WorldWideScience

Sample records for medaka estrogen receptors

  1. Estrogen receptors in medaka (Oryzias latipes) and estrogenic environmental contaminants: an in vitro-in vivo correlation.

    Science.gov (United States)

    Chakraborty, Tapas; Katsu, Yoshinao; Zhou, Lin Yan; Miyagawa, Shinichi; Nagahama, Yoshitaka; Iguchi, Taisen

    2011-02-01

    In many vertebrates, estrogens are necessary to promote the growth and differentiation of the female reproductive system during development, and have important reproductive roles in both males and females. Medaka (Oryzias latipes) has three estrogen receptor (ER) subtypes, ERα, ERβ1 and ERβ2. To evaluate the three medaka ER (mER)-ligand interactions, we applied the ERE-luciferase reporter assay system to characterize each ER subtype. In this transient transfection assay system using mammalian cells, the mER proteins displayed estrogen-dependent activation. 17β-Estradiol (E(2)) and op'-DDT showed high activation irrespective of ERs. Endosulfan also exhibited activation; with less/no transactivity measured using other pesticides, i.e., heptachlor, carbendazim, deltamethrin, acephate, dimethoate and amitraz. It was generally observed that ERβ2 had higher activation potential than ERα and ERβ1. To understand the molecular mechanism of estrogen action via ER, we also conducted E(2) treatment where we observed a trigger in ERβ2 expression upon E(2) exposure. The present data suggest that ERβ2 is essential for female gonad maintenance. The data were supported by induction of vitellogenin (VTG) mRNA in the liver and reduced VTG receptor mRNA expression in the gonad of both sexes. The present work will provide a basic tool allowing future studies to examine the receptor-ligand interactions and endocrine disrupting mechanisms, and also expands our knowledge of estrogen action on reproductive development in medaka.

  2. In vitro and in vivo estrogenic effects of 17alpha-estradiol in medaka (Oryzias latipes).

    Science.gov (United States)

    Huang, Chong; Zhang, Zhaobin; Wu, Shimin; Zhao, Yanbin; Hu, Jianying

    2010-07-01

    17alpha-Estradiol (17alpha-E2), the stereoisomer of 17beta-estradiol (17beta-E2), is considered a weak estrogen in mammals. However, little is known about its estrogenic potency in teleost fish, even though 17alpha-E2 has been frequently detected in aquatic environment. To investigate the estrogenic activity of 17alpha-E2, an in vitro assay based on the ligand-dependent interaction between medaka estrogen receptor alpha (med-ERalpha) and coactivator was conducted. Japanese medaka (Oryziaslatipes) were exposed to 1, 10, 100, 1000 and 10000ng L(-1) 17alpha-E2 (actual concentrations of 1.91, 12.81, 96.24, 1045.15, and 9320.81ng L(-1), respectively) for 3 weeks, and expression for vitellogenins (VTG-I), Choriogenin H (CHG-H) and estrogen receptor alpha (ERalpha) mRNA in the livers was analyzed by quantitative real-time RT-PCR (Q-RT-PCR). The in vitro study showed that the EC(50) of 17alpha-E2 was 114.10nM, which was 30 times less potent than that of 17beta-E2 (3.80nM). Dose-dependent induction of gene expression of VTG-I, CHG-H and ERalpha were observed. The benchmark dose (BMD) values for VTG-I, CHG-H and ERalpha were 44.16ng L(-1), 15.25ng L(-1) and 66.03ng L(-1), which were about 11-, 17- and 14-times less potent than that of 17beta-E2, respectively. Comparing this study with those reported previously in mammals, it is suggested that fish species may be more susceptive to 17alpha-E2 than mammals.

  3. Short-term effects of endocrine-disrupting chemicals on the expression of estrogen-responsive genes in male medaka (Oryzias latipes).

    Science.gov (United States)

    Yamaguchi, Akemi; Ishibashi, Hiroshi; Kohra, Shinya; Arizono, Koji; Tominaga, Nobuaki

    2005-04-30

    To evaluate the estrogenic activities of selected estrogenic compounds such as estradiol-17beta (E2), nonylphenol (NP), 4-(1-adamantyl)phenol (AdP), bisphenol A (BPA), BPA metabolite 4-methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP) and 4,4'-dihydroxy-alpha-methylstilbene (DHMS) in the shortest possible time, we investigated the expression of estrogen-responsive genes such as vitellogenin I, vitellogenin II and alpha-type estrogen receptor genes in the liver of male medaka (Oryzias latipes) using reverse transcription-polymerase chain reaction (RT-PCR) techniques. These estrogen-responsive genes responded rapidly to selected estrogenic compounds after 8 h exposure, and the expression of hepatic vitellogenin II and estrogen receptor alpha mRNA was found to be more responsive than that of vitellogenin I mRNA. As a result, the relative estrogenic potencies of tested chemicals descended in the order of E2 (100)>MBP (0.38)>AdP (0.25)>DHMS (0.05)>NP (0.02)>BPA (0.001). Moreover, this preliminary study indicates that AdP and DHMS should be considered as candidate estrogenic compounds with the potential to induce hepatic estrogen-responsive genes in male medaka. These results suggest that vitellogenin I, vitellogenin II and estrogen receptor alpha gene expression patterns alter in male medaka treated with selected estrogenic compounds, and that these genes may be useful molecular biomarkers for screening estrogenic endocrine-disrupting chemicals in the shortest possible time.

  4. Effect of estrogenic activity, and phytoestrogen and organochlorine pesticide contents in an experimental fish diet on reproduction and hepatic vitellogenin production in medaka (Oryzias latipes).

    Science.gov (United States)

    Inudo, Makiko; Ishibashi, Hiroshi; Matsumura, Naomi; Matsuoka, Munekazu; Mori, Taiki; Taniyama, Shigeto; Kadokami, Kiwao; Koga, Minoru; Shinohara, Ryota; Hutchinson, T H; Iguchi, Taisen; Arizono, Koji

    2004-12-01

    Endocrine-disrupting chemicals (EDCs) are giving rise to serious concerns for humans and wildlife. Phytoestrogens, such as daidzein and genistein in plants, and organochlorine pesticides are suspected EDCs, because their chemical structure is similar to that of natural or synthetic estrogens and they have estrogenic activity in vitro and in vivo. We assessed estrogenic activity and dietary phytoestrogen and organochlorine pesticide contents of various fish diets made in the United Kingdom, and compared them with those features of diets made in Japan that were tested in a previous study. Genistein and daidzein were detected in all of the diets. Using an in vitro bioassay, many of these diets had higher activation of estrogen beta-receptors than estrogen alpha-receptors. Organochlorine pesticides such as hexachlorobenzene, beta-benzene hexachloride (BHC), and gamma-BHC were detected in all fish diets. On the basis of these data, we investigated the effect of differing dietary phytoestrogen content in Japanese fish diets on hepatic vitellogenin production and reproduction (fecundity and fertility) in medaka (Oryzias latipes). Assessment of the effects of a 28-day feeding period on reproduction of paired medaka did not indicate significant differences in the number of eggs produced and fertility among all feeding groups. However, hepatic vitellogenin values were significantly higher for male medaka fed diet C (genistein, 58.5 +/- 0.6 microg/g; daidzein, 37.3 +/- 0.2 microg/g) for 28 days compared with those fed diet A (genistein, phytoestrogens, such as diet C, have the potential to induce hepatic vitellogenin production in male medaka, even if reproductive parameters are unaffected. Therefore, some diets, by affecting vitellogenin production in males, may alter estrogenic activity of in vivo tests designed to determine activity of test compounds added to the diet.

  5. Estrogen, Estrogen Receptor and Lung Cancer

    Directory of Open Access Journals (Sweden)

    Li-Han Hsu

    2017-08-01

    Full Text Available Estrogen has been postulated as a contributor for lung cancer development and progression. We reviewed the current knowledge about the expression and prognostic implications of the estrogen receptors (ER in lung cancer, the effect and signaling pathway of estrogen on lung cancer, the hormone replacement therapy and lung cancer risk and survival, the mechanistic relationship between the ER and the epidermal growth factor receptor (EGFR, and the relevant clinical trials combining the ER antagonist and the EGFR antagonist, to investigate the role of estrogen in lung cancer. Estrogen and its receptor have the potential to become a prognosticator and a therapeutic target in lung cancer. On the other hand, tobacco smoking aggravates the effect of estrogen and endocrine disruptive chemicals from the environment targeting ER may well contribute to the lung carcinogenesis. They have gradually become important issues in the course of preventive medicine.

  6. The effect of chlorination of estrogenic chemicals on the level of serum vitellogenin of Japanese medaka (Oryzias latipes).

    Science.gov (United States)

    Tabata, A; Miyamoto, N; Ohnishi, Y; Itoh, M; Yamada, T; Kamei, T; Magara, Y

    2003-01-01

    Mature male medaka were continually exposed to four chemicals, p-n-nonylphenol (p-n-NP), nonylphenol (p-NP), bisphenol-A (BPA) and 17beta-estradiol (E2) to evaluate their estrogenic activities in the laboratory. In order to understand the effect of the chlorination that is applied widely in water and wastewater treatment, the above chemicals were chlorinated and then exposed to mature male medaka. Furthermore, in the case of vitellogenin, a is a female specific protein induced by the exposure to test waters containing the above chemicals after 5 weeks, medaka was returned to uncontaminated tap water to determine whether male medaka have a self recovery function from the effect of estrogenic chemicals. Much greater vitellogenin compared to the background levels were induced in the male medaka by separate exposure to 100 microg/L of p-NP, 1,000 microg/L of BPA and 0.05 microg/L of E2. The levels of vitellogenin increased with increasing exposure periods. The relative potencies of these chemicals descended in the order of E2>p-NP>BPA. Vitellogenin levels inducible by these chemicals were drastically reduced as a result of the chlorination for 24 hours. However, a moderate increase in hepatocyte somatic index (HSI) meant the hepatic fatness was observed as a result of chlorination. It is not clear at this stage whether or not the formation of chlorination byproducts is responsible for this moderate increase in HSI. The vitellogenin concentration of male medaka exposed to chemicals for 5 weeks decreased gradually after return to the uncontaminated water. However, the vitellogenin concentration did not return to the initial normal levels even after 5 weeks. A clear relationship between the serum vitellogenin concentration and the hepatic vitellogenin concentration was also found. Since quantitative analytical procedures for hepatic vitellogenin are easier than those of the serum vitellogenin, measuring the estrogenic effect using the measurement of vitellogenin in liver

  7. Estrogen receptors in breast carcinoma.

    Science.gov (United States)

    Huaman, A

    1979-11-01

    On the basis of estrogen receptor assays, breast carcinomas are presently classified as estrogen-dependent tumors, which respond to endocrine therapy, and autonomous tumors, for which endocrine therapy is useless. This paper presents a short review of the biochemical principles of estrogen dependence, the procedures used to determine estrogen receptors, and the clinical applications of the findings of these assay procedures. Biobhemically, the estroogen dependence of normal breast cells is explained as a biochemical reaction occurring between the circulating estradiol and the breast cell, which occurs in 3 steps: 1) circulating estradiol penetrates the cellular membrane by passive diffusion, followed by 2) combining of estradiol with the estrogen-binding protein (estrophilin) and formation of an estrogen receptor complex which undergoes activation and translocation into the nucleus, to result in 3) the activated steroid receptor which combines with the nuclear charomatin and stimulates ribonucleic acid synthesis for the formation of estradiol binding proteins or estradiol receptors. The cytosol method of Wittliff et al. is described in brief and entails radioactive competitive analysis; the other available laboratory procedure is immunofluorescence of tumor sections. Quantification of estrogen receptor content can be used clinically to decide on ablative endocrine therapy, to determine the effectiveness of anti-estrogen administration, to determine the primary site of metastatic carcinoma, and as a screenng device.

  8. Olfactory receptor gene family evolution in stickleback and medaka fishes

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Interaction of olfactory receptor (OR) genes with environmental odors is regarded as the first step of olfaction.In this study,OR genes of two fish,medaka (Oryzias latipes) and stickleback (Gasterosteus aculeatus),were identified and an evolutional analysis was conducted.The selection pressure of different TM regions and complete coding region were compared.Three TM regions (TM4,TM5 and TM6) were found to have higher average Ka/Ks values,which might be partly caused by positive selection as suggested by subsequent positive selection analysis.Further analysis showed that many PTSs overlap,or are adjacent to previously deduced binding sites in mammals.These results support the hypothesis that binding sites of fish OR genes may evolved under positive selection.

  9. The androgen receptor and estrogen receptor

    NARCIS (Netherlands)

    Oosterkamp, H.M.; Bernards, R.A.

    2002-01-01

    The androgen receptor (AR) and the estrogen receptors (ER) are members of the nuclear receptor (NR) family. These NRs are distinguished from the other transcription factors by their ability to control gene expression upon ligand binding (steroids, retinoids, thyroid hormone, vitamin D, fatty acids,

  10. Selectively targeting estrogen receptors for cancer treatment

    NARCIS (Netherlands)

    Shanle, Erin K.; Xu, Wei

    2010-01-01

    Estrogens regulate growth and development through the action of two distinct estrogen receptors (ERs), ER alpha and ER beta, which mediate proliferation and differentiation of cells. For decades, ER alpha mediated estrogen signaling has been therapeutically targeted to treat breast cancer, most nota

  11. CERAPP: Collaborative Estrogen Receptor Activity Prediction Project

    Data.gov (United States)

    U.S. Environmental Protection Agency — Data from a large-scale modeling project called CERAPP (Collaborative Estrogen Receptor Activity Prediction Project) demonstrating using predictive computational...

  12. Estrogen Receptor Agonists and Antagonists in the Yeast Estrogen Bioassay.

    Science.gov (United States)

    Wang, Si; Bovee, Toine F H

    2016-01-01

    Cell-based bioassays can be used to predict the eventual biological activity of a substance on a living organism. In vitro reporter gene bioassays are based on recombinant vertebrate cell lines or yeast strains and especially the latter are easy-to-handle, cheap, and fast. Moreover, yeast cells do not express estrogen, androgen, progesterone or glucocorticoid receptors, and are thus powerful tools in the development of specific reporter gene systems that are devoid of crosstalk from other hormone pathways. This chapter describes our experience with an in-house developed RIKILT yeast estrogen bioassay for testing estrogen receptor agonists and antagonists, focusing on the applicability of the latter.

  13. Effects of alachlor on the early development and induction of estrogen-responsive genes in Medaka, Oryzias latipes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C.; Ryu, J.; Park, S.Y.; Choi, K.; Jeon, S.H.; Na, J.G.; Rhee, D.G. [National Inst. of Environmental Research, Incheon (Korea)

    2004-09-15

    Alachlor is an acetanilide herbicide used to control annual grasses and weeds in field corn, soybeans, and peanuts. It is a selective systemic herbicide, absorbed by germinating shoots and by roots. Although the specific pathways are not exactly understood, the acetanilide herbicides apparently interfere with several physiological processes including biosynthesis of lipids, proteins and flavonoids. These herbicides are widely used in agriculture and are commonly detected in surface water and groundwater. Alachlor has a relatively low acute toxicity, however, repeated exposure has been reported to cause hepatotoxicity, irreversible uveal degeneration and tumour formation in some animals. Besides alachlor is one of the herbicides reported to have endocrine disrupting effects. 2,4-D, 2,4,5-T, amitrole and atrazine also belong to these types of herbicides. Alachlor is a strongly suspected endocrine disruptor in that it is listed by EPA and the World Wildlife Fund [WWF] as a potential endocrine disrupting chemical. Many mammalian and aquatic toxicological studies with alachlor were performed under the conditions of acute, subacute and chronic experiment. However, not many studies using fish have been carried out with the purpose of screening and testing of endocrine disrupting effects of alachlor. The purpose of this study was to determine the effects of alachlor on the early morphological development of medaka (Oryzias latipes). Embryonic growth, deformation and hatching success were determined to see the effects of this chemical. Also, we tried to measure the estrogenic activity of alachlor using the ELISA and RT-PCR methods. By using these techniques, we evaluated the induction of the estrogen-responsive genes, vitellogenin (precursor of yolk protein) and choriogenin (precursor of egg envelope protein) in male medaka exposed to alachlor.

  14. Estrogens and selective estrogen receptor modulators in acromegaly.

    Science.gov (United States)

    Duarte, Felipe H; Jallad, Raquel S; Bronstein, Marcello D

    2016-11-01

    Despite recent advances in acromegaly treatment by surgery, drugs, and radiotherapy, hormonal control is still not achieved by some patients. The impairment of IGF-1 generation by estrogens in growth hormone deficient patients is well known. Patients on oral estrogens need higher growth hormone doses in order to achieve normal IGF-1 values. In the past, estrogens were one of the first drugs used to treat acromegaly. Nevertheless, due to the high doses used and the obvious side effects in male patients, this strategy was sidelined with the development of more specific drugs, as somatostatin receptor ligands and dopamine agonists. In the last 15 years, the antagonist of growth hormone receptor became available, making possible IGF-1 control of the majority of patients on this particular drug. However, due to its high cost, pegvisomant is still not available in many centers around the world. In this setting, the effect of estrogens and also of selective estrogen receptor modulators on IGF-1 control was reviewed, and proved to be an ancillary tool in the management of acromegaly. This review describes data concerning their efficacy and place in the treatment algorithm of acromegaly.

  15. Targeted Radiotherapy of Estrogen Receptor Positive Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Raghavan Rajagopalan

    2006-08-31

    The overall objectives of the proposal were to develop estrogen receptor (ER) binding small molecule radiopharmaceuticals for targeted radiotherapy of ER positive (ER+) tumors. In particular, this proposal focused on embedding a {sup 186,188}Re or a {sup 32}P radionuclide into an estrogen steroidal framework by isosteric substitution such that the resulting structure is topologically similar to the estrogen (estrogen mimic). The estrogen mimic molecules expected to bind to the ER and exhibit biodistribution akin to that of native estrogen due to structural mimicry. It is anticipated that the {sup 186,188}Re- or a {sup 32}P-containing estrogen mimics will be useful for targeted molecular radiotherapy of ER+ tumors. It is well established that the in vivo target tissue uptake of estrogen like steroidal molecules is related to the binding of the steroids to sex hormone binding globulin (SHBG). SHBG is important in the uptake of estrogens and testosterone in target tissues by SHBG receptors on the cell surface. However, hitherto the design of estrogen like small molecule radiopharmaceuticals was focused on optimizing ER binding characteristics without emphasis on SHBG binding properties. Consequently, even the molecules with good ER affinity in vitro, performed poorly in biodistribution studies. Based on molecular modeling studies the proposal focused on developing estrogen mimics 1-3 which were topologically similar to native estrogens, and form hydrogen bonds in ER and SHBG in the same manner as those of native estrogens. To this end the technical objectives of the proposal focused on synthesizing the rhenium-estrone and estradiol mimics 1 and 2 respectively, and phosphorous estradiol mimic 3 and to assess their stability and in vitro binding characteristics to ER and SHBG.

  16. Targeted Radiotherapy of Estrogen Receptor Positive Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Raghavan Rajagopalan

    2006-08-31

    The overall objectives of the proposal were to develop estrogen receptor (ER) binding small molecule radiopharmaceuticals for targeted radiotherapy of ER positive (ER+) tumors. In particular, this proposal focused on embedding a {sup 186,188}Re or a {sup 32}P radionuclide into an estrogen steroidal framework by isosteric substitution such that the resulting structure is topologically similar to the estrogen (estrogen mimic). The estrogen mimic molecules expected to bind to the ER and exhibit biodistribution akin to that of native estrogen due to structural mimicry. It is anticipated that the {sup 186,188}Re- or a {sup 32}P-containing estrogen mimics will be useful for targeted molecular radiotherapy of ER+ tumors. It is well established that the in vivo target tissue uptake of estrogen like steroidal molecules is related to the binding of the steroids to sex hormone binding globulin (SHBG). SHBG is important in the uptake of estrogens and testosterone in target tissues by SHBG receptors on the cell surface. However, hitherto the design of estrogen like small molecule radiopharmaceuticals was focused on optimizing ER binding characteristics without emphasis on SHBG binding properties. Consequently, even the molecules with good ER affinity in vitro, performed poorly in biodistribution studies. Based on molecular modeling studies the proposal focused on developing estrogen mimics 1-3 which were topologically similar to native estrogens, and form hydrogen bonds in ER and SHBG in the same manner as those of native estrogens. To this end the technical objectives of the proposal focused on synthesizing the rhenium-estrone and estradiol mimics 1 and 2 respectively, and phosphorous estradiol mimic 3 and to assess their stability and in vitro binding characteristics to ER and SHBG.

  17. Estrogen receptor beta treats Alzheimer's disease

    Institute of Scientific and Technical Information of China (English)

    Zhu Tian; Jia Fan; Yang Zhao; Sheng Bi; Lihui Si; Qun Liu

    2013-01-01

    In vitro studies have shown that estrogen receptor β can attenuate the cytotoxic effect of amyloid β protein on PC12 cells through the Akt pathway without estrogen stimulation. In this study, we aimed to observe the effect of estrogen receptor β in Alzheimer's disease rat models established by intraventricular injection of amyloid β protein. Estrogen receptor β lentiviral particles delivered via intraventricular injection increased Akt content in the hippocampus, decreased interleukin-1β mRNA, tumor necrosis factor α mRNA and amyloid β protein levels in the hippocampus, and improved the learning and memory capacities in Alzheimer's disease rats. Estrogen receptor β short hairpin RNA lentiviral particles delivered via intraventricular injection had none of the above impacts on Alzheimer's disease rats. These experimental findings indicate that estrogen receptor β, independent from estrogen, can reduce inflammatory reactions and amyloid β deposition in the hippocampus of Alzheimer's disease rats, and improve learning and memory capacities. This effect may be mediated through activation of the Akt pathway.

  18. Estrogen receptors in human vaginal tissue

    NARCIS (Netherlands)

    Wiegerinck, M.A.H.M.; Poortman, J.; Agema, A.R.; Thijssen, J.H.H.

    1980-01-01

    The presence of specific estrogen receptors could be demonstrated in vaginal tissue, obtained during operation from 38 women, age 27–75 yr. In 23 premenopausal women the receptor concentration in the vaginal tissue varied between 12 and 91 fmol/mg protein, no significant difference in the receptor

  19. Characterization of luteinizing hormone and luteinizing hormone receptor and their indispensable role in the ovulatory process of the medaka.

    Directory of Open Access Journals (Sweden)

    Katsueki Ogiwara

    Full Text Available The molecular properties and roles of luteinizing hormone (Lh and its receptor (Lhcgrbb have not been studied for the medaka (Oryzias latipes, which is an excellent animal model for ovulation studies. Here, we characterized the medaka Lh/Lhcgrbb system, with attention to its involvement in the ovulatory process of this teleost fish. In the medaka ovary, follicle-stimulating hormone receptor mRNA was expressed in small and medium-sized follicles, while lhcgrbb mRNA was expressed in the follicle layers of all growing follicles. Experiments using HEK 293T cells expressing medaka Lhcgrbb in vitro revealed that gonadotropin from pregnant mare's serum and medaka recombinant Lh (rLh bound to the fish Lhcgrbb. The fish gonadotropin subunits Gtha, Fshb, and Lhb were essentially expressed at fairly constant levels in the pituitary of the fish during a 24-h spawning cycle. Using medaka rLh, we developed a follicle culture system that allowed us to follow the whole process of oocyte maturation and ovulation in vitro. This follicle culture method enabled us to determine that the Lh surge for the preovulatory follicle occurred in vivo between 19 and 15 h before ovulation. The present study also showed that oocyte maturation and ovulation were delayed several hours in vitro compared with in vivo. Treatment of large follicles with medaka rLh in vitro significantly increased the expression of Mmp15, which was previously demonstrated to be crucial for ovulation in the fish. These findings demonstrate that Lh/Lhcgrbb is critically involved in the induction of oocyte maturation and ovulation.

  20. Raloxifene: a selective estrogen receptor modulator.

    Science.gov (United States)

    Scott, J A; Da Camara, C C; Early, J E

    1999-09-15

    Raloxifene is a selective estrogen receptor modulator that produces both estrogen-agonistic effects on bone and lipid metabolism and estrogen-antagonistic effects on uterine endometrium and breast tissue. Because of its tissue selectivity, raloxifene may have fewer side effects than are typically observed with estrogen therapy. The most common adverse effects of raloxifene are hot flushes and leg cramps. The drug is also associated with an increased risk of thromboembolic events. The beneficial estrogenic activities of raloxifene include a lowering of total and low-density lipoprotein cholesterol levels and an augmentation of bone mineral density. Raloxifene has been labeled by the U.S. Food and Drug Administration for the prevention of osteoporosis. However, its effects on fracture risk and its ability to protect against cardiovascular disease have yet to be determined. Studies are also being conducted to determine its impact on breast and endometrial cancer reduction.

  1. CERAPP: Collaborative estrogen receptor activity prediction project

    DEFF Research Database (Denmark)

    Mansouri, Kamel; Abdelaziz, Ahmed; Rybacka, Aleksandra

    2016-01-01

    Background: Humans are exposed to thousands of man-made chemicals in the environment. Some chemicals mimic natural endocrine hormones and, thus, have the potential to be endocrine disruptors. Most of these chemicals have never been tested for their ability to interact with the estrogen receptor (ER......). Risk assessors need tools to prioritize chemicals for evaluation in costly in vivo tests, for instance, within the U.S. EPA Endocrine Disruptor Screening Program. oBjectives: We describe a large-scale modeling project called CERAPP (Collaborative Estrogen Receptor Activity Prediction Project...

  2. New Selective Estrogen and Androgen Receptor Modulators

    Science.gov (United States)

    Clarke, Bart L.; Khosla, Sundeep

    2010-01-01

    Purpose of Review The present review focuses on the most significant recent findings regarding selective estrogen receptor modulators (SERMs) and selective androgen receptor modulators (SARMs). SERMs, which interact with estrogen receptor (ER)-α and ER-β in multiple tissues, continue to generate clinical interest in potential applications in as many disorders as the tissues in which the two known receptors are found. SARMs have been demonstrated to have fewer clinical applications to date, but continue to be investigated for use in multiple disorders in which androgen receptor (AR) modulation is likely to be important. Both types of compounds hold great promise for therapeutic use in multiple hormonal disorders involving tissue-specific effects mediated by estrogen or androgen receptors. Recent Findings While SERMs have been available for clinical use for 50 years, recent investigation has focused on large randomized clinical trials for newer indications of older agents, or smaller clinical trials of newer agents with improved clinical activity and reduced side effects in specific tissues. In particular, the large, prospective, randomized, controlled, multi-year STAR and RUTH clinical trials have recently shown interesting similarities and differences between tamoxifen and raloxifene in estrogen-responsive tissues. Lasofoxifene and arzoxifene are two newer SERMs that have recently been demonstrated to improve bone mineral density and lower serum cholesterol values compared to older SERMs in smaller clinical trials. SARMs are a newer category of drug still being investigated mostly at the basic and preclinical level, with fewer clinical trials available for review. SARMs are currently being investigated mostly for use in prostate cancer at different stages, but hold promise for multiple other applications. Summary Recent clinical trials indicate that selective estrogen receptor modulators are useful in treatment of disorders of bone and mineral metabolism and

  3. Evaluation of Estrogenic Activity of Wastewater: Comparison Among In Vitro ERα Reporter Gene Assay, In Vivo Vitellogenin Induction, and Chemical Analysis.

    Science.gov (United States)

    Ihara, Masaru; Kitamura, Tomokazu; Kumar, Vimal; Park, Chang-Beom; Ihara, Mariko O; Lee, Sang-Jung; Yamashita, Naoyuki; Miyagawa, Shinichi; Iguchi, Taisen; Okamoto, Seiichiro; Suzuki, Yutaka; Tanaka, Hiroaki

    2015-05-19

    The in vitro estrogen receptor (ER) reporter gene assay has long been used to measure estrogenic activity in wastewater. In a previous study, we demonstrated that the assay represents net estrogenic activity in the balance between estrogenic and antiestrogenic activities in wastewater. However, it remained unclear whether the net estrogenic activity measured by the in vitro ERα reporter gene assay can predict the in vivo estrogenic effect of wastewater. To determine this, we measured the following: estrogenic and antiestrogenic activities of wastewater and reclaimed water by the in vitro ERα reporter gene assay, expression of vitellogenin-1 (vtg1) and choriogenin-H (chgH) in male medaka (Oryzias latipes) by quantitative real-time PCR, and estrone, 17β-estradiol, estriol, and 17α-ethynylestradiol concentrations chemically to predict estrogenic activity. The net estrogenic activity measured by the in vitro medaka ERα reporter gene assay predicted the in vivo vtg1/chgH expression in male medaka more accurately than the concentrations of estrogens. These results also mean that in vivo vtg1/chgH expression in male medaka is determined by the balance between estrogenic and antiestrogenic activities. The in vitro medaka ERα reporter gene assay also predicted in vivo vtg1/chgH expression on male medaka better than the human ERα reporter gene assay.

  4. Regulation of Estrogen Receptor Nuclear Export by Ligand-Induced and p38-Mediated Receptor Phosphorylation

    OpenAIRE

    Lee, Heehyoung; Bai, Wenlong

    2002-01-01

    Estrogen receptors are phosphoproteins which can be activated by ligands, kinase activators, or phosphatase inhibitors. Our previous study showed that p38 mitogen-activated protein kinase was involved in estrogen receptor activation by estrogens and MEKK1. Here, we report estrogen receptor-dependent p38 activation by estrogens in endometrial adenocarcinoma cells and in vitro and in vivo phosphorylation of the estrogen receptor α mediated through p38. The phosphorylation site was identified as...

  5. ESTROGEN RECEPTORS OF HAIRS BLACKS AND WHITES

    Directory of Open Access Journals (Sweden)

    H. Laswati

    2014-12-01

    Full Text Available Background: Aging is termed as same as degenerative process, in which all part of tissue organs retarted the microstructure either macrostructure, forming and function even the colour, including black hair change to white hair. Several researchers have been recommended that estrogen hormone be able ease black to white hair, but hormone without any presenting of receptor won’t be work properly. The main aim of this study were to determine amount of estrogen receptor contents in famales and males black and white hairs included the microscopically structure. Method: Twelve females and males there were 50 -56 years old each pairs black and white head hairs were plucked along with follicles. This estrogen receptors analyzed using radioreceptor binding assay there were 5mm eah hair follices including the root cutted and each pair put its in 2 ml glass tube already filled in with 500 µl 125I-estradiol and incubated in 37oC for 3 hrs. Following times were over the tube flushed twice carefully the hair won’t be flushed. Then count by putting in the gamma counter chamber for 1 minute each. The values that shown in the monitor as CPM (count per minute, recorded as receptor of estradiol. Results: Mean (±SD sum estrogen receptor in females black and white hairs were 479.3 ± 37.5 and 387.7 ± 33.0, but significantly decreased in male black hair was 316.9±17.8 and 274.0 ± 19.8. All those pairs significantly different either female black and white hairs or male black and white hair and also significantly different among groups. Conclusion: The lowest estrogen receptors recorded in male white hairs and microstructure decreasing of melanin contents.

  6. Estrogen receptors and function in the male reproductive system

    OpenAIRE

    Lazari, Maria de Fatima Magalhaes [UNIFESP; Lucas, Thais Fabiana Gameiro [UNIFESP; Yasuhara, Fabiana [UNIFESP; Gomes, Gisele Renata de Oliveira [UNIFESP; Siu, Erica Rosanna; Royer, Carine [UNIFESP; Fernandes, Sheilla Alessandra Ferreira [UNIFESP; Porto, Catarina Segreti [UNIFESP

    2009-01-01

    A substantial advance in our understanding on the estrogen signaling occurred in the last decade. Estrogens interact with two receptors, ESR1 and ESR2, also known as ERα and ERβ, respectively. ESR1 and ESR2 belong to the nuclear receptor family of transcription factors. In addition to the well established transcriptional effects, estrogens can mediate rapid signaling, triggered within seconds or minutes. These rapid effects can be mediated by ESRs or the G protein-coupled estrogen receptor GP...

  7. Suppression of the inflammatory response in experimental arthritis is mediated via estrogen receptor alpha but not estrogen receptor beta

    NARCIS (Netherlands)

    Dulos, John; Vijn, Peter; van Doorn, Cindy; Hofstra, Claudia L.; Veening-Griffioen, Desiree; de Graaf, Jan; Dijcks, Fred A.; Boots, Annemieke M. H.

    2010-01-01

    Introduction: The immune modulatory role of estrogens in inflammation is complex. Both pro- and anti-inflammatory effects of estrogens have been described. Estrogens bind both estrogen receptor (ER)alpha and beta. The contribution of ER alpha and ER beta to ER-mediated immune modulation was studied

  8. Estrogen Receptor Driven Inhibitor Synthesis

    Science.gov (United States)

    2006-09-01

    Engstrom O, Ohman L, Greene GL, Gustaffson JA, Carlquist M. Molecular basis of agonism and antagonism in the oestrogen receptor. Nature 389, 753-758...oxidatively modified proteins in Bacillus subtilis, Mol. Microbiol. 58 (2005) 409–425. [7] K. Tyagarajan, E. Pretzer, J.E. Wiktorowicz, Thiol-reactive dyes

  9. Binding of Estrogenic Compounds to Recombinant Estrogen Receptor-α: Application to Environmental Analysis

    OpenAIRE

    Pillon, Arnaud; Boussioux, Anne-Marie; Escande, Aurélie; Aït-Aïssa, Sélim; Gomez, Elena; Fenet, Hélène; Ruff, Marc; Moras, Dino; Vignon, Françoise; Duchesne, Marie-Josèphe; Casellas, Claude; Nicolas, Jean-Claude; Balaguer, Patrick

    2004-01-01

    Estrogenic activity in environmental samples could be mediated through a wide variety of compounds and by various mechanisms. High-affinity compounds for estrogen receptors (ERs), such as natural or synthetic estrogens, as well as low-affinity compounds such as alkylphenols, phthalates, and polychlorinated biphenyls are present in water and sediment samples. Furthermore, compounds such as polycyclic aromatic hydrocarbons, which do not bind ERs, modulate estrogen activity by means of the aryl ...

  10. Binding of estrogenic compounds to recombinant estrogen receptor-alpha: application to environmental analysis.

    OpenAIRE

    Pillon, Arnaud; Boussioux, Anne-Marie; Escande, Aurélie; Aït-Aïssa, Sélim; Gomez, Elena; Fenet, Hélène; Ruff, Marc; Moras, Dino; Vignon, Françoise; Duchesne, Marie-Josèphe; Casellas, Claude; Nicolas, Jean-Claude; Balaguer, Patrick

    2005-01-01

    International audience; Estrogenic activity in environmental samples could be mediated through a wide variety of compounds and by various mechanisms. High-affinity compounds for estrogen receptors (ERs), such as natural or synthetic estrogens, as well as low-affinity compounds such as alkylphenols, phthalates, and polychlorinated biphenyls are present in water and sediment samples. Furthermore, compounds such as polycyclic aromatic hydrocarbons, which do not bind ERs, modulate estrogen activi...

  11. Estrogen receptor alpha polymorphisms and postmenopausal breast cancer risk.

    NARCIS (Netherlands)

    Ladd, AM Gonzalez-Zuloet; Vasquez, A.A.; Rivadeneira, F.; Siemes, C.; Hofman, A.; Stricker, B.H.; Pols, H.A.; Uitterlinden, A.G.; Duijn, C.M. van

    2008-01-01

    BACKGROUND: The estrogen receptor alpha (ESR1) is a mediator of estrogen response in the breast. The most studied variants in this gene are the PvuII and XbaI polymorphisms, which have been associated to lower sensitivity to estrogen. We evaluated whether these polymorphisms were associated with bre

  12. Estrogen receptor α polymorphisms and postmenopausal breast cancer risk

    NARCIS (Netherlands)

    A.M. González-Zuloeta Ladd (Angela); A.A. Vásquez (Arias); F. Rivadeneira Ramirez (Fernando); C. Siemes (Claire); A. Hofman (Albert); B.H.Ch. Stricker (Bruno); H.A.P. Pols (Huib); A.G. Uitterlinden (André); P. Tikka-Kleemola (Päivi)

    2008-01-01

    textabstractBackground: The estrogen receptor alpha (ESR1) is a mediator of estrogen response in the breast. The most studied variants in this gene are the PvuII and XbaI polymorphisms, which have been associated to lower sensitivity to estrogen. We evaluated whether these polymorphisms were associa

  13. Luteinizing Hormone-Induced Expression of Ptger4b, a Prostaglandin E2 Receptor Indispensable for Ovulation of the Medaka Oryzias latipes, Is Regulated by a Genomic Mechanism Involving Nuclear Progestin Receptor1

    National Research Council Canada - National Science Library

    Akane Hagiwara; Katsueki Ogiwara; Yoshinao Katsu; Takayuki Takahashi

    2014-01-01

    ABSTRACT We previously reported that the prostaglandin E2 receptor subtype Ptger4b plays a role in ovulation in a teleost species, medaka and that ptger4b mRNA is drastically induced in preovulatory...

  14. The anticancer estrogen receptor antagonist tamoxifen impairs consolidation of inhibitory avoidance memory through estrogen receptor alpha.

    Science.gov (United States)

    Lichtenfels, Martina; Dornelles, Arethuza da Silva; Petry, Fernanda Dos Santos; Blank, Martina; de Farias, Caroline Brunetto; Roesler, Rafael; Schwartsmann, Gilberto

    2017-09-02

    Over two-thirds of women with breast cancer have positive tumors for hormone receptors, and these patients undergo treatment with endocrine therapy, tamoxifen being the most widely used agent. Despite being very effective in breast cancer treatment, tamoxifen is associated with side effects that include cognitive impairments. However, the specific aspects and mechanisms underlying these impairments remain to be characterized. Here, we have investigated the effects of tamoxifen and interaction with estrogen receptors on formation of memory for inhibitory avoidance conditioning in female rats. In the first experiment, Wistar female rats received a single oral dose of tamoxifen (1, 3, or 10 mg/kg) or saline by gavage immediately after training and were tested for memory consolidation 24 h after training. In the second experiment, rats received a single dose of 1 mg/kg tamoxifen or saline by gavage 3 h after training and were tested 24 h after training for memory consolidation. In the third experiment, rats received a subcutaneous injection with estrogen receptor α agonist or estrogen receptor beta agonist 30 min before the training. After training, rats received a single oral dose of tamoxifen 1 mg/kg or saline and were tested 24 h after training. In the fourth experiment, rats were trained and tested 24 h later. Immediately after test, rats received a single dose of tamoxifen (1 mg/kg) or saline by gavage and were given four additional daily test trials followed by a re-instatement. Tamoxifen at 1 mg/kg impaired memory consolidation when given immediately after training and the estrogen receptor alpha agonist improved the tamoxifen-related memory impairment. Moreover, tamoxifen impairs memory consolidation of the test. These findings indicate that estrogen receptors regulate the early phase of memory consolidation and the effects of tamoxifen on memory consolidation.

  15. Minireview: osteoprotective action of estrogens is mediated by osteoclastic estrogen receptor-alpha.

    Science.gov (United States)

    Imai, Yuuki; Kondoh, Shino; Kouzmenko, Alexander; Kato, Shigeaki

    2010-05-01

    The osteoprotective action of estrogen in women has drawn considerable attention because estrogen deficiency-induced osteoporosis became one of the most widely spread diseases in developed countries. In men, the significance of estrogen action for bone health maintenance is also apparent from the osteoporotic phenotype seen in male patients with genetically impaired estrogen signaling. Severe bone loss and high bone turnover, including typical osteofeatures seen in postmenopausal women, can also be recapitulated in rodents after ovariectomy. However, the expected osteoporotic phenotype is not observed in female mice deficient in estrogen receptor (ER)-alpha or -beta or both, even though the degenerative defects are clearly seen in other estrogen target tissues together with up-regulated levels of circulating testosterone. It has also been reported that estrogens may attenuate bone remodeling by cell autonomous suppressive effects on osteoblastogenesis and osteoclastogenesis. Hence, the effects of estrogens in bone appear to be complex, and the molecular role of bone estrogen receptors in osteoprotective estrogen action remains unclear. Instead, it has been proposed that estrogens indirectly control bone remodeling. For example, the enhanced production of cytokines under estrogen deficiency induces bone resorption through stimulation of osteoclastogenesis. However, the osteoporotic phenotype without systemic defects has been recapitulated in female (but not in male) mice by osteoclast-specific ablation of the ERalpha, proving that bone cells represent direct targets for estrogen action. An aberrant accumulation of mature osteoclasts in these female mutants indicates that in females, the inhibitory action of estrogens on bone resorption is mediated by the osteoclastic ERalpha through the shortened lifespan of osteoclasts.

  16. Development of a molecular biomarker for detecting intersex after exposure of male medaka fish to synthetic estrogen.

    Science.gov (United States)

    Zhao, Yanbin; Hu, Jianying

    2012-08-01

    Although intersex of fish species has been widely reported in aquatic environments, there is no appropriate biomarker of the effects to assess the occurrence of intersex. In the present study, mRNA expression profiles of 14 genes, which are either involved in ovary development and maintenance or have relatively high mRNA transcription levels in ovarian gene expression profiles in fish species, were comprehensively evaluated in male Japanese medaka (Oryzias latipes) exposed to 17α-ethynylestradiol (EE2) to investigate their utility as indicators of the severity index of intersex. Of these 14 genes, mRNA expression of a novel gene, termed ovary structure protein 1 (OSP1) in the present study, showed female-like expression pattern with the highest transcription levels, and displayed the most significantly positive correlation with the severity index of intersex (r(2) =0.8215, pintersex. These results suggest that the analysis of mRNA expression of OSP1 can be used to indicate intersex in male medaka.

  17. Estrogen receptors and cell proliferation in breast cancer.

    Science.gov (United States)

    Ciocca, D R; Fanelli, M A

    1997-10-01

    Most of the actions of estrogens on the normal and abnormal mammary cells are mediated via estrogen receptors (ERs), including control of cell proliferation; however, there are also alternative pathways of estrogen action not involving ERs. Estrogens control several genes and proteins that induce the cells to enter the cell cycle (protooncogenes, growth factors); estrogens also act on proteins directly involved in the control of the cell cycle (cyclins), and moreover, estrogens stimulate the response of negative cell cycle regulators (p53, BRCA1). The next challenge for researchers is elucidating the integration of the interrelationships of the complex pathways involved in the control of cell proliferation. This brief review focuses on the mechanisms of estrogen action to control cell proliferation and the clinical implications in breast cancer. (Trends Endocrinol Metab 1997;8:313-321). (c) 1997, Elsevier Science Inc.

  18. Estrogen receptor beta agonists in neurobehavioral investigations.

    Science.gov (United States)

    Choleris, Elena; Clipperton, Amy E; Phan, Anna; Kavaliers, Martin

    2008-07-01

    Neurobehavioral investigations into the functions of estrogen receptor (ER)alpha and ERbeta have utilized 'knockout' mice, phytoestrogens and, more recently, ER-specific agonists. Feeding, sexual, aggressive and social behavior, anxiety, depression, drug abuse, pain perception, and learning (and associated synaptic plasticity) are affected by ERalpha and ERbeta in a manner that is dependent upon the specific behavior studied, gender and developmental stage. Overall, ERalpha and ERbeta appear to function together to foster sociosexual behavior while inhibiting behaviors that, if occurring at the time of behavioral estrous, may compete with reproduction (eg, feeding). Recently developed pharmacological tools have limited selectivity and availability to the research community at large, as they are not commercially available. The development of highly selective, commercially available ERbeta-specific antagonists would greatly benefit preclinical and applied research.

  19. Effects of estrogen and tibolone on bladder histology and estrogen receptors in rats

    Institute of Scientific and Technical Information of China (English)

    YANG Xin; LI Ya-zhen; MAO Zhuo; GU Pei; SHANG Ming

    2009-01-01

    Background Estrogen deficiency causes atrophic changes within the urogenital tract, and is associated with urinary symptoms. The purpose of this study was to investigate the effects of estrogen and tibolone on bladder histology, and the changes of estrogen receptor α and β (ERα and β) protein expression in the detrusor muscle.Methods Forty female rats were separated into four groups of ten each. They received a sham operation (Sham), ovariectomy (Ovx), ovariectomy plus estrogen replacement (Ovx+E), or ovariectomy plus tibolone treatment (Ovx+T). After 12 weeks each rat was anesthetized and the bladders were removed. The bladders' ultra structure, collagen fiber (CF) to smooth muscle(SM) ratio and ER subtypes were studied. Statistical analyses were performed using the one-way analysis of variance test.Results Ovx resulted in significant degeneration in bladder ultra structure; however, estrogen and tibolone reversed those changes. Ovx increased the CF/SM ratio, estrogen and tibolone resulted in an increase. Two estrogen receptors (ERs) were expressed in the bladder detrusor, with ERβ the main subtype. Ovx resulted in up-regulation of ERα and down-regulation of ERβ. With estrogen and tibolone treatment, ERβ showed a significant increase but ERα showed no significant difference compared with Ovx.Conclusions Estrogen deficiency deteriorates bladder ultra structure and histology. Supplementary estrogen can improve bladder function which may be due to inhibition of collagen hyperplasia and increased SM density. ERβ has an important role in mediating estrogen function in the bladder. Tibolone has a mild estrogenic action and has an effect on bladder function and structure to some degree.

  20. hebp3, a novel member of the heme-binding protein gene family, is expressed in the medaka meninges with higher abundance in females due to a direct stimulating action of ovarian estrogens.

    Science.gov (United States)

    Nakasone, Kiyoshi; Nagahama, Yoshitaka; Okubo, Kataaki

    2013-02-01

    The brains of teleost fish exhibit remarkable sexual plasticity throughout their life span. To dissect the molecular basis for the development and reversal of sex differences in the teleost brain, we screened for genes differentially expressed between sexes in the brain of medaka (Oryzias latipes). One of the genes identified in the screen as being preferentially expressed in females was found to be a new member of the heme-binding protein gene family that includes hebp1 and hebp2 and was designated here as hebp3. The medaka hebp3 is expressed in the meninges with higher abundance in females, whereas there is no expression within the brain parenchyma. This female-biased expression of hebp3 is not attributable to the direct action of sex chromosome genes but results from the transient and reversible action of estrogens derived from the ovary. Moreover, estrogens directly activate the transcription of hebp3 via a palindromic estrogen-responsive element in the hebp3 promoter. Taken together, our findings demonstrate that hebp3 is a novel transcriptional target of estrogens, with female-biased expression in the meninges. The definite but reversible sexual dimorphism of the meningeal hebp3 expression may contribute to the development and reversal of sex differences in the teleost brain.

  1. Distribution of estrogen and progesterone receptors in Epulis Fissuratum

    Directory of Open Access Journals (Sweden)

    Shahrabi Sh.

    2005-06-01

    Full Text Available Statement of Problem: Epulides Fissurata (EF are common proliferative and denture- induced lesions of the oral cavity with a predilection for female. This suggests a possible role for sex steroid hormones in the development and progression of these lesions. Purpose: The objective of this study was the immunohistochemical evaluation of epulis fissuratum of the oral cavity for estrogen and progesterone receptors expression in epithelial, stromal, inflammatory and endothelial cells populations. Materials and Methods: In this cross-sectional study, 15 samples of formalin- fixed, paraffin- embedded epulis fissuratums including marginal mucosal tissues in 4 cases as a control group, were immuno-histochemically evaluated for estrogen and progesterone receptors protein expression. Result: In 10 cases, estrogen receptor positivity was found within the epithelium and progesterone receptor immunoreactivity was present in 7 cases. Stromal cells exhibited estrogen and progesterone receptor immunostaining in many cases but only few cases showed expression of these receptors in the inflammatory and endothelial cells. Estrogen and progesterone receptors were also detected in some cases containing salivary glands tissue. Conclusion: Although chronic irritation may be the initiating factor for the occurence of epulis fissuratum, some of the cells in the lesion, could be potential targets for estrogen and progestrone hormones.

  2. Estrogenic effect of the MEK1 inhibitor PD98059 on endogenous estrogen receptor alpha and beta.

    Science.gov (United States)

    Cotrim, Cândida Z; Amado, Francisco L; Helguero, Luisa A

    2011-03-01

    Estrogens are key regulators in mammary development and breast cancer and their effects are mediated by estrogen receptors alpha (ERα) and beta (ERβ). These two receptors are ligand activated transcription factors that bind to regulatory regions in the DNA known as estrogen responsive elements (EREs). ERα and ERβ activation is subject to modulation by phosphorylation and p42/p44 MAP kinases are the best characterized ER modifying kinases. Using a reporter gene (3X-ERE-TATA-luciferase) to measure activation of endogenous ERs, we found that MEK1 inhibitor PD98059, used in concentrations insufficient to inhibit MEK1 activation of p42/p44 MAP kinases, exerted estrogenic effects on the reporter gene and on the ERE-regulated RIP 140 protein. Such estrogenic effects were observed in mammary epithelial HC11 cells and occur on unliganded ERα and ligand activated ERβ. Additionally, concentrations of PD98059 able to inhibit p42/p44 phosphorylation were not estrogenic. Further, inhibition of p42 MAP kinase expression with siRNAs also resulted in loss of PD98059 estrogenic effect. In summary, PD98059 in concentrations below the inhibitory for MEK1, exerts estrogenic effects in HC11 mammary epithelial cells.

  3. Estrogen and estrogen receptors in cardiovascular oxidative stress.

    Science.gov (United States)

    Arias-Loza, Paula-Anahi; Muehlfelder, Melanie; Pelzer, Theo

    2013-05-01

    The cardiovascular system of a premenopausal woman is prepared to adapt to the challenges of increased cardiac output and work load that accompany pregnancy. Thus, it is tempting to speculate whether enhanced adaptability of the female cardiovascular system might be advantageous under conditions that promote cardiovascular disease. In support of this concept, 17β-estradiol as the major female sex hormone has been shown to confer protective cardiovascular effects in experimental studies. Mechanistically, these have been partially linked to the prevention and protection against oxidative stress. Current evidence indicates that estrogens attenuate oxidative stress at two levels: first, by preventing generation of reactive oxygen species (ROS) and, second, by scavenging ROS in the myocardium and in the vasculature. The purpose of this review is to give an overview on current concepts on conditions and mechanisms by which estrogens protect the cardiovascular system against ROS-mediated cellular injury.

  4. Estrogenic compounds, estrogen receptors and vascular cell signaling in the aging blood vessels.

    Science.gov (United States)

    Smiley, Dia A; Khalil, Raouf A

    2009-01-01

    The cardiovascular benefits of menopausal hormone therapy (MHT) remain controversial. The earlier clinical observations that cardiovascular disease (CVD) was less common in MHT users compared to non-users suggested cardiovascular benefits of MHT. Also, experimental studies have identified estrogen receptors ERalpha, ERbeta and GPR30, which mediate genomic or non-genomic effects in vascular endothelium, smooth muscle, and extracellular matrix (ECM). However, data from randomized clinical trials (RCTs), most notably the Women's Health Initiative (WHI) study, have challenged the cardiovascular benefits and highlighted adverse cardiovascular events with MHT. The discrepancies have been attributed to the design of RCTs, the subjects' advanced age and preexisting CVD, and the form of estrogen used. The discrepancies may also stem from age-related changes in vascular ER amount, distribution, integrity, and post-receptor signaling pathways as well as structural changes in the vasculature. Age-related changes in other sex hormones such as testosterone may also alter the hormonal environment and influence the cardiovascular effects of estrogen. Investigating the chemical properties, structure-activity relationship and pharmacology of natural and synthetic estrogens should improve the effectiveness of conventional MHT. Further characterization of phytoestrogens, selective estrogen-receptor modulators (SERMs), and specific ER agonists may provide substitutes to conventional MHT. Conditions with excess or low estrogen levels such as polycystic ovary syndrome (PCOS) and Turner syndrome may provide insight into the development and regulation of ER and the mechanisms of aberrant estrogen-ER interactions. The lessons learned from previous RCTs have led to more directed studies such as the Kronos Early Estrogen Prevention Study (KEEPS). Careful design of experimental models and RCTs, coupled with the development of specific ER modulators, hold the promise of improving the actions of

  5. Effects of environmental estrogenic chemicals on AP1 mediated transcription with estrogen receptors alpha and beta.

    Science.gov (United States)

    Fujimoto, Nariaki; Honda, Hiroaki; Kitamura, Shigeyuki

    2004-01-01

    There has been much discussion concerning endocrine disrupting chemicals suspected of exerting adverse effects in both wildlife and humans. Since the majority of these compounds are estrogenic, a large number of in vitro tests for estrogenic characteristics have been developed for screening purpose. One reliable and widely used method is the reporter gene assay employing estrogen receptors (ERs) and a reporter gene with a cis-acting estrogen responsive element (ERE). Other elements such as AP1 also mediate estrogenic signals and the manner of response could be quite different from that of ERE. Since this has yet to be explored, the ER mediated AP1 activity in response to a series of environmental estrogens was investigated in comparison with ERE findings. All the compounds exhibited estrogenic properties with ERE-luc and their AP1 responses were quite similar. These was one exception, however, p,p'-DDT (1,1,1,-trichloro-2,2-bis(p-chlorophenyl)ethane) did not exert any AP1-luc activity, while it appeared to be estrogenic at 10(-7) to 10(-5)M with the ERE action. None of the compounds demonstrated ER beta:AP1 activity. These data suggest that significant differences can occur in responses through the two estrogen pathways depending on environmental chemicals.

  6. In vivo imaging of activated estrogen receptors in utero by estrogens and bisphenol A.

    Science.gov (United States)

    Lemmen, Josephine G; Arends, Roel J; van der Saag, Paul T; van der Burg, Bart

    2004-11-01

    Environmental estrogens are of particular concern when exposure occurs during embryonic development. Although there are good models to study estrogenic activity of chemicals in adult animals, developmental exposure is much more difficult to test. The weak estrogenic activity of the environmental estrogen bisphenol A (BPA) in embryos is controversial. We have recently generated transgenic mice that carry a reporter construct with estrogen-responsive elements coupled to luciferase. We show that, using this in vivo model in combination with the IVIS imaging system, activation of estrogen receptors (ERs) by maternally applied BPA and other estrogens can be detected in living embryos in utero. Eight hours after exposure to 1 mg/kg BPA, ER transactivation could be significantly induced in the embryos. This was more potent than would be estimated from in vitro assays, although its intrinsic activity is still lower than that of diethylstilbestrol and 17beta-estradiol dipropionate. On the basis of these results, we conclude that the estrogenic potency of BPA estimated using in vitro assays might underestimate its estrogenic potential in embryos.

  7. Estrogen Therapy Rescues Advanced Heart Failure via Estrogen Receptor Beta

    OpenAIRE

    Iorga, Andrea

    2015-01-01

    Cardiac hypertrophy, defined as an enlargement of the ventricles, is often triggered when the heart is subjected to hemodynamic stress from physiological stimuli such as pregnancy, or from pathological stimuli such as pressure overload-induced left ventricular hypertrophy or pulmonary hypertension-induced right ventricular hypertrophy. Physiological hypertrophy is beneficial and adaptive, while pathological hypertrophy is maladaptive and detrimental. Estrogen treatment prior to the onset of p...

  8. Novel Promising Estrogenic Receptor Modulators: Cytotoxic and Estrogenic Activity of Benzanilides and Dithiobenzanilides.

    Science.gov (United States)

    Kucinska, Malgorzata; Giron, Maria-Dolores; Piotrowska, Hanna; Lisiak, Natalia; Granig, Walter H; Lopez-Jaramillo, Francisco-Javier; Salto, Rafael; Murias, Marek; Erker, Thomas

    2016-01-01

    The cytotoxicity of 27 benzanilides and dithiobenzanilides built on a stilbene scaffold and possessing various functional groups in aromatic rings previously described for their spasmolytic properties was assayed on three human cancer cell lines (A549 -lung adenocarcinoma, MCF-7 estrogen dependent breast adenocarcinoma and MDA-MB-231 estrogen independent breast adenocarcinoma) and 2 non-tumorigenic cell lines (CCD39Lu-lung fibroblasts, MCF-12A - breast epithelial). Three compounds (6, 15 and 18) showed selective antiproliferative activity against estrogen dependent MCF-7 cancer cells and their estrogenic activity was further confirmed in MCF-7 transfected with an estrogen receptor reporter plasmid and in HEK239 cells over-expressing the estrogen receptor alpha (ERα). Compound 18 is especially interesting as a potential candidate for therapy since it is highly toxic and selective towards estrogen dependent MCF7 cell lines (IC50 = 5.07 μM versus more than 100 μM for MDA-MB-231) and almost innocuous for normal breast cells (IC50 = 91.46 μM for MCF-12A). Docking studies have shown that compound 18 interacts with the receptor in the same cavity as estradiol although the extra aromatic ring is involved in additional binding interactions with residue W383. The role of W383 and the extended binding mode were confirmed by site-directed mutagenesis.

  9. The estrogen receptor of the gastropod Nucella lapillus: Modulation following exposure to an estrogenic effluent?

    Energy Technology Data Exchange (ETDEWEB)

    Castro, L. Filipe C. [CIIMAR, Centre of Marine and Environmental Research, Laboratory of Cellular and Molecular Studies, University of Porto, Rua dos Bragas 177, 4050-123 Porto (Portugal)], E-mail: filipe.castro@ciimar.up.pt; Melo, C. [CIIMAR, Centre of Marine and Environmental Research, Laboratory of Cellular and Molecular Studies, University of Porto, Rua dos Bragas 177, 4050-123 Porto (Portugal); Guillot, R.; Mendes, I.; Queiros, S.; Lima, D. [CIIMAR, Centre of Marine and Environmental Research, Laboratory of Environmental Toxicology, University of Porto, Rua dos Bragas 177, 4050-123 Porto (Portugal); Reis-Henriques, M.A. [CIIMAR, Centre of Marine and Environmental Research, Laboratory of Environmental Toxicology, University of Porto, Rua dos Bragas 177, 4050-123 Porto (Portugal); ICBAS, Instituto Ciencias Biomedicas Abel Salazar, University of Porto, Largo Professor Abel Salazar 2, 4099-003 Porto (Portugal); Santos, M.M. [CIIMAR, Centre of Marine and Environmental Research, Laboratory of Environmental Toxicology, University of Porto, Rua dos Bragas 177, 4050-123 Porto (Portugal)], E-mail: santos@ciimar.up.pt

    2007-10-30

    The molecular targets of estrogenic endocrine disrupting chemicals have been studied in detail in vertebrates. The lack of basic endocrine knowledge impairs similar approaches for invertebrates. Evidence indicates that the signalling pathways of invertebrates may also be a target of estrogenic chemicals (ECs). In fact, the exposure to effluents containing ECs has been reported to impact mollusc reproduction. Despite the reported estrogen independence of the mollusc nuclear estrogen receptor (ER), its role in EC-induced toxicity has not been investigated in vivo. Therefore, we have cloned the ER of the gastropod Nucella lapillus and evaluated the effects of a mixture of estrogenic chemicals (sewage effluent) on its expression in the ovary. Here, we show that the exposure to a raw domestic/industrial effluent, impact ER expression with a simultaneous reproductive maturation. These results highlight the need to further investigate the role of ER on the reproductive process in prosobranch gastropods and whether this signalling pathway is prone to disruption by ECs.

  10. Estrogen Receptor α (ERα) and Estrogen Related Receptor α (ERRα) are both transcriptional regulators of the Runx2-I isoform.

    Science.gov (United States)

    Kammerer, Martial; Gutzwiller, Sabine; Stauffer, Daniela; Delhon, Isabelle; Seltenmeyer, Yves; Fournier, Brigitte

    2013-04-30

    Runx2 is a master regulator of bone development and has also been described as an oncogene. Estrogen Receptor α (ERα) and Estrogen Related Receptor α (ERRα), both implicated in bone metabolism and breast cancer, have been shown to share common transcriptional targets. Here, we show that ERα is a positive regulator of Runx2-I transcription. Moreover, ERRα can act as a transcriptional activator of Runx2-I in presence of peroxisome proliferator activated receptor gamma coactivator-1 alpha (PGC-1α). In contrast, ERRα behaves as a negative regulator of Runx2-I transcription in presence of PGC-1β. ERα and ERRα cross-talk via a common estrogen receptor response element on the Runx2-I promoter. In addition, estrogen regulates PGC-1β that in turn is able to modulate both ERα and ERRα transcriptional activity.

  11. Role of estrogen receptor-α on food demand elasticity.

    Science.gov (United States)

    Minervini, Vanessa; Rowland, Neil E; Robertson, Kimberly L; Foster, Thomas C

    2015-05-01

    Estrogens have been shown to have an inhibitory effect on food intake under free-feeding conditions, yet the effects of estrogens on food-maintained operant responding have been studied to a much lesser extent and, thus, are not well understood. Therefore, the purpose of the present experiment was to use a behavioral economics paradigm to assess differences in demand elasticity between mice with knockout of the estrogen receptor subtype α, knockout of subtype β, and their wild type controls. The mice responded in a closed economy, and the price of food was increased by increasing the fixed-ratio response requirement every four sessions. Overall, we found that mice with the knockout of receptor subtype α had the most elastic demand functions. Therefore, under these conditions, estrogens increased food seeking via activation of the receptor subtype α. The results were inconsistent with those reported by previous studies that employed free-feeding conditions. © Society for the Experimental Analysis of Behavior.

  12. Estrogen receptor expression in adrenocortical carcinoma

    Institute of Scientific and Technical Information of China (English)

    Xiao-cao SHEN; Cai-xiao GU; Yi-qing QIU; Chuan-jun DU; Yan-biao FU; Jian-jun WU

    2009-01-01

    Objective: Adrenocortical carcinoma (ACC) is a rare but highly malignant tumor, and its diagnosis is mostly delayed and prognosis is poor. We report estrogen receptor (ER) expression in this tumor and our clinical experiences with 17 ACC cases. Methods: The data of the 17 patients (9 females and 8 males, age range from 16 to 69 years, mean age of 42.6 years) with ACC were reviewed, and symptoms, diagnostic procedures, treatment, and results of follow-up were evaluated. Immunohistochemistry was used to detect ER expression in tumor samples from the 17 patients. Results: At the time of diagnosis, 4 tumors were classified as Stage Ⅰ, 4 as Stage Ⅱ, 3 as Stage Ⅲ, and 6 as Stage Ⅳ. Eight patients demonstrated positive nuclear immunostaining of ER. The prognosis of patients with ER positive was significantly better (P<0.05) than that of patients with ER negative, with 1- and 5-year survival rates at 86% and 60% for ER-positive patients, and 38% and 0% for ER-negative patients, respectively. Conclusion: ER-positivity may be one of the factors associated with a worse prognosis of ACC.

  13. The molecular, cellular and clinical consequences of targeting the estrogen receptor following estrogen deprivation therapy.

    Science.gov (United States)

    Fan, Ping; Maximov, Philipp Y; Curpan, Ramona F; Abderrahman, Balkees; Jordan, V Craig

    2015-12-15

    During the past 20 years our understanding of the control of breast tumor development, growth and survival has changed dramatically. The once long forgotten application of high dose synthetic estrogen therapy as the first chemical therapy to treat any cancer has been resurrected, refined and reinvented as the new biology of estrogen-induced apoptosis. High dose estrogen therapy was cast aside once tamoxifen, from its origins as a failed "morning after pill", was reinvented as the first targeted therapy to treat any cancer. The current understanding of the mechanism of estrogen-induced apoptosis is described as a consequence of acquired resistance to long term antihormone therapy in estrogen receptor (ER) positive breast cancer. The ER signal transduction pathway remains a target for therapy in breast cancer despite "antiestrogen" resistance, but becomes a regulator of resistance. Multiple mechanisms of resistance come into play: Selective ER modulator (SERM) stimulated growth, growth factor/ER crosstalk, estrogen-induced apoptosis and mutations of ER. But it is with the science of estrogen-induced apoptosis that the next innovation in women's health will be developed. Recent evidence suggests that the glucocorticoid properties of medroxyprogesterone acetate blunt estrogen-induced apoptosis in estrogen deprived breast cancer cell populations. As a result breast cancer develops during long-term hormone replacement therapy (HRT). A new synthetic progestin with estrogen-like properties, such as the 19 nortestosterone derivatives used in oral contraceptives, will continue to protect the uterus from unopposed estrogen stimulation but at the same time, reinforce apoptosis in vulnerable populations of nascent breast cancer cells.

  14. Estrogenic pyrethroid pesticides regulate expression of estrogen receptor transcripts in mouse Sertoli cells differently from 17beta-estradiol.

    Science.gov (United States)

    Taylor, J S; Thomson, B M; Lang, C N; Sin, F Y T; Podivinsky, E

    2010-01-01

    Studies suggested that exposure to agricultural pesticides may affect male fertility. Pyrethroids are widely used pesticides due to their insecticidal potency and low mammalian toxicity. A recombinant yeast assay system incorporating the human alpha-estrogen receptor was used to analyze the estrogenicity of a range of readily available pyrethroid pesticides. The commercial product Ripcord Plus showed estrogenic activity by this assay. To determine whether pyrethroid compounds might exert an effect on male fertility, mouse Sertoli cells were exposed in vitro to the endogenous estrogen, 17beta-estradiol, and selected estrogenic pyrethroids. Following exposure, transcript levels of the alpha- and beta-estrogen receptors were assessed. Exposure of Sertoli cells to the pyrethroid compounds, both at high and at low published serum concentrations, affected the expression of the two estrogen receptors; however, the influence on estrogen receptor gene expression was different from the effect from exposure to 17beta-estradiol. These results from our model systems suggest that (1) estrogenic pyrethroid pesticides affect the estrogen receptors, and therefore potentially the endocrine system, in a different manner from that of endogenous estrogen, and (2) should cells in the male testes be exposed to pyrethroid pesticides, male fertility may be affected through molecular mechanisms involving estrogen receptors.

  15. G protein-coupled estrogen receptor and estrogen receptor ligands regulate colonic motility and visceral pain.

    Science.gov (United States)

    Zielińska, M; Fichna, J; Bashashati, M; Habibi, S; Sibaev, A; Timmermans, J-P; Storr, M

    2017-07-01

    Diarrhea-predominant irritable bowel syndrome (IBS-D) is a functional gastrointestinal (GI) disorder, which occurs more frequently in women than men. The aim of our study was to determine the role of activation of classical estrogen receptors (ER) and novel membrane receptor, G protein-coupled estrogen receptor (GPER) in human and mouse tissue and to assess the possible cross talk between these receptors in the GI tract. Immunohistochemistry was used to determine the expression of GPER in human and mouse intestines. The effect of G-1, a GPER selective agonist, and estradiol, a non-selective ER agonist, on muscle contractility was characterized in isolated preparations of the human and mouse colon. To characterize the effect of G-1 and estradiol in vivo, colonic bead expulsion test was performed. G-1 and estradiol activity on the visceral pain signaling was assessed in the mustard oil-induced abdominal pain model. GPER is expressed in the human colon and in the mouse colon and ileum. G-1 and estradiol inhibited muscle contractility in vitro in human and mouse colon. G-1 or estradiol administered intravenously at the dose of 20 mg/kg significantly prolonged the time to bead expulsion in females. Moreover, G-1 prolonged the time to bead expulsion and inhibited GI hypermotility in both genders. The injection of G-1 or estradiol resulted in a significant reduction in the number of pain-induced behaviors in mice. GPER and ER receptors are involved in the regulation of GI motility and visceral pain. Both may thus constitute an important pharmacological target in the IBS-D therapy. © 2017 John Wiley & Sons Ltd.

  16. Estrogens and selective estrogen receptor modulators regulate gene and protein expression in the mesenteric arteries.

    Science.gov (United States)

    Mark-Kappeler, Connie J; Martin, Douglas S; Eyster, Kathleen M

    2011-01-01

    Estrogen has both beneficial and detrimental effects on the cardiovascular system. Selective estrogen receptor modulators (SERMs) exhibit partial estrogen agonist/antagonist activity in estrogen target tissues. Gene targets of estrogen and SERMs in the vasculature are not well-known. Thus, the present study tested the hypothesis that estrogens (ethinyl estradiol, estradiol benzoate, and equilin) and SERMs (tamoxifen and raloxifene) cause differential gene and protein expression in the vasculature. DNA microarray and real-time RT-PCR were used to investigate gene expression in the mesenteric arteries of estrogen and SERM treated ovariectomized rats. The genes shown to be differentially expressed included stearoyl-CoA desaturase (SCD), soluble epoxide hydrolase (sEH), secreted frizzled related protein-4 (SFRP-4), insulin-like growth factor-1 (IGF-1), phospholipase A2 group 1B (PLA2-G1B), and fatty acid synthase (FAS). Western blot further confirmed the differential expression of sEH, SFRP-4, FAS, and SCD protein. These results reveal that estrogens and SERMs cause differential gene and protein expression in the mesenteric artery. Consequently, the use of these agents may be associated with a unique profile of functional and structural changes in the mesenteric arterial circulation.

  17. Estrogen, vascular estrogen receptor and hormone therapy in postmenopausal vascular disease.

    Science.gov (United States)

    Khalil, Raouf A

    2013-12-15

    Cardiovascular disease (CVD) is less common in premenopausal women than men of the same age or postmenopausal women, suggesting vascular benefits of estrogen. Estrogen activates estrogen receptors ERα, ERβ and GPR30 in endothelium and vascular smooth muscle (VSM), which trigger downstream signaling pathways and lead to genomic and non-genomic vascular effects such as vasodilation, decreased VSM contraction and growth and reduced vascular remodeling. However, randomized clinical trials (RCTs), such as the Women's Health Initiative (WHI) and Heart and Estrogen/progestin Replacement Study (HERS), have shown little vascular benefits and even adverse events with menopausal hormone therapy (MHT), likely due to factors related to the MHT used, ER profile, and RCT design. Some MHT forms, dose, combinations or route of administration may have inadequate vascular effects. Age-related changes in ER amount, distribution, integrity and post-ER signaling could alter the vascular response to MHT. The subject's age, preexisting CVD, and hormone environment could also reduce the effects of MHT. Further evaluation of natural and synthetic estrogens, phytoestrogens, and selective estrogen-receptor modulators (SERMs), and the design of appropriate MHT combinations, dose, route and 'timing' could improve the effectiveness of conventional MHT and provide alternative therapies in the peri-menopausal period. Targeting ER using specific ER agonists, localized MHT delivery, and activation of specific post-ER signaling pathways could counter age-related changes in ER. Examination of the hormone environment and conditions associated with hormone imbalance such as polycystic ovary syndrome may reveal the causes of abnormal hormone-receptor interactions. Consideration of these factors in new RCTs such as the Kronos Early Estrogen Prevention Study (KEEPS) could enhance the vascular benefits of estrogen in postmenopausal CVD. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Estrogen receptor polymorphisms: significance to human physiology, disease and therapy.

    Science.gov (United States)

    Figtree, Gemma A; Noonan, Jonathon E; Bhindi, Ravinay; Collins, Peter

    2009-01-01

    Other than its well-recognized effects on reproductive physiology, estrogen has important actions in a wide variety of other body systems with important examples including bone, blood vessels and the heart. These effects are seen in both females and males. Investigators have hypothesized those genetic variants in the genes coding for estrogen signaling proteins may cause variable sensitivity to the hormone and influence an individual's estrogen-sensitive phenotypes. The most obvious candidate genes are the estrogen receptors alpha and (ERalpha and beta). However, the regulation of these genes is complex and not well understood. Furthermore, their coding exons, and regulatory sequences are dispersed across large segments of the genome. A number of common polymorphisms have been identified in both ERalpha and ERbeta, with variable degrees of evidence of their direct biological significance and their association with human disease. The identification of genetic variations associated with altered estrogen response is of potential public health importance. Insights may be gained into the pathogenesis of estrogen sensitive diseases such as osteoporosis, breast cancer and cardiovascular disease contributing to the development and application of newer therapies for these disorders. Furthermore, genetic variants that alter sensitivity to estrogen may affect both therapeutic and harmful responses to exogenous estrogen administered in the form of the oral contraceptive pill or hormone replacement therapy. This clinical significance has led to the publication of a number of patents which will be reviewed.

  19. Functional associations between two estrogen receptors, environmental estrogens, and sexual disruption in the roach (Rutilus rutilus).

    Science.gov (United States)

    Katsu, Yoshinao; Lange, Anke; Urushitani, Hiroshi; Ichikawa, Rie; Paull, Gregory C; Cahill, Laura L; Jobling, Susan; Tyler, Charles R; Iguchi, Taisen

    2007-05-01

    Wild male roach (Rutilus rutilus) living in U.K. rivers contaminated with estrogenic effluents from wastewater treatment works show feminized responses and have a reduced reproductive capability, but the chemical causation of sexual disruption in the roach has not been established. Feminized responses were induced in male roach exposed to environmentally relevant concentrations of the pharmaceutical estrogen 17alpha-ethinylestradiol, EE2 (up to 4 ng/ L), during early life (from fertilization to 84 days posthatch, dph), and these effects were signaled by altered patterns of expression of two cloned roach estrogen receptor (ER) subtypes, ERalpha. and ERbeta, in the brain and gonad/ liver. Transactivation assays were developed for both roach ER subtypes and the estrogenic potencies of steroidal estrogens differed markedly at the different ER subtypes. EE2 was by far the most potent chemical, and estrone (E1, the most prevalent environmental steroid in wastewater discharges) was equipotent with estradiol (E2) in activating the ERs. Comparison of the EC50 values for the compounds tested showed that ERbeta was 3-21-fold more sensitive to natural steroidal estrogens and 54-fold more sensitive to EE2 as compared to ERalpha. These findings add substantial support to the hypothesis that steroidal estrogens play a significant role in the induction of intersex in roach populations in U.K. rivers and that the molecular approach described could be usefully applied to understand interspecies sensitivity to xenoestrogens.

  20. Estrogen Receptor Alpha G525L Knock-In Mice

    Science.gov (United States)

    2007-03-01

    females on a soy-free diet (Table 1). This increase may be due to the loss of phytoestrogen -induced mutant ERα activation . These results, combined with...Ciana P, Raviscioni M, Mussi P, Vegeto E, Que I, Parker MG, Lowik C, Maggi A. 2003 In vivo imaging of transcriptionally active estrogen receptors...Nature Medicine. 2003 9:82-86 4. Jefferson WN, Padilla-Banks E, Clark G, Newbold RR. Assessing estrogenic activity of phytochemicals using

  1. 3D-QSAR and docking studies of estrogen compounds based on estrogen receptor β

    Institute of Scientific and Technical Information of China (English)

    YANG XuShu; WANG XiaoDong; LUO Si; JI Li; QIN Liang; LI Rong; SUN Cheng; WANG LianSheng

    2009-01-01

    Close attention has been paid to estrogen compounds because these chemicals may pose a serious threat to the health of humans and wildlife.Estrogen receptor (ER) exists as two subtypes,ERo and ERβ.The difference in amino acids sequence of the binding sites of ERo and ERβ might lead to a result that some synthetic estrogens and naturally occurring steroidal ligands have different relative affinities and binding modes for ERa and ERβ.In this investigation,comparative molecular similarity indices analysis (CoMSIA) was performed on 50 estrogen compounds binding ERβ to find out the structural relationship with the activities.We also compared two alignment schemes employed in CoMSIA analysis,namely,atom-fit and receptor-based alignment,with respect to the predictive capability of their respective models for structurally diverse data sets.The model with the significant correlation and the best predictive power (R2=0.961,q2LOO=0.671,Rp2red=0.722) was achieved.The CoMSIA and docking results revealed the structural features related to an activity and provided an insight into molecular mechanisms of estrogenic activities for estrogen compounds.

  2. 3D-QSAR and docking studies of estrogen compounds based on estrogen receptor β

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Close attention has been paid to estrogen compounds because these chemicals may pose a serious threat to the health of humans and wildlife. Estrogen receptor (ER) exists as two subtypes, ERα and ERβ. The difference in amino acids sequence of the binding sites of ERα and ERβ might lead to a result that some synthetic estrogens and naturally occurring steroidal ligands have different relative affinities and binding modes for ERα and ERβ. In this investigation, comparative molecular similarity indices analysis (CoMSIA) was performed on 50 estrogen compounds binding ERβ to find out the structural relationship with the activities. We also compared two alignment schemes employed in CoMSIA analy-sis, namely, atom-fit and receptor-based alignment, with respect to the predictive capability of their respective models for structurally diverse data sets. The model with the significant correlation and the best predictive power (R2=0.961, qL 2OO=0.671, RP 2red=0.722) was achieved. The CoMSIA and docking results revealed the structural features related to an activity and provided an insight into molecular mechanisms of estrogenic activities for estrogen compounds.

  3. Development and validation of fluorescent receptor assays based on the human recombinant estrogen receptor subtypes alpha and beta

    NARCIS (Netherlands)

    de boer, T; Otjens, D; Muntendam, A; Meulman, E; van Oostijen, M; Ensing, K

    2004-01-01

    This article describes the development and validation of two fluorescent receptor assays for the hRec-estrogen receptor subtypes alpha and beta. As a labelled ligand an autofluorescent phyto-estrogen (coumestrol) has been used. The estrogen receptor (ER) belongs to the nuclear receptor family, a cla

  4. Interaction between vitamin D receptor genotype and estrogen receptor alpha genotype influences vertebral fracture risk

    NARCIS (Netherlands)

    E.M. Colin (Edgar); A.G. Uitterlinden (André); A.P. Bergink (Arjan); M. van de Klift (Marjolein); Y. Fang (Yue); P.P. Arp (Pascal); H.A.P. Pols (Huib); J.P.T.M. van Leeuwen (Hans); J.B.J. van Meurs (Joyce); A. Hofman (Albert)

    2003-01-01

    textabstractIn view of the interactions of vitamin D and the estrogen endocrine system, we studied the combined influence of polymorphisms in the estrogen receptor (ER) alpha gene and the vitamin D receptor (VDR) gene on the susceptibility to osteoporotic vertebral fractures in 634

  5. Differential ligand binding affinities of human estrogen receptor-α isoforms

    OpenAIRE

    Amanda H.Y. Lin; Li, Rachel W. S.; Ho, Eva Y. W.; George P H Leung; Susan W S Leung; Paul M Vanhoutte; Man, Ricky Y K

    2013-01-01

    Rapid non-genomic effects of 17β-estradiol are elicited by the activation of different estrogen receptor-α isoforms. Presence of surface binding sites for estrogen have been identified in cells transfected with full-length estrogen receptor-α66 (ER66) and the truncated isoforms, estrogen receptor-α46 (ER46) and estrogen receptor-α36 (ER36). However, the binding affinities of the membrane estrogen receptors (mERs) remain unknown due to the difficulty of developing of stable mER-transfected cel...

  6. Prognostic Value of Estrogen Receptor alpha and Progesterone Receptor Conversion in Distant Breast Cancer Metastases

    NARCIS (Netherlands)

    Hoefnagel, Laurien D. C.; Moelans, Cathy B.; Meijer, S. L.; van Slooten, Henk-Jan; Wesseling, Pieter; Wesseling, Jelle; Westenend, Pieter J.; Bart, Joost; Seldenrijk, Cornelis A.; Nagtegaal, Iris D.; Oudejans, Joost; van der Valk, Paul; van Gils, Carla H.; van der Wall, Elsken; van Diest, Paul J.

    2012-01-01

    BACKGROUND: Changes in the receptor profile of primary breast cancers to their metastases (receptor conversion) have been described for the estrogen receptor alpha (ER alpha) and progesterone receptor (PR). The purpose of this study was to evaluate the impact of receptor conversion for ER alpha and

  7. Structural requirements for the interaction of 91 hydroxylated polychlorinated biphenyls with estrogen and thyroid hormone receptors

    National Research Council Canada - National Science Library

    Arulmozhiraja, Sundaram; Shiraishi, Fujio; Okumura, Tameo; Iida, Mitsuru; Takigami, Hidetaka; Edmonds, John S; Morita, Masatoshi

    2005-01-01

    Estrogenic and thyroid activities of 91 monohydroxylated PCBs were measured with two-hybrid assays using yeast cells containing the human estrogen receptor ERalpha or human thyroid receptor TRalpha...

  8. Estrogen receptor determination in endometrial carcinoma: ligand binding assay versus enzyme immunoassay

    DEFF Research Database (Denmark)

    Nyholm, H C; Nielsen, Anette Lynge; Lyndrup, J;

    1995-01-01

    We compared concentrations of cytosolic estrogen receptors (ERc) measured in 35 postmenopausal endometrial carcinomas by ligand binding method (LBA) (dextran-coated charcoal assay) and enzyme immunoassay (EIA). Correlations between ERc, nuclear estrogen receptors (ERn) determined by EIA...

  9. Glyphosate induces human breast cancer cells growth via estrogen receptors.

    Science.gov (United States)

    Thongprakaisang, Siriporn; Thiantanawat, Apinya; Rangkadilok, Nuchanart; Suriyo, Tawit; Satayavivad, Jutamaad

    2013-09-01

    Glyphosate is an active ingredient of the most widely used herbicide and it is believed to be less toxic than other pesticides. However, several recent studies showed its potential adverse health effects to humans as it may be an endocrine disruptor. This study focuses on the effects of pure glyphosate on estrogen receptors (ERs) mediated transcriptional activity and their expressions. Glyphosate exerted proliferative effects only in human hormone-dependent breast cancer, T47D cells, but not in hormone-independent breast cancer, MDA-MB231 cells, at 10⁻¹² to 10⁻⁶M in estrogen withdrawal condition. The proliferative concentrations of glyphosate that induced the activation of estrogen response element (ERE) transcription activity were 5-13 fold of control in T47D-KBluc cells and this activation was inhibited by an estrogen antagonist, ICI 182780, indicating that the estrogenic activity of glyphosate was mediated via ERs. Furthermore, glyphosate also altered both ERα and β expression. These results indicated that low and environmentally relevant concentrations of glyphosate possessed estrogenic activity. Glyphosate-based herbicides are widely used for soybean cultivation, and our results also found that there was an additive estrogenic effect between glyphosate and genistein, a phytoestrogen in soybeans. However, these additive effects of glyphosate contamination in soybeans need further animal study.

  10. Phytoestrogens from Psoralea corylifolia reveal estrogen receptor-subtype selectivity.

    Science.gov (United States)

    Xin, D; Wang, H; Yang, J; Su, Y-F; Fan, G-W; Wang, Y-F; Zhu, Y; Gao, X-M

    2010-02-01

    The seed of Psoralea corylifolia L. (PCL), a well-known traditional Chinese medicine, has been applied as a tonic or an aphrodisiac agent and commonly used as a remedy for bone fracture, osteomalacia and osteoporosis in China. In our study, the estrogen receptor subtype-selective activities of the extracts and compounds derived from PCL were analyzed using the HeLa cell assay. The different fractions including petroleum ether, CH(2)Cl(2) and EtOAc fractions of the EtOH extract of PCL showed significant activity in activating either ERalpha or ERbeta whereas the n-BuOH fraction showed no estrogenic activity. Further chromatographic purification of the active fractions yielded seven compounds including the two coumarins isopsoralen and psoralen, the four flavonoids isobavachalcone, bavachin, corylifol A and neobavaisoflavone, and the meroterpene phenol, bakuchiol. In reporter gene assay, the two coumarins (10(-8)-10(-5)M) acted as ERalpha-selective agonists while the other compounds (10(-9)-10(-6)M) activated both ERalpha and ERbeta. The estrogenic activities of all compounds could be completely suppressed by the pure estrogen antagonist, ICI 182,780, suggesting that the compounds exert their activities through ER. Only psoralen and isopsoralen as ERalpha agonists promoted MCF-7 cell proliferation significantly. Although all the compounds have estrogenic activity, they may exert different biological effects. In conclusion, both ER subtype-selective and nonselective activities in compounds derived from PCL suggested that PCL could be a new source for selective estrogen-receptor modulators.

  11. Estrogens, estrogen receptors, and female cognitive aging: the impact of timing.

    Science.gov (United States)

    Daniel, Jill M

    2013-02-01

    Estrogens have been shown to be protective agents against neurodegeneration and associated cognitive decline in aging females. However, clinical data have been equivocal as to the benefits to the brain and cognition of estrogen therapy in postmenopausal women. One factor that is proposed to be critical in determining the efficacy of hormone therapy is the timing of its initiation. The critical period or window of opportunity hypothesis proposes that following long-term ovarian hormone deprivation, the brain and cognition become insensitive to exogenously administered estrogens. In contrast, if estrogens are administered during a critical period near the time of cessation of ovarian function, they will exert beneficial effects. The focus of the current review is the examination of evidence from rodent models investigating the critical period hypothesis. A growing body of experimental data indicates that beneficial effects of 17β-estradiol (estradiol) on cognition and on cholinergic function and hippocampal plasticity, both of which have been linked to the ability of estradiol to exert beneficial effects on cognition, are attenuated if estradiol is administered following a period of long-term ovarian hormone deprivation. Further, emerging data implicate loss of estrogen receptor alpha (ERα) in the brain resulting from long-term hormone deprivation as a basis for the existence of the critical period. A unifying model is proposed by which the presence or absence of estrogens during a critical period following the cessation of ovarian function permanently alters the system resulting in decreased or increased risk, respectively, of neurodegeneration and cognitive decline.

  12. Estrogen-related receptor β (ERRβ) - renaissance receptor or receptor renaissance?

    Science.gov (United States)

    Divekar, Shailaja D; Tiek, Deanna M; Fernandez, Aileen; Riggins, Rebecca B

    2016-01-01

    Estrogen-related receptors (ERRs) are founding members of the orphan nuclear receptor (ONR) subgroup of the nuclear receptor superfamily. Twenty-seven years of study have yet to identify cognate ligands for the ERRs, though they have firmly placed ERRα and ERRγ at the intersection of cellular metabolism and oncogenesis. The pace of discovery for novel functions of ERRβ, however, has until recently been somewhat slower than that of its family members. ERRβ has also been largely ignored in summaries and perspectives of the ONR literature. Here, we provide an overview of established and emerging knowledge of ERRβ in mouse, man, and other species, highlighting unique aspects of ERRβ biology that set it apart from the other two estrogen-related receptors, with a focus on the impact of alternative splicing on the structure and function of this receptor.

  13. RIME proteomics of estrogen and progesterone receptors in breast cancer

    Directory of Open Access Journals (Sweden)

    Clive D’Santos

    2015-12-01

    Full Text Available Nuclear receptors play an important role in transcriptional regulation of diverse cellular processes and is also relevant in diseases such as cancer. In breast cancer, the nuclear receptorsestrogen receptor (ER and progesterone receptor (PR are classical markers of the disease and are used to classify breast cancer subtypes. Using a recently developed affinity purification MS technique (RIME [1], we investigate the protein interactors of ER and PR in breast cancer cell lines upon stimulation by the ligands – estrogen and progesterone. The data is deposited at proteomeXchange (PXD002104 and is part of a publication [2] that explains the link between the two nuclear receptors and potential consequences of this in breast cancer. In this manuscript, we describe the methodology used and provide details on experimental procedures, analysis methods and analysis of raw data. The purpose of this article is to enable reproducibility of the data and provide technical recommendations on performing RIME in hormonal contexts.

  14. Estrogen receptor-alpha mediates estrogen facilitation of baroreflex heart rate responses in conscious mice.

    Science.gov (United States)

    Pamidimukkala, Jaya; Xue, Baojian; Newton, Leslie G; Lubahn, Dennis B; Hay, Meredith

    2005-03-01

    Estrogen facilitates baroreflex heart rate responses evoked by intravenous infusion of ANG II and phenylephrine (PE) in ovariectomized female mice. The present study aims to identify the estrogen receptor subtype involved in mediating these effects of estrogen. Baroreflex responses to PE, ANG II, and sodium nitroprusside (SNP) were tested in intact and ovariectomized estrogen receptor-alpha knockout (ERalphaKO) with (OvxE+) or without (OvxE-) estrogen replacement. Wild-type (WT) females homozygous for the ERalpha(+/+) were used as controls. Basal mean arterial pressures (MAP) and heart rates were comparable in all the groups except the ERalphaKO-OvxE+ mice. This group had significantly smaller resting MAP, suggesting an effect of estrogen on resting vascular tone possibly mediated by the ERbeta subtype. Unlike the WT females, estrogen did not facilitate baroreflex heart rate responses to either PE or ANG II in the ERalphaKO-OvxE+ mice. The slope of the line relating baroreflex heart rate decreases with increases in MAP evoked by PE was comparable in ERalphaKO-OvxE- (-6.97 +/- 1.4 beats.min(-1).mmHg(-1)) and ERalphaKO-OvxE+ (-6.18 +/- 1.3) mice. Likewise, the slope of the baroreflex bradycardic responses to ANG II was similar in ERalphaKO-OvxE- (-3.87 +/- 0.5) and ERalphaKO-OvxE+(-2.60 +/- 0.5) females. Data suggest that estrogen facilitation of baroreflex responses to PE and ANG II is predominantly mediated by ERalpha subtype. A second important observation in the present study is that the slope of ANG II-induced baroreflex bradycardia is significantly blunted compared with PE in the intact as well as the ERalphaKO-OvxE+ females. We have previously reported that this ANG II-mediated blunting of cardiac baroreflexes is observed only in WT males and not in ovariectomized WT females independent of their estrogen replacement status. The present data suggest that in females lacking ERalpha, ANG II causes blunting of cardiac baroreflexes similar to males and may be

  15. Classical estrogen receptors and ERα splice variants in the mouse.

    Directory of Open Access Journals (Sweden)

    Debra L Irsik

    Full Text Available Estrogens exert a variety of effects in both reproductive and non-reproductive tissues. With the discovery of ERα splice variants, prior assumptions concerning tissue-specific estrogen signaling need to be re-evaluated. Accordingly, we sought to determine the expression of the classical estrogen receptors and ERα splice variants across reproductive and non-reproductive tissues of male and female mice. Western blotting revealed that the full-length ERα66 was mainly present in female reproductive tissues but was also found in non-reproductive tissues at lower levels. ERα46 was most highly expressed in the heart of both sexes. ERα36 was highly expressed in the kidneys and liver of female mice but not in the kidneys of males. ERβ was most abundant in non-reproductive tissues and in the ovaries. Because the kidney has been reported to be the most estrogenic non-reproductive organ, we sought to elucidate ER renal expression and localization. Immunofluorescence studies revealed ERα66 in the vasculature and the glomerulus. It was also found in the brush border of the proximal tubule and in the cortical collecting duct of female mice. ERα36 was evident in mesangial cells and tubular epithelial cells of both sexes, as well as podocytes of females but not males. ERβ was found primarily in the podocytes in female mice but was also present in the mesangial cells in both sexes. Within the renal cortex, ERα46 and ERα36 were mainly located in the membrane fraction although they were also present in the cytosolic fraction. Given the variability of expression patterns demonstrated herein, identification of the specific estrogen receptors expressed in a tissue is necessary for interpreting estrogenic effects. As this study revealed expression of the ERα splice variants at multiple sites within the kidney, further studies are warranted in order to elucidate the contribution of these receptors to renal estrogen responsiveness.

  16. Estrogen receptor mRNA in mineralized tissues of rainbow trout: calcium mobilization by estrogen.

    Science.gov (United States)

    Armour, K J; Lehane, D B; Pakdel, F; Valotaire, Y; Graham, R; Russell, R G; Henderson, I W

    1997-07-07

    RT-PCR was undertaken on total RNA extracts from bone and scales of the rainbow trout, Oncorhynchus mykiss. The rainbow trout estrogen receptor (ER)-specific primers used amplified a single product of expected size from each tissue which, using Southern blotting, strongly hybridized with a 32P-labelled rtER probe under stringent conditions. These data provide the first in vivo evidence of ER mRNA in bone and scale tissues of rainbow trout and suggest that the effects of estrogen observed in this study (increased bone mineral and decreased scale mineral contents, respectively) may be mediated directly through ER.

  17. Sex Hormones and Cardiometabolic Health: Role of Estrogen and Estrogen Receptors.

    Science.gov (United States)

    Clegg, Deborah; Hevener, Andrea L; Moreau, Kerrie L; Morselli, Eugenia; Criollo, Alfredo; Van Pelt, Rachael E; Vieira-Potter, Victoria J

    2017-02-17

    With increased life expectancy, women will spend over three decades of life post-menopause. The menopausal transition increases susceptibility to metabolic diseases such as obesity, diabetes, cardiovascular disease, and cancer. Thus, it is more important than ever to develop effective hormonal treatment strategies to protect aging women. Understanding the role of estrogens, and their biological actions mediated by estrogen receptors (ERs), in the regulation of cardiometabolic health is of paramount importance to discover novel targeted therapeutics. In this brief review, we provide a detailed overview of the literature, from basic science findings to human clinical trial evidence, supporting a protective role of estrogens and their receptors, specifically ERα, in maintenance of cardiometabolic health. In so doing, we provide a concise mechanistic discussion of some of the major tissue-specific roles of estrogens signaling through ERα. Taken together, evidence suggests that targeted, perhaps receptor-specific, hormonal therapies can and should be used to optimize the health of women as they transition through menopause, while reducing the undesired complications that have limited the efficacy and use of traditional hormone replacement interventions. Copyright © 2017 Endocrine Society.

  18. Designer interface peptide grafts target estrogen receptor alpha dimerization

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, S. [Laboratory of Computational Biophysics & Bioengineering, Department of Physics, Tougaloo College, Tougaloo, MS 39174 (United States); Asare, B.K. [Department of Pharmacology and Toxicology, University of Buffalo, Buffalo, NY 14214 (United States); Biswas, P.K., E-mail: pbiswas@tougaloo.edu [Laboratory of Computational Biophysics & Bioengineering, Department of Physics, Tougaloo College, Tougaloo, MS 39174 (United States); Rajnarayanan, R.V., E-mail: rajendra@buffalo.edu [Department of Pharmacology and Toxicology, University of Buffalo, Buffalo, NY 14214 (United States)

    2016-09-09

    The nuclear transcription factor estrogen receptor alpha (ERα), triggered by its cognate ligand estrogen, regulates a variety of cellular signaling events. ERα is expressed in 70% of breast cancers and is a widely validated target for anti-breast cancer drug discovery. Administration of anti-estrogen to block estrogen receptor activation is still a viable anti-breast cancer treatment option but anti-estrogen resistance has been a significant bottle-neck. Dimerization of estrogen receptor is required for ER activation. Blocking ERα dimerization is therefore a complementary and alternative strategy to combat anti-estrogen resistance. Dimer interface peptide “I-box” derived from ER residues 503–518 specifically blocks ER dimerization. Recently using a comprehensive molecular simulation we studied the interaction dynamics of ERα LBDs in a homo-dimer. Based on this study, we identified three interface recognition peptide motifs LDKITDT (ERα residues 479–485), LQQQHQRLAQ (residues 497–506), and LSHIRHMSNK (residues 511–520) and reported the suitability of using LQQQHQRLAQ (ER 497–506) as a template to design inhibitors of ERα dimerization. Stability and self-aggregation of peptide based therapeutics poses a significant bottle-neck to proceed further. In this study utilizing peptide grafted to preserve their pharmacophoric recognition motif and assessed their stability and potential to block ERα mediated activity in silico and in vitro. The Grafted peptides blocked ERα mediated cell proliferation and viability of breast cancer cells but did not alter their apoptotic fate. We believe the structural clues identified in this study can be used to identify novel peptidometics and small molecules that specifically target ER dimer interface generating a new breed of anti-cancer agents. - Highlights: • Designer peptide grafts retain core molecular recognition motif during MD simulations. • Designer peptide grafts with Poly-ALA helix form stable

  19. Immunohistochemical Expression of Estrogen and Progesterone Receptors in Epulis Fissuratum

    Directory of Open Access Journals (Sweden)

    Maryam Seyedmajidi

    2013-01-01

    Full Text Available Background: Epulis Fissuratum (Epulis Fissuratum (EF or Denture Epulis or inflammatory fibrous hyperplasia is a common hyperplastic tumor-like lesion with reactive nature, related to loose and ill-fitting, full or partial removable dentures and it is more common in women than men. For this reason, hormonal influences may also play role in its creation. The effect of steroid hormones especially sex hormones (Estrogen and progesterone on oral mucosa is identified in some studies. In the present study, the distribution pattern and presence of estrogen and progesterone receptors in epithelial, stromal, endothelial and inflammatory cells in Epulis Fissuratum was investigated. Materials and Methods: This cross-sectional study was carried out on 30 samples of paraffin blocks with Epulis Fissuratum diagnosis and 30 samples of normal mucosal tissues as a control group who have had surgery as a margin beside the above lesions and had been obtained from the oral and maxillofacial pathology departement of Babol Dental School since 2003 up to 2010. Intensity of staining and immunoreactivity were evaluated using subjective index and considering the positive control group (breast carcinoma.Results: Epithelial, stromal, endothelial and inflammatory cells didn’t show reaction with monoclonal antibodies against estrogen and progesterone in none of the samples. Conclusion: It seems that the hypothesis of the existence of estrogen and progesterone receptors in epulis fissuratum and normal oral mucosa is ruled out. The possibility of direct effect of estrogen and progesterone in occurring of epulis fissuratum is rejected.

  20. Expression of estrogen receptor and estrogen receptor messenger RNA in gastric carcinoma tissues

    Institute of Scientific and Technical Information of China (English)

    Xin-Han Zhao; Shan-Zhi Gu; Shan-Xi Liu; Bo-Rong Pan

    2003-01-01

    AIM: To study estrogen receptor (ER) and estrogen receptor messenger RNA (ERmRNA) expression in gastric carcinoma tissues and to investigate their association with the pathologic types of gastric carcinoma.METHODS: The expression of ER and ERmRNA in gastric carcinoma tissues (15 males and 15 females, 42-70 years old) was detected by immunohistochemistry and in situ hybridization, respectively.RESULTS: The positive rate of ER (immunohistochemistry)was 33.3% in males and 46.7% in females. In Borrmann Ⅳ gastric carcinoma ER positive rate was greater than that in other pathologic types, and in poorly differentiated adenocarcinoma and signet ring cell carcinoma the positive rates were greater than those in other histological types of both males and females (P<0.05). The ER was more highly expressed in diffused gastric carcinoma than in non-diffused gastric carcinoma (P<0.05). The ER positive rate was also related to regional lymph nodes metastases (P<0.05), and was significantly higher in females above 55 years old, and higher in males under 55 years old (P<0.05). The ERmRNA (in situ hybridization) positive rate was 73.3% in males and 86.7% in females. The ERmRNA positive rates were almost the same in Borrmann Ⅰ, Ⅱ, Ⅲ and Ⅳ gastric carcinoma (P>0.05). ERmRNA was expressed in all tubular adenocarcinoma, poorly differentiated adenocarcinoma and signet ring cell carcinoma (P<0.05). The ERmRNA positive rate was related to both regional lymph nodes metastases and gastric carcinoma growth patterns, and was higher in both sexes above 55 years old but without statistical significance (P>0.05). The positive rate of ERmRNA expression by in situ hybridization was higher than that of ER expression by immunohistochemistry (P<0.05).CONCLUSION: ERmRNA expression is related to the pathological behaviors of gastric carcinoma, which might help to predict the prognosis and predict the effectiveness of endocrine therapy for gastric carcinoma.

  1. Rapid yeast estrogen bioassays stably expressing human estrogen receptors alpha and beta, and green fluorescent protein: a comparison of different compounds on both receptor types

    NARCIS (Netherlands)

    Bovee, T.F.H.; Helsdingen, J.R.; Rietjens, I.M.C.M.; Keijer, J.; Hoogenboom, L.A.P.

    2004-01-01

    Previously, we described the construction of a rapid yeast bioassay stably expressing human estrogen receptor (hER) and yeast enhanced green fluorescent protein (yEGFP) in response to estrogens. In the present study, the properties of this assay were further studied by testing a series of estrogenic

  2. Estrogen receptor genes in gastropods: phylogenetic divergence and gene expression responses to a synthetic estrogen.

    Science.gov (United States)

    Hultin, Cecilia L; Hallgren, Per; Hansson, Maria C

    2016-11-01

    Endocrine disrupting chemicals (EDCs) have the potential to affect development and reproduction in gastropods. However, one is today lacking basic understanding of the Molluscan endocrine system and one can therefore not fully explain these EDC-induced affects. Furthermore, only a few genes that potentially may be connected to the endocrine system have been sequenced in gastropods. An example is the estrogen receptor gene (er) that have been identified in a restricted number of freshwater and marine gastropods. Here, we have identified a new partial coding sequence of an estrogen receptor gene (er) in the European common heterobranch Radix balthica. The following phylogenetic analysis divided the ers of heterobranchs and ceanogastropods in two branches. Furthermore, exposure to the synthetic estrogen 17α-ethinylestradiol (EE2) showed that exposure could significantly affect er expression level in the heterobranch R. balthica. This paper is the first that phylogenetically compares gastropods' er, basal er expression profiles, and transcriptional estrogenic responses in gastropods from two different evolutionary groups.

  3. Identification and function of coactivator of estrogen receptor: ERIAP

    Institute of Scientific and Technical Information of China (English)

    孟庆慧; 周立新; 曹建平; 高斌; 邵荣光; 李及友; 樊赛军

    2003-01-01

    Estrogen receptor (ER), one member of nuclear hormone receptor (NR) family, is an estrogen-dependent transcriptional factor that plays an important role in development, progression and treatment of breast cancer. Transcriptional co-factors (co-activators and co-repressors) are critical for ER to transduce hormone and metabolic signaling to target genes. A number of functional and structural studies have elucidated the precise mechanisms of co-activator interaction with the ligand-inducible activation domain in ER via one and several LXXLL motifs (where X is any amino acid) known as NR-Box. By the yeast two-hybrid system we have identified a novel ER-αinteracting protein ERIAP (Estrogen Receptor Interacting and Activating Protein) which contains two consensus LXXLL motifs. ERIAP associated with ER-α in a ligand-dependent manner, as demonstrated by in vivo immunoprecipitation and in vitro GST capture assays. The two NR boxes were essential for ERIAP interaction with ER-α. Furthermore, ERIAP specifically enhanced ligand-mediated ER-α transcriptional activity in a dose-dependent fasion and increased the expression of estrogen-responsive gene pS2. Thus, our present findings indicate that ERIAP funcions as a new coactivator for ER-α transcriptional activity, which may play an important role in development and progression of breast cancer.

  4. Distribution of the orphan nuclear receptor Nurr1 in medaka (Oryzias latipes): cues to the definition of homologous cell groups in the vertebrate brain.

    Science.gov (United States)

    Kapsimali, M; Bourrat, F; Vernier, P

    2001-03-12

    The orphan nuclear receptor Nurr1 has been extensively studied in mammals and shown to contribute to the differentiation of several cell phenotypes in the nervous and endocrine systems. In this study, the gene homologous to the mammalian Nurr1 (NR4A2) was isolated in the teleost fish medaka (Oryzias latipes), and the distribution of its transcripts was analyzed within brains of embryos and adults. Nurr1 has a widespread distribution in the medaka brain. Large amounts of Nurr1 transcripts were found in the intermediate nucleus of the ventral telencephalon, preoptic magnocellular nucleus, ventral habenula, nucleus of the periventricular posterior tuberculum, and nuclei of glossopharyngeal and vagus nerves. To search for homologous cell groups between teleost fish and tetrapods brains, the co-localization of Nurr1 and tyrosine hydroxylase (TH) transcripts was analyzed. Neither Nurr1 nor TH expression was detected in the ventral midbrain, but both transcripts were present in the periventricular nucleus of the posterior tuberculum. This observation supports the hypothesis that this nucleus is homologous to dopaminergic mesencephalic nuclei of mammals. The presence of Nurr1 in the preoptic magnocellular nucleus of medaka and paraventricular hypothalamic nucleus of mammals reinforces the hypothesis of homology between these areas. TH and Nurr1 transcripts are also co-localized, among others, in the nucleus of the paraventricular organ and nucleus of the vagus nerve. This work suggests that the differentiating role of Nurr1 in the central nervous system is conserved in gnathostomes. Copyright 2001 Wiley-Liss, Inc.

  5. Regulation of estrogen receptors and MMP-2 expression by estrogens in human retinal pigment epithelium.

    Science.gov (United States)

    Marin-Castaño, Maria E; Elliot, Sharon J; Potier, Mylen; Karl, Michael; Striker, Liliane J; Striker, Gary E; Csaky, Karl G; Cousins, Scott W

    2003-01-01

    Age-related macular degeneration (ARMD) is characterized by progressive thickening and accumulation of various lipid-rich extracellular matrix (ECM) deposits under the retinal pigment epithelium (RPE). ECM dysregulation probably contributes to the pathologic course of ARMD. By activating estrogen receptors (ERs), estrogens regulate the expression of genes relevant in the turnover of ECM, among them matrix metalloproteinase (MMP)-2. Estrogen deficiency may predispose to dysregulated synthesis and degradation of ECM, leading to accumulation of collagens and other proteins between the RPE and its basement membrane. The purposes in the current study were to confirm the expression of ERs in human RPE, to elucidate whether these ERs are functional, and to test whether 17beta-estradiol (E(2)) regulates expression of ERs and MMP-2. Expression of ERs was examined in freshly isolated human RPE monolayer and in cultured human RPE cells, by using total RNA for RT-PCR and protein extracts for Western blot analysis. Supernatants were collected from freshly isolated human RPE and from cultured human RPE to assess MMP-2 activity by zymography and protein expression by Western blot. The transcriptional activity of ERs was studied in transfection experiments with an estrogen-responsive reporter construct. All these studies were preformed in the presence or absence of E(2) (10(-11) and 10(-7) M). Human RPE isolated from female and male individuals expressed both ER subtypes alpha and beta at the mRNA and protein levels. Treatment of cultured RPE cells with 10(-10) M E(2) increased expression of mRNA and protein of both receptor subtypes. E(2) (10(-10) M) also increased MMP-2 activity (approximately 2.2-fold) and protein expression (approximately 2.5-fold). In contrast, there was no change in ER levels and MMP-2 activity at higher E(2) concentrations (10(-8) M), compared with baseline. Preincubation of cells with 10(-7) M pyrrolidinedithiocarbamate (PDTC), an inhibitor of nuclear

  6. Activation of the G protein-coupled estrogen receptor, but not estrogen receptor α or β, rapidly enhances social learning.

    Science.gov (United States)

    Ervin, Kelsy Sharice Jean; Mulvale, Erin; Gallagher, Nicola; Roussel, Véronique; Choleris, Elena

    2015-08-01

    Social learning is a highly adaptive process by which an animal acquires information from a conspecific. While estrogens are known to modulate learning and memory, much of this research focuses on individual learning. Estrogens have been shown to enhance social learning on a long-term time scale, likely via genomic mechanisms. Estrogens have also been shown to affect individual learning on a rapid time scale through cell-signaling cascades, rather than via genomic effects, suggesting they may also rapidly influence social learning. We therefore investigated the effects of 17β-estradiol and involvement of the estrogen receptors (ERs) using the ERα agonist propyl pyrazole triol, the ERβ agonist diarylpropionitrile, and the G protein-coupled ER 1 (GPER1) agonist G1 on the social transmission of food preferences (STFP) task, within a time scale that focused on the rapid effects of estrogens. General ER activation with 17β-estradiol resulted in a modest facilitation of social learning, with mice showing a preference up to 30min of testing. Specific activation of the GPER1 also rapidly enhanced social learning, with mice showing a socially learned preference up to 2h of testing. ERα activation instead shortened the expression of a socially learned food preference, while ERβ activation had little to no effects. Thus, rapid estrogenic modulation of social learning in the STFP may be the outcome of competing action at the three main receptors. Hence, estrogens' rapid effects on social learning likely depend on the specific ERs present in brain regions recruited during social learning.

  7. Bioassays for estrogenic activity: development and validation of estrogen receptor (ERalpha/ERbeta) and breast cancer proliferation bioassays to measure serum estrogenic activity in clinical studies.

    Science.gov (United States)

    Li, J; Lee, L; Gong, Y; Shen, P; Wong, S P; Wise, Stephen D; Yong, E L

    2009-02-01

    Standard estrogenic prodrugs such as estradiol valerate (E2V) and increasingly popular phytoestrogen formulations are commonly prescribed to improve menopausal health. These drugs are metabolized to numerous bioactive compounds, known or unknown, which may exert combinatorial estrogenic effects in vivo. The aim of this study is to develop and validate estrogen receptor (ER) alpha/ERbeta reporter gene and MCF-7 breast cancer cell proliferation bioassays to quantify serum estrogenic activities in a clinical trial setting. We measured changes in serum estrogenicity following ingestion of E2V and compared this to mass spectrometric measurements of its bioactive metabolites, estrone and 17beta-stradiol. ERalpha bioactivity of the 192 serum samples correlated well (R = 79%) with 17beta-estradiol levels, and adding estrone improved R to 0.83 (likelihood ratio test, P estrogenic activity and that these assays suggest that the Epimedium formulation tested is unlikely to exert significant estrogenic effects in humans.

  8. DNA Repair, Redox Regulation and Modulation of Estrogen Receptor Alpha Mediated Transcription

    Science.gov (United States)

    Curtis-Ducey, Carol Dianne

    2009-01-01

    Interaction of estrogen receptor [alpha] (ER[alpha]) with 17[beta]-estradiol (E[subscript 2]) facilitates binding of the receptor to estrogen response elements (EREs) in target genes, which in turn leads to recruitment of coregulatory proteins. To better understand how estrogen-responsive genes are regulated, our laboratory identified a number of…

  9. Biomarker Genes for Detecting Estrogenic Activity of Endocrine Disruptors via Estrogen Receptors

    OpenAIRE

    Hyun Yang; Eui-Bae Jeung; Kyung-Chul Choi; Beum-Soo An; Eui-Man Jung

    2012-01-01

    Endocrine disruptors (EDs) are compounds used in various industrial products, drugs, and cosmetics. They can be found in the environment and disturb the endocrine and reproductive systems, resulting in adverse effects to humans and wildlife such as birth defects and developmental disorders. Since several EDs have a structure similar to that of endogenous steroid hormones such as estrogens, they intend to have an affinity for steroid hormone receptors and alter hormone-mediated metabolism by b...

  10. Neonatal oxytocin alters subsequent estrogen receptor alpha protein expression and estrogen sensitivity in the female rat.

    Science.gov (United States)

    Perry, Adam N; Paramadilok, Auratip; Cushing, Bruce S

    2009-12-14

    In most species, the effects of oxytocin (OT) on female reproductive behavior are dependent upon estrogen, which increases both OT and OT receptor expression. It is also becoming apparent that OT neurotransmission can influence estrogen signaling, especially during development, as neonatal OT manipulations in prairie voles alter ERalpha expression and estrogen-dependent behaviors. We tested the hypothesis that OT developmentally programs ERalpha expression and estrogen sensitivity in female Sprague-Dawley rats, a species previously used to establish the estrogen-dependence of OT signaling in adulthood. OT treatment for the first postnatal week significantly increased ERalpha-immunoreactivity in the ventromedial nucleus of the hypothalamus (VMH), but not in the medial preoptic area (MPOA). Conversely, neonatal OT antagonist (OTA) treatment significantly reduced ERalpha-immunoreactivity in the MPOA, but not in the VMH. Both treatments increased OT-immunoreactivity in the paraventricular nucleus of the hypothalamus (PVN) and reduced estrogen sensitivity, indicated by reduced sexual receptivity following chronic estradiol benzoate (EB) administration. Behavioral deficits in OTA-treated females were apparent during both paced and non-paced tests with 0.5 microg EB (but not 5.0 or 10.0 microg EB), whereas deficits in OT-treated females were only observed during the initial paced test with 0.5 and 5.0 microg EB (but not 10.0 microg EB). The current results demonstrate that OT can positively regulate ERalpha expression within the MPOA and VMH during development; however, endogenous OT selectively programs ERalpha expression within the MPOA. Thus, exogenous OT or OTA exposure during development may have long-term consequences on behavior through stable changes in ERalpha and OT expression.

  11. NJK14013, a novel synthetic estrogen receptor-α agonist, exhibits estrogen receptor-independent, tumor cell-specific cytotoxicity.

    Science.gov (United States)

    Kim, Hye-In; Kim, Taelim; Kim, Ji-Eun; Lee, Jun; Heo, Jinyuk; Lee, Na-Rae; Kim, Nam-Jung; Inn, Kyung-Soo

    2015-07-01

    Estrogens act through interactions with estrogen receptors (ERs) to play diverse roles in various pathophysiological conditions. A number of synthetic selective estrogen receptor modulators (SERMs), such as tamoxifen and raloxifene, have been developed and used to treat ER-related diseases, including breast cancer and osteoporosis. Here, we identified a novel compound, bis(4-hydroxyphenyl)methanone-O-isopentyl oxime, designated NJK14013, as an ER agonist. NJK14013 activated ER-dependent transcription in a concentration-dependent manner, while suppressing androgen receptor-dependent transcriptional activity. It induced the activation-related phosphorylation of ER and enhanced the transcription of growth regulation by estrogen in breast cancer 1 (GREB1), further supporting its ER-stimulating activity. NJK14013 exerted anti-proliferative effects on various cancer cell lines, including an ER-negative breast cancer cell line, suggesting that it is capable of suppressing the growth of cancer cells independent of its ER-modulating activity. In addition, NJK14013 treatment resulted in significant apoptotic death of MCF7 and Ishikawa cancer cells, but did not induce apoptosis in non-cancer human umbilical vein endothelial cells. Collectively, our findings demonstrate that NJK14013 is a novel SERM that can activate ER-mediated transcription in MCF7 cells and suppress the proliferation of various cancer cells, including breast cancer cells and endometrial cancer cells. These results suggest that NJK14013 has potential as a novel SERM for anticancer or hormone-replacement therapy with reduced risk of carcinogenesis.

  12. [Selective estrogen receptor modulators in treatment of postmenopausal osteoporosis].

    Science.gov (United States)

    Meczekalski, Błazej; Czyzyk, Adam

    2009-03-01

    Postmenopausal osteoporosis is associated with lack of estrogens, therefore, understandably one of the treatment options in osteoporosis is a group of medicines known as selective estrogen receptor modulators (SERMs). They can act as an estrogen receptor agonist in some tissues, whereas as an antagonist in others. In relation to this antago-antagonistic action, SERMs have a positive effect on bones, the serum lipid profile and the cardio-vascular system. Moreover, they can protect against some estrogen-dependent neoplasm development. The first used SERM was tamoxifen, but due to its negative effect on endometrium it is not indicated in osteoporosis. Raloxifen, which is currently in use, besides the reduction of vertebral fractures risk, has beneficial influence on endometrial and breast neoplasm development risk as well. On the other hand, raloxifen intensifies vasomotor symptoms and its bone-protecting effect is limited. At present, new SERMs (ospemifen, lasofoxifen, bazedoxifen, arzoxifen) are being researched in clinical trials. In the current stage of investigations they reveal beneficial influence on skeletal as well as extraskeletal tissues. Implementation of SERMs in combined therapy of osteoporosis is currently under research as well. SERM with parathormone or SERM with bisphosphonate might prove to be an advantageous treatment option for women with severe or resistant osteoporosis. An addition of SERM to conventional hormonal replacement therapy did not bring the anticipated benefits. Future studies on SERMs may result in new preparations adjusted to individual needs of the patients.

  13. Mouse models of estrogen receptor-positive breast cancer

    Directory of Open Access Journals (Sweden)

    Shakur Mohibi

    2011-01-01

    Full Text Available Breast cancer is the most frequent malignancy and second leading cause of cancer-related deaths among women. Despite advances in genetic and biochemical analyses, the incidence of breast cancer and its associated mortality remain very high. About 60 - 70% of breast cancers are Estrogen Receptor alpha (ER-α positive and are dependent on estrogen for growth. Selective estrogen receptor modulators (SERMs have therefore provided an effective targeted therapy to treat ER-α positive breast cancer patients. Unfortunately, development of resistance to endocrine therapy is frequent and leads to cancer recurrence. Our understanding of molecular mechanisms involved in the development of ER-α positive tumors and their resistance to ER antagonists is currently limited due to lack of experimental models of ER-α positive breast cancer. In most mouse models of breast cancer, the tumors that form are typically ER-negative and independent of estrogen for their growth. However, in recent years more attention has been given to develop mouse models that develop different subtypes of breast cancers, including ER-positive tumors. In this review, we discuss the currently available mouse models that develop ER-α positive mammary tumors and their potential use to elucidate the molecular mechanisms of ER-α positive breast cancer development and endocrine resistance.

  14. Stallion spermatozoa: putative target of estrogens; presence of the estrogen receptors ESR1, ESR2 and identification of the estrogen-membrane receptor GPER.

    Science.gov (United States)

    Arkoun, Brahim; Gautier, Camille; Delalande, Christelle; Barrier-Battut, Isabelle; Guénon, Isabelle; Goux, Didier; Bouraïma-Lelong, Hélène

    2014-05-01

    Among mammals, the stallion produces the largest amount of testicular estrogens. These steroid hormones are produced mainly by Leydig and Sertoli cells in the testis and also in the epididymis. Their role in horse testicular physiology and their ability to act on spermatozoa are still unknown. In order to determine if spermatozoa are targets for estrogens, the presence of estrogen receptors in mature ejaculated spermatozoa has been investigated. The presence of a single isoform of ESR1 (66kDa) and ESR2 (61kDa) was found by Western-blot analysis in samples from seven stallions. Confocal analysis mainly showed a flagellar localization for both receptors. Immuno-TEM experiments revealed that they are mostly located near the membranes, which are classically associated with rapid, non-genomic, effects. Moreover, we evidenced the expression of the seven transmembrane estradiol binding receptor GPER in colt testis. The protein was also localized at the connecting piece in mature spermatozoa. In conclusion, our results suggest that horse spermatozoa are a target for estrogens, which could act on several receptors either during the epididymal transit and/or in the female genital tract.

  15. Selectivity of natural, synthetic and environmental estrogens for zebrafish estrogen receptors

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, Caroline [Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5056 (United States); Grimaldi, Marina; Boulahtouf, Abdelhay [Institut de Recherche en Cancérologie de Montpellier, Institut National de la Santé de la Recherche Médicale U896, Institut Régional de Cancérologie de Montpellier, Université Montpellier 1, 34298 Montpellier (France); Pakdel, Farzad [Institut de Recherche sur la Santé, Environnement et Travail (IRSET), INSERM U1085, Université de Rennes 1, Rennes (France); Brion, François; Aït-Aïssa, Sélim [Unité Écotoxicologie In Vitro et In Vivo, INERIS, Parc ALATA, 60550 Verneuil-en-Halatte (France); Cavaillès, Vincent [Institut de Recherche en Cancérologie de Montpellier, Institut National de la Santé de la Recherche Médicale U896, Institut Régional de Cancérologie de Montpellier, Université Montpellier 1, 34298 Montpellier (France); Bourguet, William [U1054, Centre de Biochimie Structurale, CNRS UMR5048, Université Montpellier 1 et 2, 34290 Montpellier (France); Gustafsson, Jan-Ake [Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5056 (United States); Department of Biosciences and Nutrition, Karolinska Institutet, 14183 Huddinge (Sweden); and others

    2014-10-01

    Zebrafish, Danio rerio, is increasingly used as an animal model to study the effects of pharmaceuticals and environmental estrogens. As most of these estrogens have only been tested on human estrogen receptors (ERs), it is necessary to measure their effects on zebrafish ERs. In humans there are two distinct nuclear ERs (hERα and hERβ), whereas the zebrafish genome encodes three ERs, zfERα and two zfERβs (zfERβ1 and zfERβ2). In this study, we established HeLa-based reporter cell lines stably expressing each of the three zfERs. We first reported that estrogens more efficiently activate the zfERs at 28 °C as compared to 37 °C, thus reflecting the physiological temperature of zebrafish in wildlife. We then showed significant differences in the ability of agonist and antagonist estrogens to modulate activation of the three zfER isotypes in comparison to hERs. Environmental compounds (bisphenol A, alkylphenols, mycoestrogens) which are hER panagonists and hERβ selective agonists displayed greater potency for zfERα as compared to zfERβs. Among hERα selective synthetic agonists, PPT did not activate zfERα while 16α-LE2 was the most zfERα selective compound. Altogether, these results confirm that all hER ligands control in a similar manner the transcriptional activity of zfERs although significant differences in selectivity were observed among subtypes. The zfER subtype selective ligands that we identified thus represent new valuable tools to dissect the physiological roles of the different zfERs. Finally, our work also points out that care has to be taken in transposing the results obtained using the zebrafish as a model for human physiopathology. - Highlights: • Zebrafish is increasingly used to study the effects of estrogens. • We assessed the activity of pharmaceutical and environmental estrogens on zfERs. • Environmental estrogens displayed greater potency for zfERα compared to zfERβs. • hERβ selective agonists displayed greater potency for zf

  16. Do estrogen or selective estrogen receptor modulators improve quality of life for women with postmenopausal osteoporosis?

    Science.gov (United States)

    Gold, Deborah T; Silverman, Stuart L

    2007-03-01

    Osteoporotic fractures result in significant deficits in health-related quality of life (HRQOL). The accumulation of deficits resulting from osteoporosis and fractures is now recognized as a major cause of reduced HRQOL in women after the menopause and in later life. Some of these same postmenopausal women may also have deficits in HRQOL related to vasomotor symptoms during the menopausal transition. Although estrogen therapy has not been shown to improve overall HRQOL in late postmenopausal women in randomized, controlled trials, it may improve menopausal symptoms. In contrast, selective estrogen receptor modulators (SERMs) such as raloxifene may increase vasomotor symptoms. Although estrogen is not indicated for the primary prevention of osteoporosis, estrogen therapy may be considered for the postmenopausal woman at risk of osteoporotic fracture who is symptomatic and who is not at high risk of breast cancer or cardiovascular events. Raloxifene decreases risk of invasive breast cancer and may be considered in women at high risk of breast cancer. Decision making about osteoporosis treatment should also consider the impact of the treatment on HRQOL.

  17. Effects of metolachlor on transcription of thyroid system-related genes in juvenile and adult Japanese medaka (Oryzias latipes).

    Science.gov (United States)

    Jin, Yuanxiang; Chen, Rujia; Wang, Linggang; Liu, Jingwen; Yang, Yuefeng; Zhou, Cheng; Liu, Weiping; Fu, Zhengwei

    2011-02-01

    Metolachlor (MT) is one of the most important pesticides applied to corn and other crops for controlling broadleaf and grass weeds. However, the effects of MT on the thyroid system in fish remain to be elucidated. In the present experiment, transcription of genes related to the thyroid system, including thyrotropin releasing hormone (Trh), deiodinase 2 (Dio2), thyroid hormone receptor α (Thrα), and thyroid hormone receptor β (Thrβ), were induced by MT in a sex-, developmental stage-, and tissue- specific manner when medaka were exposed to various concentrations of MT for 14 days. The transcriptional levels of the genes were only significantly altered in both juvenile and adult female medaka in response to MT exposure. And the lowest concentrations able to significantly induce transcription of the selected genes were 10 and 100 μg/L in juvenile and adult female medaka, respectively. In adult female medaka, a significant up-regulation of these genes was detected only in the brain, with little or no effect in the liver. Furthermore, MT-induced (100 μg/L) transcription of thyroid system-related genes was enhanced significantly in male juvenile medaka in the presence of estrogen (E2) (50 and 100 ng/L). Moreover, the mRNA levels of Thrα and Thrβ in males increase with the combined treatments of 100 μg/L MT and 100 ng/L E2. Dio2 increased when exposed to 100 μg/L MT and 50 or 100 ng/L E2. The information obtained in the present study suggests that MT has the potential to influence several steps of the hypothalamus-pituitary-thyroid (HPT) axis homeostasis and to disrupt the thyroid system in medaka. Copyright © 2010 Elsevier Inc. All rights reserved.

  18. Rapid signaling actions of environmental estrogens in developing granule cell neurons are mediated by estrogen receptor ß.

    Science.gov (United States)

    Le, Hoa H; Belcher, Scott M

    2010-12-01

    Estrogenic endocrine disrupting chemicals (EDCs) constitute a diverse group of man-made chemicals and natural compounds derived from plants and microbial metabolism. Estrogen-like actions are mediated via the nuclear hormone receptor activity of estrogen receptor (ER)α and ERβ and rapid regulation of intracellular signaling cascades. Previous study defined cerebellar granule cell neurons as estrogen responsive and that granule cell precursor viability was developmentally sensitive to estrogens. In this study experiments using Western blot analysis and pharmacological approaches have characterized the receptor and signaling modes of action of selective and nonselective estrogen ligands in developing cerebellar granule cells. Estrogen treatments were found to briefly increase ERK1/2-phosphorylation and then cause prolonged depression of ERK1/2 activity. The sensitivity of granule cell precursors to estrogen-induced cell death was found to require the integrated activation of membrane and intracellular ER signaling pathways. The sensitivity of granule cells to selective and nonselective ER agonists and a variety of estrogenic and nonestrogenic EDCs was also examined. The ERβ selective agonist DPN, but not the ERα selective agonist 4,4',4'-(4-propyl-[1H]-pyrazole-1,3,5-triyl) trisphenol or other ERα-specific ligands, stimulated cell death. Only EDCs with selective or nonselective ERβ activities like daidzein, equol, diethylstilbestrol, and bisphenol A were observed to induce E2-like neurotoxicity supporting the conclusion that estrogen sensitivity in granule cells is mediated via ERβ. The presented results also demonstrate the utility of estrogen sensitive developing granule cells as an in vitro assay for elucidating rapid estrogen-signaling mechanisms and to detect EDCs that act at ERβ to rapidly regulate intracellular signaling.

  19. Biomarker Genes for Detecting Estrogenic Activity of Endocrine Disruptors via Estrogen Receptors

    Directory of Open Access Journals (Sweden)

    Hyun Yang

    2012-02-01

    Full Text Available Endocrine disruptors (EDs are compounds used in various industrial products, drugs, and cosmetics. They can be found in the environment and disturb the endocrine and reproductive systems, resulting in adverse effects to humans and wildlife such as birth defects and developmental disorders. Since several EDs have a structure similar to that of endogenous steroid hormones such as estrogens, they intend to have an affinity for steroid hormone receptors and alter hormone-mediated metabolism by binding to these receptors. EDs are therefore a global concern and assays should be developed to efficiently determine whether these compounds are detrimental to biological systems. Diverse experimental methods may help determine the endocrine disrupting potential of EDs and evaluate the adverse effects of a single and/or combination of these reagents. Currently, biomarkers have been employed to objectively measure EDs potency and understand the underlying mechanisms. Further studies are required to develop ideal screening methods and biomarkers to determine EDs potency at environmentally relevant concentrations. In this review, we describe the biomarkers for estrogenicity of EDs identified both in vitro and in vivo, and introduce a biomarker, cabindin-D9k (CaBP-9k, that may be used to assess estrogenic activity of EDs.

  20. Biomarker genes for detecting estrogenic activity of endocrine disruptors via estrogen receptors.

    Science.gov (United States)

    Jung, Eui-Man; An, Beum-Soo; Yang, Hyun; Choi, Kyung-Chul; Jeung, Eui-Bae

    2012-03-01

    Endocrine disruptors (EDs) are compounds used in various industrial products, drugs, and cosmetics. They can be found in the environment and disturb the endocrine and reproductive systems, resulting in adverse effects to humans and wildlife such as birth defects and developmental disorders. Since several EDs have a structure similar to that of endogenous steroid hormones such as estrogens, they intend to have an affinity for steroid hormone receptors and alter hormone-mediated metabolism by binding to these receptors. EDs are therefore a global concern and assays should be developed to efficiently determine whether these compounds are detrimental to biological systems. Diverse experimental methods may help determine the endocrine disrupting potential of EDs and evaluate the adverse effects of a single and/or combination of these reagents. Currently, biomarkers have been employed to objectively measure EDs potency and understand the underlying mechanisms. Further studies are required to develop ideal screening methods and biomarkers to determine EDs potency at environmentally relevant concentrations. In this review, we describe the biomarkers for estrogenicity of EDs identified both in vitro and in vivo, and introduce a biomarker, cabindin-D(9k) (CaBP-9k), that may be used to assess estrogenic activity of EDs.

  1. Channel catfish (Ictalurus punctatus) leukocytes express estrogen receptor isoforms ERα and ERβ2 and are functionally modulated by estrogens

    Science.gov (United States)

    Iwanowicz, Luke R.; Stafford, James L.; Patiño, Reynaldo; Bengten, Eva; Miller, Norman W.; Blazer, Vicki

    2014-01-01

    Estrogens are recognized as modulators of immune responses in mammals and teleosts. While it is known that the effects of estrogens are mediated via leukocyte-specific estrogen receptors (ERs) in humans and mice, leucocyte-specific estrogen receptor expression and the effects of estrogens on this cell population is less explored and poorly understood in teleosts. Here in, we verify that channel catfish (Ictalurus punctaus) leukocytes express ERα and ERβ2. Transcripts of these isoforms were detected in tissue-associated leukocyte populations by PCR, but ERβ2 was rarely detected in PBLs. Expression of these receptors was temporally regulated in PBLs following polyclonal activation by concanavalin A, lipopolysaccharide or alloantigen based on evaluation by quantitative and end-point PCR. Examination of long-term leukocyte cell lines demonstrated that these receptors are differentially expressed depending on leukocyte lineage and phenotype. Expression of ERs was also temporally dynamic in some leukocyte lineages and may reflect stage of cell maturity. Estrogens affect the responsiveness of channel catfish peripheral blood leukocytes (PBLs) to mitogens in vitro. Similarly, bactericidal activity and phorbol 12-myristate 13-acetate induced respiratory burst was modulated by 17β-estradiol. These actions were blocked by the pure ER antagonist ICI 182780 indicating that response is, in part, mediated via ERα. In summary, estrogen receptors are expressed in channel catfish leukocytes and participate in the regulation of the immune response. This is the first time leukocyte lineage expression has been reported in teleost cell lines.

  2. Molecular structural characteristics as determinants of estrogen receptor selectivity.

    Science.gov (United States)

    Agatonovic-Kustrin, S; Turner, J V; Glass, B D

    2008-09-29

    Recent reports that a wide variety of natural and man-made compounds are capable of competing with natural hormones for estrogen receptors serve as timely examples of the need to advance screening techniques to support human health and ascertain ecological risk. Quantitative structure-activity relationships (QSARs) can potentially serve as screening tools to identify and prioritize untested compounds for further empirical evaluations. Computer-based QSAR molecular models have been used to describe ligand-receptor interactions and to predict chemical structures that possess desired pharmacological characteristics. These have recently included combined and differential relative binding affinities of potential estrogenic compounds at estrogen receptors (ER) alpha and beta. In the present study, artificial neural network (ANN) QSAR models were developed that were able to predict differential relative binding affinities of a series of structurally diverse compounds with estrogenic activity. The models were constructed with a dataset of 93 compounds and tested with an additional dataset of 30 independent compounds. High training correlations (r2=0.83-0.91) were observed while validation results for the external compounds were encouraging (r2=0.62-0.86). The models were used to identify structural features of phytoestrogens that are responsible for selective ligand binding to ERalpha and ERbeta. Numerous structural characteristics are required for complexation with receptors. In particular, size, shape and polarity of ligands, heterocyclic rings, lipophilicity, hydrogen bonding, presence of quaternary carbon atom, presence, position, length and configuration of a bulky side chain, were identified as the most significant structural features responsible for selective binding to ERalpha and ERbeta.

  3. DHEA metabolites activate estrogen receptors alpha and beta

    OpenAIRE

    Michael Miller, Kristy K.; AL-RAYYAN, NUMAN; Ivanova, Margarita M.; Mattingly, Kathleen A.; Ripp, Sharon L.; Klinge, Carolyn M; Prough, Russell A.

    2012-01-01

    Dehydroepiandrosterone (DHEA) levels were reported to associate with increased breast cancer risk in postmenopausal women, but some carcinogen-induced rat mammary tumor studies question this claim. The purpose of this study was to determine how DHEA and its metabolites affect estrogen receptors α or β (ERα or ERβ) -regulated gene transcription and cell proliferation. In transiently transfected HEK-293 cells, androstenediol, DHEA, and DHEA-S activated ERα. In ERβ transfected HepG2 cells, andro...

  4. Estrogen Receptor Mutants/Variants in Human Breast Cancer.

    Science.gov (United States)

    1996-12-01

    Bethesda, MD, USA). detection sensitivity and increases the Human immunodeficiency virus type 2 Tamara Hiller, Linda Snell yield of the amplified products...was McBride- Putman 2 , S. Fuqua2, R. Luput. ’Georgetown University, Washington, D.C. observed for the estrogen receptor, cyclin DI, and CerbB-2. (3) A...Leygue, Linda Snell, Leigh C. Murphy and Peter H. Watson * *Affiliations of authors: A. Huang, L. Snell, and P.H. Watson (Department of Pathology), E

  5. Estrogen Receptor-α Polymorphisms and Predisposition to TMJ Disorder

    OpenAIRE

    Ribeiro-Dasilva, Margarete Cristiane; Line, Sérgio Roberto Peres; dos Santos, Maria Cristina Leme Godoy; Arthuri, Mariana Trevisani; Hou, Wei; Fillingim, Roger Benton; Barbosa,Célia Marisa Rizzatti

    2009-01-01

    Temporomandibular joint disorders (TMJD) affect women with greater frequency than men, and sex hormones may contribute to this female predominance. Therefore, this study investigated whether estrogen receptor-α (XbaI/PvuII) single nucleotide polymorphisms (SNPs) are associated with TMJD in women. DNA was obtained from 200 women with TMJD (100 with chronic pain and 100 with signs of TMJD but no pain) diagnosed according to the Research Diagnostic Criteria for Temporomandibular Disorder (RDC/TM...

  6. Aromatase, estrogen receptors and brain development in fish and amphibians.

    Science.gov (United States)

    Coumailleau, Pascal; Pellegrini, Elisabeth; Adrio, Fátima; Diotel, Nicolas; Cano-Nicolau, Joel; Nasri, Ahmed; Vaillant, Colette; Kah, Olivier

    2015-02-01

    Estrogens affect brain development of vertebrates, not only by impacting activity and morphology of existing circuits, but also by modulating embryonic and adult neurogenesis. The issue is complex as estrogens can not only originate from peripheral tissues, but also be locally produced within the brain itself due to local aromatization of androgens. In this respect, teleost fishes are quite unique because aromatase is expressed exclusively in radial glial cells, which represent pluripotent cells in the brain of all vertebrates. Expression of aromatase in the brain of fish is also strongly stimulated by estrogens and some androgens. This creates a very intriguing positive auto-regulatory loop leading to dramatic aromatase expression in sexually mature fish with elevated levels of circulating steroids. Looking at the effects of estrogens or anti-estrogens in the brain of adult zebrafish showed that estrogens inhibit rather than stimulate cell proliferation and newborn cell migration. The functional meaning of these observations is still unclear, but these data suggest that the brain of fish is experiencing constant remodeling under the influence of circulating steroids and brain-derived neurosteroids, possibly permitting a diversification of sexual strategies, notably hermaphroditism. Recent data in frogs indicate that aromatase expression is limited to neurons and do not concern radial glial cells. Thus, until now, there is no other example of vertebrates in which radial progenitors express aromatase. This raises the question of when and why these new features were gained and what are their adaptive benefits. This article is part of a Special Issue entitled: Nuclear receptors in animal development.

  7. Evolution of estrogen receptors in ray-finned fish and their comparative responses to estrogenic substances.

    Science.gov (United States)

    Tohyama, Saki; Miyagawa, Shinichi; Lange, Anke; Ogino, Yukiko; Mizutani, Takeshi; Ihara, Masaru; Tanaka, Hiroaki; Tatarazako, Norihisa; Kobayashi, Tohru; Tyler, Charles R; Iguchi, Taisen

    2016-04-01

    In vertebrates, estrogens play fundamental roles in regulating reproductive activities through estrogen receptors (ESRs), and disruption of estrogen signaling is now of global concern for both wildlife and human health. To date, ESRs of only a limited number of species have been characterized. We investigated the functional diversity and molecular basis or ligand sensitivity of ESRs among ray-finned fish species (Actinopterygii), the most variable group within vertebrates. We cloned and characterized ESRs from several key species in the evolution of ray-finned fish including bichir (Polypteriformes, ESR1 and ESR2) at the basal lineage of ray-finned fish, and arowana (Osteoglossiformes, ESR1 and ESR2b) and eel (Anguilliformes, ESR1, ESR2a and ESR2b) both belonging to ancient early-branching lineages of teleosts, and suggest that ESR2a and ESR2b emerged through teleost-specific whole genome duplication, but an ESR1 paralogue has been lost in the early lineage of euteleost fish species. All cloned ESR isoforms showed similar responses to endogenous and synthetic steroidal estrogens, but they responded differently to non-steroidal estrogenic endocrine disrupting chemicals (EDCs) (e.g., ESR2a exhibits a weaker reporter activity compared with ESR2b). We show that variation in ligand sensitivity of ESRs can be attributed to phylogeny among species of different taxonomic groups in ray-finned fish. The molecular information provided contributes both to understanding of the comparative role of ESRs in the reproductive biology of fish and their comparative responses to EDCs.

  8. Signaling from the membrane via membrane estrogen receptor-alpha: estrogens, xenoestrogens, and phytoestrogens.

    Science.gov (United States)

    Watson, Cheryl S; Bulayeva, Nataliya N; Wozniak, Ann L; Finnerty, Celeste C

    2005-01-01

    Estrogen mimetics in the environment and in foods can have important consequences for endocrine functions. When previously examined for action via genomic steroid signaling mechanisms, most of these compounds were found to be very weak agonists. We have instead tested their actions via several membrane-initiated signaling mechanisms in GH3/B6 pituitary tumor cells extensively selected for high (responsive) or low (nonresponsive) expression of the membrane version of estrogen receptor-alpha (mERalpha). We found many estrogen mimetic compounds to be potently active in our quantitative extracellular-regulated kinase (ERK) activation assays, to increase cellular Ca++ levels, and to cause rapid prolactin release. However, these compounds may activate one or both mechanisms with different potencies. For instance, some compounds activate ERKs in both pM and nM concentration ranges, while others are only active at nM and higher concentrations. Compounds also show great differences in their temporal activation patterns. While estradiol causes a bimodal time-dependent ERK activation (peaking at both 3 and 30 min), most estrogen mimetics cause either an early phase activation, a late phase activation, or an early sustained activation. One xenoestrogen known to be a relatively potent activator of estrogen response element-mediated actions (bisphenol A) is inactive as an ERK activator, and only a modest inducer of Ca++ levels and prolactin release. Many different signaling machineries culminate in ERK activation, and xenoestrogens differentially affect various pathways. Clearly individual xenoestrogens must be individually investigated for their differing abilities to activate distinct membrane-initiated signal cascades that lead to a variety of cellular functions.

  9. Selectivity of natural, synthetic and environmental estrogens for zebrafish estrogen receptors.

    Science.gov (United States)

    Pinto, Caroline; Grimaldi, Marina; Boulahtouf, Abdelhay; Pakdel, Farzad; Brion, François; Aït-Aïssa, Sélim; Cavaillès, Vincent; Bourguet, William; Gustafsson, Jan-Ake; Bondesson, Maria; Balaguer, Patrick

    2014-10-01

    Zebrafish, Danio rerio, is increasingly used as an animal model to study the effects of pharmaceuticals and environmental estrogens. As most of these estrogens have only been tested on human estrogen receptors (ERs), it is necessary to measure their effects on zebrafish ERs. In humans there are two distinct nuclear ERs (hERα and hERβ), whereas the zebrafish genome encodes three ERs, zfERα and two zfERβs (zfERβ1 and zfERβ2). In this study, we established HeLa-based reporter cell lines stably expressing each of the three zfERs. We first reported that estrogens more efficiently activate the zfERs at 28°C as compared to 37°C, thus reflecting the physiological temperature of zebrafish in wildlife. We then showed significant differences in the ability of agonist and antagonist estrogens to modulate activation of the three zfER isotypes in comparison to hERs. Environmental compounds (bisphenol A, alkylphenols, mycoestrogens) which are hER panagonists and hERβ selective agonists displayed greater potency for zfERα as compared to zfERβs. Among hERα selective synthetic agonists, PPT did not activate zfERα while 16α-LE2 was the most zfERα selective compound. Altogether, these results confirm that all hER ligands control in a similar manner the transcriptional activity of zfERs although significant differences in selectivity were observed among subtypes. The zfER subtype selective ligands that we identified thus represent new valuable tools to dissect the physiological roles of the different zfERs. Finally, our work also points out that care has to be taken in transposing the results obtained using the zebrafish as a model for human physiopathology.

  10. The role of estrogens and estrogen receptor signaling pathways in cancer and infertility: the case of schistosomes.

    Science.gov (United States)

    Botelho, Mónica C; Alves, Helena; Barros, Alberto; Rinaldi, Gabriel; Brindley, Paul J; Sousa, Mário

    2015-06-01

    Schistosoma haematobium, a parasitic flatworm that infects more than 100 million people, mostly in the developing world, is the causative agent of urogenital schistosomiasis, and is associated with a high incidence of squamous cell carcinoma (SCC) of the bladder. Schistosomiasis haematobia also appears to negatively influence fertility, and is particularly associated with female infertility. Given that estrogens and estrogen receptors are key players in human reproduction, we speculate that schistosome estrogen-like molecules may contribute to infertility through hormonal imbalances. Here, we review recent findings on the role of estrogens and estrogen receptors on both carcinogenesis and infertility associated with urogenital schistosomiasis and discuss the basic hormonal mechanisms that might be common in cancer and infertility. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Molecular cloning and characterization of hagfish estrogen receptors.

    Science.gov (United States)

    Nishimiya, Osamu; Katsu, Yoshinao; Inagawa, Hiroyuki; Hiramatsu, Naoshi; Todo, Takashi; Hara, Akihiko

    2017-01-01

    One or more distinct forms of the nuclear estrogen receptor (ER) have been isolated from many vertebrates to date. To better understand the molecular evolution of ERs, we cloned and characterized er cDNAs from the inshore hagfish, Eptatretus burgeri, a modern representative of the most primitive vertebrates, the agnathans. Two er cDNAs, er1 and er2, were isolated from the liver of a reproductive female hagfish. A phylogenetic analysis placed hagfish ER1 into a position prior to the divergence of vertebrate ERs. Conversely, hagfish ER2 was placed at the base of the vertebrate ERβ clade. The tissue distribution patterns of both ER subtype mRNAs appeared to be different, suggesting that each subtype has different physiological roles associated with estrogen actions. An estrogen responsive-luciferase reporter assay using mammalian HEK293 cells was used to functionally characterize these hagfish ERs. Both ER proteins displayed estrogen-dependent activation of transcription. These results clearly demonstrate that the hagfish has two functional ER subtypes.

  12. Estrogen and Progesterone hormone receptor expression in oral cavity cancer

    Science.gov (United States)

    Biegner, Thorsten; Teriete, Peter; Hoefert, Sebastian; Krimmel, Michael; Munz, Adelheid; Reinert, Siegmar

    2016-01-01

    Background Recent studies have shown an increase in the incidence of oral squamous cell carcinoma (OSCC) in younger patients. The hypothesis that tumors could be hormonally induced during pregnancy or in young female patients without the well-known risk factors alcohol or tobacco abuse seems to be plausible. Material and Methods Estrogen Receptor alpha (ERα) and Progesterone Receptor (PR) expression were analyzed in normal oral mucosa (n=5), oral precursor lesions (simple hyperplasia, n=11; squamous intraepithelial neoplasia, SIN I-III, n=35), and OSCC specimen. OSCCs were stratified in a young female (n=7) study cohort and older patients (n=46). In the young female study cohort three patients (n=3/7) developed OSCC during or shortly after pregnancy. Breast cancer tissues were used as positive control for ERα and PR expression. Results ERα expression was found in four oral precursor lesions (squamous intraepithelial neoplasia, SIN I-III, n=4/35, 11%) and in five OSCC specimen (n=5/46, 11%). The five ERα positive OSCC samples were older male patients. All patients within the young female study cohort were negatively stained for both ERα and PR. Conclusions ER expression could be regarded as a seldom risk factor for OSCC. PR expression seems to be not relevant for the development of OSCC. Key words:Oral squamous cell carcinoma, estrogen receptor, progesterone receptor, hormone receptor. PMID:27475696

  13. Vitamin D receptor and estrogen receptor gene polymorphisms in postmenopausal Danish women

    DEFF Research Database (Denmark)

    Bagger, Y Z; Hassager, C; Heegaard, Anne-Marie;

    2000-01-01

    To investigate the polymorphisms of the vitamin D receptor (VDR) and estrogen receptor (ER) genes in relation to biochemical markers of bone turnover (serum osteocalcin and urinary collagen type I degradation products (CrossLaps), and to study ER genotypes in relation to serum lipoproteins, blood...

  14. Role of estrogen receptors (ERs and G protein-coupled estrogen receptor (GPER in regulation of hypothalamic-pituitary-testis axis and spermatogenesis

    Directory of Open Access Journals (Sweden)

    Adele eChimento

    2014-01-01

    Full Text Available Male reproductive function is under the control of both gonadotropins and androgens through a negative feedback loop that involves the hypothalamus, pituitary and testis known as hypothalamus-pituitary-gonadal axis (HPG. Indeed, also estrogens play an important role in regulating HPG axis but the relative contribution to the inhibition of gonadotropins secretion exerted by the amount of estrogens produced within the hypothalamus and/or the pituitary or by the amount of circulating estrogens are still ongoing. Moreover, it is known that maintenance of spermatogenesis is controlled by gonadotrophins and testosterone, the effects of which are modulated by a complex network of locally produced factors, including estrogens. Physiological effects of estrogens are mediated by the classical nuclear estrogen receptor alpha (ESR1 and estrogen receptor beta (ESR2, which mediate both genomic and rapid signaling events. In addition, estrogens induce rapid non-genomic responses through a membrane-associated G protein-coupled receptor (GPER. Ours and other studies reported that, in the testis, GPER is expressed in both normal germ cells and somatic cells and it is involved in mediating the estrogen action in spermatogenesis controlling proliferative and/or apoptotic events. Interestingly, GPER expression has been revealed also in hypothalamus and in pituitary. However, its role in mediating estrogen rapid actions in this context is under investigation. Recent studies indicate that GPER is involved in modulating GnRH release as well as gonadotropins secretion. In this review, we will summarize the current knowledge concerning the role of estrogen/estrogen receptors (ERs molecular pathways in regulating GnRH, FSH and LH release at hypothalamic and pituitary level in male as well as in controlling specific testicular functions such as spermatogenesis, focusing our attention mainly on estrogen signaling mediated by GPER.

  15. Gene expression of estrogen receptor-alpha in orbital fibroblasts in Graves’ ophthalmopathy

    OpenAIRE

    Cury, Sarah Santiloni; Oliveira,Miriane; Síbio, Maria Teresa; Clara,Sueli; Luvizotto, Renata de Azevedo Melo; Conde,Sandro; Jorge, Edson Nacib [UNESP; Nunes, Vania Dos Santos [UNESP; Nogueira, Célia Regina; Mazeto, Gláucia Maria Ferreira da Silva

    2015-01-01

    Graves’ ophthalmopathy (GO) is one of the most severe clinical manifestations of Graves’ disease (GD), and its treatment might involve high-dose glucocorticoid therapy. The higher incidence of GO among females, and the reported association between polymorphisms of estrogen receptor (ER) and GD susceptibility have led us to question the role of estrogen and its receptor in GO pathogenesis. We, thus, assessed estrogen receptor-alpha (ERA) gene expression in cultures of orbital fibro...

  16. Hormone Binding to Recombinant Estrogen Receptors from Human, Alligator, Quail, Salamander, and Fathead Minnow

    Science.gov (United States)

    In this work, a 96-well plate estrogen receptor binding assay was developed to facilitate the direct comparison of chemical binding to full-length recombinant estrogen receptors across vertebrate classes. Receptors were generated in a baculovirus expression system. This approach ...

  17. DHEA metabolites activate estrogen receptors alpha and beta

    Science.gov (United States)

    Michael Miller, Kristy K.; Al-Rayyan, Numan; Ivanova, Margarita M.; Mattingly, Kathleen A.; Ripp, Sharon L.; Klinge, Carolyn M.; Prough, Russell A.

    2012-01-01

    Dehydroepiandrosterone (DHEA) levels were reported to associate with increased breast cancer risk in postmenopausal women, but some carcinogen-induced rat mammary tumor studies question this claim. The purpose of this study was to determine how DHEA and its metabolites affect estrogen receptors α or β (ERα or ERβ) -regulated gene transcription and cell proliferation. In transiently transfected HEK-293 cells, androstenediol, DHEA, and DHEA-S activated ERα. In ERβ transfected HepG2 cells, androstenedione, DHEA, androstenediol, and 7-oxo DHEA stimulated reporter activity. ER antagonists ICI 182,780 (fulvestrant) and 4-hydroxytamoxifen, general P450 inhibitor miconazole, and aromatase inhibitor exemestane inhibited activation by DHEA or metabolites in transfected cells. ERβ-selective antagonist R,R-THC (R,R-cis-diethyl tetrahydrochrysene) inhibited DHEA and DHEA metabolite transcriptional activity in ERβ-transfected cells. Expression of endogenous estrogen-regulated genes: pS2, progesterone receptor, cathepsin D1, and nuclear respiratory factor-1 was increased by DHEA and its metabolites in an ER-subtype, gene, and cell-specific manner. DHEA metabolites, but not DHEA, competed with 17β-estradiol for ERα and ERβ binding and stimulated MCF-7 cell proliferation, demonstrating that DHEA metabolites interact directly with ERα and ERβ in vitro, modulating estrogen target genes in vivo. PMID:23123738

  18. Melanocortin 4 receptor is not required for estrogenic regulations on energy homeostasis and reproduction

    Science.gov (United States)

    Brain estrogen receptor-a (ERa) is essential for estrogenic regulation of energy homeostasis and reproduction. We previously showed that ERa expressed by pro-opiomelanocortin (POMC) neurons mediates estrogen's effects on food intake, body weight, negative regulation of hypothalamic–pituitary–gonadal...

  19. Conservation of estrogen receptor function in invertebrate reproduction.

    Science.gov (United States)

    Jones, Brande L; Walker, Chris; Azizi, Bahareh; Tolbert, Laren; Williams, Loren Dean; Snell, Terry W

    2017-03-04

    Rotifers are microscopic aquatic invertebrates that reproduce both sexually and asexually. Though rotifers are phylogenetically distant from humans, and have specialized reproductive physiology, this work identifies a surprising conservation in the control of reproduction between humans and rotifers through the estrogen receptor. Until recently, steroid signaling has been observed in only a few invertebrate taxa and its role in regulating invertebrate reproduction has not been clearly demonstrated. Insights into the evolution of sex signaling pathways can be gained by clarifying how receptors function in invertebrate reproduction. In this paper, we show that a ligand-activated estrogen-like receptor in rotifers binds human estradiol and regulates reproductive output in females. In other invertebrates characterized thus far, ER ligand binding domains have occluded ligand-binding sites and the ERs are not ligand activated. We have used a suite of computational, biochemical and biological techniques to determine that the rotifer ER binding site is not occluded and can bind human estradiol. Our results demonstrate that this mammalian hormone receptor plays a key role in reproduction of the ancient microinvertebrate Brachinous manjavacas. The presence and activity of the ER within the phylum Rotifera indicates that the ER structure and function is highly conserved throughout animal evolution.

  20. Oxytocin and Estrogen Receptor β in the Brain: An Overview

    Directory of Open Access Journals (Sweden)

    Alexandra eAcevedo-Rodriguez

    2015-10-01

    Full Text Available Oxytocin is a neuropeptide synthesized primarily by neurons of the paraventricular and supraoptic nuclei of the hypothalamus. These neurons have axons that project into the posterior pituitary and release oxytocin into the bloodstream to promote labor and lactation; however, oxytocin neurons also project to other brain areas where it plays a role in numerous brain functions. Oxytocin binds to the widely expressed oxytocin receptor, and, in doing so, it regulates homeostatic processes, social recognition and fear conditioning. In addition to these functions, oxytocin decreases neuroendocrine stress signaling and anxiety-related and depression-like behaviors. Steroid hormones differentially modulate stress responses and alter oxytocin receptor expression. In particular, estrogen receptor β activation has been found to both reduce anxiety-related behaviors and increase oxytocin peptide transcription, suggesting a role for oxytocin in this estrogen receptor β mediated anxiolytic effect. Further research is needed to identify modulators of oxytocin signaling and the pathways utilized and to elucidate molecular mechanisms controlling oxytocin expression to allow better therapeutic manipulations of this system in patient populations.

  1. Mixture Effects of Estrogenic Pesticides at the Human Estrogen Receptor α and β.

    Science.gov (United States)

    Seeger, Bettina; Klawonn, Frank; Nguema Bekale, Boris; Steinberg, Pablo

    2016-01-01

    Consumers of fruits and vegetables are frequently exposed to small amounts of hormonally active pesticides, some of them sharing a common mode of action such as the activation of the human estrogen receptor α (hERα) or β (hERβ). Therefore, it is of particular importance to evaluate risks emanating from chemical mixtures, in which the individual pesticides are present at human-relevant concentrations, below their corresponding maximum residue levels. Binary and ternary iso-effective mixtures of estrogenic pesticides at effect concentrations eliciting a 1 or 10% effect in the presence or absence of 17β-estradiol were tested experimentally at the hERα in the yeast-based estrogen screen (YES) assay as well as in the human U2-OS cell-based ERα chemical-activated luciferase gene expression (ERα CALUX) assay and at the hERβ in the ERβ CALUX assay. The outcome was then compared to predictions calculated by means of concentration addition. In most cases, additive effects were observed with the tested combinations in all three test systems, an observation that supports the need to expand the risk assessment of pesticides and consider cumulative risk assessment. An additional testing of mixture effects at the hERβ showed that most test substances being active at the hERα could also elicit additive effects at the hERβ, but the hERβ was less sensitive. In conclusion, effects of the same ligands at the hERα and the hERβ could influence the estrogenic outcome under physiological conditions.

  2. The correlation between immunoexpression of estrogen receptor and the severity of periodontal disease

    Directory of Open Access Journals (Sweden)

    Yuliana Mahdiyah Da’at Arina

    2010-09-01

    Full Text Available Background: The decreased level of estrogen during menopause may be one of the risk factors of periodontal disease. The influence of estrogen to periodontal tissue disturbance is mediated by the presence of estrogen receptor on tissue. The precise mechanism how the estrogens mediate this effect is still unclear. Purpose: The aim of this study was to determine the correlation between estrogen receptor α and ß on the periodontal pocket of women who had severe chronic periodontitis measured based on the periodontal pocket depth. Methods: Twenty four periodontitis patients from menopausal and productive women according to the criteria were examined upon her periodontal status and immunoexpression of estrogen receptor α and ß on their periodontal pocket wall. Results: The result showed that in the menopausal and productive women, immunoexpression of estrogen receptor α and ß was not correlated with the periodontal pocket depth (p>0.05. However, the pocket depth seemed to show higher correlation with immunoexpression of estrogen receptor α than that with estrogen receptor ß, r=0.37 vs. r=0.12 for menopausal women, and r=41 vs. r=0.11 for productive women. Conclusion: It was concluded that no significant correlation was found between the estrogen receptor and periodontal pocket depth both on menopausal and productive women, presumed that estrogen has little role in the severity of periodontitis based on periodontal pocket depth. However, the estrogen receptor α has valuable effect on the severity of periodontal disease more than the estrogen receptor ß.Use of adenovirus vector expressing the mouse full estrogen receptor alpha gene to infect mouse primary neurons

    Institute of Scientific and Technical Information of China (English)

    Xiao HU; Lei Lou; Jun Yuan; Xing Wan; Jianyi Wang; Xinyue Qin

    2010-01-01

    Estrogen plays important regulatory and protective roles in the central nervous system through estrogen receptor a mediation.Previous studies applied eukaryotic expression and lentiviral vectors carrying estrogen receptor a to clarify the undedying mechanisms,in the present study,an adenovirus vector expressing the mouse full estrogen receptor a gene was constructed to identify biological characteristics of estrogen receptor a recombinant adenovirus infecting nerve cells.Primary cultured mouse nerve cells were first infected with estrogen receptor a recombinant adenovirus at various multiplicities of infection,followed by 100 multiplicity of infection.Results showed overexpression of estrogen receptor a mRNA and protein in the infected nerve cells.Estrogen receptor a recombinant adenovirus at 100 multiplicity of infection successfully infected neurons and upregulated estrogen receptor a mRNA and protein expression.

  3. Bazedoxifene: a novel selective estrogen receptor modulator for postmenopausal osteoporosis.

    Science.gov (United States)

    de Villiers, T J

    2010-06-01

    Several new selective estrogen receptor modulators (SERMs) are currently under clinical development for the prevention and/or treatment of postmenopausal osteoporosis, with the goal of optimizing the estrogen receptor agonist/antagonist activity in target tissues. Bazedoxifene is a novel SERM under clinical investigation for the prevention and treatment of postmenopausal osteoporosis. Emerging clinical data have shown that bazedoxifene is effective in preventing bone loss and osteoporotic fractures in postmenopausal women, with no evidence of breast or endometrial stimulation. Two large, prospective, international phase 3 studies have been completed. In postmenopausal women at risk for osteoporosis, bazedoxifene has been shown to preserve bone mineral density and to reduce bone turnover. In postmenopausal women with osteoporosis, bazedoxifene has demonstrated significant protection against new vertebral fractures and against non-vertebral fractures in women at higher fracture risk. The treatment effects of bazedoxifene were supported by findings from independent re-analyses using the Fracture Risk Assessment Tool (FRAX), which showed that bazedoxifene significantly reduced the risk of all clinical and morphometric vertebral fracture and of non-vertebral fracture in women at or above a FRAX-based threshold. Bazedoxifene was generally safe and well tolerated in the phase 3 studies and showed neutral effects on the breast and an excellent endometrial safety profile; such attributes allow for the partnering of bazedoxifene with conjugated estrogens for menopausal symptom relief. Collectively, these results suggest that bazedoxifene may be a promising new therapy for the prevention and treatment of postmenopausal osteoporosis as a monotherapy or in combination with conjugated estrogens in menopausal hormone therapy.

  4. Hispolon inhibits the growth of estrogen receptor positive human breast cancer cells through modulation of estrogen receptor alpha

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Eun Hyang; Jang, Soon Young; Cho, In-Hye [Department of Pharmacy, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701 (Korea, Republic of); Hong, Darong [Department of Life and Nanopharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701 (Korea, Republic of); Jung, Bom; Park, Min-Ju [Department of Pharmacy, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701 (Korea, Republic of); Kim, Jong-Ho, E-mail: jonghokim@khu.ac.kr [Department of Pharmacy, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701 (Korea, Republic of)

    2015-08-07

    Human estrogen receptor α (ERα) is a nuclear transcription factor that is a major therapeutic target in breast cancer. The transcriptional activity of ERα is regulated by certain estrogen-receptor modulators. Hispolon, isolated from Phellinus linteus, a traditional medicinal mushroom called Sanghwang in Korea, has been used to treat various pathologies, such as inflammation, gastroenteric disorders, lymphatic diseases, and cancers. In this latter context, Hispolon has been reported to exhibit therapeutic efficacy against various cancer cells, including melanoma, leukemia, hepatocarcinoma, bladder cancer, and gastric cancer cells. However, ERα regulation by Hispolon has not been reported. In this study, we investigated the effects of Hispolon on the growth of breast cancer cells. We found that Hispolon decreased expression of ERα at both mRNA and the protein levels in MCF7 and T47D human breast cancer cells. Luciferase reporter assays showed that Hispolon decreased the transcriptional activity of ERα. Hispolon treatment also inhibited expression of the ERα target gene pS2. We propose that Hispolon, an anticancer drug extracted from natural sources, inhibits cell growth through modulation of ERα in estrogen-positive breast cancer cells and is a candidate for use in human breast cancer chemotherapy. - Highlights: • Hispolon decreased ERα expression at both mRNA and protein levels. • Hispolon decreased ERα transcriptional activity. • Hispolon treatment inhibited expression of ERα target gene pS2. • Shikonin is a candidate chemotherapeutic target in the treatment of human breast cancer.

  5. Sympathetic hyperinnervation of the uterus in the estrogen receptor alpha knock-out mouse.

    Science.gov (United States)

    Zoubina, E V; Smith, P G

    2001-01-01

    Uterine innervation undergoes cyclical remodeling in the adult virgin rat. Previous studies showed that ovariectomy leads to increased uterine sympathetic nerve density, and this can be reduced by estrogen administration. However, the receptor mechanism by which estrogen modulates sympathetic innervation is unknown. The present study assessed the role of the estrogen receptor alpha in establishing levels of uterine innervation by comparing the nerve abundance in mice with a null mutation of the estrogen receptor alpha with those of the wild-type cycling mouse. Immunostaining for total uterine innervation using antibodies against the pan-neuronal marker protein gene product 9.5 showed that nerve numbers in normally cycling wild-type mice were high in diestrus when circulating estrogen is at its nadir, and low at estrus, coincident with high plasma estrogen. Uteri of the estrogen receptor alpha knock-out mice were smaller than those of wild-type mice, but even when corrected for differences in size, total innervation was 188% and 355% greater than that of wild-type mice at diestrus and estrus, respectively. This hyperinnervation is associated with increased numbers of nerves immunoreactive for the noradrenergic enzyme dopamine beta-hydroxylase, without obvious differences in those containing calcitonin gene-related peptide or the vesicular acetylcholine transporter. While estrogen supplementation of the ovariectomized wild-type mice significantly reduced total uterine innervation, neither ovariectomy nor estrogen supplementation affected uterine nerve density in estrogen receptor alpha knock-out mice.We conclude that estrogen acting through the estrogen receptor alpha determines the number of sympathetic nerve terminal branches within uterine smooth muscle target. In mice with low circulating estrogen, or high estrogen but lacking the functional estrogen receptor alpha, the uterus contains abundant sympathetic nerves, whereas estrogen acts via the estrogen receptor

  6. Evaluation of potential mechanisms of atrazine-induced reproductive impairment in fathead minnow (Pimephales promelas) and Japanese medaka (Oryzias latipes)

    Science.gov (United States)

    Richter, Cathy; Papoulias, Diana M.; Whyte, Jeffrey J.; Tillitt, Donald E.

    2016-01-01

    Atrazine has been implicated in reproductive dysfunction of exposed organisms, and previous studies documented decreased egg production in Japanese medaka (Oryzias latipes) and fathead minnows (Pimephales promelas) during 30-d to 38-d exposures to 0.5 µg/L, 5 µg/L, and 50 µg/L atrazine. The authors evaluated possible mechanisms underlying the reduction in egg production. Gene expression in steroidogenesis pathways and the hypothalamus–pituitary–gonad axis of male and female fish was measured. Atrazine did not significantly induce gonad aromatase (cyp19a1a) expression. An atrazine-induced shift in the number of females in an active reproductive state was observed. Expression of the egg maturation genes vitellogenin 1 (vtg1) and zona pellucida glycoprotein 3.1 (zp3.1) in medaka females was correlated and had a bimodal distribution. In both species, females with low vtg1 or zp3.1 expression also had low expression of steroidogenesis genes in the gonad, estrogen receptor in the liver, and gonadotropins in the brain. In the medaka, the number of females per tank that had high expression of zp3.1 was significantly correlated with egg production per tank. The number of medaka females with low expression of zp3.1 increased significantly with atrazine exposure. Thus, the decline in egg production observed in response to atrazine exposure may be the result of a coordinated downregulation of genes required for reproduction in a subset of females.

  7. The Estrogen Receptor-β Expression in De Quervain's Disease.

    Science.gov (United States)

    Shen, Po-Chuan; Wang, Ping-Hui; Wu, Po-Ting; Wu, Kuo-Chen; Hsieh, Jeng-Long; Jou, I-Ming

    2015-11-04

    Stenosing tenosynovitis of the first dorsal compartment of the wrist (a.k.a. de Quervain's disease) is common but how estrogen is involved is still unknown. We previously reported that inflammation was involved in the pathogenesis of this ailment. In the present study, we extended our investigation of estrogen receptor (ER)-β expression to determine whether estrogen is involved in the pathogenesis of de Quervain's. Intraoperative retinaculum samples were collected from 16 patients with the ailment. Specimens were histologically graded by collagen structure and immunohistochemically evaluated by quantifying the expression of ER-β, interleukin (IL)-1β and IL-6 (inflammatory cytokines), cyclooxygenase (COX)-2 (an inflammatory enzyme), and vascular endothelial growth factor (VEGF), and Von Willebrand's factor (vWF). De Quervain's occurs primarily in women. The female:male ratio in our study was 7:1. We found that ER-β expression in the retinaculum was positively correlated with disease grade and patient age. Additionally, disease severity was associated with inflammatory factors--IL-1β and IL-6, COX-2, and VEGF and vWF in tenosynovial tissue. The greater the levels of ER-β expression, tissue inflammation, and angiogenesis are, the more severe de Quervain's disease is. ER-β might be a useful target for novel de Quervain's disease therapy.

  8. Expression of estrogen and progesterone receptors in subcutaneous endometriosis

    Directory of Open Access Journals (Sweden)

    Đorđević M.

    2010-01-01

    Full Text Available Endometriosis is a clinical disorder defined by the presence of functional endometrial tissue outside the uterine cavity. Depending on the localization of the endometrial tissue related to the pelvis, the endometriosis can be classified either as intrinsic or extrinsic. The prevalence of endometriosis is difficult to determine. Statistical data show that endometriosis could be associated both with female infertility (20% and pelvic pains (24%, while in 4.1% of affected women, endometriosis has asymptomatic forms. The total prevalence of endometriosis is estimated to be between 5-10%. A 35-year-old woman from Knic, Serbia, was admitted to the Obstetrics and Gynecology Clinic of the Clinical Center in Kragujevac for surgical treatment of a suspicious swelling in the pubic region. Following surgical intervention, a nut-sized tumor was removed and sent for both pathohistological and immunohistochemical analysis. The results confirmed the presence of subcutaneous endometriosis positive for both estrogen and progesterone receptors. Endometriosis is usually described as a steroid hormone-dependent change that resembles the eutopic endometrial tissue characteristic for the presence of both glandular and stromal tissues. Given the fact that endometrial lesions are estrogen-dependent tumors, a crucial factor in the development of endometriosis is a late exposure to the hormone, mostly estrogen. Spontaneous subcutaneous endometriosis is rarely observed, but it could be assumed if there is recurrent pelvic pain which intensifies during menstruation. Given the fact that endometriosis coexists with different autoimmune diseases, multidisciplinary approaches are required for its proper diagnosis. .

  9. Estrogenic receptors a and p gene polymorphisms in postmenopausal osteoporosis

    Directory of Open Access Journals (Sweden)

    K A Maslova

    2008-01-01

    Full Text Available Objective. To assess frequency distribution of estrogenic receptor (ERa and ERfl gene polymorphisms and their influence on bone mineral density (BMD in groups of postmenopausal women with and without osteoporosis (OP. Material and methods. 200 residents of Moscow and Moscow region were divided into two groups considering BMD values according to WHO criteria; OP group and healthy control group Results. Differences of genotype and their combinations frequency distribution between OP and control groups show presence OP risk and protector genotypes. ER gene important role in pathogenesis of postmenopausal osteoporosis and possibility to use these genetic markers for assessment of risk of OP development in Russian population was confirmed.

  10. Estrogen regulation of chicken riboflavin carrier protein gene is mediated by ERE half sites without direct binding of estrogen receptor.

    Science.gov (United States)

    Bahadur, Urvashi; Ganjam, Goutham K; Vasudevan, Nandini; Kondaiah, Paturu

    2005-02-28

    Estrogen is an important steroid hormone that mediates most of its effects on regulation of gene expression by binding to intracellular receptors. The consensus estrogen response element (ERE) is a 13bp palindromic inverted repeat with a three nucleotide spacer. However, several reports suggest that many estrogen target genes are regulated by diverse elements, such as imperfect EREs and ERE half sites (ERE 1/2), which are either the proximal or the distal half of the palindrome. To gain more insight into ERE half site-mediated gene regulation, we used a region from the estrogen-regulated chicken riboflavin carrier protein (RCP) gene promoter that contains ERE half sites. Using moxestrol, an analogue of estrogen and transient transfection of deletion and mutation containing RCP promoter/reporter constructs in chicken hepatoma (LMH2A) cells, we identified an estrogen response unit (ERU) composed of two consensus ERE 1/2 sites and one non-consensus ERE 1/2 site. Mutation of any of these sites within this ERU abolishes moxestrol response. Further, the ERU is able to confer moxestrol responsiveness to a heterologous promoter. Interestingly, RCP promoter is regulated by moxestrol in estrogen responsive human MCF-7 cells, but not in other cell lines such as NIH3T3 and HepG2 despite estrogen receptor-alpha (ER-alpha) co transfection. Electrophoretic mobility shift assays (EMSAs) with promoter regions encompassing the half sites and nuclear extracts from LMH2A cells show the presence of a moxestrol-induced complex that is abolished by a polyclonal anti-ERalpha antibody. Surprisingly, estrogen receptor cannot bind to these promoter elements in isolation. Thus, there appears to be a definite requirement for some other factor(s) in addition to estrogen receptor, for the generation of a suitable response of this promoter to estrogen. Our studies therefore suggest a novel mechanism of gene regulation by estrogen, involving ERE half sites without direct binding of ER to the

  11. Evolution of steroid receptors from an estrogen-sensitive ancestral receptor.

    Science.gov (United States)

    Eick, Geeta N; Thornton, Joseph W

    2011-03-01

    Members of the steroid hormone receptor (SR) family activate transcription from different DNA response elements and are regulated by distinct hormonal ligands. Understanding the evolutionary process by which this diversity arose can provide insight into how and why SRs function as they do. Here we review the characteristics of the ancient receptor protein from which the SR family descends by a process of gene duplication and divergence. Several orthogonal lines of evidence - bioinformatic, phylogenetic, and experimental - indicate that this ancient SR had the capacity to activate transcription from DNA estrogen response elements in response to estrogens. Duplication and divergence of the ancestral SR gene subsequently generated new receptors that were activated by other steroid hormones, including progestagens, androgens, and corticosteroids. The androgen and progesterone receptors recruited as their ligands steroids that were previously present as biochemical intermediates in the synthesis of estrogens. This process is an example of molecular exploitation--the evolution of new molecular interactions when an older molecule, which previously had a different function, is co-opted as a binding partner by a newly evolved molecule. The primordial interaction between the ancestral steroid receptor and estrogens may itself have evolved due to an early molecular exploitation event.

  12. In Vivo Imaging of Activated Estrogen Receptors in Utero by Estrogens and Bisphenol A

    OpenAIRE

    Lemmen, Josephine G.; Arends, Roel J.; van der Saag, Paul T.; van der Burg, Bart

    2004-01-01

    Environmental estrogens are of particular concern when exposure occurs during embryonic development. Although there are good models to study estrogenic activity of chemicals in adult animals, developmental exposure is much more difficult to test. The weak estrogenic activity of the environmental estrogen bisphenol A (BPA) in embryos is controversial. We have recently generated transgenic mice that carry a reporter construct with estrogen-responsive elements coupled to luciferase. We show that...

  13. The effects of breast cancer therapy on estrogen receptor signaling throughout the body

    NARCIS (Netherlands)

    Droog, M.

    2017-01-01

    Upon activation by estrogen, the Estrogen Receptor binds the chromatin and influences gene transcription. This ultimately leads to cell proliferation. About 75% of breast cancer patients express this hormonal receptor. These patients are often treated with tamoxifen, which competitively inhibits the

  14. Estrogen and progesterone receptors in endometrial carcinoma: comparison of immunohistochemical and biochemical analysis

    DEFF Research Database (Denmark)

    Nyholm, H C; Nielsen, Anette Lynge; Lyndrup, J;

    1993-01-01

    In 159 endometrial carcinomas, estrogen (ER) and progesterone receptors (PR) were determined biochemically by dextran-coated charcoal (DCC) assay and immunohistochemically (ICA) on frozen sections. ICA receptor content was estimated by a total histologic score (HSCORE), including all tissue...

  15. Change of serum and tissue estrogen and progesterone receptor, VEGF and its receptors in patients with endometriosis

    Institute of Scientific and Technical Information of China (English)

    Ling Kang; Chun-Hua Zhang; Yuan-Zi Song; Xiao-Ling Song; Ning Zhang; De-Yang Zhang

    2016-01-01

    Objective:To study the changes of serum and tissue levels of estrogen receptor, progesterone receptor, VEGF and its receptors in patients with endometriosis.Methods:A total of 60 patients with endometriosis in our hospital from March 2015 to April 2016 were selected as the observation group, 60 healthy women of the same age at the same period were selected as the control group, then the expression situation of serum and tissue estrogen and progesterone receptor, VEGF and its receptors of two groups were compared, and the expression situation of serum and tissue estrogen and progesterone receptor, VEGF and its receptors of observation group with different types and r-AFS stages were compared too.Results:The serum and tissue estrogen and progesterone receptor of observation group were all lower than those of control group, the VEGF and its receptors were all higher than those of control group, and the expression situation of serum and tissue estrogen and progesterone receptor, VEGF and its receptors of observation group with different r-AFS stages had obvious differences too (allP0.05).Conclusions:The serum and tissue estrogen and progesterone receptor, VEGF and its receptors of patients with endometriosis show abnormal state, and the differences of the indexes expression of patients with different disease stages are obvious, so the indexes detection value are higher.

  16. Determination of estrogen receptor {beta}-mediated estrogenic potencies of hydroxylated PCBS by a yeast two-hybrid assay

    Energy Technology Data Exchange (ETDEWEB)

    Kuroki, H.; Kumate, M.; Nakaoka, H.; Yonekura, S. [Daiichi Coll. of Pharmaceutical Sciences, Fukuoka (Japan); Nishikawa, J.; Nishihara, T. [Osaka Univ., Osaka (Japan)

    2004-09-15

    Several environmental phenolic chemicals such as Nonylphenol and Bisphenol A (BPA) have been previously shown to possess estrogenic properties. In the previous paper, we have investigated the estrogenic activity of a series of hydroxylated PCBs (OH-PCBs) by a yeast two-hybrid assay (estrogen receptor{alpha} (ER{alpha}) -TIF2), in which the expression of estrogenic activity is based on the interaction of chemicals with ER{alpha}, and demonstrated that 4'-OH-CB30 and 4'-OH-CB61 are more estrogenic than BPA, one of the environmental estrogens. We have showed that one chlorine substitution adjacent to 4-OH at 3- or 5-position significantly reduces the ER{alpha}-mediated estrogenic activity of 4-OH-PCBs. Thus, 4'-OH-CB25 and 4-OH-CB56 showed a very weak estrogenicity. We have also showed that 4-OH-PCBs with two chlorine substitutions adjacent to 4-OH at 3- and 5-position such as 4'-OH-CB79 (hydroxylated metabolite of CB77) and persistent 4-OH-PCBs retained in human blood (4-OH-CB107, 4-OH-CB146 and 4-OH-CB187) have no ER{alpha}-mediated estrogenic activity. ER is known to have two subtypes, namely ER{alpha} and ER{beta} and it is reported that ligand, some agonist and antagonist have a different binding affinity for ER{alpha} and ER{beta}. However, there is limited information on ER{beta}-mediated endocrine disrupting potency. In this study, we examined the ER{beta}-mediated estrogenic activity of a series of OH-PCBs, including environmentally relevant 4-OH-PCBs by a yeast two-hybrid assay (ER{beta}-TIF2).

  17. Identifying a Mechanism for Crosstalk Between the Estrogen and Glucocorticoid Receptors | Center for Cancer Research

    Science.gov (United States)

    Estrogen has long been known to play important roles in the development and progression of breast cancer. Its receptor (ER), a member of the steroid receptor family, binds to estrogen response elements (EREs) in DNA and regulates gene transcription. More recently, another steroid receptor family member, the glucocorticoid receptor (GR), has been implicated in breast cancer progression, and ER/GR status is an important predictor of breast cancer outcome.

  18. Identification and characterization of estrogen receptor-related receptor alpha and gamma in human glioma and astrocytoma cells

    OpenAIRE

    Gandhari, Mukesh K; Frazier, Chester R.; Hartenstein, Julia S; Cloix, Jean-Francois; Bernier, Michel; Wainer, Irving W.

    2009-01-01

    The purpose of this study was to examine expression and function of estrogen receptor-related receptors (ERRs) in human glioma and astrocytoma cell lines. These estrogen receptor-negative cell lines expressed ERRα and ERRγ proteins to varying degree in a cell context dependent manner, with U87MG glioma cells expressing both orphan nuclear receptors. Cell proliferation assays were performed in the presence of ERR isoform-specific agonists and antagonists, and the calculated EC50 and IC50 value...

  19. Microarray-based determination of estrogen receptor, progesterone receptor, and HER2 receptor status in breast cancer

    NARCIS (Netherlands)

    P. Roepman; H.M. Horlings; O. Krijgsman; M. Kok; J.M. Bueno-de-Mesquita; R. Bender; S.C. Linn; A.M. Glas; M.J. van de Vijver

    2009-01-01

    Purpose: The level of estrogen receptor (ER), progesterone receptor (PR), and HER2 aids in the determination of prognosis and treatment of breast cancer. Immunohistochemistry is currently the predominant method for assessment, but differences in methods and interpretation can substantially affect th

  1. Bioluminescence imaging of estrogen receptor activity during breast cancer progression.

    Science.gov (United States)

    Vantaggiato, Cristina; Dell'Omo, Giulia; Ramachandran, Balaji; Manni, Isabella; Radaelli, Enrico; Scanziani, Eugenio; Piaggio, Giulia; Maggi, Adriana; Ciana, Paolo

    2016-01-01

    Estrogen receptors (ER) are known to play an important regulatory role in mammary gland development as well as in its neoplastic transformation. Although several studies highlighted the contribution of ER signaling in the breast transformation, little is known about the dynamics of ER state of activity during carcinogenesis due to the lack of appropriate models for measuring the extent of receptor signaling in time, in the same animal. To this aim, we have developed a reporter mouse model for the non-invasive in vivo imaging of ER activity: the ERE-Luc reporter mouse. ERE-Luc is a transgenic mouse generated with a firefly luciferase (Luc) reporter gene driven by a minimal promoter containing an estrogen responsive element (ERE). This model allows to measure receptor signaling in longitudinal studies by bioluminescence imaging (BLI). Here, we have induced sporadic mammary cancers by treating systemically ERE-Luc reporter mice with DMBA (9,10-dimethyl 1,2-benzanthracene) and measured receptor signaling by in vivo imaging in individual animals from early stage until a clinically palpable tumor appeared in the mouse breast. We showed that DMBA administration induces an increase of bioluminescence in the whole abdominal area 6 h after treatment, the signal rapidly disappears. Several weeks later, strong bioluminescence is observed in the area corresponding to the mammary glands. In vivo and ex vivo imaging analysis demonstrated that this bioluminescent signal is localized in the breast area undergoing neoplastic transformation. We conclude that this non-invasive assay is a novel relevant tool to identify the activation of the ER signaling prior the morphological detection of the neoplastic transformation.

  2. Expression of estrogen and progesterone receptors in papillary thyroid carcinoma

    Science.gov (United States)

    Jalali-Nadoushan, Mohammad-Reza; Amirtouri, Reza; Davati, Ali; Askari, Samaneh; Siadati, Sepideh

    2016-01-01

    Background: Papillary thyroid carcinoma (PTC), occurs mostly in women and sex hormones may play a role in the pathogenesis and clinical course. The objective of this study was to determine the status and prevalence of estrogen and progesterone receptors in PTC with regard to age, gender, tumor size and lymph node involvement. Methods: Immunohistochemical stains were performed on 92 tissue blocks of PTC for estrogen receptor (ER) and progesterone receptor (PR) expression in tumor cells. Chi-square test and Mann-Whitney U test were used to determine statistical difference using statistical software SPSS. Results: The mean age of patients was 39.32±1.7 years (range 13-80) with 79(85.9%) women and 13 (14.1%) men. Lymph node involvement was seen in 76.1% of patients. The average tumor size was 3.6±2.21 cm. The rate of ER and PR expression were 46.75% and 5.6%, respectively. ER expression for females was higher than males (P=0.014), but no relation was found between males and females in PR expression (P=0.7). Also there was no statistical difference between ER and PR expression with respect to age, lymph node involvement and tumor size. Conclusion: Our study showed higher ER expression in females than males with PTC. No relation was found between the expression of these receptors and age of presentation, lymph node involvement and tumor size. Further investigation is required to determine the prognostic importance of ER and PR in PTC.

  3. Estrogen receptor ligands counteract cognitive deficits caused by androgen deprivation in male rats.

    Science.gov (United States)

    Lagunas, Natalia; Calmarza-Font, Isabel; Grassi, Daniela; Garcia-Segura, Luis M

    2011-04-01

    Androgen deprivation causes impairment of cognitive tasks in rodents and humans, and this deficit can be reverted by androgen replacement therapy. Part of the effects of androgens in the male may be mediated by their local metabolism to estradiol or 3-alpha androstanediol within the brain and the consequent activation of estrogen receptors. In this study we have assessed whether the administration of estradiol benzoate, the estrogen receptor β selective agonist diarylpropionitrile or the estrogen receptor α selective agonist propyl pyrazole triol affect performance of androgen-deprived male Wistar rats in the cross-maze test. In addition, we tested the effect of raloxifene and tamoxifen, two selective estrogen receptor modulators used in clinical practice. The behavior of the rats was assessed 2 weeks after orchidectomy or sham surgery. Orchidectomy impaired acquisition in the cross-maze test. Estradiol benzoate and the selective estrogen receptor β agonist significantly improved acquisition in the cross-maze test compared to orchidectomized animals injected with vehicle. Raloxifene and tamoxifen at a dose of 1mg/kg, but not at doses of 0.5 or 2mg/kg, also improved acquisition of orchidectomized animals. Our findings suggest that estrogenic compounds with affinity for estrogen receptor β and selective estrogen receptor modulators, such as raloxifene and tamoxifen, may represent good candidates to promote cognitive performance in androgen-deprived males.

  4. Effects of gamma irradiation on the DNA-protein complex between the estrogen response element and the estrogen receptor

    Energy Technology Data Exchange (ETDEWEB)

    Stisova, Viktorie [Department of Radiation Dosimetry, Nuclear Physics Institute AS CR, Na Truhlarce 39/64, 18086 Praha 8 (Czech Republic); Goffinont, Stephane; Spotheim-Maurizot, Melanie [Centre de Biophysique Moleculaire CNRS, rue Charles Sadron, 45071 Orleans Cedex 2 (France); Davidkova, Marie, E-mail: davidkova@ujf.cas.c [Department of Radiation Dosimetry, Nuclear Physics Institute AS CR, Na Truhlarce 39/64, 18086 Praha 8 (Czech Republic)

    2010-08-15

    Signaling by estrogens, risk factors in breast cancer, is mediated through their binding to the estrogen receptor protein (ER), followed by the formation of a complex between ER and a DNA sequence, called estrogen response element (ERE). Anti-estrogens act as competitive inhibitors by blocking the signal transduction. We have studied in vitro the radiosensitivity of the complex between ERalpha, a subtype of this receptor, and a DNA fragment bearing ERE, as well as the influence of an estrogen (estradiol) or an anti-estrogen (tamoxifen) on this radiosensitivity. We observe that the complex is destabilized upon irradiation with gamma rays in aerated aqueous solution. The analysis of the decrease of binding abilities of the two partners shows that destabilization is mainly due to the damage to the protein. The destabilization is reduced when irradiating in presence of tamoxifen and is increased in presence of estradiol. These effects are due to opposite influences of the ligands on the loss of binding ability of ER. The mechanism that can account for our results is: binding of estradiol or tamoxifen induces distinct structural changes of the ER ligand-binding domain that can trigger (by allostery) distinct structural changes of the ER DNA-binding domains and thus, can differently affect ER-ERE interaction.

  5. Contribution of a Membrane Estrogen Receptor to the Estrogenic Regulation of Body Temperature and Energy Homeostasis

    Science.gov (United States)

    Roepke, Troy A.; Bosch, Martha A.; Rick, Elizabeth A.; Lee, Benjamin; Wagner, Edward J.; Seidlova-Wuttke, Dana; Wuttke, Wolfgang; Scanlan, Thomas S.; Rønnekleiv, Oline K.; Kelly, Martin J.

    2010-01-01

    The hypothalamus is a key region of the central nervous system involved in the control of homeostasis, including energy and core body temperature (Tc). 17β-Estradiol (E2) regulates Tc, in part, via actions in the basal hypothalamus and preoptic area. E2 primarily controls hypothalamic functions via the nuclear steroid receptors, estrogen receptor α/β. However, we have previously described an E2-responsive, Gq-coupled membrane receptor that reduces the postsynaptic inhibitory γ-aminobutyric acid-ergic tone and attenuates postovariectomy body weight gain in female guinea pigs through the administration of a selective Gq-mER ligand, STX. To determine the role of Gq-mER in regulating Tc, energy and bone homeostasis, ovariectomized female guinea pigs, implanted ip with temperature probes, were treated with STX or E2 for 7–8 wk. Tc was recorded for 4 wk, whereas food intake and body weight were monitored daily. Bone density and fat accumulation were determined postmortem. Both E2 and STX significantly reduced Tc in the females compared with controls. STX, similar to E2, reduced food intake and fat accumulation and increased tibial bone density. Therefore, a Gq-mER-coupled signaling pathway appears to be involved in maintaining homeostatic functions and may constitute a novel therapeutic target for treatment of hypoestrogenic symptoms. PMID:20685867

  6. A role for estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ) in collagen biosynthesis in mouse skin

    Science.gov (United States)

    Markiewicz, Margaret; Znoyko, Sergey; Stawski, Lukasz; Ghatnekar, Angela; Gilkeson, Gary; Trojanowska, Maria

    2012-01-01

    Hormonal regulation of the dermal collagenous extracellular matrix plays a key role in maintaining proper tissue homeostasis, however the factors and pathways involved in this process are not fully defined. This study investigated the role of estrogen receptors (ERs) in the regulation of collagen biosynthesis in mice lacking ERα or ERβ. Collagen content was significantly increased in the skin of ΕRα-/- mice as measured by acetic acid extraction and the hydroxyproline assay and correlated with the decreased levels of MMP-15 and elevated collagen production by ΕRα-/- fibroblasts. In contrast, collagen content was decreased in the skin of ERβ-/- mice despite markedly increased collagen production by ERβ-/- fibroblasts. However, expression of several matrix metalloproteinases (MMPs), including MMP-8 and -15 was significantly elevated suggesting increased degradation of dermal collagen. Furthermore, ERβ-/- mice were characterized by significantly reduced levels of small leucine proteoglycans (SLRPs), lumican and decorin, leading to the defects in collagen fibrillogenesis and possibly less stable collagen fibrils. ERα-/- mice also exhibited fibrils with irregular structure and size, which correlated with increased levels of lumican and decorin. Together, these results demonstrate distinct functions of estrogen receptors in the regulation of collagen biosynthesis in mouse skin in vivo. PMID:22895361

  7. Activation of Penile Proadipogenic Peroxisome Proliferator-Activated Receptor with an Estrogen: Interaction with Estrogen Receptor Alpha during Postnatal Development

    Directory of Open Access Journals (Sweden)

    Mahmoud M. Mansour

    2008-01-01

    Full Text Available Exposure to the estrogen receptor alpha (ER ligand diethylstilbesterol (DES between neonatal days 2 to 12 induces penile adipogenesis and adult infertility in rats. The objective of this study was to investigate the in vivo interaction between DES-activated ER and the proadipogenic transcription factor peroxisome proliferator-activated receptor gamma (PPAR. Transcripts for PPARs , , and and 1a splice variant were detected in Sprague-Dawley normal rat penis with PPAR predominating. In addition, PPAR1b and PPAR2 were newly induced by DES. The PPAR transcripts were significantly upregulated with DES and reduced by antiestrogen ICI 182, 780. At the cellular level, PPAR protein was detected in urethral transitional epithelium and stromal, endothelial, neuronal, and smooth muscular cells. Treatment with DES activated ER and induced adipocyte differentiation in corpus cavernosum penis. Those adipocytes exhibited strong nuclear PPAR expression. These results suggest a biological overlap between PPAR and ER and highlight a mechanism for endocrine disruption.

  8. Effects of the brominated flame retardant TBCO on fecundity and profiles of transcripts of the HPGL-axis in Japanese medaka.

    Science.gov (United States)

    Saunders, David M V; Podaima, Michelle; Wiseman, Steve; Giesy, John P

    2015-03-01

    The novel brominated flame retardant, 1,2,5,6-tetrabromocyclooctane (TBCO) is an additive flame retardant which is marketed under the trade name Saytex BCL-48. TBCO has recently been investigated as a potential alternative to the major use brominated flame retardant, hexabromocyclododecane (HBCD), which could have major implications for significant increases in amounts of TBCO used. Yet there is a lack of information regarding potential toxicities of TBCO. Recently, results of in vitro experiments have demonstrated the potential of TBCO to modulate endocrine function through interaction with estrogen and androgen receptors and via alterations to the synthesis of 17-β-estradiol and testosterone. Further research is required to determine potential endocrine disrupting effects of TBCO in vivo. In this experiment a 21-day fecundity assay with Japanese medaka (Oryzias latipes) was conducted to examine endocrine disrupting effects of TBCO in vivo. Medaka were fed a diet containing either 607 or 58μg TBCO/g food, wet mass (wm). Fecundity, measured as cumulative deposition of eggs and fertilization of eggs, as well as abundances of transcripts of 34 genes along the hypothalamus-pituitary-gonadal-liver (HPGL) axis were measured as indicators of holistic endocrine disruption and to determine mechanisms of effects, respectively. Cumulative fecundity was 18% lesser by medaka exposed to 58μg TBCO/g, wm food. However, fecundity of medaka exposed to 607μg TBCO/g, wm food was not significantly different from that of controls. Organ-specific and dose-dependent alterations to abundances of transcripts were observed in male and female medaka. A pattern of down-regulation of expression of genes involved in steroidogenesis, metabolism of cholesterol, and regulatory feedback mechanisms was observed in gonads from male and female medaka which had been exposed to the greater concentration of TBCO. However, these effects on expression of genes were not manifested in effects on

  9. Molecular Imaging Provides Novel Insights on Estrogen Receptor Activity in Mouse Brain

    Directory of Open Access Journals (Sweden)

    Alessia Stell

    2008-11-01

    Full Text Available Estrogen receptors have long been known to be expressed in several brain areas in addition to those directly involved in the control of reproductive functions. Investigations in humans and in animal models suggest a strong influence of estrogens on limbic and motor functions, yet the complexity and heterogeneity of neural tissue have limited our approaches to the full understanding of estrogen activity in the central nervous system. The aim of this study was to examine the transcriptional activity of estrogen receptors in the brain of male and female mice. Exploiting the ERE-Luc reporter mouse, we set up a novel, bioluminescence-based technique to study brain estrogen receptor transcriptional activity. Here we show, for the first time, that estrogen receptors are similarly active in male and female brains and that the estrous cycle affects estrogen receptor activity in regions of the central nervous system not known to be associated with reproductive functions. Because of its reproducibility and sensitivity, this novel bioluminescence application stands as a candidate as an innovative methodology for the study and development of drugs targeting brain estrogen receptors.

  10. Estrogen receptors in human thyroid gland. An immunohistochemical study.

    Science.gov (United States)

    Arain, Shoukat A; Shah, Munawar H; Meo, Sultan A; Jamal, Qamar

    2003-02-01

    Thyroid diseases affect women approximately 3 times more frequently than men. It has been suggested that the female sex steroids stimulate thyroid growth such as in the breast. Seventeen beta-estradiol, the major estrogen in the body acts via estrogen receptors (ER) present in the nucleus of the cell. The aim of the study is to determine the ER status in the thyroid gland tissues. Our study was based on immunohistochemical staining for ER. Fifty previously diagnosed cases of various thyroid lesions were selected from the Surgical Pathology Records of Pathology Department, Basic Medical Sciences Institute, Jinnah Postgraduate Medical Center, Karachi, Pakistan between March and August 2000. The staining was performed on formalin-fixed paraffin embedded tissues using monoclonal anti-ER antibody (clone 1D5). Out of 50 cases, 8 were nodular goiter, 9 cases of adenoma, 19 papillary carcinoma, 10 follicular and 4 cases were of medullary carcinoma. Surrounding normal tissue was available in 25 (50%) cases, 4 non-neoplastic and 21 neoplastic lesions. Out of 50 cases, 10 (20%) were males and 40 (80%) were females, the youngest patient was a 14-year-old female and the eldest patient was a 56-year-old male. Despite the availability of normal thyroid tissue and a wide range of lesions, none of our cases showed positive staining. In contrary to many earlier reports by immunohistochemical method using monoclonal antibody (clone 1D5) on formalin-fixed paraffin-embedded thyroid tissues, the ER are not detectable. The effect of estrogen on thyroid gland may be indirect one.

  11. Licorice root components in dietary supplements are selective estrogen receptor modulators with a spectrum of estrogenic and anti-estrogenic activities.

    Science.gov (United States)

    Boonmuen, Nittaya; Gong, Ping; Ali, Zulfiqar; Chittiboyina, Amar G; Khan, Ikhlas; Doerge, Daniel R; Helferich, William G; Carlson, Kathryn E; Martin, Teresa; Piyachaturawat, Pawinee; Katzenellenbogen, John A; Katzenellenbogen, Benita S

    2016-01-01

    Licorice root extracts are often consumed as botanical dietary supplements by menopausal women as a natural alternative to pharmaceutical hormone replacement therapy. In addition to their components liquiritigenin (Liq) and isoliquiritigenin (Iso-Liq), known to have estrogenic activity, licorice root extracts also contain a number of other flavonoids, isoflavonoids, and chalcones. We have investigated the estrogenic activity of 7 of these components, obtained from an extract of Glycyrrhiza glabra powder, namely Glabridin (L1), Calycosin (L2), Methoxychalcone (L3), Vestitol (L4), Glyasperin C (L5), Glycycoumarin (L6), and Glicoricone (L7), and compared them with Liq, Iso-Liq, and estradiol (E2). All components, including Liq and Iso-Liq, have low binding affinity for estrogen receptors (ERs). Their potency and efficacy in stimulating the expression of estrogen-regulated genes reveal that Liq and Iso-Liq and L2, L3, L4, and L6 are estrogen agonists. Interestingly, L3 and L4 have an efficacy nearly equivalent to E2 but with a potency ca. 10,000-fold less. The other components, L1, L5 and L7, acted as partial estrogen antagonists. All agonist activities were reversed by the antiestrogen, ICI 182,780, or by knockdown of ERα with siRNA, indicating that they are ER dependent. In HepG2 hepatoma cells stably expressing ERα, only Liq, Iso-Liq, and L3 stimulated estrogen-regulated gene expression, and in all cases gene stimulation did not occur in HepG2 cells lacking ERα. Collectively, these findings classify the components of licorice root extracts as low potency, mixed ER agonists and antagonists, having a character akin to that of selective estrogen receptor modulators or SERMs.

  12. An amphioxus orthologue of the estrogen receptor that does not bind estradiol: Insights into estrogen receptor evolution

    Directory of Open Access Journals (Sweden)

    Laudet Vincent

    2008-07-01

    Full Text Available Abstract Background The origin of nuclear receptors (NRs and the question whether the ancestral NR was a liganded or an unliganded transcription factor has been recently debated. To obtain insight into the evolution of the ligand binding ability of estrogen receptors (ER, we comparatively characterized the ER from the protochordate amphioxus (Branchiostoma floridae, and the ER from lamprey (Petromyzon marinus, a basal vertebrate. Results Extensive phylogenetic studies as well as signature analysis allowed us to confirm that the amphioxus ER (amphiER and the lamprey ER (lampER belong to the ER group. LampER behaves as a "classical" vertebrate ER, as it binds to specific DNA Estrogen Responsive Elements (EREs, and is activated by estradiol (E2, the classical ER natural ligand. In contrast, we found that although amphiER binds EREs, it is unable to bind E2 and to activate transcription in response to E2. Among the 7 natural and synthetic ER ligands tested as well as a large repertoire of 14 cholesterol derivatives, only Bisphenol A (an endocrine disruptor with estrogenic activity bound to amphiER, suggesting that a ligand binding pocket exists within the receptor. Parsimony analysis considering all available ER sequences suggest that the ancestral ER was not able to bind E2 and that this ability evolved specifically in the vertebrate lineage. This result does not support a previous analysis based on ancestral sequence reconstruction that proposed the ancestral steroid receptor to bind estradiol. We show that biased taxonomic sampling can alter the calculation of ancestral sequence and that the previous result might stem from a high proportion of vertebrate ERs in the dataset used to compute the ancestral sequence. Conclusion Taken together, our results highlight the importance of comparative experimental approaches vs ancestral reconstructions for the evolutionary study of endocrine systems: comparative analysis of extant ERs suggests that the

  13. Estrogen receptor-dependent effects of bisphenol a

    Directory of Open Access Journals (Sweden)

    P. Bulzomi

    2011-01-01

    Full Text Available Bisphenol A (BPA, commonly used as building block of polycarbonate plastics, significantly affects human and animal health interfering with the action of natural hormones. Within BPA disrupting effects, a mitogenic activity and, consequently, an increased incidence of neoplastic transformations has been reported in exposed organisms. Among the several mechanisms proposed for the mitogenic BPA effects, its ability to bind to estrogen receptors (ERα and ERβ deserves particular attention. Aim of this work is to investigate ERα- and ERβ-dependent mechanisms underlying BPA proliferative effect. Binding assay confirms that BPA binds to both ERs. Cell vitality assay and Western blot analysis of protein involved in cell proliferation demonstrate that BPA acts as a double side disruptor of estrogenic effects. In fact in the presence of ERα, BPA mimics E2, increasing cell proliferation. On the contrary, in the presence of ERβ, BPA acts as an E2 antagonist preventing the hormone-induced cancer cells apoptosis. These two divergent aspects could act synergistically in the exposed organisms leading to the disruption of the balance between proliferation and apoptosis typical of E2 effects.

  14. Estrogen receptor agonists/antagonists in breast cancer therapy: A critical review.

    Science.gov (United States)

    Jameera Begam, A; Jubie, S; Nanjan, M J

    2017-04-01

    Estrogens display intriguing tissue selective action that is of great biomedical importance in the development of optimal therapeutics for the prevention and treatment of breast cancer. There are also strong evidences to show that both endogenous and exogenous estrogens are involved in the pathogenesis of breast cancer. Tamoxifen has been the only drug of choice for more than 30years to treat patients with estrogen related (ER) positive breast tumors. There is a need therefore, for identifying newer, potential and novel candidates for breast cancer. Keeping this in view, the present review focuses on selective estrogen receptor modulators and estrogen antagonists such as sulfatase and aromatase inhibitors involved in breast cancer therapy. A succinct and critical overview of the structure of estrogen receptors, their signaling and involvement in breast carcinogenesis are herein described. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. BMPR2 expression is suppressed by signaling through the estrogen receptor

    Directory of Open Access Journals (Sweden)

    Austin Eric D

    2012-02-01

    Full Text Available Abstract Background Studies in multiple organ systems have shown cross-talk between signaling through the bone morphogenetic protein receptor type 2 (BMPR2 and estrogen pathways. In humans, pulmonary arterial hypertension (PAH has a female predominance, and is associated with decreased BMPR2 expression. The goal of this study was to determine if estrogens suppress BMPR2 expression. Methods A variety of techniques were utilized across several model platforms to evaluate the relationship between estrogens and BMPR2 gene expression. We used quantitative RT-PCR, gel mobility shift, and luciferase activity assays in human samples, live mice, and cell culture. Results BMPR2 expression is reduced in lymphocytes from female patients compared with male patients, and in whole lungs from female mice compared with male mice. There is an evolutionarily conserved estrogen receptor binding site in the BMPR2 promoter, which binds estrogen receptor by gel-shift assay. Increased exogenous estrogen decreases BMPR2 expression in cell culture, particularly when induced to proliferate. Transfection of increasing quantities of estrogen receptor alpha correlates strongly with decreasing expression of BMPR2. Conclusions BMPR2 gene expression is reduced in females compared to males in live humans and in mice, likely through direct estrogen receptor alpha binding to the BMPR2 promoter. This reduced BMPR2 expression may contribute to the increased prevalence of PAH in females.

  16. Bazedoxifene: a new selective estrogen receptor modulator for postmenopausal osteoporosis.

    Science.gov (United States)

    Genant, Harry K

    2011-06-01

    An ongoing need for safe and effective pharmacological therapies exists for postmenopausal osteoporosis, which imposes a significant burden on both women and the health-care system. Bazedoxifene is a novel selective estrogen receptor modulator with a unique tissue-selectivity profile. In phase 3 clinical trials of nearly 10,000 postmenopausal women, bazedoxifene was shown to significantly reduce the risk of new vertebral fracture versus placebo, with favourable effects on bone mineral density, bone turnover markers and the lipid profile. Moreover, in a subgroup of women at increased risk of fracture, bazedoxifene significantly decreased non-vertebral fracture risk versus both placebo and raloxifene. Bazedoxifene has been shown to be safe and well tolerated, with no evidence of endometrial or breast stimulation. These data suggest that bazedoxifene may offer significant clinical benefit for postmenopausal women with or at risk of developing osteoporosis, which may subsequently lessen the medical and economic burden of this disease.

  17. Tannic Acid Preferentially Targets Estrogen Receptor-Positive Breast Cancer

    Directory of Open Access Journals (Sweden)

    Brian W. Booth

    2013-01-01

    Full Text Available Research efforts investigating the potential of natural compounds in the fight against cancer are growing. Tannic acid (TA belongs to the class of hydrolysable tannins and is found in numerous plants and foods. TA is a potent collagen cross-linking agent; the purpose of this study was to generate TA-cross-linked beads and assess the effects on breast cancer cell growth. Collagen beads were stable at body temperature following crosslinking. Exposure to collagen beads with higher levels of TA inhibited proliferation and induced apoptosis in normal and cancer cells. TA-induced apoptosis involved activation of caspase 3/7 and caspase 9 but not caspase 8. Breast cancer cells expressing the estrogen receptor were more susceptible to the effects of TA. Taken together the results suggest that TA has the potential to become an anti-ER+ breast cancer treatment or preventative agent.

  18. Anti-thrombotic effects of selective estrogen receptor modulator tamoxifen.

    Science.gov (United States)

    Nayak, Manasa K; Singh, Sunil K; Roy, Arnab; Prakash, Vivek; Kumar, Anand; Dash, Debabrata

    2011-10-01

    Tamoxifen is a known anti-cancer drug and established estrogen receptor modulator. Few clinical studies have earlier implicated the drug in thrombotic complications attributable to lower anti-thrombin and protein S levels in plasma. However, action of tamoxifen on platelet signalling machinery has not been elucidated in detail. In the present report we show that tamoxifen is endowed with significant inhibitory property against human platelet aggregation. From a series of in vivo and in vitro studies tamoxifen was found to inhibit almost all platelet functions, prolong tail bleeding time in mouse and profoundly prevent thrombus formation at injured arterial wall in mice, as well as on collagen matrix perfused with platelet-rich plasma under arterial shear against the vehicle dimethylsulfoxide (DMSO). These findings strongly suggest that tamoxifen significantly downregulates platelet responses and holds potential as a promising anti-platelet/anti-thrombotic agent.

  19. Estrogens induce expression of membrane-associated estrogen receptor α isoforms in lactotropes.

    Directory of Open Access Journals (Sweden)

    Sandra Zárate

    Full Text Available Estrogens are key to anterior pituitary function, stimulating hormone release and controlling cell fate to achieve pituitary dynamic adaptation to changing physiological conditions. In addition to their classical mechanism of action through intracellular estrogen receptors (ERs, estrogens exert rapid actions via cell membrane-localized ERs (mERs. We previously showed that E2 exerts a rapid pro-apoptotic action in anterior pituitary cells, especially in lactotropes and somatotropes, through activation of mERs. In the present study, we examined the involvement of mERα in the rapid pro-apoptotic action of estradiol by TUNEL in primary cultures of anterior pituitary cells from ovariectomized rats using a cell-impermeable E2 conjugate (E2-BSA and an ERα selective antagonist (MPP dihydrochloride. We studied mERα expression during the estrous cycle and its regulation by gonadal steroids in vivo by flow cytometry. We identified ERα variants in the plasma membrane of anterior pituitary cells during the estrous cycle and studied E2 regulation of these mERα variants in vitro by surface biotinylation and Western Blot. E2-BSA-induced apoptosis was abrogated by MPP in total anterior pituitary cells and lactotropes. In cycling rats, we detected a higher number of lactotropes and a lower number of somatotropes expressing mERα at proestrus than at diestrus. Acute E2 treatment increased the percentage of mERα-expressing lactotropes whereas it decreased the percentage of mERα-expressing somatotropes. We detected three mERα isoforms of 66, 39 and 22 kDa. Expression of mERα66 and mERα39 was higher at proestrus than at diestrus, and short-term E2 incubation increased expression of these two mERα variants. Our results indicate that the rapid apoptotic action exerted by E2 in lactotropes depends on mERα, probably full-length ERα and/or a 39 kDa ERα variant. Expression and activation of mERα variants in lactotropes could be one of the mechanisms through

  20. Current medical treatment of estrogen receptor-positive breast cancer

    Institute of Scientific and Technical Information of China (English)

    Franco; Lumachi; Davide; A; Santeufemia; Stefano; MM; Basso

    2015-01-01

    Approximately 80% of breast cancers(BC) are estrogen receptor(ER)-positive and thus endocrine therapy(ET) should be considered complementary to surgery in the majority of patients. The advantages of oophorectomy, adrenalectomy and hypophysectomy in women with advanced BC have been demonstrated many years ago, and currently ET consist of(1) ovarian function suppression(OFS), usually obtained using gonadotropinreleasing hormone agonists(Gn RHa);(2) selective estrogen receptor modulators or down-regulators(SERMs or SERDs); and(3) aromatase inhibitors(AIs), or a combination of two or more drugs. For patients aged less than 50 years and ER+ BC, there is no conclusive evidence that the combination of OFS and SERMs(i.e., tamoxifen) or chemotherapy is superior to OFS alone. Tamoxifen users exhibit a reduced risk of BC, both invasive and in situ, especially during the first 5 years of therapy, and extending the treatment to 10 years further reduced the risk of recurrences. SERDs(i.e., fulvestrant) are especially useful in the neoadjuvant treatment of advanced BC, alone or in combination with either cytotoxic agents or AIs. There are two types of AIs: type Ⅰ are permanent steroidal inhibitors of aromatase, while type Ⅱ are reversible nonsteroidal inhibitors. Several studies demonstrated the superiority of the third-generation AIs(i.e., anastrozole and letrozole) compared with tamoxifen, and adjuvant therapy with AIs reduces the recurrence risk especially in patients with advanced BC. Unfortunately, some cancers are or became ET-resistant, and thus other drugs have been suggested in combination with SERMs or AIs, including cyclin-dependent kinase 4/6 inhibitors(palbociclib) and mammalian target of rapamycin(m TOR) inhibitors, such as everolimus. Further studies are required to confirm their real usefulness.

  1. The Estrogen Receptor-β Expression in De Quervain’s Disease

    OpenAIRE

    Po-Chuan Shen; Ping-Hui Wang; Po-Ting Wu; Kuo-Chen Wu; Jeng-Long Hsieh; I-Ming Jou

    2015-01-01

    Stenosing tenosynovitis of the first dorsal compartment of the wrist (a.k.a. de Quervain’s disease) is common but how estrogen is involved is still unknown. We previously reported that inflammation was involved in the pathogenesis of this ailment. In the present study, we extended our investigation of estrogen receptor (ER)-β expression to determine whether estrogen is involved in the pathogenesis of de Quervain’s. Intraoperative retinaculum samples were collected from 16 patients with the ai...

  2. Importance of Estrogenic Signaling and Its Mediated Receptors in Prostate Cancer

    OpenAIRE

    Kin-Mang Lau; Ka-Fai To

    2016-01-01

    Prostate cancer (PCa) treatment was first established by Huggins and Hodges in 1941, primarily described as androgen deprivation via interference of testicular androgen production. The disease remains incurable with relapse of hormone-refractory cancer after treatments. Epidemiological and clinical studies disclosed the importance of estrogens in PCa. Discovery of estrogen receptor ERβ prompted direct estrogenic actions, in conjunction with ERα, on PCa cells. Mechanistically, ERs upon ligand ...

  3. Preliminary Molecular Dynamic Simulations of the Estrogen Receptor Alpha Ligand Binding Domain from Antagonist to Apo

    Directory of Open Access Journals (Sweden)

    Adrian E. Roitberg

    2008-06-01

    Full Text Available Estrogen receptors (ER are known as nuclear receptors. They exist in the cytoplasm of human cells and serves as a DNA binding transcription factor that regulates gene expression. However the estrogen receptor also has additional functions independent of DNA binding. The human estrogen receptor comes in two forms, alpha and beta. This work focuses on the alpha form of the estrogen receptor. The ERα is found in breast cancer cells, ovarian stroma cells, endometrium, and the hypothalamus. It has been suggested that exposure to DDE, a metabolite of DDT, and other pesticides causes conformational changes in the estrogen receptor. Before examining these factors, this work examines the protein unfolding from the antagonist form found in the 3ERT PDB crystal structure. The 3ERT PDB crystal structure has the estrogen receptor bound to the cancer drug 4-hydroxytamoxifen. The 4-hydroxytamoxifen ligand was extracted before the simulation, resulting in new conformational freedom due to absence of van der Waals contacts between the ligand and the receptor. The conformational changes that result expose the binding clef of the co peptide beside Helix 12 of the receptor forming an apo conformation. Two key conformations in the loops at either end of the H12 are produced resulting in the antagonist to apo conformation transformation. The results were produced over a 42ns Molecular Dynamics simulation using the AMBER FF99SB force field.

  4. The Effect of Estradiol-17(beta), Goitrogen (T3), and Flutamide on Gene Expression in Medaka, Oryzias latipes

    Energy Technology Data Exchange (ETDEWEB)

    E.Haut, J

    2005-09-06

    Concern has been generated over the discovery of endocrine disrupting chemicals in rivers near sewage outflows. The presence of endocrine disrupting chemicals such as estradiol-17{beta} has been associated with a reduction of reproductive success in fish and an increase in the female phenotype and gonadal intersex in fish downstream of sewage treatment facilities. Such effects are believed to result from a disruption in the normal estrogenic pathways since estrogen plays a vital role in reproduction, sexual differentiation, the developments of secondary sex characteristics, and ovulation. Most studies have focused on the effect of a single endocrine disruptor on a single gene which does not provide for the interaction between genes. Microarray technology has made it possible to put an entire genome on a single chip so that researchers can get a clearer picture of the interaction of genes expressed in a cell and changes of said interactions when those cells are exposed to various conditions. Medaka males were exposed to known endocrine disruptors, estradial-17{beta} and goitrogen, and medaka females were exposed to flutamide. All treatments were then compared to controls. Total RNA was extracted from the livers of both treated and untreated males and hybridized to a microarray chip designed to have EST sequences specific to medaka. ESTs were identified through two-channel microarray analysis and compared to GenBank using blastn searches to identify up regulated genes. Choriogenins H and L, zona radiata, and vitellogenin, previously shown to be estrogen-induced in male fish were identified. Heat shock proteins (hsp70, hsp90, and hsp8) were also induced by estradiol-17{beta}, as was choriogenin Hminor. Exposure to goitrogen (T3) resulted in the induced expression of glutathione S-transferase and a GABA receptor protein in male medaka. Treatment with flutamide, an antiandrogen, caused the up regulation of choriogenin L, choriogenin Hminor, and zona radiata-2 in female

  5. Rapid yeast estrogen bioassays stably expressing human estrogen receptors alpha and beta, and green fluorescent protein: a comparison of different compounds with both receptor types.

    Science.gov (United States)

    Bovee, Toine F H; Helsdingen, Richard J R; Rietjens, Ivonne M C M; Keijer, Jaap; Hoogenboom, Ron L A P

    2004-07-01

    Previously, we described the construction of a rapid yeast bioassay stably expressing human estrogen receptor (hERalpha) and yeast enhanced green fluorescent protein (yEGFP) in response to estrogens. In the present study, the properties of this assay were further studied by testing a series of estrogenic compounds. Furthermore, a similar assay was developed based on the stable expression of human estrogen receptor beta (hERbeta). When exposed to 17beta-estradiol, the maximum transcriptional activity of the ERbeta cytosensor was only about 40% of the activity observed with ERalpha, but the concentration where half-maximal activation is reached (EC50), was about five times lower. The relative estrogenic potencies (REP), defined as the ratio between the EC50 of 17beta-estradiol and the EC50 of the compound, of the synthetic hormones dienestrol, hexestrol and especially mestranol were higher with ER, while DES was slightly more potent with ERbeta. The gestagens progesterone and medroxyprogesterone-acetate showed no response, whereas the androgen testosterone showed a very weak response. The anabolic agent, 19-nortestosterone showed a clear dose-related response with estrogen receptor but not beta. The phytoestrogens coumestrol, genistein, genistin, daidzein, daidzin and naringenin were relatively more potent with ERbeta. Ranking of the estrogenic potency with ER was: 17beta-estradiol > 8-prenylnaringenin > coumestrol > zearalenone > genistein > genistin > naringenin. The ranking with the ERbeta was: 17beta-estradiol > coumestrol > genistein > zearalenone > 8-prenylnaringen > daidzein > naringenin > genistin > daidzin. The hop estrogen 8-prenylnaringenin is relatively more potent with ERalpha. These data show that the newly developed bioassays are valuable tools for the rapid and high-throughput screening for estrogenic activity.

  6. Role of G protein-coupled estrogen receptor 1, GPER, in inhibition of oocyte maturation by endogenous estrogens in zebrafish

    Science.gov (United States)

    Pang, Yefei; Thomas, Peter

    2010-01-01

    Estrogen inhibition of oocyte maturation (OM) and the role of GPER (formerly known as GPR30) were investigated in zebrafish. Estradiol-17β (E2) and G-1, a GPER-selective agonist, bound to zebrafish oocyte membranes suggesting the presence of GPER which was confirmed by immunocytochemistry using a specific GPER antibody. Incubation of follicle-enclosed oocytes with an aromatase inhibitor, ATD, and enzymatic and manual removal of the ovarian follicle cell layers significantly increased spontaneous OM which was partially reversed by co-treatment with either 100 nM E2 or G-1. Incubation of denuded oocytes with the GPER antibody blocked the inhibitory effects of estrogens on OM, whereas microinjection of estrogen receptor alpha (ERα) antisense oligonucleotides into the oocytes was ineffective. The results suggest that endogenous estrogens produced by the follicle cells inhibit or delay spontaneous maturation of zebrafish oocytes and that this estrogen action is mediated through GPER. Treatment with E2 and G-1 also attenuated the stimulatory effect of the teleost maturation-inducing steroid, 17,20β-dihyroxy-4-pregnen-3-one (DHP), on OM. Moreover, E2 and G-1 down-regulated the expression of membrane progestin receptor alpha (mPRα), the intermediary in DHP induction of OM. Conversely DHP treatment caused a > 50% decline in GPER mRNA levels. The results suggest that estrogens and GPER are critical components of the endocrine system controlling the onset of OM in zebrafish. A model is proposed for the dual control of the onset of oocyte maturation in teleosts by estrogens and progestins acting through GPER and mPRα, respectively, at different stages of oocyte development. PMID:20382141

  7. Role of G protein-coupled estrogen receptor 1, GPER, in inhibition of oocyte maturation by endogenous estrogens in zebrafish.

    Science.gov (United States)

    Pang, Yefei; Thomas, Peter

    2010-06-15

    Estrogen inhibition of oocyte maturation (OM) and the role of GPER (formerly known as GPR30) were investigated in zebrafish. Estradiol-17beta (E2) and G-1, a GPER-selective agonist, bound to zebrafish oocyte membranes suggesting the presence of GPER which was confirmed by immunocytochemistry using a specific GPER antibody. Incubation of follicle-enclosed oocytes with an aromatase inhibitor, ATD, and enzymatic and manual removal of the ovarian follicle cell layers significantly increased spontaneous OM which was partially reversed by co-treatment with either 100 nM E2 or G-1. Incubation of denuded oocytes with the GPER antibody blocked the inhibitory effects of estrogens on OM, whereas microinjection of estrogen receptor alpha (ERalpha) antisense oligonucleotides into the oocytes was ineffective. The results suggest that endogenous estrogens produced by the follicle cells inhibit or delay spontaneous maturation of zebrafish oocytes and that this estrogen action is mediated through GPER. Treatment with E2 and G-1 also attenuated the stimulatory effect of the teleost maturation-inducing steroid, 17,20beta-dihyroxy-4-pregnen-3-one (DHP), on OM. Moreover, E2 and G-1 down-regulated the expression of membrane progestin receptor alpha (mPRalpha), the intermediary in DHP induction of OM. Conversely DHP treatment caused a >50% decline in GPER mRNA levels. The results suggest that estrogens and GPER are critical components of the endocrine system controlling the onset of OM in zebrafish. A model is proposed for the dual control of the onset of oocyte maturation in teleosts by estrogens and progestins acting through GPER and mPRalpha, respectively, at different stages of oocyte development.

  8. The estrogen receptor-alpha in osteoclasts mediates the protective effects of estrogens on cancellous but not cortical bone.

    Science.gov (United States)

    Martin-Millan, Marta; Almeida, Maria; Ambrogini, Elena; Han, Li; Zhao, Haibo; Weinstein, Robert S; Jilka, Robert L; O'Brien, Charles A; Manolagas, Stavros C

    2010-02-01

    Estrogens attenuate osteoclastogenesis and stimulate osteoclast apoptosis, but the molecular mechanism and contribution of these effects to the overall antiosteoporotic efficacy of estrogens remain controversial. We selectively deleted the estrogen receptor (ER)alpha from the monocyte/macrophage cell lineage in mice (ERalpha(LysM)(-/-)) and found a 2-fold increase in osteoclast progenitors in the marrow and the number of osteoclasts in cancellous bone, along with a decrease in cancellous bone mass. After loss of estrogens these mice failed to exhibit the expected increase in osteoclast progenitors, the number of osteoclasts in bone, and further loss of cancellous bone. However, they lost cortical bone indistinguishably from their littermate controls. Mature osteoclasts from ERalpha(LysM)(-/-) were resistant to the proapoptotic effect of 17beta-estradiol. Nonetheless, the effects of estrogens on osteoclasts were unhindered in mice bearing an ERalpha knock-in mutation that prevented binding to DNA. Moreover, a polymeric form of estrogen that is not capable of stimulating the nuclear-initiated actions of ERalpha was as effective as 17beta-estradiol in inducing osteoclast apoptosis in cells with the wild-type ERalpha. We conclude that estrogens attenuate osteoclast generation and life span via cell autonomous effects mediated by DNA-binding-independent actions of ERalpha. Elimination of these effects is sufficient for loss of bone in the cancellous compartment in which complete perforation of trabeculae by osteoclastic resorption precludes subsequent refilling of the cavities by the bone-forming osteoblasts. However, additional effects of estrogens on osteoblasts, osteocytes, and perhaps other cell types are required for their protective effects on the cortical compartment, which constitutes 80% of the skeleton.

  9. An estrogen receptor model to describe the regulation of prolactin synthesis by antiestrogens in vitro.

    Science.gov (United States)

    Lieberman, M E; Gorski, J; Jordan, V C

    1983-04-25

    A hypothetical model of the ligand interaction with the estrogen receptor binding site has been developed to describe the structural features necessary to initiate or to inhibit prolactin synthesis in vitro. The biological potency of the binding ligands is directly related to their relative binding affinity (RBA) for the estrogen receptor. The relative potencies of antiestrogens to inhibit estradiol-stimulated prolactin synthesis was trans-monohydroxytamoxifen identical to cis-monohydroxytamoxifen identical to tamoxifen, consistent with their RBAs for uterine estrogen receptor. Similarly the relative potency of estrogens to stimulate prolactin synthesis was diethylstilbestrol identical to estradiol greater than ICI 77,949 greater than ICI 47,699 identical to zuclomiphene, consistent with their RBAs. The compound LY126412 (trioxifene without the aminoethoxy side chain) did not interact with the estrogen receptor at the concentrations tested (10(-8)--10(-6) M) or exhibit estrogenic or antiestrogenic properties using the prolactin synthesis assay. Overall, the ligand-receptor model stresses the structural requirement for high affinity binding and the critical positioning of the alkylamino-ethoxy side chain in space (in relation to the ligand-binding site on the estrogen receptor) to prevent prolactin synthesis.

  10. Activation of Estrogen Receptor Transfected into a Receptor-Negative Brest Cancer Cell Line Decreases the Metastatic and Invasive Potential of the Cells

    Science.gov (United States)

    Garcia, Marcel; Derocq, Danielle; Freiss, Gilles; Rochefort, Henri

    1992-12-01

    Breast cancers containing estrogen receptors are responsive to antiestrogen treatment and have a better prognosis than estrogen receptor-negative tumors. The loss of estrogen and progesterone receptors appears to be associated with a progression to less-differentiated tumors. We transfected the human estrogen receptor into the estrogen receptor-negative metastatic breast cancer cell line MDA-MB-231 in an attempt to restore their sensitivity to antiestrogens. Two stable sublines of MDA-MB-231 cells (HC1 and HE5) expressing functional estrogen receptors were studied for their ability to grow and invade in vitro and to metastasize in athymic nude mice. The number and size of lung metastases developed by these two sublines in ovariectomized nude mice was not markedly altered by tamoxifen but was inhibited 3-fold by estradiol. Estradiol also significantly inhibited in vitro cell proliferation of these sublines and their invasiveness in Matrigel, a reconstituted basement membrane, whereas the antiestrogens 4-hydroxytamoxifen and ICI 164,384 reversed these effects. These results show that estradiol inhibits the metastatic ability of estrogen receptornegative breast cancer cells following transfection with the estrogen receptor, whereas estrogen receptor-positive breast cancers are stimulated by estrogen, indicating that factors other than the estrogen receptor are involved in progression toward hormone independence. Reactivation or transfer of the estrogen receptor gene can therefore be considered as therapeutic approaches to hormone-independent cancers

  11. Integration of Nuclear- and Extranuclear-Initiated Estrogen Receptor Signaling in Breast Cancer Cells

    Science.gov (United States)

    Madak Erdogan, Zeynep

    2009-01-01

    Estrogenic hormones exert their effects through binding to Estrogen Receptors (ERs), which work in concert with coregulators and extranuclear signaling pathways to control gene expression in normal as well as cancerous states, including breast tumors. In this thesis, we have used multiple genome-wide analysis tools to elucidate various ways that…

  12. Variations in estrogen receptor ? gene and risk of dementia, and brain volumes on MRI.

    NARCIS (Netherlands)

    S.C.E. Schuit (Stephanie); A. Hofman (Albert); P.J. Koudstaal (Peter Jan); C.M. van Duijn (Cock); A.G. Uitterlinden (André); H.A.P. Pols (Huib); M.M.B. Breteler (Monique); J.B.J. van Meurs (Joyce); T. den Heijer (Tom)

    2004-01-01

    textabstractThe role of estrogens in Alzheimer's disease (AD) is controversial. We investigated the association between well-recognized, and potentially functional, polymorphisms in the estrogen receptor (ER) gene and the risk of AD in a prospective study of 6056 Caucasian older men and women aged

  13. Integration of Nuclear- and Extranuclear-Initiated Estrogen Receptor Signaling in Breast Cancer Cells

    Science.gov (United States)

    Madak Erdogan, Zeynep

    2009-01-01

    Estrogenic hormones exert their effects through binding to Estrogen Receptors (ERs), which work in concert with coregulators and extranuclear signaling pathways to control gene expression in normal as well as cancerous states, including breast tumors. In this thesis, we have used multiple genome-wide analysis tools to elucidate various ways that…

  14. Identification and Biological Evaluation of Coactivator Binding Inhibitors for the Estrogen Receptor

    Science.gov (United States)

    Gunther, Jillian Rebecca

    2009-01-01

    The physiologic effects of estrogen action through the estrogen receptor (ER) are widespread, as this hormone exerts actions in both reproductive (e.g., uterus) and non-reproductive (e.g., bone, brain) tissues in both men and women. As such, the regulation of the activity of this ligand-activated transcription factor is highly relevant to the…

  15. Genes dysregulated to different extent or oppositely in estrogen receptor-positive and estrogen receptor-negative breast cancers.

    Directory of Open Access Journals (Sweden)

    Xianxiao Zhou

    Full Text Available BACKGROUND: Directly comparing gene expression profiles of estrogen receptor-positive (ER+ and estrogen receptor-negative (ER- breast cancers cannot determine whether differentially expressed genes between these two subtypes result from dysregulated expression in ER+ cancer or ER- cancer versus normal controls, and thus would miss critical information for elucidating the transcriptomic difference between the two subtypes. PRINCIPAL FINDINGS: Using microarray datasets from TCGA, we classified the genes dysregulated in both ER+ and ER- cancers versus normal controls into two classes: (i genes dysregulated in the same direction but to a different extent, and (ii genes dysregulated to opposite directions, and then validated the two classes in RNA-sequencing datasets of independent cohorts. We showed that the genes dysregulated to a larger extent in ER+ cancers than in ER- cancers enriched in glycerophospholipid and polysaccharide metabolic processes, while the genes dysregulated to a larger extent in ER- cancers than in ER+ cancers enriched in cell proliferation. Phosphorylase kinase and enzymes of glycosylphosphatidylinositol (GPI anchor biosynthesis were upregulated to a larger extent in ER+ cancers than in ER- cancers, whereas glycogen synthase and phospholipase A2 were downregulated to a larger extent in ER+ cancers than in ER- cancers. We also found that the genes oppositely dysregulated in the two subtypes significantly enriched with known cancer genes and tended to closely collaborate with the cancer genes. Furthermore, we showed the possibility that these oppositely dysregulated genes could contribute to carcinogenesis of ER+ and ER- cancers through rewiring different subpathways. CONCLUSIONS: GPI-anchor biosynthesis and glycogenolysis were elevated and hydrolysis of phospholipids was depleted to a larger extent in ER+ cancers than in ER- cancers. Our findings indicate that the genes oppositely dysregulated in the two subtypes are potential

  16. Estrogen-Mediated Upregulation of Noxa Is Associated with Cell Cycle Progression in Estrogen Receptor-Positive Breast Cancer Cells

    OpenAIRE

    2011-01-01

    Noxa is a Bcl-2-homology domain (BH3)-only protein reported to be a proapoptotic member of the Bcl-2 family. Estrogen has been well documented to stimulate cell growth and inhibit apoptosis in estrogen receptor (ER)-positive breast cancer cells. Intriguingly, recent reports have shown that 17β-estradiol (E2) induces Noxa expression, although the mechanisms underlying E2-mediated induction of Noxa and its functional significance are unknown. Using MCF7 human breast cancer cells as an experimen...

  17. Estrogens, selective estrogen receptor modulators, and a selective estrogen receptor down-regulator inhibit endothelial production of tissue factor pathway inhibitor 1

    Directory of Open Access Journals (Sweden)

    Ree Anne

    2006-10-01

    Full Text Available Abstract Background Hormone therapy, oral contraceptives, and tamoxifen increase the risk of thrombotic disease. These compounds also reduce plasma content of tissue factor pathway inhibitor-1 (TFPI, which is the physiological inhibitor of the tissue factor pathway of coagulation. The current aim was to study if estrogens and estrogen receptor (ER modulators may inhibit TFPI production in cultured endothelial cells and, if so, identify possible mechanisms involved. Methods Human endothelial cell cultures were treated with 17β-estradiol (E2, 17α-ethinylestradiol (EE2, tamoxifen, raloxifene, or fulvestrant. Protein levels of TFPI in cell media and cell lysates were measured by an enzyme-linked immunosorbent assay, and TFPI mRNA levels were assessed by quantitative PCR. Expression of ERα was analysed by immunostaining. Results All compounds (each in a concentration of 10 nM reduced TFPI in cell medium, by 34% (E2, 21% (EE2, 16% (tamoxifen, and 28% (raloxifene, respectively, with identical inhibitory effects on cellular TFPI levels. Expression of TFPI mRNA was principally unchanged. Treatment with fulvestrant, which was also associated with down-regulation of secreted TFPI (9% with 10 nM and 26% with 1000 nM, abolished the TFPI-inhibiting effect of raloxifene, but not of the other compounds. Notably, the combination of 1000 nM fulvestrant and 10 nM raloxifene increased TFPI secretion, and, conversely, 10 nM of either tamoxifen or raloxifene seemed to partly (tamoxifen or fully (raloxifene counteract the inhibitory effect of 1000 nM fulvestrant. The cells did not express the regular nuclear 66 kDa ERα, but instead a 45 kDa ERα, which was not regulated by estrogens or ER modulators. Conclusion E2, EE2, tamoxifen, raloxifene, and fulvestrant inhibited endothelial production of TFPI by a mechanism apparently independent of TFPI transcription.

  18. Estrogen Induces Metastatic Potential of Papillary Thyroid Cancer Cells through Estrogen Receptor α and β

    Directory of Open Access Journals (Sweden)

    Wenwu Dong

    2013-01-01

    Full Text Available Estradiol (E2 promotes metastatic propensity. However, the detailed mechanism remains largely unknown. E-cadherin, vimentin, and MMP-9 play a dominant role in the metastatic process. We aimed to investigate the effects of E2 on metastatic potential of PTC cell line BCPAP and on E-cadherin, vimentin, and MMP-9 protein expression. PTC cell line BCPAP was evaluated for the presence of estrogen receptor (ER by western blot analysis. The effects of E2, PPT (a potent ERα-selective agonist, and DPN (a potent ERβ-selective agonist on modulation of metastatic phenotype were determined by using in vitro scratch wound assay and invasion assay. In addition, the effects on E-cadherin, vimentin, and matrix metalloproteinase-9 (MMP-9 protein expression were evaluated by Western blot analysis. We found that BCPAP cells expressed ERα and ERβ. E2 and PPT enhanced, but DPN inhibited, the migration and invasion of BCPAP cells in an in vitro experimental model system that is modulated by E-cadherin, vimentin, and MMP-9. These findings indicate that E2 induces the metastatic potential of BCPAP cells through ERα and ERβ. The two ER subtypes play differential roles in modulation of BCPAP cell metastasis and the related molecule expressions including E-cadherin, vimentin, and MMP-9.

  19. Autocrine role of estrogens in the augmentation of luteinizing hormone receptor formation in cultured rat granulosa cells.

    Science.gov (United States)

    Kessel, B; Liu, Y X; Jia, X C; Hsueh, A J

    1985-06-01

    The effects of estrogens on gonadotropin-stimulated luteinizing hormone (LH) receptor formation were examined in primary cultures of rat granulosa cells. Granulosa cells were cultured for 3 days with increasing concentrations of follicle-stimulating hormone (FSH) in the presence or absence of native and synthetic estrogens. Follicle-stimulating hormone stimulated LH receptor formation in a dose-dependent fashion, and estrogens enhanced the FSH-stimulated LH receptor content by decreasing the apparent ED50 of FSH. At 6.25 ng/ml FSH, the enhancement in LH receptor was estrogen dose dependent, with an ED50 value of about 3 X 10(-9) M for 17 beta-estradiol. The increased LH receptor content seen in cells treated with FSH and estrogen was correlated with increased cAMP production by these cells in response to LH stimulation. Time course studies revealed enhancement of FSH-stimulated LH receptor induction at 48 and 72 h of culture. Granulosa cells were also cultured with FSH for 2 days to induce functional LH receptors, then further cultured for 3 days with LH in the presence or absence of estrogens. At 30 ng/ml LH, increasing concentrations of estrogens maintained LH receptor content in a dose-dependent fashion, with their relative estrogenic potencies in keeping with reported binding affinities to estrogen receptors. An autocrine role of estrogens on LH receptor formation was further tested in granulosa cells treated with FSH and an aromatase substrate (androstenedione) to increase estrogen biosynthesis. Cotreatment with semipurified estrogen antibodies partially blocked the FSH stimulation of LH receptors, whereas nonimmune serum was ineffective. Also, inclusion of diethylstilbestrol prevented the inhibitory effect of the estrogen antibodies. Thus, local estrogens in ovarian follicles may play an autocrine role in granulosa cells to enhance LH receptor formation and to increase granulosa cell responsiveness to the LH surge, with subsequent ovulation and adequate

  20. Design and Synthesis of Norendoxifen Analogues with Dual Aromatase Inhibitory and Estrogen Receptor Modulatory Activities

    Science.gov (United States)

    Lv, Wei; Liu, Jinzhong; Skaar, Todd C.; Flockhart, David A.; Cushman, Mark

    2015-01-01

    Both selective estrogen receptor modulators and aromatase inhibitors are widely used for the treatment of breast cancer. Compounds with both aromatase inhibitory and estrogen receptor modulatory activities could have special advantages for treatment of breast cancer. Our previous efforts led to the discovery of norendoxifen as the first compound with dual aromatase inhibitory and estrogen receptor binding activities. To optimize its efficacy and aromatase selectivity versus other cytochrome P450 enzymes, a series of structurally related norendoxifen analogues were designed and synthesized. The most potent compound, 4'-hydroxynorendoxifen (10), displayed elevated inhibitory potency against aromatase and enhanced affinity for estrogen receptors when compared to norendoxifen. The selectivity of 10 for aromatase versus other cytochrome P450 enzymes was also superior to norendoxifen. 4'-Hydroxynorendoxifen is therefore an interesting lead for further development to obtain new anticancer agents of potential value for the treatment of breast cancer. PMID:25751283

  1. Gene expression changes in rat prostate after activation or blocking of the androgen and estrogen receptor

    DEFF Research Database (Denmark)

    Nellemann, Christine Lydia; Dalgaard, Majken; Holst, Bjørn;

    2005-01-01

    Several endpoints of different molecular complexity were studied in the Hershberger assay in order to evaluate the specificity and suitability of this test as a broad screening model. Androgen and estrogen receptors were activated or blocked, and expression of typical estrogen- or androgen...... and the anti-estrogen, ICI 182780, only affected ODC expression. Therefore, estrogenic or anti-estrogenic compounds would not be expected to seriously affect the outcome of a Hershberger test. However, EB given alone to castrated rats resulted in various effects. EB increased seminal vesicle weight, an effect...... reversed by ICI 182780, and affected TRPM-2, PBP C3, ODC, IGF-1, AR, and ERa mRNA levels. AR expression in the prostate seemed to be under regulation of both estrogens and androgens, as ICI 182780 inhibited the testosterone-induced AR expression, and flutamide inhibited the EB-induced AR expression...

  2. Estrogen Receptor β Activation Rapidly Modulates Male Sexual Motivation through the Transactivation of Metabotropic Glutamate Receptor 1a.

    Science.gov (United States)

    Seredynski, Aurore L; Balthazart, Jacques; Ball, Gregory F; Cornil, Charlotte A

    2015-09-23

    In addition to the transcriptional activity of their liganded nuclear receptors, estrogens, such as estradiol (E2), modulate cell functions, and consequently physiology and behavior, within minutes through membrane-initiated events. The membrane-associated receptors (mERs) underlying the acute effects of estrogens on behavior have mostly been documented in females where active estrogens are thought to be of ovarian origin. We determined here, by acute intracerebroventricular injections of specific agonists and antagonists, the type(s) of mERs that modulate rapid effects of brain-derived estrogens on sexual motivation in male Japanese quail. Brain aromatase blockade acutely inhibited sexual motivation. Diarylpropionitrile (DPN), an estrogen receptor β (ERβ)-specific agonist, and to a lesser extent 17α-estradiol, possibly acting through ER-X, prevented this effect. In contrast, drugs targeting ERα (PPT and MPP), GPR30 (G1 and G15), and the Gq-mER (STX) did not affect sexual motivation. The mGluR1a antagonist LY367385 significantly inhibited sexual motivation but mGluR2/3 and mGluR5 antagonists were ineffective. LY367385 also blocked the behavioral restoration induced by E2 or DPN, providing functional evidence that ERβ interacts with metabotropic glutamate receptor 1a (mGluR1a) signaling to acutely regulate male sexual motivation. Together these results show that ERβ plays a key role in sexual behavior regulation and the recently uncovered cooperation between mERs and mGluRs is functional in males where it mediates the acute effects of estrogens produced centrally in response to social stimuli. The presence of an ER-mGluR interaction in birds suggests that this mechanism emerged relatively early in vertebrate history and is well conserved. Significance statement: The membrane-associated receptors underlying the acute effects of estrogens on behavior have mostly been documented in females, where active estrogens are thought to be of ovarian origin. Using acute

  3. Phytoestrogens and Mycoestrogens Induce Signature Structure Dynamics Changes on Estrogen Receptor α

    Directory of Open Access Journals (Sweden)

    Xueyan Chen

    2016-08-01

    Full Text Available Endocrine disrupters include a broad spectrum of chemicals such as industrial chemicals, natural estrogens and androgens, synthetic estrogens and androgens. Phytoestrogens are widely present in diet and food supplements; mycoestrogens are frequently found in grains. As human beings and animals are commonly exposed to phytoestrogens and mycoestrogens in diet and environment, it is important to understand the potential beneficial or hazardous effects of estrogenic compounds. Many bioassays have been established to study the binding of estrogenic compounds with estrogen receptor (ER and provided rich data in the literature. However, limited assays can offer structure information with regard to the ligand/ER complex. Our current study surveys the global structure dynamics changes for ERα ligand binding domain (LBD when phytoestrogens and mycoestrogens bind. The assay is based on the structure dynamics information probed by hydrogen deuterium exchange mass spectrometry and offers a unique viewpoint to elucidate the mechanism how phytoestrogens and mycoestrogens interact with estrogen receptor. The cluster analysis based on the hydrogen deuterium exchange (HDX assay data reveals a unique pattern when phytoestrogens and mycoestrogens bind with ERα LBD compared to that of estradiol and synthetic estrogen modulators. Our study highlights that structure dynamics could play an important role in the structure function relationship when endocrine disrupters interact with estrogen receptors.

  4. Drug targeting of estrogen receptor signaling in the cardiovascular system: preclinical and clinical studies.

    Science.gov (United States)

    Sanz-González, Silvia M; Cano, Antonio; Valverde, M A; Hermenegildo, Carlos; Andrés, Vicente

    2004-04-01

    Atherosclerosis and associated coronary heart disease events have lower prevalence in women than in men, especially during young adult years. Although multiple lines of evidence suggest that estrogens contribute to this difference, the efficacy of hormone replacement therapy for the prevention of cardiovascular disease in postmenopausal women is controversial. The protective action of estrogen in the cardiovascular system appears to be mediated indirectly by an effect on serum lipoprotein and triglyceride profiles and on the expression of coagulant and fibrinolytic proteins, and by a direct effect on the vessel wall itself. Estrogen has both rapid effects involving alteration of membrane ionic permeability and activation of membrane-bound enzymes and increases in endothelial cell nitric oxide synthase activity, as well as longer-term effects on gene expression that are mediated, at least in part, by the ligand-activated transcription factors, estrogen receptor alpha and beta. Compounds with pure antiestrogenic activity and selective estrogen receptor modulators that regulate estrogen receptor function in a tissue-specific manner have been developed in an attempt to achieve the cardioprotective effects of estrogens while minimizing the undesirable risks associated with hormone replacement therapy (e.g., endometrial and breast cancer). In this review, we will discuss recent developments on the mechanisms of estrogen action in the cardiovascular system. The results of clinical trials testing the long-term efficacy of hormone replacement therapy for the treatment of cardiovascular disease will also be discussed.

  5. Female Mice Lacking Estrogen Receptor-α in Hypothalamic Proopiomelanocortin (POMC) Neurons Display Enhanced Estrogenic Response on Cortical Bone Mass.

    Science.gov (United States)

    Farman, H H; Windahl, S H; Westberg, L; Isaksson, H; Egecioglu, E; Schele, E; Ryberg, H; Jansson, J O; Tuukkanen, J; Koskela, A; Xie, S K; Hahner, L; Zehr, J; Clegg, D J; Lagerquist, M K; Ohlsson, C

    2016-08-01

    Estrogens are important regulators of bone mass and their effects are mainly mediated via estrogen receptor (ER)α. Central ERα exerts an inhibitory role on bone mass. ERα is highly expressed in the arcuate (ARC) and the ventromedial (VMN) nuclei in the hypothalamus. To test whether ERα in proopiomelanocortin (POMC) neurons, located in ARC, is involved in the regulation of bone mass, we used mice lacking ERα expression specifically in POMC neurons (POMC-ERα(-/-)). Female POMC-ERα(-/-) and control mice were ovariectomized (OVX) and treated with vehicle or estradiol (0.5 μg/d) for 6 weeks. As expected, estradiol treatment increased the cortical bone thickness in femur, the cortical bone mechanical strength in tibia and the trabecular bone volume fraction in both femur and vertebrae in OVX control mice. Importantly, the estrogenic responses were substantially increased in OVX POMC-ERα(-/-) mice compared with the estrogenic responses in OVX control mice for cortical bone thickness (+126 ± 34%, P mass, ERα was silenced using an adeno-associated viral vector. Silencing of ERα in hypothalamic VMN resulted in unchanged bone mass. In conclusion, mice lacking ERα in POMC neurons display enhanced estrogenic response on cortical bone mass and mechanical strength. We propose that the balance between inhibitory effects of central ERα activity in hypothalamic POMC neurons in ARC and stimulatory peripheral ERα-mediated effects in bone determines cortical bone mass in female mice.

  6. Binding of estrogen receptor with estrogen conjugated to bovine serum albumin (BSA).

    Science.gov (United States)

    Taguchi, Yasuto; Koslowski, Mirek; Bodenner, Donald L

    2004-08-19

    BACKGROUND: The classic model of estrogen action requires that the estrogen receptor (ER) activates gene expression by binding directly or indirectly to DNA. Recent studies, however, strongly suggest that ER can act through nongenomic signal transduction pathways and may be mediated by a membrane bound form of the ER. Estradiol covalently linked to membrane impermeable BSA (E2-BSA) has been widely used as an agent to study these novel membrane-associated ER events. However, a recent report suggests that E2-BSA does not compete for E2 binding to purified ER in vitro. To resolve this apparent discrepancy, we performed competition studies examining the binding of E2 and E2-BSA to both purified ER preparations and ER within intact cells. To eliminate potential artifacts due to contamination of commercially available E2-BSA preparations with unconjugated E2 (usually between 3-5%), the latter was carefully removed by ultrafiltration. RESULTS: As previously reported, a 10-to 1000-fold molar excess of E2-BSA was unable to compete with 3H-E2 binding to ER when added simultaneously. However, when ER was pre-incubated with the same concentrations of E2-BSA, the binding of 3H-E2 was significantly reduced. E2-BSA binding to a putative membrane-associated ER was directly visualized using fluorescein labeled E2-BSA (E2-BSA-FITC). Staining was restricted to the cell membrane when E2-BSA-FITC was incubated with stable transfectants of the murine ERalpha within ER-negative HeLa cells and with MC7 cells that endogenously produce ERalpha. This staining appeared highly specific since it was competed by pre-incubation with E2 in a dose dependent manner and with the competitor ICI-182,780. CONCLUSIONS: These results demonstrate that E2-BSA does bind to purified ER in vitro and to ER in intact cells. It seems likely that the size and structure of E2-BSA requires more energy for it to bind to the ER and consequently binds more slowly than E2. More importantly, these findings demonstrate

  7. Anti-estrogenic mechanism of unliganded progesterone receptor isoform B in breast cancer cells.

    Science.gov (United States)

    Zheng, Ze-Yi; Zheng, Si-Min; Bay, Boon-Huat; Aw, Swee-Eng; C-L Lin, Valerie

    2008-07-01

    Over half of breast cancer cases are estrogen-dependent and strategies to combat estrogen-dependent breast cancer have been to either block the activation of estrogen receptor (ER) or diminish the supply of estrogens. Our previous work documented that estrogen-independent expression of progesterone receptor (PR) in MCF-7 cells markedly disrupted the effects of estrogen. In this study, we have developed an adenovirus-mediated gene delivery system to study the specific involvement of PR isoform A (PR-A) and PR-B in the anti-estrogenic effect and its mechanism of action. The results revealed that PR-B, but not PR-A, exhibited distinct anti-estrogenic effect on E2-induced cell growth, gene expression, and ER-ERE interaction in a ligand-independent manner. The anti-estrogenic effect of PR-B was also associated with heightened metabolism and increased cellular uptake of estradiol-17 beta (E2). We have also found that the B-upstream segment of PR-B alone was able to inhibit E2-induced ER-ERE interaction and cellular uptake of E2. Although PR-A alone did not affect E2-induced ER activity, it antagonized the anti-estrogenic effect of PR-B in a concentration-dependent manner. The findings suggest an important mechanism of maintaining a favorable level of ER activity by PR-A and PR-B in estrogen target cells for optimal growth and differentiation. The potential anti-estrogenic mechanism of PR-B may be exploited for breast cancer therapy.

  8. Modification of the plasma complement protein profile by exogenous estrogens is indicative of a compromised immune competence in marine medaka (Oryzias melastigma).

    Science.gov (United States)

    Dong, Miao; Seemann, Frauke; Humble, Joseph L; Liang, Yimin; Peterson, Drew R; Ye, Rui; Ren, Honglin; Kim, Hui-Su; Lee, Jae-Seong; Au, Doris W T; Lam, Yun Wah

    2017-09-04

    Growing evidence suggests that the immune system of teleost is vulnerable to xenoestrogens, which are ubiquitous in the marine environment. This study detected and identified the major circulatory immune proteins deregulated by 17α-ethinylestradiol (EE2), which may be linked to fish susceptibility to pathogens in the marine medaka, Oryzias melastigma. Fish immune competence was determined using a host resistance assay to pathogenic bacteria Edwardsiella tarda. Females were consistently more susceptible to infection-induced mortality than males. Exposure to EE2 could narrow the sex gap of mortality by increasing infection-induced death in male fish. Proteomic analysis revealed that the major plasma immune proteins of adult fish were highly sexually dimorphic. EE2 induced pronounced sex-specific changes in the plasma proteome, with the male plasma composition clearly becoming "feminised". Male plasma was found to contain a higher level of fibrinogens, WAP63 and ependymin-2-like protein, which are involved in coagulation, inflammation and regeneration. For the first time, we demonstrated that expression of C1q subunit B (C1Q), an initiating factor of the classical complement pathway, was higher in males and was suppressed in both sexes in response to EE2 and bacterial challenge. Moreover, cleavage and post-translational modification of C3, the central component of the complement system, could be altered by EE2 treatment in males (C3dg down; C3g up). Multiple regression analysis indicated that C1Q is possibly an indicator of fish survival, which warrants further confirmation. The findings support the potential application of plasma immune proteins for prognosis/diagnosis of fish immune competence. Moreover, this study provides the first biochemical basis of the sex-differences in fish immunity and how these differences might be modified by xenoestrogens. Copyright © 2017. Published by Elsevier Ltd.

  9. Autocrine regulation of cell proliferation by estrogen receptor-alpha in estrogen receptor-alpha-positive breast cancer cell lines

    Directory of Open Access Journals (Sweden)

    Pan Zhongzong

    2009-01-01

    Full Text Available Abstract Background Estrogen receptor-α (ERα is essential for mammary gland development and is a major oncogene in breast cancer. Since ERα is not colocalized with the cell proliferation marker Ki-67 in the normal mammary glands and the majority of primary breast tumors, it is generally believed that paracrine regulation is involved in ERα mediated cell proliferation. In the paracrine model, ERα-positive cells don't proliferate but will release some paracrine growth factors to stimulate the neighboring cells to proliferate. In a subpopulation of cancer cells in some primary breast tumors, however, ERα does colocalize with the cell proliferation marker Ki-67, suggesting an autocrine regulation by ERα in some primary breast tumors. Methods Colocalization of ERα with Ki-67 in ERα-positive breast cancer cell lines (MCF-7, T47D, and ZR75-1 was evaluated by immunofluorescent staining. Cell cycle phase dependent expression of ERα was determined by co-immunofluorescent staining of ERα and the major cyclins (D, E, A, B, and by flow cytometry analysis of ERαhigh cells. To further confirm the autocrine action of ERα, MCF-7 cells were growth arrested by ICI182780 treatment, followed by treatment with EGFR inhibitor, before estrogen stimulation and analyses for colocalization of Ki-67 and ERα and cell cycle progression. Results Colocalization of ERα with Ki-67 was present in all three ERα-positive breast cancer cell lines. Unlike that in the normal mammary glands and the majority of primary breast tumors, ERα is highly expressed throughout the cell cycle in MCF-7 cells. Without E2 stimulation, MCF-7 cells released from ICI182780 treatment remain at G1 phase. E2 stimulation of ICI182780 treated cells, however, promotes the expression and colocalization of ERα and Ki-67 as well as the cell cycle progressing through the S and G2/M phases. Inhibition of EGFR signaling does not inhibit the autocrine action of ERα. Conclusion Our data indicate

  10. Estrogen receptor beta participate in the regulation of metabolizm of extracellular matrix in estrogen alpha negative breast cancer.

    Directory of Open Access Journals (Sweden)

    Mariusz Kuźmicki

    2010-01-01

    Full Text Available The biology of breast cancer is closely releted to sex steroid hormones. Estrogen receptor beta is overexpressed in around 70% breast cancer cases, referrd to as "ER positive". Estrogens bind to estrogen receptor and stimulate the transcription of genes involved in control of cell proliferation. Moreover, estrogens may induce growth factors and components of extracellular matrix and interact with them in a complex manner. Extracellular matrix and integrins play an important role in cell functions and their aberrant expressions are implicated in breast cancer development, invasion and metastasis. ER beta is certainly associated with more differentiated tumors, while evidence of role of ER beta is controversial. The highly invasive breast cancer ER beta negative cell line MDA-MB 231 can be the model of exam the role of ER beta in breast cancer. The aim of this study was to examine the role of activation of ER beta on the metabolism of the extracellular matrix and the expression of beta-1 integrin in the breast cancer cell line MDA-MB 231. The cells were exposed on the estradiol, tamoxifen, raloxifen and genisteina in dose dependent concentrations. To determine the relative rate of collagen syntesis we measured the time-dependent reduction of collagen-bound radioactivity after pulse-chase labeling with [3 H] prolina by Peterkofsky methods. The expression of beta-1 integrin was determine by Western blot analysis. The activity of MMP2 and 9 were measured using gelatin zymography with an image analysis system. Our data suggest on the role of estrogen receptor beta on the metabolism of extracellular matrix in the breast cancer line MDA - MB 231. Estradiol and SERMs regulate the expression of ECM proteins: collagen, integrins and enhance activity of metaloproteinases 2 and 9.

  11. Estrogen receptor beta participate in the regulation of metabolizm of extracellular matrix in estrogen alpha negative breast cancer.

    Science.gov (United States)

    Leśniewska, Monika; Miltyk, Wojciech; Swiatecka, Jolanta; Tomaszewska, Małgorzata; Kuźmicki, Mariusz; Pałka, Jerzy; Wołczyński, Sławomir

    2009-01-01

    The biology of breast cancer is closely releted to sex steroid hormones. Estrogen receptor beta is overexpressed in around 70% breast cancer cases, referrd to as "ER positive". Estrogens bind to estrogen receptor and stimulate the transcription of genes involved in control of cell proliferation. Moreover, estrogens may induce growth factors and components of extracellular matrix and interact with them in a complex manner. Extracellular matrix and integrins play an important role in cell functions and their aberrant expressions are implicated in breast cancer development, invasion and metastasis. ER beta is certainly associated with more differentiated tumors, while evidence of role of ER beta is controversial. The highly invasive breast cancer ER beta negative cell line MDA-MB 231 can be the model of exam the role of ER beta in breast cancer. The aim of this study was to examine the role of activation of ER beta on the metabolism of the extracellular matrix and the expression of beta-1 integrin in the breast cancer cell line MDA-MB 231. The cells were exposed on the estradiol, tamoxifen, raloxifen and genisteina in dose dependent concentrations. To determine the relative rate of collagen syntesis we measured the time-dependent reduction of collagen-bound radioactivity after pulse-chase labeling with [3 H] prolina by Peterkofsky methods. The expression of beta-1 integrin was determine by Western blot analysis. The activity of MMP2 and 9 were measured using gelatin zymography with an image analysis system. Our data suggest on the role of estrogen receptor beta on the metabolism of extracellular matrix in the breast cancer line MDA - MB 231. Estradiol and SERMs regulate the expression of ECM proteins: collagen, integrins and enhance activity of metaloproteinases 2 and 9.

  12. Laccase-mediated transformations of endocrine disrupting chemicals abolish binding affinities to estrogen receptors and their estrogenic activity in zebrafish.

    Science.gov (United States)

    Torres-Duarte, Cristina; Viana, María Teresa; Vazquez-Duhalt, Rafael

    2012-10-01

    Endocrine disrupting chemicals (EDCs) are known to mainly affect aquatic organisms, producing negative effects in aquaculture. Transformation of the estrogenic compounds 17β-estradiol (E2), bisphenol-A (BPA), nonylphenol (NP), and triclosan (TCS) by laccase of Coriolopsis gallica was studied. Laccase is able to efficiently transform them into polymers. The estrogenic activity of the EDCs and their laccase transformation products was evaluated in vitro as their affinity for the human estrogen receptor alpha (hERα) and for the ligand binding domain of zebrafish (Danio rerio) estrogen receptor alpha (zfERαLBD). E2, BPA, NP, and TCS showed higher affinity for the zfERαLBD than for hERα. After laccase treatment, no affinity was found, except a marginal affinity of E2 products for the zfERαLBD. Endocrine disruption studies in vivo on zebrafish were performed using the induction of vitellogenin 1 as a biomarker (VTG1 mRNA levels). The use of enzymatic bioreactors, containing immobilized laccase, efficiently eliminates the endocrine activity of BPA and TCS, and significantly reduces the effects of E2. The potential use of enzymatic reactors to eliminate the endocrine activity of EDCs in supply water for aquaculture is discussed.

  13. Effect of clomiphene on nuclear estrogen receptor of the fallopian tube during ovum transport in rabbits.

    Science.gov (United States)

    Gupta, J S; Roy, S K

    1989-01-01

    The effect of clomiphene on nuclear estrogen receptors of the Fallopian tube during ovum transport in the rabbit has been studied. Nuclear binding capacity was observed in ampulla (A), ampullary-isthmic junction (AIJ), isthmus (I), uterine-isthmic junction (UIJ) and uterus (U). Receptor concentration decreased in all segments of the tube after administration of clomiphene in mated animals. The bindings are of high affinity and low capacity. Important alterations were observed during transport when compared to that of 14, 24, 34, 48, 72, 144 and 168 hr post-coitum (p.c). At 24 hr p.c binding increased only in I and decreased in A and AIJ. Retention of eggs at I at 24 hr p.c showed as increase in binding at I. Egg transport was accelerated and eggs reached prematurely in the uterus due to the influence of clomiphene. Binding in I remained constant from 48 hr p.c to 144 hr p.c but concurrently the binding level increased in U from 34 hr p.c. The elevation of nuclear estrogen receptor level was maximum at 24 hr p.c which coincided with increased plasma estrogen level. The result of such study showed that clomiphene depleted nuclear estrogen receptor complex in the fallopian tube before transfer to the uterus. Further, observation indicated that clomiphene acted directly on the rate of egg transport because of the variations in estrogen receptors during different time periods. Thus, clomiphene reduced the quantity of estrogen receptor i.e., insensitiveness to estrogen. The variations in estrogen binding to its receptor and plasma level at different post-coital periods are modulated by clomiphene resulting in the acceleration of egg transport and prevention of pregnancy.

  14. Estrogen Induces c-myc Gene Expression via an Upstream Enhancer Activated by the Estrogen Receptor and the AP-1 Transcription Factor

    Science.gov (United States)

    Wang, Chunyu; Mayer, Julie Ann; Mazumdar, Abhijit; Fertuck, Kirsten; Kim, Heetae; Brown, Myles

    2011-01-01

    c-myc oncogene is implicated in tumorigenesis of many cancers, including breast cancer. Although c-myc is a well-known estrogen-induced gene, its promoter has no estrogen-response element, and the underlying mechanism by which estrogen induces its expression remains obscure. Recent genome-wide studies by us and others suggested that distant elements may mediate estrogen induction of gene expression. In this study, we investigated the molecular mechanism by which estrogen induces c-myc expression with a focus on these distal elements. Estrogen rapidly induced c-myc expression in estrogen receptor (ER)-positive breast cancer cells. Although estrogen had little effect on c-myc proximal promoter activity, it did stimulate the activity of a luciferase reporter containing a distal 67-kb enhancer. Estrogen induction of this luciferase reporter was dependent upon both a half-estrogen response element and an activator protein 1 (AP-1) site within this enhancer, which are conserved across 11 different mammalian species. Small interfering RNA experiments and chromatin immunoprecipitation assays demonstrated the necessity of ER and AP-1 cross talk for estrogen to induce c-myc expression. TAM67, the AP-1 dominant negative, partially inhibited estrogen induction of c-myc expression and suppressed estrogen-induced cell cycle progression. Together, these results demonstrate a novel pathway of estrogen regulation of gene expression by cooperation between ER and AP-1 at the distal enhancer element and that AP-1 is involved in estrogen induction of the c-myc oncogene. These results solve the long-standing question in the field of endocrinology of how estrogen induces c-myc expression. PMID:21835891

  15. G-Protein: Coupled Receptor 30 and Estrogen Receptor-α Are Involved in the Proliferative Effects Induced by Atrazine in Ovarian Cancer Cells

    National Research Council Canada - National Science Library

    Lidia Albanito; Rosamaria Lappano; Antonio Madeo; Adele Chimento; Eric R. Prossnitz; Anna Rita Cappello; Vincenza Dolce; Sergio Abonante; Vincenzo Pezzi; Marcello Maggiolini

    2008-01-01

    Background: Atrazine, one of the most common pesticide contaminants, has been shown to up-regulate aromatase activity in certain estrogen-sensitive tumors without binding or activating the estrogen receptor (ER...

  16. The Expression of Estrogen Receptor is Dependent on the Estrogen Level and Associated with Cholesterol-Rich Diet in Female Rat's Heart and Vascular Endothelial Cells

    Institute of Scientific and Technical Information of China (English)

    吴赛珠; 刘建国; 周可祥; 刘长青; 马瑞; 孙飞; 隗和明

    2003-01-01

    Objective To study the effects of estrogen level and cholesterol - rich diet on the ex-pression of estrogen receptor (ER) in cardiovasculartissues including vascular endothelial cells (VEC) offemale rats. Methods The receptor binding assay(RBA) was adopted to measure the estrogen receptorlevel in aortic wall, heart and vascular endothelialcells of female rats on a cholesterol- rich diet. A ra-dioimmunoassay was employed to measure the level ofserum estradiol. Results The number of ER signif-icantly decreased in hearts, aorta and vascular en-dothelial cells in the ovariectomized rats and the ratson a cholesterol- rich diet. In contrast, the adminis-tration of estrogen somewhat restored the expression ofER. Conclusions For female rats, the level of es-trogen affects the expression of ER in cardiovascularsystem. The number of ER decreases along with thedecrease in the level of estrogen. A cholesterol -richdiet also can decrease the expression of ER in cardio-vascular system of female rats.

  17. Steroid-Functionalized Titanocenes: Docking Studies with Estrogen Receptor Alpha

    Directory of Open Access Journals (Sweden)

    Li Ming Gao

    2016-11-01

    Full Text Available Estrogen receptor alpha (ERα is a transcription factor that is activated by hormones, with 17β-estradiol being its most active agonist endogenous ligand. ERα is also activated or inactivated by exogenous ligands. ER is overexpressed in hormone-dependent breast cancer, and one of the treatments for this type of cancer is the use of an ER antagonist to halt cell proliferation. We have previously reported four steroid-functionalized titanocenes: pregnenolone, dehydroepiandrosterone (DHEA, trans-androsterone, and androsterone. These steroids have hormonal activity as well as moderate antiproliferative activity, thus these steroids could act as vectors for the titanocene dichloride to target hormone-dependent cancers. Also, these steroids could increase the antiproliferative activity of the resulting titanocenes based on synergism. In order to elucidate which factors contribute to the enhanced antiproliferative activity of these steroid-functionalized titanocenes, we performed docking studies between ERα and the titanocenes and the steroids. The binding affinities and type of bonding interactions of the steroid-functionalized titanocenes with ERα are herein discussed.

  18. Diagnostic value of estrogen receptors in thyroid lesions.

    Science.gov (United States)

    Vaiman, Michael; Olevson, Youlian; Habler, Liliana; Kessler, Alex; Zehavi, Sergei; Sandbank, Judith

    2010-07-01

    The objective of this study was to evaluate the presence of estrogen receptors (ER) alpha and beta in various thyroid lesions and to assess the practicality of this test. Immunohistochemical stains were performed for both ERalpha and ERbeta, for evaluation of immunoreactivity in 296 thyroid tissue samples that consisted of 150 goiters, 90 papillary carcinomas, 19 follicular adenomas, 15 Hurtle cell adenomas, 6 Hashimoto thyroiditis, 5 anaplastic carcinomas, 4 medullary carcinomas, 4 follicular carcinomas, 2 Hurtle cell carcinomas, and 1 squamous cell carcinoma of the thyroid. Three variables were evaluated in each sample: The intensity of the staining both nuclear (1) and cytoplasmic (2), and the spread of the stain over the sample (3). None of the histologic samples showed immunoreactivity for ERalpha. Positive immunoreactivity results for ERbeta were found in tissue samples from all of the different groups of diagnoses, both benign and malignant lesions as well as in normal thyroid tissue. No significant difference was found between the various thyroid lesions. The study shows that ERbeta is the only ER detectable in thyroid tissue. However, ERbeta expression has no significant specifications for differentiation between benign and malignant lesions of the thyroid. ERalpha is undetectable in the thyroid. Further investigations are necessary mainly in the laboratory immunohistochemical workup.

  19. Global proteomic characterization of microdissected estrogen receptor positive breast tumors

    Directory of Open Access Journals (Sweden)

    Tommaso De Marchi

    2015-12-01

    Full Text Available We here describe two proteomic datasets deposited in ProteomeXchange via PRIDE partner repository [1] with dataset identifiers PXD000484 (defined as “training” and PXD000485 (defined as “test” that have been used for the development of a tamoxifen outcome predictive signature [2]. Both datasets comprised 56 fresh frozen estrogen receptor (ER positive primary breast tumor specimens derived from patients who received tamoxifen as first line therapy for recurrent disease. Patient groups were defined based on time to progression (TTP after start of tamoxifen therapy (6 months cutoff: 32 good and 24 poor treatment outcome patients were comprised in the training set, respectively. The test set included 41 good and 15 poor treatment outcome patients. All specimens were subjected to laser capture microdissection (LCM to enrich for epithelial tumor cells prior to high resolution mass spectrometric (MS analysis. Protein identification and label-free quantification (LFQ were performed with MaxQuant software package [3]. A total of 3109 and 4061 proteins were identified and quantified in the training and test set, respectively. We here present the first public proteomic dataset analyzing ER positive recurrent breast cancer by LCM coupled to high resolution MS.

  20. Estrogen receptors regulate innate immune cells and signaling pathways.

    Science.gov (United States)

    Kovats, Susan

    2015-04-01

    Humans show strong sex differences in immunity to infection and autoimmunity, suggesting sex hormones modulate immune responses. Indeed, receptors for estrogens (ERs) regulate cells and pathways in the innate and adaptive immune system, as well as immune cell development. ERs are ligand-dependent transcription factors that mediate long-range chromatin interactions and form complexes at gene regulatory elements, thus promoting epigenetic changes and transcription. ERs also participate in membrane-initiated steroid signaling to generate rapid responses. Estradiol and ER activity show profound dose- and context-dependent effects on innate immune signaling pathways and myeloid cell development. While estradiol most often promotes the production of type I interferon, innate pathways leading to pro-inflammatory cytokine production may be enhanced or dampened by ER activity. Regulation of innate immune cells and signaling by ERs may contribute to the reported sex differences in innate immune pathways. Here we review the recent literature and highlight several molecular mechanisms by which ERs regulate the development or functional responses of innate immune cells.

  1. Urethral dysfunction in female mice with estrogen receptor β deficiency.

    Directory of Open Access Journals (Sweden)

    Yung-Hsiang Chen

    Full Text Available Estrogen has various regulatory functions in the growth, development, and differentiation of the female urogenital system. This study investigated the roles of ERβ in stress urinary incontinence (SUI. Wild-type (ERβ(+/+ and knockout (ERβ(-/- female mice were generated (aged 6-8 weeks, n = 6 and urethral function and protein expression were measured. Leak point pressures (LPP and maximum urethral closure pressure (MUCP were assessed in mice under urethane anesthesia. After the measurements, the urethras were removed for proteomic analysis using label-free quantitative proteomics by nano-liquid chromatography-mass spectrometry (LC-MS/MS analysis. The interaction between these proteins was further analysed using MetaCore. Lastly, Western blot was used to confirm the candidate proteins. Compared with the ERβ(+/+ group, the LPP and MUCP values of the ERβ(-/- group were significantly decreased. Additionally, we identified 85 differentially expressed proteins in the urethra of ERβ(-/- female mice; 57 proteins were up-regulated and 28 were down-regulated. The majority of the ERβ knockout-modified proteins were involved in cell-matrix adhesion, metabolism, immune response, signal transduction, nuclear receptor translational regelation, and muscle contraction and development. Western blot confirmed the up-regulation of myosin and collagen in urethra. By contrast, elastin was down-regulated in the ERβ(-/- mice. This study is the first study to estimate protein expression changes in urethras from ERβ(-/- female mice. These changes could be related to the molecular mechanism of ERβ in SUI.

  2. Expression of estrogen receptor alpha in preimplantation mice embryos

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective:To study the expression of estrogen receptor alpha (ERα) in preimplantation mice embryos.Methods:Mice zygotes were collected from superovulated Kunming mice and cultured in vitro.Embryos at different developmental stages were collected at 0,24,36,48,72 and 96hours after cultivation.The expression of ERα in early mice embryos was detected by reverse transcription-PCR (RT-PCR) and immunocytochemistry.Results:The expression of ERα mRNA was detected in all of the examined embryonic stages.The relative amount of ERα mRNA showed no significant difference between 1-cell stage embryos and 4-cell stage embryos (P>0.05).However,the relative level of ERα mRNA significantly decreased (P<0.05) at 2-cell stage and was the lowest at this stage.Over 2-cell stage,the ERα mRNA relative level would increase and achieve the peak level at blastocyst stage.The location of immunocytochemistry showed that ERα immunopositive cells could be firstly detected at 8-cell stage,after which they are consistently detected until blastocyst stage.In addition,the intensity of ERα positive staining was higher at blastocyst stage compared with that at 8-cell stage and morula stage.Conclusion:ERα is expressed in preimplantation mice embryos in a temporal and spatial pattern and may be involved in regulating the development of early mice embryos,which probably plays crucial roles in early embryonic development.

  3. Importance of Estrogenic Signaling and Its Mediated Receptors in Prostate Cancer.

    Science.gov (United States)

    Lau, Kin-Mang; To, Ka-Fai

    2016-08-31

    Prostate cancer (PCa) treatment was first established by Huggins and Hodges in 1941, primarily described as androgen deprivation via interference of testicular androgen production. The disease remains incurable with relapse of hormone-refractory cancer after treatments. Epidemiological and clinical studies disclosed the importance of estrogens in PCa. Discovery of estrogen receptor ERβ prompted direct estrogenic actions, in conjunction with ERα, on PCa cells. Mechanistically, ERs upon ligand binding transactivate target genes at consensus genomic sites via interactions with various transcriptional co-regulators to mold estrogenic signaling. With animal models, Noble revealed estrogen dependencies of PCa, providing insight into potential uses of antiestrogens in the treatment. Subsequently, various clinical trials were conducted and molecular and functional consequences of antiestrogen treatment in PCa were delineated. Besides, estrogens can also trigger rapid non-genomic signaling responses initiated at the plasma membrane, at least partially via an orphan G-protein-coupled receptor GPR30. Activation of GPR30 significantly inhibited in vitro and in vivo PCa cell growth and the underlying mechanism was elucidated. Currently, molecular networks of estrogenic and antiestrogenic signaling via ERα, ERβ and GPR30 in PCa have not been fully deciphered. This crucial information could be beneficial to further developments of effective estrogen- and antiestrogen-based therapy for PCa patients.

  4. Importance of Estrogenic Signaling and Its Mediated Receptors in Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Kin-Mang Lau

    2016-08-01

    Full Text Available Prostate cancer (PCa treatment was first established by Huggins and Hodges in 1941, primarily described as androgen deprivation via interference of testicular androgen production. The disease remains incurable with relapse of hormone-refractory cancer after treatments. Epidemiological and clinical studies disclosed the importance of estrogens in PCa. Discovery of estrogen receptor ERβ prompted direct estrogenic actions, in conjunction with ERα, on PCa cells. Mechanistically, ERs upon ligand binding transactivate target genes at consensus genomic sites via interactions with various transcriptional co-regulators to mold estrogenic signaling. With animal models, Noble revealed estrogen dependencies of PCa, providing insight into potential uses of antiestrogens in the treatment. Subsequently, various clinical trials were conducted and molecular and functional consequences of antiestrogen treatment in PCa were delineated. Besides, estrogens can also trigger rapid non-genomic signaling responses initiated at the plasma membrane, at least partially via an orphan G-protein-coupled receptor GPR30. Activation of GPR30 significantly inhibited in vitro and in vivo PCa cell growth and the underlying mechanism was elucidated. Currently, molecular networks of estrogenic and antiestrogenic signaling via ERα, ERβ and GPR30 in PCa have not been fully deciphered. This crucial information could be beneficial to further developments of effective estrogen- and antiestrogen-based therapy for PCa patients.

  5. Expression of estrogen and progesterone receptors in vestibular schwannomas and their clinical significance

    Directory of Open Access Journals (Sweden)

    Pandey Rakesh

    2009-11-01

    Full Text Available Abstract Objective The objective was to determine the expression of estrogen and progesterone receptors in vestibular schwannomas as well as to determine predictive factors for estrogen and progesterone receptor positivity. Materials and methods The study included 100 cases of vestibular schwannomas operated from January 2006 to June 2009. The clinical details were noted from the medical case files. Formaldehyde-fixed parafiin-embedded archival vestibular schwannomas specimens were used for the immunohistochemical assessment of estrogen and progesterone receptors. Results Neither estrogen nor progesterone receptors could be detected in any of our cases by means of well known immunohistochemical method using well documented monoclonal antibodies. In the control specimens, a strongly positive reaction could be seen. Conclusion No estrogen and progesterone receptor could be found in any of our 100 cases of vestibular schwannomas. Hence our study does not support a causative role of estrogen and progesterone in the growth of vestibular schwannoma as well as hormonal manipulation in the treatment of this tumor.

  6. Estrogenic activity of flavonoids in mice. The importance of estrogen receptor distribution, metabolism and bioavailability

    DEFF Research Database (Denmark)

    Breinholt, Vibeke; Hossaini, A.; Svendsen, Gitte W.

    2000-01-01

    to subsequently encountered estrogens. Oral administration of equol, genistein, biochanin A and daidzein to 6-week-old female mice revealed a great variation in their systemic bioavailability. The urinary recovery of equol was thus over 90% of a single gavage administered dose, whereas the urinary recoveries...... of biochanin A, genistein and daidzein were 16, 11 and 3%, respectively. Most of the metabolites were either hydroxylated or dehydrogenated forms of the parent compounds. The in vitro estrogenic potency of some of the metabolites was greater than that of the parent compounds, whereas others were of similar...... or lower potency. Bioavailability, metabolism, the ability to alter ER alpha distribution in the uterus and the estrogenic potential of parent compound and metabolites may thus contribute to the differences in in vivo estrogenicity of dietary flavonoids....

  7. The changing paradigm: estrogen receptor α recognition on DNA and within the dynamic nature of nucleosomes

    Directory of Open Access Journals (Sweden)

    William M. Scovell

    2015-03-01

    Full Text Available Estrogen receptor alpha (ERα plays a major role in the expression of estrogen-responsive genes. Although its conventional binding characteristics have been considered coincident with & exclusively in the class of steroid hormone receptors, increasing evidence challenges this paradigm. ERα was shown to bind to consensus estrogen response element half-sites (cHERE in DNA in the presence of the ubiquitous, abundant & conserved architectural protein, high mobility group protein 1 (HMGB1. It also binds to direct repeats with various spacers, in addition to everted repeats. These in vitro binding sites have been shown to be active in vivo, with both the binding affinity and transcriptional activity increased in the presence of HMGB1. Surprisingly, ERα does not bind to the optimally oriented cERE at the dyad in rotationally phased and translationally positioned nucleosomes. However, the presence of HMGB1 restructures the nucleosome to facilitate increased ERα accessibility, resulting in sequence-specific estrogen receptor binding. The finding that HMGB1 interacts with unbound ERα provides a unique avenue for enhanced ERα activity and possibly an increase in the extent of targeting at estrogen-responsive genes. The findings are consistent with ERα 1 targeting a much wider selection of genomic response elements (half-sites and inverted, direct and everted repeats and 2 exhibiting characteristics of both steroid and non steroid nuclear receptors. Growing evidence already shows a competition occurs at the DNA level between ERα and the non steroid nuclear hormone receptor, thyroid receptor (TR. Collectively, these reports suggest a less restrictive cataloging for estrogen receptor and a broader paradigm for understanding its role in the regulation of estrogen-responsive genes and influence on non steroid hormone receptor activities.

  8. G-Protein-Coupled Estrogen Receptor 1 Is Anatomically Positioned to Modulate Synaptic Plasticity in the Mouse Hippocampus

    OpenAIRE

    Elizabeth M. Waters; Thompson, Louisa I.; Patel, Parth; Gonzales, Andreina D.; Ye, Hector (Zhiyu); Filardo, Edward J.; Clegg, Deborah J.; Gorecka, Jolanta; Akama, Keith T.; McEwen, Bruce S.; Milner, Teresa A.

    2015-01-01

    Both estrous cycle and sex affect the numbers and types of neuronal and glial profiles containing the classical estrogen receptors α and β, and synaptic levels in the rodent dorsal hippocampus. Here, we examined whether the membrane estrogen receptor, G-protein-coupled estrogen receptor 1 (GPER1), is anatomically positioned in the dorsal hippocampus of mice to regulate synaptic plasticity. By light microscopy, GPER1-immunoreactivity (IR) was most noticeable in the pyramidal cell layer and int...

  9. Estrogen Receptor (ER-α36 Is Involved in Estrogen- and Tamoxifen-Induced Neuroprotective Effects in Ischemic Stroke Models.

    Directory of Open Access Journals (Sweden)

    Wei Zou

    Full Text Available The neuroprotection by estrogen (E2 and tamoxifen is well documented in experimental stroke models; however, the exact mechanism is unclear. A membrane-based estrogen receptor, ER-α36, has been identified. Postmenopausal-levels of E2 act through ER-α36 to induce osteoclast apoptosis due to a prolonged activation of the mitogen-activated protein kinase (MAPK/extracellular signal-related kinase (ERK signaling. We hypothesized that ER-α36 may play a role in the neuroprotective activities of estrogen and tamoxifen. Here, we studied ER-α36 expression in the brain, as well as its neuroprotective effects against oxygen and glucose deprivation (OGD in PC12 cells. We found that ER-α36 was expressed in both rat and human brain. In addition, OGD-induced cell death was prevented by l nmol/L 17β-estradiol (E2β. E2β activates the MAPK/ERK signaling pathway in PC12 cells under basal and OGD conditions by interacting with ER-α36 and also induces ER-α36 expression. Low-dose of tamoxifen up-regulated ER-α36 expression and enhanced neuronal survival in an ovariectomized ischemic stroke model. Furthermore, low-dose of tamoxifen enhanced neuroprotective effects by modulating activates or suppress ER-α36. Our results thus demonstrated that ER-α36 is involved in neuroprotective activities mediated by both estrogen and tamoxifen.

  10. Estrogenic Activity of Some Phytoestrogens on Bovine Oxytocin and Thymidine Kinase-ERE Promoter through Estrogen Receptor-α in MDA-MB 231 Cells

    Directory of Open Access Journals (Sweden)

    Ehsan Zayerzadeh

    2014-08-01

    Full Text Available Background: Phytoestrogens, a group of plant-derived polyphenolic compounds have recently come into considerable attention due to the increasing information on their potential adverse effects in human health. Some of phytoestrogens show estrogenic activity that may be carcinogenic for human. In the present study, we investigated the transcriptional effects of variety of phytoestrogens on the bovine oxytocin and the thymidine kinase-ERE promoter by estrogen receptor α in MDA-MB 231 breast cancer cell line. Materials and Methods: Cells were seeded for transfections into 12- well plates at a density of 100000 cells per well were transfected with a total of 3 μg of plasmid DNA using calcium phosphate coprecipitation. Estrogen and some phytoestrogens (naringenin, 8-prenyl-naringenin and 6-( 1, 1 - dimethylallyl naringenin were used for the stimulation of transfected cells. Results: Findings of our study clearly demonstrated the subtype-selective activation of estrogen receptor (ERα and (ERβ by the p hytoestrogen naringenin (activating estrogen receptor β and its substituted forms 8-prenyl-naringenin and 6-( 1, 1 - dimethylallyl naringenin (activating estrogen receptor α , on the ERE-controlled promoter as well as on the oxytocin gene promoter. Conclusion: The study revealed that some p hytoestrogen s show estrogenic activity by classical or non-classical mechanisms as well as exhibit estrogenic activity by undetermined mechanisms in transfected MDA-MB 231 cell line.

  11. Leptin receptor expression during the progression of endometrial carcinoma is correlated with estrogen and progesterone receptors

    Science.gov (United States)

    Méndez-López, Luis Fernando; Zavala-Pompa, Angel; Cortés-Gutiérrez, Elva I.; Cerda-Flores, Ricardo M.

    2016-01-01

    Introduction The hormone leptin, which is produced in the adipose tissue, may influence tumorigenesis directly via its receptor (Ob-R). Thus, a role for Ob-R in endometrial carcinogenesis has been proposed. However, most studies neither included samples of the entire histological progression of endometrial carcinoma nor examined Ob-R jointly with the estrogen and progesterone receptors (ER and PR, respectively). Material and methods To determine the fluctuations of Ob-R, ER, and PR during the histological progression of endometrial carcinoma, we assessed their expression via immunohistochemistry (IHC) in six histological types of endometrium (proliferative, secretory, nonatypical and atypical hyperplasia, and endometrioid and nonendometrioid endometrial carcinoma), in which we performed histopathological and digital scoring for the quantification of receptors. Results We found that Ob-R expression was positively correlated with that of ER and PR (r = 1, p hyperplasias, and carcinomas, according to their relative digitally scored Ob-R expression (p endometrial carcinogenesis in correlation with ER and PR, suggesting that Ob-R expression in vivo is highly dependent on estrogen and progesterone activities in the endometrium and on its ER and PR status, as suggested previously by in vitro studies. PMID:28144276

  12. Solubilization of the chromatin-bound estrogen receptor from chicken liver and fractionation on hydroxylapatite.

    Science.gov (United States)

    Gschwendt, M

    1976-08-16

    1. High-affinity estrogen-binding sites can be solubilized from the liver chromatin of estrogenized chickens by treatment of the chromatin with 2 M KCL/5 M urea and fractionation on hydroxylapatite. Two estrogen-binding proteins are eluted from hydroxylapatite columns by 20mM phosphate (binding protein I) and 200mMphosphate (binding protein II), respectively. 2. The binding protein I is part of a non-histone protein fraction containing acid-soluble and insoluble proteins, whereas the binding protein II elutes together with high molecular weight nonhistone proteins containing acid insoluble proteins only. Both binding proteins exhibit the smae affinity for estradiol (Kd approximately 10(-9) M). 3. From chromatin of untreated chickens very small amounts of binding protein I (0.1 pmol/mg protein compared to 1.9 pmol/mg protein from estrogenized chickens) with the smae affinity for estradiol as that from estrogenized animals can be solubilized. Binding protein II is not detectable. 4. The "soluble nuclear estrogen receptor" extracted from crude liver nucleir of estrogenized chickens by 0.5 M KCL behaves on hydroxylapatite very similarly to salt/urea-dissociated chromatin with respect to the binding protein I. No binding protein II, however, can be demonstrated. 5. Chromatography of various preparations on Bio-Gel A-1.5 m indicates that the binding protein II is a residual chromatin fragment containing an unseparated binding protein-DNA complex, whereas the binding protein I represents the solubilized nucleic-acid-free chromosomal estrogen receptor. The "soluble nuclear receptor" and the binding protein I, however, are not identical with respect to their chromatographic behaviour on Bio-Gel A-1.5m, even though their estrogen binding entity remaining after trypsin treatment seems to be very similar.

  13. The emerging role of estrogen receptor-β in human reproduction.

    Science.gov (United States)

    Su, Emily J; Xin, Hong; Monsivais, Diana

    2012-01-01

    Knowledge surrounding estrogen and estrogen receptor biology continues to evolve, and the diversity of their actions and complexity of their mechanisms are becoming increasingly evident. Estrogen receptor (ER) regulation of reproduction is no exception. Although it is well established that estrogen and ERα play key roles in mediating several reproductive biological processes, such as myometrial and endometrial growth, increasing evidence suggests that ERβ is also an important factor. ERβ is a key mediator in folliculogenesis and may also play a role in stimulating ovulation and regulating aspects of luteinization. ERβ is also expressed in higher quantities than ERα in the human myometrium and cervix during pregnancy, and thus it may play a part in the initiation of labor and parturition. Finally, ERβ is the sole ER expressed within the endothelium of the endometrium and the fetoplacental vasculature, and studies suggest that its role may contribute to angiogenic and vasomotor changes that play a role in both implantation and regulation of fetoplacental blood flow.

  14. Kaempferol inhibits cancer cell growth by antagonizing estrogen-related receptor α and γ activities.

    Science.gov (United States)

    Wang, Haibin; Gao, Minghui; Wang, Junjian

    2013-11-01

    Kaempferol is a dietary flavonoid that can function as a selective estrogen receptor modulator (SERM). Estrogen-related receptors alpha and gamma (ERRα and ERRγ) are orphan nuclear receptors that play important roles in mitochondrial biogenesis and cancer development. We have shown that kaempferol can functionally antagonize the activities of ERRs based on both response element reporter systems and target gene analysis. Kaempferol modulation of mitochondrial function and suppression cancer cell growth has been confirmed. These findings suggest that kaempferol may exert their anti-cancer activities through antagonizing ERRs activities.

  15. Putative Biomarkers and Targets of Estrogen Receptor Negative Human Breast Cancer

    Directory of Open Access Journals (Sweden)

    Stephen W. Byers

    2011-07-01

    Full Text Available Breast cancer is a progressive and potentially fatal disease that affects women of all ages. Like all progressive diseases, early and reliable diagnosis is the key for successful treatment and annihilation. Biomarkers serve as indicators of pathological, physiological, or pharmacological processes. Her2/neu, CA15.3, estrogen receptor (ER, progesterone receptor (PR, and cytokeratins are biomarkers that have been approved by the Food and Drug Administration for disease diagnosis, prognosis, and therapy selection. The structural and functional complexity of protein biomarkers and the heterogeneity of the breast cancer pathology present challenges to the scientific community. Here we review estrogen receptor-related putative breast cancer biomarkers, including those of putative breast cancer stem cells, a minor population of estrogen receptor negative tumor cells that retain the stem cell property of self renewal. We also review a few promising cytoskeleton targets for ER alpha negative breast cancer.

  16. Expression of estrogen receptor β in human colorectal cancer

    Institute of Scientific and Technical Information of China (English)

    Li-Qun Xie; Jie-Ping Yu; He-Sheng Luo

    2004-01-01

    AIM: To determine the expression of estrogen receptor (ER)β in Chinese colorectal carcinoma (CRC) patients.METHODS: Erβ expression in CRC was investigated by immunohistochemical staining of formalin-fixed, paraffin-embedded tissue sections from 40 CRCs, 10 colonic adenomas,and 10 normal colon mucosa biopsies. The percentage of positive cells was recorded, mRNA expression of Erα and Erβ in 12 CRC tissues and paired normal colon tissues were detected by RT-PCR.RESULTS: Positive ER immunoreactivity was present in part of normal epithelium of biopsy (2/10), adenomas (3/10),and the sections of CRC tissue, most of them were nuclear positive. In CRCs, nuclear Erβ immunoreactivity was detected in over 10% of the cancer cells in 57.5% of the cases and was always associated with cytoplasmic immunoreactivity.There was no statistical significance between Erβ positive and negative groups in regard to depth of invasion and nodal metastases. Of the 12 CRC tissues and paired normal colon tissues, the expression rate of Erα mRNA in CRC tissue and corresponding normal colon tissue was 25% and 16.6%,respectively. Erβ mRNA was expressed in 83.3% CRC tissue and 91.7% paired normal colon tissue, respectively. Therewas no significant difference in Erβ mRNA level between CRC tissues and paired normal colon tissues.CONCLUSION: A large number of CRCs are positive for Erβ, which can also be detected in normal colonic epithelia.There is a different localization of Erβ immunoreactivity among normal colon mucosae, adenomas and CRCs. Erαand Erβ mRNA can be detected both in CRC tissue and in corresponding normal colon tissue. A post-transcriptional mechanism may account for the decrease of Erβ protein expression in CRC tissues.

  17. Estrogen receptor-alpha gene expression in the cortex: sex differences during development and in adulthood.

    Science.gov (United States)

    Wilson, Melinda E; Westberry, Jenne M; Trout, Amanda L

    2011-03-01

    17β-estradiol is a hormone with far-reaching organizational, activational and protective actions in both male and female brains. The organizational effects of early estrogen exposure are essential for long-lasting behavioral and cognitive functions. Estradiol mediates many of its effects through the intracellular receptors, estrogen receptor-alpha (ERα) and estrogen receptor-beta (ERβ). In the rodent cerebral cortex, estrogen receptor expression is high early in postnatal life and declines dramatically as the animal approaches puberty. This decline is accompanied by decreased expression of ERα mRNA. This change in expression is the same in both males and females in the developing isocortex and hippocampus. An understanding of the molecular mechanisms involved in the regulation of estrogen receptor alpha (ERα) gene expression is critical for understanding the developmental, as well as changes in postpubertal expression of the estrogen receptor. One mechanism of suppressing gene expression is by the epigenetic modification of the promoter regions by DNA methylation that results in gene silencing. The decrease in ERα mRNA expression during development is accompanied by an increase in promoter methylation. Another example of regulation of ERα gene expression in the adult cortex is the changes that occur following neuronal injury. Many animal studies have demonstrated that the endogenous estrogen, 17β-estradiol, is neuroprotective. Specifically, low levels of estradiol protect the cortex from neuronal death following middle cerebral artery occlusion (MCAO). In females, this protection is mediated through an ERα-dependent mechanism. ERα expression is rapidly increased following MCAO in females, but not in males. This increase is accompanied by a decrease in methylation of the promoter suggesting a return to the developmental program of gene expression within neurons. Taken together, during development and in adulthood, regulation of ERα gene expression in the

  18. Use of computational modeling approaches in studying the binding interactions of compounds with human estrogen receptors.

    Science.gov (United States)

    Wang, Pan; Dang, Li; Zhu, Bao-Ting

    2016-01-01

    Estrogens have a whole host of physiological functions in many human organs and systems, including the reproductive, cardiovascular, and central nervous systems. Many naturally-occurring compounds with estrogenic or antiestrogenic activity are present in our environment and food sources. Synthetic estrogens and antiestrogens are also important therapeutic agents. At the molecular level, estrogen receptors (ERs) mediate most of the well-known actions of estrogens. Given recent advances in computational modeling tools, it is now highly practical to use these tools to study the interaction of human ERs with various types of ligands. There are two common categories of modeling techniques: one is the quantitative structure activity relationship (QSAR) analysis, which uses the structural information of the interacting ligands to predict the binding site properties of a macromolecule, and the other one is molecular docking-based computational analysis, which uses the 3-dimensional structural information of both the ligands and the receptor to predict the binding interaction. In this review, we discuss recent results that employed these and other related computational modeling approaches to characterize the binding interaction of various estrogens and antiestrogens with the human ERs. These examples clearly demonstrate that the computational modeling approaches, when used in combination with other experimental methods, are powerful tools that can precisely predict the binding interaction of various estrogenic ligands and their derivatives with the human ERs.

  19. Glycone-rich Soy Isoflavone Extracts Promote Estrogen Receptor Positive Breast Cancer Cell Growth.

    Science.gov (United States)

    Johnson, Kailee A; Vemuri, Sravan; Alsahafi, Sameerh; Castillo, Rudy; Cheriyath, Venugopalan

    2016-01-01

    Due to the association of hormone replacement therapy (HRT) with breast cancer risk, estrogenically active soy isoflavones are considered as an HRT alternative to alleviate menopausal symptoms. However, several recent reports challenged the health benefits of soy isoflavones and associated them with breast cancer promotion. While glyconic isoflavones are the major constituents of soybean seeds, due to their low cell permeability, they are considered to be biologically inactive. The glyconic isoflavones may exert their effects on membrane-bound estrogen receptors or could be converted to aglycones by extracellular β-glucosidases. Therefore, we hypothesized that despite their low cell permeability, soybean cultivars with high glyconic isoflavones may promote breast cancer cell growth. To test this, composition and estrogenic activity of isoflavones from 54 commercial soybean cultivars were determined. Soybean seeds produced in identical climate and growth conditions were used to minimize the effects of extraneous factors on isoflavone profile and concentrations. The glyconic daidzin concentration negatively correlated with genistin and with other aglycones. Relative to control, isoflavone extracts from 51 cultivars were estrogenic and promoted the growth of estrogen receptor positive (ER+) breast cancer cell line MCF-7 from 1.14 to 4.59 folds and other three cultivars slightly reduced the growth. Among these, extracts from three cultivars were highly estrogenic and promoted MCF-7 cell growth by 2.59-4.64 folds (Psoy isoflavone extracts may exert estrogenic effects and promote ER+ breast cancer growth.

  20. Influence of estrogen receptor alpha and progesterone receptor polymorphisms on the effects of hormone therapy on mammographic density.

    NARCIS (Netherlands)

    Duijnhoven, F.J.B. van; Peeters, P.H.; Warren, R.M.; Bingham, S.; Uitterlinden, A.G.; Noord, P.A.H. van; Monninkhof, E.M.; Grobbee, D.E.; Gils, C.H. van

    2006-01-01

    Postmenopausal hormone therapy increases mammographic density, a strong breast cancer risk factor, but effects vary across women. We investigated whether the effect of hormone therapy use is modified by polymorphisms in the estrogen receptor (ESR1) and progesterone receptor (PGR) genes in the Dutch

  1. Differential ligand binding affinities of human estrogen receptor-α isoforms.

    Directory of Open Access Journals (Sweden)

    Amanda H Y Lin

    Full Text Available Rapid non-genomic effects of 17β-estradiol are elicited by the activation of different estrogen receptor-α isoforms. Presence of surface binding sites for estrogen have been identified in cells transfected with full-length estrogen receptor-α66 (ER66 and the truncated isoforms, estrogen receptor-α46 (ER46 and estrogen receptor-α36 (ER36. However, the binding affinities of the membrane estrogen receptors (mERs remain unknown due to the difficulty of developing of stable mER-transfected cell lines with sufficient mER density, which has largely hampered biochemical binding studies. The present study utilized cell-free expression systems to determine the binding affinities of 17β-estradiol to mERs, and the relationship among palmitoylation, membrane insertion and binding affinities. Saturation binding assays of human mERs revealed that [³H]-17β-estradiol bound ER66 and ER46 with Kd values of 68.81 and 60.72 pM, respectively, whereas ER36 displayed no specific binding within the tested concentration range. Inhibition of palmitoylation or removal of the nanolipoprotein particles, used as membrane substitute, reduced the binding affinities of ER66 and ER46 to 17β-estradiol. Moreover, ER66 and ER46 bound differentially with some estrogen receptor agonists and antagonists, and phytoestrogens. In particular, the classical estrogen receptor antagonist, ICI 182,780, had a higher affinity for ER66 than ER46. In summary, the present study defines the binding affinities for human estrogen receptor-α isoforms, and demonstrates that ER66 and ER46 show characteristics of mERs. The present data also indicates that palmitoylation and membrane insertion of mERs are important for proper receptor conformation allowing 17β-estradiol binding. The differential binding of ER66 and ER46 with certain compounds substantiates the prospect of developing mER-selective drugs.

  2. Increased mandibular condylar growth in mice with estrogen receptor beta deficiency

    OpenAIRE

    Yosuke, Kamiya; JING, Chen; Manshan, Xu; Achint, Utreja; Thomas, Choi; Hicham, Drissi; Sunil, Wadhwa

    2013-01-01

    Temporomandibular joint (TMJ) disorders predominantly afflict women of childbearing age, suggesting a role for female hormones in the disease process. In long bones, estrogen acting via estrogen receptor beta (ERβ) inhibits axial skeletal growth in female mice. However, the role of ERβ in the mandibular condyle is largely unknown. We hypothesize that female ERβ deficient mice will have increased mandibular condylar growth compared with wild type (WT) female mice. This study examined female 7-...

  3. Membrane Estrogen Receptor Alpha Targeting and its Association with SHC in Regulating Breast Cancer Cell Proliferation

    Science.gov (United States)

    2004-06-01

    Hormonal Steroids and Hormones and Cancer: Adaptive hypersensitivity to estrogen: mechanism for superiority of aromatase inhibitors over selective estrogen... progestin on breast cancer and mammography in healthy postmenopausal women: the Women’s Health Initiative Randomized Trial. JAMA, 289: 3243-3253, 2003. 2...Migliaccio A, Auricchio F 1999 Non-tran- hormone receptors and tyrosine kinase oncogene prod- scriptional action of oestradiol and progestin triggers ucts

  4. A Robotic BG1Luc Reporter Assay to Detect Estrogen Receptor Agonists

    OpenAIRE

    Stoner, Matthew A.; Yang, Chun Z.; Bittner, George D.

    2014-01-01

    Endocrine disrupting chemicals with estrogenic activity (EA) have been associated with various adverse health effects. US agencies (ICCVAM/NICEATM) tasked to assess in vitro transcription activation assays to detect estrogenic receptor (ER) agonists for EA have recently validated a BG1Luc assay in manual format, but prefer robotic formats. We have developed a robotic BG1Luc EA assay to detect EA that demonstrated 100% concordance with ICCVAM meta-analyses and ICCVAM BG1Luc results in manual f...

  5. Phytoestrogens Activate the Estrogen Receptor in HepG2 Cells.

    Science.gov (United States)

    Kelly, Lynne A

    2016-01-01

    Phytoestrogens are popular alternatives to estrogen therapy however their effects on hemostasis in postmenopausal women are unknown. This chapter describes a protocol to determine the effect of the phytoestrogens genistein, daidzein and equol, on the expression of key genes from the hemostatic system in human hepatocyte cell models and to determine the role of estrogen receptors in mediating any response seen using in vitro culture systems and Taqman(®) gene expression analysis.

  6. Is There a Role for Base Excision Repair in Estrogen/Estrogen Receptor-Driven Breast Cancers?

    Science.gov (United States)

    Abdel-Fatah, Tarek M.A.; Perry, Christina; Arora, Arvind; Thompson, Nicola; Doherty, Rachel; Moseley, Paul M.; Green, Andrew R.; Chan, Stephen Y.T.; Ellis, Ian O.

    2014-01-01

    Abstract Estrogen and estrogen metabolite-induced reactive oxygen species generation can promote oxidative DNA base damage. If unrepaired, base damaging lesions could accelerate mutagenesis, leading to a “mutator phenotype” characterized by aggressive behavior in estrogen-estrogen receptor (ER)-driven breast cancer. To test this hypothesis, we investigated 1406 ER+ early-stage breast cancers with 20 years' long-term clinical follow-up data for DNA polymerase β (pol β), flap endonuclease 1 (FEN1), AP endonuclease 1 (APE1), X-ray cross-complementation group 1 protein (XRCC1), single-strand monofunctional uracil glycosylase-1 (SMUG1), poly (ADP-ribose) polymerase 1 (PARP1), ataxia telangiectasia mutated and Rad3 related (ATR), ataxia telangiectasia mutated (ATM), DNA-dependent protein kinase catalytic subunit (DNA-PKcs), Chk1, Chk2, p53, breast cancer susceptibility gene 1 (BRCA1), and topoisomerase 2 (TOPO2) expression. Multivariate Cox proportional hazards model was used to calculate a DNA repair prognostic index and correlated to clinicopathological variables and survival outcomes. Key base excision repair (BER) proteins, including XRCC1, APE1, SMUG1, and FEN1, were independently associated with poor breast cancer-specific survival (BCSS) (ps≤0.01). Multivariate Cox model stratified patients into four distinct prognostic sub-groups with worsening BCSS (ps<0.01). In addition, compared with prognostic sub-group 1, sub-groups 2, 3, and 4 manifest increasing tumor size, grade, mitosis, pleomorphism, differentiation, lymphovascular invasion, high Ki67, loss of Bcl-2, luminal B phenotype (ps≤0.01), and poor survival, including in patients who received tamoxifen adjuvant therapy (p<0.00001). Our observation supports the hypothesis that BER-directed stratification could inform appropriate therapies in estrogen-ER-driven breast cancers. Antioxid. Redox Signal. 21, 2262–2268. PMID:25111287

  7. Immunolocalization of aromatase, estrogen and estrogen receptor α and β in the epithelium of digestive tract and enteric neurons of amphioxus (Branchiostoma belcheri )

    Institute of Scientific and Technical Information of China (English)

    FANG Yongqiang; WENG Youzhu; YE Rongzhong; LIU Lili

    2005-01-01

    Immunohistochemical localization of aromatase, estrogen and estrogen receptor in the digestive tract and enteric neurons of amphioxus is investigated. It was found that immunoreactive proteins of aromatase, estrogen and ER-α and β are expressed in hepatic diverticulum, epithelial cells of anterior and posterior region of midgut, as well as in enteric neurons, while hindgut showed immunonegative. The results suggest that digestive tract of amphioxus may be able to synthesize estrogen and possess endocrine function, like rat gastric epithelium and enteric neurons in mammals. The present study provides authentic morphological evidence for explaining the action mechanism of estrogen in regulating the digestive function of gut and the functional evolution of estrogen, which has important theoretical significance in amphioxus.

  8. Estradiol-induced modulation of estrogen receptor-beta and GABA within the adult neocortex: a potential transsynaptic mechanism for estrogen modulation of BDNF.

    Science.gov (United States)

    Blurton-Jones, Mathew; Tuszynski, Mark H

    2006-12-01

    Estrogen influences brain-derived neurotrophic factor (BDNF) expression in the neocortex. However, BDNF-producing cortical neurons do not express detectable levels of nuclear estrogen receptors; instead, the most abundant cortical nuclear estrogen receptor, ER-beta, is present in GABAergic neurons, prompting us to test the hypothesis that estrogen effects on BDNF are mediated via cortical inhibitory interneurons. Adult female ovariectomized rats were provided acute estrogen replacement and the number of cortical GABA, ER-beta, and ER-beta/GABA double-labeled neurons was examined. Within 48 hours of injection of 17-beta-estradiol, the number of perirhinal neurons double-labeled for ER-beta/GABA was reduced by 28% (PBDNF-expressing cells, brain sections were double- or triple-labeled for ER-beta, GABAergic, and BDNF immunomarkers. The findings indicated that ER-beta-bearing inhibitory neurons project onto other GABAergic neurons that lack nuclear estrogen receptors; these inhibitory neurons in turn innervate BDNF-expressing excitatory cells. High estrogen states reduce cortical GABA levels, presumably releasing inhibition on BDNF-expressing neurons. This identifies a putative two-step transsynaptic mechanism whereby estrogen availability modulates expression of inhibitory transmitters, resulting in increased BDNF expression.

  9. G Protein-Coupled Estrogen Receptor-Selective Ligands Modulate Endometrial Tumor Growth

    Directory of Open Access Journals (Sweden)

    Whitney K. Petrie

    2013-01-01

    Full Text Available Endometrial carcinoma is the most common cancer of the female reproductive tract. GPER/GPR30 is a 7-transmembrane spanning G protein-coupled receptor that has been identified as the third estrogen receptor, in addition to ERα and ERβ. High GPER expression is predictive of poor survival in endometrial and ovarian cancer, but despite this, the estrogen-mediated signaling pathways and specific estrogen receptors involved in endometrial cancer remain unclear. Here, employing ERα-negative Hec50 endometrial cancer cells, we demonstrate that GPER mediates estrogen-stimulated activation of ERK and PI3K via matrix metalloproteinase activation and subsequent transactivation of the EGFR and that ER-targeted therapeutic agents (4-hydroxytamoxifen, ICI182,780/fulvestrant, and Raloxifene, the phytoestrogen genistein, and the “ERα-selective” agonist propylpyrazole triol also function as GPER agonists. Furthermore, xenograft tumors of Hec50 cells yield enhanced growth with G-1 and estrogen, the latter being inhibited by GPER-selective pharmacologic antagonism with G36. These results have important implications with respect to the use of putatively ER-selective ligands and particularly for the widespread long-term use of “ER-targeted” therapeutics. Moreover, our findings shed light on the potential mechanisms of SERM/SERD side effects reported in many clinical studies. Finally, our results provide the first demonstration that pharmacological inhibition of GPER activity in vivo prevents estrogen-mediated tumor growth.

  10. Androgenic/estrogenic balance in the male rat cerebral circulation: metabolic enzymes and sex steroid receptors.

    Science.gov (United States)

    Gonzales, Rayna J; Ansar, Saema; Duckles, Sue P; Krause, Diana N

    2007-11-01

    Tissues from males can be regulated by a balance of androgenic and estrogenic effects because of local metabolism of testosterone and expression of relevant steroid hormone receptors. As a critical first step to understanding sex hormone influences in the cerebral circulation of males, we investigated the presence of enzymes that metabolize testosterone to active products and their respective receptors. We found that cerebral blood vessels from male rats express 5alpha-reductase type 2 and aromatase, enzymes responsible for conversion of testosterone into dihydrotestosterone (DHT) and 17beta-estradiol, respectively. Protein levels of these enzymes, however, were not modulated by long-term in vivo hormone treatment. We also showed the presence of receptors for both androgens (AR) and estrogens (ER) from male cerebral vessels. Western blot analysis showed bands corresponding to the full-length AR (110 kDa) and ERalpha (66 kDa). Long-term in vivo treatment of orchiectomized rats with testosterone or DHT, but not estrogen, increased AR levels in cerebral vessels. In contrast, ERalpha protein levels were increased after in vivo treatment with estrogen but not testosterone. Fluorescent immunostaining revealed ERalpha, AR, and 5alpha-reductase type 2 in both the endothelial and smooth muscle layers of cerebral arteries, whereas aromatase staining was solely localized to the endothelium. Thus, cerebral vessels from males are target tissues for both androgens and estrogen. Furthermore, local metabolism of testosterone might balance opposing androgenic and estrogenic influences on cerebrovascular as well as brain function in males.

  11. Enantioselective recognition of mono-demethylated methoxychlor metabolites by the estrogen receptor.

    Science.gov (United States)

    Miyashita, Masahiro; Shimada, Takahiro; Nakagami, Shizuka; Kurihara, Norio; Miyagawa, Hisashi; Akamatsu, Miki

    2004-02-01

    Metabolites of methoxychlor such as 2-(p-hydroxyphenyl)-2-(p-methoxyphenyl)-1,1,1-trichloroethane (mono-OH-MXC) and 2,2-bis(p-hydroxyphenyl)-1,1,1-trichloroethane (bis-OH-MXC), have estrogenic activity. Mono-OH-MXC is a chiral compound in which the carbon atom bridging two benzene rings is the chiral centre. In previous studies the estrogenic activity of racemic mono-OH-MXC has been measured, and the activity of each enantiomer of this compound has not yet been elucidated. In this study, we evaluated the estrogen receptor-binding activity of each enantiomer of mono-OH-MXC to clarify the enantioselective recognition by the estrogen receptor. (S)-mono-OH-MXC showed 3-fold higher binding activity than that of the (R) enantiomer. The activity of bis-OH-MXC was only 1.7-fold higher than that of (S)-mono-OH-MXC. This result suggests that the one hydroxy group and the orientation of the CCl3 group of mono- and bis-OH-MXCs are important for the interaction with the estrogen receptor. The result also points out the estrogenic activity of methoxychlor after metabolic activation in vivo, which predominantly produces the (S)-mono-OH-MXC, may be higher than estimated from the in vitro activity of racemic mixtures.

  12. Postlesion estradiol treatment increases cortical cholinergic innervations via estrogen receptor-α dependent nonclassical estrogen signaling in vivo.

    Science.gov (United States)

    Koszegi, Zsombor; Szego, Éva M; Cheong, Rachel Y; Tolod-Kemp, Emeline; Ábrahám, István M

    2011-09-01

    17β-Estradiol (E2) treatment exerts rapid, nonclassical actions via intracellular signal transduction system in basal forebrain cholinergic (BFC) neurons in vivo. Here we examined the effect of E2 treatment on lesioned BFC neurons in ovariectomized mice and the role of E2-induced nonclassical action in this treatment. Mice given an N-methyl-d-aspartic acid (NMDA) injection into the substantia innominata-nucleus basalis magnocellularis complex (SI-NBM) exhibited cholinergic cell loss in the SI-NBM and ipsilateral cholinergic fiber loss in the cortex. A single injection of E2 after NMDA lesion did not have an effect on cholinergic cell loss in the SI-NBM, but it restored the ipsilateral cholinergic fiber density in the cortex in a time- and dose-dependent manner. The most effective cholinergic fiber restoration was observed with 33 ng/g E2 treatment at 1 h after NMDA lesion. The E2-induced cholinergic fiber restoration was absent in neuron-specific estrogen receptor-α knockout mice in vivo. Selective activation of nonclassical estrogen signaling in vivo by estren induced E2-like restorative actions. Selective blockade of the MAPK or protein kinase A pathway in vivo prevented E2's ability to restore cholinergic fiber loss. Finally, studies in intact female mice revealed an E2-induced restorative effect that was similar to that of E2-treated ovariectomized mice. These observations demonstrate that a single E2 treatment restores the BFC fiber loss in the cortex, regardless of endogenous E2 levels. They also reveal the critical role of nonclassical estrogen signaling via estrogen receptor-α and protein kinase A-MAPK pathways in E2-induced restorative action in the cholinergic system in vivo.

  13. Early expression of aromatase and the membrane estrogen receptor GPER in neuromasts reveals a role for estrogens in the development of the frog lateral line system.

    Science.gov (United States)

    Hamilton, Christine K; Navarro-Martin, Laia; Neufeld, Miriam; Basak, Ajoy; Trudeau, Vance L

    2014-09-01

    Estrogens and their receptors are present at very early stages of vertebrate embryogenesis before gonadal tissues are formed. However, the cellular source and the function of estrogens in embryogenesis remain major questions in developmental endocrinology. We demonstrate the presence of estrogen-synthesizing enzyme aromatase and G protein-coupled estrogen receptor (GPER) proteins throughout early embryogenesis in the model organism, Silurana tropicalis. We provide the first evidence of aromatase in the vertebrate lateral line. High levels of aromatase were detected in the mantle cells of neuromasts, the mechanosensory units of the lateral line, which persisted throughout the course of development (Nieuwkoop and Faber stages 34-47). We show that GPER is expressed in both the accessory and hair cells. Pharmacological activation of GPER with the agonist G-1 disrupted neuromast development and migration. Future study of this novel estrogen system in the amphibian lateral line may shed light on similar systems such as the mammalian inner ear.

  14. Estrogen receptor- and aryl hydrocarbon receptor- mediated activities of a coal-tar creosote

    Energy Technology Data Exchange (ETDEWEB)

    Fielden, M.R.; Wu, Z.F.; Sinal, C.J.; Jury, H.H.; Bend, J.R.; Hammond, G.L.; Zacharewski, T.R. [Michigan State University, East Lansing, MI (USA). Dept. of Biochemistry

    2000-05-01

    A coal-tar creosote was examined for estrogen receptor (ER)- and aryl hydrocarbon receptor (AhR)-mediated activity using a battery of mechanistically based assays. In vitro, creosote was found to bind the mouse ER, bind to the human sex hormone-binding globulin, and elicit partial agonist activity in reporter gene assays in transiently transfected MCF-7 cells. Based on competitive binding to the mouse ER, creosote contains approximately 165 mg/L of estradiol- equivalents. Creosote effectively transformed the AhR in vitro and induced a Cyp 1a1-regulated luciferase reporter gene in transiently transfected Hepa 1c1c7 cells. Based on dose-response curves, creosote contains approximately 730 mg/L of dioxin-equivalents. Creosote did not exhibit any AhR-mediated antiestrogenic activity in vitro. In vivo, creosote significantly induced liver pentoxyresorufin O- depentylation and ethoxyresorufin-O-deethylation (EROD) in a dose-dependent manner in ovariectomized (OVX) ICR mice, but did not increase uterine weight wet or vaginal cornification, due possibly to AhR-mediated antiestrogenic activity. In OVX DBA/2 mice, a strain less responsive to AhR ligands, creosote induced liver EROD to a lesser extent, but still did not show an increase in uterine wet weight or vaginal cornification. These results demonstrate that coal- tar creosote exhibits AhR- and ER-mediated activity in vitro, but its dioxinlike activity may suppress estrogenic response in vivo.

  15. Estrogen receptor- and aryl hydrocarbon receptor-mediated activities of a coal-tar creosote

    Energy Technology Data Exchange (ETDEWEB)

    Fielden, M.R.; Wu, Z.F.; Sinal, C.J.; Jury, H.H.; Bend, J.R.; Hammond, G.L.; Zacharewski, T.R.

    2000-05-01

    A coal-tar creosote was examined for estrogen receptor (ER)- and aryl hydrocarbon receptor (AhR)-mediated activity using a battery of mechanistically based assays. In vitro, creosote was found to bind to the mouse ER, bind to the human sex hormone-binding globulin, and elicit partial agonist activity in reporter gene assays in transiently transfected MCF-7 cells. Based on competitive binding to the mouse ER, creosote contains approximately 165 mg/L of estradiol-equivalents. Creosote effectively transformed the AhR in vitro and induced a Cyplal-regulated luciferase reporter gene in transiently transfected Hepa 1c1c7 cells. Based on dose-response curves, creosote contains approximately 730 mg/L of dioxin-equivalents. Creosote did not exhibit any AhR-mediated antiestrogenic activity in vitro. In vivo, creosote significantly induced liver pentoxyresorufin O-depentylation and ethoxyresorufin-O-deethylation (EROD) in a dose-dependent manner in ovariectomized (OVX) ICR mice, but did not increase uterine weight wet or vaginal cornification, due possibly to AhR-mediated antiestrogenic activity. In OVX DBA/2 mice, a strain less responsive to AhR ligands, creosote induced liver EROD to a lesser extent, but still did not show an increase in uterine wet weight or vaginal cornification. These results demonstrate that coal-tar creosote exhibits AhR- and ER-mediated activity in vitro, but its dioxinlike activity may suppress estrogenic responses in vivo.

  16. The polymorphism of estrogen receptor α is important for metabolic consequences associated with menopause.

    Science.gov (United States)

    Pinkas, Jarosław; Gujski, Mariusz; Wierzbińska-Stępniak, Anna; Owoc, Alfred; Bojar, Iwona

    2016-01-01

    Menopause is associated with multiple health and metabolic consequences resulting from the decrease in estrogens level. Women at postmenopausal age are burdened with a higher risk of cardiovascular diseases, and the main cause of mortality in this group is ischemic heart disease. Estrogen deficiency is related, among other things, with frequent occurrence of dislipidemia, cessation of the beneficial effect of estrogens on the vascular wall, increase in body weight characterized by unfavourable redistribution of fatty tissue, with an increased amount of visceral fat and reduction of so-called non-fatty body mass. Estrogens exert an effect on metabolism, mainly through the genomic mechanism. The presence of α and β estrogen receptors was found in many tissues and organs. Recently, attention was paid to the fact that the effect of estrogens action on tissues and organs may depend not only on distribution, but also on their polymorphic types. The article presents the latest approach to the problem of metabolic consequences resulting from menopause, according to the possessed α estrogen receptor polymorphism (ERα).Genes encoding for ERα have many polymorphic variants, the most important of which from the clinical aspect are two single nucleotide polymorphisms (SNPs) - Xba1 and PvuII. The review of literature indicates that ERα polymorphisms are of great importance with respect to the effect of estrogens on the functioning of the body of a woman after menopause, and may imply the development of many pathological states, including the prevention or development of metabolic disorders. Identifying ERα polymorphisms may be useful in case of estrogen therapy for menopausal women who may benefit from it.

  17. Mechanisms of transcriptional activation of the mouse claudin-5 promoter by estrogen receptor alpha and beta.

    Science.gov (United States)

    Burek, Malgorzata; Steinberg, Katrin; Förster, Carola Y

    2014-07-01

    Claudin-5 is an integral membrane protein and a critical component of endothelial tight junctions that control paracellular permeability. Claudin-5 is expressed at high levels in the brain vascular endothelium. Estrogens have multiple effects on vascular physiology and function. The biological actions of estrogens are mediated by two different estrogen receptor (ER) subtypes, ER alpha and ER beta. Estrogens have beneficial effects in several vascular disorders. Recently we have cloned and characterized a murine claudin-5 promoter and demonstrated 17beta-estradiol (E2)-mediated regulation of claudin-5 in brain and heart microvascular endothelium on promoter, mRNA and protein level. Sequence analysis revealed a putative estrogen response element (ERE) and a putative Sp1 transcription factor binding site in the claudin-5 promoter. The aim of the present study was to further characterize the estrogen-responsive elements of claudin-5 promoter. First, we introduced point mutations in ERE or Sp1 site in -500/+111 or in Sp1 site of -268/+111 claudin-5 promoter construct, respectively. Basal and E2-mediated transcriptional activation of mutated constructs was abrogated in the luciferase reporter gene assay. Next, we examined whether estrogen receptor subtypes bind to the claudin-5 promoter region. For this purpose we performed chromatin immunoprecipitation assays using anti-estrogen receptor antibodies and cellular lysates of E2-treated endothelial cells followed by quantitative PCR analysis. We show enrichment of claudin-5 promoter fragments containing the ERE- and Sp1-binding site in immunoprecipitates after E2 treatment. Finally, in a gel mobility shift assay, we demonstrated DNA-protein interaction of both ER subtypes at ERE. In summary, this study provides evidence that both a non-consensus ERE and a Sp1 site in the claudin-5 promoter are functional and necessary for the basal and E2-mediated activation of the promoter.

  18. Advances in Variations of Estrogen Receptor, Progesterone Receptor and Human Epidermal Growth Factor Receptor-2 Status in Metastatic Breast Cancer

    Institute of Scientific and Technical Information of China (English)

    Yuan Yuan; Zhang Lili

    2013-01-01

    Chemotherapy, endocrine therapy and molecular targeted therapy are vital means in the treatment of metastatic breast cancer (MBC), whose reasonable and standard applications are of great importance to prolong patients’ survival and improve the quality of life. The expressions of estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor-2 (HER-2) present signiifcant differences between primary and metastatic breast cancer. However, these differences may affect the selection of MBC patients for therapeutic strategies and judgment on the prognosis. Hence, the relevant researches on variations of hormone receptors and HER-2 in primary and metastatic breast cancer, discordant causes of ER, PR and HER-2 expression in primary and metastatic lesions and clinical value of biopsy to the metastases are reviewed in the study.

  19. Roxatidine, an H(2) receptor blocker, is an estrogenic compound--experimental evidence.

    Science.gov (United States)

    Agrawal, Shyam Sundar; Alvin Jose, Manonmani

    2010-08-01

    Roxatidine is an H(2) receptor blocker frequently used in the treatment of peptic ulcers. H(2) receptor blockers are reported to show antifertility activity. To examine the mechanism of antifertility, estrogenic and antiestrogenic activity was studied using an in vitro rat and rabbit uterine receptor binding assay and in vivo using the uterotrophic assay in immature Wistar rats. The results revealed that roxatidine showed mild receptor binding affinity to both rat and rabbit uterine receptors when compared to estradiol. Interstingly, in vivo roxatidine increases the wet uterine weight of immature Wistar rats significantly (Proxatidine treated group was somewhat similar to that of the estradiol treated group. Histopathological results and the structure of the roxatidine support that H(2) receptor blocker roxatidine is an estrogenic compound.

  20. Immunohistochemical Expression Of Estrogen And Progesterone Receptors In Endometrial Hyperplasia And Endometrioid Carcinoma

    Directory of Open Access Journals (Sweden)

    N Izadi-Mood

    2012-06-01

    Full Text Available Background: Endometrial carcinoma (EC is the most common gynecologic malignancy; however, mechanisms underlying its pathogenesis remain obscure.Endometrial carcinoma has been classified into two major categories: type I (related to estrogen or endometrioid adenocarcinomaand type II (unrelated to estrogen.Estrogen is the main trigger for the abnormal proliferation in the endometrial epithelium but progesterone can inhibit this process. The aim of this study was to analyze the expression of estrogen and progesterone receptors in all types of endometrial hyperplasia in comparison to endometrioid adenocarcinoma of endometrium. Methods: Forty-seven specimens including 23 cases of histopathologically confirmed hyperplastic endometrium (12 simple hyperplasia, 5 complex hyperplasia without atypia, and 6 complex hyperplasia with atypia and 24 cases of endometrial carcinoma were studied. Immunohistochemical staining of estrogen and progesterone receptors was performed in paraffin-embedded blocks and expression of estrogen and progesterone receptors were scored according to the proportion of positive staining cells. Results: Overexpression of progesterone receptors was seen in 18 (75% out of 24 cases of endometrial carcinoma and 23 (100% of all types of endometrial hyperplasia. The aforesaid differences were statistically significant (P=0.023. 70.8% of cases with endometrial carcinoma were 3+ for immunohistochemical staining of progesterone receptors as were 85.7% of the cases with endometrial hyperplasia; the difference being also statistically significant (P=0.02.Conclusion: Considering the increased proportion of progesterone receptor expression in all types of hyperplastic endometrium in comparison to endometrial carcinoma, hormonal therapy by progestinal agents is recommended as a treatment of choice.

  1. Fulvestrant radiosensitizes human estrogen receptor-positive breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing, E-mail: wangstella5@163.com [Department of Breast Surgery, Qilu Hospital, Shandong Univeristy, Wenhua Xi Road 107, Shandong Province (China); Department of Oncology, Affiliated Hospital of Qingdao University Medical College, Shandong Province (China); Yang, Qifeng, E-mail: qifengy@gmail.com [Department of Breast Surgery, Qilu Hospital, Shandong Univeristy, Wenhua Xi Road 107, Shandong Province (China); Haffty, Bruce G., E-mail: hafftybg@umdnj.edu [Department of Radiation Oncology, UMDNJ-Robert Wood Johnson School of Medicine, Cancer Institute of New Jersey, NB (United States); Li, Xiaoyan, E-mail: xiaoyanli1219@gmail.com [Department of Oncology, Affiliated Hospital of Qingdao University Medical College, Shandong Province (China); Moran, Meena S., E-mail: meena.moran@yale.edu [Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT (United States)

    2013-02-08

    Highlights: ► Fulvestrant radiosensitizes MCF-7 cells. ► Fulvestrant increases G1 arrest and decreases S phase in MCF-7 cells. ► Fulvestrant down-regulates DNA-PKcs and RAD51 in MCF-7 cells. -- Abstract: The optimal sequencing for hormonal therapy and radiation are yet to be determined. We utilized fulvestrant, which is showing promise as an alternative to other agents in the clinical setting of hormonal therapy, to assess the cellular effects of concomitant anti-estrogen therapy (fulvestrant) with radiation (F + RT). This study was conducted to assess the effects of fulvestrant alone vs. F + RT on hormone-receptor positive breast cancer to determine if any positive or negative combined effects exist. The effects of F + RT on human breast cancer cells were assessed using MCF-7 clonogenic and tetrazolium salt colorimetric (MTT) assays. The assays were irradiated with a dose of 0, 2, 4, 6 Gy ± fulvestrant. The effects of F + RT vs. single adjuvant treatment alone on cell-cycle distribution were assessed using flow cytometry; relative expression of repair proteins (Ku70, Ku80, DNA-PKcs, Rad51) was assessed using Western Blot analysis. Cell growth for radiation alone vs. F + RT was 0.885 ± 0.013 vs. 0.622 ± 0.029 @2 Gy, 0.599 ± 0.045 vs. 0.475 ± 0.054 @4 Gy, and 0.472 ± 0.021 vs. 0.380 ± 0.018 @6 Gy RT (p = 0.003). While irradiation alone induced G2/M cell cycle arrest, the combination of F + RT induced cell redistribution in the G1 phase and produced a significant decrease in the proportion of cells in G2 phase arrest and in the S phase in breast cancer cells (p < 0.01). Furthermore, levels of repair proteins DNA-PKcs and Rad51 were significantly decreased in the cells treated with F + RT compared with irradiation alone. F + RT leads to a decrease in the surviving fraction, increased cell cycle arrest, down regulating of nonhomologous repair protein DNA-PKcs and homologous recombination repair protein RAD51. Thus, our findings suggest that F + RT

  2. Development of a novel method for screening of estrogenic compounds using nano-sized bacterial magnetic particles displaying estrogen receptor

    Energy Technology Data Exchange (ETDEWEB)

    Yoshino, Tomoko [Department of Biotechnology, Tokyo University of Agriculture and Technology, 2 24 16 Naka-cho, Koganei, Tokyo 184-8588 (Japan); Kato, Fukuichi [Department of Biotechnology, Tokyo University of Agriculture and Technology, 2 24 16 Naka-cho, Koganei, Tokyo 184-8588 (Japan); Takeyama, Haruko [Department of Biotechnology, Tokyo University of Agriculture and Technology, 2 24 16 Naka-cho, Koganei, Tokyo 184-8588 (Japan); Nakai, Makoto [Chemicals Assessment Center, Chemicals Evaluation and Research Institute, 1600 Shimo-Takano, Sugito-machi, Kitakatsushika-gun, Saitama 345-0043 (Japan); Yakabe, Yoshikuni [Chemicals Assessment Center, Chemicals Evaluation and Research Institute, 1600 Shimo-Takano, Sugito-machi, Kitakatsushika-gun, Saitama 345-0043 (Japan); Matsunaga, Tadashi [Department of Biotechnology, Tokyo University of Agriculture and Technology, 2 24 16 Naka-cho, Koganei, Tokyo 184-8588 (Japan)]. E-mail: tmatsuna@cc.tuat.ac.jp

    2005-03-14

    In this study, nano-sized bacterial magnetic particles (BMPs) displaying human estrogen receptor ligand binding domain (ERLBD) on the surface was successfully produced by the magnetic bacterium, Magnetospirillum magneticum AMB-1. Furthermore, a non-isotopic binding assay for estrogenic compounds using the BMPs displaying ERLBD was developed. A BMP membrane-specific protein, Mms16, was used as an anchor molecule to localize ERLBD on the surface of BMPs. ERLBD-BMP complexes were simply extracted by magnetic separation from ruptured AMB-1 transformants and used for the assay based on the competitive binding of alkaline phosphatase conjugated 17{beta}-estradiol (ALP-E2) as a tracer. Dissociation constant of the receptor was 2.3 nM. Inhibition curves were evaluated by the decrease in luminescence intensity resulting from the enzymatic reaction of alkaline phosphatase. The overall simplicity of this receptor binding assay results in a method that can be easily adapted to a high throughput format. Moreover, this method can be integrated into a fully-automated ligand screening system using magnetic separation.

  3. Estrogen receptor α functions in the regulation of motivation and spatial cognition in young male rats.

    Directory of Open Access Journals (Sweden)

    Katrin Meyer

    Full Text Available Estrogenic functions in regulating behavioral states such as motivation, mood, anxiety, and cognition are relatively well documented in female humans and animals. In males, however, although the entire enzymatic machinery for producing estradiol and the corresponding receptors are present, estrogenic functions have been largely neglected. Therefore, and as a follow-up study to previous research, we sub-chronically applied a specific estrogen receptor α (ERα antagonist in young male rats before and during a spatial learning task (holeboard. The male rats showed a dose-dependent increase in motivational, but not cognitive, behavior. The expression of hippocampal steroid receptor genes, such as glucocorticoid (GR, mineralocorticoid (MR, androgen (AR, and the estrogen receptor ERα but not ERβ was dose-dependently reduced. The expression of the aromatase but not the brain-derived neurotrophic factor (BDNF encoding gene was also suppressed. Reduced gene expression and increased behavioral performance converged at an antagonist concentration of 7.4 µmol. The hippocampal and blood serum hormone levels (corticosterone, testosterone, and 17β-estradiol did not differ between the experimental groups and controls. We conclude that steroid receptors (and BDNF act in a concerted, network-like manner to affect behavior and mutual gene expression. Therefore, the isolated view on single receptor types is probably insufficient to explain steroid effects on behavior. The steroid network may keep motivation in homeostasis by supporting and constraining the behavioral expression of motivation.

  4. Biochemical and immunohistochemical estrogen and progesterone receptors in adenomatous hyperplasia and endometrial carcinoma: correlations with stage and other clinicopathologic features

    DEFF Research Database (Denmark)

    Nyholm, H C; Nielsen, A L; Lyndrup, J;

    1992-01-01

    OBJECTIVE: This study investigates clinicopathologic associations of estrogen and progesterone receptor content in endometrial carcinoma. STUDY DESIGN: One hundred fifty-two patients with endometrial cancer and 12 with adenomatous hyperplasia were included. Dextran-coated charcoal receptor assay...... of International Federation of Gynecology and Obstetrics grade. Age of patient, years since menopause, and previous estrogen treatment were not related to receptor content. In adenomatous hyperplasia high progesterone receptor levels were seen. CONCLUSION: The inverse correlation between clinical stage...... of endometrial carcinoma and content of estrogen and progesterone receptors may reflect tumor biologic behavior....

  5. Estradiol and Estrogen Receptor Agonists Oppose Oncogenic Actions of Leptin in HepG2 Cells.

    Directory of Open Access Journals (Sweden)

    Minqian Shen

    Full Text Available Obesity is a significant risk factor for certain cancers, including hepatocellular carcinoma (HCC. Leptin, a hormone secreted by white adipose tissue, precipitates HCC development. Epidemiology data show that men have a much higher incidence of HCC than women, suggesting that estrogens and its receptors may inhibit HCC development and progression. Whether estrogens antagonize oncogenic action of leptin is uncertain. To investigate potential inhibitory effects of estrogens on leptin-induced HCC development, HCC cell line HepG2 cells were treated with leptin in combination with 17 β-estradiol (E2, estrogen receptor-α (ER-α selective agonist PPT, ER-β selective agonist DPN, or G protein-coupled ER (GPER selective agonist G-1. Cell number, proliferation, and apoptosis were determined, and leptin- and estrogen-related intracellular signaling pathways were analyzed. HepG2 cells expressed a low level of ER-β mRNA, and leptin treatment increased ER-β expression. E2 suppressed leptin-induced HepG2 cell proliferation and promoted cell apoptosis in a dose-dependent manner. Additionally E2 reversed leptin-induced STAT3 and leptin-suppressed SOCS3, which was mainly achieved by activation of ER-β. E2 also enhanced ERK via activating ER-α and GPER and activated p38/MAPK via activating ER-β. To conclude, E2 and its receptors antagonize the oncogenic actions of leptin in HepG2 cells by inhibiting cell proliferation and stimulating cell apoptosis, which was associated with reversing leptin-induced changes in SOCS3/STAT3 and increasing p38/MAPK by activating ER-β, and increasing ERK by activating ER-α and GPER. Identifying roles of different estrogen receptors would provide comprehensive understanding of estrogenic mechanisms in HCC development and shed light on potential treatment for HCC patients.

  6. beta-estradiol influences differentiation of hippocampal neurons in vitro through an estrogen receptor-mediated process.

    Science.gov (United States)

    Audesirk, T; Cabell, L; Kern, M; Audesirk, G

    2003-01-01

    We utilized morphometric analysis of 3 day cultures of hippocampal neurons to determine the effects of both estradiol and the synthetic estrogen receptor modulator raloxifene on several parameters of neuronal growth and differentiation. These measurements included survival, neurite production, dendrite number, and axon and dendrite length and branching. 17 beta-Estradiol (10 nM) selectively stimulated dendrite branching; this effect was neither mimicked by alpha-estradiol, nor blocked by the estrogen receptor antagonist ICI 182780. The selective estrogen receptor modulator raloxifene (100 nM) neither mimicked nor reversed the effects of estradiol on dendritic branching. Western immunoblotting for the alpha and beta subtypes of estrogen receptor revealed the presence of alpha, but not beta, estrogen receptors in our hippocampal cultures. There is growing recognition of the effects of 17 beta-estradiol on neuronal development and physiology, with implications for brain sexual dimorphism, plasticity, cognition, and the maintenance of cognitive function during aging. The role of estradiol in hippocampal neuronal differentiation and function has particular implications for learning and memory. These data support the hypothesis that 17 beta-estradiol is acting via alpha estrogen receptors in influencing hippocampal development in vitro. Raloxifene, prescribed to combat osteoporosis in post-menopausal women, is a selective estrogen receptor modulator with tissue-specific agonist/antagonist properties. Because raloxifene had no effect on dendritic branching, we hypothesize that it does not interact with the alpha estrogen receptor in this experimental paradigm.

  7. Estrogens regulate neuroinflammatory genes via estrogen receptors α and β in the frontal cortex of middle-aged female rats

    Directory of Open Access Journals (Sweden)

    Mahó Sándor

    2011-07-01

    Full Text Available Abstract Background Estrogens exert anti-inflammatory and neuroprotective effects in the brain mainly via estrogen receptors α (ERα and β (ERβ. These receptors are members of the nuclear receptor superfamily of ligand-dependent transcription factors. This study was aimed at the elucidation of the effects of ERα and ERβ agonists on the expression of neuroinflammatory genes in the frontal cortex of aging female rats. Methods To identify estrogen-responsive immunity/inflammation genes, we treated middle-aged, ovariectomized rats with 17β-estradiol (E2, ERα agonist 16α-lactone-estradiol (16α-LE2 and ERβ agonist diarylpropionitrile (DPN, or vehicle by Alzet minipump delivery for 29 days. Then we compared the transcriptomes of the frontal cortex of estrogen-deprived versus ER agonist-treated animals using Affymetrix Rat230 2.0 expression arrays and TaqMan-based quantitative real-time PCR. Microarray and PCR data were evaluated by using Bioconductor packages and the RealTime StatMiner software, respectively. Results Microarray analysis revealed the transcriptional regulation of 21 immunity/inflammation genes by 16α-LE2. The subsequent comparative real-time PCR study analyzed the isotype specific effects of ER agonists on neuroinflammatory genes of primarily glial origin. E2 regulated the expression of sixteen genes, including down-regulation of complement C3 and C4b, Ccl2, Tgfb1, macrophage expressed gene Mpeg1, RT1-Aw2, Cx3cr1, Fcgr2b, Cd11b, Tlr4 and Tlr9, and up-regulation of defensin Np4 and RatNP-3b, IgG-2a, Il6 and ER gene Esr1. Similar to E2, both 16α-LE2 and DPN evoked up-regulation of defensins, IgG-2a and Il6, and down-regulation of C3 and its receptor Cd11b, Ccl2, RT1-Aw2 and Fcgr2b. Conclusions These findings provide evidence that E2, 16α-LE2 and DPN modulate the expression of neuroinflammatory genes in the frontal cortex of middle-aged female rats via both ERα and ERβ. We propose that ERβ is a promising target to suppress

  8. Genes responsive to both oxidant stress and loss of estrogen receptor function identify a poor prognosis group of estrogen receptor positive primary breast cancers.

    Science.gov (United States)

    Yau, Christina; Benz, Christopher C

    2008-01-01

    Oxidative stress can modify estrogen receptor (ER) structure and function, including induction of progesterone receptor (PR), altering the biology and clinical behavior of endocrine responsive (ER-positive) breast cancer. To investigate the impact of oxidative stress on estrogen/ER-regulated gene expression, RNA was extracted from ER-positive/PR-positive MCF7 breast cancer cells after 72 hours of estrogen deprivation, small-interfering RNA knockdown of ER-alpha, short-term (8 hours) exposure to various oxidant stresses (diamide, hydrogen peroxide, and menadione), or simultaneous ER-alpha knockdown and oxidant stress. RNA samples were analyzed by high-throughput expression microarray (Affymetrix), and significance analysis of microarrays was used to define gene signatures responsive to estrogen/ER regulation and oxidative stress. To explore the association of these signatures with breast cancer biology, microarray data were analyzed from 394 ER-positive primary human breast cancers pooled from three independent studies. In particular, an oxidant-sensitive estrogen/ER-responsive gene signature (Ox-E/ER) was correlated with breast cancer clinical parameters and disease-specific patient survival (DSS). From 891 estrogen/ER-regulated probes, a core set of 75 probes (62 unique genes) responsive to all three oxidants were selected (Ox-E/ER signature). Ingenuity pathway analysis of this signature highlighted networks involved in development, cancer, and cell motility, with intersecting nodes at growth factors (platelet-derived growth factor-BB, transforming growth factor-beta), a proinflammatory cytokine (tumor necrosis factor), and matrix metalloproteinase-2. Evaluation of the 394 ER-positive primary breast cancers demonstrated that Ox-E/ER index values correlated negatively with PR mRNA levels (rp = -0.2; P = 0.00011) and positively with tumor grade (rp = 0.2; P = 9.741 x e-5), and were significantly higher in ER-positive/PR-negative versus ER-positive/PR-positive breast

  9. G protein-coupled estrogen receptor in energy homeostasis and obesity pathogenesis.

    Science.gov (United States)

    Shi, Haifei; Kumar, Shiva Priya Dharshan Senthil; Liu, Xian

    2013-01-01

    Obesity and its related metabolic diseases have reached a pandemic level worldwide. There are sex differences in the prevalence of obesity and its related metabolic diseases, with men being more vulnerable than women; however, the prevalence of these disorders increases dramatically in women after menopause, suggesting that sex steroid hormone estrogens play key protective roles against development of obesity and metabolic diseases. Estrogens are important regulators of several aspects of metabolism, including body weight and body fat, caloric intake and energy expenditure, and glucose and lipid metabolism in both males and females. Estrogens act in complex ways on their nuclear estrogen receptors (ERs) ERα and ERβ and transmembrane ERs such as G protein-coupled estrogen receptor. Genetic tools, such as different lines of knockout mouse models, and pharmacological agents, such as selective agonists and antagonists, are available to study function and signaling mechanisms of ERs. We provide an overview of the evidence for the physiological and cellular actions of ERs in estrogen-dependent processes in the context of energy homeostasis and body fat regulation and discuss its pathology that leads to obesity and related metabolic states. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Non-nuclear-initiated actions of the estrogen receptor protect cortical bone mass.

    Science.gov (United States)

    Bartell, Shoshana M; Han, Li; Kim, Ha-neui; Kim, Sung Hoon; Katzenellenbogen, John A; Katzenellenbogen, Benita S; Chambliss, Ken L; Shaul, Philip W; Roberson, Paula K; Weinstein, Robert S; Jilka, Robert L; Almeida, Maria; Manolagas, Stavros C

    2013-04-01

    Extensive evidence has suggested that at least some of the effects of estrogens on bone are mediated via extranuclear estrogen receptor α signaling. However, definitive proof for this contention and the extent to which such effects may contribute to the overall protective effects of estrogens on bone maintenance have remained elusive. Here, we investigated the ability of a 17β-estradiol (E2) dendrimer conjugate (EDC), incapable of stimulating nuclear-initiated actions of estrogen receptor α, to prevent the effects of ovariectomy (OVX) on the murine skeleton. We report that EDC was as potent as an equimolar dose of E2 in preventing bone loss in the cortical compartment that represents 80% of the entire skeleton, but was ineffective on cancellous bone. In contrast, E2 was effective in both compartments. Consistent with its effect on cortical bone mass, EDC partially prevented the loss of both vertebral and femoral strength. In addition, EDC, as did E2, prevented the OVX-induced increase in osteoclastogenesis, osteoblastogenesis, and oxidative stress. Nonetheless, the OVX-induced decrease in uterine weight was unaltered by EDC but was restored by E2. These results demonstrate that the protection of cortical bone mass by estrogens is mediated, at least in part, via a mechanism that is distinct from the classic mechanism of estrogen action on reproductive organs.

  11. Cooperative binding of estrogen receptor to imperfect estrogen-responsive DNA elements correlates with their synergistic hormone-dependent enhancer activity.

    Science.gov (United States)

    Martinez, E; Wahli, W

    1989-12-01

    The Xenopus vitellogenin (vit) gene B1 estrogen-inducible enhancer is formed by two closely adjacent 13 bp imperfect palindromic estrogen-responsive elements (EREs), i.e. ERE-2 and ERE-1, having one and two base substitutions respectively, when compared to the perfect palindromic consensus ERE (GGTCANNNTGACC). Gene transfer experiments indicate that these degenerated elements, on their own, have a low or no regulatory capacity at all, but in vivo act together synergistically to confer high receptor- and hormone-dependent transcription activation to the heterologous HSV thymidine kinase promoter. Thus, the DNA region upstream of the vitB1 gene comprising these two imperfect EREs separated by 7 bp, was called the vitB1 estrogen-responsive unit (vitB1 ERU). Using in vitro protein-DNA interaction techniques, we demonstrate that estrogen receptor dimers bind cooperatively to the imperfect EREs of the vitB1 ERU. Binding of a first receptor dimer to the more conserved ERE-2 increases approximately 4- to 8-fold the binding affinity of the receptor to the adjacent less conserved ERE-1. Thus, we suggest that the observed synergistic estrogen-dependent transcription activation conferred by the pair of hormone-responsive DNA elements of the vit B1 ERU is the result of cooperative binding of two estrogen receptor dimers to these two adjacent imperfect EREs.

  12. Food-associated estrogenic compounds induce estrogen receptor-mediated luciferase gene expression in transgenic male mice.

    Science.gov (United States)

    Ter Veld, Marcel G R; Zawadzka, E; van den Berg, J H J; van der Saag, Paul T; Rietjens, Ivonne M C M; Murk, Albertinka J

    2008-07-30

    The present paper aims at clarifying to what extent seven food-associated compounds, shown before to be estrogenic in vitro, can induce estrogenic effects in male mice with an estrogen receptor (ER)-mediated luciferase (luc) reporter gene system. The luc induction was determined in different tissues 8h after dosing the ER-luc male mice intraperitoneally (IP) or 14h after oral dosing. Estradiol-propionate (EP) was used as a positive control at 0.3 and 1mg/kg bodyweight (bw), DMSO as solvent control. The food-associated estrogenic compounds tested at non-toxic doses were bisphenol A (BPA) and nonylphenol (NP) (both at 10 and 50mg/kgbw), dichlorodiphenyldichloroethylene (p,p'-DDE; at 5 and 25mg/kgbw), quercetin (at 1.66 and 16.6mg/kgbw), di-isoheptyl phthalate (DIHP), di-(2-ethylhexyl) phthalate (DEHP) and di-(2-ethylhexyl) adipate (DEHA) all at 30 and 100mg/kgbw. In general IP dosing resulted in higher luc inductions than oral dosing. EP induced luc activity in the liver in a statistically significant dose-related way with the highest induction of all compounds tested which was 20,000 times higher than the induction by the DMSO-control. NP, DDE, DEHA and DIHP did not induce luc activity in any of the tissues tested. BPA induced luc in the liver up to 420 times via both exposure routes. BPA, DEHP and quercetin induced luc activity in the liver after oral exposure. BPA (50mg/kgbw IP) also induced luc activity in the testis, kidneys and tibia. The current study reveals that biomarker-responses in ER-luc male mice occur after a single oral exposure to food-associated estrogenic model compounds at exposure levels 10 to 10(4) times higher than the established TDI's for some of these compounds. Given the facts that (i) the present study did not include chronic exposure and that (ii) simultaneous exposure to multiple estrogenic compounds may be a realistic exposure scenario, it remains to be seen whether this margin is sufficiently high.

  13. Interplay between estrogen response element sequence and ligands controls in vivo binding of estrogen receptor to regulated genes.

    Science.gov (United States)

    Krieg, Adam J; Krieg, Sacha A; Ahn, Bonnie S; Shapiro, David J

    2004-02-06

    To examine the role of the estrogen response element (ERE) sequence in binding of liganded estrogen receptor (ER) to promoters, we analyzed in vivo interaction of liganded ER with the imperfect ERE in the pS2 gene and the composite estrogen-responsive unit (ERU) in the proteinase inhibitor 9 (PI-9) gene. In transient transfections of ER-positive HepG2-ER7 cells, PI-9 was strongly induced by estrogen, moxestrol (MOX), and 4-hydroxytamoxifen (OHT). PI-9 was not induced by raloxifene or ICI 182,780. Quantitative reverse transcriptase-PCR showed that moxestrol strongly induced cellular PI-9 and pS2 mRNAs, whereas OHT moderately induced PI-9 mRNA and weakly induced pS2 mRNA. Chromatin immunoprecipitation experiments demonstrated strong and similar association of 17beta-estradiol-hERalpha and MOX-hERalpha with the PI-9 ERU and with the pS2 ERE. Binding of MOX-hERalpha to the PI-9 ERU and the pS2 ERE was rapid and continuous. Although MOX-hERalpha bound strongly to the PI-9 ERU and less well to the pS2 ERE in chromatin immunoprecipitation, gel shift assays showed that estrogen-hERalpha binds with higher affinity to the deproteinized pS2 ERE than to the PI-9 ERU. Across a broad range of OHT concentrations, OHT-hERalpha associated strongly with the pS2 ERE and weakly with the PI-9 ERU. ICI-hERalpha bound poorly to the PI-9 ERU and effectively to the pS2 ERE. Raloxifene-hERalpha and MOX-hERalpha exhibited similar binding to the PI-9 ERU and the pS2 ERE. These studies demonstrate that ER ligand and ERE sequence work together to regulate in vivo binding of ER to estrogen-responsive promoters.

  14. Estrogen receptor alpha and risk for cognitive impairment in postmenopausal women

    DEFF Research Database (Denmark)

    Olsen, Line; Rasmussen, Henrik B; Hansen, Thomas;

    2006-01-01

    The estrogen receptor alpha (ESR1) gene has been implicated in the process of cognitive impairment in elderly women. In a paired case-control study, we tested whether two ESR1 gene polymorphisms (the XbaI and PvuII sites) are risk factors for cognitive impairment as measured by the six-item Orien......The estrogen receptor alpha (ESR1) gene has been implicated in the process of cognitive impairment in elderly women. In a paired case-control study, we tested whether two ESR1 gene polymorphisms (the XbaI and PvuII sites) are risk factors for cognitive impairment as measured by the six...

  15. A review of estrogen receptor/androgen receptor genomics in male breast cancer.

    Science.gov (United States)

    Severson, Tesa M; Zwart, Wilbert

    2017-03-01

    Male breast cancer is a rare disease, of which little is known. In contrast to female breast cancer, the very vast majority of all cases are positive for estrogen receptor alpha (ERα), implicating the function of this steroid hormone receptor in tumor development and progression. Consequently, adjuvant treatment of male breast cancer revolves around inhibition of ERα. In addition, the androgen receptor (AR) gradually receives more attention as a relevant novel target in breast cancer treatment. Importantly, the rationale of treatment decision making is strongly based on parallels with female breast cancer. Yet, prognostic indicators are not necessarily the same in breast cancer between both genders, complicating translatability of knowledge developed in female breast cancer toward male patients. Even though ERα and AR are expressed both in female and male disease, are the genomic functions of both steroid hormone receptors conserved between genders? Recent studies have reported on mutational and epigenetic similarities and differences between male and female breast cancer, further suggesting that some features are strongly conserved between the two diseases, whereas others are not. This review critically discusses the recent developments in the study of male breast cancer in relation to ERα and AR action and highlights the potential future studies to further elucidate the genomic regulation of this rare disease. © 2017 Society for Endocrinology.

  16. Estrogen-like activity of perfluoroalkyl acids in vivo and interaction with human and rainbow trout estrogen receptors in vitro.

    Science.gov (United States)

    Benninghoff, Abby D; Bisson, William H; Koch, Daniel C; Ehresman, David J; Kolluri, Siva K; Williams, David E

    2011-03-01

    The objectives of this study were to determine the structural characteristics of perfluoroalkyl acids (PFAAs) that confer estrogen-like activity in vivo using juvenile rainbow trout (Oncorhynchus mykiss) as an animal model and to determine whether these chemicals interact directly with the estrogen receptor (ER) using in vitro and in silico species comparison approaches. Perfluorooctanoic (PFOA), perfluorononanoic (PFNA), perfluorodecanoic (PFDA), and perfluoroundecanoic (PFUnDA) acids were all potent inducers of the estrogen-responsive biomarker protein vitellogenin (Vtg) in vivo, although at fairly high dietary exposures. A structure-activity relationship for PFAAs was observed, where eight to ten fluorinated carbons and a carboxylic acid end group were optimal for maximal Vtg induction. These in vivo findings were corroborated by in vitro mechanistic assays for trout and human ER. All PFAAs tested weakly bound to trout liver ER with half maximal inhibitory concentration (IC(50)) values of 15.2-289 μM. Additionally, PFOA, PFNA, PFDA, PFUnDA, and perlfuorooctane sulfonate (PFOS) significantly enhanced human ERα-dependent transcriptional activation at concentrations ranging from 10-1000 nM. Finally, we employed an in silico computational model based upon the crystal structure for the human ERα ligand-binding domain complexed with E2 to structurally investigate binding of these putative ligands to human, mouse, and trout ERα. PFOA, PFNA, PFDA, and PFOS all efficiently docked with ERα from different species and formed a hydrogen bond at residue Arg394/398/407 (human/mouse/trout) in a manner similar to the environmental estrogens bisphenol A and nonylphenol. Overall, these data support the contention that several PFAAs are weak environmental xenoestrogens of potential concern.

  17. Selective Estrogen Receptor Modulators: Cannabinoid Receptor Inverse Agonists with Differential CB1 and CB2 Selectivity

    Science.gov (United States)

    Franks, Lirit N.; Ford, Benjamin M.; Prather, Paul L.

    2016-01-01

    Selective estrogen receptor modulators (SERMs) are used to treat estrogen receptor (ER)-positive breast cancer and osteoporosis. Interestingly, tamoxifen and newer classes of SERMs also exhibit cytotoxic effects in cancers devoid of ERs, indicating a non-estrogenic mechanism of action. Indicative of a potential ER-independent target, reports demonstrate that tamoxifen binds to cannabinoid receptors (CBRs) with affinity in the low μM range and acts as an inverse agonist. To identify cannabinoids with improved pharmacological properties relative to tamoxifen, and further investigate the use of different SERM scaffolds for future cannabinoid drug development, this study characterized the affinity and activity of SERMs in newer structural classes at CBRs. Fourteen SERMs from five structurally distinct classes were screened for binding to human CBRs. Compounds from four of five SERM classes examined bound to CBRs. Subsequent studies fully characterized CBR affinity and activity of one compound from each class. Ospemifine (a triphenylethylene) selectively bound to CB1Rs, while bazedoxifine (an indole) bound to CB2Rs with highest affinity. Nafoxidine (a tetrahydronaphthalene) and raloxifene (RAL; a benzothiaphene) bound to CB1 and CB2Rs non-selectively. All four compounds acted as inverse agonists at CB1 and CB2Rs, reducing basal G-protein activity with IC50 values in the nM to low μM range. Ospemifine, bazedoxifene and RAL also acted as inverse agonists to elevate basal intracellular cAMP levels in intact CHO-hCB2 cells. The four SERMs examined also acted as CB1 and CB2R antagonists in the cAMP assay, producing rightward shifts in the concentration-effect curve of the CBR agonist CP-55,940. In conclusion, newer classes of SERMs exhibit improved pharmacological characteristics (e.g., in CBR affinity and selectivity) relative to initial studies with tamoxifen, and thus suggest that different SERM scaffolds may be useful for development of safe and selective drugs acting

  18. Sex differences in estrogen receptor promoter expression in the area postrema

    Institute of Scientific and Technical Information of China (English)

    Chunxiao Zhang; Tomohiro Hamada

    2013-01-01

    Estrogen receptor α is widely distributed in the rat brain, but the tissue- or target-specificity of the estrogen receptor α gene promoters remains unknown. In the present study, we used transgenic rats expressing enhanced green fluorescent protein under the control of the estrogen receptor α 0/B promoter to examine expression driven by this promoter in two significant nuclei that regulate cardiovascular activity, the area postrema and the nucleus tractus solitarius. Immunohistochemistry showed that enhanced green fluorescent protein-labeled cells were distributed in the area postrema and the nucleus tractus solitarius of both female and male transgenic rats, and a neural network of enhanced green fluorescent protein-positive fibers was seen between the area postrema and the nucleus tractus solitarius. The number of enhanced green fluorescent protein-labeled cells in the area postrema of female rats was significantly higher than in the males, but no significant difference was found in the number of enhanced green fluorescent protein-labeled cells in the nucleus tractus solitarius. The sex differences in the number of enhanced green fluorescent protein-labeled cells in the area postrema was not affected after ovariectomy or 17β-estradiol benzoate treatment in adult rats. Our results suggest that the effects of estrogen in the area postrema are related to the expression of estrogen receptor α under the control of the 0/B promoter, and changes in the sex hormone environment in the adult period do not affect estrogen receptor α expression in the area postrema or the nucleus tractus solitarius.

  19. Estrogen Receptor Gene Polymorphisms Associated with Incident Aging Macula Disorder

    NARCIS (Netherlands)

    Boekhoorn, S.S.; Vingerling, J.R.; Uitterlinden, A.G.; Meurs, J.B.J. van; Duijn, C.M. van; Pols, H.A.P.; Hofman, A.; de Jong, P.T.V.M.

    2007-01-01

    PURPOSE. It has been suggested that early menopause increases the risk of aging-macula disorder (AMD), the major cause of incurable blindness with a dry and wet late subtype, and that exposure to endogenous or postmenopausal exogenous estrogens reduces this risk. This study was undertaken to investi

  20. EMAS clinical guide: selective estrogen receptor modulators for postmenopausal osteoporosis.

    Science.gov (United States)

    Palacios, Santiago; Brincat, Mark; Erel, C Tamer; Gambacciani, Marco; Lambrinoudaki, Irene; Moen, Mette H; Schenck-Gustafsson, Karin; Tremollieres, Florence; Vujovic, Svetlana; Rees, Margaret; Rozenberg, Serge

    2012-02-01

    Osteoporosis and the resulting fractures are major public health issues as the world population is ageing. Various therapies such as bisphosphonates, strontium ranelate and more recently denosumab are available. This clinical guide provides the evidence for the clinical use of selective estrogen modulators (SERMs) in the management of osteoporosis in postmenopausal women.

  1. Membrane Estrogen and HER-2 Receptors in Human Breast Cancer

    Science.gov (United States)

    2002-07-01

    H.R. Nusbaum, N. Razon , R. Kris, I. Lax, H. Soreq, N. Whittle, M.D. Waterfield, A. Ullrich and J. Schlessinger (1985). Amplification, enhanced...estrogen (41) are both known mito - antibodies and then immunoblotting with anti-ER antibod- gens for breast cancer cells. To assess the potential contri

  2. Identification of the estrogen receptor GPER in neoplastic and non-neoplastic human testes

    Directory of Open Access Journals (Sweden)

    Maggiolini Marcello

    2011-10-01

    Full Text Available Abstract Background Estrogen signaling is mediated by estrogen receptor beta isoforms in normal and neoplastic human testes. Recently, a G-protein-coupled-receptor (GPER has been suggested as being involved in rapid responses to estrogens in different normal and tumor cells. Methods This study investigated the GPER expression in paraffin-embedded samples from non neoplastic and neoplastic human testes (sex-cord stromal and germ cell tumors by immunohistochemical and Western Blot analyses. Results In control testes, a positive GPER immunoreactivity was detected in Leydig and in Sertoli cells while all germ cells were immunonegative. Furthermore, neoplastic cells of the Sertoli cell tumor, Leydig cell tumor, seminoma and embryonal carcinoma samples were all immunopositive. The immunoblots of testis extracts confirmed the results. Conclusions These findings suggest that GPER could mediate estrogen signaling in both normal and transformed somatic cells of human testis, but they reveal a differential expression of the novel estrogen receptor in non neoplastic and neoplastic germ cells.

  3. Wedelolactone induces growth of breast cancer cells by stimulation of estrogen receptor signalling.

    Science.gov (United States)

    Nehybova, Tereza; Smarda, Jan; Daniel, Lukas; Brezovsky, Jan; Benes, Petr

    2015-08-01

    Wedelolactone, a plant coumestan, was shown to act as anti-cancer agent for breast and prostate carcinomas in vitro and in vivo targeting multiple cellular proteins including androgen receptors, 5-lipoxygenase and topoisomerase IIα. It is cytotoxic to breast, prostate, pituitary and myeloma cancer cell lines in vitro at μM concentrations. In this study, however, a novel biological activity of nM dose of wedelolactone was demonstrated. Wedelolactone acts as agonist of estrogen receptors (ER) α and β as demonstrated by transactivation of estrogen response element (ERE) in cells transiently expressing either ERα or ERβ and by molecular docking of this coumestan into ligand binding pocket of both ERα and ERβ. In breast cancer cells, wedelolactone stimulates growth of estrogen receptor-positive cells, expression of estrogen-responsive genes and activates rapid non-genomic estrogen signalling. All these effects can be inhibited by pretreatment with pure ER antagonist ICI 182,780 and they are not observed in ER-negative breast cancer cells. We conclude that wedelolactone acts as phytoestrogen in breast cancer cells by stimulating ER genomic and non-genomic signalling pathways.

  4. 3D models of MBP, a biologically active metabolite of bisphenol A, in human estrogen receptor α and estrogen receptor β.

    Directory of Open Access Journals (Sweden)

    Michael E Baker

    Full Text Available Bisphenol A [BPA] is a widely dispersed environmental chemical that is of much concern because the BPA monomer is a weak transcriptional activator of human estrogen receptor α [ERα] and ERβ in cell culture. A BPA metabolite, 4-methyl-2,4-bis(4-hydroxyphenylpent-1-ene [MBP], has transcriptional activity at nM concentrations, which is 1000-fold lower than the concentration for estrogenic activity of BPA, suggesting that MBP may be an environmental estrogen. To investigate the structural basis for the activity of MBP at nM concentrations and the lower activity of BPA for human ERα and ERβ, we constructed 3D models of human ERα and ERβ with MBP and BPA for comparison with estradiol in these ERs. These 3D models suggest that MBP, but not BPA, has key contacts with amino acids in human ERα and ERβ that are important in binding of estradiol by these receptors. Metabolism of BPA to MBP increases the spacing between two phenolic rings, resulting in contacts between MBP and ERα and ERβ that mimic those of estradiol with these ERs. Mutagenesis of residues on these ERs that contact the phenolic hydroxyls will provide a test for our 3D models. Other environmental chemicals containing two appropriately spaced phenolic rings and an aliphatic spacer instead of an estrogenic B and C ring also may bind to ERα or ERβ and interfere with normal estrogen physiology. This analysis also may be useful in designing novel chemicals for regulating the actions of human ERα and ERβ.

  5. DIFFERENCES IN SENSITIVITY BUT NOT SELECTIVITY OF XENOESTROGEN BINDING TO ALLIGATOR VERSUS HUMAN ESTROGEN RECEPTOR ALPHA

    Science.gov (United States)

    Rider, Cynthia V.; Hartig, Phillip C.; Cardon, Mary C.; Lambright, Christy R.; Bobseine, Kathy L.; Guillette, Louis J.; Gray, L. Earl; Wilson, Vickie S.

    2010-01-01

    Reproductive abnormalities in alligators exposed to contaminants in Lake Apopka, Florida, USA represent a clear example of endocrine disruption in wildlife. Several of these contaminants that are not able to bind to mammalian estrogen receptors (such as atrazine and cyanazine) have previously been reported to bind to the alligator estrogen receptor from oviductal tissue. Binding of known Lake Apopka contaminants to full length estrogen receptors alpha from human (hERα) and alligator (aERα) was assessed in a side-by-side comparison within the same assay system. Baculovirus-expressed recombinant hERα and aERα were used in a competitive binding assay. Atrazine and cyanazine were not able to bind to either receptor. p,p′-Dicofol was able to bind to aERα with a concentration inhibiting 50% of binding (IC50) of 4 μM, while only partially displacing 17β-estradiol (E2) from hERα and yielding a projected IC50 of 45 μM. Chemicals that only partially displaced E2 from either receptor, including some dichlorodiphenyltrichloroethane (DDT) metabolites and trans-nonachlor, appeared to have higher affinity for aERα than hERα. p,p′-Dicofol-mediated transcriptional activation through aERα and hERα was assessed to further explore the preferential binding of p,p′-dicofol to aERα over hERα. p,p′-Dicofol was able to stimulate transcriptional activation in a similar manner with both receptors. However, the in vitro results obtained with p,p′-dicofol were not reflected in an in vivo mammalian model, where Kelthane™ (mixed o,p′-and p,p′-dicofol isomers) did not elicit estrogenic effects. In conclusion, although there was no evidence of exclusively species-specific estrogen receptor binders, some xenoestrogens, especially p,p′-dicofol, had a higher affinity for aERα than for hERα. PMID:20821664

  6. Mas receptor is involved in the estrogen-receptor induced nitric oxide-dependent vasorelaxation.

    Science.gov (United States)

    Sobrino, Agua; Vallejo, Susana; Novella, Susana; Lázaro-Franco, Macarena; Mompeón, Ana; Bueno-Betí, Carlos; Walther, Thomas; Sánchez-Ferrer, Carlos; Peiró, Concepción; Hermenegildo, Carlos

    2017-04-01

    The Mas receptor is involved in the angiotensin (Ang)-(1-7) vasodilatory actions by increasing nitric oxide production (NO). We have previously demonstrated an increased production of Ang-(1-7) in human umbilical vein endothelial cells (HUVEC) exposed to estradiol (E2), suggesting a potential cross-talk between E2 and the Ang-(1-7)/Mas receptor axis. Here, we explored whether the vasoactive response and NO-related signalling exerted by E2 are influenced by Mas. HUVEC were exposed to 10nM E2 for 24h in the presence or absence of the selective Mas receptor antagonist A779, and the estrogen receptor (ER) antagonist ICI182780 (ICI). E2 increased Akt and endothelial nitric oxide synthase (eNOS) mRNA and protein expression, measured by RT-PCR and Western blot, respectively. Furthermore, E2 increased Akt activity (determined by the levels of phospho-Ser(473)) and eNOS activity (by the enhanced phosphorylation of Ser(1177), the activated form), resulting in increased NO production, which was measured by the fluorescence probe DAF-2-FM. These signalling events were dependent on ER and Mas receptor activation, since they were abolished in the presence of ICI or A779. In ex-vivo functional experiments performed with a small-vessel myograph in isolated mesenteric vessels from wild-type mice pre-contracted with noradrenaline, the relaxant response to physiological concentrations of E2 was blocked by ICI and A779, to the same extent to that obtained in the vessels isolated from Mas-deficient. In conclusion, E2 induces NO production and vasodilation through mechanisms that require Mas receptor activation. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Alternate estrogen receptors promote invasion of inflammatory breast cancer cells via non-genomic signaling.

    Directory of Open Access Journals (Sweden)

    Kazufumi Ohshiro

    Full Text Available Although Inflammatory Breast Cancer (IBC is a rare and an aggressive type of locally advanced breast cancer with a generally worst prognosis, little work has been done in identifying the status of non-genomic signaling in the invasiveness of IBC. The present study was performed to explore the status of non-genomic signaling as affected by various estrogenic and anti-estrogenic agents in IBC cell lines SUM149 and SUM190. We have identified the presence of estrogen receptor α (ERα variant, ERα36 in SUM149 and SUM190 cells. This variant as well as ERβ was present in a substantial concentration in IBC cells. The treatment with estradiol (E2, anti-estrogenic agents 4-hydroxytamoxifen and ICI 182780, ERβ specific ligand DPN and GPR30 agonist G1 led to a rapid activation of p-ERK1/2, suggesting the involvement of ERα36, ERβ and GPR30 in the non-genomic signaling pathway in these cells. We also found a substantial increase in the cell migration and invasiveness of SUM149 cells upon the treatment with these ligands. Both basal and ligand-induced migration and invasiveness of SUM149 cells were drastically reduced in the presence of MEK inhibitor U0126, implicating that the phosphorylation of ERK1/2 by MEK is involved in the observed motility and invasiveness of IBC cells. We also provide evidence for the upregulation of p-ERK1/2 through immunostaining in IBC patient samples. These findings suggest a role of non-genomic signaling through the activation of p-ERK1/2 in the hormonal dependence of IBC by a combination of estrogen receptors. These findings only explain the failure of traditional anti-estrogen therapies in ER-positive IBC which induces the non-genomic signaling, but also opens newer avenues for design of modified therapies targeting these estrogen receptors.

  8. Kaempferol as a flavonoid induces osteoblastic differentiation via estrogen receptor signaling

    Directory of Open Access Journals (Sweden)

    Guo Ava

    2012-04-01

    Full Text Available Abstract Background Flavonoids, a group of compounds mainly derived from vegetables and herbal medicines, chemically resemble estrogen and some have been used as estrogen substitutes. Kaempferol, a flavonol derived from the rhizome of Kaempferia galanga L., is a well-known phytoestrogen possessing osteogenic effects that is also found in a large number of plant foods. The herb K. galanga is a popular traditional aromatic medicinal plant that is widely used as food spice and in medicinal industries. In the present study, both the estrogenic and osteogenic properties of kaempferol are evaluated. Methods Kaempferol was first evaluated for its estrogenic properties, including its effects on estrogen receptors. The osteogenic properties of kaempferol were further determined its induction effects on specific osteogenic enzymes and genes as well as the mineralization process in cultured rat osteoblasts. Results Kaempferol activated the transcriptional activity of pERE-Luc (3.98 ± 0.31 folds at 50 μM and induced estrogen receptor α (ERα phosphorylation in cultured rat osteoblasts, and this ER activation was correlated with induction and associated with osteoblast differentiation biomarkers, including alkaline phosphatase activity and transcription of osteoblastic genes, e.g., type I collagen, osteonectin, osteocalcin, Runx2 and osterix. Kaempferol also promoted the mineralization process of osteoblasts (4.02 ± 0.41 folds at 50 μM. ER mediation of the kaempferol-induced effects was confirmed by pretreatment of the osteoblasts with an ER antagonist, ICI 182,780, which fully blocked the induction effect. Conclusion Our results showed that kaempferol stimulates osteogenic differentiation of cultured osteoblasts by acting through the estrogen receptor signaling.

  9. Structural requirements for the interaction of 91 hydroxylated polychlorinated biphenyls with estrogen and thyroid hormone receptors.

    Science.gov (United States)

    Arulmozhiraja, Sundaram; Shiraishi, Fujio; Okumura, Tameo; Iida, Mitsuru; Takigami, Hidetaka; Edmonds, John S; Morita, Masatoshi

    2005-03-01

    Estrogenic and thyroid activities of 91 monohydroxylated PCBs were measured with two-hybrid assays using yeast cells containing the human estrogen receptor ERalpha or human thyroid receptor TRalpha. Estrogenic activity of 30 of the 91 compounds, including all compounds active in the yeast two-hybrid assay, were also measured by a reporter gene assay employing Chinese hamster ovary cells. The mammalian cell assay was more sensitive than the yeast assay but the rank order of estrogenicities of the compounds were in broad agreement for the two assays. Results for estrogenicity and thyroid activity were analyzed by inspection and those for estrogenicity by a theoretical treatment. Inspection indicated para-hydroxyl was more likely to be estrogenically active than meta-, which was more likely to be active than ortho-; one ortho-chlorine was important for activity but additional ortho-chlorines did not increase activity; and 2 lateral chlorines or 2,4,6-chloro- substitution of the non-phenol ring were favorable. In contrast, thyroid activity appeared not to depend strongly on the position of the hydroxyl group although ortho-hydroxyls occurred in the most active compounds. Activity was usually associated with at least one ortho-chlorine, with 2 chlorines in the phenolic ring and, importantly, two chlorines in the non-phenolic ring, and with 1 or 2 chlorines ortho to the hydroxyl group. Examination of the torsion angle between the rings, in the theoretical examination of estrogenicity, suggested that perpendicular orientation (i.e., rigidity) was not essential for activity. Intramolecular hydrogen bonding of the phenolic groups to adjacent chlorines or to the pi-electron cloud of the non-phenol ring possibly decreased activity--the hydroxyl should be free of intramolecular interactions for maximum activity. It was difficult to predict the estrogenic activity of a congener from its obtained potential energy curve (PEC). In general, estrogenically active congeners had large

  10. CITED2 modulates estrogen receptor transcriptional activity in breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Lau, Wen Min; Doucet, Michele; Huang, David; Weber, Kristy L.; Kominsky, Scott L., E-mail: kominsc@jhmi.edu

    2013-07-26

    Highlights: •The effects of elevated CITED2 on ER function in breast cancer cells are examined. •CITED2 enhances cell growth in the absence of estrogen and presence of tamoxifen. •CITED2 functions as a transcriptional co-activator of ER in breast cancer cells. -- Abstract: Cbp/p300-interacting transactivator with Glu/Asp-rich carboxy-terminal domain 2 (CITED2) is a member of the CITED family of non-DNA binding transcriptional co-activators of the p300/CBP-mediated transcription complex. Previously, we identified CITED2 as being overexpressed in human breast tumors relative to normal mammary epithelium. Upon further investigation within the estrogen receptor (ER)-positive subset of these breast tumor samples, we found that CITED2 mRNA expression was elevated in those associated with poor survival. In light of this observation, we investigated the effect of elevated CITED2 levels on ER function. While ectopic overexpression of CITED2 in three ER-positive breast cancer cell lines (MCF-7, T47D, and CAMA-1) did not alter cell proliferation in complete media, growth was markedly enhanced in the absence of exogenous estrogen. Correspondingly, cells overexpressing CITED2 demonstrated reduced sensitivity to the growth inhibitory effects of the selective estrogen receptor modulator, 4-hydroxytamoxifen. Subsequent studies revealed that basal ER transcriptional activity was elevated in CITED2-overexpressing cells and was further increased upon the addition of estrogen. Similarly, basal and estrogen-induced expression of the ER-regulated genes trefoil factor 1 (TFF1) and progesterone receptor (PGR) was higher in cells overexpressing CITED2. Concordant with this observation, ChIP analysis revealed higher basal levels of CITED2 localized to the TFF-1 and PGR promoters in cells with ectopic overexpression of CITED2, and these levels were elevated further in response to estrogen stimulation. Taken together, these data indicate that CITED2 functions as a transcriptional co

  11. Truncating Prolactin Receptor Mutations Promote Tumor Growth in Murine Estrogen Receptor-Alpha Mammary Carcinomas

    Directory of Open Access Journals (Sweden)

    Obi L. Griffith

    2016-09-01

    Full Text Available Estrogen receptor alpha-positive (ERα+ luminal tumors are the most frequent subtype of breast cancer. Stat1−/− mice develop mammary tumors that closely recapitulate the biological characteristics of this cancer subtype. To identify transforming events that contribute to tumorigenesis, we performed whole genome sequencing of Stat1−/− primary mammary tumors and matched normal tissues. This investigation identified somatic truncating mutations affecting the prolactin receptor (PRLR in all tumor and no normal samples. Targeted sequencing confirmed the presence of these mutations in precancerous lesions, indicating that this is an early event in tumorigenesis. Functional evaluation of these heterozygous mutations in Stat1−/− mouse embryonic fibroblasts showed that co-expression of truncated and wild-type PRLR led to aberrant STAT3 and STAT5 activation downstream of the receptor, cellular transformation in vitro, and tumor formation in vivo. In conclusion, truncating mutations of PRLR promote tumor growth in a model of human ERα+ breast cancer and warrant further investigation.

  12. Selective estrogen receptor modulators (SERMs): Mechanisms of anticarcinogenesis and drug resistance

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Joan S. [Fox Chase Cancer Center, Alfred G. Knudson Chair of Cancer Research, 333 Cottman Avenue, Philadelphia, PA 19111 (United States); Jordan, V. Craig [Fox Chase Cancer Center, Alfred G. Knudson Chair of Cancer Research, 333 Cottman Avenue, Philadelphia, PA 19111 (United States)]. E-mail: v.craig.jordan@fccc.edu

    2005-12-11

    Despite the beneficial effects of estrogens in women's health, there is a plethora of evidence that suggest an important role for these hormones, particularly 17{beta}-estradiol (E{sub 2}), in the development and progression of breast cancer. Most estrogenic responses are mediated by estrogen receptors (ERs), either ER{alpha} or ER{beta}, which are members of the nuclear receptor superfamily of ligand-dependent transcription factors. Selective estrogen receptor modulators (SERMs) are ER ligands that in some tissues (i.e. bone and cardiovascular system) act like estrogens but block estrogen action in others. Tamoxifen is the first SERM that has been successfully tested for the prevention of breast cancer in high-risk women and is currently approved for the endocrine treatment of all stages of ER-positive breast cancer. Raloxifene, a newer SERM originally developed for osteoporosis, also appears to have preventive effect on breast cancer incidence. Numerous studies have examined the molecular mechanisms for the tissue selective action of SERMs, and collectively they indicate that different ER ligands induce distinct conformational changes in the receptor that influence its ability to interact with coregulatory proteins (i.e. coactivators and corepressors) critical for the regulation of target gene transcription. The relative expression of coactivators and corepressors, and the nature of the ER and its target gene promoter also affect SERM biocharacter. This review summarizes the therapeutic application of SERMs in medicine; particularly breast cancer, and highlights the emerging understanding of the mechanism of action of SERMs in select target tissues, and the inevitable development of resistance.

  13. Induction of Hsp22 (HspB8) by estrogen and the metalloestrogen cadmium in estrogen receptor-positive breast cancer cells.

    Science.gov (United States)

    Sun, Xiankui; Fontaine, Jean-Marc; Bartl, Ingrid; Behnam, Babak; Welsh, Michael J; Benndorf, Rainer

    2007-01-01

    Estrogen (E2) plays a critical role in the etiology and progression of human breast cancer. The estrogenic response is complex and not completely understood, including in terms of the involved responsive genes. Here we show that Hsp22 (synonyms: HspB8, E2lG1, H11), a member of the small heat shock protein (sHSP) superfamily, was induced by E2 in estrogen receptor-positive MCF-7 breast cancer cells, resulting in an elevated Hsp22 protein level, whereas it was not induced in estrogen receptor-negative MDA-MB-231 cells. This induction was prevented by the pure anti-estrogen ICI182780 (faslodex, fulvestrant), whereas tamoxifen, a substance with mixed estrogenic and antiestrogenic properties, had no major inhibitory effect on this induction, nor did it induce Hsp22 on its own. Cadmium (Cd) is an environmental pollutant with estrogenic properties (metalloestrogen) that has been implicated in breast cancer. Treatment of MCF-7 cells with Cd also resulted in induction of Hsp22, and this induction was also inhibited by ICI182780. In live MCF-7 cells, Hsp22 interacted at the level of dimers with Hsp27, a related sHSP, as was shown by quantitative fluorescence resonance energy transfer measurements. In cytosolic extracts of MCF-7 cells, most of the E2- and Cd-induced Hsp22 was incorporated into high-molecular mass complexes. In part, Hsp22 and Hsp27 were components of distinct populations of these complexes. Finally, candidate elements in the Hsp22 promoter were identified by sequence analysis that could account for the induction of Hsp22 by E2 and Cd. Taken together, Hsp22 induction represents a new aspect of the estrogenic response with potential significance for the biology of estrogen receptor-positive breast cancer cells.

  14. Value of post-operative reassessment of estrogen receptor α expression following neoadjuvant chemotherapy with or without gefitinib for estrogen receptor negative breast cancer

    DEFF Research Database (Denmark)

    Bernsdorf, Mogens; Balslev, Eva; Lykkesfeldt, Anne;

    2011-01-01

    The NICE trial was designed to evaluate the possible benefits of adding epidermal growth factor receptor targeted therapy to neoadjuvant chemotherapy in patients with estrogen receptor α (ER) negative and operable breast cancer. Preclinical data have suggested that signalling through the ErbB rec...... in a small but significant fraction of patients and should, whenever possible, be performed following neoadjuvant chemotherapy for ER negative breast cancer. Gefitinib did not affect the reversion rate of ER negative tumors.......The NICE trial was designed to evaluate the possible benefits of adding epidermal growth factor receptor targeted therapy to neoadjuvant chemotherapy in patients with estrogen receptor α (ER) negative and operable breast cancer. Preclinical data have suggested that signalling through the Erb......B receptors or downstream effectors may repress ER expression. Here the authors investigated whether gefitinib, given neoadjuvant in combination with epirubicin and cyclophosphamide (EC), could restore ER expression. Eligible patients in the NICE trial were women with unilateral, primary operable, ER negative...

  15. Value of post-operative reassessment of estrogen receptor α expression following neoadjuvant chemotherapy with or without gefitinib for estrogen receptor negative breast cancer

    DEFF Research Database (Denmark)

    Bernsdorf, Mogens; Balslev, Eva; Lykkesfeldt, Anne;

    2011-01-01

    The NICE trial was designed to evaluate the possible benefits of adding epidermal growth factor receptor targeted therapy to neoadjuvant chemotherapy in patients with estrogen receptor a (ER) negative and operable breast cancer. Preclinical data have suggested that signalling through the ErbB rec...... in a small but significant fraction of patients and should, whenever possible, be performed following neoadjuvant chemotherapy for ER negative breast cancer. Gefitinib did not affect the reversion rate of ER negative tumors.......The NICE trial was designed to evaluate the possible benefits of adding epidermal growth factor receptor targeted therapy to neoadjuvant chemotherapy in patients with estrogen receptor a (ER) negative and operable breast cancer. Preclinical data have suggested that signalling through the Erb......B receptors or downstream effectors may repress ER expression. Here the authors investigated whether gefitinib, given neoadjuvant in combination with epirubicin and cyclophosphamide (EC), could restore ER expression. Eligible patients in the NICE trial were women with unilateral, primary operable, ER negative...

  16. Cytologic assessment of estrogen receptor, progesterone receptor, and HER2 status in metastatic breast carcinoma.

    Science.gov (United States)

    Pareja, Fresia; Murray, Melissa P; Jean, Ryan Des; Konno, Fumiko; Friedlander, Maria; Lin, Oscar; Edelweiss, Marcia

    2017-01-01

    Discordance in the receptor status between primary breast carcinomas (PBC) and corresponding metastasis is well documented. Interrogation of the receptor status of metastatic breast carcinoma (MBC) in cytology material is common practice; however, its utility has not been thoroughly validated. We studied patients with MBC, and evaluated the concordance rates of estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2) between PBC surgical specimens and corresponding MBC cell blocks (CBs). We correlated the findings with clinicopathologic variables and with the fixation methods used. We searched for patients with MBC diagnosed on cytology from 2007 to 2009 and selected those with ER, PR and HER2 tested in both the PBC surgical specimens and the MBC CBs. We included CBs fixed in formalin and methanol based solution (CytoLyt®). All slides were reevaluated by cytopathologists. Clinical information was retrieved from the medical records. We studied 65 patients with PBC and MBC paired specimens. The concordance rates between PBC and MBC were 78.5%, 58.5% and 96.9%, for ER, PR and HER2, respectively. When discordant, PR status switched from positive (PBC) to negative (MBC) in most cases (23/27). The PR concordance rate was 45.2% for CBs fixed in formalin and 70.6% for those fixed with CytoLyt® (p=0.047). The ER, PR and HER2 concordance rates between the PBC and MBC CBs are similar to those reported in paired surgical specimens. PR status was the most prevalent discordance and was not accompanied by a switch in ER.

  17. Prenylated isoflavonoids from plants as selective estrogen receptor modulators (phytoSERMs)

    NARCIS (Netherlands)

    Simons, R.; Gruppen, H.; Bovee, T.F.H.; Verbruggen, M.A.; Vincken, J.P.

    2012-01-01

    Isoflavonoids are a class of secondary metabolites, which comprise amongst others the subclasses of isoflavones, isoflavans, pterocarpans and coumestans. Isoflavonoids are abundant in Leguminosae, and many of them can bind to the human estrogen receptor (hER) with affinities similar to or lower than

  18. Factors affecting estrogen receptor status in a multiracial Asian country : An analysis of 3557 cases

    NARCIS (Netherlands)

    Yip, C. H.; Pathy, N. Bhoo; Uiterwaal, C. S.; Taib, N. A.; Tan, G. H.; Mun, K. S.; Choo, W. Y.; Rhodes, A.

    Estrogen receptor (ER) positive rates in breast cancer may be influenced by grade, stage, age and race. This study reviews the ER positive rates over a 15-year period at the University Malaya Medical Centre, Kuala Lumpur, Malaysia. Data on ER status of 3557 patients from 1994 to 2008 was analyzed.

  19. A genome-wide association scan on estrogen receptor-negative breast cancer

    NARCIS (Netherlands)

    J. Li (Jingmei); M.K. Humphreys (Manjeet); H. Darabi (Hatef); G. Rosin (Gustaf); U. Hannelius (Ulf); T. Heikinen (Tuomas); K. Aittomäki (Kristiina); C. Blomqvist (Carl); P.D.P. Pharoah (Paul); A.M. Dunning (Alison); S. Ahmed (Shahana); M.J. Hooning (Maartje); A. Hollestelle (Antoinette); R.A. Oldenburg (Rogier); L. Alfredsson (Lars); A. Palotie (Aarno); L. Peltonen-Palotie (Leena); A. Irwanto (Astrid); H.Q. Low (Hui); G.H.K. Teoh (Garrett); A. Thalamuthu (Anbupalam); J. Kere (Juha); M. D'Amato (Mauro); D.F. Easton (Douglas); H. Nevanlinna (Heli); J. Liu (Jianjun); K. Czene (Kamila); A.S. Hall (Alistair)

    2010-01-01

    textabstractIntroduction: Breast cancer is a heterogeneous disease and may be characterized on the basis of whether estrogen receptors (ER) are expressed in the tumour cells. ER status of breast cancer is important clinically, and is used both as a prognostic indicator and treatment predictor. In th

  20. Androgen, estrogen and progesterone receptor expression in the human uterus during the menstrual cycle

    NARCIS (Netherlands)

    Mertens, HJMM; Heineman, MJ; Theunissen, PHMH; de Jong, FH; Evers, JLH

    Cyclic changes in steroid receptor expression in endometrial cells are considered a reflection of its differential functions. Besides estrogen and progestogens, androgens have also been suggested to affect the biological function of the female reproductive tract. We investigated the distribution and

  1. Estrogen receptors alpha and beta and the risk of open-angle glaucoma

    NARCIS (Netherlands)

    de Voogd, Simone; Wolfs, Roger C. W.; Jansonius, Nomdo M.; Uitterlinden, Andre G.; Pols, Huibert A. P.; Hofman, Albert; de Jong, Paulus T. V. M.

    2008-01-01

    Objective: To investigate whether polymorphisms in the estrogen receptor alpha (ESR1) and beta (ESR2) genes were a risk factor for open-angle glaucoma (OAG). Methods: Participants 55 years and older from the population-based Rotterdam Study underwent, at baseline and at follow-up, the same ophthalmi

  2. Lasofoxifene : Selective Estrogen Receptor Modulator for the Prevention and Treatment of Postmenopausal Osteoporosis

    NARCIS (Netherlands)

    Peterson, Gregory M.; Naunton, Mark; Tichelaar, Lisette K.; Gennari, Luigi

    2011-01-01

    OBJECTIVE: To review literature evaluating the pharmacology, pharmacokinetics, clinical efficacy, and adverse effects of lasofoxifene (CP-336156), a selective estrogen receptor modulator (SEAM) that is not approved for use in the US. DATA SOURCES: Literature was accessed through the MEDLINE and EMBA

  3. Factors affecting estrogen receptor status in a multiracial Asian country : An analysis of 3557 cases

    NARCIS (Netherlands)

    Yip, C. H.; Pathy, N. Bhoo; Uiterwaal, C. S.; Taib, N. A.; Tan, G. H.; Mun, K. S.; Choo, W. Y.; Rhodes, A.

    2011-01-01

    Estrogen receptor (ER) positive rates in breast cancer may be influenced by grade, stage, age and race. This study reviews the ER positive rates over a 15-year period at the University Malaya Medical Centre, Kuala Lumpur, Malaysia. Data on ER status of 3557 patients from 1994 to 2008 was analyzed. E

  4. Targeted MS Assay Predicting Tamoxifen Resistance in Estrogen-Receptor-Positive Breast Cancer Tissues and Sera

    NARCIS (Netherlands)

    De Marchi, Tommaso; Kuhn, Erik; Dekker, Lennard J; Stingl, Christoph; Braakman, Rene B H; Opdam, Mark; Linn, Sabine C; Sweep, Fred C G J; Span, Paul N; Luider, Theo M; Foekens, John A; Martens, John W M; Carr, Steven A; Umar, Arzu

    2016-01-01

    We recently reported on the development of a 4-protein-based classifier (PDCD4, CGN, G3BP2, and OCIAD1) capable of predicting outcome to tamoxifen treatment in recurrent, estrogen-receptor-positive breast cancer based on high-resolution MS data. A precise and high-throughput assay to measure these

  5. Height in pre- and postmenopausal women is influenced by estrogen receptor alpha gene polymorphisms

    NARCIS (Netherlands)

    J.B.J. van Meurs (Joyce); A.P. Bergink (Arjan); M. van de Klift (Marjolein); Y. Fang (Yue); G. Leusink (Geraline); A.G. Uitterlinden (André); H.A.P. Pols (Huib); J.P.T.M. van Leeuwen (Hans); S.C.E. Schuit (Stephanie); A. Hofman (Albert)

    2004-01-01

    textabstractThe estrogen receptor alpha gene (ESR1) is known to be involved in metabolic pathways influencing growth. We have performed two population-based association studies using three common polymorphisms within this candidate gene to determine whether these are associated with variation in adu

  6. Targeting the Estrogen Receptor for Ubiquitination and Degradation in Breast Cancer Cells

    Science.gov (United States)

    2004-10-01

    equipment and microscope. We are also grateful to Frank Mercurio (Signal Division, Celgene Pharmaceuticals, Wan-en, NJ) for help obtaining GA-1-mo...34Targeting the estrogen receptor for Proteolysis", wifli Celgene , hic. ($40,000), K Sakamoto, P.I. 1/02-12/02 CaPCURE research award

  7. Inhibition of neointima formation by local delivery of estrogen receptor alpha and beta specific agonists

    NARCIS (Netherlands)

    Krom, Y.D.; Pires, N.M.M.; Jukema, J.W.; Vries, M.R. de; Frants, R.R.; Havekes, L.M.; Dijk, K.W. van; Quax, P.H.A.

    2007-01-01

    Objective: Neointima formation is the underlying mechanism of (in-stent) restenosis. 17β-Estradiol (E2) is known to inhibit injury-induced neointima formation and post-angioplasty restenosis. Estrogen receptor alpha (ERα) has been demonstrated to mediate E2 anti-restenotic properties. However, the r

  8. Breast cancer incidence by estrogen receptor status in Denmark from 1996 to 2007

    DEFF Research Database (Denmark)

    Bigaard, J; Stahlberg, C; Jensen, M-B;

    2012-01-01

    During the past 50 years, breast cancer incidence has increased by 2-3 % annually. Despite many years of testing for estrogen receptors (ER), evidence is scarce on breast cancer incidence by ER status. The aim of this paper was to investigate the increase in breast cancer incidence by ER status...

  9. Prognostic impact of pregnancy after breast cancer according to estrogen receptor status

    DEFF Research Database (Denmark)

    Azim, Hatem A; Kroman, Niels; Paesmans, Marianne;

    2013-01-01

    PURPOSE We questioned the impact of pregnancy on disease-free survival (DFS) in women with history of breast cancer (BC) according to estrogen receptor (ER) status. PATIENTS AND METHODS A multicenter, retrospective cohort study in which patients who became pregnant any time after BC were matched (1...

  10. Prognostic effect of estrogen receptor status across age in primary breast cancer

    DEFF Research Database (Denmark)

    Bentzon, N.; During, M.; Rasmussen, B.B.;

    2008-01-01

    Estrogen receptor (ER) status is considered as an important prognostic factor as well as a predictive factor for endocrine responsiveness in breast cancer. We analyzed the distribution of ER status across age and estimated variations in the prognostic impact of ER status related to patients' age...

  11. CLONING, EXPRESSION AND CHARACTERIZATION OF THE ANDROGEN RECEPTOR AND ISOLATION OF ESTROGEN RECEPTOR ALPHA FROM THE FATHEAD MINNOW (PIMEPHALES PROMELAS)

    Science.gov (United States)

    In vitro screening assays designed to identify hormone mimics or antagonists, including those recommended for use in the EPA's Tier 1 screening battery, typically use mammalian estrogen (ER) and androgen receptors (AR) such as rat or human. Although we know that the amino acid s...

  12. Analysis of estrogen and progesterone receptors on preoperative fine-needle aspirates.

    Science.gov (United States)

    Frigo, B; Pilotti, S; Zurrida, S; Ermellino, L; Manzari, A; Rilke, F

    1995-01-01

    For 56 cases of carcinoma of the breast, results of the immunocytochemical assay for estrogen and progesterone receptors performed on preoperative fine-needle aspirates were compared with those obtained on scraping material from the same tumors. The value and usefulness of this last analysis was demonstrated in a previous study. The level of agreement between the two cytological techniques was assessed by the k statistic. A high level of agreement was found, with k values of 0.909 and 0.889 for estrogen and progesterone receptors, respectively. The results reported here revealed the reliability of steroid receptor determination on fine-needle aspiration biopsies, provided that sufficient cellularity was available. This technique can replace the open biopsy procedure, in as much as it represents a rapid, almost painless, and easily repeated method for the assessment of the receptor status, and is useful for treatment decisions at any time during the course of the disease.

  13. Acute relaxation of mouse duodenum [correction of duodenun] by estrogens. Evidence for an estrogen receptor-independent modulation of muscle excitability.

    Science.gov (United States)

    Díaz, Mario; Ramírez, Cristina M; Marin, Raquel; Marrero-Alonso, Jorge; Gómez, Tomás; Alonso, Rafael

    2004-10-06

    17-beta-Estradiol, the stereoisomer 17-alpha-estradiol and the synthetic estrogen diethylstilbestrol (DES), all caused a rapid (verruculogen. The effects of BAY-K8644 and K(+) channel blockers were synergistic, and allowed relaxed tissues to recover spontaneous activity and basal tone. We hypothesize that the rapid non-genomic spasmolytic effect of estrogens on mouse duodenal muscle might be triggered by an estrogen-receptor-independent mechanism likely involving activation of tetraethylamonium- and 4-aminopyridine-sensitive K(+) channels and inhibition of L-type Ca2(+) channels on the smooth muscle cells.

  14. Identification and characterization of estrogen receptor-related receptor alpha and gamma in human glioma and astrocytoma cells.

    Science.gov (United States)

    Gandhari, Mukesh K; Frazier, Chester R; Hartenstein, Julia S; Cloix, Jean-Francois; Bernier, Michel; Wainer, Irving W

    2010-02-05

    The purpose of this study was to examine expression and function of estrogen receptor-related receptors (ERRs) in human glioma and astrocytoma cell lines. These estrogen receptor-negative cell lines expressed ERRalpha and ERRgamma proteins to varying degree in a cell context dependent manner, with U87MG glioma cells expressing both orphan nuclear receptors. Cell proliferation assays were performed in the presence of ERR isoform-specific agonists and antagonists, and the calculated EC(50) and IC(50) values were consistent with previous reported values determined in other types of cancer cell lines. Induction of luciferase expression under the control of ERR isoform-specific promoters was also observed in these cells. These results indicate that ERRalpha and ERRgamma are differentially expressed in these tumor cell lines and likely contribute to agonist-dependent ERR transcriptional activity.

  15. Bazedoxifene: a new selective estrogen receptor modulator for the treatment of postmenopausal osteoporosis.

    Science.gov (United States)

    Kung, Annie W C; Chu, Eva Y W; Xu, Ling

    2009-06-01

    Bazedoxifene acetate (WAY-140424; TSE-424) is an oral, nonsteroidal, indole-based selective estrogen receptor modulator (SERM) being developed for the prevention and treatment of osteoporosis. Preclinical studies on bazedoxifene have demonstrated estrogen agonist effects on the skeleton and lipid metabolism but not on breast and uterine endometrium. In combination with estrogen, bazedoxifene antagonizes the stimulatory action of estrogens on proliferation of breast cancer cells and endometrium. Phase III clinical studies have shown favorable effects on the skeleton without stimulation of endometrium and breast. Bazedoxifene prevents bone loss in postmenopausal women without osteoporosis and reduces vertebral fractures in women with postmenopausal osteoporosis. In women at high risk of fracture with multiple risk factors, bazedoxifene reduces nonvertebral fracture risk in post-hoc analysis. Bazedoxifene in combination with conjugated estrogens represents a new form of therapeutic agents for the treatment of postmenopausal symptoms and prevention of postmenopausal osteoporosis. Clinical trials with bazedoxifene/conjugated estrogens have shown beneficial effects on bone mineral density and bone turnover markers with improvement in vasomotor symptoms and little or no stimulation of breast and endometrium.

  16. Cloning and functional characterization of Chondrichthyes, cloudy catshark, Scyliorhinus torazame and whale shark, Rhincodon typus estrogen receptors.

    Science.gov (United States)

    Katsu, Yoshinao; Kohno, Satomi; Narita, Haruka; Urushitani, Hiroshi; Yamane, Koudai; Hara, Akihiko; Clauss, Tonya M; Walsh, Michael T; Miyagawa, Shinichi; Guillette, Louis J; Iguchi, Taisen

    2010-09-15

    Sex-steroid hormones are essential for normal reproductive activity in both sexes in all vertebrates. Estrogens are required for ovarian differentiation during a critical developmental stage and promote the growth and differentiation of the female reproductive system following puberty. Recent studies have shown that environmental estrogens influence the developing reproductive system as well as gametogenesis, especially in males. To understand the molecular mechanisms of estrogen actions and to evaluate estrogen receptor-ligand interactions in Elasmobranchii, we cloned a single estrogen receptor (ESR) from two shark species, the cloudy catshark (Scyliorhinus torazame) and whale shark (Rhincodon typus) and used an ERE-luciferase reporter assay system to characterize the interaction of these receptors with steroidal and other environmental estrogens. In the transient transfection ERE-luciferase reporter assay system, both shark ESR proteins displayed estrogen-dependent activation of transcription, and shark ESRs were more sensitive to 17beta-estradiol compared with other natural and synthetic estrogens. Further, the environmental chemicals, bisphenol A, nonylphenol, octylphenol and DDT could activate both shark ESRs. The assay system provides a tool for future studies examining the receptor-ligand interactions and estrogen disrupting mechanisms in Elasmobranchii.

  17. Estrogenic Activity of Some Phytoestrogens on Bovine Oxytocin and Thymidine Kinase-ERE Promoter through Estrogen Receptor-α in MDA-MB 231 Cells

    OpenAIRE

    Ehsan Zayerzadeh; Mohammad Kazem Koohi; Azadeh Fardipour

    2014-01-01

    Background: Phytoestrogens, a group of plant-derived polyphenolic compounds have recently come into considerable attention due to the increasing information on their potential adverse effects in human health. Some of phytoestrogens show estrogenic activity that may be carcinogenic for human. In the present study, we investigated the transcriptional effects of variety of phytoestrogens on the bovine oxytocin and the thymidine kinase-ERE promoter by estrogen receptor α in MDA-MB 231 breast canc...

  18. Modulation of estrogen receptor-beta isoforms by phytoestrogens in breast cancer cells.

    Science.gov (United States)

    Cappelletti, Vera; Miodini, Patrizia; Di Fronzo, Giovanni; Daidone, Maria Grazia

    2006-05-01

    High consumption of phytoestrogen-rich food correlates with reduced incidence of breast cancer. However, the effect of phytoestrogens on growth of pre-existing breast tumors presents concerns when planning the use of phytoestrogens as chemoprevention st rategy. Genistein, the active phytoestrogen in soy, displays weak estrogenic activity mediated by estrogen receptor (ER) with a preferential binding for the ER-beta species. However, no information is at present available on the interaction between phytoestrogens and the various isoforms generated by alternative splicing. In two human breast cancer cell lines, T47D and BT20, which express variable levels of ER-beta, the effect of genistein and quercetin was evaluated singly and in comparison with 17beta-estradiol, on mRNA expression of estrogen receptor-beta (ER-beta) isoforms evaluated by a triple primer RT-PCR assay. In T47D cells estradiol caused a 6-fold up-regulation of total ER-beta, and modified the relative expression pattern of the various isoforms, up-regulating the beta2 and down-regulating the beta5 isoform. Genistein up-regulated ER-beta2 and ER-beta1 in T47D cells, and after treatment the ER-beta2 isoform became prevalent, while in BT20 cells it almost doubled the percent contribution of ER-beta1 and ER-beta2 to total ER-beta. Quercetin did not alter the total levels nor the percent distribution of ER-beta isoforms in either cell line. Genistein, through the modulation of ER-beta isoform RNA expression inhibited estrogen-promoted cell growth, without interfering on estrogen-regulated transcription. ER-beta and its ER-beta mRNA isoforms may be involved in a self-limiting mechanism of estrogenic stimulation promoted either by the natural hormone or by weaker estrogen agonists like genistein.

  19. Involvement of Human Estrogen Related Receptor Alpha 1 (hERR 1) in Breast Cancer and Hormonally Insensitive Disease

    Science.gov (United States)

    2002-08-01

    Jak2 (Janus kinase), which then interacts with and phosphorylates the cytoplasmic tail of ErbB2, thereby activating it (39). Hence, multiple signaling...directly compete Among the first orphan receptors identified were the estro- with estrogen receptor a (ERa) for binding. ERRal ac- gen -related receptors...identified as the major isoform present in HeLa gen responsiveness and as an estrogen-independent ac- cells (Fig. LA) (11, 12). The DBD of human ERRal

  20. Ritonavir binds to and downregulates estrogen receptors: Molecular mechanism of promoting early atherosclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Jin [Ministry of Education Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Science, Wuhan University, Wuhan 430071 (China); Wang, Ying [Department of Pathophysiology, School of Medicine, Wuhan University, Wuhan 430071 (China); Su, Ke [Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060 (China); Liu, Min [Ministry of Education Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Science, Wuhan University, Wuhan 430071 (China); Hu, Peng-Chao [Department of Pathophysiology, School of Medicine, Wuhan University, Wuhan 430071 (China); Ma, Tian; Li, Jia-Xi [Ministry of Education Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Science, Wuhan University, Wuhan 430071 (China); Wei, Lei [Department of Pathophysiology, School of Medicine, Wuhan University, Wuhan 430071 (China); Zheng, Zhongliang, E-mail: biochem@whu.edu.cn [State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072 (China); Yang, Fang, E-mail: fang-yang@whu.edu.cn [Department of Physiology, School of Medicine, Wuhan University, Wuhan 430071 (China)

    2014-10-01

    Estrogenic actions are closely related to cardiovascular disease. Ritonavir (RTV), a human immunodeficiency virus (HIV) protease inhibitor, induces atherosclerosis in an estrogen-related manner. However, how RTV induce pathological phenotypes through estrogen pathway remains unclear. In this study, we found that RTV increases thickness of coronary artery walls of Sprague Dawley rats and plasma free fatty acids (FFA) levels. In addition, RTV could induce foam cell formation, downregulate both estrogen receptor α (ERα) and ERβ expression, upregulate G protein-coupled estrogen receptor (GPER) expression, and all of them could be partially blocked by 17β-estradiol (E2), suggesting RTV acts as an antagonist for E2. Computational modeling shows a similar interaction with ERα between RTV and 2-aryl indoles, which are highly subtype-selective ligands for ERα. We also found that RTV directly bound to ERα and selectively inhibited the nuclear localization of ERα, and residue Leu536 in the hydrophobic core of ligand binding domain (LBD) was essential for the interaction with RTV. In addition, RTV did not change the secondary structure of ERα-LBD like E2, which explained how ERα lost the capacity of nuclear translocation under the treatment of RTV. All of the evidences suggest that ritonavir acts as an antagonist for 17β-estradiol in regulating α subtype estrogen receptor function and early events of atherosclerosis. - Graphical abstract: RTV directly binds to ERα and Leu536 in the hydrophobic core of ligand binding domain is essential for the interaction. - Highlights: • RTV increases the thickness of rat coronary artery wall and foam cell formation. • RTV downregulates the expression of ERα and ERβ. • RTV inhibits ERα promoter activity. • RTV directly binds to ERα and the key amino acid is Leu536. • RTV inhibits the nuclear translocation of ERα and GPER.

  1. The regulation of MS-KIF18A expression and cross talk with estrogen receptor.

    Directory of Open Access Journals (Sweden)

    Margalit Zusev

    Full Text Available This study provides a novel view on the interactions between the MS-KIF18A, a kinesin protein, and estrogen receptor alpha (ERalpha which were studied in vivo and in vitro. Additionally, the regulation of MS-KIF18A expression by estrogen was investigated at the gene and protein levels. An association between recombinant proteins; ERalpha and MS-KIF18A was demonstrated in vitro in a pull down assay. Such interactions were proven also for endogenous proteins in MBA-15 cells were detected prominently in the cytoplasm and are up-regulated by estrogen. Additionally, an association between these proteins and the transcription factor NF-kappaB was identified. MS-KIF18A mRNA expression was measured in vivo in relation to age and estrogen level in mice and rats models. A decrease in MS-KIF18A mRNA level was measured in old and in OVX-estrogen depleted rats as compared to young animals. The low MS-KIF18A mRNA expression in OVX rats was restored by estrogen treatment. We studied the regulation of MS-KIF18A transcription by estrogen using the luciferase reporter gene and chromatin immuno-precipitation (ChIP assays. The luciferase reporter gene assay demonstrated an increase in MS-KIF18A promoter activity in response to 10(-8 M estrogen and 10(-7M ICI-182,780. Complimentary, the ChIP assay quantified the binding of ERalpha and pcJun to the MS-KIF18A promoter that was enhanced in cells treated by estrogen and ICI-182,780. In addition, cells treated by estrogen expressed higher levels of MS-KIF18A mRNA and protein and the protein turnover in MBA-15 cells was accelerated. Presented data demonstrated that ERalpha is a defined cargo of MS-KIF18A and added novel insight on the role of estrogen in regulation of MS-KIF18A expression both in vivo and in vitro.

  2. Non-genomic estrogen/estrogen receptor α promotes cellular malignancy of immature ovarian teratoma in vitro.

    Science.gov (United States)

    Hung, Yao-Ching; Chang, Wei-Chun; Chen, Lu-Min; Chang, Ying-Yi; Wu, Ling-Yu; Chung, Wei-Min; Lin, Tze-Yi; Chen, Liang-Chi; Ma, Wen-Lung

    2014-06-01

    Malignant immature ovarian teratomas (IOTs) most often occur in women of reproductive age. It is unclear, however, what roles estrogenic signaling plays in the development of IOT. In this study, we examined whether estrogen receptors (ERα and β) promote the cellular malignancy of IOT. Estradiol (E2), PPT (propylpyrazole), and DPN (diarylpropionitrile) (ERα- and β-specific agonists, respectively), as well as ERα- or ERβ-specific short hairpin (sh)RNA were applied to PA-1 cells, a well-characterized IOT cell line. Cellular tumorigenic characteristics, for example, cell migration/invasion, expression of the cancer stem/progenitor cell marker CD133, and evidence for epithelial-mesenchymal transition (EMT) were examined. In PA-1 cells that expressed ERα and ERβ, we found that ERα promoted cell migration and invasion. We also found that E2/ERα signaling altered cell behavior through non-classical transactivation function. Our data show non-genomic E2/ERα activations of focal adhesion kinase-Ras homolog gene family member A (FAK-RhoA) and ERK governed cell mobility capacity. Moreover, E2/ERα signaling induces EMT and overexpression of CD133 through upregulation micro-RNA 21 (miR21; IOT stem/progenitor promoter), and ERK phosphorylations. Furthermore, E2/ERα signaling triggers a positive feedback regulatory loop within miR21 and ERK. At last, expression levels of ERα, CD133, and EMT markers in IOT tissue samples were examined by immunohistochemistry. We found that cytosolic ERα was co-expressed with CD133 and mesenchymal cell markers but not epithelial cell markers. In conclusion, estrogenic signals exert malignant transformation capacity of cancer cells, exclusively through non-genomic regulation in female germ cell tumors.

  3. Pomegranate extract demonstrate a selective estrogen receptor modulator profile in human tumor cell lines and in vivo models of estrogen deprivation.

    Science.gov (United States)

    Sreeja, Sreekumar; Santhosh Kumar, Thankayyan R; Lakshmi, Baddireddi S; Sreeja, Sreeharshan

    2012-07-01

    Selective estrogen receptor modulators (SERMs) are estrogen receptor (ER) ligands exhibiting tissue-specific agonistic or antagonistic biocharacter and are used in the hormonal therapy for estrogen-dependent breast cancers. Pomegranate fruit has been shown to exert antiproliferative effects on human breast cancer cells in vitro. In this study, we investigated the tissue-specific estrogenic/antiestrogenic activity of methanol extract of pericarp of pomegranate (PME). PME was evaluated for antiproliferative activity at 20-320 μg/ml on human breast (MCF-7, MDA MB-231) endometrial (HEC-1A), cervical (SiHa, HeLa), ovarian (SKOV3) carcinoma and normal breast fibroblast (MCF-10A) cells. Competitive radioactive binding studies were carried out to ascertain whether PME interacts with ER. The reporter gene assay measured the estrogenic/antiestrogenic activity of PME in MCF-7 and MDA MB-231 cells transiently transfected with plasmids coding estrogen response elements with a reporter gene (pG5-ERE-luc) and wild-type ERα (hEG0-ER). PME inhibited the binding of [³H] estradiol to ER and suppressed the growth and proliferation of ER-positive breast cancer cells. PME binds ER and down-regulated the transcription of estrogen-responsive reporter gene transfected into breast cancer cells. The expressions of selected estrogen-responsive genes were down-regulated by PME. Unlike 17β-estradiol [1 mg/kg body weight (BW)] and tamoxifen (10 mg/kg BW), PME (50 and 100 mg/kg BW) did not increase the uterine weight and proliferation in ovariectomized mice and its cardioprotective effects were comparable to that of 17β-estradiol. In conclusion, our findings suggest that PME displays a SERM profile and may have the potential for prevention of estrogen-dependent breast cancers with beneficial effects in other hormone-dependent tissues.

  4. Estrogen-mediated regulation of Igf1 transcription and uterine growth involves direct binding of estrogen receptor alpha to estrogen-responsive elements.

    Science.gov (United States)

    Hewitt, Sylvia C; Li, Yin; Li, Leping; Korach, Kenneth S

    2010-01-22

    Estrogen enables uterine proliferation, which depends on synthesis of the IGF1 growth factor. This proliferation and IGF1 synthesis requires the estrogen receptor (ER), which binds directly to target DNA sequences (estrogen-responsive elements or EREs), or interacts with other transcription factors, such as AP1, to impact transcription. We observe neither uterine growth nor an increase in Igf1 transcript in a mouse with a DNA-binding mutated ER alpha (KIKO), indicating that both Igf1 regulation and uterine proliferation require the DNA binding function of the ER. We identified several potential EREs in the Igf1 gene, and chromatin immunoprecipitation analysis revealed ER alpha binding to these EREs in wild type but not KIKO chromatin. STAT5 is also reported to regulate Igf1; uterine Stat5a transcript is increased by estradiol (E(2)), but not in KIKO or alpha ERKO uteri, indicating ER alpha- and ERE-dependent regulation. ER alpha binds to a potential Stat5a ERE. We hypothesize that E(2) increases Stat5a transcript through ERE binding; that ER alpha, either alone or together with STAT5, then acts to increase Igf1 transcription; and that the resulting lack of IGF1 impairs KIKO uterine growth. Treatment with exogenous IGF1, alone or in combination with E(2), induces proliferation in wild type but not KIKO uteri, indicating that IGF1 replacement does not rescue the KIKO proliferative response. Together, these observations suggest in contrast to previous in vitro studies of IGF-1 regulation involving AP1 motifs that direct ER alpha-DNA interaction is required to increase Igf1 transcription. Additionally, full ER alpha function is needed to mediate other cellular signals of the growth factor for uterine growth.

  5. Expressions of Estrogen Receptorαand β in the Development and Maturation of Rat Heart

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    1 IntroductionPhysiological effects of estrogen on myocardium are mediated by two intracellular estrogen receptors (ER), alpha (ERα) and beta (ERβ). Their role in cardiovascular physiology is not well understood. For this reason,we investigated the expressions of ERα and ERβ in the development and maturation of rat heart.2 Materials and Methods2.1 Experimental animals The study on changes of ERs was performed in six newborn rats with both sexes and six adult female Wistar rats respedively.2.2 Semiquantitati...

  6. Identification of estrogen receptor-related receptor gamma as a direct transcriptional target of angiogenin.

    Directory of Open Access Journals (Sweden)

    Jian Ang

    Full Text Available Nuclear translocation of angiogenin (ANG is essential for the proliferation of its target cells. ANG promotes rRNA synthesis, while whether it regulates mRNA transcription remains unknown. Using the chromatin immunoprecipitation method, we have identified 12 ANG-binding sequences. One of these sequences lies in the estrogen receptor-related receptor gamma (ERRγ gene which we designated as ANG-Binding Sequence within ERRγ (ABSE. ABSE exhibited ANG-dependent repressor activity in the luciferase reporter system. Down-regulation of ANG increased ERRγ expression, and active gene marker level at the ABSE region. The expression levels of ERRγ targets genes, p21(WAF/CIP and p27(KIP1, and the occupation of ERRγ on their promoter regions were increased in ANG-deficient cells accordingly. Furthermore, knockdown of ERRγ promoted the proliferation rate in ANG-deficient breast cancer cells. Finally, immunohistochemistry staining showed negative correlation between ANG and ERRγ in breast cancer tissue. Altogether, our study provides evidence that nuclear ANG directly binds to the ABSE of ERRγ gene and inhibits ERRγ transcription to promote breast cancer cell proliferation.

  7. Assessment of cellular estrogenic activity based on estrogen receptor-mediated reduction of soluble-form catechol-O-methyltransferase (COMT) expression in an ELISA-based system.

    Science.gov (United States)

    Ho, Philip Wing-Lok; Tse, Zero Ho-Man; Liu, Hui-Fang; Lu, Song; Ho, Jessica Wing-Man; Kung, Michelle Hiu-Wai; Ramsden, David Boyer; Ho, Shu-Leong

    2013-01-01

    Xenoestrogens are either natural or synthetic compounds that mimic the effects of endogenous estrogen. These compounds, such as bisphenol-A (BPA), and phthalates, are commonly found in plastic wares. Exposure to these compounds poses major risk to human health because of the potential to cause endocrine disruption. There is huge demand for a wide range of chemicals to be assessed for such potential for the sake of public health. Classical in vivo assays for endocrine disruption are comprehensive but time-consuming and require sacrifice of experimental animals. Simple preliminary in vitro screening assays can reduce the time and expense involved. We previously demonstrated that catechol-O-methyltransferase (COMT) is transcriptionally regulated by estrogen via estrogen receptor (ER). Therefore, detecting corresponding changes of COMT expression in estrogen-responsive cells may be a useful method to estimate estrogenic effects of various compounds. We developed a novel cell-based ELISA to evaluate cellular response to estrogenicity by reduction of soluble-COMT expression in ER-positive MCF-7 cells exposed to estrogenic compounds. In contrast to various existing methods that only detect bioactivity, this method elucidates direct physiological effect in a living cell in response to a compound. We validated our assay using three well-characterized estrogenic plasticizers - BPA, benzyl butyl phthalate (BBP), and di-n-butyl phthalate (DBP). Cells were exposed to either these plasticizers or 17β-estradiol (E2) in estrogen-depleted medium with or without an ER-antagonist, ICI 182,780, and COMT expression assayed. Exposure to each of these plasticizers (10(-9)-10(-7)M) dose-dependently reduced COMT expression (pvitro assays of similar sensitivity. To satisfy the demand for in vitro assays targeting different cellular components, a cell-based COMT assay provides useful initial screening to supplement the current assessments of xenoestrogens for potential estrogenic activity.

  8. Selective Human Estrogen Receptor Partial Agonists (ShERPAs) for Tamoxifen-Resistant Breast Cancer.

    Science.gov (United States)

    Xiong, Rui; Patel, Hitisha K; Gutgesell, Lauren M; Zhao, Jiong; Delgado-Rivera, Loruhama; Pham, Thao N D; Zhao, Huiping; Carlson, Kathryn; Martin, Teresa; Katzenellenbogen, John A; Moore, Terry W; Tonetti, Debra A; Thatcher, Gregory R J

    2016-01-14

    Almost 70% of breast cancers are estrogen receptor α (ERα) positive. Tamoxifen, a selective estrogen receptor modulator (SERM), represents the standard of care for many patients; however, 30-50% develop resistance, underlining the need for alternative therapeutics. Paradoxically, agonists at ERα such as estradiol (E2) have demonstrated clinical efficacy in patients with heavily treated breast cancer, although side effects in gynecological tissues are unacceptable. A drug that selectively mimics the actions of E2 in breast cancer therapy but minimizes estrogenic effects in other tissues is a novel, therapeutic alternative. We hypothesized that a selective human estrogen receptor partial agonist (ShERPA) at ERα would provide such an agent. Novel benzothiophene derivatives with nanomolar potency in breast cancer cell cultures were designed. Several showed partial agonist activity, with potency of 0.8-76 nM, mimicking E2 in inhibiting growth of tamoxifen-resistant breast cancer cell lines. Three ShERPAs were tested and validated in xenograft models of endocrine-independent and tamoxifen-resistant breast cancer, and in contrast to E2, ShERPAs did not cause significant uterine growth.

  9. Targeting estrogen receptor β as preventive therapeutic strategy for Leber's hereditary optic neuropathy.

    Science.gov (United States)

    Pisano, Annalinda; Preziuso, Carmela; Iommarini, Luisa; Perli, Elena; Grazioli, Paola; Campese, Antonio F; Maresca, Alessandra; Montopoli, Monica; Masuelli, Laura; Sadun, Alfredo A; d'Amati, Giulia; Carelli, Valerio; Ghelli, Anna; Giordano, Carla

    2015-12-15

    Leber's hereditary optic neuropathy (LHON) is a maternally inherited blinding disease characterized by degeneration of retinal ganglion cells (RGCs) and consequent optic nerve atrophy. Peculiar features of LHON are incomplete penetrance and gender bias, with a marked male prevalence. Based on the different hormonal metabolism between genders, we proposed that estrogens play a protective role in females and showed that these hormones ameliorate mitochondrial dysfunction in LHON through the estrogen receptors (ERs). We also showed that ERβ localize to the mitochondria of RGCs. Thus, targeting ERβ may become a therapeutic strategy for LHON specifically aimed at avoiding or delaying the onset of disease in mutation carriers. Here, we tested the effects of ERβ targeting on LHON mitochondrial defective metabolism by treating LHON cybrid cells carrying the m.11778G>A mutation with a combination of natural estrogen-like compounds that bind ERβ with high selectivity. We demonstrated that these molecules improve cell viability by reducing apoptosis, inducing mitochondrial biogenesis and strongly reducing the levels of reactive oxygen species in LHON cells. These effects were abolished in cells with ERβ knockdown by silencing receptor expression or by using specific receptor antagonists. Our observations support the hypothesis that estrogen-like molecules may be useful in LHON prophylactic therapy. This is particularly important for lifelong disease prevention in unaffected LHON mutation carriers. Current strategies attempting to combat degeneration of RGCs during the acute phase of LHON have not been very effective. Implementing a different and preemptive approach with a low risk profile may be very helpful.

  10. Differential regulation of native estrogen receptor-regulatory elements by estradiol, tamoxifen, and raloxifene.

    Science.gov (United States)

    Levy, Nitzan; Tatomer, Dierdre; Herber, Candice B; Zhao, Xiaoyue; Tang, Hui; Sargeant, Toby; Ball, Lonnele J; Summers, Jonathan; Speed, Terence P; Leitman, Dale C

    2008-02-01

    Estrogen receptors (ERs) regulate gene transcription by interacting with regulatory elements. Most information regarding how ER activates genes has come from studies using a small set of target genes or simple consensus sequences such as estrogen response element, activator protein 1, and Sp1 elements. However, these elements cannot explain the differences in gene regulation patterns and clinical effects observed with estradiol (E(2)) and selective estrogen receptor modulators. To obtain a greater understanding of how E(2) and selective estrogen receptor modulators differentially regulate genes, it is necessary to investigate their action on a more comprehensive set of native regulatory elements derived from ER target genes. Here we used chromatin immunoprecipitation-cloning and sequencing to isolate 173 regulatory elements associated with ERalpha. Most elements were found in the introns (38%) and regions greater than 10 kb upstream of the transcription initiation site (38%); 24% of the elements were found in the proximal promoter region (tamoxifen with ERalpha or ERbeta. Tamoxifen was more effective than raloxifene at activating the elements with ERalpha, whereas raloxifene was superior with ERbeta. Our findings demonstrate that E(2), tamoxifen, and raloxifene differentially regulate native ER-regulatory elements isolated by chromatin immunoprecipitation with ERalpha and ERbeta.

  11. Estrogen-mediated upregulation of Noxa is associated with cell cycle progression in estrogen receptor-positive breast cancer cells.

    Science.gov (United States)

    Liu, Wensheng; Swetzig, Wendy M; Medisetty, Rajesh; Das, Gokul M

    2011-01-01

    Noxa is a Bcl-2-homology domain (BH3)-only protein reported to be a proapoptotic member of the Bcl-2 family. Estrogen has been well documented to stimulate cell growth and inhibit apoptosis in estrogen receptor (ER)-positive breast cancer cells. Intriguingly, recent reports have shown that 17β-estradiol (E2) induces Noxa expression, although the mechanisms underlying E2-mediated induction of Noxa and its functional significance are unknown. Using MCF7 human breast cancer cells as an experimental model, we show that Noxa is upregulated by E2 via p53-independent processes that involve c-Myc and ERα. Experiments using small interfering ribonucleic acids (siRNA) to specifically knock down p53, c-Myc, and ERα demonstrated that c-Myc and ERα, but not p53, are involved in the transcriptional upregulation of Noxa following E2 treatment. Furthermore, while E2 promoted the recruitment of c-Myc and ERα to the NOXA promoter in chromatin immunoprecipitation (ChIP) assays, E2 did not induce p53 recruitment. Interestingly, E2-mediated upregulation of Noxa was not associated with apoptosis. However, siRNA-mediated knockdown of Noxa resulted in cell cycle arrest in G(0)/G(1)-phase and significantly delayed the G(1)-to-S-phase transition following E2 treatment, indicating that Noxa expression is required for cell cycle progression in ER-positive breast cancer cells.

  12. Estrogen-mediated upregulation of Noxa is associated with cell cycle progression in estrogen receptor-positive breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Wensheng Liu

    Full Text Available Noxa is a Bcl-2-homology domain (BH3-only protein reported to be a proapoptotic member of the Bcl-2 family. Estrogen has been well documented to stimulate cell growth and inhibit apoptosis in estrogen receptor (ER-positive breast cancer cells. Intriguingly, recent reports have shown that 17β-estradiol (E2 induces Noxa expression, although the mechanisms underlying E2-mediated induction of Noxa and its functional significance are unknown. Using MCF7 human breast cancer cells as an experimental model, we show that Noxa is upregulated by E2 via p53-independent processes that involve c-Myc and ERα. Experiments using small interfering ribonucleic acids (siRNA to specifically knock down p53, c-Myc, and ERα demonstrated that c-Myc and ERα, but not p53, are involved in the transcriptional upregulation of Noxa following E2 treatment. Furthermore, while E2 promoted the recruitment of c-Myc and ERα to the NOXA promoter in chromatin immunoprecipitation (ChIP assays, E2 did not induce p53 recruitment. Interestingly, E2-mediated upregulation of Noxa was not associated with apoptosis. However, siRNA-mediated knockdown of Noxa resulted in cell cycle arrest in G(0/G(1-phase and significantly delayed the G(1-to-S-phase transition following E2 treatment, indicating that Noxa expression is required for cell cycle progression in ER-positive breast cancer cells.

  13. Expression of G protein-coupled estrogen receptor in irritable bowel syndrome and its clinical significance.

    Science.gov (United States)

    Qin, Bin; Dong, Lei; Guo, Xiaoyan; Jiang, Jiong; He, Yangxin; Wang, Xiaoyan; Li, Lu; Zhao, Juhui

    2014-01-01

    Estrogen is suggested to participate in pathogenesis of irritable bowel syndrome (IBS), but expression of G protein-coupled estrogen receptor (GPER) in the colon of IBS patients has never been investigated. The aim of this study was to investigate the expression of GPER and classical estrogen receptors in the colon of IBS patients and healthy controls. Colonic biopsies were obtained by endoscopy from patients with IBS (n=46) and healthy subjects (n=13). Expression of GPER, estrogen receptor α (ERα) and estrogen receptor β (ERβ) in mast cells were measured by double-labelling immunofluorescence. Quantification of mRNA expression was performed for GPER, ERα and ERβ by real-time polymerase chain reaction. Differential distribution of GPER, ERα and ERβ were detected in human colonic mucosa. The expression of GPER in the cytoplasm of mast cells and GPER-positive cells was significantly higher in diarrhea-predominant IBS (D-IBS) patients than that in constipation-predominant IBS (C-IBS, Pcolonic mucosa and no difference of immunostaining results for ERα and ERβ was found among these three groups. A positive correlation (r=0.451, P=0.011) between GPER-positive cell counts and abdominal pain severity was observed in D-IBS group. Relative mRNA expression of GPER in D-IBS was also higher than that in C-IBS (P=0.018) and healthy subjects (P=0.011). The present study, for the first time, demonstrated the expression of GPER in human colonic mucosa and its correlation with abdominal pain severity.

  14. [Effects of SERMs on bone health. Mechanisms of bone mass control by selective estrogen receptor modulator].

    Science.gov (United States)

    Imai, Yuuki; Kato, Shigeaki

    2010-03-01

    The bone mass, which is controlled by the balances between bone formation and bone resorption can be reduced by estrogen deficiency in post-menopausal osteoporosis. Reduced bone mass can be recovered by hormone replacement therapy (HRT) , however, HRT has various side effects. Although SERMs can rescue the bone mass with less side effect compared to HRT, the precise mechanisms of this effect is still elusive. From the results of the analyses for osteoclast specific estrogen receptor (ER) alphaknockout mice and the genome wide approach of ERalphabinding site, estrogen and SERMs can, at least in part, protect the bone mass by inducing the expression of Fas ligand and controling the life span of osteoclasts. More precise molecular mechanisms of the effect of SERM, especially in tissue/cell type specificity, may help to investigate new SERM, which is more specific and effective to treat post-menopausal osteoporosis.

  15. Mechanisms of G Protein-Coupled Estrogen Receptor-Mediated Spinal Nociception

    DEFF Research Database (Denmark)

    Deliu, Elena; Brailoiu, G. Cristina; Arterburn, Jeffrey B.

    2012-01-01

    in spinal nociceptive processing. Intrathecal challenging of mice with the GPER agonist G-1 results in pain-related behaviors. GPER antagonism with G15 reduces the G-1-induced response. Electrophysiological recordings from superficial dorsal horn neurons indicate neuronal membrane depolarization with G-1......Human and animal studies suggest that estrogens are involved in the processing of nociceptive sensory information and analgesic responses in the central nervous system. Rapid pronociceptive estrogenic effects have been reported, some of which likely involve G protein-coupled estrogen receptor (GPER......) activation. Membrane depolarization and increases in cytosolic calcium and reactive oxygen species (ROS) levels are markers of neuronal activation, underlying pain sensitization in the spinal cord. Using behavioral, electrophysiological, and fluorescent imaging studies, we evaluated GPER involvement...

  16. Estrogen receptor-alpha-immunoreactive neurons in the mesencephalon, pons and medulla oblongata of the female golden hamster

    NARCIS (Netherlands)

    Boers, J; Gerrits, PO; Holstege, G

    1999-01-01

    Recent studies have revealed brainstem-spinal pathways involved in the generation of receptive behavior in hamster and cat, and the enormous influence of estrogen on these pathways. The present study gives an overview of the location of estrogen receptor-alpha-immunoreactive neurons (ER-alpha-IR) in

  17. Estrogen receptor-alpha immunoreactivity in parasympathetic preganglionic neurons innervating the bladder in the adult ovariectomized cat

    NARCIS (Netherlands)

    VanderHorst, VGJM; Meijer, E; Holstege, G

    2001-01-01

    Estrogen affects autonomic functions such as micturition. The sacral cord is important in the control of micturition and contains numerous estrogen receptor-alpha immnoreactive (ER-alpha IR) neurons. Therefore, the present double labeling study examines whether sacral parasympathetic preganglionic

  18. CIA, a novel estrogen receptor coactivator with a bifunctional nuclear receptor interacting determinant.

    Science.gov (United States)

    Sauvé, F; McBroom, L D; Gallant, J; Moraitis, A N; Labrie, F; Giguère, V

    2001-01-01

    Coregulators for nuclear receptors (NR) are factors that either enhance or repress their transcriptional activity. Both coactivators and corepressors have been shown to use similar but functionally distinct NR interacting determinants containing the core motifs LxxLL and PhixxPhiPhi, respectively. These interactions occur through a hydrophobic cleft located on the surface of the ligand-binding domain (LBD) of the NR and are regulated by ligand-dependent activation function 2 (AF-2). In an effort to identify novel coregulators that function independently of AF-2, we used the LBD of the orphan receptor RVR (which lacks AF-2) as bait in a yeast two-hybrid screen. This strategy led to the cloning of a nuclear protein referred to as CIA (coactivator independent of AF-2 function) that possesses both repressor and activator functions. Strikingly, we observed that CIA not only interacts with RVR and Rev-ErbAalpha in a ligand-independent manner but can also form complexes with estrogen receptor alpha (ERalpha) and ERbeta in vitro and enhances ERalpha transcriptional activity in the presence of estradiol (E(2)). CIA-ERalpha interactions were found to be independent of AF-2 and enhanced by the antiestrogens EM-652 and ICI 182,780 but not by 4-hydroxytamoxifen and raloxifene. We further demonstrate that CIA-ERalpha interactions require the presence within CIA of a novel bifunctional NR recognition determinant containing overlapping LxxLL and PhixxPhiPhi motifs. The identification and functional characterization of CIA suggest that hormone binding can create a functional coactivator interaction interface in the absence of AF-2.

  19. Outcomes of Estrogen Receptor Negative and Progesterone Receptor Positive Breast Cancer

    Science.gov (United States)

    Chan, Melissa; Chang, Martin C.; González, Rosa; Lategan, Belinda; del Barco, Elvira; Vera-Badillo, Francisco; Quesada, Paula; Goldstein, Robyn; Cruz, Ignacio; Ocana, Alberto; Cruz, Juan J.; Amir, Eitan

    2015-01-01

    Purpose To describe the clinical features and outcomes of estrogen receptor negative (ER-) and progesterone receptor positive (PgR+) breast cancer. Methods We retrospectively reviewed a well-characterized database of sequential patients diagnosed with early stage invasive breast carcinoma. Outcomes of interest were time to relapse (TTR) and overall survival (OS). Multivariable Cox proportional hazards analysis was conducted to assess the association of ER-/PgR+ with TTR and OS in comparison to ER+ and to ER- and PgR negative (ER-/PgR-) tumors irrespective of HER2 status. ER and PgR expression was conservatively defined as 10% or greater staining of cancer cells. Results 815 patients were followed for a median of 40.5 months; 56 patients (7%) had ER-/PgR+, 624 (77%) had ER+ and 136 (17%) had ER-/PgR- phenotypes. Compared with ER+ tumors, ER-/PgR+ tumors were associated with younger age (50 versus 59 years, p=0.03), high grade (50% versus 24%, p<0.001) and more frequent HER2 overexpression/amplification (43% versus 14%, p<0.001). TTR for ER-/PgR+ was intermediate between ER+ and ER-/PgR- tumors, but was not significantly different from ER+ tumors. Recurrences in the ER-/PgR+ and ER-/PgR- groups occurred early in follow-up while in ER+ tumors recurrences continued to occur over the duration of follow-up. OS of ER-/PgR+ was similar to ER+ tumors and better than that of ER-/PgR- tumors. Conclusions The ER-/PgR+ phenotype is associated with higher grade with HER2 overexpression/amplification and occurs more commonly in younger women. Risk of relapse and death more closely resembles ER+ than ER-/PgR- tumors suggesting this phenotype represents a group of more aggressive hormone receptor positive tumors. PMID:26161666

  20. [The expression of estrogen receptor alpha and beta in the intervention of different estrogens in rat bone metabolism].

    Science.gov (United States)

    Hou, Ning Ning; Zhu, Yi Min; Huang, He Feng

    2006-08-01

    In this present study, female rats were ovariectomized (OVX) as the models of osteoporosis. The aim is to determine the different mechanisms of estrogen receptor(ER) alpha and beta pathway in mediating estrogen to participate in trabecular bone metabolism, and to further explore the distinction of modulation on ER alpha or ER beta between estrogens with different components. Mature female Sprague-Dawley rats (n=40) were randomly divided into four groups: group Control (sham operated), group OVX (only ovariectomized), group CEE (OVX rats treated with conjugated equine estrogens) and group EV (OVX rats treated with estradiol valerate). Sham operation and OVX were performed 48 days (12 estrums) before different liquid diet. The rats in group Control and group OVX were orally administrated with physiological saline solution and the rats in group CEE or group EV were orally administrated with CEE or EV for 12 days (3 estrums) before sacrifice. Relative quantitative reverse transcription- polymerase chain reaction (RT-PCR) and western blot techniques were utilized to compare the levels of ER alpha and ER beta mRNA and proteins in trabecular bone among groups. The results showed that in rat trabecular bone of group Control, the expression of ER alpha protein (1.433 +/- 0.250) was significantly higher than that of ER beta(0.687 +/- 0.120), whereas the ER alpha mRNA (0.285 +/- 0.033) was much lower than ERbeta mRNA(0.590 +/- 0.044). Following OVX, the levels of ER alpha protein (0.685 +/- 0.103) declined significantly, whereas mRNA levels (0.405 +/- 0.036) markedly increased. Both the protein (1.091 +/- 0.078) and mRNA (0.729 +/- 0.030) levels of ER beta significantly increased after OVX. After treatment with CEE, the expression of ER beta protein (0.583 +/- 0.129) and mRNA (0.618 +/- 0.043) were markedly down-regulated compared with group OVX. After treatment with EV, the ER alpha protein expression (1.272 +/- 0.247) was markedly up-regulated, while ERa mRNA (0.277 +/- 0

  1. Role of androgen and estrogen receptors for the action of dehydroepiandrosterone (DHEA).

    Science.gov (United States)

    Engdahl, Cecilia; Lagerquist, Marie K; Stubelius, Alexandra; Andersson, Annica; Studer, Erik; Ohlsson, Claes; Westberg, Lars; Carlsten, Hans; Forsblad-d'Elia, Helena

    2014-03-01

    Dehydroepiandrosterone (DHEA) is an abundant steroid hormone, and its mechanism of action is yet to be determined. The aim of this study was to elucidate the importance of androgen receptors (ARs) and estrogen receptors (ERs) for DHEA function. Orchidectomized C57BL/6 mice were treated with DHEA, DHT, 17β-estradiol-3-benzoate (E2), or vehicle. Orchidectomized AR-deficient (ARKO) mice and wild-type (WT) littermates were treated with DHEA or vehicle for 2.5 weeks. At termination, bone mineral density (BMD) was evaluated, thymus and seminal vesicles were weighted, and submandibular glands (SMGs) were histologically examined. To evaluate the in vivo ER activation of the classical estrogen signaling pathway, estrogen response element reporter mice were treated with DHEA, DHT, E2, or vehicle, and a reporter gene was investigated in different sex steroid-sensitive organs after 24 hours. DHEA treatment increased trabecular BMD and thymic atrophy in both WT and ARKO mice. In WT mice, DHEA induced enlargement of glands in the SMGs, whereas this effect was absent in ARKO mice. Furthermore, DHEA was able to induce activation of classical estrogen signaling in bone, thymus, and seminal vesicles but not in the SMGs. In summary, the DHEA effects on trabecular BMD and thymus do not require signaling via AR and DHEA can activate the classical estrogen signaling in these organs. In contrast, DHEA induction of gland size in the SMGs is dependent on AR and does not involve classical estrogen signaling. Thus, both ERs and ARs are involved in mediating the effects of DHEA in an organ-dependent manner.

  2. Rapid analysis of estrogen receptor heterogeneity by chromatofocusing with high-performance liquid chromatography.

    Science.gov (United States)

    Hutchens, T W; Wiehle, R D; Shahabi, N A; Wittliff, J L

    1983-08-26

    Chromatofocusing principles have been utilized to develop a high-performance liquid chromatographic technique for the rapid and routine analysis of steroid receptor heterogeneity. Two anion-exchange columns (SynChropak AX-300 and AX-500) were compared for analytical and preparative chromatofocusing of estrogen receptor components. As many as ten different [125I]iodoestradiol-labeled binding proteins were identified in cytosols prepared from mammary gland and uterus. Estrogen receptors were well separated from other cytosolic proteins and recovery of activity routinely exceeded 90%. Parallel analyses of these cytosols to determine receptor size and shape indicated that HPLC chromatofocusing can be used effectively to study receptor isoforms with Stokes radii ranging from 30 A to greater than 70 A. In contrast to isoelectric focusing, this technique is compatible with the inclusion of a commonly used receptor-stabilizing agent, sodium molybdate. Inclusion of molybdate during chromatofocusing of molybdate-stabilized receptor allowed the identification of two acidic receptor species not previously reported.

  3. The Relationship Among HOXA10, Estrogen Receptor α, Progesterone Receptor, and Progesterone Receptor B Proteins in Rectosigmoid Endometriosis

    Science.gov (United States)

    Pereira, Ricardo Mendes Alves; da Rocha, André Monteiro; Cogliati, Bruno; Baracat, Edmund Chada; Taylor, Hugh S.; da Motta, Eduardo Leme Alves; Serafini, Paulo Cesar

    2015-01-01

    Background: Very few studies have evaluated the expression of homeobox A10 (HOXA10) and steroid (estrogen and progesterone) receptors exclusively in deep endometriosis. Conclusions drawn from studies evaluating peritoneal and ovarian endometriosis are usually generalized to explain the pathogenesis of the disease as a whole. We aimed to evaluate the expression of HOXA10, estrogen receptor α (ER-α), progesterone receptor (PR), and PR-B in rectosigmoid endometriosis (RE), a typical model of deep disease. Methods: We used RE samples from 18 consecutive patients to construct tissue microarray blocks. Nine patients each were operated during the proliferative and secretory phases of the menstrual cycle. We quantified the expressions of proteins by immunohistochemistry using the modified Allred score. Result: The HOXA10 was expressed in the stroma of nodules during the secretory phase in 5 of the 18 patients. Expression of ER-α (in 16 of 18 patients), PR (in 17 of 18 patients), and PR-B (17 of 18 patients) was moderate to strong in the glands and stroma of nodules during both phases. Expression of both PR (P = .023) and PR-B (P = .024) was significantly greater during the secretory phase. Conclusion: The HOXA10 is expressed in RE, where it likely imparts the de novo identity of endometriotic lesions. The ER-α, PR, and PR-B are strongly expressed in RE, which differs from previous studies investigating peritoneal and ovarian lesions. This suggests different routes of pathogenesis for each of the 3 types of endometriosis. PMID:25217304

  4. Vaginal estrogen products in hormone receptor-positive breast cancer patients on aromatase inhibitor therapy.

    Science.gov (United States)

    Sulaica, Elisabeth; Han, Tiffany; Wang, Weiqun; Bhat, Raksha; Trivedi, Meghana V; Niravath, Polly

    2016-06-01

    Atrophic vaginitis represents a major barrier to compliance with aromatase inhibitor (AI) therapy in breast cancer (BC) survivors. While local estrogen therapy is effective for postmenopausal vaginal dryness, the efficacy of such therapies has not been evaluated systematically in hormone receptor-positive (HR+) BC patients on AI therapy. Furthermore, the potential risk of breast cancer recurrence with vaginal estrogen therapy represents a long-term safety concern for the patients with HR + BC. Unfortunately, there is no standardized assay to measure very low concentrations of estradiol (E2) in these women being treated with AI therapy. This makes it difficult to evaluate even indirectly the potential risk of BC recurrence with vaginal estrogen therapy in HR + BC patients on AI therapy. In this review, we describe available assays to measure very low concentrations of E2, discuss the Food and Drug Administration-approved vaginal estrogen products on the market, and summarize published and ongoing clinical trials evaluating the safety and efficacy of vaginal estrogen in HR + BC patients on AI therapy. In the absence of any randomized controlled clinical trials, this review serves as a summary of available clinical data and ongoing studies to aid clinicians in selecting the best available option for their patients.

  5. Aromatase expression increases the survival and malignancy of estrogen receptor positive breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Keya De Mukhopadhyay

    Full Text Available In postmenopausal women, local estrogen produced by adipose stromal cells in the breast is believed to support estrogen receptor alpha (ERα positive breast cancer cell survival and growth. This raises the question of how the ERα positive metastatic breast cancer cells survive after they enter blood and lymph circulation, where estrogen level is very low in postmenopausal women. In this study, we show that the aromatase expression increased when ERα positive breast cancer cells were cultured in suspension. Furthermore, treatment with the aromatase substrate, testosterone, inhibited suspension culture-induced apoptosis whereas an aromatase inhibitor attenuated the effect of testosterone suggesting that suspended circulating ERα positive breast cancer cells may up-regulate intracrine estrogen activity for survival. Consistent with this notion, a moderate level of ectopic aromatase expression rendered a non-tumorigenic ERα positive breast cancer cell line not only tumorigenic but also metastatic in female nude mice without exogenous estrogen supplementation. The increased malignant phenotype was confirmed to be due to aromatase expression as the growth of orthotopic tumors regressed with systemic administration of an aromatase inhibitor. Thus, our study provides experimental evidence that aromatase plays an important role in the survival of metastatic ERα breast cancer cells by suppressing anoikis.

  6. Requirement for estrogen receptor alpha in a mouse model for human papillomavirus-associated cervical cancer.

    Science.gov (United States)

    Chung, Sang-Hyuk; Wiedmeyer, Kerri; Shai, Anny; Korach, Kenneth S; Lambert, Paul F

    2008-12-01

    The majority of human cervical cancers are associated with the high-risk human papillomaviruses (HPV), which encode the potent E6 and E7 oncogenes. On prolonged treatment with physiologic levels of exogenous estrogen, K14E7 transgenic mice expressing HPV-16 E7 oncoprotein in their squamous epithelia succumb to uterine cervical cancer. Furthermore, prolonged withdrawal of exogenous estrogen results in complete or partial regression of tumors in this mouse model. In the current study, we investigated whether estrogen receptor alpha (ERalpha) is required for the development of cervical cancer in K14E7 transgenic mice. We show that exogenous estrogen fails to promote either dysplasia or cervical cancer in K14E7/ERalpha-/- mice despite the continued presence of the presumed cervical cancer precursor cell type, reserve cells, and evidence for E7 expression therein. We also observed that cervical cancers in our mouse models are strictly associated with atypical squamous metaplasia (ASM), which is believed to be the precursor for cervical cancer in women. Consistently, E7 and exogenous estrogen failed to promote ASM in the absence of ERalpha. We conclude that ERalpha plays a crucial role at an early stage of cervical carcinogenesis in this mouse model.

  7. Anti-proliferative effects of estrogen receptor-modulating compounds isolated from Rheum palmatum.

    Science.gov (United States)

    Kang, Se Chan; Lee, Chang Min; Choung, Eui Su; Bak, Jong Phil; Bae, Jong Jin; Yoo, Hyun Sook; Kwak, Jong Hwan; Zee, Ok Pyo

    2008-06-01

    The Rheum palmatum L., a traditional medicine in Korea, was screened for their estrogenic activity in a recombinant yeast system with a human estrogen receptor (ER) expression plasmid and a reporter plasmid used in a previous study. The EC50 values of the n-hexane, dichloromethane, ethyl acetate, n-butanol, and water fractions of the methanolic extract of R. palmatum in the yeast-based estrogenicity assay system were 0.145, 0.093, 0.125, 1.459, 2.853 microg/mL, respectively, with marked estrogenic activity in the dichloromethane fraction. Using an activity-guided fractionation approach, five known anthraquinones, chrysophanol (1), physcion (2), emodin (3), aloe-emodin (4) and rhein (5), were isolated from the dichloromethane fraction. Compound 3 had the highest estrogenic relative potency (RP, 17bestradiol = 1.00) (6.3 x 10(-2)), followed by compound 4 (3.8 x 10(-3)), compound 5 (2.6 x 10(-4)), a compound 1 (2.1 x 10(-4)). Also, compound 3 and fraction 3 (which contained compound 3) of the dichloromethane fraction of R. palmatum showed strong cytotoxicity in both ER-positive (MCF-7) and-negative (MDA-MB-231) breast cancer cell lines.

  8. Combinations of physiologic estrogens with xenoestrogens alter calcium and kinase responses, prolactin release, and membrane estrogen receptor trafficking in rat pituitary cells

    Directory of Open Access Journals (Sweden)

    Watson Cheryl S

    2010-10-01

    Full Text Available Abstract Background Xenoestrogens such as alkylphenols and the structurally related plastic byproduct bisphenol A have recently been shown to act potently via nongenomic signaling pathways and the membrane version of estrogen receptor-α. Though the responses to these compounds are typically measured individually, they usually contaminate organisms that already have endogenous estrogens present. Therefore, we used quantitative medium-throughput screening assays to measure the effects of physiologic estrogens in combination with these xenoestrogens. Methods We studied the effects of low concentrations of endogenous estrogens (estradiol, estriol, and estrone at 10 pM (representing pre-development levels, and 1 nM (representing higher cycle-dependent and pregnancy levels in combinations with the same levels of xenoestrogens in GH3/B6/F10 pituitary cells. These levels of xenoestrogens represent extremely low contamination levels. We monitored calcium entry into cells using Fura-2 fluorescence imaging of single cells. Prolactin release was measured by radio-immunoassay. Extracellular-regulated kinase (1 and 2 phospho-activations and the levels of three estrogen receptors in the cell membrane (ERα, ERβ, and GPER were measured using a quantitative plate immunoassay of fixed cells either permeabilized or nonpermeabilized (respectively. Results All xenoestrogens caused responses at these concentrations, and had disruptive effects on the actions of physiologic estrogens. Xenoestrogens reduced the % of cells that responded to estradiol via calcium channel opening. They also inhibited the activation (phosphorylation of extracellular-regulated kinases at some concentrations. They either inhibited or enhanced rapid prolactin release, depending upon concentration. These latter two dose-responses were nonmonotonic, a characteristic of nongenomic estrogenic responses. Conclusions Responses mediated by endogenous estrogens representing different life stages are

  9. Estrogenic effects of natural and synthetic compounds including tibolone assessed in Saccharomyces cerevisiae expressing the human estrogen alpha and beta receptors.

    Science.gov (United States)

    Hasenbrink, Guido; Sievernich, André; Wildt, Ludwig; Ludwig, Jost; Lichtenberg-Fraté, Hella

    2006-07-01

    The human estrogen receptors (hER)alpha and hERbeta, differentially expressed and localized in various tissues and cell types, mediate transcriptional activation of target genes. These encode a variety of physiological reproductive and nonreproductive functions involved in energy metabolism, salt balance, immune system, development, and differentiation. As a step toward developing a screening assay for the use in applications where significant numbers of compounds or complex matrices need to be tested for (anti) estrogenic bioactivity, hERalpha and hERbeta were expressed in a genetically modified Saccharomyces cerevisiae strain, devoid of three endogenous xenobiotic transporters (PDR5, SNQ2, and YOR1). By using receptor-mediated transcriptional activation of the green fluorescent protein optimized for expression in yeast (yEGFP) as reporter 17 natural, comprising estrogens and phytoestrogens or synthetic compounds among which tibolone with its metabolites, gestagens, and antiestrogens were investigated. The reporter assay deployed a simple and robust protocol for the rapid detection of estrogenic effects within a 96-well microplate format. Results were expressed as effective concentrations (EC50) and correlated to other yeast based and cell line assays. Tibolone and its metabolites exerted clear estrogenic effects, though considerably less potent than all other natural and synthetic compounds. For the blood serum of two volunteers, considerable higher total estrogenic bioactivity than single estradiol concentrations as determined by immunoassay was found. Visualization of a hERalpha/GFP fusion protein in yeast revealed a sub cellular cytosolic localization. This study demonstrates the versatility of (anti) estrogenic bioactivity determination using sensitized S. cerevisiae cells to assess estrogenic exposure and effects.

  10. A comparative study of antiestrogen action: temporal patterns of antagonism of estrogen stimulated uterine growth and effects on estrogen receptor levels.

    Science.gov (United States)

    Ferguson, E R; Katzenellenbogen, B S

    1977-05-01

    Studies were undertaken to ascertain the effects of structural modification of two well-known antiestrogens (CI-628 and U-11,100A) on their estrogenic and antiestrogenic potencies and temporal patterns of effectiveness in the immature rat uterus. Changes in the chemical structures of these anti-estrogens produce compounds with markedly different affinities for the uterine estrogen receptor as measured in an in vitro cell-free cytosol system; binding affinities relative to estradiol (100%) are: CI-628, 4%; CI-680, 34%; 94X1127 (94X),222%; U-11,100A (UA), 6%; and U-23,469 (U-23), 0.1%. Although all five antiestrogens (daily injections of 50 microng over three days) appear equally effective in stimulating 72 h uterine weight when given alone, or in blocking the estradiol-stimulated weight increase when given with estradiol, marked differences in their potencies are noted when the effects of the compounds are monitored beyond 24 h following a single injection. The compounds CI-628, CI-680 and UA (50 microng sc in saline), which have a methylated hydroxyl group (at the site analogous to the steroid position 3), show a prolonged maintenance of elevated levels of nuclear receptor (beyond 48 h) and elevated uterine weight (until 72 h); this correlates with a prolonged period of depressed cytoplasmic receptor levels (beyond 48 h) and prolonged uterine insensitivity to estrogen (beyond 36 h as monitored by 3 h wet weight response). In contrast, a single injection of 50 microng of 94X (having a free hydroxyl group) or U-23 (with a side chain and central ring different from UA) maintained nuclear receptor levels elevated for only 12 h (94X) or 36 h (U-23) and uterine weights declined after 36-48 h; cytoplasmic receptor levels remained depressed for only 12 h (94X) or 24 h (U-23) and then returned to control levels or above by 36 h. These latter compounds likewise evoked the shortest period of uterine insensitivity to estrogen (ineffective as antagonists by 36 h). Comparative

  11. Estrogen Receptor Beta Displays Cell Cycle-Dependent Expression and Regulates the G1 Phase through a Non-Genomic Mechanism in Prostate Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Antoni Hurtado

    2008-01-01

    Full Text Available Background: It is well known that estrogens regulate cell cycle progression, but the specific contributions and mechanisms of action of the estrogen receptor beta (ERβ remain elusive.

  12. Increased Midkine and Estrogen Receptor-β Expression in Human Non-Small Cell Lung Cancer

    Institute of Scientific and Technical Information of China (English)

    Shi-hua Zhang; Guang-feng Zhao; Ya-hong Huang; Kai-hua Lu; Ya-yi Hou

    2009-01-01

    Objective: Midkine (MK), a new member of the heparin-binding growth factor family, has been found recently to have a high expression level in many tumor specimens including lung carcinoma. Estrogens may be involved in lung carcinogenesis, and estrogen receptors, mainly estrogen receptor-β (ER-β), are present and functional in normal lung and tumor cell lines and tissues. In addition, estrogens and growth factors may promote the progression of human non-small cell lung cancer (NSCLC). Previously, we have immunohistochemically demonstrated that MK and ER-β proteins were overexpressed in NSCLC and their expression levels were both significantly negatively correlated with the pathological classification. The purpose of this study was to further verify their expression and its correlation with NSCLC.Methods: Taking NSCLC tissues and their corresponding paraneoplastic and normal lung as research objects, we further examined the expression of MK and ER-β by meas of RT-PCR, in situ hybridization and Western blot analyses at the levels of messenger RNA (mRNA) and protein, respectively.Results: The increased MK and ER-β mRNA expression was found in NSCLC by RT-PCR and in situ hybridization analyses. Furthermore, Western blot analysis also displayed increased expression of MK and ER-β proteins in NSCLC. Finally, their correlation analysis at the levels of mRNA and protein expression in NSCLC demonstrated that MK protein level was significantly correlated to estrogen receptor-β (P0.05, r_s=0.178).Conclusion: All these results in the present study confirmed that MK and ER-β were overexpressed in human NSCLC.

  13. Development of a novel molecular sensor for imaging estrogen receptor-coactivator protein-protein interactions.

    Directory of Open Access Journals (Sweden)

    Madryn C Lake

    Full Text Available Anti-estrogens, in particular tissue selective anti-estrogens, have been the bedrock of adjuvant therapy for patients with estrogen receptor alpha (ERα positive breast cancer. Though current therapies have greatly enhanced patient prognosis, there continues to be an impetus for the development of improved anti-estrogens. ERα is a nuclear receptor transcription factor which activates gene expression through the recruitment of transcriptional coactivator proteins. The SRC family of coactivators, which includes AIB1, has been shown to be of particular importance for ERα mediated transcription. ERα-AIB1 interactions are indicative of gene expression and are inhibited by anti-estrogen treatment. We have exploited the interaction between ERα and AIB1 as a novel method for imaging ERα activity using a split luciferase molecular sensor. By producing a range of ERα ligand binding domain (ER-LBD and AIB1 nuclear receptor interacting domain (AIB-RID N- and C-terminal firefly luciferase fragment fusion proteins, constructs which exhibited more than a 10-fold increase in luciferase activity with E2 stimulation were identified. The specificity of the E2-stimulated luciferase activity to ERα-AIB1 interaction was validated through Y537S and L539/540A ER-LBD fusion protein mutants. The primed nature of the split luciferase assay allowed changes in ERα activity, with respect to the protein-protein interactions preceding transcription, to be assessed soon after drug treatment. The novel assay split luciferase detailed in this report enabled modulation of ERα activity to be sensitively imaged in vitro and in living subjects and potentially holds much promise for imaging the efficacy of novel ERα specific therapies.

  14. Selective estrogen receptor modulators for postmenopausal osteoporosis: current state of development.

    Science.gov (United States)

    Gennari, Luigi; Merlotti, Daniela; Valleggi, Fabrizio; Martini, Giuseppe; Nuti, Ranuccio

    2007-01-01

    Selective estrogen receptor modulators (SERMs) are structurally different compounds that interact with intracellular estrogen receptors in target organs as estrogen receptor agonists and antagonists. These drugs have been intensively studied over the past decade and have proven to be a highly versatile group for the treatment of different conditions associated with aging, including hormone-responsive cancer and osteoporosis. Tamoxifen and toremifene are currently used to treat advanced breast cancer and also have beneficial effects on bone mineral density and serum lipids in postmenopausal women. Raloxifene is the only SERM approved worldwide for the prevention and treatment of postmenopausal osteoporosis and vertebral fractures. However, although these SERMs have many benefits, they may also be responsible for some potentially very serious adverse effects, such as thromboembolic disorders and, in the case of tamoxifen, uterine cancer. These adverse effects represent a major concern given that long-term therapy is required to prevent osteoporosis. Moreover, both preclinical and clinical reports suggest that tamoxifen, toremifene and raloxifene are considerably less potent than estrogen. The search for the 'ideal' SERM, which would have estrogenic effects on bone and serum lipids, neutral effects on the uterus, and antiestrogenic effects on breast tissue, but none of the adverse effects associated with current therapies, is currently under way. Ospemifene, lasofoxifene, bazedoxifene and arzoxifene, which are new SERM molecules with potential greater efficacy and potency than previous SERMs, are currently under investigation for use in the treatment and prevention of osteoporosis. These drugs have been shown to be comparably effective to conventional hormone replacement therapy in animal models of osteoporosis, with potential indications for an improved safety profile. Clinical efficacy data from ongoing phase III trials are awaited so that a true understanding of

  15. The membrane estrogen receptor GPR30 mediates cadmium-induced proliferation of breast cancer cells.

    Science.gov (United States)

    Yu, Xinyuan; Filardo, Edward J; Shaikh, Zahir A

    2010-05-15

    Cadmium (Cd) is a nonessential metal that is dispersed throughout the environment. It is an endocrine-disrupting element which mimics estrogen, binds to estrogen receptor alpha (ERalpha), and promotes cell proliferation in breast cancer cells. We have previously published that Cd promotes activation of the extracellular regulated kinases, erk-1 and -2 in both ER-positive and ER-negative human breast cancer cells, suggesting that this estrogen-like effect of Cd is not associated with the ER. Here, we have investigated whether the newly appreciated transmembrane estrogen receptor, G-protein coupled receptor 30 (GPR30), may be involved in Cd-induced cell proliferation. Towards this end, we compared the effects of Cd in ER-negative human SKBR3 breast cancer cells in which endogenous GPR30 signaling was selectively inhibited using a GPR30 interfering mutant. We found that Cd concentrations from 50 to 500 nM induced a proliferative response in control vector-transfected SKBR3 cells but not in SKBR3 cells stably expressing interfering mutant. Similarly, intracellular cAMP levels increased about 2.4-fold in the vector transfectants but not in cells in which GPR30 was inactivated within 2.5 min after treatment with 500 nM Cd. Furthermore, Cd treatment rapidly activated (within 2.5 min) raf-1, mitogen-activated protein kinase kinase, mek-1, extracellular signal regulated kinases, erk-1/2, ribosomal S6 kinase, rsk, and E-26 like protein kinase, elk, about 4-fold in vector transfectants. In contrast, the activation of these signaling molecules in SKBR3 cells expressing the GPR30 mutant was only about 1.4-fold. These results demonstrate that Cd-induced breast cancer cell proliferation occurs through GPR30-mediated activation in a manner that is similar to that achieved by estrogen in these cells.

  16. Effect of estrogen agonists and antagonists on induction of progesterone receptor in a rat hypothalamic cell line.

    Science.gov (United States)

    Fitzpatrick, S L; Berrodin, T J; Jenkins, S F; Sindoni, D M; Deecher, D C; Frail, D E

    1999-09-01

    Estrogen is essential in the hypothalamus for the central regulation of reproduction. To understand the molecular mechanism(s) of estrogen action in the hypothalamus, immortalized rat embryonic hypothalamic cell lines were characterized for steroid receptors and subcloned. Scatchard analysis of the D12 subclone demonstrated one high affinity estrogen receptor-binding site (Kd = 31.3+/-1.9 pM) with a Bmax of 30.8+/-0.8 fmol/mg. Estrogen receptor-alpha protein was identified by Western blot and gel shift analyses. Treatment with estradiol (48 h) stimulated progesterone receptor (PR) messenger RNA expression and binding to [3H]R5020, a synthetic progestin. Because the agonist or antagonist activity of estrogen mimetics can be cell type dependent, the activities of various estrogen mimetics were determined in D12 cells. ICI 182,780 (IC50 = 0.63 nM), raloxifene (IC50 = 1 nM), enclomiphene (IC50 = 77 nM), and tamoxifen (IC50 = 174 nM) inhibited the induction of PR by estradiol, and none of these compounds significantly stimulated PR when given alone. In contrast, 17alpha-ethynyl estradiol (EC50 = 0.014 nM), zuclomiphene (EC50 = 100 nM), and genistein (EC50 = 17.5 nM) functioned as estrogen agonists in these cells. In addition, the estrogen-induced progesterone receptor activated a progesterone response element reporter construct in response to progestins. Thus, the D12 rat hypothalamic cell line provides a useful model for characterizing tissue-selective estrogenic compounds, identifying estrogen- and progesterone-regulated hypothalamic genes, and understanding the molecular mechanisms of steroid action in various physiological processes mediated by the hypothalamus.

  17. Conditional expression of constitutively active estrogen receptor {alpha} in chondrocytes impairs longitudinal bone growth in mice

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, Kazuhiro [Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama (Japan); Tsukui, Tohru [Experimental Animal Laboratory, Research Center for Genomic Medicine, Saitama Medical University, Saitama (Japan); Imazawa, Yukiko; Horie-Inoue, Kuniko [Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama (Japan); Inoue, Satoshi, E-mail: INOUE-GER@h.u-tokyo.ac.jp [Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama (Japan); Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo (Japan); Department of Anti-Aging Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo (Japan)

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer Conditional transgenic mice expressing constitutively active estrogen receptor {alpha} (caER{alpha}) in chondrocytes were developed. Black-Right-Pointing-Pointer Expression of caER{alpha} in chondrocytes impaired longitudinal bone growth in mice. Black-Right-Pointing-Pointer caER{alpha} affects chondrocyte proliferation and differentiation. Black-Right-Pointing-Pointer This mouse model is useful for understanding the physiological role of ER{alpha}in vivo. -- Abstract: Estrogen plays important roles in the regulation of chondrocyte proliferation and differentiation, which are essential steps for longitudinal bone growth; however, the mechanisms of estrogen action on chondrocytes have not been fully elucidated. In the present study, we generated conditional transgenic mice, designated as caER{alpha}{sup ColII}, expressing constitutively active mutant estrogen receptor (ER) {alpha} in chondrocytes, using the chondrocyte-specific type II collagen promoter-driven Cre transgenic mice. caER{alpha}{sup ColII} mice showed retardation in longitudinal growth, with short bone lengths. BrdU labeling showed reduced proliferation of hypertrophic chondrocytes in the proliferating layer of the growth plate of tibia in caER{alpha}{sup ColII} mice. In situ hybridization analysis of type X collagen revealed that the maturation of hypertrophic chondrocytes was impaired in caER{alpha}{sup ColII} mice. These results suggest that ER{alpha} is a critical regulator of chondrocyte proliferation and maturation during skeletal development, mediating longitudinal bone growth in vivo.

  18. Phytoestrogens induce differential estrogen receptor alpha- or Beta-mediated responses in transfected breast cancer cells.

    Science.gov (United States)

    Harris, D M; Besselink, E; Henning, S M; Go, V L W; Heber, D

    2005-09-01

    Increased intake of phytoestrogens may be associated with a lower risk of cancer in the breast and several other sites, although there is controversy surrounding this activity. One of the mechanisms proposed to explain the activity of phytoestrogens is their ability to bind and activate human estrogen receptor alpha (ERalpha) and human estrogen receptor beta (ERbeta). Nine phytoestrogens were tested for their ability to transactivate ERalpha or ERbeta at a range of doses. Mammary adenocarcinoma (MCF-7) cells were co-transfected with either ERalpha or ERbeta, and an estrogen-response element was linked to a luciferase reporter gene. Dose-dependent responses were compared with the endogenous ligand 17beta-estradiol. Purified genistein, daidzein, apigenin, and coumestrol showed differential and robust transactivation of ERalpha- and ERbeta-induced transcription, with an up to 100-fold stronger activation of ERbeta. Equol, naringenin, and kaempferol were weaker agonists. When activity was evaluated against a background of 0.5 nM 17beta-estradiol, the addition of genistein, daidzein, and resveratrol superstimulated the system, while kaempferol and quercetin were antagonists at the highest doses. This transfection assay provides an excellent model to evaluate the activation of ERalpha and ERbeta by different phytoestrogens in a breast cancer context and can be used as a screening bioassay tool to evaluate the estrogenic activity of extracts of herbs and foods.

  19. Artonin E and Structural Analogs from Artocarpus Species Abrogates Estrogen Receptor Signaling in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Imaobong Etti

    2016-06-01

    Full Text Available The increasing rate of mortality ensued from breast cancer has encouraged research into safer and efficient therapy. The human Estrogen receptor α has been implicated in the majority of reported breast cancer cases. Molecular docking employing Glide, Schrodinger suite 2015, was used to study the binding affinities of small molecules from the Artocarpus species after their drug-like properties were ascertained. The structure of the ligand-binding domain of human Estrogen receptor α was retrieved from Protein Data Bank while the structures of compounds were collected from PubChem database. The binding interactions of the studied compounds were reported as well as their glide scores. The best glide scored ligand, was Artonin E with a score of −12.72 Kcal when compared to other studied phytomolecules and it evoked growth inhibition of an estrogen receptor positive breast cancer cells in submicromolar concentration (3.8–6.9 µM in comparison to a reference standard Tamoxifen (18.9–24.1 µM within the tested time point (24–72 h. The studied ligands, which had good interactions with the target receptor, were also drug-like when compared with 95% of orally available drugs with the exception of Artoelastin, whose predicted physicochemical properties rendered it less drug-like. The in silico physicochemical properties, docking interactions and growth inhibition of the best glide scorer are indications of the anti-breast cancer relevance of the studied molecules.

  20. Comparative study on transcriptional activity of 17 parabens mediated by estrogen receptor α and β and androgen receptor.

    Science.gov (United States)

    Watanabe, Yoko; Kojima, Hiroyuki; Takeuchi, Shinji; Uramaru, Naoto; Ohta, Shigeru; Kitamura, Shigeyuki

    2013-07-01

    The structure-activity relationships of parabens which are widely used as preservatives for transcriptional activities mediated by human estrogen receptor α (hERα), hERβ and androgen receptor (hAR) were investigated. Fourteen of 17 parabens exhibited hERα and/or hERβ agonistic activity at concentrations of ≤ 1 × 10(-5)M, whereas none of the 17 parabens showed AR agonistic or antagonistic activity. Among 12 parabens with linear alkyl chains ranging in length from C₁ to C₁₂, heptylparaben (C₇) and pentylparaben (C₅) showed the most potent ERα and ERβ agonistic activity in the order of 10(-7)M and 10(-8)M, respectively, and the activities decreased in a stepwise manner as the alkyl chain was shortened to C₁ or lengthened to C₁₂. Most parabens showing estrogenic activity exhibited ERβ-agonistic activity at lower concentrations than those inducing ERα-agonistic activity. The estrogenic activity of butylparaben was markedly decreased by incubation with rat liver microsomes, and the decrease of activity was blocked by a carboxylesterase inhibitor. These results indicate that parabens are selective agonists for ERβ over ERα; their interactions with ERα/β are dependent on the size and bulkiness of the alkyl groups; and they are metabolized by carboxylesterases, leading to attenuation of their estrogenic activity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. The effects of Vigna unguiculata on cardiac oxidative stress and aorta estrogen receptor-β expression of ovariectomized rats

    Directory of Open Access Journals (Sweden)

    Etik Khusniyati

    2014-12-01

    Conclusions: V. unguiculata is an alternative therapy in decreasing cardiac oxidative stress in ovariectomized rats. Besides, high dose of V. unguiculata also able to increase aorta estrogen receptor-β expression in ovariectomized rats.

  2. Rainbow trout estrogen receptor (ER) competitive bindng and vitellogenin induction agonism/antagonism data for 94 chemicals

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset is from screening 94 diverse chemicals for estrogen receptor (ER) activation in a competitive rainbow trout ER binding assay and a trout liver slice...

  3. Estrogenic regulation of histamine receptor subtype H1 expression in the ventromedial nucleus of the hypothalamus in female rats.

    Directory of Open Access Journals (Sweden)

    Hiroko Mori

    Full Text Available Female sexual behavior is controlled by central estrogenic action in the ventromedial nucleus of the hypothalamus (VMN. This region plays a pivotal role in facilitating sex-related behavior in response to estrogen stimulation via neural activation by several neurotransmitters, including histamine, which participates in this mechanism through its strong neural potentiating action. However, the mechanism through which estrogen signaling is linked to the histamine system in the VMN is unclear. This study was undertaken to investigate the relationship between estrogen and histamine receptor subtype H1 (H1R, which is a potent subtype among histamine receptors in the brain. We show localization of H1R exclusively in the ventrolateral subregion of the female VMN (vl VMN, and not in the dorsomedial subregion. In the vl VMN, abundantly expressed H1R were mostly colocalized with estrogen receptor α. Intriguingly, H1R mRNA levels in the vl VMN were significantly elevated in ovariectomized female rats treated with estrogen benzoate. These data suggest that estrogen can amplify histamine signaling by enhancing H1R expression in the vl VMN. This enhancement of histamine signaling might be functionally important for allowing neural excitation in response to estrogen stimulation of the neural circuit and may serve as an accelerator of female sexual arousal.

  4. Impact of estrogen receptor α gene and oxytocin receptor gene polymorphisms on female sexuality.

    Science.gov (United States)

    Armeni, Anastasia K; Assimakopoulos, Konstantinos; Marioli, Dimitra; Koika, Vassiliki; Michaelidou, Euthychia; Mourtzi, Niki; Iconomou, Gregoris; Georgopoulos, Neoklis A

    2017-01-01

    Over the past decades, research attention has increasingly been paid to the neurobiological component of sexual behavior. The aim of the present study was to investigate the correlation of estrogen receptor α (ERA) gene polymorphism (rs2234693-PvuII) (T→C substitution) and oxytocin receptor gene polymorphism (rs53576) (G→A substitution) with sexuality parameters of young, healthy women. One hundred thirty-three Greek heterosexual women, students in higher education institutions, 20-25 years of age, sexually active, with normal menstrual cycles (28-35 days), were recruited in the study. Exclusion criteria were chronic and/or major psychiatric diseases, use of oral contraceptive pills (OCs), polycystic ovary syndrome (PCOS), thyroid diseases as well as drugs that are implicated in hypothalamus-pituitary-gonadal axis. T allele (wildtype) of rs2234693 (PvuII) polymorphism of ERA gene was correlated with increased levels of arousal and lubrication, whereas A allele (polymorphic) of rs53576 (OXTR) polymorphism was correlated with increased arousal levels. The simultaneous presence of both T allele of rs2234693 (PvuII) and A allele of rs53576 (OXTR) polymorphisms (T + A group) was correlated with increased arousal, orgasm levels as well as female sexual function index full score. To our knowledge, this is the first study to investigate the interaction between ERA and OXTR with regard to sexual function in women. Female sexuality is a complex behavioral trait that encompasses both biological and psychological components. It seems that variability in female sexual response stems from genetic variability that characterizes endocrine, neurotransmitter and central nervous system influences.

  5. Impact of estrogen receptor α gene and oxytocin receptor gene polymorphisms on female sexuality

    Directory of Open Access Journals (Sweden)

    Anastasia K Armeni

    2017-02-01

    Full Text Available Over the past decades, research attention has increasingly been paid to the neurobiological component of sexual behavior. The aim of the present study was to investigate the correlation of estrogen receptor α (ERA gene polymorphism (rs2234693-PvuII (T→C substitution and oxytocin receptor gene polymorphism (rs53576 (G→A substitution with sexuality parameters of young, healthy women. One hundred thirty-three Greek heterosexual women, students in higher education institutions, 20–25 years of age, sexually active, with normal menstrual cycles (28–35 days, were recruited in the study. Exclusion criteria were chronic and/or major psychiatric diseases, use of oral contraceptive pills (OCs, polycystic ovary syndrome (PCOS, thyroid diseases as well as drugs that are implicated in hypothalamus–pituitary–gonadal axis. T allele (wildtype of rs2234693 (PvuII polymorphism of ERA gene was correlated with increased levels of arousal and lubrication, whereas A allele (polymorphic of rs53576 (OXTR polymorphism was correlated with increased arousal levels. The simultaneous presence of both T allele of rs2234693 (PvuII and A allele of rs53576 (OXTR polymorphisms (T + A group was correlated with increased arousal, orgasm levels as well as female sexual function index full score. To our knowledge, this is the first study to investigate the interaction between ERA and OXTR with regard to sexual function in women. Female sexuality is a complex behavioral trait that encompasses both biological and psychological components. It seems that variability in female sexual response stems from genetic variability that characterizes endocrine, neurotransmitter and central nervous system influences.

  6. Impaired estrogen receptor action in the pathogenesis of the metabolic syndrome.

    Science.gov (United States)

    Hevener, Andrea L; Clegg, Deborah J; Mauvais-Jarvis, Franck

    2015-12-15

    Considering the current trends in life expectancy, women in the modern era are challenged with facing menopausal symptoms as well as heightened disease risk associated with increasing adiposity and metabolic dysfunction for up to three decades of life. Treatment strategies to combat metabolic dysfunction and associated pathologies have been hampered by our lack of understanding regarding the biological underpinnings of these clinical conditions and our incomplete understanding of the effects of estrogens and the tissue-specific functions and molecular actions of its receptors. In this review we provide evidence supporting a critical and protective role for the estrogen receptor α specific form in the maintenance of metabolic homeostasis and insulin sensitivity. Studies identifying the ER-regulated pathways required for disease prevention will lay the important foundation for the rational design of targeted therapeutics to improve women's health while limiting complications that have plagued traditional hormone replacement interventions.

  7. Structural Stereochemistry of Androstene Hormones Determines Interactions with Human Androgen, Estrogen, and Glucocorticoid Receptors

    Directory of Open Access Journals (Sweden)

    Thomas L. Shaak

    2013-01-01

    Full Text Available DHEA, 17α-AED, 17β-AED, and 17β-AET exhibit strong biological activity that has been attributed to androgenic, estrogenic, or antiglucocorticoid activity in vivo and in vitro. This study compared DHEA, 17α-AED, 17β-AED, and 17β-AET for their ability to activate the human AR, ER, and GR and determine the relative androgenicity, estrogenicity, and glucocorticoid activity. The results show that, at the receptor level, these androstene hormones are weak AR and even weaker ER activators. Direct androstene hormone activation of the human AR, ERα, and ERβ may not be essential for their biological function. Similarly, these hormones indirectly activated the human GR, only in the presence of high dexamethasone concentrations. These results underscore the major difference between androstene hormone interactions with these nuclear receptors and their biological effects.

  8. Soy isoflavones--benefits and risks from nature's selective estrogen receptor modulators (SERMs).

    Science.gov (United States)

    Setchell, K D

    2001-10-01

    Phytoestrogens have become one of the more topical areas of interest in clinical nutrition. These non-nutrient bioactive compounds are ubiquitous to the plant kingdom and possess a wide range of biological properties that contribute to the many different health-related benefits reported for soy foods and flaxseeds--two of the most abundant dietary sources of phytoestrogens. Reviewed is the recent knowledge related to their pharmacokinetics and clinical effects, focusing mainly on isoflavones that are found in high concentrations in soy foods. Arguments are made for considering soy isoflavones as natural selective estrogen receptor modulators (SERMs) based upon recent data of their conformational binding to estrogen receptors. Rebuttal is made to several key and important issues related to the recent concerns about the safety of soy and its constituent isoflavones. This article is not intended to be a comprehensive review of the literature but merely highlight recent research with key historical perspectives.

  9. Steroidal affinity labels of the estrogen receptor. 1. 17 alpha-(Bromoacetoxy)alkyl/alkynylestradiols.

    Science.gov (United States)

    el Garrouj, D; Aumelas, A; Borgna, J L

    1993-10-01

    To develop steroidal affinity labels for the estrogen receptor, we prepared five electrophilic estradiol derivatives bearing the 17 alpha-propyl, 17 alpha-(1'-butynyl), or 17 alpha-(1'octynyl) chain, with either a terminal epoxy function (for the 17 alpha-propyl substituent) or a terminal bromoacetoxy function (for all three 17 alpha-substituent types). These compounds displayed low affinity for the lamb uterine estrogen receptor; with apparent relative affinity constants ranging from 0.02% to 0.24% that of estradiol. They were also rapidly transformed in cytosol, probably to the corresponding vicinal diols (epoxy compounds) or primary alcohols (bromoacetoxy compounds). Nevertheless, bromoacetates induced irreversible inactivation of the hormone-binding site but only with ligand-free binding sites. The effect of bromoacetates was prevented by treatment of the cytosol with the thiol-specific reagent methyl methanethiosulfonate. Inactivation of the receptor at 0 degrees C was rapid ( 150 nM (at pH 9) or pH > 7.5 (at 5 microM). Regardless of the conditions used, the order of efficiency for bromoacetates was always: 17 alpha-propyl derivative < 17 alpha-butynyl derivative < 17 alpha-octynyl derivative, with maximal inactivation of approximately 30% and approximately 70% of the hormone-binding sites obtained for the less active and more active compounds, respectively. Characteristics of the receptor inactivation suggest that (i) prepared bromoacetates are highly reactive affinity labels for the estrogen receptor, (ii) they react with similar (or even a single) nucleophilic amino acid residues located within or near the hormone-binding site of the receptor; these residues are probably the -SH of cysteines, and (iii) position 17 alpha of steroidal ligands is suitable for introducing electrophilic substituents to develop efficient affinity labels for the receptor.

  10. Evaluation of in vitro screening system for estrogenicity: comparison of stably transfected human estrogen receptor-α transcriptional activation (OECD TG455) assay and estrogen receptor (ER) binding assay.

    Science.gov (United States)

    Lee, Hae Kyung; Kim, Tae Sung; Kim, Chang Yeong; Kang, Il Hyun; Kim, Mi Gyeong; Jung, Ki Kyung; Kim, Hyung Sik; Han, Soon Young; Yoon, Hae Jung; Rhee, Gyu Seek

    2012-01-01

    The estrogenic activity of industrial chemicals, di(2-ethylhexyl) phthalate (DEHP), di(n-butyl) phthalate (DBP), benzylbutyl phthalate (BBP), diethyl phthalate (DEP), tetrabromobisphenol A (TBBPA), bisphenol A (BPA), and nonylphenol (NP), was compared using OECD test guideline 455(TG455), stably transfected transcriptional activation (STTA) and estrogen receptor (ER) binding assays. The estrogenic activity of BBP, BPA and NP were approximately 180,000-fold (PC(50), 4.32 x 10(-6 )M), 5,000-fold (PC(50), 1.26 x 10(-7) M) and 120,000-fold (PC(50), 2.92 x 10(-6 )M) less than 17β-estradiol (PC(50), 2.43 x 10(-11)M), whereas DEHP, DBP and DEP did not show any estrogenicity activity in the STTA assay. Moreover, binding affinities to human ERα of BBP, BPA, and NP were approximately 200,000-fold (IC(50), 4.91 x 10(-4) M), 8000-fold (IC(50), 1.92 x 10(-5) M) and 1400-fold (IC(50), 3.34 x 10(-6) M) less than 17β-estradiol (IC(50), 2.45 x 10(-9) M) in competitive human ERα binding assay. The relative potencies of STTA assay were very similar to ER binding, E-screen, and Yeast screening assays. Therefore, our results suggested that OECD test guideline TG455 may be useful as a screening test for potential endocrine disruptors.

  11. Estrogen receptor-alpha mediates estrogen protection from angiotensin II-induced hypertension in conscious female mice.

    Science.gov (United States)

    Xue, Baojian; Pamidimukkala, Jaya; Lubahn, Dennis B; Hay, Meredith

    2007-04-01

    It has been shown that the female sex hormones have a protective role in the development of angiotensin II (ANG II)-induced hypertension. The present study tested the hypotheses that 1) the estrogen receptor-alpha (ERalpha) is involved in the protective effects of estrogen against ANG II-induced hypertension and 2) central ERs are involved. Blood pressure (BP) was measured in female mice with the use of telemetry implants. ANG II (800 ng.kg(-1).min(-1)) was administered subcutaneously via an osmotic pump. Baseline BP in the intact, ovariectomized (OVX) wild-type (WT) and ERalpha knockout (ERalphaKO) mice was similar; however, the increase in BP induced by ANG II was greater in OVX WT (23.0 +/- 1.0 mmHg) and ERalphaKO mice (23.8 +/- 2.5 mmHg) than in intact WT mice (10.1 +/- 4.5 mmHg). In OVX WT mice, central infusion of 17beta-estradiol (E(2); 30 microg.kg(-1).day(-1)) attenuated the pressor effect of ANG II (7.0 +/- 0.4 mmHg), and this protective effect of E(2) was prevented by coadministration of ICI-182,780 (ICI; 1.5 microg.kg(-1).day(-1), 18.8 +/- 1.5 mmHg), a nonselective ER antagonist. Furthermore, central, but not peripheral, infusions of ICI augmented the pressor effects of ANG II in intact WT mice (17.8 +/- 4.2 mmHg). In contrast, the pressor effect of ANG II was unchanged in either central E(2)-treated OVX ERalphaKO mice (19.0 +/- 1.1 mmHg) or central ICI-treated intact ERalphaKO mice (19.6 +/- 1.6 mmHg). Lastly, ganglionic blockade on day 7 after ANG II infusions resulted in a greater reduction in BP in OVX WT, central ER antagonist-treated intact WT, central E(2) + ICI-treated OVX WT, ERalphaKO, and central E(2)- or ICI-treated ERalphaKO mice compared with that in intact WT mice given just ANG II. Together, these data indicate that ERalpha, especially central expression of the ER, mediates the protective effects of estrogen against ANG II-induced hypertension.

  12. Distinct effects of 4-nonylphenol and estrogen-17β on expression of estrogen receptor α gene in smolting sockeye salmon

    Science.gov (United States)

    Luo, Qiong; Ban, Massatoshi; Ando, Hironori; Kitahashi, Takashi; Bhandari, Ramji K.; McCormick, Stephen D.; Urano, Akihisa

    2005-01-01

    Xenoestrogens such as 4-nonylphenol (4-NP) have been shown to affect the parr–smolt transformation, but their mechanisms of action are not known. We therefore examined effects of 4-NP and estradiol-17β (E2) on expression of estrogen receptor (ER) α gene in the liver, gill, pituitary and brain of sockeye salmon to elucidate molecular mechanisms of 4-NP and E2 and developmental differences in response during smolting. Fish were treated twice within a week with 4-NP (15 and 150 mg/kg BW), E2 (2 mg/kg BW) or only vehicle at three stages of smolting, pre-smolting in March, early smolting in April and late smolting in May. The absolute amounts of ERα mRNA were determined by real-time PCR. The basal amounts of ERα mRNA peaked in April in the liver, gill and pituitary. In March, E2 extensively increased the amounts in the liver, while 4-NP had no effects at this stage. In contrast, 4-NP (but not E2) decreased liver ERα mRNA in April. 4-NP also decreased the amount of ERα mRNA in the gill in April. In the pituitary, 4-NP increased ERα mRNA in March but decreased it in May. There were no significant effects in the brain. Changes in basal ERα mRNA observed in this study indicate that estrogen responsiveness of tissues may change during salmon smolting. Furthermore, 4-NP and E2 have different effects on expression of ERα gene in the liver and gill during smolting, and the response is dependent on smolt stage.

  13. Prediction of selective estrogen receptor beta agonist using open data and machine learning approach

    OpenAIRE

    Niu,Ai-qin; Xie, Liang-jun; Wang, Hui; Bing ZHU; Wang, Sheng-Qi

    2016-01-01

    Background Estrogen receptors (ERs) are nuclear transcription factors that are involved in the regulation of many complex physiological processes in humans. ERs have been validated as important drug targets for the treatment of various diseases, including breast cancer, ovarian cancer, osteoporosis, and cardiovascular disease. ERs have two subtypes, ER-α and ER-β. Emerging data suggest that the development of subtype-selective ligands that specifically target ER-β could be a more optimal appr...

  14. Definition of the Cellular Mechanisms Which Distinguish Between Estrogen Receptor Agonists and Antagonists

    Science.gov (United States)

    2002-07-01

    Parks DJ, Blanchard ratio of 4 were included in the calculation of the slopes for SG, Brown PJ, Sternbach DD, Lehmann JM , Wisely GB, GFP-LXXLL FRET with...37225 35. Poujol N, Wurtz JM , Tahiri B, Lumbroso S, Nicolas JC, 19. Hong H, Darimont BD, Ma H, Yang L, Yamamoto KR, Moras D, Sultan C 2000 Specific...Kushner nell DP, Fowlkes DM 1999 Estrogen receptor modulators PJ, Coetzee GA, Stallcup MR 1999 Multiple signal input each induce distinict conformational

  15. Estrogen receptor activation by tobacco smoke condensate in hormonal therapy-resistant breast cancer cells.

    Science.gov (United States)

    Niwa, Toshifumi; Shinagawa, Yuri; Asari, Yosuke; Suzuki, Kanae; Takanobu, Junko; Gohno, Tatsuyuki; Yamaguchi, Yuri; Hayashi, Shin-Ichi

    2017-01-01

    The relationship between tobacco smoke and breast cancer incidence has been studied for many years, but the effect of smoking on hormonal therapy has not been previously reported. We investigated the effect of smoking on hormonal therapy by performing in vitro experiments. We first prepared tobacco smoke condensate (TSC) and examined its effect on estrogen receptor (ER) activity. The ER activity was analyzed using MCF-7-E10 cells into which the estrogen-responsive element (ERE)-green fluorescent protein (GFP) reporter gene had been stably introduced (GFP assay) and performing an ERE-luciferase assay. TSC significantly activated ERs, and upregulated its endogenous target genes. This activation was inhibited by fulvestrant but more weakly by tamoxifen. These results suggest that the activation mechanism may be different from that for estrogen. Furthermore, using E10 estrogen depletion-resistant cells (EDR cells) established as a hormonal therapy-resistant model showing estrogen-independent ER activity, ER activation and induction of ER target genes were significantly higher following TSC treatment than by estradiol (E2). These responses were much higher than those of the parental E10 cells. In addition, the phosphorylation status of signaling factors (ERK1/2, Akt) and ER in the E10-EDR cells treated with TSC increased. The gene expression profile induced by estrogenic effects of TSC was characterized by microarray analysis. The findings suggested that TSC activates ER by both ligand-dependent and -independent mechanisms. Although TSC constituents will be metabolized in vivo, breast cancer tissues might be exposed for a long period along with hormonal therapy. Tobacco smoke may have a possibility to interfere with hormonal therapy for breast cancer, which may have important implications for the management of therapy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Estrogen and progesterone receptors in breast cancer. Immunohistochemical assay on scraping material.

    Science.gov (United States)

    Frigo, B; Pilotti, S; Coradini, D; La Malfa, G; Rilke, F

    1992-04-01

    In order to demonstrate the reliability of immunocytochemical results on cytologic specimens for receptor analysis, the expression of estrogen and progesterone receptors was investigated using immunohistochemistry on frozen sections and on scraping material from the same samples of 50 breast carcinomas. The level of agreement between the two procedures was evaluated by the kappa statistic, as was that between each immunohistochemical procedure and the dextran-coated-charcoal assay since the latter is still the assay employed most frequently for steroid receptor determination and is used for official reports. Statistical results revealed very good agreement regarding the estrogen receptor analysis, with kappa values of .910 and .952 for the comparison of the dextran-coated-charcoal assay with immunocytochemistry on frozen sections and on scrapes, respectively, and .950 for the comparison between the two immunocytochemical procedures. As to progesterone receptors, the kappa values were .795 and .712 for the comparison between the biochemical and immunocytochemical results and .915 for agreement evaluation between the two immunocytochemical procedures. The study showed that the scraping procedure is a valuable tool for the immunocytochemical assessment of steroid receptors in small mammary tumors; it yields representative cellular samples, thus permitting the investigation of heterogeneously distributed substances in tissues.

  17. Expressions of vascular endothelial growth factor and nitric oxide synthase III in the thyroid gland of ovariectomized rats are upregulated by estrogen and selective estrogen receptor modulators.

    Science.gov (United States)

    de Araujo, Luiz Felipe Bittencourt; Grozovsky, Renata; dos Santos Pereira, Mário José; de Carvalho, Jorge José; Vaisman, Mário; Carvalho, Denise P

    2010-01-01

    Estrogen promotes the growth of thyroid cells. Therefore, we analyzed the influence of estrogen and selective estrogen receptor modulators (SERMs) on the expression of vascular endothelial growth factor (VEGF) and nitric oxide synthase III (NOS III) in the thyroid gland of ovariectomized (Ovx) rats. Wistar rats were divided into five groups, and bilateral ovariectomies were performed, except on the Sham-operated controls (Sham). Rats were grouped as follows: Sham; Ovx; and Ovx rats treated with daily subcutaneous injections of estradiol benzoate 3.5 microg/kg, tamoxifen 2.5 mg/kg, or raloxifene 2.5 mg/kg for 50 consecutive days. Control animals received vehicle (propyleneglycol), and at the end of the treatment, rats were sacrificed. The thyroid glands were excised, weighed, and processed for analysis of the expression of VEGF or NOS III by immunohistochemistry. The mean vascular areas were evaluated by immunodetection of alpha-smooth muscle actin. Thyroid weight and mean vascular area were lower in Ovx as compared with Sham, Ovx + estradiol benzoate, Ovx + Tam, or Ovx + Ral (p estrogen and SERMs regulate the thyroid gland vascularization and that tamoxifen and raloxifene behave like estrogen does. Estrogen and SERMs upregulate VEGF and NOS III in such a way as to reverse the effects detected on the thyroid microvasculature of the Ovx rats.

  18. The estrogen receptor alpha nuclear localization sequence is critical for fulvestrant-induced degradation of the receptor.

    Science.gov (United States)

    Casa, Angelo J; Hochbaum, Daniel; Sreekumar, Sreeja; Oesterreich, Steffi; Lee, Adrian V

    2015-11-01

    Fulvestrant, a selective estrogen receptor down-regulator (SERD) is a pure competitive antagonist of estrogen receptor alpha (ERα). Fulvestrant binds ERα and reduces the receptor's half-life by increasing protein turnover, however, its mechanism of action is not fully understood. In this study, we show that removal of the ERα nuclear localization sequence (ERΔNLS) resulted in a predominantly cytoplasmic ERα that was degraded in response to 17-β-estradiol (E2) but was resistant to degradation by fulvestrant. ERΔNLS bound the ligands and exhibited receptor interaction similar to ERα, indicating that the lack of degradation was not due to disruption of these processes. Forcing ERΔNLS into the nucleus with a heterologous SV40-NLS did not restore degradation, suggesting that the NLS domain itself, and not merely receptor localization, is critical for fulvestrant-induced ERα degradation. Indeed, cloning of the endogenous ERα NLS onto the N-terminus of ERΔNLS significantly restored both its nuclear localization and turnover in response to fulvestrant. Moreover, mutation of the sumoylation targets K266 and K268 within the NLS impaired fulvestrant-induced ERα degradation. In conclusion, our study provides evidence for the unique role of the ERα NLS in fulvestrant-induced degradation of the receptor.

  19. Steroidal affinity labels of the estrogen receptor. 2. 17 alpha-[(Haloacetamido)alkyl]estradiols.

    Science.gov (United States)

    el Garrouj, D; Aliau, S; Aumelas, A; Borgna, J L

    1995-06-23

    In a previous study, we described affinity labeling of the lamb uterine estrogen receptor by 17 alpha-[(bromoacetoxy)alkyl/alkynyl]estradiols. However, the intrinsic receptor-alkylating activities of these compounds were probably very hampered by their poor hydrolytic stability in estrogen receptor-containing tissue extracts. Therefore, (i) to develop affinity labels of the receptor not susceptible to hydrolysis and (ii) to specify the structural requirements for 17 alpha-electrophilic estradiol derivatives to be potent affinity labels of the receptor, we prepared four 17 alpha-[(haloacetamido)alkyl]estradiols. Three were bromoacetamides differing at the alkyl substituent (methyl, ethyl, or propyl), and the last was an [(iodoacetamido)propyl]estradiol prepared under both nonradioactive and 3H-labeled forms. Although their affinities for the estrogen receptor were very low (from 0.008% to 0.02% that of estradiol), they appeared to be efficient affinity labels of the receptor due to their irreversible inhibition of [3H]estradiol specific binding in lamb uterine cytosol. The effect of the compounds was time-, pH-, and concentration-dependent, with > 50% and > 80% estrogen-binding sites inactivated at 0 degrees C and pH 8.5, for the less active and more active compounds, respectively; the corresponding IC50 values varied from approximately 20 nM to approximately 10 microM. The order of efficiency was [(bromoacetamido)methyl]estradiol < [(bromoacetamido)ethyl]estradiol < [(bromoacetamido)propyl]estradiol < [(iodoacetamido)propyl]estradiol. Affinity labeling was directly demonstrated by ethanol-resistant binding of [3H][(iodoacetamido)propyl]estradiol to the receptor. The irreversible inactivation of the hormone-binding site by the four haloacetamides was prevented by treatment of the cytosol with the thiol-specific reagent methyl methanethiosulfonate, suggesting that the target of these compounds was probably the -SH of cysteines. Negative results obtained with other 17

  20. Role of estrogen receptor binding and transcriptional activity in the stimulation of hyperestrogenism and nuclear bodies.

    Science.gov (United States)

    Clark, J H; Hardin, J W; Padykula, H A; Cardasis, C A

    1978-06-01

    The effects of estradiol and nafoxidine on nuclear estrogen receptor binding, RNA polymerase activities, and uterine ultrastructure were studied. Animals were either injected with estradiol, implanted with estradiol/paraffin pellets, or injected with nafoxidine. Animals treated with nafoxidine or estradiol implants showed sustained long-term nuclear retention of estrogen receptor and increased nuclear RNA polymerase activities for up to 72 hr. A single injection of estradiol caused initial increases in these variables which returned to control levels by 24 hr after hormone treatment. Uterine tissue was examined by light and electron microscopy 72 hr after hormone treatments. Uteri from eith estradiol-implanted or nafoxidine-treated animals showed markedly increased hypertrophy of the luminal epithelial cells. Nuclei in sections of the uteri of these hyperestrogenized animals displayed a large number and wide array of nuclear bodies composed of a filamentous capsule and granular cores. We conclude that hyperestrogenization, a condition that eventually results in abnormal cell growth, is correlated with increased and sustained nuclear binding of the estrogen receptor, increased and sustained RNA polymerase activity, and the appearance of nuclear bodies.

  1. Anti-tumor effect of estrogen-related receptor alpha knockdown on uterine endometrial cancer

    Science.gov (United States)

    Matsushima, Hiroshi; Mori, Taisuke; Ito, Fumitake; Yamamoto, Takuro; Akiyama, Makoto; Kokabu, Tetsuya; Yoriki, Kaori; Umemura, Shiori; Akashi, Kyoko; Kitawaki, Jo

    2016-01-01

    Estrogen-related receptor (ERR)α presents structural similarities with estrogen receptor (ER)α. However, it is an orphan receptor not binding to naturally occurring estrogens. This study was designed to investigate the role of ERRα in endometrial cancer progression. Immunohistochemistry analysis on 50 specimens from patients with endometrial cancer showed that ERRα was expressed in all examined tissues and the elevated expression levels of ERRα were associated with advanced clinical stages and serous histological type (p < 0.01 for each). ERRα knockdown with siRNA suppressed angiogenesis via VEGF and cell proliferation in vitro (p < 0.01). Cell cycle and apoptosis assays using flow cytometry and western blot revealed that ERRα knockdown induced cell cycle arrest during the mitotic phase followed by apoptosis initiated by caspase-3. Additionally, ERRα knockdown sensitized cells to paclitaxel. A significant reduction of tumor growth and angiogenesis was also observed in ERRα knockdown xenografts (p < 0.01). These findings indicate that ERRα may serve as a novel molecular target for the treatment of endometrial cancer. PMID:27153547

  2. Selective estrogen receptor modulator (SERM for the treatment of osteoporosis in postmenopausal women: focus on lasofoxifene

    Directory of Open Access Journals (Sweden)

    Luigi Gennari

    2010-01-01

    Full Text Available Luigi Gennari, Daniela Merlotti, Ranuccio NutiDepartment of Internal Medicine, Endocrine-Metabolic Sciences and Biochemistry, University of Siena, Siena, ItalyAbstract: Selective estrogen receptor modulators (SERMs represent a class with a growing number of compounds that act as either estrogen receptor agonists or antagonists in a tissuespecific manner. This article reviews lasofoxifene, a new-generation SERM that has completed phase III development for the prevention and treatment of osteoporosis in postmenopausal women. Consistent with preclinical observations, this new SERM demonstrated improved skeletal efficacy over raloxifene and at an oral dose of 0.5 mg/day was effective in the prevention of both vertebral and nonvertebral fractures in postmenopausal women with osteoporosis. At the same dosage, lasofoxifene treatment also reduced estrogen receptor-positive breast cancer risk and the occurrence of vaginal atrophy, but, like the other SERMs, was associated with hot flushes and an increased risk of venous thromboembolic events. With its increased efficacy on the prevention of nonvertebral fractures than current available SERMs and its positive effects on the vagina, this new compound may represent an alternative and cost-effective therapy for osteoporosis in postmenopausal women.Keywords: SERM, lasofoxifene, postmenopausal osteoporosis, fractures, bone density, menopause

  3. Characterization of Brx, a novel Dbl family member that modulates estrogen receptor action.

    Science.gov (United States)

    Rubino, D; Driggers, P; Arbit, D; Kemp, L; Miller, B; Coso, O; Pagliai, K; Gray, K; Gutkind, S; Segars, J

    1998-05-14

    Regulation of gene activation by the estrogen receptor (ER) is complex and involves co-regulatory proteins, oncoproteins (such as Fos and Jun), and phosphorylation signaling pathways. Here we report the cloning and initial characterization of a novel protein, Brx, that contains a region of identity to the oncogenic Rho-guanine nucleotide exchange (Rho-GEF) protein Lbc, and a unique region capable of binding to nuclear hormone receptors, including the ER. Western and immunohistochemistry studies showed Brx to be expressed in estrogen-responsive reproductive tissues, including breast ductal epithelium. Brx bound specifically to the ER via an interaction that required distinct regions of ER and Brx. Furthermore, overexpression of Brx in transfection experiments using an estrogen-responsive reporter revealed that Brx augmented gene activation by the ER in an element-specific and ligand-dependent manner. Moreover, activation of ER by Brx could be specifically inhibited by a dominant-negative mutant of Cdc42Hs, but not by dominant negative mutants of RhoA or Rac1. Taken together, these data suggest that Brx represents a novel modular protein that may integrate cytoplasmic signaling pathways involving Rho family GTPases and nuclear hormone receptors.

  4. Estrogen receptor gene polymorph ism in a Chinese population with multiple sclerosis

    Institute of Scientific and Technical Information of China (English)

    Qingli Sun; Ruping Xie; Yu Fu; Xiaogang Li; Dongsheng Fan

    2011-01-01

    This study sought to elucidate the role of the Pvull and Xbal polymorphisms of the estrogen receptor gene in 74 Chinese patients with multiple sclerosis,and 95 ethnicity-matched controls.using polymerase chain reaction-restriction fragment-length polymorphism analysis.The results revealed that the P allele of Pvull was significantly more prevalent in multiple sclerosis patients compared with controls(P=0.019).While distribution frequencies were significantly increased in female multiple sclerosis patients compared with female controls(P=0.044),no significant difference was observed between male patients and controls(P>0.05).Frequencies of Ppxx genotypes were significantly higher in multiple sclerosis patients compared with controls(24.3%VS.12.8%,P=0.025).Genotypes and alleles of the estrogen receptor were not associated with age.number of attacks or expanded disability status scale scores of patients with multiple sclerosis.These findings jndicate that the PVUll but not the Xbal polymorphism in the estrogen receptor gene iS associated with susceptibility to multiple sclerosis in the Chinese population.in addition.women with P allele appear to be particularly susceptible to multiple sclerosis.

  5. Effect of genistein on proinflammatory cytokines and estrogen receptor-β in mice model of endometriosis

    Institute of Scientific and Technical Information of China (English)

    Sutrisno Sutrisno; RR Catur Leny Wulandari; Dwi Wahyu Wulan Sulistyowati; Ratna Feti Wulandari; Endang Sri Wahyuni; Yuyun Yueniwati; Sanarto Santoso

    2015-01-01

    Objective: To investigate the effect of genistein on proinflammatory cytokines, NF-κB activation, and estrogen receptor-β expression in a mice model of endometriosis. Methods:Forty female mice (Mus musculus) were divided into eight groups (n=5 each), including the control (untreated) group, endometriosis group, and the endometriosis groups were given various doses of genistein (at doses of 50; 100; 200; 300; 400; 500 mg/day). Analysis of TNF-α, IL-1β, IL-6, and IL-8 level were done by ELISA technically. Analysis of estrogen receptor-β and NF-κB were done by immunohistochemistry. Results: The level of TNF-α, IL-1β, IL-6, and IL-8 were significantly higher in the EM group compared to the untreated control group (P0.05). These increased levels of IL-1β,IL-6, adn IL-8 in the EM group were significantly reduced by all doses of genistein. There were significantly (P0.05). All doses genistein significantly prevented EM-induced increase in NF-κB activation (P<0.05), to reach the expression on control group. Conclusion: In conclusion, genistein prohibits the increase in proinflammatory cytokines, NF-κB, and estrogen receptor-β expression in a mice model of endometriosis.

  6. Towards a rational spacer design for bivalent inhibition of estrogen receptor

    Science.gov (United States)

    Bujotzek, Alexander; Shan, Min; Haag, Rainer; Weber, Marcus

    2011-03-01

    Estrogen receptors are known drug targets that have been linked to several kinds of cancer. The structure of the estrogen receptor ligand binding domain is available and reveals a homodimeric layout. In order to improve the binding affinity of known estrogen receptor inhibitors, bivalent compounds have been developed that consist of two individual ligands linked by flexible tethers serving as spacers. So far, binding affinities of the bivalent compounds do not surpass their monovalent counterparts. In this article, we focus our attention on the molecular spacers that are used to connect the individual ligands to form bivalent compounds, and describe their thermodynamic contribution during the ligand binding process. We use computational methods to predict structural and entropic parameters of different spacer structures. We find that flexible spacers introduce a number of effects that may interfere with ligand binding and possibly can be connected to the low binding affinities that have been reported in binding assays. Based on these findings, we try to provide guidelines for the design of novel molecular spacers.

  7. Rapid effects of dorsal hippocampal G-protein coupled estrogen receptor on learning in female mice.

    Science.gov (United States)

    Lymer, Jennifer; Robinson, Alana; Winters, Boyer D; Choleris, Elena

    2017-03-01

    Through rapid mechanisms of action, estrogens affect learning and memory processes. It has been shown that 17β-estradiol and an Estrogen Receptor (ER) α agonist enhances performance in social recognition, object recognition, and object placement tasks when administered systemically or infused in the dorsal hippocampus. In contrast, systemic and dorsal hippocampal ERβ activation only promote spatial learning. In addition, 17β-estradiol, the ERα and the G-protein coupled estrogen receptor (GPER) agonists increase dendritic spine density in the CA1 hippocampus. Recently, we have shown that selective systemic activation of the GPER also rapidly facilitated social recognition, object recognition, and object placement learning in female mice. Whether activation the GPER specifically in the dorsal hippocampus can also rapidly improve learning and memory prior to acquisition is unknown. Here, we investigated the rapid effects of infusion of the GPER agonist, G-1 (dose: 50nM, 100nM, 200nM), in the dorsal hippocampus on social recognition, object recognition, and object placement learning tasks in home cage. These paradigms were completed within 40min, which is within the range of rapid estrogenic effects. Dorsal hippocampal administration of G-1 improved social (doses: 50nM, 200nM G-1) and object (dose: 200nM G-1) recognition with no effect on object placement. Additionally, when spatial cues were minimized by testing in a Y-apparatus, G-1 administration promoted social (doses: 100nM, 200nM G-1) and object (doses: 50nM, 100nM, 200nM G-1) recognition. Therefore, like ERα, the GPER in the hippocampus appears to be sufficient for the rapid facilitation of social and object recognition in female mice, but not for the rapid facilitation of object placement learning. Thus, the GPER in the dorsal hippocampus is involved in estrogenic mediation of learning and memory and these effects likely occur through rapid signalling mechanisms.

  8. Computational Characterization and Prediction of Estrogen Receptor Coactivator Binding Site Inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Bennion, B J; Kulp, K S; Cosman, M; Lightstone, F C

    2005-08-26

    Many carcinogens have been shown to cause tissue specific tumors in animal models. The mechanism for this specificity has not been fully elucidated and is usually attributed to differences in organ metabolism. For heterocyclic amines, potent carcinogens that are formed in well-done meat, the ability to either bind to the estrogen receptor and activate or inhibit an estrogenic response will have a major impact on carcinogenicity. Here we describe our work with the human estrogen receptor alpha (hERa) and the mutagenic/carcinogenic heterocyclic amines PhIP, MeIQx, IFP, and the hydroxylated metabolite of PhIP, N2-hydroxy-PhIP. We found that PhIP, in contrast to the other heterocyclic amines, increased cell-proliferation in MCF-7 human breast cancer cells and activated the hERa receptor. We show mechanistic data supporting this activation both computationally by homology modeling and docking, and by NMR confirmation that PhIP binds with the ligand binding domain (LBD). This binding competes with estradiol (E2) in the native E2 binding cavity of the receptor. We also find that other heterocyclic amines and N2-hydroxy-PhIP inhibit ER activation presumably by binding into another cavity on the LBD. Moreover, molecular dynamics simulations of inhibitory heterocyclic amines reveal a disruption of the surface of the receptor protein involved with protein-protein signaling. We therefore propose that the mechanism for the tissue specific carcinogenicity seen in the rat breast tumors and the presumptive human breast cancer associated with the consumption of well-done meat maybe mediated by this receptor activation.

  9. Changes of expression of estrogen and progestrone receptors, human epithelial growth factor receptor 2 and Ki-67 after neoadjuvant chemotherapy in the treatment of breast cancer.

    Science.gov (United States)

    Li, M L; Dong, Y; Luan, S L; Zhao, Z H; Ning, F L

    2016-01-01

    Recent studies suggest that the development and prognosis of breast cancer is in close correlation to molecular subtype of breast cancer. Neoadjuvant chemotherapy has been extensively applied in the treatment of local breast cancer in advanced stage. In order to verify the correlation between expression changes of estrogen receptor, progestrone receptor, human epithelial growth factor receptor 2 and Ki-67 after neoadjuvant chemotherapy and neoadjuvant chemotherapy, we studied 120 patients with stage IIAIIIC breast cancer who underwent neoadjuvant chemotherapy in Binzhou Medical University Hospital, Shandong, China from February 2011 to February 2015. Clinical characteristics were retrospectively analyzed. The expression of estrogen receptor, progesterone receptor, human epithelial growth factor receptor 2 and Ki-67 of patients were detected using the immunohistochemical method before and after neoadjuvant chemotherapy. The results suggest that the overall remission rate of neoadjuvant chemotherapy was 76.7% (92/120) of which 16.7% (20/120) of cases had complete remission, 60% (72/120) had partial remission and 23.3% (28/120) were stable. There were no cases of progressive disease. The property of estrogen receptor and the expression of Ki-67 of primary tumor were correlated to the remission rate of neoadjuvant chemotherapy (P less than 0.05). The expression of Ki-67 had a significant decline after neoadjuvant chemotherapy, and the difference had statistical significance (P less than 0.05). The difference in expression of estrogen receptor, progesterone receptor and human epithelial growth factor receptor 2 before and after neoadjuvant chemotherapy had statistical significance (P > 0.05). Hence, it can be concluded that breast cancer patients with negative estrogen receptor expression and high Ki-67 expression before neoadjuvant chemotherapy can achieve better curative effects. Neoadjuvant chemotherapy cannot change the expression states of estrogen receptor

  10. Effects of low-dose tamoxifen on breast cancer biomarkers Ki-67, estrogen and progesterone receptors.

    Science.gov (United States)

    de Sousa, Juarez Antônio; Facina, Gil; da Silva, Benedito Borges; Gebrim, Luiz Henrique

    2006-09-14

    Breast carcinoma is the most common malignancy among women and it has a major impact on mortality. Studies of primary chemoprevention with tamoxifen have generated high expectations and considerable success rates. The efficacy of lower doses of tamoxifen is similar to that seen with a standard dose of the drug, and there has been a reduction in healthcare costs and side effects. The immune reaction to monoclonal antibody Ki-67 (MIB-1) and the expression of estrogen receptors (1D5) and progesterone receptors (PgR 636) in breast carcinoma were studied in patients treated with 10 mg of tamoxifen for a period of 14 days. A prospective randomized clinical trial was conducted with 38 patients divided into two groups: Group A: N = 20 (control group--without medication) and Group B: N = 18 (tamoxifen/10 mg/day for 14 days). All patients signed an informed consent term previously approved by both institutions. Patients underwent incisional biopsy before treatment and 14 days later a tumor tissue sample was obtained during surgical treatment. Positivity was quantitatively assessed, counting at least 1.000 cells per slide. For statistical data analysis, a Wilcoxon non-parametric test was used, and alpha was set at 5%. Both groups (A and B) were considered homogeneous regarding control variables. In Group A (control), there was no statistically significant reduction in Ki-67 (MIB-1) (p = 0.627), estrogen receptor (1D5) (p = 0.296) and progesterone receptor positivity (PgR 636) (p = 0.381). In Group B (tamoxifen 10 mg/day), the mean percentage of nuclei stained by Ki-67 (MIB-1) was 24.69% before and 10.43% after tamoxifen treatment. Mean percentage of nuclei stained by estrogen receptor (1D5) was 59.53% before and 25.99% after tamoxifen treatment. Mean percentage of nuclei stained by progesterone receptor (PgR 636), was 59.34 before and 29.59% after tamoxifen treatment. A statistically significant reduction was found with the three markers (p Tamoxifen significantly reduced

  11. Application of a yeast estrogen screen in non-biomarker species Varicorhinus barbatulus fish with two estrogen receptor subtypes to assess xenoestrogens.

    Science.gov (United States)

    Fu, Keng-Yen; Chen, Chung-Yuan; Chang, Whei-Meih

    2007-06-01

    Xenoestrogens can interfere with normal estrogen signaling by competitively binding to the estrogen receptor (ER) and activating transcription of target genes. In this study, we cloned the estrogen receptor alpha (vbERalpha) and beta 2 (vbERbeta2) genes from liver of the indigenous Taiwanese cyprinid fish Varicorhinus barbatulus and tested the direct impact of several xenoestrogens on these ERs. Transcriptional activity of xenoestrogens was measured by the enzymatic activity of estrogen responsive element (ERE)-containing beta-galactosidase in a yeast reporter system. The xenoestrogens tested were phenol derivatives, DDT-related substances, phthalic acid esters, and polychlorinated biphenyls, with 17beta-estradiol (E2) as a subjective standard. The phenol derivatives [4-nonylphenol (4-NP), 4-t-octylphenol (4-t-OP) and bisphenol A (BPA)] exhibited significant dose-dependent responses in both ligand potency and ligand efficiency. Consistent with yeast assays using human or rainbow trout ERs, we observed a general subtype preference in that vbERalpha displayed higher relative potencies and efficiencies than vbERbeta2, although our assays induced a stronger response for xenoestrogens than did human or trout ERs. Whereas 4-NP and 4-t-OP have similar EC50 values relative to E2 for both ER subtypes, the strong estrogenic response of BPA markedly differentiates vbERalpha from vbERbeta2, suggesting possible species-specific BPA sensitivity. We report that the ameliorative yeast tool is readily applicable for indigenous wildlife studies of the bio-toxic influence of xenoestrogens with wildlife-specific estrogen receptors.

  12. Selective estrogen receptor modulators (SERMs) enhance neurogenesis and spine density following focal cerebral ischemia.

    Science.gov (United States)

    Khan, Mohammad M; Wakade, Chandramohan; de Sevilla, Liesl; Brann, Darrell W

    2015-02-01

    Selective estrogen receptor modulators (SERMs) have been reported to enhance synaptic plasticity and improve cognitive performance in adult rats. SERMs have also been shown to induce neuroprotection against cerebral ischemia and other CNS insults. In this study, we sought to determine whether acute regulation of neurogenesis and spine remodeling could be a novel mechanism associated with neuroprotection induced by SERMs following cerebral ischemia. Toward this end, ovariectomized adult female rats were either implanted with pellets of 17β-estradiol (estrogen) or tamoxifen, or injected with raloxifene. After one week, cerebral ischemia was induced by the transient middle-cerebral artery occlusion (MCAO) method. Bromodeoxyuridine (BrdU) was injected to label dividing cells in brain. We analyzed neurogenesis and spine density at day-1 and day-5 post MCAO. In agreement with earlier findings, we observed a robust induction of neurogenesis in the ipsilateral subventricular zone (SVZ) of both the intact as well as ovariectomized female rats following MCAO. Interestingly, neurogenesis in the ipsilateral SVZ following ischemia was significantly higher in estrogen and raloxifene-treated animals compared to placebo-treated rats. In contrast, this enhancing effect on neurogenesis was not observed in tamoxifen-treated rats. Finally, both SERMs, as well as estrogen significantly reversed the spine density loss observed in the ischemic cortex at day-5 post ischemia. Taken, together these results reveal a profound structural remodeling potential of SERMs in the brain following cerebral ischemia. This article is part of a Special Issue entitled "Sex steroids and brain disorders".

  13. Thyroid hormone and reproduction: regulation of estrogen receptors in goldfish gonads.

    Science.gov (United States)

    Nelson, Erik R; Allan, Euan R O; Pang, Flora Y; Habibi, Hamid R

    2010-09-01

    There is increasing evidence that thyroid hormones influence reproduction in vertebrates. However, little information is available on the mechanisms by which this happens. As a first step in determining these mechanisms, we test the hypothesis that the estrogen receptor subtypes (ERalpha, ERbeta-1, and ERbeta-2) are regulated by the thyroid hormone, (T(3)), in the gonads of goldfish. All three subtypes were down-regulated by T(3) in the testis or ovary. We also found evidence that T(3) decreased pituitary gonadotropin expression and decreased transcript for gonadal aromatase. Collectively, it appears that T(3) acts to diminish estrogen signaling by (1) decreasing pituitary LH expression and thus steroidogenesis, (2) down-regulating gonadal aromatase expression and thus decreasing estrogen synthesis from androgens, and (3) decreasing sensitivity to estrogen by down-regulating the ER subtypes. Goldfish are seasonal breeders, spawning once a year, and thus have two distinct periods of growth: somatic and reproductive. Circulating thyroid hormone levels have been found to increase just after spawning. Therefore, we propose that this may be an endocrine mechanism that goldfish use to switch their energy expenditure from reproductive to growth efforts in the goldfish. (c) 2010 Wiley-Liss, Inc.

  14. HDAC3 regulates stability of estrogen receptor α mRNA

    Energy Technology Data Exchange (ETDEWEB)

    Oie, Shohei; Matsuzaki, Kazuya; Yokoyama, Wataru; Murayama, Akiko; Yanagisawa, Junn, E-mail: junny@agbi.tsukuba.ac.jp

    2013-03-08

    Highlights: ► HDAC inhibitors decrease the stability of ERα mRNA in MCF-7 cells. ► HDAC3 is involved in maintaining ERα mRNA stability in MCF-7 cells. ► ERα mRNA instability by knockdown of HDAC3 reduces the estrogen-dependent proliferation of ERα-positive MCF-7 cells. ► HDAC3 specific inhibitor will be one of new drugs for ERα-positive breast cancers. -- Abstract: Estrogen receptor alpha (ERα) expression is a risk factor for breast cancer. HDAC inhibitors have been demonstrated to down-regulate ERα expression in ERα-positive breast cancer cell lines, but the molecular mechanisms are poorly understood. Here, we showed that HDAC inhibitors decrease the stability of ERα mRNA, and that knockdown of HDAC3 decreases the stability of ERα mRNA and suppresses estrogen-dependent proliferation of ERα-positive MCF-7 breast cancer cells. In the Oncomine database, expression levels of HDAC3 in ERα-positive tumors are higher than those in ERα-negative tumors, thus suggesting that HDAC3 is necessary for ERα mRNA stability, and is involved in the estrogen-dependent proliferation of ERα-positive tumors.

  15. Activation of transgenic estrogen receptor-beta by selected phytoestrogens in a stably transduced rat serotonergic cell line.

    Science.gov (United States)

    Amer, Dena A M; Kretzschmar, Georg; Müller, Nicole; Stanke, Nicole; Lindemann, Dirk; Vollmer, Günter

    2010-06-01

    Many flavonoids, a major group of phenolic plant-derived secondary metabolites, are known to possess estrogen-like bioactivities. However, little is known about their estrogenic properties in the central nervous system due to the lack of suitable cellular models expressing sufficient amounts of functional estrogen receptor beta (ERbeta). To overcome this deficit, we have created a cellular model, which is serotonergic in origin, to study properties of estrogenic substances by stably transducing RN46A-B14 cells derived from raphe nuclei region of the rat brain with a lentiviral vector encoding a human ERbeta. We clearly showed that the transgenic human ERbeta is a spontaneously expressed and a functional receptor. We have further assessed the estrogenicity of three different isoflavones and four different naringenin-type flavanones in this cell line utilizing a luciferase reporter gene assay. Genistein (GEN), Daidzein (DAI), Equol (EQ), Naringenin (NAR) and 8-prenylnaringenin (8-PN) showed strong estrogenic activity in a concentration-dependent manner as compared to 7-(O-prenyl)naringenin-4'-acetate (7-O-PN) which was only slightly estrogenic and 6-(1,1-dimethylallyl)naringenin (6-DMAN) that neither showed estrogenic nor anti-estrogenic activity in our model. All observed effects could be antagonized by the anti-estrogen fulvestrant. Moreover, co-treatment of cells with 17beta-estradiol (E2) and either GEN or DAI showed a slight additive effect as compared to EQ. On the other hand, 8-PN in addition to 7-O-PN, but not NAR and 6-DMAN, were able to slightly antagonize the responses triggered by E2. Our newly established cellular model may prove to be a useful tool in explicating basic physiological properties of ERbeta in the brain and may help unravel molecular and cellular mechanisms involved in serotonergic mood regulation by estrogen or potential plant-derived secondary metabolites.

  16. Evaluation of an enzyme immunoassay for estrogen receptors in human breast cancers.

    Science.gov (United States)

    Nicholson, R I; Colin, P; Francis, A B; Keshra, R; Finlay, P; Williams, M; Elston, C W; Blamey, R W; Griffiths, K

    1986-08-01

    An estrogen receptor enzyme immunoassay kit (ER-EIA) has been evaluated in 70 human breast carcinomas against a routine cytoplasmic [3H]estradiol binding assay (ERU). A linear correlation between the ER-EIA and the ERU was observed for binding values up to 400 fmol/mg of cytosol protein. Above this value, the ERU underestimates the concentration of receptor. The ERU gave a lower number of estrogen receptor-positive tumors (50 of 70) than did the ER-EIA assay (59 of 70). In the ERU-negative ER-EIA-positive tumors, receptor values as determined by the ER-EIA assay all fell below 50 fmol/mg of protein (mean, 19.9 +/- 4.2 fmol/mg of protein). Application of an exchange procedure which estimates the total steroid binding capacity of the cytosol gave positive results in 7 of 9 ERU-negative ER-EIA-positive tumors (mean, 16.9 +/- 2.95 fmol/mg of protein). Subdivision of the binding data according to the menopausal status of the patient indicates low receptor values in premenopausal women by each assay. A correlation between the ER-EIA assay and the histological grade of tumors was observed; Grade I well-differentiated tumors were all positive, while Grade II and III tumors were 86% and 75% positive, respectively. No correlation between the ER-EIA assay and tumor lymph node stage or tumor size was observed.

  17. Estrogen receptor alpha localization in the testes of men with normal spermatogenesis Estrogen receptor alpha localization in the testes of men with normal spermatogenesis

    Directory of Open Access Journals (Sweden)

    Eliza Filipiak

    2012-10-01

    Full Text Available It is known that estrogens act on the male reproductive tract by binding to estrogen receptors (ER a and
    b. However, studies on ER localization in the human testis are discordant. The aim of this study was to investigate
    the localization of ERa in the testes of adult men with normal spermatogenesis. Semen analysis of ten adult men
    revealed azoospermia. FSH, LH and testosterone serum concentrations were within normal values, and the volume
    of the testes was normal, hence obstructive azoospermia was suspected. The tissues from testicular surgical
    biopsies were fixed in Bouin’s fluid and embedded in paraffin. Assessments of the seminiferous epithelium (scoring
    10 to –1, the number of Leydig cells (scoring 1 to 5, the areal fraction of intertubular space (IS, measurements
    of seminiferous tubule diameter, and the thickness of the tubular wall, were performed on microscopic
    sections. Immunohistochemical staining was applied with monoclonal antibodies against ERa. The mean spermatogenesis
    score was 10 points; IS — 30.6 ± 8.1%; seminiferous tubule diameter — 193.9 ± 19.4 μm; thickness of
    tubular wall — 7.44 ± 1.1 μm; number of Leydig cells — 1.6 ± 1.1 points. Immunohistochemical staining showed
    the localization of ERa to be in the Sertoli and Leydig cell cytoplasm, while ERa was absent in germ cells. The
    results of testicular tissue analysis confirmed its normal structure and normal, full spermatogenesis. The presence
    of ERa in Sertoli and Leydig cells in normal human testis demonstrated in this study suggests that estrogens may
    affect testicular function.It is known that estrogens act on the male reproductive tract by binding to estrogen receptors (ER a and
    b. However, studies on ER localization in the human testis are discordant. The aim of this study was to investigate
    the localization of ERa in the testes of adult men with normal spermatogenesis. Semen

  18. Design, synthesis, cytocidal activity and estrogen receptor α affinity of doxorubicin conjugates at 16α-position of estrogen for site-specific treatment of estrogen receptor positive breast cancer.

    Science.gov (United States)

    Saha, Pijus; Fortin, Sébastien; Leblanc, Valérie; Parent, Sophie; Asselin, Éric; Bérubé, Gervais

    2012-09-01

    Doxorubicin (DOX) is an important medicine for the treatment of breast cancer, which is the most frequently diagnosed and the most lethal cancer in women worldwide. However, the clinical use of DOX is impeded by serious toxic effects such as cardiomyopathy and congestive heart failure. Covalently linking DOX to estrogen to selectively deliver the drug to estrogen receptor-positive (ER(+)) cancer tissues is one of the strategies under investigation for improving the efficacy and decreasing the cardiac toxicity of DOX. However, conjugation of drug performed until now was at 3- or 17-position of estrogen, which is not ideal since the hydroxyl groups at this position are important for receptor binding affinity. In this study, we designed, prepared and evaluated in vitro the first estrogen-doxorubicin conjugates at 16α-position of estradiol termed E-DOXs (8a-d). DOX was conjugated using a 3-9 carbon atoms alkylamide linking arm. E-DOXs were prepared from estrone using a seven-step procedure to afford the desired conjugates in low to moderate yields. The antiproliferative activities of the E-DOX 8a conjugate through a 3-carbon spacer chain on ER(+) MCF7 and HT-29 are in the micromolar range while inactive on M21 and the ER(-) MDA-MB-231 cells (>50 μM). Compound 8a exhibits a selectivity ratio (ER(+)/ER(-) cell lines) of >3.5. Compounds 8b-8d bearing alkylamide linking arms ranging from 5 to 9 carbon atoms were inactive at the concentrations tested (>50 μM). Interestingly, compounds 8a-8c exhibited affinity for the estrogen receptor α (ERα) in the nanomolar range (72-100 nM) whereas compound 8d exhibited no affinity at concentrations up to 215 nM. These results indicate that a short alkylamide spacer is required to maintain both antiproliferative activity toward ER(+) MCF7 and affinity for the ERα of the E-DOX conjugates. Compound 8a is potentially a promising conjugate to target ER(+) breast cancer and might be useful also for the design of more potent E

  19. STX, a novel membrane estrogen receptor ligand, protects against Aβ toxicity

    Science.gov (United States)

    Gray, Nora E.; Zweig, Jonathan A.; Kawamoto, Colleen; Quinn, Joseph F.; Copenhaver, Philip F.

    2016-01-01

    Because STX is a selective ligand for membrane estrogen receptors, it may be able to confer the beneficial effects of estrogen without eliciting the deleterious side effects associated with activation of the nuclear estrogen receptors. This study evaluates the neuroprotective properties of STX in the context of amyloid-β (Aβ) exposure. MC65 and SH-SY5Y neuroblastoma cell lines, as well as primary hippocampal neurons from wild type (WT) and Tg2576 mice, were used to investigate the ability of STX to attenuate cell death, mitochondrial dysfunction, dendritic simplification, and synaptic loss induced by Aβ. STX prevented Aβ-induced cell death in both neuroblastoma cell lines; it also normalized the decrease in ATP and mitochondrial gene expression caused by Aβ in these cells. Notably, STX also increased ATP content and mitochondrial gene expression in control neuroblastoma cells (in the absence of Aβ). Likewise in primary neurons, STX increased ATP levels and mitochondrial gene expression in both genotypes. In addition, STX treatment enhanced dendritic arborization and spine densities in WT neurons and prevented the diminished outgrowth of dendrites caused by Aβ exposure in Tg2576 neurons. These data suggest that STX can act as an effective neuroprotective agent in the context of Aβ toxicity, improving mitochondrial function as well as dendritic growth and synaptic differentiation. In addition, since STX also improved these endpoints in the absence of Aβ, this compound may have broader therapeutic value beyond Alzheimer’s disease. PMID:26890746

  20. Estrogen receptor-mediated transcription involves the activation of multiple kinase pathways in neuroblastoma cells.

    Science.gov (United States)

    Clark, Sara; Rainville, Jennifer; Zhao, Xing; Katzenellenbogen, Benita S; Pfaff, Donald; Vasudevan, Nandini

    2014-01-01

    While many physiological effects of estrogens (E) are due to regulation of gene transcription by liganded estrogen receptors (ERs), several effects are also mediated, at least in part, by rapid non-genomic actions of E. Though the relative importance of rapid versus genomic effects in the central nervous system is controversial, we showed previously that membrane-limited effects of E, initiated by an estradiol bovine serum albumin conjugate (E2-BSA), could potentiate transcriptional effects of 17β-estradiol from an estrogen response element (ERE)-reporter in neuroblastoma cells. Here, using specific inhibitors and activators in a pharmacological approach, we show that activation of phosphatidylinositol-3-phosphate kinase (PI3K) and mitogen activated protein kinase (MAPK) pathways, dependent on a Gαq coupled receptor signaling are important in this transcriptional potentiation. We further demonstrate, using ERα phospho-deficient mutants, that E2-BSA mediated phosphorylation of ERα is one mechanism to potentiate transcription from an ERE reporter construct. This study provides a possible mechanism by which signaling from the membrane is coupled to transcription in the nucleus, providing an integrated view of hormone signaling in the brain.

  1. Early membrane initiated transcriptional effects of estrogens in breast cancer cells: First pharmacological evidence for a novel membrane estrogen receptor element (ERx).

    Science.gov (United States)

    Kampa, Marilena; Notas, George; Pelekanou, Vassiliki; Troullinaki, Maria; Andrianaki, Maria; Azariadis, Kalliopi; Kampouri, Errika; Lavrentaki, Katerina; Castanas, Elias

    2012-08-01

    The complexity of estrogen actions mainly relies to the presence of different identified receptors (ERα, ERβ, their isoforms, and GPR30/GPER) and their discrete cellular distribution. Depending on the localization of the receptor that mediates estrogen effects, nuclear and extra-nuclear actions have been described. The latter can trigger a number of signaling events leading also to transcriptional modifications. In an attempt to clarify the nature of the receptor(s) involved in the membrane initiated effect of estrogens on gene expression, we performed a whole transcriptome analysis of breast cancer cell lines with different receptor profiles (T47D, MCF7, MDA-MB-231, SK-BR-3). A pharmacological approach was conducted with the use of estradiol (E(2)) or membrane-impermeable E(2)-BSA in the absence or presence of a specific ERα-β or GPR30/GPER antagonist. Our results clearly show that in addition to the ERα isoforms and/or GPR30/GPER that mainly mediate the transcriptional effect of E(2)-BSA, there is a specific transcriptional signature (found in T47D and MCF-7 cells) suggesting the presence of an unidentified membrane ER element (ERx). Analysis of its signature and phenotypic verification revealed that important cell function such as apoptosis, transcriptional regulation, and growth factor signaling are associated with ERx. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Extranuclear Signaling Effects Mediated by the Estrogen Receptor

    Science.gov (United States)

    2008-03-01

    Examination of the αCaMKII amino acid sequence revealed that it contains a nuclear receptor interaction motif, or NR box, within the CaM-binding region...inhibition of Pyk2 with salicylate disrupted the ability of E2 to induce the phosphorylation of ERK1/2 without affecting αCaMKII activity (data not...Bottner, M, Rune, GM (2006) Oestrogen synthesis in the hippocampus: role in axon outgrowth. J Neuroendocrinol 18:847-856. 14 Walf A, Frye CA (2007

  3. Dissection of the molecular mechanism of action of GW5638, a novel estrogen receptor ligand, provides insights into the role of estrogen receptor in bone.

    Science.gov (United States)

    Willson, T M; Norris, J D; Wagner, B L; Asplin, I; Baer, P; Brown, H R; Jones, S A; Henke, B; Sauls, H; Wolfe, S; Morris, D C; McDonnell, D P

    1997-09-01

    The estrogen receptor (ER) mixed agonists tamoxifen and raloxifene have been shown to protect against bone loss in ovariectomized rats. However, the mechanism by which these compounds manifest their activity in bone is unknown. We have used a series of in vitro screens to select for compounds that are mechanistically distinct from tamoxifen and raloxifene in an effort to define the properties of an ER modulator required for bone protection. Using this approach, we identified a novel high affinity ER antagonist, GW5638, which when assayed in vitro functions as an ER antagonist, inhibiting the agonist activity of estrogen, tamoxifen, and raloxifene and reversing the "inverse agonist" activity of the pure antiestrogen ICI182,780. Thus, GW5638 appears to function as an antagonist in these in vitro systems, although in a manner distinct from other known ER modulators. Predictably, therefore, GW5638 alone displays minimal uterotropic activity in ovariectomized rats, but will inhibit the agonist activity of estradiol in this environment. Unexpectedly, however, this compound functions as a full ER agonist in bone and the cardiovascular system. These data suggest that the mechanism by which ER operates in different cells is not identical, and that classical agonist activity is not required for the bone protective activity of ER modulators.

  4. Effects of estrogen receptor alpha and beta gene deletion on estrogenic induction of progesterone receptors in the locus coeruleus in female mice.

    Science.gov (United States)

    Helena, Cleyde; Gustafsson, Jan-Ake; Korach, Kenneth; Pfaff, Donald; Anselmo-Franci, Janete A; Ogawa, Sonoko

    2009-08-01

    Locus coeruleus (LC) is involved in the LHRH regulation by gonadal steroids. We investigated the expression of progesterone and estrogen receptors (PR; ER) in LC neurons of ERalpha (alphaERKO) or ERbeta (betaERKO) knockout mice, and their wild-type (alphaWT and betaWT). Immunocytochemical studies showed that LC expresses PR and both ERs, although ERbeta was more abundant. Estradiol benzoate (EB) decreased ERalpha-positive cells in WT and betaERKO mice, and progesterone caused a further reduction, whereas none of the steroids influenced ERbeta expression. ERbeta deletion increased ERalpha while ERalpha deletion did not alter ERbeta expression. In both WT mice, EB increased PR expression, which was diminished by progesterone. These steroid effects were also observed in alphaERKO animals but to a lesser extent, suggesting that ERalpha is partially responsible for the estrogenic induction of PR in LC. Steroid effects on PR in betaERKO mice were similar to those in the alphaERKO but to a lesser extent, probably because PR expression was already high in the oil-treated group. This expression seems to be specific of LC neurons, since it was not observed in other areas studied, the preoptic area and ventromedial nucleus of hypothalamus. These findings show that LC in mice expresses alphaER, betaER, and PR, and that a balance between them may be critical for the physiological control of reproductive function.

  5. Evaluation of estrogen receptor alpha activation by glyphosate-based herbicide constituents.

    Science.gov (United States)

    Mesnage, Robin; Phedonos, Alexia; Biserni, Martina; Arno, Matthew; Balu, Sucharitha; Corton, J Christopher; Ugarte, Ricardo; Antoniou, Michael N

    2017-10-01

    The safety, including the endocrine disruptive capability, of glyphosate-based herbicides (GBHs) is a matter of intense debate. We evaluated the estrogenic potential of glyphosate, commercial GBHs and polyethoxylated tallowamine adjuvants present as co-formulants in GBHs. Glyphosate (≥10,000 μg/L or 59 μM) promoted proliferation of estrogen-dependent MCF-7 human breast cancer cells. Glyphosate also increased the expression of an estrogen response element-luciferase reporter gene (ERE-luc) in T47D-KBluc cells, which was blocked by the estrogen antagonist ICI 182,780. Commercial GBH formulations or their adjuvants alone did not exhibit estrogenic effects in either assay. Transcriptomics analysis of MCF-7 cells treated with glyphosate revealed changes in gene expression reflective of hormone-induced cell proliferation but did not overlap with an ERα gene expression biomarker. Calculation of glyphosate binding energy to ERα predicts a weak and unstable interaction (-4.10 kcal mol(-1)) compared to estradiol (-25.79 kcal mol(-1)), which suggests that activation of this receptor by glyphosate is via a ligand-independent mechanism. Induction of ERE-luc expression by the PKA signalling activator IBMX shows that ERE-luc is responsive to ligand-independent activation, suggesting a possible mechanism of glyphosate-mediated activation. Our study reveals that glyphosate, but not other components present in GBHs, can activate ERα in vitro, albeit at relatively high concentrations. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Regulation of bone growth via ligand-specific activation of estrogen receptor alpha.

    Science.gov (United States)

    Iravani, Maryam; Lagerquist, Marie; Ohlsson, Claes; Sävendahl, Lars

    2017-03-01

    Estrogens are well known for their capacity to promote bone maturation and at high doses to induce growth plate closure and thereby stop further growth. High-dose estrogen treatment has therefore been used to limit growth in extremely tall girls. However, recent data suggest that this treatment may have severe side effects, including increased risk of cancer and reduced fertility. We hypothesized that estrogenic effects in bone are mediated via ERα signaling. Twelve-week-old ovariectomized female C57BL/6 mice were subcutaneously injected for 4 weeks with E2 or selective ERα (PPT) or ERβ (DPN) agonists. After killing, tibia and femur lengths were measured, and growth plate morphology was analyzed. E2- and PPT-treated mice had shorter tibiae and femur bones when compared to vehicle-treated controls, whereas animals treated with DPN had similar bone lengths compared to controls. Growth plate height and hypertrophic zone height were reduced in animals treated with E2 or PPT but not in those treated with DPN, supporting that the effect was mediated via ERα. Moreover, PCNA staining revealed suppressed proliferation of chondrocytes in the tibia growth plate in PPT- or E2-treated mice compared to controls. Our data show that estrogenic effects on bone growth and growth plate maturation are mainly mediated via ERα. Our findings may have direct implications for the development of new and more selective treatment modalities of extreme tall stature using selective estrogen receptor modulators that may have low side effects than high-dose E2 treatment. © 2017 Society for Endocrinology.

  7. Estradiol upregulates calcineurin expression via overexpression of estrogen receptor alpha gene in systemic lupus erythematosus

    Directory of Open Access Journals (Sweden)

    Hui-Li Lin

    2011-04-01

    Full Text Available Systemic lupus erythematosus (SLE is an autoimmune disease primarily affecting women (9:1 compared with men. To investigate the influence of female sex hormone estrogen on the development of female-biased lupus, we compared the expression of estrogen receptor alpha (ERα gene and protein levels as well as expression of T-cell activation gene calcineurin in response to estrogen in peripheral blood lymphocytes (PBLs from SLE patients and normal controls. PBLs were isolated from 20 female SLE patients and 6 normal female controls. The amount of ERα protein in PBL was measured by flow cytometry. The expression of ERα and calcineurin messenger RNA was measured by semi-quantitative reverse transcription-polymerase chain reaction. Calcineurin phosphatase activity was measured by calcineurin assay kit. The expression of ERα messenger RNA and ERα protein was significantly increased (p=0.001 and p=0.023, respectively in PBL from SLE patients compared with that from normal controls. In addition, the basal calcineurin in PBL from SLE patients was significantly higher (p=0.000 than that from normal controls, and estrogen-induced expression of calcineurin was increased (p=0.007 in PBL from SLE patients compared with that from normal controls, a 3.15-fold increase. This increase was inhibited by the ERα antagonism ICI 182,780. The effects of ER antagonism were also found in calcineurin activity. These data suggest that overexpression of ERα gene and enhanced activation of calcineurin in response to estrogen in PBL may contribute to the pathogenesis of female dominant in SLE.

  8. The potential therapeutic benefits of vitamin D in the treatment of estrogen receptor positive breast cancer.

    Science.gov (United States)

    Krishnan, Aruna V; Swami, Srilatha; Feldman, David

    2012-09-01

    Calcitriol (1,25-dihydroxyvitamin D(3)), the hormonally active form of vitamin D, inhibits the growth of many malignant cells including breast cancer (BCa) cells. The mechanisms of calcitriol anticancer actions include cell cycle arrest, stimulation of apoptosis and inhibition of invasion, metastasis and angiogenesis. In addition we have discovered new pathways of calcitriol action that are especially relevant in inhibiting the growth of estrogen receptor positive (ER+) BCa cells. Calcitriol suppresses COX-2 expression and increases that of 15-PGDH thereby reducing the levels of inflammatory prostaglandins (PGs). Our in vitro and in vivo studies show that calcitriol decreases the expression of aromatase, the enzyme that catalyzes estrogen synthesis selectively in BCa cells and in the mammary adipose tissue surrounding BCa, by a direct repression of aromatase transcription via promoter II as well as an indirect effect due to the reduction in the levels of PGs, which are major stimulator of aromatase transcription through promoter II. Calcitriol down-regulates the expression of ERα and thereby attenuates estrogen signaling in BCa cells including the proliferative stimulus provided by estrogens. Thus the inhibition of estrogen synthesis and signaling by calcitriol and its anti-inflammatory actions will play an important role in inhibiting ER+BCa. We hypothesize that dietary vitamin D would exhibit similar anticancer activity due to the presence of the enzyme 25-hydroxyvitamin D-1α-hydroxylase (CYP27B1) in breast cells ensuring conversion of circulating 25-hydroxyvitamin D to calcitriol locally within the breast micro-environment where it can act in a paracrine manner to inhibit BCa growth. Cell culture and in vivo data in mice strongly suggest that calcitriol and dietary vitamin D would play a beneficial role in the prevention and/or treatment of ER+BCa in women.

  9. Assessment of cellular estrogenic activity based on estrogen receptor-mediated reduction of soluble-form catechol-O-methyltransferase (COMT expression in an ELISA-based system.

    Directory of Open Access Journals (Sweden)

    Philip Wing-Lok Ho

    Full Text Available Xenoestrogens are either natural or synthetic compounds that mimic the effects of endogenous estrogen. These compounds, such as bisphenol-A (BPA, and phthalates, are commonly found in plastic wares. Exposure to these compounds poses major risk to human health because of the potential to cause endocrine disruption. There is huge demand for a wide range of chemicals to be assessed for such potential for the sake of public health. Classical in vivo assays for endocrine disruption are comprehensive but time-consuming and require sacrifice of experimental animals. Simple preliminary in vitro screening assays can reduce the time and expense involved. We previously demonstrated that catechol-O-methyltransferase (COMT is transcriptionally regulated by estrogen via estrogen receptor (ER. Therefore, detecting corresponding changes of COMT expression in estrogen-responsive cells may be a useful method to estimate estrogenic effects of various compounds. We developed a novel cell-based ELISA to evaluate cellular response to estrogenicity by reduction of soluble-COMT expression in ER-positive MCF-7 cells exposed to estrogenic compounds. In contrast to various existing methods that only detect bioactivity, this method elucidates direct physiological effect in a living cell in response to a compound. We validated our assay using three well-characterized estrogenic plasticizers - BPA, benzyl butyl phthalate (BBP, and di-n-butyl phthalate (DBP. Cells were exposed to either these plasticizers or 17β-estradiol (E2 in estrogen-depleted medium with or without an ER-antagonist, ICI 182,780, and COMT expression assayed. Exposure to each of these plasticizers (10(-9-10(-7M dose-dependently reduced COMT expression (p<0.05, which was blocked by ICI 182,780. Reduction of COMT expression was readily detectable in cells exposed to picomolar level of E2, comparable to other in vitro assays of similar sensitivity. To satisfy the demand for in vitro assays targeting different

  10. Ligand binding affinities of arctigenin and its demethylated metabolites to estrogen receptor alpha.

    Science.gov (United States)

    Jin, Jong-Sik; Lee, Jong-Hyun; Hattori, Masao

    2013-01-16

    Phytoestrogens are defined as plant-derived compounds with estrogen-like activities according to their chemical structures and activities. Plant lignans are generally categorized as phytoestrogens. It was reported that (-)-arctigenin, the aglycone of arctiin, was demethylated to (-)-dihydroxyenterolactone (DHENL) by Eubacterium (E.) sp. ARC-2. Through stepwise demethylation, E. sp. ARC-2 produced six intermediates, three mono-desmethylarctigenins and three di-desmethylarctigenins. In the present study, ligand binding affinities of (-)-arctigenin and its seven metabolites, including DHENL, were investigated for an estrogen receptor alpha, and found that demethylated metabolites had stronger binding affinities than (-)-arctigenin using a ligand binding screen assay method. The IC(50) value of (2R,3R)-2-(4-hydroxy-3-methoxybenzyl)-3-(3,4-dihydroxybenzyl)-butyrolactone was 7.9 × 10⁻⁴ M.

  11. Ligand Binding Affinities of Arctigenin and Its Demethylated Metabolites to Estrogen Receptor Alpha

    Directory of Open Access Journals (Sweden)

    Masao Hattori

    2013-01-01

    Full Text Available Phytoestrogens are defined as plant-derived compounds with estrogen-like activities according to their chemical structures and activities. Plant lignans are generally categorized as phytoestrogens. It was reported that (−-arctigenin, the aglycone of arctiin, was demethylated to (−-dihydroxyenterolactone (DHENL by Eubacterium (E. sp. ARC-2. Through stepwise demethylation, E. sp. ARC-2 produced six intermediates, three mono-desmethylarctigenins and three di-desmethylarctigenins. In the present study, ligand binding affinities of (−-arctigenin and its seven metabolites, including DHENL, were investigated for an estrogen receptor alpha, and found that demethylated metabolites had stronger binding affinities than (−-arctigenin using a ligand binding screen assay method. The IC50 value of (2R,3R-2-(4-hydroxy-3-methoxybenzyl-3-(3,4-dihydroxybenzyl-butyrolactone was 7.9 × 10−4 M.

  12. Epigenetics of Estrogen Receptor Signaling: Role in Hormonal Cancer Progression and Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Mann, Monica; Cortez, Valerie [Department of Cellular and Structural Biology, UTHSCSA, 7703 Floyd Curl Drive, San Antonio, TX 78229 (United States); Vadlamudi, Ratna K., E-mail: vadlamudi@uthscsa.edu [Department of Obstetrics and Gynecology, UTHSCSA, 7703 Floyd Curl Drive, San Antonio, TX 78229 (United States)

    2011-03-29

    Estrogen receptor (ERα) signaling plays a key role in hormonal cancer progression. ERα is a ligand-dependent transcription factor that modulates gene transcription via recruitment to the target gene chromatin. Emerging evidence suggests that ERα signaling has the potential to contribute to epigenetic changes. Estrogen stimulation is shown to induce several histone modifications at the ERα target gene promoters including acetylation, phosphorylation and methylation via dynamic interactions with histone modifying enzymes. Deregulation of enzymes involved in the ERα -mediated epigenetic pathway could play a vital role in ERα driven neoplastic processes. Unlike genetic alterations, epigenetic changes are reversible, and hence offer novel therapeutic opportunities to reverse ERα driven epigenetic changes. In this review, we summarize current knowledge on mechanisms by which ERα signaling potentiates epigenetic changes in cancer cells via histone modifications.

  13. Estrogens and Spermiogenesis: New Insights from Type 1 Cannabinoid Receptor Knockout Mice

    Directory of Open Access Journals (Sweden)

    Giovanna Cacciola

    2013-01-01

    Full Text Available Spermatogenesis is a complex mechanism which allows the production of male gametes; it consists of mitotic, meiotic, and differentiation phases. Spermiogenesis is the terminal differentiation process during which haploid round spermatids undergo several biochemical and morphological changes, including extensive remodelling of chromatin and nuclear shape. Spermiogenesis is under control of endocrine, paracrine, and autocrine factors, like gonadotropins and testosterone. More recently, emerging pieces of evidence are suggesting that, among these factors, estrogens may have a role. To date, this is a matter of debate and concern because of the agonistic and antagonistic estrogenic effects that environmental chemicals may have on animal and human with damaging outcome on fertility. In this review, we summarize data which fuel this debate, with a particular attention to our recent results, obtained using type 1 cannabinoid receptor knockout male mice as animal model.

  14. Differential utilization of nuclear and extranuclear receptor signaling pathways in the actions of estrogens, SERMs, and a tissue-selective estrogen complex (TSEC).

    Science.gov (United States)

    Madak-Erdogan, Zeynep; Gong, Ping; Katzenellenbogen, Benita S

    2016-04-01

    Estrogens act through nuclear and extranuclear initiated pathways involving estrogen receptors (ERs) to regulate gene expression and activate protein kinases. We investigated the involvement of extracellular signal-regulated kinase2 (ERK2) and ERα in the activities of estradiol (E2), conjugated estrogens (CEs), selective estrogen receptor modulators (SERMs), and a Tissue-Selective Estrogen Complex (TSEC), a combination of a SERM and CE that has a blended activity. We found that CE and individual CE components were generally less effective than E2 in ERK2 recruitment to chromatin binding sites of E2-regulated genes. Likewise, CE was much less agonistic than E2 in stimulation of proliferation of ERα-positive breast cancer cells. The SERM bazedoxifene (BZA) fully suppressed proliferation stimulated by E2 or CE and reversed gene stimulation by CE or E2, as did the antiestrogen Faslodex. Thus, the balance of biological activities mediated through nuclear ERα vs. ERK2-mediated activities is different for CE vs. E2, with CE showing lower stimulation of kinase activity. Furthermore, at the BZA to CE concentrations in TSEC, BZA antagonized CE stimulation of gene expression and proliferation programs in ERα-positive breast cancer cells. The studies provide molecular underpinnings of the different ways in which SERMs and estrogens support or antagonize one another in regulating the chromatin binding of ERα and ERK2, and modulating gene and cell activities. They illuminate how the combined actions of two classes of ER ligands (SERM and CE, present in TSEC) can achieve unique modes of regulation and efficacy.

  15. Estrogen Receptor-Dependent Regulation of Dendritic Cell Development and Function

    Science.gov (United States)

    Laffont, Sophie; Seillet, Cyril; Guéry, Jean-Charles

    2017-01-01

    Autoimmunity, infectious diseases and cancer affect women and men differently. Because they tend to develop more vigorous adaptive immune responses than men, women are less susceptible to some infectious diseases but also at higher risk of autoimmunity. The regulation of immune responses by sex-dependent factors probably involves several non-redundant mechanisms. A privileged area of study, however, concerns the role of sex steroid hormones in the biology of innate immune cells, especially dendritic cells (DCs). In recent years, our understanding of the lineage origin of DC populations has expanded, and the lineage-committing transcription factors shaping peripheral DC subsets have been identified. Both progenitor cells and mature DC subsets express estrogen receptors (ERs), which are ligand-dependent transcription factors. This suggests that estrogens may contribute to the reported sex differences in immunity by regulating DC biology. Here, we review the recent literature and highlight evidence that estrogen-dependent activation of ERα regulates the development or the functional responses of particular DC subsets. The in vitro model of GM-CSF-induced DC differentiation shows that CD11c+ CD11bint Ly6cneg cells depend on ERα activation by estrogen for their development, and for the acquisition of competence to activate naive CD4+ T lymphocytes and mount a robust pro-inflammatory cytokine response to CD40 stimulation. In this model, estrogen signaling in conjunction with GM-CSF is necessary to promote early interferon regulatory factor (Irf)-4 expression in macrophage-DC progenitors and their subsequent differentiation into IRF-4hi CD11c+ CD11bint Ly6cneg cells, closely related to the cDC2 subset. The Flt3L-induced model of DC differentiation in turn shows that ERα signaling promotes the development of conventional DC (cDC) and plasmacytoid DC (pDC) with higher capability of pro-inflammatory cytokine production in response to TLR stimulation. Likewise, cell

  16. Estrogen-related receptor α regulates osteoblast differentiation via Wnt/β-catenin signaling.

    Science.gov (United States)

    Auld, Kathryn L; Berasi, Stephen P; Liu, Yan; Cain, Michael; Zhang, Ying; Huard, Christine; Fukayama, Shoichi; Zhang, Jing; Choe, Sung; Zhong, Wenyan; Bhat, Bheem M; Bhat, Ramesh A; Brown, Eugene L; Martinez, Robert V

    2012-04-01

    Based on its homology to the estrogen receptor and its roles in osteoblast and chondrocyte differentiation, the orphan nuclear receptor estrogen-related receptor α (ERRα (ESRRA)) is an intriguing therapeutic target for osteoporosis and other bone diseases. The objective of this study was to better characterize the molecular mechanisms by which ERRα modulates osteoblastogenesis. Experiments from multiple systems demonstrated that ERRα modulates Wnt signaling, a crucial pathway for proper regulation of bone development. This was validated using a Wnt-luciferase reporter, where ERRα showed co-activator-dependent (peroxisome proliferator-activated receptor gamma co-activator 1α, PGC-1α) stimulatory effects. Interestingly, knockdown of ERRα expression also enhanced WNT signaling. In combination, these data indicated that ERRα could serve to either activate or repress Wnt signaling depending on the presence or absence of its co-activator PGC-1α. The observed Wnt pathway modulation was cell intrinsic and did not alter β-catenin nuclear translocation but was dependent on DNA binding of ERRα. We also found that expression of active ERRα correlated with Wnt pathway effects on osteoblastic differentiation in two cell types, consistent with a role for ERRα in modulating the Wnt pathway. In conclusion, this work identifies ERRα, in conjunction with co-activators such as PGC-1α, as a new regulator of the Wnt-signaling pathway during osteoblast differentiation, through a cell-intrinsic mechanism not affecting β-catenin nuclear translocation.

  17. Gene expression signature of estrogen receptor α status in breast cancer

    Directory of Open Access Journals (Sweden)

    Baggerly Keith

    2005-03-01

    Full Text Available Abstract Background Estrogens are known to regulate the proliferation of breast cancer cells and to modify their phenotypic properties. Identification of estrogen-regulated genes in human breast tumors is an essential step toward understanding the molecular mechanisms of estrogen action in cancer. To this end we generated and compared the Serial Analysis of Gene Expression (SAGE profiles of 26 human breast carcinomas based on their estrogen receptor α (ER status. Thus, producing a breast cancer SAGE database of almost 2.5 million tags, representing over 50,000 transcripts. Results We identified 520 transcripts differentially expressed between ERα-positive (+ and ERα-negative (- primary breast tumors (Fold change ≥ 2; p Estrogen Responsive Elements (EREs distributed on the promoter regions of 163 out of the 473 up-modulated genes in ERα (+ breast tumors. In brief, we observed predominantly up-regulation of cell growth related genes, DNA binding and transcription factor activity related genes based on Gene Ontology (GO biological functional annotation. GO terms over-representation analysis showed a statistically significant enrichment of various transcript families including: metal ion binding related transcripts (p = 0.011, calcium ion binding related transcripts (p = 0.033 and steroid hormone receptor activity related transcripts (p = 0.031. SAGE data associated with ERα status was compared with reported information from breast cancer DNA microarrays studies. A significant proportion of ERα associated gene expression changes was validated by this cross-platform comparison. However, our SAGE study also identified novel sets of genes as highly expressed in ERα (+ invasive breast tumors not previously reported. These observations were further validated in an independent set of human breast tumors by means of real time RT-PCR. Conclusion The integration of the breast cancer comparative transcriptome analysis based on ERα status coupled to

  18. Small proline-rich protein 2 family is a cluster of genes induced by estrogenic compounds through nuclear estrogen receptors in the mouse uterus.

    Science.gov (United States)

    Hong, Seok-Ho; Lee, Jae Eun; Jeong, Jin Ju; Hwang, Soo Jin; Bae, Se Na; Choi, Ji Young; Song, Haengseok

    2010-11-01

    We have investigated the potential actions of E(2) and endocrine disruptors (EDs) with estrogenic activity, such as bisphenol A, on the regulation of the Sprr2 family of genes in the mouse uterus using real-time RT-PCR, RT-PCR and Western blotting. Most members of Sprr2 genes that are induced by E(2), such as Sprr2a, 2b and 2e, showed E(2) dose-dependent increase at mRNA levels. Sprr2 expression was considerably reduced by pretreatment with ICI 182,780, an antagonist for nuclear estrogen receptors. Progesterone moderately dampened E(2)-induced Sprr2 expression. Furthermore, EDs comparably induced the expression of Sprr2 genes in a dose-dependent manner and EDs-induced Sprr2 expression was similarly modulated by ICI 182,780 and progesterone, strongly suggesting that they are, indeed, an estrogen-responsive gene family. Collectively, dose-dependent induction of Sprr2 genes by estrogen and EDs is primarily mediated via the genomic actions of estrogen signaling in the uterus, but not in other reproductive tracts, in mice.

  19. In vivo imaging of estrogen receptor concentration in the endometrium and myometrium using FES PET - influence of menstrual cycle and endogenous estrogen level

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchida, Tatsuro [Department of Radiology, Faculty of Medical Sciences, University of Fukui, Yoshida-gun, Fukui 910-1193 (Japan)]. E-mail: tsucchy@fmsrsa.fukui-med.ac.jp; Okazawa, Hidehiko [Biomedical Imaging Research Center, University of Fukui, Yoshida-gun, Fukui 910-1193 (Japan); Mori, Tetsuya [Biomedical Imaging Research Center, University of Fukui, Yoshida-gun, Fukui 910-1193 (Japan); Kobayashi, Masato [Biomedical Imaging Research Center, University of Fukui, Yoshida-gun, Fukui 910-1193 (Japan); Yoshida, Yoshio [Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Fukui, Yoshida-gun, Fukui 910-1193 (Japan); Fujibayashi, Yasuhisa [Biomedical Imaging Research Center, University of Fukui, Yoshida-gun, Fukui 910-1193 (Japan); Itoh, Harumi [Department of Radiology, Faculty of Medical Sciences, University of Fukui, Yoshida-gun, Fukui 910-1193 (Japan)

    2007-02-15

    Purpose: The goals of this study were to measure estrogen receptor (ER) concentration in the endometrium and myometrium using 16{alpha}-[{sup 18}F]fluoro-17{beta}-estradiol (FES) positron emission tomography (PET) and to investigate the relationship between changes in these parameters with the menstrual cycle and endogenous estrogen levels. Methods: Sixteen female healthy volunteers were included in this study. After blood sampling to measure endogenous estrogen level, FES PET image was acquired 60 min postinjection of FES. After whole-body imaging of FES PET, averaged standardized uptake values (SUVs) in the endometrium and myometrium were measured, and the relationship between FES uptake and menstrual cycle or endogenous estrogen level was evaluated. Results: Endometrial SUV was significantly higher in the proliferative phase than in the secretory phase (6.03{+-}1.05 vs. 3.97{+-}1.29, P=.022). In contrast, there was no significant difference in myometrial SUV when the proliferative and secretory phases were compared (P=.23). Further, there was no correlation between SUV and endogenous estrogen level in the proliferative phase. Conclusions: The change of ER concentration relative to menstrual cycle as characterized by FES PET was consistent with those from previous reports that used an immunohistochemical technique. These data suggest that FES PET is a feasible, noninvasive method for characterizing changes in ER concentration.

  20. Molecular transitions from papillomavirus infection to cervical precancer and cancer: Role of stromal estrogen receptor signaling

    Science.gov (United States)

    den Boon, Johan A.; Pyeon, Dohun; Wang, Sophia S.; Horswill, Mark; Schiffman, Mark; Sherman, Mark; Zuna, Rosemary E.; Wang, Zhishi; Hewitt, Stephen M.; Pearson, Rachel; Schott, Meghan; Chung, Lisa; He, Qiuling; Lambert, Paul; Walker, Joan; Newton, Michael A.; Wentzensen, Nicolas; Ahlquist, Paul

    2015-01-01

    To study the multistep process of cervical cancer development, we analyzed 128 frozen cervical samples spanning normalcy, increasingly severe cervical intraepithelial neoplasia (CIN1– CIN3), and cervical cancer (CxCa) from multiple perspectives, revealing a cascade of progressive changes. Compared with normal tissue, expression of many DNA replication/repair and cell proliferation genes was increased in CIN1/CIN2 lesions and further sustained in CIN3, consistent with high-risk human papillomavirus (HPV)-induced tumor suppressor inactivation. The CIN3-to-CxCa transition showed metabolic shifts, including decreased expression of mitochondrial electron transport complex components and ribosomal protein genes. Significantly, despite clinical, epidemiological, and animal model results linking estrogen and estrogen receptor alpha (ERα) to CxCa, ERα expression declined >15-fold from normalcy to cancer, showing the strongest inverse correlation of any gene with the increasing expression of p16, a marker for HPV-linked cancers. This drop in ERα in CIN and tumor cells was confirmed at the protein level. However, ERα expression in stromal cells continued throughout CxCa development. Our further studies localized stromal ERα to FSP1+, CD34+, SMA− precursor fibrocytes adjacent to normal and precancerous CIN epithelium, and FSP1−, CD34−, SMA+ activated fibroblasts in CxCas. Moreover, rank correlations with ERα mRNA identified IL-8, CXCL12, CXCL14, their receptors, and other angiogenesis and immune cell infiltration and inflammatory factors as candidates for ERα-induced stroma–tumor signaling pathways. The results indicate that estrogen signaling in cervical cancer has dramatic differences from ERα+ breast cancers, and imply that estrogen signaling increasingly proceeds indirectly through ERα in tumor-associated stromal fibroblasts. PMID:26056290

  1. Progesterone and estrogen receptor expression and activity in human non-small cell lung cancer.

    Science.gov (United States)

    Marquez-Garban, Diana C; Mah, Vei; Alavi, Mohammad; Maresh, Erin L; Chen, Hsiao-Wang; Bagryanova, Lora; Horvath, Steve; Chia, David; Garon, Edward; Goodglick, Lee; Pietras, Richard J

    2011-08-01

    Lung cancer is the most common cause of cancer mortality in male and female patients in the US. Although it is clear that tobacco smoking is a major cause of lung cancer, about half of all women with lung cancer worldwide are never-smokers. Despite a declining smoking population, the incidence of non-small cell lung cancer (NSCLC), the predominant form of lung cancer, has reached epidemic proportions particularly in women. Emerging data suggest that factors other than tobacco, namely endogenous and exogenous female sex hormones, have a role in stimulating NSCLC progression. Aromatase, a key enzyme for estrogen biosynthesis, is expressed in NSCLC. Clinical data show that women with high levels of tumor aromatase (and high intratumoral estrogen) have worse survival than those with low aromatase. The present and previous studies also reveal significant expression and activity of estrogen receptors (ERα, ERβ) in both extranuclear and nuclear sites in most NSCLC. We now report further on the expression of progesterone receptor (PR) transcripts and protein in NSCLC. PR transcripts were significantly lower in cancerous as compared to non-malignant tissue. Using immunohistochemistry, expression of PR was observed in the nucleus and/or extranuclear compartments in the majority of human tumor specimens examined. Combinations of estrogen and progestins administered in vitro cooperate in promoting tumor secretion of vascular endothelial growth factor and, consequently, support tumor-associated angiogenesis. Further, dual treatment with estradiol and progestin increased the numbers of putative tumor stem/progenitor cells. Thus, ER- and/or PR-targeted therapies may offer new approaches to manage NSCLC.

  2. The role of cadmium and nickel in estrogen receptor signaling and breast cancer: metalloestrogens or not?

    Science.gov (United States)

    Aquino, Natalie B; Sevigny, Mary B; Sabangan, Jackielyn; Louie, Maggie C

    2012-01-01

    During the past half-century, incidences of breast cancer have increased globally. Various factors--genetic and environmental--have been implicated in the initiation and progression of this disease. One potential environmental risk factor that has not received a lot of attention is the exposure to heavy metals. While several mechanisms have been put forth describing how high concentrations of heavy metals play a role in carcinogenesis, it is unclear whether chronic, low-level exposure to certain heavy metals (i.e., cadmium and nickel) can directly result in the development and progression of cancer. Cadmium and nickel have been hypothesized to play a role in breast cancer development by acting as metalloestrogens--metals that bind to estrogen receptors and mimic the actions of estrogen. Since the lifetime exposure to estrogen is a well-established risk factor for breast cancer, anything that mimics its activity will likely contribute to the etiology of the disease. However, heavy metals, depending on their concentration, are capable of binding to a variety of proteins and may exert their toxicities by disrupting multiple cellular functions, complicating the analysis of whether heavy metal-induced carcinogenesis is mediated by the estrogen receptor. The purpose of this review is to discuss the various epidemiological, in vivo, and in vitro studies that show a link between the heavy metals, cadmium and nickel, and breast cancer development. We will particularly focus on the studies that test whether these two metals act as metalloestrogens in order to assess the strength of the data supporting this hypothesis.

  3. Potency and characterization of estrogen-receptor agonists in United Kingdom estuarine sediments.

    Science.gov (United States)

    Thomas, Kevin V; Balaam, Jan; Hurst, Mark; Nedyalkova, Zoya; Mekenyan, Ovanes

    2004-02-01

    The activity of estrogen-receptor (ER) agonists in sediments collected from the United Kingdom (UK) estuaries was assessed using the in vitro recombinant yeast estrogen screen (YES assay). The YES assay was successfully used to determine the in vitro ER agonist potency of pore waters and solvent extracts of sediments collected from UK estuaries. Estrogen-receptor agonists were detected in 66% of the pore water samples and in 91% of the sediment solvent extracts tested. The pore waters tested had ER agonist potencies from less than 2 to 68 ng 17beta-estradiol (E2) L(-1), whereas sediment extracts had potencies from less than 0.2 to 13 microg E2 kg(-1). A toxicity identification evaluation approach using bioassay-directed fractionation was used in an attempt to identify the ER agonists in extracts of sediments collected from the Tyne and Tees estuaries (UK). Gas chromatography-mass spectrometry was used to provide lists of compounds in the fractions obtained that were evaluated for known ER agonist activity using published data and an ER quantitative structure-activity relationship model. Toxicity identification evaluation characterization failed to identify any ER agonists in pore water extracts; however, three compounds in sediment solvent extracts were identified as ER agonists. Nonylphenol, cinnarizine, and cholesta-4,6-dien-3-one were identified in the sample collected from the Tyne estuary. Important ER agonist substances that contaminate marine sediments remain unidentified. The present study as well as previous work on effluents point toward the involvement of natural products in the estrogenic burdens of marine sediments. Further work is required to establish the relative contribution of natural products and anthropogenic chemicals to current environmental impacts in the context of the Oslo and Paris Commission strategy to eliminate hazardous substances by 2020.

  4. Nanobioengineering and Characterization of a Novel Estrogen Receptor Biosensor

    Directory of Open Access Journals (Sweden)

    Wilfrid Boireau

    2008-07-01

    Full Text Available We constructed an original supramolecular assembly on a surface of sensor composed of an innovative combination of an engineered cytochrome b5 and a modified nucleic acid bound to a synthetic lipid hemimembrane. The protein/DNA block, called (PDNA 2, was synthesized and purified before its immobilization onto a hybrid bilayer reconstituted on a gold surface. Surface plasmon resonance (SPR and atomic force microscopy (AFM were engaged in parallel on the same substrates in order to better understand dynamic events that occur at the surface of the biosensor. Good correlations were obtained in terms of specificity and reversibility. These findings allow us to present a first application of such biosensor in the study of the interaction processes between nuclear receptor and DNA.

  5. Effects of estrogen receptor antagonist on biological behavior and expression of growth factors in the prolactinoma MMQ cell line.

    Science.gov (United States)

    Lv, Hongtao; Li, Chuzhong; Gui, Songbai; Sun, Meizhen; Li, Dan; Zhang, Yazhuo

    2011-04-01

    The relationship between estrogen and pituitary prolactinoma is well documented. The biological effects of estrogen are mainly mediated by estrogen receptor α (ERα). Several lines of evidence demonstrate that growth factors such as pituitary tumor transforming gene (PTTG), basic fibroblast growth factor (bFGF), transforming growth factor β1 (TGFβ1), transforming growth factor β3 (TGFβ3), and transforming growth factor β receptor type II (TGFβRII) play an important role in prolactinoma pathogenesis induced by estrogen, but the relationship between ERα and such growth factors is still unclear. The aims of this study are to investigate the functional role of ERα in proliferation, prolactin (PRL) secretion, and expression of the above-mentioned growth factors in MMQ cells in the absence of estrogen and to discuss the feasibility of using an estrogen receptor antagonist to treat prolactinoma. Fulvestrant, a "pure" antiestrogen without any estrogen-like activity, was used to block expression of ERα in the MMQ cell line. Proliferation and PRL secretion of MMQ cells were measured using CellTiter 96(®) AQueous One Solution Cell Proliferation Assay (MTS) and the enzyme-linked immunosorbent assay (ELISA) method. Levels of ERα, PTTG, bFGF, TGFβ1, TGFβ3, and TGFβRII were analyzed by real-time polymerase chain reaction (PCR) and Western blot. Fulvestrant significantly inhibited cell proliferation (up to 60.80%) and PRL secretion (up to 77.95%), and changed expression of TGFβ3 and TGFβRII in the absence of estrogen. In conclusion, ERα plays an important functional role in proliferation and PRL secretion of pituitary prolactinomas and also can change expression of some growth factors even under the condition of no estrogen. Fulvestrant could potentially be an effective therapy for treating such tumors.

  6. Estrogen receptor binding radiopharmaceuticals: II. Tissue distribution of 17. cap alpha. -methylestradiol in normal and tumor-bearing rats

    Energy Technology Data Exchange (ETDEWEB)

    Feenstra, A.; Vaalburg, W.; Nolten, G.M.J.; Reiffers, S.; Talma, A.G.; Wiegman, T.; van der Molen, H.D.; Woldring, M.G.

    1983-06-01

    Tritiated 17..cap alpha..-methylestradiol was synthesized to investigate the potential of the carbon-11-labeled analog as an estrogen-receptor-binding radiopharmaceutical. In vitro, 17..cap alpha..-methylestradiol is bound with high affinity to the cytoplasmic estrogen receptor from rabbit uterus (K/sub d/ = 1.96 x 10/sup -10/M), and it sediments as an 8S hormone-receptor complex in sucrose gradients. The compound shows specific uptake in the uterus of the adult rat, within 1 h after injection. In female rats bearing DMBA-induced tumors, specific uterine and tumor uptakes were observed, although at 30 min the tumor uptake was only 23 to 30% of the uptake in the uterus. Tritiated 17..cap alpha..-methylestradiol with a specific activity of 6 Ci/mmole showed a similar tissue distribution. Our results indicate that a 17 ..cap alpha..-methylestradiol is promising as an estrogen-receptor-binding radiopharmaceutical.

  7. Genetic analysis of the estrogen-related receptor alpha and studies of association with obesity and type 2 diabetes

    DEFF Research Database (Denmark)

    Larsen, L H; Rose, C S; Sparsø, T;

    2007-01-01

    The estrogen-related receptor alpha (ERRalpha or NR3B1) is a transcription factor from the nuclear receptor super-family, group III. The gene encoding ERRalpha (ESRRA) is located on chromosome 11q13, a region showing genetic linkage to body mass index and fat percentage. Through interaction with ...

  8. Enzymatic treatment of estrogens and estrogen glucuronide

    Institute of Scientific and Technical Information of China (English)

    Takaaki Tanaka; Toshiyuki Tamura; Yuuichi Ishizaki; Akito Kawasaki; Tomokazu Kawase; Masahiro Teraguchi; Masayuki Taniguchi

    2009-01-01

    Natural and synthetic estrogens from sewage treatment systems are suspected to influence the reproductive health of the animals in the rivers.In this article we investigated the enzymatic treatment of three estrogens (estrone,17β-estradiol,and 17α-ethynyletstradiol) by a fungal laccase which oxidize phenolic compounds with dissolved oxygen.The elimination of the estrogenic activities by enzymatic oxidation was demonstrated by medaka vitellogenin assay.In addition,we developed an enzymatic treatment system comprised of β-D-glucuronidase and the laccase for 17β-estradiol 3-(β-D-glucuronide) degradation.The two enzymes eliminated 17β-estradiol 3-(β-D-glucuronide) and the intermediate,17β-estradiol,efficiently.

  9. Estrogen provides neuroprotection against brain edema and blood brain barrier disruption through both estrogen receptors α and β following traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Vida Naderi

    2015-02-01

    Full Text Available Objective(s:Estrogen (E2 has neuroprotective effects on blood-brain-barrier (BBB after traumatic brain injury (TBI. In order to investigate the roles of estrogen receptors (ERs in these effects, ER-α antagonist (MPP and, ER-β antagonist (PHTPP, or non-selective estrogen receptors antagonist (ICI 182780 were administered. Materials and Methods: Ovariectomized rats were divided into 10 groups, as follows: Sham, TBI, E2, oil, MPP+E2, PHTPP+E2, MPP+PHTPP+E2, ICI+E2, MPP, and DMSO. E2 (33.3 µg/Kg or oil were administered 30 min after TBI. 1 dose (150 µg/Kg of each of MPP, PHTPP, and (4 mg/kg ICI182780 was injected two times, 24 hr apart, before TBI and estrogen treatment. BBB disruption (Evans blue content and brain edema (brain water content evaluated 5 hr and 24 hr after the TBI were evaluated, respectively. Results: The results showed that E2 reduced brain edema after TBI compared to vehicle (P

  10. Nebivolol decreases endothelial cell stiffness via the estrogen receptor beta: a nano-imaging study.

    Science.gov (United States)

    Hillebrand, Uta; Lang, Detlef; Telgmann, Ralph G; Hagedorn, Claudia; Reuter, Stefan; Kliche, Katrin; Stock, Christian M; Oberleithner, Hans; Pavenstädt, Hermann; Büssemaker, Eckhart; Hausberg, Martin

    2009-03-01

    Nebivolol (NEB) is a [beta]1-receptor blocker with nitric oxide-dependent vasodilating properties. NEB-induced nitric oxide release is mediated through the estrogen receptor. Here, we tested the hypothesis that NEB decreases endothelial cell stiffness and that these effects can be abolished by both endothelial nitric oxide synthase and estrogen receptor blockade. Human endothelial cells (EAHy-926) were incubated with vehicle, NEB 0.7 nmol/l, metoprolol 200 nmol/l, 17[beta]-estradiol (E2) 15 nmol/l, the estrogen receptor antagonists tamoxifen 100 nmol/l and ICI 182780 (ICI) 100 nmol/l, the nitric oxide synthase inhibitor N[omega]-nitro-L-arginine methyl ester 1 mmol/l and combinations of NEB and E2 with either tamoxifen, ICI or N[omega]-nitro-L-arginine methyl ester as well as metoprolol and ICI. Atomic force microscopy was performed to measure cellular stiffness, cell volume and apical surface. Presence of estrogen receptor protein in EAHy-926 was confirmed by western blot analysis; quantification of ER[alpha] and ER[beta] total RNA was performed by semiquantitative PCR. Both NEB as well as E2 decreased cellular stiffness to a similar extent (NEB: 0.83 +/- 0.03 pN/nm, E2: 0.87 +/- 0.03 pN/nm, vehicle: 2.19 +/- 0.07 pN/nm), whereas metoprolol had no effect on endothelial stiffness (2.07 +/- 0.04 pN/nm, all n = 60, P beta] pathways, as ER[alpha] is not translated into measurable protein levels in EAHy-926. Furthermore, NEB increased cell volume by 48 +/- 4% and apical surface by 34 +/- 3%. E2 had comparable effects. Tamoxifen, ICI and N[omega]-nitro-L-arginine methyl ester substantially diminished the effects of NEB and E2. NEB decreases cellular stiffness and causes endothelial cell growth. These effects are nitric oxide-dependent and mediated through nongenomic ER[beta] pathways. The morphological and functional alterations observed in endothelial cells may explain improved endothelial function with NEB treatment.

  11. Receptor activator for nuclear factor-κB ligand signaling promotes progesterone-mediated estrogen-induced mammary carcinogenesis

    OpenAIRE

    Boopalan, Thiyagarajan; Arumugam, Arunkumar; Parada, Jacqueline; Saltzstein, Edward; Lakshmanaswamy, Rajkumar

    2015-01-01

    Breast cancer is a leading cause of cancer-related death in women. Prolonged exposure to the ovarian hormones estrogen and progesterone increases the risk of breast cancer. Although estrogen is known as a primary factor in mammary carcinogenesis, very few studies have investigated the role of progesterone. Receptor activator for nuclear factor-κB (NF-κB) ligand (RANKL) plays an important role in progesterone-induced mammary carcinogenesis. However, the molecular mechanism underlying RANKL-ind...

  12. Treatment of menopausal symptoms by an extract from the roots of rhapontic rhubarb: the role of estrogen receptors

    Directory of Open Access Journals (Sweden)

    Zierau Oliver

    2010-02-01

    Full Text Available Abstract A dry extract from the roots of rhapontic rhubarb (extract Rheum rhaponticum (L.; ERr has been commercially available in Germany for over two decades to treat menopausal symptoms. However, the molecular basis of its clinical effectiveness remains obscure. This article reviews the in vitro and in vivo data of its estrogenic actions, particularly those mediated by estrogen receptor-β (ERβ.

  13. Gender-Related Survival Differences Associated With Polymorphic Variants of Estrogen Receptor Beta (ERβ) in Patients with Metastatic Colon Cancer

    OpenAIRE

    Press, Oliver A.; Zhang, Wu; Gordon, Michael A.; Yang, Dongyun; Haiman, Christopher A; Azuma, Mizutomo; Iqbal, Syma; Lenz, Heinz-Josef

    2010-01-01

    Estrogen replacement therapy in women has demonstrated a protective effect in the development of colonic carcinomas. Gender-related differences in the development of colonic carcinomas have also been reported. Estrogen receptor beta (ERβ) is expressed in colon carcinomas and has demonstrated prognostic value in colon cancer patients. This study investigated an ERβ 3’ non-coding polymorphism associated with transcriptional activity to determine clinical outcome in patients with metastatic colo...

  14. Overexpression of estrogen receptor beta alleviates the toxic effects of beta-amyloid protein on PC12 cells via non-hormonal ligands

    Institute of Scientific and Technical Information of China (English)

    Hui Wang; Lihui Si; Xiaoxi Li; Weiguo Deng; Haimiao Yang; Yuyan Yang; Yan Fu

    2012-01-01

    After binding to the estrogen receptor, estrogen can alleviate the toxic effects of beta-amyloid protein, and thereby exert a therapeutic effect on Alzheimer's disease patients. Estrogen can increase the incidence of breast carcinoma and endometrial cancer in post-menopausal women, so it is not suitable for clinical treatment of Alzheimer's disease. There is recent evidence that the estrogen receptor can exert its neuroprotective effects without estrogen dependence. Real-time quantitative PCR and flow cytometry results showed that, compared with non-transfected PC12 cells, adenovirus-mediated estrogen receptor β gene-transfected PC12 cells exhibited lower expression of tumor necrosis factor α and interleukin 1β under stimulation with beta-amyloid protein and stronger protection from apoptosis. The Akt-specific inhibitor Abi-2 decreased the anti-inflammatory and anti-apoptotic effects of estrogen receptor β gene-transfection. These findings suggest that overexpression of estrogen receptor β can alleviate the toxic effect of beta-amyloid protein on PC12 cells, without estrogen dependence. The Akt pathway is one of the potential means for the anti-inflammatory and anti-apoptotic effects of the estrogen receptor.

  15. Dietary acrylamide intake and estrogen and progesterone receptor-defined postmenopausal breast cancer risk

    DEFF Research Database (Denmark)

    Pedersen, Grete S; Hogervorst, Janneke G F; Schouten, Leo J

    2010-01-01

    Acrylamide, a potential human carcinogen, has been discovered in a variety of heat-treated carbohydrate-rich food products. Previously, dietary acrylamide intake was shown to be associated with endocrine-related cancers in humans. We assessed the association between dietary acrylamide intake...... breast cancer cases were ascertained, with hormone receptor status information for 43%. Cox proportional hazards analysis was applied to determine hazard ratios in quintiles of dietary acrylamide intake stratifying on estrogen receptor (ER) and progesterone receptor (PR) and smoking status...... ratios were 1.31 (95% CI: 0.87-1.97, P (trend) = 0.26) for ER+, 1.47 (0.86-2.51, P (trend) = 0.14) for PR+, and 1.43 (0.83-2.46, P (trend) = 0.16) for ER+PR+, when comparing women in the highest quintile of acrylamide intake (median 36.8 microg/day) to women in the lowest (median 9.5 microg...

  16. Origin of an ancient hormone/receptor couple revealed by resurrection of an ancestral estrogen.

    Science.gov (United States)

    Markov, Gabriel V; Gutierrez-Mazariegos, Juliana; Pitrat, Delphine; Billas, Isabelle M L; Bonneton, François; Moras, Dino; Hasserodt, Jens; Lecointre, Guillaume; Laudet, Vincent

    2017-03-01

    The origin of ancient ligand/receptor couples is often analyzed via reconstruction of ancient receptors and, when ligands are products of metabolic pathways, they are not supposed to evolve. However, because metabolic pathways are inherited by descent with modification, their structure can be compared using cladistic analysis. Using this approach, we studied the evolution of steroid hormones. We show that side-chain cleavage is common to most vertebrate steroids, whereas aromatization was co-opted for estrogen synthesis from a more ancient pathway. The ancestral products of aromatic activity were aromatized steroids with a side chain, which we named "paraestrols." We synthesized paraestrol A and show that it effectively binds and activates the ancestral steroid receptor. Our study opens the way to comparative studies of biologically active small molecules.

  17. DEHP exposure impairs mouse oocyte cyst breakdown and primordial follicle assembly through estrogen receptor-dependent and independent mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Mu, Xinyi [Laboratory of Reproductive Biology, Chongqing Medical University, Chongqing 400016 (China); Department of Histology and Embryology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016 (China); Liao, Xinggui; Chen, Xuemei; Li, Yanli; Wang, Meirong; Shen, Cha; Zhang, Xue; Wang, Yingxiong; Liu, Xueqing [Laboratory of Reproductive Biology, Chongqing Medical University, Chongqing 400016 (China); He, Junlin, E-mail: hejunlin_11@aliyun.com [Laboratory of Reproductive Biology, Chongqing Medical University, Chongqing 400016 (China)

    2015-11-15

    Highlights: • DEHP inhibits primordial folliculogenesis in vivo and in vitro. • Estrogen receptors participate in the effect of DEHP on early ovarian development. • DEHP exposure impairs the expression of Notch2 signaling components. • DEHP exposure disrupts the proliferation of pregranulosa precursor cells. - Abstract: Estrogen plays an essential role in the development of mammalian oocytes, and recent studies suggest that it also regulates primordial follicle assembly in the neonatal ovaries. During the last decade, potential exposure of humans and animals to estrogen-like endocrine disrupting chemicals has become a growing concern. In the present study, we focused on the effect of diethylhexyl phthalate (DEHP), a widespread plasticizer with estrogen-like activity, on germ-cell cyst breakdown and primordial follicle assembly in the early ovarian development of mouse. Neonatal mice injected with DEHP displayed impaired cyst breakdown. Using ovary organ cultures, we revealed that impairment was mediated through estrogen receptors (ERs), as ICI 182,780, an efficient antagonist of ER, reversed this DEHP-mediated effect. DEHP exposure reduced the expression of ERβ, progesterone receptor (PR), and Notch2 signaling components. Finally, DEHP reduced proliferation of pregranulosa precursor cells during the process of primordial folliculogenesis. Together, our results indicate that DEHP influences oocyte cyst breakdown and primordial follicle formation through several mechanisms. Therefore, exposure to estrogen-like chemicals during fetal or neonatal development may adversely influence early ovarian development.

  18. Estrogen and androgen receptor activities of hydraulic fracturing chemicals and surface and ground water in a drilling-dense region

    Science.gov (United States)

    Kassotis, Christopher D.; Tillitt, Donald E.; Davis, J. Wade; Hormann, Anette M.; Nagel, Susan C.

    2014-01-01

    The rapid rise in natural gas extraction using hydraulic fracturing increases the potential for contamination of surface and ground water from chemicals used throughout the process. Hundreds of products containing more than 750 chemicals and components are potentially used throughout the extraction process, including more than 100 known or suspected endocrine-disrupting chemicals. We hypothesized thataselected subset of chemicalsusedin natural gas drilling operationsandalso surface and ground water samples collected in a drilling-dense region of Garfield County, Colorado, would exhibit estrogen and androgen receptor activities. Water samples were collected, solid-phase extracted, and measured for estrogen and androgen receptor activities using reporter gene assays in human cell lines. Of the 39 unique water samples, 89%, 41%, 12%, and 46% exhibited estrogenic, antiestrogenic, androgenic, and antiandrogenic activities, respectively. Testing of a subset of natural gas drilling chemicals revealed novel antiestrogenic, novel antiandrogenic, and limited estrogenic activities. The Colorado River, the drainage basin for this region, exhibited moderate levels of estrogenic, antiestrogenic, and antiandrogenic activities, suggesting that higher localized activity at sites with known natural gas–related spills surrounding the river might be contributing to the multiple receptor activities observed in this water source. The majority of water samples collected from sites in a drilling-dense region of Colorado exhibited more estrogenic, antiestrogenic, or antiandrogenic activities than reference sites with limited nearby drilling operations. Our data suggest that natural gas drilling operationsmayresult in elevated endocrine-disrupting chemical activity in surface and ground water.

  19. Increased sensitivity of estrogen receptor alpha overexpressing antral follicles to methoxychlor and its metabolites.

    Science.gov (United States)

    Paulose, Tessie; Hernández-Ochoa, Isabel; Basavarajappa, Mallikarjuna S; Peretz, Jackye; Flaws, Jodi A

    2011-04-01

    Methoxychlor (MXC), an organochlorine pesticide, and its metabolites, mono-hydroxy MXC (MOH) and bis-hydroxy MXC (HPTE) are known ovarian toxicants and can cause inhibition of antral follicle growth. Since these chemicals bind to estrogen receptor alpha (ESR1), we hypothesized that ovaries overexpressing ESR1 (ESR1 OE) would be more susceptible to toxicity induced by MXC and its metabolites because the chemicals can bind to more ESR1 in the antral follicles. We cultured antral follicles from controls and ESR1 OE mouse ovaries with either the vehicle dimethylsulfoxide (DMSO), MXC, MOH, or HPTE. The data show that at 96 h, the cultured antral follicles from ESR1 OE antral follicles are more susceptible to toxicity induced by MXC, MOH, and HPTE because low doses of these chemicals cause follicle growth inhibition in ESR1 OE mice but not in control mice. On comparing gene expression levels of nuclear receptors in the cultured antral follicles of ESR1 OE and control follicles, we found differential messenger RNA (mRNA) expression of Esr1, estrogen receptor beta (Esr2), androgen receptor (Ar), progesterone receptor (Pr), and aryl hydrocarbon receptor (Ahr) between the genotypes. We also analyzed mRNA levels of Cyp3a41a, the enzyme metabolizing MOH and HPTE, in the cultured follicles and found that Cyp3a41a was significantly lower in DMSO-treated ESR1 OE follicles compared with controls. In ESR1 OE livers, we found that Cyp3a41a levels were significantly lower compared with control livers. Collectively, these data suggest that MXC and its metabolites cause differential gene expression in ESR1 OE mice compared with controls. The results also suggest that the increased sensitivity of ESR1 OE mouse ovaries to toxicity induced by MXC and its metabolites is due to low clearance of the metabolites by the liver and ovary.

  20. Estrogen Negatively Regulates the Pro-apoptotic Function of Mixed Lineage Kinase 3 in Estrogen Receptor Positive Breast Cancer

    OpenAIRE

    Rangasamy, Velusamy; Mishra, Rajakishore; Mehrotra, Suneet; Sondarva, Gautam; Ray, Rajarshi S.; Rao, Arundhati; Chatterjee,Malay; Rana, Basabi; Rana, Ajay

    2010-01-01

    Estrogen stimulates growth and inhibits apoptosis of breast cancer cells via genomic and non-genomic actions. However, the detailed mechanism by which estrogen inhibits the pro-apoptotic pathways that might impede the normal homeostasis and action of chemotherapeutic drugs in breast cancer cells is not well understood. Here, we report a negative regulation of a pro-apoptotic kinase, Mixed Lineage Kinase 3 (MLK3) by 17β-estradiol (E2) that hinders cytotoxic drug-induced cell death in estrogen ...

  1. Pharmacologic activation of estrogen receptor β increases mitochondrial function, energy expenditure, and brown adipose tissue.

    Science.gov (United States)

    Ponnusamy, Suriyan; Tran, Quynh T; Harvey, Innocence; Smallwood, Heather S; Thiyagarajan, Thirumagal; Banerjee, Souvik; Johnson, Daniel L; Dalton, James T; Sullivan, Ryan D; Miller, Duane D; Bridges, Dave; Narayanan, Ramesh

    2017-01-01

    Most satiety-inducing obesity therapeutics, despite modest efficacy, have safety concerns that underscore the need for effective peripherally acting drugs. An attractive therapeutic approach for obesity is to optimize/maximize energy expenditure by increasing energy-utilizing thermogenic brown adipose tissue. We used in vivo and in vitro models to determine the role of estrogen receptor β (ER-β) and its ligands on adipose biology. RNA sequencing and metabolomics were used to determine the mechanism of action of ER-β and its ligands. Estrogen receptor β (ER-β) and its selective ligand reprogrammed preadipocytes and precursor stem cells into brown adipose tissue and increased mitochondrial respiration. An ER-β-selective ligand increased markers of tricarboxylic acid-dependent and -independent energy biogenesis and oxygen consumption in mice without a concomitant increase in physical activity or food consumption, all culminating in significantly reduced weight gain and adiposity. The antiobesity effects of ER-β ligand were not observed in ER-β-knockout mice. Serum metabolite profiles of adult lean and juvenile mice were comparable, while that of adult obese mice was distinct, indicating a possible impact of obesity on age-dependent metabolism. This phenotype was partially reversed by ER-β-selective ligand. These data highlight a new role for ER-β in adipose biology and its potential to be a safer alternative peripheral therapeutic target for obesity.-Ponnusamy, S., Tran, Q. T., Harvey, I., Smallwood, H. S., Thiyagarajan, T., Banerjee, S., Johnson, D. L., Dalton, J. T., Sullivan, R. D., Miller, D. D., Bridges, D., Narayanan, R. Pharmacologic activation of estrogen receptor β increases mitochondrial function, energy expenditure, and brown adipose tissue. © FASEB.

  2. Generation of an estrogen receptor beta-iCre knock-in mouse.

    Science.gov (United States)

    Cacioppo, Joseph A; Koo, Yongbum; Lin, Po-Ching Patrick; Osmulski, Sarah A; Ko, Chunjoo D; Ko, CheMyong

    2016-01-01

    A novel knock-in mouse that expresses codon-improved Cre recombinase (iCre) under regulation of the estrogen receptor beta (Esr2) promoter was developed for conditional deletion of genes and for the spatial and/or temporal localization of Esr2 expression. ESR2 is one of two classical nuclear estrogen receptors and displays a spatiotemporal expression pattern and functions that are different from the other estrogen receptor, ESR1. A cassette was constructed that contained iCre, a polyadenylation sequence, and a neomycin selection marker. This construct was used to insert iCre in front of the endogenous start codon of the Esr2 gene of a C57BL/6J embryonic stem cell line via homologous recombination. Resulting Esr2-iCre mice were bred with ROSA26-lacZ and Ai9-RFP reporter mice to visualize cells of functional iCre expression. Strong expression was observed in the ovary, the pituitary, the interstitium of the testes, the head and tail but not body of the epididymis, skeletal muscle, the coagulation gland (anterior prostate), the lung, and the preputial gland. Additional diffuse or patchy expression was observed in the cerebrum, the hypothalamus, the heart, the adrenal gland, the colon, the bladder, and the pads of the paws. Overall, Esr2-iCre mice will serve as a novel line for conditionally ablating genes in Esr2-expressing tissues, identifying novel Esr2-expressing cells, and differentiating the functions of ESR2 and ESR1.

  3. Telomerase activity, estrogen receptors (α, β), Bcl-2 expression in human breast cancer and treatment response

    Science.gov (United States)

    Murillo-Ortiz, Blanca; Astudillo-De la Vega, Horacio; Castillo-Medina, Sebastian; Malacara, JM; Benitez-Bribiesca, Luis

    2006-01-01

    Background The mechanism for maintaining telomere integrity is controlled by telomerase, a ribonucleoprotein enzyme that specifically restores telomere sequences, lost during replication by means of an intrinsic RNA component as a template for polymerization. Among the telomerase subunits, hTERT (human telomerase reverse transcriptase) is expressed concomitantly with the activation of telomerase. The role of estrogens and their receptors in the transcriptional regulation of hTERT has been demonstrated. The current study determines the possible association between telomerase activity, the expression of both molecular forms of estrogen receptor (ERα and ERβ) and the protein bcl-2, and their relative associations with clinical parameters. Methods Tissue samples from 44 patients with breast cancer were used to assess telomerase activity using the TRAP method and the expression of ERα, ERβ and bcl-2 by means of immunocytochemical techniques. Results Telomerase activity was detected in 59% of the 44 breast tumors examined. Telomerase activity ranged from 0 to 49.93 units of total product generated (TPG). A correlation was found between telomerase activity and differentiation grade (p = 0.03). The only significant independent marker of response to treatment was clinical stage. We found differences between the frequency of expression of ERα (88%) and ERβ (36%) (p = 0.007); bcl-2 was expressed in 79.5% of invasive breast carcinomas. We also found a significant correlation between low levels of telomerase activity and a lack of ERβ expression (p = 0.03). Conclusion Lower telomerase activity was found among tumors that did not express estrogen receptor beta. This is the first published study demonstrating that the absence of expression of ERβ is associated with low levels of telomerase activity. PMID:16911782

  4. Telomerase activity, estrogen receptors (α, β, Bcl-2 expression in human breast cancer and treatment response

    Directory of Open Access Journals (Sweden)

    Malacara JM

    2006-08-01

    Full Text Available Abstract Background The mechanism for maintaining telomere integrity is controlled by telomerase, a ribonucleoprotein enzyme that specifically restores telomere sequences, lost during replication by means of an intrinsic RNA component as a template for polymerization. Among the telomerase subunits, hTERT (human telomerase reverse transcriptase is expressed concomitantly with the activation of telomerase. The role of estrogens and their receptors in the transcriptional regulation of hTERT has been demonstrated. The current study determines the possible association between telomerase activity, the expression of both molecular forms of estrogen receptor (ERα and ERβ and the protein bcl-2, and their relative associations with clinical parameters. Methods Tissue samples from 44 patients with breast cancer were used to assess telomerase activity using the TRAP method and the expression of ERα, ERβ and bcl-2 by means of immunocytochemical techniques. Results Telomerase activity was detected in 59% of the 44 breast tumors examined. Telomerase activity ranged from 0 to 49.93 units of total product generated (TPG. A correlation was found between telomerase activity and differentiation grade (p = 0.03. The only significant independent marker of response to treatment was clinical stage. We found differences between the frequency of expression of ERα (88% and ERβ (36% (p = 0.007; bcl-2 was expressed in 79.5% of invasive breast carcinomas. We also found a significant correlation between low levels of telomerase activity and a lack of ERβ expression (p = 0.03. Conclusion Lower telomerase activity was found among tumors that did not express estrogen receptor beta. This is the first published study demonstrating that the absence of expression of ERβ is associated with low levels of telomerase activity.

  5. The selective estrogen receptor modulator raloxifene inhibits neutrophil extracellular trap formation.

    Directory of Open Access Journals (Sweden)

    Roxana Flores

    2016-12-01

    Full Text Available Raloxifene is a selective estrogen receptor modulator typically prescribed for the prevention/treatment of osteoporosis in postmenopausal women. Although raloxifene is known to have anti-inflammatory properties, its effect on human neutrophils, the primary phagocytic leukocytes of the immune system, remain poorly understood. Here, through a screen of pharmacologically active small molecules, we find that raloxifene prevents neutrophil cell death in response to the classical activator phorbol 12-myristate 13-acetate (PMA, a compound known to induce formation of DNA-based neutrophil extracellular traps (NETs. Inhibition of PMA-induced NET production by raloxifene was confirmed using quantitative and imaging-based assays. Human neutrophils from both male and female donors express the nuclear estrogen receptors ERα and ERβ, known targets of raloxifene. Like raloxifene, selective antagonists of these receptors inhibit PMA-induced NET production. Furthermore, raloxifene inhibited PMA-induced ERK phosphorylation but not reactive oxygen species (ROS production, pathways known to be key modulators of NET production. Finally, we found that raloxifene inhibited PMA-induced, NET-based killing of the leading human bacterial pathogen, methicillin-resistant Staphylococcus aureus (MRSA. Our results reveal that raloxifene is a potent modulator of neutrophil function and NET production.

  6. QSAR classification of estrogen receptor binders and pre-screening of potential pleiotropic EDCs.

    Science.gov (United States)

    Li, J; Gramatica, P

    2010-10-01

    Endocrine disrupting chemicals (EDCs) are suspected of posing serious threats to human and wildlife health through a variety of mechanisms, these being mainly receptor-mediated modes of action. It is reported that some EDCs exhibit dual activities as estrogen receptor (ER) and androgen receptor (AR) binders. Indeed, such compounds can affect the normal endocrine system through a dual complex mechanism, so steps should be taken not only to identify them a priori from their chemical structure, but also to prioritize them for experimental tests in order to reduce and even forbid their usage. To date, very few EDCs with dual activities have been identified. The present research uses QSARs, to investigate what, so far, is the largest and most heterogeneous ER binder data set (combined METI and EDKB databases). New predictive classification models were derived using different modelling methods and a consensus approach, and these were used to virtually screen a large AR binder data set after strict validation. As a result, 46 AR antagonists were predicted from their chemical structure to also have potential ER binding activities, i.e. pleiotropic EDCs. In addition, 48 not yet recognized ER binders were in silico identified, which increases the number of potential EDCs that are substances of very high concern (SVHC) in REACH. Thus, the proposed screening models, based only on structure information, have the main aim to prioritize experimental tests for the highlighted compounds with potential estrogenic activities and also to design safer alternatives.

  7. Trichostatin A enhances estrogen receptor-alpha repression in MCF-7 breast cancer cells under hypoxia

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Hyunggyun; Park, Joonwoo; Shim, Myeongguk; Lee, YoungJoo, E-mail: yjlee@sejong.ac.kr

    2016-02-12

    Estrogen receptor (ER) is a crucial determinant of resistance to endocrine therapy, which may change during the progression of breast cancer. We previously showed that hypoxia induces ESR1 gene repression and ERα protein degradation via proteasome-mediated pathway in breast cancer cells. HDAC plays important roles in the regulation of histone and non-histone protein post-translational modification. HDAC inhibitors can induce epigenetic changes and have therapeutic potential for targeting various cancers. Trichostatin A exerts potent antitumor activities against breast cancer cells in vitro and in vivo. In this report, we show that TSA augments ESR1 gene repression at the transcriptional level and downregulates ERα protein expression under hypoxic conditions through a proteasome-mediated pathway. TSA-induced estrogen response element-driven reporter activity in the absence of estrogen was synergistically enhanced under hypoxia; however, TSA inhibited cell proliferation under both normoxia and hypoxia. Our data show that the hypoxia-induced repression of ESR1 and degradation of ERα are enhanced by concomitant treatment with TSA. These findings expand our understanding of hormone responsiveness in the tumor microenvironment; however, additional in-depth studies are required to elucidate the detailed mechanisms of TSA-induced ERα regulation under hypoxia. - Highlights: • TSA augments ESR1 gene repression at the transcriptional level under hypoxia. • TSA downregulates ERα protein expression under hypoxia. • TSA-induced ERα regulation under hypoxia is essential for understanding the behavior and progression of breast cancer.

  8. Endogenous Purification Reveals GREB1 as a Key Estrogen Receptor Regulatory Factor

    Directory of Open Access Journals (Sweden)

    Hisham Mohammed

    2013-02-01

    Full Text Available Estrogen receptor-α (ER is the driving transcription factor in most breast cancers, and its associated proteins can influence drug response, but direct methods for identifying interacting proteins have been limited. We purified endogenous ER using an approach termed RIME (rapid immunoprecipitation mass spectrometry of endogenous proteins and discovered the interactome under agonist- and antagonist-liganded conditions in breast cancer cells, revealing transcriptional networks in breast cancer. The most estrogen-enriched ER interactor is GREB1, a potential clinical biomarker with no known function. GREB1 is shown to be a chromatin-bound ER coactivator and is essential for ER-mediated transcription, because it stabilizes interactions between ER and additional cofactors. We show a GREB1-ER interaction in three xenograft tumors, and using a directed protein-protein approach, we find GREB1-ER interactions in half of ER+ primary breast cancers. This finding is supported by histological expression of GREB1, which shows that GREB1 is expressed in half of ER+ cancers, and predicts good clinical outcome. These findings reveal an unexpected role for GREB1 as an estrogen-specific ER cofactor that is expressed in drug-sensitive contexts.

  9. The Estrogen Receptor-β Expression in De Quervain’s Disease

    Science.gov (United States)

    Shen, Po-Chuan; Wang, Ping-Hui; Wu, Po-Ting; Wu, Kuo-Chen; Hsieh, Jeng-Long; Jou, I-Ming

    2015-01-01

    Stenosing tenosynovitis of the first dorsal compartment of the wrist (a.k.a. de Quervain’s disease) is common but how estrogen is involved is still unknown. We previously reported that inflammation was involved in the pathogenesis of this ailment. In the present study, we extended our investigation of estrogen receptor (ER)-β expression to determine whether estrogen is involved in the pathogenesis of de Quervain’s. Intraoperative retinaculum samples were collected from 16 patients with the ailment. Specimens were histologically graded by collagen structure and immunohistochemically evaluated by quantifying the expression of ER-β, interleukin (IL)-1β and IL-6 (inflammatory cytokines), cyclooxygenase (COX)-2 (an inflammatory enzyme), and vascular endothelial growth factor (VEGF), and Von Willebrand’s factor (vWF). De Quervain’s occurs primarily in women. The female:male ratio in our study was 7:1. We found that ER-β expression in the retinaculum was positively correlated with disease grade and patient age. Additionally, disease severity was associated with inflammatory factors—IL-1β and IL-6, COX-2, and VEGF and vWF in tenosynovial tissue. The greater the levels of ER-β expression, tissue inflammation, and angiogenesis are, the more severe de Quervain’s disease is. ER-β might be a useful target for novel de Quervain’s disease therapy. PMID:26556342

  10. Association of tissue inhibitor of metalloproteinases-1 and Ki67 in estrogen receptor positive breast cancer

    DEFF Research Database (Denmark)

    Bjerre, Christina Annette; Knoop, Ann; Bjerre, Karsten;

    2013-01-01

    Background. The role of tissue inhibitor of metalloproteinases-1 (TIMP-1) in estrogen receptor (ER) positive breast cancer remains to be fully elucidated. We evaluated TIMP-1 as a prognostic marker in patients treated with adjuvant tamoxifen and investigated TIMP-1s association with Ki67 and ER...... = 0.48; OR 0.68; 95% CI 0.23-1.99). Conclusion. TIMP-1 does not appear to be prognostic in breast cancer patients receiving adjuvant tamoxifen. We identified a negative association between TIMP-1 and Ki67. We did not confirm our previous in vitro findings of a negative association between TIMP-1...

  11. Technique and Feasibility of a Dual Staining Method for Estrogen Receptors and AgNORs

    Directory of Open Access Journals (Sweden)

    Lukas Günther

    2000-01-01

    Full Text Available A new staining method for dual demonstration of Estrogen receptors (ER and argyrophilc Nucleolus‐Organizer Regions (AgNORs was developed. To rule out possible reciprocal effects, serial slides of 10 invasive ductale breast cancers were stained with either the single staining method or the simultaneous ER/AgNOR‐staining method and investigated comparatively. By measuring the slides with the image analysis system AMBA, reciprocal effects could be excluded. It was proven that dual staining of both markers results in a reproducible and specific staining result. We concluded that it is justified to measure AgNORs in immunohistochemically stained cells.

  12. Characterization of Steroid Receptor RNA Activator Protein Function in Modulating the Estrogen Signaling Pathway

    Science.gov (United States)

    2008-03-01

    upstream of the firefly luciferase cDNA) and 0.1 lg of renilla luciferase reporter vector (Promega, Madison, WI) using the lipo - fectamine reagent...regulatory factor 1 JUN + V-jun sarcoma virus 17 oncogene homologue JUN B + JUNB proto-oncogene LDB1 ++ LIM domain binding 1 LHX2 ++ LIM homeobox 2...0.021 ESR2 Estrogen receptor 2 (ER beta) 1.73 331 0.029 STC2 Stanniocalcin 2 1.20 230 0.009 JUN V-jun sarcoma virus 17 oncogene homolog (avian

  13. Brain aromatase (Cyp19A2) and estrogen receptors, in larvae and adult pejerrey fish Odontesthes bonariensis: Neuroanatomical and functional relations

    Science.gov (United States)

    Strobl-Mazzulla, P. H.; Lethimonier, C.; Gueguen, M.M.; Karube, M.; Fernandino, J.I.; Yoshizaki, G.; Patino, R.; Strussmann, C.A.; Kah, O.; Somoza, G.M.

    2008-01-01

    Although estrogens exert many functions on vertebrate brains, there is little information on the relationship between brain aromatase and estrogen receptors. Here, we report the cloning and characterization of two estrogen receptors, ?? and ??, in pejerrey. Both receptors' mRNAs largely overlap and were predominantly expressed in the brain, pituitary, liver, and gonads. Also brain aromatase and estrogen receptors were up-regulated in the brain of estradiol-treated males. In situ hybridization was performed to study in more detail, the distribution of the two receptors in comparison with brain aromatase mRNA in the brain of adult pejerrey. The estrogen receptors' mRNAs exhibited distinct but partially overlapping patterns of expression in the preoptic area and the mediobasal hypothalamus, as well as in the pituitary gland. Moreover, the estrogen receptor ??, but not ??, were found to be expressed in cells lining the preoptic recess, similarly as observed for brain aromatase. Finally, it was shown that the onset expression of brain aromatase and both estrogen receptors in the head of larvae preceded the morphological differentiation of the gonads. Because pejerrey sex differentiation is strongly influenced by temperature, brain aromatase expression was measured during the temperature-sensitive window and was found to be significantly higher at male-promoting temperature. Taken together these results suggest close neuroanatomical and functional relationships between brain aromatase and estrogen receptors, probably involved in the sexual differentiation of the brain and raising interesting questions on the origin (central or peripheral) of the brain aromatase substrate. ?? 2008 Elsevier Inc.

  14. Combined effects of estrogenic chemicals with the same mode of action using an estrogen receptor binding bioassay.

    Science.gov (United States)

    Yang, Rong; Li, Na; Ma, Mei; Wang, Zijian

    2014-11-01

    The increasing amounts of various estrogenic chemicals coexisting in the aquatic environment may pose environmental risks. While the concept of estradiol equivalent (EEQ) has been frequently applied in studying estrogenic mixtures, few experiments have been done to prove its reliability. In this study, the reliability of EEQ and the related model concentration addition (CA) was verified based on the two-hybrid recombinant yeast bioassay when all mixture components had the same mode of action and target of action. Our results showed that the measured estrogenic effects could be well predicted by CA and EEQ for all laboratory-made mixtures using two designs, despite the varying estrogenic activity, concentration levels and ratios of the test chemicals. This suggests that when an appropriate endpoint and its relevant bioassay are chosen, CA should be valid and the application of EEQ in predicting the effect of non-equi-effect mixtures is feasible.

  15. Differential expression of estrogen receptor α and β isoforms in multiple and solitary leiomyomas

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Ruyue; Fang, Liaoqiong [State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and The Ministry of Science and Technology, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016 (China); Xing, Ruoxi [Institute of Life Science, Chongqing Medical University, Chongqing 400016 (China); Xiong, Yu [Department of Obstetrics and Gynecology, Chongqing Hifu Hospital, Chongqing 401121 (China); Fang, Liaoqiong, E-mail: lqfang06@163.com [State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and The Ministry of Science and Technology, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016 (China); Wang, Zhibiao, E-mail: wangzb@cqmu.edu.cn [State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and The Ministry of Science and Technology, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016 (China)

    2015-12-04

    Uterine leiomyomas are benign myometrial neoplasms that function as one of the common indications for hysterectomy. Clinical and biological evidences indicate that uterine leiomyomas are estrogen-dependent. Estrogen stimulates cell proliferation through binding to the estrogen receptor (ER), of which both subtypes α and β are present in leiomyomas. Clinically, leiomyomas may be singular or multiple, where the first one is rarely recurring if removed and the latter associated to a relatively young age or genetic predisposition. These markedly different clinical phenotypes indicate that there may different mechanism causing a similar smooth muscle response. To investigate the relative expression of ERα and ERβ in multiple and solitary uterine leiomyomas, we collected samples from 35 Chinese women (multiple leiomyomas n = 20, solitary leiomyoma n = 15) undergoing surgery to remove uterine leiomyomas. ELISA assay was performed to detect estrogen(E{sub 2}) concentration. Quantitative real-time PCR analysis was performed to detect ERα and ERβ mRNA expression. Western blot and immunohistochemical analysis were performed to detect ERα and ERβ protein expression. We found that ERα mRNA and protein levels of in multiple leiomyomas were significantly lower than those of solitary leiomyomas, whereas ERβ mRNA and protein levels in multiple leiomyomas were significantly higher than those in solitary leiomyomas, irrespectively of the menstrual cycle stage. In both multiple and solitary leiomyomas, ERα expression was higher than that of ERβ. E{sub 2} concentration in multiple and solitary leiomyomas correlated with that of ERα expression. ERα was present in nuclus and cytoplasma while estrogen receptor β localized only in nuclei in both multiple and solitary leiomyomas. Our findings suggest that the difference of ERα and ERβ expression between multiple and solitary leiomyomas may be responsible for the course of the disease subtypes. - Highlights: • In both

  16. [Hormone replacement and selective estrogen receptor modulators (SERMS) in the prevention and treatment of postmenopausal osteoporosis].

    Science.gov (United States)

    Pfeilschifter, J

    2001-07-01

    For many years, hormone replacement therapy (HRT) has been regarded as one of the most reliable means of prophylaxis and treatment for postmenopausal osteoporosis. As HRT ameliorates menopausal symptoms, it is widely prescribed among early postmenopausal women. A variety of different modes of replacement that suit each individual requirement are available in terms of schedule (cyclic or combined application of gestagens) and route of application (oral or transdermal). HRT effectively prevents spinal bone loss and delays bone loss at the hip up to a very old age. With continued use after menopause, HRT might theoretically halve the incidence of vertebral and hip fractures. However, long-term use or use of HRT in old age is rarely practiced, and the actual benefit of a transient use for future fracture prevention remains unclear. Raloxifene is the first member of the novel class of selective estrogen receptor modulators (SERMs) that has been approved for the prophylaxis and treatment of postmenopausal osteoporosis. It combines the positive effects of estrogen on the skeleton with estrogen-antagonistic effects on sex tissues. Thus, raloxifene maintains bone mass and decreases the incidence of vertebral fractures in osteoporotic women, but avoids many of the side effects that are responsible for the poor long-term compliance to HRT such as resumption or continuation of regular menses, breast tenderness, or breast cancer. It even markedly reduces the risk of breast cancer. Both estrogen and raloxifene are characterized by a large number of extraskeletal effects that have to be taken into account when counseling postmenopausal women on the use of these agents for the prevention or treatment of osteoporosis.

  17. Novel DNA motif binding activity observed in vivo with an estrogen receptor α mutant mouse.

    Science.gov (United States)

    Hewitt, Sylvia C; Li, Leping; Grimm, Sara A; Winuthayanon, Wipawee; Hamilton, Katherine J; Pockette, Brianna; Rubel, Cory A; Pedersen, Lars C; Fargo, David; Lanz, Rainer B; DeMayo, Francesco J; Schütz, Günther; Korach, Kenneth S

    2014-06-01

    Estrogen receptor α (ERα) interacts with DNA directly or indirectly via other transcription factors, referred to as "tethering." Evidence for tethering is based on in vitro studies and a widely used "KIKO" mouse model containing mutations that prevent direct estrogen response element DNA- binding. KIKO mice are infertile, due in part to the inability of estradiol (E2) to induce uterine epithelial proliferation. To elucidate the molecular events that prevent KIKO uterine growth, regulation of the pro-proliferative E2 target gene Klf4 and of Klf15, a progesterone (P4) target gene that opposes the pro-proliferative activity of KLF4, was evaluated. Klf4 induction was impaired in KIKO uteri; however, Klf15 was induced by E2 rather than by P4. Whole uterine chromatin immunoprecipitation-sequencing revealed enrichment of KIKO ERα binding to hormone response elements (HREs) motifs. KIKO binding to HRE motifs was verified using reporter gene and DNA-binding assays. Because the KIKO ERα has HRE DNA-binding activity, we evaluated the "EAAE" ERα, which has more severe DNA-binding domain mutations, and demonstrated a lack of estrogen response element or HRE reporter gene induction or DNA-binding. The EAAE mouse has an ERα null-like phenotype, with impaired uterine growth and transcriptional activity. Our findings demonstrate that the KIKO mouse model, which has been used by numerous investigators, cannot be used to establish biological functions for ERα tethering, because KIKO ERα effectively stimulates transcription using HRE motifs. The EAAE-ERα DNA-binding domain mutant mouse demonstrates that ERα DNA-binding is crucial for biological and transcriptional processes in reproductive tissues and that ERα tethering may not contribute to estrogen responsiveness in vivo.

  18. Role of estrogen receptor signaling in skeletal response to leptin in female ob/ob mice.

    Science.gov (United States)

    Turner, Russell T; Philbrick, Kenneth A; Kuah, Amida F; Branscum, Adam J; Iwaniec, Urszula T

    2017-06-01

    Leptin, critical in regulation of energy metabolism, is also important for normal bone growth, maturation and turnover. Compared to wild type (WT) mice, bone mass is lower in leptin-deficient ob/ob mice. Osteopenia in growing ob/ob mice is due to decreased bone accrual, and is associated with reduced longitudinal bone growth, impaired cancellous bone maturation and increased marrow adipose tissue (MAT). However, leptin deficiency also results in gonadal dysfunction, disrupting production of gonadal hormones which regulate bone growth and turnover. The present study evaluated the role of increased estrogen in mediating the effects of leptin on bone in ob/ob mice. Three-month-old female ob/ob mice were randomized into one of the 3 groups: (1) ob/ob + vehicle (veh), (2) ob/ob + leptin (leptin) or (3) ob/ob + leptin and the potent estrogen receptor antagonist ICI 182,780 (leptin + ICI). Age-matched WT mice received vehicle. Leptin (40 µg/mouse, daily) and ICI (10 µg/mouse, 2×/week) were administered by subcutaneous injection for 1 month and bone analyzed by X-ray absorptiometry, microcomputed tomography and static and dynamic histomorphometry. Uterine weight did not differ between ob/ob mice and ob/ob mice receiving leptin + ICI, indicating that ICI successfully blocked the uterine response to leptin-induced increases in estrogen levels. Compared to leptin-treated ob/ob mice, ob/ob mice receiving leptin + ICI had lower uterine weight; did not differ in weight loss, MAT or bone formation rate; and had higher longitudinal bone growth rate and cancellous bone volume fraction. We conclude that increased estrogen signaling following leptin treatment is dispensable for the positive actions of leptin on bone and may attenuate leptin-induced bone growth. © 2017 Society for Endocrinology.

  19. The Cell Surface Estrogen Receptor, G Protein- Coupled Receptor 30 (GPR30, is Markedly Down Regulated During Breast Tumorigenesis

    Directory of Open Access Journals (Sweden)

    Indira Poola

    2008-01-01

    Full Text Available Background: GPR30 is a cell surface estrogen receptor that has been shown to mediate a number of non-genomic rapid effects of estrogen and appear to balance the signaling of estrogen and growth factors. In addition, progestins appear to use GPR30 for their actions. Therefore, GPR30 could play a critical role in hormonal regulation of breast epithelial cell integrity. Deregulation of the events mediated by GPR30 could contribute to tumorigenesis.Methods: To understand the role of GPR30 in the deregulation of estrogen signaling processes during breast carcinogenesis, we have undertaken this study to investigate its expression at mRNA levels in tumor tissues and their matched normal tissues. We compared its expression at mRNA levels by RT quantitative real-time PCR relative to GAPDH in ERα”—positive (n = 54 and ERα”—negative (n = 45 breast cancer tissues to their matched normal tissues.Results: We report here, for the first time, that GPR30 mRNA levels were significantly down-regulated in cancer tissues in comparison with their matched normal tissues (p 0.0001 by two sided paired t-test. The GPR30 expression levels were significantly lower in tumor tissues from patients (n = 29 who had lymph node metastasis in comparison with tumors from patients (n = 53 who were negative for lymph node metastasis (two sample t-test, p 0.02, but no association was found with ERα, PR and other tumor characteristics.Conclusions: Down-regulation of GPR30 could contribute to breast tumorigenesis and lymph node metastasis.

  20. Estrogen Receptor α(ERα) Target Gene LRP16 Interacts with ERα and Enhances Receptor's Transcriptional Activity

    Institute of Scientific and Technical Information of China (English)

    HAN Wei-dong; ZHAO Ya-li; WU Zhi-qing; MENG Yuan-guang; ZANG Li; MU Yi-ming

    2007-01-01

    Objective: It has been shown that LRP16 is an estrogen-induced gene through its receptor (Erα). Although there is evidence demonstrating that inhibition of LRP16 gene expression in MCF-7 human breast cancer cells partially attenuates its estrogen-responsiveness, the underlying molecular mechanism is still unclear. Here, the effect of LRP16 expression on the ER( signaling transduction was investigated. Methods: Cotransfection assays were used to measure the effect of LRP16 on ER(-mediated transcriptional activity. GST-pulldown and immunoprecipitation (CoIP) assays were employed to investigate the physical interaction of LRP16 and Erα. The mammalian two-hybrid method was used to map the functional interaction region. Results: the results of cotransfection assays demonstrated that the transcriptional activities of Erα were enhanced in a LRP16 dose-dependent manner in MCF-7 in the presence of estrogen, however, it was abolished in the absence of E2 in MCF-7 cells. The physical interaction of LRP16 and Erα proteins was confirmed by GST-pulldown in vitro and CoIP in vivo assays, which was enhanced by E2 but not dependent on its presence. Furthermore, the results of the mammalian two-hybrid assays indicated that the binding region of Erα to LRP16 located at the A/B AF-1 functional domain and E2 stimulated the binding of LRP16 to the full-length Erα molecule but not to the A/B region alone. Conclusion: These results support a role for estrogenically regulated LRP16 as an Erα coactivator, providing a positive feedback regulatory loop for Erα signal transduction. Based on this function of LRP16, we propose that Erα-positive breast cancer patients with high expression of LRP16 might benefit from targeting LRP16 therapy.

  1. Calmodulin-like protein 3 is an estrogen receptor alpha coregulator for gene expression and drug response in a SNP, estrogen, and SERM-dependent fashion.

    Science.gov (United States)

    Qin, Sisi; Ingle, James N; Liu, Mohan; Yu, Jia; Wickerham, D Lawrence; Kubo, Michiaki; Weinshilboum, Richard M; Wang, Liewei

    2017-08-18

    We previously performed a case-control genome-wide association study in women treated with selective estrogen receptor modulators (SERMs) for breast cancer prevention and identified single nucleotide polymorphisms (SNPs) in ZNF423 as potential biomarkers for response to SERM therapy. The ZNF423rs9940645 SNP, which is approximately 200 bp away from the estrogen response elements, resulted in the SNP, estrogen, and SERM-dependent regulation of ZNF423 expression and, "downstream", that of BRCA1. Electrophoretic mobility shift assay-mass spectrometry was performed to identify proteins binding to the ZNF423 SNP and coordinating with estrogen receptor alpha (ERα). Clustered, regularly interspaced short palindromic repeats (CRISPR)/Cas9 genome editing was applied to generate ZR75-1 breast cancer cells with different ZNF423 SNP genotypes. Both cultured cells and mouse xenograft models with different ZNF423 SNP genotypes were used to study the cellular responses to SERMs and poly(ADP-ribose) polymerase (PARP) inhibitors. We identified calmodulin-like protein 3 (CALML3) as a key sensor of this SNP and a coregulator of ERα, which contributes to differential gene transcription regulation in an estrogen and SERM-dependent fashion. Furthermore, using CRISPR/Cas9-engineered ZR75-1 breast cancer cells with different ZNF423 SNP genotypes, striking differences in cellular responses to SERMs and PARP inhibitors, alone or in combination, were observed not only in cells but also in a mouse xenograft model. Our results have demonstrated the mechanism by which the ZNF423 rs9940645 SNP might regulate gene expression and drug response as well as its potential role in achieving more highly individualized breast cancer therapy.

  2. Estrogen-related receptor β deletion modulates whole-body energy balance via estrogen-related receptor γ and attenuates neuropeptide Y gene expression.

    Science.gov (United States)

    Byerly, Mardi S; Al Salayta, Muhannad; Swanson, Roy D; Kwon, Kiwook; Peterson, Jonathan M; Wei, Zhikui; Aja, Susan; Moran, Timothy H; Blackshaw, Seth; Wong, G William

    2013-04-01

    Estrogen-related receptors (ERRs) α, β and γ are orphan nuclear hormone receptors with no known ligands. Little is known concerning the role of ERRβ in energy homeostasis, as complete ERRβ-null mice die mid-gestation. We generated two viable conditional ERRβ-null mouse models to address its metabolic function. Whole-body deletion of ERRβ in Sox2-Cre:ERRβ(lox/lox) mice resulted in major alterations in body composition, metabolic rate, meal patterns and voluntary physical activity levels. Nestin-Cre:ERRβ(lox/lox) mice exhibited decreased expression of ERRβ in hindbrain neurons, the predominant site of expression, decreased neuropeptide Y (NPY) gene expression in the hindbrain, increased lean body mass, insulin sensitivity, increased energy expenditure, decreased satiety and decreased time between meals. In the absence of ERRβ, increased ERRγ signaling decreased satiety and the duration of time between meals, similar to meal patterns observed for both the Sox2-Cre:ERRβ(lox/lox) and Nestin-Cre:ERRβ(lox/lox) strains of mice. Central and/or peripheral ERRγ signaling may modulate these phenotypes by decreasing NPY gene expression. Overall, the relative expression ratio between ERRβ and ERRγ may be important in modulating ingestive behavior, specifically satiety, gene expression, as well as whole-body energy balance. © 2013 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  3. Effects of SERM (selective estrogen receptor modulator treatment on growth and proliferation in the rat uterus

    Directory of Open Access Journals (Sweden)

    Eriksson Håkan

    2003-05-01

    Full Text Available Abstract Background Selective estrogen receptor modulators (SERMs have been developed in order to create means to control estrogenic effects on different tissues. A major drawback in treatment of estrogen receptor (ER positive breast cancer with the antagonist tamoxifen (TAM is its agonistic effect in the endometrium. Raloxifene (RAL is the next generation of SERMs where the agonistic effect on the endometrium has been reduced. Methods The aim of the present study was to determine the effect of SERM treatment on the uterus, as assessed by proliferation markers and several factors involved in uterine growth. Ovariectomized (ovx rats were treated with estradiol (E2, tamoxifen (TAM, RAL, ICI182780 (ICI or vehicle (OVX-controls. We studied the effects on mRNA levels of the growth hormone (GH receptor, insulin-like growth factor-I (IGF-I, ERα and ERβ. In addition, by immunohistochemistry the proliferation markers PCNA and Ki-67, as well as ERα and ERβ, were detected. Results The uterine weight of the rats treated with E2 or TAM was increased as compared to OVX-controls. The uterine GH-receptor mRNA level was highest in the E2 treated animals. In ICI treated rats no GH-receptor mRNA could be detected. The IGF-I mRNA level increased 16-fold in uteri of the TAM treated group and 9-fold in the E2 treated rats as compared to OVX-controls. The ERα mRNA level was increased in the E2 treated rats, while the ERβ mRNA level was increased after TAM treatment. The proliferation, as assessed by PCNA, was lowest in ICI treated animals. Conclusions The uterine wet weight, the LE height and the GH-receptor mRNA levels showed similar patterns, indicating that GH is involved in the regulation of uterine weight. Tamoxifen, which has been related to increased incidence of endometrial carcinoma in women, dramatically increased IGF-I mRNA levels in rat uterus. Since proliferation was not higher in TAM and E2 treated rats than in OVX controls, this assay of simple

  4. Epidermal growth factor receptor signalling in human breast cancer cells operates parallel to estrogen receptor α signalling and results in tamoxifen insensitive proliferation.

    NARCIS (Netherlands)

    Moerkens, M.; Zhang, Y.; Wester, L.; Water, van de B.; Meerman, J.H.N.

    2014-01-01

    BACKGROUND Tamoxifen resistance is a major problem in the treatment of estrogen receptor (ER) α -positive breast cancer patients. Although the mechanisms behind tamoxifen resistance are still not completely understood, clinical data suggests that increased expression of receptor tyrosine kinases is

  5. CDNA CLONING OF FATHEAD MINNOW (PIMEPHALES PROMELAS) ESTROGEN AND ANDROGEN RECEPTORS FOR USE IN STEROID RECEPTOR EXTRAPOLATION STUDIES FOR ENDOCRINE DISRUPTING CHEMICALS

    Science.gov (United States)

    cDNA Cloning of Fathead minnow (Pimephales promelas) Estrogen and Androgen Receptors for Use in Steroid Receptor Extrapolation Studies for Endocrine Disrupting Chemicals. Wilson, V.S.1,, Korte, J.2, Hartig P. 1, Ankley, G.T.2, Gray, L.E., Jr 1, , and Welch, J.E.1. 1U.S...

  6. CLONING AND IN VITRO EXPRESSION AND CHARACTERIZATION OF THE ANDROGEN RECEPTOR AND ISOLATION OF ESTROGEN RECEPTOR α FROM THE FATHEAD MINNOW (PIMEPHALES PROMELAS)

    Science.gov (United States)

    In vitro screening assays designed to identify hormone mimics or antagonists typically use mammalian (rat, human) estrogen (ER) and androgen receptors (AR). Although we know that the amino acid sequences of steroid receptors in nonmammalian vertebrates are not identical to the ma...

  7. CDNA CLONING OF FATHEAD MINNOW (PIMEPHALES PROMELAS) ESTROGEN AND ANDROGEN RECEPTORS FOR USE IN STEROID RECEPTOR EXTRAPOLATION STUDIES FOR ENDOCRINE DISRUPTING CHEMICALS

    Science.gov (United States)

    cDNA Cloning of Fathead minnow (Pimephales promelas) Estrogen and Androgen Receptors for Use in Steroid Receptor Extrapolation Studies for Endocrine Disrupting Chemicals. Wilson, V.S.1,, Korte, J.2, Hartig P. 1, Ankley, G.T.2, Gray, L.E., Jr 1, , and Welch, J.E.1. 1U.S...

  8. NFkappaB Selectivity of Estrogen Receptor Ligands Revealed By Comparative Crystallographic Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Nettles, K.W.; Bruning, J.B.; Gil, G.; Nowak, J.; Sharma, S.K.; Hahm, J.B.; Kulp, K.; Hochberg, R.B.; Zhou, H.; Katzenellenbogen, J.A.; Katzenllenbogen, B.S.; Kim, Y.; Joachmiak, A.; Greene, G.L.

    2009-05-22

    Our understanding of how steroid hormones regulate physiological functions has been significantly advanced by structural biology approaches. However, progress has been hampered by misfolding of the ligand binding domains in heterologous expression systems and by conformational flexibility that interferes with crystallization. Here, we show that protein folding problems that are common to steroid hormone receptors are circumvented by mutations that stabilize well-characterized conformations of the receptor. We use this approach to present the structure of an apo steroid receptor that reveals a ligand-accessible channel allowing soaking of preformed crystals. Furthermore, crystallization of different pharmacological classes of compounds allowed us to define the structural basis of NF{kappa}B-selective signaling through the estrogen receptor, thus revealing a unique conformation of the receptor that allows selective suppression of inflammatory gene expression. The ability to crystallize many receptor-ligand complexes with distinct pharmacophores allows one to define structural features of signaling specificity that would not be apparent in a single structure.

  9. Type-I Insulin-Like Growth Factor Receptor (IGF1R)-Estrogen Receptor (ER) Crosstalk Contributes to Antiestrogen Therapy Resistance in Breast Cancer Cells

    Science.gov (United States)

    2013-02-01

    additional treatment targets in human osteosarcoma . Cancer Res 2009;69:2443-52. 14. Frasca F,Pandini G,Sciacca L, Pezzino V,Squatrito S,Belfiore A,et al...antibody was able to inhibit estrogen stimulated tumor growth, but had no additive effect when combined with tamoxifen treatment . Further, tamoxifen...stimulated