WorldWideScience

Sample records for mechatronic brake systems

  1. Automotive mechatronic systems. General developments and examples

    Energy Technology Data Exchange (ETDEWEB)

    Isermann, R. [Technische Univ. Darmstadt (Germany). Inst. fuer Automatisierungstechnik, FG Regelungstechnik und Prozessautomatisierung

    2006-08-15

    Automobiles are showing an increasing integration of mechanics with digital electronics and information processing. This integration is between the components (hardware) and by the information-driven functions (software), resulting in integrated systems called mechatronic systems. Their development involves finding an optimal balance between the basic mechanical structure, sensor and actuator implementation, communication, automatic information processing and overall control. This contribution summarizes some ongoing developments for mechatronic systems in automobiles, shows design approaches and examples and considers the various embedded control functions and systems integrity. Some examples of automotive mechatronic systems are shown in more detail. Great progress can be observed in braking systems (ABS, ESP), the first brake-by-wire electro-hydraulic brake system (EHB), steering systems (electrical power steering, active front steering) and active suspension systems. (orig.)

  2. Wheel brake with mechatronic parameter value control - investigation of operating behaviour and driver integration problems, with particurticular regard to brake-by-wire systems; Radbremse mit mechatronischer Kennwertregelung - Untersuchung von Betriebsverhalten und Fahreranbindungsproblematik, hinsichtlich Brake-by-Wire-Systemen

    Energy Technology Data Exchange (ETDEWEB)

    Leber, M.

    1998-11-01

    The book presents a new brake system with mechatronically controlled self-energizing and with low energy demand. Potentials and limits of mechatronic parameter value control are pointed out with a view towards future brake-by-wire systems. Measurements on a parameter-controlled duplex drum brake provide information on the response to different disturbances. The possibility of influencing the driver by parameter-controlled wheel brakes were investigated in a novel experimental vehicle with freely programmable brake system parameters, and the main paramters of the driver/brake system interface were identified. The report ends with a few words on adaptive brake systems which can combine optimum driving efficiency with maximum comfort in all possible driving situations. (orig.) [Deutsch] Das vorliegende Buch stellt eine neuartige Fahrzeugbremse mit mechatronisch geregelter Selbstverstaerkung vor, die einen niedrigen Spannenergiebedarf aufweist. Im Hinblick auf zukuenftige Brake-by-Wire-Systeme werden Potentiale, aber auch Grenzen einer mechatronischen Kennwertregelung aufgezeigt. Messungen an einer kennwertgeregelten Duplex-Trommelbremse geben Aufschluss ueber das Betriebsverhalten unter Einfluss verschiedener Stoergroessen. Die Moeglichkeiten einer Fahrerbeeinflussung durch kennwertgeregelte Radbremsen werden mittels eines neuartigen Versuchsfahrzeugs mit frei programmierbaren Bremssystemparametern untersucht. Darueber hinaus wird die Schnittstelle Fahrer/Bremssystem hinsichtlich ihrer bestimmenden Parameter beschrieben. Den Schluss der Arbeit bildet ein Ausblick auf adaptive Bremssysteme mit dem Potential, optimale fahrdynamische Effizienz bei groesstmoeglichem Komfort situationsabhaengig darzustellen. (orig.)

  3. Automotive mechatronics automotive networking, driving stability systems, electronics

    CERN Document Server

    2015-01-01

    As the complexity of automotive vehicles increases this book presents operational and practical issues of automotive mechatronics. It is a comprehensive introduction to controlled automotive systems and provides detailed information of sensors for travel, angle, engine speed, vehicle speed, acceleration, pressure, temperature, flow, gas concentration etc. The measurement principles of the different sensor groups are explained and examples to show the measurement principles applied in different types. Contents Basics of mechatronics.- Architecture.- Electronic control unit.- Software development.- Basic principles of networking.- Automotive networking.- Bus systems.- Automotive sensors.- Sensor measuring principles.- Sensor types.- Electric actuators.- Electrohydraulic actuators.- Electronic transmission control.- Electronic transmission control unit.- Modules for transmission control.- Antilock braking system.- Traction control system.- Electronic stability program.- Automatic brake functions.- Hydraulic modu...

  4. Mechatronic futures challenges and solutions for mechatronic systems and their designers

    CERN Document Server

    Bradley, David

    2016-01-01

    Offering a comprehensive overview of the challenges, risks and options facing the future of mechatronics, this book provides insights into how these issues are currently assessed and managed. Building on the previously published book ‘Mechatronics in Action,’ it identifies and discusses the key issues likely to impact on future mechatronic systems. It supports mechatronics practitioners in identifying key areas in design, modeling and technology and places these in the wider context of concepts such as cyber-physical systems and the Internet of Things. For educators it considers the potential effects of developments in these areas on mechatronic course design, and ways of integrating these. Written by experts in the field, it explores topics including systems integration, design, modeling, privacy, ethics and future application domains. Highlighting novel innovation directions, it is intended for academics, engineers and students working in the field of mechatronics, particularly those developing new conc...

  5. Mechatronic systems and materials III

    CERN Document Server

    Gosiewski, Zdzislaw

    2009-01-01

    This very interesting volume is divided into 24 sections; each of which covers, in detail, one aspect of the subject-matter: I. Industrial robots; II. Microrobotics; III. Mobile robots; IV. Teleoperation, telerobotics, teleoperated semi-autonomous systems; V. Sensors and actuators in mechatronics; VI. Control of mechatronic systems; VII. Analysis of vibration and deformation; VIII. Optimization, optimal design; IX. Integrated diagnostics; X. Failure analysis; XI. Tribology in mechatronic systems; XII. Analysis of signals; XIII. Measurement techniques; XIV. Multifunctional and smart materials;

  6. Exploring Open-Ended Design Space of Mechatronic Systems

    DEFF Research Database (Denmark)

    Fan, Zhun; Wang, J.; Goodman, E.

    2004-01-01

    To realize design automation of mechatronic systems, there are two major issues to be dealt with: open-topology generation of mechatronic systems and simulation or analysis of those models. For the first issue, we exploit the strong topology exploration capability of genetic programming to create...... and evolve structures representing mechatronic systems. With the help of ERCs (ephemeral random constants) in genetic programming, we can also evolve the sizing of mechatronic system components along with the structures. The second issue, simulation and analysis of those system models, is made more complex...... when they represent mixed-energy-domain systems. We take advantage of bond graphs as a tool for multi- or mixed-domain modeling and simulation of mechatronic systems. Because there are many considerations in mechatronic system design that are not completely captured by a bond graph, we would like...

  7. Development of flywheel systems on the basis of mechatronics. Ontwikkeling van vliegwielsysteem mechatronisch aangepakt

    Energy Technology Data Exchange (ETDEWEB)

    De Boer, A.

    1992-05-01

    Vehicles can save energy by storing the brake energy in a flywheel. So far flywheels in toys appear to be the only efficient applications. The Centre for Construction and Mechatronics (CCM) in Nuenen, Netherlands, however, is developing a flywheel system for city buses: EMAFER or Electro Mechanical Accumulator For Energy Reuse. Based on experiences with the first prototype, constructed in 1988, a second prototype will be constructed and mounted in a bus to be tested. 1 fig., 2 ills., 2 tabs.

  8. Development of brake assist system. Summary of hydraulic brake assist system; Brake assist system no kaihatsu. Ekiatsushiki brake assist system no gaiyo

    Energy Technology Data Exchange (ETDEWEB)

    Hara, M; Ota, M; Shimizu, S [Toyota, Motor Corp., Aichi (Japan)

    1997-10-01

    We have already developed vacuum-booster-type Brake Assist System that supplies additional braking power when panic braking is recognized. We are convinced that the expansion of Brake Assist System will become more important issue in the future. Therefore we have developed hydraulic Brake Assist System with increasing its controllability and reducing its discomfort. This system have a brake pressure sensor to detect emergency braking operation and an antilock device to supply additional braking power. 8 refs., 11 figs.

  9. Research on conceptual design of mechatronic systems

    Indian Academy of Sciences (India)

    tems/components on holistic dynamic performance of mechatronic systems ... Conceptual design is a typical ill-definition solving problem. ..... Li R 2004 Research on theory and method of scheme creative design of mechatronic system. School.

  10. Human Adaptive Mechatronics and Human-System Modelling

    Directory of Open Access Journals (Sweden)

    Satoshi Suzuki

    2013-03-01

    Full Text Available Several topics in projects for mechatronics studies, which are 'Human Adaptive Mechatronics (HAM' and 'Human-System Modelling (HSM', are presented in this paper. The main research theme of the HAM project is a design strategy for a new intelligent mechatronics system, which enhances operators' skills during machine operation. Skill analyses and control system design have been addressed. In the HSM project, human modelling based on hierarchical classification of skills was studied, including the following five types of skills: social, planning, cognitive, motion and sensory-motor skills. This paper includes digests of these research topics and the outcomes concerning each type of skill. Relationships with other research activities, knowledge and information that will be helpful for readers who are trying to study assistive human-mechatronics systems are also mentioned.

  11. Mechatronic System Design Based On An Optimisation Approach

    DEFF Research Database (Denmark)

    Andersen, Torben Ole; Pedersen, Henrik Clemmensen; Hansen, Michael Rygaard

    The envisaged objective of this paper project is to extend the current state of the art regarding the design of complex mechatronic systems utilizing an optimisation approach. We propose to investigate a novel framework for mechatronic system design. The novelty and originality being the use...... of optimisation techniques. The methods used to optimise/design within the classical disciplines will be identified and extended to mechatronic system design....

  12. Intelligent Mechatronic Systems Modeling, Control and Diagnosis

    CERN Document Server

    Merzouki, Rochdi; Pathak, Pushparaj Mani; Ould Bouamama, Belkacem

    2013-01-01

    Acting as a support resource for practitioners and professionals looking to advance their understanding of complex mechatronic systems, Intelligent Mechatronic Systems explains their design and recent developments from first principles to practical applications. Detailed descriptions of the mathematical models of complex mechatronic systems, developed from fundamental physical relationships, are built on to develop innovative solutions with particular emphasis on physical model-based control strategies. Following a concurrent engineering approach, supported by industrial case studies, and drawing on the practical experience of the authors, Intelligent Mechatronic Systems covers range of topic and includes:  • An explanation of a common graphical tool for integrated design and its uses from modeling and simulation to the control synthesis • Introductions to key concepts such as different means of achieving fault tolerance, robust overwhelming control and force and impedance control • Dedicated chapters ...

  13. Bio-Mechatronics: From Insects to In-Vivo Mechatronics

    OpenAIRE

    Vaidyanathan, Ravi

    2013-01-01

    The Department of Automatic Control & Systems Engineering is pleased to announce the following seminar: Bio-Mechatronics: From Insects to In-Vivo Mechatronics Dr Ravi Vaidyanathan Department of Mechanical Engineering Imperial College Wednesday, 25th September 2013 at 14:00, LT02, Sir Henry Stephenson Building Mechatronics is the synergistic combination of precision engineering, electronic control, and systems thinking in the design of products and manufacturing processes. Bio-Mechatron...

  14. Embedded mechatronic systems 1 analysis of failures, predictive reliability

    CERN Document Server

    El Hami, Abdelkhalak

    2015-01-01

    In operation, mechatronics embedded systems are stressed by loads of different causes: climate (temperature, humidity), vibration, electrical and electromagnetic. These stresses in components which induce failure mechanisms should be identified and modeled for better control. AUDACE is a collaborative project of the cluster Mov'eo that address issues specific to mechatronic reliability embedded systems. AUDACE means analyzing the causes of failure of components of mechatronic systems onboard. The goal of the project is to optimize the design of mechatronic devices by reliability. The projec

  15. Mechatronic Systems Design Methods, Models, Concepts

    CERN Document Server

    Janschek, Klaus

    2012-01-01

    In this textbook, fundamental methods for model-based design of mechatronic systems are presented in a systematic, comprehensive form. The method framework presented here comprises domain-neutral methods for modeling and performance analysis: multi-domain modeling (energy/port/signal-based), simulation (ODE/DAE/hybrid systems), robust control methods, stochastic dynamic analysis, and quantitative evaluation of designs using system budgets. The model framework is composed of analytical dynamic models for important physical and technical domains of realization of mechatronic functions, such as multibody dynamics, digital information processing and electromechanical transducers. Building on the modeling concept of a technology-independent generic mechatronic transducer, concrete formulations for electrostatic, piezoelectric, electromagnetic, and electrodynamic transducers are presented. More than 50 fully worked out design examples clearly illustrate these methods and concepts and enable independent study of th...

  16. 14 CFR 25.735 - Brakes and braking systems.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Brakes and braking systems. 25.735 Section... braking systems. (a) Approval. Each assembly consisting of a wheel(s) and brake(s) must be approved. (b... an automatic braking system is installed, means are provided to: (i) Arm and disarm the system, and...

  17. Analysis of measurement system as the mechatronics system

    International Nuclear Information System (INIS)

    Giniotis, V; Grattan, K T V; Rybokas, M; Brucas, D

    2010-01-01

    The paper deals with the mechatronic arrangement for angle measuring system application. The objects to be measured are the circular raster scales, rotary encoders and coded scales. The task of the measuring system is to determine the bias of angle measuring standard as the circular scale and to use the results for the error correction and accuracy improvement of metal cutting machines, coordinate measuring machines, robots, etc. The technical solutions are given with the application of active materials for smart piezoactuators implemented into the several positions of angular measuring equipment. Mechatronic measuring system is analysed as complex integrated system and some of its elements can be used as separate units. All these functional elements are described and commented in the paper with the diagrams and graphs of errors and examples of microdisplacement devices using the mechatronic elements.

  18. Analysis of measurement system as the mechatronics system

    Energy Technology Data Exchange (ETDEWEB)

    Giniotis, V [Institute of Geodesy, Vilnius Gediminas Technical University, Vilnius, Lithuania, Sauletekio al. 11, 10223 Vilnius-40, Lithuania, Fax: 370 5 2744 705 (Lithuania); Grattan, K T V [School of Engineering and Mathematical Sciences Electrical, Electronic and Information Eng, City University, Northampton Square, London EC1V 0HB (United Kingdom); Rybokas, M [Department of Information Technologies, Vilnius Gediminas Technical University, Sauletekio al. 11, 10223 Vilnius-40, Lithuania, Fax: 370 5 2744 705 (Lithuania); Brucas, D, E-mail: gi@ap.vtu.l, E-mail: k.t.v.grattan@city.ac.u, E-mail: MRybokas@gama.l, E-mail: domka@ktv.l, E-mail: vg@ai.vgtu.l [Department of Geodesy and Cadastre, Vilnius Gediminas Technical University, Vilnius, Lithuania Sauletekio al. 11, 10223 Vilnius-40, Lithuania, Fax: 370 5 2744 705 (Lithuania)

    2010-07-01

    The paper deals with the mechatronic arrangement for angle measuring system application. The objects to be measured are the circular raster scales, rotary encoders and coded scales. The task of the measuring system is to determine the bias of angle measuring standard as the circular scale and to use the results for the error correction and accuracy improvement of metal cutting machines, coordinate measuring machines, robots, etc. The technical solutions are given with the application of active materials for smart piezoactuators implemented into the several positions of angular measuring equipment. Mechatronic measuring system is analysed as complex integrated system and some of its elements can be used as separate units. All these functional elements are described and commented in the paper with the diagrams and graphs of errors and examples of microdisplacement devices using the mechatronic elements.

  19. Mechatronic Systems Analysis, Design and Implementation

    CERN Document Server

    Boukas, El-Kébir

    2012-01-01

    This book deals with the analysis, the design and the implementation of the mechatronic systems. Classical and modern tools are developed for the analysis and the design for such systems. Robust control, H-Infinity and guaranteed cost control theory are also used for analysis and design of mechatronic systems. Different controller such as state feedback, static output feedback and dynamic output feedback controllers are used to stabilize mechatronic systems. Heuristic algorithms are provided to solve the design of the classical controller such as PID, phase lead, phase lag and phase lead-lag controllers while linear matrix inequalities (LMI) algorithms are provided for finding solutions to the state feedback, static output feedback and dynamic output feedback controllers. The theory presented in the different chapters of the volume is applied to numerical examples to show the usefulness of the theoretical results. Some case studies are also provided to show how the developed concepts apply for real system. Em...

  20. Mechatronics a foundation course

    CERN Document Server

    de Silva, Clarence W

    2010-01-01

    Mechatronic EngineeringMechatronic SystemsModeling and Design Mechatronic Design Concept Evolution of Mechatronics Application Areas Study of Mechatronics Organization of the Book Basic Elements and Components Mechanical Elements Fluid Elements Thermal Elements Mechanical Components Passive Electrical Elements and MaterialsActive Electronic Components Light Emitters and Displays Light Sensors Modeling of Mechatronic Systems Dynamic Systems and Models Lumped Elements and Analogies Analytical Model Development Model Linearization Linear Graphs Transfer Functions and Frequency-Domain Models Theve

  1. Challenges in Designing Mechatronic Systems

    DEFF Research Database (Denmark)

    Torry-Smith, Jonas; Qamar, Ahsan; Achiche, Sofiane

    2013-01-01

    Development of mechatronic products is traditionally carried out by several design experts from different design domains. Performing development of mechatronic products is thus greatly challenging. In order to tackle this, the critical challenges in mechatronics have to be well understood and well...... supported through applicable methods and tools. This paper aims at identifying the major challenges, by conducting a systematic and thorough survey of the most relevant research work in mechatronic design. Solutions proposed in literature are assessed and illustrated through a case study in order...... to investigate if the challenges can be handled appropriately by the methods, tools, and mindsets suggested by the mechatronic community. Using a real world mechatronics case, the paper identifies the areas where further research is required, by showing a clear connection between the actual problems faced during...

  2. Multibody system dynamics and mechatronics. Plenary lecture

    Energy Technology Data Exchange (ETDEWEB)

    Hiller, M.H.; Hirsch, K. [Duisburg-Essen Univ., Duisburg (Germany). Faculty of Engineering

    2006-02-15

    Mechatronics as an interdisciplinary combination of domains of mechanical engineering, electrical engineering, electronics, and computer science has developed in industry and universities since the eighties of the last century, and it is meanwhile fully established in many technical areas. The main focus of the mechatronic approach is to extend and to complete the design process of mechanical and more general engineering systems by incorporating from the very beginning sensors and controllers - which includes also the required information processing - and thus being able to generate partly intelligent products. The components and modules of such systems originate from mechanical engineering, from electrical engineering or from other engineering domains. Methods for describing and designing these components and modules are based in the fields of applied mechanics, electrical engineering, system theory, control and automation theory, and information processing. In particular, in mechatronic systems like robots, manipulation systems, machine tools, or all kinds of vehicles, the multibody systems approach offers a powerful tool to model the mechanical properties of the system in an appropriate manner. In this paper, methodologies for the development of formalisms and software for modeling and simulation of multibody and mechatronic systems will be presented and illustrated by examples from automotive systems and robotics. (orig.)

  3. Second Workshop on Mechatronic Systems

    CERN Document Server

    Choley, Jean-Yves; Chaari, Fakher; Jarraya, Abdessalem; Haddar, Mohamed

    2014-01-01

    The book offers a snapshot of the state-of-art in the field of model-based mechatronic system design. It covers topics including machine design and optimization, predictive systems in manufacturing networks, and the development of software for modeling and simulation of processes, which are supplemented by practical case studies. The book is a collection of fifteen selected contributions presented during the Workshop on Mechatronic Systems, held on March 17-19, 2014, in Mahdia, Tunisia. The workshop was jointly organized by the Laboratory of Mechanics Modeling and Production (LA2MP) of the National School of Engineers Sfax, Tunisia, and the Laboratory for Mechanical Systems and Materials Engineering (LISMMA) of Higher Institute of Mechanics (SUPMECA), Paris, France.

  4. Braking system

    Science.gov (United States)

    Norgren, D.U.

    1982-09-23

    A balanced braking system comprising a plurality of braking assemblies located about a member to be braked. Each of the braking assemblies consists of a spring biased piston of a first material fitted into a body of a different material which has a greater contraction upon cooling than the piston material. The piston is provided with a recessed head portion over which is positioned a diaphragm and forming a space therebetween to which is connected a pressurized fluid supply. The diaphragm is controlled by the fluid in the space to contact or withdraw from the member to be braked. A cooling means causes the body within which the piston is fitted to contract more than the piston, producing a tight shrink fit therebetween. The braking system is particularly applicable for selectively braking an arbor of an electron microscope which immobilizes, for example, a vertically adjustable low temperature specimen holder during observation. The system provides balanced braking forces which can be easily removed and re-established with minimal disturbance to arbor location.

  5. Mechatronics in fuel cell systems

    Energy Technology Data Exchange (ETDEWEB)

    Stefanopoulou, Anna G.; Kyungwon Suh [Mechanical Engineering Department, University of Michigan, 1231 Beal Avenue, Ann Arbor, MI 48109, (United States)

    2007-03-15

    Power generation from fuel cells (FCs) requires the integration of chemical, fluid, mechanical, thermal, electrical, and electronic subsystems. This integration presents many challenges and opportunities in the mechatronics field. This paper highlights important design issues and poses problems that require mechatronics solutions. The paper begins by describing the process of designing a toy school bus powered by hydrogen for an undergraduate student project. The project was an effective and rewarding educational activity that revealed complex systems issues associated with FC technology. (Author)

  6. Automotive Brake Systems.

    Science.gov (United States)

    Marine Corps Inst., Washington, DC.

    This correspondence course, orginally developed for the Marine Corps, is designed to provide mechanics with an understanding of the basic operations of automotive brake systems on military vehicles. The course contains four study units covering hydraulic brakes, air brakes, power brakes, and auxiliary brake systems. A troubleshooting guide for…

  7. The brake system of the future for commercial vehicles; Das Nutzfahrzeug Bremssystem der Zukunft

    Energy Technology Data Exchange (ETDEWEB)

    Gerum, E. [Knorr Bremse SfN GmbH (Germany)

    2004-07-01

    Over decades into the development of the CV brake system were indicated by an exponential growth in functionality and complexity. Another increase in functionality has to be expected in the future. The complexity must, however, be reduced by mechatronical integration to a measure so that it can be mastered by all ones involved. Bringing today's components together modularly becomes absolutely necessary. The long-term goal of a ''drive by Wire'' concept in connection with active safety systems requires a new infrastructure regarding information processing and electrical energy supply. Concepts are presented. (orig.)

  8. ARTICLE Robust Diagnosis of Mechatronics System by Bond Graph Approach

    Directory of Open Access Journals (Sweden)

    Abderrahmene Sellami

    2018-03-01

    Full Text Available This article presents design of a robust diagnostic system based on bond graph model for a mechatronic system. Mechatronics is the synergistic and systemic combination of mechanics, electronics and computer science. The design of a mechatronic system modeled by the bond graph model becomes easier and more generous. The bond graph tool is a unified graphical language for all areas of engineering sciences and confirmed as a structured approach to modeling and simulation of multidisciplinary systems.

  9. Robotic system construction with mechatronic components inverted pendulum: humanoid robot

    Science.gov (United States)

    Sandru, Lucian Alexandru; Crainic, Marius Florin; Savu, Diana; Moldovan, Cristian; Dolga, Valer; Preitl, Stefan

    2017-03-01

    Mechatronics is a new methodology used to achieve an optimal design of an electromechanical product. This methodology is collection of practices, procedures and rules used by those who work in particular branch of knowledge or discipline. Education in mechatronics at the Polytechnic University Timisoara is organized on three levels: bachelor, master and PhD studies. These activities refer and to design the mechatronics systems. In this context the design, implementation and experimental study of a family of mechatronic demonstrator occupy an important place. In this paper, a variant for a mechatronic demonstrator based on the combination of the electrical and mechanical components is proposed. The demonstrator, named humanoid robot, is equivalent with an inverted pendulum. Is presented the analyze of components for associated functions of the humanoid robot. This type of development the mechatronic systems by the combination of hardware and software, offers the opportunity to build the optimal solutions.

  10. Theoretical aspects of diagnostics of car as mechatronic system

    Science.gov (United States)

    Goncharov, A. E.; Bondarenko, E. V.; Krasnoshtanov, S. Yu

    2018-03-01

    The article describes transformation of mechanical systems of automobiles into mechatronic ones due to application of electronic control systems. To assess the relationship of mechanical and electronic components of the mechatronic systems with regard to their technical states, the method of equivalent elements was employed. A mathematical model of changes in the technical state of equivalent elements was developed. It allowed us to present changes in operation capacity in a graphic form. The analytical model is used to ensure operating capacity potential stability for the mechatronic system. For this purpose, new resources were identified with regard to the information ‘field’. Therefore, a new approach to the systematization of knowledge about mechatronic transport systems (D-C-R-E system) is required. The D-C-R-E system is examined as a separate unit. The article describes Information unit formation based on the physical component of the D-C-R-E system and external information which is collected and processed in the Information Diagnostic Center (IDC). Using probability theory and Boolean algebra methods, the authors obtained a logistic model describing information relations between elements of the upgraded D-C-R-E system and contribution of each component to the road safety protection. The logistic model helped formulate main IDC tasks. Implementation of those tasks was transformed into the logical sequence of data collection and analysis in the IDC. That approach predetermined development of the multi-level diagnosing system which made it possible to put in order existing and improved image identification methods and algorithms and to create a diagnosing method for mechatronic systems of cars which reduces labor content and increases accuracy. That approach can help assess the technical state of vehicles with characteristics of mechatronic systems and their transport and environmental safety.

  11. 2013 International Conference on Mechatronics and Automatic Control Systems

    CERN Document Server

    2014-01-01

    This book examines mechatronics and automatic control systems. The book covers important emerging topics in signal processing, control theory, sensors, mechanic manufacturing systems and automation. The book presents papers from the 2013 International Conference on Mechatronics and Automatic Control Systems held in Hangzhou, China on August 10-11, 2013. .

  12. Mechatronics

    CERN Document Server

    Davim, J Paolo

    2013-01-01

    The term Mechatronics is a combination of the words "mechanics" and "electronics". It is the blending of mechanical, electronic, and computer engineering into an integrated design and implementation. Mechatronics systems employ microprocessors and software as well as special-purpose electronics.The main objective of this interdisciplinary engineering field is the study of automated devices (e.g. robots) from an engineering perspective, thinking about the design of products and manufacturing processes. Today, mechatronics is having a significant and increasing impact on engineering - in the

  13. Brakes, brake control and driver assistance systems function, regulation and components

    CERN Document Server

    2014-01-01

    Braking systems have been continuously developed and improved throughout the last years. Major milestones were the introduction of antilock braking system (ABS) and electronic stability program. This reference book provides a detailed description of braking components and how they interact in electronic braking systems. Contents Motor vehicle safety.- Basic principles of vehicle dynamics.- Car braking systems.- Car braking-system components.- Wheel brakes.- Antilock breaking systems.- Traction control system.- Electronic stability program.- Automatic brake functions.- Hydraulic modulator.- Sensors for brake control.- Sensotronic brake control.- Active steering.- Occupant protection systems.- Driver assistance systems.- Adaptive cruise control.- Parking systems.- Instrumentation.- Orientation methods.- Navigation systems.- Workshop technology. The target groups Motor-vehicle technicians in education and vocational training Master-mechanics and technicians in garage-workshops Teachers and lecturers in vocation...

  14. Influences on nonlinear judder vibrations of railway brakes

    Science.gov (United States)

    Heckmann, Andreas; Kurzeck, Bernhard; Carrarini, Antonio; Günther, Frank; Schroeder-Bodenstein, Kaspar

    2010-06-01

    The paper reports on a joined research project of Knorr-Bremse, Siemens Mobility and the Institute of Robotics and Mechatronics. The goal of the project was to analyse the dynamical behaviour of friction brakes for high-speed trains. It was intended to gain insight into possible vibration mechanisms and to assess the potential for lay-out and operation improvements for future light-weight designs. In particular, the frequency range up to 250 Hz has been addressed, since the corresponding excitation is unavoidable at least to some extent and has to be considered when the brake system is designed. The study includes a comprehensive multibody simulation study and its comparison to experimental results at the test rig of Knorr-Bremse in Munich. The simulation model is adapted step by step in order to clearly identify and separate the influences on the dynamical properties of the complete brake system including its mounting. Additionally a minimal model is introduced that demonstrates some characteristics of the brake system. It turned out that the underlying knowledge is essential for the mechanical lay-out, which could be demonstrated by solving a particular vibration problem in an actual high-speed project.

  15. Integrating modular mechatronic systems for immersive performances

    DEFF Research Database (Denmark)

    Pagliarini, Luigi; Lund, Henrik Hautop

    2015-01-01

    and video output in a very easy manner, thanks to mechatronical wearable interfaces. In this light, we describe two of our systems that explore the concept of run-time composition of a variety of input and output modalities, e.g. both music and graphical expression. Indeed, we developed both hardware......As a branch of mechatronic research in interactivity, and in robot art, we describe the concept of implementing Playware based tools inspired by modern AI robotic systems for audio-video performances. We develop immersive and personalizable tools that can allow any user to manipulate both audio...... to create a run-time audio-video performance that is original and unique. This can further be combined with modular wearable – inspired by modular robotics – to interact and control the performance. This mechatronic wearable concept and its implementations exemplify how to convey a user-centered experience...

  16. Universal mechatronics coordinator

    Science.gov (United States)

    Muir, Patrick F.

    1999-11-01

    Mechatronic systems incorporate multiple actuators and sensor which must be properly coordinated to achieve the desired system functionality. Many mechatronic systems are designed as one-of-a-kind custom projects without consideration for facilitating future system or alterations and extensions to the current syste. Thus, subsequent changes to the system are slow, different, and costly. It has become apparent that manufacturing processes, and thus the mechatronics which embody them, need to be agile in order to more quickly and easily respond to changing customer demands or market pressures. To achieve agility, both the hardware and software of the system need to be designed such that the creation of new system and the alteration and extension of current system is fast and easy. This paper describes the design of a Universal Mechatronics Coordinator (UMC) which facilitates agile setup and changeover of coordination software for mechatronic systems. The UMC is capable of sequencing continuous and discrete actions that are programmed as stimulus-response pairs, as state machines, or a combination of the two. It facilitates the modular, reusable programing of continuous actions such as servo control algorithms, data collection code, and safety checking routines; and discrete actions such as reporting achieved states, and turning on/off binary devices. The UMC has been applied to the control of a z- theta assembly robot for the Minifactory project and is applicable to a spectrum of widely differing mechatronic systems.

  17. Development of combined brake system on front and rear brakes for scooter; Scooter yo zenkorin rendo brake system no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Okazaki, Y; Itabashi, T; Shinohara, S; Honda, Y [Honda R and D Co. Ltd., Tokyo (Japan)

    1997-10-01

    Scooters need appropriate front and rear wheel braking power distribution and each of front and rear brakes have been operated using right and left levers. This time, a low cost brakes with cable type combined brake system for small size scooter and a brakes with hydraulic type combined brake system for middle size scooter have been developed to obtain appropriate front and rear wheel braking power distribution. Both systems use convenient left lever to operate. 3 refs., 9 figs., 1 tab.

  18. Evolutionary design of discrete controllers for hybrid mechatronic systems

    DEFF Research Database (Denmark)

    Dupuis, Jean-Francois; Fan, Zhun; Goodman, Erik

    2015-01-01

    This paper investigates the issue of evolutionary design of controllers for hybrid mechatronic systems. Finite State Automaton (FSA) is selected as the representation for a discrete controller due to its interpretability, fast execution speed and natural extension to a statechart, which is very...... popular in industrial applications. A case study of a two-tank system is used to demonstrate that the proposed evolutionary approach can lead to a successful design of an FSA controller for the hybrid mechatronic system, represented by a hybrid bond graph. Generalisation of the evolved FSA controller...... of the evolutionary design of controllers for hybrid mechatronic systems. Finally, some important future research directions are pointed out, leading to the major work of the succeeding part of the research....

  19. Bond Graph Modeling and Simulation of Mechatronic Systems

    DEFF Research Database (Denmark)

    Habib, Tufail; Nielsen, Kjeld; Jørgensen, Kaj Asbjørn

    2012-01-01

    One of the demanding steps in the design and development of Mechatronic systems is to develop the initial model to visualize the response of a system. The Bond Graph (BG) method is a graphical approach for the design of multidomain systems. That is ideal for visualizing the essential characterist......One of the demanding steps in the design and development of Mechatronic systems is to develop the initial model to visualize the response of a system. The Bond Graph (BG) method is a graphical approach for the design of multidomain systems. That is ideal for visualizing the essential...

  20. A Software Development Platform for Mechatronic Systems

    DEFF Research Database (Denmark)

    Guan, Wei

    Software has become increasingly determinative for development of mechatronic systems, which underscores the importance of demands for shortened time-to-market, increased productivity, higher quality, and improved dependability. As the complexity of systems is dramatically increasing, these demands...... present a challenge to the practitioners who adopt conventional software development approach. An effective approach towards industrial production of software for mechatronic systems is needed. This approach requires a disciplined engineering process that encompasses model-driven engineering and component......-based software engineering, whereby we enable incremental software development using component models to address the essential design issues of real-time embedded systems. To this end, this dissertation presents a software development platform that provides an incremental model-driven development process based...

  1. Mechatronic System Design and Intelligent Motion Control of Hydraulic Robots and Machines

    DEFF Research Database (Denmark)

    Conrad, Finn; Sørensen, Torben

    2003-01-01

    The paper presents an approach and concept to mechatronic system design and intelligent motion control. The Information Technology (IT) offers software and hardware for improvement of R&D Mechatronic Teams to create products and solutions for industrial applications. The latest progress in IT makes...... integration of an overall design and manufacturing IT- concept feasible and commercially attractive. An IT-tool concept for modelling, simulation and design of mechatronic products and systems is proposed in this paper. It built on results from a Danish mechatronic research program on intelligent motion...

  2. Antiskid braking system

    Science.gov (United States)

    Pazdera, J. S.

    1974-01-01

    Published report describes analytical development and simulation of braking system. System prevents wheels from skidding when brakes are applied, significantly reducing stopping distance. Report also presents computer simulation study on system as applied to aircraft.

  3. Braking System Modeling and Brake Temperature Response to Repeated Cycle

    Directory of Open Access Journals (Sweden)

    Zaini Dalimus

    2014-12-01

    Full Text Available Braking safety is crucial while driving the passenger or commercial vehicles. Large amount of kinetic energy is absorbed by four brakes fitted in the vehicle. If the braking system fails to work, road accident could happen and may result in death. This research aims to model braking system together with vehicle in Matlab/Simulink software and measure actual brake temperature. First, brake characteristic and vehicle dynamic model were generated to estimate friction force and dissipated heat. Next, Arduino based prototype brake temperature monitoring was developed and tested on the road. From the experiment, it was found that brake temperature tends to increase steadily in long repeated deceleration and acceleration cycle.

  4. Improvement of diesel engine performance by hydraulically powered electronic control (mechatronics) system. Hakuyo diesel kikan no mechatronics system ni yoru seino kojo

    Energy Technology Data Exchange (ETDEWEB)

    Sonoda, K.; Nakamura, Y.; Kajima, T.; Sato, S.; Fujii, T.; Tobe, Y. (Kawasaki Heavy Industries, Ltd., Tokyo (Japan))

    1992-07-20

    This paper describes new hydraulically-actuated mechanisms for both fuel injection and inlet/exhaust valve operation of diesel engines through solenoid valves, which obviate the conventional cam-driven system. These mechanisms were integrated with an electronic control unit also developed in this study and they were mounted as a mechatronics system'' on a power-increased single-cylinder engine. This mechatronics system was mainly composed of an injection control. boost and accumulation component, an inlet and exhaust valve control component, a solenoid valve, an electronic control equipment, a hydraulic power unit, and a maneuvering unit. The verification test was carried out for the improvement of diesel engine performance by the hydraulically powered mechatronics system. As a result, it was proved not only that these mechanisms provide stable operating characteristics over a wide range of conditions, but also that the electronic control system allows accurate, smooth response. 3 refs., 23 figs., 2 tabs.

  5. Presenting a Multi-level Superstructure Optimization Approach for Mechatronic System Design

    DEFF Research Database (Denmark)

    Pedersen, Henrik C.; Andersen, Torben Ole; Bech, Michael Møller

    2010-01-01

    Synergism and integration in the design process is what sets apart a Mechatronic System from a traditional, multidisciplinary system. However the typical design approach has been to divide the design problem into sub problems for each technology area (mechanics, electronics and control) and descr......Synergism and integration in the design process is what sets apart a Mechatronic System from a traditional, multidisciplinary system. However the typical design approach has been to divide the design problem into sub problems for each technology area (mechanics, electronics and control......) and describe the interface between the technologies, whereas the lack of well-established, systematic engineering methods to form the basic set-off in analysis and design of complete mechatronic systems has been obvious. The focus of the current paper is therefore to present an integrated design approach...... for mechatronic system design, utilizing a multi-level superstructure optimization based approach. Finally two design examples are presented and the possibilities and limitations of the approach are outlined....

  6. THE STUDY OF BRAKE EFFECTIVENESS HOPPER SYSTEM WITH SEPARATE BRAKING TRUCKS

    Directory of Open Access Journals (Sweden)

    O. Je. Nishhenko

    2009-06-01

    Full Text Available The results of tests of the hopper brake systems for the pellets having typical system and separate braking per each bogie are presented. It is shown that the brake system with separate braking has several advantages as compared to the typical one.

  7. Mechatronic control engineering and electro-mechanical system design - two mechatronic curricula at Aalborg University based on problem oriented and project based learning

    DEFF Research Database (Denmark)

    Pedersen, Henrik C.; Andersen, Torben Ole; Rasmussen, Peter Omand

    2009-01-01

    , it is addressed how a mechatronic education is structured so courses and projects are aligned, to utilize the full benefits of the Problem Oriented Project Based Learning (POPBL) system practiced at AalborgUniversity (AAU). This is followed by a presentation of the two complementary educations in Mechatronicsat...... using a subsystem based approach. The challenges related to teaching and learning mechatronics are addressed, discussing how mechatronics is typically taught around the world also illustrating the trends and applications of mechatronic engineering and research. This is followed by an outline...... Based Learning environment....

  8. Brake Performance Analysis of ABS for Eddy Current and Electrohydraulic Hybrid Brake System

    Directory of Open Access Journals (Sweden)

    Ren He

    2013-01-01

    Full Text Available This paper introduces an eddy current and electro-hydraulic hybrid brake system to solve problems such as wear, thermal failure, and slow response of traditional vehicle brake system. Mathematical model was built to calculate the torque of the eddy current brake system and hydraulic brake system and analyze the braking force distribution between two types of brake systems. A fuzzy controller on personal computer based on LabVIEW and Matlab was designed and a set of hardware in the loop system was constructed to validate and analyze the performance of the hybrid brake system. Through lots of experiments on dry and wet asphalt roads, the hybrid brake system achieves perfect performance on the experimental bench, the hybrid system reduces abrasion and temperature of the brake disk, response speed is enhanced obviously, fuzzy controller keeps high utilization coefficient due to the optimal slip ratio regulation, and the total brake time has a smaller decrease than traditional hydraulic brake system.

  9. Braking System for Wind Turbines

    Science.gov (United States)

    Krysiak, J. E.; Webb, F. E.

    1987-01-01

    Operating turbine stopped smoothly by fail-safe mechanism. Windturbine braking systems improved by system consisting of two large steel-alloy disks mounted on high-speed shaft of gear box, and brakepad assembly mounted on bracket fastened to top of gear box. Lever arms (with brake pads) actuated by spring-powered, pneumatic cylinders connected to these arms. Springs give specific spring-loading constant and exert predetermined load onto brake pads through lever arms. Pneumatic cylinders actuated positively to compress springs and disengage brake pads from disks. During power failure, brakes automatically lock onto disks, producing highly reliable, fail-safe stops. System doubles as stopping brake and "parking" brake.

  10. Analysis of a Braking System on the Basis of Structured Analysis Methods

    OpenAIRE

    Ben Salem J.; Lakhoua M.N.; El Amraoui L.

    2016-01-01

    In this paper, we present the general context of the research in the domain of analysis and modeling of mechatronic systems. In fact, we present à bibliographic review on some works of research about the systemic analysis of mechatronic systems. To better understand its characteristics, we start with an introduction about mechatronic systems and various fields related to these systems, after we present a few analysis and design methods applied to mechatronic systems. Finally, we apply the two...

  11. Rail Brake System Using a Linear Induction Motor for Dynamic Braking

    Science.gov (United States)

    Sakamoto, Yasuaki; Kashiwagi, Takayuki; Tanaka, Minoru; Hasegawa, Hitoshi; Sasakawa, Takashi; Fujii, Nobuo

    One type of braking system for railway vehicles is the eddy current brake. Because this type of brake has the problem of rail heating, it has not been used for practical applications in Japan. Therefore, we proposed the use of a linear induction motor (LIM) for dynamic braking in eddy current brake systems. The LIM reduces rail heating and uses an inverter for self excitation. In this paper, we estimated the performance of an LIM from experimental results of a fundamental test machine and confirmed that the LIM generates an approximately constant braking force under constant current excitation. At relatively low frequencies, this braking force remains unaffected by frequency changes. The reduction ratio of rail heating is also approximately proportional to the frequency. We also confirmed that dynamic braking resulting in no electrical output can be used for drive control of the LIM. These characteristics are convenient for the realization of the LIM rail brake system.

  12. Straight motion gear for vehicle brakes with electrical actuation; Translationsgetriebe fuer elektrisch betaetigte Fahrzeugbremsen

    Energy Technology Data Exchange (ETDEWEB)

    Bill, K.H.; Semsch, M. [Technische Univ. Darmstadt (Germany). Fachgebiet Fahrzeugtechnik

    1998-01-01

    Electric brake systems and components are increasing in importance due to the easy wheel-selective operation in future vehicle concepts. Building electric brake systems economically is decisively dependent on the availability of wheel brakes suitable in terms of dynamic behaviour, energy requirements, space, size, reliability and costs. In particular, the coupling of the transducer and friction brake by means of a suitable gear system adapted to the requirements of a vehicle brake represents a problem which has not yet been satisfactorily solved. In Subproject B6 of the Sonderforschungsbereich 241-IMES, sponsored by the Deutsche Forschungsgemeinschaft, research on new mechatronic brake systems is being conducted at the Automotive Engineering Department of Darmstadt University. (orig.) [Deutsch] Elektrische Bremssysteme und Komponenten gewinnen durch den leicht durchfuehrbaren radselektiven Eingriff bei kuenftigen Fahrzeugkonzepten eine zunehmende Bedeutung. Die wirtschaftliche Realisierung elektrischer Bremssysteme wird massgeblich von der Verfuegbarkeit geeigneter Radbremsen im Hinblick auf Dynamikverhalten, Energiebedarf, Bauraum, Masse, Zuverlaessigkeit und Kosten abhaengen. Besonders die Kopplung von Autor und Reibungsbremse durch ein geeignetes, an die Erfordernisse einer Fahrzeugbremse angepasstes Getriebesystem stellt ein bisher noch nicht befriedigend geloestes Problem dar. Im Teilprojekt B6 des Sonderforschungsbereiches 241-IMES, gefoerdert durch die Deutsche Forschungsgemeinschaft, werden hierzu an der Technischen Universitaet Darmstadt (TUD), Fachgebiet Fahrzeugtechnik, mechatronische Bremssysteme entwickelt. (orig.)

  13. Brake Performance Analysis of ABS for Eddy Current and Electrohydraulic Hybrid Brake System

    OpenAIRE

    Ren He; Xuejun Liu; Cunxiang Liu

    2013-01-01

    This paper introduces an eddy current and electro-hydraulic hybrid brake system to solve problems such as wear, thermal failure, and slow response of traditional vehicle brake system. Mathematical model was built to calculate the torque of the eddy current brake system and hydraulic brake system and analyze the braking force distribution between two types of brake systems. A fuzzy controller on personal computer based on LabVIEW and Matlab was designed and a set of hardware in the loop system...

  14. Transient switching control strategy from regenerative braking to anti-lock braking with a semi-brake-by-wire system

    Science.gov (United States)

    Li, Liang; Li, Xujian; Wang, Xiangyu; Liu, Yahui; Song, Jian; Ran, Xu

    2016-02-01

    Regenerative braking is an important technology in improving fuel economy of an electric vehicle (EV). However, additional motor braking will change the dynamic characteristics of the vehicle, leading to braking instability, especially when the anti-lock braking system (ABS) is triggered. In this paper, a novel semi-brake-by-wire system, without the use of a pedal simulator and fail-safe device, is proposed. In order to compensate for the hysteretic characteristics of the designed brake system while ensure braking reliability and fuel economy when the ABS is triggered, a novel switching compensation control strategy using sliding mode control is brought forward. The proposed strategy converts the complex coupling braking process into independent control of hydraulic braking and regenerative braking, through which a balance between braking performance, braking reliability, braking safety and fuel economy is achieved. Simulation results show that the proposed strategy is effective and adaptable in different road conditions while the large wheel slip rate is triggered during a regenerative braking course. The research provides a new possibility of low-cost equipment and better control performance for the regenerative braking in the EV and the hybrid EV.

  15. Mechatronics 2012

    Science.gov (United States)

    Scheidl, Rudolf; Jakoby, Bernhard

    2013-08-01

    Following the 2010 conference held at ETH Zurich, the 13th renowned International Mechatronics Forum Conference--Mechatronics 2012--took place from 17-19 September 2012. Held in Austria for the first time, it was jointly organized by the Johannes Kepler University and the Austrian Center for Competence in Mechatronics (ACCM). In accordance with the Local and International Organizing Committee, we opened new avenues to make this conference more attractive, particularly to industry. Mini-symposia were set up devoted to specific topics. This proved successful in attracting certain scientific communities and groups and gave the conference a broader scope and a more colourful appearance. Another successful attempt was to involve industry more strongly than in previous conferences. The conference's character was influenced by the approach and the specific mechatronic problems of the Linz area in industry, teaching and research. This concept of showcasing the local situation in mechatronics in these areas could be valuable for the future conferences; the international mechatronics community could get an overview about the different interpretations of mechatronics and could form informed opinions about different approaches. Around 150 lecturers from 23 countries around the world covered a broad spectrum of approaches to mechatronic problem solutions, of new technologies, scientific and engineering methods and methodologies. Authors of conference papers in the area of sensors and measurement technology were invited to submit extended papers for publication in this special feature in Measurement Science and Technology , which were all fully peer-reviewed. The topics of the papers that are now collected in this special feature illustrate this variety, from the application of measurement systems to microsystems and algorithms. We are grateful to the editors of Measurement Science and Technology for the opportunity to provide a glimpse of the results presented at the conference

  16. Automotive mechatronics operational and practical issues

    CERN Document Server

    Fijalkowski, B T

    2011-01-01

    This book presents operational and practical issues of automotive mechatronics with special emphasis on the heterogeneous automotive vehicle systems approach, and is intended as a graduate text as well as a reference for scientists and engineers involved in the design of automotive mechatronic control systems. As the complexity of automotive vehicles increases, so does the dearth of high competence, multi-disciplined automotive scientists and engineers. This book provides a discussion into the type of mechatronic control systems found in modern vehicles and the skills required by automotive scientists and engineers working in this environment. Divided into two volumes and five parts, Automotive Mechatronics aims at improving automotive mechatronics education and emphasises the training of students' experimental hands-on abilities, stimulating and promoting experience among high education institutes and produce more automotive mechatronics and automation engineers. The main subject that are treated are: VOLUME...

  17. An antilock molecular braking system.

    Science.gov (United States)

    Sun, Wei-Ting; Huang, Shou-Ling; Yao, Hsuan-Hsiao; Chen, I-Chia; Lin, Ying-Chih; Yang, Jye-Shane

    2012-08-17

    A light-driven molecular brake displaying an antilock function is constructed by introducing a nonradiative photoinduced electron transfer (PET) decay channel to compete with the trans (brake-off) → cis (brake-on) photoisomerization. A fast release of the brake can be achieved by deactivating the PET process through addition of protons. The cycle of irradiation-protonation-irradiation-deprotonation conducts the brake function and mimics the antilock braking system (ABS) of vehicles.

  18. Research on Braking Stability of Electro-mechanical Hybrid Braking System in Electric Vehicles

    OpenAIRE

    Ji, Fenzhu; Tian, Mi

    2010-01-01

    For the electro-mechanical hybrid braking system, which is composed of electric brake and general friction brake, the models of electric braking force, total braking force and the utilization adhesion coefficient for front and rear axles were established based on the analysis of braking torque distribution. The variation relationship between electric braking force and friction braking force in different braking intensity was calculated and analyzed with the paralleled-hybridized braking contr...

  19. Mechatronic System Design Course for Undergraduate Programmes

    Science.gov (United States)

    Saleem, A.; Tutunji, T.; Al-Sharif, L.

    2011-01-01

    Technology advancement and human needs have led to integration among many engineering disciplines. Mechatronics engineering is an integrated discipline that focuses on the design and analysis of complete engineering systems. These systems include mechanical, electrical, computer and control subsystems. In this paper, the importance of teaching…

  20. Combined hydraulic and regenerative braking system

    Science.gov (United States)

    Venkataperumal, R.R.; Mericle, G.E.

    1979-08-09

    A combined hydraulic and regenerative braking system and method for an electric vehicle is disclosed. The braking system is responsive to the applied hydraulic pressure in a brake line to control the braking of the vehicle to be completely hydraulic up to a first level of brake line pressure, to be partially hydraulic at a constant braking force and partially regenerative at a linearly increasing braking force from the first level of applied brake line pressure to a higher second level of brake line pressure, to be partially hydraulic at a linearly increasing braking force and partially regenerative at a linearly decreasing braking force from the second level of applied line pressure to a third and higher level of applied line pressure, and to be completely hydraulic at a linearly increasing braking force from the third level to all higher applied levels of line pressure.

  1. Performance requirements for locomotive braking systems

    CSIR Research Space (South Africa)

    Vermaak, P

    2000-02-01

    Full Text Available operated “Neutral Brake”. This brake may become active immediately or after a certain time delay when the controller is placed in the neutral position or moved into the neutral position by the “dead-man’s device”. Because this brake will interfere... in testing emergency brake systems due to the inherent braking action of the service brakes and/or locomotive controllers; • Potential problems limitations to braking effort associated with the prime movers and/or hydraulic systems on hydrostatically...

  2. Mechatronics an integrated approach

    CERN Document Server

    de Silva, Clarence W

    2004-01-01

    Table of MECHATRONIC ENGINEERINGMechatronic SystemsStudy of MechatronicsReferences and Further ReadingDYNAMIC MODELS AND ANALOGIESTerminologyAnalogiesState-Space Representation Model Linearization Linear GraphsState Models From Linear GraphsElectrical SystemsFluid SystemsThermal SystemsBond GraphsTransfer-Function ModelsFrequency Domain ModelsResponse Analysis And SimulationMECHANICAL COMPONENTS AND ROBOTIC MANIPULATORSMechanical ComponentsTransmission ComponentsRobotic ManipulatorsRobotic GrippersCOMPONENT INTERCONNECTION AND SIGNAL CONDITIONINGComponent InterconnectionImpedance Characteristi

  3. An Approach to Design of Power-Mechatronic Systems

    DEFF Research Database (Denmark)

    Andersen, T. O.; Hansen, M. R.; Conrad, Finn

    2003-01-01

    successful mechatronic engineers. The paper presents and discusses new mechtonic design approach and design methods anr IT-Tools used to demonstrate such approach and IT-Tool for modelling, simulation and control useful in analysis, synthesis, design and application of mechatronic systems with fluid power......The paper focus on today´s, cost-effective electronics, microcomputers, and digital signal processors have brought new advanced technology to appliances and consumer products. Systems with precision sensors and actuators have increased performance by order of magnitude over what was once possible....... The paper discusses what set these new, high-performance, cost-effective systems and devices apart from those of the past? Is it more than just technological advancement? There are many designs where electronics and control are combined with mechanical components, but with very little synergy and poor...

  4. Torque And Speed in the Actuating of Mechatronic Systems, a Case Study

    Directory of Open Access Journals (Sweden)

    Constantin Paul Roman

    2015-12-01

    Full Text Available The paper presents a mechatronic system programmed and controlled by a PLC and inverter for driving an AC motor. Torque and speed for part of mechatronic systems depends of actuating source for cinematic structure. In our research, mechanical structure consists of an AC motor. A technique for setting and control of speed and torque is presented.

  5. 11th International Conference Mechatronics

    CERN Document Server

    Brezina, Tomas

    2016-01-01

    Focusing on the most rapidly changing areas of mechatronics, this book discusses signals and system control, mechatronic products, metrology and nanometrology, automatic control & robotics, biomedical engineering, photonics, design manufacturing and testing of MEMS. It is reflected in the list of contributors, including an international group of 302 leading researchers representing 12 countries. The book is intended for use in academic, government and industry R&D departments, as an indispensable reference tool for the years to come. Thid volume can serve a global community as the definitive reference source in Mechatronics. The book comprises carefully selected 93 contributions presented at the 11th International Conference Mechatronics 2015, organized by Faculty of Mechatronics, Warsaw University of Technology, on September 21-23, in Warsaw, Poland. .

  6. Design, product structuring and modelling of mechatronic products and systems

    DEFF Research Database (Denmark)

    Conrad, Finn; Sørensen, Torben

    2003-01-01

    Information Technology offers software and hardware for improvement of the engineering design, structuring and control systems, and industrial applications. The latest progress in IT makes integration of an overall design and manufacturing IT- concept feasible and commercially attractive. An IT......-tool concept for modelling, simulation and design of mechatronic products and systems is proposed in this paper. It built on results from a Danish mechatronic research program on intelligent motion control as well as from the Esprit project SWING on IT-tools for rapid prototyping of fluid power components...

  7. THE INFLUENCE OF BRAKE PADS THERMAL CONDUCTIVITY ON PASSANGER CAR BRAKE SYSTEM EFFICIENCY

    Directory of Open Access Journals (Sweden)

    Predrag D Milenković

    2010-01-01

    Full Text Available In phase of vehicle braking system designing, besides of mechanical characteristics, it is also necessary to take under consideration the system's thermal features. This is because it is not enough just to achieve proper braking power, for the brake system to be effective but equally important thing is the dissipation of heat to the environment. Heat developed in the friction surfaces dissipate into the environment over the disk in one hand and through the brake linings and caliper, in the other. The striving is to make that greatest amount of heat to dissipate not threw the brake pads but threw disc. The experimental researching of heat transfer process taking place at vehicle brakes was made in the R&D Center of "Zastava automobili" car factory in order to increase the efficiency of brake system. The standard laboratory and road test procedures were used, according to factory quality regulations. The modern equipment such as thermo camera, thermo couples, torque transducers, signal amplifiers, optical speed measuring system and laptop computer were used. In this paper will be shown the part of the experimental researching, which refers to the thermal conductivity of brake pad friction linings.

  8. Hydraulic brake-system for a bicycle

    NARCIS (Netherlands)

    Van Frankenhuyzen, J.

    2007-01-01

    The invention relates to a hydraulic brake system for a bicycle which may or may not be provided with an auxiliary motor, comprising a brake disc and brake claws cooperating with the brake disc, as well as fluid-containing channels (4,6) that extend between an operating organ (1) and the brake

  9. A Novel Approach for Enhancement of Automobile Clutch Engagement Quality Using Mechatronics Based Automated Clutch System

    Science.gov (United States)

    Tripathi, K.

    2013-01-01

    In automated manual clutch (AMC) a mechatronic system controls clutch force trajectory through an actuator governed by a control system. The present study identifies relevant characteristics of this trajectory and their effects on driveline dynamics and engagement quality. A new type of force trajectory is identified which gives the good engagement quality. However this trajectory is not achievable through conventional clutch control mechanism. But in AMC a mechatronic system based on electro-hydraulic or electro-mechanical elements can make it feasible. A mechatronic system is presented in which a mechatronic add-on system can be used to implement the novel force trajectory, without the requirement of replacing the traditional diaphragm spring based clutch in a vehicle with manual transmission.

  10. Innovations in Mechatronic Products and Mass Customization

    DEFF Research Database (Denmark)

    Habib, Tufail; Jørgensen, Kaj Asbjørn; Nielsen, Kjeld

    2011-01-01

    as a product type and new inventions have resulted in drastic changes in design and development of mechatronic products. Conventional mechanical systems are enhanced by mechatronic systems. In this paper, the particular structure and properties of mechatronic products compared to conventional mechanical......Mass Customization (MC) has been recognized as a successful strategy in the design and development of products tailored to customer needs. Global competition demands new products with added functionalities, as in the case of mechatronic products. These products are becoming more and more important...

  11. 49 CFR 393.40 - Required brake systems.

    Science.gov (United States)

    2010-10-01

    ... subpart. (2) Air brake systems. Buses, trucks and truck-tractors equipped with air brake systems and..., and 393.52 of this subpart. (4) Electric brake systems. Motor vehicles equipped with electric brake..., trucks and truck tractors manufactured on or after March 1, 1975, and trailers manufactured on or after...

  12. 49 CFR 238.431 - Brake system.

    Science.gov (United States)

    2010-10-01

    .... (e) The following requirements apply to blended braking systems: (1) Loss of power or failure of the... adhesion control system designed to automatically adjust the braking force on each wheel to prevent sliding during braking. In the event of a failure of this system to prevent wheel slide within preset parameters...

  13. Development and Evaluation of Mechatronics Learning System in a Web-Based Environment

    Science.gov (United States)

    Shyr, Wen-Jye

    2011-01-01

    The development of remote laboratory suitable for the reinforcement of undergraduate level teaching of mechatronics is important. For the reason, a Web-based mechatronics learning system, called the RECOLAB (REmote COntrol LABoratory), for remote learning in engineering education has been developed in this study. The web-based environment is an…

  14. 49 CFR 393.41 - Parking brake system.

    Science.gov (United States)

    2010-10-01

    ... system shall, at all times, be capable of being applied by either the driver's muscular effort or by... 49 Transportation 5 2010-10-01 2010-10-01 false Parking brake system. 393.41 Section 393.41... NECESSARY FOR SAFE OPERATION Brakes § 393.41 Parking brake system. (a) Hydraulic-braked vehicles...

  15. Intelligent Braking System using the IR Sensor

    OpenAIRE

    Gajanan Koli

    2017-01-01

    Most of the accidents in four wheeled vehicles occur because of failure of braking systems. Manual method of applying brakes is always dangerous as it leads to accidents. Unconsciousness of driver, failure in the linkages of braking systems, road conditions, uncontrollable speed of the vehicle and manual operation of braking systems are the reasons of accidents. It is necessary to control brakes automatically through electronics devices to minimize the accident problems. In this research pape...

  16. Research of braking process of transport vehicle with hydraulic brake system parameters

    OpenAIRE

    Vladimirov, Oleg

    2005-01-01

    Emergency braking of a vehicle is bound with many factors, such as the behaviour of the driver, the drive of the vehicle braking system, the braking mechanisms, the condition of the tyres, and the properties of the pavement. This process involves all parameters of the system “the driver – the vehicle – the road”. In order to investigate the efficiency of braking process upon specific conditions, it is necessary to examine all physical processes that take place in the vehicle on pressing the b...

  17. Design and Analysis of a Novel Centrifugal Braking Device for a Mechanical Antilock Braking System.

    Science.gov (United States)

    Yang, Cheng-Ping; Yang, Ming-Shien; Liu, Tyng

    2015-06-01

    A new concept for a mechanical antilock braking system (ABS) with a centrifugal braking device (CBD), termed a centrifugal ABS (C-ABS), is presented and developed in this paper. This new CBD functions as a brake in which the output braking torque adjusts itself depending on the speed of the output rotation. First, the structure and mechanical models of the entire braking system are introduced and established. Second, a numerical computer program for simulating the operation of the system is developed. The characteristics of the system can be easily identified and can be designed with better performance by using this program to studying the effects of different design parameters. Finally, the difference in the braking performance between the C-ABS and the braking system with or without a traditional ABS is discussed. The simulation results indicate that the C-ABS can prevent the wheel from locking even if excessive operating force is provided while still maintaining acceptable braking performance.

  18. Vehicle brake testing system

    Science.gov (United States)

    Stevens, Samuel S [Harriman, TN; Hodgson, Jeffrey W [Lenoir City, TN

    2002-11-19

    This invention relates to a force measuring system capable of measuring forces associated with vehicle braking and of evaluating braking performance. The disclosure concerns an invention which comprises a first row of linearly aligned plates, a force bearing surface extending beneath and beside the plates, vertically oriented links and horizontally oriented links connecting each plate to a force bearing surface, a force measuring device in each link, a transducer coupled to each force measuring device, and a computing device coupled to receive an output signal from the transducer indicative of measured force in each force measuring device. The present invention may be used for testing vehicle brake systems.

  19. A SysML-based Integration Framework for the Engineering of Mechatronic Systems

    OpenAIRE

    Chami, Muhammad; Seemüller, Holger; Voos, Holger

    2010-01-01

    The engineering discipline mechatronics is one of the main innovation leader in industry nowadays. With the need for an optimal synergetic integration of the involved disciplines, the engineering process of mechatronic systems is faced with an increasing complexity and the interdisciplinary nature of these systems. New methods and techniques have to be developed to deal with these challenges. This document presents an approach of a SysML-based integration framework that s...

  20. Talking about the Automobile Braking System

    Science.gov (United States)

    Xu, Zhiqiang

    2017-12-01

    With the continuous progress of society, the continuous development of the times, people’s living standards continue to improve, people continue to improve the pursuit. With the rapid development of automobile manufacturing, the car will be all over the tens of thousands of households, the increase in car traffic, a direct result of the incidence of traffic accidents. Brake system is the guarantee of the safety of the car, its technical condition is good or bad, directly affect the operational safety and transportation efficiency, so the brake system is absolutely reliable. The requirements of the car on the braking system is to have a certain braking force to ensure reliable work in all cases, light and flexible operation. Normal braking should be good performance, in addition to a foot sensitive, the emergency brake four rounds can not be too long, not partial, not ring.

  1. Conceptual design for controller software of mechatronic systems

    NARCIS (Netherlands)

    Broenink, Johannes F.; Hilderink, G.H.; Bakkers, André; Bradshaw, Alan; Counsell, John

    1998-01-01

    The method and software tool presented here, aims at supporting the development of control software for mechatronic systems. Heterogeneous distributed embedded processors are considered as target hardware. Principles of the method are that the implementation process is a stepwise refinement from

  2. Design of a magnetic braking system

    International Nuclear Information System (INIS)

    Jou, M.; Shiau, J.-K.; Sun, C.-C.

    2006-01-01

    A non-contact method, using magnetic drag force principle, was proposed to design the braking systems to improve the shortcomings of the conventional braking systems. The extensive literature detailing all aspects of the magnetic braking is briefly reviewed, however little of this refers specifically to upright magnetic braking system, which is useful for industries. One of the major issues to design upright magnetic system is to find out the magnetic flux. The changing magnetic flux induces eddy currents in the conductor. These currents dissipate energy in the conductor and generate drag force to slow down the motion. Therefore, a finite element model is developed to analyze the phenomena of magnetic flux density when air gap and materials of track are varied. The verification shows the predicted magnetic flux is within acceptable range with the measured value. The results will facilitate the design of magnetic braking systems

  3. Mechatronic Control Engineering: A Problem Oriented And Project Based Learning Curriculum In Mechatronic

    DEFF Research Database (Denmark)

    Pedersen, Henrik Clemmensen; Andersen, Torben Ole; Hansen, Michael Rygaard

    2008-01-01

    Mechatronics is a field of multidisciplinary engineering that not only requires knowledge about different technical areas, but also insight into how to combine technologies optimally, to design efficient products and systems.This paper addresses the group project based and problem-oriented learning...... the well established methods from control engineering form very powerful techniques in both analysis and synthesis of mechatronic systems. The necessary skills for mechatronic engineers are outlined followed up by a discussion on how problem oriented project based learning is implemented. A complete...... curriculum named Mechatronic Control Engineering is presented, which is started at Aalborg University, Denmark, and the content of the semesters and projects are described. The projects are all characterized by the use of simulation and control for the purpose of analyzing and designing complex commercial...

  4. BASIC STUDY ON TAILORMADE BRAKING SUPPORT SYSTEM

    Directory of Open Access Journals (Sweden)

    Toshiya HIROSE, M.S.

    2004-01-01

    This research reviewed the construction of models of a Tailormade Braking Support System (TBSS for braking to stop vehicles and the evaluation of drivers. As a result, the following conclusions were drawn. (1 Braking factors were found to change in the period from the start of braking to stopping; (2 Changes in braking factors can be logically incorporated into the control elements of braking support system; (3 Readymade Driver Model is effective as a model to be incorporated into the base system of TBSS; (4 Tailormade Driver Model built on Neural Network is effective as a main model to construct TBSS; (5 As for TBSS, both subjective and objective ratings on the timing and magnitude of braking are favorable, and its safety and sense of security are improved.

  5. Accelerometer-controlled automatic braking system

    Science.gov (United States)

    Dreher, R. C.; Sleeper, R. K.; Nayadley, J. R., Sr.

    1973-01-01

    Braking system, which employs angular accelerometer to control wheel braking and results in low level of tire slip, has been developed and tested. Tests indicate that system is feasible for operations on surfaces of different slipperinesses. System restricts tire slip and is capable of adapting to rapidly-changing surface conditions.

  6. Nonlinear Coupling Characteristics Analysis of Integrated System of Electromagnetic Brake and Frictional Brake of Car

    Directory of Open Access Journals (Sweden)

    Ren He

    2015-01-01

    Full Text Available Since theoretical guidance is lacking in the design and control of the integrated system of electromagnetic brake and frictional brake, this paper aims to solve this problem and explores the nonlinear coupling characteristics and dynamic characteristics of the integrated system of electromagnetic brake and frictional brake. This paper uses the power bond graph method to establish nonlinear coupling mathematical model of the integrated system of electromagnetic brake and frictional brake and conducts the contrastive analysis on the dynamic characteristics based on this mathematical model. Meanwhile, the accuracy of the nonlinear coupling mathematical model proposed above is verified on the hardware in the loop simulation platform, and nonlinear coupling characteristics of the integrated system are also analyzed through experiments.

  7. Development of Remote Monitoring and a Control System Based on PLC and WebAccess for Learning Mechatronics

    Directory of Open Access Journals (Sweden)

    Wen-Jye Shyr

    2013-02-01

    Full Text Available This study develops a novel method for learning mechatronics using remote monitoring and control, based on a programmable logic controller (PLC and WebAccess. A mechatronics module, a Web-CAM and a PLC were integrated with WebAccess software to organize a remote laboratory. The proposed system enables users to access the Internet for remote monitoring and control of the mechatronics module via a web browser, thereby enhancing work flexibility by enabling personnel to control mechatronics equipment from a remote location. Mechatronics control and long-distance monitoring were realized by establishing communication between the PLC and WebAccess. Analytical results indicate that the proposed system is feasible. The suitability of this system is demonstrated in the department of industrial education and technology at National Changhua University of Education, Taiwan. Preliminary evaluation of the system was encouraging and has shown that it has achieved success in helping students understand concepts and master remote monitoring and control techniques.

  8. Mechatronic design exploration for wide format printing systems

    NARCIS (Netherlands)

    Bruijnen, D.J.H.

    2007-01-01

    This work aims at increasing the performance of Wide Format Printing Systems (WFPS) via a mechatronic approach. With increasing performance is meant that one or more of the categories: productivity, print quality, reliability and/or cost of production, is improved without sacrificing one of the

  9. Regenerative Braking System for Series Hybrid Electric City Bus

    OpenAIRE

    Zhang, Junzhi; Lu, Xin; Xue, Junliang; Li, Bos

    2008-01-01

    Regenerative Braking Systems (RBS) provide an efficient method to assist hybrid electric buses achieve better fuel economy while lowering exhaust emissions. This paper describes the design and testing of three regenerative braking systems, one of which is a series regenerative braking system and two of which are parallel regenerative braking systems. The existing friction based Adjustable Braking System (ABS) on the bus is integrated with each of the new braking systems in order to ensure bus...

  10. The dynamics of antilock brake systems

    Science.gov (United States)

    Denny, Mark

    2005-11-01

    The nonlinear dynamics of automobile braking are investigated. Nonlinearity arises because of the manner in which the friction coefficient between vehicle tyres and road surface depends upon vehicle speed and wheel angular speed. We show how antilock brake systems approach optimum braking performance.

  11. Backup Mechanical Brake System of the Wind Turbine

    Science.gov (United States)

    Sirotkin, E. A.; Solomin, E. V.; Gandzha, S. A.; Kirpichnikova, I. M.

    2018-01-01

    Paper clarifies the necessity of the emergency mechanical brake systems usage for wind turbines. We made a deep analysis of the wind turbine braking methods available on the market, identifying their strengths and weaknesses. The electromechanical braking appeared the most technically reasonable and economically attractive. We described the developed combined electromechanical brake system for vertical axis wind turbine driven from electric drive with variable torque enough to brake over the turbine even on the storm wind speed up to 45 m/s. The progress was made due to the development of specific kinematic brake system diagram and intelligent control system managed by special operation algorithm.

  12. Development of Remote Monitoring and a Control System Based on PLC and WebAccess for Learning Mechatronics

    OpenAIRE

    Wen-Jye Shyr; Te-Jen Su; Chia-Ming Lin

    2013-01-01

    This study develops a novel method for learning mechatronics using remote monitoring and control, based on a programmable logic controller (PLC) and WebAccess. A mechatronics module, a Web‐CAM and a PLC were integrated with WebAccess software to organize a remote laboratory. The proposed system enables users to access the Internet for remote monitoring and control of the mechatronics module via a web browser, thereby enhancing work flexibility by enabling personnel to control mechatronics equ...

  13. Dynamics of braking vehicles: from Coulomb friction to anti-lock braking systems

    International Nuclear Information System (INIS)

    Tavares, J M

    2009-01-01

    The dynamics of braking of wheeled vehicles is studied using the Coulomb approximation for the friction between road and wheels. The dependence of the stopping distance on the mass of the vehicle, on the number of its wheels and on the intensity of the braking torque is established. It is shown that there are two regimes of braking, with and without sliding. The advantage of using an anti-lock braking system (ABS) is put in evidence, and a quantitative estimate of its efficiency is proposed and discussed

  14. 30 CFR 75.1404-1 - Braking system.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Braking system. 75.1404-1 Section 75.1404-1... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Hoisting and Mantrips § 75.1404-1 Braking system. A locomotive equipped with a dual braking system will be deemed to satisfy the requirements of § 75.1404 for a...

  15. Development of Regenerative Braking Co-operative Control System for Automatic Transmission-based Hybrid Electric Vehicle using Electronic Wedge Brake

    OpenAIRE

    Ko, Jiweon; Ko, Sungyeon; Bak, Yongsun; Jang, Mijeong; Yoo, Byoungsoo; Cheon, Jaeseung; Kim, Hyunsoo

    2013-01-01

    This research proposes a regenerative braking co-operative control system for the automatic transmission (AT)-based hybrid electric vehicle (HEV). The brake system of the subject HEV consists of the regenerative braking and the electronic wedge brake (EWB) friction braking for the front wheel, and the hydraulic friction braking for the rear wheel. A regenerative braking co-operative control algorithm is suggested for the regenerative braking and friction braking, which distributes the braking...

  16. Recent advances in mechatronics. 2008-2009

    Energy Technology Data Exchange (ETDEWEB)

    Brezina, Tomas [Brno Univ. of Technology (Czech Republic). Inst. of Automation and Computer Science; Jablonski, Ryszard (eds.) [Warsaw Univ. of Technology (Poland). Inst. of Metrology and Biomedical Engineering

    2009-07-01

    Mechatronics is a synergic discipline integrating precise mechanics, electrotechnics, electronics and IT technologies. The main goal of mechatronical approach to design of complex products is to achieve new quality of their utility value at reasonable price. Successful accomplishment of this task would not be possible without application of advanced software and hardware tools for simulation of design, technologies and production control and also for simulation of behavior of these products in order to provide the highest possible level of spatial and functional integration of the final product. This book brings a review of the current state of the art in mechatronics, as presented at the 8{sup th} International Conference Mechatronics 2009, organized by the Brno Technical University, Faculty of Mechanical Engineering, Czech Republic. The specific topics of the conference are Modelling and Simulation, Metrology and Diagnostics, Sensorics and Photonics, Control and Robotics, MEMS Design and Mechatronic Products, Production Machines and Biomechanics. The selected contributions provide an insight into the current development of these scientific disciplines, present the new results of research and development and indicate the trends of development in the interdisciplinary field of mechatronic systems. Therefore, the book provides the latest and helpful information both for the R and D specialists and for the designers working in mechatronics and related fields. (orig.)

  17. 2nd International Conference on Mechatronics and Automatic Control

    CERN Document Server

    2015-01-01

    This book examines mechatronics and automatic control systems. The book covers important emerging topics in signal processing, control theory, sensors, mechanic manufacturing systems and automation. The book presents papers from the second International Conference on Mechatronics and Automatic Control Systems held in Beijing, China on September 20-21, 2014. Examines how to improve productivity through the latest advanced technologies Covering new systems and techniques in the broad field of mechatronics and automatic control systems.

  18. A 10-Year Mechatronics Curriculum Development Initiative: Relevance, Content, and Results--Part II

    Science.gov (United States)

    Krishnan, M.; Das, S.; Yost, S. A.

    2010-01-01

    This paper describes the second and third phases of a comprehensive mechatronics curriculum development effort. They encompass the development of two advanced mechatronics courses ("Simulation and Modeling of Mechatronic Systems" and "Sensors and Actuators for Mechatronic Systems"), the formulation of a Mechatronics concentration, and offshoot…

  19. Regenerative braking system of PM synchronous motor

    Science.gov (United States)

    Gao, Qian; Lv, Chengxing; Zhao, Na; Zang, Hechao; Jiang, Huilue; Zhang, Zhaowen; Zhang, Fengli

    2018-04-01

    Permanent-magnet synchronous motor is widely adopted in many fields with the advantage of a high efficiency and a high torque density. Regenerative Braking Systems (RBS) provide an efficient method to assist PMSM system achieve better fuel economy and lowering exhaust emissions. This paper describes the design and testing of the regenerative braking systems of PMSM. The mode of PWM duty has been adjusted to control regenerative braking of PMSM using energy controller for the port-controlled Hamiltonian model. The simulation analysis indicates that a smooth control could be realized and the highest efficiency and the smallest current ripple could be achieved by Regenerative Braking Systems.

  20. Wheel slip dump valve for railway braking system

    Science.gov (United States)

    Zhang, Xuan; Zhang, LiHao; Li, QingXuan; Shi, YanTao

    2017-09-01

    As we all know, pneumatic braking system plays an important role in the safety of the whole vehicle. In the anti slip braking system, the pressure of braking cylinder can be adjusted by the quick power response of wheel slip dump valve, so that the lock situation won’t occur during vehicle service. During the braking of railway vehicles, the braking force provided by braking disc reduces vehicle’s speed. But the locking slip will happen due to the oversize of braking force or the reduction of sticking coefficient between wheel and rail. It will cause not only the decline of braking performance but also the increase of braking distance. In the meanwhile, it will scratch the wheel and influence the stable running of vehicles. Now, the speed of passenger vehicle has been increased. In order to shorten the braking distance as far as possible, sticking stickiness must be fully applied. So the occurrence probability of wheel slip is increased.

  1. Adaptive controller for regenerative and friction braking system

    Science.gov (United States)

    Davis, Roy I.

    1990-01-01

    A regenerative and friction braking system for a vehicle having one or more roadwheels driven by an electric traction motor includes a driver responsive device for producing a brake demand signal having a magnitude corresponding to the level of braking force selected by the driver and friction and regenerative brakes operatively connected with the roadwheels of the vehicle. A system according to this invention further includes control means for operating the friction and regenerative braking subsystems so that maximum brake torques sustainable by the roadwheels of the vehicle without skidding or slipping will not be exceeded.

  2. A complex network-based importance measure for mechatronics systems

    Science.gov (United States)

    Wang, Yanhui; Bi, Lifeng; Lin, Shuai; Li, Man; Shi, Hao

    2017-01-01

    In view of the negative impact of functional dependency, this paper attempts to provide an alternative importance measure called Improved-PageRank (IPR) for measuring the importance of components in mechatronics systems. IPR is a meaningful extension of the centrality measures in complex network, which considers usage reliability of components and functional dependency between components to increase importance measures usefulness. Our work makes two important contributions. First, this paper integrates the literature of mechatronic architecture and complex networks theory to define component network. Second, based on the notion of component network, a meaningful IPR is brought into the identifying of important components. In addition, the IPR component importance measures, and an algorithm to perform stochastic ordering of components due to the time-varying nature of usage reliability of components and functional dependency between components, are illustrated with a component network of bogie system that consists of 27 components.

  3. The design of brake fatigue testing system

    Directory of Open Access Journals (Sweden)

    Huang, Xiaoya

    2015-01-01

    Full Text Available Brake is used to reduce the operating speed of the machinery equipment or to make it stop. It is essential for vehicles, climbing machines and many fixed equipment in their safety work. Brake tester is an experimental apparatus to measure and analyse the braking performance. Based on the PLC technology and for the purpose of testing brake shoe friction material’s life, this paper designed a virtual brake test platform. In it, inverter were used to control the motor, so that it can load automatically and ensure brake drum constant speed output; what is more, closed loop control system were used to control the brake shoe, so that the cylinder pressure keeps stable in the process of dynamic braking.

  4. Mountain Plains Learning Experience Guide: Automotive Repair. Course: Brake Systems.

    Science.gov (United States)

    Schramm, C.; Osland, Walt

    One of twelve individualized courses included in an automotive repair curriculum, this course covers theory, operation, and repair of drum brakes, disc brakes, and brake system components. The course is comprised of six units: (1) Fundamentals of Brake Systems, (2) Master Cylinder, (3) Drum Brakes, (4) Disc Brakes, (5) Power Brakes, and (6)…

  5. Driving systems: innovations - trends - mechatronics; Antriebssysteme: Innovationen - Trends - Mechatronik

    Energy Technology Data Exchange (ETDEWEB)

    Binder, A. [Technische Univ. Darmstadt (Germany). Inst. fuer Elektrische Energiewandlung; Doppelbauer, M. [SEW-Eurodrive GmbH und Co.KG, Bruchsal (DE). Entwicklung und Konstruktion Motoren (EML); Gold, P.W. [RWTH Aachen (Germany). Inst. fuer Maschinenelemente und Maschinengestaltung; Hofmann, W. [Technische Univ. Chemnitz (Germany). Lehrstuhl fuer Elektrische Maschinen und Antriebe

    2007-03-15

    Short overview on this special meeting with interdisciplinary topics of connection between mechanical and electrical engineering: mechatronics. The main topics are covered by the fields motion control, simulation of drives, monitoring, gears, motors engineering/-design, converter systems, industrial applications and drives for wind turbines. (GL)

  6. Combined braking system for hybrid vehicle

    Science.gov (United States)

    Kulekina, A. V.; Bakholdin, P. A.; Shchurov, N. I.

    2017-10-01

    The paper presents an analysis of surface vehicle’s existing braking systems. The technical solution and brake-system design were developed for use of regenerative braking energy. A technical parameters comparison of energy storage devices of various types was made. Based on the comparative analysis, it was decided to use supercapacitor because of its applicability for an electric drive intermittent operation. The calculation methods of retarder key components were proposed. Therefrom, it was made a conclusion that rebuild gasoline-electric vehicles are more efficient than gasoline ones.

  7. IR-camera methods for automotive brake system studies

    Science.gov (United States)

    Dinwiddie, Ralph B.; Lee, Kwangjin

    1998-03-01

    Automotive brake systems are energy conversion devices that convert kinetic energy into heat energy. Several mechanisms, mostly related to noise and vibration problems, can occur during brake operation and are often related to non-uniform temperature distribution on the brake disk. These problems are of significant cost to the industry and are a quality concern to automotive companies and brake system vendors. One such problem is thermo-elastic instabilities in brake system. During the occurrence of these instabilities several localized hot spots will form around the circumferential direction of the brake disk. The temperature distribution and the time dependence of these hot spots, a critical factor in analyzing this problem and in developing a fundamental understanding of this phenomenon, were recorded. Other modes of non-uniform temperature distributions which include hot banding and extreme localized heating were also observed. All of these modes of non-uniform temperature distributions were observed on automotive brake systems using a high speed IR camera operating in snap-shot mode. The camera was synchronized with the rotation of the brake disk so that the time evolution of hot regions could be studied. This paper discusses the experimental approach in detail.

  8. Application of Robotic and Mechatronic Systems to Neurorehabilitation

    OpenAIRE

    Mazzoleni, Stefano; Dario, Paolo; Carrozza, Maria Chiara; Guglielmelli, Eugenio

    2010-01-01

    Robotic and mechatronic systems presented in this chapter are increasingly used in hospitals and rehabilitation centres as technological tools for the clinical practice. These systems are used to administer intensive and prolonged treatments aimed at achieving the functional recovery of people affected by neurological impairments, in sub-acute and chronic stage, with a potential improvement of the cost/effectiveness ratio. They can evaluate the effects of rehabilitation treatments in a quanti...

  9. Mathematical Modeling of the Braking System of Wheeled Mainline Aircraft

    Directory of Open Access Journals (Sweden)

    I. S. Shumilov

    2016-01-01

    Full Text Available The braking system of the landing gear wheels of a mainline aircraft has to meet mandatory requirements laid out in the Aviation Regulations AP-25 (Para 25.735. «Brakes and brake systems". These requirements are essential when creating the landing gear wheel brake control system (WBCS and are used as main initial data in its mathematical modeling. The WBCS is one of the most important systems to ensure the safe completion of the flight. It is a complex of devices, i.e. units (hydraulic, electrical, and mechanical, connected through piping, wiring, mechanical constraints. This complex should allow optimizing the braking process when a large number of parameters change. The most important of them are the following: runway friction coefficient (RFC, lifting force, weight and of the aircraft, etc. The main structural elements involved in braking the aircraft are: aircraft wheels with pneumatics (air tires and brake discs, WBCS, and cooling system of gear wheels when braking.To consider the aircraft deceleration on the landing run is of essence at the stage of design, development, and improvement of brakes and braking systems. Based on analysis of equation of the aircraft motion and energy balance can be determined energy loading and its basic design parameters, braking distances and braking time.As practice and analysis of energy loading show, they (brake + wheel absorb the aircraftpossessed kinetic energy at the start of braking as much as 60-70%, 70-80%, and 80-90%, respectively, under normal increased, and emergency operating conditions. The paper presents a procedure for the rapid calculation of energy loading of the brake wheel.Currently, the mainline aircrafts use mainly electrohydraulic brake systems in which there are the main, backup, and emergency-parking brake systems. All channels are equipped with automatic anti-skid systems. Their presence in the emergency (the third reserve channel significantly improves the reliability and safety of

  10. Mechatronics in the Netherlands

    OpenAIRE

    van Amerongen, J.; Jongkind, Wim

    1996-01-01

    This article assesses the present situation of mechatronics in the Netherlands. After a short historical survey, it describes the postgraduate ¿mechatronic designer course¿, introduced in 1991. It deals with the principles of this course and how these principles have been implemented. Also, the activities of the Dutch government in cooperation with the industrial mechatronics community to enhance the awareness of mechatronics, especially directed toward small and medium-sized enterprises (SME...

  11. 77 FR 51649 - Federal Motor Vehicle Safety Standards; Motorcycle Brake Systems

    Science.gov (United States)

    2012-08-24

    ... motorcycle braking regulations from around the world, including the U.S. motorcycle brake systems standard.... Partial Failure Test--Split Service Brake System I. Power-Assisted Braking System Failure Test V. Other... motorcycle brake system technologies. In order to address modern braking technologies, the agency sought to...

  12. Applied mechanics and mechatronics special topic volume with invited peer reviewed papers only

    CERN Document Server

    Trebuňa, František

    2014-01-01

    The issue ""Applied Mechanics and Mechatronics"" contains results of research from researchers and designers from several prominent universities and research institutes of Central Europe.The publication is divided into three following chapters: Modeling and Simulation of Mechanic and Mechatronic SystemsAnalysis and Design of Mechanic and Mechatronic SystemsExperimental methods in Mechanics and Mechatronics. The submitted publication provides insight on modern approaches and methods in designing, modeling and experimental analyzing of mechanic and mechatronics systems.

  13. Development of Anti-lock Braking System (ABS) for Vehicles Braking

    Science.gov (United States)

    Minh, Vu Trieu; Oamen, Godwin; Vassiljeva, Kristina; Teder, Leo

    2016-11-01

    This paper develops a real laboratory of anti-lock braking system (ABS) for vehicle and conducts real experiments to verify the ability of this ABS to prevent the vehicle wheel from being locked while braking. Two controllers of PID and fuzzy logic are tested for analysis and comparison. This ABS laboratory is designed for bachelor and master students to simulate and analyze performances of ABS with different control techniques on various roads and load conditions. This paper provides educational theories and practices on the design of control for system dynamics.

  14. Electric vehicle regenerative antiskid braking and traction control system

    Science.gov (United States)

    Cikanek, S.R.

    1995-09-12

    An antiskid braking and traction control system for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes one or more sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensors and determining if regenerative antiskid braking control, requiring hydraulic braking control, or requiring traction control are required. The processor then employs a control strategy based on the determined vehicle state and provides command signals to a motor controller to control the operation of the electric traction motor and to a brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative antiskid braking control, hydraulic braking control, and traction control. 10 figs.

  15. Electric vehicle regenerative antiskid braking and traction control system

    Science.gov (United States)

    Cikanek, Susan R.

    1995-01-01

    An antiskid braking and traction control system for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes one or more sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensors and determining if regenerative antiskid braking control, requiring hydrualic braking control, or requiring traction control are required. The processor then employs a control strategy based on the determined vehicle state and provides command signals to a motor controller to control the operation of the electric traction motor and to a brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative antiskid braking control, hydraulic braking control, and traction control.

  16. Mechatronics and Bioinspiration in Actuator Design and Control

    Directory of Open Access Journals (Sweden)

    J. L. Pons

    2008-01-01

    Full Text Available Actuators are components of motion control systems in which mechatronics plays a crucial role. They can be regarded as a paradigmatic case in which this mechatronic approach is required. Furthermore, actuator technologies can get new sources of inspiration from nature (bioinspiration. Biological systems are the result of an evolutionary process and show excellent levels of performance. In this paper, we analyse the actuator as a bioinspired mechatronic system through analogies between mechatronics and biological actuating mechanisms that include hierarchical control of actuators, switched control of power flow and some transduction principles. Firstly, some biological models are introduced as a source of inspiration for setting up both actuation principles and control technologies. Secondly, a particular actuator technology, the travelling wave ultrasonic motor, is taken to illustrate this approach. Eventually, the last section draws some conclusions and points out future directions.

  17. 49 CFR 570.57 - Air brake system and air-over-hydraulic brake subsystem.

    Science.gov (United States)

    2010-10-01

    ... the drain cocks in the service and supply reservoir on the truck or truck-tractor. Note the pressure.... Close the drain cocks, and, with the trailer(s) uncoupled, check air pressure buildup at the... brakes fully applied. (b) Air brake system hoses, tubes and connections. Air system tubes, hoses and...

  18. Proceedings of the 12. international conference on mechatronics technology : ICMT 2008

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    The theme for the 2008 international conference on mechatronics technology (ICMT) was the applications of mechatronics to natural resources to address the growing energy demands that the world will face in the future. It was attended by researchers, engineers and practitioners who presented the latest accomplishments, innovations and potential future directions in mechatronics and emerging application trends. The objective of ICMT 2008 was to facilitate dialogue among experts on issues relating to research and technological developments in mechatronics. The sessions of the conference were entitled: advanced mechatronic devices; bioengineering; human resource development and education; information and networking; mechatronic sensing and control; mechantronics and natural resources; micro-electro-mechanical systems and nano-electro-mechanical systems (MEMS-NEMS); and production systems. The conference featured 44 presentations, of which 4 have been catalogued separately for inclusion in this database. refs., tabs., figs.

  19. 49 CFR 238.231 - Brake system.

    Science.gov (United States)

    2010-10-01

    ...) Equipped with brake indicators as defined in § 238.5, designed so that the pressure sensor is placed in a... alcohol or other chemicals into the air brake system of passenger equipment is prohibited. (f) The...

  20. Modular mechatronic system for stationary bicycles interfaced with virtual environment for rehabilitation.

    Science.gov (United States)

    Ranky, Richard G; Sivak, Mark L; Lewis, Jeffrey A; Gade, Venkata K; Deutsch, Judith E; Mavroidis, Constantinos

    2014-06-05

    Cycling has been used in the rehabilitation of individuals with both chronic and post-surgical conditions. Among the challenges with implementing bicycling for rehabilitation is the recruitment of both extremities, in particular when one is weaker or less coordinated. Feedback embedded in virtual reality (VR) augmented cycling may serve to address the requirement for efficacious cycling; specifically recruitment of both extremities and exercising at a high intensity. In this paper a mechatronic rehabilitation bicycling system with an interactive virtual environment, called Virtual Reality Augmented Cycling Kit (VRACK), is presented. Novel hardware components embedded with sensors were implemented on a stationary exercise bicycle to monitor physiological and biomechanical parameters of participants while immersing them in an augmented reality simulation providing the user with visual, auditory and haptic feedback. This modular and adaptable system attaches to commercially-available stationary bicycle systems and interfaces with a personal computer for simulation and data acquisition processes. The complete bicycle system includes: a) handle bars based on hydraulic pressure sensors; b) pedals that monitor pedal kinematics with an inertial measurement unit (IMU) and forces on the pedals while providing vibratory feedback; c) off the shelf electronics to monitor heart rate and d) customized software for rehabilitation. Bench testing for the handle and pedal systems is presented for calibration of the sensors detecting force and angle. The modular mechatronic kit for exercise bicycles was tested in bench testing and human tests. Bench tests performed on the sensorized handle bars and the instrumented pedals validated the measurement accuracy of these components. Rider tests with the VRACK system focused on the pedal system and successfully monitored kinetic and kinematic parameters of the rider's lower extremities. The VRACK system, a virtual reality mechatronic bicycle

  1. Modular mechatronic system for stationary bicycles interfaced with virtual environment for rehabilitation

    Science.gov (United States)

    2014-01-01

    Background Cycling has been used in the rehabilitation of individuals with both chronic and post-surgical conditions. Among the challenges with implementing bicycling for rehabilitation is the recruitment of both extremities, in particular when one is weaker or less coordinated. Feedback embedded in virtual reality (VR) augmented cycling may serve to address the requirement for efficacious cycling; specifically recruitment of both extremities and exercising at a high intensity. Methods In this paper a mechatronic rehabilitation bicycling system with an interactive virtual environment, called Virtual Reality Augmented Cycling Kit (VRACK), is presented. Novel hardware components embedded with sensors were implemented on a stationary exercise bicycle to monitor physiological and biomechanical parameters of participants while immersing them in an augmented reality simulation providing the user with visual, auditory and haptic feedback. This modular and adaptable system attaches to commercially-available stationary bicycle systems and interfaces with a personal computer for simulation and data acquisition processes. The complete bicycle system includes: a) handle bars based on hydraulic pressure sensors; b) pedals that monitor pedal kinematics with an inertial measurement unit (IMU) and forces on the pedals while providing vibratory feedback; c) off the shelf electronics to monitor heart rate and d) customized software for rehabilitation. Bench testing for the handle and pedal systems is presented for calibration of the sensors detecting force and angle. Results The modular mechatronic kit for exercise bicycles was tested in bench testing and human tests. Bench tests performed on the sensorized handle bars and the instrumented pedals validated the measurement accuracy of these components. Rider tests with the VRACK system focused on the pedal system and successfully monitored kinetic and kinematic parameters of the rider’s lower extremities. Conclusions The VRACK

  2. Fast response of mechatronics module for robotic

    Science.gov (United States)

    Bukhanov, S. S.; Gryzlov, A. A.; Tsirkunenko, A. T.

    2018-05-01

    The synthesis technique, the mathematical model and results of experimental investigation of the control system of the robotic complex mechatronic module are presented in the article. It is shown that in most cases the dynamic system can be approximated by the serial connection of two first-order aperiodic links, while the speed in the torque control loop can reach 200-300 rad/s. The specified speed of the system was achieved due to improved specific weight and dimensions parameters of the electric drive (element of the mechatronic system) made on the basis of a contactless motor. The obtained results indicate the possibility of successful application of the proposed mechatronic module for objects of robotized systems in which the reference signal changes at a frequency not exceeding 50 Hz.

  3. Mechatronic Design Automation

    DEFF Research Database (Denmark)

    Fan, Zhun

    successfully design analogue filters, vibration absorbers, micro-electro-mechanical systems, and vehicle suspension systems, all in an automatic or semi-automatic way. It also investigates the very important issue of co-designing plant-structures and dynamic controllers in automated design of Mechatronic...

  4. Novel Mechatronics

    DEFF Research Database (Denmark)

    2008-01-01

    R&D international contributions to design of next generation of mechatronic products, competencies and novel actuator technology.Special topics including Electro Active Polymers (artificial muscles).......R&D international contributions to design of next generation of mechatronic products, competencies and novel actuator technology.Special topics including Electro Active Polymers (artificial muscles)....

  5. Design of high performance mechatronics high-tech functionality by multidisciplinary system integration

    CERN Document Server

    Munnig Schmidt, R; Rankers, A

    2014-01-01

    Since they entered our world around the middle of the 20th century, the application of mechatronics has enhanced our lives with functionality based on the integration of electronics, control systems and electric drives.This book deals with the special class of mechatronics that has enabled the exceptional levels of accuracy and speed of high-tech equipment applied in the semiconductor industry, realising the continuous shrink in detailing of micro-electronics and MEMS.As well as the more frequently presented standard subjects of dynamics, motion control, electronics and electromechanics, this

  6. Mechatronic blockset for Simulink-concept and implementation

    DEFF Research Database (Denmark)

    Ravn, Ole; Szymkat, Maciej; Uhl, T.

    1996-01-01

    The paper describes the design considerations for modelling and simulation of mechatronic systems. The system is based on a component concept enabling the designer to pick component models that match the physical components of the setup to be modelled from a block library. Another important feature...... and for the whole model. This library that can be extended by the user contains standard components, such as DC-motors, potentiometers, encoders, pneumatic elements, and a Maple based facility to generate symbolic equations of motion. To evaluate the concepts the mechatronic Simulink library blockset has been...... implemented as a prototype based on MATLAB and Simulink and has been used to model several mechatronic systems. The library is presently being tested in different projects...

  7. Influences of braking system faults on the vehicle dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Straky, H.; Kochem, M.; Schmitt, J.; Hild, R.; Isermann, R. [Technische Univ., Darmstadt (Germany). Inst. of Automatic Control

    2001-07-01

    From a safety point of view the braking system is, besides the driver, one of the key subsystems in a car. The driver, as an adaptive control system, might not notice small faults in the hydraulic part of the braking system and sooner or later critical braking situations, e.g. due to a brake-circuit failure, may occur. Most of the drivers are not capable to deal with such critical situations. Therefore this paper investigates the influence of faults in the braking system on the dynamic vehicle behavior and the steering inputs of the driver to keep the vehicle on the desired course. (orig.)

  8. Experimental investigation of an accelerometer controlled automatic braking system

    Science.gov (United States)

    Dreher, R. C.; Sleeper, R. K.; Nayadley, J. R., Sr.

    1972-01-01

    An investigation was made to determine the feasibility of an automatic braking system for arresting the motion of an airplane by sensing and controlling braked wheel decelerations. The system was tested on a rotating drum dynamometer by using an automotive tire, wheel, and disk-brake assembly under conditions which included two tire loadings, wet and dry surfaces, and a range of ground speeds up to 70 knots. The controlling parameters were the rates at which brake pressure was applied and released and the Command Deceleration Level which governed the wheel deceleration by controlling the brake operation. Limited tests were also made with the automatic braking system installed on a ground vehicle in an effort to provide a more realistic proof of its feasibility. The results of this investigation indicate that a braking system which utilizes wheel decelerations as the control variable to restrict tire slip is feasible and capable of adapting to rapidly changing surface conditions.

  9. INDICTORS OF RESTORATION OF PROGRAM FACILITY OF MECHATRONICS SYSTEM

    Directory of Open Access Journals (Sweden)

    V. Frolov

    2009-01-01

    Full Text Available The determination of reliability indictors of program facilities of mechatronic systems are offered. The defaillance modes of program facilities are represent. A short review of model reliability of program facility is presented. The indictors of restoration, their mathematical determinations and application for the characteristics of program facility restoration are offered.

  10. Development of Anti-lock Braking System (ABS) for Vehicles Braking

    OpenAIRE

    Minh Vu Trieu; Oamen Godwin; Vassiljeva Kristina; Teder Leo

    2016-01-01

    This paper develops a real laboratory of anti-lock braking system (ABS) for vehicle and conducts real experiments to verify the ability of this ABS to prevent the vehicle wheel from being locked while braking. Two controllers of PID and fuzzy logic are tested for analysis and comparison. This ABS laboratory is designed for bachelor and master students to simulate and analyze performances of ABS with different control techniques on various roads and load conditions. Thi...

  11. Wireless communication technology for modular mechatronic controllers

    CSIR Research Space (South Africa)

    Bright, G

    2010-08-01

    Full Text Available architecture. This further introduces problems that are concerned with timing, such as lag effect of zero-order hold (ZOH) and problems with re- spect to motion control. Problems of time variations can be addressed in control 2 design, e.g., by using... to determine the correct controller reaction time. Controlled process(es) System components } } } } } } } } Mechatronics sub-systems Level 2 communications Mechatronics system Level 3 communications Other systems D ec re as in g tim e de...

  12. The Design of Mechatronics Simulator for Improving the Quality of Student Learning Course in Mechatronics

    Science.gov (United States)

    Kustija, J.; Hasbullah; Somantri, Y.

    2018-02-01

    Learning course on mechatronics specifically the Department of Electrical Engineering Education FPTK UPI still using simulation-aided instructional materials and software. It is still not maximizing students’ competencies in mechatronics courses required to skilfully manipulate the real will are implemented both in industry and in educational institutions. The purpose of this study is to submit a design of mechatronic simulator to improve student learning outcomes at the course mechatronics viewed aspects of cognitive and psychomotor. Learning innovation products resulting from this study is expected to be a reference and a key pillar for all academic units at UPI in implementing the learning environment. The method used in this research is quantitative method with the approach of Research and Development (R and D). Steps being taken in this study includes a preliminary study, design and testing of the design of mechatronic simulator that will be used in the course of mechatronics in DPTE FPTK UPI. Results of mechatronic design simulator which has been in testing using simulation modules and is expected to motivate students to improve the quality of learning good study results in the course of mechatronic expected to be realized.

  13. Pre-Extreme Automotive Anti-Lock Brake Systems

    Directory of Open Access Journals (Sweden)

    V. G. Ivanov

    2004-01-01

    Full Text Available Designing of systems ensuring active safety of automobiles with intellectual functions requires usage of new control principles for wheel and automobile operation. One of such principles is a preextreme control strategy. Its aim is to ensure wheel work in pre-extreme, stable area of «tire grip coefficient wheel slip coefficient» dependence. The simplest realization of pre-extreme control in automotive anti-lock brake systems consists in the threshold and gradient algorithms. A comparative analysis of these algorithms which has been made on simulation results of bus braking with various anti-lock brake systems has revealed their high efficiency.

  14. The influence of various pressures in pneumatic tyre on braking process of car with anti-lock braking system

    OpenAIRE

    Damian HADRYŚ; Tomasz WĘGRZYN; Michał MIROS

    2008-01-01

    In this article has been presented the influence of various pressures inpneumatic tyre of passenger car Fiat Panda 1.3 JTD with anti-lock braking system on chosen parameters of braking process: course of braking deceleration, maximum value of deceleration, braking distances.

  15. Modelling and calibration with mechatronic blockset for Simulink

    DEFF Research Database (Denmark)

    Ravn, Ole; Szymkat, Maciej

    1997-01-01

    The paper describes the design considerations for a software tool for modelling and simulation of mechatronic systems. The tool is based on a concept enabling the designer to pick component models that match the physical components of the system to be modelled from a block library. Another...... on the component level and for the whole model. The library that can be extended by the user contains all the standard components, DC-motors, potentiometers, encoders etc. The library is presently being tested in different projects and the response of these users is being incorporated in the code. The Mechatronic...... Simulink Library blockset is implemented basing on MATLAB and Simulink and has been used to model several mechatronic systems....

  16. 49 CFR 570.59 - Service brake system.

    Science.gov (United States)

    2010-10-01

    ... 10,000 Pounds § 570.59 Service brake system. (a) Service brake performance. Compliance with any one of the following performance criteria will satisfy the requirements of this section. Verify that tire...

  17. THE DEVELOPMENT OF TROLLEYBUS DRIVE BRAKE SYSTEMS

    Directory of Open Access Journals (Sweden)

    A. Safonau

    2011-01-01

    Full Text Available The requirements for trolleybuses brake systems are analyzed. Some results of the studies examined, contemporary trends of developing in this direction are shows. The range of problems whose solution is aimed at creating high-performance brake systems whose increase efficiency and safety of trolleybuses determined.

  18. The influence of various pressures in pneumatic tyre on braking process of car with anti-lock braking system

    Directory of Open Access Journals (Sweden)

    Damian HADRYŚ

    2008-01-01

    Full Text Available In this article has been presented the influence of various pressures inpneumatic tyre of passenger car Fiat Panda 1.3 JTD with anti-lock braking system on chosen parameters of braking process: course of braking deceleration, maximum value of deceleration, braking distances.

  19. Performance of an aircraft tire under cyclic braking and of a currently operational antiskid braking system

    Science.gov (United States)

    Tanner, J. A.

    1972-01-01

    An experimental investigation was conducted to study the performance of an aircraft tire under cyclic braking conditions and to study the performance of a currently operational aircraft antiskid braking system. Dry, damp, and flooded runway surface conditions were used in the investigation. The results indicated that under cyclic braking conditions the braking and cornering-force friction coefficients may be influenced by fluctuations in the vertical load, flexibility in the wheel support, and the spring coupling between the wheel and the tire-pavement interface. The cornering capability was shown to be negligible at wheel slip ratios well below a locked-wheel skid under all test surface conditions. The maximum available brake-force friction coefficient was shown to be dependent upon the runway surface condition, upon velocity, and, for wet runways, upon tire differences. Moderate reductions in vertical load and brake system pressure did not significantly affect the overall wet-runway performance of the tire.

  20. Optimal design for slip deceleration control in anti-lock braking system

    Science.gov (United States)

    Mishra, Sheelam; Kumar, Pankaj; Rahman, Mohd. Saifur

    2018-05-01

    ABS (Anti-lock Braking System) is the most advanced braking system implemented in modern cars to avoid the slipping or skidding of the vehicle on the road. Moreover, it reduces the stopping distance of the vehicle because it avoids the locking of the wheel during braking. It enables the driver to steer the vehicle during braking. But every system has its downsides and likewise ABS too, it is not efficient during normal braking or snowy conditions. Our aim is to overcome these downsides and optimize Anti-lock Braking System to make it even better.

  1. PREFACE: 5th International Conference on Mechatronics (ICOM'13)

    Science.gov (United States)

    Akramin Shafie, Amir; Raisuddin Khan, Md

    2013-12-01

    The Fifth International Conference on Mechatronics (ICOM2013), took place in Kuala Lumpur Malaysia from 2-4 July 2013. The biannual conference which started in 2001 is regularly organized by Faculty of Engineering, International Islamic University Malaysia (IIUM) with the aims to serve as a platform for exchange of ideas on advances of in mechatronics and their applications as well as to foster research and worldwide collaboration. The theme for the 2013 conference was 'Mechatronics: Sustainable Development through Innovative Solutions'. The ICOM 2013 Conference consisted of Keynote Speeches (5) and oral contributions (150). The topics of the conference were: Mechatronic systems and Applications Intelligent Systems Control and Instrumentation Signal and Image Processing Machine Vision Robotics and Automation Manufacturing Mechatronics Green Mechatronics Mechatronic Education Smart Materials and Structures Active Vibration Control Computer and Information Technology MEMS and NEMS Biomechatronics and Rehabilitation Engineering Autonomous Systems Energy and Sustainability Transportation System It is our great pleasure to present this volume of IOP Conference Series: Materials Science and Engineering (MSE) to the scientific community to promote further research in these areas. We believe that this volume will be both an excellent source of scientific material in the fast evolving fields that were covered by ICOM 2013. We thank the authors for their enthusiastic and high-grade contributions. We would also like to express our gratitude to the Organizing Committee, the Institutions and Sponsors and everyone who contributed to this conference through their supports and invaluable efforts. Editors Amir A Shafie aashafie@iium.edu.my Raisuddin Khan raisuddin@iium.edu.my Mahbubur Rashid mahbub@iium.edu.my Department of Mechatronics, International Islamic University Malaysia (IIUM), Kuala Lumpur Malaysia Organizing Committee Md Raisuddin Khan Md Mozasser Rahman Shahrul Naim

  2. Dependability of self-optimizing mechatronic systems

    CERN Document Server

    Rammig, Franz; Schäfer, Wilhelm; Sextro, Walter

    2014-01-01

    Intelligent technical systems, which combine mechanical, electrical and software engineering with control engineering and advanced mathematics, go far beyond the state of the art in mechatronics and open up fascinating perspectives. Among these systems are so-called self-optimizing systems, which are able to adapt their behavior autonomously and flexibly to changing operating conditions. Self-optimizing systems create high value for example in terms of energy and resource efficiency as well as reliability. The Collaborative Research Center 614 "Self-optimizing Concepts and Structures in Mechanical Engineering" pursued the long-term aim to open up the active paradigm of self-optimization for mechanical engineering and to enable others to develop self-optimizing systems. This book is directed to researchers and practitioners alike. It provides a design methodology for the development of self-optimizing systems consisting of a reference process, methods, and tools. The reference process is divided into two phase...

  3. The design of high performance mechatronics high-tech functionality by multidisciplinary system integration

    CERN Document Server

    Munnig Schmidt, R; van Eijk, J

    2011-01-01

    Since they entered our world around the middle of the 20th century, the application of mechatronics has enhanced our lives with functionality based on the integration of electronics, control systems and electric drives. This book deals with the special class of mechatronics that has enabled the exceptional levels of accuracy and speed of high-tech equipment applied in the semiconductor industry, realising the continuous shrink in detailing of micro-electronics and MEMS. As well as the more frequently presented standard subjects of dynamics, motion control, electronics and electromechanics, thi

  4. Design models in the development of mechatronic products

    DEFF Research Database (Denmark)

    Habib, Tufail; Brunø, Thomas Ditlev; Nielsen, Kjeld

    2012-01-01

    In view of widespread application of mechatronic systems and the competition to offer customized products at high quality and low cost, there has been considerable attention to introduce new methods and models in this regard. This paper explores design process of mechatronic product development w...

  5. What trend for mechatronics ? - R&D teams mechatronics design engineering approach for research and self-learning competence in mechatronics and fluid power

    DEFF Research Database (Denmark)

    Conrad, Finn; Andersen, T. O.; Hansen, M. R.

    2003-01-01

    -learning within the area of design of mechatronic products and systems, in particular intelligent control, mechanical and fluid power components and systems. Experiences with interactive methods for improving of MSc- and PhD-students¿ research and self-learning competence at the Technical University of Denmark...... and the Aalborg University are presented and discussed. The didactic approach has two legs: (1) Analysis and IT-modelling of products and systems from day one at the university, and (2) Synthesis and hardware implementation with increasing project activities focusing on product development and design engineering......, including testing, evaluation and validation. The objective is to educate candidates with high-level professional engineering skills for research and integrated product development teams working within mechatronics and fluid power in order to make successful business in companies as well as at universities...

  6. Raspberry Pi mechatronics projects hotshot

    CERN Document Server

    Yamanoor, Sai

    2015-01-01

    This book is targeted towards beginners and intermediate designers of mechatronic systems and embedded system design. Some familiarity with the Raspberry Pi and Python programming is preferred but not required.

  7. 75 FR 15620 - Federal Motor Vehicle Safety Standards; Air Brake Systems

    Science.gov (United States)

    2010-03-30

    ... fully develop improved brake systems and also to ensure vehicle control and stability while braking... [Docket No. NHTSA 2009-0175] RIN 2127-AK62 Federal Motor Vehicle Safety Standards; Air Brake Systems... Federal motor vehicle safety standard for air brake systems by requiring substantial improvements in...

  8. Precision mechatronics based on high-precision measuring and positioning systems and machines

    Science.gov (United States)

    Jäger, Gerd; Manske, Eberhard; Hausotte, Tino; Mastylo, Rostyslav; Dorozhovets, Natalja; Hofmann, Norbert

    2007-06-01

    Precision mechatronics is defined in the paper as the science and engineering of a new generation of high precision systems and machines. Nanomeasuring and nanopositioning engineering represents important fields of precision mechatronics. The nanometrology is described as the today's limit of the precision engineering. The problem, how to design nanopositioning machines with uncertainties as small as possible will be discussed. The integration of several optical and tactile nanoprobes makes the 3D-nanopositioning machine suitable for various tasks, such as long range scanning probe microscopy, mask and wafer inspection, nanotribology, nanoindentation, free form surface measurement as well as measurement of microoptics, precision molds, microgears, ring gauges and small holes.

  9. Cooperative Control of Regenerative Braking and Antilock Braking for a Hybrid Electric Vehicle

    OpenAIRE

    Yin, Guodong; Jin, XianJian

    2013-01-01

    A new cooperative braking control strategy (CBCS) is proposed for a parallel hybrid electric vehicle (HEV) with both a regenerative braking system and an antilock braking system (ABS) to achieve improved braking performance and energy regeneration. The braking system of the vehicle is based on a new method of HEV braking torque distribution that makes the antilock braking system work together with the regenerative braking system harmoniously. In the cooperative braking control strategy, a sli...

  10. Applied methods and techniques for mechatronic systems modelling, identification and control

    CERN Document Server

    Zhu, Quanmin; Cheng, Lei; Wang, Yongji; Zhao, Dongya

    2014-01-01

    Applied Methods and Techniques for Mechatronic Systems brings together the relevant studies in mechatronic systems with the latest research from interdisciplinary theoretical studies, computational algorithm development and exemplary applications. Readers can easily tailor the techniques in this book to accommodate their ad hoc applications. The clear structure of each paper, background - motivation - quantitative development (equations) - case studies/illustration/tutorial (curve, table, etc.) is also helpful. It is mainly aimed at graduate students, professors and academic researchers in related fields, but it will also be helpful to engineers and scientists from industry. Lei Liu is a lecturer at Huazhong University of Science and Technology (HUST), China; Quanmin Zhu is a professor at University of the West of England, UK; Lei Cheng is an associate professor at Wuhan University of Science and Technology, China; Yongji Wang is a professor at HUST; Dongya Zhao is an associate professor at China University o...

  11. Simulation of an actuator & drive of a wire drawing machine's mechatronic system using Matlab/Simulink

    Energy Technology Data Exchange (ETDEWEB)

    Tasevski, Gotse; Petreski, Zlatko; Shishkovski, Dejan [Faculty of Mechanical Engineering, ' Ss. Cyril and Methodius' University, Skopje (Macedonia, The Former Yugoslav Republic of)

    2014-07-01

    Simulation of a mechatronic system actuator, implemented in a wire drawing machine, developed in Matlab/Simulink environment is presented in this paper. AC induction motor with vector control drive is chosen as an actuator. Mathematical model of the actuator is expressed in d-q reference frame rotating at synchronous speed. Diagrams for calculation of the important parameters for the simulation of the actuator were constructed. Simulation results from the model behaviour were discussed in comparison with the specified parameters by the manufacturer of the existing actuator integrated in such mechatronic system. (Author)

  12. Mobile Autonomous Robot Twente, a mechatronics design approach

    NARCIS (Netherlands)

    Schipper, Denis Alexander; Schipper, D.A.

    2001-01-01

    The main question of this thesis is how the different skills and disciplines involved can be combined to fully exploit the potential of a mechatronics design approach. The choice made was to gain experience in the field of mechatronics design by developing a technical system of high complexity,

  13. Mechatronics engineering : New requirements on cross-functional integration

    OpenAIRE

    Adamsson, Niklas

    2005-01-01

    Several industrial sectors experience an increased reliance on mechatronic systems as electronics and software are being embedded into the traditional mechanical systems of these industries. Important challenges within mechatronics engineering comes from management of multi-disciplinary development project teams and the highly complex scope of problems, which in turn require extensive coordination and integration, both in terms of technical and organisational matters. The concept of cross-fun...

  14. Implementation of Project Based Learning in Mechatronic Lab Course at Bandung State Polytechnic

    Science.gov (United States)

    Basjaruddin, Noor Cholis; Rakhman, Edi

    2016-01-01

    Mechatronics is a multidisciplinary that includes a combination of mechanics, electronics, control systems, and computer science. The main objective of mechatronics learning is to establish a comprehensive mindset in the development of mechatronic systems. Project Based Learning (PBL) is an appropriate method for use in the learning process of…

  15. Driver Behavioral Changes through Interactions with an Automatic Brake System for Collision Avoidance

    Science.gov (United States)

    Itoh, Makoto; Fujiwara, Yusuke; Inagaki, Toshiyuki

    This paper discusses driver's behavioral changes as a result of driver's use of an automatic brake system for preventing a rear-end collision from occurring. Three types of automatic brake systems are investigated in this study. Type 1 brake system applies a strong automatic brake when a collision is very imminent. Type 2 brake system initiates brake operation softly when a rear-end crash may be anticipated. Types 1 and 2 are for avoidance of a collision. Type 3 brake system, on the other hand, applies a strong automatic brake to reduce the damage when a collision can not be avoided. An experiment was conducted with a driving simulator in order to analyze the driver's possible behavioral changes. The results showed that the time headway (THW) during car following phase was reduced by use of an automatic brake system of any type. The inverse of time to collision (TTC), which is an index of the driver's brake timing, increased by use of Type 1 brake system when the deceleration rate of the lead vehicle was relatively low. However, the brake timing did not change when the drivers used Type 2 or 3 brake system. As a whole, dangerous behavioral changes, such as overreliance on a brake system, were not observed for either type of brake system.

  16. Development of a Cooperative Braking System for Front-Wheel Drive Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Di Zhao

    2018-02-01

    Full Text Available Most electric vehicles adopt cooperative braking systems that can blend friction braking torque with regenerative braking torque to achieve higher energy efficiency while maintaining a certain braking performance and driving safety. This paper presented a new cooperative regenerative braking system that contained a fully-decoupled hydraulic braking mechanism based on a modified electric stability control system. The pressure control algorithm and brake force distribution strategy were also discussed. Dynamic models of a front wheel drive electric car equipped with this system and a simulation platform with a driver model and driving cycles were established. Tests to evaluate the braking performance and energy regeneration were simulated and analyzed on this platform and the simulation results showed the feasibility and effectiveness of this system.

  17. Fuzzy logic electric vehicle regenerative antiskid braking and traction control system

    Science.gov (United States)

    Cikanek, Susan R.

    1994-01-01

    An regenerative antiskid braking and traction control system using fuzzy logic for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensor and determining if regenerative antiskid braking control, requiring hydraulic braking control, and requiring traction control are required. The processor then employs fuzzy logic based on the determined vehicle state and provides command signals to a motor controller to control operation of the electric traction motor and to the brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative braking control, hydraulic braking control, and traction control.

  18. Development of hydraulic brake actuator for active brake control; Active brake seigyoyo yuatsu booster no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Konishi, Y; Hattori, M. Sugisawa, M.; Nishii, M [Aisin Seiki Co. Ltd., Aichi (Japan)

    1997-10-01

    Recently, application of active brake control systems of the vehicle are increasing. (Vehicle stability control, Panic brake assist ) We have developed a new hydraulic brake actuator for active brake control systems. New hydraulic brake actuator is composed of the three parts. (Hydraulic booster unit, Power supply unit, Control valve unit) This report describes the construction of the new hydraulic booster unit. 2 refs., 10 figs.

  19. Braking system for use with an arbor of a microscope

    International Nuclear Information System (INIS)

    Norgren, D.U.

    1984-01-01

    A balanced braking system comprising a plurality of braking assemblies located about a member to be braked. Each of the braking assemblies consists of a spring biased piston of a first material fitted into a body of a different material which has a greater contraction upon cooling than the piston material. The piston is provided with a recessed head portion over which is positioned a diaphragm and forming a space therebetween to which is connected a pressurized fluid supply. The diaphragm is controlled by the fluid in the space to contact or withdraw from the member to be braked. A cooling device causes the body within which the piston is fitted to contract more than the piston, producing a tight shrink fit therebetween. The braking system is particularly applicable for selectively braking an arbor of an electron microscope which immobilizes, for example, a vertically adjustable low temperature specimen holder during observation. The system provides balanced braking forces which can be easily removed and re-established with minimal disturbance to arbor location

  20. Braking system for use with an arbor of a microscope

    Science.gov (United States)

    Norgren, Duane U.

    1984-01-01

    A balanced braking system comprising a plurality of braking assemblies located about a member to be braked. Each of the braking assemblies consists of a spring biased piston of a first material fitted into a body of a different material which has a greater contraction upon cooling than the piston material. The piston is provided with a recessed head portion over which is positioned a diaphragm and forming a space therebetween to which is connected a pressurized fluid supply. The diaphragm is controlled by the fluid in the space to contact or withdraw from the member to be braked. A cooling device causes the body within which the piston is fitted to contract more than the piston, producing a tight shrink fit therebetween. The braking system is particularly applicable for selectively braking an arbor of an electron microscope which immobilizes, for example, a vertically adjustable low temperature specimen holder during observation. The system provides balanced braking forces which can be easily removed and re-established with minimal disturbance to arbor location.

  1. Development of antilock braking system based on various intelligent control system

    NARCIS (Netherlands)

    Aparow, V.R.; Ahmad, F.; Hassan, M.Z.; Hudha, K.; Othman, M.

    2012-01-01

    This paper presents about the development of an Antilock Braking System (ABS) using quarter vehicle model and control the ABS using different type of controllers. Antilock braking system (ABS) is an important part in vehicle system to produce additional safety for drivers. In general, Antilock

  2. Mechatronic Design - Still a Considerable Challenge

    DEFF Research Database (Denmark)

    Torry-Smith, Jonas; Qamar, Ahsan; Achiche, Sofiane

    2011-01-01

    Development of mechatronic products is traditionally carried out by several design experts from different design domains. Performing development of mechatronic products is thus greatly challenging. In order to tackle this, the critical challenges in mechatronics have to be well understood and well...... supported through applicable methods and tools. This paper aims at identifying the major challenges, by conducting a survey of the most relevant research work in mechatronic design. Solutions proposed in literature are assessed and illustrated through a case study in order to investigate, if the challenges...... can be handled appropriately by the methods, tools, and mindsets suggested by the mechatronic community. Using a real world mechatronics case, the paper identifies the areas where further research is required, by showing a clear connection between the actual problems faced during the design task...

  3. Anti-lock braking system (ABS) and regenerative braking system (RBS) in hybrid electric vehicle for smart transportation system

    Science.gov (United States)

    Evuri, Geetha Reddy; Rao, G. Srinivasa; Reddy, T. Ramasubba; Reddy, K. Srinivasa

    2018-04-01

    Pulse width modulation (PWM) based (a non-consistent) breaking system is used to keep the wheels from being bolted in the proposed antilock breaking system (ABS). Using this method a better hold of the street by wheels is possible and halting separations likewise diminish essentially particularly on precarious street surfaces like frosty or wet streets. The active vitality of the wheel is by and large lost amid braking as warmth because of grinding among brake cushions. This vitality can be recuperated using regenerative braking systems (RBS). In this strategy, the overabundance vitality is put away incidentally in capacitor banks before it gets changed over to warm vitality and is squandered. This framework delays the battery life by reviving the battery utilizing the put away vitality. Subsequently the mileage of the electric vehicle likewise increments as it can travel more separation in a solitary battery charge. These two techniques together help make electric vehicle vitality productive and more secure and less demanding to utilize subsequently anticipating and diminishing the quantity of mischance's.

  4. Neural-network hybrid control for antilock braking systems.

    Science.gov (United States)

    Lin, Chih-Min; Hsu, C F

    2003-01-01

    The antilock braking systems are designed to maximize wheel traction by preventing the wheels from locking during braking, while also maintaining adequate vehicle steerability; however, the performance is often degraded under harsh road conditions. In this paper, a hybrid control system with a recurrent neural network (RNN) observer is developed for antilock braking systems. This hybrid control system is comprised of an ideal controller and a compensation controller. The ideal controller, containing an RNN uncertainty observer, is the principal controller; and the compensation controller is a compensator for the difference between the system uncertainty and the estimated uncertainty. Since for dynamic response the RNN has capabilities superior to the feedforward NN, it is utilized for the uncertainty observer. The Taylor linearization technique is employed to increase the learning ability of the RNN. In addition, the on-line parameter adaptation laws are derived based on a Lyapunov function, so the stability of the system can be guaranteed. Simulations are performed to demonstrate the effectiveness of the proposed NN hybrid control system for antilock braking control under various road conditions.

  5. Fuzzy logic electric vehicle regenerative antiskid braking and traction control system

    Science.gov (United States)

    Cikanek, S.R.

    1994-10-25

    An regenerative antiskid braking and traction control system using fuzzy logic for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensor and determining if regenerative antiskid braking control, requiring hydraulic braking control, and requiring traction control are required. The processor then employs fuzzy logic based on the determined vehicle state and provides command signals to a motor controller to control operation of the electric traction motor and to the brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative braking control, hydraulic braking control, and traction control. 123 figs.

  6. Charging valve of the full hydraulic braking system

    Directory of Open Access Journals (Sweden)

    Jinshi Chen

    2016-03-01

    Full Text Available It is known that the full hydraulic braking system has excellent braking performance. As the key component of the full hydraulic braking system, the parameters of the accumulator charging valve have a significant effect on the braking performance. In this article, the key parameters of the charging valve are analyzed through the static theoretical and an Advanced Modeling Environment for performing Simulation of engineering systems (AMESim simulation model of the dual-circuit accumulator charging valve is established based on the real structure parameters first. Second, according to the results of the dynamic simulation, the dynamic characteristics of the charging pressure, the flow rate, and the frequency of the charging valve are studied. The key parameters affecting the serial production are proposed and some technical advices for improving the performance of the full hydraulic system are provided. Finally, the theoretical analysis is validated by the simulation results. The comparison between the simulation results and the experimental results indicates that the simulated AMESim model of the charging valve is accurate and credible with the error rate inside 0.5% compared with the experimental result. Hence, the performance of the charging valve meets the request of the full hydraulic braking system exactly.

  7. Intelligent mechatronics; Intelligent mechatronics

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, H. [The University of Tokyo, Tokyo (Japan). Institute of Industrial Science

    1995-10-01

    Intelligent mechatronics (IM) was explained as follows: a study of IM essentially targets realization of a robot namely, but in the present stage the target is a creation of new values by intellectualization of machine, that is, a combination of the information infrastructure and the intelligent machine system. IM is also thought to be constituted of computers positively used and micromechatronics. The paper next introduces examples of IM study, mainly those the author is concerned with as shown below: sensor gloves, robot hands, robot eyes, tele operation, three-dimensional object recognition, mobile robot, magnetic bearing, construction of remote controlled unmanned dam, robot network, sensitivity communication using neuro baby, etc. 27 figs.

  8. Present State and Future Developments in Mechatronics and it's Influence on Fluid Power Systems

    DEFF Research Database (Denmark)

    Christensen, Georg Kronborg; Zhou, Jianjun; Conrad, Finn

    1998-01-01

    with electronics, software and mechanics. This synergetic integration is often called Mechatronics.The topic which is rather widespread will be treated in three sections: I) General overview of mechatronics and fluid power. In this section the general trends of mechatronics in fluid power is considered by relating...... trends in the neighbouring fields of software and electronic hardware to fluid power developments. II) Mechatronic case stories from IKS In this section the results of a conceptual design study : "Design of a frequency converter based hydraulic power supply" is presented together with a more detailed...

  9. Vacuum mechatronics

    Science.gov (United States)

    Hackwood, Susan; Belinski, Steven E.; Beni, Gerardo

    1989-01-01

    The discipline of vacuum mechatronics is defined as the design and development of vacuum-compatible computer-controlled mechanisms for manipulating, sensing and testing in a vacuum environment. The importance of vacuum mechatronics is growing with an increased application of vacuum in space studies and in manufacturing for material processing, medicine, microelectronics, emission studies, lyophylisation, freeze drying and packaging. The quickly developing field of vacuum mechatronics will also be the driving force for the realization of an advanced era of totally enclosed clean manufacturing cells. High technology manufacturing has increasingly demanding requirements for precision manipulation, in situ process monitoring and contamination-free environments. To remove the contamination problems associated with human workers, the tendency in many manufacturing processes is to move towards total automation. This will become a requirement in the near future for e.g., microelectronics manufacturing. Automation in ultra-clean manufacturing environments is evolving into the concept of self-contained and fully enclosed manufacturing. A Self Contained Automated Robotic Factory (SCARF) is being developed as a flexible research facility for totally enclosed manufacturing. The construction and successful operation of a SCARF will provide a novel, flexible, self-contained, clean, vacuum manufacturing environment. SCARF also requires very high reliability and intelligent control. The trends in vacuum mechatronics and some of the key research issues are reviewed.

  10. Simulation and Robust Contol of Antilock Braking System ABS

    Directory of Open Access Journals (Sweden)

    David Jordan DELICHRISTOV

    2009-06-01

    Full Text Available This paper deals with simulation and robust control of Antilock Braking System ABS. The briefly are described the main parts of ABS hydraulic system and control algorithm of ABS. Hydraulic system described here is BOSCH ABS 5.x series. The goal of ABS system is vehicle stability and vehicle steering response when braking. If during the braking occurred slip at one or more wheels from any reason, ABS evaluates this by “brake slip” controller. At this moment ABS is trying to use maximal limits of adhesion between tire and road. It means that is necessary control the differences between braking torque and friction torque , which reacts to the wheel via friction reaction tire-road surface. This is realized through the solenoid valves, which are controls (triggered by on the base of PID controller described further in chapter 4. Presented concept is more or less standard for most of the existing ABS systems. The issue should be applied concept of robust ABS control algorithm, which is specific for every type of ABS.

  11. 10th International Conference Mechatronics

    CERN Document Server

    Jabloński, Ryszard

    2014-01-01

    Mechatronics, as the integrating framework of mechanical engineering, electrical engineering, computer technology, control engineering and automation forms a crucial part in the design, manufacture and maintenance of a wide range of engineering products and processes. The mechatronics itself changes rapidly in last decade, from original mixture of subfields into original approach in engineering as a technical discipline. The book you are holding is aimed to help the reader to orient in this evolving field of science and technology. „Mechatronics 2013: Recent Technological and Scientific Advances“ is the fourth volume following the previous editions in 2007, 2009 and 2011, providing the comprehensive and accessible coverage of advances in mechatronics presented on the 10th International Conference Mechatronics 2013, hosted this year at the Brno University of Technology, Czech Republic. The contributions, that passed the thorough review process, give an insight into current trends in research and developmen...

  12. Usage of aids monitoring in automatic braking systems of modern cars

    OpenAIRE

    Dembitskyi V.; Mazylyuk P.; Sitovskyi O.

    2016-01-01

    Increased safety can be carried out at the expense the installation on vehicles of automatic braking systems, that monitor the traffic situation and the actions of the driver. In this paper considered the advantages and disadvantages of automatic braking systems, were analyzed modern tracking tools that are used in automatic braking systems. Based on the statistical data on accidents, are set the main dangers, that the automatic braking system will be reduced. In order to ensure the acc...

  13. Mechatronics and hybrid technologies

    DEFF Research Database (Denmark)

    2008-01-01

    R&D international contributions to control and design of novel intelligent mechatronic products and solutions with sensor- and actuator technology.......R&D international contributions to control and design of novel intelligent mechatronic products and solutions with sensor- and actuator technology....

  14. An overall methodology for reliability prediction of mechatronic systems design with industrial application

    International Nuclear Information System (INIS)

    Habchi, Georges; Barthod, Christine

    2016-01-01

    We propose in this paper an overall ten-step methodology dedicated to the analysis and quantification of reliability during the design phase of a mechatronic system, considered as a complex system. The ten steps of the methodology are detailed according to the downward side of the V-development cycle usually used for the design of complex systems. Two main phases of analysis are complementary and cover the ten steps, qualitative analysis and quantitative analysis. The qualitative phase proposes to analyze the functional and dysfunctional behavior of the system and then determine its different failure modes and degradation states, based on external and internal functional analysis, organic and physical implementation, and dependencies between components, with consideration of customer specifications and mission profile. The quantitative phase is used to calculate the reliability of the system and its components, based on the qualitative behavior patterns, and considering data gathering and processing and reliability targets. Systemic approach is used to calculate the reliability of the system taking into account: the different technologies of a mechatronic system (mechanics, electronics, electrical .), dependencies and interactions between components and external influencing factors. To validate the methodology, the ten steps are applied to an industrial system, the smart actuator of Pack'Aero Company. - Highlights: • A ten-step methodology for reliability prediction of mechatronic systems design. • Qualitative and quantitative analysis for reliability evaluation using PN and RBD. • A dependency matrix proposal, based on the collateral and functional interactions. • Models consider mission profile, deterioration, interactions and influent factors. • Application and validation of the methodology on the “Smart Actuator” of PACK’AERO.

  15. Advanced mechatronics and MEMS devices II

    CERN Document Server

    Wei, Bin

    2017-01-01

    This book introduces the state-of-the-art technologies in mechatronics, robotics, and MEMS devices in order to improve their methodologies. It provides a follow-up to "Advanced Mechatronics and MEMS Devices" (2013) with an exploration of the most up-to-date technologies and their applications, shown through examples that give readers insights and lessons learned from actual projects. Researchers on mechatronics, robotics, and MEMS as well as graduate students in mechanical engineering will find chapters on: Fundamental design and working principles on MEMS accelerometers Innovative mobile technologies Force/tactile sensors development Control schemes for reconfigurable robotic systems Inertial microfluidics Piezoelectric force sensors and dynamic calibration techniques ...And more. Authors explore applications in the areas of agriculture, biomedicine, advanced manufacturing, and space. Micro-assembly for current and future industries is also considered, as well as the design and development of micro and intel...

  16. Reliability assessment of complex mechatronic systems using a modified nonparametric belief propagation algorithm

    International Nuclear Information System (INIS)

    Zhong, X.; Ichchou, M.; Saidi, A.

    2010-01-01

    Various parametric skewed distributions are widely used to model the time-to-failure (TTF) in the reliability analysis of mechatronic systems, where many items are unobservable due to the high cost of testing. Estimating the parameters of those distributions becomes a challenge. Previous research has failed to consider this problem due to the difficulty of dependency modeling. Recently the methodology of Bayesian networks (BNs) has greatly contributed to the reliability analysis of complex systems. In this paper, the problem of system reliability assessment (SRA) is formulated as a BN considering the parameter uncertainty. As the quantitative specification of BN, a normal distribution representing the stochastic nature of TTF distribution is learned to capture the interactions between the basic items and their output items. The approximation inference of our continuous BN model is performed by a modified version of nonparametric belief propagation (NBP) which can avoid using a junction tree that is inefficient for the mechatronic case because of the large treewidth. After reasoning, we obtain the marginal posterior density of each TTF model parameter. Other information from diverse sources and expert priors can be easily incorporated in this SRA model to achieve more accurate results. Simulation in simple and complex cases of mechatronic systems demonstrates that the posterior of the parameter network fits the data well and the uncertainty passes effectively through our BN based SRA model by using the modified NBP.

  17. The Mechatronic System Design Of Ultrasonic Scanner For Inservice Inspection Of Research Reactor

    Science.gov (United States)

    Handono, Khairul; Kristedjo, K.; Awwaluddin, M.; Shobary, Ihsan

    2018-02-01

    The mechatronic system design of ultrasonic scanner for inservices inspection of Research Reactor has been conducted. The requirement designed must be reliable operated, safety to personnel and equipments, ease of maintenance and operation, protection of equipment mechanically, interchangeability of equipments and addition of the several model of probe immersion ultrasonic tranducer. In order to achieve the above goals and obtain the desired results, a mechatronic design based on mechanical and electronic practical experiences will be needed. In this paper consist of the mechanical design and the system mechanical movement using stepper motor control. The criteria and the methods of designs of mechanical and electronic equipments of the system have been discussed and investigated. A mechanical and instrumentation control system drawing and requirement of design will be presented as the outcome of the design. The designed of mechanical system is consequently simulated by solidwork software. The intention of the above research is to create solutions in different ways of inservice inspection of integrity of Reactor.

  18. Cooperative Control of Regenerative Braking and Antilock Braking for a Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Guodong Yin

    2013-01-01

    Full Text Available A new cooperative braking control strategy (CBCS is proposed for a parallel hybrid electric vehicle (HEV with both a regenerative braking system and an antilock braking system (ABS to achieve improved braking performance and energy regeneration. The braking system of the vehicle is based on a new method of HEV braking torque distribution that makes the antilock braking system work together with the regenerative braking system harmoniously. In the cooperative braking control strategy, a sliding mode controller (SMC for ABS is designed to maintain the wheel slip within an optimal range by adjusting the hydraulic braking torque continuously; to reduce the chattering in SMC, a boundary-layer method with moderate tuning of a saturation function is also investigated; based on the wheel slip ratio, battery state of charge (SOC, and the motor speed, a fuzzy logic control strategy (FLC is applied to adjust the regenerative braking torque dynamically. In order to evaluate the performance of the cooperative braking control strategy, the braking system model of a hybrid electric vehicle is built in MATLAB/SIMULINK. It is found from the simulation that the cooperative braking control strategy suggested in this paper provides satisfactory braking performance, passenger comfort, and high regenerative efficiency.

  19. Gas-Dynamic Designing of the Exhaust System for the Air Brake

    Science.gov (United States)

    Novikova, Yu; Goriachkin, E.; Volkov, A.

    2018-01-01

    Each gas turbine engine is tested some times during the life-cycle. The test equipment includes the air brake that utilizes the power produced by the gas turbine engine. In actual conditions, the outlet pressure of the air brake does not change and is equal to atmospheric pressure. For this reason, for the air brake work it is necessary to design the special exhaust system. Mission of the exhaust system is to provide the required level of backpressure at the outlet of the air brake. The backpressure is required for the required power utilization by the air brake (the air brake operation in the required points on the performance curves). The paper is described the development of the gas dynamic canal, designing outlet guide vane and the creation of a unified exhaust system for the air brake. Using a unified exhaust system involves moving the operating point to the performance curve further away from the calculated point. However, the applying of one exhaust system instead of two will significantly reduce the cash and time costs.

  20. Model-based Kinematics Generation for Modular Mechatronic Toolkits

    DEFF Research Database (Denmark)

    Bordignon, Mirko; Schultz, Ulrik Pagh; Støy, Kasper

    2011-01-01

    Modular robots are mechatronic devices that enable the construction of highly versatile and flexible robotic systems whose mechanical structure can be dynamically modified. The key feature that enables this dynamic modification is the capability of the individual modules to connect to each other...... in multiple ways and thus generate a number of different mechanical systems, in contrast with the monolithic, fixed structure of conventional robots. The mechatronic flexibility, however, complicates the development of models and programming abstractions for modular robots, since manually describing...... the Modular Mechatronics Modelling Language (M3L). M3L is a domain-specific language, which can model the kinematic structure of individual robot modules and declaratively describe their possible interconnections, rather than requiring the user to enumerate them in their entirety. From this description, the M...

  1. 78 FR 9623 - Federal Motor Vehicle Safety Standards; Air Brake Systems

    Science.gov (United States)

    2013-02-11

    ... initial speeds, vehicle manufacturers will need to develop unique or complicated braking systems to comply... [Docket No. NHTSA-2013-0011] RIN 2127-AL11 Federal Motor Vehicle Safety Standards; Air Brake Systems... rule that amended the Federal motor vehicle safety standard for air brake systems by requiring...

  2. Indonesian commercial bus drum brake system temperature model

    International Nuclear Information System (INIS)

    Wibowo, D. B.; Haryanto, I.; Laksono, N. P.

    2016-01-01

    Brake system is the most significant aspect of an automobile safety. It must be able to slow the vehicle, quickly intervening and reliable under varying conditions. Commercial bus in Indonesia, which often stops suddenly and has a high initial velocity, will raise the temperature of braking significantly. From the thermal analysis it is observed that for the bus with the vehicle laden mass of 15 tons and initial velocity of 80 km/h the temperature is increasing with time and reaches the highest temperature of 270.1 °C when stops on a flat road and reaches 311.2 °C on a declination road angle, ø, 20°. These temperatures exceeded evaporation temperature of brake oil DOT 3 and DOT 4. Besides that, the magnitude of the braking temperature also potentially lowers the friction coefficient of more than 30%. The brakes are pressed repeatedly and high-g decelerations also causes brake lining wear out quickly and must be replaced every 1 month as well as the emergence of a large thermal stress which can lead to thermal cracking or thermal fatigue crack. Brake fade phenomenon that could be the cause of many buses accident in Indonesia because of the failure of the braking function. The chances of accidents will be even greater when the brake is worn and not immediately replaced which could cause hot spots as rivets attached to the brake drum and brake oil is not changed for more than 2 years that could potentially lower the evaporation temperature because of the effect hygroscopic.

  3. Indonesian commercial bus drum brake system temperature model

    Science.gov (United States)

    Wibowo, D. B.; Haryanto, I.; Laksono, N. P.

    2016-03-01

    Brake system is the most significant aspect of an automobile safety. It must be able to slow the vehicle, quickly intervening and reliable under varying conditions. Commercial bus in Indonesia, which often stops suddenly and has a high initial velocity, will raise the temperature of braking significantly. From the thermal analysis it is observed that for the bus with the vehicle laden mass of 15 tons and initial velocity of 80 km/h the temperature is increasing with time and reaches the highest temperature of 270.1 °C when stops on a flat road and reaches 311.2 °C on a declination road angle, ø, 20°. These temperatures exceeded evaporation temperature of brake oil DOT 3 and DOT 4. Besides that, the magnitude of the braking temperature also potentially lowers the friction coefficient of more than 30%. The brakes are pressed repeatedly and high-g decelerations also causes brake lining wear out quickly and must be replaced every 1 month as well as the emergence of a large thermal stress which can lead to thermal cracking or thermal fatigue crack. Brake fade phenomenon that could be the cause of many buses accident in Indonesia because of the failure of the braking function. The chances of accidents will be even greater when the brake is worn and not immediately replaced which could cause hot spots as rivets attached to the brake drum and brake oil is not changed for more than 2 years that could potentially lower the evaporation temperature because of the effect hygroscopic.

  4. Indonesian commercial bus drum brake system temperature model

    Energy Technology Data Exchange (ETDEWEB)

    Wibowo, D. B., E-mail: rmt.bowo@gmail.com; Haryanto, I., E-mail: ismoyo2001@yahoo.de; Laksono, N. P., E-mail: priyolaksono89@gmail.com [Mechanical Engineering Dept., Faculty of Engineering, Diponegoro University (Indonesia)

    2016-03-29

    Brake system is the most significant aspect of an automobile safety. It must be able to slow the vehicle, quickly intervening and reliable under varying conditions. Commercial bus in Indonesia, which often stops suddenly and has a high initial velocity, will raise the temperature of braking significantly. From the thermal analysis it is observed that for the bus with the vehicle laden mass of 15 tons and initial velocity of 80 km/h the temperature is increasing with time and reaches the highest temperature of 270.1 °C when stops on a flat road and reaches 311.2 °C on a declination road angle, ø, 20°. These temperatures exceeded evaporation temperature of brake oil DOT 3 and DOT 4. Besides that, the magnitude of the braking temperature also potentially lowers the friction coefficient of more than 30%. The brakes are pressed repeatedly and high-g decelerations also causes brake lining wear out quickly and must be replaced every 1 month as well as the emergence of a large thermal stress which can lead to thermal cracking or thermal fatigue crack. Brake fade phenomenon that could be the cause of many buses accident in Indonesia because of the failure of the braking function. The chances of accidents will be even greater when the brake is worn and not immediately replaced which could cause hot spots as rivets attached to the brake drum and brake oil is not changed for more than 2 years that could potentially lower the evaporation temperature because of the effect hygroscopic.

  5. Mechatronics design principles for biotechnology product development.

    Science.gov (United States)

    Mandenius, Carl-Fredrik; Björkman, Mats

    2010-05-01

    Traditionally, biotechnology design has focused on the manufacture of chemicals and biologics. Still, a majority of biotechnology products that appear on the market today is the result of mechanical-electric (mechatronic) construction. For these, the biological components play decisive roles in the design solution; the biological entities are either integral parts of the design, or are transformed by the mechatronic system. This article explains how the development and production engineering design principles used for typical mechanical products can be adapted to the demands of biotechnology products, and how electronics, mechanics and biology can be integrated more successfully. We discuss three emerging areas of biotechnology in which mechatronic design principles can apply: stem cell manufacture, artificial organs, and bioreactors. Copyright 2010 Elsevier Ltd. All rights reserved.

  6. Emergency Braking of a Mine Hoist in the Context of the Braking System Selection

    Science.gov (United States)

    Wolny, Stanisław

    2017-03-01

    The paper addresses the selected aspects of the dynamic behaviour of mine hoists during the emergency braking phase. Basing on the model of the hoist and supported by theoretical backgrounds provided by the author (Wolny, 2016), analytical formulas are derived to determine the parameters of the braking system such that during an emergency braking it should guarantee that: - the maximal loading of the hoisting ropes should not exceed the rope breaking force, - deceleration of the conveyances being stopped should not exceed the admissible levels Results of the dynamic analysis of the mine hoist behaviour during an emergency braking phase summarised in this study can be utilised to support the design of conveyance and rope attachments by the fatigue endurance methods, with an aim to adapt it to the specified operational parameters of the hoisting installation (Eurokod 3).

  7. Modeling thermal effects in braking systems of railway vehicles

    Directory of Open Access Journals (Sweden)

    Milošević Miloš S.

    2012-01-01

    Full Text Available The modeling of thermal effects has become increasingly important in product design in different transport means, road vehicles, airplanes, railway vehicles, and so forth. The thermal analysis is a very important stage in the study of braking systems, especially of railway vehicles, where it is necessary to brake huge masses, because the thermal load of a braked railway wheel prevails compared to other types of loads. In the braking phase, kinetic energy transforms into thermal energy resulting in intense heating and high temperature states of railway wheels. Thus induced thermal loads determine thermomechanical behavior of the structure of railway wheels. In cases of thermal overloads, which mainly occur as a result of long-term braking on down-grade railroads, the generation of stresses and deformations occurs, whose consequences are the appearance of cracks on the rim of a wheel and the final total wheel defect. The importance to precisely determine the temperature distribution caused by the transfer process of the heat generated during braking due to the friction on contact surfaces of the braking system makes it a challenging research task. Therefore, the thermal analysis of a block-braked solid railway wheel of a 444 class locomotive of the national railway operator Serbian Railways is processed in detail in this paper, using analytical and numerical modeling of thermal effects during long-term braking for maintaining a constant speed on a down-grade railroad.

  8. Mechatronics in the Netherlands

    NARCIS (Netherlands)

    van Amerongen, J.; Jongkind, Wim

    1996-01-01

    This article assesses the present situation of mechatronics in the Netherlands. After a short historical survey, it describes the postgraduate ¿mechatronic designer course¿, introduced in 1991. It deals with the principles of this course and how these principles have been implemented. Also, the

  9. 49 CFR 232.503 - Process to introduce new brake system technology.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Process to introduce new brake system technology... Technology § 232.503 Process to introduce new brake system technology. (a) Pursuant to the procedures... brake system technology, prior to implementing the plan. (b) Each railroad shall complete a pre-revenue...

  10. Fallback level concepts for conventional and by-wire automotive brake systems

    International Nuclear Information System (INIS)

    Retzer, H; Mishra, R; Ball, A; Schmidt, K

    2012-01-01

    Brake-by-wire represents the replacement of traditional brake components such as pumps, hoses, fluids, brake boosters, and master cylinders by electronic sensors and actuators. The different design of these brake concepts poses new challenges for the automotive industry with regard to availability and fallback levels in comparison to standard conventional brake systems. This contribution focuses on the development of appropriate fallback level concepts. Hardware-in-the-loop (HIL) techniques and field trials will be used to investigate the performance and the usability of such systems.

  11. Fallback level concepts for conventional and by-wire automotive brake systems

    Science.gov (United States)

    Retzer, H.; Mishra, R.; Ball, A.; Schmidt, K.

    2012-05-01

    Brake-by-wire represents the replacement of traditional brake components such as pumps, hoses, fluids, brake boosters, and master cylinders by electronic sensors and actuators. The different design of these brake concepts poses new challenges for the automotive industry with regard to availability and fallback levels in comparison to standard conventional brake systems. This contribution focuses on the development of appropriate fallback level concepts. Hardware-in-the-loop (HIL) techniques and field trials will be used to investigate the performance and the usability of such systems.

  12. Mechatronics technology in predictive maintenance method

    Science.gov (United States)

    Majid, Nurul Afiqah A.; Muthalif, Asan G. A.

    2017-11-01

    This paper presents recent mechatronics technology that can help to implement predictive maintenance by combining intelligent and predictive maintenance instrument. Vibration Fault Simulation System (VFSS) is an example of mechatronics system. The focus of this study is the prediction on the use of critical machines to detect vibration. Vibration measurement is often used as the key indicator of the state of the machine. This paper shows the choice of the appropriate strategy in the vibration of diagnostic process of the mechanical system, especially rotating machines, in recognition of the failure during the working process. In this paper, the vibration signature analysis is implemented to detect faults in rotary machining that includes imbalance, mechanical looseness, bent shaft, misalignment, missing blade bearing fault, balancing mass and critical speed. In order to perform vibration signature analysis for rotating machinery faults, studies have been made on how mechatronics technology is used as predictive maintenance methods. Vibration Faults Simulation Rig (VFSR) is designed to simulate and understand faults signatures. These techniques are based on the processing of vibrational data in frequency-domain. The LabVIEW-based spectrum analyzer software is developed to acquire and extract frequency contents of faults signals. This system is successfully tested based on the unique vibration fault signatures that always occur in a rotating machinery.

  13. A Study on Conceptual Design of Mechatronic System

    Institute of Scientific and Technical Information of China (English)

    YAO Li-ming; ZOU Ling-lin

    2008-01-01

    The conceptual design of mechatronic systems is addressed under the thrust of concurrent engineering and an enhanced conceptual design methodology describing the early design stage of mechatmnic systems is presented through an example illustration of a pick and place robot.This methodology treats each feasible solution as a solution strategy.In the methodology,Quality Function Deployment (QFD)is used as a baseline for the analysis of the mapping from customers to engineering requirements,Axiomatic Design(AD)is adopted as a guideline to generate feasible,good design solution alternatives,and Theory of Inventive Problem Solving(TRIZ)is applied to deal with domain conflicts in design.

  14. Electronic brakes. From ABS to brake-by-wire. 2. ed.; Elektronische Bremssysteme. Vom ABS zum Brake-by-Wire

    Energy Technology Data Exchange (ETDEWEB)

    Reichel, H.R.

    2003-07-01

    The book reports trends in vehicle brakes from 1968 to 1998. This was the age of the electronic revolution. The book presents conventional brakes, antiblocking systems (ABS), antislip systems (ASS), brake assistants (BAS), dynamic control systems, and brake-by-wire systems. [German] Das Buch berichtet ueber Entwicklungen an Fahrzeugbremsanlagen in der Zeitspanne von 1968 bis etwa 1998. Diese Zeit war gepraegt vom Vordringen der Elektronik in die Bremsen, was fuer Hersteller und Kunden eine Revolution bedeutete. Behandelt sind: (a) Konventionelle Bremsanlagen, (b) Antiblockiersysteme (ABS), (c) Anti-Schlupf-regelungen (ASR), (d) Bremsassistenten (BAS), (e) Fahrdynamikregelungen (FDR, ESP), (f) Brake-by-Wire (orig.)

  15. A novel integrated self-powered brake system for more electric aircraft

    Directory of Open Access Journals (Sweden)

    Yaoxing SHANG

    2018-05-01

    Full Text Available Traditional hydraulic brake systems require a complex system of pipelines between an aircraft engine driven pump (EDP and brake actuators, which increases the weight of the aircraft and may even cause serious vibration and leakage problems. In order to improve the reliability and safety of more electric aircraft (MEA, this paper proposes a new integrated self-powered brake system (ISBS for MEA. It uses a hydraulic pump geared to the main wheel to recover a small part of the kinetic energy of a landing aircraft. The recovered energy then serves as the hydraulic power supply for brake actuators. It does not require additional hydraulic source, thus removing the pipelines between an EDP and brake actuators. In addition, its self-powered characteristic makes it possible to brake as usual even in an emergency situation when the airborne power is lost. This paper introduces the working principle of the ISBS and presents a prototype. The mathematical models of a taxiing aircraft and the ISBS are established. A feedback linearization control algorithm is designed to fulfill the anti-skid control. Simulations are carried out to verify the feasibility of the ISBS, and experiments are conducted on a ground inertia brake test bench. The ISBS presents a good performance and provides a new potential solution in the field of brake systems for MEA. Keywords: Hydraulic, Feedback linearization control, More electric aircraft, Novel brake system, Self-powered

  16. Behavior of aircraft antiskid braking systems on dry and wet runway surfaces: Hydromechanically controlled system

    Science.gov (United States)

    Tanner, J. A.; Stubbs, S. M.; Smith, E. G.

    1981-01-01

    The investigation utilized one main gear wheel, brake, and tire assembly of a McDonnell Douglas DC-9 series 10 airplane. The landing-gear strut was replaced by a dynamometer. During maximum braking, average braking behavior indexes based upon brake pressure, brake torque, and drag-force friction coefficient developed by the antiskid system were generally higher on dry surfaces than on wet surfaces. The three braking behavior indexes gave similar results but should not be used interchangeably as a measure of the braking of this antiskid sytem. During the transition from a dry to a flooded surface under heavy braking, the wheel entered into a deep skid but the antiskid system reacted quickly by reducing brake pressure and performed normally during the remainder of the run on the flooded surface. The brake-pressure recovery following transition from a flooded to a dry surface was shown to be a function of the antiskid modulating orifice.

  17. 76 FR 55859 - Federal Motor Vehicle Safety Standards No. 121; Air Brake Systems

    Science.gov (United States)

    2011-09-09

    ... during road tests for the braking system, a vehicle equipped with an interlocking axle system or a front... vehicle braking systems, tire characteristics related to lateral force and longitudinal force generation... stopping distance without activating the ABS system by braking the vehicle so that the brake pressure is...

  18. Brake lock mechanism for the two axis pointing system

    Science.gov (United States)

    Posey, Alan; Clark, Mike; Mignosa, Larry

    1991-01-01

    Six months prior to shipment of the Broadband X-ray Telescope to the Kennedy Space Center for flight aboard the Space Shuttle Columbia, a major system failure occurred. During modal survey testing of the telescope's gimbal pointing system, the roll axis brake unexpectedly released. Low level vibration and static preloads present during the modal survey were within the expected flight environment. Brake release during shuttle liftoff or ascent was an unacceptable risk to mission success; thus, a Brake Lock Mechanism (BLM) was developed.

  19. Numerical Modeling of Disc Brake System in Frictional Contact

    Directory of Open Access Journals (Sweden)

    A. Belhocine

    2014-03-01

    Full Text Available Safety aspect in automotive engineering has been considered as a number one priority in development of new vehicle. Each single system has been studied and developed in order to meet safety requirement. Instead of having air bag, good suspension systems, good handling and safe cornering, there is one most critical system in the vehicle which is brake systems. The objective of this work is to investigate and analyse the temperature distribution of rotor disc during braking operation using ANSYS Multiphysics. The work uses the finite element analysis techniques to predict the temperature distribution on the full and ventilated brake disc and to identify the critical temperature of the rotor by holding account certain parameters such as; the material used, the geometric design of the disc and the mode of braking. The analysis also gives us, the heat flux distribution for the two discs.

  20. 49 CFR 232.609 - Handling of defective equipment with ECP brake systems.

    Science.gov (United States)

    2010-10-01

    ... (ECP) Braking Systems § 232.609 Handling of defective equipment with ECP brake systems. (a) Ninety-five... systems. 232.609 Section 232.609 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION BRAKE SYSTEM SAFETY STANDARDS FOR FREIGHT...

  1. 49 CFR 214.529 - In-service failure of primary braking system.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false In-service failure of primary braking system. 214... Maintenance Machines and Hi-Rail Vehicles § 214.529 In-service failure of primary braking system. (a) In the event of a total in-service failure of its primary braking system, an on-track roadway maintenance...

  2. Expert knowledge mechatronics; Fachkunde Mechatronik

    Energy Technology Data Exchange (ETDEWEB)

    Bartenschlager, J.; Hebel, H.; Klatt, T.; Laemmlin. G.; Scheib, A.; Kinz, U.; Steinmueller, A.; Ignatowitz, E.; Kluge, M.; Hahn, M.; Eichler, W.; Spielvogel, O.; Winter, U.

    2004-07-01

    The book directs to pupils of vocational schools. The main topics are: fundamentals on data processing; technical communication; test engineering; quality management; materials engineering; mechanical systems; production of mechanical systems; fundamentals on electrical engineering; electric machines and devices; control systems; remote systems in automation engineering; mechatronic systems and their installation, commissioning and maintenance. (GL)

  3. The antilock braking system anomaly: a drinking driver problem?

    Science.gov (United States)

    Harless, David W; Hoffer, George E

    2002-05-01

    Antilock braking systems (ABS) have held promise for reducing the incidence of accidents because they reduce stopping times on slippery surfaces and allow drivers to maintain steering control during emergency braking. Farmer et al. (Accident Anal. Prevent. 29 (1997) 745) provide evidence that antilock brakes are beneficial to nonoccupants: a set of 1992 model General Motors vehicles equipped with antilock brakes were involved in significantly fewer fatal crashes in which occupants of other vehicles, pedestrians, or bicyclists were killed. But, perversely, the risk of death for occupants of vehicles equipped with antilock brakes increased significantly after adoption. Farmer (Accident Anal. Prevent. 33 (2001) 361) updates the analysis for 1996- 1998 and finds a significant attenuation in the ABS anomaly. Researchers have put forward two hypotheses to explain this antilock brake anomaly: risk compensation and improper operation of antilock brake-equipped vehicles. We provide strong evidence for the improper operation hypothesis by showing that the antilock brake anomaly is confined largely to drinking drivers. Further, we show that the attenuation phenomenon occurs consistently after the first three to four years of vehicle service.

  4. Sliding bifurcations and chaos induced by dry friction in a braking system

    International Nuclear Information System (INIS)

    Yang, F.H.; Zhang, W.; Wang, J.

    2009-01-01

    In this paper, non-smooth bifurcations and chaotic dynamics are investigated for a braking system. A three-degree-of-freedom model is considered to capture the complicated nonlinear characteristics, in particular, non-smooth bifurcations in the braking system. The stick-slip transition is analyzed for the braking system. From the results of numerical simulation, it is observed that there also exist the grazing-sliding bifurcation and stick-slip chaos in the braking system.

  5. New Structure Design and Simulation of Brake by Wire System Based on Giant-magnetostrictive Material

    Directory of Open Access Journals (Sweden)

    Changbao CHU

    2014-04-01

    Full Text Available Existing electronic mechanical brake by wire system has several disadvantages. For instance, system actuators are complex, response speed slower, larger vibration noise, etc. This paper discusses a new type brake by wire system based on giant-magnetostrictive material. The new type brake by wire system model was set up under Matlab/Simulink software environment. PID control method was used to control the brake by wire system. Simulation results shows that the new type brake by wire system achieves better braking performance compared with hydraulic braking system. This work provides a new idea for researching automobile brake by wire system.

  6. 16 CFR 1512.5 - Requirements for braking system.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Requirements for braking system. 1512.5 Section 1512.5 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT... dimension between the brake hand lever and the handlebars in the plane containing the centerlines of the...

  7. Driver braking behavior analysis to improve autonomous emergency braking systems in typical Chinese vehicle-bicycle conflicts.

    Science.gov (United States)

    Duan, Jingliang; Li, Renjie; Hou, Lian; Wang, Wenjun; Li, Guofa; Li, Shengbo Eben; Cheng, Bo; Gao, Hongbo

    2017-11-01

    Bicycling is one of the fundamental modes of transportation especially in developing countries. Because of the lack of effective protection for bicyclists, vehicle-bicycle (V-B) accident has become a primary contributor to traffic fatalities. Although AEB (Autonomous Emergency Braking) systems have been developed to avoid or mitigate collisions, they need to be further adapted in various conflict situations. This paper analyzes the driver's braking behavior in typical V-B conflicts of China to improve the performance of Bicyclist-AEB systems. Naturalistic driving data were collected, from which the top three scenarios of V-B accidents in China were extracted, including SCR (a bicycle crossing the road from right while a car is driving straight), SCL (a bicycle crossing the road from left while a car is driving straight) and SSR (a bicycle swerving in front of the car from right while a car is driving straight). For safety and data reliability, a driving simulator was employed to reconstruct these three scenarios and some 25 licensed drivers were recruited for braking behavior analysis. Results revealed that driver's braking behavior was significantly influenced by V-B conflict types. Pre-decelerating behaviors were found in SCL and SSR conflicts, whereas in SCR the subjects were less vigilant. The brake reaction time and brake severity in lateral V-B conflicts (SCR and SCL) was shorter and higher than that in longitudinal conflicts (SSR). The findings improve their applications in the Bicyclist-AEB and test protocol enactment to enhance the performance of Bicyclist-AEB systems in mixed traffic situations especially for developing countries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Hierarchical Control Strategy for the Cooperative Braking System of Electric Vehicle

    Science.gov (United States)

    Peng, Jiankun; He, Hongwen; Guo, Hongqiang

    2015-01-01

    This paper provides a hierarchical control strategy for cooperative braking system of an electric vehicle with separated driven axles. Two layers are defined: the top layer is used to optimize the braking stability based on two sliding mode control strategies, namely, the interaxle control mode and signal-axle control strategies; the interaxle control strategy generates the ideal braking force distribution in general braking condition, and the single-axle control strategy can ensure braking safety in emergency braking condition; the bottom layer is used to maximize the regenerative braking energy recovery efficiency with a reallocated braking torque strategy; the reallocated braking torque strategy can recovery braking energy as much as possible in the premise of meeting battery charging power. The simulation results show that the proposed hierarchical control strategy is reasonable and can adapt to different typical road surfaces and load cases; the vehicle braking stability and safety can be guaranteed; furthermore, the regenerative braking energy recovery efficiency can be improved. PMID:26236772

  9. Hierarchical Control Strategy for the Cooperative Braking System of Electric Vehicle.

    Science.gov (United States)

    Peng, Jiankun; He, Hongwen; Liu, Wei; Guo, Hongqiang

    2015-01-01

    This paper provides a hierarchical control strategy for cooperative braking system of an electric vehicle with separated driven axles. Two layers are defined: the top layer is used to optimize the braking stability based on two sliding mode control strategies, namely, the interaxle control mode and signal-axle control strategies; the interaxle control strategy generates the ideal braking force distribution in general braking condition, and the single-axle control strategy can ensure braking safety in emergency braking condition; the bottom layer is used to maximize the regenerative braking energy recovery efficiency with a reallocated braking torque strategy; the reallocated braking torque strategy can recovery braking energy as much as possible in the premise of meeting battery charging power. The simulation results show that the proposed hierarchical control strategy is reasonable and can adapt to different typical road surfaces and load cases; the vehicle braking stability and safety can be guaranteed; furthermore, the regenerative braking energy recovery efficiency can be improved.

  10. Hierarchical Control Strategy for the Cooperative Braking System of Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Jiankun Peng

    2015-01-01

    Full Text Available This paper provides a hierarchical control strategy for cooperative braking system of an electric vehicle with separated driven axles. Two layers are defined: the top layer is used to optimize the braking stability based on two sliding mode control strategies, namely, the interaxle control mode and signal-axle control strategies; the interaxle control strategy generates the ideal braking force distribution in general braking condition, and the single-axle control strategy can ensure braking safety in emergency braking condition; the bottom layer is used to maximize the regenerative braking energy recovery efficiency with a reallocated braking torque strategy; the reallocated braking torque strategy can recovery braking energy as much as possible in the premise of meeting battery charging power. The simulation results show that the proposed hierarchical control strategy is reasonable and can adapt to different typical road surfaces and load cases; the vehicle braking stability and safety can be guaranteed; furthermore, the regenerative braking energy recovery efficiency can be improved.

  11. 4th IFToMM International Symposium on Robotics and Mechatronics

    CERN Document Server

    Laribi, Med; Gazeau, Jean-Pierre

    2016-01-01

    This volume contains papers that have been selected after review for oral presentation at ISRM 2015, the Fourth IFToMM International Symposium on Robotics and Mechatronics held in Poitiers, France 23-24 June 2015. These papers  provide a vision of the evolution of the disciplines of robotics and mechatronics, including but not limited to: mechanism design; modeling and simulation; kinematics and dynamics of multibody systems; control methods; navigation and motion planning; sensors and actuators; bio-robotics; micro/nano-robotics; complex robotic systems; walking machines, humanoids-parallel kinematic structures: analysis and synthesis; smart devices; new design; application and prototypes. The book can be used by researchers and engineers in the relevant areas of robotics and mechatronics.

  12. Mechatronics Engineering Education

    OpenAIRE

    Grimheden, Martin

    2006-01-01

    Since its emergence in the late 1960s, mechatronics has become well-established as an academic subject, and is now researched and taught at a large number of universities worldwide. The most widely-used definition of the subject today is centered on the synergistic integration of mechanical engineering, electronics, and intelligent computer control. The aim of this thesis is to work between the disciplines of engineering education and mechatronics to address both the question of the identity ...

  13. Mechatronic design of a reconfigurable machining machine

    CSIR Research Space (South Africa)

    Xing, B

    2008-10-01

    Full Text Available /ASME International Conference on Mechatronic and Embedded Systems and Applications IEEE/ASME MESA 2008 October 12-15, 2008, Beijing Friendship Hotel Beijing, China IEEE INTELLIGENT TRANSPORTATION SYSTEMS...

  14. Hierarchical Control Strategy for the Cooperative Braking System of Electric Vehicle

    OpenAIRE

    Peng, Jiankun; He, Hongwen; Liu, Wei; Guo, Hongqiang

    2015-01-01

    This paper provides a hierarchical control strategy for cooperative braking system of an electric vehicle with separated driven axles. Two layers are defined: the top layer is used to optimize the braking stability based on two sliding mode control strategies, namely, the interaxle control mode and signal-axle control strategies; the interaxle control strategy generates the ideal braking force distribution in general braking condition, and the single-axle control strategy can ensure braking s...

  15. Brake reactions of distracted drivers to pedestrian Forward Collision Warning systems.

    Science.gov (United States)

    Lubbe, Nils

    2017-06-01

    Forward Collision Warning (FCW) can be effective in directing driver attention towards a conflict and thereby aid in preventing or mitigating collisions. FCW systems aiming at pedestrian protection have been introduced onto the market, yet an assessment of their safety benefits depends on the accurate modeling of driver reactions when the system is activated. This study contributes by quantifying brake reaction time and brake behavior (deceleration levels and jerk) to compare the effectiveness of an audio-visual warning only, an added haptic brake pulse warning, and an added Head-Up Display in reducing the frequency of collisions with pedestrians. Further, this study provides a detailed data set suited for the design of assessment methods for car-to-pedestrian FCW systems. Brake response characteristics were measured for heavily distracted drivers who were subjected to a single FCW event in a high-fidelity driving simulator. The drivers maintained a self-regulated speed of 30km/h in an urban area, with gaze direction diverted from the forward roadway by a secondary task. Collision rates and brake reaction times differed significantly across FCW settings. Brake pulse warnings resulted in the lowest number of collisions and the shortest brake reaction times (mean 0.8s, SD 0.29s). Brake jerk and deceleration were independent of warning type. Ninety percent of drivers exceeded a maximum deceleration of 3.6m/s 2 and a jerk of 5.3m/s 3 . Brake pulse warning was the most effective FCW interface for preventing collisions. In addition, this study presents the data required for driver modeling for car-to-pedestrian FCW similar to Euro NCAP's 2015 car-to-car FCW assessment. Practical applications: Vehicle manufacturers should consider the introduction of brake pulse warnings to their FCW systems. Euro NCAP could introduce an assessment that quantifies the safety benefits of pedestrian FCW systems and thereby aid the proliferation of effective systems. Copyright © 2017

  16. Developing of a software for determining advanced brake failures in brakes test bench

    Directory of Open Access Journals (Sweden)

    Hakan Köylü

    2016-08-01

    Full Text Available At present time, the brake test bench conducts the braking and suspension tests of front or rear axles and the test results are evaluated through one axle. The purpose of the brake testing system is to determine braking force and damping coefficient dissymmetry of one axle. Thus, this test system evaluates the performance of service brake, hand brake and suspension systems by considering separately front and rear axle dissymmetry. For this reason, the effects of different braking and damping forces applied by right and left wheels of both axles on braking performance of all vehicle are not determined due to available algorithm of the test bench. Also, the other brake failures are not occurred due to the algorithm of brake test system. In this study, the interface has been developed to determine the other effects of dissymmetry and the other brake failures by using the one axle results of brake test bench. The interface has algorithm computing the parameters according to the interaction between front and rear axles by only using measured test results. Also, it gives the warnings by comparing changes in the parameters with braking performance rules. Braking and suspension tests of three different vehicles have been conducted by using brake test bench to determine the performance of the algorithm. Parameters based on the axle interaction have been calculated by transferring brake test results to the interface and the test results have been evaluated. As a result, the effects of brake and suspension failures on braking performance of both axle and vehicle have been determined thanks to the developed interface.

  17. Mechatronic modeling and simulation using bond graphs

    CERN Document Server

    Das, Shuvra

    2009-01-01

    Introduction to Mechatronics and System ModelingWhat Is Mechatronics?What Is a System and Why Model Systems?Mathematical Modeling Techniques Used in PracticeSoftwareBond Graphs: What Are They?Engineering SystemsPortsGeneralized VariablesBond GraphsBasic Components in SystemsA Brief Note about Bond Graph Power DirectionsSummary of Bond Direction RulesDrawing Bond Graphs for Simple Systems: Electrical and MechanicalSimplification Rules for Junction StructureDrawing Bond Graphs for Electrical SystemsDrawing Bond Graphs for Mechanical SystemsCausalityDrawing Bond Graphs for Hydraulic and Electronic Components and SystemsSome Basic Properties and Concepts for FluidsBond Graph Model of Hydraulic SystemsElectronic SystemsDeriving System Equations from Bond GraphsSystem VariablesDeriving System EquationsTackling Differential CausalityAlgebraic LoopsSolution of Model Equations and Their InterpretationZeroth Order SystemsFirst Order SystemsSecond Order SystemTransfer Functions and Frequency ResponsesNumerical Solution ...

  18. Future of Mechatronics and Human

    Science.gov (United States)

    Harashima, Fumio; Suzuki, Satoshi

    This paper mentions circumstance of mechatronics that sustain our human society, and introduces HAM(Human Adaptive Mechatronics)-project as one of research projects to create new human-machine system. The key point of HAM is skill, and analysis of skill and establishment of assist method to enhance total performance of human-machine system are main research concerns. As study of skill is an elucidation of human itself, analyses of human higher function are significant. In this paper, after surveying researches of human brain functions, an experimental analysis of human characteristic in machine operation is shown as one example of our research activities. We used hovercraft simulator as verification system including observation, voluntary motion control and machine operation that are needed to general machine operation. Process and factors to become skilled were investigated by identification of human control characteristics with measurement of the operator's line-of sight. It was confirmed that early switching of sub-controllers / reference signals in human and enhancement of space perception are significant.

  19. Scania RBS brake system; Das Bremssystem EBS von Scania

    Energy Technology Data Exchange (ETDEWEB)

    Winterhagen, J.

    1996-09-01

    Scania claims to be the first producer of industrial vehicles to market an electronic braking system (EBS) combined with disc brakes for all axles. The new braking systems for long-distance trailers were presented for the first time at the IAA, Hanover, in September 1996. (orig.) [Deutsch] Scania ist nach eigenen Angaben der erste Lkw-Hersteller, der eine elektronisch geregelte Bremsanlage (EBS) in Kombination mit Scheibenbremsen an allen Achsen auf den Markt bringt. Der Oeffentlichkeit stellt Scania das neue Bremssystem fuer die Fernverkehrs-Zugmaschinen der Baureihe 4 zum ersten Mal auf der IAA in Hannover im September 1996 vor. (orig.)

  20. Electrical, Information Engineering and Mechatronics 2011 : Proceedings of the 2011 International Conference on Electrical, Information Engineering and Mechatronics

    CERN Document Server

    Wang, Fuzhong; Zhong, Shaobo

    2012-01-01

    As future generation electrical, information engineering and mechatronics become specialized and fragmented, it is easy to lose sight of the fact that many topics in these areas have common threads and, because of this, advances in one discipline may be transmitted to others. The 2011 International Conference on Electrical, Information Engineering and Mechatronics (EIEM 2011) is the first conference that attempts to follow the above idea of hybridization in electrical, information engineering, mechatronics and applications. This Proceedings of the 2011 International Conference on Electrical, Information Engineering and Mechatronics provides a forum for engineers and scientists to address the most innovative research and development including technical challenges and social, legal, political, and economic issues, and to present and discuss their ideas, results, works in progress and experience on all aspects of electrical, information engineering, mechatronics and applications. Engineers and scientists in acad...

  1. Transient fault tolerant control for vehicle brake-by-wire systems

    International Nuclear Information System (INIS)

    Huang, Shuang; Zhou, Chunjie; Yang, Lili; Qin, Yuanqing; Huang, Xiongfeng; Hu, Bowen

    2016-01-01

    Brake-by-wire (BBW) systems that have no mechanical linkage between the brake pedal and the brake mechanism are expected to improve vehicle safety through better braking capability. However, transient faults in BBW systems can cause dangerous driving situations. Most existing research in this area focuses on the brake control mechanism, but very few studies try to solve the problem associated with transient fault propagation and evolution in the brake control system hierarchy. In this paper, a hierarchical transient fault tolerant scheme with embedded intelligence and resilient coordination for BBW system is proposed based on the analysis of transient fault propagation characteristics. In this scheme, most transient faults are tackled rapidly by a signature-based detection method at the node level, and the remaining transient faults, which cannot be detected directly at the node level and could degrade the system performance through fault propagation and evolution, are detected and recovered through function and structure models at the system level. To jointly accommodate these BBW transient faults at the system level, a sliding mode control algorithm and a task reallocation strategy are designed. A simulation platform based on Architecture Analysis and Design Language (AADL) is established to evaluate the task reallocation strategy, and a hardware-in-the-loop simulation is carried out to validate the proposed scheme systematically. Experimental results show the effectiveness of this new approach to BBW systems. - Highlights: • We propose a hierarchical transient fault tolerant scheme for BBW systems. • A sliding mode algorithm and a task strategy are designed to tackle transient fault. • The effectiveness of the scheme is verified in both simulation and HIL environments.

  2. Mechatronics in monitoring, simulation, and diagnostics of industrial and biological processes

    Science.gov (United States)

    Golnik, Natalia; Dobosz, Marek; Jakubowska, Małgorzata; Kościelny, Jan M.; Kujawińska, Małgorzata; Pałko, Tadeusz; Putz, Barbara; Sitnik, Robert; Wnuk, Paweł; Woźniak, Adam

    2013-10-01

    The paper describes a number of research projects of the Faculty of Mechatronics of Warsaw University of Technology in order to illustrate the use of common mechatronics and optomechatronics approach in solving multidisciplinary technical problems. Projects on sensors development, measurement and industrial control systems, multimodal data capture and advance systems for monitoring and diagnostics of industrial processes are presented and discussed.

  3. Compressed gas system operates semitrailer brakes during winching operation

    Science.gov (United States)

    Tupper, W. E.

    1964-01-01

    To move van-type semi-trailers into and out of confined spaces, an auxiliary braking system is mounted on a standard dolly converter. Compressed nitrogen is used to actuate the brakes which are used in conjunction with a power winch.

  4. Piezoelectric-hydraulic pump based band brake actuation system for automotive transmission control

    Science.gov (United States)

    Kim, Gi-Woo; Wang, K. W.

    2007-04-01

    The actuation system of friction elements (such as band brakes) is essential for high quality operations in modern automotive automatic transmissions (in short, ATs). The current band brake actuation system consists of several hydraulic components, including the oil pump, the regulating valve and the control valves. In general, it has been recognized that the current AT band brake actuation system has many limitations. For example, the oil pump and valve body are relatively heavy and complex. Also, the oil pumps induce inherently large drag torque, which affects fuel economy. This research is to overcome these problems of the current system by exploring the utilization of a hybrid type piezo-hydraulic pump device for AT band brake control. This new actuating system integrates a piezo-hydraulic pump to the input of the band brake. Compared with the current systems, this new actuator features much simpler structure, smaller size, and lower weight. This paper describes the development, design and fabrication of the new stand-alone prototype actuator for AT band brake control. An analytical model is developed and validated using experimental data. Performance tests on the hardware and system simulations utilizing the validated model are performed to characterize the new prototype actuator. It is predicted that with increasing of accumulator pressure and driving frequency, the proposed prototype actuating system will satisfy the band brake requirement for AT shift control.

  5. Research on squeal noise of tread brake system in rail freight vehicle

    Science.gov (United States)

    Zhang, Jun; Li, Yong-hua; Fang, Ji; Zhao, Wen-zhong

    2017-07-01

    Brake squeal is a result of a unstable flutter from brake system, it results to the noise pollution in railway side and excessive wear of wheel tread. A finite element model of brake system for rail freight vehicle is set up, the contact and friction between the brake shoe and wheel tread is considered, the complex modals of brake system are calculated, the possibility of happening chatter and squeal noise are analyzed. The results show that the pressure angle or the brake force direction have a important influence on the unstable chatter and squeal noise, the more greater the pressure angle deviates from the wheel center, the more greater the possibility of happening chatter and squeal noise is, and the possibility of happening chatter and squeal noise is also increased along with the addition of friction factor.

  6. Arctic resources : a mechatronics opportunity

    Energy Technology Data Exchange (ETDEWEB)

    McKean, M.; Baiden, G. [Penguin Automated Systems Inc., Naughton, ON (Canada)

    2008-07-01

    This paper discussed the telerobotic mechatronics opportunities that exist to access mineral resources in the Arctic. The Mining Automation Project (MAP) determined that telerobotics could contribute to productivity gains while providing increased worker safety. The socio-economic benefits of advanced mechatronics for Arctic resource development are particularly attractive due to reduced infrastructure needs; operating costs; and environmental impacts. A preliminary analysis of mining transportation options by the authors revealed that there is a case for in-situ resource utilization (ISRU) for oil and gas processing to address resource development. The ISRU options build on concepts developed to support space exploration and were proposed to reduce or modify transportation loads to allow more sustainable and efficient Arctic resource development. Many benefits in terms of efficiency could be achieved by combining demonstrated mechatronics with ISRU because of the constrained transportation infrastructure in the Arctic. In the context of harsh environment operations, mechatronics may provide an opportunity for undersea resource facilities. 15 refs., 6 figs.

  7. Emergency braking : research summary.

    NARCIS (Netherlands)

    Schlösser, L.H.M.

    1976-01-01

    This report deals with an investigation concerning braking capacity of trucks if somewhere a failure occurs in the normal service brake. Purpose of research was to get an insight in various secondary braking systems for trucks. It is shown that with almost all of the secondary braking system it was

  8. Annual review on mechanical engineering. 14. ; Roboticster dot mechatronics. Kikai kogaku nenkan. 14. ; Roboticster dot mechatronics

    Energy Technology Data Exchange (ETDEWEB)

    Kakizaki, T. (Nippon Telegraph and Telephone Corp., Tokyo (Japan))

    1990-08-05

    Trend of robotics and mechatronics in 1989, Japanese and foreign, are reviewed in the respective fields. In the field of manipulation technology, development of micro-manipulation, simulation by neural network, motion control technology in space, and development of whole-arm manipulator were advanced. Studies on locomotive function of wheels. legs, and crawler types in auto-locomotive robots were progressed. On sensor technology, combined technologies with control engineering and sensor information were noteworthy. In the field of mechatronics, attention were paid to animated experimental modeling of to new actuators and new trials for system technologies. For the later example, introduction of higher control to magnetic bearings, acceleration in intelligent AV appliances, and automatic connection of MDF in communication field were noteworthy. Systems applying optical technologies increased extremely. Moreover, many other items of research and development are introduced. 40 refs.

  9. An Experimental Study on Hysteresis Characteristics of a Pneumatic Braking System for a Multi-Axle Heavy Vehicle in Emergency Braking Situations

    Directory of Open Access Journals (Sweden)

    Zhe Wang

    2017-08-01

    Full Text Available This study aims to investigate the hysteresis characteristics of a pneumatic braking system for multi-axle heavy vehicles (MHVs. Hysteresis affects emergency braking performance severely. The fact that MHVs have a large size and complex structure leads to more nonlinear coupling property of the pneumatic braking system compared to normal two-axle vehicles. Thus, theoretical analysis and simulation are not enough when studying hysteresis. In this article, the hysteresis of a pneumatic brake system for an eight-axle vehicle in an emergency braking situation is studied based on a novel test bench. A servo drive device is applied to simulate the driver’s braking intensions normally expressed by opening or moving speed of the brake pedal. With a reasonable arrangement of sensors and the NI LabVIEW platform, both the delay time of eight loops and the response time of each subassembly in a single loop are detected in real time. The outcomes of the experiment show that the delay time of each loop gets longer with the increase of pedal opening, and a quadratic relationship exists between them. Based on this, the pressure transient in the system is fitted to a first-order plus time delay model. Besides, the response time of treadle valve and controlling pipeline accounts for more than 80% of the loop’s total delay time, indicating that these two subassemblies are the main contributors to the hysteresis effect.

  10. Learning Basic Mechatronics through Helicopter Workshop

    OpenAIRE

    Adzly Anuar; Maryam Huda Ahmad Phesal; Azrul Abidin Zakaria; Goh Chin Hock; Sivadass Thiruchelvam; Dickson Neoh Tze How; Muhammad Fahmi Abdul Ghani; Khairul Salleh Mohamed Sahari

    2014-01-01

    In recent years, technologies related to mechatronics and robotics is available even to elementary level students. It is now common to see schools in Malaysia using Lego Mindstorm as a tool for active learning on mechatronics and robotics. A new yet interesting way of learning mechatronics and robotics is introduced by Dr. Dan Barry, a former astronaut and his son Andrew Barry during their visit to Malaysia. The kits used are based on a 4-channel RC helicopter, Arduino Uno microcontroller, IR...

  11. Design and analysis of an MR rotary brake for self-regulating braking torques.

    Science.gov (United States)

    Yun, Dongwon; Koo, Jeong-Hoi

    2017-05-01

    This paper presents a novel Magneto-rheological (MR) brake system that can self-regulate the output braking torques. The proposed MR brake can generate a braking torque at a critical rotation speed without an external power source, sensors, or controllers, making it a simple and cost-effective device. The brake system consists of a rotary disk, permanent magnets, springs, and MR fluid. The permanent magnets are attached to the rotary disk via the springs, and they move outward through grooves with two different gap distances along the radial direction of the stator due to the centrifugal force. Thus, the position of the magnets is dependent on the spin speed, and it can determine the magnetic fields applied to MR fluids. Proper design of the stator geometry gives the system unique torque characteristics. To show the performance of an MR brake system, the electromagnetic characteristics of the system are analyzed, and the torques generated by the brake are calculated using the result of the electromagnetic analysis. Using a baseline model, a parametric study is conducted to investigate how the design parameters (geometric shapes and material selection) affect the performance of the brake system. After the simulation study, a prototype brake system is constructed and its performance is experimentally evaluated. The experimental results show that the prototype produced the maximum torque of 1.2 N m at the rotational speed of 100 rpm. The results demonstrate the feasibility of the proposed MR brake as a speed regulator in rotating systems.

  12. Study on real-time elevator brake failure predictive system

    Science.gov (United States)

    Guo, Jun; Fan, Jinwei

    2013-10-01

    This paper presented a real-time failure predictive system of the elevator brake. Through inspecting the running state of the coil by a high precision long range laser triangulation non-contact measurement sensor, the displacement curve of the coil is gathered without interfering the original system. By analyzing the displacement data using the diagnostic algorithm, the hidden danger of the brake system can be discovered in time and thus avoid the according accident.

  13. Study on antilock brake system with elastic membrane vibration generated by controlled solenoid excitation

    International Nuclear Information System (INIS)

    Wibowo,; Zakaria,; Lambang, Lullus; Triyono,; Muhayat, Nurul

    2016-01-01

    The most effective chassis control system for improving vehicle safety during severe braking is anti-lock braking system (ABS). Antilock effect can be gained by vibrate the pad brake at 7 to 20 cycle per second. The aim of this study is to design a new method of antilock braking system with membrane elastic vibrated by solenoid. The influence of the pressure fluctuations of brake fluid is investigated. Vibration data is collected using a small portable accelerometer-slam stick. The experiment results that the vibration of brake pad caused by controlled solenoid excitation at 10 Hz is obtained by our new method. The result of measurements can be altered by varying brake fluid pressure.

  14. Study on antilock brake system with elastic membrane vibration generated by controlled solenoid excitation

    Energy Technology Data Exchange (ETDEWEB)

    Wibowo,, E-mail: wibowo-uns@yahoo.com; Zakaria,, E-mail: zakaaria27@gmail.com; Lambang, Lullus, E-mail: lulus-l@yahoo.com; Triyono,, E-mail: tyon-bila@yahoo.co.id; Muhayat, Nurul, E-mail: nurulmuhayat@ymail.com [Mechanical Engineering Department, Sebelas Maret University, Surakarta 57128 (Indonesia)

    2016-03-29

    The most effective chassis control system for improving vehicle safety during severe braking is anti-lock braking system (ABS). Antilock effect can be gained by vibrate the pad brake at 7 to 20 cycle per second. The aim of this study is to design a new method of antilock braking system with membrane elastic vibrated by solenoid. The influence of the pressure fluctuations of brake fluid is investigated. Vibration data is collected using a small portable accelerometer-slam stick. The experiment results that the vibration of brake pad caused by controlled solenoid excitation at 10 Hz is obtained by our new method. The result of measurements can be altered by varying brake fluid pressure.

  15. Modified hydraulic braking system limits angular deceleration to safe values

    Science.gov (United States)

    Briggs, R. S.; Council, M.; Green, P. M.

    1966-01-01

    Conventional spring actuated, hydraulically released, fail-safe disk braking system is modified to control the angular deceleration of a massive antenna. The hydraulic system provides an immediate preset pressure to the spring-loaded brake shoes and holds it at this value to decelerate the antenna at the desired rate.

  16. Dynamics of Braking Vehicles: From Coulomb Friction to Anti-Lock Braking Systems

    Science.gov (United States)

    Tavares, J. M.

    2009-01-01

    The dynamics of braking of wheeled vehicles is studied using the Coulomb approximation for the friction between road and wheels. The dependence of the stopping distance on the mass of the vehicle, on the number of its wheels and on the intensity of the braking torque is established. It is shown that there are two regimes of braking, with and…

  17. Mechatronics Interface for Computer Assisted Prostate Surgery Training

    Science.gov (United States)

    Altamirano del Monte, Felipe; Padilla Castañeda, Miguel A.; Arámbula Cosío, Fernando

    2006-09-01

    In this work is presented the development of a mechatronics device to simulate the interaction of the surgeon with the surgical instrument (resectoscope) used during a Transurethral Resection of the Prostate (TURP). Our mechatronics interface is part of a computer assisted system for training in TURP, which is based on a 3D graphics model of the prostate which can be deformed and resected interactively by the user. The mechatronics interface, is the device that the urology residents will manipulate to simulate the movements performed during surgery. Our current prototype has five degrees of freedom, which are enough to have a realistic simulation of the surgery movements. Two of these degrees of freedom are linear, to determinate the linear displacement of the resecting loop and the other three are rotational to determinate three directions and amounts of rotation.

  18. Mechatronic Device for Locomotor Training

    Directory of Open Access Journals (Sweden)

    Duda Sławomir

    2016-12-01

    Full Text Available This paper presents a novel mechatronic device to support a gait reeducation process. The conceptual works were done by the interdisciplinary design team. This collaboration allowed to perform a device that would connect the current findings in the fields of biomechanics and mechatronics. In the first part of the article shown a construction of the device which is based on the structure of an overhead travelling crane. The rest of the article contains the issues related to machine control system. In the prototype, the control of drive system is conducted by means of two RT-DAC4/PCI real time cards connected with a signal conditioning interface. Authors present the developed control algorithms and optimization process of the controller settings values. The summary contains a comparison of some numerical simulation results and experimental data from the sensors mounted on the device. The measurement data were obtained during the gait of a healthy person.

  19. Poly-optimization: a paradigm in engineering design in mechatronics

    Energy Technology Data Exchange (ETDEWEB)

    Tarnowski, Wojciech [Koszalin University of Technology, Department of Control and Driving Systems, Institute of Mechatronics, Nanotechnology and Vacuum Technique, Koszalin (Poland); Krzyzynski, Tomasz; Maciejewski, Igor; Oleskiewicz, Robert [Koszalin University of Technology, Department of Mechatronics and Applied Mechanics, Institute of Mechatronics, Nanotechnology and Vacuum Technique, Koszalin (Poland)

    2011-02-15

    The paper deals with the Engineering Design that is a general methodology of a design process. It is assumed that a designer has to solve a design task as an inverse problem in an iterative way. After each iteration, a decision should be taken on the information that is called a centre of integration in a systematic design system. For this purpose, poly-optimal solutions may be used. The poly-optimization is presented and contrasted against the Multi Attribute Decision Making, and a set of the poly-optimal solutions is defined. Then Mechatronics is defined and its characteristics given, to prove that mechatronic design process vitally needs CAD tools. Three examples are quoted to demonstrate a key role of the poly-optimization in the mechatronic design. (orig.)

  20. Mechatronics education at Virginia Tech

    Science.gov (United States)

    Bay, John S.; Saunders, William R.; Reinholtz, Charles F.; Pickett, Peter; Johnston, Lee

    1998-12-01

    The advent of more complex mechatronic systems in industry has introduced new opportunities for entry-level and practicing engineers. Today, a select group of engineers are reaching out to be more knowledgeable in a wide variety of technical areas, both mechanical and electrical. A new curriculum in mechatronics developed at Virginia Tech is starting to bring students from both the mechanical and electrical engineering departments together, providing them wit an integrated perspective on electromechanical technologies and design. The course is cross-listed and team-taught by faculty from both departments. Students from different majors are grouped together throughout the course, each group containing at least one mechanical and one electrical engineering student. This gives group members the ability to learn from one another while working on labs and projects.

  1. Development of mechanical brake assist; Mechanical brake assist no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Konishi, M; Shingyoji, S; Nakamura, I; Tagawa, T; Saito, Y; Ishihara, T; Kobayashi, S; Yoshida, M [Nissan Motor Co. Ltd., Tokyo (Japan)

    1997-10-01

    We have recognized that there are drivers who cannot apply strong brake pedal force , in spite of the necessity of hard braking in emergencies. We have developed a `mechanical brake assist system` which assists drivers appropriately, according to the drivers` characteristics based on studying the characteristic`s of conditions of drivers applying the brake pedal force in emergency conditions. 2 refs., 7 figs., 1 tab.

  2. Usage of aids monitoring in automatic braking systems of modern cars

    Directory of Open Access Journals (Sweden)

    Dembitskyi V.

    2016-08-01

    Full Text Available Increased safety can be carried out at the expense the installation on vehicles of automatic braking systems, that monitor the traffic situation and the actions of the driver. In this paper considered the advantages and disadvantages of automatic braking systems, were analyzed modern tracking tools that are used in automatic braking systems. Based on the statistical data on accidents, are set the main dangers, that the automatic braking system will be reduced. In order to ensure the accuracy of information conducted research for determination of optimal combination of different sensors that provide an adequate perception of road conditions. The tracking system should be equipped with a combination of sensors, which in the case of detection of an obstacle or dangers of signal is transmitted to the information processing system and decision making. Information from the monitoring system should include data for the identification of the object, its condition, the speed.

  3. A synergistic method for vibration suppression of an elevator mechatronic system

    Science.gov (United States)

    Knezevic, Bojan Z.; Blanusa, Branko; Marcetic, Darko P.

    2017-10-01

    Modern elevators are complex mechatronic systems which have to satisfy high performance in precision, safety and ride comfort. Each elevator mechatronic system (EMS) contains a mechanical subsystem which is characterized by its resonant frequency. In order to achieve high performance of the whole system, the control part of the EMS inevitably excites resonant circuits causing the occurrence of vibration. This paper proposes a synergistic solution based on the jerk control and the upgrade of the speed controller with a band-stop filter to restore lost ride comfort and speed control caused by vibration. The band-stop filter eliminates the resonant component from the speed controller spectra and jerk control provides operating of the speed controller in a linear mode as well as increased ride comfort. The original method for band-stop filter tuning based on Goertzel algorithm and Kiefer search algorithm is proposed in this paper. In order to generate the speed reference trajectory which can be defined by different shapes and amplitudes of jerk, a unique generalized model is proposed. The proposed algorithm is integrated in the power drive control algorithm and implemented on the digital signal processor. Through experimental verifications on a scale down prototype of the EMS it has been verified that only synergistic effect of controlling jerk and filtrating the reference torque can completely eliminate vibrations.

  4. IT-tools for Mechatronic System Engineering and Design

    DEFF Research Database (Denmark)

    Conrad, Finn; Sørensen, Torben; Andersen, T. O.

    2003-01-01

    Companies are facing the on-going challenge that customers always increase their needs for capability of products and machinery. They want improved productivity and efficiency - if possible to lower prices; value for money. The demands often focus on extensions of functionality, faster response......, operation capability, man-machine interface (MMI), robustness, reliability and safety in use. Information Technology (IT) offers both software and hardware for improvement of the engineering design and industrial applications. The latest progress in IT makes integration of an overall design...... the Esprit project SWING on IT-tools for rapid prototyping of fluid power components and systems. A mechatronic test facility for a hydraulic robot and a CNC XY-machine table was implemented. The controller applies digital signal processors (DSPs). The DSP controller utilizes the dSPACE System suitable...

  5. 49 CFR 393.55 - Antilock brake systems.

    Science.gov (United States)

    2010-10-01

    ... hydraulic braked vehicles. Each hydraulic braked vehicle subject to the requirements of paragraph (a) of...)). (2) Each air braked commercial motor vehicle other than a truck tractor, manufactured on or after... malfunction circuits and signals for air braked vehicles. (1) Each truck tractor manufactured on or after...

  6. NUMERICAL THERMAL ANALYSIS OF A CAR BRAKING SYSTEM

    Directory of Open Access Journals (Sweden)

    Patryk Różyło

    2017-06-01

    Full Text Available The study involved performing a numerical thermal analysis of selected components in a car braking system. The primary goal of the study was to determine the regions which are the most susceptible to variations in temperature, and to determine the degree of thermal impact upon them. The analysis was performed using the Abaqus environment. The examined components of the braking system were made of materials reflecting the mechanical properties of the real subassemblies. The FEM analysis enabled determination of the distribution of temperature in the system with respect to the properties of the investigated materials and applied boundary conditions.

  7. An Inclusive Musical Mechatronics Course

    Directory of Open Access Journals (Sweden)

    Dale Anthony Carnegie

    2017-02-01

    Full Text Available This paper presents the design of a novel course in mechatronics, based on a project-based learning pedagogical philosophy that uses music as the theme to introduce to a diverse range of learners, the essential concepts of mechatronic practice. The course is designed at a post-graduate level and is targeted at international students who are likely to have a diverse range of background knowledge and potentially even a greater diversity in practical experience. The course builds upon our knowledge and capability in the construction or instrumentation of musical devices and cumulates in the design of a new mechatronic chordophone and the preparation of an IEEE conference paper submission.

  8. 49 CFR 232.103 - General requirements for all train brake systems.

    Science.gov (United States)

    2010-10-01

    ... pneumatic technology, the integrity of the train line shall be monitored by the brake control system. (c) A... travel exceeds: (1) 10 1/2 inches for cars equipped with nominal 12-inch stroke brake cylinders; or (2) The piston travel limits indicated on the stencil, sticker, or badge plate for the brake cylinder with...

  9. 76 FR 44829 - Federal Motor Vehicle Safety Standards; Air Brake Systems

    Science.gov (United States)

    2011-07-27

    ... [Docket No. NHTSA-2009-0175] RIN 2127-AK84 Federal Motor Vehicle Safety Standards; Air Brake Systems... final rule that amended the Federal motor vehicle safety standard for air brake systems by requiring... between Bendix Commercial Vehicle Systems and Dana Corporation; and ArvinMeritor. The agency received four...

  10. The Conceptual Design of a Mechatronic System to Handle Bedridden Elderly Individuals.

    Science.gov (United States)

    Bruno, Silva; José, Machado; Filomena, Soares; Vítor, Carvalho; Demétrio, Matos; Karolina, Bezerra

    2016-05-19

    The ever-growing percentage of elderly people in developed countries have made Ambient Assisted Living (AAL) solutions an important subject to be explored and developed. The increase in geriatric care requests are overburdening specialized institutions that cannot cope with the demand for support. Patients are forced to have to remain at their homes encumbering the spouse or close family members with the caregiver role. This caregiver is not always physically and technically apt to assist the bedridden person with his/her meals and hygiene/bath routine. Consequently, a solution to assist caregivers in these tasks is of the utmost importance. This paper presents an approach for supporting caregivers when moving and repositioning Bedridden Elderly Peoples (BEPs) in home settings by means of a mechatronic system inspired by industrial conveyers. The proposed solution is able to insert itself underneath the patient, due to its low-profile structural properties, and retrieve and reallocate him/her. Ideally, the proposed mechatronic system aims to promote autonomy by reducing handling complexity, alter the role of the caregiver from physically handler of the BEP to an operator/supervisor role, and lessen the amount of effort expended by caregivers and BEPs alike.

  11. The Conceptual Design of a Mechatronic System to Handle Bedridden Elderly Individuals

    Directory of Open Access Journals (Sweden)

    Silva Bruno

    2016-05-01

    Full Text Available The ever-growing percentage of elderly people in developed countries have made Ambient Assisted Living (AAL solutions an important subject to be explored and developed. The increase in geriatric care requests are overburdening specialized institutions that cannot cope with the demand for support. Patients are forced to have to remain at their homes encumbering the spouse or close family members with the caregiver role. This caregiver is not always physically and technically apt to assist the bedridden person with his/her meals and hygiene/bath routine. Consequently, a solution to assist caregivers in these tasks is of the utmost importance. This paper presents an approach for supporting caregivers when moving and repositioning Bedridden Elderly Peoples (BEPs in home settings by means of a mechatronic system inspired by industrial conveyers. The proposed solution is able to insert itself underneath the patient, due to its low-profile structural properties, and retrieve and reallocate him/her. Ideally, the proposed mechatronic system aims to promote autonomy by reducing handling complexity, alter the role of the caregiver from physically handler of the BEP to an operator/supervisor role, and lessen the amount of effort expended by caregivers and BEPs alike.

  12. The Conceptual Design of a Mechatronic System to Handle Bedridden Elderly Individuals

    Science.gov (United States)

    Bruno, Silva; José, Machado; Filomena, Soares; Vítor, Carvalho; Demétrio, Matos; Karolina, Bezerra

    2016-01-01

    The ever-growing percentage of elderly people in developed countries have made Ambient Assisted Living (AAL) solutions an important subject to be explored and developed. The increase in geriatric care requests are overburdening specialized institutions that cannot cope with the demand for support. Patients are forced to have to remain at their homes encumbering the spouse or close family members with the caregiver role. This caregiver is not always physically and technically apt to assist the bedridden person with his/her meals and hygiene/bath routine. Consequently, a solution to assist caregivers in these tasks is of the utmost importance. This paper presents an approach for supporting caregivers when moving and repositioning Bedridden Elderly Peoples (BEPs) in home settings by means of a mechatronic system inspired by industrial conveyers. The proposed solution is able to insert itself underneath the patient, due to its low-profile structural properties, and retrieve and reallocate him/her. Ideally, the proposed mechatronic system aims to promote autonomy by reducing handling complexity, alter the role of the caregiver from physically handler of the BEP to an operator/supervisor role, and lessen the amount of effort expended by caregivers and BEPs alike. PMID:27213383

  13. Applications of Mechatronics in Seating Furniture

    Directory of Open Access Journals (Sweden)

    Hynek Maňák

    2014-01-01

    Full Text Available Mechatronics is gradually being used in different fields of the production process and final products. In the field of home seating furniture, it has not been formally declared as such yet. The purpose of further development of seating furniture is to improve its ergonomic parameters, to improve user comfort in controlling and using seating furniture or to provide new additional functions of seating furniture. Application of mechatronic principles can be presumed within the framework of this development. An analysis of the current state of reclining seating furniture, which uses mechanical and electromechanical positioning mechanisms, is conducted in order to formulate possible fields of applying mechatronics. The analysis defines individual ergonomic parameters which are influenced in reclining of seating furniture. This analysis is used as a basis for formulating a hypothesis describing potential development fields of applying mechatronics in home seating furniture.

  14. Aspects of modular MEchatronics in South Africa

    CSIR Research Space (South Africa)

    Kumile, CM

    2008-07-01

    Full Text Available . To increase efficiency there is need to minimise the time and cost of development and operation of manufacturing systems. Shorter product life cycles require the manufacturing systems to be able to meet frequent changes. In recent years the mechatronic...

  15. Brake control system modification, augmentor Wing Jet STOL Research Airplane (AWJSRA)

    Science.gov (United States)

    Amberg, R. L.; Arline, J. A.; Jenny, R. W.

    1974-01-01

    The braking system for a short takeoff aircraft is discussed and the deficiencies are described. The installation of a Boeing 727 aircraft brake system was made to correct the deficiencies. Tests of the modified system were conducted using an analog computer/hardware simulator. Actual performance tests were conducted and the characteristics of the system were satisfactory.

  16. Research study on antiskid braking systems for the space shuttle

    Science.gov (United States)

    Auselmi, J. A.; Weinberg, L. W.; Yurczyk, R. F.; Nelson, W. G.

    1973-01-01

    A research project to investigate antiskid braking systems for the space shuttle vehicle was conducted. System from the Concorde, Boeing 747, Boeing 737, and Lockheed L-1011 were investigated. The characteristics of the Boeing 737 system which caused it to be selected are described. Other subjects which were investigated are: (1) trade studies of brake control concepts, (2) redundancy requirements trade study, (3) laboratory evaluation of antiskid systems, and (4) space shuttle hardware criteria.

  17. Modification of General Research Corporation (GRC) Dynatup 8200 Drop Tower Rebounding Brake System

    Science.gov (United States)

    2016-08-01

    Rebounding Brake System by David Gray, Robert Kaste, and Bradley Lawrence Approved for public release; distribution is...Research Laboratory Modification of General Research Corporation (GRC) Dynatup 8200 Drop Tower Rebounding Brake System by David Gray and...Research Corporation (GRC) Dynatup 8200 Drop Tower Rebounding Brake System 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6

  18. Regenerative braking systems with torsional springs made of carbon nanotube yarn

    International Nuclear Information System (INIS)

    Liu, S; Martin, C; Livermore, C; Lashmore, D; Schauer, M

    2014-01-01

    The demonstration of large stroke, high energy density and high power density torsional springs based on carbon nanotube (CNT) yarns is reported, as well as their application as an energy-storing actuator for regenerative braking systems. Originally untwisted CNT yarn is cyclically loaded and unloaded in torsion, with the maximum rotation angle increasing until failure. The maximum extractable energy density is measured to be as high as 6.13 kJ/kg. The tests also reveal structural reorganization and hysteresis in the torsional loading curves. A regenerative braking system is built to capture the kinetic energy of a wheel and store it as elastic energy in twisted CNT yarns. When the yam's twist is released, the stored energy reaccelerates the wheel. The measured energy and mean power densities of the CNT yarns in the simple regenerative braking system are up to 4.69 kJ/kg and 1.21 kW/kg, respectively. A slightly lower energy density of up to 1.23 kJ/kg and a 0.29 kW/kg mean power density are measured for the CNT yarns in a more complex system that mimics a unidirectional rotating regenerative braking mechanism. The lower energy densities for CNT yarns in the regenerative braking systems as compared with the yarns themselves reflect the frictional losses of the regenerative systems

  19. Regenerative braking systems with torsional springs made of carbon nanotube yarn

    Science.gov (United States)

    Liu, S.; Martin, C.; Lashmore, D.; Schauer, M.; Livermore, C.

    2014-11-01

    The demonstration of large stroke, high energy density and high power density torsional springs based on carbon nanotube (CNT) yarns is reported, as well as their application as an energy-storing actuator for regenerative braking systems. Originally untwisted CNT yarn is cyclically loaded and unloaded in torsion, with the maximum rotation angle increasing until failure. The maximum extractable energy density is measured to be as high as 6.13 kJ/kg. The tests also reveal structural reorganization and hysteresis in the torsional loading curves. A regenerative braking system is built to capture the kinetic energy of a wheel and store it as elastic energy in twisted CNT yarns. When the yam's twist is released, the stored energy reaccelerates the wheel. The measured energy and mean power densities of the CNT yarns in the simple regenerative braking system are up to 4.69 kJ/kg and 1.21 kW/kg, respectively. A slightly lower energy density of up to 1.23 kJ/kg and a 0.29 kW/kg mean power density are measured for the CNT yarns in a more complex system that mimics a unidirectional rotating regenerative braking mechanism. The lower energy densities for CNT yarns in the regenerative braking systems as compared with the yarns themselves reflect the frictional losses of the regenerative systems.

  20. Braking and cornering studies on an air cushion landing system

    Science.gov (United States)

    Daugherty, R. H.

    1983-01-01

    An experimental investigation was conducted to evaluate several concepts for braking and steering a vehicle equipped with an air cushion landing system (ACLS). The investigation made use of a modified airboat equipped with an ACLS. Braking concepts were characterized by the average deceleration of the vehicle. Reduced lobe flow and cavity venting braking concepts were evaluated in this program. The cavity venting braking concept demonstrated the best performance, producing decelerations on the test vehicle on the same order as moderate braking with conventional wheel brakes. Steering concepts were evaluated by recording the path taken while attempting to follow a prescribed maneuver. The steering concepts evaluated included using rudders only, using differential lobe flow, and using rudders combined with a lightly loaded, nonsteering center wheel. The latter concept proved to be the most accurate means of steering the vehicle on the ACLS, producing translational deviations two to three times higher than those from conventional nose-gear steering. However, this concept was still felt to provide reasonably precise steering control for the ACLS-equipped vehicle.

  1. 9th International Conference Mechatronics 2011

    CERN Document Server

    Březina, Tomaš

    2012-01-01

    The book “Mechatronics: Recent Technological and Scientific Advances” provides comprehensive and accessible coverage of the evolving disciplines of mechatronics for nanotechnology, automatic control & robotics, biomedical engineering, design manufacturing and testing of MEMS, metrology, photonics, mechatronic products majors. It is already the third volume following the previous editions in 2007 and 2009 providing a recent state of advances in mechatronics presented on the 9th International Conference Mechatronics 2011, hosted this year at the Faculty of Mechatronics, Warsaw University of Technology, Poland.                                                                                                                                                                                               The carefully selecte...

  2. Single acting translational/rotational brake

    Science.gov (United States)

    Allred, Johnny W. (Inventor); Fleck, Jr., Vincent J. (Inventor)

    1996-01-01

    A brake system is provided that applies braking forces on surfaces in both the translational and rotational directions using a single acting self-contained actuator that travels with the translational mechanism. The brake engages a mechanical lock and creates a frictional force on the translational structure preventing translation while simultaneously creating a frictional torque that prevents rotation of the vertical support. The system may include serrations on the braking surfaces to provide increased braking forces.

  3. 75 FR 51521 - Federal Motor Vehicle Safety Standards; Air Brake Systems; Technical Report on the Effectiveness...

    Science.gov (United States)

    2010-08-20

    ....121) mandates antilock braking systems (ABS) on all new air-braked vehicles with a GVWR of 10,000...-0116] Federal Motor Vehicle Safety Standards; Air Brake Systems; Technical Report on the Effectiveness of Antilock Braking Systems in Heavy Truck Tractors and Trailers AGENCY: National Highway Traffic...

  4. Driving systems: trends - innovations - mechatronics; Antriebssysteme: Trends - Innovationen - Mechatronik

    Energy Technology Data Exchange (ETDEWEB)

    Binder, A. [Technische Univ. Darmstadt (Germany). Inst. fuer Elektrische Energiewandlung; Wick, A. [Siemens A und D (Germany); Gold, P.W. [RWTH Aachen (Germany)

    2005-04-01

    Short overview on this special meeting with interdisciplinary topics of connection between mechanical and electrical engineering: mechatronics. The main topics are covered by the fields motion control, simulation of drives, monitoring, gears, motors engineering/-design, converter systems, industrial applications and drives for wind turbines. (GL) [German] Zeitgemaesse Planung und Entwicklung von Antriebssystemen bedarf eines interdisziplinaeren Vorgehens zwischen Elektrotechnik und Maschinenbau. Die erstmalig von VDE und VDI gemeinsam abgehaltene Tagung mit ca. 70 Fachbeitraegen ist folglich bewusst als interdisziplinaere Konferenz an der Nahtstelle von Maschinenbau und Eletrotechnik konzipiert worden. Die Schwerpunktthemen decken dabei die Bereiche Motion Control, Antriebsstrangmodellierung, Monitoring, Getriebetechnik, Motorentechnik/-bemessung, Umrichtertechnik, industrielle Antriebsapplikationen und Antriebe in der Windenergie ab. (orig.)

  5. Magnetic resonance-compatible robotic and mechatronics systems for image-guided interventions and rehabilitation: a review study.

    Science.gov (United States)

    Tsekos, Nikolaos V; Khanicheh, Azadeh; Christoforou, Eftychios; Mavroidis, Constantinos

    2007-01-01

    The continuous technological progress of magnetic resonance imaging (MRI), as well as its widespread clinical use as a highly sensitive tool in diagnostics and advanced brain research, has brought a high demand for the development of magnetic resonance (MR)-compatible robotic/mechatronic systems. Revolutionary robots guided by real-time three-dimensional (3-D)-MRI allow reliable and precise minimally invasive interventions with relatively short recovery times. Dedicated robotic interfaces used in conjunction with fMRI allow neuroscientists to investigate the brain mechanisms of manipulation and motor learning, as well as to improve rehabilitation therapies. This paper gives an overview of the motivation, advantages, technical challenges, and existing prototypes for MR-compatible robotic/mechatronic devices.

  6. The design of aircraft brake systems, employing cooling to increase brake life

    Science.gov (United States)

    Scaringe, R. P.; Ho, T. L.; Peterson, M. B.

    1975-01-01

    A research program was initiated to determine the feasibility of using cooling to increase brake life. An air cooling scheme was proposed, constructed and tested with various designs. Straight and curved slotting of the friction material was tested. A water cooling technique, similar to the air cooling procedure, was evaluated on a curved slotted rotor. Also investigated was the possibility of using a phase-change material within the rotor to absorb heat during braking. Various phase-changing materials were tabulated and a 50%, (by weight) LiF - BeF2 mixing was chosen. It was shown that corrosion was not a problem with this mixture. A preliminary design was evaluated on an actual brake. Results showed that significant improvements in lowering the surface temperature of the brake occurred when air or water cooling was used in conjunction with curved slotted rotors.

  7. Measuring Technology and Mechatronics Automation in Electrical Engineering

    CERN Document Server

    2012-01-01

    Measuring Technology and Mechatronics Automation in Electrical Engineering includes select presentations on measuring technology and mechatronics automation related to electrical engineering, originally presented during the International Conference on Measuring Technology and Mechanatronics Automation (ICMTMA2012). This Fourth ICMTMA, held at Sanya, China, offered a prestigious, international forum for scientists, engineers, and educators to present the state of the art of measuring technology and mechatronics automation research.

  8. Effect of the crone suspension control system on braking

    Energy Technology Data Exchange (ETDEWEB)

    Moreau, X.; Oustaloup, A. [Bordeaux-1 Univ., Talence (France). Lab. d' Automatique et de Productique; Nouillant, C. [Bordeaux-1 Univ., Talence (France). Lab. d' Automatique et de Productique]|[DRIA-PSA Peugeot Citroen, Velizy - Villacoublay (France)

    2001-07-01

    Semi-active or active suspensions not only increase driving comfort, but also permit the control system to be switched over if required in order to improve the transmission of forces at the points of contact between tire and road surface by minimizing the dynamic wheel loads. It may also be possible to use these systems to control wheel load distribution and, thus, influence braking or steering performance by changing the distribution of normal forces between the front and rear axles. This article examines the effect of the CRONE suspension control system on braking. The central idea is to use continuously variable dampers and fast load levelling devices to distribute the normal forces of tire between the front and rear axles. The basis principle is explained using known dynamic properties of active suspension, vehicles and tires. The effect of active suspension on vehicle response during braking is then evaluated using computer simulations from a two-wheel vehicle model. (orig.)

  9. Mechatronics: Skilled Industrial Job Training

    OpenAIRE

    Bill Jones

    2013-01-01

    Currently, skills required for these jobs are available through many avenues, but we have centered our efforts on a program called mechatronics. Mechatronics combines the industrial fields of electronics, fluid power (hydraulic and pneumatic), mechanics, and computer processing (programmable logic controller, or PLC, and microprocessors). Businesses, community resources, legislators, and educators are beginning to work together in Tennessee and in Rutherford County to develop pathways for K-1...

  10. Thermal analysis and temperature characteristics of a braking resistor for high-speed trains for changes in the braking current

    Science.gov (United States)

    Lee, Dae-Dong; Kang, Hyun-Il; Shim, Jae-Myung

    2015-09-01

    Electric brake systems are used in high-speed trains to brake trains by converting the kinetic energy of a railway vehicle to electric energy. The electric brake system consists of a regenerative braking system and a dynamic braking system. When the electric energy generated during the dynamic braking process is changed to heat through the braking resistor, the braking resistor can overheat; thus, failures can occur to the motor block. In this paper, a braking resistor for a high-speed train was used to perform thermal analyses and tests, and the results were analyzed. The analyzed data were used to estimate the dependence of the brake currents and the temperature rises on speed changes up to 300 km/h, at which a test could not be performed.

  11. Brake Fundamentals. Automotive Articulation Project.

    Science.gov (United States)

    Cunningham, Larry; And Others

    Designed for secondary and postsecondary auto mechanics programs, this curriculum guide contains learning exercises in seven areas: (1) brake fundamentals; (2) brake lines, fluid, and hoses; (3) drum brakes; (4) disc brake system and service; (5) master cylinder, power boost, and control valves; (6) parking brakes; and (7) trouble shooting. Each…

  12. Mobile Robot Lab Project to Introduce Engineering Students to Fault Diagnosis in Mechatronic Systems

    Science.gov (United States)

    Gómez-de-Gabriel, Jesús Manuel; Mandow, Anthony; Fernández-Lozano, Jesús; García-Cerezo, Alfonso

    2015-01-01

    This paper proposes lab work for learning fault detection and diagnosis (FDD) in mechatronic systems. These skills are important for engineering education because FDD is a key capability of competitive processes and products. The intended outcome of the lab work is that students become aware of the importance of faulty conditions and learn to…

  13. Sensotronic brake control. Braking with maximum efficiency; Die Sensotronic Brake Control. Bremsen auf hoechstem Niveau

    Energy Technology Data Exchange (ETDEWEB)

    Fischle, G.; Stoll, U.; Hinrichs, W.

    2002-05-01

    Sensotronic Brake Control (SBC) celebrated its world premiere when it was introduced into standard production along with the new SL in October 2001. This innovative brake system is also fitted as standard in the new E-Class. The design of the system components is identical to those used in the SL-Class. The software control parameters have been adapted to the conditions in the new saloon. (orig.) [German] Die Sensotronic Brake Control (SBC) wurde als Weltneuheit mit dem neuen SL im Oktober 2001 in Serie gebracht. Dieses innovative Bremssystem gehoert ebenfalls zur Serienausstattung der neuen E-Klasse. Die Systemkomponenten sind baugleich mit denen der SL-Klasse. Die Regelparameter der Software sind an die Verhaeltnisse der Limousine angepasst. (orig.)

  14. Development of remote data acquisition system based on OPC for brake test bench

    Science.gov (United States)

    Wang, Yiwei; Wu, Mengling; Tian, Chun; Ma, Tianhe

    2017-08-01

    The 1:1 train brake system test bench can be used to carry out brake-related adhesion-slid control, stability test, noise test and dynamic test. To collect data of the test bench, a data acquisition method is needed. In this paper, the remote data acquisition system of test bench is built by LabVIEW based on OPC technology. Unlike the traditional hardwire way connecting PLC acquisition module with sensors, the novel method is used to collect data and share them through the internal LAN built by Ethernet switches, which avoids the complex wiring interference in an easy, efficient and flexible way. The system has been successfully applied to the data acquisition activities of the comprehensive brake system test bench of CRRC Nanjing Puzhen Haitai Brake Equipment Co., Ltd., and the relationship test between the adhesion coefficient and the slip-ratio is realized. The speed signal, torque signal and brake disc temperature can be collected and displayed. The results show that the system is reliable, convenient, and efficient, and can meet the requirements of data acquisition.

  15. From mechatronic systems to cyber-physical systems: Demands for a new design methodology?

    DEFF Research Database (Denmark)

    Hehenberger, Peter; Howard, Thomas J.; Torry-Smith, Jonas

    2016-01-01

    Mechatronics may be defined as an interdisciplinary field of engineering science which aims to mutually integrate and interconnect mechanical engineering, electrical engineering/electronics and computer science (also often called information technology) such that the interactions constitute...

  16. Current developments of high-tech robotic and mechatronic systems in horticulture and challenges for the future

    NARCIS (Netherlands)

    Pekkeriet, E.J.; Henten, van E.J.

    2011-01-01

    This paper reviews the current developments of high-tech robotic and mechatronic systems in horticulture and future perspectives. Driving forces for mechanization are identified. Dutch greenhouse crop production is used as an example. In greenhouse horticulture the production steps and control that

  17. Actuator concepts and mechatronics

    Science.gov (United States)

    Gilbert, Michael G.; Horner, Garnett C.

    1998-06-01

    Mechatronic design implies the consideration of integrated mechanical, electrical, and local control characteristics in electromechanical device design. In this paper, mechatronic development of actuation device concepts for active aircraft aerodynamic flow control are presented and discussed. The devices are intended to be embedded in aircraft aerodynamic surfaces to provide zero-net-momentum jets or additional flow-vorticity to control boundary layers and flow- separation. Two synthetic jet device prototypes and one vorticity-on-demand prototype currently in development are described in the paper. The aspects of actuation materials, design approaches to generating jets and vorticity, and the integration of miniaturized electronics are stressed.

  18. Rasper: a Mechatronic Noise-Intoner

    OpenAIRE

    Zareei, Mo; Kapur, Ajay; Carnegie, Dale A.

    2014-01-01

    Over the past few decades, there has been an increasing number of musical instruments and works of sound art that incorporate robotics and mechatronics. This paper proposes a new approach in classification of such works and focuses on those whose ideological roots can be sought in Luigi Russolo's noise-intoners (intonarumori). It presents a discussion on works in which mechatronics is used to investigate new and traditionally perceived as ``extra-musical" sonic territories, and introduces Ras...

  19. Development of nondestructive system for detecting the cracks in KTX brake disk using Rayleigh wave

    International Nuclear Information System (INIS)

    Kim, Min Soo; Lee, Ho Yong; Yeom, Yun Taek; Park, Jin Hyun; Song, Sung Jing; Kim, Hak Joon; Kwon, Sung Duck

    2017-01-01

    Recently, KTX (Korean Train Express) train stoppage accidents were mainly caused by malfunctioning equipment, aging and cracking of railway vehicles, crack breakages of brake disks, and breakages of brake disks. Breakage of brake disk can cause large-scale casualties such as high-speed collision and concern about derailment by hitting lower axle and wheel. Therefore, in this study, a brake disk with solid and ventilation type, which is the brake disk of a KTX train was modeled, and a dynamometer system was constructed to operate the disk. A Rayleigh wave was used to inspect the surface of the brake disk. An ultrasonic inspection module was developed for the brake disk by using a local immersion method due to the difficulty involved in ultrasonic inspection using an existing immersion method. In addition, the surface defects of the brake disk were evaluated using a dynamometer mock-up system and an ultrasonic inspection module of the brake disk

  20. Development of nondestructive system for detecting the cracks in KTX brake disk using Rayleigh wave

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Soo; Lee, Ho Yong [Korea Railroad Research Institute, Uiwang (Korea, Republic of); Yeom, Yun Taek; Park, Jin Hyun; Song, Sung Jing; Kim, Hak Joon [Dept. of Mechanical Engineering, Sungkyunkwan University, Suwon (Korea, Republic of); Kwon, Sung Duck [Dept. of Physics, Andong National University, Andong (Korea, Republic of)

    2017-02-15

    Recently, KTX (Korean Train Express) train stoppage accidents were mainly caused by malfunctioning equipment, aging and cracking of railway vehicles, crack breakages of brake disks, and breakages of brake disks. Breakage of brake disk can cause large-scale casualties such as high-speed collision and concern about derailment by hitting lower axle and wheel. Therefore, in this study, a brake disk with solid and ventilation type, which is the brake disk of a KTX train was modeled, and a dynamometer system was constructed to operate the disk. A Rayleigh wave was used to inspect the surface of the brake disk. An ultrasonic inspection module was developed for the brake disk by using a local immersion method due to the difficulty involved in ultrasonic inspection using an existing immersion method. In addition, the surface defects of the brake disk were evaluated using a dynamometer mock-up system and an ultrasonic inspection module of the brake disk.

  1. Advanced Mechatronics and MEMS Devices

    CERN Document Server

    2013-01-01

    Advanced Mechatronics and MEMS Devicesdescribes state-of-the-art MEMS devices and introduces the latest technology in electrical and mechanical microsystems. The evolution of design in microfabrication, as well as emerging issues in nanomaterials, micromachining, micromanufacturing and microassembly are all discussed at length in this volume. Advanced Mechatronics also provides a reader with knowledge of MEMS sensors array, MEMS multidimensional accelerometer, artificial skin with imbedded tactile components, as well as other topics in MEMS sensors and transducers. The book also presents a number of topics in advanced robotics and an abundance of applications of MEMS in robotics, like reconfigurable modular snake robots, magnetic MEMS robots for drug delivery and flying robots with adjustable wings, to name a few. This book also: Covers the fundamentals of advanced mechatronics and MEMS devices while also presenting new state-of-the-art methodology and technology used in the application of these devices Prese...

  2. Study on Two-segment Electric-mechanical Composite Braking Strategy of Tracked Vehicle Hybrid Transmission System

    OpenAIRE

    Ma, Tian; Gai, Jiangtao; Ma, Xiaofeng

    2010-01-01

    In order to lighten abrasion of braking system of hybrid electric tracked vehicle, according to characteristic of hybrid electric transmission, electric-mechanical composite braking method was proposed. By means of analyzing performance of electric braking and mechanical braking and three-segment composite braking strategy, two-segment electric-mechanical composite braking strategy was put forward in this paper. Simulation results of Matlab/Simulink indicated that the two-segment electric-mec...

  3. A Predictive Distribution Model for Cooperative Braking System of an Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Hongqiang Guo

    2014-01-01

    Full Text Available A predictive distribution model for a series cooperative braking system of an electric vehicle is proposed, which can solve the real-time problem of the optimum braking force distribution. To get the predictive distribution model, firstly three disciplines of the maximum regenerative energy recovery capability, the maximum generating efficiency and the optimum braking stability are considered, then an off-line process optimization stream is designed, particularly the optimal Latin hypercube design (Opt LHD method and radial basis function neural network (RBFNN are utilized. In order to decouple the variables between different disciplines, a concurrent subspace design (CSD algorithm is suggested. The established predictive distribution model is verified in a dynamic simulation. The off-line optimization results show that the proposed process optimization stream can improve the regenerative energy recovery efficiency, and optimize the braking stability simultaneously. Further simulation tests demonstrate that the predictive distribution model can achieve high prediction accuracy and is very beneficial for the cooperative braking system.

  4. Brake blending strategy for a hybrid vehicle

    Science.gov (United States)

    Boberg, Evan S.

    2000-12-05

    A hybrid electric powertrain system is provided including a transmission for driving a pair of wheels of a vehicle and a heat engine and an electric motor/generator coupled to the transmission. A friction brake system is provided for applying a braking torque to said vehicle. A controller unit generates control signals to the electric motor/generator and the friction brake system for controllably braking the vehicle in response to a drivers brake command. The controller unit determines and amount of regenerative torque available and compares this value to a determined amount of brake torque requested for determining the control signals to the electric motor/generator and the friction brake system.

  5. Regenerative braking strategies, vehicle safety and stability control systems: critical use-case proposals

    Science.gov (United States)

    Oleksowicz, Selim A.; Burnham, Keith J.; Southgate, Adam; McCoy, Chris; Waite, Gary; Hardwick, Graham; Harrington, Cian; McMurran, Ross

    2013-05-01

    The sustainable development of vehicle propulsion systems that have mainly focused on reduction of fuel consumption (i.e. CO2 emission) has led, not only to the development of systems connected with combustion processes but also to legislation and testing procedures. In recent years, the low carbon policy has made hybrid vehicles and fully electric vehicles (H/EVs) popular. The main virtue of these propulsion systems is their ability to restore some of the expended energy from kinetic movement, e.g. the braking process. Consequently new research and testing methods for H/EVs are currently being developed. This especially concerns the critical 'use-cases' for functionality tests within dynamic events for both virtual simulations, as well as real-time road tests. The use-case for conventional vehicles for numerical simulations and road tests are well established. However, the wide variety of tests and their great number (close to a thousand) creates a need for selection, in the first place, and the creation of critical use-cases suitable for testing H/EVs in both virtual and real-world environments. It is known that a marginal improvement in the regenerative braking ratio can significantly improve the vehicle range and, therefore, the economic cost of its operation. In modern vehicles, vehicle dynamics control systems play the principal role in safety, comfort and economic operation. Unfortunately, however, the existing standard road test scenarios are insufficient for H/EVs. Sector knowledge suggests that there are currently no agreed tests scenarios to fully investigate the effects of brake blending between conventional and regenerative braking as well as the regenerative braking interaction with active driving safety systems (ADSS). The paper presents seven manoeuvres, which are considered to be suitable and highly informative for the development and examination of H/EVs with regenerative braking capability. The critical manoeuvres presented are considered to be

  6. Mechatronics: the future of mechanical engineering; past, present, and a vision for the future

    Science.gov (United States)

    Ramasubramanian, M. K.

    2001-08-01

    Mechatronics is the synergistic integration of precision mechanical engineering, electronics, computational hardware and software in the design of products and processes. Mechatronics, the term coined in Japan in the '70s, has evolved to symbolize what mechanical design engineers do today worldwide. The revolutionary introduction of the microprocessor (or microcontroller) in the early '80s and ever increasing performance-cost ratio has changed the paradigm of mechanical design forever, and has broadened the original definition of mechatronics to include intelligent control and autonomous decision-making. Today, increasing number of new products is being developed at the intersection between traditional disciplines of Engineering, and Computer and Material Sciences. New developments in these traditional disciplines are being absorbed into mechatronics design at an ever-increasing pace. In this paper, a brief history of mechatronics, and several examples of this rapid adaptation of technologies into product design is presented. With the ongoing information technology revolution, especially in wireless communication, smart sensors design (enabled by MEMS technology), and embedded systems engineering, mechatronics design is going through another step change in capabilities and scope. The implications of these developments in mechatronics design in the near future are discussed. Finally, deficiencies in our engineering curriculum to address the needs of the industry to cope up with these rapid changes, and proposed remedies, will also be discussed.

  7. 49 CFR 571.135 - Standard No. 135; Light vehicle brake systems.

    Science.gov (United States)

    2010-10-01

    ... service brake system, such as a pump, that automatically supplies energy in the event of a primary brake...). S6.1.2. Wind speed. The wind speed is not greater than 5 m/s (11.2 mph). S6.2. Road test surface. S6...

  8. An Inclusive Musical Mechatronics Course

    OpenAIRE

    Dale Anthony Carnegie; Mo Zareei; Jim Murphy; Craig Watterson

    2017-01-01

    This paper presents the design of a novel course in mechatronics, based on a project-based learning pedagogical philosophy that uses music as the theme to introduce to a diverse range of learners, the essential concepts of mechatronic practice. The course is designed at a post-graduate level and is targeted at international students who are likely to have a diverse range of background knowledge and potentially even a greater diversity in practical experience. The course builds upon our knowle...

  9. Modeling and design of cooperative braking in electric and hybrid vehicles using induction machine and hydraulic brake

    Directory of Open Access Journals (Sweden)

    Zaini Dalimus

    2016-07-01

    Full Text Available In mixed-mode braking applications, the electric motor / generator (M/G and hydraulic pressure valve are controlled to meet the driver’s braking demand. Controlling these braking elements is achieved by modulating the current generated by the M/G and adjusting the fluid pressure to the wheel brake cylinders. This paper aims to model and design combined regenerative and hydraulic braking systems which, comprise an induction electric machine, inverter, NiMH battery, controller, a pressure source, pressure control unit, and brake calipers. A 15 kW 1500 rpm induction machine equipped with a reduction gear having a gear ratio of 4 is used. A hydraulic brake capable to produce fluid pressure up to 40 bar is used. Direct torque control and pressure control are chosen as the control criteria in the M/G and the hydraulic solenoid valve. The braking demands for the system are derived from the Federal Testing Procedure (FTP drive cycle. Two simulation models have been developed in Matlab®/Simulink® to analyze the performance of the control strategy in each braking system. The developed model is validated through experiment. It is concluded that the control system does introduce torque ripple and pressure oscillation in the braking system, but these effects do not affect vehicle braking performance due to the high frequency nature of pressure fluctuation and the damping effect of the vehicle inertia. Moreover, experiment results prove the effectiveness of the developed model.

  10. Complexity management during the analysis of mechatronic systems

    OpenAIRE

    Felgen, L.;Deubzer, F.;Lindemann, U.

    2017-01-01

    High market pressure due to the increasing customer requirements in terms of performance, quality, and price, forces the automotive industry to develop new innovative products at a high quality level. Innovative products demand the synergetic integration of different engineering domains such as mechanics, electronics and information technology being prescribed by the term of mechatronics. The integration of elements of different engineering domains leads to several advantages. However, the au...

  11. Probabilistically Tuned LQ Control for Mechatronic Applications

    Czech Academy of Sciences Publication Activity Database

    Belda, Květoslav

    2009-01-01

    Roč. 9, č. 2 (2009), s. 19-24 ISSN 1336-5010 Institutional research plan: CEZ:AV0Z10750506 Keywords : adaptive control * state-space realization * mechatronic applications Subject RIV: BC - Control Systems Theory http://library.utia.cas.cz/separaty/historie/belda-0332695.pdf

  12. Analysis of heat conduction in a drum brake system of the wheeled armored personnel carriers

    Science.gov (United States)

    Puncioiu, A. M.; Truta, M.; Vedinas, I.; Marinescu, M.; Vinturis, V.

    2015-11-01

    This paper is an integrated study performed over the Braking System of the Wheeled Armored Personnel Carriers. It mainly aims to analyze the heat transfer process which is present in almost any industrial and natural process. The vehicle drum brake systems can generate extremely high temperatures under high but short duration braking loads or under relatively light but continuous braking. For the proper conduct of the special vehicles mission in rough terrain, we are talking about, on one hand, the importance of the possibility of immobilization and retaining position and, on the other hand, during the braking process, the importance movement stability and reversibility or reversibility, to an encounter with an obstacle. Heat transfer processes influence the performance of the braking system. In the braking phase, kinetic energy transforms into thermal energy resulting in intense heating and high temperature states of analyzed vehicle wheels. In the present work a finite element model for the temperature distribution in a brake drum is developed, by employing commercial finite element software, ANSYS. These structural and thermal FEA models will simulate entire braking event. The heat generated during braking causes distortion which modifies thermoelastic contact pressure distribution drum-shoe interface. In order to capture the effect of heat, a transient thermal analysis is performed in order to predict the temperature distribution transitional brake components. Drum brakes are checked both mechanical and thermal. These tests aim to establish their sustainability in terms of wear and the variation coefficient of friction between the friction surfaces with increasing temperature. Modeling using simulation programs led eventually to the establishment of actual thermal load of the mechanism of brake components. It was drawn the efficiency characteristic by plotting the coefficient of effectiveness relative to the coefficient of friction shoe-drum. Thus induced

  13. Behavior of aircraft antiskid braking systems on dry and wet runway surfaces. A slip-velocity-controlled, pressure-bias-modulated system

    Science.gov (United States)

    Stubbs, S. M.; Tanner, J. A.; Smith, E. G.

    1979-01-01

    The braking and cornering response of a slip velocity controlled, pressure bias modulated aircraft antiskid braking system is investigated. The investigation, conducted on dry and wet runway surfaces, utilized one main gear wheel, brake, and tire assembly of a McDonnell Douglas DC 9 series 10 airplane. The landing gear strut was replaced by a dynamometer. The parameters, which were varied, included the carriage speed, tire loading, yaw angle, tire tread condition, brake system operating pressure, and runway wetness conditions. The effects of each of these parameters on the behavior of the skid control system is presented. Comparisons between data obtained with the skid control system and data obtained from single cycle braking tests without antiskid protection are examined.

  14. Validity of a device designed to measure braking power in bicycle disc brakes.

    Science.gov (United States)

    Miller, Matthew C; Fink, Philip W; Macdermid, Paul William; Perry, Blake G; Stannard, Stephen R

    2017-07-21

    Real-world cycling performance depends not only on exercise capacities, but also on efficiently traversing the bicycle through the terrain. The aim of this study was to determine if it was possible to quantify the braking done by a cyclist in the field. One cyclist performed 408 braking trials (348 on a flat road; 60 on a flat dirt path) over 5 days on a bicycle fitted with brake torque and angular velocity sensors to measure brake power. Based on Newtonian physics, the sum of brake work, aerodynamic drag and rolling resistance was compared with the change in kinetic energy in each braking event. Strong linear relationships between the total energy removed from the bicycle-rider system through braking and the change in kinetic energy were observed on the tar-sealed road (r 2  = 0.989; p brake torque and angular velocity sensors are valid for calculating brake power on the disc brakes of a bicycle in field conditions. Such a device may be useful for investigating cyclists' ability to traverse through various terrains.

  15. INVESTIGATION OF ANTILOCK BRAKE SYSTEM EFFECT ON PASSENGER CAR BRAFKING EFFICIENCY

    Directory of Open Access Journals (Sweden)

    I. Davidenko

    2011-01-01

    Full Text Available It has been experimentally proved that in case of emergency braking the constant decelera-tion of passenger cars equipped by antilock brake system exceeds the tabulated statistical data by 7,7–17 % that is recommended to apply at technical expertise at traffic accident causes investigation.

  16. Carbon nanotube torsional springs for regenerative braking systems

    Science.gov (United States)

    Liu, Sanwei; Martin, Corbin; Lashmore, David; Schauer, Mark; Livermore, Carol

    2015-10-01

    The modeling and demonstration of large stroke, high energy density and high power density torsional springs based on carbon nanotube (CNT) yarns is reported, as well as their application as energy-storing actuators for regenerative braking systems. An originally untwisted CNT yarn is cyclically loaded and unloaded in torsion, with the maximum rotation angle increasing incrementally until failure. The measured average extractable energy density values are 2.9 kJ kg-1  ±  1.2 kJ kg-1 and 3.4 kJ kg-1  ±  0.4 kJ kg-1 for 1-ply CNT yarns and 2-ply CNT yarns, respectively. Additionally, a regenerative braking system is demonstrated to capture the kinetic energy of a wheel and store it as elastic energy in twisted CNT yarns. When the yarn’s twist is released, the stored energy reaccelerates the wheel. The measured energy and mean power densities of the CNT yarns in the simple regenerative braking setup are on average 3.3 kJ kg-1 and 0.67 kW kg-1, respectively, with maximum measured values of up to 4.7 kJ kg-1 and 1.2 kW kg-1, respectively. A slightly lower energy density of up to 1.2 kJ kg-1 and a 0.29 kW kg-1 mean power density are measured for CNT yarns in a more complex setup that mimics a unidirectional rotating regenerative braking mechanism.

  17. Asymmetric Barrier Lyapunov Function-Based Wheel Slip Control for Antilock Braking System

    Directory of Open Access Journals (Sweden)

    Xiaolei Chen

    2015-01-01

    Full Text Available As an important device of the aircraft landing system, the antilock braking system (ABS has a function to avoid aircraft wheels self-locking. To deal with the strong nonlinear characteristics, complex nonlinear control schemes are applied in ABS. However, none of existing control schemes focus on the braking operating status, which directly reflects wheels self-locking degree. In this paper, the braking operating status region is divided into three regions: the healthy region, the light slip region, and the deep slip region. An ABLF-based wheel slip controller is proposed for ABS to constrain the braking system operating status in the healthy region and the light slip region. Therefore the ABS will be prevented from operating in the deep slip region. Under the proposed control scheme, self-locking is avoided completely and zero steady state error tracking of the wheel optimal slip ratio is implemented. The Hardware-In-Loop (HIL experiments have validated the effectiveness of the proposed controller.

  18. Non-identifier based adaptive control in mechatronics theory and application

    CERN Document Server

    Hackl, Christoph M

    2017-01-01

    This book introduces non-identifier-based adaptive control (with and without internal model) and its application to the current, speed and position control of mechatronic systems such as electrical synchronous machines, wind turbine systems, industrial servo systems, and rigid-link, revolute-joint robots. In mechatronics, there is often only rough knowledge of the system. Due to parameter uncertainties, nonlinearities and unknown disturbances, model-based control strategies can reach their performance or stability limits without iterative controller design and performance evaluation, or system identification and parameter estimation. The non-identifier-based adaptive control presented is an alternative that neither identifies the system nor estimates its parameters but ensures stability. The adaptive controllers are easy to implement, compensate for disturbances and are inherently robust to parameter uncertainties and nonlinearities. For controller implementation only structural system knowledge (like relativ...

  19. 49 CFR 393.52 - Brake performance.

    Science.gov (United States)

    2010-10-01

    ...: Type of motor vehicle Service brake systems Braking force as a percentage of gross vehicle or... specifications for performance-based brake testers for commercial motor vehicles, where braking force is the sum of the braking force at each wheel of the vehicle or vehicle combination as a percentage of gross...

  20. Model-based Sliding Mode Controller of Anti-lock Braking System

    Science.gov (United States)

    Zheng, Lin; Luo, Yue-Gang; Kang, Jing; Shi, Zhan-Qun

    2016-05-01

    The anti-lock braking system (ABS) used in automobiles is used to prevent wheel from lockup and to maintain the steering ability and stability. The sliding mode controller is able to control nonlinear system steadily. In this research, a one-wheel dynamic model with ABS control is built up using model-based method. Using the sliding model controller, the simulation results by using Matlab/Simulink show qualified data compared with optimal slip rate. By using this method, the ABS brake efficiency is improved efficiently.

  1. Advanced Emergency Braking Controller Design for Pedestrian Protection Oriented Automotive Collision Avoidance System

    Directory of Open Access Journals (Sweden)

    Guo Lie

    2014-01-01

    Full Text Available Automotive collision avoidance system, which aims to enhance the active safety of the vehicle, has become a hot research topic in recent years. However, most of the current systems ignore the active protection of pedestrian and other vulnerable groups in the transportation system. An advanced emergency braking control system is studied by taking into account the pedestrians and the vehicles. Three typical braking scenarios are defined and the safety situations are assessed by comparing the current distance between the host vehicle and the obstacle with the critical braking distance. To reflect the nonlinear time-varying characteristics and control effect of the longitudinal dynamics, the vehicle longitudinal dynamics model is established in CarSim. Then the braking controller with the structure of upper and lower layers is designed based on sliding mode control and the single neuron PID control when confronting deceleration or emergency braking conditions. Cosimulations utilizing CarSim and Simulink are finally carried out on a CarSim intelligent vehicle model to explore the effectiveness of the proposed controller. Results display that the designed controller has a good response in preventing colliding with the front vehicle or pedestrian.

  2. Advanced emergency braking controller design for pedestrian protection oriented automotive collision avoidance system.

    Science.gov (United States)

    Lie, Guo; Zejian, Ren; Pingshu, Ge; Jing, Chang

    2014-01-01

    Automotive collision avoidance system, which aims to enhance the active safety of the vehicle, has become a hot research topic in recent years. However, most of the current systems ignore the active protection of pedestrian and other vulnerable groups in the transportation system. An advanced emergency braking control system is studied by taking into account the pedestrians and the vehicles. Three typical braking scenarios are defined and the safety situations are assessed by comparing the current distance between the host vehicle and the obstacle with the critical braking distance. To reflect the nonlinear time-varying characteristics and control effect of the longitudinal dynamics, the vehicle longitudinal dynamics model is established in CarSim. Then the braking controller with the structure of upper and lower layers is designed based on sliding mode control and the single neuron PID control when confronting deceleration or emergency braking conditions. Cosimulations utilizing CarSim and Simulink are finally carried out on a CarSim intelligent vehicle model to explore the effectiveness of the proposed controller. Results display that the designed controller has a good response in preventing colliding with the front vehicle or pedestrian.

  3. Vacuum Mechatronics And Insvection For Self-Contained Manufacturing

    Science.gov (United States)

    Belinski, Steve E.; Shirazi, Majid; Seidel, Thomas E.; Hackwood, Susan

    1990-02-01

    The vacuum environment is increasingly being used in manufacturing operations, especially in the semiconductor industry. Shrinking linewidths and feature sizes dictate that cleanliness standards become continually more strict. Studies at the Center for Robotic Systems in Microelectronics (CRSM) indicate that a controlled vacuum enclosure can provide a superior clean environment. In addition, since many microelectronic fabrication steps are already carried out under vacuum, self-contained multichamber processing systems are being developed at a rapid pace. CRSM support of these systems includes the development of a research system, the Self-contained Automated Robotic Factory (SCARF), a vacuum-compatible robot, and investigations of particulate characterization in vacuum and inspection for multichamber systems. Successful development of complex and expensive multichamber systems is, to a great extent, dependent upon the discipline called vacuum mechatronics, which includes the design and development of vacuum-compatible computer-controlled mechanisms for manipulating, sensing and testing in a vacuum environment. Here the constituents of the vacuum mechatronics discipline are defined and reviewed in the context of the importance to self-contained in-vacuum manufacturing.

  4. Diagnostics monitor of the braking efficiency in the on board diagnostics system for the motor vehicles

    Science.gov (United States)

    Gajek, Andrzej

    2016-09-01

    The article presents diagnostics monitor for control of the efficiency of brakes in various road conditions in cars equipped with pressure sensor in brake (ESP) system. Now the brake efficiency of the vehicles is estimated periodically in the stand conditions on the base of brake forces measurement or in the road conditions on the base of the brake deceleration. The presented method allows to complete the stand - periodical tests of the brakes by current on board diagnostics system OBD for brakes. First part of the article presents theoretical dependences between deceleration of the vehicle and brake pressure. The influence of the vehicle mass, initial speed of braking, temperature of brakes, aerodynamic drag, rolling resistance, engine resistance, state of the road surface, angle of the road sloping on the deceleration have been analysed. The manner of the appointed of these parameters has been analysed. The results of the initial investigation have been presented. At the end of the article the strategy of the estimation and signalization of the irregular value of the deceleration are presented.

  5. Mechatronics. Components - methods - examples. 2. ed.; Mechatronik. Komponenten - Methoden - Beispiele

    Energy Technology Data Exchange (ETDEWEB)

    Heimann, B.; Popp, K. [Hannover Univ. (Germany). Inst. fuer Mechanik; Gerth, W. [Hannover Univ. (Germany). Inst. fuer Regelungstechnik

    2001-07-01

    Mechatronics combines the main disciplines electrical- and mechanical engineering and informatics. Its increasing importance occurs in all kind of on-line control systems, process control, sensor guided robots, magnetic bearings, automobile engineering etc. This book addresses students in all this fields. The main topics are: actuators, sensors, signal processing, data processing, simulation of multibody systems, planning of trajectories, control of mechatronic systems and as an attachment mathematical fundamentals.(GL) [German] Die Mechatronik vereinigt die Hauptfachgebiete Elektrotechnik, Maschinenbau und Informatik. Ihre wachsende Bedeutung findet sich wieder in der gesamten Leittechnik, Verfahrenstechnik, sensorgefuehrte Roboter, Magnetlager, Fahrzeugtechnik usw. Dieses Buch spricht Studenten in all diesen Fachgebieten an. Inhaltliche Hauptkapitel sind: Aktoren, Sensoren, Signalverarbeitung, Prozessdatenverarbeitung, Modellbildung von Mehrkoerpersystemen, Trajektorplanung, Regelung mechatronischer Systeme mit ausfuehrlichen Beispielen und schliesslich ein Anhang mit mathematischen Grundlagen.(GL)

  6. Student Integration and Evaluation in Mechatronic Curriculum With PBL

    DEFF Research Database (Denmark)

    Andersen, Torben O.; Conrad, Finn

    2006-01-01

    In this paper the PBL model used at Aalborg University in the mechanical engineering is shortly presented with emphasis on the mechatronic curriculum. A specific semester with a both theoretical and practical mechatronic content is presented in detail as a reference project for a subsequent discu...... discussion on three potential concerns with respect to the continued succes of problem and project based learning in mechatronics namely: individual assessment, Bologna model and research based teaching...

  7. A Mixed Learning Approach in Mechatronics Education

    Science.gov (United States)

    Yilmaz, O.; Tuncalp, K.

    2011-01-01

    This study aims to investigate the effect of a Web-based mixed learning approach model on mechatronics education. The model combines different perception methods such as reading, listening, and speaking and practice methods developed in accordance with the vocational background of students enrolled in the course Electromechanical Systems in…

  8. Present-day Problems and Methods of Optimization in Mechatronics

    Directory of Open Access Journals (Sweden)

    Tarnowski Wojciech

    2017-06-01

    Full Text Available It is justified that design is an inverse problem, and the optimization is a paradigm. Classes of design problems are proposed and typical obstacles are recognized. Peculiarities of the mechatronic designing are specified as a proof of a particle importance of optimization in the mechatronic design. Two main obstacles of optimization are discussed: a complexity of mathematical models and an uncertainty of the value system, in concrete case. Then a set of non-standard approaches and methods are presented and discussed, illustrated by examples: a fuzzy description, a constraint-based iterative optimization, AHP ranking method and a few MADM functions in Matlab.

  9. Brake force estimation for electromechanical vehicle brakes; Bremskraft-Rekonstruktion fuer elektromechanische Fahrzeugbremsen

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, R. [Continental Teves (Germany)

    1999-06-01

    Due to the increasing safety and comfort demands of the customer, the functionality of modern brake systems has grown continuously in the last years. However, implementation of the extended functionality in conventional brake hydraulics makes active electronic intervention necessary and therefore requires a lot of technical effort. In recent years the automotive supplier industry has started to develop brake systems which have electromechanical brake actuators generating the brake forces at the individual wheels. Electromechanically actuated wheel brakes need to be operated in a closed control loop. This paper introduces a new method to reconstruct the needed feedback value brake force from easy to measure signals. (orig.) [Deutsch] Aufgrund des gestiegenen Sicherheits- und Komfortbewusstseins der Fahrzeugkaeufer ist die Funktionsvielfalt moderner Bremssysteme in den letzten Jahren staendig gewachsen. Die Umsetzung der erweiterten Funktionalitaet mittels konventioneller Bremsenhydraulik ist jedoch durch den elektronischen, aktiven Eingriff sehr aufwendig. In den letzten Jahren hat daher die Automobilzulieferindustrie begonnen, Bremssysteme zu entwickeln, bei denen die Bremskraft an den einzelnen Raedern von elektromechanischen Bremsaktuatoren aufgebracht wird. Elektromechanisch betaetigte Radbremsen muessen im geschlossenen Regelkreis betrieben werden. Der vorliegende Beitrag, der im Rahmen einer Forschungskooperation zwischen Continental Teves und dem Institut fuer Automatisierungstechnik der TU Darmstadt entstand stellt ein Verfahren vor, mit dem die dafuer benoetigte Rueckfuehrungsgroesse `Bremskraft` aus einfach messbaren Signalen rekonstruiert werden kann. (orig.)

  10. Analysis of a Hybrid Mechanical Regenerative Braking System

    Directory of Open Access Journals (Sweden)

    Toh Xiang Wen Matthew

    2018-01-01

    Full Text Available Regenerative braking systems for conventional vehicles are gaining attention as fossil fuels continue to be depleted. The major forms of regenerative braking systems include electrical and mechanical systems, with the former being more widely adopted at present. However mechanical systems are still feasible, including the possible hybrid systems of two mechanical energy recovery systems. A literature study was made to compare the various mechanical energy recovery systems. These systems were compared based on their advantages and disadvantages with regards to energy storage, usage, and maintenance. Based on the comparison, the most promising concept appeared to be one that combined the flywheel and the pneumatic energy recovery systems. A CAD model of this hybrid system was produced to better visualise the design. This was followed by analytical modelling of the energy recovery systems. The analysis indicated that the angular velocity had an extremely significant impact on the power loss and energy efficiency. The results showed that the hybrid system can provide better efficiency but only when operating within certain parameters. Future work is required to further improve the efficiency of this hybrid system.

  11. Carbon nanotube torsional springs for regenerative braking systems

    International Nuclear Information System (INIS)

    Liu, Sanwei; Martin, Corbin; Livermore, Carol; Lashmore, David; Schauer, Mark

    2015-01-01

    The modeling and demonstration of large stroke, high energy density and high power density torsional springs based on carbon nanotube (CNT) yarns is reported, as well as their application as energy-storing actuators for regenerative braking systems. An originally untwisted CNT yarn is cyclically loaded and unloaded in torsion, with the maximum rotation angle increasing incrementally until failure. The measured average extractable energy density values are 2.9 kJ kg −1   ±  1.2 kJ kg −1 and 3.4 kJ kg −1   ±  0.4 kJ kg −1 for 1-ply CNT yarns and 2-ply CNT yarns, respectively. Additionally, a regenerative braking system is demonstrated to capture the kinetic energy of a wheel and store it as elastic energy in twisted CNT yarns. When the yarn’s twist is released, the stored energy reaccelerates the wheel. The measured energy and mean power densities of the CNT yarns in the simple regenerative braking setup are on average 3.3 kJ kg −1 and 0.67 kW kg −1 , respectively, with maximum measured values of up to 4.7 kJ kg −1 and 1.2 kW kg −1 , respectively. A slightly lower energy density of up to 1.2 kJ kg −1 and a 0.29 kW kg −1 mean power density are measured for CNT yarns in a more complex setup that mimics a unidirectional rotating regenerative braking mechanism. (paper)

  12. Mechatronic design of the Twente humanoid head

    NARCIS (Netherlands)

    Reilink, Rob; Visser, L.C.; Brouwer, Dannis Michel; Carloni, Raffaella; Stramigioli, Stefano

    This paper describes the mechatronic design of the Twente humanoid head, which has been realized in the purpose of having a research platform for human-machine interaction. The design features a fast, four degree of freedom neck, with long range of motion, and a vision system with three degrees of

  13. Syntegra: complete integration of traction, bogie and brake systems

    Energy Technology Data Exchange (ETDEWEB)

    Loewenstein, L.; Wangelin, F. von [Siemens AG, Transportation Systems, Erlangen (Germany). Group Technology TS GT; Teichmann, M.; Hoffmann, T. [Siemens TS, Graz (Austria); Joeckel, A. [Siemens Automation and Drives, Nuernberg (Germany)

    2007-07-01

    With Syntegra {sup registered} technology, Siemens has developed an approach to the complete integration of traction, bogie and brake systems, and this has initially been put into practice for metro, underground and S-Bahn (urban regional express) trains. Syntegra constitutes a fundamentally new approach, achieving a greater intensity of integration compared with the types of drive system that have been in use up until now. With Syntegra, the bogie, transmission and brake components are all brought together as part of one and the same system. The integration and, more especially, the technological advances within the three named areas bring about numerous synergies. The new generation of powered bogie features a combination of high efficiency, low dead weight and reduced emissions. A Syntegra drive system achieves a performance which is markedly better than that of conventional systems. (orig.)

  14. Potential of thermally conductive polymers for the cooling of mechatronic parts

    Science.gov (United States)

    Heinle, C.; Drummer, D.

    Adding thermally conductive fillers to polymers the thermal conductivity can be raised significantly. Thermal conductive polymers (TC-plastics) open up a vast range of options to set up novel concepts of polymer technological system solutions in the area of mechatronics. Heating experiment of cooling ribs show the potential in thermal management of mechatronic parts with TC-polymers in comparison with widely used reference materials copper and aluminum. The results demonstrate that especially for certain thermal boundary conditions comparable performance between these two material grades can be measured.

  15. Hydraulic braking system for loads subjected to impacts and vibrations

    International Nuclear Information System (INIS)

    1980-01-01

    This invention concerns a hydraulic braking system for loads subjected to impacts and vibrations. These double acting telescopic type hydraulic braking systems possess significant drawbacks linked to possibly important hydraulic leaks due to (a) the use of many dynamic seals in such appliances and (b) the effects of the environment of the system on these seals, particularly when employed in nuclear power stations where the seals reach significant temperatures and are subjected to radiation. Under this invention a remedy is suggested to such drawbacks by integrating means to offset automatically the leaks and the accumulation of hydraulic fluid expansions, as well as facilities to show if such leaks have occurred [fr

  16. Mechatronics Applied to Fluid Film Bearings: Towards More Efficient Machinery

    DEFF Research Database (Denmark)

    Cerda Varela, Alejandro Javier

    the machine is defined as a mechatronic system. This integrated approach comprises the usage of machine elements capable of modifying their characteristics, by using in a combined way mechanical elements, sensors, processing units and actuators. The research project entitled "Mechatronics Applied to Fluid......The current trends regarding turbomachinery design and operation demand for an expansion of the operational boundaries of these mechanical systems, regarding production rate, reliability and adaptability. In order to face the new requirements, it is necessary to migrate towards a new concept, where...... Film Bearings: Towards more Efficient Machinery" was aimed at improving the state of the art regarding the usage of fluid film bearings as "smart" machine elements. Specifically, this project dealt with a tilting pad journal bearing design that features a controllable lubrication system, capable...

  17. Effectiveness of an automatic manual wheelchair braking system in the prevention of falls.

    Science.gov (United States)

    Martorello, Laura; Swanson, Edward

    2006-01-01

    The purpose of this study was to evaluate the effectiveness of an automatic manual wheelchair braking system in the reduction of falls for patients at high risk of falls while transferring to and from a manual wheelchair. The study design was a normative survey carried out through the use of a written questionnaire sent to 60 skilled nursing facilities to collect data from the medical charts, which identified patients at high risk for falls who used an automatic wheelchair braking system. The facilities participating in the study identified a frequency of falls of high-risk patients while transferring to and from the wheelchair ranging from 2 to 10 per year, with a median fall rate per facility of 4 falls. One year after the installation of the automatic wheelchair braking system, participating facilities demonstrated a reduction of zero to three falls during transfers by high-risk patients, with a median fall rate of zero falls. This represents a statistically significant reduction of 78% in the fall rate of high-risk patients while transferring to and from the wheelchair, t (18) = 6.39, p braking system for manual wheelchairs was installed. The application of the automatic braking system allows clients, families/caregivers, and facility personnel an increased safety factor for the reduction of falls from the wheelchair.

  18. Methodology of Education and R&D in Mechatronics.

    Science.gov (United States)

    Yamazaki, K.; And Others

    1985-01-01

    Describes the concept and methodology of "mechatronics" (application of microelectronics to mechanism control) and research and development (R&D) projects through the activities initiated at the Precision Machining Laboratory of the Department of Production Systems Engineering of the new Toyohashi University of Technology. (JN)

  19. Use of elastomers in regenerative braking systems

    Science.gov (United States)

    The storage of potential energy as strain energy in elastomers was investigated. The evolution of the preferred stressing scheme is described, and test results on full-size elastomeric energy storage units sized for an automotive regenerative braking system application are presented. The need for elastomeric material improvements is also discussed.

  20. The dynamic performance and economic benefit of a blended braking system in a multi-speed battery electric vehicle

    International Nuclear Information System (INIS)

    Ruan, Jiageng; Walker, Paul D.; Watterson, Peter A.; Zhang, Nong

    2016-01-01

    Highlights: • Maximum braking energy recovery potentials of various cycles are reported. • Braking strategies are proposed for performance, comfort and energy recovery. • Braking force distributions and wheel slip ratios of different strategies are demonstrated. • The performance of ‘Eco’ strategy is experimentally validated in HWFET and NEDC. • The economic benefit of energy recovering is summarized, regarding to the fuel and maintenance cost saving. - Abstract: As motor-supplied braking torque is applied to the wheels in an entirely different way to hydraulic friction braking systems and it is usually only connected to one axle complicated effects such as wheel slip and locking, vehicle body bounce and braking distance variation will inevitability impact on the performance and safety of braking. The potential for braking energy recovery in typical driving cycles is presented to show its benefit in this study. A general predictive model is designed to analysis the economic and dynamic performance of blended braking systems, satisfying the relevant regulations/laws and critical limitations. Braking strategies for different purposes are proposed to achieve a balance between braking performance, driving comfort and energy recovery rate. Special measures are taken to avoid any effects of motor failure. All strategies are analyzed in detail for various braking events. Advanced driver assistance systems (ADAS), such as ABS and EBD, are properly integrated to work with the regenerative braking system (RBS) harmoniously. Different switching plans during braking are discussed. The braking energy recovery rates and brake force distribution details for different driving cycles are simulated. Results for two of the cycles in an ‘Eco’ mode are measured on a drive train test rig and found to agree with the simulated results to within approximately 10%. Reliable conclusions can thus be gained on the economic benefit and dynamic braking performance. The

  1. Challenges with Tertiary-Level Mechatronic Fluid Power

    DEFF Research Database (Denmark)

    Dransfield, Peter; Conrad, Finn

    1996-01-01

    As authors we take the view that mechatronics, as it relates to fluid power, has three levels which we designate as primary, secondary and tertiary. A brief review of the current status of fluid power, hydraulic and pneumatic, and of electronic control of it is presented and discussed. The focus...... is then on tertiary-level mechatronic fluid power and the challenges to it being applied successfully....

  2. An Approach for Systematic In-the-Loop Simulations for Development and Test of a Complex Mechatronic Embedded System

    NARCIS (Netherlands)

    Soltani Nehzad, Amir; Lukkien, Johan J.; Mak, Rudolf H.; Verhoeven, Richard; van den Heuvel, Martijn M.H.P.; Skavhaug, A.; Guiochet, J.; Schoitsch, E.; Bitsch, F.

    2016-01-01

    Simulations are widely used in the engineering workflow of complex mechatronic embedded systems in various domains, such as healthcare, railway, automotive and aerospace, for analyzing, testing and validating purposes. This paper focuses on the development and test of the control software of complex

  3. Vacuum mechatronic laser alignment system on the Nova laser

    International Nuclear Information System (INIS)

    Holliday, M.; Wong, K.; Shelton, R.

    1991-11-01

    The experiments conducted on NOVA are done to investigate inertially confined laser fusion reactions. To this end, the ten beams of the laser are aligned to within 30mm. The target chamber employs a vacuum mechatronic based reticle/target positioning system to accomplish this. It is a five degree-of-freedom chamber resident system, known as the Alignment Aids Positioner or AAP. The AAP aids in beam and diagnostic alignment by accurately positioning a reticle at target chamber center to with 7mm. The AAP system increases target positioning and alignment flexibility and accuracy through the use of a computer controlled multi degree-of-freedom stage assembly. This device uses microstepping DC stepper motors with encoders to achieve closed loop control in a 10 -6 torr vacuum. The AAP has two positioning regimes to move the alignment reticle and do beam alignment. One is course positioning in the Y-Z plane that moves a high resolution stage assembly to target chamber center. The other regime is high resolution movement in the X,Y,Z and q directions. 5 refs., 9 figs

  4. Application of Modelling and Simulation in Mechatronics and Fluid Power System Design - Education and Research

    DEFF Research Database (Denmark)

    Andersen, T. O.; Hansen, M. R.; Conrad, Finn

    2003-01-01

    The development within the engineering industry is ever more in the direction of an integration of electronics both on the component level and system level. This implies improved and more intelligentcomponents with increased funtionality at the same time as the variant creation is made in the ele...... and control can be useful in analysis, synthesis, design and application of mechatronic systems with fluid power actuation. The focus is on system aspects and describes several projects from education and research that utilises the mentioned methods and techniques....

  5. REGRESSIVE ANALYSIS OF BRAKING EFFICIENCY OF M1 CATEGORY VEHICLES WITH ANTI-BLOCKING BRAKE SYSTEM

    Directory of Open Access Journals (Sweden)

    О. Sarayev

    2015-07-01

    Full Text Available The problematics of assessing the effectiveness of vehicle braking after road accidentoccurrence is considered. For the first time in relation to the modern models of vehicles equipped with anti-lock brakes there were obtained regression models describing the relationship between the coefficient of traction and a random variable of steady deceleration. This does not contradict the essence of the stochastic physical object, which is the process of vehicle braking, unlike the previously adopted method of formalizing this process, using a deterministic function.

  6. 15 years of experience with mechatronics research and education

    NARCIS (Netherlands)

    van Amerongen, J.

    2004-01-01

    This paper describes the experiences with mechatronic research projects and several educational structures in the University of Twente since 1989. Education took place in a two-year Mechatronic Designer programme, in specialisations in Electrical and Mechanical Engineering and in an (international)

  7. Suggested Research Method for Testing Selected Tribological Properties of Friction Components in Vehicle Braking Systems

    Directory of Open Access Journals (Sweden)

    Borawski Andrzej

    2016-09-01

    Full Text Available The braking system is one of the most important systems in any vehicle. Its proper functioning may determine the health and life the people inside the vehicle as well as other road users. Therefore, it is important that the parameters which characterise the functioning of brakes changed as little as possible throughout their lifespan. Multiple instances of heating and cooling of the working components of the brake system as well as the environment they work in may impact their tribological properties. This article describes a method of evaluating the coefficient of friction and the wear speed of abrasive wear of friction working components of brakes. The methodology was developed on the basis of Taguchi’s method of process optimization.

  8. Model predictive control-based efficient energy recovery control strategy for regenerative braking system of hybrid electric bus

    International Nuclear Information System (INIS)

    Li, Liang; Zhang, Yuanbo; Yang, Chao; Yan, Bingjie; Marina Martinez, C.

    2016-01-01

    Highlights: • A 7-degree-of-freedom model of hybrid electric vehicle with regenerative braking system is built. • A modified nonlinear model predictive control strategy is developed. • The particle swarm optimization algorithm is employed to solve the optimization problem. • The proposed control strategy is verified by simulation and hardware-in-loop tests. • Test results verify the effectiveness of the proposed control strategy. - Abstract: As one of the main working modes, the energy recovered with regenerative braking system provides an effective approach so as to greatly improve fuel economy of hybrid electric bus. However, it is still a challenging issue to ensure braking stability while maximizing braking energy recovery. To solve this problem, an efficient energy recovery control strategy is proposed based on the modified nonlinear model predictive control method. Firstly, combined with the characteristics of the compound braking process of single-shaft parallel hybrid electric bus, a 7 degrees of freedom model of the vehicle longitudinal dynamics is built. Secondly, considering nonlinear characteristic of the vehicle model and the efficiency of regenerative braking system, the particle swarm optimization algorithm within the modified nonlinear model predictive control is adopted to optimize the torque distribution between regenerative braking system and pneumatic braking system at the wheels. So as to reduce the computational time of modified nonlinear model predictive control, a nearest point method is employed during the braking process. Finally, the simulation and hardware-in-loop test are carried out on road conditions with different tire–road adhesion coefficients, and the proposed control strategy is verified by comparing it with the conventional control method employed in the baseline vehicle controller. The simulation and hardware-in-loop test results show that the proposed strategy can ensure vehicle safety during emergency braking

  9. Multi-objective optimization of the control strategy of electric vehicle electro-hydraulic composite braking system with genetic algorithm

    Directory of Open Access Journals (Sweden)

    Zhang Fengjiao

    2015-03-01

    Full Text Available Optimization of the control strategy plays an important role in improving the performance of electric vehicles. In order to improve the braking stability and recover the braking energy, a multi-objective genetic algorithm is applied to optimize the key parameters in the control strategy of electric vehicle electro-hydraulic composite braking system. Various limitations are considered in the optimization process, and the optimization results are verified by a software simulation platform of electric vehicle regenerative braking system in typical brake conditions. The results show that optimization objectives achieved a good astringency, and the optimized control strategy can increase the brake energy recovery effectively under the condition of ensuring the braking stability.

  10. Influence of convective cooling on a disc brake temperature distribution during repetitive braking

    International Nuclear Information System (INIS)

    Adamowicz, Adam; Grzes, Piotr

    2011-01-01

    The purpose of this study is to evaluate an impact of convective mode of heat transfer on the thermal behaviour of a disc brake system during repetitive braking process with the constant velocity using fully three-dimensional finite element model. The transient thermal analysis to determine the temperature distributions on the contact surface of a disc brake is performed. The issue of non-uniform frictional heating effects of mutual slipping of a disc over fixed pads is tested using FE models with the several possible to occur in automotive application heat transfer coefficients. To have a possibility of comparison of the temperature distributions of a disc during cyclic brake application, the energy transformed during time of every analyzed case of braking process and the subsequent release periods was equal. The time-stepping procedure is employed to develop moving heat source as the boundary heat flux acting interchangeably with the convective cooling terms. The difficulties accounted for the accurate simulation of heating during spin of the rotor is omitted by the use of the code, which enable shaping curves responsible for the thermal flux entering the disc at subsequent moments of time. The resulting evolution of temperature on the friction surface reveals a wide range of variations, distinguishing periods of heating and cooling states. It has been established, that during single braking the convective cooling has insignificant influence on the temperature distributions of a disc brake, consequently is not able to prevent overheat problem. However the brake release period after the braking operation, when the velocity of the vehicle remains on the same level, results in considerable decrease of temperature. - Highlights: → Convection does not allow to lower temperature of disc during single braking process. → Maximal temperature of disc decreases with number of brake applications. → Temperature at the end of braking increases with number of brake

  11. Discussion on stochastic braking for a single-rail rope-driven lifter

    Energy Technology Data Exchange (ETDEWEB)

    1987-02-01

    This paper discusses the braking and control of a A-2/73 clip type friction brake system made in FRG - a clamp type brake system made in USSR and an eccentric wheel type brake system made in Poland. Then it analyses a ZGZ auto increasing force type braking system of a single-rail rope driven lifter. The braking principle of the ZGZ system is that the braking blocks insert along the brake base and contact with the ribs of the single-rail. Then the braking would be realized as a function of increasing frictional force.

  12. Machine & electrical double control air dryer for vehicle air braking system

    Science.gov (United States)

    Zhang, Xuan; Yang, Liu; Wang, Xian Yan; Tan, Xiao Yan; Wang, Wei

    2017-09-01

    As is known to all, a vehicle air brake system, in which usually contains moisture. To solve the problem, it is common to use air dryer to dry compressed air effectively and completely remove the moisture and oil of braking system. However, the existing air dryer is not suitable for all commercial vehicles. According to the operational status of the new energy vehicles in the initial operating period, the structure design principle of the machine & electric control air dryer is expounded from the aspects of the structure and operating principle, research & development process.

  13. The Effect of a Variable Disc Pad Friction Coefficient for the Mechanical Brake System of a Railway Vehicle

    Science.gov (United States)

    Lee, Nam-Jin; Kang, Chul-Goo

    2015-01-01

    A brake hardware-in-the-loop simulation (HILS) system for a railway vehicle is widely applied to estimate and validate braking performance in research studies and field tests. When we develop a simulation model for a full vehicle system, the characteristics of all components are generally properly simplified based on the understanding of each component’s purpose and interaction with other components. The friction coefficient between the brake disc and the pad used in simulations has been conventionally considered constant, and the effect of a variable friction coefficient is ignored with the assumption that the variability affects the performance of the vehicle braking very little. However, the friction coefficient of a disc pad changes significantly within a range due to environmental conditions, and thus, the friction coefficient can affect the performance of the brakes considerably, especially on the wheel slide. In this paper, we apply a variable friction coefficient and analyzed the effects of the variable friction coefficient on a mechanical brake system of a railway vehicle. We introduce a mathematical formula for the variable friction coefficient in which the variable friction is represented by two variables and five parameters. The proposed formula is applied to real-time simulations using a brake HILS system, and the effectiveness of the formula is verified experimentally by testing the mechanical braking performance of the brake HILS system. PMID:26267883

  14. The Effect of a Variable Disc Pad Friction Coefficient for the Mechanical Brake System of a Railway Vehicle.

    Science.gov (United States)

    Lee, Nam-Jin; Kang, Chul-Goo

    2015-01-01

    A brake hardware-in-the-loop simulation (HILS) system for a railway vehicle is widely applied to estimate and validate braking performance in research studies and field tests. When we develop a simulation model for a full vehicle system, the characteristics of all components are generally properly simplified based on the understanding of each component's purpose and interaction with other components. The friction coefficient between the brake disc and the pad used in simulations has been conventionally considered constant, and the effect of a variable friction coefficient is ignored with the assumption that the variability affects the performance of the vehicle braking very little. However, the friction coefficient of a disc pad changes significantly within a range due to environmental conditions, and thus, the friction coefficient can affect the performance of the brakes considerably, especially on the wheel slide. In this paper, we apply a variable friction coefficient and analyzed the effects of the variable friction coefficient on a mechanical brake system of a railway vehicle. We introduce a mathematical formula for the variable friction coefficient in which the variable friction is represented by two variables and five parameters. The proposed formula is applied to real-time simulations using a brake HILS system, and the effectiveness of the formula is verified experimentally by testing the mechanical braking performance of the brake HILS system.

  15. Vertical Stream Curricula Integration of Problem-Based Learning Using an Autonomous Vacuum Robot in a Mechatronics Course

    Science.gov (United States)

    Chin, Cheng; Yue, Keng

    2011-01-01

    Difficulties in teaching a multi-disciplinary subject such as the mechatronics system design module in Departments of Mechatronics Engineering at Temasek Polytechnic arise from the gap in experience and skill among staff and students who have different backgrounds in mechanical, computer and electrical engineering within the Mechatronics…

  16. Advanced Emergency Braking Controller Design for Pedestrian Protection Oriented Automotive Collision Avoidance System

    OpenAIRE

    Lie, Guo; Zejian, Ren; Pingshu, Ge; Jing, Chang

    2014-01-01

    Automotive collision avoidance system, which aims to enhance the active safety of the vehicle, has become a hot research topic in recent years. However, most of the current systems ignore the active protection of pedestrian and other vulnerable groups in the transportation system. An advanced emergency braking control system is studied by taking into account the pedestrians and the vehicles. Three typical braking scenarios are defined and the safety situations are assessed by comparing the cu...

  17. Performance Evaluation of an Anti-Lock Braking System for Electric Vehicles with a Fuzzy Sliding Mode Controller

    OpenAIRE

    Jingang Guo; Xiaoping Jian; Guangyu Lin

    2014-01-01

    Traditional friction braking torque and motor braking torque can be used in braking for electric vehicles (EVs). A sliding mode controller (SMC) based on the exponential reaching law for the anti-lock braking system (ABS) is developed to maintain the optimal slip value. Parameter optimizing is applied to the reaching law by fuzzy logic control (FLC). A regenerative braking algorithm, in which the motor torque is taken full advantage of, is adopted to distribute the braking force between the m...

  18. New technical solutions of using rolling stock electrodynamical braking

    Directory of Open Access Journals (Sweden)

    Leonas Povilas LINGAITIS

    2009-01-01

    Full Text Available The paper considers some theoretical and practical problems associated with the use of traction motor are operating in the generator mode (in braking. Mathematical and graphical relationships of electrodynamic braking, taking into account the requirements raised to braking systems in rail transport are presented. The latter include discontinuity of braking process, braking force regulation, depending on the locomotive speed, mass, type of railway and other parameters. Schematic diagrams of the locomotive braking and ways of controlling the braking force by varying electric circuit parameters are presented. The authors suggested contact-free regulation method of braking resistor for controlling braking force in rheostatic braking, and resistor parameters regulate with pulse regulation mode by semiconductor devices, such as new electrical components for rolling stock – IGBT transistors operating in the key mode. Presenting energy savings power systems, which are using regenerative braking-returning energy and diesel engine or any form of hybrid traction vehicles systems, circuit diagrams, electrical parameters curves.

  19. Mechatronical systems for the enhancement of the noise and vibration comfort of motor vehicles; Mechatronische Systeme zur Steigerung des Geraeusch- und Schwingungskomforts in Kraftfahrzeugen

    Energy Technology Data Exchange (ETDEWEB)

    Svaricek, F.; Kowalczyk, K. [Univ. der Bundeswehr Muenchen, Neubiberg (Germany). Inst. fuer Systemdynamik und Flugmechanik; Marienfeld, P.; Karkosch, H.J. [ContiTech Vibration Control GmbH, Hannover (Germany)

    2005-07-01

    Firstly, this paper will give an overview of worldwide activities within the area of active engine mounting systems. On the example of an active absorber system developed at ContiTech Vibration Control GmbH, the components of such a mechatronical system will be introduced and explained. Some recent results from test vehicle drives will close this paper. (orig.) (orig.)

  20. 49 CFR 393.43 - Breakaway and emergency braking.

    Science.gov (United States)

    2010-10-01

    ... ACCESSORIES NECESSARY FOR SAFE OPERATION Brakes § 393.43 Breakaway and emergency braking. (a) Towing vehicle protection system. Every motor vehicle, if used to tow a trailer equipped with brakes, shall be equipped with... brake systems installed on towed vehicles shall be so designed, by the use of “no-bleed-back” relay...

  1. Digital Sliding Mode Control of Anti-Lock Braking System

    Directory of Open Access Journals (Sweden)

    MITIC, D. B.

    2013-02-01

    Full Text Available The control of anti-lock braking system is a great challenge, because of the nonlinear and complex characteristics of braking dynamics, unknown parameters of vehicle environment and system parameter variations. Using some of robust control methods, such as sliding mode control, can be a right solution for these problems. In this paper, we introduce a novel approach to design of ABS controllers, which is based on digital sliding mode control with only input/output measurements. The relay term of the proposed digital sliding mode control is filtered through digital integrator, reducing the chattering phenomenon in that way, and the additional signal of estimated modelling error is introduced into control algorithm to enhance the system steady-state accuracy. The given solution was verified in real experimental framework and the obtained results were compared with the results of implementation of two other digital sliding mode control algorithms. It is shown that it gives better system response, higher steady-state accuracy and smaller chattering.

  2. Application of flexible multibody modelling for control synthesis in mechatronics

    NARCIS (Netherlands)

    Aarts, Ronald G.K.M.; van Dijk, Johannes; Brouwer, Dannis Michel; Jonker, Jan B.; Samin, J.C.; Fisette, P.

    2011-01-01

    The models used in the conceptual phase of the mechatronic design should not be too complicated, yet they should capture the dominant system behaviour. This includes the computation of natural frequencies and mode shapes in a relevant frequency range. For the control system synthesis the low

  3. Novel control algorithm of braking energy regeneration system for an electric vehicle during safety–critical driving maneuvers

    International Nuclear Information System (INIS)

    Lv, Chen; Zhang, Junzhi; Li, Yutong; Yuan, Ye

    2015-01-01

    Highlights: • Models of an electric vehicle with regenerative braking system (RBS) are built. • Control algorithm of RBS under safety–critical driving maneuvers is proposed. • Simulations and HIL tests of the proposed strategy are conducted. • Performance improvement of vehicle’s mean deceleration is up to 13.89%. • Test results verify the feasibility and effectiveness of the proposed method. - Abstract: This paper mainly focuses on control algorithm of the braking energy regeneration system of an electric bus under safety–critical driving situations. With the aims of guaranteeing vehicle stability in various types of tyre–road adhesion conditions, based on the characteristics of electrified powertrain, a novel control algorithm of regenerative braking system is proposed for electric vehicles during anti-lock braking procedures. First, the models of vehicle dynamics and main components including braking energy regenerative system of the case-study electric bus are built in MATLAB/Simulink. Then, based on the phase-plane method, the optimal brake torque is calculated for ABS control of vehicle. Next, a novel allocation strategy, wherein the target optimal brake torque is divided into two parts that are handled separately by the regenerative and friction brakes, is developed. Simulations of the proposed control strategy are conducted based on system models built using MATLAB/Simulink. The simulation results demonstrate that the developed strategy enables improved control in terms of vehicle stability and braking performance under different emergency driving conditions. To further verify the synthesized control algorithm, hardware-in-the-loop tests are also performed. The experimental results validate the simulation data and verify the feasibility and effectiveness of the developed control algorithm.

  4. Brakes Specialist. Teacher Edition. Automotive Service Series.

    Science.gov (United States)

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This document contains teacher's materials for a course on becoming an automotive brakes specialist, based on the National Institute of Automotive Service Excellence task lists. The course consists of three instructional units: service brake hydraulic system and wheel bearings, service drum brakes, and service disc brakes. Depending on the…

  5. Evaluation of a sudden brake warning system: effect on the response time of the following driver.

    Science.gov (United States)

    Isler, Robert B; Starkey, Nicola J

    2010-07-01

    This study used a video-based braking simulation dual task to carry out a preliminary evaluation of the effect of a sudden brake warning system (SBWS) in a leading passenger vehicle on the response time of the following driver. The primary task required the participants (N=25, 16 females, full NZ license holders) to respond to sudden braking manoeuvres of a lead vehicle during day and night driving, wet and dry conditions and in rural and urban traffic, while concurrently performing a secondary tracking task using a computer mouse. The SBWS in the lead vehicle consisted of g-force controlled activation of the rear hazard lights (the rear indicators flashed), in addition to the standard brake lights. Overall, the results revealed that responses to the braking manoeuvres of the leading vehicles when the hazard lights were activated by the warning system were 0.34 s (19%) faster compared to the standard brake lights. The SBWS was particularly effective when the simulated braking scenario of the leading vehicle did not require an immediate and abrupt braking response. Given this, the SBWS may also be beneficial for allowing smoother deceleration, thus reducing fuel consumption. These preliminary findings justify a larger, more ecologically valid laboratory evaluation which may lead to a naturalistic study in order to test this new technology in 'real world' braking situations. Copyright 2009 Elsevier Ltd. All rights reserved.

  6. Performance Evaluation of an Anti-Lock Braking System for Electric Vehicles with a Fuzzy Sliding Mode Controller

    Directory of Open Access Journals (Sweden)

    Jingang Guo

    2014-10-01

    Full Text Available Traditional friction braking torque and motor braking torque can be used in braking for electric vehicles (EVs. A sliding mode controller (SMC based on the exponential reaching law for the anti-lock braking system (ABS is developed to maintain the optimal slip value. Parameter optimizing is applied to the reaching law by fuzzy logic control (FLC. A regenerative braking algorithm, in which the motor torque is taken full advantage of, is adopted to distribute the braking force between the motor braking and the hydraulic braking. Simulations were carried out with Matlab/Simulink. By comparing with a conventional Bang-bang ABS controller, braking stability and passenger comfort is improved with the proposed SMC controller, and the chatting phenomenon is reduced effectively with the parameter optimizing by FLC. With the increasing proportion of the motor braking torque, the tracking of the slip ratio is more rapid and accurate. Furthermore, the braking distance is shortened and the conversion energy is enhanced.

  7. Dynamic Braking System of a Tidal Generator: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, Eduard; Wright, Alan; Gevorgian, Vahan; Donegan, James; Marnagh, Cian; McEntee, Jarlath

    2016-08-01

    Renewable energy generation has experienced significant cost reductions during the past decades, and it has become more accepted by the global population. In the beginning, wind generation dominated the development and deployment of renewable energy; however, during recent decades, photovoltaic (PV) generation has grown at a very significant pace due to the tremendous decrease in the cost of PV modules. The focus on renewable energy generation has now expanded to include new types with promising future applications, such as river and tidal generation. The input water flow to these types of resources is more predictable than wind or solar generation. The data used in this paper is representative of a typical river or tidal generator. The analysis is based on a generator with a power rating of 40 kW. The tidal generator under consideration is driven by two sets of helical turbines connected to each side of the generator located in between the turbines. The generator is operated in variable speed, and it is controlled to maximize the energy harvested as well as the operation of the turbine generator. The electrical system consists of a three-phase permanent magnet generator connected to a three-phase passive rectifier. The output of the rectifier is connected to a DC-DC converter to match the rectifier output to the DC bus voltage of the DC-AC inverter. The three-phase inverter is connected to the grid, and it is controlled to provide a good interface with the grid. One important aspect of river and tidal generation is the braking mechanism. In a tidal generator, the braking mechanism is important to avoid a runaway condition in case the connection to the grid is lost when there is a fault in the lines. A runaway condition may lead to an overspeed condition and cause extreme stresses on the turbine blade structure and eventual disintegration of the mechanical structure. In this paper, the concept of the dynamic braking system is developed and investigated for normal

  8. Brakes. Auto Mechanics Curriculum Guide. Module 6. Instructor's Guide.

    Science.gov (United States)

    Allain, Robert

    This module is the sixth of nine modules in the competency-based Missouri Auto Mechanics Curriculum Guide. Eight units cover: introduction to automotive brake systems; disc and drum brake system components and how they operate; properties of brake fluid and procedures for bleeding the brake system; diagnosing and determining needed repairs on…

  9. Fuzzy System of Distribution of Braking Forces on the Engines of a Mobile Robot

    Directory of Open Access Journals (Sweden)

    Bobyr Maxim

    2016-01-01

    Full Text Available The article presents a fuzzy system of distribution of braking forces on the engines of a mobile robot during its lifting and going down.The block diagram of the system of distribution of braking forces and location of sensors on a mobile robot is given in the paper. Also, fuzzy mathematical model of redistribution of braking forces depending on the conditions of the movement a mobile robot is shown in the article. The result of the simulation of control parameters are presented in the article. The control system of a mobile robot is demonstrated on the example of an autonomous mini-robot on platform Pirate under the control of microprocessor Arduino Mega 2560.

  10. Recent studies of tire braking performance. [for aircraft

    Science.gov (United States)

    Mccarty, J. L.; Leland, T. J. W.

    1973-01-01

    The results from recent studies of some factors affecting tire braking and cornering performance are presented together with a discussion of the possible application of these results to the design of aircraft braking systems. The first part of the paper is concerned with steady-state braking, that is, results from tests conducted at a constant slip ratio or steering angle or both. The second part deals with cyclic braking tests, both single cycle, where brakes are applied at a constant rate until wheel lockup is achieved, and rapid cycling of the brakes under control of a currently operational antiskid system.

  11. Industry-Oriented Competency Requirements for Mechatronics Technology in Taiwan

    Science.gov (United States)

    Shyr, Wen-Jye

    2012-01-01

    This study employed a three-phase empirical method to identify competency indicators for mechatronics technology according to industry-oriented criteria. In Phase I, a list of required competencies was compiled using Behavioral Event Interviews (BEI) with three engineers specializing in the field of mechatronics technology. In Phase II, the Delphi…

  12. Design and research on the electronic parking brake system of the medium and heavy duty vehicles

    Directory of Open Access Journals (Sweden)

    Hongliang WANG

    2015-04-01

    Full Text Available Focusing on auto control of parking brake system of the medium and heavy duty vehicles, the key problems are studied including the system design and control strategies. The structure and working principle of the parking brake system of the medium and heavy duty vehicles are analyzed. The functions of EPB are proposed. The important information of the vehicle are analyzed which could influence the EPB system. The overall plan of the pneumatic EPB system is designed, which adopts the two-position three-way electromagnetic valve with double coil as actuator. The system could keep the vehicle parking brake status or parking release status for a long time without power supply. The function modules of the system are planned, and the control strategies of automatic parking brake and parking release are made. The experiment is performed on a medium-sized commercial vehicle which is experimentally modified. The overall plan of the pneumatic EPB system and the automatic parking function are proved through real vehicle tests.

  13. CoBra - a global tool for braking system development; CoBra - ein Tool fuer den globalen Einsatz in der Bremssystementwicklung

    Energy Technology Data Exchange (ETDEWEB)

    Sailer, U. [Robert Bosch GmbH, Stuttgart (Germany)

    1999-07-01

    When Robert Bosch GmbH took over the braking system activities of Allied Signal in 1996, they became able to develop complete braking systems for passenger cars. Braking systes for the different markets are now produced in three sites in Germany, France and the USA. Braking system development with its interfaces to component development and to car producers is a new development challenge, and the department K1 (ABS and braking systems) is cooperating with internal and external partners in developing a globally standardized program for design, simulation and analysis of passenger car braking systems. This contribution presents parts of the development project CoBra (Computation of Braking Systems). [German] Mit dem Kauf der Bremsenaktivitaeten der Firma Allied Signal im Jahre 1996 ist die Robert Bosch GmbH in der Lage, komplette Pkw-Bremssysteme zu entwickeln. Nunmehr werden an drei Entwicklungsstandorten in Deutschland, Frankreich und den USA Bremssysteme fuer die verschiedenen Maerkte entwickelt. Die Bremssystementwicklung, insbesondere die damit verbundenen Schnittstellen zu der Komponentenentwicklung und zum Automobilhersteller, stellt technisch und vom Entwicklungsprozess aus gesehen eine neue Herausforderung dar. Um ihr zu begegnen, wird im Geschaeftsbereich K1 (ABS and Braking Systems) derzeit in Zusammenarbeit mit internen und externen Partnern ein global einheitliches Programm zur Auslegung, Simulation und Analyse von Pkw-Bremssystemen entwickelt. Dieser Beitrag stellt Teile des Entwicklungsprojekts CoBra (Computation of Braking Systems) vor. (orig.)

  14. Modelling and using product architectures in mechatronic product development

    DEFF Research Database (Denmark)

    Bruun, Hans Peter Lomholt; Mortensen, Niels Henrik

    , experiences by using the architecture representation in a mechatronic development project, and the scope of using the architecture model as a skeleton for a data structure in a PLM system. The fundamental idea for planning and modeling holistic architectures is that an improved understanding of the whole...

  15. Use of MSC/NASTRAN for the thermal analysis of the Space Shuttle Orbiter braking system

    Science.gov (United States)

    Shu, James; Mccann, David

    1987-01-01

    A description is given of the thermal modeling and analysis effort being conducted to investigate the transient temperature and thermal stress characteristics of the Space Shuttle Orbiter brake components and subsystems. Models are constructed of the brake stator as well as of the entire brake assembly to analyze the temperature distribution and thermal stress during the landing and braking process. These investigations are carried out on a UNIVAC computer system with MSC/NASTRAN Version 63. Analytical results and solution methods are presented and comparisons are made with SINDA results.

  16. 49 CFR 229.46 - Brakes: General.

    Science.gov (United States)

    2010-10-01

    ... regulating all pressures, including but not limited to the automatic and independent brake valves, operate as intended and that the water and oil have been drained from the air brake system. ... 49 Transportation 4 2010-10-01 2010-10-01 false Brakes: General. 229.46 Section 229.46...

  17. 49 CFR 236.712 - Brake pipe.

    Science.gov (United States)

    2010-10-01

    ... OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.712 Brake pipe. A pipe running from the engineman's brake valve through the train, used for the transmission of air under... 49 Transportation 4 2010-10-01 2010-10-01 false Brake pipe. 236.712 Section 236.712 Transportation...

  18. Design and Experimental Research of New Type Brake by Wire System Based on Giant-magnetostrictive Material

    Directory of Open Access Journals (Sweden)

    Changbao CHU

    2014-04-01

    Full Text Available In this paper, H type brake by wire system based on giant-magnetostrictive material is designed from two aspects of hardware and software. System principle prototype is manufactured. Hardware circuit mainly includes the Sepic circuit, current detection circuit, over current protection circuit, PWM driver protection circuit. Circuit parameters can be obtained through by theoretical calculation. Pedal sensor signal is taken as main control variable, look-up table method is used for brake by wire system. The experimental results show that the system can meet the braking requirements. It proves the feasibility of the scheme.

  19. Bond graphs : an integrating tool for design of mechatronic systems

    International Nuclear Information System (INIS)

    Ould Bouamama, B.

    2011-01-01

    Bond graph is a powerful tool well known for dynamic modelling of multi physical systems: This is the only modelling technique to generate automatically state space or non-linear models using dedicated software tools (CAMP-G, 20-Sim, Symbols, Dymola...). Recently several fundamental theories have been developed for using a bond graph model not only for modeling but also as a real integrated tool from conceptual ideas to optimal practical realization of mechatronic system. This keynote presents a synthesis of those new theories which exploit some particular properties (such as causal, structural and behavioral) of this graphical methodology. Based on a pedagogical example, it will be shown how from a physical system (not a transfer function or state equation) and using only one representation (Bond graph), the following results can be performed: modeling (formal state equations generation), Control analysis (observability, controllability, Structural I/O decouplability, dynamic decoupling,...) diagnosis analysis (automatic generation of robust fault indicators, sensor placement, structural diagnosability) and finally sizing of actuators. The presentation will be illustrated by real industrial applications. Limits and perspectives of bond graph theory conclude the keynote.

  20. Sprag solenoid brake

    Science.gov (United States)

    Dane, P. H.

    1972-01-01

    Operation of solenoid braking mechanism is discussed. Illustrations of construction of the brake are provided. Device is used for braking low or medium speed shaft rotations and produces approximately ten times braking torque of similar solenoid brakes.

  1. A 10-Year Mechatronics Curriculum Development Initiative: Relevance, Content, and Results--Part I

    Science.gov (United States)

    Das, S.; Yost, S. A.; Krishnan, M.

    2010-01-01

    This paper describes the first phase of a Mechatronics Curriculum Development effort--the design of an "Introduction to Mechatronics" course, the infusion of mechatronics activities throughout the curriculum and in outreach activities, and assessment results. In addition, the relevance and impact of such a curriculum on the education of engineers…

  2. Mechatronics by Analogy and Application to Legged Locomotion

    Science.gov (United States)

    Ragusila, Victor

    A new design methodology for mechatronic systems, dubbed as Mechatronics by Analogy (MbA), is introduced and applied to designing a leg mechanism. The new methodology argues that by establishing a similarity relation between a complex system and a number of simpler models it is possible to design the former using the analysis and synthesis means developed for the latter. The methodology provides a framework for concurrent engineering of complex systems while maintaining the transparency of the system behaviour through making formal analogies between the system and those with more tractable dynamics. The application of the MbA methodology to the design of a monopod robot leg, called the Linkage Leg, is also studied. A series of simulations show that the dynamic behaviour of the Linkage Leg is similar to that of a combination of a double pendulum and a spring-loaded inverted pendulum, based on which the system kinematic, dynamic, and control parameters can be designed concurrently. The first stage of Mechatronics by Analogy is a method of extracting significant features of system dynamics through simpler models. The goal is to determine a set of simpler mechanisms with similar dynamic behaviour to that of the original system in various phases of its motion. A modular bond-graph representation of the system is determined, and subsequently simplified using two simplification algorithms. The first algorithm determines the relevant dynamic elements of the system for each phase of motion, and the second algorithm finds the simple mechanism described by the remaining dynamic elements. In addition to greatly simplifying the controller for the system, using simpler mechanisms with similar behaviour provides a greater insight into the dynamics of the system. This is seen in the second stage of the new methodology, which concurrently optimizes the simpler mechanisms together with a control system based on their dynamics. Once the optimal configuration of the simpler system is

  3. Fuzzy Life-Extending Control of Anti-Lock Braking System

    Directory of Open Access Journals (Sweden)

    Ahmed M. El-Garhy

    2013-12-01

    Full Text Available The repeated operation of the Anti-Lock Braking System (ABS causes accumulation of structural damages in its different subsystems leading to reduction in their functional life time. This paper proposes a Fuzzy Logic based Life-Extending Control (FLEC system for increasing the service life of the ABS. FLEC achieves significant improvement in service life by the trade-off between satisfactory dynamic performance and safe operation. The proposed FLEC incorporates structural damage model of the ABS. The model utilizes the dynamic behavior of the ABS and predicts the wear rates of the brake pads/disc. Based on the predicted wear rates, the proposed fuzzy logic controller modifies its control strategy on-line to keep safe operation leading to increase in service time of the ABS. FLEC is fine tuned via genetic algorithm and its effectiveness is verified through simulations of emergency stops of a passenger vehicle model.

  4. Mechatronics methodology: 15 years of experience

    Directory of Open Access Journals (Sweden)

    Efren Gorrostieta

    2015-09-01

    Full Text Available This article presents a methodology to teach students to develop mechatronic projects. It was taught in higher education schools, in different universities in Mexico, in courses such as: Robotics, Control Systems, Mechatronic Systems, Artificial Intelligence, etc. The intention of this methodology is not only to achieve the integration of different subjects but also to accomplish synergy between them so that the final result may be the best possible in quality, time and robustness. Since its introduction into the educational area, this methodology was evaluated and modified for approximately five years, were substantial characteristics were adopted. For the next ten years, only minor alterations were carried out. Fifteen years of experience have proven that the methodology is useful not only for training but also for real projects. In this article, we first explain the methodology and its main characteristics, as well as a brief history of its teaching in different educational programs. Then, we present two cases were the methodology was successfully applied. The first project consisted in the design, construction and evaluation of a mobile robotic manipulator which aims to be used as an explosives ordnance device. In the second case, we document the results of a project assignment for robotics tasks carried out by students which were formerly taught with the methodology.

  5. Dynamics of aircraft antiskid braking systems. [conducted at the Langley aircraft landing loads and traction facility

    Science.gov (United States)

    Tanner, J. A.; Stubbs, S. M.; Dreher, R. C.; Smith, E. G.

    1982-01-01

    A computer study was performed to assess the accuracy of three brake pressure-torque mathematical models. The investigation utilized one main gear wheel, brake, and tire assembly of a McDonnell Douglas DC-9 series 10 airplane. The investigation indicates that the performance of aircraft antiskid braking systems is strongly influenced by tire characteristics, dynamic response of the antiskid control valve, and pressure-torque response of the brake. The computer study employed an average torque error criterion to assess the accuracy of the models. The results indicate that a variable nonlinear spring with hysteresis memory function models the pressure-torque response of the brake more accurately than currently used models.

  6. Safety brake for tape reels

    Science.gov (United States)

    Carle, C. E.

    1977-01-01

    All-mechanical device senses end of tape and stops reel, even in event of electronic system failure. Assembly includes stop to prevent brake from overriding tape. Recentering mechanism returns brake to neutral position after torque is removed from reels.

  7. Load proportional safety brake

    Science.gov (United States)

    Cacciola, M. J.

    1979-01-01

    This brake is a self-energizing mechanical friction brake and is intended for use in a rotary drive system. It incorporates a torque sensor which cuts power to the power unit on any overload condition. The brake is capable of driving against an opposing load or driving, paying-out, an aiding load in either direction of rotation. The brake also acts as a no-back device when torque is applied to the output shaft. The advantages of using this type of device are: (1) low frictional drag when driving; (2) smooth paying-out of an aiding load with no runaway danger; (3) energy absorption proportional to load; (4) no-back activates within a few degrees of output shaft rotation and resets automatically; and (5) built-in overload protection.

  8. Some effects of adverse weather conditions on performance of airplane antiskid braking systems

    Science.gov (United States)

    Horne, W. B.; Mccarty, J. L.; Tanner, J. A.

    1976-01-01

    The performance of current antiskid braking systems operating under adverse weather conditions was analyzed in an effort to both identify the causes of locked-wheel skids which sometimes occur when the runway is slippery and to find possible solutions to this operational problem. This analysis was made possible by the quantitative test data provided by recently completed landing research programs using fully instrumented flight test airplanes and was further supported by tests performed at the Langley aircraft landing loads and traction facility. The antiskid system logic for brake control and for both touchdown and locked-wheel protection is described and its response behavior in adverse weather is discussed in detail with the aid of available data. The analysis indicates that the operational performance of the antiskid logic circuits is highly dependent upon wheel spin-up acceleration and can be adversely affected by certain pilot braking inputs when accelerations are low. Normal antiskid performance is assured if the tire-to-runway traction is sufficient to provide high wheel spin-up accelerations or if the system is provided a continuous, accurate ground speed reference. The design of antiskid systems is complicated by the necessity for tradeoffs between tire braking and cornering capabilities, both of which are necessary to provide safe operations in the presence of cross winds, particularly under slippery runway conditions.

  9. Robotic Fish Technology and Its Applications to Space Mechatronics

    OpenAIRE

    Yamamoto, Ikuo; Shin, Nobuhiro; Oka, Taishi; Matsui, Miki

    2014-01-01

    The authors have developed a shark ray robotic fish based on biomimetic approaches. The paper describes the newly developed robotic fish technology and its application to mechatronics in the space. It is found that robotic fish technology creates not only new underwater robotics, but also the next generation space mechatronics for geological survey of lunar/planets and dust cleaning in the space station.

  10. Mechatronics as a Technological Basis for an Innovative Learning Environment in Engineering

    Science.gov (United States)

    Garner, Gavin Thomas

    2009-01-01

    Mechatronic systems that couple mechanical and electrical systems with the help of computer control are forcing a paradigm shift in the design, manufacture, and implementation of mechanical devices. The inherently interdisciplinary nature of these systems generates exciting new opportunities for developing a hands-on, inventive, and…

  11. Gravity brake

    Science.gov (United States)

    Lujan, Richard E.

    2001-01-01

    A mechanical gravity brake that prevents hoisted loads within a shaft from free-falling when a loss of hoisting force occurs. A loss of hoist lifting force may occur in a number of situations, for example if a hoist cable were to break, the brakes were to fail on a winch, or the hoist mechanism itself were to fail. Under normal hoisting conditions, the gravity brake of the invention is subject to an upward lifting force from the hoist and a downward pulling force from a suspended load. If the lifting force should suddenly cease, the loss of differential forces on the gravity brake in free-fall is translated to extend a set of brakes against the walls of the shaft to stop the free fall descent of the gravity brake and attached load.

  12. Behavior of aircraft antiskid braking systems on dry and wet runway surfaces - A velocity-rate-controlled, pressure-bias-modulated system

    Science.gov (United States)

    Stubbs, S. M.; Tanner, J. A.

    1976-01-01

    During maximum braking the average ratio of drag-force friction coefficient developed by the antiskid system to maximum drag-force friction coefficient available at the tire/runway interface was higher on dry surfaces than on wet surfaces. The gross stopping power generated by the brake system on the dry surface was more than twice that obtained on the wet surfaces. With maximum braking applied, the average ratio of side-force friction coefficient developed by the tire under antiskid control to maximum side-force friction available at the tire/runway interface of a free-rolling yawed tire was shown to decrease with increasing yaw angle. Braking reduced the side-force friction coefficient on a dry surface by 75 percent as the wheel slip ratio was increased to 0.3; on a flooded surface the coefficient dropped to near zero for the same slip ratio. Locked wheel skids were observed when the tire encountered a runway surface transition from dry to flooded, due in part to the response time required for the system to sense abrupt changes in the runway friction; however, the antiskid system quickly responded by reducing brake pressure and cycling normally during the remainder of the run on the flooded surface.

  13. Dynamic analysis of three autoventilated disc brakes

    Directory of Open Access Journals (Sweden)

    Ricardo A. García-León

    2017-09-01

    Full Text Available The braking system of a car must meet several requirements, among which safety is the most important. It is also composed of a set of mechanical parts such as springs, different types of materials (Metallic and Non Metallic, gases and liquids. The brakes must work safely and predictably in all circumstances, which means having a stable level of friction, in any condition of temperature, humidity and salinity of the environment. For a correct design and operation of brake discs, it is necessary to consider different aspects, such as geometry, type of material, mechanical strength, maximum temperature, thermal deformation, cracking resistance, among others. Therefore, the main objective of this work is to analyze the dynamics and kinetics of the brake system from the pedal as the beginning of mathematical calculations to simulate the behavior and Analysis of Finite Elements (FEA, with the help of SolidWorks Simulation Software. The results show that the third brake disc works best in relation to the other two discs in their different working conditions such as speed and displacement in braking, concluding that depending on the geometry of the brake and the cooling channels these systems can be optimized that are of great importance for the automotive industry.

  14. Influence of the braking power control of the traction asynchronous machine in the voltage vector control system under DC

    Directory of Open Access Journals (Sweden)

    Юлія Олександрівна Слободенюк

    2016-11-01

    Full Text Available At braking the traction motors are transferred to generator mode and produce electrical energy which passes to the contact mains or storage device in the DC mains for further use. Such braking is called regenerative. The resulting electrical energy can be spent by trains in traction mode. Regenerative braking reduces the consumption of electric power for traction. In electric railways of our country more than 3% of the consumed electrical energy is given back to contact mains annually. As this takes place there arises the task to control the braking of the traction motors with minimal impact on electric power quality and maintaining proper braking performance. Based on the analysis of the characteristics of the brake traction of an electric locomotive with asynchronous electric machines the main braking modes have been chosen: at a constant sliding speed and the stator constant voltage; at constant braking power and the stator constant voltage; at a power value more than the nominal braking power; at a constant load torque; at a constant frequency of the stator. The vector control system with the formation of the reactive component of the stator current and the EMF regulator was chosen, basing on the working conditions characteristics in the electric braking mode (recuperation; namely, that the characteristics are defined by the laws regulating the frequency and voltage across the stator windings. This control system can fully reproduce any predetermined trajectory of traction and braking performance and adjust braking power. The offered system with recuperation can be used as a means of compensation in emergency situations with a power failure

  15. In-depth analysis of bicycle hydraulic disc brakes

    Science.gov (United States)

    Maier, Oliver; Györfi, Benedikt; Wrede, Jürgen; Arnold, Timo; Moia, Alessandro

    2017-10-01

    Hydraulic Disc Brakes (HDBs) represent the most recent and innovative bicycle braking system. Especially Electric Bicycles (EBs), which are becoming more and more popular, are equipped with this powerful, unaffected by environmental influences, and low-wear type of brakes. As a consequence of the high braking performance, typical bicycle braking errors lead to more serious accidents. This is the starting point for the development of a Braking Dynamics Assistance system (BDA) to prevent front wheel lockup and nose-over (falling over the handlebars). One of the essential prerequisites for the system design is a better understanding of bicycle HDBs' characteristics. A physical simulation model and a test bench have been built for this purpose. The results of the virtual and real experiments conducted show a high correlation and allow valuable insights into HDBs on bicycles, which have not been studied scientifically in any depth so far.

  16. Emergency Brake for Tracked Vehicles

    Science.gov (United States)

    Green, G. L.; Hooper, S. L.

    1986-01-01

    Caliper brake automatically stops tracked vehicle as vehicle nears end of travel. Bar on vehicle, traveling to right, dislodges block between brake pads. Pads then press against bar, slowing vehicle by friction. Emergencybraking system suitable for elevators, amusement rides and machine tools.

  17. Effectiveness of antilock braking systems in reducing motorcycle fatal crash rates.

    Science.gov (United States)

    Teoh, Eric R

    2011-04-01

    Overbraking and underbraking have been shown to be common factors in motorcycle crashes. Antilock braking systems (ABS) prevent wheels from locking during braking and may make riders less reluctant to apply full braking force. The objective of this study was to evaluate the effect of ABS in fatal motorcycle crashes. Motorcycle drivers involved in fatal crashes per 10,000 registered vehicle years were compared for 13 motorcycle models with optional ABS and those same models without the option during 2003-2008. Motorcycles with optional ABS were included only if the presence of the option could be identified from the vehicle identification number. The rate of fatal motorcycle crashes per 10,000 registered vehicle years was 37 percent lower for ABS models than for their non-ABS versions. ABS appears to be highly effective in preventing fatal motorcycle crashes based on some early adopters of motorcycle ABS technology.

  18. Capacitor regenerative braking system of electric wheelchair for senior citizen based on variable frequency chopper control.

    Science.gov (United States)

    Takahashi, Yoshiaki; Seki, Hirokazu

    2009-01-01

    This paper proposes a novel regenerative braking control system of electric wheelchairs for senior citizen. "Electric powered wheelchair", which generates the driving force by electric motors according to the human operation, is expected to be widely used as a mobility support system for elderly people. This study focuses on the braking control to realize the safety and smooth stopping motion using the regenerative braking control technique based on fuzzy algorithm. The ride quality improvement and energy recycling can be expected by the proposed control system with stopping distance estimation and variable frequency control on the step-up/down chopper type of capacitor regenerative circuit. Some driving experiments confirm the effectiveness of the proposed control system.

  19. Diesel Technology: Brakes. Teacher Edition [and] Student Edition.

    Science.gov (United States)

    Hilley, Robert; Scarberry, Terry; Kellum, Mary

    This document contains teacher and student materials for a course on brakes in the diesel technology curriculum. The course consists of 12 units organized in three sections. The three units of the introductory section cover: (1) brakes; (2) wheel bearings and seals; and (3) antilock brake systems. The second section, Hydraulic Brakes, contains the…

  20. Collective of mechatronics circuit

    International Nuclear Information System (INIS)

    1987-02-01

    This book is composed of three parts, which deals with mechatronics system about sensor, circuit and motor. The contents of the first part are photo sensor of collector for output, locating detection circuit with photo interrupts, photo sensor circuit with CdS cell and lamp, interface circuit with logic and LED and temperature sensor circuit. The second part deals with oscillation circuit with crystal, C-R oscillation circuit, F-V converter, timer circuit, stability power circuit, DC amp and DC-DC converter. The last part is comprised of bridge server circuit, deformation bridge server, controlling circuit of DC motor, controlling circuit with IC for PLL and driver circuit of stepping motor and driver circuit of Brushless.

  1. Collective of mechatronics circuit

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1987-02-15

    This book is composed of three parts, which deals with mechatronics system about sensor, circuit and motor. The contents of the first part are photo sensor of collector for output, locating detection circuit with photo interrupts, photo sensor circuit with CdS cell and lamp, interface circuit with logic and LED and temperature sensor circuit. The second part deals with oscillation circuit with crystal, C-R oscillation circuit, F-V converter, timer circuit, stability power circuit, DC amp and DC-DC converter. The last part is comprised of bridge server circuit, deformation bridge server, controlling circuit of DC motor, controlling circuit with IC for PLL and driver circuit of stepping motor and driver circuit of Brushless.

  2. Mechanical braking system for the pulsed power supply system of ASDEX Upgrade

    International Nuclear Information System (INIS)

    Käsemann, C.-P.; Huart, M.; Stobbe, F.; Goldstein, I.; Sigalov, A.; Sachs, E.; Perk, E.

    2013-01-01

    Highlights: ► Compact and innovative solution for dumping of large kinetic energy. ► Small mass of energy converter at the shaft due to circulating storage medium. ► Design of the active parts ensures flat torque/power characteristics. ► Also suitable for spending a great part of operating life in “Freewheeling” mode. -- Abstract: A few years ago, IPP reviewed the safety of the ASDEX Upgrade pulsed power supply system. Two critical sub-systems had been identified: The (electrical) braking system for the flywheel generators and the oil lubrication system for the shaft bearings. A simultaneous failure of these two systems may lead to severe damages and could have consequences for the safety of operating personnel. Therefore a second, independent braking possibility for every generator was stipulated. Especially the challenges adapting a dynamometer, originally designed for motor test benches, towards a plant safety system for generator EZ4 will be described in the paper. Further on, the paper will present the problems, implementing such a system into an existing installation, including the calculation of the required supporting structure, balancing of the extended shaft line and required water cooling and control. Finally it will report on the performance achieved during operation

  3. Mechanical braking system for the pulsed power supply system of ASDEX Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Käsemann, C.-P., E-mail: c.p.kaesemann@ipp.mpg.de [Max Planck Institute for Plasma Physics, EURATOM Association, Boltzmannstr. 2, 85748 Garching (Germany); Huart, M. [Max Planck Institute for Plasma Physics, EURATOM Association, Boltzmannstr. 2, 85748 Garching (Germany); Michel Huart Personal Coaching and Consulting, Georgenschwaigstraße 23 RG, 80807 München (Germany); Stobbe, F.; Goldstein, I.; Sigalov, A. [Max Planck Institute for Plasma Physics, EURATOM Association, Boltzmannstr. 2, 85748 Garching (Germany); Sachs, E. [Siemens AG, Industrial Automation Systems, Gleiwitzer Straße 555, 90475 Nürnberg (Germany); Perk, E. [Piper Test and Measurement Ltd., The Barn, Bilsington, Ashford, Kent TN25 7JT, England (United Kingdom)

    2013-10-15

    Highlights: ► Compact and innovative solution for dumping of large kinetic energy. ► Small mass of energy converter at the shaft due to circulating storage medium. ► Design of the active parts ensures flat torque/power characteristics. ► Also suitable for spending a great part of operating life in “Freewheeling” mode. -- Abstract: A few years ago, IPP reviewed the safety of the ASDEX Upgrade pulsed power supply system. Two critical sub-systems had been identified: The (electrical) braking system for the flywheel generators and the oil lubrication system for the shaft bearings. A simultaneous failure of these two systems may lead to severe damages and could have consequences for the safety of operating personnel. Therefore a second, independent braking possibility for every generator was stipulated. Especially the challenges adapting a dynamometer, originally designed for motor test benches, towards a plant safety system for generator EZ4 will be described in the paper. Further on, the paper will present the problems, implementing such a system into an existing installation, including the calculation of the required supporting structure, balancing of the extended shaft line and required water cooling and control. Finally it will report on the performance achieved during operation.

  4. Model-based fuzzy control solutions for a laboratory Antilock Braking System

    DEFF Research Database (Denmark)

    Precup, Radu-Emil; Spataru, Sergiu; Rǎdac, Mircea-Bogdan

    2010-01-01

    This paper gives two original model-based fuzzy control solutions dedicated to the longitudinal slip control of Antilock Braking System laboratory equipment. The parallel distributed compensation leads to linear matrix inequalities which guarantee the global stability of the fuzzy control systems...

  5. Hardware simulation of automatic braking system based on fuzzy logic control

    Directory of Open Access Journals (Sweden)

    Noor Cholis Basjaruddin

    2016-07-01

    Full Text Available In certain situations, a moving or stationary object can be a barrier for a vehicle. People and vehicles crossing could potentially get hit by a vehicle. Objects around roads as sidewalks, road separator, power poles, and railroad gates are also a potential source of danger when the driver is inattentive in driving the vehicle. A device that can help the driver to brake automatically is known as Automatic Braking System (ABS. ABS is a part of the Advanced Driver Assistance Systems (ADAS, which is a device designed to assist the driver in driving the process. This device was developed to reduce human error that is a major cause of traffic accidents. This paper presents the design of ABS based on fuzzy logic which is simulated in hardware by using a remote control car. The inputs of fuzzy logic are the speed and distance of the object in front of the vehicle, while the output of fuzzy logic is the intensity of braking. The test results on the three variations of speed: slow-speed, medium-speed, and high-speed shows that the design of ABS can work according to design.

  6. Controlling Mechatronic Set-up Using Real-time Linux and CTC ++

    NARCIS (Netherlands)

    Broenink, Johannes F.; Jovanovic, D.S.; Hilderink, G.H.; van Amerongen, J.; Jonker, B.; Regtien, P.; Stramigioli, S.

    2002-01-01

    The development of control software for mechatronic systems is presented by means of a case study: a 2 DOF mechanical rotational set-up usable as a camera-positioning device. The control software is generated using the code generation facility of 20-SIM, thus guaranteeing the generated code being

  7. Error-tolerant pedal for a brake-by-wire system; Fehlertolerante Pedaleinheit fuer ein elektromechanisches Bremssystem (Brake-by-Wire)

    Energy Technology Data Exchange (ETDEWEB)

    Stoelzl, S.

    2000-07-01

    The author describes the development of an error-tolerant brake-by-wire system with pedal consolidation, including the development of a monitoring and safety concept. [German] Die zunehmende Entwicklung aktiver Fahrerassistenzsysteme im Automobilbereich (z.B. ABS, ESP) zur Erhoehung der Fahrsicherheit erfordert ein staendig wachsendes Funktionspotential. Die Bremsanlagen werden dadurch immer komplexer. Parallel steigen die Anforderungen an den Bremspedalkomfort. Einen Ausweg aus dieser Problematik verspricht die Elektromechanische Bremsanlage (EMB) mit rueckwirkungsfreier Entkopplung des Fahrers von den Radbremsen (Brake-by-Wire). Das Bremskommando des Fahrers wird bei Betaetigung des Bremspedals rein sensorisch erfasst. Da es keine mechanische Rueckfallebene mehr gibt, muessen Fehler der Pedaleinheit erkannt und toleriert werden. Neu an dieser Arbeit ist die Entwicklung der fehlertoleranten elektromechanischen Pedaleinheit der EMB mit Pedalsensorkonsolidierung und Erstellung des dazu notwendigen Sicherheits- und Ueberwachungskonzepts. (orig.)

  8. Electronics and braking systems; Elektronik in Bremssystemen

    Energy Technology Data Exchange (ETDEWEB)

    Gaupp, W. [Rheinisch-Westfaelischer Technischer Ueberwachungs-Verein e.V., Essen (Germany). Inst. fuer Fahrzeugtechnik

    2000-02-01

    In addition to the anti-lock braking system ABS, which is now fitted to almost every new passenger car, an increasing number of other control systems which intervene in the vehicle's driving dynamics, such as ASR, DSC or ESP, are being introduced. This article gives an overview of such systems, from their beginnings up to the present-day, and describes future developments. (orig.) [German] Neben das Antiblockiersystem ABS, mit dem heute fast jeder neue Pkw ausgestattet ist, treten zunehmend weitere Regelsysteme, die in die Fahrdynamik des Fahrzeugs eingreifen, wie zum Beispiel ASR, DSC oder ESP. Dieser Beitrag gibt einen Ueberblick von den Anfaengen dieser Systeme bis hin zu zukuenftigen Entwicklungen. (orig.)

  9. Regenerative Intelligent Brake Control for Electric Motorcycles

    Directory of Open Access Journals (Sweden)

    Juan Jesús Castillo Aguilar

    2017-10-01

    Full Text Available Vehicle models whose propulsion system is based on electric motors are increasing in number within the automobile industry. They will soon become a reliable alternative to vehicles with conventional propulsion systems. The main advantages of this type of vehicles are the non-emission of polluting gases and noise and the effectiveness of electric motors compared to combustion engines. Some of the disadvantages that electric vehicle manufacturers still have to solve are their low autonomy due to inefficient energy storage systems, vehicle cost, which is still too high, and reducing the recharging time. Current regenerative systems in motorcycles are designed with a low fixed maximum regeneration rate in order not to cause the rear wheel to slip when braking with the regenerative brake no matter what the road condition is. These types of systems do not make use of all the available regeneration power, since more importance is placed on safety when braking. An optimized regenerative braking strategy for two-wheeled vehicles is described is this work. This system is designed to recover the maximum energy in braking processes while maintaining the vehicle’s stability. In order to develop the previously described regenerative control, tyre forces, vehicle speed and road adhesion are obtained by means of an estimation algorithm. A based-on-fuzzy-logic algorithm is programmed to carry out an optimized control with this information. This system recuperates maximum braking power without compromising the rear wheel slip and safety. Simulations show that the system optimizes energy regeneration on every surface compared to a constant regeneration strategy.

  10. Braking energy regeneration control of a fuel cell hybrid electric bus

    International Nuclear Information System (INIS)

    Zhang, Junzhi; Lv, Chen; Qiu, Mingzhe; Li, Yutong; Sun, Dongsheng

    2013-01-01

    Highlights: • A braking energy regeneration system has been designed for a fuel cell bus. • Control strategy coordinating energy efficiency and brake safety is proposed. • The system and control strategy proposed are experimentally verified. • Based on test results, energy efficiency of the FCB is improved greatly. - Abstract: This paper presents the braking energy regeneration control of a fuel cell hybrid electric bus. The configuration of the regenerative braking system based on a pneumatic braking system was proposed. To recapture the braking energy and improve the fuel economy, a control strategy coordinating the regenerative brake and the pneumatic brake was designed and applied in the FCHB. Brake safety was also guaranteed by the control strategy when the bus encounters critical driving situations. Fuel economy tests were carried out under China city bus typical driving cycle. And hardware-in-the-loop tests of the brake safety of the FCHB under proposed control strategy were also accomplished. Test results indicate that the present approach provides an improvement in fuel economy of the fuel cell hybrid electric bus and guarantees the brake safety in the meantime

  11. Sustainable urban rail systems: Strategies and technologies for optimal management of regenerative braking energy

    International Nuclear Information System (INIS)

    González-Gil, Arturo; Palacin, Roberto; Batty, Paul

    2013-01-01

    Highlights: • Review of principal regenerative braking strategies and technologies for urban rail. • Different energy storage technologies are assessed for use in urban rail. • Optimising timetables is a preferential measure to improve energy efficiency. • Energy storage systems improve efficiency and reliability of urban rail systems. • Reversible substations allow for a complete recovery of braking energy. - Abstract: In a society characterised by increasing rates of urbanisation and growing concerns about environmental issues like climate change, urban rail transport plays a key role in contributing to sustainable development. However, in order to retain its inherent advantages in terms of energy consumption per transport capacity and to address the rising costs of energy, important energy efficiency measures have to be implemented. Given that numerous and frequent stops are a significant characteristic of urban rail, recuperation of braking energy offers a great potential to reduce energy consumption in urban rail systems. This paper presents a comprehensive overview of the currently available strategies and technologies for recovery and management of braking energy in urban rail, covering timetable optimisation, on-board and wayside Energy Storage Systems (ESSs) and reversible substations. For each measure, an assessment of their main advantages and disadvantages is provided alongside a list of the most relevant scientific studies and demonstration projects. This study concludes that optimising timetables is a preferential measure to increase the benefits of regenerative braking in any urban rail system. Likewise, it has been observed that ESSs are a viable solution to reuse regenerative energy with voltage stabilisation and energy saving purposes. Electrochemical Double Layer Capacitors has been identified as the most suitable technology for ESSs in general, although high specific power batteries such as Li-ion may become a practical option for on

  12. Mechatronic development of an active spring-/tilt engineering for the railcar RailCab

    International Nuclear Information System (INIS)

    Liu-Henke, X.

    2005-01-01

    A mechatronic development process with computer-supported design up to real time implementation of a prototype was applied throughout, with particular emphasis on mechatronic composition. After establishing a nonlinear mechatronic model and model identification, nonlinear compensation was designed and implemented in a HiL test stand. Simulations and test stand measurements verified high driving comfort and high safety as a result of the implemented active spring/tilt technology

  13. Research of braking peculiarities of used cars

    Directory of Open Access Journals (Sweden)

    V. Mitunevičius

    2002-06-01

    Full Text Available This paper briefly describes some analysis of a car braking process - the peculiarities of car wheel-to-road adhesion, the influence of distribution of braking forces on car stability between front and rear axles. The requirements of EU Directive 71/320/EEC to braking force coefficients of car front and rear axles are exposed. Structural designs of braking systems are analyzed with respect to their meeting the EU standards. Experimental measurements of braking force coefficients for some models of cars which are used in Lithuania, are presented with the analysis how these coefficients meet the EU standards. The analysis of test results, suggestions for the ratio of braking forces of car front and rear axles are presented.

  14. Hydrostatically regenerative brake system for commercial vehicles and mobil hydraulic work engines; Hydrostatisch Regeneratives Bremssystem (HRB) fuer Nutzfahrzeuge und mobile Arbeitsmaschinen

    Energy Technology Data Exchange (ETDEWEB)

    Kliffken, Markus Gustav; Ehret, Christine; Stawiarksi, Robert [Bosch Rexroth AG, Elchingen (Germany)

    2008-07-01

    The characteristics of the hydraulic storage system and the hydrostatically renewable brake system of Bosch Rexroth AG (Eichingen, Federal Republic of Germany) as a hydraulic hybrid system permit a fast integration in the vehicle, low costs of maintenance and high security. The system is suitable for vehicles which frequently start and brake. As a function of the operating cycle, savings of up to 25 % are possible. Additionally, the hydrostatically renewable brake system reduces the wear of brakes and provides a larger travelling comfort by eliminating interruptions of traction power. At present, the functionality of the hydrostatically renewable brake system is tested in a field test at Berlin (Federal Republic of Germany). Further prototypes also are developed and tested in the U.S.A. up to the end of the year 2008.

  15. STUDY ON ENERGY EXCHANGE PROCESSES IN NORMAL OPERATION OF METRO ROLLING STOCK WITH REGENERATIVE BRAKING SYSTEMS

    Directory of Open Access Journals (Sweden)

    A. O. Sulym

    2017-10-01

    Full Text Available Purpose. The analysis of the existing studies showed that the increasing of energy efficiency of metro rolling stock becomes especially important and requires timely solutions. It is known that the implementation of regenerative braking systems on rolling stock will allow significantly solving this problem. It was proved that one of the key issues regarding the introduction of the above-mentioned systems is research on efficient use of electric energy of regenerative braking. The purpose of the work is to evaluate the amount of excessive electric power of regenerative braking under normal operation conditions of the rolling stock with regenerative braking systems for the analysis of the energy saving reserves. Methodology. Quantifiable values of electrical energy consumed for traction, returned to the contact line and dissipated in braking resistors (excessive energy are determined using results of experimental studies of energy exchange processes under normal operating conditions of metro rolling stock with regenerative systems. Statistical methods of data processing were applied as well. Findings. Results of the studies analysis of metro rolling stock operation under specified conditions in Sviatoshinsko-Brovarskaia line of KP «Kyiv Metro system» stipulate the following: 1 introduction of regenerative braking systems into the rolling stock allows to return about 17.9-23.2% of electrical energy consumed for traction to the contact line; 2 there are reserves for improving of energy efficiency of rolling stock with regenerative systems at the level of 20.2–29.9 % of electrical energy consumed for traction. Originality. For the first time, it is proved that the most significant factor that influences the quantifiable values of the electrical energy regeneration is a track profile. It is suggested to use coefficients which indicate the amount and reserves of unused (excessive electrical energy for quantitative evaluation. Studies on

  16. Better Brakes

    Science.gov (United States)

    1976-01-01

    Through continuing studies on high-temperature space materials useful for better brake linings, Bendix Corporation worked with Ames Research Center to develop a novel composite. This team worked to fabricate several combinations of composite materials and evaluated results. The one selected increases wear rates and lowers costs. It exhibits constant coefficient of friction at temperatures as high as 650 degrees Fahrenheit, a region where conventional brake linings fade markedly. Other suitable markets include brakes for trucks and industrial equipment such as overhead cranes and hoists. Afterwards brake linings could find successful application in passenger cars.

  17. Magnetostrictive Brake

    Science.gov (United States)

    Diftler, Myron A.; Hulse, Aaron

    2010-01-01

    A magnetostrictive brake has been designed as a more energy-efficient alternative to a magnetic fail-safe brake in a robot. (In the specific application, failsafe signifies that the brake is normally engaged; that is, power must be supplied to allow free rotation.) The magnetic failsafe brake must be supplied with about 8 W of electric power to initiate and maintain disengagement. In contrast, the magnetostrictive brake, which would have about the same dimensions and the same torque rating as those of the magnetic fail-safe brake, would demand only about 2 W of power for disengagement. The brake (see figure) would include a stationary base plate and a hub mounted on the base plate. Two solenoid assemblies would be mounted in diametrically opposed recesses in the hub. The cores of the solenoids would be made of the magnetostrictive alloy Terfenol-D or equivalent. The rotating part of the brake would be a ring-and spring- disk subassembly. By means of leaf springs not shown in the figure, this subassembly would be coupled with the shaft that the brake is meant to restrain. With no power supplied to the solenoids, a permanent magnet would pull axially on a stepped disk and on a shelf in the hub, causing the ring to be squeezed axially between the stepped disk and the hub. The friction associated with this axial squeeze would effect the braking action. Supplying electric power to the solenoids would cause the magnetostrictive cylinders to push radially inward against a set of wedges that would be in axial contact with the stepped disk. The wedges would convert the radial magnetostrictive strain to a multiplied axial displacement of the stepped disk. This axial displacement would be just large enough to lift the stepped disk, against the permanent magnetic force, out of contact with the ring. The ring would then be free to turn because it would no longer be squeezed axially between the stepped disk and the hub.

  18. Generation of brake squeal. Fundamental vibration in brake system; Entstehungsmechanismus des Bremsenquietschens. Grundschwingung im Bremssystem

    Energy Technology Data Exchange (ETDEWEB)

    Shi Xiaoming; Mitschke, M.

    1997-11-01

    Reducing or preventing brake squealing is a prime goal of brake development. To provide constructional means of doing this the mechanism by which it occurs must first be understood. Research at the Technical University of Braunschweig now offers a plausible explanation. (orig.) [Deutsch] Die Verringerung oder Vermeidung des Bremsenquietschens ist ein wichtiges Ziel der Bremsenentwicklung. Um konstruktiv Abhilfe zu schaffen, muss zunaechst der Entstehungsmechanismus fuer dieses unerwuenschte Geraeusch geklaert werden. Forschung an der Technischen Universitaet Braunschweig ermoeglicht jetzt eine plausible Erklaerung. (orig.)

  19. An Instructor's Guide for a Program in Brake Services.

    Science.gov (United States)

    New York State Education Dept., Albany. Bureau of Secondary Curriculum Development.

    The instructor's guide is designed to present an understanding of the automotive hydraulic brake system and to help individuals develop new skills for employment in this specialized field of automotive service. Applicable for secondary or adult education, this guide describes: the brake system, types of brakes, diagnosis and correction of brake…

  20. Reconstruction of braking force in vehicles with electromechanically actuated wheel brakes; Rekonstruktion der Bremskraft bei Fahrzeugen mit elektromechanisch betaetigten Radbremsen

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, R.

    1999-07-01

    Modern braking systems have a variety of functions, but implementation of the enhanced functionality with conventional hydraulic systems is difficult because of electronic actuation. The car industry therefore is working on new braking systems in which the braking force is generated individually on the wheels by means of electromechanical actuators. Owing to their nonlinear characteristics and variable braking efficiency, electromechanically actuated wheel brakes must be operated in a closed control loop. The author presents a low-cost method for reconstruction of the braking force which is required for efficient control. [German] Aufgrund des gestiegenen Sicherheits- und Komfortbewusstseins der Fahrzeugkaeufer ist die Funktionsvielfalt moderner Bremssysteme in den letzten Jahren staendig gewachsen. Die Umsetzung der erweiterten Funktionalitaet mittels konventioneller Bremsenhydraulik ist jedoch durch den elektronischen Eingriff sehr aufwendig. - Von der Automobilzulieferindustrie werden daher neuartige Bremssysteme entwickelt, bei denen die Bremskraft an den einzelnen Raedern von elektromechanischen Bremsaktuatoren aufgebracht wird. - Elektromechanisch betaetigte Radbremsen muessen aufgrund ihres nichtlinearen Verhaltens und des veraenderlichen Wirkungsgrades im geschlossenen Regelkreis betrieben werden. In dieser Arbeit wird erstmals ein Verfahren vorgestellt, mit dem die fuer die Regelung benoetigte Rueckfuehrungsgroesse Bremskraft kostenguenstig rekonstruiert werden kann. (orig.)

  1. CFD Modeling and Simulation of Aeorodynamic Cooling of Automotive Brake Rotor

    Science.gov (United States)

    Belhocien, Ali; Omar, Wan Zaidi Wan

    Braking system is one of the important control systems of an automotive. For many years, the disc brakes have been used in automobiles for the safe retarding of the vehicles. During the braking enormous amount of heat will be generated and for effective braking sufficient heat dissipation is essential. The thermal performance of disc brake depends upon the characteristics of the airflow around the brake rotor and hence the aerodynamics is an important in the region of brake components. A CFD analysis is carried out on the braking system as a case study to make out the behavior of airflow distribution around the disc brake components using ANSYS CFX software. We are interested in the determination of the heat transfer coefficient (HTC) on each surface of a ventilated disc rotor varying with time in a transient state using CFD analysis, and then imported the surface film condition data into a corresponding FEM model for disc temperature analysis.

  2. Implementation and Performance Evaluation of a Regenerative Braking System Coupled to Ultracapacitors for a Brushless DC Hub Motor Driven Electric Tricycle

    OpenAIRE

    Kuruppu, Sandun

    2010-01-01

    Research related to electrical vehicles is gaining importance due to the, energy crisis. An electric vehicle itself is far ahead of an internal combustion, engine based vehicle due to its efficiency. Using regenerative braking when, braking, improves the efficiency of an electric vehicle as it recovers energy that, could go to waste if mechanical brakes were used. A novel regenerative braking, system for neighborhood electric vehicles was designed, prototyped and tested., The proposed system ...

  3. The intelligent brake: SBS brakes safely and comfortably in all situations; Die intelligente Bremse: SBS verzoegert stets sicher und komfortabel

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1999-07-01

    The Vision SLR study demonstrates the technology with which DaimlerChrysler vehicles will be equipped in the next century. The car that won the Gran Turismo incorporates the Sensortronic Brake System (SBS), an electrohydraulic braking system for optimum safety and comfort even in critical situations. [German] Die Fahrzeugstudie Vision SLR demonstriert eindrucksvoll die Technik, mit der DaimlerChrysler Fahrzeuge des kommenden Jahrhunderts ausstatten wird. Eine Besonderheit des Gran Turismo-Silberpfeils: das Sensortronic Brake System (SBS), ein elektrohydraulisches Bremssystem, das auch in kritischen Situationen optimale Fahrsicherheit und Komfort bietet. (orig.)

  4. An Analytical Design Method for a Regenerative Braking Control System for DC-electrified Railway Systems under Light Load Conditions

    Science.gov (United States)

    Saito, Tatsuhito; Kondo, Keiichiro; Koseki, Takafumi

    A DC-electrified railway system that is fed by diode rectifiers at a substation is unable to return the electric power to an AC grid. Accordingly, the braking cars have to restrict regenerative braking power when the power consumption of the powering cars is not sufficient. However, the characteristics of a DC-electrified railway system, including the powering cars, is not known, and a mathematical model for designing a controller has not been established yet. Hence, the object of this study is to obtain the mathematical model for an analytical design method of the regenerative braking control system. In the first part of this paper, the static characteristics of this system are presented to show the position of the equilibrium point. The linearization of this system at the equilibrium point is then performed to describe the dynamic characteristics of the system. An analytical design method is then proposed on the basis of these characteristics. The proposed design method is verified by experimental tests with a 1kW class miniature model, and numerical simulations.

  5. Emergency escape system uses self-braking mechanism on fixed cable

    Science.gov (United States)

    Billings, C. R.; Mc Daris, R. A.; Mc Gough, J. T.; Neal, P. F.

    1966-01-01

    Slide-wire system with a twist level slide device incorporates automatic descent and braking for the safe and rapid evacuation of personnel from tall structures. This device is used on any tall structure that might require emergency evacuation. It is also used to transfer materials and equipment.

  6. Fault diagnosis of automobile hydraulic brake system using statistical features and support vector machines

    Science.gov (United States)

    Jegadeeshwaran, R.; Sugumaran, V.

    2015-02-01

    Hydraulic brakes in automobiles are important components for the safety of passengers; therefore, the brakes are a good subject for condition monitoring. The condition of the brake components can be monitored by using the vibration characteristics. On-line condition monitoring by using machine learning approach is proposed in this paper as a possible solution to such problems. The vibration signals for both good as well as faulty conditions of brakes were acquired from a hydraulic brake test setup with the help of a piezoelectric transducer and a data acquisition system. Descriptive statistical features were extracted from the acquired vibration signals and the feature selection was carried out using the C4.5 decision tree algorithm. There is no specific method to find the right number of features required for classification for a given problem. Hence an extensive study is needed to find the optimum number of features. The effect of the number of features was also studied, by using the decision tree as well as Support Vector Machines (SVM). The selected features were classified using the C-SVM and Nu-SVM with different kernel functions. The results are discussed and the conclusion of the study is presented.

  7. A MECHATRONIC CASE STUDY HIGHLIGHTING THE NEED FOR RE-THINKING THE DESIGN APPROACH

    DEFF Research Database (Denmark)

    Torry-Smith, Jonas; Mortensen, Niels Henrik

    2011-01-01

    Developing mechatronic products is a great challenge for many companies due to the multi-disciplinary nature of the development process. In this article the main objective is an investigation of seven aspects related to the synthesis process of developing mechatronic products. The role and effects...... of the proposed support often originates from a control engineering dominated research area. This circumstance leaves a vast amount of other types of mechatronic products with only sparse development support with the potential of being made operational....

  8. Station Stopping of Freight Trains with Pneumatic Braking

    OpenAIRE

    Yun Bai; Baohua Mao; Tinkin Ho; Yu Feng; Shaokuan Chen

    2014-01-01

    In Chinese mainline railway, freight trains need to stop within passenger stations at times because of the delayed passenger trains. Without any decision-support system, it is very difficult for drivers to stop trains within stations with consistency in one braking action. The reasons are that braking performance of train changes with the conditions of braking equipment and the drivers’ subjective evaluations of track profiles and braking distance are vague and imprecise. This paper presents ...

  9. The National Mechatronic Platform. The basis of the educational programs in the knowledge society

    Science.gov (United States)

    Maties, V.

    2016-08-01

    The shift from the information society to the knowledge based society caused by the mechatronic revolution, that took place in the 9th decade of the last century, launched a lot of challenges for education and researches activities too. Knowledge production development asks for new educational technologies to stimulate the initiative and creativity as a base to increase the productivity in the knowledge production. The paper presents details related on the innovative potential of mechatronics as educational environment for transdisciplinarity learning and integral education. The basic infrastructure of that environment is based on mechatronic platforms. In order to develop the knowledge production at the national level the specific structures are to be developed. The paper presents details related on the structure of the National Mechatronic Platform as a true knowledge factory. The benefits of the effort to develop the specific infrastructure for knowledge production in the field of mechatronics are outlined too.

  10. Highlights in mechatronic design approaches

    NARCIS (Netherlands)

    Dertien, Edwin Christian; Stramigioli, Stefano; Zangh, Dan; Wei, Bin

    2017-01-01

    In the recent years a major change in the engineering process of mechatronics and robotics has taken place. In various design oriented laboratories around the world a shift can be recognised from a focus on analysis, simulation and modelling combined with outsourcing hardware design to the use of

  11. Autonomous emergency braking systems adapted to snowy road conditions improve drivers' perceived safety and trust.

    Science.gov (United States)

    Koglbauer, Ioana; Holzinger, Jürgen; Eichberger, Arno; Lex, Cornelia

    2018-04-03

    This study investigated drivers' evaluation of a conventional autonomous emergency braking (AEB) system on high and reduced tire-road friction and compared these results to those of an AEB system adaptive to the reduced tire-road friction by earlier braking. Current automated systems such as the AEB do not adapt the vehicle control strategy to the road friction; for example, on snowy roads. Because winter precipitation is associated with a 19% increase in traffic crashes and a 13% increase in injuries compared to dry conditions, the potential of conventional AEB to prevent collisions could be significantly improved by including friction in the control algorithm. Whereas adaption is not legally required for a conventional AEB system, higher automated functions will have to adapt to the current tire-road friction because human drivers will not be required to monitor the driving environment at all times. For automated driving functions to be used, high levels of perceived safety and trust of occupants have to be reached with new systems. The application case of an AEB is used to investigate drivers' evaluation depending on the road condition in order to gain knowledge for the design of future driving functions. In a driving simulator, the conventional, nonadaptive AEB was evaluated on dry roads with high friction (μ = 1) and on snowy roads with reduced friction (μ = 0.3). In addition, an AEB system adapted to road friction was designed for this study and compared with the conventional AEB on snowy roads with reduced friction. Ninety-six drivers (48 males, 48 females) assigned to 5 age groups (20-29, 30-39, 40-49, 50-59, and 60-75 years) drove with AEB in the simulator. The drivers observed and evaluated the AEB's braking actions in response to an imminent rear-end collision at an intersection. The results show that drivers' safety and trust in the conventional AEB were significantly lower on snowy roads, and the nonadaptive autonomous braking strategy was

  12. Fast and Low-Cost Mechatronic Recognition System for Persian Banknotes

    Directory of Open Access Journals (Sweden)

    Majid Behjat

    2014-03-01

    Full Text Available In this paper, we designed a fast and low-cost mechatronic system for recognition of eight current Persian banknotes in circulation. Firstly, we proposed a mechanical solution for avoiding extra processing time caused by detecting the place of banknote and paper angle correction in an input image. We also defined new parameters for feature extraction, including colour features (RGBR values, size features (LWR and texture features (CRLVR value. Then, we used a Multi-Layer Perceptron (MLP neural network in the recognition phase to reduce the necessary processing time. In this research, we collected a perfect database of Persian banknote images (about 4000 double-sided prevalent images. We reached about 99.06% accuracy (average for each side in final banknote recognition by testing 800 different worn, torn and new banknotes which were not part of the initial learning phase. This accuracy could increase to 99.62% in double-sided decision mode. Finally, we designed an ATmega32 microcontroller-based hardware with 16MHz clock frequency for implementation of our proposed system which can recognize sample banknotes at about 480ms and 560ms for single-sided detection and double-sided detection respectively, after image scanning.

  13. Designing neuro-fuzzy controller for electromagnetic anti-lock braking system (ABS) on electric vehicle

    Science.gov (United States)

    Pramudijanto, Josaphat; Ashfahani, Andri; Lukito, Rian

    2018-03-01

    Anti-lock braking system (ABS) is used on vehicles to keep the wheels unlocked in sudden break (inside braking) and minimalize the stop distance of the vehicle. The problem of it when sudden break is the wheels locked so the vehicle steering couldn’t be controlled. The designed ABS system will be applied on ABS simulator using the electromagnetic braking. In normal condition or in condition without braking, longitudinal velocity of the vehicle will be equal with the velocity of wheel rotation, so the slip ratio will be 0 (0%) and if the velocity of wheel rotation is 0 (in locked condition) then the wheels will be slip 1 (100%). ABS system will keep the value of slip ratio so it will be 0.2 (20%). In this final assignment, the method that is used is Neuro-Fuzzy method to control the slip value on the wheels. The input is the expectable slip and the output is slip from plant. The learning algorithm which is used is Backpropagation that will work by feedforward to get actual output and work by feedback to get error value with target output. The network that was made based on fuzzy mechanism which are fuzzification, inference and defuzzification, Neuro-fuzzy controller can reduce overshoot plant respond to 43.2% compared to plant respond without controller by open loop.

  14. Handbook of driver assistance systems basic information, components and systems for active safety and comfort

    CERN Document Server

    Hakuli, Stephan; Lotz, Felix; Singer, Christina

    2016-01-01

    This fundamental work explains in detail systems for active safety and driver assistance, considering both their structure and their function. These include the well-known standard systems such as Anti-lock braking system (ABS), Electronic Stability Control (ESC) or Adaptive Cruise Control (ACC). But it includes also new systems for protecting collisions protection, for changing the lane, or for convenient parking. The book aims at giving a complete picture focusing on the entire system. First, it describes the components which are necessary for assistance systems, such as sensors, actuators, mechatronic subsystems, and control elements. Then, it explains key features for the user-friendly design of human-machine interfaces between driver and assistance system. Finally, important characteristic features of driver assistance systems for particular vehicles are presented: Systems for commercial vehicles and motorcycles.

  15. 49 CFR 393.49 - Control valves for brakes.

    Science.gov (United States)

    2010-10-01

    ... in paragraphs (b) and (c) of this section, every motor vehicle manufactured after June 30, 1953, which is equipped with power brakes, must have the braking system so arranged that one application valve must when activated cause all of the service brakes on the motor vehicle or combination motor vehicle...

  16. Controlled braking scheme for a wheeled walking aid

    OpenAIRE

    Coyle, Eugene; O'Dwyer, Aidan; Young, Eileen; Sullivan, Kevin; Toner, A.

    2006-01-01

    A wheeled walking aid with an embedded controlled braking system is described. The frame of the prototype is based on combining features of standard available wheeled walking aids. A braking scheme has been designed using hydraulic disc brakes to facilitate accurate and sensitive controlled stopping of the walker by the user, and if called upon, by automatic action. Braking force is modulated via a linear actuating stepping motor. A microcontroller is used for control of both stepper movement...

  17. 49 CFR 238.315 - Class IA brake test.

    Science.gov (United States)

    2010-10-01

    ... that utilize an electric signal to communicate a service brake application and only a pneumatic signal... and release of the brakes on the last car in the train; and (6) The communicating signal system is... be used to verify the set and release on cars so equipped. However, the observation of the brake...

  18. Energy Efficiency in Heavy Vehicle Tires, Drivetrains, and Braking Systems; FINAL

    International Nuclear Information System (INIS)

    Peter J. Blau

    2000-01-01

    This document was prepared to support the primary goals of the Department of Energy, Office of Heavy Vehicle Technologies. These were recently stated as follows: ''Develop by 2004 the enabling technologies for a class 7-8 truck with a fuel efficiency of 10 mpg (at 65 mph) which will meet prevailing emission standards. For Class 3-6 trucks operating on an urban driving cycle, develop by 2004 commercially viable vehicles that achieve at least double the fuel economy of comparable current vehicles (1999), and as a research goal, reduce criteria pollutants to 30% below EPA standards. Develop by 2004 the diesel engine enabling technologies to support large-scale industry dieselization of Class 1 and 2 trucks, achieving a 35% fuel efficiency improvement over comparable gasoline-fueled trucks, while meeting applicable emissions standards.'' The enabling technologies for improving the fuel efficiency of trucks, include not only engine technologies but also technologies involved with lowering the rolling resistance of tires, reducing vehicle aerodynamic drag, improving thermal management, and reducing parasitic frictional losses in drive train components. Opportunities also exist for making better use of the energy that might ordinarily be dissipated during vehicle braking. Braking systems must be included in this evaluation since safety in truck operations is vital, and braking requirements are greater for vehicles having lowered resistance to rolling. The Office of Heavy Vehicle Technologies has initiated a program to improve the aerodynamics of heavy vehicles through wind tunnel testing, computational modeling, and on-road evaluations. That activity is described in a separate multi-year plan; therefore, emphasis in this document will be on tires, drive trains, and braking systems. Recent, dramatic fluctuations in diesel fuel prices have emphasized the importance of effecting savings in truck fuel economy by implementing new component designs and materials

  19. Experimental Active Control of Automotive Disc Brake Rotor Squeal Using Dither

    Science.gov (United States)

    CUNEFARE, K. A.; GRAF, A. J.

    2002-02-01

    This paper presents an experimental investigation into the application of “dither” control for the active control and suppression of automobile disc brake squeal. Dither control is characterized by the application of a control effort at a frequency higher than the disturbance to be controlled. In the particular system considered here, a vibro-acoustic analysis of a disc brake system during squeal determined the acoustic squeal signature to be emanating from the brake rotor. This squeal was eliminated, and could even be prevented from occurring, through the application of a harmonic force with a frequency higher than the squeal frequency. The harmonic force was generated by a stack of piezoelectric elements placed within the brake's caliper piston. The harmonic force represented a small variation about the mean clamping force exerted by the brake upon the rotor. The high-frequency vibration in the brake system due to the action of the control system was not heard if an ultrasonic control frequency was used. More importantly, the active control system is shown to be able to prevent squeal from even occurring. This gives rise to a possible active control system integrated into the brake system of automobiles to prevent squeal.

  20. A Bottom-Up Approach to Teaching Robotics and Mechatronics to Mechanical Engineers

    Science.gov (United States)

    Shiller, Z.

    2013-01-01

    This paper describes a multidisciplinary teaching program, designed to provide students with the broad knowledge and skills required to practice product development in robotics and mechatronics. The curriculum was designed to prepare students for the senior capstone design project, in which they design and build a working mechatronic/robotic…

  1. An Undergraduate Mechatronics Project Class at Philadelphia University, Jordan: Methodology and Experience

    Science.gov (United States)

    Tutunji, T. A.; Saleem, A.; Rabbo, S. A.

    2009-01-01

    Mechatronics is a branch of engineering whose final product should involve mechanical movements controlled by smart electronics. The design and implementation of functional prototypes are an essential learning experience for the students in this field. In this paper, the guidelines for a successful mechatronics project class are presented,…

  2. Aspects regarding manufacturing technologies of composite materials for brake pad application

    Science.gov (United States)

    Craciun, A. L.; Hepuţ, T.; Pinca-Bretotean, C.

    2018-01-01

    Current needs in road safety, requires the development of new technical solutions for automotive braking system. Their safe operation is subject to following factors: concept design, materials used and electronic control. Among the factors previously listed, choice of materials and manufacturing processes are difficult stage but very important for achieving technical performance and getting a relatively small cost of constituting parts of brake system. The choice is based on the promotion of organic composite material, popular in areas where the weight of materials plays an important role. The brake system is composed of many different parts including brake pads, a master cylinder, wheel cylinders and a hydraulic control system. The brake pads are an important component in the braking system of automotive. These are of different types, suitable for different types of automotive and engines. Brake pads are designed for friction stability, durability, minimization of noise and vibration. The typology of the brake pads depends on the material which they are made. The aim of this paper is to presents the manufacturing technologies for ten recipes of composite material used in brake pads applications. In this work will be done: choosing the constituents of the recipes, investigation of their basic characteristics, setting the proportions of components, obtaining the composite materials in laboratory, establishing the parameters of manufacturing technology and technological analysis.

  3. NKK technical report, No. 152, December 1995. Special issue: `Sensing/control system and mechatronics`

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    ;Partial Contents: Special Issue `Sensing/Control System and Mechatronics`: A New Control System at Keihin Coke Plant; Theoretical Model for Optimal Control of TAKAHAX Desulfurization Process; Development of Automatic Rod-exchanging Machine for Rod Mill; High Performance Temperature Distribution Optical Fiber Sensor; Temperature Measurement of Molten Metal by Immersion-type Optical Fiber Radiation Thermometer; Application of Robust Control for Iron and Steel Making Process; Automization of No. 6 Slab Caster in Fukuyama Works; The Development of the Control Technology for the Higher Quality Strip; Development of Automatic Flatness Control System in Cluster Type Rolling Mill; Ultrasonic Nondestructive Testing with Digital Signal Processing Aimed for New Quality Assurance; Development of Mobile Grinding Robot; On-site Analysis by Laser Ablation ICP-AES; Development of the Membrane Automatic Welding Machine with Rotating TIG Process; and Automatic Combustion Control System for Refuse Incineration Plant. (Copyright (c) 1995 NKK.)

  4. EEG potentials predict upcoming emergency brakings during simulated driving

    Science.gov (United States)

    Haufe, Stefan; Treder, Matthias S.; Gugler, Manfred F.; Sagebaum, Max; Curio, Gabriel; Blankertz, Benjamin

    2011-10-01

    Emergency braking assistance has the potential to prevent a large number of car crashes. State-of-the-art systems operate in two stages. Basic safety measures are adopted once external sensors indicate a potential upcoming crash. If further activity at the brake pedal is detected, the system automatically performs emergency braking. Here, we present the results of a driving simulator study indicating that the driver's intention to perform emergency braking can be detected based on muscle activation and cerebral activity prior to the behavioural response. Identical levels of predictive accuracy were attained using electroencephalography (EEG), which worked more quickly than electromyography (EMG), and using EMG, which worked more quickly than pedal dynamics. A simulated assistance system using EEG and EMG was found to detect emergency brakings 130 ms earlier than a system relying only on pedal responses. At 100 km h-1 driving speed, this amounts to reducing the braking distance by 3.66 m. This result motivates a neuroergonomic approach to driving assistance. Our EEG analysis yielded a characteristic event-related potential signature that comprised components related to the sensory registration of a critical traffic situation, mental evaluation of the sensory percept and motor preparation. While all these components should occur often during normal driving, we conjecture that it is their characteristic spatio-temporal superposition in emergency braking situations that leads to the considerable prediction performance we observed.

  5. Improved Electromagnetic Brake

    Science.gov (United States)

    Martin, Toby B.

    2004-01-01

    A proposed design for an electromagnetic brake would increase the reliability while reducing the number of parts and the weight, relative to a prior commercially available electromagnetic brake. The reductions of weight and the number of parts could also lead to a reduction of cost. A description of the commercial brake is prerequisite to a description of the proposed electromagnetic brake. The commercial brake (see upper part of figure) includes (1) a permanent magnet and an electromagnet coil on a stator and (2) a rotor that includes a steel contact plate mounted, with tension spring loading, on an aluminum hub. The stator is mounted securely on a stationary object, which would ordinarily be the housing of a gear drive or a motor. The rotor is mounted on the shaft of the gear drive or motor. The commercial brake nominally operates in a fail-safe (in the sense of normally braking) mode: In the absence of current in the electromagnet coil, the permanent magnet pulls the contact plate, against the spring tension, into contact with the stator. To release the brake, one excites the electromagnet with a current of the magnitude and polarity chosen to cancel the magnetic flux of the permanent magnet, thereby enabling the spring tension to pull the contact plate out of contact with the stator. The fail-safe operation of the commercial brake depends on careful mounting of the rotor in relation to the stator. The rotor/stator gap must be set with a tolerance between 10 and 15 mils (between about 0.25 and about 0.38 mm). If the gap or the contact pad is thicker than the maximum allowable value, then the permanent magnetic field will not be strong enough to pull the steel plate across the gap. (For this reason, any contact pad between the contact plate and the stator must also be correspondingly thin.) If the gap exceeds the maximum allowable value because of shaft end play, it becomes impossible to set the brake by turning off the electromagnet current. Although it may

  6. Intelligent Mechatronics Systems for Transport Climate Parameters Optimization Using Fuzzy Logic Control

    OpenAIRE

    Beinarts, I; Ļevčenkovs, A; Kuņicina, N

    2007-01-01

    In article interest is concentrated on the climate parameters optimization in passengers’ salon of public electric transportation vehicles. The article presents mathematical problem for using intelligent agents in mechatronics problems for climate parameters optimal control. Idea is to use fuzzy logic and intelligent algorithms to create coordination mechanism for climate parameters control to save electrical energy, and it increases the level of comfort for passengers. A special interest for...

  7. The effect of a low-speed automatic brake system estimated from real life data.

    Science.gov (United States)

    Isaksson-Hellman, Irene; Lindman, Magdalena

    2012-01-01

    A substantial part of all traffic accidents involving passenger cars are rear-end collisions and most of them occur at low speed. Auto Brake is a feature that has been launched in several passenger car models during the last few years. City Safety is a technology designed to help the driver mitigate, and in certain situations avoid, rear-end collisions at low speed by automatically braking the vehicle.Studies have been presented that predict promising benefits from these kinds of systems, but few attempts have been made to show the actual effect of Auto Brake. In this study, the effect of City Safety, a standard feature on the Volvo XC60 model, is calculated based on insurance claims data from cars in real traffic crashes in Sweden. The estimated claim frequency of rear-end frontal collisions measured in claims per 1,000 insured vehicle years was 23% lower for the City Safety equipped XC60 model than for other Volvo models without the system.

  8. 2nd International Conference on Mechatronics and Robotics Engineering

    CERN Document Server

    Wei, Bin

    2017-01-01

    Featuring selected contributions from the 2nd International Conference on Mechatronics and Robotics Engineering, held in Nice, France, February 18–19, 2016, this book introduces recent advances and state-of-the-art technologies in the field of advanced intelligent manufacturing. This systematic and carefully detailed collection provides a valuable reference source for mechanical engineering researchers who want to learn about the latest developments in advanced manufacturing and automation, readers from industry seeking potential solutions for their own applications, and those involved in the robotics and mechatronics industry.

  9. Pentiptycene-derived light-driven molecular brakes: substituent effects of the brake component.

    Science.gov (United States)

    Sun, Wei-Ting; Huang, Yau-Ting; Huang, Guan-Jhih; Lu, Hsiu-Feng; Chao, Ito; Huang, Shou-Ling; Huang, Shing-Jong; Lin, Ying-Chih; Ho, Jinn-Hsuan; Yang, Jye-Shane

    2010-10-11

    Five pentiptycene-derived stilbene systems (1 R; R = H, OM, NO, Pr, and Bu) have been prepared and investigated as light-driven molecular brakes that have different-sized brake components (1 Hbrake component in the trans form ((E)-1 R), which corresponds to the brake-off state. When the brake is turned on by photoisomerization to the cis form ((Z)-1 R), the pentiptycene rotation can be arrested on the NMR spectroscopic timescale at temperatures that depend on the brake component. In the cases of (Z)-1 NO, (Z)-1 Pr, and (Z)-1 Bu, the rotation is nearly blocked (k(rot)=2-6 s(-1)) at 298 K. It is also demonstrated that the rotation is slower in [D(6)]DMSO than in CD(2)Cl(2). A linear relationship between the free energies of the rotational barrier and the steric parameter A values is present only for (Z)-1 H, (Z)-1 OM, and (Z)-1 NO, and it levels off on going from (Z)-1 NO to (Z)-1 Pr and (Z)-1 Bu. DFT calculations provide insights into the substituent effects in the rotational ground and transition states. The molar reversibility of the E-Z photoswitching is up to 46%, and both the E and Z isomers are stable under the irradiation conditions. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. 49 CFR 571.121 - Standard No. 121; Air brake systems.

    Science.gov (United States)

    2010-10-01

    ... off-road harvesting sites and to a processing plant or storage location, as evidenced by skeletal... and transfer of goods by, or between various modes of transport, such as highway, rail, sea and air... supply line coupling. S5.6.6Accumulation of actuation energy. Each parking brake system shall meet the...

  11. A road to practical dielectric elastomer actuators based robotics and mechatronics: discrete actuation

    Science.gov (United States)

    Plante, Jean-Sébastien; Devita, Lauren M.; Dubowsky, Steven

    2007-04-01

    Fundamental studies of Dielectric Elastomer Actuators (DEAs) using viscoelastic materials such as VHB 4905/4910 from 3M showed significant advantages at high stretch rates. The film's viscous forces increase actuator life and the short power-on times minimize energy losses through current leakage. This paper presents a design paradigm that exploits these fundamental properties of DEAs called discrete actuation. Discrete actuation uses DEAs at high stretch rates to change the states of robotic or mechatronic systems in discrete steps. Each state of the system is stable and can be maintained without actuator power. Discrete actuation can be used in robotic and mechatronic applications such as manipulation and locomotion. The resolution of such systems increases with the number of discrete states, 10 to 100 being sufficient for many applications. An MRI-guided needle positioning device for cancer treatments and a space exploration robot using hopping for locomotion are presented as examples of this concept.

  12. Practical Use of the Braking Attributes Measurements Results

    Directory of Open Access Journals (Sweden)

    Ondruš Ján

    2017-01-01

    Full Text Available This contribution deals with issues of braking the passenger car. The measurement of braking deceleration of the vehicle Kia Cee´d 1,6 16 V was carried out by an optical device Correvit system. The measurement was carried out on the airport of the village of Rosina located close to Zilina. 10 drivers of different age, praxis, and kilometers driven participated in the measurement. The measured process was the vehicle full braking with the service brake of the initial speed of approximately 50 km.h-1. Each of the drivers had 10 attempts. In the closure of this contribution the results of the performed measurements, their evaluation and comparison are presented. Practical result from the contribution is mainly the measurement set of braking deceleration of the respective vehicle during intensive braking.

  13. 49 CFR 232.217 - Train brake tests conducted using yard air.

    Science.gov (United States)

    2010-10-01

    ... reduction of brake pipe air pressure at the same, or slower, rate as an engineer's brake valve. (b) The yard... 49 Transportation 4 2010-10-01 2010-10-01 false Train brake tests conducted using yard air. 232... Train brake tests conducted using yard air. (a) When a train air brake system is tested from a yard air...

  14. Engineering Design Handbook: Analysis and Design of Automotive Brake Systems.

    Science.gov (United States)

    1976-12-01

    Highway Safety Research institute, Uni- versity of Michigan, September 15, 1972. IF’vn = (I - #)WT’,Kk I1, J. E. Bernard , et al,, A Computer Based...systems involve the reduction in brake line pres- 4. E. L. Cornwell , "Automatic Load-Sensitive Air sure for a given pedal force, the pedal force/de

  15. Adaptive control of mechatronic machine-tool equipment

    Directory of Open Access Journals (Sweden)

    R.G. Kudoyarov

    2015-09-01

    Full Text Available In this paper the method for designing a functional structure of mechatronic modules based on the developed classification of functional subsystems and the proposed turning machine modular structure is presented.

  16. Clutches and brakes design and selection

    CERN Document Server

    Orthwein, William C

    2004-01-01

    Conveniently gathering formulas, analytical methods, and graphs for the design and selection of a wide variety of brakes and clutches in the automotive, aircraft, farming, and manufacturing industries, Clutches and Brakes: Design and Selection, Second Edition simplifies calculations, acquaints engineers with an expansive range of application, and assists in the selection of parameters for specific design challenges. Contains an abundance of examples, 550 display equations, and more than 200 figures for clear presentation of various design strategies Thoroughly revised throughout, the second edition offers… Additional chapters on friction drives and fluid clutches and retarders An extended discussion on cone brakes and clutches A simpler formulation of the torque from a centrifugal clutch Updated sections on automatic braking systems An analysis of variable-speed friction drives with clutch capability Analytical and computer-assisted design techniques.

  17. Roller Locking Brake

    Science.gov (United States)

    Vranish, John M.

    1993-01-01

    Roller locking brake is normally braking rotary mechanism allowing free rotation when electromagnet in mechanism energized. Well suited to robots and other machinery which automatic braking upon removal of electrical power required. More compact and reliable. Requires little electrical power to maintain free rotation and exhibits minimal buildup of heat.

  18. Research on motor rotational speed measurement in regenerative braking system of electric vehicle

    Science.gov (United States)

    Pan, Chaofeng; Chen, Liao; Chen, Long; Jiang, Haobin; Li, Zhongxing; Wang, Shaohua

    2016-01-01

    Rotational speed signals acquisition and processing techniques are widely used in rotational machinery. In order to realized precise and real-time control of motor drive and regenerative braking process, rotational speed measurement techniques are needed in electric vehicles. Obtaining accurate motor rotational speed signal will contribute to the regenerative braking force control steadily and realized higher energy recovery rate. This paper aims to develop a method that provides instantaneous speed information in the form of motor rotation. It addresses principles of motor rotational speed measurement in the regenerative braking systems of electric vehicle firstly. The paper then presents ideal and actual Hall position sensor signals characteristics, the relation between the motor rotational speed and the Hall position sensor signals is revealed. Finally, Hall position sensor signals conditioning and processing circuit and program for motor rotational speed measurement have been carried out based on measurement error analysis.

  19. Wheel slide protection control using a command map and Smith predictor for the pneumatic brake system of a railway vehicle

    Science.gov (United States)

    Lee, Nam-Jin; Kang, Chul-Goo

    2016-10-01

    In railway vehicles, excessive sliding or wheel locking can occur while braking because of a temporarily degraded adhesion between the wheel and the rail caused by the contaminated or wet surface of the rail. It can damage the wheel tread and affect the performance of the brake system and the safety of the railway vehicle. To safeguard the wheelset from these phenomena, almost all railway vehicles are equipped with wheel slide protection (WSP) systems. In this study, a new WSP algorithm is proposed. The features of the proposed algorithm are the use of the target sliding speed, the determination of a command for WSP valves using command maps, and compensation for the time delay in pneumatic brake systems using the Smith predictor. The proposed WSP algorithm was verified using experiments with a hardware-in-the-loop simulation system including the hardware of the pneumatic brake system.

  20. Optimal design of a magneto-rheological brake absorber for torsional vibration control

    International Nuclear Information System (INIS)

    Nguyen, Q H; Choi, S B

    2012-01-01

    This research presents an optimal design of a magneto-rheological (MR) brake absorber for torsional vibration control of a rotating shaft. Firstly, the configuration of an MR brake absorber for torsional vibration control of a rotating shaft system is proposed. Then, the braking torque of the MR brake is derived based on the Bingham plastic model of the MR fluid. By assuming that the behaviour of the MR brake absorber is similar to that of a dry friction torsional damper, the optimal braking torque to control the torsional vibration is determined and validated by simulation. The optimal design problem of the MR brake absorber is then developed and a procedure to solve the optimal problem is proposed. Based on the proposed optimal design procedure, the optimal design of a specific rotating shaft system is performed. Vibration control performance of the shaft system employing the optimized MR brake absorber is then investigated through simulation and discussion on the results is given. (paper)

  1. Optimal design of a magneto-rheological brake absorber for torsional vibration control

    Science.gov (United States)

    Nguyen, Q. H.; Choi, S. B.

    2012-02-01

    This research presents an optimal design of a magneto-rheological (MR) brake absorber for torsional vibration control of a rotating shaft. Firstly, the configuration of an MR brake absorber for torsional vibration control of a rotating shaft system is proposed. Then, the braking torque of the MR brake is derived based on the Bingham plastic model of the MR fluid. By assuming that the behaviour of the MR brake absorber is similar to that of a dry friction torsional damper, the optimal braking torque to control the torsional vibration is determined and validated by simulation. The optimal design problem of the MR brake absorber is then developed and a procedure to solve the optimal problem is proposed. Based on the proposed optimal design procedure, the optimal design of a specific rotating shaft system is performed. Vibration control performance of the shaft system employing the optimized MR brake absorber is then investigated through simulation and discussion on the results is given.

  2. Plasma brake model for preliminary mission analysis

    Science.gov (United States)

    Orsini, Leonardo; Niccolai, Lorenzo; Mengali, Giovanni; Quarta, Alessandro A.

    2018-03-01

    Plasma brake is an innovative propellantless propulsion system concept that exploits the Coulomb collisions between a charged tether and the ions in the surrounding environment (typically, the ionosphere) to generate an electrostatic force orthogonal to the tether direction. Previous studies on the plasma brake effect have emphasized the existence of a number of different parameters necessary to obtain an accurate description of the propulsive acceleration from a physical viewpoint. The aim of this work is to discuss an analytical model capable of estimating, with the accuracy required by a preliminary mission analysis, the performance of a spacecraft equipped with a plasma brake in a (near-circular) low Earth orbit. The simplified mathematical model is first validated through numerical simulations, and is then used to evaluate the plasma brake performance in some typical mission scenarios, in order to quantify the influence of the system parameters on the mission performance index.

  3. Enhanced Regenerative Braking Strategies for Electric Vehicles: Dynamic Performance and Potential Analysis

    OpenAIRE

    Boyi Xiao; Huazhong Lu; Hailin Wang; Jiageng Ruan; Nong Zhang

    2017-01-01

    A regenerative braking system and hydraulic braking system are used in conjunction in the majority of electric vehicles worldwide. We propose a new regenerative braking distribution strategy that is based on multi-input fuzzy control logic while considering the influences of the battery’s state of charge, the brake strength and the motor speed. To verify the braking performance and recovery economy, this strategy was applied to a battery electric vehicle model and compared with two other impr...

  4. Enhanced Regenerative Braking Strategies for Electric Vehicles: Dynamic Performance and Potential Analysis

    Directory of Open Access Journals (Sweden)

    Boyi Xiao

    2017-11-01

    Full Text Available A regenerative braking system and hydraulic braking system are used in conjunction in the majority of electric vehicles worldwide. We propose a new regenerative braking distribution strategy that is based on multi-input fuzzy control logic while considering the influences of the battery’s state of charge, the brake strength and the motor speed. To verify the braking performance and recovery economy, this strategy was applied to a battery electric vehicle model and compared with two other improved regenerative braking strategies. The performance simulation was performed using standard driving cycles (NEDC, LA92, and JP1015 and a real-world-based urban cycle in China. The tested braking strategies satisfied the general safety requirements of Europe (as specified in ECE-13H, and the emergency braking scenario and economic potential were tested. The simulation results demonstrated the differences in the braking force distribution performance of these three regenerative braking strategies, the feasibility of the braking methods for the proposed driving cycles and the energy economic potential of the three strategies.

  5. Sprag solenoid brake. [development and operations of electrically controlled brake

    Science.gov (United States)

    Dane, D. H. (Inventor)

    1974-01-01

    The development and characteristics of an electrically operated brake are discussed. The action of the brake depends on energizing a solenoid which causes internally spaced sprockets to contact the inner surface of the housing. A spring forces the control member to move to the braking position when the electrical function is interrupted. A diagram of the device is provided and detailed operating principles are explained.

  6. Statistical analysis of brake squeal noise

    Science.gov (United States)

    Oberst, S.; Lai, J. C. S.

    2011-06-01

    Despite substantial research efforts applied to the prediction of brake squeal noise since the early 20th century, the mechanisms behind its generation are still not fully understood. Squealing brakes are of significant concern to the automobile industry, mainly because of the costs associated with warranty claims. In order to remedy the problems inherent in designing quieter brakes and, therefore, to understand the mechanisms, a design of experiments study, using a noise dynamometer, was performed by a brake system manufacturer to determine the influence of geometrical parameters (namely, the number and location of slots) of brake pads on brake squeal noise. The experimental results were evaluated with a noise index and ranked for warm and cold brake stops. These data are analysed here using statistical descriptors based on population distributions, and a correlation analysis, to gain greater insight into the functional dependency between the time-averaged friction coefficient as the input and the peak sound pressure level data as the output quantity. The correlation analysis between the time-averaged friction coefficient and peak sound pressure data is performed by applying a semblance analysis and a joint recurrence quantification analysis. Linear measures are compared with complexity measures (nonlinear) based on statistics from the underlying joint recurrence plots. Results show that linear measures cannot be used to rank the noise performance of the four test pad configurations. On the other hand, the ranking of the noise performance of the test pad configurations based on the noise index agrees with that based on nonlinear measures: the higher the nonlinearity between the time-averaged friction coefficient and peak sound pressure, the worse the squeal. These results highlight the nonlinear character of brake squeal and indicate the potential of using nonlinear statistical analysis tools to analyse disc brake squeal.

  7. A mechatronic power boosting design for piezoelectric generators

    International Nuclear Information System (INIS)

    Liu, Haili; Liang, Junrui; Ge, Cong

    2015-01-01

    It was shown that the piezoelectric power generation can be boosted by using the synchronized switch power conditioning circuits. This letter reports a self-powered and self-sensing mechatronic design in substitute of the auxiliary electronics towards a compact and universal synchronized switch solution. The design criteria are derived based on the conceptual waveforms and a two-degree-of-freedom analytical model. Experimental result shows that, compared to the standard bridge rectifier interface, the mechatronic design leads to an extra 111% increase of generated power from the prototyped piezoelectric generator under the same deflection magnitude excitation. The proposed design has introduced a valuable physical insight of electromechanical synergy towards the improvement of piezoelectric power generation

  8. Experiences from developing a new course in mechatronics

    DEFF Research Database (Denmark)

    Hansen, Søren; Ravn, Ole

    2015-01-01

    Experiences from a new course in mechatronics at Technical University of Denmark are conveyed in this paper. The course is supposed to teach students enrolled in the bachelor degree in electrical engineering some fundamental knowledge about mechanics and to teach students enrolled in the bachelor...... is discussed in the paper, together with a brief look at the student's reactions in form of data from the course evaluation.......Experiences from a new course in mechatronics at Technical University of Denmark are conveyed in this paper. The course is supposed to teach students enrolled in the bachelor degree in electrical engineering some fundamental knowledge about mechanics and to teach students enrolled in the bachelor...

  9. A mechatronic power boosting design for piezoelectric generators

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Haili; Liang, Junrui, E-mail: liangjr@shanghaitech.edu.cn; Ge, Cong [School of Information Science and Technology, ShanghaiTech University, No. 8 Building, 319 Yueyang Road, Shanghai 200031 (China)

    2015-10-05

    It was shown that the piezoelectric power generation can be boosted by using the synchronized switch power conditioning circuits. This letter reports a self-powered and self-sensing mechatronic design in substitute of the auxiliary electronics towards a compact and universal synchronized switch solution. The design criteria are derived based on the conceptual waveforms and a two-degree-of-freedom analytical model. Experimental result shows that, compared to the standard bridge rectifier interface, the mechatronic design leads to an extra 111% increase of generated power from the prototyped piezoelectric generator under the same deflection magnitude excitation. The proposed design has introduced a valuable physical insight of electromechanical synergy towards the improvement of piezoelectric power generation.

  10. Combined emergency braking and turning of articulated heavy vehicles

    OpenAIRE

    Morrison, G; Cebon, David

    2017-01-01

    ‘Slip control’ braking has been shown to reduce the emergency stopping distance of an experimental heavy goods vehicle by up to 19%, compared to conventional electronic/anti-lock braking systems (EBS). However, little regard has been given to the impact of slip control braking on the vehicle’s directional dynamics. This paper uses validated computer models to show that slip control could severely degrade directional performance during emergency braking. A modified slip control strategy, ‘atte...

  11. Implementation Of Fuzzy Automated Brake Controller Using TSK Algorithm

    Science.gov (United States)

    Mittal, Ruchi; Kaur, Magandeep

    2010-11-01

    In this paper an application of Fuzzy Logic for Automatic Braking system is proposed. Anti-blocking system (ABS) brake controllers pose unique challenges to the designer: a) For optimal performance, the controller must operate at an unstable equilibrium point, b) Depending on road conditions, the maximum braking torque may vary over a wide range, c) The tire slippage measurement signal, crucial for controller performance, is both highly uncertain and noisy. A digital controller design was chosen which combines a fuzzy logic element and a decision logic network. The controller identifies the current road condition and generates a command braking pressure signal Depending upon the speed and distance of train. This paper describes design criteria, and the decision and rule structure of the control system. The simulation results present the system's performance depending upon the varying speed and distance of the train.

  12. Analyzing Track Responses to Train Braking

    DEFF Research Database (Denmark)

    Bose, Tulika; Levenberg, Eyal; Zania, Varvara

    2018-01-01

    The objective of this study was to suggest a response analysis framework for railway tracks that are subjected to braking. An analytical formulation was developed, in which the rail–track system was modeled as an infinite beam supported by an orthogonal Winkler foundation consisting of linear...... a response analysis framework for railway tracks that are subjected to braking. An analytical formulation was developed, in which the rail–track system was modeled as an infinite beam supported by an orthogonal Winkler foundation consisting of linear springs in perpendicular directions. The spring constants...... springs in perpendicular directions. The spring constants were varied over a wide range in order to represent different track types. Braking loads were simulated as representative sets of vertical and longitudinal forces, either concentrated or distributed. Considering a realistic set of model parameters...

  13. Brake noise measurements on mixed freight trains with composite brake blocks

    NARCIS (Netherlands)

    Jansen, E.H.W.; Dittrich, M.G.; Sikma, E.L.

    2008-01-01

    Brake noise is known to be a major contributor to the total sound emission of railway yards and areas near stations. It has been established that composite brake blocks reduce rolling noise, but it is not known if this is also the case for braking noise. Therefore, in order to investigate this,

  14. 49 CFR 571.105 - Standard No. 105; Hydraulic and electric brake systems.

    Science.gov (United States)

    2010-10-01

    ... brake actuating forces in response to signals from one or more sensed wheels. Initial brake temperature means the average temperature of the service brakes on the hottest axle of the vehicle 0.2 mi before any... procedures and in the sequence set forth in S7. Each school bus with a GVWR greater than 10,000 pounds must...

  15. MEchatronic REspiratory System SImulator for Neonatal Applications (MERESSINA) project: a novel bioengineering goal

    Science.gov (United States)

    Scaramuzzo, Rosa T; Ciantelli, Massimiliano; Baldoli, Ilaria; Bellanti, Lisa; Gentile, Marzia; Cecchi, Francesca; Sigali, Emilio; Tognarelli, Selene; Ghirri, Paolo; Mazzoleni, Stefano; Menciassi, Arianna; Cuttano, Armando; Boldrini, Antonio; Laschi, Cecilia; Dario, Paolo

    2013-01-01

    Respiratory function is mandatory for extrauterine life, but is sometimes impaired in newborns due to prematurity, congenital malformations, or acquired pathologies. Mechanical ventilation is standard care, but long-term complications, such as bronchopulmonary dysplasia, are still largely reported. Therefore, continuous medical education is mandatory to correctly manage devices for assistance. Commercially available breathing function simulators are rarely suitable for the anatomical and physiological realities. The aim of this study is to develop a high-fidelity mechatronic simulator of neonatal airways and lungs for staff training and mechanical ventilator testing. The project is divided into three different phases: (1) a review study on respiratory physiology and pathophysiology and on already available single and multi-compartment models; (2) the prototyping phase; and (3) the on-field system validation. PMID:23966804

  16. Reel safety brake

    Science.gov (United States)

    Carle, C. E. (Inventor)

    1976-01-01

    A braking apparatus is described for a tape transport device having two stacked coaxial reels and feelers mounted in proximity to the reels for sensing the tape being wound on each reel. A device is mounted in proximity to adjacent central hubs of the reels to a simultaneously, frictionally engage both hubs and brake both reels. A mechanical actuator is coupled to both feelers and to the brake device. The brake means comprises a pair of rubber shoulders that extend in opposite directions relative to a common axis, and turns about the axis in response to either of the feelers.

  17. V-TECS Guide for Auto Mechanics: Suspension Systems, Brakes and Steering.

    Science.gov (United States)

    Moore, Charles G.; And Others

    The materials in this document are an extension of a catalog of occupational duties, tasks, and performance objectives relevant to maintaining automotive suspension systems, brakes, and steering mechanisms. This document provides the following for each occupational task within each duty: (1) a standard of performance; (2) the conditions under…

  18. Mechatronics Engineering Education in India

    Science.gov (United States)

    Bajpai, Shrish; Khare, Sushant

    2015-01-01

    Present paper aims to give an insight in the field of Mechatronics, specifically its standard of education in India. We have investigated this field right from its origin. We have analyzed how it expanded as a proper discipline of engineering and in which direction the development in this field is going now and, at the same time, its status of…

  19. ESTIMATION OF DRIVER’S POWER EXPENSES OF CAR BRAKE MANAGEMENT

    Directory of Open Access Journals (Sweden)

    A. Turenko

    2010-01-01

    Full Text Available The estimation method of driver’s power expenses for the brake management is offered. The estimation method takes into account power expenses at driving in action of the brake system and power expenses at holding the pressed brake pedal

  20. Unidirectional high gain brake stop

    Science.gov (United States)

    Lang, David J. (Inventor)

    1987-01-01

    This invention relates to a unidirectional high gain brake arrangement that includes in combination a shaft mounted for rotation within a housing. The shaft is rotatable in either direction. A brake is selectively releasably coupled to the housing and to the shaft. The brake has a first member. An intermittent motion device is respectively coupled through the first member to the housing and through a one-way clutch to the shaft. The brake also has a second member that is mechanically coupled to the first brake member and to the housing. The intermittent motion device causes the brake to be activated by movement imparted to the first brake member after a preset number of revolutions of the shaft in one direction. The brake is released by rotation of the shaft in an opposite direction whereby torque transmitted through the one-way clutch to the first brake member is removed.

  1. Contactles power supply for moving sensors and actuators in high-precision mechatronic systems with long-stroke power transfer capability in the x-y plane

    NARCIS (Netherlands)

    Boeij, de J.; Lomonova, E.A.; Duarte, J.L.; Vandenput, A.J.A.

    2008-01-01

    In this paper, a new topology for contactless energy transfer is proposed and tested that can transfer energy to a moving load using inductive coupling. This contactless energy transfer topology is designed to supply power to the moving parts in high-precision mechatronic systems without cable

  2. Clutches and brakes design and selection

    CERN Document Server

    Orthwein, William C

    2004-01-01

    FRICTION MATERIALSFriction CodeWearBrake FadeFriction MaterialsNotationReferencesBAND BRAKESDerivation of EquationsApplicationLever-Actuated Band Brake: Backstop DesignExample: Design of a BackstopNotationFormula CollectionReferencesEXTERNALLY AND INTERNALLY PIVOTED SHOE BRAKESPivoted External Drum BrakesPivoted Internal Drum BrakesDesign of Dual-Anchor Twin-Shoe Drum BrakesDual-Anchor Twin-Shoe Drum Brake Design ExamplesDesign of Single-Anchor Twin-Shoe Drum BrakesSingle-Anchor Twin-Shoe Drum Brake Design Exam

  3. Deployable Brake for Spacecraft

    Science.gov (United States)

    Rausch, J. R.; Maloney, J. W.

    1987-01-01

    Aerodynamic shield that could be opened and closed proposed. Report presents concepts for deployable aerodynamic brake. Brake used by spacecraft returning from high orbit to low orbit around Earth. Spacecraft makes grazing passes through atmosphere to slow down by drag of brake. Brake flexible shield made of woven metal or ceramic withstanding high temperatures created by air friction. Stored until needed, then deployed by set of struts.

  4. Frictional Performance and Temperature Rise of a Mining Nonasbestos Brake Material during Emergency Braking

    Directory of Open Access Journals (Sweden)

    Jiusheng Bao

    2015-01-01

    Full Text Available By simulating emergency braking conditions of mine hoisters, tribological experiments of a mining nonasbestos brake material sliding on E355CC steel friction disc investigated a pad-on-disc friction tester. It is shown that, under combined influence of braking velocity and pressure, the lubricating film and micro-convex-apices on wear surface would have complex physicochemical reactions which make the instant friction coefficient rise gradually while the instant surface temperature rises first and then falls. With the antifriction effect from lubricating film and the desquamating of composite materials, the mean friction coefficient decreases first, then rises, and decreases again with the increasing of initial braking velocity. And with the existence of micro-convex-apices and variation from increment ratio of load and actual contacting area, it rises first and then falls with the increasing of braking pressure. However, the mean surface temperature rises obviously with the increasing of both initial braking velocity and braking pressure for growth of transformed kinetic energy. It is considered that the friction coefficient cannot be considered as a constant when designing brake devices for mine hoisters. And special attention should be paid to the serious influence of surface temperature on tribological performance of brake material during emergency braking.

  5. Durability test and simulation with integration of mechatronical systems. Examplified by a variable damper; Mechatronische Systeme bei der Betriebsfestigkeitspruefung und -simulation am Beispiel eines variablen Daempfers

    Energy Technology Data Exchange (ETDEWEB)

    Brune, M.; Poetter, K. [BMW Group, Muenchen (Germany). Fachbereich Betriebsfestigkeit und Werkstoffe

    2008-07-01

    The use of mechatronical devices in car-design is of growing importance. The purpose of these control systems is to improve driving dynamics and comfort. As an example the roll-stabilisation and the variable damper can be mentioned. Both systems influence the component stress of suspension and chassis parts. Therefore they have to be integrated in numeric- and experimental fatigue analysis. On the basis of examples, this paper describes current methods of resolution and future challenges.

  6. Brake fault diagnosis using Clonal Selection Classification Algorithm (CSCA – A statistical learning approach

    Directory of Open Access Journals (Sweden)

    R. Jegadeeshwaran

    2015-03-01

    Full Text Available In automobile, brake system is an essential part responsible for control of the vehicle. Any failure in the brake system impacts the vehicle's motion. It will generate frequent catastrophic effects on the vehicle cum passenger's safety. Thus the brake system plays a vital role in an automobile and hence condition monitoring of the brake system is essential. Vibration based condition monitoring using machine learning techniques are gaining momentum. This study is one such attempt to perform the condition monitoring of a hydraulic brake system through vibration analysis. In this research, the performance of a Clonal Selection Classification Algorithm (CSCA for brake fault diagnosis has been reported. A hydraulic brake system test rig was fabricated. Under good and faulty conditions of a brake system, the vibration signals were acquired using a piezoelectric transducer. The statistical parameters were extracted from the vibration signal. The best feature set was identified for classification using attribute evaluator. The selected features were then classified using CSCA. The classification accuracy of such artificial intelligence technique has been compared with other machine learning approaches and discussed. The Clonal Selection Classification Algorithm performs better and gives the maximum classification accuracy (96% for the fault diagnosis of a hydraulic brake system.

  7. An analysis of braking measures

    OpenAIRE

    De Groot, S.; De Winter, J.C.F.; Wieringa, P.A.; Mulder, M.

    2010-01-01

    Braking to a full stop at a prescribed target position is a driving manoeuvre regularly used in experiments to investigate driving behaviour or to test vehicle acceleration feedback systems in simulators. Many different performance measures have been reported in the literature for analysing braking. These may or may not be useful to analyse the stopping manoeuvre, because a number of potential problems exist: 1) the scores on a measure may be insufficiently reliable, 2) the measure may be inv...

  8. A Learning Tool and Program Development for Mechatronics Design Education

    Science.gov (United States)

    Iribe, Masatsugu; Shirahata, Akihiro; Kita, Hiromasa; Sasashige, Yousuke; Dasai, Ryoichi

    In this paper we propose a new type educational program for Mechatronics design which contributes to develop the physical sense and problem solving ability of the students who study Mechatronics design. For this program we provide a new handicraft kit of 4-wheeled car which is composed of inexpensive and commonplace parts, and the performance of the assembled 4-wheeled car is sensitive to its assembly arrangement. And then we implemented this program with the handicraft kit to the university freshmen, and verified its effectiveness, and report the results of the program.

  9. Autonomous collision avoidance system by combined control of steering and braking using geometrically optimised vehicular trajectory

    Science.gov (United States)

    Hayashi, Ryuzo; Isogai, Juzo; Raksincharoensak, Pongsathorn; Nagai, Masao

    2012-01-01

    This study proposes an autonomous obstacle avoidance system not only by braking but also by steering, as one of the active safety technologies to prevent traffic accidents. The proposed system prevents the vehicle from colliding with a moving obstacle like a pedestrian jumping out from the roadside. In the proposed system, to avoid the predicted colliding position based on constant-velocity obstacle motion assumption, the avoidance trajectory is derived as connected two identical arcs. The system then controls the vehicle autonomously by the combined control of the braking and steering systems. In this paper, the proposed system is examined by real car experiments and its effectiveness is shown from the results of the experiments.

  10. WIND BRAKING OF MAGNETARS

    International Nuclear Information System (INIS)

    Tong, H.; Xu, R. X.; Qiao, G. J.; Song, L. M.

    2013-01-01

    We explore the wind braking of magnetars considering recent observations challenging the traditional magnetar model. There is evidence for strong multipole magnetic fields in active magnetars, but the dipole field inferred from spin-down measurements may be strongly biased by particle wind. Recent observations challenging the traditional model of magnetars may be explained naturally by the wind braking scenario: (1) the supernova energies of magnetars are of normal value; (2) the non-detection in Fermi observations of magnetars; (3) the problem posed by low magnetic field soft gamma-ray repeaters; (4) the relation between magnetars and high magnetic field pulsars; and (5) a decreasing period derivative during magnetar outbursts. Transient magnetars with L x rot may still be magnetic dipole braking. This may explain why low luminosity magnetars are more likely to have radio emissions. A strong reduction of the dipole magnetic field is possible only when the particle wind is very collimated at the star surface. A small reduction of the dipole magnetic field may result from detailed considerations of magnetar wind luminosity. In the wind braking scenario, magnetars are neutron stars with a strong multipole field. For some sources, a strong dipole field may no longer be needed. A magnetism-powered pulsar wind nebula will be one of the consequences of wind braking. For a magnetism-powered pulsar wind nebula, we should see a correlation between the nebula luminosity and the magnetar luminosity. Under the wind braking scenario, a braking index smaller than three is expected. Future braking index measurement of a magnetar may tell us whether magnetars are wind braking or magnetic dipole braking.

  11. Structural and Functional Views of Mechatronic Products

    DEFF Research Database (Denmark)

    Nielsen, Kjeld; Petersen, Thomas Ditlev; Jørgensen, Kaj Asbjørn

    2011-01-01

    The development and subsequent production of industrial products are often complicated tasks. The complication increases with combined product as mechatronic products and is further complicated when large variety is required. Modularity is often used to achieve optimum in these complications both...

  12. IDEAL BRAKE FORCE DISTRIBUTION BETWEEN THE AXLES OF THE TWO-AXLE VEHICLE SERVICE BRAKE APPLICATIONS

    Directory of Open Access Journals (Sweden)

    M. Podryhalo

    2015-07-01

    Full Text Available The obtained analytical expressions allow us to evaluate the stability of two-axle vehicles at various slowdowns. An analytical expression for calculating the ideal according to condition stability ensuring of a two-axle vehicle at service brake applications of brake force distribution allows to offer automatic control devices for brake force adjucement. With decellerationg growth of the two-axle vehicle at service braking the braking force acting on the front axle should decrease relative to the brake force on the rear axle.

  13. Impact of Brake Pad Structure on Temperature and Stress Fields of Brake Disc

    OpenAIRE

    Wang, Guoshun; Fu, Rong

    2013-01-01

    Utilizing ABAQUS finite element software, the study established the relationship between a brake pad structure and distributions of temperature and thermal stress on brake disc. By introducing radial structure factor and circular structure factor concepts, the research characterized the effect of friction block radial and circumferential arrangement on temperature field of the brake disc. A method was proposed for improving heat flow distribution of the brake disc through optimizing the posit...

  14. ANALYSIS OF PERTURBED MOTION STABILITY OF WHEELER VEHICLES BRAKES CONTROL SYSTEM

    Directory of Open Access Journals (Sweden)

    V. Verbytskiyi

    2011-01-01

    Full Text Available The analysis of the perturbed motion stability of the brake automatic control system on the basis of Lyapunov’s second method is carried out. Using transformations of Lurie there has been ob-tained the canonical form of the system of equations of automatic control. It allowed determining the necessary and sufficient conditions of the asymptotic stability of the system irrespective of its initial condition and a definite choice of the admissible characteristic of the regulator.

  15. Energetic optimization of regenerative braking for high speed railway systems

    International Nuclear Information System (INIS)

    Frilli, Amedeo; Meli, Enrico; Nocciolini, Daniele; Pugi, Luca; Rindi, Andrea

    2016-01-01

    Highlights: • A model of longitudinal dynamics of the High-speed train ETR1000 is presented. • The model includes on board traction and braking subsystems. • Interactions between overhead line and power line are modelled. • The model is validated on real experimental data. • An energy storage strategy for a high-speed line is proposed. - Abstract: The current development trend in the railway field has led to an ever increasing interest for the energetic optimization of railway systems (especially considering the braking phases), with a strong attention to the mutual interactions between the loads represented by railway vehicles and the electrical infrastructure, including all the sub-systems related to distribution and smart energy management such as energy storage systems. In this research work, the authors developed an innovative coupled modelling approach suitable for the analysis of the energetic optimization of railway systems and based on the use of the new object oriented language Matlab-Simscape™, which presents several advantages with respect to conventional modelling tools. The proposed model has been validated considering an Italian Direct Current High-speed line and the High-speed train ETR 1000. Furthermore, the model has been used to perform an efficiency analysis, considering the use of energy storage devices. The results obtained with the developed model show that the use of energy recovery systems in high-speed railway can provide great opportunities of energy savings.

  16. Refrigeration plants for the assembly hall VW Mechatronics; Kaeltetechnische Anlagen fuer die Fertigungshalle VW Mechatronic

    Energy Technology Data Exchange (ETDEWEB)

    Stroeder, R. [BKI Brab und Kahl Ingenieurgesellschaft mbH, Aachen (Germany)

    2005-07-01

    The partial air-conditioning plants of the 16,500 m-2 assembly hall Volkswagen Mechatronic in Stollberg near Chemnitz was described in the September and October 2005 edition of the magazine ''TAB Technik am Bau''. Refrigeration energy at various temperature levels is necessary to supply these plants and for process cooling. The resulting refrigeration plants are described in the following contribution. (orig.)

  17. Analysis of the stability of PTW riders in autonomous braking scenarios.

    Science.gov (United States)

    Symeonidis, Ioannis; Kavadarli, Gueven; Erich, Schuller; Graw, Matthias; Peldschus, Steffen

    2012-11-01

    While fatalities of car occupants in the EU decreased remarkably over the last decade, Powered Two Wheelers (PTWs) fatalities still increase following the increase of PTW ownership. Autonomous braking systems have been implemented in several types of vehicles and are presently addressed by research in the field of PTWs. A major concern in this context is the rider stability. Experiments with volunteers were performed in order to find out whether autonomous braking for PTWs will produce a greater instability of the rider in comparison to manual braking. The PTW's braking conditions were simulated in a laboratory with a motorcycle mock-up mounted on a sled, which was accelerated with an average of 0.35 g. The motion of the rider was captured in autonomous braking scenarios with and without pre-warning as well as in manual braking scenarios. No significant differences between the scenarios were found with respect to maximum forward displacement of the volunteer's torso and head (pautonomous braking at low deceleration will not cause significant instabilities of the rider in comparison to manual braking in idealized laboratory conditions. Based on this, further research into the development and implementation of autonomous braking systems for PTWs, e.g. by extensive riding tests, seems valuable. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Developing the mechatronics and robotics at Nizhny Tagil Technological Institute of Ural Federal University

    Science.gov (United States)

    Goman, V. V.; Fedoreev, S. A.

    2018-02-01

    This report concerns the development trends of education in the field of the Mechatronics and Robotics at Nizhny Tagil Technological Institute (branch of Ural Federal University). The paper considers new teaching technologies, experience in upgrade of the laboratory facilities and some results of development Mechatronics and Robotics educational courses.

  19. Heavy and Overweight Vehicle Brake Testing: Five-Axle Combination Tractor-Flatbed Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Lascurain, Mary Beth [ORNL; Capps, Gary J [ORNL; Franzese, Oscar [ORNL

    2013-10-01

    The Federal Motor Carrier Safety Administration, in coordination with the Federal Highway Administration, sponsored the Heavy and Overweight Vehicle Brake Testing (HOVBT) program in order to provide information about the effect of gross vehicle weight (GVW) on braking performance. Because the Federal Motor Carrier Safety Regulations limit the number of braking system defects that may exist for a vehicle to be allowed to operate on the roadways, the examination of the effect of brake defects on brake performance for increased loads is also relevant. The HOVBT program seeks to provide relevant information to policy makers responsible for establishing load limits, beginning with providing test data for a combination tractor/trailer. This testing was conducted on a five-axle combination vehicle with tractor brakes meeting the Reduced Stopping Distance requirement rulemaking. This report provides a summary of the testing activities, the results of various analyses of the data, and recommendations for future research. Following a complete brake rebuild, instrumentation, and brake burnish, stopping tests were performed from 20 and 40 mph with various brake application pressures (15 psi, 25 psi, 35 psi, 45 psi, 55 psi, and full system pressure). These tests were conducted for various brake conditions at the following GVWs: 60,000, 80,000, 91,000, 97,000, 106,000, and 116,000 lb. The 80,000-lb GVWs included both balanced and unbalanced loads. The condition of the braking system was also varied. To introduce these defects, brakes (none, forward drive axle, or rear trailer axle) were made inoperative. In addition to the stopping tests, performance-based brake tests were conducted for the various loading and brake conditions. Analysis of the stopping test data showed the stopping distance to increase with load (as expected) and also showed that more braking force was generated by the drive axle brakes than the trailer axle brakes. The constant-pressure stopping test data

  20. Medical mechatronics which imitates living organisms. Seitai ni manabu iyo mechatronics

    Energy Technology Data Exchange (ETDEWEB)

    Ikuta, K. (Kyushu Inst. of Technology, Fukuoka (Japan))

    1991-11-01

    Medical equipments which aim at replacement of biological functions require some different mechatronic elements from industrial ones and such medical equipments are being developed with the object of imitating the functions of living organisms. Research and development of actuators and transmission devices with new principles modelling the functions of living organisms are presented. Servoactuators of small size and large output for their weights are constructedby the use of shape memory alloy. Prototypes of active endoscope and active catheter have been manufactured. A prototype of a cybernetic actuator have been manufactured by imitating flexible motion characteristics of biological muscle systems by the use of piezoelectric devices. A rotor-type cybernetic actuator consists of a pair of layered piezoelectric devices and a rotor with a small gap inbetween. A linear tvpe cybernetic actuator consists of piezoelectric devices for restricting the actuator and impact driving. A transmission mechanism of a new principle whose features are safety, no noise and nodusts is designed by the use of non-contact magnetic gears. 10 refs., 6 figs.

  1. Auto Mechanics I. Learning Activity Packets (LAPs). Section E--Brakes.

    Science.gov (United States)

    Oklahoma State Board of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This document contains two learning activity packets (LAPs) that outline the study activities for the "brakes" instructional area for an Auto Mechanics I course. The two LAPs cover the following topics: brake systems and power disc brakes. Each LAP contains a cover sheet that describes its purpose, an introduction, and the tasks included…

  2. Tribology of a Combined Yaw Bearing and Brake for Wind Turbines

    DEFF Research Database (Denmark)

    Poulios, Konstantinos

    disc brake is typically included as an independent system. However, the increasing size of wind turbines makes roller element bearings an economically costly option. Moreover, the additional brake system increases complexity and consequently adds further production and maintenance costs. One...... of the innovations aiming at reducing complexity in the yaw system consists in combining a segmented sliding bearing and a brake into a single system. This thesis studies the tribological implications of such a hybrid sliding bearing and brake for the yaw system of wind turbines. Based to a large extent...... that are affected by the tendency for building larger units, is the yaw system of horizontal axis wind turbines. State of the art wind turbine yaw systems consist of either a large roller element bearing or a corresponding segmented sliding bearing that connects the wind turbine nacelle and tower. An additional...

  3. Electrostatic and tribological phenomena and their effect on the braking torque in the shaft-oil-lip seal system

    Science.gov (United States)

    Gajewski, Juliusz B.; Glogowski, Marek J.

    2008-12-01

    The former research [1] was carried out on the influence of tribocharging in a system: metal rotating shaft-oil-lip seal on its work, especially on changes in the shaft braking torque with the increasing angular shaft velocity and oil temperature. The results obtained suggested that there be a possibility of reducing the braking torque by an external electric field. The compensation for the electric field generated in the system by natural tribocharging was proposed. The reduction in the braking torque seemed possible while applying an external DC electric field to the system. In general, the torque tended to increase with the increasing DC electric field for a variety of the oils and lip seals used and for different shaft angular velocities (rotational speeds) and oil temperatures. The braking torque reduction was achieved only for one lip seal and some different oils, which was and is a promising, expected result. The research results were yet presented elsewhere [1-3] and here some novel attempt has been made to interpret the results obtained in their physical—tribological and especially electrostatic—aspects since there has been a lack of such an interpretation in the literature of the subject.

  4. Electrostatic and tribological phenomena and their effect on the braking torque in the shaft-oil-lip seal system

    International Nuclear Information System (INIS)

    Gajewski, Juliusz B; Glogowski, Marek J

    2008-01-01

    The former research was carried out on the influence of tribocharging in a system: metal rotating shaft-oil-lip seal on its work, especially on changes in the shaft braking torque with the increasing angular shaft velocity and oil temperature. The results obtained suggested that there be a possibility of reducing the braking torque by an external electric field. The compensation for the electric field generated in the system by natural tribocharging was proposed. The reduction in the braking torque seemed possible while applying an external DC electric field to the system. In general, the torque tended to increase with the increasing DC electric field for a variety of the oils and lip seals used and for different shaft angular velocities (rotational speeds) and oil temperatures. The braking torque reduction was achieved only for one lip seal and some different oils, which was and is a promising, expected result. The research results were yet presented elsewhere [1-3] and here some novel attempt has been made to interpret the results obtained in their physical-tribological and especially electrostatic-aspects since there has been a lack of such an interpretation in the literature of the subject.

  5. Numerical simulation of mechatronic sensors and actuators

    CERN Document Server

    Kaltenbacher, Manfred

    2007-01-01

    Focuses on the physical modeling of mechatronic sensors and actuators and their precise numerical simulation using the Finite Element Method (FEM). This book discusses the physical modeling as well as numerical computation. It also gives a comprehensive introduction to finite elements, including their computer implementation.

  6. Magnetorheological suspension electromagnetic brake

    International Nuclear Information System (INIS)

    Bica, Ioan

    2004-01-01

    The magnetorheological suspension (MRS) brake is of the monoblock type. The main part of the electromagnetic brake is an electromagnet, between whose poles two MRS disks are placed. For distances between disks of 0.65x10 -3 m±10%, revolutions of the electric motor, coupled to the electromagnetic brake, ranging between 200 and 1600 rev/min and braking powers of up to 85 W, there are no differences in revolutions between the disks of the electromagnetic brake. For fixed revolutions of the electric motor, the revolution of the parallel disk can be modified continuously by means of the intensity of the magnetic field. In all cases, the quantity of MRS is of 0.35x10 -3 kg

  7. Creation of operation algorithms for combined operation of anti-lock braking system (ABS) and electric machine included in the combined power plant

    Science.gov (United States)

    Bakhmutov, S. V.; Ivanov, V. G.; Karpukhin, K. E.; Umnitsyn, A. A.

    2018-02-01

    The paper considers the Anti-lock Braking System (ABS) operation algorithm, which enables the implementation of hybrid braking, i.e. the braking process combining friction brake mechanisms and e-machine (electric machine), which operates in the energy recovery mode. The provided materials focus only on the rectilinear motion of the vehicle. That the ABS task consists in the maintenance of the target wheel slip ratio, which depends on the tyre-road adhesion coefficient. The tyre-road adhesion coefficient was defined based on the vehicle deceleration. In the course of calculated studies, the following operation algorithm of hybrid braking was determined. At adhesion coefficient ≤0.1, driving axle braking occurs only due to the e-machine operating in the energy recovery mode. In other cases, depending on adhesion coefficient, the e-machine provides the brake torque, which changes from 35 to 100% of the maximum available brake torque. Virtual tests showed that values of the wheel slip ratio are close to the required ones. Thus, this algorithm makes it possible to implement hybrid braking by means of the two sources creating the brake torque.

  8. Braking Control for Improving Ride Comfort

    Directory of Open Access Journals (Sweden)

    Lee Jonghyup

    2018-01-01

    Full Text Available While many vehicle control systems focus on vehicle safety and vehicle performance at high speeds, most driving conditions are very low risk situations. In such a driving situation, the ride comfort of the vehicle is the most important performance index of the vehicle. Electro mechanical brake (EMB and other brake-by-wire (BBW systems have been actively researched. As a result, braking actuators in vehicles are more freely controllable, and research on improving ride comfort is also possible. In this study, we develop a control algorithm that dramatically improves ride comfort in low risk braking situations. A method for minimizing the inconvenience of a passenger due to a suddenly changing acceleration at the moment when the vehicle is stopped is presented. For this purpose, an acceleration trajectory is generated that minimizes the discomfort index defined by the change in acceleration, jerk. A controller is also designed to track this trajectory. The algorithm that updates the trajectory is designed considering the error due to the phase lag occurring in the controller and the plant. In order to verify the performance of this controller, simulation verification is completed using a car simulator, Carsim. As a result, it is confirmed that the ride comfort is dramatically improved.

  9. Pedestrian injury mitigation by autonomous braking.

    Science.gov (United States)

    Rosén, Erik; Källhammer, Jan-Erik; Eriksson, Dick; Nentwich, Matthias; Fredriksson, Rikard; Smith, Kip

    2010-11-01

    The objective of this study was to calculate the potential effectiveness of a pedestrian injury mitigation system that autonomously brakes the car prior to impact. The effectiveness was measured by the reduction of fatally and severely injured pedestrians. The database from the German In-Depth Accident Study (GIDAS) was queried for pedestrians hit by the front of cars from 1999 to 2007. Case by case information on vehicle and pedestrian velocities and trajectories were analysed to estimate the field of view needed for a vehicle-based sensor to detect the pedestrians one second prior to the crash. The pre-impact braking system was assumed to activate the brakes one second prior to crash and to provide a braking deceleration up to the limit of the road surface conditions, but never to exceed 0.6 g. New impact speeds were then calculated for pedestrians that would have been detected by the sensor. These calculations assumed that all pedestrians who were within a given field of view but not obstructed by surrounding objects would be detected. The changes in fatality and severe injury risks were quantified using risk curves derived by logistic regression of the accident data. Summing the risks for all pedestrians, relationships between mitigation effectiveness, sensor field of view, braking initiation time, and deceleration were established. The study documents that the effectiveness at reducing fatally (severely) injured pedestrians in frontal collisions with cars reached 40% (27%) at a field of view of 40 degrees. Increasing the field of view further led to only marginal improvements in effectiveness. 2010 Elsevier Ltd. All rights reserved.

  10. An integrated control strategy for the composite braking system of an electric vehicle with independently driven axles

    Science.gov (United States)

    Sun, Fengchun; Liu, Wei; He, Hongwen; Guo, Hongqiang

    2016-08-01

    For an electric vehicle with independently driven axles, an integrated braking control strategy was proposed to coordinate the regenerative braking and the hydraulic braking. The integrated strategy includes three modes, namely the hybrid composite mode, the parallel composite mode and the pure hydraulic mode. For the hybrid composite mode and the parallel composite mode, the coefficients of distributing the braking force between the hydraulic braking and the two motors' regenerative braking were optimised offline, and the response surfaces related to the driving state parameters were established. Meanwhile, the six-sigma method was applied to deal with the uncertainty problems for reliability. Additionally, the pure hydraulic mode is activated to ensure the braking safety and stability when the predictive failure of the response surfaces occurs. Experimental results under given braking conditions showed that the braking requirements could be well met with high braking stability and energy regeneration rate, and the reliability of the braking strategy was guaranteed on general braking conditions.

  11. Application of mechatronics in the automobile; Mechatronik im Automobil

    Energy Technology Data Exchange (ETDEWEB)

    Lange, P.; Herrmann, R.

    1996-04-01

    The automotive electronics of the 90`s suffers from increasing performance and economical pressure. New solutions are necessary if the target `better performance at lower cost` has to be fulfilled in the future, as the integration of sub-assemblies on the mechanical and electronical levels is essentially exhausted. The mechatronics as a form of integration of mechanical and electronical functions appears to be one approach to this problem. Hella works on mechatronics mainly in the field of illumination and electro-mechanics/electronics. The article shows that mechatronics integration is possible with standard electronics design as well as PCB technology, but also with new technologies such as MID and microsystems technology. (orig.) [Deutsch] Die Automobilelektronik der neunziger Jahre steht unter starkem Leistungs- und Kostendruck. Um der Zielsetzung`bessere Produkte zu niedrigen Preisen` kuenftig gerecht zu werden, bedarf es neuer Loesungswege. Die Baugruppenintegration auf mechanischer und elektronischer Ebene ist weitestgehend ausgereizt. Die Mechatronik, Integration mechanischer und elektronischer Funktionen, scheint ein Loesungsansatz fuer diese Problemstellung zu sein. Bei Hella wird deshalb vorrangig auf den Gebieten der Beleuchtung und der Elektromechanik/Elektronik and Mechatonik-Loesungen gearbeitet. Sowohl mit Standard-Aufbautechniken der Elektronik wie der Leiterplattentechnik als auch mit neuartigen Techniken wie der MID- und Mikrosystemtechnik ist eine Mechatronikintegration moeglich. (orig.)

  12. Rotary Speed Sensor for Antilocking Brakes

    Science.gov (United States)

    Berdahl, C. M.

    1986-01-01

    Sensor based on fluidic principles produces negative pressure approximately proportional to rotational speed. Sensor developed as part of antilocking brake system for motorcycles. Uses inlet pressure rather than outlet pressure as braking-control signal, eliminating pressure pulsations caused by pump vanes and ensuring low-noise signal. Sensor is centrifugal air pump turned by one of motorcycle wheels. Air enters pump through orifice plates, and suction taken off through port in pump inlet plenum.

  13. Analysis of the minimum swerving distance for the development of a motorcycle autonomous braking system.

    Science.gov (United States)

    Giovannini, Federico; Savino, Giovanni; Pierini, Marco; Baldanzini, Niccolò

    2013-10-01

    In the recent years the autonomous emergency brake (AEB) was introduced in the automotive field to mitigate the injury severity in case of unavoidable collisions. A crucial element for the activation of the AEB is to establish when the obstacle is no longer avoidable by lateral evasive maneuvers (swerving). In the present paper a model to compute the minimum swerving distance needed by a powered two-wheeler (PTW) to avoid the collision against a fixed obstacle, named last-second swerving model (Lsw), is proposed. The effectiveness of the model was investigated by an experimental campaign involving 12 volunteers riding a scooter equipped with a prototype autonomous emergency braking, named motorcycle autonomous emergency braking system (MAEB). The tests showed the performance of the model in evasive trajectory computation for different riding styles and fixed obstacles. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Torque Coordination Control during Braking Mode Switch for a Plug-in Hybrid Electric Vehicle

    OpenAIRE

    Yang Yang; Chao Wang; Quanrang Zhang; Xiaolong He

    2017-01-01

    Hybrid vehicles usually have several braking systems, and braking mode switches are significant events during braking. It is difficult to coordinate torque fluctuations caused by mode switches because the dynamic characteristics of braking systems are different. In this study, a new type of plug-in hybrid vehicle is taken as the research object, and braking mode switches are divided into two types. The control strategy of type one is achieved by controlling the change rates of clutch hold-dow...

  15. Friction and Braking Application of Unhazardous Palm Slag Brake Pad Composite

    Science.gov (United States)

    Khoni, Norizzahthul Ainaa Abdul; Ruzaidi Ghazali, Che Mohd; Bakri Abdullah, Mohd Mustafa Al

    2018-03-01

    This paper reveals new alternative friction materials for brake pads. Palm slag was studied as new friction materials in brake pads but its much harder made it difficult to be applied. As a way to reduce the hardness, tire dust was including as purpose on stabilizing the hardness of brake pads. The palm slag was sieves to get desired size that is 150 μm, 300 μm and 600 μm. The percentage weight of materials used are 20% graphite, 20% aluminium oxide, 20% steel fiber, 20% polyester resin and another 40% are varied between tire dust and palm slag. All of materials were blend and compress by using hot pressed machine. The composites properties that were examined are density, porosity, hardness, compressive strength, microstructure analysis and wear rate. The composition of 30% palm slag, 10% tire dust and larger size of filler give better result of mechanical properties and less wear rate of brake pads composites. Then, palm slag can be used in producing of non asbestos brake pads.

  16. Geometric optimal design of a magneto-rheological brake considering different shapes for the brake envelope

    International Nuclear Information System (INIS)

    Nguyen, Q H; Lang, V T; Nguyen, N D; Choi, S B

    2014-01-01

    When designing a magneto-rheological brake (MRB), it is well known that the shape of the brake envelope significantly affects the performance characteristics of the brake. In this study, different shapes for the MR brake envelope, such as rectangular, polygonal or spline shape, are considered and the most suitable shape identified. MRBs with different envelope shapes are introduced followed by the derivation of the braking torque based on Bingham-plastic behavior of the magneto-rheological fluid (MRF). Optimization of the design of the MRB with different envelope shapes is then done. The optimization problem is to find the optimal value for the significant geometric dimensions of the MRB that can produce a certain required braking torque while the brake mass is minimized. A finite element analysis integrated with an optimization tool is employed to obtain optimal solutions for the MRBs. From the results, the most suitable shape for the brake envelope is identified and discussed with the reduction of mass. In addition, the results of the analysis are compared with the experimental results to verify the proposed optimal design characteristics. (paper)

  17. Geometric optimal design of a magneto-rheological brake considering different shapes for the brake envelope

    Science.gov (United States)

    Nguyen, Q. H.; Lang, V. T.; Nguyen, N. D.; Choi, S. B.

    2014-01-01

    When designing a magneto-rheological brake (MRB), it is well known that the shape of the brake envelope significantly affects the performance characteristics of the brake. In this study, different shapes for the MR brake envelope, such as rectangular, polygonal or spline shape, are considered and the most suitable shape identified. MRBs with different envelope shapes are introduced followed by the derivation of the braking torque based on Bingham-plastic behavior of the magneto-rheological fluid (MRF). Optimization of the design of the MRB with different envelope shapes is then done. The optimization problem is to find the optimal value for the significant geometric dimensions of the MRB that can produce a certain required braking torque while the brake mass is minimized. A finite element analysis integrated with an optimization tool is employed to obtain optimal solutions for the MRBs. From the results, the most suitable shape for the brake envelope is identified and discussed with the reduction of mass. In addition, the results of the analysis are compared with the experimental results to verify the proposed optimal design characteristics.

  18. THE STUDY OF BRAKE SYSTEMS OF PASSENGER CARS MODEL 61-779 AND THEIR MODIFICATIONS PRODUCED BY OPEN JOINT STOCK COMPANY KRJUKIV CAR BUILDING PLANT

    Directory of Open Access Journals (Sweden)

    Yu. Ya. Vodiannikov

    2007-11-01

    Full Text Available The results of research of brake system for the model 61-779 of a passenger car manufactured by JSC «KVBZ» for the period from 2001 to 2006 are presented. It is shown that at the existing gear ratio of a brake lever transmission the passenger car brake efficiency does not correspond to running speed of 140 km/h. The causes of the wheel pairs damage occurrence in exploitation of a passenger train «Kiev – Moscow» as well as the recommendations on their elimination and brake system perfection are considered.

  19. A study of novel regenerative braking system based on supercapacitor for electric vehicle driven by in-wheel motors

    Directory of Open Access Journals (Sweden)

    Li-qiang Jin

    2015-03-01

    Full Text Available Taking supercapacitor and battery pack as the energy storage unit, a novel type of regenerative braking system for electric vehicle driven by in-wheel motors is presented, and a braking energy regeneration control strategy is set up. Then, a co-simulation test based on CRUISE and Simulink is conducted. The results of simulation show that the novel type of system can ensure the safety of battery pack and significantly improve the rate of energy regeneration.

  20. Design And Implementation of Dsp-Based Intelligent Controller For Automobile Braking System

    OpenAIRE

    S.N. Sidek and M.J.E. Salami

    2012-01-01

    An intelligent braking system has great potential applications especially, in developed countries where research on smart vehicle and intelligent highways are receiving ample attention. The system when integrated with other subsystems like automatic traction control, intelligent throttle, and auto cruise systems, etc will result in smart vehicle maneuver. The driver at the end of the day will become the passenger, safety accorded the highest priority and the journey optimized in term of time ...