a fundamental emergent property of the mammalian brain. During MSI, perceptual information encoded in patterned activity is processed in multimodal association cortex. The systems-level neuronal dynamics that coordinate MSI, however, are unknown. Here, we demonstrate intrinsic hub-like network activity in the association cortex that regulates MSI. We engineered calcium reporter mouse lines based on the fluorescence resonance energy transfer sensor yellow cameleon (YC2.60 expressed in excitatory or inhibitory neurons. In medial and parietal association cortex, we observed spontaneous slow waves that self-organized into hubs defined by long-range excitatory and local inhibitory circuits. Unlike directional source/sink-like flows in sensory areas, medial/parietal excitatory and inhibitory hubs had net-zero balanced inputs. Remarkably, multisensory stimulation triggered rapid phase-locking mainly of excitatory hub activity persisting for seconds after the stimulus offset. Therefore, association cortex tends to form balanced excitatory networks that configure slow-wave phase-locking for MSI. Video Abstract: : Kuroki et al. performed cell-type-specific, wide-field FRET-based calcium imaging to visualize cortical network activity induced by multisensory inputs. They observed phase-locking of cortical slow waves in excitatory neuronal hubs in association cortical areas that may underlie multisensory integration. Keywords: wide-field calcium imaging, multisensory integration, cortical slow waves, association cortex, phase locking, fluorescence resonance energy transfer, spontaneous activity, excitatory neuron, inhibitory neuron, mouse

  20. Expression of the ghrelin receptor gene in neurons of the medulla oblongata of the rat.

    Bron, Romke; Yin, Lei; Russo, Domenico; Furness, John B

    2013-08-15

    There is ambiguity concerning the distribution of neurons that express the ghrelin receptor (GHSR) in the medulla oblongata. In the current study we used a sensitive nonradioactive method to investigate GHSR mRNA distribution by in situ hybridization. Strong expression of the GHSR gene was confirmed in neurons of the facial nucleus (FacN, 7), the dorsal vagal complex (DVC), and the semicompact (but not compact) nucleus ambiguus (AmbSC and AmbC). In addition, expression of GHSR was found in other regions, where it had not been described before. GHSR-positive neurons were observed in the gustatory rostral nucleus tractus solitarius and in areas involved in vestibulo-ocular processing (such as the medial vestibular nucleus and the nucleus abducens). GHSR expression was also noted in ventral areas associated with cardiorespiratory control, including the gigantocellular reticular nucleus, the lateral paragigantocellular nucleus, the rostral and caudal ventrolateral medulla, the (pre)-Bötzinger complex, and the rostral and caudal ventrolateral respiratory group. However, GHSR-positive neurons in ventrolateral areas did not express markers for cardiovascular presympathetic vasomotor neurons, respiratory propriobulbar rhythmogenic neurons, or sensory interneurons. GHSR-positive cells were intermingled with catecholamine neurons in the dorsal vagal complex but these populations did not overlap. Thus, the ghrelin receptor occurs in the medulla oblongata in 1) second-order sensory neurons processing gustatory, vestibulo-ocular, and visceral sensation; 2) cholinergic somatomotor neurons of the FacN and autonomic preganglionic neurons of the DMNX and AmbSC; 3) cardiovascular neurons in the DVC, Gi, and LPGi; 4) neurons of as yet unknown function in the ventrolateral medulla. Copyright © 2013 Wiley Periodicals, Inc., A Wiley Company.

  1. Glucose sensing by GABAergic neurons in the mouse nucleus tractus solitarii

    Boychuk, Carie R.; Gyarmati, Peter; Xu, Hong

    2015-01-01

    Changes in blood glucose concentration alter autonomic function in a manner consistent with altered neural activity in brain regions controlling digestive processes, including neurons in the brain stem nucleus tractus solitarii (NTS), which process viscerosensory information. With whole cell or on-cell patch-clamp recordings, responses to elevating glucose concentration from 2.5 to 15 mM were assessed in identified GABAergic NTS neurons in slices from transgenic mice that express EGFP in a subset of GABA neurons. Single-cell real-time RT-PCR was also performed to detect glutamic acid decarboxylase (GAD67) in recorded neurons. In most identified GABA neurons (73%), elevating glucose concentration from 2.5 to 15 mM resulted in either increased (40%) or decreased (33%) neuronal excitability, reflected by altered membrane potential and/or action potential firing. Effects on membrane potential were maintained when action potentials or fast synaptic inputs were blocked, suggesting direct glucose sensing by GABA neurons. Glucose-inhibited GABA neurons were found predominantly in the lateral NTS, whereas glucose-excited cells were mainly in the medial NTS, suggesting regional segregation of responses. Responses were prevented in the presence of glucosamine, a glucokinase (GCK) inhibitor. Depolarizing responses were prevented when KATP channel activity was blocked with tolbutamide. Whereas effects on synaptic input to identified GABAergic neurons were variable in GABA neurons, elevating glucose increased glutamate release subsequent to stimulation of tractus solitarius in unlabeled, unidentified neurons. These results indicate that GABAergic NTS neurons act as GCK-dependent glucose sensors in the vagal complex, providing a means of modulating central autonomic signals when glucose is elevated. PMID:26084907

  2. Target-specific M1 inputs to infragranular S1 pyramidal neurons

    Fanselow, Erika E.; Simons, Daniel J.

    2016-01-01

    The functional role of input from the primary motor cortex (M1) to primary somatosensory cortex (S1) is unclear; one key to understanding this pathway may lie in elucidating the cell-type specific microcircuits that connect S1 and M1. Recently, we discovered that a subset of pyramidal neurons in the infragranular layers of S1 receive especially strong input from M1 (Kinnischtzke AK, Simons DJ, Fanselow EE. Cereb Cortex 24: 2237–2248, 2014), suggesting that M1 may affect specific classes of pyramidal neurons differently. Here, using combined optogenetic and retrograde labeling approaches in the mouse, we examined the strengths of M1 inputs to five classes of infragranular S1 neurons categorized by their projections to particular cortical and subcortical targets. We found that the magnitude of M1 synaptic input to S1 pyramidal neurons varies greatly depending on the projection target of the postsynaptic neuron. Of the populations examined, M1-projecting corticocortical neurons in L6 received the strongest M1 inputs, whereas ventral posterior medial nucleus-projecting corticothalamic neurons, also located in L6, received the weakest. Each population also possessed distinct intrinsic properties. The results suggest that M1 differentially engages specific classes of S1 projection neurons, thereby regulating the motor-related influence S1 exerts over subcortical structures. PMID:27334960

  3. Posterior horn medial meniscal root tear: the prequel

    Umans, H. [Albert Einstein College of Medicine, Bronx, NY (United States); Lenox Hill Radiology and Imaging Associates, New York, NY (United States); Morrison, W. [Thomas Jefferson University Hospital, Philadelphia, PA (United States); DiFelice, G.S. [Hospital for Special Surgery, New York, NY (United States); Vaidya, N. [Crystal Run Healthcare, Middletown, NY (United States); Winalski, C.S. [Cleveland Clinic, Imaging Institute, Department of Biomedical Engineering, Lerner Research Institute, Cleveland, OH (United States)

    2014-06-15

    To determine whether subarticular marrow changes deep to the posterior horn medial meniscal root anchor might predict subsequent medial meniscal root tear. Fifteen patients with MR-diagnosed posterior horn medial meniscal root (PHMMR) tear and a knee MRI antecedent to the tear were identified at three imaging centers over a 7-year period. The pre- and post-tear MR images were evaluated for marrow signal changes deep to the root anchor, meniscal root signal intensity, medial compartment articular cartilage thinning, and meniscal body extrusion. Images of 29 age- and gender-matched individuals with two MRIs of the same knee were reviewed as a control group. MRI in 11 of 15 (73 %) cases with subsequent PHMMR tear demonstrated linear subcortical marrow edema deep to the meniscal root anchor on the antecedent MRI compared to only 1 of 29 (3 %) non-tear controls (p < 0.0001). The abnormal signal resolved on post-tear MRI in all but two patients. Cyst-like changes deep to the PHMMR were present on initial MRI in three of 15 (23 %) cases and three of 29 (10 %) controls, persisting in all but one case on follow-up imaging. The PHMMR was gray on the initial MRI in seven of 15 (47 %) of cases that developed tears compared to four of 29 (14 %) controls (p < 0.0001). There was medial meniscal extrusion (MME) prior to tear in two of 15 (13 %) patients and in ten of 15 (67 %) patients after PHMMR failure. In the control group, MME was present in one (3 %) and three (10 %) of 29 subjects on the initial and follow-up MRIs, respectively. Articular cartilage loss was noted in two of 15 (15 %) cases before tear and nine of 15 (69 %) on follow-up imaging, as compared to one (3 %) and four (14 %) of 29 subjects in the control group. Subcortical marrow edema deep to the PHMMR may result from abnormal stresses and thus be a harbinger of meniscal root failure. This hypothesis is supported by resolution of these marrow signal changes after root tear. Following tear, extrusion of the

  4. Circadian and dark-pulse activation of orexin/hypocretin neurons

    Marston Oliver J

    2008-12-01

    Full Text Available Temporal control of brain and behavioral states emerges as a consequence of the interaction between circadian and homeostatic neural circuits. This interaction permits the daily rhythm of sleep and wake, regulated in parallel by circadian cues originating from the suprachiasmatic nuclei (SCN and arousal-promoting signals arising from the orexin-containing neurons in the tuberal hypothalamus (TH. Intriguingly, the SCN circadian clock can be reset by arousal-promoting stimuli while activation of orexin/hypocretin neurons is believed to be under circadian control, suggesting the existence of a reciprocal relationship. Unfortunately, since orexin neurons are themselves activated by locomotor promoting cues, it is unclear how these two systems interact to regulate behavioral rhythms. Here mice were placed in conditions of constant light, which suppressed locomotor activity, but also revealed a highly pronounced circadian pattern in orexin neuronal activation. Significantly, activation of orexin neurons in the medial and lateral TH occurred prior to the onset of sustained wheel-running activity. Moreover, exposure to a 6 h dark pulse during the subjective day, a stimulus that promotes arousal and phase advances behavioral rhythms, activated neurons in the medial and lateral TH including those containing orexin. Concurrently, this stimulus suppressed SCN activity while activating cells in the median raphe. In contrast, dark pulse exposure during the subjective night did not reset SCN-controlled behavioral rhythms and caused a transient suppression of neuronal activation in the TH. Collectively these results demonstrate, for the first time, pronounced circadian control of orexin neuron activation and implicate recruitment of orexin cells in dark pulse resetting of the SCN circadian clock.

  5. Neuromorphic Silicon Neuron Circuits

    Indiveri, Giacomo; Linares-Barranco, Bernabé; Hamilton, Tara Julia; van Schaik, André; Etienne-Cummings, Ralph; Delbruck, Tobi; Liu, Shih-Chii; Dudek, Piotr; Häfliger, Philipp; Renaud, Sylvie; Schemmel, Johannes; Cauwenberghs, Gert; Arthur, John; Hynna, Kai; Folowosele, Fopefolu; Saighi, Sylvain; Serrano-Gotarredona, Teresa; Wijekoon, Jayawan; Wang, Yingxue; Boahen, Kwabena

    2011-01-01

    Hardware implementations of spiking neurons can be extremely useful for a large variety of applications, ranging from high-speed modeling of large-scale neural systems to real-time behaving systems, to bidirectional brain–machine interfaces. The specific circuit solutions used to implement silicon neurons depend on the application requirements. In this paper we describe the most common building blocks and techniques used to implement these circuits, and present an overview of a wide range of neuromorphic silicon neurons, which implement different computational models, ranging from biophysically realistic and conductance-based Hodgkin–Huxley models to bi-dimensional generalized adaptive integrate and fire models. We compare the different design methodologies used for each silicon neuron design described, and demonstrate their features with experimental results, measured from a wide range of fabricated VLSI chips. PMID:21747754

  6. Neuromorphic silicon neuron circuits

    Giacomo eIndiveri

    2011-05-01

    Full Text Available Hardware implementations of spiking neurons can be extremely useful for a large variety of applications, ranging from high-speed modeling of large-scale neural systems to real-time behaving systems, to bidirectional brain-machine interfaces. The specific circuit solutions used to implement silicon neurons depend on the application requirements. In this paper we describe the most common building blocks and techniques used to implement these circuits, and present an overview of a wide range of neuromorphic silicon neurons, which implement different computational models, ranging from biophysically realistic and conductance based Hodgkin-Huxley models to bi-dimensional generalized adaptive Integrate and Fire models. We compare the different design methodologies used for each silicon neuron design described, and demonstrate their features with experimental results, measured from a wide range of fabricated VLSI chips.

  7. NeuronBank: a tool for cataloging neuronal circuitry

    Paul S Katz

    2010-04-01

    Full Text Available The basic unit of any nervous system is the neuron. Therefore, understanding the operation of nervous systems ultimately requires an inventory of their constituent neurons and synaptic connectivity, which form neural circuits. The presence of uniquely identifiable neurons or classes of neurons in many invertebrates has facilitated the construction of cellular-level connectivity diagrams that can be generalized across individuals within a species. Homologous neurons can also be recognized across species. Here we describe NeuronBank.org, a web-based tool that we are developing for cataloging, searching, and analyzing neuronal circuitry within and across species. Information from a single species is represented in an individual branch of NeuronBank. Users can search within a branch or perform queries across branches to look for similarities in neuronal circuits across species. The branches allow for an extensible ontology so that additional characteristics can be added as knowledge grows. Each entry in NeuronBank generates a unique accession ID, allowing it to be easily cited. There is also an automatic link to a Wiki page allowing an encyclopedic explanation of the entry. All of the 44 previously published neurons plus one previously unpublished neuron from the mollusc, Tritonia diomedea, have been entered into a branch of NeuronBank as have 4 previously published neurons from the mollusc, Melibe leonina. The ability to organize information about neuronal circuits will make this information more accessible, ultimately aiding research on these important models.

  8. Phosphorus-31 and proton magnetic resonance spectroscopy of the medial temporal region in schizophrenic patients

    Yamada, Koichiro

    1996-01-01

    Phosphorus-31 magnetic resonance spectroscopy (MRS) was performed 22 schizophrenic patients and in 22 healthy volunteers. Psychiatric symptoms were estimated on the Brief Psychiatric Rating Scale (BPRS), the Scale for the Assessment of Negative Symptoms (SANS) and the Scale for the Assessment of Positive Symptoms (SAPS). The spectra were quantified for phosphomonoesters (PME), inorganic orthophosphate (Pi), phosphodiesters (PDE), phosphocreatine (Pcr) and the γ, α and β phosphates of 5'-adenosine triphosphate (ATP) by peak area measurements. Proton MRS was performed in 15 schizophrenic patients and in 15 healthy volunteers. Psychiatric symptoms were estimated on the Positive and Negative Syndrome Scale (PANSS) and the SANS. The spectra of N-acetylates (NA), choline-containing compounds (Cho) and creatine-phosphocreatine (Cr) were quantified. The patients showed an increase in the % PDE and a decrease in the % β-ATP in the left temporal region. Positive correlations were found between the % PDE and the subscale of positive symptoms on the BPRS and the total score of SAPS. The % β-ATP correlated negatively with the total score on SAPS. The NA/Cho and NA/Cr ratios were significantly lower in patients than in normal subjects. The Cho/Cr ratio was higher in the patient group. The age at onset of illness correlated positively with the NA/Cho and NA/Cr ratios. No significant correlations were observed between the ratios of metabolites and the scores of PANSS and SANS. There were no significant associations between the mole percentages and the ratios and the daily doses of neuroleptics and anticholinergics. These findings suggest that the disturbed membrane phospholipid and high-energy phosphate metabolism in the left medial temporal region may be one of the pathophysiologies of neuroleptic-resistant positive symptoms in schizophrenia and these abnormalities may be related to neuronal loss and/or neuronal dysfunction in this region. (H.O.)

  9. Reversal of Cocaine-Associated Synaptic Plasticity in Medial Prefrontal Cortex Parallels Elimination of Memory Retrieval.

    Otis, James M; Mueller, Devin

    2017-09-01

    Addiction is characterized by abnormalities in prefrontal cortex that are thought to allow drug-associated cues to drive compulsive drug seeking and taking. Identification and reversal of these pathologic neuroadaptations are therefore critical for treatment of addiction. Previous studies using rodents reveal that drugs of abuse cause dendritic spine plasticity in prelimbic medial prefrontal cortex (PL-mPFC) pyramidal neurons, a phenomenon that correlates with the strength of drug-associated memories in vivo. Thus, we hypothesized that cocaine-evoked plasticity in PL-mPFC may underlie cocaine-associated memory retrieval, and therefore disruption of this plasticity would prevent retrieval. Indeed, using patch clamp electrophysiology we find that cocaine place conditioning increases excitatory presynaptic and postsynaptic transmission in rat PL-mPFC pyramidal neurons. This was accounted for by increases in excitatory presynaptic release, paired-pulse facilitation, and increased AMPA receptor transmission. Noradrenergic signaling is known to maintain glutamatergic plasticity upon reactivation of modified circuits, and we therefore next determined whether inhibition of noradrenergic signaling during memory reactivation would reverse the cocaine-evoked plasticity and/or disrupt the cocaine-associated memory. We find that administration of the β-adrenergic receptor antagonist propranolol before memory retrieval, but not after (during memory reconsolidation), reverses the cocaine-evoked presynaptic and postsynaptic modifications in PL-mPFC and causes long-lasting memory impairments. Taken together, these data reveal that cocaine-evoked synaptic plasticity in PL-mPFC is reversible in vivo, and suggest a novel strategy that would allow normalization of prefrontal circuitry in addiction.

  10. Response properties of neighboring neurons in the auditory midbrain for pure-tone stimulation: a tetrode study.

    Seshagiri, Chandran V; Delgutte, Bertrand

    2007-10-01

    The complex anatomical structure of the central nucleus of the inferior colliculus (ICC), the principal auditory nucleus in the midbrain, may provide the basis for functional organization of auditory information. To investigate this organization, we used tetrodes to record from neighboring neurons in the ICC of anesthetized cats and studied the similarity and difference among the responses of these neurons to pure-tone stimuli using widely used physiological characterizations. Consistent with the tonotopic arrangement of neurons in the ICC and reports of a threshold map, we found a high degree of correlation in the best frequencies (BFs) of neighboring neurons, which were mostly binaural beats. However, the characteristic phases (CPs) of neighboring neurons revealed a significant correlation. Because the CP is related to the neural mechanisms generating the ITD sensitivity, this result is consistent with segregation of inputs to the ICC from the lateral and medial superior olives.

  11. Distinct Developmental Origins Manifest in the Specialized Encoding of Movement by Adult Neurons of the External Globus Pallidus

    Dodson, Paul D.; Larvin, Joseph T.; Duffell, James M.; Garas, Farid N.; Doig, Natalie M.; Kessaris, Nicoletta; Duguid, Ian C.; Bogacz, Rafal; Butt, Simon J.B.; Magill, Peter J.

    2015-01-01

    Summary Transcriptional codes initiated during brain development are ultimately realized in adulthood as distinct cell types performing specialized roles in behavior. Focusing on the mouse external globus pallidus (GPe), we demonstrate that the potential contributions of two GABAergic GPe cell types to voluntary action are fated from early life to be distinct. Prototypic GPe neurons derive from the medial ganglionic eminence of the embryonic subpallium and express the transcription factor Nkx2-1. These neurons fire at high rates during alert rest, and encode movements through heterogeneous firing rate changes, with many neurons decreasing their activity. In contrast, arkypallidal GPe neurons originate from lateral/caudal ganglionic eminences, express the transcription factor FoxP2, fire at low rates during rest, and encode movements with robust increases in firing. We conclude that developmental diversity positions prototypic and arkypallidal neurons to fulfil distinct roles in behavior via their disparate regulation of GABA release onto different basal ganglia targets. PMID:25843402

  12. Modified endoscopic medial maxillectomy for zygomatic implant salvage.

    Schwartz, Joseph S; Tajudeen, Bobby A; Adappa, Nithin D; Palmer, James N

    2016-01-01

    Odontogenic chronic rhinosinusitis (CRS) is an epidemiologically important disease process due, in part, to the increasingly commonplace use of dental restorative procedures such as zygomatic implantation. Traditional management of this clinical entity typically entails extraction of the infected hardware via an open or endoscopic approach. We describe a novel management strategy of odontogenic CRS following bilateral zygomatic implantation for oral rehabilitation that we surgically salvaged via a modified endoscopic medial maxillectomy. We describe the presentation and management of a case of metachronous development of bilateral CRS subsequent to zygomatic implantation. The patient's postoperative course was characterized by marked endoscopic, radiologic, and symptomatic improvement as measured by the 22-item Sino-Nasal Outcome Test. We describe a novel treatment strategy for the management of odontogenic sinusitis resulting from erroneous zygomatic implant placement. Modified endoscopic medial maxillectomy in this clinical context facilitates mucosal normalization of the affected sinus, while permitting preservation of oral function through salvage of the displaced implant.

  13. Kinematic analysis of a televised medial ankle sprain

    Francesca E. Wade

    2018-04-01

    Full Text Available Ankle sprains are one of the most prevalent athletic injuries. Prior work has investigated lateral ankle sprains, but research on generally more severe medial sprains is lacking. This case report performs a kinematic analysis using novel motion analysis methods on a non-contact medial ankle sprain. Peak eversion (50° occurred 0.2 seconds following ground contact, maximum velocity of 426°/s, while peak dorsiflexion (64° occurred with a greater maximum velocity (573°/s. The combination of dorsiflexion at ground contact and rapid eversion is associated with a non-contact eversion sprain. This study provides a quantitative analysis of the eversion ankle sprain injury mechanism. Keywords: Athletic injury, Biomechanics, Ankle injury, Kinematics

  14. Endoscopic modified medial maxillectomy for odontogenic cysts and tumours.

    Nakayama, Tsugihama; Otori, Nobuyoshi; Asaka, Daiya; Okushi, Tetsushi; Haruna, Shin-ichi

    2014-12-01

    Odontogenic maxillary cysts and tumours originate from the tooth root and have traditionally been treated through an intraoral approach. Here, we report the efficacy and utility of endoscopic modified medial maxillectomy (EMMM) for the treatment of odontogenic maxillary cysts and a tumour. We undertook EMMM under general anaesthesia in six patients: four had radicular cysts, one had a dentigerous cyst, and one had a keratocystic odontogenic tumour. The cysts and tumours were completely excised and the inferior turbinate and nasolacrimal duct were preserved in all patients. There were no peri- or postoperative complications, and no incidences of recurrence. Endoscopic modified medial maxillectomy appears to be an effective and safe technique for treating odontogenic cysts and tumours.

  15. Anomalous Medial Branch of Radial Artery: A Rare Variant

    Surbhi Wadhwa

    2016-10-01

    Full Text Available Radial artery is an important consistent vessel of the upper limb. It is a useful vascular access site for coronary procedures and its reliable anatomy has resulted in an elevation of radial forearm flaps for reconstructive surgeries of head and neck. Technical failures, in both the procedures, are mainly due to anatomical variations, such as radial loops, ectopic radial arteries or tortuosity in the vessel. We present a rare and a unique anomalous medial branch of the radial artery spiraling around the flexor carpi radialis muscle in the forearm with a high rising superficial palmar branch of radial artery. Developmentally it probably is a remanent of the normal pattern of capillary vessel maintenance and regression. Such a case is of importance for reconstructive surgeons and coronary interventionists, especially in view of its unique medial and deep course.

  16. Medial gastrocnemius myoelectric control of a robotic ankle exoskeleton.

    Kinnaird, Catherine R; Ferris, Daniel P

    2009-02-01

    A previous study from our laboratory showed that when soleus electromyography was used to control the amount of plantar flexion assistance from a robotic ankle exoskeleton, subjects significantly reduced their soleus activity to quickly return to normal gait kinematics. We speculated that subjects were primarily responding to the local mechanical assistance of the exoskeleton rather than directly attempting to reduce exoskeleton mechanical power via decreases in soleus activity. To test this observation we studied ten healthy subjects walking on a treadmill at 1.25 m/s while wearing a robotic exoskeleton proportionally controlled by medial gastrocnemius activation. We hypothesized that subjects would primarily decrease soleus activity due to its synergistic mechanics with the exoskeleton. Subjects decreased medial gastrocnemius recruitment by 12% ( p exoskeleton (soleus). These findings indicate that anatomical morphology needs to be considered carefully when designing software and hardware for robotic exoskeletons.

  17. Preauricular full-thickness skin grafting in medial canthal reconstruction

    Rafael Corredor-Osorio

    2018-02-01

    Full Text Available Basal cell carcinoma in medial canthal is a surgical challenge to oculoplastic surgeon. We report a case an 80 –year-old woman who presented with a vegetative tumor in the right inferior medial canthus that increased slowly in size over the past two years. An excisional biopsy from the tumor was suggestive of a basal cell carcinoma. A full-thickness excision of the tumor within the oncologic safety limits, was performed. A wide range of reconstruction techniques should be customized to the individual patient. In this case, the use of a preauricular full. Thickness skin graft was a favorable option, without complications, and with acceptable functional and cosmetic results. The aim of the treatment is to restore anatomy, functional and cosmetic of the patients.

  18. Medial patellofemoral ligament reconstruction: patient selection and perspectives

    Baer MR

    2017-09-01

    Full Text Available Michael R. Baer, Jeffrey A. Macalena Department of Orthopaedic Surgery, University of Minnesota, Minneapolis, MN, USA Abstract: Patellofemoral instability is a painful and often recurring disorder with many negative long-term consequences. After a period of failed nonoperative management, surgical intervention has been used to reduce the incidence of patellar subluxation and dislocations. Medial patellofemoral ligament (MPFL reconstruction successfully addresses patellofemoral instability by restoring the deficient primary medial patellar soft tissue restraint. When planning MPFL reconstruction for instability, it is imperative to consider the patient’s unique anatomy including the tibial tuberosity–trochlear groove (TT–TG distance, trochlear dysplasia, and patella alta. Additionally, it is important to individualize surgical treatment in the skeletally immature, hypermobile, and athletic populations. Keywords: MPFL, indications, considerations, contraindications

  19. Destruction of the medial forebrain bundle caudal to the site of stimulation reduces rewarding efficacy but destruction rostrally does not.

    Gallistel, C R; Leon, M; Lim, B T; Sim, J C; Waraczynski, M

    1996-08-01

    Rats with an electrode in the medial forebrain bundle (MFB) in or near the ventral tegmental area and another at the level of the rostral hypothalamus sustained large electrolytic lesions at either the rostral or the caudal electrode. The rewarding efficacy of stimulation through the other electrode was determined before and after the lesion. Massive damage to the MFB in the rostral lateral hypothalamus (LH) generally had little effect on the rewarding efficacy of more caudal stimulation, whereas large lesions in the caudal MFB generally reduced the rewarding efficacy of LH stimulation by 35-60%. Similar reductions were produced by knife cuts in the caudal MFB. These results appear to be inconsistent with the hypothesis that the reward fibers consist either of descending or ascending fibers coursing in or near the MFB. It is suggested that the reward fibers are collaterals from neurons with both their somata and their behaviorally significant terminals located primarily in the midbrain.

  20. Unicameral Bone Cyst of the Medial Cuneiform: A Case Report.

    Schick, Faith A; Daniel, Joseph N; Miller, Juliane S

    2016-02-17

    A unicameral bone cyst is a relatively uncommon, benign bone tumor found in the metaphysis of long bones, such as the humerus and the femur, in skeletally immature persons. In the foot, these benign, fluid-filled cavities are most commonly found within the os calcis. We present a case report of a 10-year-old female with a unicameral bone cyst of the medial cuneiform.

  1. Aetiology, imaging and treatment of medial tibial stress syndrome

    Moen, M.H.

    2012-01-01

    The work contained is this thesis discusses aetiology, imaging and treatment of a common leg injury: medial tibial stress syndrome (MTSS). Although a common injury, the number of scientific articles on this topic is relatively low as is explained in chapter 1. This chapter also highlights that the most probable cause of MTSS is bone overload and not traction induced periostitis. In chapter 2 a review of the literature on MTSS is provided until 2009. Chapters 3 and 4 discuss different common a...

  2. Failed medial patellofemoral ligament reconstruction: Causes and surgical strategies

    Sanchis-Alfonso, Vicente; Montesinos-Berry, Erik; Ramirez-Fuentes, Cristina; Leal Blanquet, Joan; Gelber, Pablo-Eduardo; Monllau García, Juan Carlos

    2017-01-01

    Patellar instability is a common clinical problem encountered by orthopedic surgeons specializing in the knee. For patients with chronic lateral patellar instability, the standard surgical approach is to stabilize the patella through a medial patellofemoral ligament (MPFL) reconstruction. Foreseeably, an increasing number of revision surgeries of the reconstructed MPFL will be seen in upcoming years. In this paper, the causes of failed MPFL reconstruction are analyzed: (1) incorrect surgical ...

  3. 'Cable-maker's clavicle': stress fracture of the medial clavicle

    Peebles, C.R.; Sulkin, T.; Sampson, M.A.

    2000-01-01

    A 50-year-old man presented with a non-traumatic painful swelling over the medial clavicle. Radiographs showed a poorly defined fracture and the possibility of an underlying pathology was raised. Computed tomography suggested a stress fracture. This prompted a further, more detailed occupational history to be obtained from the patient, which revealed a hitherto undescribed cause of clavicular stress fracture and obviated the need for further imaging or biopsy. (orig.)

  4. Evidence for proteolytic cleavage of brevican by the ADAMTSs in the dentate gyrus after excitotoxic lesion of the mouse entorhinal cortex

    Gottschall Paul E

    2005-08-01

    Full Text Available Abstract Background Brevican is a member of the lectican family of aggregating extracellular matrix (ECM proteoglycans that bear chondroitin sulfate (CS chains. It is highly expressed in the central nervous system (CNS and is thought to stabilize synapses and inhibit neural plasticity and as such, neuritic or synaptic remodeling would be less likely to occur in regions with intact and abundant, lectican-containing, ECM complexes. Neural plasticity may occur more readily when these ECM complexes are broken down by endogenous proteases, the ADAMTSs (adisintegrin and metalloproteinase with thrombospondin motifs, that selectively cleave the lecticans. The purpose of these experiments was to determine whether the production of brevican or the ADAMTS-cleaved fragments of brevican were altered after deafferentation and reinnervation of the dentate gyrus via entorhinal cortex lesion (ECL. Results In the C57Bl6J mouse, synaptic density in the molecular layer of the dentate gyrus, as measured by synaptophysin levels in ELISA, was significantly attenuated 2 days (nearly 50% of contralateral and 7 days after lesion and returned to levels not different from the contralateral region at 30 days. Immunoreactive brevican in immunoblot was elevated 2 days after lesion, whereas there was a significant increase in the proteolytic product at 7, but not 30 days post-lesion. ADAMTS activity, estimated using the ratio of the specific ADAMTS-derived brevican fragment and intact brevican levels was increased at 7 days, but was not different from the contralateral side at 2 or 30 days after deafferentation. Conclusion These findings indicate that ADAMTS activity in the dentate outer molecular layer (OML is elevated during the initial synaptic reinnervation period (7 days after lesion. Therefore, proteolytic processing of brevican appears to be a significant extracellular event in the remodeling of the dentate after EC lesion, and may modulate the process of sprouting and

  5. The Bioinformatic Analysis of the Dysregulated Genes and MicroRNAs in Entorhinal Cortex, Hippocampus, and Blood for Alzheimer’s Disease

    Xiaocong Pang

    2017-01-01

    Full Text Available Aim. The incidence of Alzheimer’s disease (AD has been increasing in recent years, but there exists no cure and the pathological mechanisms are not fully understood. This study aimed to find out the pathogenesis of learning and memory impairment, new biomarkers, potential therapeutic targets, and drugs for AD. Methods. We downloaded the microarray data of entorhinal cortex (EC and hippocampus (HIP of AD and controls from Gene Expression Omnibus (GEO database, and then the differentially expressed genes (DEGs in EC and HIP regions were analyzed for functional and pathway enrichment. Furthermore, we utilized the DEGs to construct coexpression networks to identify hub genes and discover the small molecules which were capable of reversing the gene expression profile of AD. Finally, we also analyzed microarray and RNA-seq dataset of blood samples to find the biomarkers related to gene expression in brain. Results. We found some functional hub genes, such as ErbB2, ErbB4, OCT3, MIF, CDK13, and GPI. According to GO and KEGG pathway enrichment, several pathways were significantly dysregulated in EC and HIP. CTSD and VCAM1 were dysregulated significantly in blood, EC, and HIP, which were potential biomarkers for AD. Target genes of four microRNAs had similar GO_terms distribution with DEGs in EC and HIP. In addtion, small molecules were screened out for AD treatment. Conclusion. These biological pathways and DEGs or hub genes will be useful to elucidate AD pathogenesis and identify novel biomarkers or drug targets for developing improved diagnostics and therapeutics against AD.

  6. Medial temporal lobe damage impairs representation of simple stimuli

    David E Warren

    2010-05-01

    Full Text Available Medial temporal lobe damage in humans is typically thought to produce a circumscribed impairment in the acquisition of new enduring memories, but recent reports have documented deficits even in short-term maintenance. We examined possible maintenance deficits in a population of medial temporal lobe amnesics, with the goal of characterizing their impairments as either representational drift or outright loss of representation over time. Patients and healthy comparisons performed a visual search task in which the similarity of various lures to a target was varied parametrically. Stimuli were simple shapes varying along one of several visual dimensions. The task was performed in two conditions, one presenting a sample target simultaneously with the search array and the other imposing a delay between sample and array. Eye-movement data collected during search revealed that the duration of fixations to items varied with lure-target similarity for all participants, i.e., fixations were longer for items more similar to the target. In the simultaneous condition, patients and comparisons exhibited an equivalent effect of similarity on fixation durations. However, imposing a delay modulated the effect differently for the two groups: in comparisons, fixation duration to similar items was exaggerated; in patients, the original effect was diminished. These findings indicate that medial temporal lobe lesions subtly impair short-term maintenance of even simple stimuli, with performance reflecting not the complete loss of the maintained representation but rather a degradation or progressive drift of the representation over time.

  7. Medial maxillectomy in recalcitrant sinusitis: when, why and how?

    Konstantinidis, Iordanis; Constantinidis, Jannis

    2014-02-01

    We reviewed all journal articles relevant to endoscopic medial maxillectomy in patients with recalcitrant chronic maxillary sinusitis in order to present all indications, the underlying pathophysiology and the developed surgical techniques. Despite the high success rate of middle meatal antrostomy, cases with persistent maxillary sinus disease exist and often need a more extended endoscopic procedure for the better control of the disease. Such surgical option uses gravity for better sinus drainage and offers better saline irrigation, local application of medications and follow-up inspection. An endoscopic medial maxillectomy and its modified forms offer a wider surgical field and access to all 'difficult' areas of the maxillary sinus. Patients with previous limited endoscopic sinus surgery or extended open surgery, cystic fibrosis, extensive mucoceles, allergic fungal sinusitis, odontogenic infections, foreign bodies and so on may suffer from recurrent disease requiring an endoscopic medial maxillectomy. Depending on the disease, various modifications of the procedure can be performed preserving the anterior buttress, nasolacrimal duct and inferior turbinate if possible.

  8. Medial blepharosynechioplasty: a new surgical concept for severe dry eye

    Sasaki T

    2012-06-01

    Full Text Available Tsugihisa Sasaki,1,2 Taeko Ota,3 Youko Ookura,4 Kazuhisa Sugiyama11Department of Ophthalmology, Kanazawa University School of Medicine, Kanazawa, Ishikawa; 2Department of Ophthalmology, Fukui Prefectural Hospital, Fukui; 3Department of Ophthalmology, Tonami General Hospital, Tonami-city, Toyama; 4Department of Ophthamology, Saiseikai Kanazawa Hospital, Kanazawa, Ishikawa, JapanBackground: The purpose of this work was to report on the performance of medial blepharosynechioplasty (MBSP, a newly devised technique for treating severe dry eye.Methods: In this retrospective, nonrandomized clinical trial, three cases with severe dry eye (Sjögren’s syndrome associated with repeated punctal plug loss were treated using MBSP to create a synechia between the upper and lower lid medial borders of the puncta to suppress the lacrimal pump.Results: Postoperative follow-up showed improvement in the corneal condition in all three cases that persisted for 12–35 months. None of the patients had visual impairment.Conclusion: MBSP is a promising treatment for severe dry eye and merits further study.Keywords: dry eye, lacrimal pump suppression, medial blepharosynechioplasty

  9. MARRT: Medial Axis biased rapidly-exploring random trees

    Denny, Jory

    2014-05-01

    © 2014 IEEE. Motion planning is a difficult and widely studied problem in robotics. Current research aims not only to find feasible paths, but to ensure paths have certain properties, e.g., shortest or safest paths. This is difficult for current state-of-the-art sampling-based techniques as they typically focus on simply finding any path. Despite this difficulty, sampling-based techniques have shown great success in planning for a wide range of applications. Among such planners, Rapidly-Exploring Random Trees (RRTs) search the planning space by biasing exploration toward unexplored regions. This paper introduces a novel RRT variant, Medial Axis RRT (MARRT), which biases tree exploration to the medial axis of free space by pushing all configurations from expansion steps towards the medial axis. We prove that this biasing increases the tree\\'s clearance from obstacles. Improving obstacle clearance is useful where path safety is important, e.g., path planning for robots performing tasks in close proximity to the elderly. Finally, we experimentally analyze MARRT, emphasizing its ability to effectively map difficult passages while increasing obstacle clearance, and compare it to contemporary RRT techniques.

  10. Dopamine in the medial amygdala network mediates human bonding.

    Atzil, Shir; Touroutoglou, Alexandra; Rudy, Tali; Salcedo, Stephanie; Feldman, Ruth; Hooker, Jacob M; Dickerson, Bradford C; Catana, Ciprian; Barrett, Lisa Feldman

    2017-02-28

    Research in humans and nonhuman animals indicates that social affiliation, and particularly maternal bonding, depends on reward circuitry. Although numerous mechanistic studies in rodents demonstrated that maternal bonding depends on striatal dopamine transmission, the neurochemistry supporting maternal behavior in humans has not been described so far. In this study, we tested the role of central dopamine in human bonding. We applied a combined functional MRI-PET scanner to simultaneously probe mothers' dopamine responses to their infants and the connectivity between the nucleus accumbens (NAcc), the amygdala, and the medial prefrontal cortex (mPFC), which form an intrinsic network (referred to as the "medial amygdala network") that supports social functioning. We also measured the mothers' behavioral synchrony with their infants and plasma oxytocin. The results of this study suggest that synchronous maternal behavior is associated with increased dopamine responses to the mother's infant and stronger intrinsic connectivity within the medial amygdala network. Moreover, stronger network connectivity is associated with increased dopamine responses within the network and decreased plasma oxytocin. Together, these data indicate that dopamine is involved in human bonding. Compared with other mammals, humans have an unusually complex social life. The complexity of human bonding cannot be fully captured in nonhuman animal models, particularly in pathological bonding, such as that in autistic spectrum disorder or postpartum depression. Thus, investigations of the neurochemistry of social bonding in humans, for which this study provides initial evidence, are warranted.

  11. An Isolated Medial Patellofemoral Ligament Reconstruction with Patellar Tendon Autograft

    Dariusz Witoński

    2013-01-01

    Full Text Available The aim of the study was to evaluate the results of the medial patellofemoral ligament reconstruction with a medial strip of patellar tendon autograft after a minimum 2-year followup. Ten patients (10 knees were operated on by one surgeon, according to the modified technique, described by Camanho, without any bone plug at free graft end. The mean age of the patients was 27.2 years (ranging from 18 to 42 years. The mean follow-up period was 3 years and 7 months. All patients were reviewed prospectively. At the last follow-up visit, all the patients demonstrated a significant improvement in terms of patellofemoral joint stability, all aspects of the KOOS questionnaire, and Kujala et al.’s score (59.7 points preoperatively and 84.4 points at the last followup. No patient revealed recurrent dislocation. The SF-36 score revealed a significant improvement in bodily pain, general health, physical role functioning, social role functioning, and physical functioning domains. The described MPFL reconstruction with the use of the medial 1/3rd of patella tendon is an effective procedure that gives satisfactorily patellofemoral joint functions, improves the quality of life, and provides much pain relief. It is relatively simple, surgically not extensive, and economically cost-effective procedure.

  12. Incarcerated medial epicondyle fracture following pediatric elbow dislocation: 11 cases.

    Dodds, Seth D; Flanagin, Brody A; Bohl, Daniel D; DeLuca, Peter A; Smith, Brian G

    2014-09-01

    To describe outcomes after surgical management of pediatric elbow dislocation with incarceration of the medial epicondyle. We conducted a retrospective case review of 11 consecutive children and adolescents with an incarcerated medial epicondyle fracture after elbow dislocation. All patients underwent open reduction internal fixation using a similar technique. We characterized outcomes at final follow-up. Average follow-up was 14 months (range, 4-56 mo). All patients had clinical and radiographic signs of healing at final follow-up. There was no radiographic evidence of loss of reduction at intervals or at final follow-up. There were no cases of residual deformity or valgus instability. Average final arc of elbow motion was 4° to 140°. All patients had forearm rotation from 90° supination to 90° pronation. Average Mayo elbow score was 99.5. Four of 11 patients had ulnar nerve symptoms postoperatively and 1 required a second operation for ulnar nerve symptoms. In addition, 1 required a second operation for flexion contracture release with excision of heterotopic ossification. Three patients had ulnar nerve symptoms at final follow-up. Two of these had mild paresthesia only and 1 had both mild paresthesia and weakness. Our results suggest that open reduction internal fixation of incarcerated medial epicondyle fractures after elbow dislocation leads to satisfactory motion and function; however, the injury carries a high risk for complications, particularly ulnar neuropathy. Therapeutic IV. Copyright © 2014 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  13. Bilateral Medial Medullary Stroke: A Challenge in Early Diagnosis

    Amir M. Torabi

    2013-01-01

    Full Text Available Bilateral medial medullary stroke is a very rare type of stroke, with catastrophic consequences. Early diagnosis is crucial. Here, I present a young patient with acute vertigo, progressive generalized weakness, dysarthria, and respiratory failure, who initially was misdiagnosed with acute vestibular syndrome. Initial brain magnetic resonance imaging (MRI that was done in the acute phase was read as normal. Other possibilities were excluded by lumbar puncture and MRI of cervical spine. MR of C-spine showed lesion at medial medulla; therefore a second MRI of brain was requested, showed characteristic “heart appearance” shape at diffusion weighted (DWI, and confirmed bilateral medial medullary stroke. Retrospectively, a vague-defined hyperintense linear DWI signal at midline was noted in the first brain MRI. Because of the symmetric and midline pattern of this abnormal signal and similarity to an artifact, some radiologists or neurologists may miss this type of stroke. Radiologists and neurologists must recognize clinical and MRI findings of this rare type of stroke, which early treatment could make a difference in patient outcome. The abnormal DWI signal in early stages of this type of stroke may not be a typical “heart appearance” shape, and other variants such as small dot or linear DWI signal at midline must be recognized as early signs of stroke. Also, MRI of cervical spine may be helpful if there is attention to brainstem as well.

  14. Longitudinal Effects of Ketamine on Dendritic Architecture In Vivo in the Mouse Medial Frontal Cortex123

    Phoumthipphavong, Victoria; Barthas, Florent; Hassett, Samantha

    2016-01-01

    Abstract A single subanesthetic dose of ketamine, an NMDA receptor antagonist, leads to fast-acting antidepressant effects. In rodent models, systemic ketamine is associated with higher dendritic spine density in the prefrontal cortex, reflecting structural remodeling that may underlie the behavioral changes. However, turnover of dendritic spines is a dynamic process in vivo, and the longitudinal effects of ketamine on structural plasticity remain unclear. The purpose of the current study is to use subcellular resolution optical imaging to determine the time course of dendritic alterations in vivo following systemic ketamine administration in mice. We used two-photon microscopy to visualize repeatedly the same set of dendritic branches in the mouse medial frontal cortex (MFC) before and after a single injection of ketamine or saline. Compared to controls, ketamine-injected mice had higher dendritic spine density in MFC for up to 2 weeks. This prolonged increase in spine density was driven by an elevated spine formation rate, and not by changes in the spine elimination rate. A fraction of the new spines following ketamine injection was persistent, which is indicative of functional synapses. In a few cases, we also observed retraction of distal apical tuft branches on the day immediately after ketamine administration. These results indicate that following systemic ketamine administration, certain dendritic inputs in MFC are removed immediately, while others are added gradually. These dynamic structural modifications are consistent with a model of ketamine action in which the net effect is a rebalancing of synaptic inputs received by frontal cortical neurons. PMID:27066532

  15. Cyclic estrogenic fluctuation influences synaptic transmission of the medial vestibular nuclei in female rats.

    Pettorossi, Vito E; Frondaroli, Adele; Grassi, Silvarosa

    2011-04-01

    The estrous cycle in female rats influences the basal synaptic responsiveness and plasticity of the medial vestibular nucleus (MVN) neurons through different levels of circulating 17β-estradiol (cE(2)). The aim of this study was to verify, in the female rat, whether cyclic fluctuations of cE(2) influence long-term synaptic effects induced by high frequency afferent stimulation (HFS) in the MVN, since we found that HFS in the male rat induces fast long-term potentiation (fLTP), which depends on the neural synthesis of E(2) (nE(2)) from testosterone (T). We analyzed the field potential (FP) evoked in the MVN by vestibular afferent stimulation, under basal conditions, and after HFS, in brainstem slices of female rats during high levels (proestrus, PE) and low levels (diestrus, DE) of cE(2). Selective blocking agents of converting T enzymes were used. Unlike in the male rat, HFS induced three effects: fLTP through T conversion into E(2), and slow LTP (sLTP) and long-term depression (LTD), through T conversion into DHT. The occurrence of these effects depended on the estrous cycle phase: the frequency of fLTP was higher in DE, and those of sLTP and LTD were higher in PE. Conversely, the basal FP was also higher in PE than in DE.

  16. Gaba mediated long-term depression (LTD) in the rat medial vestibular nuclei.

    Grassi, S; Della Torre, G; Zampolini, M; Pettorossi, V E

    1995-01-01

    As previously demonstrated, high frequency stimulation (HFS) of the primary vestibular afferents always induces a clear, long lasting depression of the polysynaptic (N2) component of the field potentials recorded in the dorsal portion of the medial vestibular nuclei (MVN). The induction of the HFS effect was mediated by the activation of glutamate NMDA receptors, since it was blocked by AP5. The mechanisms at the basis of such a depression were studied. Our results demonstrate that Gaba, acting on both GabaA and GabaB receptors, is involved in mediating this phenomenon. In fact, HFS applied during Bicuculline and Saclofen perfusion, was no longer able to induce an N2 depression, but provoked a slight potentiation. However, the N2 depression clearly emerged after drug wash-out. Furthermore, Bicuculline and Saclofen fully abolished the N2 depression and highlighted the potentiation, when administered after HFS. The possibility that the N2 depression is the result of a homosynaptic LTD can be excluded on the basis of our results. On the contrary, our findings suggest that the depression is due to an enhancement of the Gaba inhibitory effect due to an HFS dependent increase in gabaergic interneuron activity, which resets vestibular neuron excitability at a lower level.

  17. Neuronal avalanches and learning

    Arcangelis, Lucilla de, E-mail: dearcangelis@na.infn.it [Department of Information Engineering and CNISM, Second University of Naples, 81031 Aversa (Italy)

    2011-05-01

    Networks of living neurons represent one of the most fascinating systems of biology. If the physical and chemical mechanisms at the basis of the functioning of a single neuron are quite well understood, the collective behaviour of a system of many neurons is an extremely intriguing subject. Crucial ingredient of this complex behaviour is the plasticity property of the network, namely the capacity to adapt and evolve depending on the level of activity. This plastic ability is believed, nowadays, to be at the basis of learning and memory in real brains. Spontaneous neuronal activity has recently shown features in common to other complex systems. Experimental data have, in fact, shown that electrical information propagates in a cortex slice via an avalanche mode. These avalanches are characterized by a power law distribution for the size and duration, features found in other problems in the context of the physics of complex systems and successful models have been developed to describe their behaviour. In this contribution we discuss a statistical mechanical model for the complex activity in a neuronal network. The model implements the main physiological properties of living neurons and is able to reproduce recent experimental results. Then, we discuss the learning abilities of this neuronal network. Learning occurs via plastic adaptation of synaptic strengths by a non-uniform negative feedback mechanism. The system is able to learn all the tested rules, in particular the exclusive OR (XOR) and a random rule with three inputs. The learning dynamics exhibits universal features as function of the strength of plastic adaptation. Any rule could be learned provided that the plastic adaptation is sufficiently slow.

  18. Neuronal avalanches and learning

    Arcangelis, Lucilla de

    2011-01-01

    Networks of living neurons represent one of the most fascinating systems of biology. If the physical and chemical mechanisms at the basis of the functioning of a single neuron are quite well understood, the collective behaviour of a system of many neurons is an extremely intriguing subject. Crucial ingredient of this complex behaviour is the plasticity property of the network, namely the capacity to adapt and evolve depending on the level of activity. This plastic ability is believed, nowadays, to be at the basis of learning and memory in real brains. Spontaneous neuronal activity has recently shown features in common to other complex systems. Experimental data have, in fact, shown that electrical information propagates in a cortex slice via an avalanche mode. These avalanches are characterized by a power law distribution for the size and duration, features found in other problems in the context of the physics of complex systems and successful models have been developed to describe their behaviour. In this contribution we discuss a statistical mechanical model for the complex activity in a neuronal network. The model implements the main physiological properties of living neurons and is able to reproduce recent experimental results. Then, we discuss the learning abilities of this neuronal network. Learning occurs via plastic adaptation of synaptic strengths by a non-uniform negative feedback mechanism. The system is able to learn all the tested rules, in particular the exclusive OR (XOR) and a random rule with three inputs. The learning dynamics exhibits universal features as function of the strength of plastic adaptation. Any rule could be learned provided that the plastic adaptation is sufficiently slow.

  19. Bucket handle tears of the medial meniscus: meniscal intrusion rather than meniscal extrusion

    Schlossberg, S.; Umans, H.; Flusser, G.; DiFelice, G.S.; Lerer, D.B.

    2007-01-01

    To determine the frequency of medial meniscal extrusion (MME) versus ''medial meniscal intrusion'' in the setting of bucket handle tears. Images were evaluated for previously reported risk factors for MME, including: medial meniscal root tear, radial tear, degenerative joint disease and joint effusion. Forty-one consecutive cases of bucket handle tear of the medial meniscus were reviewed by consensus by two musculoskeletal radiologists. Imaging was performed using a 1.5 GE Signa MR unit. Patient age, gender, medial meniscal root integrity, MME, medial meniscal intrusion, degenerative joint disease, effusion and anterior cruciate ligament (ACL) tear were recorded. Thirteen females and 27 males (age 12-62 years, median=30 years) were affected; one had bucket handle tear of each knee. Effusion was small in 13, moderate in 9 and large in 18. Degenerative joint disease was mild in three, moderate in two and severe in one. 26 ACL tears included three partial and three chronic. Medial meniscal root tear was complete in one case and partial thickness in two. None of the 40 cases with an intact or partially torn medial meniscal root demonstrated MME. MME of 3.1 mm was seen in the only full-thickness medial meniscal root tear, along with chronic ACL tear, moderate degenerative joint disease and large effusion. Medial meniscal intrusion of the central bucket handle fragment into the intercondylar notch was present in all 41 cases. Given an intact medial meniscal root in the setting of a ''pure'' bucket handle tear, there is no MME. (orig.)

  20. Medial joint space widening of the ankle in displaced Tillaux and Triplane fractures in children.

    Gourineni, Prasad; Gupta, Asheesh

    2011-10-01

    Tillaux and Triplane fractures occur in children predominantly from external rotation mechanism. We hypothesized that in displaced fractures, the talus would shift laterally along with the distal fibula and the distal tibial epiphyseal fragment increasing the medial joint space. Consecutive cases evaluated retrospectively. Level I and Level II centers. Twenty-two skeletally immature patients with 14 displaced Triplane fractures and eight displaced Tillaux fractures were evaluated for medial joint space widening. Measurement of fracture displacement and medial joint space widening before and after intervention. Thirteen Triplane and six Tillaux fractures (86%) showed medial space widening of 1 to 9 mm and equal to the amount of fracture displacement. Reduction of the fracture reduced the medial space to normal. There were no known complications. Medial space widening of the ankle may be a sign of ankle fracture displacement. Anatomic reduction of the fracture reduces the medial space and may improve the results in Tillaux and Triplane fractures.

  1. Modulation of the arcuate nucleus-medial preoptic nucleus lordosis regulating circuit: a role for GABAB receptors

    Sinchak, Kevin; Dewing, Phoebe; Ponce, Laura; Gomez, Liliana; Christensen, Amy; Berger, Max; Micevych, Paul

    2013-01-01

    Estradiol rapidly activates a microcircuit in the arcuate nucleus of the hypothalamus (ARH) that is needed for maximal female sexual receptivity. Membrane estrogen receptor-α complexes with and signals through the metabotropic glutamate receptor-1a stimulating NPY release within the ARH activating proopiomelanocortin (POMC) neurons. These POMC neurons project to the medial preoptic nucleus (MPN) and release β-endorphin. Estradiol treatment induces activation/internalization of MPN μ-opioid receptors (MOR) to inhibit lordosis. Estradiol membrane action modulates ARH gamma-aminobutyric acid receptor-B (GABAB) activity. We tested the hypothesis that ARH GABAB receptors mediate estradiol-induced MOR activation and facilitation of sexual receptivity. Double label immunohistochemistry revealed expression of GABAB receptors in NPY, ERα and POMC expressing ARH neurons. Approximately 70% of POMC neurons expressed GABAB receptors. Because estradiol initially activates an inhibitory circuit and maintains activation of this circuit, the effects of blocking GABAB receptors were evaluated before estradiol benzoate (EB) treatment and after at the time of lordosis testing. Bilateral infusions of the GABAB receptor antagonist, CGP52432, into the ARH prior to EB treatment of ovariectomized rats prevented estradiol-induced activation/internalization of MPN MOR, and the rats remained unreceptive. However, in EB treated rats, bilateral CGP52432 infusions 30 minutes before behavior testing attenuated MOR internalization and facilitated lordosis. These results indicated that GABAB receptors were located within the lordosis-regulating ARH microcircuit and are necessary for activation and maintenance of the estradiol inhibition of lordosis behavior. Although GABAB receptors positively influence estradiol signaling, they negatively regulate lordosis behavior since GABAB activity maintains the estradiol-induced inhibition. PMID:23756153

  2. The basic circuit of the IC: tectothalamic neurons with different patterns of synaptic organization send different messages to the thalamus

    Ito, Tetsufumi; Oliver, Douglas L.

    2012-01-01

    The inferior colliculus (IC) in the midbrain of the auditory system uses a unique basic circuit to organize the inputs from virtually all of the lower auditory brainstem and transmit this information to the medial geniculate body (MGB) in the thalamus. Here, we review the basic circuit of the IC, the neuronal types, the organization of their inputs and outputs. We specifically discuss the large GABAergic (LG) neurons and how they differ from the small GABAergic (SG) and the more numerous glutamatergic neurons. The somata and dendrites of LG neurons are identified by axosomatic glutamatergic synapses that are lacking in the other cell types and exclusively contain the glutamate transporter VGLUT2. Although LG neurons are most numerous in the central nucleus of the IC (ICC), an analysis of their distribution suggests that they are not specifically associated with one set of ascending inputs. The inputs to ICC may be organized into functional zones with different subsets of brainstem inputs, but each zone may contain the same three neuron types. However, the sources of VGLUT2 axosomatic terminals on the LG neuron are not known. Neurons in the dorsal cochlear nucleus, superior olivary complex, intermediate nucleus of the lateral lemniscus, and IC itself that express the gene for VGLUT2 only are the likely origin of the dense VGLUT2 axosomatic terminals on LG tectothalamic neurons. The IC is unique since LG neurons are GABAergic tectothalamic neurons in addition to the numerous glutamatergic tectothalamic neurons. SG neurons evidently target other auditory structures. The basic circuit of the IC and the LG neurons in particular, has implications for the transmission of information about sound through the midbrain to the MGB. PMID:22855671

  3. Laser capture microdissection of enriched populations of neurons or single neurons for gene expression analysis after traumatic brain injury.

    Boone, Deborah R; Sell, Stacy L; Hellmich, Helen Lee

    2013-04-10

    Long-term cognitive disability after TBI is associated with injury-induced neurodegeneration in the hippocampus-a region in the medial temporal lobe that is critical for learning, memory and executive function. Hence our studies focus on gene expression analysis of specific neuronal populations in distinct subregions of the hippocampus. The technique of laser capture microdissection (LCM), introduced in 1996 by Emmert-Buck, et al., has allowed for significant advances in gene expression analysis of single cells and enriched populations of cells from heterogeneous tissues such as the mammalian brain that contains thousands of functional cell types. We use LCM and a well established rat model of traumatic brain injury (TBI) to investigate the molecular mechanisms that underlie the pathogenesis of TBI. Following fluid-percussion TBI, brains are removed at pre-determined times post-injury, immediately frozen on dry ice, and prepared for sectioning in a cryostat. The rat brains can be embedded in OCT and sectioned immediately, or stored several months at -80 °C before sectioning for laser capture microdissection. Additionally, we use LCM to study the effects of TBI on circadian rhythms. For this, we capture neurons from the suprachiasmatic nuclei that contain the master clock of the mammalian brain. Here, we demonstrate the use of LCM to obtain single identified neurons (injured and degenerating, Fluoro-Jade-positive, or uninjured, Fluoro-Jade-negative) and enriched populations of hippocampal neurons for subsequent gene expression analysis by real time PCR and/or whole-genome microarrays. These LCM-enabled studies have revealed that the selective vulnerability of anatomically distinct regions of the rat hippocampus are reflected in the different gene expression profiles of different populations of neurons obtained by LCM from these distinct regions. The results from our single-cell studies, where we compare the transcriptional profiles of dying and adjacent surviving

  4. Tyrosine Hydroxylase (TH)- and Aromatic-L-Amino Acid Decarboxylase (AADC)-Immunoreactive Neurons of the Common Marmoset (Callithrix jacchus) Brain: An Immunohistochemical Analysis

    Karasawa, Nobuyuki; Hayashi, Motoharu; Yamada, Keiki; Nagatsu, Ikuko; Iwasa, Mineo; Takeuchi, Terumi; Uematsu, Mitsutoshi; Watanabe, Kazuko; Onozuka, Minoru

    2007-01-01

    From the perspective of comparative morphology, the distribution of non-monoaminergic neurons in the common marmoset (Callithrix jacchus) was investigated using an immunohistochemical method with specific antibodies to tyrosine hydroxylase (TH) and aromatic-L-amino acid decarboxylase (AADC). TH-immunoreactive (IR) neurons (but not AADC-IR) neurons were observed in the olfactory tubercle, preoptic suprachiasmatic nucleus, periventricular hypothalamic nucleus, arcuate nucleus, paraventricular nucleus, periaqueductal gray matter, medial longitudinal fasciculus, substantia nigra, and nucleus solitaris. In contrast, AADC-IR (but not TH-IR), small, oval and spindle-shaped neurons were sparsely distributed in the following areas: the hypothalamus from the anterior nucleus to the lateral nucleus, the dorsomedial nucleus, the dorsomedial area of the medial mammillary nucleus and the arcuate nucleus; the midbrain, including the stria medullaris and substantia nigra; and the medulla oblongata, including the dorsal area of the nucleus solitaris and the medullary reticular nucleus. The distribution of AADC-IR neurons was not as extensive in the marmoset as it is in rats. However, these neurons were located in the marmoset, but not the rat substantia nigra. Furthermore, AADC-IR neurons that are present in the human striatum were absent in that of the marmoset. The present results indicate that the distribution of non-monoaminergic neurons in the brain of the common marmoset is unique and different from that in humans and rodents. PMID:17653300

  5. Contribution of Intrinsic Lactate to Maintenance of Seizure Activity in Neocortical Slices from Patients with Temporal Lobe Epilepsy and in Rat Entorhinal Cortex

    Angamo, Eskedar Ayele; ul Haq, Rizwan; Roesner, Joerg; Gabriel, Siegrun; Gerevich, Zoltan; Heinemann, Uwe; Kovacs, Richard

    2017-01-01

    Neuronal lactate uptake supports energy metabolism associated with synaptic signaling and recovery of extracellular ion gradients following neuronal activation. Altered expression of the monocarboxylate transporters (MCT) in temporal lobe epilepsy (TLE) hampers lactate removal into the bloodstream. The resulting increase in parenchymal lactate levels might exert both, anti- and pro-ictogen effects, by causing acidosis and by supplementing energy metabolism, respectively. Hence, we assessed th...

  6. Kappe neurons, a novel population of olfactory sensory neurons.

    Ahuja, Gaurav; Bozorg Nia, Shahrzad; Zapilko, Veronika; Shiriagin, Vladimir; Kowatschew, Daniel; Oka, Yuichiro; Korsching, Sigrun I

    2014-02-10

    Perception of olfactory stimuli is mediated by distinct populations of olfactory sensory neurons, each with a characteristic set of morphological as well as functional parameters. Beyond two large populations of ciliated and microvillous neurons, a third population, crypt neurons, has been identified in teleost and cartilaginous fishes. We report here a novel, fourth olfactory sensory neuron population in zebrafish, which we named kappe neurons for their characteristic shape. Kappe neurons are identified by their Go-like immunoreactivity, and show a distinct spatial distribution within the olfactory epithelium, similar to, but significantly different from that of crypt neurons. Furthermore, kappe neurons project to a single identified target glomerulus within the olfactory bulb, mdg5 of the mediodorsal cluster, whereas crypt neurons are known to project exclusively to the mdg2 glomerulus. Kappe neurons are negative for established markers of ciliated, microvillous and crypt neurons, but appear to have microvilli. Kappe neurons constitute the fourth type of olfactory sensory neurons reported in teleost fishes and their existence suggests that encoding of olfactory stimuli may require a higher complexity than hitherto assumed already in the peripheral olfactory system.

  7. Stochastic neuron models

    Greenwood, Priscilla E

    2016-01-01

    This book describes a large number of open problems in the theory of stochastic neural systems, with the aim of enticing probabilists to work on them. This includes problems arising from stochastic models of individual neurons as well as those arising from stochastic models of the activities of small and large networks of interconnected neurons. The necessary neuroscience background to these problems is outlined within the text, so readers can grasp the context in which they arise. This book will be useful for graduate students and instructors providing material and references for applying probability to stochastic neuron modeling. Methods and results are presented, but the emphasis is on questions where additional stochastic analysis may contribute neuroscience insight. An extensive bibliography is included. Dr. Priscilla E. Greenwood is a Professor Emerita in the Department of Mathematics at the University of British Columbia. Dr. Lawrence M. Ward is a Professor in the Department of Psychology and the Brain...

  8. Medial collateral ligament healing one year after a concurrent medial collateral ligament and anterior cruciate ligament injury: an interdisciplinary study in rabbits.

    Yamaji, T; Levine, R E; Woo, S L; Niyibizi, C; Kavalkovich, K W; Weaver-Green, C M

    1996-03-01

    The optimal treatment for concurrent injuries to the medial collateral and anterior cruciate ligaments has not been determined, despite numerous clinical and laboratory studies. The objective of this study was to examine the effect of surgical repair of the medial collateral ligament on its biomechanical and biochemical properties 52 weeks after such injuries. In the left knee of 12 skeletally mature New Zealand White rabbits, the medial collateral ligament was torn and the anterior cruciate ligament was transected and then reconstructed. This is an experimental model previously developed in our laboratory. In six rabbits, the torn ends of the medial collateral ligament were repaired, and in the remaining six rabbits, the ligament was not repaired. Fifty-two weeks after injury, we examined varus-valgus and anterior-posterior knee stability; structural properties of the femur-medial collateral ligament-tibia complex; and mechanical properties, collagen content, and mature collagen crosslinking of the medial collateral ligament. We could not detect significant differences between repair and nonrepair groups for any biomechanical or biochemical property. Our data support clinical findings that when the medial collateral and anterior cruciate ligaments are injured concurrently and the anterior cruciate ligament is reconstructed, conservative treatment of the ruptured medial collateral ligament can result in successful healing.

  9. Separate neurochemical classes of sympathetic postganglionic neurons project to the left ventricle of the rat heart.

    Richardson, R J; Grkovic, I; Allen, A M; Anderson, C R

    2006-04-01

    The sympathetic innervation of the rat heart was investigated by retrograde neuronal tracing and multiple label immunohistochemistry. Injections of Fast Blue made into the left ventricular wall labelled sympathetic neurons that were located along the medial border of both the left and right stellate ganglia. Cardiac projecting sympathetic postganglionic neurons could be grouped into one of four neurochemical populations, characterised by their content of calbindin and/or neuropeptide Y (NPY). The subpopulations of neurons contained immunoreactivity to both calbindin and NPY, immunoreactivity to calbindin only, immunoreactivity to NPY only and no immunoreactivity to calbindin or NPY. Sympathetic postganglionic neurons were also labelled in vitro with rhodamine dextran applied to the cut end of a cardiac nerve. The same neurochemical subpopulations of sympathetic neurons were identified by using this technique but in different proportions to those labelled from the left ventricle. Preganglionic terminals that were immunoreactive for another calcium-binding protein, calretinin, preferentially surrounded retrogradely labelled neurons that were immunoreactive for both calbindin and NPY. The separate sympathetic pathways projecting to the rat heart may control different cardiac functions.

  10. Neurons in cortical area MST remap the memory trace of visual motion across saccadic eye movements.

    Inaba, Naoko; Kawano, Kenji

    2014-05-27

    Perception of a stable visual world despite eye motion requires integration of visual information across saccadic eye movements. To investigate how the visual system deals with localization of moving visual stimuli across saccades, we observed spatiotemporal changes of receptive fields (RFs) of motion-sensitive neurons across periods of saccades in the middle temporal (MT) and medial superior temporal (MST) areas. We found that the location of the RFs moved with shifts of eye position due to saccades, indicating that motion-sensitive neurons in both areas have retinotopic RFs across saccades. Different characteristic responses emerged when the moving visual stimulus was turned off before the saccades. For MT neurons, virtually no response was observed after the saccade, suggesting that the responses of these neurons simply reflect the reafferent visual information. In contrast, most MST neurons increased their firing rates when a saccade brought the location of the visual stimulus into their RFs, where the visual stimulus itself no longer existed. These findings suggest that the responses of such MST neurons after saccades were evoked by a memory of the stimulus that had preexisted in the postsaccadic RFs ("memory remapping"). A delayed-saccade paradigm further revealed that memory remapping in MST was linked to the saccade itself, rather than to a shift in attention. Thus, the visual motion information across saccades was integrated in spatiotopic coordinates and represented in the activity of MST neurons. This is likely to contribute to the perception of a stable visual world in the presence of eye movements.

  11. Individual mediodorsal thalamic neurons project to multiple areas of the rat prefrontal cortex: A single neuron-tracing study using virus vectors.

    Kuramoto, Eriko; Pan, Shixiu; Furuta, Takahiro; Tanaka, Yasuhiro R; Iwai, Haruki; Yamanaka, Atsushi; Ohno, Sachi; Kaneko, Takeshi; Goto, Tetsuya; Hioki, Hiroyuki

    2017-01-01

    The prefrontal cortex has an important role in a variety of cognitive and executive processes, and is generally defined by its reciprocal connections with the mediodorsal thalamic nucleus (MD). The rat MD is mainly subdivided into three segments, the medial (MDm), central (MDc), and lateral (MDl) divisions, on the basis of the cytoarchitecture and chemoarchitecture. The MD segments are known to topographically project to multiple prefrontal areas at the population level: the MDm mainly to the prelimbic, infralimbic, and agranular insular areas; the MDc to the orbital and agranular insular areas; and the MDl to the prelimbic and anterior cingulate areas. However, it is unknown whether individual MD neurons project to single or multiple prefrontal cortical areas. In the present study, we visualized individual MD neurons with Sindbis virus vectors, and reconstructed whole structures of MD neurons. While the main cortical projection targets of MDm, MDc, and MDl neurons were generally consistent with those of previous results, it was found that individual MD neurons sent their axon fibers to multiple prefrontal areas, and displayed various projection patterns in the target areas. Furthermore, the axons of single MD neurons were not homogeneously spread, but were rather distributed to form patchy axon arbors approximately 1 mm in diameter. The multiple-area projections and patchy axon arbors of single MD neurons might be able to coactivate cortical neuron groups in distant prefrontal areas simultaneously. Furthermore, considerable heterogeneity of the projection patterns is likely, to recruit the different sets of cortical neurons, and thus contributes to a variety of prefrontal functions. J. Comp. Neurol. 525:166-185, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Developmental profiles of the intrinsic properties and synaptic function of auditory neurons in preterm and term baboon neonates.

    Kim, Sei Eun; Lee, Seul Yi; Blanco, Cynthia L; Kim, Jun Hee

    2014-08-20

    The human fetus starts to hear and undergoes major developmental changes in the auditory system during the third trimester of pregnancy. Although there are significant data regarding development of the auditory system in rodents, changes in intrinsic properties and synaptic function of auditory neurons in developing primate brain at hearing onset are poorly understood. We performed whole-cell patch-clamp recordings of principal neurons in the medial nucleus of trapezoid body (MNTB) in preterm and term baboon brainstem slices to study the structural and functional maturation of auditory synapses. Each MNTB principal neuron received an excitatory input from a single calyx of Held terminal, and this one-to-one pattern of innervation was already formed in preterm baboons delivered at 67% of normal gestation. There was no difference in frequency or amplitude of spontaneous excitatory postsynaptic synaptic currents between preterm and term MNTB neurons. In contrast, the frequency of spontaneous GABA(A)/glycine receptor-mediated inhibitory postsynaptic synaptic currents, which were prevalent in preterm MNTB neurons, was significantly reduced in term MNTB neurons. Preterm MNTB neurons had a higher input resistance than term neurons and fired in bursts, whereas term MNTB neurons fired a single action potential in response to suprathreshold current injection. The maturation of intrinsic properties and dominance of excitatory inputs in the primate MNTB allow it to take on its mature role as a fast and reliable relay synapse. Copyright © 2014 the authors 0270-6474/14/3411399-06$15.00/0.

  13. Neuronal Migration and Neuronal Migration Disorder in Cerebral Cortex

    SUN, Xue-Zhi; TAKAHASHI, Sentaro; GUI, Chun; ZHANG, Rui; KOGA, Kazuo; NOUYE, Minoru; MURATA, Yoshiharu

    2002-01-01

    Neuronal cell migration is one of the most significant features during cortical development. After final mitosis, neurons migrate from the ventricular zone into the cortical plate, and then establish neuronal lamina and settle onto the outermost layer, forming an "inside-out" gradient of maturation. Neuronal migration is guided by radial glial fibers and also needs proper receptors, ligands, and other unknown extracellular factors, requests local signaling (e.g. some emitted by the Cajal-Retz...

  14. Medial patellar ossification after patellar instability: a radiographic finding indicative of prior patella subluxation/dislocation

    Jerabek, Seth A. [Harvard Combined Orthopaedic Surgery Residency Program, Boston, MA (United States); Asnis, Peter D.; Poon, Steven K.; Gill, Thomas J. [Massachusetts General Hospital, Department of Orthopaedic Surgery, Boston, MA (United States); Bredella, Miriam A.; Ouellette, Hugue A. [Massachusetts General Hospital, Department of Radiology, Boston, MA (United States)

    2009-08-15

    To describe the correlation between medial patellar ossification and prior patella subluxation and/or dislocation. A retrospective billing database search identified 544 patients who had been diagnosed with patellar instability over a 13-year period. One hundred twenty-eight patients met the inclusion criteria. After review by a staff orthopedic surgeon and two musculoskeletal radiologists, 28 patients were found to have medial patellar ossification. The size and location of medial patellar ossification was recorded. Of the 28 patients (20 males, eight females, age 13-66 years, mean 28 years) who were found to have medial patellar ossification, 22 had radiographs, 16 had magnetic resonance imaging, and ten had both. The medial patellar ossification ranged in size from 2 to 18 mm with an average of 6.8 mm. Twelve were located in the medial patellofemoral ligament (MPFL), 14 in the medial joint capsule, and two in both the MPFL and joint capsule. Twenty-seven of 28 patients had a single ossification, and one patient had two ossifications. The timing from injury to first imaging of the lesion ranged from 10 days to a chronic history ({>=}35 years) of patellar instability. Medial patellar ossification correlates with a history of prior patella subluxation and/or dislocation. The medial ossification can be seen within the MPFL or the medial joint capsule, suggesting remote injury to these structures. The presence of this lesion will prompt physicians to evaluate for patellar instability. (orig.)

  15. Medial patellar ossification after patellar instability: a radiographic finding indicative of prior patella subluxation/dislocation

    Jerabek, Seth A.; Asnis, Peter D.; Poon, Steven K.; Gill, Thomas J.; Bredella, Miriam A.; Ouellette, Hugue A.

    2009-01-01

    To describe the correlation between medial patellar ossification and prior patella subluxation and/or dislocation. A retrospective billing database search identified 544 patients who had been diagnosed with patellar instability over a 13-year period. One hundred twenty-eight patients met the inclusion criteria. After review by a staff orthopedic surgeon and two musculoskeletal radiologists, 28 patients were found to have medial patellar ossification. The size and location of medial patellar ossification was recorded. Of the 28 patients (20 males, eight females, age 13-66 years, mean 28 years) who were found to have medial patellar ossification, 22 had radiographs, 16 had magnetic resonance imaging, and ten had both. The medial patellar ossification ranged in size from 2 to 18 mm with an average of 6.8 mm. Twelve were located in the medial patellofemoral ligament (MPFL), 14 in the medial joint capsule, and two in both the MPFL and joint capsule. Twenty-seven of 28 patients had a single ossification, and one patient had two ossifications. The timing from injury to first imaging of the lesion ranged from 10 days to a chronic history (≥35 years) of patellar instability. Medial patellar ossification correlates with a history of prior patella subluxation and/or dislocation. The medial ossification can be seen within the MPFL or the medial joint capsule, suggesting remote injury to these structures. The presence of this lesion will prompt physicians to evaluate for patellar instability. (orig.)

  16. Fracture of an unossified humeral medial epicondyle: use of magnetic resonance imaging for diagnosis

    Tanabe, Katsuhisa; Miyamoto, Nao

    2016-01-01

    Fracture of the humeral medial epicondyle is a relatively common injury in children. Surgery is a good option for treatment, but correct diagnosis is important. Most fractures occur after the ossification of the medial epicondylar apophysis. If a fracture occurs before the ossification of the medial epicondyle, it is undetectable by radiographs. Here we report a case of an unossified medial epicondyle fracture of the humerus. A 9-year-old boy had persistent pain in the medial side of the right elbow after a fall. Despite his pain, he could move his injured elbow with a range from 60 to 90 . Radiographs and computed tomography showed neither fracture nor dislocation in the injured elbow, and soft tissue swelling was the only finding. Neither the trochlea nor the medial epicondyle was ossified. Magnetic resonance imaging showed that the medial epicondyle was separated from the medial metaphysis and displaced. This clear finding led us to surgical fixation. Under general anesthesia, valgus stress showed gross instability of the injured elbow. Two years after the operation, he had no complaints and could play sports with the same range of motion as the left elbow. It is important to keep in mind that medial epicondylar fractures may be hidden in a normal radiograph before the ossification of the medial epicondylar apophysis. (orig.)

  17. Fracture of an unossified humeral medial epicondyle: use of magnetic resonance imaging for diagnosis

    Tanabe, Katsuhisa; Miyamoto, Nao [Nishinomiya Municipal Central Hospital, Department of Orthopaedic Surgery, Nishinomiya (Japan)

    2016-10-15

    Fracture of the humeral medial epicondyle is a relatively common injury in children. Surgery is a good option for treatment, but correct diagnosis is important. Most fractures occur after the ossification of the medial epicondylar apophysis. If a fracture occurs before the ossification of the medial epicondyle, it is undetectable by radiographs. Here we report a case of an unossified medial epicondyle fracture of the humerus. A 9-year-old boy had persistent pain in the medial side of the right elbow after a fall. Despite his pain, he could move his injured elbow with a range from 60 to 90 . Radiographs and computed tomography showed neither fracture nor dislocation in the injured elbow, and soft tissue swelling was the only finding. Neither the trochlea nor the medial epicondyle was ossified. Magnetic resonance imaging showed that the medial epicondyle was separated from the medial metaphysis and displaced. This clear finding led us to surgical fixation. Under general anesthesia, valgus stress showed gross instability of the injured elbow. Two years after the operation, he had no complaints and could play sports with the same range of motion as the left elbow. It is important to keep in mind that medial epicondylar fractures may be hidden in a normal radiograph before the ossification of the medial epicondylar apophysis. (orig.)

  18. The effect of different depths of medial heel skive on plantar pressures

    Bonanno Daniel R

    2012-08-01

    Full Text Available Abstract Background Foot orthoses are often used to treat lower limb injuries associated with excessive pronation. There are many orthotic modifications available for this purpose, with one being the medial heel skive. However, empirical evidence for the mechanical effects of the medial heel skive modification is limited. This study aimed to evaluate the effect that different depths of medial heel skive have on plantar pressures. Methods Thirty healthy adults (mean age 24 years, range 18–46 with a flat-arched or pronated foot posture and no current foot pain or deformity participated in this study. Using the in-shoe pedar-X® system, plantar pressure data were collected for the rearfoot, midfoot and forefoot while participants walked along an 8 metre walkway wearing a standardised shoe. Experimental conditions included a customised foot orthosis with the following 4 orthotic modifications: (i no medial heel skive, (ii a 2 mm medial heel skive, (iii a 4 mm medial heel skive and (iv a 6 mm medial heel skive. Results Compared to the foot orthosis with no medial heel skive, statistically significant increases in peak pressure were observed at the medial rearfoot – there was a 15% increase (p = 0.001 with the 4 mm skive and a 29% increase (p  Conclusions This study found that a medial heel skive of 4 mm or 6 mm increases peak pressure under the medial rearfoot in asymptomatic adults with a flat-arched or pronated foot posture. Plantar pressures at the midfoot and forefoot were not altered by a medial heel skive of 2, 4 or 6 mm. These findings provide some evidence for the effects of the medial heel skive orthotic modification.

  19. Thalamocortical Projection Neuron and Interneuron Numbers in the Visual Thalamic Nuclei of the Adult C57BL/6 Mouse.

    Evangelio, Marian; García-Amado, María; Clascá, Francisco

    2018-01-01

    A key parameter to constrain predictive, bottom-up circuit models of a given brain domain is the number and position of the neuronal populations involved. These include not only the neurons whose bodies reside within the domain, but also the neurons in distant regions that innervate the domain. The mouse visual cortex receives its main subcortical input from the dorsal lateral geniculate nucleus (dLGN) and the lateral posterior (LP) complex of the thalamus. The latter consists of three different nuclei: lateral posterior lateral (LPL), lateral posterior medial rostral (LPMR), and lateral posterior medial caudal (LPMC), each exhibiting specific patterns of connections with the various visual cortical areas. Here, we have determined the number of thalamocortical projection neurons and interneurons in the LP complex and dLGN of the adult C57BL/6 male mouse. We combined Nissl staining and histochemical and immunolabeling methods for consistently delineating nuclei borders, and applied unbiased stereological cell counting methods. Thalamic interneurons were identified using GABA immunolabeling. The C57BL/6 dLGN contains ∼21,200 neurons, while LP complex contains ∼31,000 total neurons. The dLGN and LP are the only nuclei of the mouse dorsal thalamus containing substantial numbers GABA-immunoreactive interneurons. These interneurons, however, are scarcer than previously estimated; they are 5.6% of dLGN neurons and just 1.9% of the LP neurons. It can be thus inferred that the dLGN contains ∼20,000 and the LP complex ∼30,400 thalamocortical projection neurons (∼12,000 in LPL, 15,200 in LPMR, and 4,200 in LPMC). The present dataset is relevant for constraining models of mouse visual thalamocortical circuits, as well as for quantitative comparisons between genetically modified mouse strains, or across species.

  20. Medial tibial pain: a dynamic contrast-enhanced MRI study.

    Mattila, K T; Komu, M E; Dahlström, S; Koskinen, S K; Heikkilä, J

    1999-09-01

    The purpose of this study was to compare the sensitivity of different magnetic resonance imaging (MRI) sequences to depict periosteal edema in patients with medial tibial pain. Additionally, we evaluated the ability of dynamic contrast-enhanced imaging (DCES) to depict possible temporal alterations in muscular perfusion within compartments of the leg. Fifteen patients with medial tibial pain were examined with MRI. T1-, T2-weighted, proton density axial images and dynamic and static phase post-contrast images were compared in ability to depict periosteal edema. STIR was used in seven cases to depict bone marrow edema. Images were analyzed to detect signs of compartment edema. Region-of-interest measurements in compartments were performed during DCES and compared with controls. In detecting periosteal edema, post-contrast T1-weighted images were better than spin echo T2-weighted and proton density images or STIR images, but STIR depicted the bone marrow edema best. DCES best demonstrated the gradually enhancing periostitis. Four subjects with severe periosteal edema had visually detectable pathologic enhancement during DCES in the deep posterior compartment of the leg. Percentage enhancement in the deep posterior compartment of the leg was greater in patients than in controls. The fast enhancement phase in the deep posterior compartment began slightly slower in patients than in controls, but it continued longer. We believe that periosteal edema in bone stress reaction can cause impairment of venous flow in the deep posterior compartment. MRI can depict both these conditions. In patients with medial tibial pain, MR imaging protocol should include axial STIR images (to depict bone pathology) with T1-weighted axial pre and post-contrast images, and dynamic contrast enhanced imaging to show periosteal edema and abnormal contrast enhancement within a compartment.

  1. Modulating Phonation Through Alteration of Vocal Fold Medial Surface Contour

    Mau, Ted; Muhlestein, Joseph; Callahan, Sean; Chan, Roger W.

    2012-01-01

    Objectives 1. To test whether alteration of the vocal fold medial surface contour can improve phonation. 2. To demonstrate that implant material properties affect vibration even when implant is deep to the vocal fold lamina propria. Study Design Induced phonation of excised human larynges. Methods Thirteen larynges were harvested within 24 hours post-mortem. Phonation threshold pressure (PTP) and flow (PTF) were measured before and after vocal fold injections using either calcium hydroxylapatite (CaHA) or hyaluronic acid (HA). Small-volume injections (median 0.0625 mL) were targeted to the infero-medial aspect of the thyroarytenoid (TA) muscle. Implant locations were assessed histologically. Results The effect of implantation on PTP was material-dependent. CaHA tended to increase PTP, whereas HA tended to decrease PTP (Wilcoxon test P = 0.00013 for onset). In contrast, the effect of implantation on PTF was similar, with both materials tending to decrease PTF (P = 0.16 for onset). Histology confirmed implant presence in the inferior half of the vocal fold vertical thickness. Conclusions Taken together, these data suggested the implants may have altered the vocal fold medial surface contour, potentially resulting in a less convergent or more rectangular glottal geometry as a means to improve phonation. An implant with a closer viscoelastic match to vocal fold cover is desirable for this purpose, as material properties can affect vibration even when the implant is not placed within the lamina propria. This result is consistent with theoretical predictions and implies greater need for surgical precision in implant placement and care in material selection. PMID:22865592

  2. Bilateral Endoscopic Medial Maxillectomy for Bilateral Inverted Papilloma

    Kodama, Satoru; Kawano, Toshiaki; Suzuki, Masashi

    2012-01-01

    Inverted papilloma (IP) is a benign tumor of the nasal cavity and paranasal sinuses that is unilateral in most cases. Bilateral IP, involving both sides of the nasal cavity and sinuses, is extremely rare. This paper describes a large IP that filled in both sides of the nasal cavity and sinuses, mimicking association with malignancy. The tumor was successfully treated by bilateral endoscopic medial maxillectomy (EMM). The patient is without evidence of the disease 24 months after surgery. If preoperative diagnosis does not confirm the association with malignancy in IP, endoscopic sinus surgery (ESS) should be selected, and ESS, including EMM, is a good first choice of the treatment for IP. PMID:22953103

  3. Current advances in the treatment of medial and lateral epicondylitis.

    Tarpada, Sandip P; Morris, Matthew T; Lian, Jayson; Rashidi, Sina

    2018-03-01

    Despite advances elucidating the causes of lateral and medial epicondylitis, the standard of care remains conservative management with NSAIDs, physical therapy, bracing, and rest. Scar tissue formation provoked by conservative management creates a tendon lacking the biomechanical properties and mechanical strength of normal tendon. The following review analyzes novel therapies to regenerate tendon and regain function in patients with epicondylitis. These treatments include PRP injection, BMAC, collagen-producing cell injection, and stem cell treatments. While these treatments are in early stages of investigation, they may warrant further consideration based on prospects of pain alleviation, function enhancement, and improved healing.

  4. Bilateral Medial Medullary Infarction with Nondominant Vertebral Artery Occlusion.

    Zhang, Lei; Zhang, Gui-lian; Du, Ju-mei; Ma, Zhu-lin

    2015-09-01

    Bilateral medial medullary infarction (MMI) is a rare stroke subtype. Here, we report a case with bilateral MMI caused by nondominant vertebral artery occlusion confirmed by brain digital subtraction angiography and magnetic resonance imaging basi-parallel-anatomical-scanning. We highlight that anterior spinal arteries could originate from a unilateral vertebral artery (VA). Radiologists and neurologists should pay attention to the nondominant VA as bilateral MMI may be induced by occlusion of nondominant VA that supplies the bilateral anteromedial territories of the medulla. Copyright © 2015 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  5. Arthroscopic meniscectomy in medial compartment osteoarthritis of the knee

    Noguchi, Joji; Shimoyama, Gishichiro; Shinozaki, Toshiro; Nagata, Kensei

    2007-01-01

    The purpose of this research is to evaluate the results of arthroscopic meniscectomy in medial compartment osteoarthritis of the knee. The operation was performed on 25 knee joints (8 male, 17 female) with the mean age of 67 years. The mean period of follow-up was 19 months. Clinical results were more or less excellent, but radiological assessment suggested slight osteoarthritic changes. In addition, two cases progressed to subchondral bone collapse. Of 12 cases which had no bone marrow edema on MRI before surgery, six (50%) cases showed it at follow-up. These findings suggest a possible relationship between arthroscopic meniscectomy and later appearance of osteonecrosis in some cases. (author)

  6. Hippocampus and medial striatum dissociation during goal navigation by geometry or features in the domestic chick: An immediate early gene study.

    Mayer, Uwe; Pecchia, Tommaso; Bingman, Verner Peter; Flore, Michele; Vallortigara, Giorgio

    2016-01-01

    We employed a standard reference memory task to study the involvement of the hippocampal formation (HF) of domestic chicks that used the boundary geometry of a test environment to orient to and locate a reward. Using the immediate early gene product c-Fos as a neuronal activity marker, we found enhanced HF activation in chicks that learned to locate rewarded corners using the shape of a rectangular arena compared to chicks trained to solve the task by discriminating local features in a square-shaped arena. We also analyzed neuronal activity in the medial part of the medial striatum (mMSt). Surprisingly, in mMSt we observed a reverse pattern, with higher activity in the chicks that were trained to locate the goal by local features. Our results identify two seemingly parallel, memory systems in chicks, with HF central to the processing of spatial-geometrical information and mMSt important in supporting local feature discrimination. © 2015 Wiley Periodicals, Inc.

  7. Behavioral Effects of Deep Brain Stimulation of the Anterior Nucleus of Thalamus, Entorhinal Cortex and Fornix in a Rat Model of Alzheimer′s Disease

    Chao Zhang

    2015-01-01

    Full Text Available Background: Recent clinical and preclinical studies have suggested that deep brain stimulation (DBS can be used as a tool to enhance cognitive functions. The aim of the present study was to investigate the impact of DBS at three separate targets in the Papez circuit, including the anterior nucleus of thalamus (ANT, the entorhinal cortex (EC, and the fornix (FX, on cognitive behaviors in an Alzheimer′s disease (AD rat model. Methods: Forty-eight rats were subjected to an intrahippocampal injection of amyloid peptides 1-42 to induce an AD model. Rats were divided into six groups: DBS and sham DBS groups of ANT, EC, and FX. Spatial learning and memory were assessed by the Morris water maze (MWM. Recognition memory was investigated by the novel object recognition memory test (NORM. Locomotor and anxiety-related behaviors were detected by the open field test (OF. By using two-way analysis of variance (ANOVA, behavior differences between the six groups were analyzed. Results: In the MWM, the ANT, EC, and FX DBS groups performed differently in terms of the time spent in the platform zone (F(2,23 = 6.04, P < 0.01, the frequency of platform crossing (F(2,23 = 11.53, P < 0.001, and the percent time spent within the platform quadrant (F(2,23 = 6.29, P < 0.01. In the NORM, the EC and FX DBS groups spent more time with the novel object, although the ANT DBS group did not (F(2,23 = 10.03, P < 0.001. In the OF, all of the groups showed a similar total distance moved (F (1,42 = 1.14, P = 0.29 and relative time spent in the center (F(2,42 = 0.56, P = 0.58. Conclusions: Our results demonstrated that DBS of the EC and FX facilitated hippocampus-dependent spatial memory more prominently than ANT DBS. In addition, hippocampus-independent recognition memory was enhanced by EC and FX DBS. None of the targets showed side-effects of anxiety or locomotor behaviors.

  8. Neuronal nets in robotics

    Jimenez Sanchez, Raul

    1999-01-01

    The paper gives a generic idea of the solutions that the neuronal nets contribute to the robotics. The advantages and the inconveniences are exposed that have regarding the conventional techniques. It also describe the more excellent applications as the pursuit of trajectories, the positioning based on images, the force control or of the mobile robots management, among others

  9. Modulation of neural activity by reward in medial intraparietal cortex is sensitive to temporal sequence of reward

    Rajalingham, Rishi; Stacey, Richard Greg; Tsoulfas, Georgios

    2014-01-01

    To restore movements to paralyzed patients, neural prosthetic systems must accurately decode patients' intentions from neural signals. Despite significant advancements, current systems are unable to restore complex movements. Decoding reward-related signals from the medial intraparietal area (MIP) could enhance prosthetic performance. However, the dynamics of reward sensitivity in MIP is not known. Furthermore, reward-related modulation in premotor areas has been attributed to behavioral confounds. Here we investigated the stability of reward encoding in MIP by assessing the effect of reward history on reward sensitivity. We recorded from neurons in MIP while monkeys performed a delayed-reach task under two reward schedules. In the variable schedule, an equal number of small- and large-rewards trials were randomly interleaved. In the constant schedule, one reward size was delivered for a block of trials. The memory period firing rate of most neurons in response to identical rewards varied according to schedule. Using systems identification tools, we attributed the schedule sensitivity to the dependence of neural activity on the history of reward. We did not find schedule-dependent behavioral changes, suggesting that reward modulates neural activity in MIP. Neural discrimination between rewards was less in the variable than in the constant schedule, degrading our ability to decode reach target and reward simultaneously. The effect of schedule was mitigated by adding Haar wavelet coefficients to the decoding model. This raises the possibility of multiple encoding schemes at different timescales and reinforces the potential utility of reward information for prosthetic performance. PMID:25008408

  10. Cervical vagus nerve stimulation augments spontaneous discharge in second- and higher-order sensory neurons in the rat nucleus of the solitary tract.

    Beaumont, Eric; Campbell, Regenia P; Andresen, Michael C; Scofield, Stephanie; Singh, Krishna; Libbus, Imad; KenKnight, Bruce H; Snyder, Logan; Cantrell, Nathan

    2017-08-01

    Vagus nerve stimulation (VNS) currently treats patients with drug-resistant epilepsy, depression, and heart failure. The mild intensities used in chronic VNS suggest that primary visceral afferents and central nervous system activation are involved. Here, we measured the activity of neurons in the nucleus of the solitary tract (NTS) in anesthetized rats using clinically styled VNS. Our chief findings indicate that VNS at threshold bradycardic intensity activated NTS neuron discharge in one-third of NTS neurons. This VNS directly activated only myelinated vagal afferents projecting to second-order NTS neurons. Most VNS-induced activity in NTS, however, was unsynchronized to vagal stimuli. Thus, VNS activated unsynchronized activity in NTS neurons that were second order to vagal afferent C-fibers as well as higher-order NTS neurons only polysynaptically activated by the vagus. Overall, cardiovascular-sensitive and -insensitive NTS neurons were similarly activated by VNS: 3/4 neurons with monosynaptic vagal A-fiber afferents, 6/42 neurons with monosynaptic vagal C-fiber afferents, and 16/21 polysynaptic NTS neurons. Provocatively, vagal A-fibers indirectly activated C-fiber neurons during VNS. Elevated spontaneous spiking was quantitatively much higher than synchronized activity and extended well into the periods of nonstimulation. Surprisingly, many polysynaptic NTS neurons responded to half the bradycardic intensity used in clinical studies, indicating that a subset of myelinated vagal afferents is sufficient to evoke VNS indirect activation. Our study uncovered a myelinated vagal afferent drive that indirectly activates NTS neurons and thus central pathways beyond NTS and support reconsideration of brain contributions of vagal afferents underpinning of therapeutic impacts. NEW & NOTEWORTHY Acute vagus nerve stimulation elevated activity in neurons located in the medial nucleus of the solitary tract. Such stimuli directly activated only myelinated vagal afferents

  11. Opposite long-term synaptic effects of 17β-estradiol and 5α-dihydrotestosterone and localization of their receptors in the medial vestibular nucleus of rats.

    Grassi, Silvarosa; Scarduzio, Mariangela; Panichi, Roberto; Dall'Aglio, Cecilia; Boiti, Cristiano; Pettorossi, Vito E

    2013-08-01

    In brainstem slices of male rats, we examined in single neurons of the medial vestibular nucleus (MVN) the effect of exogenous administration of estrogenic (17β-estradiol, E2) and androgenic (5α-dihydrotestosterone, DHT) steroids on the synaptic response to vestibular afferent stimulation. By whole cell patch clamp recordings we showed that E2 induced synaptic long-term potentiation (LTP) that was cancelled by the subsequent administration of DHT. Conversely, DHT induced synaptic long-term depression (LTD) that was partially reversed by E2. The electrophysiological findings were supported by immunohistochemical analysis showing the presence of estrogen (ER: α and β) and androgen receptors (AR) in the MVN neurons. We found that a large number of neurons were immunoreactive for ERα, ERβ, and AR and most of them co-localized ERβ and AR. We also showed the presence of P450-aromatase (ARO) in the MVN neurons, clearly proving that E2 can be locally synthesized in the MVN. On the whole, these results demonstrate a role of estrogenic and androgenic signals in modulating vestibular synaptic plasticity and suggest that the enhancement or depression of vestibular synaptic response may depend on the local conversion of T into E2 or DHT. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Complementary theta resonance filtering by two spatially segregated mechanisms in CA1 hippocampal pyramidal neurons.

    Hu, Hua; Vervaeke, Koen; Graham, Lyle J; Storm, Johan F

    2009-11-18

    Synaptic input to a neuron may undergo various filtering steps, both locally and during transmission to the soma. Using simultaneous whole-cell recordings from soma and apical dendrites from rat CA1 hippocampal pyramidal cells, and biophysically detailed modeling, we found two complementary resonance (bandpass) filters of subthreshold voltage signals. Both filters favor signals in the theta (3-12 Hz) frequency range, but have opposite location, direction, and voltage dependencies: (1) dendritic H-resonance, caused by h/HCN-channels, filters signals propagating from soma to dendrite when the membrane potential is close to rest; and (2) somatic M-resonance, caused by M/Kv7/KCNQ and persistent Na(+) (NaP) channels, filters signals propagating from dendrite to soma when the membrane potential approaches spike threshold. Hippocampal pyramidal cells participate in theta network oscillations during behavior, and we suggest that that these dual, polarized theta resonance mechanisms may convey voltage-dependent tuning of theta-mediated neural coding in the entorhinal/hippocampal system during locomotion, spatial navigation, memory, and sleep.

  13. Neuronal response of the hippocampal formation to injury: blood flow, glucose metabolism, and protein synthesis

    Kameyama, M.; Wasterlain, C.G.; Ackermann, R.F.; Finch, D.; Lear, J.; Kuhl, D.E.

    1983-01-01

    The reaction of the hippocampal formation to entorhinal lesions was studied from the viewpoints of cerebral blood flow ([ 123 I]isopropyl-iodoamphetamine[IMP])-glucose utilization ([ 14 C]2-deoxyglucose), and protein synthesis ([ 14 C]leucine), using single- and double-label autoradiography. Researchers' studies showed decreased glucose utilization in the inner part, and increased glucose utilization in the outer part of the molecular layer of the dentate gyrus, starting 3 days after the lesion; increased uptake of [ 123 I]IMP around the lesion from 1 to 3 days postlesion; and starting 3 days after the lesion, marked decrease in [ 14 C]leucine incorporation into proteins and cell loss in the dorsal CA1 and dorsal subiculum in about one-half of the rats. These changes were present only in animals with lesions which invaded the ventral hippocampal formation in which axons of CA1 cells travel. By contrast, transsection of the 3rd and 4th cranial nerves resulted, 3 to 9 days after injury, in a striking increase in protein synthesis in the oculomotor and trochlear nuclei. These results raise the possibility that in some neurons the failure of central regeneration may result from the cell's inability to increase its rate of protein synthesis in response to axonal injury

  14. Vasculo-Neuronal Coupling: Retrograde Vascular Communication to Brain Neurons.

    Kim, Ki Jung; Ramiro Diaz, Juan; Iddings, Jennifer A; Filosa, Jessica A

    2016-12-14

    Continuous cerebral blood flow is essential for neuronal survival, but whether vascular tone influences resting neuronal function is not known. Using a multidisciplinary approach in both rat and mice brain slices, we determined whether flow/pressure-evoked increases or decreases in parenchymal arteriole vascular tone, which result in arteriole constriction and dilation, respectively, altered resting cortical pyramidal neuron activity. We present evidence for intercellular communication in the brain involving a flow of information from vessel to astrocyte to neuron, a direction opposite to that of classic neurovascular coupling and referred to here as vasculo-neuronal coupling (VNC). Flow/pressure increases within parenchymal arterioles increased vascular tone and simultaneously decreased resting pyramidal neuron firing activity. On the other hand, flow/pressure decreases evoke parenchymal arteriole dilation and increased resting pyramidal neuron firing activity. In GLAST-CreERT2; R26-lsl-GCaMP3 mice, we demonstrate that increased parenchymal arteriole tone significantly increased intracellular calcium in perivascular astrocyte processes, the onset of astrocyte calcium changes preceded the inhibition of cortical pyramidal neuronal firing activity. During increases in parenchymal arteriole tone, the pyramidal neuron response was unaffected by blockers of nitric oxide, GABA A , glutamate, or ecto-ATPase. However, VNC was abrogated by TRPV4 channel, GABA B , as well as an adenosine A 1 receptor blocker. Differently to pyramidal neuron responses, increases in flow/pressure within parenchymal arterioles increased the firing activity of a subtype of interneuron. Together, these data suggest that VNC is a complex constitutive active process that enables neurons to efficiently adjust their resting activity according to brain perfusion levels, thus safeguarding cellular homeostasis by preventing mismatches between energy supply and demand. We present evidence for vessel-to-neuron

  15. Organization of Valence-Encoding and Projection-Defined Neurons in the Basolateral Amygdala

    Anna Beyeler

    2018-01-01

    Full Text Available The basolateral amygdala (BLA mediates associative learning for both fear and reward. Accumulating evidence supports the notion that different BLA projections distinctly alter motivated behavior, including projections to the nucleus accumbens (NAc, medial aspect of the central amygdala (CeM, and ventral hippocampus (vHPC. Although there is consensus regarding the existence of distinct subsets of BLA neurons encoding positive or negative valence, controversy remains regarding the anatomical arrangement of these populations. First, we map the location of more than 1,000 neurons distributed across the BLA and recorded during a Pavlovian discrimination task. Next, we determine the location of projection-defined neurons labeled with retrograde tracers and use CLARITY to reveal the axonal path in 3-dimensional space. Finally, we examine the local influence of each projection-defined populations within the BLA. Understanding the functional and topographical organization of circuits underlying valence assignment could reveal fundamental principles about emotional processing.

  16. Identification of distinct telencephalic progenitor pools for neuronal diversity in the amygdala.

    Hirata, Tsutomu; Li, Peijun; Lanuza, Guillermo M; Cocas, Laura A; Huntsman, Molly M; Corbin, Joshua G

    2009-02-01

    The development of the amygdala, a central structure of the limbic system, remains poorly understood. We found that two spatially distinct and early-specified telencephalic progenitor pools marked by the homeodomain transcription factor Dbx1 are major sources of neuronal cell diversity in the mature mouse amygdala. We found that Dbx1-positive cells of the ventral pallium generate the excitatory neurons of the basolateral complex and cortical amygdala nuclei. Moreover, Dbx1-derived cells comprise a previously unknown migratory stream that emanates from the preoptic area (POA), a ventral telencephalic domain adjacent to the diencephalic border. The Dbx1-positive, POA-derived population migrated specifically to the amygdala and, as defined by both immunochemical and electrophysiological criteria, generated a unique subclass of inhibitory neurons in the medial amygdala nucleus. Thus, this POA-derived population represents a previously unknown progenitor pool dedicated to the limbic system.

  17. Prefrontal Neuronal Excitability Maintains Cocaine-Associated Memory During Retrieval

    James M. Otis

    2018-06-01

    Full Text Available Presentation of drug-associated cues provokes craving and drug seeking, and elimination of these associative memories would facilitate recovery from addiction. Emotionally salient memories are maintained during retrieval, as particular pharmacologic or optogenetic perturbations of memory circuits during retrieval, but not after, can induce long-lasting memory impairments. For example, in rats, inhibition of noradrenergic beta-receptors, which control intrinsic neuronal excitability, in the prelimbic medial prefrontal cortex (PL-mPFC can cause long-term memory impairments that prevent subsequent cocaine-induced reinstatement. The physiologic mechanisms that allow noradrenergic signaling to maintain drug-associated memories during retrieval, however, are unclear. Here we combine patch-clamp electrophysiology ex vivo and behavioral neuropharmacology in vivo to evaluate the mechanisms that maintain drug-associated memory during retrieval in rats. Consistent with previous studies, we find that cocaine experience increases the intrinsic excitability of pyramidal neurons in PL-mPFC. In addition, we now find that this intrinsic plasticity positively predicts the retrieval of a cocaine-induced conditioned place preference (CPP memory, suggesting that such plasticity may contribute to drug-associated memory retrieval. In further support of this, we find that pharmacological blockade of a cAMP-dependent signaling cascade, which allows noradrenergic signaling to elevate neuronal excitability, is required for memory maintenance during retrieval. Thus, inhibition of PL-mPFC neuronal excitability during memory retrieval not only leads to long-term deficits in the memory, but this memory deficit provides protection against subsequent cocaine-induced reinstatement. These data reveal that PL-mPFC intrinsic neuronal excitability maintains a cocaine-associated memory during retrieval and suggest a unique mechanism whereby drug-associated memories could be targeted

  18. Selective neuronal lapses precede human cognitive lapses following sleep deprivation.

    Nir, Yuval; Andrillon, Thomas; Marmelshtein, Amit; Suthana, Nanthia; Cirelli, Chiara; Tononi, Giulio; Fried, Itzhak

    2017-12-01

    Sleep deprivation is a major source of morbidity with widespread health effects, including increased risk of hypertension, diabetes, obesity, heart attack, and stroke. Moreover, sleep deprivation brings about vehicle accidents and medical errors and is therefore an urgent topic of investigation. During sleep deprivation, homeostatic and circadian processes interact to build up sleep pressure, which results in slow behavioral performance (cognitive lapses) typically attributed to attentional thalamic and frontoparietal circuits, but the underlying mechanisms remain unclear. Recently, through study of electroencephalograms (EEGs) in humans and local field potentials (LFPs) in nonhuman primates and rodents it was found that, during sleep deprivation, regional 'sleep-like' slow and theta (slow/theta) waves co-occur with impaired behavioral performance during wakefulness. Here we used intracranial electrodes to record single-neuron activities and LFPs in human neurosurgical patients performing a face/nonface categorization psychomotor vigilance task (PVT) over multiple experimental sessions, including a session after full-night sleep deprivation. We find that, just before cognitive lapses, the selective spiking responses of individual neurons in the medial temporal lobe (MTL) are attenuated, delayed, and lengthened. These 'neuronal lapses' are evident on a trial-by-trial basis when comparing the slowest behavioral PVT reaction times to the fastest. Furthermore, during cognitive lapses, LFPs exhibit a relative local increase in slow/theta activity that is correlated with degraded single-neuron responses and with baseline theta activity. Our results s