WorldWideScience

Sample records for mechanisms yields closed

  1. Closing yield gaps: perils and possibilities for biodiversity conservation.

    Science.gov (United States)

    Phalan, Ben; Green, Rhys; Balmford, Andrew

    2014-04-05

    Increasing agricultural productivity to 'close yield gaps' creates both perils and possibilities for biodiversity conservation. Yield increases often have negative impacts on species within farmland, but at the same time could potentially make it more feasible to minimize further cropland expansion into natural habitats. We combine global data on yield gaps, projected future production of maize, rice and wheat, the distributions of birds and their estimated sensitivity to changes in crop yields to map where it might be most beneficial for bird conservation to close yield gaps as part of a land-sparing strategy, and where doing so might be most damaging. Closing yield gaps to attainable levels to meet projected demand in 2050 could potentially help spare an area equivalent to that of the Indian subcontinent. Increasing yields this much on existing farmland would inevitably reduce its biodiversity, and therefore we advocate efforts both to constrain further increases in global food demand, and to identify the least harmful ways of increasing yields. The land-sparing potential of closing yield gaps will not be realized without specific mechanisms to link yield increases to habitat protection (and restoration), and therefore we suggest that conservationists, farmers, crop scientists and policy-makers collaborate to explore promising mechanisms.

  2. Water limits to closing yield gaps

    Science.gov (United States)

    Davis, Kyle Frankel; Rulli, Maria Cristina; Garrassino, Francesco; Chiarelli, Davide; Seveso, Antonio; D'Odorico, Paolo

    2017-01-01

    Agricultural intensification is often seen as a suitable approach to meet the growing demand for agricultural products and improve food security. It typically entails the use of fertilizers, new cultivars, irrigation, and other modern technology. In regions of the world affected by seasonal or chronic water scarcity, yield gap closure is strongly dependent on irrigation (blue water). Global yield gap assessments have often ignored whether the water required to close the yield gap is locally available. Here we perform a gridded global analysis (10 km resolution) of the blue water consumption that is needed annually to close the yield gap worldwide and evaluate the associated pressure on renewable freshwater resources. We find that, to close the yield gap, human appropriation of freshwater resources for irrigation would have to increase at least by 146%. Most study countries would experience at least a doubling in blue water requirement, with 71% of the additional blue water being required by only four crops - maize, rice, soybeans, and wheat. Further, in some countries (e.g., Algeria, Morocco, Syria, Tunisia, and Yemen) the total volume of blue water required for yield gap closure would exceed sustainable levels of freshwater consumption (i.e., 40% of total renewable surface and groundwater resources).

  3. Closing Yield Gaps: How Sustainable Can We Be?

    Directory of Open Access Journals (Sweden)

    Prajal Pradhan

    Full Text Available Global food production needs to be increased by 60-110% between 2005 and 2050 to meet growing food and feed demand. Intensification and/or expansion of agriculture are the two main options available to meet the growing crop demands. Land conversion to expand cultivated land increases GHG emissions and impacts biodiversity and ecosystem services. Closing yield gaps to attain potential yields may be a viable option to increase the global crop production. Traditional methods of agricultural intensification often have negative externalities. Therefore, there is a need to explore location-specific methods of sustainable agricultural intensification. We identified regions where the achievement of potential crop calorie production on currently cultivated land will meet the present and future food demand based on scenario analyses considering population growth and changes in dietary habits. By closing yield gaps in the current irrigated and rain-fed cultivated land, about 24% and 80% more crop calories can respectively be produced compared to 2000. Most countries will reach food self-sufficiency or improve their current food self-sufficiency levels if potential crop production levels are achieved. As a novel approach, we defined specific input and agricultural management strategies required to achieve the potential production by overcoming biophysical and socioeconomic constraints causing yield gaps. The management strategies include: fertilizers, pesticides, advanced soil management, land improvement, management strategies coping with weather induced yield variability, and improving market accessibility. Finally, we estimated the required fertilizers (N, P2O5, and K2O to attain the potential yields. Globally, N-fertilizer application needs to increase by 45-73%, P2O5-fertilizer by 22-46%, and K2O-fertilizer by 2-3 times compared to the year 2010 to attain potential crop production. The sustainability of such agricultural intensification largely depends

  4. Closing Yield Gaps: How Sustainable Can We Be?

    Science.gov (United States)

    Pradhan, Prajal; Fischer, Günther; van Velthuizen, Harrij; Reusser, Dominik E.; Kropp, Juergen P.

    2015-01-01

    Global food production needs to be increased by 60–110% between 2005 and 2050 to meet growing food and feed demand. Intensification and/or expansion of agriculture are the two main options available to meet the growing crop demands. Land conversion to expand cultivated land increases GHG emissions and impacts biodiversity and ecosystem services. Closing yield gaps to attain potential yields may be a viable option to increase the global crop production. Traditional methods of agricultural intensification often have negative externalities. Therefore, there is a need to explore location-specific methods of sustainable agricultural intensification. We identified regions where the achievement of potential crop calorie production on currently cultivated land will meet the present and future food demand based on scenario analyses considering population growth and changes in dietary habits. By closing yield gaps in the current irrigated and rain-fed cultivated land, about 24% and 80% more crop calories can respectively be produced compared to 2000. Most countries will reach food self-sufficiency or improve their current food self-sufficiency levels if potential crop production levels are achieved. As a novel approach, we defined specific input and agricultural management strategies required to achieve the potential production by overcoming biophysical and socioeconomic constraints causing yield gaps. The management strategies include: fertilizers, pesticides, advanced soil management, land improvement, management strategies coping with weather induced yield variability, and improving market accessibility. Finally, we estimated the required fertilizers (N, P2O5, and K2O) to attain the potential yields. Globally, N-fertilizer application needs to increase by 45–73%, P2O5-fertilizer by 22–46%, and K2O-fertilizer by 2–3 times compared to the year 2010 to attain potential crop production. The sustainability of such agricultural intensification largely depends on the way

  5. Closing yield gaps in China by empowering smallholder farmers

    Science.gov (United States)

    Zhang, Weifeng; Cao, Guoxin; Li, Xiaolin; Zhang, Hongyan; Wang, Chong; Liu, Quanqing; Chen, Xinping; Cui, Zhenling; Shen, Jianbo; Jiang, Rongfeng; Mi, Guohua; Miao, Yuxin; Zhang, Fusuo; Dou, Zhengxia

    2016-09-01

    Sustainably feeding the world’s growing population is a challenge, and closing yield gaps (that is, differences between farmers’ yields and what are attainable for a given region) is a vital strategy to address this challenge. The magnitude of yield gaps is particularly large in developing countries where smallholder farming dominates the agricultural landscape. Many factors and constraints interact to limit yields, and progress in problem-solving to bring about changes at the ground level is rare. Here we present an innovative approach for enabling smallholders to achieve yield and economic gains sustainably via the Science and Technology Backyard (STB) platform. STB involves agricultural scientists living in villages among farmers, advancing participatory innovation and technology transfer, and garnering public and private support. We identified multifaceted yield-limiting factors involving agronomic, infrastructural, and socioeconomic conditions. When these limitations and farmers’ concerns were addressed, the farmers adopted recommended management practices, thereby improving production outcomes. In one region in China, the five-year average yield increased from 67.9% of the attainable level to 97.0% among 71 leading farmers, and from 62.8% to 79.6% countywide (93,074 households); this was accompanied by resource and economic benefits.

  6. Effect of dates of closing cut on seed yield and seed quality of Stylosanthes guianensis CIAT 184

    Directory of Open Access Journals (Sweden)

    Ramphrai Namsilee

    2005-09-01

    Full Text Available The aim of this field research was to investigate the effect of dates of closing cut on seed yield and seed quality of Stylosanthes guianensis CIAT 184 at Khon Kaen Animal Nutrition Research and Development Center, during May 2003 to February 2004. A randomized complete block design with four replications was used. Experimental treatments consisted of five dates of closing cut spaced at about 14-day intervals (27 August, 10 September, 24 September, 8 October 2003 and uncut.The results showed that date of closing cut had a significant effect on seed yields and pure germinable seed yields (PGSY of S. guianensis CIAT 184. Plots closed on 10 September produced the highest seed yield and PGSY (P<0.05 of 564 and 553 kg/ha, followed by plots closed on 24 September and 27 August (422 and 406; 405 and 391 kg/ha. Uncut plots produced low yield and plots closed on 8 October produced the lowest seed yield and PGSY (401 and 388; 365 and 356 kg/ha. There were no significant differences in seed purity percentage, germination percentage and 1000-seed weight among treatments. Among the dates of closing cut studied, forage DM yield and CP yield were subsequently increased as date of closing cut was delayed. Based on this research, it was concluded that early-September was the optimum date of closing cut for S. guianensis CIAT 184 cultivation for seed production in Northeast Thailand.

  7. Diagnostic yield and safety of closed needle pleural biopsy in exudative pleural effusion.

    Science.gov (United States)

    Rajawat, Govind Singh; Batra, Supreet; Takhar, Rajendra Prasad; Rathi, Lalit; Bhandari, Chand; Gupta, Manohar Lal

    2017-01-01

    Closed pleural biopsy was previously considered a procedure of choice in cases of undiagnosed pleural effusion with good efficacy. Currently, the closed pleural biopsy has been replaced by thoracoscopic biopsy but not easily available in resource-limited setups. The objective of this study was to analyze the diagnostic yield and safety of closed needle pleural biopsy in exudative pleural effusion and assessment of patients' characteristics with the yield of pleural biopsy. This was a cross-sectional study. This study was conducted at Institute of Respiratory Diseases, SMS Medical College, Jaipur, a tertiary care center of West India. A total of 250 cases of pleural effusion were evaluated with complete pleural fluid biochemical, microbiological, and cytological examination. Out of these 250 patients, 59 were excluded from the study as the diagnosis could be established on initial pleural fluid examination. The remaining (191) patients were considered for closed pleural biopsy with Abrams pleural biopsy needle. The main outcome measure was diagnostic yield in the form of confirming diagnosis. Out of the 191 patients with exudative lymphocytic pleural effusion, 123 (64.40%) were diagnosed on the first pleural biopsy. Among the remaining 68 patients, 22 patients had repeat pleural biopsy with a diagnostic yield of 59.9%. The overall pleural biopsy could establish the diagnosis in 136 (71.20%) patients with pleural effusion. The most common diagnosis on pleural biopsy was malignancy followed by tuberculosis. Closed pleural biopsy provides diagnostic yield nearly comparative to thoracoscopy in properly selected patients of pleural effusions. In view of good yield, low cost, easy availability, and very low complication rate, it should be used routinely in all cases of undiagnosed exudative lymphocytic pleural effusion. There was no comparison with a similar group undergoing thoracoscopic pleural biopsy.

  8. Mechanical design of mussel byssus: material yield enhances attachment strength

    Science.gov (United States)

    Bell; Gosline

    1996-01-01

    The competitive dominance of mussels in the wave-swept rocky intertidal zone is in part due to their ability to maintain a secure attachment. Mussels are tethered to the substratum by a byssus composed of numerous extracellular, collagenous threads secreted by the foot. Each byssal thread has three serially arranged parts: a corrugated proximal region, a smooth distal region and an adhesive plaque. This study examines the material and structural properties of the byssal threads of three mussel species: Mytilus californianus, M. trossulus, and M. galloprovincialis. Tensile tests in general reveal similar material properties among species: the proximal region has a lower initial modulus, a lower ultimate stress and a higher ultimate strain than the distal region. The distal region also yields at a stress well below its ultimate value. In whole thread tests, the proximal region and adhesive plaque are common sites of structural failure and are closely matched in strength, while the distal region appears to be excessively strong. We propose that the high strength of the distal region is the byproduct of a material designed to yield and extend before structural failure occurs. Experimental and theoretical evidence is presented suggesting that thread yield and extensibility provide two important mechanisms for increasing the overall attachment strength of the mussel: (1) the reorientation of threads towards the direction of applied load, and (2) the 'recruitment' of more threads into tension and the consequent distribution of applied load over a larger cross-sectional area, thereby reducing the stress on each thread. This distal region yield behavior is most striking for M. californianus and may be a key to its success in extreme wave-swept environments.

  9. Research Facility for Mechanical Press Closed Gap Adjuster

    Directory of Open Access Journals (Sweden)

    A. A. Ancifirov

    2016-01-01

    Full Text Available The article describes an example of the research facility for closed gap adjustment mechanism based on the KD2128 closed-die forging press. Its rated force with a servo drive used is 630kN. The servo drive consists of a motor with nominal power of 1.57kW and a frequency converter with power of 7.5kW, which has functions of the programmable logic controller.The article notes that such a facility is expedient and useful for practical classes on forging-andstamping machines at the BMSTU Department of «Technology processing by pressure» to demonstrate the capabilities of existing technological facility, learn a design of forging-andstamping machine units, solve the problems of automatic control, monitoring, and diagnostics in blank manufacturing.The article presents a detailed facility diagram of the closed gap adjustment mechanism and its photograph, describes the mechanism and its basic parameters, gives characteristics of the synchronous motor to drive the mechanism, reviews practical works, which the research facility may provide.Based on the four experiments the article estimates an efficiency of the research facilityuse under consideration, especially when modeling a servo motor shaft under the maximum load. The relevant diagrams confirm experimental results, namely: control current, angle of motor shaft and its speed versus time. Thus, upon the diagram analysis it can be noted that the research facility design allows providing kinematics and dynamics of the press closed gap adjuster.This article describes how to determine the closed gap adjusting accuracy of the press. Eight experiments have been conducted to evaluate a working out control signal to the linear movement of the press punch when using the research facility. It is noted that the linear positioning accuracy of the press punch reaches the hundredth parts of a millimeter of the adjustment value that is sufficient to achieve the required precision when performing operations such as

  10. Yield fracture mechanics. Report colloquium of the DFG

    International Nuclear Information System (INIS)

    1992-01-01

    This volume contains 17 lectures, which were given at the Report Colloquium of the DFG at Bonn on November 5th 1992. The main points of yield fracture mechanics were: Theory, experiment technique, transferability, material and structure. (MM) [de

  11. Influence of management and environment on Australian wheat: information for sustainable intensification and closing yield gaps

    Science.gov (United States)

    Bryan, B. A.; King, D.; Zhao, G.

    2014-04-01

    In the future, agriculture will need to produce more, from less land, more sustainably. But currently, in many places, actual crop yields are below those attainable. We quantified the ability for agricultural management to increase wheat yields across 179 Mha of potentially arable land in Australia. Using the Agricultural Production Systems Simulator (APSIM), we simulated the impact on wheat yield of 225 fertilization and residue management scenarios at a high spatial, temporal, and agronomic resolution from 1900 to 2010. The influence of management and environmental variables on wheat yield was then assessed using Spearman’s non-parametric correlation test with bootstrapping. While residue management showed little correlation, fertilization strongly increased wheat yield up to around 100 kg N ha-1 yr-1. However, this effect was highly dependent on the key environment variables of rainfall, temperature, and soil water holding capacity. The influence of fertilization on yield was stronger in cooler, wetter climates, and in soils with greater water holding capacity. We conclude that the effectiveness of management intensification to increase wheat yield is highly dependent upon local climate and soil conditions. We provide context-specific information on the yield benefits of fertilization to support adaptive agronomic decision-making and contribute to the closure of yield gaps. We also suggest that future assessments consider the economic and environmental sustainability of management intensification for closing yield gaps.

  12. Influence of management and environment on Australian wheat: information for sustainable intensification and closing yield gaps

    International Nuclear Information System (INIS)

    Bryan, B A; King, D; Zhao, G

    2014-01-01

    In the future, agriculture will need to produce more, from less land, more sustainably. But currently, in many places, actual crop yields are below those attainable. We quantified the ability for agricultural management to increase wheat yields across 179 Mha of potentially arable land in Australia. Using the Agricultural Production Systems Simulator (APSIM), we simulated the impact on wheat yield of 225 fertilization and residue management scenarios at a high spatial, temporal, and agronomic resolution from 1900 to 2010. The influence of management and environmental variables on wheat yield was then assessed using Spearman’s non-parametric correlation test with bootstrapping. While residue management showed little correlation, fertilization strongly increased wheat yield up to around 100 kg N ha −1  yr −1 . However, this effect was highly dependent on the key environment variables of rainfall, temperature, and soil water holding capacity. The influence of fertilization on yield was stronger in cooler, wetter climates, and in soils with greater water holding capacity. We conclude that the effectiveness of management intensification to increase wheat yield is highly dependent upon local climate and soil conditions. We provide context-specific information on the yield benefits of fertilization to support adaptive agronomic decision-making and contribute to the closure of yield gaps. We also suggest that future assessments consider the economic and environmental sustainability of management intensification for closing yield gaps. (paper)

  13. A closed-loop analysis of the tubuloglomerular feedback mechanism

    DEFF Research Database (Denmark)

    Holstein-Rathlou, N H

    1991-01-01

    The tubuloglomerular feedback (TGF) mechanism is of importance in the regulation of glomerular filtration rate (GFR). A second mechanism of potential importance is the change in proximal pressure caused by a change, for example, in the rate of proximal fluid reabsorption. The quantitative contrib...... and the late proximal flow rate, with changes in the proximal pressure of lesser importance. Furthermore, under closed-loop conditions the operating point for the TGF mechanism is at or close to the point of maximal sensitivity....... nl/min in steps of 5 nl/min. The open-loop gain (OLG) was 3.1 (range 1.5-9.9, n = 13) at the unperturbed tubular flow rate, and decreased as the tubular flow rate was either increased or decreased. The proximal pressure increased by 0.21 +/- 0.03 mmHg per unit increase in late proximal flow rate (nl...

  14. A Three-Phase Multiobjective Mechanism for Selecting Retail Stores to Close

    Directory of Open Access Journals (Sweden)

    Rong-Chang Chen

    2016-01-01

    Full Text Available To operate a successful and growing business, a retail store manager has to make tough decisions about selectively closing underperforming stores. In this paper, we propose using a three-phase multiobjective mechanism to help retail industry practitioners determine which stores to close. In the first phase, a geographic information system (GIS and k-means clustering algorithm are used to divide all the stores into clusters. In the second phase, stores can be strategically selected according to the requirements of the company and the attributes of the stores. In the third phase, a neighborhood-based multiobjective genetic algorithm (NBMOGA is utilized to determine which stores to close. To examine the effectiveness of the proposed three-phase mechanism, a variety of experiments are performed, based partly on a real dataset from a stock-list company in Taiwan. Results from the experiments show that the proposed three-phase mechanism can help efficiently decide which store locations to close. In addition, the neighborhood radius has a considerable influence on the results.

  15. Effects of different mechanized soil fertilization methods on corn nutrient accumulation and yield

    Science.gov (United States)

    Shi, Qingwen; Bai, Chunming; Wang, Huixin; Wu, Di; Song, Qiaobo; Dong, Zengqi; Gao, Depeng; Dong, Qiping; Cheng, Xin; Zhang, Yahao; Mu, Jiahui; Chen, Qinghong; Liao, Wenqing; Qu, Tianru; Zhang, Chunling; Zhang, Xinyu; Liu, Yifei; Han, Xiaori

    2017-05-01

    Aim: Experiments for mechanized corn soil fertilization were conducted in Faku demonstration zone. On this basis, we studied effects on corn nutrient accumulation and yield traits at brown soil regions due to different mechanized soil fertilization measures. We also evaluated and optimized the regulation effects of mechanized soil fertilization for the purpose of crop yield increase and production efficiency improvement. Method: Based on the survey of soil background value in the demonstration zone, we collected plant samples during different corn growth periods to determine and make statistical analysis. Conclusions: Decomposed cow dung, when under mechanical broadcasting, was able to remarkably increase nitrogen and potassium accumulation content of corns at their ripe stage. Crushed stalk returning combined with deep tillage would remarkably increase phosphorus accumulation content of corn plants. When compared with top application, crushed stalk returning combined with deep tillage would remarkably increase corn thousand kernel weight (TKW). Mechanized broadcasting of granular organic fertilizer and crushed stalk returning combined with deep tillage, when compared with surface application, were able to boost corn yield in the in the demonstration zone.

  16. Mechanical Pretreatment to Increase the Bioenergy Yield for Full-scale Biogas Plants

    DEFF Research Database (Denmark)

    Tsapekos, Panagiotis; Kougias, Panagiotis; Angelidaki, Irini

    % compared to the untreated one. The digestion of meadow grass as an alternative co-substrate had positive impact on the energy yield of full-scale biogas reactors operating with cattle manure, pig manure or mixture of both. A preliminary analysis showed that the addition of meadow grass in a manure based...... biogas reactor was possible with biomass share of 10%, leading to energy production of 280 GJ/day. The digestion of pretreated meadow grass as alternative co-substrate had clearly positive impact in all the examined scenarios, leading to increased biogas production in the range of 10%-20%.......This study investigated the efficiency of commercially available harvesting machines for mechanical pretreatment of meadow grass, in order to enhance the energy yield per hectare. Excoriator was shown to be the most efficient mechanical pretreatment increasing the biogas yield of grass by 16...

  17. Mechanical behavior and clinical application of nickel-titanium closed-coil springs under different stress levels and mechanical loading cycles.

    Science.gov (United States)

    Wichelhaus, Andrea; Brauchli, Lorenz; Ball, Judith; Mertmann, Matthias

    2010-05-01

    The main advantage of superelastic nickel-titanium (NiTi) products is their unique characteristic of force plateaus, which allow for clinically precise control of the force. The aims of this study were to define the mechanical characteristics of several currently available closed-coil retraction springs and to compare these products. A universal test frame was used to acquire force-deflection diagrams of 24 NiTi closed-coil springs at body temperature. Data analysis was performed with the superelastic algorithm. Also, the influence of temperature cycles and mechanical microcycles simulating ingestion of different foods and mastication, respectively, were considered. Mechanical testing showed significant differences between the various spring types (ANOVA, mechanical properties of the springs: strong superelasticity without bias stress, weak superelasticity without bias stress, strong superelasticity with bias stress, and weak superelasticity with bias stress. In sliding mechanics, the strongly superelastic closed-coil springs with preactivation are recommended. In addition, we found that the oral environment seems to have only a minor influence on their mechanical properties. Copyright (c) 2010 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  18. Mechanical systems with closed orbits on manifolds of revolution

    International Nuclear Information System (INIS)

    Kudryavtseva, E A; Fedoseev, D A

    2015-01-01

    We study natural mechanical systems describing the motion of a particle on a two-dimensional Riemannian manifold of revolution in the field of a central smooth potential. We obtain a classification of Riemannian manifolds of revolution and central potentials on them that have the strong Bertrand property: any nonsingular (that is, not contained in a meridian) orbit is closed. We also obtain a classification of manifolds of revolution and central potentials on them that have the 'stable' Bertrand property: every parallel is an 'almost stable' circular orbit, and any nonsingular bounded orbit is closed. Bibliography: 14 titles

  19. SRB states and nonequilibrium statistical mechanics close to equilibrium

    OpenAIRE

    Gallavotti, Giovannni; Ruelle, David

    1996-01-01

    Nonequilibrium statistical mechanics close to equilibrium is studied using SRB states and a formula for their derivatives with respect to parameters. We write general expressions for the thermodynamic fluxes (or currents) and the transport coefficients, generalizing previous results. In this framework we give a general proof of the Onsager reciprocity relations.

  20. Fluid-Structure Interaction Mechanisms for Close-In Explosions

    Directory of Open Access Journals (Sweden)

    Andrew B. Wardlaw Jr.

    2000-01-01

    Full Text Available This paper examines fluid-structure interaction for close-in internal and external underwater explosions. The resulting flow field is impacted by the interaction between the reflected explosion shock and the explosion bubble. This shock reflects off the bubble as an expansion that reduces the pressure level between the bubble and the target, inducing cavitation and its subsequent collapse that reloads the target. Computational examples of several close-in interaction cases are presented to document the occurrence of these mechanisms. By comparing deformable and rigid body simulations, it is shown that cavitation collapse can occur solely from the shock-bubble interaction without the benefit of target deformation. Addition of a deforming target lowers the flow field pressure, facilitates cavitation and cavitation collapse, as well as reducing the impulse of the initial shock loading.

  1. The effect of melliferous bee (Apis mellifera carnica poll and mechanical means on seed yield, yield components and quality of alfalfa seed (Medicago sativa L

    Directory of Open Access Journals (Sweden)

    Jevtić Goran

    2005-01-01

    Full Text Available Number of alfalfa pollinators in free pollination was investigated as well as effect of measures that promote pollination alfalfa (using sugar syrup and mechanical means. In first year of investigations, with higher precipitation, higher number of others pollinators (80,8 then honeybees (45,6 on alfalfa field was determined. In second year, there were much more honeybees (139,5 then all others alfalfa pollinators (12,37. Pollination improvement with sugar syrup had positive effect on seed yield and seed yield components since by this way more seeds were obtained compare to free pollination and by using mechanical means. Highest seed yield was obtained with sugar syrup (44,90 gm-2, with mechanical improvement of pollination 40,74 gm-2 and in free pollination 30,41 gm-2. As for yield components pollination improvement gave better results compare to free pollination. Pod setting and number of seeds per pod were especially significant compare to control. There were no statistically significant differences between free pollination and improved pollination for seed quality components (mass of 1000 seeds, energy of germination and germination ability.

  2. Energy distribution and quantum yield for photoemission from air-contaminated gold surfaces under ultraviolet illumination close to the threshold

    Science.gov (United States)

    Hechenblaikner, Gerald; Ziegler, Tobias; Biswas, Indro; Seibel, Christoph; Schulze, Mathias; Brandt, Nico; Schöll, Achim; Bergner, Patrick; Reinert, Friedrich T.

    2012-06-01

    The kinetic energy distributions of photo-electrons emitted from gold surfaces under illumination by UV-light close to the threshold (photon energy in the order of the material work function) are measured and analyzed. Samples are prepared as chemically clean through Ar-ion sputtering and then exposed to atmosphere for variable durations before quantum yield measurements are performed after evacuation. During measurements, the bias voltage applied to the sample is varied and the resulting emission current measured. Taking the derivative of the current-voltage curve yields the energy distribution which is found to closely resemble the distribution of total energies derived by DuBridge for emission from a free electron gas. We investigate the dependence of distribution shape and width on electrode geometry and contaminant substances adsorbed from the atmosphere, in particular, to water and hydro-carbons. Emission efficiency increases initially during air exposure before diminishing to zero on a timescale of several hours, whilst subsequent annealing of the sample restores emissivity. A model fit function, in good quantitative agreement with the measured data, is introduced which accounts for the experiment-specific electrode geometry and an energy dependent transmission coefficient. The impact of large patch potential fields from contact potential drops between sample and sample holder is investigated. The total quantum yield is split into bulk and surface contributions which are tested for their sensitivity to light incidence angle and polarization. Our results are directly applicable to model parameters for the contact-free discharge system onboard the Laser Interferometer Space Antenna (LISA) Pathfinder spacecraft.

  3. Redefining yield gaps at various spatial scales

    Science.gov (United States)

    Meng, K.; Fishman, R.; Norstrom, A. V.; Diekert, F. K.; Engstrom, G.; Gars, J.; McCarney, G. R.; Sjostedt, M.

    2013-12-01

    Recent research has highlighted the prevalence of 'yield gaps' around the world and the importance of closing them for global food security. However, the traditional concept of yield gap -defined as the difference between observed and optimal yield under biophysical conditions - omit relevant socio-economic and ecological constraints and thus offer limited guidance on potential policy interventions. This paper proposes alternative definitions of yield gaps by incorporating rich, high resolution, national and sub-national agricultural datasets. We examine feasible efforts to 'close yield gaps' at various spatial scales and across different socio-economic and ecological domains.

  4. Examining the roles that changing harvested areas, closing yield-gaps, and increasing yield ceilings have had on crop production

    Science.gov (United States)

    Johnston, M.; Ray, D. K.; Mueller, N. D.; Foley, J. A.

    2011-12-01

    With an increasing and increasingly affluent population, there has been tremendous effort to examine strategies for sustainably increasing agricultural production to meet this surging global demand. Before developing new solutions from scratch, though, we believe it is important to consult our recent agricultural history to see where and how agricultural production changes have already taken place. By utilizing the newly created temporal M3 cropland datasets, we can for the first time examine gridded agricultural yields and area, both spatially and temporally. This research explores the historical drivers of agricultural production changes, from 1965-2005. The results will be presented spatially at the global-level (5-min resolution), as well as at the individual country-level. The primary research components of this study are presented below, including the general methodology utilized in each phase and preliminary results for soybean where available. The complete assessment will cover maize, wheat, rice, soybean, and sugarcane, and will include country-specific analysis for over 200 countries, states, territories and protectorates. Phase 1: The first component of our research isolates changes in agricultural production due to variation in planting decisions (harvested area) from changes in production due to intensification efforts (yield). We examine area/yield changes at the pixel-level over 5-year time-steps to determine how much each component has contributed to overall changes in production. Our results include both spatial patterns of changes in production, as well as spatial maps illustrating to what degree the production change is attributed to area and/or yield. Together, these maps illustrate where, why, and by how much agricultural production has changed over time. Phase 2: In the second phase of our research we attempt to determine the impact that area and yield changes have had on agricultural production at the country-level. We calculate a production

  5. Continuous quantum mechanics of single particles in closed and quasi-closed systems: Pt. 1 and 2

    International Nuclear Information System (INIS)

    Brieger, M.

    2004-01-01

    The established statistical interpretation of quantum mechanics never envisioned our today's ability to handle and investigate single particles in trap devices. After scrutinizing the development of quantum mechanics, we point out that Schroedinger's equation establishes an energy representation, which obtains the energy eigenvalues as extrema of the energy curve or on the energy hypersurface, respectively. We also strongly emphasize its never exhausted capability of accounting in classical terms and full detail for the dynamics of single particles in closed systems. This is demonstrated for several familiar examples. They show that the eigensolutions to Schroedinger's equation must not blindly be identified with physically stationary states. The gained insight into the true dynamics allows to describe, without involving QED, the time evolution of a complete spontaneous transition as being driven by unbalanced internal dynamics. This mechanism relies on the fact that perfect balances are only possible in the exact extrema of the total energy and that any deviation, which is characterized by nonstationary states, makes multipole moments oscillate and emit electromagnetic radiation. (orig.)

  6. Continuous quantum mechanics of single particles in closed and quasi-closed systems: Pt. 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    Brieger, M. [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Stuttgart (Germany). Inst. fuer Technische Physik

    2004-07-01

    The established statistical interpretation of quantum mechanics never envisioned our today's ability to handle and investigate single particles in trap devices. After scrutinizing the development of quantum mechanics, we point out that Schroedinger's equation establishes an energy representation, which obtains the energy eigenvalues as extrema of the energy curve or on the energy hypersurface, respectively. We also strongly emphasize its never exhausted capability of accounting in classical terms and full detail for the dynamics of single particles in closed systems. This is demonstrated for several familiar examples. They show that the eigensolutions to Schroedinger's equation must not blindly be identified with physically stationary states. The gained insight into the true dynamics allows to describe, without involving QED, the time evolution of a complete spontaneous transition as being driven by unbalanced internal dynamics. This mechanism relies on the fact that perfect balances are only possible in the exact extrema of the total energy and that any deviation, which is characterized by nonstationary states, makes multipole moments oscillate and emit electromagnetic radiation. (orig.)

  7. Microstructure, mechanical properties and microtexture of friction stir welded S690QL high yield steel

    Energy Technology Data Exchange (ETDEWEB)

    Paillard, Pascal [Institut des Matériaux Jean Rouxel, UMR 6205, Polytech Nantes, Site de la Chantrerie, BP 50609, 44306 Nantes cedex 3 (France); Bertrand, Emmanuel, E-mail: emmanuel.bertrand@univ-nantes.fr [Institut des Matériaux Jean Rouxel, UMR 6205, Polytech Nantes, Site de la Chantrerie, BP 50609, 44306 Nantes cedex 3 (France); Allart, Marion; Benoit, Alexandre [Institut de Recherche Technologique Jules Verne, Chemin du Chaffault, 44340 Bouguenais (France); Ruckert, Guillaume [DCNS Research, Technocampus Ocean, 5 rue de l' Halbrane, 44340 Bouguenais (France)

    2016-12-15

    Two try-out campaigns of friction stir welding (FSW) were performed with different friction parameters to join S690QL high yield strength steel. The welds were investigated at macroscopic and microscopic scales using optical and electronic microscopy and microhardness mapping. Welds of the second campaign exhibit microstructures and mechanical properties in accordance with requirements for service use. Microtexture measurements were carried out in different zones of welds by electron backscattered diffraction (EBSD). It is shown that that texture of the bottom of the weld is similar to that of the base metal, suggesting a diffusion bonding mechanism. Finally, the mechanical properties (tensile strength, resilience, bending) were established on the most promising welds. It is shown that it is possible to weld this high yield strength steel using FSW process with satisfactory geometric, microstructural and mechanical properties. - Highlights: •1000 mm ∗ 400 mm ∗ 8 mm S690QL steel plates are joined by friction stir welding (FSW). •Maximum hardness is reduced by optimization of process parameters. •Various microstructures are formed but no martensite after process optimization. •Texture is modified in mechanically affected zones of the weld. •Texture in the bottom of the weld is preserved, suggesting diffusion bonding.

  8. Mechanisms for closing bores and releasably securing articles within the bores under longitudinal load

    International Nuclear Information System (INIS)

    Klahn, F.C.; Nolan, J.H.; Wills, C.

    1979-01-01

    This invention relates to mechanisms for closing bores of tubular passages and for releasably securing articles within the bores under longitudinal load. The system includes an axially movable latch, an actuator and locking devices. Embodiments of the invention can be used as closure mechanisms for tubular irradiation surveillance specimen assembly holders used in nuclear reactors. (UK)

  9. Mechanisms for closing bores and releasably securing articles within the bores under longitudinal load

    International Nuclear Information System (INIS)

    Kalen, D.D.; Mitchem, J.W.

    1979-01-01

    This invention relates to mechanisms for closing bores of tubular passages and for releasably securing articles within the bores under longitudinal load. The system includes an axially movable actuator and a latch which engages the tubular opening. Embodiments of the invention can be used as closure mechanisms for tubular irradiation surveillance specimen assembly holders used in nuclear reactors. (UK)

  10. Bond yield curve construction

    Directory of Open Access Journals (Sweden)

    Kožul Nataša

    2014-01-01

    Full Text Available In the broadest sense, yield curve indicates the market's view of the evolution of interest rates over time. However, given that cost of borrowing it closely linked to creditworthiness (ability to repay, different yield curves will apply to different currencies, market sectors, or even individual issuers. As government borrowing is indicative of interest rate levels available to other market players in a particular country, and considering that bond issuance still remains the dominant form of sovereign debt, this paper describes yield curve construction using bonds. The relationship between zero-coupon yield, par yield and yield to maturity is given and their usage in determining curve discount factors is described. Their usage in deriving forward rates and pricing related derivative instruments is also discussed.

  11. Effect of chemical and mechanical weed control on cassava yield, soil quality and erosion under cassava cropping system

    Science.gov (United States)

    Islami, Titiek; Wisnubroto, Erwin; Utomo, Wani

    2016-04-01

    Three years field experiments were conducted to study the effect of chemical and mechanical weed control on soil quality and erosion under cassava cropping system. The experiment were conducted at University Brawijaya field experimental station, Jatikerto, Malang, Indonesia. The experiments were carried out from 2011 - 2014. The treatments consist of three cropping system (cassava mono culture; cassava + maize intercropping and cassava + peanut intercropping), and two weed control method (chemical and mechanical methods). The experimental result showed that the yield of cassava first year and second year did not influenced by weed control method and cropping system. However, the third year yield of cassava was influence by weed control method and cropping system. The cassava yield planted in cassava + maize intercropping system with chemical weed control methods was only 24 t/ha, which lower compared to other treatments, even with that of the same cropping system used mechanical weed control. The highest cassava yield in third year was obtained by cassava + peanuts cropping system with mechanical weed control method. After three years experiment, the soil of cassava monoculture system with chemical weed control method possessed the lowest soil organic matter, and soil aggregate stability. During three years of cropping soil erosion in chemical weed control method, especially on cassava monoculture, was higher compared to mechanical weed control method. The soil loss from chemical control method were 40 t/ha, 44 t/ha and 54 t/ha for the first, second and third year crop. The soil loss from mechanical weed control method for the same years was: 36 t/ha, 36 t/ha and 38 t/ha. Key words: herbicide, intercropping, soil organic matter, aggregate stability.

  12. A new mechanism for lepton-flavor violation. tau. yields. mu. gamma. in the flipped string

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, S.; Lopez, J.L.; Nanopoulos, D.V.; Pois, H. (Texas A and M Univ., College Station, TX (USA). Center for Theoretical Physics Houston Advanced Research Center (HARC), The Woodlands, TX (USA). Astroparticle Physics Group)

    1991-07-08

    We explore a new mechanism for lepton-flavor violation which is manifest in the flipped SU(5) string model, and may be a generic feature of string-derived models. This mechanism generates off-diagnoal slepton masses from otherwise flavor diagonal Yukawa matrices when heavy vector-like leptons decouple at a high-mass scale. As an example of lepton-flavor violation, we present an order of magnitude prediction for the branching ratio BR({tau} {yields} {mu}{gamma}) in the flipped string. The result depends crucially on the details of the extra vector-like fermion decoupling, and on the assumed nature and scale of supersymmetry breaking. For natural choices of the parameters we obtain a large BR({tau} {yields} {mu}{gamma}), which we show to be well within the reach of present and future experimental searches. (orig.).

  13. Trajectory control of robot manipulators with closed-kinematic chain mechanism

    Science.gov (United States)

    Nguyen, Charles C.; Pooran, Farhad J.; Premack, Timothy

    1987-01-01

    The problem of Cartesian trajectory control of a closed-kinematic chain mechanism robot manipulator, recently built at CAIR to study the assembly of NASA hardware for the future Space Station, is considered. The study is performed by both computer simulation and experimentation for tracking of three different paths: a straight line, a sinusoid, and a circle. Linearization and pole placement methods are employed to design controller gains. Results show that the controllers are robust and there are good agreements between simulation and experimentation. The results also show excellent tracking quality and small overshoots.

  14. Closing the Yield Gap of Sugar Beet in the Netherlands-A Joint Effort.

    Science.gov (United States)

    Hanse, Bram; Tijink, Frans G J; Maassen, Jurgen; van Swaaij, Noud

    2018-01-01

    The reform of the European Union's sugar regime caused potential decreasing beet prices. Therefore, the Speeding Up Sugar Yield (SUSY) project was initiated. At the start, a 3 × 15 target was formulated: in 2015 the national average sugar yield in the Netherlands equals 15 t/ha (60% of the sugar beet potential) and the total variable costs 15 euro/t sugar beet, aspiring a saving on total variable costs and a strong increase in sugar yield. Based on their average sugar yield in 2000-2004, 26 pairs of "type top" (high yielding) and "type average" (average yielding) growers were selected from all sugar beet growing regions in the Netherlands. On the fields of those farmers, all measures of sugar beet cultivation were investigated, including cost calculation and recording phytopathological, agronomical and soil characteristics in 2006 and 2007. Although there was no significant difference in total variable costs, the "type top" growers yielded significantly 20% more sugar in each year compared to the "type average" growers. Therefore, the most profitable strategy for the growers is maximizing sugar yield and optimizing costs. The difference in sugar yield between growers could be explained by pests and diseases (50%), weed control (30%), soil structure (25%) and sowing date (14%), all interacting with each other. The SUSY-project revealed the effect of the grower's management on sugar yield. As a follow up for the SUSY-project, a growers' guide "Suikerbietsignalen" was published, Best Practice study groups of growers were formed and trainings and workshops were given and field days organized. Further, the benchmarking and feedback on the crop management recordings and the extension on variety choice, sowing performance, foliar fungi control and harvest losses were intensified. On the research part, a resistance breaking strain of the Beet Necrotic Yellow Vein Virus (BNYVV) and a new foliar fungus, Stemphylium beticola , were identified and options for control were

  15. Improved ethanol yield and reduced Minimum Ethanol Selling Price (MESP by modifying low severity dilute acid pretreatment with deacetylation and mechanical refining: 1 Experimental

    Directory of Open Access Journals (Sweden)

    Chen Xiaowen

    2012-08-01

    Full Text Available Abstract Background Historically, acid pretreatment technology for the production of bio-ethanol from corn stover has required severe conditions to overcome biomass recalcitrance. However, the high usage of acid and steam at severe pretreatment conditions hinders the economic feasibility of the ethanol production from biomass. In addition, the amount of acetate and furfural produced during harsh pretreatment is in the range that strongly inhibits cell growth and impedes ethanol fermentation. The current work addresses these issues through pretreatment with lower acid concentrations and temperatures incorporated with deacetylation and mechanical refining. Results The results showed that deacetylation with 0.1 M NaOH before acid pretreatment improved the monomeric xylose yield in pretreatment by up to 20% while keeping the furfural yield under 2%. Deacetylation also improved the glucose yield by 10% and the xylose yield by 20% during low solids enzymatic hydrolysis. Mechanical refining using a PFI mill further improved sugar yields during both low- and high-solids enzymatic hydrolysis. Mechanical refining also allowed enzyme loadings to be reduced while maintaining high yields. Deacetylation and mechanical refining are shown to assist in achieving 90% cellulose yield in high-solids (20% enzymatic hydrolysis. When fermentations were performed under pH control to evaluate the effect of deacetylation and mechanical refining on the ethanol yields, glucose and xylose utilizations over 90% and ethanol yields over 90% were achieved. Overall ethanol yields were calculated based on experimental results for the base case and modified cases. One modified case that integrated deacetylation, mechanical refining, and washing was estimated to produce 88 gallons of ethanol per ton of biomass. Conclusion The current work developed a novel bio-ethanol process that features pretreatment with lower acid concentrations and temperatures incorporated with deacetylation

  16. Mechanical energy yields and pressure volume and pressure time curves for whole core fuel-coolant interactions

    Energy Technology Data Exchange (ETDEWEB)

    Coddington, P [United Kingdom Atomic Energy Authority, Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)

    1979-10-15

    In determining the damage consequences of a whole core Fuel-Coolant Interaction (FCI), one measure of the strength of a FCI that can be used and is independent of the system geometry is the constant volume mixing mechanical yield (often referred to as the Hicks-Menzies yield), which represents a near upper limit to the mechanical work of a FCI. This paper presents a recalculation of the Hicks-Menzies yields for UO{sub 2} and sodium for a range of initial fuel temperatures and fuel to coolant mass ratios, using recently published UO{sub 2} and sodium equation of state data. The work presented here takes a small number of postulated FCIs with as wide range as possible of thermal interaction parameters and determines their pressure-volume P(V) and pressure-time P(t) relations, using geometrical constraints representative of the reactor. Then by examining these P(V) and P(t) curves a representative pressure-relative volume curve or range of possible curves, for use in containment analysis, is recommended

  17. Effects of delaying transplanting on agronomic traits and grain yield of rice under mechanical transplantation pattern.

    Directory of Open Access Journals (Sweden)

    Qihua Liu

    Full Text Available A delay in the mechanical transplantation (MT of rice seedlings frequently occurs in Huanghuai wheat-rice rotation cropping districts of China, due to the late harvest of wheat, the poor weather conditions and the insufficiency of transplanters, missing the optimum transplanting time and causing seedlings to age. To identify how delaying transplanting rice affects the agronomic characteristics including the growth duration, photosynthetic productivity and dry matter remobilization efficiency and the grain yield under mechanical transplanting pattern, an experiment with a split-plot design was conducted over two consecutive years. The main plot includes two types of cultivation: mechanical transplanting and artificial transplanting (AT. The subplot comprises four japonica rice cultivars. The results indicate that the rice jointing, booting, heading and maturity stages were postponed under MT when using AT as a control. The tiller occurrence number, dry matter weight per tiller, accumulative dry matter for the population, leaf area index, crop growth rate, photosynthetic potential, and dry matter remobilization efficiency of the leaf under MT significantly decreased compared to those under AT. In contrast, the reduction rate of the leaf area during the heading-maturity stage was markedly enhanced under MT. The numbers of effective panicles and filled grains per panicle and the grain yield significantly decreased under MT. A significant correlation was observed between the dry matter production, remobilization and distribution characteristics and the grain yield. We infer that, as with rice from old seedlings, the decrease in the tiller occurrence, the photosynthetic productivity and the assimilate remobilization efficiency may be important agronomic traits that are responsible for the reduced grain yield under MT.

  18. Quantum yields and mechanism in TiO[sub 2] mediated photocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Lizhong

    1994-01-01

    The photocatalytic pathway in TiO[sub 2] suspensions was examined using a spin trap/electron paramagnetic resonance spectroscopy technique within a competition kinetic scheme. Experimental results from competition reactions show that there is a marked difference in kinetic behaviors between the systems with (heterogeneous) and without (homogeneous) TiO[sub 2] suspension, confirming that the reaction pathway of OH- radicals in the TiO[sub 2] suspension is at least partly heterogeneous. A photocatalytic mechanism is proposed. A method of determining the trapping efficiency of OH- radicals was developed, using the spin trap DMPO (5,5-dimethyl-1-pyrroline N-oxide), for measuring growth rates of the spin adduct DMPO-OH and high pressure liquid chromatography for measuring the OH- radical generation rates. The reliability of the measurement method was confirmed by comparison with published values. The trapping efficiency in the heterogeneous (TiO[sub 2]) system was found to be ca 0.28. A method for quantum yield determinations in heterogeneous systems was developed, based on measurements of OH- radical generation rates and the flux of absorbed photons by TiO[sub 2] suspensions. A chemical actinometer was used to measure absorbed-photon flux. Good agreement with literature values was obtained for quantum yield measurements in p-benzoquinone and H[sub 2]O[sub 2] systems. Accordingly, the quantum yield of OH- radical generation in TiO[sub 2] suspensions was determined to be ca 0.040 at pH 7. Effects of suspension loading, light intensity, electron acceptor addition, and dissolved oxygen concentration on the quantum yield were observed. The effects of pH and buffer concentration on the formation rate of DMPO-OH spin adduct are discussed. 117 refs., 50 figs., 8 tabs.

  19. Factors influencing efficiency of sliding mechanics to close extraction space: a systematic review.

    Science.gov (United States)

    Barlow, M; Kula, K

    2008-05-01

    To review recent literature to determine strength of clinical evidence concerning the influence of various factors on the efficiency (rate of tooth movement) of closing extraction spaces using sliding mechanics. A comprehensive systematic review on prospective clinical trials. An electronic search (1966-2006) of several databases limiting the searches to English and using several keywords was performed. Also a hand search of five key journals specifically searching for prospective clinical trials relevant to orthodontic space closure using sliding mechanics was completed. Outcome Measure - Rate of tooth movement. Ten prospective clinical trials comparing rates of closure under different variables and focusing only on sliding mechanics were selected for review. Of these ten trials on rate of closure, two compared arch wire variables, seven compared material variables used to apply force, and one examined bracket variables. Other articles which were not prospective clinical trials on sliding mechanics, but containing relevant information were examined and included as background information. CONCLUSION - The results of clinical research support laboratory results that nickel-titanium coil springs produce a more consistent force and a faster rate of closure when compared with active ligatures as a method of force delivery to close extraction space along a continuous arch wire; however, elastomeric chain produces similar rates of closure when compared with nickel-titanium springs. Clinical and laboratory research suggest little advantage of 200 g nickel-titanium springs over 150 g springs. More clinical research is needed in this area.

  20. Investigation of Gas Piston Actuated Opening-Closing Trunk Lid Mechanisms Used in Passenger Cars

    Directory of Open Access Journals (Sweden)

    Ahmet YILDIZ

    2015-05-01

    Full Text Available In this study, the gas piston actuated opening-closing trunk lid mechanisms used in passenger cars are investigated theoretically and experimentally. First, the position analysis of the mechanism which is a four-bar linkage has been carried out. Then the quasi-static analyzes according to the principle of virtual work have been made, and so the hand force, one of the most important parameters in terms of ergonomics, required for opening and closing the trunk lid has been calculated. In order to verify this developed model, the hand force has been determined also experimentally, performing the physical tests on an existing vehicle at Turkish Automobile Factory Inc. (TOFAŞ. Eventually, it is observed that the results obtained from mathematical model and the experimental measurements are compatible each other. This established model will provide convenience for manufacturers to determine the hand force for different model of vehicles. 

  1. Finite element analysis of the mechanical properties of cellular aluminium based on micro-computed tomography

    International Nuclear Information System (INIS)

    Veyhl, C.; Belova, I.V.; Murch, G.E.; Fiedler, T.

    2011-01-01

    Research highlights: → Elastic and plastic anisotropy is observed for both materials → Both show qualitatively similar characteristics with quantitative differences → Distinctly higher mechanical properties for closed-cell foam → The 'big' and 'small' models show good agreement for the closed-cell foam. - Abstract: In the present paper, the macroscopic mechanical properties of open-cell M-Pore sponge (porosity of 91-93%) and closed-cell Alporas foam (porosity of 80-86%) are investigated. The complex geometry of these cellular materials is scanned by micro-computed tomography and used in finite element (FE) analysis. The mechanical properties are determined by uni-axial compression simulations in three perpendicular directions (x-, y- and z-direction). M-Pore and Alporas exhibit the same qualitative mechanical characteristics but with quantitative differences. In both cases, strong anisotropy is observed for Young's modulus and the 0.002 offset yield stress. Furthermore, for the investigated relative density range a linear dependence between relative density and mechanical properties is found. Finally, a distinctly higher Young's modulus and 0.002 offset yield stress is observed for Alporas.

  2. [Thinking of therapeutic mechanism of small knife needle in treating closed myofascitis].

    Science.gov (United States)

    Zhao, Yong; Fang, Wei; Qin, Wei-kai

    2014-09-01

    The authors investigated and discussed therapeutic mechanism of small knife needle in treating closed myofascitis on the basis of pathomechanism of modern medicine and acupuncture theory of TCM among numbers of clinical cases and experimental data. Therapeutic mechanism lies in 6 aspects: (1) Relieve the energy crisis of tenderness point on muscular fasciae; (2) Affect nervous system and reduce induction of harmful stimulating signal; (3) Inhibit aseptic inflammatory reaction on muscular fasciae; (4) Regulate dynamic equilibrium of soft tissue by cutting scar and releasing the conglutination; (5) Increase patients' regional threshold of feeling; (6) Reduce tension and pressure of soft tissue of tenderness point so as to relieve extrusion of nervus cutaneous.

  3. Modeling of Yield Estimation for The Main Crops in Iran Based on Mechanization Index (hp ha-1

    Directory of Open Access Journals (Sweden)

    K Abbasi

    2014-09-01

    Full Text Available Agricultural mechanization is a method for transiting from traditional agriculture towards industrial and sustainable one. Due to the limitation of natural resources and increasing population we need to have economical production of agricultural crops. For reaching this destination; agricultural mechanization has a remarkable role. So it is necessary to have an extensive view for mechanization, because with the help of mechanization the agricultural inputs such as seeds, fertilizer and even water and soil can effectively be managed for an economical and sustainable production. This study has been carried out in many provinces of Iran. The data of agricultural tractors and cereal combine harvesters were firstly gathered by means of questionnaire. The tractors were categorized in four power levels of less than 45, 45 to 80, 80 to 110, and more than 110 hp. In addition, it was also carried out for cereal combine harvesters; it was in three power levels, i.e. between 100 to 110, 110 to 155 and 155 to 210 horse-power in 3 ages, i.e. less than 13, between 13 to 20, and more than 20 years. Information regarding to cultivation areas, production volume, and yield of main crops gathered from statistics of Ministry of Jihad-e-Agriculture. Then agriculture mechanization level index (hp ha-1 in each province was calculated. Four main crops including irrigated and rain-fed wheat and irrigated and rain-fed barley, which met the required criteria to be used in the model, were statistically analyzed. Correlation analysis was carried out in order to get an effective model between yield of the four main crops in Iran and agriculture mechanization level index. Pearson correlation index showed that there is a direct and significant correlation between these variables. Subsequently, outliers were identified in order to get a model with necessary efficiency to predict the yield through mechanization level index, by scatter diagram and estimating regression lines in 1

  4. Apoptosis generates mechanical forces that close the lens vesicle in the chick embryo

    Science.gov (United States)

    Oltean, Alina; Taber, Larry A.

    2018-03-01

    During the initial stages of eye development, optic vesicles grow laterally outward from both sides of the forebrain and come into contact with the surrounding surface ectoderm (SE). Within the region of contact, these layers then thicken locally to create placodes and invaginate to form the optic cup (primitive retina) and lens vesicle (LV), respectively. This paper examines the biophysical mechanisms involved in LV formation, which consists of three phases: (1) lens placode formation; (2) invagination to create the lens pit (LP); and (3) closure to form a complete ellipsoidally shaped LV. Previous studies have suggested that extracellular matrix deposited between the SE and optic vesicle causes the lens placode to form by locally constraining expansion of the SE as it grows, while actomyosin contraction causes this structure to invaginate. Here, using computational modeling and experiments on chick embryos, we confirm that these mechanisms for Phases 1 and 2 are physically plausible. Our results also suggest, however, that they are not sufficient to close the LP during Phase 3. We postulate that apoptosis provides an additional mechanism by removing cells near the LP opening, thereby decreasing its circumference and generating tension that closes the LP. This hypothesis is supported by staining that shows a ring of cell death located around the LP opening during closure. Inhibiting apoptosis in cultured embryos using caspase inhibitors significantly reduced LP closure, and results from a finite-element model indicate that closure driven by cell death is plausible. Taken together, our results suggest an important mechanical role for apoptosis in lens development.

  5. Cowpeas and pinto beans: yields and light efficiency of candidate space crops in the Laboratory Biosphere closed ecological system

    Science.gov (United States)

    Nelson, M.; Dempster, W. F.; Silverstone, S.; Alling, A.; Allen, J. P.; van Thillo, M.

    An experiment utilizing cowpeas Vigna unguiculata pinto beans Phaseolus vulgaris L and Apogee ultra-dwarf wheat was conducted in the soil-based closed ecological facility Laboratory Biosphere from February to May 2005 The lighting regime was 13 hours light 11 hours dark at a light intensity of 960 mu mol m -2 s -1 45 moles m -2 day -1 supplied by high-pressure sodium lamps The pinto beans and cowpeas were grown at two different plant densities The pinto bean produced 710 g m -2 total aboveground biomass and 341 g m -2 at 33 5 plants per m 2 and at 37 5 plants per m 2 produced 1092 g m -2 total biomass and 537 g m -2 of dry seed an increase of almost 50 Cowpeas at 28 plants m -2 yielded 1060 g m -2 of total biomass and 387 g seed m -2 outproducing the less dense planting by more than double 209 in biomass and 86 more seed as the planting of 21 plants m -2 produced 508 g m-2 of total biomass and 209 g m-2 of seed Edible yield rate EYR for the denser cowpea bean was 4 6 g m -2 day -1 vs 2 5 g m -2 day -1 for the less dense stand average yield was 3 5 g m -2 day -1 EYR for the denser pinto bean was 8 5 g m -2 day -1 vs 5 3 g m -2 day -1 average EYR for the pinto beans was 7 0 g m -2 day -1 Yield efficiency rate YER the ratio of edible to non-edible biomass was 0 97 for the dense pinto bean 0 92 for the less dense pinto bean and average 0 94 for the entire crop The cowpeas

  6. Closed-form solutions for linear regulator design of mechanical systems including optimal weighting matrix selection

    Science.gov (United States)

    Hanks, Brantley R.; Skelton, Robert E.

    1991-01-01

    Vibration in modern structural and mechanical systems can be reduced in amplitude by increasing stiffness, redistributing stiffness and mass, and/or adding damping if design techniques are available to do so. Linear Quadratic Regulator (LQR) theory in modern multivariable control design, attacks the general dissipative elastic system design problem in a global formulation. The optimal design, however, allows electronic connections and phase relations which are not physically practical or possible in passive structural-mechanical devices. The restriction of LQR solutions (to the Algebraic Riccati Equation) to design spaces which can be implemented as passive structural members and/or dampers is addressed. A general closed-form solution to the optimal free-decay control problem is presented which is tailored for structural-mechanical system. The solution includes, as subsets, special cases such as the Rayleigh Dissipation Function and total energy. Weighting matrix selection is a constrained choice among several parameters to obtain desired physical relationships. The closed-form solution is also applicable to active control design for systems where perfect, collocated actuator-sensor pairs exist.

  7. Mechanical properties of additively manufactured octagonal honeycombs

    Energy Technology Data Exchange (ETDEWEB)

    Hedayati, R., E-mail: rezahedayati@gmail.com [Department of Mechanical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez Ave, Tehran (Iran, Islamic Republic of); Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft (Netherlands); Sadighi, M.; Mohammadi-Aghdam, M. [Department of Mechanical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez Ave, Tehran (Iran, Islamic Republic of); Zadpoor, A.A. [Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft (Netherlands)

    2016-12-01

    Honeycomb structures have found numerous applications as structural and biomedical materials due to their favourable properties such as low weight, high stiffness, and porosity. Application of additive manufacturing and 3D printing techniques allows for manufacturing of honeycombs with arbitrary shape and wall thickness, opening the way for optimizing the mechanical and physical properties for specific applications. In this study, the mechanical properties of honeycomb structures with a new geometry, called octagonal honeycomb, were investigated using analytical, numerical, and experimental approaches. An additive manufacturing technique, namely fused deposition modelling, was used to fabricate the honeycomb from polylactic acid (PLA). The honeycombs structures were then mechanically tested under compression and the mechanical properties of the structures were determined. In addition, the Euler-Bernoulli and Timoshenko beam theories were used for deriving analytical relationships for elastic modulus, yield stress, Poisson's ratio, and buckling stress of this new design of honeycomb structures. Finite element models were also created to analyse the mechanical behaviour of the honeycombs computationally. The analytical solutions obtained using Timoshenko beam theory were close to computational results in terms of elastic modulus, Poisson's ratio and yield stress, especially for relative densities smaller than 25%. The analytical solutions based on the Timoshenko analytical solution and the computational results were in good agreement with experimental observations. Finally, the elastic properties of the proposed honeycomb structure were compared to those of other honeycomb structures such as square, triangular, hexagonal, mixed, diamond, and Kagome. The octagonal honeycomb showed yield stress and elastic modulus values very close to those of regular hexagonal honeycombs and lower than the other considered honeycombs. - Highlights: • The octagonal

  8. Hosotani model in closed string theory

    International Nuclear Information System (INIS)

    Shiraishi, Kiyoshi.

    1988-11-01

    Hosotani mechanism in the closed string theory with current algebra symmetry is described by the (old covariant) operator method. We compare the gauge symmetry breaking mechanism in a string theory which has SU(2) symmetry with the one in an equivalent compactified closed string theory. We also investigate the difference between Hosotani mechanism and Higgs mechanism in closed string theories by calculation of a fourpoint amplitude of 'Higgs' bosons at tree level. (author)

  9. Increasing crop yield and resilience with trehalose 6-phosphate: targeting a feast-famine mechanism in cereals for better source-sink optimization.

    Science.gov (United States)

    Paul, Matthew J; Oszvald, Maria; Jesus, Claudia; Rajulu, Charukesi; Griffiths, Cara A

    2017-07-20

    Food security is a pressing global issue. New approaches are required to break through a yield ceiling that has developed in recent years for the major crops. As important as increasing yield potential is the protection of yield from abiotic stresses in an increasingly variable and unpredictable climate. Current strategies to improve yield include conventional breeding, marker-assisted breeding, quantitative trait loci (QTLs), mutagenesis, creation of hybrids, genetic modification (GM), emerging genome-editing technologies, and chemical approaches. A regulatory mechanism amenable to three of these approaches has great promise for large yield improvements. Trehalose 6-phosphate (T6P) synthesized in the low-flux trehalose biosynthetic pathway signals the availability of sucrose in plant cells as part of a whole-plant sucrose homeostatic mechanism. Modifying T6P content by GM, marker-assisted selection, and novel chemistry has improved yield in three major cereals under a range of water availabilities from severe drought through to flooding. Yield improvements have been achieved by altering carbon allocation and how carbon is used. Targeting T6P both temporally and spatially offers great promise for large yield improvements in productive (up to 20%) and marginal environments (up to 120%). This opinion paper highlights this important breakthrough in fundamental science for crop improvement. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  10. Closed-loop mechanical ventilation for lung injury: a novel physiological-feedback mode following the principles of the open lung concept.

    Science.gov (United States)

    Schwaiberger, David; Pickerodt, Philipp A; Pomprapa, Anake; Tjarks, Onno; Kork, Felix; Boemke, Willehad; Francis, Roland C E; Leonhardt, Steffen; Lachmann, Burkhard

    2018-06-01

    Adherence to low tidal volume (V T ) ventilation and selected positive end-expiratory pressures are low during mechanical ventilation for treatment of the acute respiratory distress syndrome. Using a pig model of severe lung injury, we tested the feasibility and physiological responses to a novel fully closed-loop mechanical ventilation algorithm based on the "open lung" concept. Lung injury was induced by surfactant washout in pigs (n = 8). Animals were ventilated following the principles of the "open lung approach" (OLA) using a fully closed-loop physiological feedback algorithm for mechanical ventilation. Standard gas exchange, respiratory- and hemodynamic parameters were measured. Electrical impedance tomography was used to quantify regional ventilation distribution during mechanical ventilation. Automatized mechanical ventilation provided strict adherence to low V T -ventilation for 6 h in severely lung injured pigs. Using the "open lung" approach, tidal volume delivery required low lung distending pressures, increased recruitment and ventilation of dorsal lung regions and improved arterial blood oxygenation. Physiological feedback closed-loop mechanical ventilation according to the principles of the open lung concept is feasible and provides low tidal volume ventilation without human intervention. Of importance, the "open lung approach"-ventilation improved gas exchange and reduced lung driving pressures by opening atelectasis and shifting of ventilation to dorsal lung regions.

  11. LETTER TO THE EDITOR: Quantum manifestations of closed orbits in the photoexcitation scaled spectrum of the hydrogen atom in crossed fields

    Science.gov (United States)

    Rao, Jianguo; Delande, D.; Taylor, K. T.

    2001-06-01

    The scaled photoexcitation spectrum of the hydrogen atom in crossed electric and magnetic fields has been obtained by means of accurate quantum mechanical calculation using a new algorithm. Closed orbits in the corresponding classical system have also been obtained, using a new, efficient and practical searching procedure. Two new classes of closed orbit have been identified. Fourier transforming each photoexcitation quantum spectrum to yield a plot against scaled action has allowed direct comparison between peaks in such plots and the scaled action values of closed orbits. Excellent agreement has been found with all peaks assigned.

  12. Conservation laws in the quantum mechanics of closed systems

    International Nuclear Information System (INIS)

    Hartle, J.B.; Laflamme, R.; Marolf, D.

    1995-01-01

    We investigate conservation laws in the quantum mechanics of closed systems and begin by reviewing an argument that exact decoherence implies the exact conservation of quantities that commute with the Hamiltonian. However, we also show that decoherence limits the alternatives that can be included in sets of histories that assess the conservation of these quantities. In the case of charge and energy, these limitations would be severe were these quantities not coupled to a gauge field. However, for the realistic cases of electric charge coupled to the electromagnetic field and mass coupled to spacetime curvature, we show that when alternative values of charge and mass decohere they always decohere exactly and are exactly conserved. Further, while decohering histories that describe possible changes in time of the total charge and mass are also subject to the limitations mentioned above, we show that these do not, in fact, restrict physical alternatives and are therefore not really limitations at all

  13. [Effects of mechanical transplanting of rice with controlled release bulk blending fertilizer on rice yield and soil fertility].

    Science.gov (United States)

    Zhang, Xuan; Ding, Jun-Shan; Liu, Yan-Ling; Gu, Yan; Han, Ke-Feng; Wu, Liang-Huan

    2014-03-01

    Abstract: A 2-year field experiment with a yellow-clay paddy soil in Zhejiang Province was conducted to study the effects of different planting measures combined with different fertilization practices on rice yield, soil nutrients, microbial biomass C and N and activities of urease, phosphatase, sucrase and hydrogen peroxidase at the maturity stage. Results showed that mechanical transplanting of rice with controlled release bulk blending (BB) fertilizer (BBMT) could achieve a significantly higher mean yield than traditional manual transplanting with traditional fertilizer (TFTM) and direct seeding with controlled release BB fertilizer (BBDS) by 16.3% and 27.0%, respectively. The yield by BBMT was similar to that by traditional manual transplanting with controlled release BB fertilizer (BBTM). Compared with TFTM, BBMT increased the contents of soil total-N, available N, available P and microbial biomass C, and the activities of urease, sucrase and hydrogen peroxidase by 21.5%, 13.6%, 41.2%, 27.1%, 50.0%, 22.5% and 46.2%, respectively. Therefore, BBMT, a simple high-efficiency rice cultivation method with use of a light-weighted mechanical transplanter, should be widely promoted and adopted.

  14. A Sustainable Closed-Loop Supply Chain Decision Mechanism in the Electronic Sector

    Directory of Open Access Journals (Sweden)

    Jiafu Su

    2018-04-01

    Full Text Available In a closed-loop supply chain for electronic products, the manufacturer’s priority is to enhance the residual value of the collected end-of-use product and decide whether to outsource this business to a retailer, a third-party service, or retain it exclusively. In this paper, we constructed three models to study the decision mechanism in a closed-loop supply chain, with different players selected to collect the used product. By comparing the three models, we characterized the conditions under which the manufacturer will benefit most, and we then aimed to determine the best choice for the manufacturer. Our findings show that, when the retailer and the third-party service provider provide equal performance in collecting the used product, the manufacturer will give priority to the third-party service provider if they choose to outsource this business. If the reverse flows managed by the retailer result in a higher payoff for the manufacturer, then the manufacturer will choose to outsource this business to the retailer who will also benefit.

  15. Comparative Transcriptome Analysis of Latex Reveals Molecular Mechanisms Underlying Increased Rubber Yield in Hevea brasiliensis Self-Rooting Juvenile Clones

    OpenAIRE

    Li, Hui-Liang; Guo, Dong; Zhu, Jia-Hong; Wang, Ying; Chen, Xiong-Ting; Peng, Shi-Qing

    2016-01-01

    Rubber tree (Hevea brasiliensis) self-rooting juvenile clones (JCs) are promising planting materials for rubber production. In a comparative trial between self-rooting JCs and donor clones (DCs), self-rooting JCs exhibited better performance in rubber yield. To study the molecular mechanism associated with higher rubber yield in self-rooting JCs, we sequenced and comparatively analyzed the latex of rubber tree self-rooting JCs and DCs at the transcriptome level. Total raw reads of 34,632,012 ...

  16. Closing the gap: global potential for increasing biofuel production through agricultural intensification

    International Nuclear Information System (INIS)

    Johnston, Matt; Foley, J; Mueller, N D; Licker, R; Holloway, T; Barford, C; Kucharik, C

    2011-01-01

    Since the end of World War II, global agriculture has undergone a period of rapid intensification achieved through a combination of increased applications of chemical fertilizers, pesticides, and herbicides, the implementation of best management practice techniques, mechanization, irrigation, and more recently, through the use of optimized seed varieties and genetic engineering. However, not all crops and not all regions of the world have realized the same improvements in agricultural intensity. In this study we examine both the magnitude and spatial variation of new agricultural production potential from closing of 'yield gaps' for 20 ethanol and biodiesel feedstock crops. With biofuels coming under increasing pressure to slow or eliminate indirect land-use conversion, the use of targeted intensification via established agricultural practices might offer an alternative for continued growth. We find that by closing the 50th percentile production gap-essentially improving global yields to median levels-the 20 crops in this study could provide approximately 112.5 billion liters of new ethanol and 8.5 billion liters of new biodiesel production. This study is intended to be an important new resource for scientists and policymakers alike-helping to more accurately understand spatial variation of yield and agricultural intensification potential, as well as employing these data to better utilize existing infrastructure and optimize the distribution of development and aid capital.

  17. Closing the gap: global potential for increasing biofuel production through agricultural intensification

    Science.gov (United States)

    Johnston, Matt; Licker, R.; Foley, J.; Holloway, T.; Mueller, N. D.; Barford, C.; Kucharik, C.

    2011-07-01

    Since the end of World War II, global agriculture has undergone a period of rapid intensification achieved through a combination of increased applications of chemical fertilizers, pesticides, and herbicides, the implementation of best management practice techniques, mechanization, irrigation, and more recently, through the use of optimized seed varieties and genetic engineering. However, not all crops and not all regions of the world have realized the same improvements in agricultural intensity. In this study we examine both the magnitude and spatial variation of new agricultural production potential from closing of 'yield gaps' for 20 ethanol and biodiesel feedstock crops. With biofuels coming under increasing pressure to slow or eliminate indirect land-use conversion, the use of targeted intensification via established agricultural practices might offer an alternative for continued growth. We find that by closing the 50th percentile production gap—essentially improving global yields to median levels—the 20 crops in this study could provide approximately 112.5 billion liters of new ethanol and 8.5 billion liters of new biodiesel production. This study is intended to be an important new resource for scientists and policymakers alike—helping to more accurately understand spatial variation of yield and agricultural intensification potential, as well as employing these data to better utilize existing infrastructure and optimize the distribution of development and aid capital.

  18. Closing the gap: global potential for increasing biofuel production through agricultural intensification

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, Matt; Foley, J; Mueller, N D [Institute on the Environment (IonE), University of Minnesota, Saint Paul, MN 55108 (United States); Licker, R; Holloway, T; Barford, C; Kucharik, C [Center for Sustainability and the Global Environment, University of Wisconsin, Madison, WI 53726 (United States)

    2011-07-15

    Since the end of World War II, global agriculture has undergone a period of rapid intensification achieved through a combination of increased applications of chemical fertilizers, pesticides, and herbicides, the implementation of best management practice techniques, mechanization, irrigation, and more recently, through the use of optimized seed varieties and genetic engineering. However, not all crops and not all regions of the world have realized the same improvements in agricultural intensity. In this study we examine both the magnitude and spatial variation of new agricultural production potential from closing of 'yield gaps' for 20 ethanol and biodiesel feedstock crops. With biofuels coming under increasing pressure to slow or eliminate indirect land-use conversion, the use of targeted intensification via established agricultural practices might offer an alternative for continued growth. We find that by closing the 50th percentile production gap-essentially improving global yields to median levels-the 20 crops in this study could provide approximately 112.5 billion liters of new ethanol and 8.5 billion liters of new biodiesel production. This study is intended to be an important new resource for scientists and policymakers alike-helping to more accurately understand spatial variation of yield and agricultural intensification potential, as well as employing these data to better utilize existing infrastructure and optimize the distribution of development and aid capital.

  19. Using historical wafermap data for automated yield analysis

    International Nuclear Information System (INIS)

    Tobin, K.W.; Karnowski, T.P.; Gleason, S.S.; Jensen, D.; Lakhani, F.

    1999-01-01

    To be productive and profitable in a modern semiconductor fabrication environment, large amounts of manufacturing data must be collected, analyzed, and maintained. This includes data collected from in- and off-line wafer inspection systems and from the process equipment itself. This data is increasingly being used to design new processes, control and maintain tools, and to provide the information needed for rapid yield learning and prediction. Because of increasing device complexity, the amount of data being generated is outstripping the yield engineer close-quote s ability to effectively monitor and correct unexpected trends and excursions. The 1997 SIA National Technology Roadmap for Semiconductors highlights a need to address these issues through open-quotes automated data reduction algorithms to source defects from multiple data sources and to reduce defect sourcing time.close quotes SEMATECH and the Oak Ridge National Laboratory have been developing new strategies and technologies for providing the yield engineer with higher levels of assisted data reduction for the purpose of automated yield analysis. In this article, we will discuss the current state of the art and trends in yield management automation. copyright 1999 American Vacuum Society

  20. Crop yield and light/energy efficiency in a closed ecological system: Laboratory Biosphere experiments with wheat and sweet potato.

    Science.gov (United States)

    Nelson, M; Dempster, W F; Silverstone, S; Alling, A; Allen, J P; van Thillo, M

    2005-01-01

    Two crop growth experiments in the soil-based closed ecological facility, Laboratory Biosphere, were conducted from 2003 to 2004 with candidate space life support crops. Apogee wheat (Utah State University variety) was grown, planted at two densities, 400 and 800 seeds m-2. The lighting regime for the wheat crop was 16 h of light-8 h dark at a total light intensity of around 840 micromoles m-2 s-1 and 48.4 mol m-2 d-1 over 84 days. Average biomass was 1395 g m-2, 16.0 g m-2 d-1 and average seed production was 689 g m-2 and 7.9 g m-2 d-1. The less densely planted side was more productive than the denser planting, with 1634 g m-2 and 18.8 g m-2 d-1 of biomass vs. 1156 g m-2 and 13.3 g m-2 d-1; and a seed harvest of 812.3 g m-2 and 9.3 g m-2 d-1 vs. 566.5 g m-2 and 6.5 g m-2 d-1. Harvest index was 0.49 for the wheat crop. The experiment with sweet potato used TU-82-155 a compact variety developed at Tuskegee University. Light during the sweet potato experiment, on a 18 h on/6 h dark cycle, totaled 5568 total moles of light per square meter in 126 days for the sweet potatoes, or an average of 44.2 mol m-2 d-1. Temperature regime was 28 +/- 3 degrees C day/22 +/- 4 degrees C night. Sweet potato tuber yield was 39.7 kg wet weight, or an average of 7.4 kg m-2, and 7.7 kg dry weight of tubers since dry weight was about 18.6% wet weight. Average per day production was 58.7 g m-2 d-1 wet weight and 11.3 g m-2 d-1. For the wheat, average light efficiency was 0.34 g biomass per mole, and 0.17 g seed per mole. The best area of wheat had an efficiency of light utilization of 0.51 g biomass per mole and 0.22 g seed per mole. For the sweet potato crop, light efficiency per tuber wet weight was 1.33 g mol-1 and 0.34 g dry weight of tuber per mole of light. The best area of tuber production had 1.77 g mol-1 wet weight and 0.34 g mol-1 of light dry weight. The Laboratory Biosphere experiment's light efficiency was somewhat higher than the USU field results but somewhat below

  1. Comparative Transcriptome Analysis of Latex Reveals Molecular Mechanisms Underlying Increased Rubber Yield in Hevea brasiliensis Self-Rooting Juvenile Clones.

    Science.gov (United States)

    Li, Hui-Liang; Guo, Dong; Zhu, Jia-Hong; Wang, Ying; Chen, Xiong-Ting; Peng, Shi-Qing

    2016-01-01

    Rubber tree (Hevea brasiliensis) self-rooting juvenile clones (JCs) are promising planting materials for rubber production. In a comparative trial between self-rooting JCs and donor clones (DCs), self-rooting JCs exhibited better performance in rubber yield. To study the molecular mechanism associated with higher rubber yield in self-rooting JCs, we sequenced and comparatively analyzed the latex of rubber tree self-rooting JCs and DCs at the transcriptome level. Total raw reads of 34,632,012 and 35,913,020 bp were obtained from the library of self-rooting JCs and DCs, respectively, by using Illumina HiSeq 2000 sequencing technology. De novo assemblies yielded 54689 unigenes from the library of self-rooting JCs and DCs. Among 54689 genes, 1716 genes were identified as differentially expressed between self-rooting JCs and DCs via comparative transcript profiling. Functional analysis showed that the genes related to the mass of categories were differentially enriched between the two clones. Several genes involved in carbohydrate metabolism, hormone metabolism and reactive oxygen species scavenging were up-regulated in self-rooting JCs, suggesting that the self-rooting JCs provide sufficient molecular basis for the increased rubber yielding, especially in the aspects of improved latex metabolisms and latex flow. Some genes encoding epigenetic modification enzymes were also differentially expressed between self-rooting JCs and DCs. Epigenetic modifications may lead to gene differential expression between self-rooting JCs and DCs. These data will provide new cues to understand the molecular mechanism underlying the improved rubber yield of H. brasiliensis self-rooting clones.

  2. Closed-form solutions for linear regulator-design of mechanical systems including optimal weighting matrix selection

    Science.gov (United States)

    Hanks, Brantley R.; Skelton, Robert E.

    1991-01-01

    This paper addresses the restriction of Linear Quadratic Regulator (LQR) solutions to the algebraic Riccati Equation to design spaces which can be implemented as passive structural members and/or dampers. A general closed-form solution to the optimal free-decay control problem is presented which is tailored for structural-mechanical systems. The solution includes, as subsets, special cases such as the Rayleigh Dissipation Function and total energy. Weighting matrix selection is a constrained choice among several parameters to obtain desired physical relationships. The closed-form solution is also applicable to active control design for systems where perfect, collocated actuator-sensor pairs exist. Some examples of simple spring mass systems are shown to illustrate key points.

  3. Universal rescaling of flow curves for yield-stress fluids close to jamming

    Science.gov (United States)

    Dinkgreve, M.; Paredes, J.; Michels, M. A. J.; Bonn, D.

    2015-07-01

    The experimental flow curves of four different yield-stress fluids with different interparticle interactions are studied near the jamming concentration. By appropriate scaling with the distance to jamming all rheology data can be collapsed onto master curves below and above jamming that meet in the shear-thinning regime and satisfy the Herschel-Bulkley and Cross equations, respectively. In spite of differing interactions in the different systems, master curves characterized by universal scaling exponents are found for the four systems. A two-state microscopic theory of heterogeneous dynamics is presented to rationalize the observed transition from Herschel-Bulkley to Cross behavior and to connect the rheological exponents to microscopic exponents for the divergence of the length and time scales of the heterogeneous dynamics. The experimental data and the microscopic theory are compared with much of the available literature data for yield-stress systems.

  4. Yielding to stress: Recent developments in viscoplastic fluid mechanics

    OpenAIRE

    BALMFORTH, Neil; FRIGAARD, Ian A.; OVARLEZ, Guillaume

    2014-01-01

    The archetypal feature of a viscoplastic fluid is its yield stress: If the material is not sufficiently stressed, it behaves like a solid, but once the yield stress is exceeded, the material flows like a fluid. Such behavior characterizes materials common in industries such as petroleum and chemical processing, cosmetics, and food processing and in geophysical fluid dynamics. The most common idealization of a viscoplastic fluid is the Bingham model, which has been widely used to rationalize e...

  5. Failure mechanisms and closed reduction of a constrained tripolar acetabular liner.

    Science.gov (United States)

    Robertson, William J; Mattern, Christopher J; Hur, John; Su, Edwin P; Pellicci, Paul M

    2009-02-01

    Unlike traditional bipolar constrained liners, the Osteonics Omnifit constrained acetabular insert is a tripolar device, consisting of an inner bipolar bearing articulating within an outer, true liner. Every reported failure of the Omnifit tripolar implant has been by failure at the shell-bone interface (Type I failure), failure at the shell-liner interface (Type II failure), or failure of the locking mechanism resulting in dislocation of the bipolar-liner interface (Type III failure). In this report we present two cases of failure of the Omnifit tripolar at the bipolar-femoral head interface. To our knowledge, these are the first reported cases of failure at the bipolar-femoral head interface (Type IV failure). In addition, we described the first successful closed reduction of a Type IV failure.

  6. The effects of seed coating treatment on yield and yield components ...

    African Journals Online (AJOL)

    GREGORY

    2010-09-13

    Sep 13, 2010 ... 2University of Adnan Menderes, Faculty of Agriculture, Department of Agricultural Mechanization, ... Key words: Fuzzy cotton seed, seed coating, yield components. .... gin turnout (%) characteristics are statistically important.

  7. An investigation on the mechanism of sublimed DHB matrix on molecular ion yields in SIMS imaging of brain tissue.

    Science.gov (United States)

    Dowlatshahi Pour, Masoumeh; Malmberg, Per; Ewing, Andrew

    2016-05-01

    We have characterized the use of sublimation to deposit matrix-assisted laser desorption/ionization (MALDI) matrices in secondary ion mass spectrometry (SIMS) analysis, i.e. matrix-enhanced SIMS (ME-SIMS), a common surface modification method to enhance sensitivity for larger molecules and to increase the production of intact molecular ions. We use sublimation to apply a thin layer of a conventional MALDI matrix, 2,5-dihydroxybenzoic acid (DHB), onto rat brain cerebellum tissue to show how this technique can be used to enhance molecular yields in SIMS while still retaining a lateral resolution around 2 μm and also to investigate the mechanism of this enhancement. The results here illustrate that cholesterol, which is a dominant lipid species in the brain, is decreased on the tissue surface after deposition of matrix, particularly in white matter. The decrease of cholesterol is followed by an increased ion yield of several other lipid species. Depth profiling of the sublimed rat brain reveals that the lipid species are de facto extracted by the DHB matrix and concentrated in the top most layers of the sublimed matrix. This extraction/concentration of lipids directly leads to an increase of higher mass lipid ion yield. It is also possible that the decrease of cholesterol decreases the potential suppression of ion yield caused by cholesterol migration to the tissue surface. This result provides us with significant insights into the possible mechanisms involved when using sublimation to deposit this matrix in ME-SIMS.

  8. Prediction of mechanical properties for hexagonal boron nitride nanosheets using molecular mechanics model

    Energy Technology Data Exchange (ETDEWEB)

    Natsuki, Toshiaki [Shinshu University, Faculty of Textile Science and Technology, Ueda (Japan); Shinshu University, Institute of Carbon Science and Technology, Nagano (Japan); Natsuki, Jun [Shinshu University, Institute of Carbon Science and Technology, Nagano (Japan)

    2017-04-15

    Mechanical behaviors of nanomaterials are not easy to be evaluated in the laboratory because of their extremely small size and difficulty controlling. Thus, a suitable model for the estimation of the mechanical properties for nanomaterials becomes very important. In this study, the elastic properties of boron nitride (BN) nanosheets, including the elastic modulus, the shear modulus, and the Poisson's ratio, are predicted using a molecular mechanics model. The molecular mechanics force filed is established to directly incorporate the Morse potential function into the constitutive model of nanostructures. According to the molecular mechanics model, the chirality effect of hexagonal BN nanosheets on the elastic modulus is investigated through a closed-form solution. The simulated result shows that BN nanosheets exhibit an isotropic elastic property. The present analysis yields a set of very simple formulas and is able to be served as a good approximation on the mechanical properties for the BN nanosheets. (orig.)

  9. Prediction of mechanical properties for hexagonal boron nitride nanosheets using molecular mechanics model

    International Nuclear Information System (INIS)

    Natsuki, Toshiaki; Natsuki, Jun

    2017-01-01

    Mechanical behaviors of nanomaterials are not easy to be evaluated in the laboratory because of their extremely small size and difficulty controlling. Thus, a suitable model for the estimation of the mechanical properties for nanomaterials becomes very important. In this study, the elastic properties of boron nitride (BN) nanosheets, including the elastic modulus, the shear modulus, and the Poisson's ratio, are predicted using a molecular mechanics model. The molecular mechanics force filed is established to directly incorporate the Morse potential function into the constitutive model of nanostructures. According to the molecular mechanics model, the chirality effect of hexagonal BN nanosheets on the elastic modulus is investigated through a closed-form solution. The simulated result shows that BN nanosheets exhibit an isotropic elastic property. The present analysis yields a set of very simple formulas and is able to be served as a good approximation on the mechanical properties for the BN nanosheets. (orig.)

  10. Search for B {yields} K{ell}{sup +}{ell}{sup -} and B {yields} K*(892){ell}{sup +}{ell}{sup -}

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, B.

    2004-02-12

    The authors present preliminary results from a search for the flavor-changing neutral current decays B {yields} K{ell}{sup +}{ell}{sup -} and B {yields} K*(892){ell}{sup +}{ell}{sup -} using a sample of 22.7 x 10{sup 6} {Upsilon}(4S) {yields} B{bar B} decays collected with the BABAR detector at the PEP-II B Factory. They have reconstructed the following final states: B{sup +} {yields} K{sup +}{ell}{sup +}{ell}{sup -}, B{sup 0} {yields} K{sup 0}{ell}{sup +}{ell}{sup -} (K{sub s}{sup 0} {yields} {pi}{sup +} {pi}{sup -}), B{sup +} {yields} K*{sup +}{ell}{sup +}{ell}{sup -} (K*{sup +} {yields} K{sub s}{sup 0}{pi}{sup +}), and B{sup 0} {yields} K*{sup 0}{ell}{sup +}{ell}{sup -} (K*{sup 0} {yields} K{sup +}{pi}{sup -}), where {ell}{sup +}{ell}{sup -} is either an e{sup +}e{sup -} or {mu}{sup +}{mu}{sup -} pair. They obtain the 90% C.L. upper limits {Beta}(B {yields} K{ell}{sup +}{ell}{sup -}) < 0.6 x 10{sup -6} and {Beta}(B {yields} K*{ell}{sup +}{ell}{sup -}) < 2.5 x 10{sup -6}, close to the Standard Model predictions for these branching fractions.

  11. Yielding to Stress: Recent Developments in Viscoplastic Fluid Mechanics

    Science.gov (United States)

    Balmforth, Neil J.; Frigaard, Ian A.; Ovarlez, Guillaume

    2014-01-01

    The archetypal feature of a viscoplastic fluid is its yield stress: If the material is not sufficiently stressed, it behaves like a solid, but once the yield stress is exceeded, the material flows like a fluid. Such behavior characterizes materials common in industries such as petroleum and chemical processing, cosmetics, and food processing and in geophysical fluid dynamics. The most common idealization of a viscoplastic fluid is the Bingham model, which has been widely used to rationalize experimental data, even though it is a crude oversimplification of true rheological behavior. The popularity of the model is in its apparent simplicity. Despite this, the sudden transition between solid-like behavior and flow introduces significant complications into the dynamics, which, as a result, has resisted much analysis. Over recent decades, theoretical developments, both analytical and computational, have provided a better understanding of the effect of the yield stress. Simultaneously, greater insight into the material behavior of real fluids has been afforded by advances in rheometry. These developments have primed us for a better understanding of the various applications in the natural and engineering sciences.

  12. Close correlation between the reaction mechanism and inner structure of loosely halo-nuclei

    International Nuclear Information System (INIS)

    Liu Jianye; Tianshui Normal Univ., Tianshui; National Laboratory of Heavy Ion Accelerator of Lanzhou, Lanzhou; Guo Wenjun; Ren Zhongzhou; National Laboratory of Heavy Ion Accelerator of Lanzhou, Lanzhou; Xing Yongzhong; National Laboratory of Heavy Ion Accelerator of Lanzhou, Lanzhou

    2006-01-01

    It was based on the comparisons of the variance properties of fragment multiplicities FM's and nuclear stoppings R's for the neutron-halo colliding system with those of FZ's and R's for the proton-halo colliding system with the increases of beam energy in more detail, the closely correlations between the reaction mechanism and the inner structures of halo-nuclei is found. From above comparisons it is found that the variance properties of fragment multiplicities and nuclear stopping with the increases of beam energy are quite different for the neutron-halo and proton halo colliding systems, such as the effects of loosely bound neutron-halo structure on the fragment multiplicities and nuclear stopping are obviously larger than those for the proton-halo colliding system. This is due to that the structures of halo-neutron nucleus 11 Li is more loosely than that of the proton-halo nucleus 23 Al. In this case, the fragment multiplicity and nuclear stopping of halo nuclei may be used as a possible probe for studying the reaction mechanism and the correlation between the reaction mechanism and the inner structure of halo-nuclei. (authors)

  13. Two-dimensional FSI simulation of closing dynamics of a tilting disc mechanical heart valve.

    Science.gov (United States)

    Govindarajan, V; Udaykumar, H S; Herbertson, L H; Deutsch, S; Manning, K B; Chandran, K B

    2010-03-01

    The fluid dynamics during valve closure resulting in high shear flows and large residence times of particles has been implicated in platelet activation and thrombus formation in mechanical heart valves. Our previous studies with bi-leaflet valves have shown that large shear stresses induced in the gap between the leaflet edge and the valve housing results in relatively high platelet activation levels whereas flow between the leaflets results in shed vortices not conducive to platelet damage. In this study we compare the result of closing dynamics of a tilting disc valve with that of a bi-leaflet valve. The two-dimensional fluid-structure interaction analysis of a tilting disc valve closure mechanics is performed with a fixed grid Cartesian mesh flow solver with local mesh refinement, and a Lagrangian particle dynamic analysis for computation of potential for platelet activation. Throughout the simulation the flow remains in the laminar regime and the flow through the gap width is marked by the development of a shear layer which separates from the leaflet downstream of the valve. Zones of re-circulation are observed in the gap between the leaflet edge and the valve housing on the major orifice region of the tilting disc valve and are seen to be migrating towards the minor orifice region. Jet flow is observed at the minor orifice region and a vortex is formed which sheds in the direction of fluid motion as observed in experiments using PIV measurements. The activation parameter computed for the tilting disc valve, at the time of closure was found to be 2.7 times greater than that of the bi-leaflet mechanical valve and was found to be in the vicinity of the minor orifice region mainly due to the migration of vortical structures from the major to the minor orifice region during the leaflet rebound of the closing phase.

  14. Dual-component video image analysis system (VIASCAN) as a predictor of beef carcass red meat yield percentage and for augmenting application of USDA yield grades.

    Science.gov (United States)

    Cannell, R C; Tatum, J D; Belk, K E; Wise, J W; Clayton, R P; Smith, G C

    1999-11-01

    An improved ability to quantify differences in the fabrication yields of beef carcasses would facilitate the application of value-based marketing. This study was conducted to evaluate the ability of the Dual-Component Australian VIASCAN to 1) predict fabricated beef subprimal yields as a percentage of carcass weight at each of three fat-trim levels and 2) augment USDA yield grading, thereby improving accuracy of grade placement. Steer and heifer carcasses (n = 240) were evaluated using VIASCAN, as well as by USDA expert and online graders, before fabrication of carcasses to each of three fat-trim levels. Expert yield grade (YG), online YG, VIASCAN estimates, and VIASCAN estimated ribeye area used to augment actual and expert grader estimates of the remaining YG factors (adjusted fat thickness, percentage of kidney-pelvic-heart fat, and hot carcass weight), respectively, 1) accounted for 51, 37, 46, and 55% of the variation in fabricated yields of commodity-trimmed subprimals, 2) accounted for 74, 54, 66, and 75% of the variation in fabricated yields of closely trimmed subprimals, and 3) accounted for 74, 54, 71, and 75% of the variation in fabricated yields of very closely trimmed subprimals. The VIASCAN system predicted fabrication yields more accurately than current online yield grading and, when certain VIASCAN-measured traits were combined with some USDA yield grade factors in an augmentation system, the accuracy of cutability prediction was improved, at packing plant line speeds, to a level matching that of expert graders applying grades at a comfortable rate.

  15. Efficient Return Algorithms For Associated Plasticity With Multiple Yield Planes

    DEFF Research Database (Denmark)

    Clausen, Johan Christian; Damkilde, Lars; Andersen, Lars

    2006-01-01

    of such criteria. The return formulae are in closed form and no iteration is required. The method accounts for three types of stress return: Return to a single yield plane, to a discontinuity line at the intersection of two yield planes and to a discontinuity point at the intersection between three or more yield...... planes. The infinitesimal and the consistent elastoplastic constitutive matrix are calculated for each type of stress return, as are the conditions to ascertain which type of return is required. The method is exemplified with the Mohr-Coulomb yield criterion....

  16. THE LANDSCAPE OF THE NEUTRINO MECHANISM OF CORE-COLLAPSE SUPERNOVAE: NEUTRON STAR AND BLACK HOLE MASS FUNCTIONS, EXPLOSION ENERGIES, AND NICKEL YIELDS

    International Nuclear Information System (INIS)

    Pejcha, Ondřej; Thompson, Todd A.

    2015-01-01

    If the neutrino luminosity from the proto-neutron star formed during a massive star core collapse exceeds a critical threshold, a supernova (SN) results. Using spherical quasi-static evolutionary sequences for hundreds of progenitors over a range of metallicities, we study how the explosion threshold maps onto observables, including the fraction of successful explosions, the neutron star (NS) and black hole (BH) mass functions, the explosion energies (E SN ) and nickel yields (M Ni ), and their mutual correlations. Successful explosions are intertwined with failures in a complex pattern that is not simply related to initial progenitor mass or compactness. We predict that progenitors with initial masses of 15 ± 1, 19 ± 1, and ∼21-26 M ☉ are most likely to form BHs, that the BH formation probability is non-zero at solar-metallicity and increases significantly at low metallicity, and that low luminosity, low Ni-yield SNe come from progenitors close to success/failure interfaces. We qualitatively reproduce the observed E SN -M Ni correlation, we predict a correlation between the mean and width of the NS mass and E SN distributions, and that the means of the NS and BH mass distributions are correlated. We show that the observed mean NS mass of ≅ 1.33 M ☉ implies that the successful explosion fraction is higher than 0.35. Overall, we show that the neutrino mechanism can in principle explain the observed properties of SNe and their compact objects. We argue that the rugged landscape of progenitors and outcomes mandates that SN theory should focus on reproducing the wide ranging distributions of observed SN properties

  17. Semileptonic form factors D{yields}{pi},K and B{yields}{pi},K from a fine lattice

    Energy Technology Data Exchange (ETDEWEB)

    Al-Haydari, A.; Ali Khan, A. [Taiz Univ. (Yemen). Dept. of Physics; Braun, V.M.; Collins, S.; Goeckeler, M.; Schaefer, A. [Regensburg Univ. (Germany). Inst. for Theoretical Physics; Lacagnina, G.N. [INFN, Milan (Italy); Panero, M. [Regensburg Univ. (Germany). Inst. for Theoretical Physics; ETH Zuerich (Switzerland). Inst. for Theoretical Physics; Schierholz, G. [Regensburg Univ. (Germany). Inst. for Theoretical Physics; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2009-03-15

    We extract the form factors relevant for semileptonic decays of D and B mesons from a relativistic computation on a fine lattice in the quenched approximation. The lattice spacing is a=0.04 fm (corresponding to a{sup -1}=4.97 GeV), which allows us to run very close to the physical B meson mass, and to reduce the systematic errors associated with the extrapolation in terms of a heavy quark expansion. For decays of D and D{sub s} mesons, our results for the physical form factors at q{sup 2}=0 are as follows: f{sub +}{sup D{yields}}{sup {pi}}(0)=0.74(6)(4), f{sub +}{sup D{yields}}{sup K}(0)=0.78(5)(4) and f{sub +}{sup D{sub s}{yields}}{sup K}(0)=0.68(4)(3). Similarly, for B and B{sub s} we find: f{sub +}{sup B{yields}}{sup {pi}}(0)=0.27(7)(5), f{sub +}{sup B{yields}}{sup K}(0)=0.32(6)(6) and f{sub +}{sup B{sub s}{yields}}{sup K}(0)=0.23(5)(4). We compare our results with other quenched and unquenched lattice calculations, as well as with lightcone sum rule predictions, finding good agreement. (orig.)

  18. A new technique in constructing closed-form solutions for nonlinear PDEs appearing in fluid mechanics and gas dynamics

    Directory of Open Access Journals (Sweden)

    Panayotounakos D. E.

    1996-01-01

    Full Text Available We develop a new unique technique in constructing closed-form solutions for several nonlinear partial differential systems appearing in fluid mechanics and gas dynamics. The obtained solutions include fewer arbitrary functions than needed for general solutions, fact that permits us to specify them according to the initial state, or the geometry, of each specific problem under consideration. In order to apply the before mentioned technique we construct closed-form solutions concerning the gas-dynamic equations with constant pressure, the dynamic equations of an ideal gas in isentropic flow, and the two-dimensional incompressible boundary layer flow.

  19. Validation of crop weather models for crop assessment arid yield ...

    African Journals Online (AJOL)

    IRSIS and CRPSM models were used in this study to see how closely they could predict grain yields for selected stations in Tanzania. Input for the models comprised of weather, crop and soil data collected from five selected stations. Simulation results show that IRSIS model tends to over predict grain yields of maize, ...

  20. Closed orbit correction in the SSC

    International Nuclear Information System (INIS)

    Bourianoff, G.; Cole, B.; Ferede, H.; Pilat, F.

    1991-01-01

    Most of the techniques associated with closed orbit correction are widely known. The present paper gives a brief description of one such method and discusses the results obtained when it is applied to the SSC collider lattice. The emphasis is on features of the lattice which effect closed orbit correction and it is likely that any of the 8 methods cataloged in a cited reference would yield similar results. The global scheme described here is very robust and easy to apply. The results of three separate studies are briefly described. Typical results for the residual RMS closed orbit in the arc is calculated to be 0.65 mm with peak values of 3 mm

  1. Nut crop yield records show that budbreak-based chilling requirements may not reflect yield decline chill thresholds

    Science.gov (United States)

    Pope, Katherine S.; Dose, Volker; Da Silva, David; Brown, Patrick H.; DeJong, Theodore M.

    2015-06-01

    Warming winters due to climate change may critically affect temperate tree species. Insufficiently cold winters are thought to result in fewer viable flower buds and the subsequent development of fewer fruits or nuts, decreasing the yield of an orchard or fecundity of a species. The best existing approximation for a threshold of sufficient cold accumulation, the "chilling requirement" of a species or variety, has been quantified by manipulating or modeling the conditions that result in dormant bud breaking. However, the physiological processes that affect budbreak are not the same as those that determine yield. This study sought to test whether budbreak-based chilling thresholds can reasonably approximate the thresholds that affect yield, particularly regarding the potential impacts of climate change on temperate tree crop yields. County-wide yield records for almond ( Prunus dulcis), pistachio ( Pistacia vera), and walnut ( Juglans regia) in the Central Valley of California were compared with 50 years of weather records. Bayesian nonparametric function estimation was used to model yield potentials at varying amounts of chill accumulation. In almonds, average yields occurred when chill accumulation was close to the budbreak-based chilling requirement. However, in the other two crops, pistachios and walnuts, the best previous estimate of the budbreak-based chilling requirements was 19-32 % higher than the chilling accumulations associated with average or above average yields. This research indicates that physiological processes beyond requirements for budbreak should be considered when estimating chill accumulation thresholds of yield decline and potential impacts of climate change.

  2. Structural-mechanical model of wax crystal networks—a mesoscale cellular solid approach

    International Nuclear Information System (INIS)

    Miyazaki, Yukihiro; Marangoni, Alejandro G

    2014-01-01

    Mineral waxes are widely used materials in industrial applications; however, the relationship between structure and mechanical properties is poorly understood. In this work, mineral wax-oil networks were characterized as closed-cell cellular solids, and differences in their mechanical response predicted from structural data. The systems studied included straight-chain paraffin wax (SW)-oil mixtures and polyethylene wax (PW)-oil mixtures. Analysis of cryogenic-SEM images of wax-oil networks allowed for the determination of the length (l) and thickness (t) of the wax cell walls as a function of wax mass fraction (Φ). A linear relationship between t/l and Φ (t/l ∼ Φ 0.89 ) suggested that wax-oil networks were cellular solids of the closed-cell type. However, the scaling behavior of the elastic modulus with the volume fraction of solids did not agree with theoretical predictions, yielding the same scaling exponent, μ = 0.84, for both waxes. This scaling exponent obtained from mechanical measurements could be predicted from the scaling behavior of the effective wax cell size as a function of wax mass fraction in oil obtained by cryogenic scanning electron microscopy. Microscopy studies allowed us to propose that wax-oil networks are structured as an ensemble of close-packed spherical cells filled with oil, and that it is the links between cells that yield under simple uniaxial compression. Thus, the Young’s moduli for the links between cells in SW and PW wax systems could be estimated as E L (SW) = 2.76 × 10 9 Pa and E L (PW) = 1.64 × 10 9 Pa, respectively. The structural parameter responsible for the observed differences in the mechanical strength between the two wax-oil systems is the size of the cells. Polyethylene wax has much smaller cell sizes than the straight chain wax and thus displays a higher Young’s modulus and yield stress. (papers)

  3. Close-range photogrammetry for aircraft quality control

    Science.gov (United States)

    Schwartz, D. S.

    Close range photogrammetry is applicable to quality assurance inspections, design data acquisition, and test management support tasks, yielding significant cost avoidance and increased productivity. An understanding of mensuration parameters and their related accuracies is fundamental to the successful application of industrial close range photogrammetry. Attention is presently given to these parameters and to the use of computer modelling as an aid to the photogrammetric entrepreneur in industry. Suggested improvements to cameras and film readers for industrial applications are discussed.

  4. Decomposing global crop yield variability

    Science.gov (United States)

    Ben-Ari, Tamara; Makowski, David

    2014-11-01

    Recent food crises have highlighted the need to better understand the between-year variability of agricultural production. Although increasing future production seems necessary, the globalization of commodity markets suggests that the food system would also benefit from enhanced supplies stability through a reduction in the year-to-year variability. Here, we develop an analytical expression decomposing global crop yield interannual variability into three informative components that quantify how evenly are croplands distributed in the world, the proportion of cultivated areas allocated to regions of above or below average variability and the covariation between yields in distinct world regions. This decomposition is used to identify drivers of interannual yield variations for four major crops (i.e., maize, rice, soybean and wheat) over the period 1961-2012. We show that maize production is fairly spread but marked by one prominent region with high levels of crop yield interannual variability (which encompasses the North American corn belt in the USA, and Canada). In contrast, global rice yields have a small variability because, although spatially concentrated, much of the production is located in regions of below-average variability (i.e., South, Eastern and South Eastern Asia). Because of these contrasted land use allocations, an even cultivated land distribution across regions would reduce global maize yield variance, but increase the variance of global yield rice. Intermediate results are obtained for soybean and wheat for which croplands are mainly located in regions with close-to-average variability. At the scale of large world regions, we find that covariances of regional yields have a negligible contribution to global yield variance. The proposed decomposition could be applied at any spatial and time scales, including the yearly time step. By addressing global crop production stability (or lack thereof) our results contribute to the understanding of a key

  5. Some comments about the J1 integral criterion in post yield fracture mechanics

    International Nuclear Information System (INIS)

    Roche, R.L.

    1977-01-01

    Several criteria have been proposed for Post Yield Fracture Mechanics. One of the most interesting ones is the J 1 integral. When the behaviour of material is elastic (even non-linear) it can be shown that J 1 is not path dependent (for a straight crack without thermal stresses). For this reason, it may be considered that J 1 characterizes the crack tip singularity. Extension is easy to deformation-type elastic plastic material, but there is no proof of path independence for flow-type plastic material (incremental plasticity or creep). Experimental results are often given as a proof of J 1 criterion validity, but there is no experimental value of a contour integral and assumptions are made in the use of experimental results. The main assumption implies that the received mechanical work (strain energy) is not dependent on the loading history (is only dependent on mechanical state). A general method to assess J 1 path dependence can be founded on the 'defect vector' (or driving force) concept. It can be shown that the resultant of defects included in a volumne is the J integral on the surface surrounding the volume (and L for the moment). In order to have an empirical idea of the J 1 path independence, it is possible to make computations with finite elements method. Some results are given and it seems that no noticeable path dependence is seen with simple shapes and radial (proportional) loading. A few cases with complex way of loading are also studied. (Auth.)

  6. High-yield pulping effluent treatment technologies

    International Nuclear Information System (INIS)

    Su, W.X.; Hsieh, J.S.

    1993-03-01

    The objective of this report is to examine the high-yield (mechanical) pulp processes with respect to environmental issues affected by the discharge of their waste streams. Various statistics are given that support the view that high-yield pulping processes will have major growth in the US regions where pulp mills are located, and sites for projects in the development phase are indicated. Conventional and innovative effluent-treatment technologies applicable to these processes are reviewed. The different types of mechanical pulping or high-yield processes are explained, and the chemical additives are discussed. The important relationship between pulp yield and measure of BOD in the effluent is graphically presented. Effluent contaminants are identified, along with other important characteristics of the streams. Current and proposed environmental limitations specifically related to mechanical pulp production are reviewed. Conventional and innovative effluent-treatment technologies are discussed, along with their principle applications, uses, advantages, and disadvantages. Sludge management and disposal techniques become an intimate part of the treatment of waste streams. The conclusion is made that conventional technologies can successfully treat effluent streams under current waste-water discharge limitations, but these systems may not be adequate when stricter standards are imposed. At present, the most important issue in the treatment of pulp-mill waste is the management and disposal of the resultant sludge

  7. Structural, mechanical and light yield characterisation of heat treated LYSO:Ce single crystals for medical imaging applications

    CERN Document Server

    Mengucci, P; Auffray, E; Barucca, G; Cecchi, C; Chipaux, R; Cousson, A; Davì, F; Di Vara, N; Rinaldi, D; Santecchia, E

    2015-01-01

    Five single crystals of cerium-doped lutetium yttrium oxyorthosilicate (LYSO:Ce) grown by the Czochralski method were submitted to structural characterisation by X-ray (XRD) and neutron (ND) diffraction, scanning (SEM) and transmission (TEM) electron microscopy and energy dispersive microanalysis (EDS). The Ultimate Tensile Strength (UTS), the Young Modulus (YM) and the Light Yield (LY) of the samples were also measured in order to correlate the mechanical and the optical behaviour of the crystals with the characteristics of their microstructure. Two of the samples analysed were also heat treated at 300 °C for 10 h to evidence possible variations induced by the temperature in the optical and mechanical response of the crystals. Results showed that the mean compositional variations evidenced by the structural analyses do not affect the mechanical and optical behaviour of the samples. On the contrary, the thermal treatment could induce the formation of coherent spherical particles (size 10 to 15 nm), not unifo...

  8. Chemical and Mechanical Weed Control Methods and Their Effects on Photosynthetic Pigments and Grain Yield of Kidney Bean

    Directory of Open Access Journals (Sweden)

    A.S Ghatari

    2015-11-01

    Full Text Available To evaluate the integrated management of weeds in red kidney bean, a split-plot experiment using randomized complete block design with three replications was conducted in 2013 in the Damavand County. In this experiment, the mechanical control treatments consisted of two levels (no cultivation and one cultivation asseigned to main plots and controlling chemical treatments consisted of six levels (non-application of herbicides, pre-emergence herbicide application of Pursuit with full dose of 1 liter per hectare, pre-emergence herbicide application of Pursuit a dose decreased 0.5 liters per hectare, post-emergence herbicide application of Pursuit dose reduced to 0.3 liters per hectare + 2 thousand citogate, post-emergence herbicide application of Pursuit with a reduced dose of 0.5 liters per hectare + 2 thousand citogate, post-emergence herbicide application of Pursuit full dose of 1 liter per hectar + 2 thousand citogate to subplots. The results showed that the effects of interaction between herbicide application and cultivation for traits of carotenoids, chlorophyll a, chlorophyll b and total chlorophyll contents, density of weeds and their dry weights were significant at 1 %, and grain yield at the 5% probability levels. The highest bean seed yield with an average of 5461.6 kg.ha-1 and lowest weed dry weight with an average of 345.9 kg.ha-1 were related to pre-emergence herbicide and cultivation with a dose of 1 liter per hectare treatment. The difference between full and reduced doses of chemical weed control was non-significant. It could be concluded that integrated mechanical and chemical weed control not only may increase seed yield but also reduce, environmental hazards.

  9. Effects of physical agitation on yield of greenhouse-grown soybean

    Science.gov (United States)

    Jones, R. S.; Mitchell, C. A.

    1992-01-01

    Agronomic and horticultural crop species experience reductions in growth and harvestable yield after exposure to physical agitation (also known as mechanical stress), as by wind or rain. A greenhouse study was conducted to test the influence of mechanical stress on soybean yield and to determine if exposure to mechanical stress during discrete growth periods has differential effects on seed yield. A modified rotatory shaker was used to apply seismic (i.e., shaking) stress. Brief, periodic episodes of seismic stress reduced stem length, total seed dry weight, and seed number of soybean [Glycine max (L.) Merr.]. Lodging resistance was greater for plants stressed during vegetative growth or throughout vegetative and reproductive growth than during reproductive growth only. Seed dry weight yield was reduced regardless of the timing or duration of stress application, but was lowest when applied during reproductive development. Seismic stress applied during reproductive growth stages R1 to R2 (Days 3 to 4) was as detrimental to seed dry weight accumulation as was stress applied during growth stages R1 to R6 (Days 39 to 42). Seed dry weight per plant was highly correlated with seed number per plant, and seed number was correlated with the seed number of two- and three-seeded pods. Dry weight per 100 seeds was unaffected by seismic-stress treatment. Growth and yield reductions resulting from treatments applied only during the vegetative stage imply that long-term mechanical effects were induced, from which the plants did not fully recover. It is unclear which yield-controlling physiological processes were affected by mechanical stress. Both transient and long-term effects on yield-controlling processes remain to be elucidated.

  10. The Brandeis Dice Problem and Statistical Mechanics

    Science.gov (United States)

    van Enk, Steven J.

    2014-11-01

    Jaynes invented the Brandeis Dice Problem as a simple illustration of the MaxEnt (Maximum Entropy) procedure that he had demonstrated to work so well in Statistical Mechanics. I construct here two alternative solutions to his toy problem. One, like Jaynes' solution, uses MaxEnt and yields an analog of the canonical ensemble, but at a different level of description. The other uses Bayesian updating and yields an analog of the micro-canonical ensemble. Both, unlike Jaynes' solution, yield error bars, whose operational merits I discuss. These two alternative solutions are not equivalent for the original Brandeis Dice Problem, but become so in what must, therefore, count as the analog of the thermodynamic limit, M-sided dice with M → ∞. Whereas the mathematical analogies between the dice problem and Stat Mech are quite close, there are physical properties that the former lacks but that are crucial to the workings of the latter. Stat Mech is more than just MaxEnt.

  11. Combining Earthquake Focal Mechanism Inversion and Coulomb Friction Law to Yield Tectonic Stress Magnitudes in Strike-slip Faulting Regime

    Science.gov (United States)

    Soh, I.; Chang, C.

    2017-12-01

    The techniques for estimating present-day stress states by inverting multiple earthquake focal mechanism solutions (FMS) provide orientations of the three principal stresses and their relative magnitudes. In order to estimate absolute magnitudes of the stresses that are generally required to analyze faulting mechanics, we combine the relative stress magnitude parameter (R-value) derived from the inversion process and the concept of frictional equilibrium of stress state defined by Coulomb friction law. The stress inversion in Korean Peninsula using 152 FMS data (magnitude≥2.5) conducted at regularly spaced grid points yields a consistent strike-slip faulting regime in which the maximum (S1) and the minimum (S3) principal stresses act in horizontal planes (with an S1 azimuth in ENE-WSW) and the intermediate principal stress (S2) close to vertical. However, R-value varies from 0.28 to 0.75 depending on locations, systematically increasing eastward. Based on the assumptions that the vertical stress is lithostatic, pore pressure is hydrostatic, and the maximum differential stress (S1-S3) is limited by Byerlee's friction of optimally oriented faults for slip, we estimate absolute magnitudes of the two horizontal principal stresses using R-value. As R-value increases, so do the magnitudes of the horizontal stresses. Our estimation of the stress magnitudes shows that the maximum horizontal principal stress (S1) normalized by vertical stress tends to increase from 1.3 in the west to 1.8 in the east. The estimated variation of stress magnitudes is compatible with distinct clustering of faulting types in different regions. Normal faulting events are densely populated in the west region where the horizontal stress is relatively low, whereas numerous reverse faulting events prevail in the east offshore where the horizontal stress is relatively high. Such a characteristic distribution of distinct faulting types in different regions can only be explained in terms of stress

  12. Close-Spaced High Temperature Knudsen Flow.

    Science.gov (United States)

    1984-06-15

    study of discharge processes in Knudsen mode (collisionless), thermionic energy converters. Areas of research involve mechanism for reducing the...The mechanisms we have chosen to study are: reduction of space-charge through a very close inter- electrode gap (less than 10 microns); transport and...AD-AI4U 471 :NNTIM R~ A Rl M ,i; ,11 , i J)W R8 1070 1 I~ "i E~Hhhh IIt Ll ~ : RASOR ASSOCIATES, INC.- AFOSR.TR. 84-1070 NSR-22-2 CLOSE -SPACED HIGH

  13. Quaternary base-level drops and trigger mechanisms in a closed basin: Geomorphic and sedimentological studies of the Gastre Basin, Argentina

    Science.gov (United States)

    Bilmes, Andrés; Veiga, Gonzalo D.; Ariztegui, Daniel; Castelltort, Sébastien; D'Elia, Leandro; Franzese, Juan R.

    2017-04-01

    Evaluating the role of tectonics and climate as possible triggering mechanisms of landscape reconfigurations is essential for paleoenvironmental and paleoclimatic reconstructions. In this study an exceptional receptive closed Quaternary system of Patagonia (the Gastre Basin) is described, and examined in order to analyze factors triggering base-level drops. Based on a geomorphological approach, which includes new tectonic geomorphology investigations combined with sedimentological and stratigraphic analysis, three large-scale geomorphological systems were identified, described and linked to two major lake-level highstands preserved in the basin. The results indicate magnitudes of base-level drops that are several orders of magnitude greater than present-day water-level fluctuations, suggesting a triggering mechanism not observed in recent times. Direct observations indicating the occurrence of Quaternary faults were not recorded in the region. In addition, morphometric analyses that included mountain front sinuosity, valley width-height ratio, and fan apex position dismiss tectonic fault activity in the Gastre Basin during the middle Pleistocene-Holocene. Therefore, we suggest here that upper Pleistocene climate changes may have been the main triggering mechanism of base-level falls in the Gastre Basin as it is observed in other closed basins of central Patagonia (i.e., Carri Laufquen Basin).

  14. Analytical solution of the thermo-mechanical stresses in a multilayered composite pressure vessel considering the influence of the closed ends

    International Nuclear Information System (INIS)

    Zhang, Q.; Wang, Z.W.; Tang, C.Y.; Hu, D.P.; Liu, P.Q.; Xia, L.Z.

    2012-01-01

    Limited work has been reported on determining the thermo-mechanical stresses in a multilayered composite pressure vessel when the influence of its closed ends is considered. In this study, an analytical solution was derived for determining the stress distribution of a multilayered composite pressure vessel subjected to an internal fluid pressure and a thermal load, based on thermo-elasticity theory. In the solution, a pseudo extrusion pressure was proposed to emulate the effect of the closed ends of the pressure vessel. To validate the analytical solution, the stress distribution of the pressure vessel was also computed using finite element (FE) method. It was found that the analytical results were in good agreement with the computational ones, and the effect of thermal load on the stress distribution was discussed in detail. The proposed analytical solution provides an exact means to design multilayered composite pressure vessels. Highlights: ► The thermal-mechanical stress was derived for a multilayered pressure vessel. ► A new pseudo extrusion pressure was proposed to emulate the effect of closed ends. ► The analytical results are in good agreement with the computational ones using FEM. ► The solution provides an exact way to design the multilayered pressure vessel.

  15. A theoretical study on pure bending of hexagonal close-packed metal sheet

    Science.gov (United States)

    Mehrabi, Hamed; Yang, Chunhui

    2018-05-01

    Hexagonal close-packed (HCP) metals have quite different mechanical behaviours in comparison to conventional cubic metals such as steels and aluminum alloys [1, 2]. They exhibit a significant tension-compression asymmetry in initial yielding and subsequent plastic hardening. The reason for this unique behaviour can be attributed to their limited symmetric crystal structure, which leads to twining deformation [3-5]. This unique behaviour strongly influences sheet metal forming of such metals, especially for roll forming, in which the bending is dominant. Hence, it is crucial to represent constitutive relations of HCP metals for accurate estimation of bending moment-curvature behaviours. In this paper, an analytical model for asymmetric elastoplastic pure bending with an application of Cazacu-Barlat asymmetric yield function [6] is presented. This yield function considers the asymmetrical tension-compression behaviour of HCP metals by using second and third invariants of the stress deviator tensor and a specified constant, which can be expressed in terms of uniaxial yield stresses in tension and compression. As a case study, the analytical model is applied to predict the moment-curvature behaviours of AZ31B magnesium alloy sheets under uniaxial loading condition. Furthermore, the analytical model is implemented as a user-defined material through the UMAT interface in Abaqus [7, 8] for conducting pure bending simulations. The results show that the analytical model can reasonably capture the asymmetric tension-compression behaviour of the magnesium alloy. The predicted moment-curvature behaviour has good agreement with the experimental results. Furthermore, numerical results show a better accuracy by the application of the Cazacu-Barlat yield function than those using the von-Mises yield function, which are more conservative than analytical results.

  16. Direct quantum mechanical calculation of the F + H{sub 2} {yields} HF + H thermal rate constant

    Energy Technology Data Exchange (ETDEWEB)

    Moix, Marc [Computer Simulation and Modeling (COSMO) Lab, Parc Cientific de Barcelona, Josep Samitier 5, 08028 Barcelona (Spain); Institut de Quimica Teorica i Computacional de la UB (IQTCUB), Universitat de Barcelona (Spain); Huarte-Larranaga, Fermin [Computer Simulation and Modeling (COSMO) Lab, Parc Cientific de Barcelona, Josep Samitier 5, 08028 Barcelona (Spain); Institut de Quimica Teorica i Computacional de la UB (IQTCUB), Universitat de Barcelona (Spain)], E-mail: fhuarte@pcb.ub.es

    2008-07-03

    Accurate full-dimensional quantum mechanical thermal rate constant values have been calculated for the F+H{sub 2}{yields}HF+H reaction on the Stark-Werner ab initio potential energy surface. These calculations are based on a flux correlation functions and employ a rigorous statistical sampling scheme to account for the overall rotation and the MCTDH scheme for the wave packet propagation. Our results shed some light on discrepancies on the thermal rate found for previous flux correlation based calculations with respect to accurate reactive scattering results. The resonance pattern of the all-J cumulative reaction probability is analyzed in terms of the partial wave contributions.

  17. Effect of annealing temperature on the mechanical properties of zircaloy-4 cladding

    International Nuclear Information System (INIS)

    Beauregard, R.J.; Clevinger, G.S.; Murty, K.L.

    1977-01-01

    The mechanical properties of zircaloy cladding materials are sensitive to those fabrication variables which have an effect on the preferred crystallographic orientation or texture of the finished tube. The effect of one such variable, the final annealing temperature, on various mechanical properties is examined using tube reduced zircaloy-4 fuel rod cladding annealed at temperatures from 905F to 1060F. This temperature range provides cladding with varying degrees of recrystallization including full recrystallization. Hoop creep characteristics of zircaloy cladding were studied as a function of the annealing temperature using closed-end internal pressurization tests at 750F and hoop stresses of 10, 15, 20 and 25 ksi. The critical annealing temperature at which a minimum creep strain occurs decreases as the applied stress increases. An additional test at 700F and 30 ksi hoop stress was conducted to demonstrate that the critical annealing temperature is essentially independent of the test temperature. Plausible explanations based on differing substructures developed in cold-worked stress-relieved material are forwarded. The effect of annealing temperature on the room temperature mechanical anisotropy parameters, R and P, was studied. R-parameters were determined from in situ transverse strain gage measurements in uniaxial tensile tests. P-parameters were calculated from uniaxial test data (R and yield stress) and hoop yield stress determined in biaxial, closed-end internal pressurization tests

  18. Effect of vortex generators on the closing transient flow of bileaflet mechanical heart valves

    Science.gov (United States)

    Murphy, David; Dasi, Lakshmi; Yoganathan, Ajit; Glezer, Ari

    2006-11-01

    The time-periodic closing of bileaflet mechanical heart valves is accompanied by a strong flow transient that is associated with the formation of a counter-rotating vortex pair near the b-datum line of leaflet edges. The strong transitory shear that is generated by these vortices may be damaging to blood elements and may result in platelet activation. In the present work, these flow transients are mitigated using miniature vortex generator arrays that are embedded on the surface of the leaflets. Two vortex generator designs were investigated: one design comprised staggered rectangular fins and the other one staggered hemispheres. The closing transients in the absence and presence of the passive vortex generators are characterized using phase locked PIV measurements. The study utilizes a 25 mm St. Jude Medical valve placed in the aortic position of the Georgia Tech left heart simulator. Measurements of the velocity field in the center plane of the leaflets demonstrate that the dynamics of the transient vortices that precede the formation of the leakage jets can be significantly altered and controlled by relatively simple passive modifications of existing valve designs. Human blood experiments validated the effectiveness of miniature vortex generators in reducing thrombus formation by over 42 percent.

  19. DNA gyrase with a single catalytic tyrosine can catalyze DNA supercoiling by a nicking-closing mechanism

    Science.gov (United States)

    Gubaev, Airat; Weidlich, Daniela; Klostermeier, Dagmar

    2016-01-01

    The topological state of DNA is important for replication, recombination and transcription, and is regulated in vivo by DNA topoisomerases. Gyrase introduces negative supercoils into DNA at the expense of ATP hydrolysis. It is the accepted view that gyrase achieves supercoiling by a strand passage mechanism, in which double-stranded DNA is cleaved, and a second double-stranded segment is passed through the gap, converting a positive DNA node into a negative node. We show here that gyrase with only one catalytic tyrosine that cleaves a single strand of its DNA substrate can catalyze DNA supercoiling without strand passage. We propose an alternative mechanism for DNA supercoiling via nicking and closing of DNA that involves trapping, segregation and relaxation of two positive supercoils. In contrast to DNA supercoiling, ATP-dependent relaxation and decatenation of DNA by gyrase lacking the C-terminal domains require both tyrosines and strand passage. Our results point towards mechanistic plasticity of gyrase and might pave the way for finding novel and specific mechanism-based gyrase inhibitors. PMID:27557712

  20. Comparison of closely related, uncultivated Coxiella tick endosymbiont population genomes reveals clues about the mechanisms of symbiosis.

    Science.gov (United States)

    Tsementzi, Despina; Castro Gordillo, Juan; Mahagna, Mustafa; Gottlieb, Yuval; Konstantinidis, Konstantinos T

    2018-05-01

    Understanding the symbiotic interaction between Coxiella-like endosymbionts (CLE) and their tick hosts is challenging due to lack of isolates and difficulties in tick functional assays. Here we sequenced the metagenome of a CLE population from wild Rhipicephalus sanguineus ticks (CRs) and compared it to the previously published genome of its close relative, CLE of R. turanicus (CRt). The tick hosts are closely related sympatric species, and their two endosymbiont genomes are highly similar with only minor differences in gene content. Both genomes encode numerous pseudogenes, consistent with an ongoing genome reduction process. In silico flux balance metabolic analysis (FBA) revealed the excess production of L-proline for both genomes, indicating a possible proline transport from Coxiella to the tick. Additionally, both CR genomes encode multiple copies of the proline/betaine transporter, proP gene. Modelling additional Coxiellaceae members including other tick CLE, did not identify proline as an excreted metabolite. Although both CRs and CRt genomes encode intact B vitamin synthesis pathway genes, which are presumed to underlay the mechanism of CLE-tick symbiosis, the FBA analysis indicated no changes for their products. Therefore, this study provides new testable hypotheses for the symbiosis mechanism and a better understanding of CLE genome evolution and diversity. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

  1. The influence of aging stress on the yield point phenomenon in the zirconium alloy, ozhennite 0.5

    International Nuclear Information System (INIS)

    Dickson, J.I.; Sayar, A.

    1977-01-01

    The influence of aging stress on the occurrence of yield points during interrupted tensile tests was studied in the temperature range 423 to 623 K for aging times of 2 to 10 min. The results indicate that at the lower temperatures the yield points are produced by dislocation rearrangements, with a minimum yield drop resulting from an aging close to the internal stress estimated by an unloading to zero stress relaxation technique. Above approximately 458 K, solute atoms can play an important role in the formation of the yield points. When this solute strain-aging occurs strongly, a maximum yield drop is at times obtained by aging at a stress close to the measured internal stress. At the higher deformation temperatures, the yield drop decreases more rapidly with increasing plastic strain, which result appears related to the greater amount of tangling of dislocations produced at the higher temperatures. (Auth.)

  2. Autologous fat grafting: use of closed syringe microcannula system for enhanced autologous structural grafting

    Directory of Open Access Journals (Sweden)

    Alexander RW

    2013-04-01

    Full Text Available Robert W Alexander,1 David Harrell2 1Department of Surgery, School of Medicine and Dentistry, University of Washington, Seattle, WA, USA; 2Harvest-Terumo Inc, Plymouth, MA, USA Objectives: Provide background for use of acquiring autologous adipose tissue as a tissue graft and source of adult progenitor cells for use in cosmetic plastic surgery. Discuss the background and mechanisms of action of closed syringe vacuum lipoaspiration, with emphasis on accessing adipose-derived mesenchymal/stromal cells and the stromal vascular fraction (SVF for use in aesthetic, structural reconstruction and regenerative applications. Explain a proven protocol for acquiring high-quality autologous fat grafts (AFG with use of disposable, microcannula systems. Design: Explain the components and advantage of use of the patented super luer-lock and microcannulas system for use with the closed-syringe system. A sequential explanation of equipment selection for minimally traumatic lipoaspiration in small volumes is presented, including use of blunt injection cannulas to reduce risk of embolism. Results: Thousands of AFG have proven safe and efficacious for lipoaspiration techniques for large and small structural fat grafting procedures. The importance and advantages of gentle harvesting of the adipose tissue complex has become very clear in the past 5 years. The closed-syringe system offers a minimally invasive, gentle system with which to mobilize subdermal fat tissues in a suspension form. Resulting total nuclear counting of undifferentiated cells of the adipose-derived -SVF suggests that the yield achieved is better than use of always-on, constant mechanical pump applied vacuum systems. Conclusion: Use of a closed-syringe lipoaspiration system featuring disposable microcannulas offers a safe and effective means of harvesting small volumes of nonmanipulated adipose tissues and its accompanying progenitor cells within the SVF. Closed syringes and microcannulas are

  3. Failure mechanisms of closed-cell aluminum foam under monotonic and cyclic loading

    International Nuclear Information System (INIS)

    Amsterdam, E.; De Hosson, J.Th.M.; Onck, P.R.

    2006-01-01

    This paper concentrates on the differences in failure mechanisms of Alporas closed-cell aluminum foam under either monotonic or cyclic loading. The emphasis lies on aspects of crack nucleation and crack propagation in relation to the microstructure. The cell wall material consists of Al dendrites and an interdendritic network of Al 4 Ca and Al 22 CaTi 2 precipitates. In situ scanning electron microscopy monotonic tensile tests were performed on small samples to study crack nucleation and propagation. Digital image correlation was employed to map the strain in the cell wall on the characteristic microstructural length scale. Monotonic tensile tests and tension-tension fatigue tests were performed on larger samples to observe the overall fracture behavior and crack path in monotonic and cyclic loading. The crack nucleation and propagation path in both loading conditions are revealed and it can be concluded that during monotonic tension cracks nucleate in and propagate partly through the Al 4 Ca interdendritic network, whereas under cyclic loading cracks nucleate and propagate through the Al dendrites

  4. Online evaluation of a commercial video image analysis system (Computer Vision System) to predict beef carcass red meat yield and for augmenting the assignment of USDA yield grades. United States Department of Agriculture.

    Science.gov (United States)

    Cannell, R C; Belk, K E; Tatum, J D; Wise, J W; Chapman, P L; Scanga, J A; Smith, G C

    2002-05-01

    Objective quantification of differences in wholesale cut yields of beef carcasses at plant chain speeds is important for the application of value-based marketing. This study was conducted to evaluate the ability of a commercial video image analysis system, the Computer Vision System (CVS) to 1) predict commercially fabricated beef subprimal yield and 2) augment USDA yield grading, in order to improve accuracy of grade assessment. The CVS was evaluated as a fully installed production system, operating on a full-time basis at chain speeds. Steer and heifer carcasses (n = 296) were evaluated using CVS, as well as by USDA expert and online graders, before the fabrication of carcasses into industry-standard subprimal cuts. Expert yield grade (YG), online YG, CVS estimated carcass yield, and CVS measured ribeye area in conjunction with expert grader estimates of the remaining YG factors (adjusted fat thickness, percentage of kidney-pelvic-heart fat, hot carcass weight) accounted for 67, 39, 64, and 65% of the observed variation in fabricated yields of closely trimmed subprimals. The dual component CVS predicted wholesale cut yields more accurately than current online yield grading, and, in an augmentation system, CVS ribeye measurement replaced estimated ribeye area in determination of USDA yield grade, and the accuracy of cutability prediction was improved, under packing plant conditions and speeds, to a level close to that of expert graders applying grades at a comfortable rate of speed offline.

  5. Use of abrupt strain path change for determining subsequent yield surface

    DEFF Research Database (Denmark)

    Kuroda, Mitsutoshi; Tvergaard, Viggo

    1999-01-01

    is prescribed, which makes the stress point move quickly along the yield surface. It is assumed that a closed-loop testing machine is used for the experiment, so that the strain path can be prescribed according to strain gauge measurements. Relative to the standard method of determining yield surface shapes...... by probing in many different stress directions from the elastic region, using some chosen plastic strain offset, the main advantage of the proposed method is that elastic unloading is not needed prior to tracing the yield surface. The method is illustrated here by a few analyses, first for the simplest how...

  6. African crop yield reductions due to increasingly unbalanced Nitrogen and Phosphorus consumption

    Science.gov (United States)

    van der Velde, Marijn; Folberth, Christian; Balkovič, Juraj; Ciais, Philippe; Fritz, Steffen; Janssens, Ivan A.; Obersteiner, Michael; See, Linda; Skalský, Rastislav; Xiong, Wei; Peñuealas, Josep

    2014-05-01

    The impact of soil nutrient depletion on crop production has been known for decades, but robust assessments of the impact of increasingly unbalanced nitrogen (N) and phosphorus (P) application rates on crop production are lacking. Here, we use crop response functions based on 741 FAO maize crop trials and EPIC crop modeling across Africa to examine maize yield deficits resulting from unbalanced N:P applications under low, medium, and high input scenarios, for past (1975), current, and future N:P mass ratios of respectively, 1:0.29, 1:0.15, and 1:0.05. At low N inputs (10 kg/ha), current yield deficits amount to 10% but will increase up to 27% under the assumed future N:P ratio, while at medium N inputs (50 kg N/ha), future yield losses could amount to over 40%. The EPIC crop model was then used to simulate maize yields across Africa. The model results showed relative median future yield reductions at low N inputs of 40%, and 50% at medium and high inputs, albeit with large spatial variability. Dominant low-quality soils such as Ferralsols, which are strongly adsorbing P, and Arenosols with a low nutrient retention capacity, are associated with a strong yield decline, although Arenosols show very variable crop yield losses at low inputs. Optimal N:P ratios, i.e. those where the lowest amount of applied P produces the highest yield (given N input) where calculated with EPIC to be as low as 1:0.5. Finally, we estimated the additional P required given current N inputs, and given N inputs that would allow Africa to close yield gaps (ca. 70%). At current N inputs, P consumption would have to increase 2.3-fold to be optimal, and to increase 11.7-fold to close yield gaps. The P demand to overcome these yield deficits would provide a significant additional pressure on current global extraction of P resources.

  7. Chemistry of nuclear recoil 18F atoms. VIII. Mechanisms and yields of caging reactions in liquid phase 1,1-difluoroethane and 1,1,1-trifluoroethane

    International Nuclear Information System (INIS)

    Manning, R.G.; Root, J.W.

    1976-01-01

    New procedures are reported for the specification of caging yields in nuclear recoil chemistry experiments. All five hot 18 F substitution channels in CH 3 CF 3 and CH 3 CHF 2 exhibit caging at large density. The respective total caged yields at 195 degreeK are 4.0% +- 0.6% and 5.6% +- 0.6%, and the total yields of stabilized substitution products are 8.9% +- 0.4% and 8.6% +- 0.6%. The simplest plausible caging mechanism involves primary Franck--Rabinowitsch radical recombination of 18 F atoms with aliphatic radicals. Density-variation results cannot be used for the qualitative detection of caging reactions unless excitation-stabilization complications have been shown to be unimportant

  8. Effect of Drought Stress at Different Growth Stages on Yield and Yield Components of Six Rice (Oryza sativa L. Genotypes

    Directory of Open Access Journals (Sweden)

    Sharifunnessa Moonmoon

    2017-12-01

    Full Text Available Drought stress affects plant growth and development and ultimately, reduced grain yield of rice. But stress at different growth stages may respond differently which is still unclear. Therefore, a pot experiment was carried out with six rice genotypes to determine the critical growth stage where drought stress effect on yield reduction and to find stress tolerance mechanism in rice genotypes. Drought stress (control i.e. no stress and 40% field capacity, FC was imposed on Binadhan-13, Kalizira, BRRI dhan34, Ukunimodhu, RM-100-16 and NERICA mutant rice genotypes at maximum tillering, panicle initiation and grain filling stages and discontinued when the specific stage was over. The experiment was laid out in a complete randomized design with three replications. Drought stress affected number of effective tiller hill-1, number of spikelets panicle-1, filled grains hill-1, 1000-grain weight and grain yield. Binadhan-13 produced the highest grain yield and the lowest sterility under drought stress at grain filling stage. Percentage of spikelet sterility increased under drought stress (40% FC especially at the panicle initiation stage resulting low grain yield. Among the tested genotypes Binadhan-13 performed well by reducing spikelet sterility under drought stress condition. For 1000-grain weight and grain yield, grain filling stage was found more crucial. From the current research, drought tolerance mechanism was found in genotypes Binadhan-13 and NERICA mutant. [Fundam Appl Agric 2017; 2(3.000: 285-289

  9. A comparative approach to closed-loop computation.

    Science.gov (United States)

    Roth, E; Sponberg, S; Cowan, N J

    2014-04-01

    Neural computation is inescapably closed-loop: the nervous system processes sensory signals to shape motor output, and motor output consequently shapes sensory input. Technological advances have enabled neuroscientists to close, open, and alter feedback loops in a wide range of experimental preparations. The experimental capability of manipulating the topology-that is, how information can flow between subsystems-provides new opportunities to understand the mechanisms and computations underlying behavior. These experiments encompass a spectrum of approaches from fully open-loop, restrained preparations to the fully closed-loop character of free behavior. Control theory and system identification provide a clear computational framework for relating these experimental approaches. We describe recent progress and new directions for translating experiments at one level in this spectrum to predictions at another level. Operating across this spectrum can reveal new understanding of how low-level neural mechanisms relate to high-level function during closed-loop behavior. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Reaction mechanisms and staggering in S+Ni collisions

    International Nuclear Information System (INIS)

    D'Agostino, M.; Bruno, M.; Gulminelli, F.; Morelli, L.; Baiocco, G.; Bardelli, L.; Barlini, S.; Cannata, F.; Casini, G.; Geraci, E.; Gramegna, F.; Kravchuk, V.L.; Marchi, T.; Moroni, A.; Ordine, A.; Raduta, Ad.R.

    2011-01-01

    The reactions 32 S+ 58 Ni and 32 S+ 64 Ni are studied at 14.5 A MeV. After a selection of the collision mechanism, we show that important even-odd effects are present in the isotopic fragment distributions when the excitation energy is small. Close to the multifragmentation threshold this staggering appears hidden by the rapid variation of the production yields with the fragment size. Once this effect is accounted for, the staggering appears to be a universal feature of fragment production, slightly enhanced when the emission source is neutron poor. A closer look at the behavior of the production yields as a function of the neutron excess N-Z, reveals that odd-even effects cannot be explained by pairing effects in the nuclear masses alone, but depend in a more complex way on the de-excitation chain.

  11. Reduction in clover-grass yield caused by different traffic intensities

    DEFF Research Database (Denmark)

    Green, Ole; Jørgensen, Rasmus Nyholm; Kristensen, Kristian

    Different traffic intensities have been shown to have a negative influence on the yield of grass and clover. A full scale grass-clover field trial was established to estimate the effect on clover-grass yields as a function of different wheel loads and tire pressures. The trial comprised 16...... close to the north, south and east border of the field. No significant interactions were found between the timing of crop and soil damage as affected by wheel load and tire pressure. However, at specific times, there was a significant effect of wheel load and secondary by the tire pressure. At all...... measurement times, the yield was lower using a wheel load of 4745 kg than for a wheel load of 2865 kg.     Key words (for Electronic Reference Library) Traffic intensities, tire load/pressure, clover/grass, yield loss, ...

  12. Differences in loading of the temporomandibular joint during opening and closing of the jaw

    NARCIS (Netherlands)

    Tuijt, M.; Koolstra, J.H.; Lobbezoo, F.; Naeije, M.

    2010-01-01

    Kinematics of the human masticatory system during opening and closing of the jaw have been reported widely. Evidence has been provided that the opening and closing movement of the jaw differ from one another. However, different approaches of movement registration yield divergent expectations with

  13. CT-Based Micro-Mechanical Approach to Predict Response of Closed-Cell Porous Biomaterials to Low-Velocity Impact

    Directory of Open Access Journals (Sweden)

    Mehrdad Koloushani

    2018-03-01

    Full Text Available In this study, a new numerical approach based on CT-scan images and finite element (FE method has been used to predict the mechanical behavior of closed-cell foams under impact loading. Micro-structural FE models based on CT-scan images of foam specimens (elastic-plastic material model with material constants of bulk aluminum and macro-mechanical FE models (with crushable foam material model with material constants of foams were constructed. Several experimental tests were also conducted to see which of the two noted (micro- or macro- mechanical FE models can better predict the deformation and force-displacement curves of foams. Compared to the macro-structural models, the results of the micro-structural models were much closer to the corresponding experimental results. This can be explained by the fact that the micro-structural models are able to take into account the interaction of stress waves with cell walls and the complex pathways the stress waves have to go through, while the macro-structural models do not have such capabilities. Despite their high demand for computational resources, using micro-scale FE models is very beneficial when one needs to understand the failure mechanisms acting in the micro-structure of a foam in order to modify or diminish them.

  14. An evolutionary yield function based on Barlat 2000 yield function for the superconducting niobium sheet

    Science.gov (United States)

    Darbandi, Payam; Pourboghrat, Farhang

    2011-08-01

    Superconducting radio frequency (SRF) niobium cavities are widely used in high-energy physics to accelerate particle beams in particle accelerators. The performance of SRF cavities is affected by the microstructure and purity of the niobium sheet, surface quality, geometry, etc. Following optimum strain paths in the forming of these cavities can significantly control these parameters. To select these strain paths, however, information about the mechanical behavior, microstructure, and formability of the niobium sheet is required. In this study the Barlat 2000 yield function has been used as a yield function for high purity niobium. Results from this study showed that, due to intrinsic behavior, it is necessary to evolve the anisotropic coefficients of Barlat's yield function in order to properly model the plastic behavior of the niobium sheet. The accuracy of the newly developed evolutionary yield function was verified by applying it to the modeling of the hydrostatic bulging of the niobium sheet. Also, in a separate attempt crystal plasticity finite element method was use to model the behavior of the polycrystalline niobium sheet with a particular initial texture.

  15. An evolutionary yield function based on Barlat 2000 yield function for the superconducting niobium sheet

    International Nuclear Information System (INIS)

    Darbandi, Payam; Pourboghrat, Farhang

    2011-01-01

    Superconducting radio frequency (SRF) niobium cavities are widely used in high-energy physics to accelerate particle beams in particle accelerators. The performance of SRF cavities is affected by the microstructure and purity of the niobium sheet, surface quality, geometry, etc. Following optimum strain paths in the forming of these cavities can significantly control these parameters. To select these strain paths, however, information about the mechanical behavior, microstructure, and formability of the niobium sheet is required. In this study the Barlat 2000 yield function has been used as a yield function for high purity niobium. Results from this study showed that, due to intrinsic behavior, it is necessary to evolve the anisotropic coefficients of Barlat's yield function in order to properly model the plastic behavior of the niobium sheet. The accuracy of the newly developed evolutionary yield function was verified by applying it to the modeling of the hydrostatic bulging of the niobium sheet. Also, in a separate attempt crystal plasticity finite element method was use to model the behavior of the polycrystalline niobium sheet with a particular initial texture.

  16. Kinematics and dynamics of a six-degree-of-freedom robot manipulator with closed kinematic chain mechanism

    Science.gov (United States)

    Nguyen, Charles C.; Pooran, Farhad J.

    1989-01-01

    This paper deals with a class of robot manipulators built based on the kinematic chain mechanism (CKCM). This class of CKCM manipulators consists of a fixed and a moving platform coupled together via a number of in-parallel actuators. A closed-form solution is derived for the inverse kinematic problem of a six-degre-of-freedom CKCM manipulator designed to study robotic applications in space. Iterative Newton-Raphson method is employed to solve the forward kinematic problem. Dynamics of the above manipulator is derived using the Lagrangian approach. Computer simulation of the dynamical equations shows that the actuating forces are strongly dependent on the mass and centroid of the robot links.

  17. Relationships between Mechanical Variables in the Traditional and Close-Grip Bench Press

    Directory of Open Access Journals (Sweden)

    Lockie Robert G.

    2017-12-01

    Full Text Available The study aim was to determine relationships between mechanical variables in the one-repetition maximum (1RM traditional bench press (TBP and close-grip bench press (CGBP. Twenty resistance-trained men completed a TBP and CGBP 1RM. The TBP was performed with the preferred grip; the CGBP with a grip width of 95% biacromial distance. A linear position transducer measured: lift distance and duration; work; and peak and mean power, velocity, and force. Paired samples t-tests (p < 0.05 compared the 1RM and mechanical variables for the TBP and CGBP; effect sizes (d were also calculated. Pearson’s correlations (r; p < 0.05 computed relationships between the TBP and CGBP. 1RM, lift duration, and mean force were greater in the TBP (d = 0.30-3.20. Peak power and velocity was greater for the CGBP (d = 0.50-1.29. The 1RM TBP correlated with CGBP 1RM, power, and force (r = 0.685-0.982. TBP work correlated with CGBP 1RM, lift distance, power, force, and work (r = 0.542-0.931. TBP power correlated with CGBP 1RM, power, force, velocity, and work (r = 0.484-0.704. TBP peak and mean force related to CGBP 1RM, power, and force (r = 0.596-0.980. Due to relationships between the load, work, power, and force for the TBP and CGBP, the CGBP could provide similar strength adaptations to the TBP with long-term use. The velocity profile for the CGBP was different to that of the TBP. The CGBP could be used specifically to improve high-velocity, upper-body pushing movements.

  18. Fishing diseased abalone to promote yield and conservation

    Science.gov (United States)

    Ben-Horin, Tal; Lafferty, Kevin D.; Bidegain, Gorka; Lenihan, Hunter S.

    2016-01-01

    Past theoretical models suggest fishing disease-impacted stocks can reduce parasite transmission, but this is a good management strategy only when the exploitation required to reduce transmission does not overfish the stock. We applied this concept to a red abalone fishery so impacted by an infectious disease (withering syndrome) that stock densities plummeted and managers closed the fishery. In addition to the non-selective fishing strategy considered by past disease-fishing models, we modelled targeting (culling) infected individuals, which is plausible in red abalone because modern diagnostic tools can determine infection without harming landed abalone and the diagnostic cost is minor relative to the catch value. The non-selective abalone fishing required to eradicate parasites exceeded thresholds for abalone sustainability, but targeting infected abalone allowed the fishery to generate yield and reduce parasite prevalence while maintaining stock densities at or above the densities attainable if the population was closed to fishing. The effect was strong enough that stock and yield increased even when the catch was one-third uninfected abalone. These results could apply to other fisheries as the diagnostic costs decline relative to catch value.

  19. Fishing diseased abalone to promote yield and conservation.

    Science.gov (United States)

    Ben-Horin, Tal; Lafferty, Kevin D; Bidegain, Gorka; Lenihan, Hunter S

    2016-03-05

    Past theoretical models suggest fishing disease-impacted stocks can reduce parasite transmission, but this is a good management strategy only when the exploitation required to reduce transmission does not overfish the stock. We applied this concept to a red abalone fishery so impacted by an infectious disease (withering syndrome) that stock densities plummeted and managers closed the fishery. In addition to the non-selective fishing strategy considered by past disease-fishing models, we modelled targeting (culling) infected individuals, which is plausible in red abalone because modern diagnostic tools can determine infection without harming landed abalone and the diagnostic cost is minor relative to the catch value. The non-selective abalone fishing required to eradicate parasites exceeded thresholds for abalone sustainability, but targeting infected abalone allowed the fishery to generate yield and reduce parasite prevalence while maintaining stock densities at or above the densities attainable if the population was closed to fishing. The effect was strong enough that stock and yield increased even when the catch was one-third uninfected abalone. These results could apply to other fisheries as the diagnostic costs decline relative to catch value. © 2016 The Author(s).

  20. Experiments and simulation of a net closing mechanism for tether-net capture of space debris

    Science.gov (United States)

    Sharf, Inna; Thomsen, Benjamin; Botta, Eleonora M.; Misra, Arun K.

    2017-10-01

    This research addresses the design and testing of a debris containment system for use in a tether-net approach to space debris removal. The tether-net active debris removal involves the ejection of a net from a spacecraft by applying impulses to masses on the net, subsequent expansion of the net, the envelopment and capture of the debris target, and the de-orbiting of the debris via a tether to the chaser spacecraft. To ensure a debris removal mission's success, it is important that the debris be successfully captured and then, secured within the net. To this end, we present a concept for a net closing mechanism, which we believe will permit consistently successful debris capture via a simple and unobtrusive design. This net closing system functions by extending the main tether connecting the chaser spacecraft and the net vertex to the perimeter and around the perimeter of the net, allowing the tether to actuate closure of the net in a manner similar to a cinch cord. A particular embodiment of the design in a laboratory test-bed is described: the test-bed itself is comprised of a scaled-down tether-net, a supporting frame and a mock-up debris. Experiments conducted with the facility demonstrate the practicality of the net closing system. A model of the net closure concept has been integrated into the previously developed dynamics simulator of the chaser/tether-net/debris system. Simulations under tether tensioning conditions demonstrate the effectiveness of the closure concept for debris containment, in the gravity-free environment of space, for a realistic debris target. The on-ground experimental test-bed is also used to showcase its utility for validating the dynamics simulation of the net deployment, and a full-scale automated setup would make possible a range of validation studies of other aspects of a tether-net debris capture mission.

  1. Are GM Crops for Yield and Resilience Possible?

    Science.gov (United States)

    Paul, Matthew J; Nuccio, Michael L; Basu, Shib Sankar

    2018-01-01

    Crop yield improvements need to accelerate to avoid future food insecurity. Outside Europe, genetically modified (GM) crops for herbicide- and insect-resistance have been transformative in agriculture; other traits have also come to market. However, GM of yield potential and stress resilience has yet to impact on food security. Genes have been identified for yield such as grain number, size, leaf growth, resource allocation, and signaling for drought tolerance, but there is only one commercialized drought-tolerant GM variety. For GM and genome editing to impact on yield and resilience there is a need to understand yield-determining processes in a cell and developmental context combined with evaluation in the grower environment. We highlight a sugar signaling mechanism as a paradigm for this approach. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Mechanical Resonators for Quantum Optomechanics Experiments at Room Temperature.

    Science.gov (United States)

    Norte, R A; Moura, J P; Gröblacher, S

    2016-04-08

    All quantum optomechanics experiments to date operate at cryogenic temperatures, imposing severe technical challenges and fundamental constraints. Here, we present a novel design of on-chip mechanical resonators which exhibit fundamental modes with frequencies f and mechanical quality factors Q_{m} sufficient to enter the optomechanical quantum regime at room temperature. We overcome previous limitations by designing ultrathin, high-stress silicon nitride (Si_{3}N_{4}) membranes, with tensile stress in the resonators' clamps close to the ultimate yield strength of the material. By patterning a photonic crystal on the SiN membranes, we observe reflectivities greater than 99%. These on-chip resonators have remarkably low mechanical dissipation, with Q_{m}∼10^{8}, while at the same time exhibiting large reflectivities. This makes them a unique platform for experiments towards the observation of massive quantum behavior at room temperature.

  3. Tandem radical reactions and ring-closing metathesis. Application in the synthesis of cyclooctenes.

    Science.gov (United States)

    Sibi, Mukund P; Aasmul, Mona; Hasegawa, Hikaru; Subramanian, Thangaiah

    2003-08-07

    [reaction: see text] Fumarate- and acrylate-substituted oxazolidinones undergo tandem radical reaction to form dienes in moderate to good yields. The resulting dienes provide cyclooctenes in moderate to good yields after ring-closing metathesis (RCM). The role of the carbon backbone substituents and other variables in the efficiency of the eight-membered ring formation is discussed.

  4. Wheat-yield response to irrigation and nitrogen

    International Nuclear Information System (INIS)

    Kirda, C.; Derici, R.; Kanber, R.; Yazar, A.; Koc, M.; Barutcular, C.

    2000-01-01

    Wheat-yield responses to the application of different rates of N fertilizer, under irrigated and rainfed conditions, were evaluated over four growing seasons. Nitrogen applied at tillering was utilized more effectively with proportionately less residual in the soil compared to that applied at planting. Subsequent crops of maize or cotton were positively affected by residual fertilizer N. Volatilization and leaching losses of applied N were small. Crop-water consumption showed strong positive associations with N rate. No wheat-grain-yield benefits accrued from irrigation, although straw yields were increased. Tiller production increased with N-fertilizer usage, however, tiller survival decreased at high N and was highest at 160 kg N ha -1 . Higher N rates produced higher stomatal conductance, increased rates of CO 2 assimilation and higher water-use efficiency. The CERES-Wheat growth-simulation model predicted rather closely the progress of dry-matter production, leaf area index, seasonal evapotranspiration, phenological development and of many other plant-growth attributes. The data indicated that the rate of 160 kg N ha -1 , which is commonly used by the farmers of the region, is acceptable, not only for optimum grain yields but also to minimize the risks of leaching NO 3 - to groundwater. (author)

  5. Efficiency of voluntary closing hand and hook prostheses

    NARCIS (Netherlands)

    Smit, G.; Plettenburg, D.H.

    2010-01-01

    The Delft Institute of Prosthetics and Orthotics has started a research program to develop an improved voluntary closing, body-powered hand prosthesis. Five commercially available voluntary closing terminal devices were mechanically tested: three hands [Hosmer APRL VC hand, Hosmer Soft VC Male hand,

  6. Study of charm production mechanisms at the Fermilab Tagged Photon Spectrometer: γBe yields D anti D x and γA yields psi x

    International Nuclear Information System (INIS)

    Nash, T.

    1987-03-01

    This paper describes recent work on charm photoproduction mechanisms based on data from Experiment 691 at the Fermilab Tagged Photon Spectrometer. Preliminary results on open charm production in the energy range 80 to 190 GeV are reported based on a preliminary analysis of 3000 charm events, comprising 30% of the data sample. These results include fits to P perpendicular and X/sub F/ distributions, a measurement of the total charm production cross section on Be and its increase with energy from 100 to 200 GeV, as well as a measurement of the relative fraction of anti D, D, and D* production. Also reported is data based on a special closed geometry run to study the A dependence of psi photoproduction. For the first time in a single experiment, relative cross sections on H, Be, Fe and Pb for both the coherent and incoherent components of the signal have been measured with reduced systematic errors and these results are reported here

  7. Citizen science and remote sensing for crop yield gap analysis

    NARCIS (Netherlands)

    Beza, Eskender Andualem

    2017-01-01

    The world population is anticipated to be around 9.1 billion in 2050 and the challenge is how to feed this huge number of people without affecting natural ecosystems. Different approaches have been proposed and closing the ‘yield gap’ on currently available agricultural lands is one of them. The

  8. Fluence-dependent sputtering yield of micro-architectured materials

    Energy Technology Data Exchange (ETDEWEB)

    Matthes, Christopher S.R.; Ghoniem, Nasr M., E-mail: ghoniem@ucla.edu; Li, Gary Z.; Matlock, Taylor S.; Goebel, Dan M.; Dodson, Chris A.; Wirz, Richard E.

    2017-06-15

    Highlights: • Sputtering yield is shown to be transient and heavily dependent on surface architecture. • Fabricated nano- and Microstructures cause geometric re-trapping of sputtered material, which leads to a self-healing mechanism. • Initially, the sputtering yield of micro-architectured Mo is approximately 1/2 the value as that of a planar surface. • The study demonstrates that the sputtering yield is a dynamic property, dependent on the surface structure of a material. • A developed phenomenological model mathematically describes the transient behavior of the sputtering yield as a function of plasma fluence. - Abstract: We present an experimental examination of the relationship between the surface morphology of Mo and its instantaneous sputtering rate as function of low-energy plasma ion fluence. We quantify the dynamic evolution of nano/micro features of surfaces with built-in architecture, and the corresponding variation in the sputtering yield. Ballistic deposition of sputtered atoms as a result of geometric re-trapping is observed, and re-growth of surface layers is confirmed. This provides a self-healing mechanism of micro-architectured surfaces during plasma exposure. A variety of material characterization techniques are used to show that the sputtering yield is not a fundamental property, but that it is quantitatively related to the initial surface architecture and to its subsequent evolution. The sputtering yield of textured molybdenum samples exposed to 300 eV Ar plasma is roughly 1/2 of the corresponding value for flat samples, and increases with ion fluence. Mo samples exhibited a sputtering yield initially as low as 0.22 ± 5%, converging to 0.4 ± 5% at high fluence. The sputtering yield exhibits a transient behavior as function of the integrated ion fluence, reaching a steady-state value that is independent of initial surface conditions. A phenomenological model is proposed to explain the observed transient sputtering phenomenon, and to

  9. Closed sets of nonlocal correlations

    International Nuclear Information System (INIS)

    Allcock, Jonathan; Linden, Noah; Brunner, Nicolas; Popescu, Sandu; Skrzypczyk, Paul; Vertesi, Tamas

    2009-01-01

    We present a fundamental concept - closed sets of correlations - for studying nonlocal correlations. We argue that sets of correlations corresponding to information-theoretic principles, or more generally to consistent physical theories, must be closed under a natural set of operations. Hence, studying the closure of sets of correlations gives insight into which information-theoretic principles are genuinely different, and which are ultimately equivalent. This concept also has implications for understanding why quantum nonlocality is limited, and for finding constraints on physical theories beyond quantum mechanics.

  10. Opinion Evolution in Closed Community

    Science.gov (United States)

    Sznajd-Weron, Katarzyna; Sznajd, Józef

    A simple Ising spin model which can describe a mechanism of making a decision in a closed community is proposed. It is shown via standard Monte Carlo simulations that very simple rules lead to rather complicated dynamics and to a power law in the decision time distribution. It is found that a closed community has to evolve either to a dictatorship or a stalemate state (inability to take any common decision). A common decision can be taken in a ``democratic way'' only by an open community.

  11. Predicting Great Lakes fish yields: tools and constraints

    Science.gov (United States)

    Lewis, C.A.; Schupp, D.H.; Taylor, W.W.; Collins, J.J.; Hatch, Richard W.

    1987-01-01

    Prediction of yield is a critical component of fisheries management. The development of sound yield prediction methodology and the application of the results of yield prediction are central to the evolution of strategies to achieve stated goals for Great Lakes fisheries and to the measurement of progress toward those goals. Despite general availability of species yield models, yield prediction for many Great Lakes fisheries has been poor due to the instability of the fish communities and the inadequacy of available data. A host of biological, institutional, and societal factors constrain both the development of sound predictions and their application to management. Improved predictive capability requires increased stability of Great Lakes fisheries through rehabilitation of well-integrated communities, improvement of data collection, data standardization and information-sharing mechanisms, and further development of the methodology for yield prediction. Most important is the creation of a better-informed public that will in turn establish the political will to do what is required.

  12. Total yield and escape depth of electrons from heavy ion solid interactions

    International Nuclear Information System (INIS)

    Frischkorn, H.J.; Burkhard, M.; Groenveld, K.O.; Hofmann, D.; Koschar, P.; Latz, R.; Schader, J.

    1983-01-01

    At high projectile energies ( aboutMeV/U) several mechanisms for electron production are discussed as e.g. direct ionization collisions, recoil particle cascades, collective electron emission. Results are presented of total electron yield (#betta#) measurements over a wide projectile energy E /SUB p/ range (40 keV/U< E /SUB p/ /M <12 MeV/U) and a wide projectile Z /SUB p/ range (1<2 /SUB p-/ <92) of both monoionic and molecular projectiles and of different target thicknesses. From the target thickness dependence of #betta# the mean free path lambda of electrons in carbon can be calculated. The data are discussed in the frame of current theories. Significant deviations from calculated values and predicted dependencies are found, in particular for projectile velocities v /SUB p/ close to the Fermi velocity v /SUB F/ of target electrons and for molecular projectile ions

  13. Closing oil palm yield gaps among Indonesian smallholders through industry schemes, pruning, weeding and improved seeds.

    Science.gov (United States)

    Soliman, T; Lim, F K S; Lee, J S H; Carrasco, L R

    2016-08-01

    Oil palm production has led to large losses of valuable habitats for tropical biodiversity. Sparing of land for nature could in theory be attained if oil palm yields increased. The efficiency of oil palm smallholders is below its potential capacity, but the factors determining efficiency are poorly understood. We employed a two-stage data envelopment analysis approach to assess the influence of agronomic, supply chain and management factors on oil palm production efficiency in 190 smallholders in six villages in Indonesia. The results show that, on average, yield increases of 65% were possible and that fertilizer and herbicide use was excessive and inefficient. Adopting industry-supported scheme management practices, use of high-quality seeds and higher pruning and weeding rates were found to improve efficiency. Smallholder oil palm production intensification in Indonesia has the capacity to increase production by 26%, an equivalent of 1.75 million hectares of land.

  14. 46 CFR 78.47-38 - Valves and closing appliances.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Valves and closing appliances. 78.47-38 Section 78.47-38... Fire and Emergency Equipment, Etc. § 78.47-38 Valves and closing appliances. (a) All valves and closing appliances, or other mechanisms which may be required to be operated for damage control purposes in case of...

  15. Natural variation in stomatal response to closing stimuli among Arabidopsis thaliana accessions after exposure to lowe VPD as a tool to recognize the mechanism of disturbed stomatal functioning

    NARCIS (Netherlands)

    Ali Niaei Fard, S.; Meeteren, van U.

    2014-01-01

    Stomatal responses to closing stimuli are disturbed after long-term exposure of plants to low vapour pressure deficit (VPD). The mechanism behind this disturbance is not fully understood. Genetic variation between naturally occurring ecotypes can be helpful to elucidate the mechanism controlling

  16. Molecular mechanisms underlying the close association between soil Burkholderia and fungi

    Science.gov (United States)

    Stopnisek, Nejc; Zühlke, Daniela; Carlier, Aurélien; Barberán, Albert; Fierer, Noah; Becher, Dörte; Riedel, Katharina; Eberl, Leo; Weisskopf, Laure

    2016-01-01

    Bacterial species belonging to the genus Burkholderia have been repeatedly reported to be associated with fungi but the extent and specificity of these associations in soils remain undetermined. To assess whether associations between Burkholderia and fungi are widespread in soils, we performed a co-occurrence analysis in an intercontinental soil sample collection. This revealed that Burkholderia significantly co-occurred with a wide range of fungi. To analyse the molecular basis of the interaction, we selected two model fungi frequently co-occurring with Burkholderia, Alternaria alternata and Fusarium solani, and analysed the proteome changes caused by cultivation with either fungus in the widespread soil inhabitant B. glathei, whose genome we sequenced. Co-cultivation with both fungi led to very similar changes in the B. glathei proteome. Our results indicate that B. glathei significantly benefits from the interaction, which is exemplified by a lower abundance of several starvation factors that were highly expressed in pure culture. However, co-cultivation also gave rise to stress factors, as indicated by the increased expression of multidrug efflux pumps and proteins involved in oxidative stress response. Our data suggest that the ability of Burkholderia to establish a close association with fungi mainly lies in the capacities to utilize fungal-secreted metabolites and to overcome fungal defense mechanisms. This work indicates that beneficial interactions with fungi might contribute to the survival strategy of Burkholderia species in environments with sub-optimal conditions, including acidic soils. PMID:25989372

  17. Molecular mechanisms underlying the close association between soil Burkholderia and fungi.

    Science.gov (United States)

    Stopnisek, Nejc; Zühlke, Daniela; Carlier, Aurélien; Barberán, Albert; Fierer, Noah; Becher, Dörte; Riedel, Katharina; Eberl, Leo; Weisskopf, Laure

    2016-01-01

    Bacterial species belonging to the genus Burkholderia have been repeatedly reported to be associated with fungi but the extent and specificity of these associations in soils remain undetermined. To assess whether associations between Burkholderia and fungi are widespread in soils, we performed a co-occurrence analysis in an intercontinental soil sample collection. This revealed that Burkholderia significantly co-occurred with a wide range of fungi. To analyse the molecular basis of the interaction, we selected two model fungi frequently co-occurring with Burkholderia, Alternaria alternata and Fusarium solani, and analysed the proteome changes caused by cultivation with either fungus in the widespread soil inhabitant B. glathei, whose genome we sequenced. Co-cultivation with both fungi led to very similar changes in the B. glathei proteome. Our results indicate that B. glathei significantly benefits from the interaction, which is exemplified by a lower abundance of several starvation factors that were highly expressed in pure culture. However, co-cultivation also gave rise to stress factors, as indicated by the increased expression of multidrug efflux pumps and proteins involved in oxidative stress response. Our data suggest that the ability of Burkholderia to establish a close association with fungi mainly lies in the capacities to utilize fungal-secreted metabolites and to overcome fungal defense mechanisms. This work indicates that beneficial interactions with fungi might contribute to the survival strategy of Burkholderia species in environments with sub-optimal conditions, including acidic soils.

  18. Natural variation in stomatal response to closing stimuli among Arabidopsis thaliana accessions after exposure to low VPD as a tool to recognize the mechanism of disturbed stomatal functioning.

    Science.gov (United States)

    Aliniaeifard, Sasan; van Meeteren, Uulke

    2014-12-01

    Stomatal responses to closing stimuli are disturbed after long-term exposure of plants to low vapour pressure deficit (VPD). The mechanism behind this disturbance is not fully understood. Genetic variation between naturally occurring ecotypes can be helpful to elucidate the mechanism controlling stomatal movements in different environments. We characterized the stomatal responses of 41 natural accessions of Arabidopsis thaliana to closing stimuli (ABA and desiccation) after they had been exposed for 4 days to moderate VPD (1.17 kPa) or low VPD (0.23 kPa). A fast screening system was used to test stomatal response to ABA using chlorophyll fluorescence imaging under low O2 concentrations of leaf discs floating on ABA solutions. In all accessions stomatal conductance (gs) was increased after prior exposure to low VPD. After exposure to low VPD, stomata of 39 out of 41 of the accessions showed a diminished ABA closing response; only stomata of low VPD-exposed Map-42 and C24 were as responsive to ABA as moderate VPD-exposed plants. In response to desiccation, most of the accessions showed a normal stomata closing response following low VPD exposure. Only low VPD-exposed Cvi-0 and Rrs-7 showed significantly less stomatal closure compared with moderate VPD-exposed plants. Using principle component analysis (PCA), accessions could be categorized to very sensitive, moderately sensitive, and less sensitive to closing stimuli. In conclusion, we present evidence for different stomatal responses to closing stimuli after long-term exposure to low VPD across Arabidopsis accessions. The variation can be a useful tool for finding the mechanism of stomatal malfunctioning. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  19. Combining ability and heterosis for yield and yield contributing traits in brassica rapa (l.) ssp. dichotoma (roxb.) hanelt

    International Nuclear Information System (INIS)

    Nasim, A.; Farhatullah, A.; Khan, N.U.; Afzal, M.; Azam, S.M.

    2014-01-01

    Combining ability was studied for yield and yield contributing traits in 5 * 5 diallel cross in Brassica rapa (L.) ssp. dichotoma (Roxb.) Hanelt. Primary branches plant-1, pods main raceme-1, pod length, 100-seed weight and seed yield plant-1 were significantly different. Heritability and genetic advance estimates were moderate for primary branches plant-1, pods main raceme-1, 100 seed weight whereas were high for seed yield plant-1. Parental line G-909 for primary branches plant-1, pods main raceme-1 and seed yield plant-1, genotype G-902 for pod length and genotype G-403 for 100-seed weight were the best general combiners. Based on combing ability and heterosis, the F1 hybrids G-909 * G-265 (for primary branches plant-1), G-265 * G- 403, G-1500 * G-909 (for pods main raceme-1), G-403 * G-909 (for pod length), G-265 * G-1500 (for 100-seed weight) and G-1500 * G-902, G-909 * G-902 (for seed yield plant-1) can be utilized in future breeding endeavors. Non-additive genetic control, as predominant mechanism, for all the traits necessitates the use of schemes like bi-parental mating design, diallel selective mating followed by recurrent or reciprocal recurrent selection. (author)

  20. OH yields from the CH3CO+O-2 reaction using an internal standard\\ud

    OpenAIRE

    Carr, S.A.; Baeza-Romero, M.T.; Blitz, M.A.; Pilling, M.J.; Heard, D.E.; Seakins, P.W.

    2007-01-01

    Laser flash photolysis of CH3C(O)OH at 248 nm was used to create equal zero time yields of CH3CO and OH. The absolute OH yield from the CH3CO + O2 (+M) reaction was determined by following the OH temporal profile using the zero time\\ud OH concentration as an internal standard. The OH yield from CH3CO + O2 (+M) was observed to decrease with increasing pressure with an extrapolated zero pressure yield\\ud close to unity (1.1 ± 0.2, quoted uncertainties correspond to 95% confidence limits). The r...

  1. Device for the simultaneous operation of the closing valve of a vessel and the closing valve of a transport container

    International Nuclear Information System (INIS)

    Tellier, Claude; Surriray, Michel.

    1982-01-01

    This device includes mechanisms for unlatching the closing valve of the vessel and securing it to the closing valve of the transport container and other mechanisms for vertically raising the assembly of valves, pivoting it and bringing it into a vertical position in a bulge provided in the bottom of the transport container. For example the first containment is a nuclear reactor vessel and the transport container is used for carrying an item from the vessel to an external area (for instance, a defective pump to the repair area) and for the return transport operation [fr

  2. Closed-time path formalism of quantum scattering

    International Nuclear Information System (INIS)

    Manoukian, E.B.

    1988-01-01

    The closed-time path formalism of quantum mechanics, first introduced by Schwinger, is developed starting from a second-quantized formalism by using a functional calculus. An exact functional expression for the closed-time amplitude for a particle state (not just of the vacuum state)is derived from which time-dependent expectation value of observables may be written in closed functional form. In particular, this leads directly to the expression for transition probabilities for scattering theory without computing first the corresponding amplitudes. Finally it is made a comparison with the standard approach

  3. Structural, mechanical and light yield characterisation of heat treated LYSO:Ce single crystals for medical imaging applications

    Energy Technology Data Exchange (ETDEWEB)

    Mengucci, P., E-mail: p.mengucci@univpm.it [Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona (Italy); André, G. [Laboratoire Léon Brillouin, CEA-CNRS, CE-Saclay, 91191 Gif sur Yvette cedex (France); Auffray, E. [Department PH-CMX CERN, Route de Meyrin, 1211 Geneva 23 (Switzerland); Barucca, G. [Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona (Italy); Cecchi, C. [Dipartimento di Fisica e Geologia, Università di Perugia, Via A. Pascoli, 06123 Perugia (Italy); Chipaux, R. [CEA DSM/IRFU/SEDI, CE-Saclay, 91191 Gif sur Yvette cedex (France); Cousson, A. [Laboratoire Léon Brillouin, CEA-CNRS, CE-Saclay, 91191 Gif sur Yvette cedex (France); Davì, F. [Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona (Italy); Di Vara, N. [Department PH-CMX CERN, Route de Meyrin, 1211 Geneva 23 (Switzerland); Rinaldi, D.; Santecchia, E. [Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona (Italy)

    2015-06-11

    Five single crystals of cerium-doped lutetium yttrium oxyorthosilicate (LYSO:Ce) grown by the Czochralski method were submitted to structural characterisation by X-ray (XRD) and neutron (ND) diffraction, scanning (SEM) and transmission (TEM) electron microscopy and energy dispersive microanalysis (EDS). The Ultimate Tensile Strength (UTS), the Young Modulus (YM) and the Light Yield (LY) of the samples were also measured in order to correlate the mechanical and the optical behaviour of the crystals with the characteristics of their microstructure. Two of the samples analysed were also heat treated at 300 °C for 10 h to evidence possible variations induced by the temperature in the optical and mechanical response of the crystals. Results showed that the mean compositional variations evidenced by the structural analyses do not affect the mechanical and optical behaviour of the samples. On the contrary, the thermal treatment could induce the formation of coherent spherical particles (size 10 to 15 nm), not uniformly distributed inside the sample, that strongly reduce the UTS and YM values, but it does not affect the optical response of the crystal. This latter result was attributed to the low value of the heating temperature (300 °C) that is not sufficiently high to induce annealing of the oxygen vacancies traps that are responsible of the deterioration of the scintillation properties of the LYSO:Ce crystals. This study was carried out in the framework of the Crystal Clear Collaboration (CCC)

  4. Fast co-pyrolysis of waste newspaper with high-density polyethylene for high yields of alcohols and hydrocarbons.

    Science.gov (United States)

    Chen, Weimin; Shi, Shukai; Chen, Minzhi; Zhou, Xiaoyan

    2017-09-01

    Waste newspaper (WP) was first co-pyrolyzed with high-density polyethylene (HDPE) using pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) to enhance the yields of alcohols and hydrocarbons. The effects of WP: HDPE feed ratio (100:0, 75:25, 50:50, 25:75, 0:100) and temperature (500-800°C) on products distribution were investigated and the interaction mechanism during co-pyrolysis was also proposed. Maximum yields of alcohols and hydrocarbons reached 85.88% (feed ratio 50:50wt.%, 600°C). Hydrogen supplements and deoxidation by HDPE and subsequently fragments recombination result in the conversion of aldehydes and ketones into branched hydrocarbons. Radicals from WP degradation favor the secondary crack for HDPE products resulting in the formation of linear hydrocarbons with low carbon number. Hydrocarbons with activated radical site from HDPE degradation were interacted with hydroxyl from WP degradation promoting the formation of linear long chain alcohols. Moreover, co-pyrolysis significantly enhanced condensable oil qualities, which were close to commercial diesel No. 0. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Non-Gaussian Closed Form Solutions for Geometric Average Asian Options in the Framework of Non-Extensive Statistical Mechanics

    Directory of Open Access Journals (Sweden)

    Pan Zhao

    2018-01-01

    Full Text Available In this paper we consider pricing problems of the geometric average Asian options under a non-Gaussian model, in which the underlying stock price is driven by a process based on non-extensive statistical mechanics. The model can describe the peak and fat tail characteristics of returns. Thus, the description of underlying asset price and the pricing of options are more accurate. Moreover, using the martingale method, we obtain closed form solutions for geometric average Asian options. Furthermore, the numerical analysis shows that the model can avoid underestimating risks relative to the Black-Scholes model.

  6. Soybean yield in relation to distance from the Itaipu reservoir

    Science.gov (United States)

    de Faria, Rogério Teixeira; Junior, Ruy Casão; Werner, Simone Silmara; Junior, Luiz Antônio Zanão; Hoogenboom, Gerrit

    2016-07-01

    Crops close to small water bodies may exhibit changes in yield if the water mass causes significant changes in the microclimate of areas near the reservoir shoreline. The scientific literature describes this effect as occurring gradually, with higher intensity in the sites near the shoreline and decreasing intensity with distance from the reservoir. Experiments with two soybean cultivars were conducted during four crop seasons to evaluate soybean yield in relation to distance from the Itaipu reservoir and determine the effect of air temperature and water availability on soybean crop yield. Fifteen experimental sites were distributed in three transects perpendicular to the Itaipu reservoir, covering an area at approximately 10 km from the shoreline. The yield gradient between the site closest to the reservoir and the sites farther away in each transect did not show a consistent trend, but varied as a function of distance, crop season, and cultivar. This finding indicates that the Itaipu reservoir does not affect the yield of soybean plants grown within approximately 10 km from the shoreline. In addition, the variation in yield among the experimental sites was not attributed to thermal conditions because the temperature was similar within transects. However, the crop water availability was responsible for higher differences in yield among the neighboring experimental sites related to water stress caused by spatial variability in rainfall, especially during the soybean reproductive period in January and February.

  7. Investigation of transient dynamics of capillary assisted particle assembly yield

    Energy Technology Data Exchange (ETDEWEB)

    Virganavičius, D. [Institute of Materials Science, Kaunas University of Technology, K. Baršausko St. 59, Kaunas LT-51423 (Lithuania); Laboratory of Micro- and Nanotechnology, Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Juodėnas, M. [Institute of Materials Science, Kaunas University of Technology, K. Baršausko St. 59, Kaunas LT-51423 (Lithuania); Tamulevičius, T., E-mail: tomas.tamulevicius@ktu.lt [Institute of Materials Science, Kaunas University of Technology, K. Baršausko St. 59, Kaunas LT-51423 (Lithuania); Department of Physics, Kaunas University of Technology, Studentų St. 50, Kaunas LT-51368 (Lithuania); Schift, H. [Laboratory of Micro- and Nanotechnology, Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Tamulevičius, S. [Institute of Materials Science, Kaunas University of Technology, K. Baršausko St. 59, Kaunas LT-51423 (Lithuania); Department of Physics, Kaunas University of Technology, Studentų St. 50, Kaunas LT-51368 (Lithuania)

    2017-06-01

    Highlights: • Regular particles arrays were assembled by capillary force assisted deposition. • Deposition yield dynamics was investigated at different thermal velocity regimes. • Yield transient behavior was approximated with logistic function. • Pattern density influence for switching behavior was assessed. - Abstract: In this paper, the transient behavior of the particle assembly yield dynamics when switching from low yield to high yield deposition at different velocity and thermal regimes is investigated. Capillary force assisted particle assembly (CAPA) using colloidal suspension of green fluorescent 270 nm diameter polystyrene beads was performed on patterned poly (dimethyl siloxane) substrates using a custom-built deposition setup. Two types of patterns with different trapping site densities were used to assess CAPA process dynamics and the influence of pattern density and geometry on the deposition yield transitions. Closely packed 300 nm diameter circular pits ordered in hexagonal arrangement with 300 nm pitch, and 2 × 2 mm{sup 2} square pits with 2 μm spacing were used. 2-D regular structures of the deposited particles were investigated by means of optical fluorescence and scanning electron microscopy. The fluorescence micrographs were analyzed using a custom algorithm enabling to identify particles and calculate efficiency of the deposition performed at different regimes. Relationship between the spatial distribution of particles in transition zone and ambient conditions was evaluated and quantified by approximation of the yield profile with a logistic function.

  8. The Impact of Statistical Leakage Models on Design Yield Estimation

    Directory of Open Access Journals (Sweden)

    Rouwaida Kanj

    2011-01-01

    Full Text Available Device mismatch and process variation models play a key role in determining the functionality and yield of sub-100 nm design. Average characteristics are often of interest, such as the average leakage current or the average read delay. However, detecting rare functional fails is critical for memory design and designers often seek techniques that enable accurately modeling such events. Extremely leaky devices can inflict functionality fails. The plurality of leaky devices on a bitline increase the dimensionality of the yield estimation problem. Simplified models are possible by adopting approximations to the underlying sum of lognormals. The implications of such approximations on tail probabilities may in turn bias the yield estimate. We review different closed form approximations and compare against the CDF matching method, which is shown to be most effective method for accurate statistical leakage modeling.

  9. Close the high seas to fishing?

    Science.gov (United States)

    White, Crow; Costello, Christopher

    2014-03-01

    The world's oceans are governed as a system of over 150 sovereign exclusive economic zones (EEZs, ∼42% of the ocean) and one large high seas (HS) commons (∼58% of ocean) with essentially open access. Many high-valued fish species such as tuna, billfish, and shark migrate around these large oceanic regions, which as a consequence of competition across EEZs and a global race-to-fish on the HS, have been over-exploited and now return far less than their economic potential. We address this global challenge by analyzing with a spatial bioeconomic model the effects of completely closing the HS to fishing. This policy both induces cooperation among countries in the exploitation of migratory stocks and provides a refuge sufficiently large to recover and maintain these stocks at levels close to those that would maximize fisheries returns. We find that completely closing the HS to fishing would simultaneously give rise to large gains in fisheries profit (>100%), fisheries yields (>30%), and fish stock conservation (>150%). We also find that changing EEZ size may benefit some fisheries; nonetheless, a complete closure of the HS still returns larger fishery and conservation outcomes than does a HS open to fishing.

  10. Closing the N-use efficiency gap to achieve food and environmental security.

    Science.gov (United States)

    Cui, Zhenling; Wang, Guiliang; Yue, Shanchao; Wu, Liang; Zhang, Weifeng; Zhang, Fusuo; Chen, Xinping

    2014-05-20

    To achieve food and environmental security, closing the gap between actual and attainable N-use efficiency should be as important as closing yield gaps. Using a meta-analysis of 205 published studies from 317 study sites, including 1332 observations from rice, wheat, and maize system in China, reactive N (Nr) losses, and total N2O emissions from N fertilization both increased exponentially with increasing N application rate. On the basis of the N loss response curves from the literature meta-analysis, the direct N2O emission, NH3 volatilization, N leaching, and N runoff, and total N2O emission (direct + indirect) were calculated using information from the survey of farmers. The PFP-N (kilogram of harvested product per kilogram of N applied (kg (kg of N)(-1))) for 6259 farmers were relative low with only 37, 23, and 32 kg (kg of N)(-1) for rice, wheat, and maize systems, respectively. In comparison, the PFP-N for highest yield and PFP-N group (refers to fields where the PFP-N was within the 80-100th percentile among those fields that achieved yields within the 80-100th percentile) averaged 62, 42, and 53 kg (kg of N)(-1) for rice, wheat, and maize systems, respectively. The corresponding grain yield would increase by 1.6-2.3 Mg ha(-1), while the N application rate would be reduced by 56-100 kg of N ha(-1) from average farmer field to highest yield and PFP-N group. In return, the Nr loss intensity (4-11 kg of N (Mg of grain)(-1)) and total N2O emission intensity (0.15-0.29 kg of N (Mg of grain)(-1)) would both be reduced significantly as compared to current agricultural practices. In many circumstances, closing the PFP-N gap in intensive cropping systems is compatible with increased crop productivity and reductions in both Nr losses and total N2O emissions.

  11. The Pellini test as a brittle fracture criterion for components and for the determination of the application limits of fracture mechanics

    International Nuclear Information System (INIS)

    Schulze, H.D.

    1976-01-01

    Linear-elastic fracture mechanics have made it possible to make the brittle behaviour of cracks in components accessible for a description. The concepts envisaging an extension to yield point mechanics as well, which would allow the behaviour of cracks with large plastic deformations at the tip of the crack to be described, are at present not perfected enough yet to be applied in practice. The Pellini concept with its semi-quantitative statements closes at present this gap. (orig./RW) [de

  12. Efficient dynamic modeling of manipulators containing closed kinematic loops

    Science.gov (United States)

    Ferretti, Gianni; Rocco, Paolo

    An approach to efficiently solve the forward dynamics problem for manipulators containing closed chains is proposed. The two main distinctive features of this approach are: the dynamics of the equivalent open loop tree structures (any closed loop can be in general modeled by imposing some additional kinematic constraints to a suitable tree structure) is computed through an efficient Newton Euler formulation; the constraint equations relative to the most commonly adopted closed chains in industrial manipulators are explicitly solved, thus, overcoming the redundancy of Lagrange's multipliers method while avoiding the inefficiency due to a numerical solution of the implicit constraint equations. The constraint equations considered for an explicit solution are those imposed by articulated gear mechanisms and planar closed chains (pantograph type structures). Articulated gear mechanisms are actually used in all industrial robots to transmit motion from actuators to links, while planar closed chains are usefully employed to increase the stiffness of the manipulators and their load capacity, as well to reduce the kinematic coupling of joint axes. The accuracy and the efficiency of the proposed approach are shown through a simulation test.

  13. Brazilian Soybean Yields and Yield Gaps Vary with Farm Size

    Science.gov (United States)

    Jeffries, G. R.; Cohn, A.; Griffin, T. S.; Bragança, A.

    2017-12-01

    Understanding the farm size-specific characteristics of crop yields and yield gaps may help to improve yields by enabling better targeting of technical assistance and agricultural development programs. Linking remote sensing-based yield estimates with property boundaries provides a novel view of the relationship between farm size and yield structure (yield magnitude, gaps, and stability over time). A growing literature documents variations in yield gaps, but largely ignores the role of farm size as a factor shaping yield structure. Research on the inverse farm size-productivity relationship (IR) theory - that small farms are more productive than large ones all else equal - has documented that yield magnitude may vary by farm size, but has not considered other yield structure characteristics. We examined farm size - yield structure relationships for soybeans in Brazil for years 2001-2015. Using out-of-sample soybean yield predictions from a statistical model, we documented 1) gaps between the 95th percentile of attained yields and mean yields within counties and individual fields, and 2) yield stability defined as the standard deviation of time-detrended yields at given locations. We found a direct relationship between soy yields and farm size at the national level, while the strength and the sign of the relationship varied by region. Soybean yield gaps were found to be inversely related to farm size metrics, even when yields were only compared to farms of similar size. The relationship between farm size and yield stability was nonlinear, with mid-sized farms having the most stable yields. The work suggests that farm size is an important factor in understanding yield structure and that opportunities for improving soy yields in Brazil are greatest among smaller farms.

  14. Champagne Pool (New Zealand) Thermophiles Yield Insights into the Evolution of Microbial Arsenic Resistance

    Science.gov (United States)

    Hug, K.; Krikowa, F.; Morgan, X.; Maher, W. A.; Stott, M. B.; Moreau, J. W.

    2011-12-01

    Arsenic is a highly toxic metalloid typically enriched in geothermal waters due to aqueous weathering of arsenic-bearing minerals. Investigation of enzymatic pathways by which thermophilic microorganisms cope with toxic arsenic levels may yield insights into the evolution of arsenic resistance mechanisms on the early Earth. At Wai-O-Tapu in the Taupo Volcanic Zone on the North Island of New Zealand, hot springs with temperatures of 30-90°C and elemental sulfur concentrations (expressed as equivalent sulfate) from 340 to 850 mg/l establish a range of environmental conditions. Total arsenic concentrations varied from 0.083 mg/l to 56 mg/l. Arsenic speciation analysis elucidated various biogeochemical arsenic transformations occurring within different springs. For example, in the Alum Cliff spring oxidizing conditions (Eh = 225 mV) were expected to stabilize dissolved arsenate (AsO43-). However, HPLC-ICPMS analyses yielded dissolved arsenate and arsenite (AsO33-) concentrations of 0.25 mg/l versus 43.3 mg/l, respectively, and point towards microbial arsenate reduction as the likely mechanism for arsenic redox transformation. 16S rRNA gene cloning of Alum Cliff DNA showed a predominantly archaeal population with the dominant clone "AC1_A1" most closely related (99% sequence similarity, NCBI BLAST°) to the uncultured Sulfolobus clone "ChP_97P" found in Champagne Pool (Childs et al., 2008). The closest isolated relative to AC1_A1 is Sulfolobus tokodaii str. TW with a sequence similarity of 94%. Arsenic speciation measurements from the Alum Cliff spring suggest that clone AC1_A1 features the arsenate reduction resistance mechanism, and we hypothesize therefore that an arsC (homolog or analog) provides this functionality. The organic arsenic species monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA), detected via HPLC-ICPMS at concentrations ranging from 1 μg/l to 12 μg/l in various springs, may also implicate microbial methyl-group transfers as an active

  15. Historical effects of temperature and precipitation on California crop yields

    Energy Technology Data Exchange (ETDEWEB)

    Lobell, D.B. [Energy and Environment Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Cahill, K.N. [Interdisciplinary Graduate Program in Environment and Resources, Stanford University, Stanford, CA 94305 (United States); Field, C.B. [Department of Global Ecology, Carnegie Institution, Stanford, CA 94305 (United States)

    2007-03-15

    For the 1980-2003 period, we analyzed the relationship between crop yield and three climatic variables (minimum temperature, maximum temperature, and precipitation) for 12 major Californian crops: wine grapes, lettuce, almonds, strawberries, table grapes, hay, oranges, cotton, tomatoes, walnuts, avocados, and pistachios. The months and climatic variables of greatest importance to each crop were used to develop regressions relating yield to climatic conditions. For most crops, fairly simple equations using only 2-3 variables explained more than two-thirds of observed yield variance. The types of variables and months identified suggest that relatively poorly understood processes such as crop infection, pollination, and dormancy may be important mechanisms by which climate influences crop yield. Recent climatic trends have had mixed effects on crop yields, with orange and walnut yields aided, avocado yields hurt, and most crops little affected by recent climatic trends. Yield-climate relationships can provide a foundation for forecasting crop production within a year and for projecting the impact of future climate changes.

  16. The existential function of close relationships: introducing death into the science of love.

    Science.gov (United States)

    Mikulincer, Mario; Florian, Victor; Hirschberger, Gilad

    2003-01-01

    Originally, terror management theory proposed two psychological mechanisms in dealing with the terror of death awareness-cultural worldview validation and self-esteem enhancement. In this article, we would like to promote the idea of close relationships as an additional death-anxiety buffering mechanism and review a growing body of empirical data that support this contention. Based on a comprehensive analysis of the sociocultural and personal functions of close relationships, we formulate two basic hypotheses that have received empirical support in a series of experimental studies. First, death reminders heighten the motivation to form and maintain close relationships. Second, the maintenance of close relationships provides a symbolic shield against the terror of death, whereas the breaking of close relationships results in an upsurge of death awareness. In addition, we present empirical evidence supporting the possibility that close relationships function as a related yet separate mechanism from the self-esteem and cultural worldview defenses.

  17. Relationships between Mechanical Variables in the Traditional and Close-Grip Bench Press.

    Science.gov (United States)

    Lockie, Robert G; Callaghan, Samuel J; Moreno, Matthew R; Risso, Fabrice G; Liu, Tricia M; Stage, Alyssa A; Birmingham-Babauta, Samantha A; Stokes, John J; Giuliano, Dominic V; Lazar, Adrina; Davis, DeShaun L; Orjalo, Ashley J

    2017-12-01

    The study aim was to determine relationships between mechanical variables in the one-repetition maximum (1RM) traditional bench press (TBP) and close-grip bench press (CGBP). Twenty resistance-trained men completed a TBP and CGBP 1RM. The TBP was performed with the preferred grip; the CGBP with a grip width of 95% biacromial distance. A linear position transducer measured: lift distance and duration; work; and peak and mean power, velocity, and force. Paired samples t-tests (p velocity was greater for the CGBP (d = 0.50-1.29). The 1RM TBP correlated with CGBP 1RM, power, and force (r = 0.685-0.982). TBP work correlated with CGBP 1RM, lift distance, power, force, and work (r = 0.542-0.931). TBP power correlated with CGBP 1RM, power, force, velocity, and work (r = 0.484-0.704). TBP peak and mean force related to CGBP 1RM, power, and force (r = 0.596-0.980). Due to relationships between the load, work, power, and force for the TBP and CGBP, the CGBP could provide similar strength adaptations to the TBP with long-term use. The velocity profile for the CGBP was different to that of the TBP. The CGBP could be used specifically to improve high-velocity, upper-body pushing movements.

  18. Compression of freestanding gold nanostructures: from stochastic yield to predictable flow

    International Nuclear Information System (INIS)

    Mook, W M; Niederberger, C; Bechelany, M; Philippe, L; Michler, J

    2010-01-01

    Characterizing the mechanical response of isolated nanostructures is vitally important to fields such as microelectromechanical systems (MEMS) where the behaviour of nanoscale contacts can in large part determine system reliability and lifetime. To address this challenge directly, single crystal gold nanodots are compressed inside a high resolution scanning electron microscope (SEM) using a nanoindenter equipped with a flat punch tip. These structures load elastically, and then yield in a stochastic manner, at loads ranging from 16 to 110 μN, which is up to five times higher than the load necessary for flow after yield. Yielding is immediately followed by displacement bursts equivalent to 1-50% of the initial height, depending on the yield point. During the largest displacement bursts, strain energy within the structure is released while new surface area is created in the form of localized slip bands, which are evident in both the SEM movies and still-images. A first order estimate of the apparent energy release rate, in terms of fracture mechanics concepts, for bursts representing 5-50% of the structure's initial height is on the order of 10-100 J m -2 , which is approximately two orders of magnitude lower than bulk values. Once this initial strain burst during yielding has occurred, the structures flow in a ductile way. The implications of this behaviour, which is analogous to a brittle to ductile transition, are discussed with respect to mechanical reliability at the micro- and nanoscales.

  19. Possible changes to arable crop yields by 2050.

    Science.gov (United States)

    Jaggard, Keith W; Qi, Aiming; Ober, Eric S

    2010-09-27

    By 2050, the world population is likely to be 9.1 billion, the CO(2) concentration 550 ppm, the ozone concentration 60 ppb and the climate warmer by ca 2 degrees C. In these conditions, what contribution can increased crop yield make to feeding the world? CO(2) enrichment is likely to increase yields of most crops by approximately 13 per cent but leave yields of C4 crops unchanged. It will tend to reduce water consumption by all crops, but this effect will be approximately cancelled out by the effect of the increased temperature on evaporation rates. In many places increased temperature will provide opportunities to manipulate agronomy to improve crop performance. Ozone concentration increases will decrease yields by 5 per cent or more. Plant breeders will probably be able to increase yields considerably in the CO(2)-enriched environment of the future, and most weeds and airborne pests and diseases should remain controllable, so long as policy changes do not remove too many types of crop-protection chemicals. However, soil-borne pathogens are likely to be an increasing problem when warmer weather will increase their multiplication rates; control is likely to need a transgenic approach to breeding for resistance. There is a large gap between achievable yields and those delivered by farmers, even in the most efficient agricultural systems. A gap is inevitable, but there are large differences between farmers, even between those who have used the same resources. If this gap is closed and accompanied by improvements in potential yields then there is a good prospect that crop production will increase by approximately 50 per cent or more by 2050 without extra land. However, the demands for land to produce bio-energy have not been factored into these calculations.

  20. Assessment of competition and yield advantage in addition series of barley variety mixtures

    Directory of Open Access Journals (Sweden)

    Kari Jokinen

    1991-09-01

    Full Text Available In an addition series experiment the competition between three barley varieties (Agneta, Arra and Porno and the yield performance of mixtures were evaluated. Also two levels of nitrogen fertilization (50 and 100 kgN/ha were applied. Two approaches (the replacement series and the linear regression equation were used to analyse the competitive relationship based on grain yields in two-component mixtures. In three component mixtures the replacement series approach was applied. Both methods showed a similar dominance order of the varieties with Arra always being dominant and Agneta subordinate. The relationship between varieties was independent of the number of varieties in the mixture. Increase in available nitrogen strengthened the competitiveness of Arra especially in the dense, two-variety mixtures. Some mixtures over yielded but the differences were not statistically significant. The yield advantage based on relative yield total or on the ratio of actual and expected yield was greatest when the density and nitrogen fertilization were low and especially when one component in the mixture was a rather low yielding variety (Agneta. The land equivalent ratios (LER (the reference pure culture yield was the maximum yield of each variety were close to one, suggesting that under optimal growing conditions the yield advantage of barley varietal mixtures is marginal.

  1. An active micro joining mechanism for 3D assembly

    International Nuclear Information System (INIS)

    Mayyas, Mohammad; Zhang Ping; Lee, Woo Ho; Popa, Dan; Chiao, J C

    2009-01-01

    An active joining mechanism for the construction of microstructures, comprising detethered microparts and locking actuators fabricated on a wafer, has been implemented. An active locking mechanism is a system on chip (SOC) type of actuator which is designed to control the socket's opening to allow insertion of a micropart with zero force. This allows the delicate micropart to be secured without the need of substantial forces that could cause damage to the micropart or the socket. Moreover, it enhances the assembly throughput, tolerance and yield due to the frictionless self-alignment of the micropart. The design concept, assembly and extensive characterization have been illustrated for 100 µm thick microstructures made of SOI wafers and patterned by deep reactive ion etching. Single-sided and double-sided electrothermal bent beam actuators are utilized for the socket to actively open during assembly and close to lock the micropart against the locking mechanism. Finally, the mechanical and electrical characteristics of the joints can be further enhanced by reflow of the deposited layers of the 80Au–20Sn solder alloy at the contact areas

  2. Influence of yielding base and rigid base on propagation of Rayleigh ...

    Indian Academy of Sciences (India)

    The present study aims to study the propagation of Rayleigh-type wave in a layer, composed of isotropic viscoelastic material of Voigt type, with the effect of yielding base and rigid base in two distinct cases.With the aid of an analytical treatment, closed-form expressions of phase velocity and damped velocity for both the ...

  3. Effect of yield curves and porous crush on hydrocode simulations of asteroid airburst

    Science.gov (United States)

    Robertson, D. K.; Mathias, D. L.

    2017-03-01

    Simulations of asteroid airburst are being conducted to obtain best estimates of damage areas and assess sensitivity to variables for asteroid characterization and mitigation efforts. The simulations presented here employed the ALE3D hydrocode to examine the breakup and energy deposition of asteroids entering the Earth's atmosphere, using the Chelyabinsk meteor as a test case. This paper examines the effect of increasingly complex material models on the energy deposition profile. Modeling the meteor as a rock having a single strength can reproduce airburst altitude and energy deposition reasonably well but is not representative of real rock masses (large bodies of material). Accounting for a yield curve that includes different tensile, shear, and compressive strengths shows that shear strength determines the burst altitude. Including yield curves and compaction of porous spaces in the material changes the detailed mechanics of the breakup but only has a limited effect on the burst altitude and energy deposition. Strong asteroids fail and create peak energy deposition close to the altitude at which ram dynamic pressure equals the material strength. Weak asteroids, even though they structurally fail at high altitude, require the increased pressure at lower altitude to disrupt and disperse the rubble. As a result, a wide range of weaker asteroid strengths produce peak energy deposition at a similar altitude.

  4. Close the high seas to fishing?

    Directory of Open Access Journals (Sweden)

    Crow White

    2014-03-01

    Full Text Available The world's oceans are governed as a system of over 150 sovereign exclusive economic zones (EEZs, ∼42% of the ocean and one large high seas (HS commons (∼58% of ocean with essentially open access. Many high-valued fish species such as tuna, billfish, and shark migrate around these large oceanic regions, which as a consequence of competition across EEZs and a global race-to-fish on the HS, have been over-exploited and now return far less than their economic potential. We address this global challenge by analyzing with a spatial bioeconomic model the effects of completely closing the HS to fishing. This policy both induces cooperation among countries in the exploitation of migratory stocks and provides a refuge sufficiently large to recover and maintain these stocks at levels close to those that would maximize fisheries returns. We find that completely closing the HS to fishing would simultaneously give rise to large gains in fisheries profit (>100%, fisheries yields (>30%, and fish stock conservation (>150%. We also find that changing EEZ size may benefit some fisheries; nonetheless, a complete closure of the HS still returns larger fishery and conservation outcomes than does a HS open to fishing.

  5. Semiclassical statistical mechanics

    International Nuclear Information System (INIS)

    Stratt, R.M.

    1979-04-01

    On the basis of an approach devised by Miller, a formalism is developed which allows the nonperturbative incorporation of quantum effects into equilibrium classical statistical mechanics. The resulting expressions bear a close similarity to classical phase space integrals and, therefore, are easily molded into forms suitable for examining a wide variety of problems. As a demonstration of this, three such problems are briefly considered: the simple harmonic oscillator, the vibrational state distribution of HCl, and the density-independent radial distribution function of He 4 . A more detailed study is then made of two more general applications involving the statistical mechanics of nonanalytic potentials and of fluids. The former, which is a particularly difficult problem for perturbative schemes, is treated with only limited success by restricting phase space and by adding an effective potential. The problem of fluids, however, is readily found to yield to a semiclassical pairwise interaction approximation, which in turn permits any classical many-body model to be expressed in a convenient form. The remainder of the discussion concentrates on some ramifications of having a phase space version of quantum mechanics. To test the breadth of the formulation, the task of constructing quantal ensemble averages of phase space functions is undertaken, and in the process several limitations of the formalism are revealed. A rather different approach is also pursued. The concept of quantum mechanical ergodicity is examined through the use of numerically evaluated eigenstates of the Barbanis potential, and the existence of this quantal ergodicity - normally associated with classical phase space - is verified. 21 figures, 4 tables

  6. Close binary star type x-ray star and its mechanism of radiation

    Energy Technology Data Exchange (ETDEWEB)

    Hoshi, R [Rikkyo Univ., Tokyo (Japan). Dept. of Physics

    1975-09-01

    Recent progress of the study of an X-ray star is described. In 1970, the periodical emission of pulsed X-rays from Cen X-3 and Her X-1 was observed. An optically corresponding celestial object for the Cen X-3 was reported in 1973, and the mass of Cen X-3 was revised. The optical object was named after Krzeminsky. From the observed variation of luminosity, it is said that the Krzeminsky's star is deformed. This fact gave new data on the mass of the Cen X-3, and the mass is several times as large as the previously estimated value. The behavior of the Her X-1 shows four kinds of clear time variation, and indicates the characteristics of an X-ray star. The Her X-1 is an X-ray pulser the same as Cen X-3, and is a close binary star. The opposite star is known as HZ-Her, and shows weaker luminosity than the intensity of X-ray from the Her X-1. Thirty-five day period was seen in the intensity variation of X-ray. The mechanism of X-ray pulsing can be explained by material flow into a neutron star. The energy spectrum from Her X-1 is different from that from the Cen X-3. Another X-ray star, Cyg X-1, is considered to be a black hole from its X-ray spectrum.

  7. Microstructure, Slip Systems and Yield Stress Anisotropy in Plastic Deformation

    DEFF Research Database (Denmark)

    Winther, Grethe; You, Ze Sheng; Lu, Lei

    The highly anisotropic microstructures in nanotwinned copper produced by electrodeposition provide an excellent opportunity to evaluate models for microstructurally induced mechanical anisotropy. A crystal plasticity model originally developed for the integration of deformation induced dislocatio...... boundaries with texture is applied to account for the effects of texture as well as twin and grain boundaries, providing good qualitative agreement with experimental yield stress and yield stress anisotropy data....

  8. Cowpeas and pinto beans: Performance and yields of candidate space crops in the laboratory biosphere closed ecological system

    Science.gov (United States)

    Nelson, M.; Dempster, W. F.; Allen, J. P.; Silverstone, S.; Alling, A.; van Thillo, M.

    An experiment utilizing cowpeas ( Vigna unguiculata L.), pinto beans ( Phaseolus vulgaris L.) and Apogee ultra-dwarf wheat ( Triticum sativa L.) was conducted in the soil-based closed ecological facility, Laboratory Biosphere, from February to May 2005. The lighting regime was 13 h light/11 h dark at a light intensity of 960 μmol m -2 s -1, 45 mol m -2 day -1 supplied by high-pressure sodium lamps. The pinto beans and cowpeas were grown at two different planting densities. Pinto bean production was 341.5 g dry seed m -2 (5.42 g m -2 day -1) and 579.5 dry seed m -2 (9.20 g m -2 day -1) at planted densities of 32.5 plants m -2 and 37.5 plants m -2, respectively. Cowpea yielded 187.9 g dry seed m -2 (2.21 g m -2 day -1) and 348.8 dry seed m -2 (4.10 g m -2 day -1) at planted densities of 20.8 plants m -2 and 27.7 plants m -2, respectively. The crop was grown at elevated atmospheric carbon dioxide levels, with levels ranging from 300-3000 ppm daily during the majority of the crop cycle. During early stages (first 10 days) of the crop, CO 2 was allowed to rise to 7860 ppm while soil respiration dominated, and then was brought down by plant photosynthesis. CO 2 was injected 27 times during days 29-71 to replenish CO 2 used by the crop during photosynthesis. Temperature regime was 24-28 °C day/deg 20-24 °C night. Pinto bean matured and was harvested 20 days earlier than is typical for this variety, while the cowpea, which had trouble establishing, took 25 days more for harvest than typical for this variety. Productivity and atmospheric dynamic results of these studies contribute toward the design of an envisioned ground-based test bed prototype Mars base.

  9. Genotypic Variation in Yield, Yield Components, Root Morphology and Architecture, in Soybean in Relation to Water and Phosphorus Supply

    Science.gov (United States)

    He, Jin; Jin, Yi; Du, Yan-Lei; Wang, Tao; Turner, Neil C.; Yang, Ru-Ping; Siddique, Kadambot H. M.; Li, Feng-Min

    2017-01-01

    Water shortage and low phosphorus (P) availability limit yields in soybean. Roots play important roles in water-limited and P-deficient environment, but the underlying mechanisms are largely unknown. In this study we determined the responses of four soybean [Glycine max (L.) Merr.] genotypes [Huandsedadou (HD), Bailudou (BLD), Jindou 21 (J21), and Zhonghuang 30 (ZH)] to three P levels [applied 0 (P0), 60 (P60), and 120 (P120) mg P kg-1 dry soil to the upper 0.4 m of the soil profile] and two water treatment [well-watered (WW) and water-stressed (WS)] with special reference to root morphology and architecture, we compared yield and its components, root morphology and root architecture to find out which variety and/or what kind of root architecture had high grain yield under P and drought stress. The results showed that water stress and low P, respectively, significantly reduced grain yield by 60 and 40%, daily water use by 66 and 31%, P accumulation by 40 and 80%, and N accumulation by 39 and 65%. The cultivar ZH with the lowest daily water use had the highest grain yield at P60 and P120 under drought. Increased root length was positively associated with N and P accumulation in both the WW and WS treatments, but not with grain yield under water and P deficits. However, in the WS treatment, high adventitious and lateral root densities were associated with high N and P uptake per unit root length which in turn was significantly and positively associated with grain yield. Our results suggest that (1) genetic variation of grain yield, daily water use, P and N accumulation, and root morphology and architecture were observed among the soybean cultivars and ZH had the best yield performance under P and water limited conditions; (2) water has a major influence on nutrient uptake and grain yield, while additional P supply can modestly increase yields under drought in some soybean genotypes; (3) while conserved water use plays an important role in grain yield under drought

  10. Effect of the Yield Stress and r-value Distribution on the Earing Profile of Cup Drawing with Yld2000-2d Yield Function

    Science.gov (United States)

    Lou, Yanshan; Bae, Gihyun; Lee, Changsoo; Huh, Hoon

    2010-06-01

    This paper deals with the effect of the yield stress and r-value distribution on the earing in the cup drawing. The anisotropic yield function, Yld2000-2d yield function, is selected to describe the anisotropy of two metal sheets, 719B and AA5182-O. The tool dimension is referred from the Benchmark problem of NUMISHEET'2002. The Downhill Simplex method is applied to identify the anisotropic coefficients in Yld2000-2d yield function. Simulations of the drawing process are performed to investigate the earing profile of two materials. The earing profiles obtained from simulations are compared with the analytical model developed by Hosford and Caddell. Simulations are conducted with respect to the change of the yield stress and r-value distribution, respectively. The correlation between the anisotropy and the earing tendency is investigated based on simulation data. Finally, the earing mechanism is analyzed through the deformation process of the blank during the cup deep drawing. It can be concluded that ears locate at angular positions with lower yield stress and higher r-value while the valleys appear at the angular position with higher yield stress and lower r-value. The effect of the yield stress distribution is more important for the cup height distribution than that of the r-value distribution.

  11. Formation mechanism and yield of molecules ejected from ZnS, CdS, and FeS2 during ion bombardment

    International Nuclear Information System (INIS)

    Nikzad, S.; Calaway, W.F.; Pellin, M.J.; Young, C.E.; Gruen, D.M.; Tombrello, T.A.

    1994-01-01

    Neutral species ejected from single crystals of ZnS, CdS, and FeS 2 during ion bombardment by 3 keV Ar + were detected by laser post-ionization followed by time-of-flight mass spectrometry. While metal atoms (Fe, Zn, Cd) and S 2 were the dominant species observed, substantial amounts of S, FeS, Zn 2 , ZnS, Cd 2 , and CdS were also detected. The experimental results demonstrate that molecules represent a larger fraction of the sputtered yield than was previously believed from secondary ion mass spectrometry experiments. In addition, the data suggest that the molecules are not necessarily formed from adjacent atoms in the solid and that a modified form of the recombination model could provide a mechanism for their formation

  12. Identifying the closeness of eigenstates in quantum many-body systems

    International Nuclear Information System (INIS)

    Li Hai-bin; Yang Yang; Wang Pei; Wang Xiao-guang

    2017-01-01

    We propose a quantity called modulus fidelity to measure the closeness of two quantum pure states. We use it to investigate the closeness of eigenstates in one-dimensional hard-core bosons. When the system is integrable, eigenstates close to their neighbor or not, which leads to a large fluctuation in the distribution of modulus fidelity. When the system becomes chaos, the fluctuation is reduced dramatically, which indicates all eigenstates become close to each other. It is also found that two kind of closeness, i.e., closeness of eigenstates and closeness of eigenvalues, are not correlated at integrability but correlated at chaos. We also propose that the closeness of eigenstates is the underlying mechanism of eigenstate thermalization hypothesis (ETH) which explains the thermalization in quantum many-body systems. (paper)

  13. Closed cycle MHD specialist meeting. Progress report, 1971--1972

    International Nuclear Information System (INIS)

    Rietjens, L.H.

    1972-04-01

    Abstracts of the conference papers on closed cycle MHD research are presented. The general areas of discussion are the following: results on closed cycle experiments; plasma properties, and instabilities and stabilization in nonequilibrium plasmas; loss mechanisms, current distributions, electrode effects, boundary layers, and gas dynamic effects; and design concepts of large MHD generators, and nuclear MHD power plants. (GRA)

  14. Optimizing rice yields while minimizing yield-scaled global warming potential.

    Science.gov (United States)

    Pittelkow, Cameron M; Adviento-Borbe, Maria A; van Kessel, Chris; Hill, James E; Linquist, Bruce A

    2014-05-01

    To meet growing global food demand with limited land and reduced environmental impact, agricultural greenhouse gas (GHG) emissions are increasingly evaluated with respect to crop productivity, i.e., on a yield-scaled as opposed to area basis. Here, we compiled available field data on CH4 and N2 O emissions from rice production systems to test the hypothesis that in response to fertilizer nitrogen (N) addition, yield-scaled global warming potential (GWP) will be minimized at N rates that maximize yields. Within each study, yield N surplus was calculated to estimate deficit or excess N application rates with respect to the optimal N rate (defined as the N rate at which maximum yield was achieved). Relationships between yield N surplus and GHG emissions were assessed using linear and nonlinear mixed-effects models. Results indicate that yields increased in response to increasing N surplus when moving from deficit to optimal N rates. At N rates contributing to a yield N surplus, N2 O and yield-scaled N2 O emissions increased exponentially. In contrast, CH4 emissions were not impacted by N inputs. Accordingly, yield-scaled CH4 emissions decreased with N addition. Overall, yield-scaled GWP was minimized at optimal N rates, decreasing by 21% compared to treatments without N addition. These results are unique compared to aerobic cropping systems in which N2 O emissions are the primary contributor to GWP, meaning yield-scaled GWP may not necessarily decrease for aerobic crops when yields are optimized by N fertilizer addition. Balancing gains in agricultural productivity with climate change concerns, this work supports the concept that high rice yields can be achieved with minimal yield-scaled GWP through optimal N application rates. Moreover, additional improvements in N use efficiency may further reduce yield-scaled GWP, thereby strengthening the economic and environmental sustainability of rice systems. © 2013 John Wiley & Sons Ltd.

  15. Closing oil palm yield gaps among Indonesian smallholders through industry schemes, pruning, weeding and improved seeds

    OpenAIRE

    Soliman, T.; Lim, F. K. S.; Lee, J. S. H.; Carrasco, L. R.

    2016-01-01

    Oil palm production has led to large losses of valuable habitats for tropical biodiversity. Sparing of land for nature could in theory be attained if oil palm yields increased. The efficiency of oil palm smallholders is below its potential capacity, but the factors determining efficiency are poorly understood. We employed a two-stage data envelopment analysis approach to assess the influence of agronomic, supply chain and management factors on oil palm production efficiency in 190 smallholder...

  16. Non-destructive clearance measuring in closed joints

    International Nuclear Information System (INIS)

    Doucelance, C.; Manaranche, J.C.

    1976-01-01

    Two methods for clearance measuring in closed joints are described. The first one is based on the mechanical impedance concept, while the other one requires a shock test on shaker. Both are illustrated with an example of application [fr

  17. Predicting oil and gas compositional yields via chemical structure-chemical yield modeling (CS-CYM): Part 1 - Concepts and implementation

    Energy Technology Data Exchange (ETDEWEB)

    Freund, H.; Walters, C.C.; Kelemen, S.R.; Siskin, M.; Gorbaty, M.L.; Curry, D.J.; Bence, A.E. [ExxonMobil Research & Engineering Co., Annandale, NJ (United States)

    2007-07-01

    We have developed a method to calculate the amounts and composition of products resulting from the thermal decomposition of a solid complex carbonaceous material. This procedure provides a means of using laboratory measurements of complex carbonaceous solids to construct a representative model of its chemical structure (CS) that is then coupled with elementary reaction pathways to predict the chemical yield (CY) upon thermal decomposition. Data from elemental analysis, H, N, O, S, solid state {sup 13}C NMR, X-ray photoelectron spectroscopy (XPS), sulfur X-ray absorption structure spectroscopy (XANES), and pyrolysis-gas chromatography (GC) are used to constrain the construction of core molecular structures representative of the complex carbonaceous material. These core structures are expanded stochastically to describe large macromolecules ({gt} 10{sup 6} cores with similar to 10{sup 6} atoms) with bulk properties that match the experimental results. Gas, liquid and solid product yields, resulting from thermal decomposition, are calculated by identifying reactive functional groups within the CS stochastic ensemble and imposing a reaction network constrained by fundamental thermodynamics and kinetics. An expulsion model is added to the decomposition model to calculate the chemical products in open and closed systems. Product yields may then be predicted under a wide range of time-temperature conditions used in rapid laboratory pyrolysis experiments, refinery processes, or geologic maturation.

  18. Kinetics, Mechanism, and Secondary Organic Aerosol Yield of Aqueous Phase Photo-oxidation of α-Pinene Oxidation Products.

    Science.gov (United States)

    Aljawhary, Dana; Zhao, Ran; Lee, Alex K Y; Wang, Chen; Abbatt, Jonathan P D

    2016-03-10

    Formation of secondary organic aerosol (SOA) involves atmospheric oxidation of volatile organic compounds (VOCs), the majority of which are emitted from biogenic sources. Oxidation can occur not only in the gas-phase but also in atmospheric aqueous phases such as cloudwater and aerosol liquid water. This study explores for the first time the aqueous-phase OH oxidation chemistry of oxidation products of α-pinene, a major biogenic VOC species emitted to the atmosphere. The kinetics, reaction mechanisms, and formation of SOA compounds in the aqueous phase of two model compounds, cis-pinonic acid (PIN) and tricarballylic acid (TCA), were investigated in the laboratory; TCA was used as a surrogate for 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA), a known α-pinene oxidation product. Aerosol time-of-flight chemical ionization mass spectrometry (Aerosol-ToF-CIMS) was used to follow the kinetics and reaction mechanisms at the molecular level. Room-temperature second-order rate constants of PIN and TCA were determined to be 3.3 (± 0.5) × 10(9) and 3.1 (± 0.2) × 10(8) M(-1) s(-1), respectively, from which were estimated their condensed-phase atmospheric lifetimes. Aerosol-ToF-CIMS detected a large number of products leading to detailed reaction mechanisms for PIN and MBTCA. By monitoring the particle size distribution after drying, the amount of SOA material remaining in the particle phase was determined. An aqueous SOA yield of 40 to 60% was determined for PIN OH oxidation. Although recent laboratory studies have focused primarily on aqueous-phase processing of isoprene-related compounds, we demonstrate that aqueous formation of SOA materials also occurs from monoterpene oxidation products, thus representing an additional source of biogenically driven aerosol formation.

  19. Effect of Integrated Nutrient Management on Yield and Yield ...

    African Journals Online (AJOL)

    Declining soil fertility is one of the major problems causing yield reduction of barley ... (VC) with inorganic NP on growth, yield and yield components of food barley. ... The experiments were laid out in a randomized complete block design with ...

  20. Study of pp{yields}pp{eta} reaction at threshold; Etude de la reaction pp{yields}pp{eta} au seuil

    Energy Technology Data Exchange (ETDEWEB)

    Taleb, A

    1994-11-01

    The {eta} production has been studied through the pp {yields} pp{eta} reaction at threshold. Data were taken at the Synchrotron of the ``Laboratoire National Saturne``. The detection in coincidence of the two protons scattered near 0 deg and analysed with the magnetic spectrometer SPES3 allows the reconstruction of missing mass spectra for the {eta} signature. A simulation program which takes into account all the experimental set up characteristics has been realized and tested through the pp {yields} d{pi}{sup +} reaction detected simultaneously with pp {yields} pp{eta}. The generated proton momentum spectra for pp {yields} pp{eta} show a pronounced {eta} mass dependence. This characteristic, connected to the kinematical properties of pp {yields} pp{eta} at threshold, is used to extract the mass of the meson {eta}. The obtained value, m{sub {eta}} = 547.65 {+-} 0.18 MeV, is in good agreement with measurement done recently through the pd {yields} {sup H}e{eta} reaction. The total cross section {sigma}{sub t} of pp {yields} pp{eta} measured at 1260, 1265 and 1300 MeV presents a strong energy dependence. This cross section increases less with energy than the phase-space. The influence of p-p and {eta}-p final state interactions in our measurements is studied. Our results are compared with theoretical predictions and assess the dominant character of the baryonic resonance N{sup *}(1535) in the {eta} mechanism production at threshold. These experimental results give an energy dependence which is not well reproduced by the theoretical predictions. This discrepancy could be an incorrect description of the {eta}-p interaction in the models. (author). 48 refs., 60 figs., 15 tabs.

  1. Analysis of the static yield stress for giant electrorheological fluids

    Science.gov (United States)

    Seo, Youngwook P.; Choi, Hyoung Jin; Seo, Yongsok

    2017-08-01

    Cheng et al. (2010)'s experimental results for the static yield stress of giant electrorheological (GER) fluids over the full range of electric field strengths were reanalyzed by applying Seo's scaling function which could include both the polarization and the conductivity models. The Seo's scaling function could correctly fit the yield stress behavior of GER suspensions behavior after if a proper normalization of the yield stress data was taken which collapse them onto a single curve. The model predictions were also contrasted with recently proposed Choi et al.'s scaling function to rouse the attention for a proper consideration of the GER fluid mechanisms.

  2. Influence of yield surface curvature on the macroscopic yielding and ductile failure of isotropic porous plastic materials

    Science.gov (United States)

    Dæhli, Lars Edvard Bryhni; Morin, David; Børvik, Tore; Hopperstad, Odd Sture

    2017-10-01

    Numerical unit cell models of an approximative representative volume element for a porous ductile solid are utilized to investigate differences in the mechanical response between a quadratic and a non-quadratic matrix yield surface. A Hershey equivalent stress measure with two distinct values of the yield surface exponent is employed as the matrix description. Results from the unit cell calculations are further used to calibrate a heuristic extension of the Gurson model which incorporates effects of the third deviatoric stress invariant. An assessment of the porous plasticity model reveals its ability to describe the unit cell response to some extent, however underestimating the effect of the Lode parameter for the lower triaxiality ratios imposed in this study when compared to unit cell simulations. Ductile failure predictions by means of finite element simulations using a unit cell model that resembles an imperfection band are then conducted to examine how the non-quadratic matrix yield surface influences the failure strain as compared to the quadratic matrix yield surface. Further, strain localization predictions based on bifurcation analyses and imperfection band analyses are undertaken using the calibrated porous plasticity model. These simulations are then compared to the unit cell calculations in order to elucidate the differences between the various modelling strategies. The current study reveals that strain localization analyses using an imperfection band model and a spatially discretized unit cell are in reasonable agreement, while the bifurcation analyses predict higher strain levels at localization. Imperfection band analyses are finally used to calculate failure loci for the quadratic and the non-quadratic matrix yield surface under a wide range of loading conditions. The underlying matrix yield surface is demonstrated to have a pronounced influence on the onset of strain localization.

  3. Yield trends and yield gap analysis of major crops in the world

    OpenAIRE

    Hengsdijk, H.; Langeveld, J.W.A.

    2009-01-01

    This study aims to quantify the gap between current and potential yields of major crops in the world, and the production constraints that contribute to this yield gap. Using an expert-based evaluation of yield gaps and the literature, global and regional yields and yield trends of major crops are quantified, yield gaps evaluated by crop experts, current yield progress by breeding estimated, and different yield projections compared. Results show decreasing yield growth for wheat and rice, but ...

  4. Large-scale production of lentiviral vector in a closed system hollow fiber bioreactor

    Directory of Open Access Journals (Sweden)

    Jonathan Sheu

    Full Text Available Lentiviral vectors are widely used in the field of gene therapy as an effective method for permanent gene delivery. While current methods of producing small scale vector batches for research purposes depend largely on culture flasks, the emergence and popularity of lentiviral vectors in translational, preclinical and clinical research has demanded their production on a much larger scale, a task that can be difficult to manage with the numbers of producer cell culture flasks required for large volumes of vector. To generate a large scale, partially closed system method for the manufacturing of clinical grade lentiviral vector suitable for the generation of induced pluripotent stem cells (iPSCs, we developed a method employing a hollow fiber bioreactor traditionally used for cell expansion. We have demonstrated the growth, transfection, and vector-producing capability of 293T producer cells in this system. Vector particle RNA titers after subsequent vector concentration yielded values comparable to lentiviral iPSC induction vector batches produced using traditional culture methods in 225 cm2 flasks (T225s and in 10-layer cell factories (CF10s, while yielding a volume nearly 145 times larger than the yield from a T225 flask and nearly three times larger than the yield from a CF10. Employing a closed system hollow fiber bioreactor for vector production offers the possibility of manufacturing large quantities of gene therapy vector while minimizing reagent usage, equipment footprint, and open system manipulation.

  5. Equity yields

    NARCIS (Netherlands)

    Vrugt, E.; van Binsbergen, J.H.; Koijen, R.S.J.; Hueskes, W.

    2013-01-01

    We study a new data set of dividend futures with maturities up to ten years across three world regions: the US, Europe, and Japan. We use these asset prices to construct equity yields, analogous to bond yields. We decompose the equity yields to obtain a term structure of expected dividend growth

  6. Inflation in a closed universe

    Science.gov (United States)

    Ratra, Bharat

    2017-11-01

    To derive a power spectrum for energy density inhomogeneities in a closed universe, we study a spatially-closed inflation-modified hot big bang model whose evolutionary history is divided into three epochs: an early slowly-rolling scalar field inflation epoch and the usual radiation and nonrelativistic matter epochs. (For our purposes it is not necessary to consider a final dark energy dominated epoch.) We derive general solutions of the relativistic linear perturbation equations in each epoch. The constants of integration in the inflation epoch solutions are determined from de Sitter invariant quantum-mechanical initial conditions in the Lorentzian section of the inflating closed de Sitter space derived from Hawking's prescription that the quantum state of the universe only include field configurations that are regular on the Euclidean (de Sitter) sphere section. The constants of integration in the radiation and matter epoch solutions are determined from joining conditions derived by requiring that the linear perturbation equations remain nonsingular at the transitions between epochs. The matter epoch power spectrum of gauge-invariant energy density inhomogeneities is not a power law, and depends on spatial wave number in the way expected for a generalization to the closed model of the standard flat-space scale-invariant power spectrum. The power spectrum we derive appears to differ from a number of other closed inflation model power spectra derived assuming different (presumably non de Sitter invariant) initial conditions.

  7. Growth and yield of different brassica genotypes under saline sodic conditions

    International Nuclear Information System (INIS)

    Ali, A.; Mahmood, I.A.; Salim, M.

    2013-01-01

    A field study was conducted at farmer's salt-affected field (ECe=12.3 dS m/sup -1/; pH=9.7; SAR=46.2) in Hafizabad to test growth and yield response of six Brassica cultivars (BARD-I, Dunkled, Rainbow, BRS-II, Sultan Raya and cv. 95102-5) under saline sodic conditions. Data on growth and yield parameters were collected randomly (average of five plants per replication) at the time of crop maturity. Ionic concentration in plant tissues and oil content in seeds were also determined. Comparatively more number of branches and pods per plant were produced by cultivar Dunkled closely followed by BARD-I while maximum seed yield (241.7 and 235.1 kg ha ) was obtained from Dunkled and Sultan Raya, respectively which was statistically at par. However, BRS-II and Rainbow showed significantly more percent oil contents in their seeds but genotype Dunkled showed minimum Na+ and K+ concentration in their tissues. (author)

  8. Tuberous Roots Yield, Transpiration Rate, Stomatal Conductance and Water Use Efficiency of Divergent Cassava Clones as Influenced by Climate and Growth Stage

    International Nuclear Information System (INIS)

    Githunguri, C.M; Chewa, J.A; Ekanayake, I.J

    1999-01-01

    Cassava roots provide a cheap source of dietary energy to millions of people in the tropics. Variations in yield, stomatal conductance, transpiration rate and water use efficiency occur due to various factors. This makes selection of clones with wide ecological adaptation and high yield difficult. The influence of crop age and agroecozones (AEZ) in Nigeria on above parametres were studied. The tested AEZs were Sudan savanna (Minjibir), Southern Guinea savanna (Mokwa) and forest-savanna transition (Ibadan) AEZ. The environment plays a significant role in determining root yield with plant age playing a bigger role at the early stages. Results suggest root development was restricted by low moisture stress. Cassava ought to be harvested at eight months after planting (MAP) rather than at 12 MAP in order to obtain maximum yields. Yields at Mokwa were significantly higher than both Minjibir and Ibadan suggesting that cassava is not a crop for either forest or semi arid zones. During both seasons Minjbir had the highest stomatal conductance trend while Ibadan had the lowest. Stomatal conductance at Minjibir becomes critical at 12 MAP. The highest transpiration rate was recorded at Minijibir at 4 and 12 MAP. The lowest transpiration rate ws observed at Ibadan. The lowest transpiration rate was also observed during drought. There was a close positive close relationship between tuberous roots yield and transpiration. The lowest and highest water use efficiency (WUE) was recorded at 4 and 8 MAP during rains. The lowest and the highest WUE was recorded at Ibadan and Mokwa respectively. The two seasons trends were similar. Clone TMS 50395 had the highest WUE. Tere was close positive relationship between WUE and tuberous roots yield

  9. Mutually beneficial pollinator diversity and crop yield outcomes in small and large farms.

    Science.gov (United States)

    Garibaldi, Lucas A; Carvalheiro, Luísa G; Vaissière, Bernard E; Gemmill-Herren, Barbara; Hipólito, Juliana; Freitas, Breno M; Ngo, Hien T; Azzu, Nadine; Sáez, Agustín; Åström, Jens; An, Jiandong; Blochtein, Betina; Buchori, Damayanti; Chamorro García, Fermín J; Oliveira da Silva, Fabiana; Devkota, Kedar; Ribeiro, Márcia de Fátima; Freitas, Leandro; Gaglianone, Maria C; Goss, Maria; Irshad, Mohammad; Kasina, Muo; Pacheco Filho, Alípio J S; Kiill, Lucia H Piedade; Kwapong, Peter; Parra, Guiomar Nates; Pires, Carmen; Pires, Viviane; Rawal, Ranbeer S; Rizali, Akhmad; Saraiva, Antonio M; Veldtman, Ruan; Viana, Blandina F; Witter, Sidia; Zhang, Hong

    2016-01-22

    Ecological intensification, or the improvement of crop yield through enhancement of biodiversity, may be a sustainable pathway toward greater food supplies. Such sustainable increases may be especially important for the 2 billion people reliant on small farms, many of which are undernourished, yet we know little about the efficacy of this approach. Using a coordinated protocol across regions and crops, we quantify to what degree enhancing pollinator density and richness can improve yields on 344 fields from 33 pollinator-dependent crop systems in small and large farms from Africa, Asia, and Latin America. For fields less than 2 hectares, we found that yield gaps could be closed by a median of 24% through higher flower-visitor density. For larger fields, such benefits only occurred at high flower-visitor richness. Worldwide, our study demonstrates that ecological intensification can create synchronous biodiversity and yield outcomes. Copyright © 2016, American Association for the Advancement of Science.

  10. Chemical and mechanical efficiencies of molecular motors and implications for motor mechanisms

    International Nuclear Information System (INIS)

    Wang Hongyun

    2005-01-01

    Molecular motors operate in an environment dominated by viscous friction and thermal fluctuations. The chemical reaction in a motor may produce an active force at the reaction site to directly move the motor forward. Alternatively a molecular motor may generate a unidirectional motion by rectifying thermal fluctuations using free energy barriers established in the chemical reaction. The reaction cycle has many occupancy states, each having a different effect on the motor motion. The average effect of the chemical reaction on the motor motion can be characterized by the motor potential profile. The biggest advantage of studying the motor potential profile is that it can be reconstructed from the time series of motor positions measured in single-molecule experiments. In this paper, we use the motor potential profile to express the Stokes efficiency as the product of the chemical efficiency and the mechanical efficiency. We show that both the chemical and mechanical efficiencies are bounded by 100% and, thus, are properly defined efficiencies. We discuss implications of high efficiencies for motor mechanisms: a mechanical efficiency close to 100% implies that the motor potential profile is close to a constant slope; a chemical efficiency close to 100% implies that (i) the chemical transitions are not slower than the mechanical motion and (ii) the equilibrium constant of each chemical transition is close to one

  11. X-ray transition yields of low-Z kaonic atoms produced in Kapton

    Energy Technology Data Exchange (ETDEWEB)

    Bazzi, M. [INFN, Laboratori Nazionali di Frascati, C.P. 13, Via E. Fermi 40, I-00044 Frascati (Roma) (Italy); Beer, G. [Department of Physics and Astronomy, University of Victoria, P.O. Box 1700 STN CNC, Victoria, BC V8W 2Y2 (Canada); Berucci, C. [INFN, Laboratori Nazionali di Frascati, C.P. 13, Via E. Fermi 40, I-00044 Frascati (Roma) (Italy); Stefan-Meyer-Institut für subatomare Physik, Boltzmanngasse 3, 1090 Wien (Austria); Bombelli, L. [Politecnico di Milano, Dipartimento di Elettronica e Informazione, Piazza L. da Vinci 32, I-20133 Milano (Italy); Bragadireanu, A.M. [INFN, Laboratori Nazionali di Frascati, C.P. 13, Via E. Fermi 40, I-00044 Frascati (Roma) (Italy); IFIN-HH, Institutul National pentru Fizica si Inginerie Nucleara Horia Hulubei, Reactorului 30, Magurele (Romania); Cargnelli, M. [Stefan-Meyer-Institut für subatomare Physik, Boltzmanngasse 3, 1090 Wien (Austria); Curceanu, C.; D' Uffizi, A. [INFN, Laboratori Nazionali di Frascati, C.P. 13, Via E. Fermi 40, I-00044 Frascati (Roma) (Italy); Fiorini, C. [Politecnico di Milano, Dipartimento di Elettronica e Informazione, Piazza L. da Vinci 32, I-20133 Milano (Italy); Ghio, F. [INFN Sezione di Roma I and Instituto Superiore di Sanita, I-00161 Roma (Italy); Guaraldo, C. [INFN, Laboratori Nazionali di Frascati, C.P. 13, Via E. Fermi 40, I-00044 Frascati (Roma) (Italy); Hayano, R.S. [University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo (Japan); Iliescu, M. [INFN, Laboratori Nazionali di Frascati, C.P. 13, Via E. Fermi 40, I-00044 Frascati (Roma) (Italy); Ishiwatari, T., E-mail: tomoichi.ishiwatari@assoc.oeaw.ac.at [Stefan-Meyer-Institut für subatomare Physik, Boltzmanngasse 3, 1090 Wien (Austria); Iwasaki, M. [RIKEN, Institute of Physical and Chemical Research, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); and others

    2013-10-23

    The X-ray transition yields of kaonic atoms produced in Kapton polyimide (C{sub 22}H{sub 10}N{sub 2}O{sub 5}) were measured for the first time in the SIDDHARTA experiment. X-ray yields of the kaonic atoms with low atomic numbers (Z=6,7, and 8) and transitions with high principal quantum numbers (n=5–8) were determined. The relative yields of the successive transitions in the same atoms and the yield ratios of carbon-to-nitrogen (C:N) and carbon-to-oxygen (C:O) for the same transitions were also determined. These X-ray yields provide important information for understanding the capture ratios and cascade mechanisms of kaonic atoms produced in a compound material, such as Kapton.

  12. Harvesting Method Affects Water Dynamics and Yield of Sweet Orange with Huanglongbing

    Directory of Open Access Journals (Sweden)

    Said A. Hamido

    2018-03-01

    Full Text Available Changes in grove management practices may change crop water dynamics. The objective of this study was to estimate sap flow, stem water potential (Ψstem, and citrus yield as affected by harvesting methods in sweet orange (Citrus sinensis trees affected by Huanglongbing. The study was initiated in March 2015 for two years on five-year-old commercial sweet orange trees at a commercial grove located at Felda, Florida (26.61° N, 81.48° W on Felda fine sand soil (Loamy, siliceous, superactive, hyperthermic Arenic Endoaqualfs. All measurements were replicated before and after harvest in four experiments (A, B, C and D under hand and mechanical harvesting treatments. Sap flow measurements were taken on four trees per treatment with two sensors per tree. Sap flow measured by the heat balance method at hourly intervals during March and April of 2015 and 2016 significantly declined after harvesting by 25% and 35% after hand and mechanical harvesting, respectively. Ψstem measured after harvest was significantly higher than measurements before harvest. The average value of Ψstem measured increased by 10% and 6% after hand and mechanical harvesting, respectively. Mechanical harvesting exhibited lower fruit yields that averaged between 83%, 63%, 49% and 36% of hand-harvested trees under A, B, C and D experiments, respectively. It is concluded that the hand harvesting method is less stressful and less impactful on tree water uptake and fruit yield compared with mechanical harvesting.

  13. Optimization of Mechanical Expression of Castor Seeds Oil (Ricinus communis using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    J. O. Olaoye

    2017-12-01

    Full Text Available The effect of the processing parameters of Castor seed on its oil yield was investigated. The castor seeds were passed through drying, crushing and separation into seeds and shells. These processing conditions were further succeeded by seed roasting and subsequent mechanical expression of the roasted nut by means of screw press in the course of its preparation for oil expression. Seed samples were conditioned by adding calculated amount of distilled water to obtain different moisture levels from the initial moisture content of the seeds. Samples were roasted at the temperatures of 83.18, 90.00, 100.00, 110.00 and 116.82°C, over periods of 6.59, 10.00, 15.00, 20.00 and 23.41min, seed moisture content of 6.32, 7.00, 8.00, 9.00 and 9.68 % wb, respectively and the oil was expressed using a screw roaster-expeller. Optimization of the oil expression process was achieved by applying Central Composite Rotatable Design of Response Surface Methodology. The optimal conditions for oil yield within the experimental range of the studied variables were 7%, 110°C and 20 min; moisture content, roasting temperature and roasting duration respectively. These values of the optimum process conditions were used to predict optimum value of oil yield to be 25.77%. A second-order model was obtained to predict oil yield as a function of moisture content, heating temperature and duration. Thus the result from this research work has established the optimal conditions for mechanical extraction of oil from castor seed. Closed agreement between experimental and predicted yield was obtained.

  14. Isolated and modulated effects of topology and material type on the mechanical properties of additively manufactured porous biomaterials.

    Science.gov (United States)

    Hedayati, R; Ahmadi, S M; Lietaert, K; Pouran, B; Li, Y; Weinans, H; Rans, C D; Zadpoor, A A

    2018-03-01

    In this study, we tried to quantify the isolated and modulated effects of topological design and material type on the mechanical properties of AM porous biomaterials. Towards this aim, we assembled a large dataset comprising the mechanical properties of AM porous biomaterials with different topological designs (i.e. different unit cell types and relative densities) and material types. Porous structures were additively manufactured from Co-Cr using a selective laser melting (SLM) machine and tested under quasi-static compression. The normalized mechanical properties obtained from those structures were compared with mechanical properties available from our previous studies for porous structures made from Ti-6Al-4V and pure titanium as well as with analytical solutions. The normalized values of elastic modulus and yield stress were found to be relatively close to each other as well as in agreement with analytical solutions regardless of material type. However, the material type was found to systematically affect the mechanical properties of AM porous biomaterials in general and the post-elastic/post-yield range (plateau stress and energy absorption capacity) in particular. To put this in perspective, topological design could cause up to 10-fold difference in the mechanical properties of AM porous biomaterials while up to 2-fold difference was observed as a consequence of changing the material type. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Closing of Coster-Kronig transitions in multiply ionised gold atoms

    International Nuclear Information System (INIS)

    Banas, D.; Braziewicz, J.; Czarnota, M.; Fijal, I.; Jaskola, M.; Korman, A.; Kretschmer, W.; Pajek, M.; Semaniak, J.

    2003-01-01

    The paper discusses the effect of closing of L- and M-shell Coster-Kronig (CK) transitions in multiply ionised Au atoms, for which the selected CK transitions become energetically forbidden. This effect plays an important role when the Coster-Kronig energy for single-hole configuration is relatively low, being comparable with a change of the electronic binding energies in multiply ionised atom. We show, by using a simplified model, that for gold the effect of closing of CK transitions occurs for strong L 1 -L 3 M 4,5 transition for the L 1 -subshell as well as the M 3 -M 5 N 6,7 and M 4 -M 5 O 3,4 CK transitions for the M 3 - and M 4 -subshell, respectively. We demonstrate that the discussed effect of closing CK transitions substantially changes the X-ray fluorescence and Coster-Kronig yields and thus has to be considered in interpretation of X-rays excited by heavy ion impact

  16. Comparison of the compressive yield response of aggregated suspensions: Pressure filtration, centrifugation, and osmotic consolidation

    International Nuclear Information System (INIS)

    Miller, K.T.; Melant, R.M.; Zukoski, C.F.

    1996-01-01

    The compressive rheological responses of suspensions containing flocculated kaolin, alumina (average particle sizes of 0.2 and 0.5 microm), and hydrous zirconia (average particle sizes of 8, 57, and 139 nm) particles have been measured using three different techniques: pressure filtration, volume fraction profile during centrifugation, and sediment height during centrifugation at multiple spinning speeds. While the volume fraction profile technique appears to be experimentally most robust, equivalent responses are found using the different techniques, indicating that the compressive yield stress is a material property of a given suspension. The compressive yield stress of each suspension increases rapidly with volume fraction but cannot be generally described using simple power-law or exponential fits. The compressive yield stress also increases with the inverse square of particle size. The packing behavior of the suspensions undergoing osmotic consolidation is compared with the mechanical compressive yield response. Some suspensions exhibited the same packing behavior as in the mechanical techniques, while others consistently packed to higher densities during osmotic consolidation. Although equivalent osmotic and mechanical loads do not always result in the same volume fractions, the similar increases in volume fraction with applied driving force suggest that both the osmotic and mechanical techniques are controlled by the force needed to rearrange the particle network

  17. Asymmetric correlation of sovereign bond yield dynamics in the Eurozone

    Directory of Open Access Journals (Sweden)

    Dajcman Silvo

    2013-01-01

    Full Text Available This paper examines the symmetry of correlation of sovereign bond yield dynamics between eight Eurozone countries (Austria, Belgium, France, Germany, Ireland, Italy, Portugal, and Spain in the period from January 3, 2000 to August 31, 2011. Asymmetry of correlation is investigated pair-wise by applying the test of Yongmiao Hong, Jun Tu, and Guofu Zhou (2007. Whereas the test of Hong, Tu, and Zhou (2007 is static, the present paper provides also a dynamic version of the test and identifies time periods when the correlation of Eurozone sovereign bond yield dynamics became asymmetric. We identified seven pairs of sovereign bond markets for which the null hypothesis of symmetry in correlation of sovereign bond yield dynamics can be rejected. Calculating rolling-window exceedance correlation, we found that the time-varying upper- (i.e. for positive yield changes and lower-tail correlations (i.e. for negative yield changes for pair-wise observed sovereign bond markets normally follow each other closely, yet during some time periods (for most pair-wise observed countries, these periods are around the September 11 attack on the New York City WTC and around the start of the Greek debt crisis the difference in correlation does increase. The results show that the upper- and lower-tail correlation was symmetric before the Eurozone debt crisis for most of the pair-wise observed sovereign bond markets but has become much less symmetric since then.

  18. Tracking control of a closed-chain five-bar robot with two degrees of freedom by integration of an approximation-based approach and mechanical design.

    Science.gov (United States)

    Cheng, Long; Hou, Zeng-Guang; Tan, Min; Zhang, W J

    2012-10-01

    The trajectory tracking problem of a closed-chain five-bar robot is studied in this paper. Based on an error transformation function and the backstepping technique, an approximation-based tracking algorithm is proposed, which can guarantee the control performance of the robotic system in both the stable and transient phases. In particular, the overshoot, settling time, and final tracking error of the robotic system can be all adjusted by properly setting the parameters in the error transformation function. The radial basis function neural network (RBFNN) is used to compensate the complicated nonlinear terms in the closed-loop dynamics of the robotic system. The approximation error of the RBFNN is only required to be bounded, which simplifies the initial "trail-and-error" configuration of the neural network. Illustrative examples are given to verify the theoretical analysis and illustrate the effectiveness of the proposed algorithm. Finally, it is also shown that the proposed approximation-based controller can be simplified by a smart mechanical design of the closed-chain robot, which demonstrates the promise of the integrated design and control philosophy.

  19. Variations in the presentation of aphasia in patients with closed head injuries.

    LENUS (Irish Health Repository)

    Kavanagh, Dara Oliver

    2012-01-31

    Impairments of speech and language are important consequences of head injury as they compromise interaction between the patient and others. A large spectrum of communication deficits can occur. There are few reports in the literature of aphasia following closed head injury despite the common presentation of closed head injury. Herein we report two cases of closed head injuries with differing forms of aphasia. We discuss their management and rehabilitation and present a detailed literature review on the topic. In a busy acute surgical unit one can dismiss aphasia following head injury as behaviour related to intoxication. Early recognition with prolonged and intensive speech and language rehabilitation therapy yields a favourable outcome as highlighted in our experience. These may serve as a reference for clinicians faced with this unusual outcome.

  20. Variations in the Presentation of Aphasia in Patients with Closed Head Injuries

    Directory of Open Access Journals (Sweden)

    Dara Oliver Kavanagh

    2010-01-01

    Full Text Available Impairments of speech and language are important consequences of head injury as they compromise interaction between the patient and others. A large spectrum of communication deficits can occur. There are few reports in the literature of aphasia following closed head injury despite the common presentation of closed head injury. Herein we report two cases of closed head injuries with differing forms of aphasia. We discuss their management and rehabilitation and present a detailed literature review on the topic. In a busy acute surgical unit one can dismiss aphasia following head injury as behaviour related to intoxication. Early recognition with prolonged and intensive speech and language rehabilitation therapy yields a favourable outcome as highlighted in our experience. These may serve as a reference for clinicians faced with this unusual outcome.

  1. Light particles emitted with very forward quasi-projectiles and the mechanism in the fragmentation of 44 MeV/a.m.u. 40Ar

    International Nuclear Information System (INIS)

    Roussel, P.; Bacri, Ch.O.; Borrel, V.; Stephan, C.; Tassan-Got, L.; Beaumel, D.; Bernas, M.; Clapier, F.; Mirea, M.

    1998-01-01

    The mechanism of projectile fragmentation in the Fermi-energy region has been investigated for fragments emitted in the incident beam direction by detecting fast protons and neutrons evaporated by the projectile-like fragments. The proton coincidence rate is shown to increase with fragment velocity loss. This increase is also correlated to the decrease of the fragment yield, with the coincident rate doubling when the yield decreases by a factor of 10. The coincidence rate is found to be also proportional to the fragment mass loss for fragments with the beam velocity. A two-step mechanism is sketched out to interpret these results. For fragments with the beam velocity, the projectile nucleon removal is equally shared between a first fast step and the second evaporative step, while for fragments at the tenth of the maximum yield, the nucleons are removed by evaporation. Finally, the experimental observation that the most probable velocity for forward fragments is very close to that of the beam may be the result of a strong forward/backward momentum asymmetry in a Goldhaber-type analysis. (author)

  2. Close collisions between light nuclei: Orbiting and fusion

    International Nuclear Information System (INIS)

    Shapira, D.; Shivakumar, B.; Harmon, B.A.; Ayik, S.

    1987-01-01

    Our data have demonstrated that in close collisions the two nuclei first form a rotating dinuclear complex (DNC) which can break up into two complex fragments (Orbiting) or evolve into a compound nucleus. The binary fragment yield was found to be significant in contradiction with earlier views which held that whenever nucleus-nucleus capture occurs fusion is a certainty. The time duration of the dinuclear stage and the nature of its evolution into a compound nucleus were studied and a model which describes these processes will be presented. 25 refs., 14 figs

  3. Mechanical performance of styrene-butadiene-rubber filled with carbon nanoparticles prepared by mechanical mixing

    Energy Technology Data Exchange (ETDEWEB)

    Saatchi, M.M. [Department of Chemical and Petroleum Engineering, Sharif University of Technology, P.O. Box 11155-9465, Tehran (Iran, Islamic Republic of); Shojaei, A., E-mail: akbar.shojaei@sharif.edu [Department of Chemical and Petroleum Engineering, Sharif University of Technology, P.O. Box 11155-9465, Tehran (Iran, Islamic Republic of)

    2011-09-15

    Highlights: {yields} We compare influence of carbon blacks and carbon nanotube on properties of SBR. {yields} We model mechanical behavior of SBR nanocomposites by the micromechanical model. {yields} Mechanical properties of carbon black/SBR is greatly dominated by bound rubber. {yields} Mechanical properties of SBR/nanotube is governed by big aspect ratio of nanotube. - Abstract: Reinforcement of styrene-butadiene-rubber (SBR) was investigated using two different carbon blacks (CBs) with similar particle sizes, including highly structured CB and conventional CB, as well as multi-walled carbon nanotube (MWCNT) prepared by mechanical mixing. The attempts were made to examine reinforcing mechanism of these two different classes of carbon nanoparticles. Scanning electron microscopy and electrical conductivity measurement were used to investigate morphology. Tensile, cyclic tensile and stress relaxation analyses were performed. A modified Halpin-Tsai model based on the concept of an equivalent composite particle, consisting of rubber bound, occluded rubber and nanoparticle, was proposed. It was found that properties of CB filled SBR are significantly dominated by rubber shell and occluded rubber in which molecular mobility is strictly restricted. At low strains, these rubber constituents can contribute in hydrodynamic effects, leading to higher elastic modulus. However, at higher strains, they contribute in stress hardening resulting in higher elongation at break and higher tensile strength. These elastomeric regions can also influence stress relaxation behaviors of CB filled rubber. For SBR/MWCNT, the extremely great inherent mechanical properties of nanotube along with its big aspect ratio were postulated to be responsible for the reinforcement while their interfacial interaction was not so efficient.

  4. Effect of extraction method on the yield of furanocoumarins from fruits of Archangelica officinalis Hoffm.

    Science.gov (United States)

    Waksmundzka-Hajnos, M; Petruczynik, A; Dragan, A; Wianowska, D; Dawidowicz, A L

    2004-01-01

    Optimal conditions for the extraction and analysis of furanocoumarins from fruits of Archangelica officinalis Hoffm. have been determined. The following extraction methods were used: exhaustive extraction in a Soxhlet apparatus, ultrasonication at 25 and 60 degrees C, microwave-assisted solvent extraction in open and closed systems, and accelerated solvent extraction (ASE). In most cases the yields of furanocoumarins were highest using the ASE method. The effects of extracting solvent, temperature and time of extraction using this method were investigated. The highest yield of furanocoumarins by ASE was obtained with methanol at 100-130 degrees C for 10 min. The extraction yields of furanocoumarins from plant material by ultrasonication at 60 degrees C and microwave-assisted solvent extraction in an open system were comparable to the extraction yields obtained in the time- and solvent-consuming exhaustive process involving the Soxhlet apparatus.

  5. Experimental simulation of closed timelike curves.

    Science.gov (United States)

    Ringbauer, Martin; Broome, Matthew A; Myers, Casey R; White, Andrew G; Ralph, Timothy C

    2014-06-19

    Closed timelike curves are among the most controversial features of modern physics. As legitimate solutions to Einstein's field equations, they allow for time travel, which instinctively seems paradoxical. However, in the quantum regime these paradoxes can be resolved, leaving closed timelike curves consistent with relativity. The study of these systems therefore provides valuable insight into nonlinearities and the emergence of causal structures in quantum mechanics--essential for any formulation of a quantum theory of gravity. Here we experimentally simulate the nonlinear behaviour of a qubit interacting unitarily with an older version of itself, addressing some of the fascinating effects that arise in systems traversing a closed timelike curve. These include perfect discrimination of non-orthogonal states and, most intriguingly, the ability to distinguish nominally equivalent ways of preparing pure quantum states. Finally, we examine the dependence of these effects on the initial qubit state, the form of the unitary interaction and the influence of decoherence.

  6. Staphylococcus aureus SdrE captures complement factor H's C-terminus via a novel 'close, dock, lock and latch' mechanism for complement evasion.

    Science.gov (United States)

    Zhang, Yingjie; Wu, Minhao; Hang, Tianrong; Wang, Chengliang; Yang, Ye; Pan, Weimin; Zang, Jianye; Zhang, Min; Zhang, Xuan

    2017-05-04

    Complement factor H (CFH) is a soluble complement regulatory protein essential for the down-regulation of the alternative pathway on interaction with specific markers on the host cell surface. It recognizes the complement component 3b (C3b) and 3d (C3d) fragments in addition to self cell markers (i.e. glycosaminoglycans, sialic acid) to distinguish host cells that deserve protection from pathogens that should be eliminated. The Staphylococcus aureus surface protein serine-aspartate repeat protein E (SdrE) was previously reported to bind human CFH as an immune-evasion tactic. However, the molecular mechanism underlying SdrE-CFH-mediated immune evasion remains unknown. In the present study, we identified a novel region at CFH's C-terminus (CFH 1206-1226 ), which binds SdrE N2 and N3 domains (SdrE N2N3 ) with high affinity, and determined the crystal structures of apo-SdrE N2N3 and the SdrE N2N3 -CFH 1206-1226 complex. Comparison of the structure of the CFH-SdrE complex with other CFH structures reveals that CFH's C-terminal tail flips from the main body to insert into the ligand-binding groove of SdrE. In addition, SdrE N2N3 adopts a 'close' state in the absence of CFH, which undergoes a large conformational change on CFH binding, suggesting a novel 'close, dock, lock and latch' (CDLL) mechanism for SdrE to recognize its ligand. Our findings imply that SdrE functions as a 'clamp' to capture CFH's C-terminal tail via a unique CDLL mechanism and sequesters CFH on the surface of S. aureus for complement evasion. © 2017 The Author(s).

  7. Yield gap mapping as a support tool for risk management in agriculture

    Science.gov (United States)

    Lahlou, Ouiam; Imani, Yasmina; Slimani, Imane; Van Wart, Justin; Yang, Haishun

    2016-04-01

    The increasing frequency and magnitude of droughts in Morocco and the mounting losses from extended droughts in the agricultural sector emphasized the need to develop reliable and timely tools to manage drought and to mitigate resulting catastrophic damage. In 2011, Morocco launched a cereals multi-risk insurance with drought as the most threatening and the most frequent hazard in the country. However, and in order to assess the gap and to implement the more suitable compensation, it is essential to quantify the potential yield in each area. In collaboration with the University of Nebraska-Lincoln, a study is carried out in Morocco and aims to determine the yield potentials and the yield gaps in the different agro-climatic zones of the country. It fits into the large project: Global Yield Gap and Water Productivity Atlas: http://www.yieldgap.org/. The yield gap (Yg) is the magnitude and difference between crop yield potential (Yp) or water limited yield potential (Yw) and actual yields, reached by farmers. World Food Studies (WOFOST), which is a Crop simulation mechanistic model, has been used for this purpose. Prior to simulations, reliable information about actual yields, weather data, crop management data and soil data have been collected in 7 Moroccan buffer zones considered, each, within a circle of 100 km around a weather station point, homogenously spread across the country and where cereals are widely grown. The model calibration was also carried out using WOFOST default varieties data. The map-based results represent a robust tool, not only for drought insurance organization, but for agricultural and agricultural risk management. Moreover, accurate and geospatially granular estimates of Yg and Yw will allow to focus on regions with largest unexploited yield gaps and greatest potential to close them, and consequently to improve food security in the country.

  8. Are the days of closed pleural biopsy over? Yes

    Directory of Open Access Journals (Sweden)

    Dharmesh Patel

    2015-01-01

    Full Text Available In the modern management of pleural diseases, thoracoscopy has a clear advantage over closed pleural biopsy. By way of its high yield, both in malignant pleural disease and pleural Tuberculosis – the two commonest cause of undiagnosed pleural effusion, thoracoscopy has the added advantage of faster symptom relief and offering effective pleurodesis. This makes it an attractive diagnostic and therapeutic procedure of choice and features high in the algorithms of many international guidelines on the approach to pleural diseases.

  9. Relationship between Yield Point Phenomena and the Nanoindentation Pop-in Behavior of Steel

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, T.-H. [Seoul National University; Oh, C.-S. [Korean Institute of Materials Science; Lee, K. [Technical Research Laboratories, Republic of Korea; George, Easo P [ORNL; Han, H. N. [Seoul National University

    2012-01-01

    Pop-ins on nanoindentation load-displacement curves of a ferritic steel were correlated with yield drops on its tensile stress-strain curves. To investigate the relationship between these two phenomena, nanoindentation and tensile tests were performed on annealed specimens, prestrained specimens, and specimens aged for various times after prestraining. Clear nanoindentation pop-ins were observed on annealed specimens, which disappeared when specimens were indented right after the prestrain, but reappeared to varying degrees after strain aging. Yield drops in tensile tests showed similar disappearance and appearance, indicating that the two phenomena, at the nano- and macro-scale, respectively, are closely related and influenced by dislocation locking by solutes (Cottrell atmospheres).

  10. Yield, yield components and dry matter digestibility of alfalfa experimental populations

    Directory of Open Access Journals (Sweden)

    Katić Slobodan

    2010-01-01

    Full Text Available Alfalfa is the most important forage crop grown in the temperate regions. It is cultivated for production of vegetative aerial mass used fresh or as hay, and recently as haylage and silage. In many centres worldwide, efforts are made to breed and create new alfalfa cultivars with both higher yields and of higher nutritional value. The aim of this paper was to determine yield and digestibility of 12 experimental populations of alfalfa, and to compare their results to the yields of well-known domestic alfalfa commercial cultivars. The results show significant differences in yield of green forage and dry matter among alfalfa populations, as well as in yield components, height, proportion of leaves in yield and growth rate (tab. 1, 2 and 3. Differences between in vitro digestible dry matter (% and yields of in vitro digestible dry matter (t ha-1 were also significant (tab. 5 and 6. Yield and quality of experimental populations were at the same level or higher than of control cultivars. Synthetic SINUSA exceeded the control cutivars (NS Mediana ZMS V and Banat VS in yield and quality of dry matter. .

  11. Understanding the weather signal in national crop-yield variability

    Science.gov (United States)

    Frieler, Katja; Schauberger, Bernhard; Arneth, Almut; Balkovič, Juraj; Chryssanthacopoulos, James; Deryng, Delphine; Elliott, Joshua; Folberth, Christian; Khabarov, Nikolay; Müller, Christoph; Olin, Stefan; Pugh, Thomas A. M.; Schaphoff, Sibyll; Schewe, Jacob; Schmid, Erwin; Warszawski, Lila; Levermann, Anders

    2017-06-01

    Year-to-year variations in crop yields can have major impacts on the livelihoods of subsistence farmers and may trigger significant global price fluctuations, with severe consequences for people in developing countries. Fluctuations can be induced by weather conditions, management decisions, weeds, diseases, and pests. Although an explicit quantification and deeper understanding of weather-induced crop-yield variability is essential for adaptation strategies, so far it has only been addressed by empirical models. Here, we provide conservative estimates of the fraction of reported national yield variabilities that can be attributed to weather by state-of-the-art, process-based crop model simulations. We find that observed weather variations can explain more than 50% of the variability in wheat yields in Australia, Canada, Spain, Hungary, and Romania. For maize, weather sensitivities exceed 50% in seven countries, including the United States. The explained variance exceeds 50% for rice in Japan and South Korea and for soy in Argentina. Avoiding water stress by simulating yields assuming full irrigation shows that water limitation is a major driver of the observed variations in most of these countries. Identifying the mechanisms leading to crop-yield fluctuations is not only fundamental for dampening fluctuations, but is also important in the context of the debate on the attribution of loss and damage to climate change. Since process-based crop models not only account for weather influences on crop yields, but also provide options to represent human-management measures, they could become essential tools for differentiating these drivers, and for exploring options to reduce future yield fluctuations.

  12. Slope Controls Grain Yield and Climatic Yield in Mountainous Yunnan province, China

    Science.gov (United States)

    Duan, X.; Rong, L.; Gu, Z.; Feng, D.

    2017-12-01

    Mountainous regions are increasingly vulnerable to food insecurity because of limited arable land, growing population pressure, and climate change. Development of sustainable mountain agriculture will require an increased understanding of the effects of environmental factors on grain and climatic yields. The objective of this study was to explore the relationships between actual grain yield, climatic yield, and environmental factors in a mountainous region in China. We collected data on the average grain yield per unit area in 119 counties in Yunnan province from 1985 to 2012, and chose 17 environmental factors for the same period. Our results showed that actual grain yield ranged from 1.43 to 6.92 t·ha-1, and the climatic yield ranged from -0.15 to -0.01 t·ha-1. Lower climatic yield but higher grain yield was generally found in central areas and at lower slopes and elevations in the western and southwestern counties of Yunnan province. Higher climatic yield but lower grain yield were found in northwestern parts of Yunnan province on steep slopes. Annual precipation and temperature had a weak influence on the climatic yield. Slope explained 44.62 and 26.29% of the variation in grain yield and climatic yield. The effects of topography on grain and climatic yields were greater than climatic factors. Slope was the most important environmental variable for the variability in climatic and grain yields in the mountainous Yunnan province due to the highly heterogeneous topographic conditions. Conversion of slopes to terraces in areas with higher climatic yields is an effective way to maintain grain production in response to climate variability. Additionally, soil amendments and soil and water conservation measures should be considered to maintain soil fertility and aid in sustainable development in central areas, and in counties at lower slopes and elevations in western and southwestern Yunnan province.

  13. Use of Wild Relatives and Closely Related Species to Adapt Common Bean to Climate Change

    Directory of Open Access Journals (Sweden)

    James D. Kelly

    2013-05-01

    Full Text Available Common bean (Phaseolus vulgaris L. is an important legume crop worldwide. However, abiotic and biotic stress limits bean yields to <600 kg ha−1 in low-income countries. Current low yields result in food insecurity, while demands for increased yields to match the rate of population growth combined with the threat of climate change are significant. Novel and significant advances in genetic improvement using untapped genetic diversity available in crop wild relatives and closely related species must be further explored. A meeting was organized by the Global Crop Diversity Trust to consider strategies for common bean improvement. This review resulted from that meeting and considers our current understanding of the genetic resources available for common bean improvement and the progress that has been achieved thus far through introgression of genetic diversity from wild relatives of common bean, and from closely related species, including: P. acutifolius, P. coccineus, P. costaricensis and P. dumosus. Newly developed genomic tools and their potential applications are presented. A broad outline of research for use of these genetic resources for common bean improvement in a ten-year multi-disciplinary effort is presented.

  14. Accurate argon cluster-ion sputter yields: Measured yields and effect of the sputter threshold in practical depth-profiling by x-ray photoelectron spectroscopy and secondary ion mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Cumpson, Peter J.; Portoles, Jose F.; Barlow, Anders J.; Sano, Naoko [National EPSRC XPS User' s Service (NEXUS), School of Mechanical and Systems Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU (United Kingdom)

    2013-09-28

    Argon Gas Cluster-Ion Beam sources are likely to become widely used on x-ray photoelectron spectroscopy and secondary ion mass spectrometry instruments in the next few years. At typical energies used for sputter depth profiling the average argon atom in the cluster has a kinetic energy comparable with the sputter threshold, meaning that for the first time in practical surface analysis a quantitative model of sputter yields near threshold is needed. We develop a simple equation based on a very simple model. Though greatly simplified it is likely to have realistic limiting behaviour and can be made useful for estimating sputter yields by fitting its three parameters to experimental data. We measure argon cluster-ion sputter yield using a quartz crystal microbalance close to the sputter threshold, for silicon dioxide, poly(methyl methacrylate), and polystyrene and (along with data for gold from the existing literature) perform least-squares fits of our new sputter yield equation to this data. The equation performs well, with smaller residuals than for earlier empirical models, but more importantly it is very easy to use in the design and quantification of sputter depth-profiling experiments.

  15. Mechanical behaviour of Zn–Al–Cu–Mg alloys: Deformation mechanisms of as-cast microstructures

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Zhicheng; Sandlöbes, Stefanie; Wu, Liang; Hu, Weiping; Gottstein, Günter; Korte-Kerzel, Sandra, E-mail: Korte-Kerzel@imm.rwth-aachen.de

    2016-01-10

    We study the effects of dilute Mg addition on the microstructure formation and mechanical properties of a ZnAl4Cu1 alloy. On the basis of the composition of the commercial alloy Z410 (4 wt% Al, 1 wt% Cu, and 0.04 wt% Mg), three laboratory alloys with different Mg contents (0.04 wt%, 0.21 wt% and 0.31 wt%) are characterised in terms of their mechanical properties and microstructures using ex-situ and in-situ tensile tests in conjunction with scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD). Increasing Mg content causes the precipitation of Mg{sub 2}Zn{sub 11} phase precipitates and refined lamellar spacings in the eutectoid phase. The alloy with a medium Mg content (0.21 wt%) exhibits the highest yield strength both at room temperature and at elevated temperatures. Further, we show that dilute Mg alloying causes an improvement of the ductility of ZnAl4Cu1 base-alloys, especially at elevated temperatures. In addition, the alloys reveal two distinct deformation regimes distinguishable close to room temperature and at commonly employed strain rates, with work hardening and brittle fracture exhibited at room temperature and/or elevated strain rate (5×10{sup −4} s{sup −1}), and work softening and ductile fracture at elevated temperature and/or low strain rate (6×10{sup −6} s{sup −1}). The deformation mechanisms and fracture behaviour in both regimes are investigated and the underlying physical mechanisms of the observed phenomena are discussed.

  16. Mechanical behaviour of Zn–Al–Cu–Mg alloys: Deformation mechanisms of as-cast microstructures

    International Nuclear Information System (INIS)

    Wu, Zhicheng; Sandlöbes, Stefanie; Wu, Liang; Hu, Weiping; Gottstein, Günter; Korte-Kerzel, Sandra

    2016-01-01

    We study the effects of dilute Mg addition on the microstructure formation and mechanical properties of a ZnAl4Cu1 alloy. On the basis of the composition of the commercial alloy Z410 (4 wt% Al, 1 wt% Cu, and 0.04 wt% Mg), three laboratory alloys with different Mg contents (0.04 wt%, 0.21 wt% and 0.31 wt%) are characterised in terms of their mechanical properties and microstructures using ex-situ and in-situ tensile tests in conjunction with scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD). Increasing Mg content causes the precipitation of Mg_2Zn_1_1 phase precipitates and refined lamellar spacings in the eutectoid phase. The alloy with a medium Mg content (0.21 wt%) exhibits the highest yield strength both at room temperature and at elevated temperatures. Further, we show that dilute Mg alloying causes an improvement of the ductility of ZnAl4Cu1 base-alloys, especially at elevated temperatures. In addition, the alloys reveal two distinct deformation regimes distinguishable close to room temperature and at commonly employed strain rates, with work hardening and brittle fracture exhibited at room temperature and/or elevated strain rate (5×10"−"4 s"−"1), and work softening and ductile fracture at elevated temperature and/or low strain rate (6×10"−"6 s"−"1). The deformation mechanisms and fracture behaviour in both regimes are investigated and the underlying physical mechanisms of the observed phenomena are discussed.

  17. A network-based approach for semi-quantitative knowledge mining and its application to yield variability

    Science.gov (United States)

    Schauberger, Bernhard; Rolinski, Susanne; Müller, Christoph

    2016-12-01

    Variability of crop yields is detrimental for food security. Under climate change its amplitude is likely to increase, thus it is essential to understand the underlying causes and mechanisms. Crop models are the primary tool to project future changes in crop yields under climate change. A systematic overview of drivers and mechanisms of crop yield variability (YV) can thus inform crop model development and facilitate improved understanding of climate change impacts on crop yields. Yet there is a vast body of literature on crop physiology and YV, which makes a prioritization of mechanisms for implementation in models challenging. Therefore this paper takes on a novel approach to systematically mine and organize existing knowledge from the literature. The aim is to identify important mechanisms lacking in models, which can help to set priorities in model improvement. We structure knowledge from the literature in a semi-quantitative network. This network consists of complex interactions between growing conditions, plant physiology and crop yield. We utilize the resulting network structure to assign relative importance to causes of YV and related plant physiological processes. As expected, our findings confirm existing knowledge, in particular on the dominant role of temperature and precipitation, but also highlight other important drivers of YV. More importantly, our method allows for identifying the relevant physiological processes that transmit variability in growing conditions to variability in yield. We can identify explicit targets for the improvement of crop models. The network can additionally guide model development by outlining complex interactions between processes and by easily retrieving quantitative information for each of the 350 interactions. We show the validity of our network method as a structured, consistent and scalable dictionary of literature. The method can easily be applied to many other research fields.

  18. Yield trends and yield gap analysis of major crops in the world

    NARCIS (Netherlands)

    Hengsdijk, H.; Langeveld, J.W.A.

    2009-01-01

    This study aims to quantify the gap between current and potential yields of major crops in the world, and the production constraints that contribute to this yield gap. Using an expert-based evaluation of yield gaps and the literature, global and regional yields and yield trends of major crops are

  19. Effects of shortening the close-up period length coupled with increased supply of metabolizable protein on performance and metabolic status of multiparous Holstein cows.

    Science.gov (United States)

    Farahani, T Amirabadi; Amanlou, H; Kazemi-Bonchenari, M

    2017-08-01

    This experiment was conducted to compare conventional (CON; 21 d) and shortened (SH; 10 d) close-up period, and evaluate the effect of shortened close-up period combined with feeding different metabolizable protein (MP) levels on dry matter (DM) intake, metabolic status, and performance of dairy cows. Forty-eight multiparous Holstein cows with similar parity, body weight (BW), and previous lactation milk yield were divided into 2 groups. The first group (n = 24) received the far-off diet from -60 to -21 d (CON), and the second group (n = 24) received same far-off diet from -60 to -10 d (SH) relative to expected parturition. Cows were then moved to individual stalls and randomly allocated to 1 of 3 close-up diets: low MP diet (LMP; MP = 79 g/kg of DM), medium MP diet (MMP; MP = 101 g/kg of DM), or high MP diet (HMP; MP = 118 g/kg of DM). Treatments were used in a 2 × 3 factorial arrangement with 2 lengths of close-up period (CON and SH) and 3 levels of MP (LMP, MMP, and HMP). All diets were fed for ad libitum intake during the close-up period. After calving, all cows received the same fresh cow diet. We found no interaction between close-up period length and MP levels for traits, except for postpartum serum fatty acids and β-hydroxybutyrate (BHB). The concentrations of postpartum serum fatty acids and BHB were higher on LMP than MMP and HMP diets in SH group. The cows of the SH group tended to produce less colostrum in the first milking than cows in CON group. The length of close-up period did not affect pre- and postpartum DM intake or energy balance of cows during the last week of prepartum, but cows of the CON group had greater BW changes during the last 3 wk before parturition than cows in SH group. Cows fed MMP and HMP diets consumed 1.2 and 1 kg more DM than for those fed LMP prepartum, respectively. The concentrations of prepartum BHB and Ca were higher for SH cows than CON group cows. Except for blood urea N concentration, no other blood metabolite in

  20. The Transposing of Isomer Yields in the Methanolyses of N ...

    African Journals Online (AJOL)

    The effect of triethylamine in transposing the respective yields of the two isomeric esters ensuing from the methanolysis of N-substituted quinolinimides is described and is rationalized with a mechanism. Keywords: N-Substituted quinolinimides, methyl 2-carbamoyl-3-pyridinecarboxylates, methyl ...

  1. Lead (Pb) Toxicity; Physio-Biochemical Mechanisms, Grain Yield, Quality, and Pb Distribution Proportions in Scented Rice.

    Science.gov (United States)

    Ashraf, Umair; Kanu, Adam S; Deng, Quanquan; Mo, Zhaowen; Pan, Shenggang; Tian, Hua; Tang, Xiangru

    2017-01-01

    Lead (Pb) caused interruptions with normal plant metabolism, crop yield losses and quality issues are of great concern. This study assessed the physio-biochemical responses, yield and grain quality traits and Pb distribution proportions in three different fragrant rice cultivars i.e., Meixiangzhan-2, Xinagyaxiangzhan and Basmati-385. Plants were exposed to 400, 800, and 1,200 ppm of Pb while pots without Pb were taken as control (0 ppm). Our results showed that Pb toxicity significantly ( P production of hydrogen peroxide (H 2 O 2 ), malanodialdehyde (MDA) and leaves leachates; while such effects were more apparent in Xinagyaxiangzhan than other two rice cultivars. Pb stress differentially affected the production protein, proline and soluble sugars; however the production rates were higher at heading stage (HS) than maturity stage (MS). Furthermore, Pb stress altered superoxide dismutase (SOD), peroxidases (POD), catalases (CAT) and ascorbate peroxidases (APX) activities and glutathione (GSH) and oxidized glutathione (GSSG) production in all rice cultivars at both HS and MS. All Pb levels reduced the yield and yield components of all rice cultivars; nonetheless such reductions were observed highest in Xinagyaxiangzhan (69.12%) than Meixiangzhan-2 (58.05%) and Basmati-385 (46.27%) and resulted in grain quality deterioration. Significant and positive correlations among rice yields with productive tillers/pot and grains per panicle while negative with sterility percentage were also observed. In addition, all rice cultivars readily taken up the Pb contents from soil to roots and transported upward in different proportions with maximum in roots followed by stemss, leaves, ears and grains. Higher proportions of Pb contents in above ground plant parts in Xinagyaxiangzhan possibly lead to maximum losses in this cultivar than other two cultivars; while less damage in Basmati-385 might be related to strong anti-oxidative defense system and lower proportions of Pb contents in

  2. On yield gaps and yield gains in intercropping

    NARCIS (Netherlands)

    Gou, Fang; Yin, Wen; Hong, Yu; Werf, van der Wopke; Chai, Qiang; Heerink, Nico; Ittersum, van Martin K.

    2017-01-01

    Wheat-maize relay intercropping has been widely used by farmers in northwest China, and based on field experiments agronomists report it has a higher productivity than sole crops. However, the yields from farmers’ fields have not been investigated yet. Yield gap analysis provides a framework to

  3. Influence of working fluids on startup mechanism and thermal performance of a closed loop pulsating heat pipe

    International Nuclear Information System (INIS)

    Patel, Vipul M.; Gaurav; Mehta, Hemantkumar B.

    2017-01-01

    Highlights: • Startup mechanism and thermal performance of a CLPHP is reported. • Influence of pure fluids, water-based binary fluids and surfactant solutions are investigated. • Startup heat flux is observed lower for acetone and higher for water compared to all other working fluids. • Thermal resistance is observed to decrease with increase in heat input irrespective of working fluids. • CLPHP is observed to perform better with acetone, water-acetone, water-45 PPM and water-60 PPM surfactant solutions. - Abstract: Development of efficient cooling system is a tricky and challenging task in the field of electronics. Pulsating heat pipe has a great prospect in the upcoming days for an effective cooling solution due to its excellent heat transfer characteristics. Experimental investigations are reported on a Closed Loop Pulsating Heat Pipe (CLPHP). The influence of working fluids on startup mechanism and thermal performance of a CLPHP are carried out on 2 mm, nine turn copper capillary. Total eleven (11) working fluids are prepared and investigated. Deionized (DI) Water (H_2O), ethanol (C_2H_6O), methanol (CH_3OH) and acetone (C_3H_6O) are used as pure fluids. The water-based mixture (1:1) of acetone, methanol and ethanol are used as binary fluids. Sodium Dodecyl Sulphate (SDS, NaC_1_2H_2_5SO_4) is used as a surfactant to prepare the water-based surfactant solutions of 30 PPM, 45 PPM, 60 PPM and 100 PPM. The filling ratio is kept as 50%. The vertical bottom heating position of a CLPHP is considered. Heat input is varied in the range of 10–110 W. Significant influence is observed for water-based binary fluids and surfactant solutions on startup mechanism and thermal performance of a CLPHP compared to DI water used as the pure working fluid.

  4. Yield asymmetry design of magnesium alloys by integrated computational materials engineering

    Energy Technology Data Exchange (ETDEWEB)

    Li, Dongsheng [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Joshi, Vineet [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lavender, Curt [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Khaleel, Mohammad [Qatar Foundation Research adn Development (Qatar); Ahzi, Said [Univ. of Strasbourg (France)

    2013-11-01

    Deformation asymmetry of magnesium alloys is an important factor on machine design in the automobile industry. Represented by the ratio of compressive yield stress (CYS) against tensile yield stress (TYS), deformation asymmetry is strongly related to texture and grain size. A polycrystalline viscoplasticity model, modified intermediate Φ-model, is used to predict the deformation behavior of magnesium alloys with different grain sizes. Validated with experimental results, integrated computational materials engineering is applied to find out the route in achieving desired asymmetry via thermomechanical processing. For example, CYS/TYS in rolled texture is smaller than 1 under different loading directions. In other textures, such as extruded texture, CYS/TYS is large along the normal direction. Starting from rolled texture, asymmetry will increase to close to 1 along the rolling direction after being compressed to a strain of 0.2. Our modified Φ-model also shows that grain refinement increases CYS/TYS. Along with texture control, grain refinement also can optimize the yield asymmetry. After the grain size decreases to a critical value, CYS/TYS reaches to 1 because CYS increases much faster than TYS. By tailoring the microstructure using texture control and grain refinement, it is achievable to optimize yield asymmetry in wrought magnesium alloys.

  5. Search for {nu}{sub {mu}}{yields}{nu}{sub e} oscillations in the NOMAD experiment; Recherche des oscillations {nu}{sub {mu}}{yields}{nu}{sub e} dans l'experience NOMAD

    Energy Technology Data Exchange (ETDEWEB)

    Krasnoperov, A

    2000-06-01

    The NOMAD experiment is looking for {nu}{sub {mu}}{yields}{nu}{sub {tau}} and {nu}{yields}{nu}{sub e} oscillations in a predominantly {nu}{sub {mu}} beam at the CERN SPS. Neutrino oscillations are closely related with the existence of non-zero neutrino mass and mixing between different flavours. This document describes the search for {nu}{sub {mu}}{yields}{nu}{sub e} oscillations in the full NOMAD data sample accumulated during four years of data-taking (1995-98). The search for {nu}{sub e} appearance was performed by studying the charged current (CC) interactions with in the NOMAD detector. The selection of {nu}{sub e} CC and {nu}{sub {mu}} interactions with the help of different particle identification algorithms, as well as using the event kinematic criteria, is described here in detail. We show that the NOMAD experiment is sensitive to the LSND allowed region of oscillation parameters with the squared mass difference larger than 10 eV{sup 2}/C{sup 4}. An upper limit on the probability of {nu}{sub {mu}}{yields}{nu}{sub e} oscillations, based on a fraction of the NOMAD data, is given. (author)

  6. The {open_quotes}first{close_quotes} problem

    Energy Technology Data Exchange (ETDEWEB)

    Holsinger, R.F.

    1995-02-01

    This paper describes the first magnet design problem that Klaus and the author worked on together. At the time, over 30 years ago, Klaus was working as a plasma physicist in the Controlled Thermonuclear Research (CTR) Group, and the author was assigned from the Mechanical Engineering Department to help with the design of experimental equipment for various research projects. Klaus` primary research program was to develop a {open_quotes}plasma gun{close_quotes} for injecting plasma into {open_quotes}mirror machines.{close_quotes} As described, the magnet design aspect of this plasma gun was a challenging task, and led to some innovations that were quite advanced at that time.

  7. Effect of dose rate on the translocation yield in rat spermatogonia

    International Nuclear Information System (INIS)

    Vyglenov, A.; Rudnitski, T.; Kokhmanska-Tvardovska, A.

    1987-01-01

    The effectiveness of chronic gamma-irradiation with dose rate 1.10 -4 Gy/min on the yield of reciprocal translocations in rat spermatogonia was studied. Comparsion was made with acute gamma-irradiation at emissive power 1,23 Gy/min. Emissive power decrease by four orders reduced 12 times the extent of genetic injury - from 34,9 down to 3 translocations per cellx10 -5 /cGy. In this respect, the rat is close to the laboratory mouse

  8. Yield components and quality of intercropped cotton in response to mepiquat chloride and plant density

    NARCIS (Netherlands)

    Mao, Lili; Zhang, Lizhen; Evers, J.B.; Werf, van der Wopke; Liu, Shaodong; Zhang, Siping; Wang, Baomin; Li, Zhaohu

    2015-01-01

    Cotton yield is greatly improved by moderately increasing plant density and modifying the cotton plants to have a compact structure, which is also required by the increasing demand for mechanized harvest. However, in cotton strip intercropped with wheat, only limited knowledge on yield response

  9. A Closed-Loop Supply Chain with Competitive Dual Collection Channel under Asymmetric Information and Reward–Penalty Mechanism

    Directory of Open Access Journals (Sweden)

    Wenbin Wang

    2018-06-01

    Full Text Available We investigate a closed-loop supply chain (CLSC where the retailer and the third-party recycler compete against each other to collect waste electrical and electronic equipment (WEEE given that collection effort is their private information. Using the principle-agent theory, we develop a CLSC model with dual collection channel without the government’s reward–penalty mechanism (RPM. An information screening contract is designed for the manufacturer to attain real information on collection effort levels; meanwhile, the optimal decision-making results of other decision variables are derived. Next, we take RPM into account to further examine the efficacy of the government’s guidance mechanism in improving collection rate and profits of CLSC members. Our results indicate that (i the collection competition reduces the total collection quantity and the expected profits of all the CLSC members without RPM; (ii all CLSC members’ expected profits are improved if both two collection agents select a high collection effort level without and with RPM; (iii RPM increases buyback price, collection price, collection quantity, and franchise fee but decreases wholesale price and retail price; with the reward–penalty intensity increasing, the manufacturer’s expected profit first decreases and then increases, while the expected profits of H-type retailer and H-type third-party recycler continue to increase. We find that RPM may ultimately stimulate the collection agents to collect more WEEEs, while the intense collection competition reduces the profits of CLSC members.

  10. Are artificial opals non-close-packed fcc structures?

    Science.gov (United States)

    García-Santamaría, F.; Braun, P. V.

    2007-06-01

    The authors report a simple experimental method to accurately measure the volume fraction of artificial opals. The results are modeled using several methods, and they find that some of the most common yield very inaccurate results. Both finite size and substrate effects play an important role in calculations of the volume fraction. The experimental results show that the interstitial pore volume is 4%-15% larger than expected for close-packed structures. Consequently, calculations performed in previous work relating the amount of material synthesized in the opal interstices with the optical properties may need revision, especially in the case of high refractive index materials.

  11. Effect of the sinus of valsalva on the closing motion of bileaflet prosthetic heart valves.

    Science.gov (United States)

    Ohta, Y; Kikuta, Y; Shimooka, T; Mitamura, Y; Yuhta, T; Dohi, T

    2000-04-01

    Conventional bileaflet prosthetic mechanical heart valves close passively with backflow. Naturally, the valve has problems associated with closure, such as backflow, water hammer effect, and fracture of the leaflet. On the other hand, in the case of the natural aortic valve, the vortex flow in the sinus of Valsalva pushes the leaflet to close, and the valve starts the closing motion earlier than the prosthetic valve as the forward flow decelerates. This closing mechanism is thought to decrease backflow at valve closure. In this study, we propose a new bileaflet mechanical valve resembling a drawbridge in shape, and the prototype valve was designed so that the leaflet closes with the help of the vortex flow in the sinus. The test valve was made of aluminum alloy, and its closing motion was compared to that of the CarboMedics (CM) valve. Both valves were driven by a computer controlled hydraulic mock circulator and were photographed at 648 frames/s by a high speed charge-coupled device (CCD) camera. Each frame of the valve motion image was analyzed with a personal computer, and the opening angles were measured. The flow rate was set as 5.0 L/min. The system was pulsed with 70 bpm, and the systolic/diastolic ratio was 0.3. Glycerin water was used as the circulation fluid at room temperature, and polystyrene particles were used to visualize the streamline. The model of the sinus of Valsalva was made of transparent silicone rubber. As a result, high speed video analysis showed that the test valve started the closing motion 41 ms earlier than the CM valve, and streamline analysis showed that the test valve had a closing mechanism similar to the natural one with the effect of vortex flow. The structure of the test valve was thought to be effective for soft closure and could solve problems associated with closure.

  12. Investigation of microstructural and mechanical properties of cell walls of closed-cell aluminium alloy foams

    Energy Technology Data Exchange (ETDEWEB)

    Islam, M.A.; Kader, M.A.; Hazell, P.J.; Brown, A.D. [School of Engineering and Information Technology, UNSW Canberra, ACT 2610 (Australia); Saadatfar, M. [Department of Applied Mathematics, Australian National University, Canberra ACT 0200 (Australia); Quadir, M.Z [Electron Microscope Unit, Mark Wainwright Analytical Centre (MWAC), The University of New South Wales, Sydney, NSW 2052 (Australia); Microscopy and Microanalysis Facility (MMF), John de Laeter Centre (JdLC), Curtin University, WA 6102 (Australia); Escobedo, J.P., E-mail: J.Escobedo-Diaz@adfa.edu.au [School of Engineering and Information Technology, UNSW Canberra, ACT 2610 (Australia)

    2016-06-01

    This study investigates the influence of microstructure on the strength properties of individual cell walls of closed-cell stabilized aluminium foams (SAFs). Optical microscopy (OM), micro-computed X-ray tomography (µ-CT), electron backscattering diffraction (EBSD), and energy dispersive X-ray spectroscopy (EDS) analyses were conducted to examine the microstructural properties of SAF cell walls. Novel micro-tensile tests were performed to investigate the strength properties of individual cell walls. Microstructural analysis of the SAF cell walls revealed that the material consists of eutectic Al-Si and dendritic a-Al with an inhomogeneous distribution of intermetallic particles and micro-pores (void defects). These microstructural features affected the micro-mechanism fracture behaviour and tensile strength of the specimens. Laser-based extensometer and digital image correlation (DIC) analyses were employed to observe the strain fields of individual tensile specimens. The tensile failure mode of these materials has been evaluated using microstructural analysis of post-mortem specimens, revealing a brittle cleavage fracture of the cell wall materials. The micro-porosities and intermetallic particles reduced the strength under tensile loading, limiting the elongation to fracture on average to ~3.2% and an average ultimate tensile strength to ~192 MPa. Finally, interactions between crack propagation and obstructing intermetallic compounds during the tensile deformation have been elucidated.

  13. Medium carbon vanadium steels for closed die forging

    International Nuclear Information System (INIS)

    Jeszensky, Gabor; Plaut, Ronald Lesley

    1993-01-01

    This work analyses the medium carbon micro alloyed vanadium potential for closed die forged production. The steels reach the mechanical resistance requests during cooling after forging, eliminating the subsequent thermal treatment. Those steels also present good fatigue resistance and machinability. The industrial scale experiments are also reported

  14. On H-closed and U-closed functions | Cammaroto | Quaestiones ...

    African Journals Online (AJOL)

    In this article, we extend the work on H-closed functions started by Cammaroto, Fedorchuk and Porter in 1998. Also, U-closed functions are introduced and characterized in terms of filters and adherence. The hereditary and productivity properties are examined and developed for both H-closed and U-closed functions.

  15. VARIABILITY OF YIELD AND YIELD COMPONENTS IN “EGUSI ...

    African Journals Online (AJOL)

    journal

    Estimate of expected genetic advance in seed yield plant-1 ranged between. 25.90-48.40%. ..... values in fruit and seed yield characters have been reported in culinary melon, ... and Khund, A. 2004. Extent of heterosis and heritability in some.

  16. Computer based ultrasonic system for mechanical and acoustical characterization of materials

    International Nuclear Information System (INIS)

    Rosly Jaafar; Mohd Rozni Mohd Yusof; Khaidzir Hamzah; Md Supar Rohani; Rashdi Shah Ahmad; Amiruddin Shaari

    2001-01-01

    Propagation of both modes of ultrasonic waves velocity i.e. longitudinal (compressional) and transverse (shear), propagating in a material are closely linked with the material's physical and mechanical properties. By measuring both velocity modes, materials' properties such as Young's, bulk and shear moduli, compressibility, Poisson ratio and acoustic impedance can be determined. This paper describes the development of a system that is able to perform the above tasks and is known as Computer Based Ultrasonic for Mechanical and Acoustical Characterisation of Materials (UMC). The system was developed in the NDT Instrumentation and Signal Processing (NDTSP) laboratory of the Physics Department, Universiti Teknologi Malaysia. Measurements were made on four solid samples, namely, glass, copper, mild steel and aluminium. The results of measurements obtained were found to be in good agreement with the values of measurements made using standard methods. The main advantage of using this system over other methods is that single measurement of two ultrasonic velocity modes yields six material's properties. (Author)

  17. Fission product yields

    International Nuclear Information System (INIS)

    Valenta, V.; Hep, J.

    1978-01-01

    Data are summed up necessary for determining the yields of individual fission products from different fissionable nuclides. Fractional independent yields, cumulative and isobaric yields are presented here for the thermal fission of 235 U, 239 Pu, 241 Pu and for fast fission (approximately 1 MeV) of 235 U, 238 U, 239 Pu, 241 Pu; these values are included into the 5th version of the YIELDS library, supplementing the BIBFP library. A comparison is made of experimental data and possible improvements of calculational methods are suggested. (author)

  18. Radiation-chemical yields of molecular hydrogen formation in cyclohexane based alcohols

    International Nuclear Information System (INIS)

    Val'ter, A.I.; Kovalev, G.V.

    1988-01-01

    Molecular hydrogen radiation-chemical yields in γ-irradiated cyclohexanol, 1.2-cis- and 1.2-trans-cyclohexandiols and inositol are determined within the general problem frameworks of radiolysis mechanism for cyclohexanering-base alcohols. Irradiation was conducted at 77 and 293 K, dose rate - 4 Gy/s. Hydrogen concentration in all irradiated alcohols depends linearly on the dose. Radiation-chemical yields of H 2 and of stabilized radicals, as well, in the irradiated crystalline alcohols are analyzed depending on the irradiation temperature, alcohol molecular structure

  19. Multiaxial pedicle screw designs: static and dynamic mechanical testing.

    Science.gov (United States)

    Stanford, Ralph Edward; Loefler, Andreas Herman; Stanford, Philip Mark; Walsh, William R

    2004-02-15

    Randomized investigation of multiaxial pedicle screw mechanical properties. Measure static yield and ultimate strengths, yield stiffness, and fatigue resistance according to an established model. Compare these measured properties with expected loads in vivo. Multiaxial pedicle screws provide surgical versatility, but the complexity of their design may reduce their strength and fatigue resistance. There is no published data on the mechanical properties of such screws. Screws were assembled according to a vertebrectomy model for destructive mechanical testing. Groups of five assemblies were tested in static tension and compression and subject to three cyclical loads. Modes of failure, yield, and ultimate strength, yield stiffness, and cycles to failure were determined for six designs of screw. Static compression yield loads ranged from 217.1 to 388.0 N and yield stiffness from 23.7 to 38.0 N/mm. Cycles to failure ranged from 42 x 10(3) to 4,719 x 10(3) at 75% of static ultimate load. There were significant differences between designs in all modes of testing. Failure occurred at the multiaxial link in static and cyclical compression. Bending yield strengths just exceeded loads expected in vivo. Multiaxial designs had lower static bending yield strength than fixed screw designs. Five out of six multiaxial screw designs achieved one million cycles at 200 N in compression bending. "Ball-in-cup" multiaxial locking mechanisms were vulnerable to fatigue failure. Smooth surfaces and thicker material appeared to be protective against fatigue failure.

  20. Application of fracture-mechanics principles to austenitic steels

    International Nuclear Information System (INIS)

    Schwalbe, K.H.; Cornec, A.; Baustian, K.

    1996-01-01

    Recent experimental and analytical work mainly carried out at GKSS and TH Darmstadt is used to check the usefulness of fracture mechanics methods as developed for more conventional materials, such as ferritic steels and aluminium alloys. Finite element calculations serve for quantifying J validity limits; they are a function of constraint conditions and strain hardening properties. Crack growth studies show the ability of the J-integral, the modified J-integral, J(M), and of the crack tip opening displacement, CTOD delta(5), to generate unique, i.e. size-independent, R-curves. It is also shown that the delta(5)-type CTOD technique yields values close to the standardised CTOD. Finally, the Engineering Treatment Model is used to estimate delta(5) and J as driving force parameters. Special attention is given to the power law representation of actual stress/strain curves. (author)

  1. Fabrication, structure and mechanical properties of indium nanopillars

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Gyuhyon; Kim, Ju-Young; Budiman, Arief Suriadi; Tamura, Nobumichi; Kunz, Martin; Chen, Kai; Burek, Michael J.; Greer, Julia R.; Tsui, Ting Y.

    2010-01-01

    Solid and hollow cylindrical indium pillars with nanoscale diameters were prepared using electron beam lithography followed by the electroplating fabrication method. The microstructure of the solid-core indium pillars was characterized by scanning micro-X-ray diffraction, which shows that the indium pillars were annealed at room temperature with very few dislocations remaining in the samples. The mechanical properties of the solid pillars were characterized using a uniaxial microcompression technique, which demonstrated that the engineering yield stress is {approx}9 times greater than bulk and is {approx}1/28 of the indium shear modulus, suggesting that the attained stresses are close to theoretical strength. Microcompression of hollow indium nanopillars showed evidence of brittle fracture. This may suggest that the failure mode for one of the most ductile metals can become brittle when the feature size is sufficiently small.

  2. Variation of yield loci in finite element analysis by considering texture evolution for AA5042 aluminum sheets

    Science.gov (United States)

    Yoon, Jonghun; Kim, Kyungjin; Yoon, Jeong Whan

    2013-12-01

    Yield function has various material parameters that describe how materials respond plastically in given conditions. However, a significant number of mechanical tests are required to identify the many material parameters for yield function. In this study, an effective method using crystal plasticity through a virtual experiment is introduced to develop the anisotropic yield function for AA5042. The crystal plasticity approach was used to predict the anisotropic response of the material in order to consider a number of stress or strain modes that would not otherwise be evident through mechanical testing. A rate-independent crystal plasticity model based on a smooth single crystal yield surface, which removes the innate ambiguity problem within the rate-independent model and Taylor model for polycrystalline deformation behavior were employed to predict the material's response in the balanced biaxial stress, pure shear, and plane strain states to identify the parameters for the anisotropic yield function of AA5042.

  3. Asymmetric Catalytic Aza-Diels-Alder/Ring-Closing Cascade Reaction Forming Bicyclic Azaheterocycles by Trienamine Catalysis.

    Science.gov (United States)

    Li, Yang; Barløse, Casper; Jørgensen, Julie; Carlsen, Bjørn Dreiø; Jørgensen, Karl Anker

    2017-01-01

    An asymmetric catalytic aza-Diels-Alder/ring-closing cascade reaction between acylhydrazones and in situ formed trienamines is presented. The reaction proceeds through a formal aza-Diels-Alder cycloaddition, followed by a ring-closing reaction forming the hemiaminal ring leading to chiral bicyclic azaheterocycles in moderate to good yield (up to 71 %), good enantio- (up to 92 % ee) and diastereoselectivity (up to >20:1 d.r.). Furthermore, transformations are presented to show the potential application of the formed product. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Closing the manufacturing process of dendritic cell vaccines transduced with adenovirus vectors.

    Science.gov (United States)

    Gulen, Dumrul; Abe, Fuminori; Maas, Sarah; Reed, Elizabeth; Cowan, Kenneth; Pirruccello, Samuel; Wisecarver, James; Warkentin, Phyllis; Northam, Matt; Turken, Orhan; Coskun, Ugur; Senesac, Joe; Talmadge, James E

    2008-12-20

    Anticancer immunotherapy using dendritic cell (DC) based vaccines provides an adjuvant therapeutic strategy that is not cross reactive with conventional therapeutics. However, manufacturing of DC vaccines requires stringent adherence to Good Manufacturing Practice (GMP) methods and rigorous standardization. Optimally this includes a closed system for monocyte isolation, in combination with closed culture and washing systems and an effective vector transduction strategy. In this study, we used the Gambro Elutra to enrich monocytes from non-mobilized leukapheresis products collected from healthy donors. This approach enriched monocytes from an average frequency of 13.6+3.2% (mean+SEM), to an average frequency of 79.5+4.3% following enrichment with a yield of 79 to 100%. The monocytes were then cultured in a closed system using gas permeable Vuelife fluoroethylene propylene (FEP) bags and X-vivo-15 media containing 10 ng/ml granulocyte-macrophage colony-stimulation factor (GM-CSF) and 5 ng/ml Interleukin (IL) 4. The cultures were re-fed on days two and four, with a 25% media volume and cytokines. Following culture for seven days, the cells were harvested using a Cobe-2991 and concentrated using a bench centrifuge retrofitted with blocks to allow centrifugation of 72 ml bags and supernatant removed using a plasma extractor. This approach reduced the media volume to an average of 17.4 ml and an average DC concentration of 6.3+1.0x10(7) cells/ml, a viability of 93.8+2.2%, a purity of 88.9+3.3% and a total yield of 8.5+1.4x10(8) DCs. Based on the identification of DR+ cells as DCs we had an average yield of 46+8% using a calculation based on the number of monocytes in the apheresis product and the resulting DCs differentiated from monocytes. The use of DCs as a vaccine, required transduction with an adenovirus (Adv) vector with the tumor suppressor, p53 transgene (Adv5CMV-p53) as the antigen at a DC concentration of 9x10(6) DCs/ml at an Ad5CMV-p53: DC ratio of 20

  5. A tandem Mannich addition–palladium catalyzed ring-closing route toward 4-substituted-3(2H-furanones

    Directory of Open Access Journals (Sweden)

    Jubi John

    2014-06-01

    Full Text Available A facile route towards highly functionalized 3(2H-furanones via a sequential Mannich addition–palladium catalyzed ring closing has been elaborated. The reaction of 4-chloroacetoacetate esters with imines derived from aliphatic and aromatic aldehydes under palladium catalysis afforded 4-substituted furanones in good to excellent yields. 4-Hydrazino-3(2H-furanones could also be synthesized from diazo esters in excellent yields by utilising the developed strategy. We could also efficiently transform the substituted furanones to aza-prostaglandin analogues.

  6. Experimental signatures of a nonequilibrium phase transition governing the yielding of a soft glass.

    Science.gov (United States)

    Hima Nagamanasa, K; Gokhale, Shreyas; Sood, A K; Ganapathy, Rajesh

    2014-06-01

    We present direct experimental signatures of a nonequilibrium phase transition associated with the yield point of a prototypical soft solid-a binary colloidal glass. By simultaneously quantifying single-particle dynamics and bulk mechanical response, we identified the threshold for the onset of irreversibility with the yield strain. We extracted the relaxation time from the transient behavior of the loss modulus and found that it diverges in the vicinity of the yield strain. This critical slowing down is accompanied by a growing correlation length associated with the size of regions of high Debye-Waller factor, which are precursors to yield events in glasses. Our results affirm that the paradigm of nonequilibrium critical phenomena is instrumental in achieving a holistic understanding of yielding in soft solids.

  7. yield and yield componemts of extra early maize (zea mays l.)

    African Journals Online (AJOL)

    SHARIFAI

    maize crop and improve the soil structures and chemical nutrients of the soil. The significant interaction between intra-row spacing and poultry manure on cob diameter, 100 grain weight and grain yield showed the importance of poultry manure on yield and yield components of maize crop. Poultry manure increases both ...

  8. An adapted yield criterion for the evolution of subsequent yield surfaces

    Science.gov (United States)

    Küsters, N.; Brosius, A.

    2017-09-01

    In numerical analysis of sheet metal forming processes, the anisotropic material behaviour is often modelled with isotropic work hardening and an average Lankford coefficient. In contrast, experimental observations show an evolution of the Lankford coefficients, which can be associated with a yield surface change due to kinematic and distortional hardening. Commonly, extensive efforts are carried out to describe these phenomena. In this paper an isotropic material model based on the Yld2000-2d criterion is adapted with an evolving yield exponent in order to change the yield surface shape. The yield exponent is linked to the accumulative plastic strain. This change has the effect of a rotating yield surface normal. As the normal is directly related to the Lankford coefficient, the change can be used to model the evolution of the Lankford coefficient during yielding. The paper will focus on the numerical implementation of the adapted material model for the FE-code LS-Dyna, mpi-version R7.1.2-d. A recently introduced identification scheme [1] is used to obtain the parameters for the evolving yield surface and will be briefly described for the proposed model. The suitability for numerical analysis will be discussed for deep drawing processes in general. Efforts for material characterization and modelling will be compared to other common yield surface descriptions. Besides experimental efforts and achieved accuracy, the potential of flexibility in material models and the risk of ambiguity during identification are of major interest in this paper.

  9. Simulating maize yield and bomass with spatial variability of soil field capacity

    Science.gov (United States)

    Ma, Liwang; Ahuja, Lajpat; Trout, Thomas; Nolan, Bernard T.; Malone, Robert W.

    2015-01-01

    Spatial variability in field soil properties is a challenge for system modelers who use single representative values, such as means, for model inputs, rather than their distributions. In this study, the root zone water quality model (RZWQM2) was first calibrated for 4 yr of maize (Zea mays L.) data at six irrigation levels in northern Colorado and then used to study spatial variability of soil field capacity (FC) estimated in 96 plots on maize yield and biomass. The best results were obtained when the crop parameters were fitted along with FCs, with a root mean squared error (RMSE) of 354 kg ha–1 for yield and 1202 kg ha–1 for biomass. When running the model using each of the 96 sets of field-estimated FC values, instead of calibrating FCs, the average simulated yield and biomass from the 96 runs were close to measured values with a RMSE of 376 kg ha–1 for yield and 1504 kg ha–1 for biomass. When an average of the 96 FC values for each soil layer was used, simulated yield and biomass were also acceptable with a RMSE of 438 kg ha–1 for yield and 1627 kg ha–1 for biomass. Therefore, when there are large numbers of FC measurements, an average value might be sufficient for model inputs. However, when the ranges of FC measurements were known for each soil layer, a sampled distribution of FCs using the Latin hypercube sampling (LHS) might be used for model inputs.

  10. AA, closed orbit observation pickup

    CERN Multimedia

    1980-01-01

    Electrostatic pickups around the circumference of the AA served for the measurement of the closed orbits across the wide momentum range of +- 3% to either side of central orbit. The pickups were of the "shoebox" type, with diagonal cuts, a horizontal and a vertical one mechanically coupled together. They were located where they would not require extra space. The small ones, like the one we see here, were inserted into the vacuum chamber of the BLG (long and narrow) bending magnets. See also 8001372, 8010042, 8010045

  11. Effect of Integrated Weed Management Methods on Yield and Yield Components of Corn (Zea mays L. in Kermanshah Province, Iran

    Directory of Open Access Journals (Sweden)

    R. Amini

    2017-08-01

    Full Text Available Introduction: Corn (Zea mays L. is cultivated widely throughout the world and has the highest production among the cerealsafter rice and wheat. In Iran the total production of corn in 2013 was more than 2540000 tons. Weeds are one of the greatest limiting factors to decrease corn yield in Iran as the average yield loss due to weeds in the fields of Kermanshah in 2009 was 17.32 %. The herbicides are the main weed control method in conventional cropping systems but their application has been increased herbicide resistant weeds and environmental pollution. Integrated weed management combines all applicable including chemical and non-chemical methods to reduce the effect of weeds in the cropping systems. Thus, Weed control strategies such as tillage, mulch, cover crops and intercropping could be used for integrated weed management of corn. Previous studies showed that crop residues such as rye (Secale sereal L., wheat (Triticum aestivum L., barley (Hordeum vulgare L. and clover (Trifolium sp., cover crops and living mulch could inhibit weed germination and growth. Therefore the objective of this study was evaluating the effects of some integrated weed management treatments on weed characteristics, yield components and grain yield of corn. Materials and methods: In order to evaluate the effect of some weed management treatments on corn (Zea mays L. yield an experiment was conducted in 2014 in Ravansar, Kermanshah, Iran. This study was arranged based on randomized complete block design with 10 treatments and three replications. The weed management treatments were including 1-chemical control followed by mechanical control (application of nicosulfuron at a dose of 80 g.a.i.ha-1 + cultivator 40 days after emergence 2- chemical control followed by mechanical control (application of 2,4-D+MCPA at a dose of 675 g.a.i.ha-1 + cultivator 40 days after emergence 3- cultural control followed by mechanical control (planting hairy vetch (Vicia villosa in the fall

  12. Inheritance of grain yield and its correlation with yield components in ...

    African Journals Online (AJOL)

    SAM

    2014-03-19

    Mar 19, 2014 ... 7 × 7 incomplete diallel cross of seven wheat parents during the crop season of 2009 to 2010. Mean square of general ... Genetic background and yield traits of the seven parents. Parent. Pedigree. Released year ..... Correlation and path analysis for yield and yield contributing characters in wheat (Triticum ...

  13. Wheat yield vulnerability: relation to rainfall and suggestions for adaptation

    Directory of Open Access Journals (Sweden)

    Khalid Tafoughalti

    2018-04-01

    Full Text Available Wheat production is of paramount importance in the region of Meknes, which is mainly produced under rainfed conditions. It is the dominant cereal, the greater proportion being the soft type. During the past few decades, rainfall flaws have caused a number of cases of droughts. These flaws have seriously affecting wheat production. The main objective of this study is the assessment of rainfall variability at monthly, seasonal and annual scales and to determine their impact on wheat yields. To reduce this impact we suggested some mechanisms of adaptation. We used monthly rainfall records for three decades and wheat yields records of fifteen years. Rainfall variability is assessed utilizing the precipitation concentration index and the variation coefficient. The association between wheat yields and cumulative rainfall amounts of different scales was calculated based on a regression model to evaluate the impact of rainfall on wheat yields. Data analysis shown moderate seasonal and irregular annual rainfall distribution. Yields fluctuated from 210 to 4500 Kg/ha with 52% of coefficient of variation. The correlation results shows that soft wheat and hard wheat are strongly correlated with the period of January to March than with the whole growing-season. While they are adversely correlated with the mid-spring. This investigation concluded that synchronizing appropriate adaptation with the period of January to March was crucial to achieving success yield of wheat.

  14. Hexagonal close packed to face centered cubic polymorphic transformation in nanocrystalline titanium-zirconium system by mechanical alloying

    International Nuclear Information System (INIS)

    Bera, S.; Manna, I.

    2006-01-01

    The present study reports a reversible hexagonal close packed (hcp) to face centered cubic (fcc) polymorphic phase transformation in four different nanocrystalline titanium-zirconium binary alloys in the course of mechanical alloying in a planetary ball mill. This transformation is monitored at appropriate stages by X-ray diffraction and high-resolution transmission electron microscopy. Lattice parameter of the nanocrystalline fcc phase is a function of the alloy composition. For a given alloy, the lattice parameter and hence volume per atom increase with increase in milling time under comparable conditions. On the other hand, crystallite size, measured from X-ray peak broadening, significantly decreases with the progress of milling. It is suggested that structural instability due to plastic strain, increasing lattice expansion, and negative (from core to boundary) hydrostatic pressure is responsible for this hcp → fcc polymorphic transformation. The said transformation seems reversible as isothermal annealing at 1000 deg. C for 1 h or melting the powder mass leads to partial or complete transformation of the milled product from single phase fcc to hcp

  15. Morning glory species interference on the development and yield of soybeans

    Directory of Open Access Journals (Sweden)

    Fortunato De Bortoli Pagnoncelli

    2017-08-01

    Full Text Available ABSTRACT Plants from the genus ipomoea are among the most important weeds in Brazil. The objective of this study was to determine the impact of different densities of 2 species of Ipomoea (I. grandifolia and I. purpurea under different environments (counties of Pato Branco and Renascença, Paraná state, Brazil on soybean biometric variables, yield components and crop yield loss. Field experiments in 2 distinct places were conducted in a randomized block design, where 1 factor consisted of 8 plant densities (0, 2, 4, 6, 8, 10, 15 and 20 plants∙m−2, whereas the other factor consisted of the 2 Ipomoea species. Joint analysis of the data was performed considering the factors environment, Ipomoea densities and species. The impact of one Ipomoea plant∙m−2 was very high, reaching 26%, on average, of species and environments. The maximum soybean yield loss experienced with the Ipomoea density of 20 plants∙m−2 was close to 80%. The impact of Ipomoea density was more important than the species and environment. This result highlights the importance of correct management of plants of these weed species in soybean crop.

  16. The effect of conservation tillage on crop yield in China

    Directory of Open Access Journals (Sweden)

    Hongwen LI,Jin HE,Huanwen GAO,Ying CHEN,Zhiqiang ZHANG

    2015-06-01

    Full Text Available Traditional agricultural practices have resulted in decreased soil fertility, shortage of water resources and deterioration of agricultural ecological environment, which are seriously affecting grain production. Conservation tillage (CT research has been developed and applied in China since the 1960s and 1970s, and a series of development policies have been issued by the Chinese government. Recent research and application have shown that CT has positive effects on crop yields in China. According to the data from the Conservation Tillage Research Center (CTRC, Chinese Ministry of Agriculture (MOA, the mean crop yield increase can be at least 4% in double cropping systems in the North China Plain and 6% in single cropping systems in the dryland areas of North-east and North-west China. Crop yield increase was particularly significant in dryland areas and drought years. The mechanism for the yield increase in CT system can be attributed to enhanced soil water content and improved soil properties. Development strategies have been implemented to accelerate the adoption of CT in China.

  17. Implications of a visco-elastic model of the lithosphere for calculating yield strength envelopes

    NARCIS (Netherlands)

    Ershov, A.V.; Stephenson, R.A.

    2006-01-01

    The dominant deformation mechanism in the ductile part of the lithosphere is creep. From a mechanical point of view, creep can be modelled as a viscous phenomenon. On the other hand, yield-strength envelopes (YSEs), commonly used to describe lithosphere rheology, are constructed supposing creep to

  18. A comparison of Candle Auctions and Hard Close Auctions with Common Values

    OpenAIRE

    Sascha Füllbrunn

    2009-01-01

    With this study, we contribute to the literature of auction design by presenting a new auction format: the Candle auction, a popular auction in the Middle Ages. Considering a common value framework, we theoretically and experimentally point out that the Candle auction, where bidding is allowed until a stochastic deadline, yields a better outcome to the seller than the Hard Close auction, the popular eBay online auction format.

  19. Effects of cutting frequency on alfalfa yield and yield components in ...

    African Journals Online (AJOL)

    Effects of cutting frequency on alfalfa yield and yield components in Songnen Plain, Northeast China. J Chen, F Tang, R Zhu, C Gao, G Di, Y Zhang. Abstract. The productivity and quality of alfalfa (Medicago sativa L.) is strongly influenced by cutting frequency (F). To clarify that the yield and quality of alfalfa if affected by F, ...

  20. Influence of the extraction mode on the yield of some furanocoumarins from Pastinaca sativa fruits.

    Science.gov (United States)

    Waksmundzka-Hajnos, Monika; Petruczynik, Anna; Dragan, Anna; Wianowska, Dorota; Dawidowicz, Andrzej L; Sowa, Ireneusz

    2004-02-05

    Analysis of plant material is an important task in chemotaxonomical investigations, in search of plants with pharmacological activity or in standardisation of plant drugs. The choice of optimal conditions for the analysis of plant material and effect of extraction method on the yield of furanocoumarins from Pastinaca sativa fruits were examined. The following extraction methods were used in experiments: exhaustive extraction in Soxhlet apparatus, ultrasonification (USAE) at 25 and 60 degrees C, microwave-assisted solvent extraction in open and closed system (MASE) and accelerated solvent extraction (ASE). In most cases, the yield of furanocoumarins was highest by use of ASE method as well as by ultrasonification at 60 degrees C.

  1. Assessing the impacts of climate change and tillage practices on stream flow, crop and sediment yields from the Mississippi River Basin

    Science.gov (United States)

    P.B. Parajuli; P. Jayakody; G.F. Sassenrath; Y. Ouyang

    2016-01-01

    This study evaluated climate change impacts on stream flow, crop and sediment yields from three differ-ent tillage systems (conventional, reduced 1–close to conservation, and reduced 2–close to no-till), in theBig Sunflower River Watershed (BSRW) in Mississippi. The Soil and Water Assessment Tool (SWAT) modelwas applied to the BSRW using observed stream flow and crop...

  2. Improved Yield, Performance and Reliability of High-Actuator-Count Deformable Mirrors, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The project team will conduct processing and design research aimed at improving yield, performance, and reliability of high-actuator-count micro-electro-mechanical...

  3. Farmers Extension Program Effects on Yield Gap in North China Plain

    Science.gov (United States)

    Sum, N.; Zhao, Y.

    2015-12-01

    Improving crop yield of the lowest yielding smallholder farmers in developing countries is essential to both food security of the country and the farmers' livelihood. Although wheat and maize production in most developed countries have reached 80% or greater of yield potential determined by simulated models, yield gap remains high in the developing world. One of these cases is the yield gap of maize in the North China Plain (NCP), where the average farmer's yield is 41% of his or her potential yield. This large yield gap indicates opportunity to raise yields substantially by improving agronomy, especially in nutrition management, irrigation facility, and mechanization issues such as technical services. Farmers' agronomic knowledge is essential to yield performance. In order to propagate such knowledge to farmers, agricultural extension programs, especially in-the-field guidance with training programs at targeted demonstration fields, have become prevalent in China. Although traditional analyses of the effects of the extension program are done through surveys, they are limited to only one to two years and to a small area. However, the spatial analysis tool Google Earth Engine (GEE) and its extensive satellite imagery data allow for unprecedented spatial temporal analysis of yield variation. We used GEE to analyze maize yield in Quzhou county in the North China Plain from 2007 to 2013. We based our analysis on the distance from a demonstration farm plot, the source of the farmers' agronomic knowledge. Our hypothesis was that the farther the farmers' fields were from the demonstration plot, the less access they would have to the knowledge, and the less increase in yield over time. Testing this hypothesis using GEE helps us determine the effectiveness of the demonstration plot in disseminating optimal agronomic practices in addition to evaluating yield performance of the demonstration field itself. Furthermore, we can easily extend this methodology to analyze the whole

  4. AA, closed orbit observation pickup

    CERN Multimedia

    CERN PhotoLab

    1980-01-01

    Electrostatic pickups around the circumference of the AA served for the measurement of the closed orbits across the wide momentum range of +- 3% to either side of central orbit. The pickups were of the "shoebox" type, with diagonal cuts, a horizontal and a vertical one mechanically coupled together. They were located where they would not require extra space. The wide ones (very wide indeed: 70 cm), like the one we see here, were placed inside the vacuum chamber of the wide quadrupoles QFW, at maximum dispersion. See also 8001372, 8001383, 8010045

  5. AA, closed orbit observation pickup

    CERN Multimedia

    CERN PhotoLab

    1980-01-01

    Electrostatic pickups around the circumference of the AA served for the measurement of the closed orbits across the wide momentum range of +- 3% to either side of central orbit. The pickups were of the "shoebox" type, with diagonal cuts, a horizontal and a vertical one mechanically coupled together. They were located where they would not require extra space. The wide ones (very wide indeed: 70 cm), like the one we see here, were placed inside the vacuum chamber of the wide quadrupoles, QFW, at maximum dispersion. See also 8001372,8001383, 8010042

  6. AA, closed orbit observation pickup

    CERN Multimedia

    CERN PhotoLab

    1980-01-01

    Electrostatic pickups around the circumference of the AA served for the measurement of the closed orbits across the wide momentum range of +- 3% to either side of central orbit. The pickups were of the "shoebox" type, with diagonal cuts, a horizontal and a vertical one mechanically coupled together. They were located where they would not require extra space. The small ones, like the one we see here, were inserted into the vacuum chamber of the BLG (long and narrow) bending magnets. Werner Sax contemplates his achievement. See also 8001383, 8010042, 8010045.

  7. Toward interplay between substructure evolution, dislocation configuration, and yield strength in a microalloyed steel

    International Nuclear Information System (INIS)

    Venkatsurya, P.K.C.; Misra, R.D.K.; Mulholland, M.D.; Manohar, M.; Hartmann, J.E.

    2014-01-01

    We focus our attention here on the directional dependence of yield strength in high strength microalloyed steel using transmission electron microscopy and x-ray diffraction. The primary objective is to study the interplay between substructural evolution, notably cell size, dense dislocation walls (DDWs), dislocation tangle zones (DTZs), lamellar boundaries, crystallographic texture, and yield strength. The study elucidates for the first time the strong impact of thermo-mechanical deformation-induced dislocation and lamellar structures, which are likely to modify the slip pattern, leading to directional dependence of yield strength. Majority of the dislocations tend to pile along the {110} slip planes as dense dislocation walls. At low strains, grains are first divided into cell blocks that are nearly dislocation-free. At higher strains and with progress in thermo-mechanical processing dislocation tangled zones and lamellar boundaries develop. It is hypothesized that the differences in dislocation configurations, dislocations cells and cell blocks, and lamellar boundaries synergistically contribute to directional dependence of the yield strength in the high strength ferrous alloy. The presumption is envisaged on the basis of observations that the microstructural constituents were similar in the entire plane of the hot rolled strip and the crystallographic texture was weak

  8. PERCEPTIONS OF CLOSE AND GROUP RELATIONSHIPS MEDIATE THE RELATIONSHIP BETWEEN ANXIETY AND DEPRESSION OVER A DECADE LATER.

    Science.gov (United States)

    Jacobson, Nicholas C; Newman, Michelle G

    2016-01-01

    Previous research has demonstrated that anxiety reliably predicts later depression, but little has been uncovered about the mechanism underlying this connection. Interpersonal relationships appear to be a viable mechanism of the association as anxiety has been shown to predict later deficits in both close (e.g., "best friendships") and group relationships (e.g., classroom peer groups), and deficits in both close and group relationships have been linked to later depressive symptoms. The current study examined close and group relationships as potential mediators between anxiety and depression 12-14 years later. In a nationally representative sample of adolescents (N = 6,504), anxiety was measured at baseline, perceptions of close relationships (i.e., feeling loved) and perceptions of group relationships (i.e., feeling part of a group) were measured 6 months later, and depression levels and diagnosis were measured 12-14 years later. Using structural equation models, the results showed that adolescent perceptions of both close and group relationships significantly mediated the relationship between adolescent anxiety and adult levels of depression. Furthermore, perceptions of not being accepted/loved in close relationships significantly mediated the relationship between adolescent anxiety and clinical depression in adulthood. These results suggest that a perception of not being accepted in group relationships may be a mechanism by which heightened anxiety in adolescents leads to heightened nonclinical depression in adulthood. On the other hand, adolescent perceptions of not feeling loved or accepted in close relationships may be a mechanism by which heightened anxiety in adolescence leads to clinical depression--in adulthood. © 2015 Wiley Periodicals, Inc.

  9. Supertube domain walls and elimination of closed timelike curves in string theory

    International Nuclear Information System (INIS)

    Drukker, Nadav

    2004-01-01

    We show that some novel physics of supertubes removes closed timelike curves from many supersymmetric spaces which naively suffer from this problem. The main claim is that supertubes naturally form domain walls, so while analytical continuation of the metric would lead to closed timelike curves, across the domain wall the metric is nondifferentiable, and the closed timelike curves are eliminated. In the examples we study, the metric inside the domain wall is always of the Goedel type, while outside the shell it looks like a localized rotating object, often a rotating black hole. Thus this mechanism prevents the appearance of closed timelike curves behind the horizons of certain rotating black holes

  10. Soil mulching significantly enhances yields and water and nitrogen use efficiencies of maize and wheat: a meta-analysis

    Science.gov (United States)

    Qin, Wei; Hu, Chunsheng; Oenema, Oene

    2015-11-01

    Global crop yields are limited by water and nutrient availability. Soil mulching (with plastic or straw) reduces evaporation, modifies soil temperature and thereby affects crop yields. Reported effects of mulching are sometimes contradictory, likely due to differences in climatic conditions, soil characteristics, crop species, and also water and nitrogen (N) input levels. Here we report on a meta-analysis of the effects of mulching on wheat and maize, using 1310 yield observations from 74 studies conducted in 19 countries. Our results indicate that mulching significantly increased yields, WUE (yield per unit water) and NUE (yield per unit N) by up to 60%, compared with no-mulching. Effects were larger for maize than wheat, and larger for plastic mulching than straw mulching. Interestingly, plastic mulching performed better at relatively low temperature while straw mulching showed the opposite trend. Effects of mulching also tended to decrease with increasing water input. Mulching effects were not related to soil organic matter content. In conclusion, soil mulching can significantly increase maize and wheat yields, WUE and NUE, and thereby may contribute to closing the yield gap between attainable and actual yields, especially in dryland and low nutrient input agriculture. The management of soil mulching requires site-specific knowledge.

  11. Soil mulching significantly enhances yields and water and nitrogen use efficiencies of maize and wheat: a meta-analysis.

    Science.gov (United States)

    Qin, Wei; Hu, Chunsheng; Oenema, Oene

    2015-11-20

    Global crop yields are limited by water and nutrient availability. Soil mulching (with plastic or straw) reduces evaporation, modifies soil temperature and thereby affects crop yields. Reported effects of mulching are sometimes contradictory, likely due to differences in climatic conditions, soil characteristics, crop species, and also water and nitrogen (N) input levels. Here we report on a meta-analysis of the effects of mulching on wheat and maize, using 1310 yield observations from 74 studies conducted in 19 countries. Our results indicate that mulching significantly increased yields, WUE (yield per unit water) and NUE (yield per unit N) by up to 60%, compared with no-mulching. Effects were larger for maize than wheat, and larger for plastic mulching than straw mulching. Interestingly, plastic mulching performed better at relatively low temperature while straw mulching showed the opposite trend. Effects of mulching also tended to decrease with increasing water input. Mulching effects were not related to soil organic matter content. In conclusion, soil mulching can significantly increase maize and wheat yields, WUE and NUE, and thereby may contribute to closing the yield gap between attainable and actual yields, especially in dryland and low nutrient input agriculture. The management of soil mulching requires site-specific knowledge.

  12. Simplified geometric model for the calculation of neutron yield in an accelerator of 18 MV for radiotherapy

    International Nuclear Information System (INIS)

    Paredes G, L.C.; Balcazar G, M.; Francois L, J.L.; Azorin N, J.

    2008-01-01

    The results of the neutrons yield in different components of the bolster of an accelerator Varian Clinac 2100C of 18 MV for radiotherapy are presented, which contribute to the radiation of flight of neutrons in the patient and bolster planes. For the calculation of the neutrons yield, a simplified geometric model of spherical cell for the armor-plating of the bolster with Pb and W was used. Its were considered different materials for the Bremsstrahlung production and of neutrons produced through the photonuclear reactions and of electro disintegration, in function of the initial energy of the electron. The theoretical result of the total yield of neutrons is of 1.17x10 -3 n/e, considering to the choke in position of closed, in the patient plane with a distance source-surface of 100 cm; of which 15.73% corresponds to the target, 58.72% to the primary collimator, 4.53% to the levelled filter of Fe, 4.87% to the levelled filter of Ta and 16.15% to the closed choke. For an initial energy of the electrons of 18 MeV, a half energy of the neutrons of 2 MeV was obtained. The calculated values for radiation of experimental neutrons flight are inferior to the maxima limit specified in the NCRP-102 and IEC-60601-201.Ed.2.0 reports. The absorbed dose of neutrons determined through the measurements with TLD dosemeters in the isocenter to 100 cm of the target when the choke is closed one, is approximately 3 times greater that the calculated for armor-plating of W and 1.9 times greater than an armor-plating of Pb. (Author)

  13. Closing in on the Mechanisms of Pulsatile Insulin Secretion.

    Science.gov (United States)

    Bertram, Richard; Satin, Leslie S; Sherman, Arthur S

    2018-03-01

    Insulin secretion from pancreatic islet β-cells occurs in a pulsatile fashion, with a typical period of ∼5 min. The basis of this pulsatility in mouse islets has been investigated for more than four decades, and the various theories have been described as either qualitative or mathematical models. In many cases the models differ in their mechanisms for rhythmogenesis, as well as other less important details. In this Perspective, we describe two main classes of models: those in which oscillations in the intracellular Ca 2+ concentration drive oscillations in metabolism, and those in which intrinsic metabolic oscillations drive oscillations in Ca 2+ concentration and electrical activity. We then discuss nine canonical experimental findings that provide key insights into the mechanism of islet oscillations and list the models that can account for each finding. Finally, we describe a new model that integrates features from multiple earlier models and is thus called the Integrated Oscillator Model. In this model, intracellular Ca 2+ acts on the glycolytic pathway in the generation of oscillations, and it is thus a hybrid of the two main classes of models. It alone among models proposed to date can explain all nine key experimental findings, and it serves as a good starting point for future studies of pulsatile insulin secretion from human islets. © 2018 by the American Diabetes Association.

  14. Long-term yield effects of establishment method and weed control in willow for short rotation coppice (SRC)

    DEFF Research Database (Denmark)

    Larsen, Søren Ugilt; Jørgensen, Uffe; Kjeldsen, Jens Bonderup

    2014-01-01

    matter (DM) yield was measured over 6 harvest rotations corresponding to 16 years. In 1st rotation, yield differed significantly between establishment methods with highest yield for 1.8 m rods (10.4 Mg ha−1 year−1), intermediate yield for cuttings and 0.2 m billets (8.6 and 8.5 Mg ha−1 year−1...... establishment methods; 1) vertical planting of standard 0.2 m cuttings; 2) horizontal planting of 0.1 m billets; 3) horizontal planting of 0.2 m billets; 4) horizontal planting of 1.8 m rods. All establishment methods were combined with mechanical and chemical weed control during the establishment year. Dry......, respectively) and lowest for 0.1 m billets (5.6 Mg ha−1 year−1). No differences were found in 2nd rotation. Over 1st and 2nd rotation, mechanical weed control resulted in significantly lower yield than chemical control when combined with 0.1 m billets. Cuttings and 1.8 m rods were compared over 1st, 2nd, 3rd...

  15. 7755 EFFECT OF NPK FERTILIZER ON FRUIT YIELD AND YIELD ...

    African Journals Online (AJOL)

    Win7Ent

    2013-06-03

    Jun 3, 2013 ... peasant farmers in Nigeria. With the increased ... did not significantly (p=0.05) increase the fruit yield nor the seed yield. Key words: NPK fertilizer, Fruit ..... SAS (Statistical Analysis System) Version 9.1. SAS Institute Inc., Cary, ...

  16. Effect of Climate and Management Factors on Potential and Gap of Wheat Yield in Iran with Using WOFOST Model

    Directory of Open Access Journals (Sweden)

    A Koocheki

    2017-10-01

    Full Text Available Introduction Human diets strongly rely on wheat (Triticum aestivum L.. Its production has increased dramatically during the past 50 years, partly due to area extension and new varieties but mainly as a consequence of intensified land management and introduction of new technologies. For the future, a continuous strong increase in the demand for agricultural products is expected. It is highly unlikely that this increasing demand will be satisfied by area expansion because productive land is scarce and also increasingly demanded by non-agricultural uses. The role of agricultural intensification as key to increasing actual crop yields and food supply has been discussed in several studies. However, in many regions, increases in grain yields have been declining Inefficient management of agricultural land may cause deviations of actual from potential crop yields: the yield gap. At the global scale little information is available on the spatial distribution of agricultural yield gaps and the potential for agricultural intensification. Actual yield is mostly lower than potential yield due to inefficient management and technological that difference between these yields is considered as yield gap. Understanding of relative share of every management factors in yield gap could be as one of the important keys to reduce gap and close actual yield to potential yield. Materials and Methods In order to evaluate the amount of wheat yield gap and also relative share of management and technological variables in yield gap, frontier production function was used which is a multi-variable regression. The frontier production function to be estimated is a Cobb-Douglas function as proposed by Coelli et al. (2005. Cobb-Douglas functions are extensively used in agricultural production studies to explain returns to scale. We propose a methodology to explain the spatial variation of the potential for intensification and identifying the nature of the constraints for further

  17. Variations in Volatile Oil Yield and Composition of "Xin-yi" (Magnolia biondii Pamp. Flower Buds) at Different Growth Stages.

    Science.gov (United States)

    Hu, Mingli; Bai, Mei; Ye, Wei; Wang, Yaling; Wu, Hong

    2018-06-01

    Dried flower buds of Magnolia biondii Pamp. are the main ingredient in "Xin-yi" in China, and the volatile oils of M. biondii flower buds are the principal medicinal component. Gas chromatographymass spectrometry (GC-MS) and microscopic techniques were employed to detect the volatile yields of M. biondii flowers at various growth stages. The volatile oil yields of M. biondii flowers differed significantly at different growth stages and were closely related to flower dry weight, oil cell density and degree of oil accumulation. In February 2016, flower buds had the highest dry weight, the maximum percentage of oil cells at the oil saturation stage and the highest density of oil cells, which coincided with the highest oil yield. In March 2016, flower buds had a lower dry weight, a higher percentage of oil cells at the oil-degrading stage and the lowest oil cell density, resulting in decreased oil yields. The total amounts of the major medicinal components in the M. biondii flower also showed regular changes at different growth stages. In January and February of 2016, M. biondii flowers had a higher dry weight, volatile oil yield and total content of medicinal ingredients, which was the best time for harvesting high-quality medicinal components. Our study reveals that volatile oil content and chemical composition are closely related to the growth stage of M. biondii flower buds. The results provide a scientific morphology and composition index for evaluating the medicinal value and harvesting of high-quality M. biondii medicinal herbs.

  18. Ecoinformatics reveals effects of crop rotational histories on cotton yield.

    Science.gov (United States)

    Meisner, Matthew H; Rosenheim, Jay A

    2014-01-01

    Crop rotation has been practiced for centuries in an effort to improve agricultural yield. However, the directions, magnitudes, and mechanisms of the yield effects of various crop rotations remain poorly understood in many systems. In order to better understand how crop rotation influences cotton yield, we used hierarchical Bayesian models to analyze a large ecoinformatics database consisting of records of commercial cotton crops grown in California's San Joaquin Valley. We identified several crops that, when grown in a field the year before a cotton crop, were associated with increased or decreased cotton yield. Furthermore, there was a negative association between the effect of the prior year's crop on June densities of the pest Lygus hesperus and the effect of the prior year's crop on cotton yield. This suggested that some crops may enhance L. hesperus densities in the surrounding agricultural landscape, because residual L. hesperus populations from the previous year cannot continuously inhabit a focal field and attack a subsequent cotton crop. In addition, we found that cotton yield declined approximately 2.4% for each additional year in which cotton was grown consecutively in a field prior to the focal cotton crop. Because L. hesperus is quite mobile, the effects of crop rotation on L. hesperus would likely not be revealed by small plot experimentation. These results provide an example of how ecoinformatics datasets, which capture the true spatial scale of commercial agriculture, can be used to enhance agricultural productivity.

  19. Ecoinformatics reveals effects of crop rotational histories on cotton yield.

    Directory of Open Access Journals (Sweden)

    Matthew H Meisner

    Full Text Available Crop rotation has been practiced for centuries in an effort to improve agricultural yield. However, the directions, magnitudes, and mechanisms of the yield effects of various crop rotations remain poorly understood in many systems. In order to better understand how crop rotation influences cotton yield, we used hierarchical Bayesian models to analyze a large ecoinformatics database consisting of records of commercial cotton crops grown in California's San Joaquin Valley. We identified several crops that, when grown in a field the year before a cotton crop, were associated with increased or decreased cotton yield. Furthermore, there was a negative association between the effect of the prior year's crop on June densities of the pest Lygus hesperus and the effect of the prior year's crop on cotton yield. This suggested that some crops may enhance L. hesperus densities in the surrounding agricultural landscape, because residual L. hesperus populations from the previous year cannot continuously inhabit a focal field and attack a subsequent cotton crop. In addition, we found that cotton yield declined approximately 2.4% for each additional year in which cotton was grown consecutively in a field prior to the focal cotton crop. Because L. hesperus is quite mobile, the effects of crop rotation on L. hesperus would likely not be revealed by small plot experimentation. These results provide an example of how ecoinformatics datasets, which capture the true spatial scale of commercial agriculture, can be used to enhance agricultural productivity.

  20. Response of Yield and Yield Components of Tef [Eragrostis Tef ...

    African Journals Online (AJOL)

    The partial budget analysis also indicates that applications of 46 kg. N ha-1 and 10 kg P ha-1 are ..... (1994) indicated that where the grain yield response is negative, yield reduction is primarily caused by a .... An Economic Training. Manual.

  1. Closed-form dynamics of a hexarot parallel manipulator by means of the principle of virtual work

    Science.gov (United States)

    Pedrammehr, Siamak; Nahavandi, Saeid; Abdi, Hamid

    2018-04-01

    In this research, a systematic approach to solving the inverse dynamics of hexarot manipulators is addressed using the methodology of virtual work. For the first time, a closed form of the mathematical formulation of the standard dynamic model is presented for this class of mechanisms. An efficient algorithm for solving this closed-form dynamic model of the mechanism is developed and it is used to simulate the dynamics of the system for different trajectories. Validation of the proposed model is performed using SimMechanics and it is shown that the results of the proposed mathematical model match with the results obtained by the SimMechanics model.

  2. Additively manufactured metallic porous biomaterials based on minimal surfaces: A unique combination of topological, mechanical, and mass transport properties.

    Science.gov (United States)

    Bobbert, F S L; Lietaert, K; Eftekhari, A A; Pouran, B; Ahmadi, S M; Weinans, H; Zadpoor, A A

    2017-04-15

    Porous biomaterials that simultaneously mimic the topological, mechanical, and mass transport properties of bone are in great demand but are rarely found in the literature. In this study, we rationally designed and additively manufactured (AM) porous metallic biomaterials based on four different types of triply periodic minimal surfaces (TPMS) that mimic the properties of bone to an unprecedented level of multi-physics detail. Sixteen different types of porous biomaterials were rationally designed and fabricated using selective laser melting (SLM) from a titanium alloy (Ti-6Al-4V). The topology, quasi-static mechanical properties, fatigue resistance, and permeability of the developed biomaterials were then characterized. In terms of topology, the biomaterials resembled the morphological properties of trabecular bone including mean surface curvatures close to zero. The biomaterials showed a favorable but rare combination of relatively low elastic properties in the range of those observed for trabecular bone and high yield strengths exceeding those reported for cortical bone. This combination allows for simultaneously avoiding stress shielding, while providing ample mechanical support for bone tissue regeneration and osseointegration. Furthermore, as opposed to other AM porous biomaterials developed to date for which the fatigue endurance limit has been found to be ≈20% of their yield (or plateau) stress, some of the biomaterials developed in the current study show extremely high fatigue resistance with endurance limits up to 60% of their yield stress. It was also found that the permeability values measured for the developed biomaterials were in the range of values reported for trabecular bone. In summary, the developed porous metallic biomaterials based on TPMS mimic the topological, mechanical, and physical properties of trabecular bone to a great degree. These properties make them potential candidates to be applied as parts of orthopedic implants and/or as bone

  3. Evaluation of weather-based rice yield models in India

    Science.gov (United States)

    Sudharsan, D.; Adinarayana, J.; Reddy, D. Raji; Sreenivas, G.; Ninomiya, S.; Hirafuji, M.; Kiura, T.; Tanaka, K.; Desai, U. B.; Merchant, S. N.

    2013-01-01

    The objective of this study was to compare two different rice simulation models—standalone (Decision Support System for Agrotechnology Transfer [DSSAT]) and web based (SImulation Model for RIce-Weather relations [SIMRIW])—with agrometeorological data and agronomic parameters for estimation of rice crop production in southern semi-arid tropics of India. Studies were carried out on the BPT5204 rice variety to evaluate two crop simulation models. Long-term experiments were conducted in a research farm of Acharya N G Ranga Agricultural University (ANGRAU), Hyderabad, India. Initially, the results were obtained using 4 years (1994-1997) of data with weather parameters from a local weather station to evaluate DSSAT simulated results with observed values. Linear regression models used for the purpose showed a close relationship between DSSAT and observed yield. Subsequently, yield comparisons were also carried out with SIMRIW and DSSAT, and validated with actual observed values. Realizing the correlation coefficient values of SIMRIW simulation values in acceptable limits, further rice experiments in monsoon (Kharif) and post-monsoon (Rabi) agricultural seasons (2009, 2010 and 2011) were carried out with a location-specific distributed sensor network system. These proximal systems help to simulate dry weight, leaf area index and potential yield by the Java based SIMRIW on a daily/weekly/monthly/seasonal basis. These dynamic parameters are useful to the farming community for necessary decision making in a ubiquitous manner. However, SIMRIW requires fine tuning for better results/decision making.

  4. A photometric method for the estimation of the oil yield of oil shale

    Science.gov (United States)

    Cuttitta, Frank

    1951-01-01

    A method is presented for the distillation and photometric estimation of the oil yield of oil-bearing shales. The oil shale is distilled in a closed test tube and the oil extracted with toluene. The optical density of the toluene extract is used in the estimation of oil content and is converted to percentage of oil by reference to a standard curve. This curve is obtained by relating the oil yields determined by the Fischer assay method to the optical density of the toluene extract of the oil evolved by the new procedure. The new method gives results similar to those obtained by the Fischer assay method in a much shorter time. The applicability of the new method to oil-bearing shale and phosphatic shale has been tested.

  5. CLOSED-LOOP STRIPPING ANALYSIS (CLSA) OF ...

    Science.gov (United States)

    Synthetic musk compounds have been found in surface water, fish tissues, and human breast milk. Current techniques for separating these compounds from fish tissues require tedious sample clean-upprocedures A simple method for the deterrnination of these compounds in fish tissues has been developed. Closed-loop stripping of saponified fish tissues in a I -L Wheaton purge-and-trap vessel is used to strip compounds with high vapor pressures such as synthetic musks from the matrix onto a solid sorbent (Abselut Nexus). This technique is useful for screening biological tissues that contain lipids for musk compounds. Analytes are desorbed from the sorbent trap sequentially with polar and nonpolar solvents, concentrated, and directly analyzed by high resolution gas chromatography coupled to a mass spectrometer operating in the selected ion monitoring mode. In this paper, we analyzed two homogenized samples of whole fish tissues with spiked synthetic musk compounds using closed-loop stripping analysis (CLSA) and pressurized liquid extraction (PLE). The analytes were not recovered quantitatively but the extraction yield was sufficiently reproducible for at least semi-quantitative purposes (screening). The method was less expensive to implement and required significantly less sample preparation than the PLE technique. The research focused on in the subtasks is the development and application of state-of the-art technologies to meet the needs of the public, Office of Water,

  6. Correlation and path-cofficient analysis of seed yield and yield ...

    African Journals Online (AJOL)

    This study was undertaken in order to determine the association among yield components and their direct and indirect effects on the seed yield of confectionery sunflower. 36 confectionery sunflower populations originated from different regions of Northwest Iran were characterized using 11 agromorphological traits ...

  7. Ecological intensification of cereal production systems: yield potential, soil quality, and precision agriculture.

    Science.gov (United States)

    Cassman, K G

    1999-05-25

    Wheat (Triticum aestivum L.), rice (Oryza sativa L.), and maize (Zea mays L.) provide about two-thirds of all energy in human diets, and four major cropping systems in which these cereals are grown represent the foundation of human food supply. Yield per unit time and land has increased markedly during the past 30 years in these systems, a result of intensified crop management involving improved germplasm, greater inputs of fertilizer, production of two or more crops per year on the same piece of land, and irrigation. Meeting future food demand while minimizing expansion of cultivated area primarily will depend on continued intensification of these same four systems. The manner in which further intensification is achieved, however, will differ markedly from the past because the exploitable gap between average farm yields and genetic yield potential is closing. At present, the rate of increase in yield potential is much less than the expected increase in demand. Hence, average farm yields must reach 70-80% of the yield potential ceiling within 30 years in each of these major cereal systems. Achieving consistent production at these high levels without causing environmental damage requires improvements in soil quality and precise management of all production factors in time and space. The scope of the scientific challenge related to these objectives is discussed. It is concluded that major scientific breakthroughs must occur in basic plant physiology, ecophysiology, agroecology, and soil science to achieve the ecological intensification that is needed to meet the expected increase in food demand.

  8. Yield and Failure Behavior Investigated for Cross-Linked Phenolic Resins Using Molecular Dynamics

    Science.gov (United States)

    Monk, Joshua D.; Lawson, John W.

    2016-01-01

    Molecular dynamics simulations were conducted to fundamentally evaluate the yield and failure behavior of cross-linked phenolic resins at temperatures below the glass transition. Yield stress was investigated at various temperatures, strain rates, and degrees of cross-linking. The onset of non-linear behavior in the cross-linked phenolic structures was caused by localized irreversible molecular rearrangements through the rotation of methylene linkers followed by the formation or annihilation of neighboring hydrogen bonds. The yield stress results, with respect to temperature and strain rate, could be fit by existing models used to describe yield behavior of amorphous glasses. The degree of cross-linking only indirectly influences the maximum yield stress through its influence on glass transition temperature (Tg), however there is a strong relationship between the degree of cross-linking and the failure mechanism. Low cross-linked samples were able to separate through void formation, whereas the highly cross-linked structures exhibited bond scission.

  9. Energy dependence of sputtering yields of Be, Be-C and Be-W films by Be{sup +}-ions

    Energy Technology Data Exchange (ETDEWEB)

    Korshunov, S.N.; Guseva, M.I.; Gureev, V.M.; Neumoin, V.E.; Stoljarova, V.G. [Russian Research Center Kurchatov Inst., Moscow (Russian Federation)

    1998-01-01

    The energy dependence measurements of Be, Be-C and Be-W deposited layer sputtering yields by Be{sup +}-ions were performed. The ion energy was varied in the range (0.3-5.0) keV. The temperature in the process of irradiation was sustained at the level of 670 K. The mixed layers were prepared by simultaneous sputtering of pair targets, Be and C, Be and W, and Be-targets with Ar{sup +}- and Be{sup +}-ions and codeposition of the sputtered atoms on silicon collectors The codeposited layer thickness was changed in the range of (500-1000) nm. The content of oxigen in the Be, Be-C, Be-W deposited layers did not exceed 20 at.%. The mixed layer sputtering yields were compared with the experimental and calculated data, obtained for the self-sputtering yields of beryllium and carbon. It was found that the sputtering yields of the Be-C and Be deposited layers by Be{sup +}-ions in the energy range (0.3-5.0) keV are within the range between the corresponding self-sputtering yields for Be and C. The sputtering yields for the mixture Be-W are close to the corresponding self-sputtering yields of beryllium. (author)

  10. Production of strawberry cultivars in closed hydroponic systems and coconut fibre substrate

    Directory of Open Access Journals (Sweden)

    Fabio Rodrigues de Miranda

    Full Text Available The objective of this work was to evaluate yield and average fruit weight of strawberry cultivars Albion, Camarosa, Festival and Oso Grande, in two closed hydroponic systems (gutters and grow bags, using coconut fibre as substrate. The experimental design was of randomised blocks, divided into strips, with five replications. The hydroponic systems did not differ significantly as to yield, with advantages, such as savings in water and fertilizer and reduced environmental impact, over open systems. The most productive cultivar was Festival, followed by Oso Grande, with average yields of 6.99 kg m-2 and 5.56 kg m-2 respectively. The cultivars with the greatest fruit weight were Oso Grande and Albion, having averages of 11.8 and 11.1 g respectively, with the former being significantly superior to the latter. The highest yield (7.4 kg m-2 was obtained from the cultivar Festival under the gutter system. The Ibiapaba region has conditions which are favourable to strawberry production in relation to precocity (harvesting starts in the 6th week of growth and production continues throughout the year; however there is a need to test new cultivars and to improve the cultivation techniques with an aim to producing larger-sized fruit.

  11. Soviet test yields

    Science.gov (United States)

    Vergino, Eileen S.

    Soviet seismologists have published descriptions of 96 nuclear explosions conducted from 1961 through 1972 at the Semipalatinsk test site, in Kazakhstan, central Asia [Bocharov et al., 1989]. With the exception of releasing news about some of their peaceful nuclear explosions (PNEs) the Soviets have never before published such a body of information.To estimate the seismic yield of a nuclear explosion it is necessary to obtain a calibrated magnitude-yield relationship based on events with known yields and with a consistent set of seismic magnitudes. U.S. estimation of Soviet test yields has been done through application of relationships to the Soviet sites based on the U.S. experience at the Nevada Test Site (NTS), making some correction for differences due to attenuation and near-source coupling of seismic waves.

  12. Genetic dissection of milk yield traits and mastitis resistance QTL on chromosome 20 in dairy cattle

    DEFF Research Database (Denmark)

    Kadri, Naveen Kumar; Guldbrandtsen, Bernt; Lund, Mogens Sandø

    2015-01-01

    Intense selection to increase milk yield has had negative consequences for mastitis incidence in dairy cattle. Due to low heritability of mastitis resistance and an unfavorable genetic correlation with milk yield, a reduction in mastitis through traditional breeding has been difficult to achieve....... Here, we examined quantitative trait loci (QTL) that segregate for clinical mastitis (CM) and milk yield (MY) on Bos taurus autosome 20 (BTA20) to determine whether both traits are affected by a single polymorphism (pleiotropy) or by multiple closely linked polymorphisms. In the latter...... (RDC) and Danish Jersey cattle (JER) with the goal of determining whether these QTL identified in Holsteins were segregating across breeds. Genotypes for 12,566 animals (5,966 HOL, 5,458 RDC, and 1,142 JER) were determined by using the Illumina Bovine SNP50 BeadChip (50k), which identifies 1,568 single...

  13. Diagnostics and equipment for ion temperatures and implosion neutron yields

    International Nuclear Information System (INIS)

    Chen Jiabin; Zheng Zhijian; Peng Hansheng; Wen Shuhuai; Zhang Baohan; Ding Yongkun; Qi Lanying; Chen Ming; Li Chaoguang

    2001-01-01

    Fuel ion temperature is of great importance in the ICF research field. A set of ultra-fast quenched plastic scintillation detector system was fabricated for low yield neutron diagnostic. The detection efficiency and the sensitivity to DT neutrons were scaled using a K-400 accelerator and a pulse neutron tube from Russia with a width 5 - 10 ns, respectively. Its time response functions were calibrated by cosmic ray and implosion neutron separately. Under the conditions of low laser energy so low neutron yield and very limited space, fuel ion temperatures (including implosion neutron yields at the same time) were obtained. The measured ion temperatures for exploding pusher capsules were between 4 keV and 5 keV with errors +-(15 - 25)%. The neutron yields were 5 x 10 8 - 3 x 10 9 for exploding pusher capsules and 1.6 x 10 7 - 3.9 x 10 8 for ablation ones with errors +- (7 - 10)%. Of the six shots of neutron yields calculated, five are in good agreement with authors' experimental results in the range of +- 20%. Not only the heat-conducting mechanism and the effects on implosion of the energy balance of each path of incidence laser, target design, fuel mixture as well as hot electron behavior have been investigated, but also the upgrade level of the laser facility Shengguang II has been tested

  14. Enhanced X-ray yields in PIXE analysis of some binary metal fluorides

    International Nuclear Information System (INIS)

    Peisach, M.; Pineda, C.A.; Pillay, A.E.

    1993-01-01

    Enhanced X-ray yields from the metal components of homogeneous thick targets of binary metal fluorides were observed during PIXE irradiations with protons, deuterons and 3 He ions. The absence of these effects in the pure metals and in the corresponding metal oxides, nitrides and borides suggests that the fluoride component in such compounds plays a key role in producing the enhancement. Coulomb excitation of the extremely low-lying levels of the fluorine nucleus is discussed as a possible mechanism for the improved yields via secondary excitation. (orig.)

  15. Effects of phosphorus and zinc applications on the yields and yields ...

    African Journals Online (AJOL)

    Effects of phosphorus and zinc applications on the yields and yields components of sole early maturing maize ( Zea mays ) and bambaranut ( Vigna subterranean Thour. ) and in intercrop under southern guinea savannah ecology zone.

  16. 6 Grain Yield

    African Journals Online (AJOL)

    create a favourable environment for rice ... developing lines adaptable to many ... have stable, not too short crop duration with ..... Analysis of variance of the effect of site and season on maturity, grain yield and plant ..... and yield components.

  17. Estimation of variation and correlation analysis for yield components in black currant cultivars

    Directory of Open Access Journals (Sweden)

    Rakonjac Vera

    2015-01-01

    Full Text Available Creating genotypes that will be characterized by high yields, good quality and other favorable agronomic characters is a major objective of most currant breeding programs worldwide. For easier and faster achievement of these goals and identification of superior genotypes suitable for use as parents in future hybridization programs, study of genetic parameters seems to be obligatory. In this regard, the aims of our study were to estimate components of variability and heritability, and do correlation analysis for yield components in order to determine efficient strategies for improving yield in black currant breeding programs. Significant differences between cultivars were established for all studied traits. A high proportion of genotypic variance was found with bush width, no. of shoots per bush, bunch weight and berry weight indicating that genetic improvement for these traits through breeding was achievable. Opposite, seasonal variance was high for bush height, no. of bunch per bush and yield. The high heritability coefficients (0.80-0.94 detected for all traits studied reflect the close agreement between their phenotypic and genotypic values. Also, most pairs of traits were similarly correlated at both phenotypic and genotypic levels. So, yield was significantly and positively correlated with bush height, no of bunch per bush and bunch weight. These results imply a rapid response of black currants to selection. [Projekat Ministarstva nauke Republike Srbije, br. 46013 i FP7 Project AREA 316004

  18. Origin of the reversed yield asymmetry in Mg-rare earth alloys at high temperature

    International Nuclear Information System (INIS)

    Hidalgo-Manrique, P.; Herrera-Solaz, V.; Segurado, J.; Llorca, J.; Gálvez, F.; Ruano, O.A.; Yi, S.B.; Pérez-Prado, M.T.

    2015-01-01

    The mechanical behaviour in tension and compression of an extruded Mg–1 wt.% Mn–1 wt.% Nd (MN11) alloy was studied along the extrusion direction in the temperature range −175 °C to 300 °C at both quasi-static and dynamic strain rates. Microstructural analysis revealed that the as-extruded bar presents a recrystallized microstructure and a weak texture that remain stable in the whole temperature range. A remarkable reversed yield stress asymmetry was observed above 150 °C, with the compressive yield stress being significantly higher than the tensile yield stress. The origin of this anomalous reversed yield stress asymmetry, which to date remains unknown, was investigated through the analysis of the macro and microtexture development during deformation, as well as by means of crystal plasticity finite element simulations of a representative volume element of the polycrystal. The critical resolved shear stresses of slip and twining for simulated single crystals were obtained as a function of the temperature by means of an inverse optimisation strategy. Experimental and simulation results suggest that the reversed yield asymmetry may be primarily attributed to the non-Schmid behaviour of pyramidal 〈c + a〉 slip, which is the dominant deformation mechanism at high temperatures. It is proposed, furthermore, that the asymmetry is enhanced at quasi-static strain rates by the stronger interaction of 〈c + a〉 dislocations with the diffusing solute atoms and particles in compression than in tension

  19. Relative ion yields in mammalian cell components using C60 SIMS

    Science.gov (United States)

    Keskin, Selda; Piwowar, Alan; Hue, Jonathan; Shen, Kan; Winograd, Nicholas

    2013-01-01

    Time of flight secondary ion mass spectrometry has been used to better understand the influence of molecular environment on the relative ion yields of membrane lipid molecules found in high abundance in a model mammalian cell line, RAW264.7. Control lipid mixtures were prepared to simulate lipid–lipid interactions in the inner and outer leaflet of cell membranes. Compared with its pure film, the molecular ion yields of 1,2-dioleoyl-sn-glycero-3-phosphocholine and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine are suppressed when mixed with 2-dipalmitoyl-sn-glycero-3-phosphocholine. In the mixture, proton competition between 1,2-dioleoyl-sn-glycero-3-phosphocholine, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, and 2-dipalmitoyl-sn-glycero-3-phosphocholine led to lower ionization efficiency. The possible mechanism for ion suppression was also investigated with 1H and 13C nuclear magnetic resonance spectroscopy. The formation of a hydroxyl bond in lipid mixtures confirms the mechanism involving proton exchange with the surrounding environment. Similar effects were observed for lipid mixtures mimicking the composition of the inner leaflet of cell membranes. The secondary molecular ion yield of 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine was observed to be enhanced in the presence of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine. PMID:25140069

  20. Using normalized difference vegetation index (NDVI) to estimate sugarcane yield and yield components

    Science.gov (United States)

    Sugarcane (Saccharum spp.) yield and yield components are important traits for growers and scientists to evaluate and select cultivars. Collection of these yield data would be labor intensive and time consuming in the early selection stages of sugarcane breeding cultivar development programs with a ...

  1. Genetic disparity and relationship among quantitatively inherited yield related traits in diallel crosses of upland cotton

    International Nuclear Information System (INIS)

    Bibi, M.; Khan, N.U.; Mohammad, F.; Gul, R.; Idrees, M.; Sayal, O.U.; Khakwani, A.A.; Khan, I.A.

    2011-01-01

    In quantitative genetics, development of high yielding genotypes from parental cultivars of same ancestry is some what confusing as compared to genetically diverse parents. However, sufficient recombinations through allelic variations in mating of closely-related populations result in superior agronomic performance. Development of improved cotton genotypes is one of the prime objectives of any cotton breeding programmes. Genetic divergence and yield potential of parental cotton genotypes versus their diallel hybrids, relationship of yield with various morpho-yield traits and their heritability were studied in 8 X 8 F/sub 1/ diallel hybrids and their parental cultivars in Gossypium hirsutum L. during 2008-09 at Khyber Pakhtunkhwa Agricultural University, Peshawar, Pakistan. Highly significant (p less than or equal to 0.01) differences were observed among parental genotypes and F/sub 1/ populations for all the traits. Results revealed that F/sub 1/ hybrids i.e., CIM-506 X CIM-554, CIM-473 X CIM-554, CIM-446 X CIM-496 and CIM-446 X CIM-554 produced significantly higher number of sympodia, bolls per populations showed incredible performance for plant height, locules per boll and seeds plant and seed cotton yield. Some F/sub 1/ per locule. Seed cotton yield manifested positive association with morpho-yield traits which also accounted for greater genetic variations to yield being dependent trait. Heritabilities (broad sense) were moderate to high in magnitude for all populations with larger genetic potential, positive relationship between yield and yield traits. Results revealed that F1 contributing traits and moderate to high heritability can guide intensive selection and improvement per se in segregating populations. (author)

  2. Energy and entropy analysis of closed adiabatic expansion based trilateral cycles

    International Nuclear Information System (INIS)

    Garcia, Ramon Ferreiro; Carril, Jose Carbia; Gomez, Javier Romero; Gomez, Manuel Romero

    2016-01-01

    Highlights: • The adiabatic expansion based TC surpass Carnot factor at low temperatures. • The fact of surpassing Carnot factor doesn’t violate the 2nd law. • An entropy analysis is applied to verify the fulfilment of the second law. • Correction of the exergy transfer associated with heat transferred to a cycle. - Abstract: A vast amount of heat energy is available at low cost within the range of medium and low temperatures. Existing thermal cycles cannot make efficient use of such available low grade heat because they are mainly based on conventional organic Rankine cycles which are limited by Carnot constraints. However, recent developments related to the performance of thermal cycles composed of closed processes have led to the exceeding of the Carnot factor. Consequently, once the viability of closed process based thermal cycles that surpass the Carnot factor operating at low and medium temperatures is globally accepted, research work will aim at looking into the consequences that lead from surpassing the Carnot factor while fulfilling the 2nd law, its impact on the 2nd law efficiency definition as well as the impact on the exergy transfer from thermal power sources to any heat consumer, including thermal cycles. The methodology used to meet the proposed objectives involves the analysis of energy and entropy on trilateral closed process based thermal cycles. Thus, such energy and entropy analysis is carried out upon non-condensing mode trilateral thermal cycles (TCs) characterised by the conversion of low grade heat into mechanical work undergoing closed adiabatic path functions: isochoric heat absorption, adiabatic heat to mechanical work conversion and isobaric heat rejection. Firstly, cycle energy analysis is performed to determine the range of some relevant cycle parameters, such as the operating temperatures and their associated pressures, entropies, internal energies and specific volumes. In this way, the ranges of temperatures within which

  3. Optomechanical Control of Quantum Yield in Trans-Cis Ultrafast Photoisomerization of a Retinal Chromophore Model.

    Science.gov (United States)

    Valentini, Alessio; Rivero, Daniel; Zapata, Felipe; García-Iriepa, Cristina; Marazzi, Marco; Palmeiro, Raúl; Fdez Galván, Ignacio; Sampedro, Diego; Olivucci, Massimo; Frutos, Luis Manuel

    2017-03-27

    The quantum yield of a photochemical reaction is one of the most fundamental quantities in photochemistry, as it measures the efficiency of the transduction of light energy into chemical energy. Nature has evolved photoreceptors in which the reactivity of a chromophore is enhanced by its molecular environment to achieve high quantum yields. The retinal chromophore sterically constrained inside rhodopsin proteins represents an outstanding example of such a control. In a more general framework, mechanical forces acting on a molecular system can strongly modify its reactivity. Herein, we show that the exertion of tensile forces on a simplified retinal chromophore model provokes a substantial and regular increase in the trans-to-cis photoisomerization quantum yield in a counterintuitive way, as these extension forces facilitate the formation of the more compressed cis photoisomer. A rationale for the mechanochemical effect on this photoisomerization mechanism is also proposed. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Potato yield and yield structure depending on irrigation

    Directory of Open Access Journals (Sweden)

    Milić Stanko

    2010-01-01

    Full Text Available In the agroclimatic conditions of the Vojvodina Province, the application of an economic water regime and modern technology is necessary for stable and intensive potato production. A two-year experiment on calcareous chernozem was carried out to determine how irrigation and different pre-irrigation soil moisture affect potato yield and distribution of tuber fraction in the potato yield. The block-design trial had four replicates and was adapted for sprinkler irrigation conditions. It included four treatments: irrigation with pre-irrigation moisture levels of 60 % of field water capacity (FC, irrigation with pre-irrigation moisture levels of 70 % (FC, irrigation with pre-irrigation moisture levels of 80% (FC, and a non-irrigated control treatment. Irrigation significantly increased the yield of potato, which increased from 37.27 % to 75.86 %. Under irrigation, the percentage of small fractions decreased in favour of the 55 mm one, or fractions above the 45-55 mm range. On average, irrigated treatments produced significantly more tubers than the conditions of natural water supply. .

  5. Equilibrium statistical mechanics

    CERN Document Server

    Jackson, E Atlee

    2000-01-01

    Ideal as an elementary introduction to equilibrium statistical mechanics, this volume covers both classical and quantum methodology for open and closed systems. Introductory chapters familiarize readers with probability and microscopic models of systems, while additional chapters describe the general derivation of the fundamental statistical mechanics relationships. The final chapter contains 16 sections, each dealing with a different application, ordered according to complexity, from classical through degenerate quantum statistical mechanics. Key features include an elementary introduction t

  6. EFFECT OF MOLECULAR WEIGHT ON THE YIELD BEHAVIOUR OF EPY EPOXY COMPOUND

    Directory of Open Access Journals (Sweden)

    Magdalena Urbaniak

    2016-12-01

    Full Text Available A series of epoxy networks with molecular weight between crosslinks (Mc ranging from 117 to 508 g/mol were investigated by employing as DSC and DMA methods and compression testing over a broad range of test temperatures (from 20 to 120 °C and strain rates (from 0.0208 to 20.8 min–1. Mechanical characteristics vs. testing temperature and strain rate developed in relation to working conditions of EPY compound applied for machine foundation chocks as well as effect of crosslinking on glass transition temperature (Tg presented in this paper let to find out the effect of molecular architecture composed chiefly by Mc on the thermal and mechanical properties that govern yield behaviour of the material. The investigations carried out in a.m. ranges of testing temperatures and strain rates showed that whichever change of Mc is related to the change in crosslink density causing relative shift in the Tg of the compound. However, a sensitivity of the polymer material on changes in strain rate falls down with growth of testing temperature. Obtained results prove that yielding in EPY compound can be examined in categories of the Eyring’s plastic flow model in which yielding is described.

  7. Yields of some fragments on 235U, 238U and 239Pu fission due to the neutrons of the SBR-1 reactors

    International Nuclear Information System (INIS)

    Yurova, L.N.; Bushuev, A.V.; Ozerkov, V.N.; Chachin, V.V.; Zvonarev, A.V.; Liforov, Yu.G.; Koleganov, Yu.V.; Miller, V.V.; Gorbatyuk, O.V.

    1979-01-01

    Determined are the values of the yields of fission fragments in spectrum close to that of the neutron fission using the data on yields at fission by thermal neutrons. The relation between the activities of fragments in samples irradiated in the BR-1 center and in the thermal colomn of the same reactor was measured with the help of the Ge(Li). The relative rate of fissions in uranium and plutonium samples in the center or in thermal colomn were measured by track detectors. The comparison of the yields obtained and the data of other authors is being made

  8. Comparing predicted yield and yield stability of willow and Miscanthus across Denmark

    DEFF Research Database (Denmark)

    Larsen, Søren; Jaiswal, Deepak; Bentsen, Niclas Scott

    2016-01-01

    was 12.1 Mg DM ha−1 yr−1 for willow and 10.2 Mg DM ha−1 yr−1 for Miscanthus. Coefficent of variation as a measure for yield stability was poorest on the sandy soils of northern and western Jutland and the year-to-year variation in yield was greatest on these soils. Willow was predicted to outyield...... Miscanthus on poor, sandy soils whereas Miscanthus was higher yielding on clay-rich soils. The major driver of yield in both crops was variation in soil moisture, with radiation and precipitation exerting less influence. This is the first time these two major feedstocks for northern Europe have been compared....... The semi-mechanistic crop model BioCro was used to simulate the production of both short rotation coppice (SRC) willow and Miscanthus across Denmark. Predictions were made from high spatial resolution soil data and weather records across this area for 1990-2010. The potential average, rain-fed mean yield...

  9. Closed treatment of unilateral mandibular condyle fractures in adults: a systematic review.

    Science.gov (United States)

    Rozeboom, A V J; Dubois, L; Bos, R R M; Spijker, R; de Lange, J

    2017-04-01

    Of all mandibular fractures, 25-35% are condylar. Many studies have focused on whether to treat such fractures via open or closed modalities. A uniform protocol for closed treatment is lacking, but such a protocol could ensure good clinical practice. The aims of this systematic review were to provide an overview of the published studies exclusively pertaining to closed treatment and to summarize the existing modalities for closed treatment and their clinical outcomes. Sixteen studies were selected for detailed analysis. The treatments given were highly variable, ranging from doing nothing to applying maxillomandibular fixation with stainless steel wires. The results of the different studies and the treatment modalities used were difficult to interpret; however no clear differences in the outcome measures were seen between the treatment modalities applied. Complications encountered after closed treatment included malocclusion, limited mouth opening, reduced range of motion, and persistent pain. Due to the heterogeneity between groups, high loss-to-follow-up, poor descriptions of the treatments given, and variability in outcome measurement methods, no clear associations between adverse outcomes and the treatments applied could be determined. This review suggests that due to the high level of methodological variability in the relevant studies published to date, there are currently no uniform standards for the closed treatment of condylar fractures that can be expected to yield good clinical results. The establishment of such standards could potentially improve treatment outcomes. Copyright © 2016 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  10. Symmetry and history quantum theory: An analog of Wigner close-quote s theorem

    International Nuclear Information System (INIS)

    Schreckenberg, S.

    1996-01-01

    The basic ingredients of the open-quote open-quote consistent histories close-quote close-quote approach to quantum theory are a space UP of open-quote open-quote history propositions close-quote close-quote and a space D of open-quote open-quote decoherence functionals.close-quote close-quote In this article we consider such history quantum theories in the case where UP is given by the set of projectors P(V) on some Hilbert space V. We define the notion of a open-quote open-quote physical symmetry of a history quantum theory close-quote close-quote (PSHQT) and specify such objects exhaustively with the aid of an analog of Wigner close-quote s theorem. In order to prove this theorem we investigate the structure of D, define the notion of an open-quote open-quote elementary decoherence functional,close-quote close-quote and show that each decoherence functional can be expanded as a certain combination of these functionals. We call two history quantum theories that are related by a PSHQT open-quote open-quote physically equivalent close-quote close-quote and show explicitly, in the case of history quantum mechanics, how this notion is compatible with one that has appeared previously. copyright 1996 American Institute of Physics

  11. Precision closed bomb calorimeter for testing flame and gas producing initiators

    Science.gov (United States)

    Carpenter, D. R., Jr.; Taylor, A. C., Jr.

    1972-01-01

    A calorimeter has been developed under this study to help meet the needs of accurate performance monitoring of electrically or mechanically actuated flame and gas producing devices, such as squib-type initiators. A ten cubic centimeter closed bomb (closed volume) calorimeter was designed to provide a standard pressure trace and to measure a nominal 50 calorie output, using the basic components of a Parr Model 1411 calorimeter. Two prototype bombs were fabricated, pressure tested to 2600 psi, and extensively evaluated.

  12. Computer simulation of yielding supports under static and short-term dynamic load

    Directory of Open Access Journals (Sweden)

    Kumpyak Oleg

    2018-01-01

    Full Text Available Dynamic impacts that became frequent lately cause large human and economic losses, and their prevention methods are not always effective and reasonable. The given research aims at studying the way of enhancing explosion safety of building structures by means of yielding supports. The paper presents results of numerical studies of strength and deformation property of yielding supports in the shape of annular tubes under static and short-term dynamic loading. The degree of influence of yielding supports was assessed taking into account three peculiar stages of deformation: elastic; elasto-plastic; and elasto-plastic with hardening. The methodology for numerical studies performance was described using finite element analysis with program software Ansys Mechanical v17.2. It was established that rigidity of yielding supports influences significantly their stress-strain state. The research determined that with the increase in deformable elements rigidity dependence between load and deformation of the support in elastic and plastic stages have linear character. Significant reduction of the dynamic response and increase in deformation time of yielding supports were observed due to increasing the plastic component. Therefore, it allows assuming on possibility of their application as supporting units in RC beams.

  13. Global evaluation of a semiempirical model for yield anomalies and application to within-season yield forecasting.

    Science.gov (United States)

    Schauberger, Bernhard; Gornott, Christoph; Wechsung, Frank

    2017-11-01

    Quantifying the influence of weather on yield variability is decisive for agricultural management under current and future climate anomalies. We extended an existing semiempirical modeling scheme that allows for such quantification. Yield anomalies, measured as interannual differences, were modeled for maize, soybeans, and wheat in the United States and 32 other main producer countries. We used two yield data sets, one derived from reported yields and the other from a global yield data set deduced from remote sensing. We assessed the capacity of the model to forecast yields within the growing season. In the United States, our model can explain at least two-thirds (63%-81%) of observed yield anomalies. Its out-of-sample performance (34%-55%) suggests a robust yield projection capacity when applied to unknown weather. Out-of-sample performance is lower when using remote sensing-derived yield data. The share of weather-driven yield fluctuation varies spatially, and estimated coefficients agree with expectations. Globally, the explained variance in yield anomalies based on the remote sensing data set is similar to the United States (71%-84%). But the out-of-sample performance is lower (15%-42%). The performance discrepancy is likely due to shortcomings of the remote sensing yield data as it diminishes when using reported yield anomalies instead. Our model allows for robust forecasting of yields up to 2 months before harvest for several main producer countries. An additional experiment suggests moderate yield losses under mean warming, assuming no major changes in temperature extremes. We conclude that our model can detect weather influences on yield anomalies and project yields with unknown weather. It requires only monthly input data and has a low computational demand. Its within-season yield forecasting capacity provides a basis for practical applications like local adaptation planning. Our study underlines high-quality yield monitoring and statistics as critical

  14. Device for closing the radioactive sources shutters

    International Nuclear Information System (INIS)

    Teixeira, Everaldo; Santos, Enderson Silvino; Vieira, Carlaine M.; Torquato, Nivaldo Reis; Santos, Evando Ramalho; Castro, Luciano Sampaio

    2002-01-01

    A device for nuclear measurement used at the industrial installation is composed of a radioactive source (Cs 137), the ionization or scintillation chamber and the circuitry parts. The ionization and scintillation chambers are mounted at the industrial piping and monitoring the density of the material inside the piping, based on radiation quantity which comes to receiving chamber. This information is sending to the electronic unity which is responsible for the calculations and remote and local indications of the measured density. Based on the recommendation of the radioactive sources must have the shutters closed when they are inactive, an automatic device composed by solenoid valve, a support and a mechanical shaft which when connected to the supervisory system (CLP's) cause the automatic closing of the shutter of the radioactive sources during the shutting down of the process

  15. THE INFLUENCE OF FERTILIZATION ON YIELD AND YIELD COMPONENT FORMATION OF SOYBEAN VARIETIES

    Directory of Open Access Journals (Sweden)

    Eva CANDRÁKOVÁ

    2009-03-01

    Full Text Available In 2005 and 2006, the influence of fertilization was investigated on forming of yield components and yield of three soybean varieties in sugar beet growing area. Varieties Korada, Supra and OAC Vision were grown. Number of plants per m2, number of pods per plant, number of seeds in pod, thousand seeds weight, yield of seeds, yield of stems and harvest index were examined. Variants of fertilization: I. non-fertilized control, II. LAV 27 % (40 kg ha-1 net nutrient of N in growing stage of first pair of true leaves unfolded, III. Humix komplet (rate 8 l.ha-1 applied in growing stage of first pair of true leaves unfolded (4 l.ha-1 and in growing stage of first flower buds visible (4 l.ha-1, IV. Humix komplet in rate 8 l.ha-1 applied in growing stage of first pair of true leaves unfolded. The yields of seeds and stems were high significantly influenced by variety, fertilization and year. The significantly highest yield of seeds was achieved by Korada variety (4,04 t.ha-1. Varieties OAC Vision and Supra reached yields in interval 3,74-3,84 t.ha-1. Split rate of Humix komplet (III var significantly influenced yield of seeds and stems. The fertilization have increased weight of seeds in proportion to aboveground phyto-mass weight, what was expressed by harvest index.

  16. Mild closed head traumatic brain injury-induced changes in monoamine neurotransmitters in the trigeminal subnuclei of a rat model: mechanisms underlying orofacial allodynias and headache

    Directory of Open Access Journals (Sweden)

    Golam Mustafa

    2017-01-01

    Full Text Available Our recent findings have demonstrated that rodent models of closed head traumatic brain injury exhibit comprehensive evidence of progressive and enduring orofacial allodynias, a hypersensitive pain response induced by non-painful stimulation. These allodynias, tested using thermal hyperalgesia, correlated with changes in several known pain signaling receptors and molecules along the trigeminal pain pathway, especially in the trigeminal nucleus caudalis. This study focused to extend our previous work to investigate the changes in monoamine neurotransmitter immunoreactivity changes in spinal trigeminal nucleus oralis, pars interpolaris and nucleus tractus solitaries following mild to moderate closed head traumatic brain injury, which are related to tactile allodynia, touch-pressure sensitivity, and visceral pain. Our results exhibited significant alterations in the excitatory monoamine, serotonin, in spinal trigeminal nucleus oralis and pars interpolaris which usually modulate tactile and mechanical sensitivity in addition to the thermal sensitivity. Moreover, we also detected a robust alteration in the expression of serotonin, and inhibitory molecule norepinephrine in the nucleus tractus solitaries, which might indicate the possibility of an alteration in visceral pain, and existence of other morbidities related to solitary nucleus dysfunction in this rodent model of mild to moderate closed head traumatic brain injury. Collectively, widespread changes in monoamine neurotransmitter may be related to orofacial allodynhias and headache after traumatic brain injury.

  17. High temperature (900-1300 C) mechanical behaviour of dendritic web grown silicon ribbons - Strain rate and temperature dependence of the yield stress

    Science.gov (United States)

    Mathews, V. K.; Gross, T. S.

    1987-01-01

    The mechanical behavior of dendritic web Si ribbons close the melting point was studied experimentally. The goal of the study was to generate data for modeling the generation of stresses and dislocation structures during growth of dendritic web Si ribbons, thereby permitting modifications to the production process, i.e., the temperature profile, to lower production costs for the photovoltaic ribbons. A laser was used to cut specimens in the direction of growth of sample ribbons, which were then subjected to tensile tests at temperatures up to 1300 C in an Ar atmosphere. The tensile strengths of the samples increased when the temperature rose above 1200 C, a phenomena which was attributed to the diffusion of oxygen atoms to the quasi-dislocation sites. The migration to the potential dislocations sites effectively locked the dislocations.

  18. Potent Allosteric Dengue Virus NS5 Polymerase Inhibitors: Mechanism of Action and Resistance Profiling.

    Directory of Open Access Journals (Sweden)

    Siew Pheng Lim

    2016-08-01

    Full Text Available Flaviviruses comprise major emerging pathogens such as dengue virus (DENV or Zika virus (ZIKV. The flavivirus RNA genome is replicated by the RNA-dependent-RNA polymerase (RdRp domain of non-structural protein 5 (NS5. This essential enzymatic activity renders the RdRp attractive for antiviral therapy. NS5 synthesizes viral RNA via a "de novo" initiation mechanism. Crystal structures of the flavivirus RdRp revealed a "closed" conformation reminiscent of a pre-initiation state, with a well ordered priming loop that extrudes from the thumb subdomain into the dsRNA exit tunnel, close to the "GDD" active site. To-date, no allosteric pockets have been identified for the RdRp, and compound screening campaigns did not yield suitable drug candidates. Using fragment-based screening via X-ray crystallography, we found a fragment that bound to a pocket of the apo-DENV RdRp close to its active site (termed "N pocket". Structure-guided improvements yielded DENV pan-serotype inhibitors of the RdRp de novo initiation activity with nano-molar potency that also impeded elongation activity at micro-molar concentrations. Inhibitors exhibited mixed inhibition kinetics with respect to competition with the RNA or GTP substrate. The best compounds have EC50 values of 1-2 μM against all four DENV serotypes in cell culture assays. Genome-sequencing of compound-resistant DENV replicons, identified amino acid changes that mapped to the N pocket. Since inhibitors bind at the thumb/palm interface of the RdRp, this class of compounds is proposed to hinder RdRp conformational changes during its transition from initiation to elongation. This is the first report of a class of pan-serotype and cell-active DENV RdRp inhibitors. Given the evolutionary conservation of residues lining the N pocket, these molecules offer insights to treat other serious conditions caused by flaviviruses.

  19. Effects of application boron on yields, yield component and oil ...

    African Journals Online (AJOL)

    The study was conducted to investigate the effects of five boron (B) doses; 0, 2.5, 5.0, 7.5 and 10.0 kg B ha-1 in B-deficient calcareous soils on yield and some yield components of four sunflower genotypes. Genotypes have shown variations with respect to their responses to B applications. AS-615 and Coban had the ...

  20. Influence of Inter and Intra-rows Spacing on Yield and Yield ...

    African Journals Online (AJOL)

    Abyssinia

    yield and yield components of fresh market(Bishola) and processing (Cochoro) tomato cultivars. ... row spacing had a significant effect on plan canopy width, above ground dry biomass, ... Poor varietal performance and management practices that includeinter and intra-row spacing ..... of assimilate export from the leaves.

  1. Yields of fission products produced by thermal-neutron fission of 245Cm

    International Nuclear Information System (INIS)

    Dickens, J.K.; McConnell, J.W.

    1981-01-01

    Absolute yields have been determined for 105 gamma rays emitted in the decay of 95 fission products representing 54 mass chains created during thermal-neutron fission of 245 Cm. These results include 17 mass chains for which no prior yield data exist. Using a Ge(Li) detector, spectra were obtained of gamma rays between 30 sec and 0.3 yr after very short irradiations of thermal neutrons on a 1 μg sample of 245 Cm. On the basis of measured gamma-ray yields and known nuclear data, total chain mass yields and relative uncertainties were obtained for 51 masses between 84 and 156. The absolute overall normalization uncertainty is 239 Pu and for 252 Cf(s.f.); the influences of the closed shells Z=50, N=82 are not as marked as for thermal-neutron fission of 239 Pu but much more apparent than for 252 Cf(s.f.). Information on the charge distribution along several isobaric mass chains was obtained by determining fractional yields for 12 fission products. The charge distribution width parameter, based upon data for the heavy masses, A=128 to 140, is independent of mass to within the uncertainties of the measurements. Gamma-ray assignments were made for decay of short-lived fission products for which absolute gamma-ray transition probabilities are either not known or in doubt. Absolute gamma-ray transition probabilities were determined as (51 +- 8)% for the 374-keV gamma ray from decay of 110 Rh, (35 +- 7)% for the 1096-keV gamma ray from decay of 133 Sb, and (21.2 +- 1.2)% for the 255-keV gamma ray from decay of 142 Ba

  2. Effect of acid treatment on thermal extraction yield in ashless coal production

    Energy Technology Data Exchange (ETDEWEB)

    Chunqi Li; Toshimasa Takanohashi; Takahiro Yoshida; Ikuo Saito; Hideki Aoki; Kiyoshi Mashimo [National Institute of Advanced Industrial Science and Technology, Tsukuba (Japan). Institute for Energy Utilization

    2004-04-01

    Coals of different ranks were acid-treated in aqueous methoxyethoxy acetic acid (MEAA), acetic acid (AA), and HCl. The acid-treated coals were extracted with polar N-methyl-2-pyrrolidinone (NMP) and nonpolar 1-methylnaphthalene (1MN) solvents at temperatures from 200 to 360{sup o}C for 10 60 min. The thermal extraction yields with NMP for some acid-treated low-rank coals increased greatly; for example, the extraction yield for Wyodak coal (%C; 75.0%) increased from 58.4% for the raw coal to 82.9% for coal treated in 1.0 M MEAA. Conversely, the extraction yields changed minimally for all the acid-treated coals extracted in 1-MN. The type and concentration of acid affected the extraction yield when NMP was used as the extraction solvent. With increasing MEAA concentration from 0.01 to 0.1 M, the extraction yield for Wyodak coal increased from 66.3 to 81.4%, and subsequently did not change clearly with concentration. Similar changes in the extraction yield with acid concentration were also observed with AA and HCl. The de-ashing ratio for coals acid-treated in MEAA, AA, and HCl also increased greatly with concentration from 0.01 to 0.1 M, which corresponded to the change in the thermal extraction yield in NMP. For the acid-treated coals, high extraction yields were obtained at lower extraction temperatures and shorter extraction times than for the raw coal. The mechanisms for the acid treatment and thermal extraction are discussed. 27 refs., 6 figs., 3 tabs.

  3. Water yield issues in the jarrah forest of south-western Australia

    Science.gov (United States)

    Ruprecht, J. K.; Stoneman, G. L.

    1993-10-01

    The jarrah forest of south-western Australia produces little streamflow from moderate rainfall. Water yield from water supply catchments for Perth, Western Australia, are low, averaging 71 mm (7% of annual rainfall). The low water yields are attributed to the large soil water storage available for continuous use by the forest vegetation. A number of water yield studies in south-western Australia have examined the impact on water yield of land use practices including clearing for agricultural development, forest harvesting and regeneration, forest thinning and bauxite mining. A permanent reduction in forest cover by clearing for agriculture led to permanent increases of water yield of approximately 28% of annual rainfall in a high rainfall catchment. Thinning of a high rainfall catchment led to an increase in water yield of 20% of annual rainfall. However, it is not clear for how long the increased water yield will persist. Forest harvesting and regeneration have led to water yield increases of 16% of annual rainfall. The subsequent recovery of vegetation cover has led to water yields returning to pre-disturbance levels after an estimated 12-15 years. Bauxite mining of a high rainfall catchment led to a water yield increase of 8% of annual rainfall, followed by a return to pre-disturbance water yield after 12 years. The magnitude of specific streamflow generation mechanisms in small catchments subject to forest disturbance vary considerably, typically in a number of distinct stages. The presence of a permanent groundwater discharge area was shown to be instrumental in determining the magnitude of the streamflow response after forest disturbance. The long-term prognosis for water yield from areas subject to forest thinning, harvesting and regeneration, and bauxite mining are uncertain, owing to the complex interrelationship between vegetation cover, tree height and age, and catchment evapotranspiration. Management of the forest for water yield needs to acknowledge

  4. Effects of heterosis for yield and yield components obtained by crossing divergent alfalfa populations

    Directory of Open Access Journals (Sweden)

    Katić Slobodan

    2010-01-01

    Full Text Available When breeding alfalfa for yield performance, it is necessary to use high-yielding parents obtained by different breeding methods. The assumption at the onset of this research was that crossing highest-yielding domestic cultivars with divergent populations from geographically distant breeding centers could result in the expression of heterotic effects in their hybrids contributing to increased alfalfa yield. The objective of this study was to determine yield and yield components and heterotic effects in hybrid progenies obtained by crossing the domestic cultivars NS Banat ZMS II and NS Mediana ZMS V with the cultivars Pella, Dolichi and Hyliki from Greece, UMSS 2001 from Bolivia and Jogeva 118 from Estonia in two series. The field trial planted in 2006, included 13 F1 hybrids and 6 of 7 initial parents in both series. Heterotic effects for yields of forage and hay were observed in 4 combinations (C NS Banat ZMS II x E Hyliki; C NS Banat ZMS II x E UMSS 2001; C NS Mediana ZMS V x E Hyliki; C NS Mediana ZMS V x E Dolichi. The populations that exhibited heterosis in a set of crossings are recommended for use as parent components for development of high-yielding synthetic alfalfa cultivars. .

  5. Testing quantum mechanics using third-order correlations

    International Nuclear Information System (INIS)

    Kinsler, P.

    1996-01-01

    Semiclassical theories similar to stochastic electrodynamics are widely used in optics. The distinguishing feature of such theories is that the quantum uncertainty is represented by random statistical fluctuations. They can successfully predict some quantum-mechanical phenomena; for example, the squeezing of the quantum uncertainty in the parametric oscillator. However, since such theories are not equivalent to quantum mechanics, they will not always be useful. Complex number representations can be used to exactly model the quantum uncertainty, but care has to be taken that approximations do not reduce the description to a hidden variable one. This paper helps show the limitations of open-quote open-quote semiclassical theories,close-quote close-quote and helps show where a true quantum-mechanical treatment needs to be used. Third-order correlations are a test that provides a clear distinction between quantum and hidden variable theories in a way analogous to that provided by the open-quote open-quote all or nothing close-quote close-quote Greenberger-Horne-Zeilinger test of local hidden variable theories. copyright 1996 The American Physical Society

  6. Status of fission yield measurements

    International Nuclear Information System (INIS)

    Maeck, W.J.

    1979-01-01

    Fission yield measurement and yield compilation activities in the major laboratories of the world are reviewed. In addition to a general review of the effort of each laboratory, a brief summary of yield measurement activities by fissioning nuclide is presented. A new fast reactor fission yield measurement program being conducted in the US is described

  7. Yield Strength Testing in Human Cadaver Nasal Septal Cartilage and L-Strut Constructs.

    Science.gov (United States)

    Liu, Yuan F; Messinger, Kelton; Inman, Jared C

    2017-01-01

    To our knowledge, yield strength testing in human nasal septal cartilage has not been reported to date. An understanding of the basic mechanics of the nasal septum may help surgeons decide how much of an L-strut to preserve and how much grafting is needed. To determine the factors correlated with yield strength of the cartilaginous nasal septum and to explore the association between L-strut width and thickness in determining yield strength. In an anatomy laboratory, yield strength of rectangular pieces of fresh cadaver nasal septal cartilage was measured, and regression was performed to identify the factors correlated with yield strength. To measure yield strength in L-shaped models, 4 bonded paper L-struts models were constructed for every possible combination of the width and thickness, for a total of 240 models. Mathematical modeling using the resultant data with trend lines and surface fitting was performed to quantify the associations among L-strut width, thickness, and yield strength. The study dates were November 1, 2015, to April 1, 2016. The factors correlated with nasal cartilage yield strength and the associations among L-strut width, thickness, and yield strength in L-shaped models. Among 95 cartilage pieces from 12 human cadavers (mean [SD] age, 67.7 [12.6] years) and 240 constructed L-strut models, L-strut thickness was the only factor correlated with nasal septal cartilage yield strength (coefficient for thickness, 5.54; 95% CI, 4.08-7.00; P cadaver nasal septal cartilage, L-strut thickness was significantly associated with yield strength. In a bonded paper L-strut model, L-strut thickness had a more important role in determining yield strength than L-strut width. Surgeons should consider the thickness of potential L-struts when determining the amount of cartilaginous septum to harvest and graft. NA.

  8. Bubble Formation in Yield Stress Fluids Using Flow-Focusing and T-Junction Devices.

    Science.gov (United States)

    Laborie, Benoit; Rouyer, Florence; Angelescu, Dan E; Lorenceau, Elise

    2015-05-22

    We study the production of bubbles inside yield stress fluids (YSFs) in axisymmetric T-junction and flow-focusing devices. Taking advantage of yield stress over capillary stress, we exhibit a robust break-up mechanism reminiscent of the geometrical operating regime in 2D flow-focusing devices for Newtonian fluids. We report that when the gas is pressure driven, the dynamics is unsteady due to hydrodynamic feedback and YSF deposition on the walls of the channels. However, the present study also identifies pathways for potential steady-state production of bubbly YSFs at large scale.

  9. Mechanical design of an intracranial stent for treating cerebral aneurysms.

    Science.gov (United States)

    Shobayashi, Yasuhiro; Tanoue, Tetsuya; Tateshima, Satoshi; Tanishita, Kazuo

    2010-11-01

    Endovascular treatment of cerebral aneurysms using stents has advanced markedly in recent years. Mechanically, a cerebrovascular stent must be very flexible longitudinally and have low radial stiffness. However, no study has examined the stress distribution and deformation of cerebrovascular stents using the finite element method (FEM) and experiments. Stents can have open- and closed-cell structures, and open-cell stents are used clinically in the cerebrovasculature because of their high flexibility. However, the open-cell structure confers a risk of in-stent stenosis due to protrusion of stent struts into the normal parent artery. Therefore, a flexible stent with a closed-cell structure is required. To design a clinically useful, highly flexible, closed-cell stent, one must examine the mechanical properties of the closed-cell structure. In this study, we investigated the relationship between mesh patterns and the mechanical properties of closed-cell stents. Several mesh patterns were designed and their characteristics were studied using numerical simulation. The results showed that the bending stiffness of a closed-cell stent depends on the geometric configuration of the stent cell. It decreases when the stent cell is stretched in the circumferential direction. Mechanical flexibility equal to an open-cell structure was obtained in a closed-cell structure by varying the geometric configuration of the stent cell. Copyright © 2010 IPEM. Published by Elsevier Ltd. All rights reserved.

  10. Simulation of cortico-basal ganglia oscillations and their suppression by closed loop deep brain stimulation.

    Science.gov (United States)

    Grant, Peadar F; Lowery, Madeleine M

    2013-07-01

    A new model of deep brain stimulation (DBS) is presented that integrates volume conduction effects with a neural model of pathological beta-band oscillations in the cortico-basal ganglia network. The model is used to test the clinical hypothesis that closed-loop control of the amplitude of DBS may be possible, based on the average rectified value of beta-band oscillations in the local field potential. Simulation of closed-loop high-frequency DBS was shown to yield energy savings, with the magnitude of the energy saved dependent on the strength of coupling between the subthalamic nucleus and the remainder of the cortico-basal ganglia network. When closed-loop DBS was applied to a strongly coupled cortico-basal ganglia network, the stimulation energy delivered over a 480 s period was reduced by up to 42%. Greater energy reductions were observed for weakly coupled networks, as the stimulation amplitude reduced to zero once the initial desynchronization had occurred. The results provide support for the application of closed-loop high-frequency DBS based on electrophysiological biomarkers.

  11. Linkages among climate change, crop yields and Mexico-US cross-border migration.

    Science.gov (United States)

    Feng, Shuaizhang; Krueger, Alan B; Oppenheimer, Michael

    2010-08-10

    Climate change is expected to cause mass human migration, including immigration across international borders. This study quantitatively examines the linkages among variations in climate, agricultural yields, and people's migration responses by using an instrumental variables approach. Our method allows us to identify the relationship between crop yields and migration without explicitly controlling for all other confounding factors. Using state-level data from Mexico, we find a significant effect of climate-driven changes in crop yields on the rate of emigration to the United States. The estimated semielasticity of emigration with respect to crop yields is approximately -0.2, i.e., a 10% reduction in crop yields would lead an additional 2% of the population to emigrate. We then use the estimated semielasticity to explore the potential magnitude of future emigration. Depending on the warming scenarios used and adaptation levels assumed, with other factors held constant, by approximately the year 2080, climate change is estimated to induce 1.4 to 6.7 million adult Mexicans (or 2% to 10% of the current population aged 15-65 y) to emigrate as a result of declines in agricultural productivity alone. Although the results cannot be mechanically extrapolated to other areas and time periods, our findings are significant from a global perspective given that many regions, especially developing countries, are expected to experience significant declines in agricultural yields as a result of projected warming.

  12. Color suppressed contributions to the decay modes B{sub d,s}{yields}D{sub s,d}D{sub s,d}, B{sub d,s}{yields}D{sub s,d}D{sup *}{sub s,d}, and B{sub d,s}{yields}D{sup *}{sub s,d} D{sup *}{sub s,d}

    Energy Technology Data Exchange (ETDEWEB)

    Eeg, J.O. [University of Oslo, Department of Physics, Blindern, Oslo (Norway); Fajfer, S. [University of Ljubljana, Department of Physics, Ljubljana (Slovenia); J. Stefan Institute, Ljubljana (Slovenia); Prapotnik, A. [J. Stefan Institute, Ljubljana (Slovenia)

    2005-07-01

    The amplitudes for decays of the type B{sub d,s}{yields}D{sub s,d}D{sub s,d}, have no factorizable contributions, while B{sub d,s}{yields}D{sub s,d}D{sup *}{sub s,d}, and B{sub d,s}{yields}D{sup *}{sub s,d}D{sup *}{sub s,d} have relatively small factorizable contributions through the annihilation mechanism. The dominant contributions to the decay amplitudes arise from chiral loop contributions and tree level amplitudes which can be obtained in terms of soft gluon emissions forming a gluon condensate. We predict that the branching ratios for the processes anti B{sup 0}{sub d}{yields}D{sub s}{sup +}D{sub s}{sup -}, anti B{sup 0}{sub d}{yields}D{sub s}{sup +*} D{sub s}{sup -} and anti B{sup 0}{sub d}{yields}D{sub s}{sup +}D{sub s}{sup -*} are all of order (2-3) x 10{sup -4}, while anti B{sup 0}{sub s}{yields}D{sub d}{sup +}D{sub d}{sup -}, anti B{sup 0}{sub s}{yields}D{sub d}{sup +*}D{sub d}{sup -} and anti B{sup 0}{sub s}{yields}D{sub d}{sup +}D{sub d}{sup -*} are of order (4-7) x 10{sup -3}. We obtain branching ratios for two D{sup *}'s in the final state of order two times bigger. (orig.)

  13. Using Satellite Data to Identify the Causes of and Potential Solutions for Yield Gaps in India's Wheat Belt

    Science.gov (United States)

    Jain, M.; Singh, B.; Srivastava, A.; Malik, R. K.; McDonald, A.; Lobell, D. B.

    2017-12-01

    Food security will be increasingly challenged by climate change, natural resource degradation, and population growth. Wheat yields, in particular, have already stagnated in many regions and will be further affected by warming temperatures. Despite these challenges, wheat yields can be increased by improving management practices in regions with existing yield gaps. We present two studies that are using satellite data to better understand the factors contributing to yield gaps and potential interventions to close yield gaps in India's main wheat belt, the Indo-Gangetic Plains (IGP). To identify the magnitude and causes of current yield gaps, we produced 30 meter resolution yield maps from 2001 to 2015 using Landsat sallite data and a new method that translates satellite vegetation indices to yield estimates using crop model simulations, bypassing the need for ground calibration data. This is one of the first attempts to apply this method to a smallholder agriculture system, where ground calibration data are rarely available. We find that yields can be increased by 11% on average and up to 32% in the eastern IGP by improving management to current best practices within a given district. Additionally, if current best practices from the highest-yielding state of Punjab are implemented in the eastern IGP, yields could increase by almost 110%. Considering the factors that most influence yields, later sow dates and warmer temperatures are most associated with low yields across the IGP. This suggests that strategies to reduce the negative effects of heat stress, like earlier sowing and planting heat-tolerant wheat varieties, are critical to increasing wheat yields in this globally-important agricultural region. We also apply this method to high-resolution micro-satellite data (impacts of a new fertilizer spreader technology and identify whether satellite data can be used to appropriately target this intervention.

  14. Factors affecting the optimal performance of a high-yield pulping operation

    Energy Technology Data Exchange (ETDEWEB)

    Broderick, G [Noranda Technology Centre, Pointe-Claire, PQ (Canada); Paris, J [Ecole Polytechnique, Montreal, PQ (Canada); Valada, J L [Quebec Univ., Trois-Rivieres, PQ (Canada)

    1995-06-01

    Strategies for operating a chemical-mechanical pulp mill were investigated from data based on process models from some one hundred pilot scale pulping runs. Optimal values for 55 process and pulp quality variables have been calculated by applying a genetic algorithm search to a fuzzy model of the overall system. Best pulp quality was achieved and maintained when the chemical pretreatment was conducted at moderately low temperatures using a high SO{sub 2} concentration, which produced high sulphonation and high yield at the same time. By characterizing the quality of the pulp at the fibre level, optimization results were said to be more easily transferable to other high yield pulping systems. 19 refs., 6 tabs.

  15. Measurements of fission yields

    International Nuclear Information System (INIS)

    Denschlag, H.O.

    2000-01-01

    After some historical introductory remarks on the discovery of nuclear fission and early fission yield determinations, the present status of knowledge on fission yields is briefly reviewed. Practical and fundamental reasons motivating the pursuit of fission yield measurements in the coming century are pointed out. Recent results and novel techniques are described that promise to provide new interesting insights into the fission process during the next century. (author)

  16. Closed-loop waveform control of boost inverter

    DEFF Research Database (Denmark)

    Zhu, Guo Rong; Xiao, Cheng Yuan; Wang, Haoran

    2016-01-01

    The input current of single-phase inverter typically has an AC ripple component at twice the output frequency, which causes a reduction in both the operating lifetime of its DC source and the efficiency of the system. In this paper, the closed-loop performance of a proposed waveform control method...... to eliminate such a ripple current in boost inverter is investigated. The small-signal stability and the dynamic characteristic of the inverter system for input voltage or wide range load variations under the closed-loop waveform control method are studied. It is validated that with the closedloop waveform...... control, not only was stability achieved, the reference voltage of the boost inverter capacitors can be instantaneously adjusted to match the new load, thereby achieving improved ripple mitigation for a wide load range. Furthermore, with the control and feedback mechanism, there is minimal level of ripple...

  17. Effect of sulfur and iron fertilizers on yield, yield components and ...

    African Journals Online (AJOL)

    Jane

    2011-06-13

    Jun 13, 2011 ... per plant. Interaction between water stress and combination of iron and sulfur fertilizers had significant .... Results of analysis of variance (ANOVA) of water stress (W), sulfur (B) and iron (C), and their interaction with gain yield, yield components and ... the soil structure and it increased the usefulness of other.

  18. Effect of water stress on yield and yield components of sunflower ...

    African Journals Online (AJOL)

    A field experiment during year 2009 was conducted in the research station of the University of Tehran, College of Abouraihan in Pakdasht region, Iran. The study was aimed to investigate the effect of water stress on seed yield, yield component and some quantitative traits of four sunflower hybrids namely Azargol, Alstar, ...

  19. Path coefficient and correlation of yield and yield associated traits in candidate bread wheat (triticum aestivum l)lines

    International Nuclear Information System (INIS)

    Muhammad, T.; Haider, S.; Qureshi, M. J.; Shah, G. S.; Zamir, R.

    2005-01-01

    Yield and yield contributing traits were studied in candidate bread wheat lines to find out the genetic contribution of the different characters towards grain yield at NIFA, Peshawar during 2001-02. All the characteristics studied differed significantly from each other. Days to heading showed negative and significant correlation with harvest index and grain yield but was negative and non-significant with the biological yield. Days to maturity were negatively correlated at both genotypic and phenotypic levels with biological yield; harvest index and grain yield and level of correlations were significant with harvest index and grain yield. Plant height showed negative genotypic and phenotypic correlation with harvest index and grain yield. Biological yield had positive and significant genotypic and phenotypic correlations with harvest index and grain yield. Harvest index had positive and highly significant genotypic and phenotypic correlation with grain yield. Genotypic and phenotypic correlation coefficients revealed that important characters influencing grain yield are harvest index and biological yield. Path analysis showed the importance in order of harvest index, biological yield, plant height, days to maturity and days to heading with grain yield. (author)

  20. Closed Process of Shale Oil Recovery from Circulating Washing Water by Hydrocyclones

    Directory of Open Access Journals (Sweden)

    Yuan Huang

    2016-12-01

    Full Text Available The conventional oil recovery system in the Fushun oil shale retorting plant has a low oil recovery rate. A large quantity of fresh water is used in the system, thereby consuming a considerable amount of water and energy, as well as polluting the environment. This study aims to develop a closed process of shale oil recovery from the circulating washing water for the Fushun oil shale retorting plant. The process would increase oil yield and result in clean production. In this process, oil/water hydrocyclone groups were applied to decrease the oil content in circulating water and to simultaneously increase oil yield. The oil sludge was removed by the solid/liquid hydrocyclone groups effectively, thereby proving the smooth operation of the devices and pipes. As a result, the oil recovery rate has increased by 5.3 %, which corresponds to 230 tonnes a month.

  1. The Influence of Austenite Grain Size on the Mechanical Properties of Low-Alloy Steel with Boron

    Directory of Open Access Journals (Sweden)

    Beata Białobrzeska

    2017-01-01

    Full Text Available This study forms part of the current research on modern steel groups with higher resistance to abrasive wear. In order to reduce the intensity of wear processes, and also to minimize their impact, the immediate priority seems to be a search for a correlation between the chemical composition and structure of these materials and their properties. In this paper, the correlation between prior austenite grain size, martensite packets and the mechanical properties were researched. The growth of austenite grains is an important factor in the analysis of the microstructure, as the grain size has an effect on the kinetics of phase transformation. The microstructure, however, is closely related to the mechanical properties of the material such as yield strength, tensile strength, elongation and impact strength, as well as morphology of occurred fracture. During the study, the mechanical properties were tested and a tendency to brittle fracture was analysed. The studies show big differences of the analysed parameters depending on the applied heat treatment, which should provide guidance to users to specific applications of this type of steel.

  2. Landscape crop composition effects on cotton yield, Lygus hesperus densities and pesticide use.

    Science.gov (United States)

    Meisner, Matthew H; Zaviezo, Tania; Rosenheim, Jay A

    2017-01-01

    Landscape crop composition surrounding agricultural fields is known to affect the density of crop pests, but quantifying these effects, as well as measuring how they translate to changes in yield, is difficult. Using a large dataset consisting of 1498 records of commercial cotton production in California between 1997 and 2008, we explored the relationship between landscape composition and cotton yield, the density of Lygus hesperus (a key cotton pest) at field-level and within-field spatial scales and pesticide use. We found that the crop composition immediately adjacent to a cotton field was associated with substantial differences in cotton yield, L. hesperus density and pesticide use. Furthermore, crops that tended to be associated with increased L. hesperus density also tended to be associated with increased pesticide use and decreased cotton yield. Our results suggest a possible mechanism by which landscape composition can affect cotton yield: by increasing the density of pests which in turn damage cotton plants. Our quantification of how surrounding crops affect pest densities, and in turn yield, in cotton fields has significant impacts for cotton farmers, who can use this information to help optimize crop selection and ranch layout. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  3. Effect of crack closing and cyclic fracture toughness evaluation of structural alloys

    International Nuclear Information System (INIS)

    Romaniv, O.N.; Nikiforchin, G.N.; Andrusiv, B.N.

    1983-01-01

    Mechanisms of crack closing (CC), methods of its evalution as well as CC effect on cyclic fracture toughness of structural alloys are considered based on literature and experimental datas several CC mechanisms are suggested. It is noted that evaluation of fatigue crack closing is exercised, mainly, experimentally, though analytical methods of its determination are also suggested. Experimental Methods may be divided in two main groups. The first one comprises techniques based on direct determination of strains and displacements, the second one includes methods based on physical methods of investigations. High importance of CC effect accountancy in investigation of growth kinetics and machanism of corrosion-fatigue cracks in structural materials is noted. Besides, it should be taken into account that cyclic loading changes electrochemical conditions in the apex of corrosion crack

  4. Seed yield and some yield components of sesame as affected by ...

    African Journals Online (AJOL)

    In order to study the effect of different irrigation, N and superabsorbent levels on yield and yield components of sesame, a field experiment was conducted in Khosf Region, Birjand, Iran in 2009 as a split-split plot design based on a randomized complete block design. The treatments included irrigation interval at three levels ...

  5. Genotype x environment interaction for grain yield of wheat genotypes tested under water stress conditions

    International Nuclear Information System (INIS)

    Sail, M.A.; Dahot, M.U.; Mangrio, S.M.; Memon, S.

    2007-01-01

    Effect of water stress on grain yield in different wheat genotypes was studied under field conditions at various locations. Grain yield is a complex polygenic trait influenced by genotype, environment and genotype x environment (GxE) interaction. To understand the stability among genotypes for grain yield, twenty-one wheat genotypes developed Through hybridization and radiation-induced mutations at Nuclear Institute of Agriculture (NIA) TandoJam were evaluated with four local check varieties (Sarsabz, Thori, Margalla-99 and Chakwal-86) in multi-environmental trails (MET/sub s/). The experiments were conducted over 5 different water stress environments in Sindh. Data on grain yield were recorded from each site and statistically analyzed. Combined analysis of variance for all the environments indicated that the genotype, environment and genotype x environment (GxE) interaction were highly significant (P greater then 0.01) for grain yield. Genotypes differed in their response to various locations. The overall highest site mean yield (4031 kg/ha) recorded at Moro and the lowest (2326 kg/ha) at Thatta. Six genotypes produced significantly (P=0.01) the highest grain yield overall the environments. Stability analysis was applied to estimate stability parameters viz., regression coefficient (b), standard error of regression coefficient and variance due to deviation from regression (S/sub 2/d) genotypes 10/8, BWS-78 produced the highest mean yield over all the environments with low regression coefficient (b=0.68, 0.67 and 0.63 respectively and higher S/sup 2/ d value, showing specific adaptation to poor (un favorable) environments. Genotype 8/7 produced overall higher grain yield (3647 kg/ha) and ranked as third high yielding genotype had regression value close to unity (b=0.9) and low S/sup d/ value, indicating more stability and wide adaptation over the all environments. The knowledge of the presence and magnitude of genotype x environment (GE) interaction is important to

  6. Lichen symbiosis: nature's high yielding machines for induced hydrogen production.

    Directory of Open Access Journals (Sweden)

    Aikaterini Papazi

    Full Text Available Hydrogen is a promising future energy source. Although the ability of green algae to produce hydrogen has long been recognized (since 1939 and several biotechnological applications have been attempted, the greatest obstacle, being the O2-sensitivity of the hydrogenase enzyme, has not yet been overcome. In the present contribution, 75 years after the first report on algal hydrogen production, taking advantage of a natural mechanism of oxygen balance, we demonstrate high hydrogen yields by lichens. Lichens have been selected as the ideal organisms in nature for hydrogen production, since they consist of a mycobiont and a photobiont in symbiosis. It has been hypothesized that the mycobiont's and photobiont's consumption of oxygen (increase of COX and AOX proteins of mitochondrial respiratory pathways and PTOX protein of chrolorespiration establishes the required anoxic conditions for the activation of the phycobiont's hydrogenase in a closed system. Our results clearly supported the above hypothesis, showing that lichens have the ability to activate appropriate bioenergetic pathways depending on the specific incubation conditions. Under light conditions, they successfully use the PSII-dependent and the PSII-independent pathways (decrease of D1 protein and parallel increase of PSaA protein to transfer electrons to hydrogenase, while under dark conditions, lichens use the PFOR enzyme and the dark fermentative pathway to supply electrons to hydrogenase. These advantages of lichen symbiosis in combination with their ability to survive in extreme environments (while in a dry state constitute them as unique and valuable hydrogen producing natural factories and pave the way for future biotechnological applications.

  7. Lichen Symbiosis: Nature's High Yielding Machines for Induced Hydrogen Production

    Science.gov (United States)

    Papazi, Aikaterini; Kastanaki, Elizabeth; Pirintsos, Stergios; Kotzabasis, Kiriakos

    2015-01-01

    Hydrogen is a promising future energy source. Although the ability of green algae to produce hydrogen has long been recognized (since 1939) and several biotechnological applications have been attempted, the greatest obstacle, being the O2-sensitivity of the hydrogenase enzyme, has not yet been overcome. In the present contribution, 75 years after the first report on algal hydrogen production, taking advantage of a natural mechanism of oxygen balance, we demonstrate high hydrogen yields by lichens. Lichens have been selected as the ideal organisms in nature for hydrogen production, since they consist of a mycobiont and a photobiont in symbiosis. It has been hypothesized that the mycobiont’s and photobiont’s consumption of oxygen (increase of COX and AOX proteins of mitochondrial respiratory pathways and PTOX protein of chrolorespiration) establishes the required anoxic conditions for the activation of the phycobiont’s hydrogenase in a closed system. Our results clearly supported the above hypothesis, showing that lichens have the ability to activate appropriate bioenergetic pathways depending on the specific incubation conditions. Under light conditions, they successfully use the PSII-dependent and the PSII-independent pathways (decrease of D1 protein and parallel increase of PSaA protein) to transfer electrons to hydrogenase, while under dark conditions, lichens use the PFOR enzyme and the dark fermentative pathway to supply electrons to hydrogenase. These advantages of lichen symbiosis in combination with their ability to survive in extreme environments (while in a dry state) constitute them as unique and valuable hydrogen producing natural factories and pave the way for future biotechnological applications. PMID:25826211

  8. Influences of nitrogen and potassium top dressing on yield and yield ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-05-03

    May 3, 2010 ... (K) top dressing on grain yield and yield components of rice (Oryza sativa cv. Tarrom) and to ... positive reciprocal effect on crops, and was an important approach in ..... dressing fertilization (Figures 2a, b and c), but nitrogen levels of upper fully .... (Brassica napus L.)–rice (Oryza sativa L.) rotation. Plant Soil ...

  9. Inheritance of grain yield and its correlation with yield components in ...

    African Journals Online (AJOL)

    SAM

    2014-03-19

    Mar 19, 2014 ... average yield of wheat in China is 4.75 t ha-1, which is low compared to other .... Analysis of variance for combining ability for grain yield plant-1. Source of variation ..... Hayman BI (1954). The theory and analysis of diallel crosses. .... Analysis and prospect of China wheat market in 2011. Food and Oil.

  10. Biomass yield potential of short-rotation hardwoods in the Great Plains

    Energy Technology Data Exchange (ETDEWEB)

    Geyer, W A [Kansas State Univ., Manhattan, KS (USA). Dept. of Forestry

    1989-01-01

    Wood for fuel has increased in importance. Its primary use in the world is for energy, increasingly coming from wood wastes and new biomass sources. One solution to the potential problem of using high-quality trees for fuel could be woody biomass grown under a short-rotation intensive culture system. Species, size, age and spacing are factors that affect biomass production of broadleafed trees. Trials of several species grown at close spacing (0.3 m x 0.3 m) and cut at various ages are described and related to the growth and yield of more conventionally spaced plantings on an alluvial site in eastern Kansas. (author).

  11. Effect of Biofertilizers on the Yield and Yield Components of Black Cumin (Nigella sativa L.

    Directory of Open Access Journals (Sweden)

    S Khorramdel

    2011-02-01

    Full Text Available Abstract Application of biological fertilizers is one of the most important methods for plant nutrition in ecological agriculture. In order to investigate the effect of biofertilizers on yield and yield components of black cumin (Nigella sativa L., a field experiment was arranged in a randomized complete block design with three replications during 2007 growing season at the Agricultural Research Station of Ferdowsi University of Mashhad. Treatments included: (A Azotobacter paspali, (B Azospirillum brasilense, (C the fungus of Glomus intraradaices, C+A, C+B, A+B, A+B+C, and control without no biofertilizers. In all treatments except control, the amounts of 15 mg of each biofertilizer were applied to 110 g of seeds. Results indicated that application of biofertilizers enhanced yield and yield components and decreased percentage of hollow capsules. Plant performance was better with application of Azospirillum plus mycorrhiza and a mixture of Azotobacter, Azospirillum and mycorrhiza in terms of yield determining criteria. The maximum and minimum amounts of seed yield were recorded in the B+C treatment with 41.4 gm-2, and control with 24.1 gm-2, respectively. There was no significant correlation between number of capsules per plant and seed yield, but the positive and significant correlation between number of branches per plant, number of seeds per capsule, 1000-seed weight and seed yield was observed. This study showed that application of suitable biofertilizers could increase yield and yield components of black cumin. Keywords: Biofertilizer, Ecological agriculture, Medicinal plants, Plant growth promoting rhizobacteria

  12. The role of drought on wheat yield interannual variability in the Iberian Peninsula from 1929 to 2012.

    Science.gov (United States)

    Páscoa, P; Gouveia, C M; Russo, A; Trigo, R M

    2017-03-01

    The production of wheat in the Iberian Peninsula is strongly affected by climate conditions being particularly vulnerable to interannual changes in precipitation and long-term trends of both rainfall and evapotranspiration. Recent trends in precipitation and temperature point to an increase in dryness in this territory, thus highlighting the need to understand the dependence of wheat yield on climate conditions. The present work aims at studying the relation between wheat yields and drought events in the Iberian Peninsula, using a multiscalar drought index, the standardized precipitation evapotranspiration index (SPEI), at various timescales. The effects of the occurrence of dry episodes on wheat yields were analyzed, on regional spatial scale for two subperiods (1929-1985 and 1986-2012). The results show that in western areas, wheat yield is positively affected by dryer conditions, whereas the opposite happens in eastern areas. The winter months have a bigger influence in the west while the east is more dependent on the spring and summer months. Moreover, in the period of 1986-2012, the simultaneous occurrence of low-yield anomalies and dry events reaches values close to 100 % over many provinces. Results suggest that May and June have a strong control on wheat yield, namely, for longer timescales (9 to 12 months). A shift in the dependence of wheat yields on climatic droughts is evidenced by the increase in the area with positive correlation and the decrease in area with negative correlation between wheat yields and SPEI, probably due to the increase of dry events.

  13. Optimizing cropland cover for stable food production in Sub-Saharan Africa using simulated yield and Modern Portfolio Theory

    Science.gov (United States)

    Bodin, P.; Olin, S.; Pugh, T. A. M.; Arneth, A.

    2014-12-01

    Food security can be defined as stable access to food of good nutritional quality. In Sub Saharan Africa access to food is strongly linked to local food production and the capacity to generate enough calories to sustain the local population. Therefore it is important in these regions to generate not only sufficiently high yields but also to reduce interannual variability in food production. Traditionally, climate impact simulation studies have focused on factors that underlie maximum productivity ignoring the variability in yield. By using Modern Portfolio Theory, a method stemming from economics, we here calculate optimum current and future crop selection that maintain current yield while minimizing variance, vs. maintaining variance while maximizing yield. Based on simulated yield using the LPJ-GUESS dynamic vegetation model, the results show that current cropland distribution for many crops is close to these optimum distributions. Even so, the optimizations displayed substantial potential to either increase food production and/or to decrease its variance regionally. Our approach can also be seen as a method to create future scenarios for the sown areas of crops in regions where local food production is important for food security.

  14. Systematics of Fission-Product Yields

    International Nuclear Information System (INIS)

    Wahl, A.C.

    2002-01-01

    Empirical equations representing systematics of fission-product yields have been derived from experimental data. The systematics give some insight into nuclear-structure effects on yields, and the equations allow estimation of yields from fission of any nuclide with atomic number Z F = 90 thru 98, mass number A F = 230 thru 252, and precursor excitation energy (projectile kinetic plus binding energies) PE = 0 thru ∼200 MeV--the ranges of these quantities for the fissioning nuclei investigated. Calculations can be made with the computer program CYFP. Estimates of uncertainties in the yield estimates are given by equations, also in CYFP, and range from ∼ 15% for the highest yield values to several orders of magnitude for very small yield values. A summation method is used to calculate weighted average parameter values for fast-neutron (∼ fission spectrum) induced fission reactions

  15. Systematics of Fission-Product Yields

    Energy Technology Data Exchange (ETDEWEB)

    A.C. Wahl

    2002-05-01

    Empirical equations representing systematics of fission-product yields have been derived from experimental data. The systematics give some insight into nuclear-structure effects on yields, and the equations allow estimation of yields from fission of any nuclide with atomic number Z{sub F} = 90 thru 98, mass number A{sub F} = 230 thru 252, and precursor excitation energy (projectile kinetic plus binding energies) PE = 0 thru {approx}200 MeV--the ranges of these quantities for the fissioning nuclei investigated. Calculations can be made with the computer program CYFP. Estimates of uncertainties in the yield estimates are given by equations, also in CYFP, and range from {approx} 15% for the highest yield values to several orders of magnitude for very small yield values. A summation method is used to calculate weighted average parameter values for fast-neutron ({approx} fission spectrum) induced fission reactions.

  16. Locational variation in green fodder yield, dry matter yield, and forage quality of sorghum

    International Nuclear Information System (INIS)

    Hussain, A.; Khan, S.; Mohammad, D.

    2007-01-01

    The present study was designed to find out the variations in for- age yield and quality of sorghum as affected by different environments. The three agroecological zones viz., Agricultural Research Institute (ARI), Sariab, Quetta, Ayub Agricultural Research Institute (AARI), Faisalabad and National Agricultural Research Centre (NARC), Islamabad were selected on the basis of different physiography, geology, temperature, and climate and water availability. Crude protein contents, varied from 6.98 to 8.02 percent, crude fibre contents from 30.84 to 31.68 percent, green fodder yield from 38.91 to 50.64 t/ha and dry matter yield from 8.92 to 10.17 t/ha at the three diverse locations. Maximum crude protein and crude fibre contents were obtained at NARC, Islamabad and AARI, Faisalabad. Maximum green fodder and dry matter yields were also observed at NARC, Islamabad and AARI, Faisalabad. It was also noted that the same genotypes showed differential response when planted under the diverse environments for green fodder yield, dry matter yield, crude protein and crude fibre contents. Therefore, it was concluded that these differences in forage yield and quality traits under diverse environments were due to differences in soil types, soil fertility, temperature, rain- fall and other climatic conditions. (author)

  17. Quantitative Genetic Analysis for Yield and Yield Components in Boro Rice (Oryza sativa L.

    Directory of Open Access Journals (Sweden)

    Supriyo CHAKRABORTY

    2010-03-01

    Full Text Available Twenty-nine genotypes of boro rice (Oryza sativa L. were grown in a randomized block design with three replications in plots of 4m x 1m with a crop geometry of 20 cm x 20 cm between November-April, in Regional Agricultural Research Station, Nagaon, India. Quantitative data were collected on five randomly selected plants of each genotype per replication for yield/plant, and six other yield components, namely plant height, panicles/plant, panicle length, effective grains/panicle, 100 grain weight and harvest index. Mean values of the characters for each genotype were used for analysis of variance and covariance to obtain information on genotypic and phenotypic correlation along with coheritability between two characters. Path analyses were carried out to estimate the direct and indirect effects of boro rice�s yield components. The objective of the study was to identify the characters that mostly influence the yield for increasing boro rice productivity through breeding program. Correlation analysis revealed significant positive genotypic correlation of yield/plant with plant height (0.21, panicles/plant (0.53, panicle length (0.53, effective grains/panicle (0.57 and harvest index (0.86. Path analysis based on genotypic correlation coefficients elucidated high positive direct effect of harvest index (0.8631, panicle length (0.2560 and 100 grain weight (0.1632 on yield/plant with a residual effect of 0.33. Plant height and panicles/plant recorded high positive indirect effect on yield/plant via harvest index whereas effective grains/panicle on yield/plant via harvest index and panicle length. Results of the present study suggested that five component characters, namely harvest index, effective grains/plant, panicle length, panicles/plant and plant height influenced the yield of boro rice. A genotype with higher magnitude of these component characters could be either selected from the existing genotypes or evolved by breeding program for genetic

  18. Modeling the effects of ozone on soybean growth and yield.

    Science.gov (United States)

    Kobayashi, K; Miller, J E; Flagler, R B; Heck, W W

    1990-01-01

    A simple mechanistic model was developed based on an existing growth model in order to address the mechanisms of the effects of ozone on growth and yield of soybean [Glycine max. (L.) Merr. 'Davis'] and interacting effects of other environmental stresses. The model simulates daily growth of soybean plants using environmental data including shortwave radiation, temperature, precipitation, irrigation and ozone concentration. Leaf growth, dry matter accumulation, water budget, nitrogen input and seed growth linked to senescence and abscission of leaves are described in the model. The effects of ozone are modeled as reduced photosynthate production and accelerated senescence. The model was applied to the open-top chamber experiments in which soybean plants were exposed to ozone under two levels of soil moisture regimes. After calibrating the model to the growth data and seed yield, goodness-of-fit of the model was tested. The model fitted well for top dry weight in the vegetative growth phase and also at maturity. The effect of ozone on seen yield was also described satisfactorily by the model. The simulation showed apparent interaction between the effect of ozone and soil moisture stress on the seed yield. The model revealed that further work is needed concerning the effect of ozone on the senescence process and the consequences of alteration of canopy microclimate by the open-top chambers.

  19. On some features of the effective behaviour of porous solids with J2- and J3-dependent yielding matrix behaviour

    Science.gov (United States)

    Benallal, Ahmed

    2018-02-01

    Some features od the constitutive behaviour of voided materials taking into account possible effects of the Lode angle in the yielding behaviour of the matrix are discussed. The Gurson approach is used to this end. After providing a parametric representation of the effective behaviour of such materials, some closed-form results are given for pure shear stress states and also at very high stress triaxialities. In the former case corresponding to a zero macroscopic mean stress, the contour of the yield domain in the π-plane has exactly the shape of the yield surface of the matrix in the deviatoric plane, but a size reduced by a factor 1 - f, with f the porosity of the voided material. In the latter, effective yield stresses for the voided material are slightly different from the Gurson result and found to be set by the yield stress at a microscopic stress Lode angle π/3 for very high positive triaxiality and by the yield stress at a microscopic stress Lode angle 0 for very high negative triaxiality. This last result is extended for porous materials with yielding depending further on the hydrostatic stress, fully exhibiting the interaction between volumetric and shear interactions on the yielding behaviour of isotropic porous materials. Applications to many usual yielding criteria for the matrix are also provided. xml:lang="fr"

  20. Drip irrigation in coffee crop under different planting densities: Growth and yield in southeastern Brazil

    Directory of Open Access Journals (Sweden)

    Gleice A. de Assis

    2014-11-01

    Full Text Available Irrigation associated to reduction on planting spaces between rows and between coffee plants has been a featured practice in coffee cultivation. The objective of the present study was to assess, over a period of five consecutive years, influence of different irrigation management regimes and planting densities on growth and bean yield of Coffea arabica L.. The treatments consisted of four irrigation regimes: climatologic water balance, irrigation when the soil water tension reached values close to 20 and 60 kPa; and a control that was not irrigated. The treatments were distributed randomly in five planting densities: 2,500, 3,333, 5,000, 10,000 and 20,000 plants ha-1. A split-plot in randomized block design was used with four replications. Irrigation promoted better growth of coffee plants and increased yield that varied in function of the plant density per area. For densities from 10,000 to 20,000 plants ha-1, regardless of the used irrigation management, mean yield increases were over 49.6% compared to the non-irrigated crop.

  1. Photophysics of the variable quantum yield of asymmetric bilirubin

    International Nuclear Information System (INIS)

    Troup, G.J.

    1998-01-01

    Full text: Bilirubin (BR), responsible for neonatal jaundice, is a molecule containing two pyrromethenone chromophores conjoined by a 'saturated' carbon CH 2 group. Because this disease is cured by phototherapy, BR has been extensively studied by laser means. When the chromophores in each half of the molecule are identical, we have symmetrical BR (SBR); when they are not, we have asymmetric BR (ASBR). The quantum yield of the photoproducts in simple organic solution from SBR is not wavelength-dependent, while that from ASBR is. Because of the proximity of the two chromophores, both the SBR and ASBR systems are subject to Davidoff (dynamic electric dipole) splitting of the chromophore excited states. A quantum mechanical calculation shows that when the two (ASBR) chromophore states are not degenerate, the higher Davidoff state is preferentially occupied by the chromophore with the 'original' higher energy, and the lower Davidoff state by the chromophore of 'original' lower energy. This is just what is required for the quantum yield to vary with wavelength. If the variation of the quantum yield of ASBR in the presence of human serum albumen is approximated by a square-wave (narrow line approximation), the deduced ratio of the short wavelength photoproduct yield with the long wavelength one is in agreement with accepted values for the 'original' energy difference of the chromophores, and the Davidoff splitting parameter. A previous explanation has involved variation of relaxation processes with wavelength, but only qualitatively. The quantum yields for SBRs bonded to HSA are not yet published, but show wavelength variation, possibly from asymmetric bonding. In 0.1% ammonia/methanol however, there is no such variation for the SBRs, while for ASBR, there is, and the photoproduct ratios for long and short wavelength are reciprocals of one another, as predicted by our theory

  2. Structural and in vivo mechanical characterization of canine patellar cartilage: a closed chondromalacia patellae model.

    Science.gov (United States)

    LaBerge, M; Audet, J; Drouin, G; Rivard, C H

    1993-01-01

    The purpose of this project was to study the relationship between the structure of the patellar cartilage and its response to static compressive loading with a closed chondromalacia patellae model. An animal model was used to induce degeneration of the patella that was monitored quantitatively and qualitatively as a function of time. Ten adult mongrel dogs had their left patellofemoral groove replaced by a customized metallic implant covered with a thin film of polyethylene for periods of 3 months (five dogs) and 6 months (five dogs). An indenter was designed to perform mechanical indentation testing on the patellar cartilage in situ. The animals were anesthetized and the response of patellar cartilage to a static compressive load of 4.5 MPa was monitored for 20 min and its relaxation after load removal for 20 min. Indentation tests were performed every 3 months of the implantation period. At the end of the implantation period, the patellae were processed for histology, and sections were stained with Safranin-O indicative of the proteoglycans content. Macroscopically, no apparent degeneration or fibrillation of the patellar surfaces was observed after 3 or 6 months of implantation. However, the patellar surface showed a change in coloration after 6 months. A 17 +/- 3% and 37 +/- 8% deformation of the cartilage were calculated for the 3-month and 6-month specimens, respectively. Histologically, a progressive loss of proteoglycans was observed in the matrix as a function of implantation time. These results indicated that an increase in cartilage compliance is associated with an intrinsic remodeling of the cartilage matrix and that these changes might occur without external signs of degeneration and can be quantified.

  3. R7T7 glass alteration mechanism in an aqueous closed system: understanding and modelling the long term alteration kinetic

    International Nuclear Information System (INIS)

    Chave, T.

    2007-10-01

    The long term alteration rate of the French R7T7 nuclear glass has been investigated since many years because it will define the overall resistance of the radionuclide containment matrix. Recent studies have shown that the final rate remains constant or is slightly decreasing with time. It never reaches zero. Though this residual rate is very low, only 5 nm per year at 50 C, it would be the dominant alteration phenomenon in a geological repository. Two mechanisms are suggested for explaining such behaviour: diffusion in solution of elements from glass through an amorphous altered layer and precipitation of neo-formed phases. The diffusion processes are in agreement with a solid state diffusion mechanism and can lead to secondary phase precipitation due to solution concentration increases. Observed phases are mainly phyllosilicates and zeolites, in specific conditions. Phyllosilicates are expected to maintain the residual kinetic rate whereas alteration resumption could be observed in presence of zeolites at very high pH or temperature (10.5 at 90 C or temperature above 150 C). Both diffusion and neo-formed phase precipitation have been investigated in order to better understand their impact on the residual alteration rate and have then been modelled by a calculation code, coupling chemistry and transport, in order to be able to better anticipate the long term behaviour of the glass R7T7 in an aqueous closed system. (author)

  4. Gas assisted Mechanical Expression of oilseeds

    NARCIS (Netherlands)

    Willems, P.

    2007-01-01

    It is the objective of this thesis to show the general applicability of the Gas Assisted Mechanical Expression (GAME) process for recovery of oil from oilseeds with high yields. In this process, the oilseeds are saturated with supercritical CO2 before mechanical pressing. The CO2 displaces part of

  5. Genetic analysis of yield and yield components in Oryza sativa x ...

    African Journals Online (AJOL)

    ... inheritance of yield and yield components and to estimate the heritabilities of important quantitative traits in rice (Oryza sativa L.). Six generations viz., P1, P2, F1, F2, BCP1 and BCP2 of a cross between IET6279 and IR70445-146-3-3 were used for the study. Generation mean analysis suggested that additive effects had a ...

  6. Monitoring and energetic performance of two similar semi-closed greenhouse ventilation systems

    International Nuclear Information System (INIS)

    Coomans, Mathias; Allaerts, Koen; Wittemans, Lieve; Pinxteren, Dave

    2013-01-01

    Highlights: • Measurements on two semi-closed greenhouses and two traditional open greenhouses. • Mechanical and natural ventilation for dehumidification and cooling. • Analyses and comparison of installation controls, indoor climate and energy flows. • Examination of air-to-air heat recuperation efficiency in ventilation unit. • Using the semi-closed systems amounted to energy savings of 13% and 28%. - Abstract: Horticulture is an energy intensive industry when dealing with cold climates such as Western Europe. High energy prices and on-going pressure from international competition are raising demand for energy efficient solutions. In search of reducing greenhouse energy consumption, this study investigates semi-closed systems combining controlled mechanical and natural ventilation with thermal screens. Ventilated greenhouse systems (semi-closed) have been implemented in the greenhouse compartments of two Belgian horticulture research facilities: the Research Station for Vegetable Production Sint-Katelijne-Waver (PSKW) and the Research Center Hoogstraten (PCH). Additionally, two reference compartments were included for comparison of the results. The greenhouses were part of a long-term monitoring campaign in which detailed measurements with a high time resolution were gathered by a central monitoring system. A large amount of data was processed and analysed, including outdoor and indoor climatic parameters, system controls and installation measurements. The ventilated greenhouses obtained energy savings of 13% and 28% for PSKW and PCH respectively, without substantial impact on crop production or indoor climate conditions when compared to the reference compartments. A considerable amount of heat was recovered by the heat recuperation stage in the ventilation unit of PCH, accounting for 12% of the total heat demand. In general, it was demonstrated that the greenhouse heat demand can be reduced significantly by controlled dehumidification with mechanical

  7. The Effect of High Concentrations of Glufosinate Ammonium on the Yield Components of Transgenic Spring Wheat (Triticum aestivum L.) Constitutively Expressing the bar Gene

    OpenAIRE

    Áy, Zoltán; Mihály, Róbert; Cserháti, Mátyás; Kótai, Éva; Pauk, János

    2012-01-01

    We present an experiment done on a bar + wheat line treated with 14 different concentrations of glufosinate ammonium—an effective component of nonselective herbicides—during seed germination in a closed experimental system. Yield components as number of spikes per plant, number of grains per spike, thousand kernel weight, and yield per plant were thoroughly analysed and statistically evaluated after harvesting. We found that a concentration of glufosinate ammonium 5000 times the lethal dose w...

  8. Social closeness and feedback modulate susceptibility to the framing effect

    Science.gov (United States)

    Sip, Kamila E.; Smith, David V.; Porcelli, Anthony J.; Kar, Kohitij; Delgado, Mauricio R.

    2014-01-01

    Although, we often seek social feedback from others to help us make decisions, little is known about how social feedback affects decisions under risk, particularly from a close peer. We conducted two experiments using an established framing task to probe how decision making is modulated by social feedback valence (positive, negative) and the level of closeness with feedback provider (friend, confederate). Participants faced mathematically equivalent decisions framed as either an opportunity to keep (gain frame) or lose (loss frame) part of an initial endowment. Periodically, participants were provided with positive (e.g., “Nice!”) or negative (e.g., “Lame!”) feedback about their choices. Such feedback was provided by either a confederate (Experiment 1), or a gender-matched close friend (Experiment 2). As expected, the framing effect was observed in both experiments. Critically, an individual’s susceptibility to the framing effect was modulated by the valence of the social feedback, but only when the feedback provider was a close friend. This effect was reflected in the activation patterns of ventromedial prefrontal cortex and posterior cingulate cortex, regions involved in complex decision making. Taken together, these results highlight social closeness as an important factor in understanding the impact of social feedback on neural mechanisms of decision making. PMID:25074501

  9. Social closeness and feedback modulate susceptibility to the framing effect.

    Science.gov (United States)

    Sip, Kamila E; Smith, David V; Porcelli, Anthony J; Kar, Kohitij; Delgado, Mauricio R

    2015-01-01

    Although we often seek social feedback (SFB) from others to help us make decisions, little is known about how SFB affects decisions under risk, particularly from a close peer. We conducted two experiments using an established framing task to probe how decision-making is modulated by SFB valence (positive, negative) and the level of closeness with feedback provider (friend, confederate). Participants faced mathematically equivalent decisions framed as either an opportunity to keep (gain frame) or lose (loss frame) part of an initial endowment. Periodically, participants were provided with positive (e.g., "Nice!") or negative (e.g., "Lame!") feedback about their choices. Such feedback was provided by either a confederate (Experiment 1) or a gender-matched close friend (Experiment 2). As expected, the framing effect was observed in both experiments. Critically, an individual's susceptibility to the framing effect was modulated by the valence of the SFB, but only when the feedback provider was a close friend. This effect was reflected in the activation patterns of ventromedial prefrontal cortex and posterior cingulate cortex, regions involved in complex decision-making. Taken together, these results highlight social closeness as an important factor in understanding the impact of SFB on neural mechanisms of decision-making.

  10. Helicity dependence of the {gamma}{yields}p{yields}{yields}n{pi}{sup +}{pi}{sup 0} reaction in the second resonance region

    Energy Technology Data Exchange (ETDEWEB)

    Ahrens, J.; Altieri, S.; Annand, J.R.M.; Anton, G.; Arends, H.-J.; Aulenbacher, K.; Beck, R.; Bradtke, C.; Braghieri, A.; Degrande, N.; D' Hose, N.; Dutz, H.; Goertz, S.; Grabmayr, P.; Hansen, K.; Harmsen, J.; Harrach, D. von; Hasegawa, S.; Hasegawa, T.; Heid, E.; Helbing, K.; Holvoet, H.; Van Hoorebeke, L.; Horikawa, N.; Iwata, T.; Jahn, O.; Jennewein, P.; Kageya, T.; Kiel, B.; Klein, F.; Kondratiev, R.; Kossert, K.; Krimmer, J.; Lang, M.; Lannoy, B.; Leukel, R.; Lisin, V.; Matsuda, T.; McGeorge, J.C.; Meier, A.; Menze, D.; Meyer, W.; Michel, T.; Naumann, J.; Panzeri, A.; Pedroni, P.; Pinelli, T.; Preobrajenski, I.; Radtke, E.; Reichert, E.; Reicherz, G.; Rohlof, Ch.; Rosner, G.; Rostomyan, T.; Rovelli, C.; Ryckbosch, D.; Sauer, M.; Schoch, B.; Schumacher, M.; Seitz, B.; Speckner, T.; Takabayashi, N.; Tamas, G.; Thomas, A.; Vyver, R. van de; Wakai, A.; Weihofen, W.; Wissmann, F.; Zapadtka, F.; Zeitler, G

    2003-01-02

    The helicity dependence of the total cross section for the {gamma}{yields}p{yields}{yields}n{pi}{sup +}{pi}{sup 0} reaction has been measured for the first time at incident photon energies from 400 to 800 MeV. The measurement was performed with the large acceptance detector DAPHNE at the tagged photon beam facility of the MAMI accelerator in Mainz. This channel is found to be excited predominantly when the photon and proton have a parallel spin orientation, due to the intermediate production of the D{sub 13} resonance.

  11. Linkages among climate change, crop yields and Mexico–US cross-border migration

    Science.gov (United States)

    Feng, Shuaizhang; Krueger, Alan B.; Oppenheimer, Michael

    2010-01-01

    Climate change is expected to cause mass human migration, including immigration across international borders. This study quantitatively examines the linkages among variations in climate, agricultural yields, and people's migration responses by using an instrumental variables approach. Our method allows us to identify the relationship between crop yields and migration without explicitly controlling for all other confounding factors. Using state-level data from Mexico, we find a significant effect of climate-driven changes in crop yields on the rate of emigration to the United States. The estimated semielasticity of emigration with respect to crop yields is approximately −0.2, i.e., a 10% reduction in crop yields would lead an additional 2% of the population to emigrate. We then use the estimated semielasticity to explore the potential magnitude of future emigration. Depending on the warming scenarios used and adaptation levels assumed, with other factors held constant, by approximately the year 2080, climate change is estimated to induce 1.4 to 6.7 million adult Mexicans (or 2% to 10% of the current population aged 15–65 y) to emigrate as a result of declines in agricultural productivity alone. Although the results cannot be mechanically extrapolated to other areas and time periods, our findings are significant from a global perspective given that many regions, especially developing countries, are expected to experience significant declines in agricultural yields as a result of projected warming. PMID:20660749

  12. Mechanisms involved in regulation of osteoclastic differentiation by mechanical stress-loaded osteoblasts

    Energy Technology Data Exchange (ETDEWEB)

    Kaneuji, Takeshi [Division of Oral and Maxillofacial Reconstructive Surgery, Department of Oral and Maxillofacial Surgery, Kyushu Dental College, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580 (Japan); Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental College, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580 (Japan); Ariyoshi, Wataru; Okinaga, Toshinori; Toshinaga, Akihiro [Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental College, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580 (Japan); Takahashi, Tetsu [Division of Oral and Maxillofacial Reconstructive Surgery, Department of Oral and Maxillofacial Surgery, Kyushu Dental College, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580 (Japan); Oral Bioresearch Center, Kyushu Dental College, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580 (Japan); Nishihara, Tatsuji, E-mail: tatsujin@kyu-dent.ac.jp [Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental College, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580 (Japan); Oral Bioresearch Center, Kyushu Dental College, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580 (Japan)

    2011-04-29

    Highlights: {yields} Effect of compressive force on osteoblasts were examined. {yields} Compressive force induced OPG expression and suppressed osteoclastogenesis. {yields} This enhancement of OPG is dependent on Wnt/Ca2+ signal pathway. -- Abstract: Mechanical stress is known to be important for regulation of bone turnover, though the detailed mechanisms are not fully understood. In the present study, we examined the effect of mechanical stress on osteoblasts using a novel compression model. Mouse osteoblastic MC3T3-E1 cells were embedded in three-dimensional (3D) gels and cultured with continuous compressive force (0-10.0 g/cm{sup 2}) for 48 h, and the conditioned medium were collected. RAW264.7 cells were then incubated with the conditioned medium for various times in the presence of receptor activator of nuclear factor-{kappa}B ligand (RANKL). Conditioned medium was found to inhibit the differentiation of RAW264.7 cells into osteoclasts induced by RANKL via down-regulation of the expression of tumor necrosis factor receptor-associated factor 6 (TRAF6), phosphorylation of I{kappa}B{alpha}, and nuclear translocation of p50 and p65. Interestingly, the conditioned medium also had a high level of binding activity to RANKL and blocked the binding of RANK to RANKL. Furthermore, the binding activity of conditioned medium to RANKL was reduced when the 3D gel was supplemented with KN-93, an inhibitor of non-canonical Wnt/Ca{sup 2+} pathway. In addition, expression level of osteoprotegerin (OPG) mRNA was increased in time- and force-dependent manners, and remarkably suppressed by KN-93. These results indicate that osteoblastic cells subjected to mechanical stress produce OPG, which binds to RANKL. Furthermore, this binding activity strongly inhibited osteoclastogenesis through suppression of TRAF6 and the nuclear factor-kappa B (NF-{kappa}B) signaling pathway, suggesting that enhancement of OPG expression induced by mechanical stress is dependent on non-canonical Wnt

  13. Yield surface evolution for columnar ice

    Science.gov (United States)

    Zhou, Zhiwei; Ma, Wei; Zhang, Shujuan; Mu, Yanhu; Zhao, Shunpin; Li, Guoyu

    A series of triaxial compression tests, which has capable of measuring the volumetric strain of the sample, were conducted on columnar ice. A new testing approach of probing the experimental yield surface was performed from a single sample in order to investigate yield and hardening behaviors of the columnar ice under complex stress states. Based on the characteristic of the volumetric strain, a new method of defined the multiaxial yield strengths of the columnar ice is proposed. The experimental yield surface remains elliptical shape in the stress space of effective stress versus mean stress. The effect of temperature, loading rate and loading path in the initial yield surface and deformation properties of the columnar ice were also studied. Subsequent yield surfaces of the columnar ice have been explored by using uniaxial and hydrostatic paths. The evolution of the subsequent yield surface exhibits significant path-dependent characteristics. The multiaxial hardening law of the columnar ice was established experimentally. A phenomenological yield criterion was presented for multiaxial yield and hardening behaviors of the columnar ice. The comparisons between the theoretical and measured results indicate that this current model is capable of giving a reasonable prediction for the multiaxial yield and post-yield properties of the columnar ice subjected to different temperature, loading rate and path conditions.

  14. A note on hypoplastic yielding

    OpenAIRE

    Nader, José Jorge

    2010-01-01

    This note discusses briefly the definition of yield surface in hypoplasticity in connection with the physical notion of yielding. The relation of yielding with the vanishing of the material time derivative of the stress tensor and the vanishing of the corotational stress rate is investigated.

  15. A mechanical chest compressor closed-loop controller with an effective trade-off between blood flow improvement and ribs fracture reduction.

    Science.gov (United States)

    Zhang, Guang; Wu, Taihu; Song, Zhenxing; Wang, Haitao; Lu, Hengzhi; Wang, Yalin; Wang, Dan; Chen, Feng

    2015-06-01

    Chest compression (CC) is a significant emergency medical procedure for maintaining circulation during cardiac arrest. Although CC produces the necessary blood flow for patients with heart arrest, improperly deep CC will contribute significantly to the risk of chest injury. In this paper, an optimal CC closed-loop controller for a mechanical chest compressor (OCC-MCC) was developed to provide an effective trade-off between the benefit of improved blood perfusion and the risk of ribs fracture. The trade-off performance of the OCC-MCC during real automatic mechanical CCs was evaluated by comparing the OCC-MCC and the traditional mechanical CC method (TMCM) with a human circulation hardware model based on hardware simulations. A benefit factor (BF), risk factor (RF) and benefit versus risk index (BRI) were introduced in this paper for the comprehensive evaluation of risk and benefit. The OCC-MCC was developed using the LabVIEW control platform and the mechanical chest compressor (MCC) controller. PID control is also employed by MCC for effective compression depth regulation. In addition, the physiological parameters model for MCC was built based on a digital signal processor for hardware simulations. A comparison between the OCC-MCC and TMCM was then performed based on the simulation test platform which is composed of the MCC, LabVIEW control platform, physiological parameters model for MCC and the manikin. Compared with the TMCM, the OCC-MCC obtained a better trade-off and a higher BRI in seven out of a total of nine cases. With a higher mean value of cardiac output (1.35 L/min) and partial pressure of end-tidal CO2 (15.7 mmHg), the OCC-MCC obtained a larger blood flow and higher BF than TMCM (5.19 vs. 3.41) in six out of a total of nine cases. Although it is relatively difficult to maintain a stable CC depth when the chest is stiff, the OCC-MCC is still superior to the TMCM for performing safe and effective CC during CPR. The OCC-MCC is superior to the TMCM in

  16. Mechanical behaviour of a closed collar model for an 11.5 T dipole magnet

    International Nuclear Information System (INIS)

    Emden, W. van; Daum, C.; Geerinck, J.

    1992-03-01

    A 10 cm long model of an 11.5 T Nb 3 Sn accelerator dipole magnet, which will be built in the Netherlands, with a closed ring shaped collar has been constructed. Measurements of the collar deformation and the prestress at the poles have been made with a structural analysis using the Finite Element Method (FEM) of the code ANSYS. (author). 11 refs.; 18 figs.; 7 tabs

  17. Protection of type 316 austenitic stainless steel from intergranular stress corrosion cracking by thermo-mechanical treatment

    International Nuclear Information System (INIS)

    Kiuchi, Kiyoshi; Tsuji, Hirokazu; Kondo, Tatsuo

    1980-03-01

    Thermomechanical treatment that causes carbide stabilizing aging of cold worked material followed by recrystallization heating made standard stainless steels highly resistant to intergranular corrosion and stress corrosion cracking in different test environments. After a typical thermal history of simulated welding, several IGSCC susceptibility tests were made. The results showed that the treatment was successful in type 316 steel in wide range of conditions, while type 304 was protected only to a small extent even by closely controlled treatment. Response of the materials to the sensitizing heating in terms of impurity segregation at grain boundaries was also examined by means of microchemical analysis. Advantage of method is that no special care is required in selecting heats of material, so that conventional type 316 is usable by improving the mechanical properties substantially through the treatment. In some optimized cases the mechanical property improvement was typically recognized by the yield strength by about 20% higher at room temperature, compared with the material mill annealed. (author)

  18. New method for protecting mine roadways in thin coal seams by means of prefabricated yielding blocks

    Energy Technology Data Exchange (ETDEWEB)

    Peknik, J

    1983-05-01

    The use of concrete blocks for strata control in mine roadways driven in thin coal seams is evaluated. Two types of prefabricated blocks are used: BZT blocks made of reinforced concrete and yielding elements or popilbet blocks made of a mixture of fly ash (from coal power plants) and concrete. When the popilbet blocks were used no yielding elements were necessary. Mechanical properties of blocks made of reinforced concrete were controlled by yielding elements. Mechanical properties (compression strength) of the popilbet blocks were controlled by proportion of water, cement and fly ash. The BZT and the popilbet blocks were used for strata control in mine roadways in coal seams from 60 to 80 cm thick and dip angle from 5 to 18 degrees. Use of the BZT and the popilbet blocks reduced roadway deformation by about 50% in comparison to traditional strata control methods (timber cribbings, use of waste rock, etc.). Use of the blocks is explained. The BZT and the popilbet blocks were placed in a roadway wall. Height of the block wall equaled coal seam thickness. Yielding arched steel supports and timber liners were used for strata control in the roadway. The popilbet blocks were 50% less expensive than the BZT blocks. 9 references

  19. Effects of nitrogen application method and weed control on corn yield and yield components.

    Science.gov (United States)

    Sepahvand, Pariya; Sajedi, Nurali; Mousavi, Seyed Karim; Ghiasvand, Mohsen

    2014-04-01

    The effects of nitrogen fertilizer application and different methods for weed control on yield and yield components of corn was evaluated in Khorramabad in 2011. The experiment was conducted as a split plot based on randomized complete block design in 3 replications. Nitrogen application was as main plot in 4 levels (no nitrogen, broadcasting nitrogen, banding nitrogen and sprayed nitrogen) and methods of weed control were in 4 levels (non-control weeds, application Equip herbicide, once hand control of weeds and application Equip herbicide+once time weeding) was as subplots. Result illustrated that effects of nitrogen fertilizer application were significant on grain and forage yield, 100 seeds weight, harvest index, grain number per row and cob weight per plant. Grain yield increased by 91.4 and 3.9% in application banding and broadcasting for nitrogen fertilizer, respectively, compared to the no fertilizer treatment. The results show improved efficiency of nitrogen utilization by banding application. Grain yield, harvest index, seed rows per cob, seeds per row and cob weight were increased by weed control. In the application of Equip herbicide+ hand weeding treatment corn grain yield was increased 126% in comparison to weedy control. It represents of the intense affects of weed competition with corn. The highest corn grain yield (6758 kg h(-1)) was related to the application banding of nitrogen fertilizer and Equip herbicide+once hand weeding.

  20. Predicting paddlefish roe yields using an extension of the Beverton–Holt equilibrium yield-per-recruit model

    Science.gov (United States)

    Colvin, M.E.; Bettoli, Phillip William; Scholten, G.D.

    2013-01-01

    Equilibrium yield models predict the total biomass removed from an exploited stock; however, traditional yield models must be modified to simulate roe yields because a linear relationship between age (or length) and mature ovary weight does not typically exist. We extended the traditional Beverton-Holt equilibrium yield model to predict roe yields of Paddlefish Polyodon spathula in Kentucky Lake, Tennessee-Kentucky, as a function of varying conditional fishing mortality rates (10-70%), conditional natural mortality rates (cm; 9% and 18%), and four minimum size limits ranging from 864 to 1,016mm eye-to-fork length. These results were then compared to a biomass-based yield assessment. Analysis of roe yields indicated the potential for growth overfishing at lower exploitation rates and smaller minimum length limits than were suggested by the biomass-based assessment. Patterns of biomass and roe yields in relation to exploitation rates were similar regardless of the simulated value of cm, thus indicating that the results were insensitive to changes in cm. Our results also suggested that higher minimum length limits would increase roe yield and reduce the potential for growth overfishing and recruitment overfishing at the simulated cm values. Biomass-based equilibrium yield assessments are commonly used to assess the effects of harvest on other caviar-based fisheries; however, our analysis demonstrates that such assessments likely underestimate the probability and severity of growth overfishing when roe is targeted. Therefore, equilibrium roe yield-per-recruit models should also be considered to guide the management process for caviar-producing fish species.

  1. Analysis of chlorophyll content and its correlation with yield attributing traits on early varieties of maize (Zea mays L.

    Directory of Open Access Journals (Sweden)

    Bikal Ghimire

    2015-12-01

    Full Text Available Chlorophyll has direct roles on photosynthesis and hence closely relates to capacity for photosynthesis, development and yield of crops. With object to explore the roles of chlorophyll content and its relation with other yield attributing traits a field research was conducted using fourteen early genotypes of maize in RCBD design with three replications. Observations were made for Soil Plant Analysis Development (SPAD reading, ear weight, number of kernel row/ear, number of kernel/row, five hundred kernel weight and grain yield/hectare and these traits were analyzed using Analysis of Variance (ANOVA and correlation coefficient analysis. SPAD reading showed a non-significant variation among the genotypes while it revealed significant correlation with no. of kernel/row, grain yield/hectare and highly significant correlation with no. of kernel row/ear and ear weight which are the most yield determinative traits. For the trait grain yield/ha followed by number of kernel row/ear genotype ARUN-1EV has been found comparatively superior to ARUN-2 (standard check. Grain Yield/hectare was highly heritable (>0.6 while no. of kernel / row, SPAD reading, ear weight, number of kernel row/ear were moderately heritable (0.3-0.6. Correlation analysis and ANOVA revealed ARUN-1EV, comparatively superior to ARUN-2 (standard check, had higher SPAD reading than mean SPAD reading with significant correlation with no. of kernel/row, no. of kernel row/ear, ear weight and grain yield/ha which are all yield determinative traits . This showed positive and significant effect of chlorophyll content in grain yield of the maize.

  2. Mapping Smallholder Wheat Yields and Sowing Dates Using Micro-Satellite Data

    Directory of Open Access Journals (Sweden)

    Meha Jain

    2016-10-01

    Full Text Available Remote sensing offers a low-cost method for developing spatially continuous crop production statistics across large areas and through time. Nevertheless, it has been difficult to characterize the production of individual smallholder farms, given that the land-holding size in most areas of South Asia (<2 ha is smaller than the spatial resolution of most freely available satellite imagery, like Landsat and MODIS. In addition, existing methods to map yield require field-level data to develop and parameterize predictive algorithms that translate satellite vegetation indices to yield, yet these data are costly or difficult to obtain in many smallholder systems. To overcome these challenges, this study explores two issues. First, we employ new high spatial (2 m and temporal (bi-weekly resolution micro-satellite SkySat data to map sowing dates and yields of smallholder wheat fields in Bihar, India in the 2014–2015 and 2015–2016 growing seasons. Second, we compare how well we predict sowing date and yield when using ground data, like crop cuts and self-reports, versus using crop models, which require no on-the-ground data, to develop and parameterize prediction models. Overall, sow dates were predicted well (R2 = 0.41 in 2014–2015 and R2 = 0.62 in 2015–2016, particularly when using models that were parameterized using self-report sow dates collected close to the time of planting and when using imagery that spanned the entire growing season. We were also able to map yields fairly well (R2 = 0.27 in 2014–2015 and R2 = 0.33 in 2015–2016, with crop cut parameterized models resulting in the highest accuracies. While less accurate, we were able to capture the large range in sow dates and yields across farms when using models parameterized with crop model data and these estimates were able to detect known relationships between management factors (e.g., sow date, fertilizer, and irrigation and yield. While these results are specific to our study

  3. Photoprotection as a Trait for Rice Yield Improvement: Status and Prospects.

    Science.gov (United States)

    Murchie, Erik H; Ali, Asgar; Herman, Tiara

    2015-12-01

    Solar radiation is essential for photosynthesis and global crop productivity but it is also variable in space and time, frequently being limiting or in excess of plant requirements depending on season, environment and microclimate. Photoprotective mechanisms at the chloroplast level help to avoid oxidative stress and photoinhibition, which is a light-induced reduction in photosynthetic quantum efficiency often caused by damage to photosystem II. There is convincing evidence that photoinhibition has a large impact on biomass production in crops and this may be especially high in rice, which is typically exposed to high tropical light levels. Thus far there has been little attention to photoinhibition as a target for improvement of crop yield. However, we now have sufficient evidence to examine avenues for alleviation of this particular stress and the physiological and genetic basis for improvement in rice and other crops. Here we examine this evidence and identify new areas for attention. In particular we discuss how photoprotective mechanisms must be optimised at both the molecular and the canopy level in order to coordinate with efficient photosynthetic regulation and realise an increased biomass and yield in rice.

  4. Plug the socket of the main closing valve in a nuclear power plant

    International Nuclear Information System (INIS)

    Neupauer, J.; Bednar, B.

    1988-01-01

    The plug is designed for closing the main closing valve socket during a refuelling shutdown of a nuclear power plant. The plug is fixed in the using jaws forced against the socket ring part. The socket is sealed by expanding a ring between two cone trays. A valve provided in the plug allows draining the pipe. The plug is inserted in the socket using a jib suspended on a rail. Following sealing both sockets the inner surfaces of the closing valve can be decontaminated. Following decontamination, a water-proof cover is slid over the plug protecting the plug moving mechanism from damage. (J.B.). 1 fig

  5. Path Analysis of Grain Yield and Yield Components and Some Agronomic Traits in Bread Wheat

    Directory of Open Access Journals (Sweden)

    Mohsen Janmohammadi

    2014-01-01

    Full Text Available Development of new bread wheat cultivars needs efficient tools to monitor trait association in a breeding program. This investigation was aimed to characterize grain yield components and some agronomic traits related to bread wheat grain yield. The efficiency of a breeding program depends mainly on the direction of the correlation between different traits and the relative importance of each component involved in contributing to grain yield. Correlation and path analysis were carried out in 56 bread wheat genotypes grown under field conditions of Maragheh, Iran. Observations were recorded on 18 wheat traits and correlation coefficient analysis revealed grain yield was positively correlated with stem diameter, spike length, floret number, spikelet number, grain diameter, grain length and 1000 seed weight traits. According to the variance inflation factor (VIF and tolerance as multicollinearity statistics, there are inconsistent relationships among the variables and all traits could be considered as first-order variables (Model I with grain yield as the response variable due to low multicollinearity of all measured traits. In the path coefficient analysis, grain yield represented the dependent variable and the spikelet number and 1000 seed weight traits were the independent ones. Our results indicated that the number of spikelets per spikes and leaf width and 1000 seed weight traits followed by the grain length, grain diameter and grain number per spike were the traits related to higher grain yield. The above mentioned traits along with their indirect causal factors should be considered simultaneously as an effective selection criteria evolving high yielding genotype because of their direct positive contribution to grain yield.

  6. Radiolysis: an efficient method of studying radicalar antioxidant mechanisms

    International Nuclear Information System (INIS)

    Gardes-Albert, M.; Jore, D.

    1998-01-01

    The use of the radiolysis method for studying radicalar antioxidant mechanisms offers the different following possibilities: 1- quantitative evaluation of antioxidant activity of molecules soluble in aqueous or non aqueous media (oxidation yields, molecular mechanisms, rate constants), 2- evaluation of the yield of prevention towards polyunsaturated fatty acids peroxidation, 3- evaluation of antioxidant activity towards biological systems such as liposomes or low density lipoproteins (LDL), 4- simple comparison in different model systems of drags effect versus natural antioxidants. (authors)

  7. Optimization, Yield Studies and Morphology of WO3Nano-Wires Synthesized by Laser Pyrolysis in C2H2and O2Ambients—Validation of a New Growth Mechanism

    Directory of Open Access Journals (Sweden)

    Sideras-Haddad E

    2008-01-01

    Full Text Available Abstract Laser pyrolysis has been used to synthesize WO3nanostructures. Spherical nano-particles were obtained when acetylene was used to carry the precursor droplet, whereas thin films were obtained at high flow-rates of oxygen carrier gas. In both environments WO3nano-wires appear only after thermal annealing of the as-deposited powders and films. Samples produced under oxygen carrier gas in the laser pyrolysis system gave a higher yield of WO3nano-wires after annealing than the samples which were run under acetylene carrier gas. Alongside the targeted nano-wires, the acetylene-ran samples showed trace amounts of multi-walled carbon nano-tubes; such carbon nano-tubes are not seen in the oxygen-processed WO3nano-wires. The solid–vapour–solid (SVS mechanism [B. Mwakikunga et al., J. Nanosci. Nanotechnol., 2008] was found to be the possible mechanism that explains the manner of growth of the nano-wires. This model, based on the theory from basic statistical mechanics has herein been validated by length-diameter data for the produced WO3nano-wires.

  8. Delivering precision antimicrobial therapy through closed-loop control systems

    Science.gov (United States)

    Rawson, T M; O’Hare, D; Herrero, P; Sharma, S; Moore, L S P; de Barra, E; Roberts, J A; Gordon, A C; Hope, W; Georgiou, P; Cass, A E G; Holmes, A H

    2018-01-01

    Abstract Sub-optimal exposure to antimicrobial therapy is associated with poor patient outcomes and the development of antimicrobial resistance. Mechanisms for optimizing the concentration of a drug within the individual patient are under development. However, several barriers remain in realizing true individualization of therapy. These include problems with plasma drug sampling, availability of appropriate assays, and current mechanisms for dose adjustment. Biosensor technology offers a means of providing real-time monitoring of antimicrobials in a minimally invasive fashion. We report the potential for using microneedle biosensor technology as part of closed-loop control systems for the optimization of antimicrobial therapy in individual patients. PMID:29211877

  9. Mechanical seal assembly

    Science.gov (United States)

    Kotlyar, Oleg M.

    2001-01-01

    An improved mechanical seal assembly is provided for sealing rotating shafts with respect to their shaft housings, wherein the rotating shafts are subject to substantial axial vibrations. The mechanical seal assembly generally includes a rotating sealing ring fixed to the shaft, a non-rotating sealing ring adjacent to and in close contact with the rotating sealing ring for forming an annular seal about the shaft, and a mechanical diode element that applies a biasing force to the non-rotating sealing ring by means of hemispherical joint. The alignment of the mechanical diode with respect to the sealing rings is maintained by a series of linear bearings positioned axially along a desired length of the mechanical diode. Alternative embodiments include mechanical or hydraulic amplification components for amplifying axial displacement of the non-rotating sealing ring and transferring it to the mechanical diode.

  10. Mechanical Seal Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Kotlyar, Oleg M.

    1999-06-18

    An improved mechanical seal assembly is provided for sealing rotating shafts with respect to their shaft housings, wherein the rotating shafts are subject to substantial axial vibrations. The mechanical seal assembly generally includes a rotating sealing ring fixed to the shaft, a non-rotating sealing ring adjacent to and in close contact with the rotating sealing ring for forming an annular seal about the shaft, and a mechanical diode element that applies a biasing force to the non-rotating sealing ring by means of hemispherical joint. The alignment of the mechanical diode with respect to the sealing rings is maintained by a series of linear bearings positioned axially along a desired length of the mechanical diode. Alternative embodiments include mechanical or hydraulic amplification components for amplifying axial displacement of the non-rotating sealing ring and transferring it to the mechanical diode.

  11. Microstructure and mechanical behavior of porous Ti-6Al-4V parts obtained by selective laser melting.

    Science.gov (United States)

    Sallica-Leva, E; Jardini, A L; Fogagnolo, J B

    2013-10-01

    Rapid prototyping allows titanium porous parts with mechanical properties close to that of bone tissue to be obtained. In this article, porous parts of the Ti-6Al-4V alloy with three levels of porosity were obtained by selective laser melting with two different energy inputs. Thermal treatments were performed to determine the influence of the microstructure on the mechanical properties. The porous parts were characterized by both optical and scanning electron microscopy. The effective modulus, yield and ultimate compressive strength were determined by compressive tests. The martensitic α' microstructure was observed in all of the as-processed parts. The struts resulting from the processing conditions investigated were thinner than those defined by CAD models, and consequently, larger pores and a higher experimental porosity were achieved. The use of the high-energy input parameters produced parts with higher oxygen and nitrogen content, their struts that were even thinner and contained a homogeneous porosity distribution. Greater mechanical properties for a given relative density were obtained using the high-energy input parameters. The as-quenched martensitic parts showed yield and ultimate compressive strengths similar to the as-processed parts, and these were greater than those observed for the fully annealed samples that had the lamellar microstructure of the equilibrium α+β phases. The effective modulus was not significantly influenced by the thermal treatments. A comparison between these results and those of porous parts with similar geometry obtained by selective electron beam melting shows that the use of a laser allows parts with higher mechanical properties for a given relative density to be obtained. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Fission fragment yields from heavy-ion-induced reactions measured with a fragment separator

    Science.gov (United States)

    Tarasov, O. B.; Delaune, O.; Farget, F.; Morrissey, D. J.; Amthor, A. M.; Bastin, B.; Bazin, D.; Blank, B.; Cacéres, L.; Chbihi, A.; Fernández-Dominguez, B.; Grévy, S.; Kamalou, O.; Lukyanov, S. M.; Mittig, W.; Pereira, J.; Perrot, L.; Saint-Laurent, M.-G.; Savajols, H.; Sherrill, B. M.; Stodel, C.; Thomas, J. C.; Villari, A. C.

    2018-04-01

    The systematic study of fission fragment yields under different initial conditions has provided valuable experimental data for benchmarking models of fission product yields. Nuclear reactions using inverse kinematics coupled to the use of a high-resolution spectrometer with good fragment identification are shown here to be a powerful tool to measure the inclusive isotopic yields of fission fragments. In-flight fusion-fission was used in this work to produce secondary beams of neutron-rich isotopes in the collisions of a 238U beam at 24 MeV/u with 9Be and 12C targets at GANIL using the LISE3 fragment separator. Unique identification of the A, Z, and atomic charge state, q, of fission products was attained with the Δ E- TKE-B ρ- ToF measurement technique. Mass, and atomic number distributions are reported for the two reactions. The results show the importance of different reaction mechanisms in the two cases. The optimal target material for higher yields of neutron-rich high- Z isotopes produced in fusion-fission reactions as a function of projectile energy is discussed.

  13. On the consistent effect histories approach to quantum mechanics

    International Nuclear Information System (INIS)

    Rudolph, O.

    1996-01-01

    A formulation of the consistent histories approach to quantum mechanics in terms of generalized observables (POV measures) and effect operators is provided. The usual notion of open-quote open-quote history close-quote close-quote is generalized to the notion of open-quote open-quote effect history.close-quote close-quote The space of effect histories carries the structure of a D-poset. Recent results of J. D. Maitland Wright imply that every decoherence functional defined for ordinary histories can be uniquely extended to a bi-additive decoherence functional on the space of effect histories. Omngrave es close-quote logical interpretation is generalized to the present context. The result of this work considerably generalizes and simplifies the earlier formulation of the consistent effect histories approach to quantum mechanics communicated in a previous work of this author. copyright 1996 American Institute of Physics

  14. Semi-empirical formulas for sputtering yield

    International Nuclear Information System (INIS)

    Yamamura, Yasumichi

    1994-01-01

    When charged particles, electrons, light and so on are irradiated on solid surfaces, the materials are lost from the surfaces, and this phenomenon is called sputtering. In order to understand sputtering phenomenon, the bond energy of atoms on surfaces, the energy given to the vicinity of surfaces and the process of converting the given energy to the energy for releasing atoms must be known. The theories of sputtering and the semi-empirical formulas for evaluating the dependence of sputtering yield on incident energy are explained. The mechanisms of sputtering are that due to collision cascade in the case of heavy ion incidence and that due to surface atom recoil in the case of light ion incidence. The formulas for the sputtering yield of low energy heavy ion sputtering, high energy light ion sputtering and the general case between these extreme cases, and the Matsunami formula are shown. At the stage of the publication of Atomic Data and Nuclear Data Tables in 1984, the data up to 1983 were collected, and about 30 papers published thereafter were added. The experimental data for low Z materials, for example Be, B and C and light ion sputtering data were reported. The combination of ions and target atoms in the collected sputtering data is shown. The new semi-empirical formula by slightly adjusting the Matsunami formula was decided. (K.I.)

  15. Determination of lower bound crystallographic yield loci of zircaloy-4 tubes

    International Nuclear Information System (INIS)

    Costa Viana, C.S. da

    1980-01-01

    The use of zircaloy-4 tubing in fuel elements of water cooled reactors is discussed with respect to its mechanisms of deformation and also its resulting anisotropic plastic behaviour. A method for obtaining lower bound crystallographic yield loci of α-Zr is presented and applied to individual crystal orientations and to a real texture described by the main components observed on a direct pole figure. (Author) [pt

  16. FOLIAR NUTRIENT CONTENTS AND FRUIT YIELD IN CUSTARD APPLE PROGENIES

    Directory of Open Access Journals (Sweden)

    Paulo Sérgio Lima e Silva

    2009-01-01

    Full Text Available Foliar nutrient contents are evaluated in several fruit trees with many objectives. Leaf analysis constitutes a way of evaluating the nutritional requirements of crops. Due to the positive impact that fertilizers have on crop yields, researchers frequently try to evaluate the correlations between yield and foliar nutrient contents. This work's objective was to present fruit yields from the 4th to the 6th cropping seasons, evaluate foliar nutrient contents (on the 5th cropping season, and estimate the correlations between these two groups of traits for 20 half-sibling custard apple tree progenies. The progenies were evaluated in a random block design with five replicates and four plants per plot. One hundred leaves were collected from the middle third of the canopy (in height of each of four plants in each plot. The leaves were collected haphazardly, i.e., in a random manner, but without using a drawing mechanism. In the analysis of variance, the nutrient concentrations in the leaves from plants of each plot were represented by the average of four plants in the plot. Fruit yield in the various progenies did not depend on cropping season; progeny A4 was the most productive. No Spearman correlation was found between leaf nutrient concentrations and fruit yield. Increased nutrient concentrations in the leaves were progeny-dependent, i.e., with regard to Na (progenies FE5 and JG1, Ca (progeny A4, Mg (progeny SM7, N (progeny A3, P (progeny M, and K contents (progeny JG3. Spearman's correlation was negative between Na-Mg, Na-Ca, and Mg-P contents, and positive between Mg-Ca and N-K contents.

  17. Equilibration, thermalisation, and the emergence of statistical mechanics in closed quantum systems.

    Science.gov (United States)

    Gogolin, Christian; Eisert, Jens

    2016-05-01

    We review selected advances in the theoretical understanding of complex quantum many-body systems with regard to emergent notions of quantum statistical mechanics. We cover topics such as equilibration and thermalisation in pure state statistical mechanics, the eigenstate thermalisation hypothesis, the equivalence of ensembles, non-equilibration dynamics following global and local quenches as well as ramps. We also address initial state independence, absence of thermalisation, and many-body localisation. We elucidate the role played by key concepts for these phenomena, such as Lieb-Robinson bounds, entanglement growth, typicality arguments, quantum maximum entropy principles and the generalised Gibbs ensembles, and quantum (non-)integrability. We put emphasis on rigorous approaches and present the most important results in a unified language.

  18. Climatic and technological ceilings for Chinese rice stagnation based on yield gaps and yield trend pattern analysis.

    Science.gov (United States)

    Zhang, Tianyi; Yang, Xiaoguang; Wang, Hesong; Li, Yong; Ye, Qing

    2014-04-01

    Climatic or technological ceilings could cause yield stagnation. Thus, identifying the principal reasons for yield stagnation within the context of the local climate and socio-economic conditions are essential for informing regional agricultural policies. In this study, we identified the climatic and technological ceilings for seven rice-production regions in China based on yield gaps and on a yield trend pattern analysis for the period 1980-2010. The results indicate that 54.9% of the counties sampled experienced yield stagnation since the 1980. The potential yield ceilings in northern and eastern China decreased to a greater extent than in other regions due to the accompanying climate effects of increases in temperature and decreases in radiation. This may be associated with yield stagnation and halt occurring in approximately 49.8-57.0% of the sampled counties in these areas. South-western China exhibited a promising scope for yield improvement, showing the greatest yield gap (30.6%), whereas the yields were stagnant in 58.4% of the sampled counties. This finding suggests that efforts to overcome the technological ceiling must be given priority so that the available exploitable yield gap can be achieved. North-eastern China, however, represents a noteworthy exception. In the north-central area of this region, climate change has increased the yield potential ceiling, and this increase has been accompanied by the most rapid increase in actual yield: 1.02 ton ha(-1) per decade. Therefore, north-eastern China shows a great potential for rice production, which is favoured by the current climate conditions and available technology level. Additional environmentally friendly economic incentives might be considered in this region. © 2013 John Wiley & Sons Ltd.

  19. Multitube coaxial closed cycle gas laser system

    International Nuclear Information System (INIS)

    Davis, J.W.; Walch, A.P.

    1975-01-01

    A gas laser design capable of long term reliable operation in a commercial environment is disclosed. Various construction details which insulate the laser optics from mechanical distortions and vibrations inevitably present in the environment are developed. Also, a versatile optical cavity made up of modular units which render the basic laser configuration adaptable to alternate designs with different output capabilities is shown in detail. The system built around a convection laser operated in a closed cycle and the working medium is a gas which is excited by direct current electric discharges. (auth)

  20. Yield Improvement and Energy Savings Uing Phosphonates as Additives in Kraft pulping

    Energy Technology Data Exchange (ETDEWEB)

    Ulrike W. Tschirner; Timothy Smith

    2007-03-31

    Project Objective: Develop a commercially viable modification to the Kraft process resulting in energy savings, increased yield and improved bleachability. Evaluate the feasibility of this technology across a spectrum of wood species used in North America. Develop detailed fundamental understanding of the mechanism by which phosphonates improve KAPPA number and yield. Evaluate the North American market potential for the use of phosphonates in the Kraft pulping process. Examine determinants of customer perceived value and explore organizational and operational factors influencing attitudes and behaviors. Provide an economic feasibility assessment for the supply chain, both suppliers (chemical supply companies) and buyers (Kraft mills). Provide background to most effectively transfer this new technology to commercial mills.

  1. Yield stress of alumina-zirconia suspensions

    International Nuclear Information System (INIS)

    Ramakrishnan, V.; Pradip; Malghan, S.G.

    1996-01-01

    The yield stress of concentrated suspensions of alumina, zirconia, and mixed alumina-zirconia powders was measured by the vane technique as a function of solids loading, relative amounts of alumina and zirconia, and pH. At the isoelectric point (IEP), the yield stress varied as the fourth power of the solids loading. The relative ratio of alumina and zirconia particles was important in determining the yield stress of the suspension at the IEP. The yield stress of single and mixed suspensions showed a marked variation with pH. The maximum value occurred at or near the IEP of the suspension. The effect of electrical double-layer forces on the yield stress can be described on the basis of the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. A normalized yield stress--that is, the ratio of the yield stress at a given pH to the yield stress at the IEP predicted by this model--showed good correlation with experimental data

  2. Breeding for Grass Seed Yield

    DEFF Research Database (Denmark)

    Boelt, Birte; Studer, Bruno

    2010-01-01

    Seed yield is a trait of major interest for many fodder and amenity grass species and has received increasing attention since seed multiplication is economically relevant for novel grass cultivars to compete in the commercial market. Although seed yield is a complex trait and affected...... by agricultural practices as well as environmental factors, traits related to seed production reveal considerable genetic variation, prerequisite for improvement by direct or indirect selection. This chapter first reports on the biological and physiological basics of the grass reproduction system, then highlights...... important aspects and components affecting the seed yield potential and the agronomic and environmental aspects affecting the utilization and realization of the seed yield potential. Finally, it discusses the potential of plant breeding to sustainably improve total seed yield in fodder and amenity grasses....

  3. [Effects of different tillage patterns on soil properties, maize yield and water use efficiency in Weibei Highland, China.

    Science.gov (United States)

    Liu, Dan; Zhang, Xia; Li, Jun; Wang, Xu-Dong

    2018-02-01

    An eight-year field experiment of straw returning was conducted on dark loessial soil in Weibei Highland to investigate the effects of tillage patterns on soil aggregate, soil organic carbon (SOC), corn yield and soil water use efficiency (WUE). There were six tillage patterns, including conventional tillage (CT/CT), no-tillage (NT/NT), subsoiling tillage (ST/ST), no-tillage/subsoiling tillage (NT/ST), conventional tillage/no-tillage (CT/NT) and conventional tillage/subsoiling tillage (CT/ST). The results showed that compared with CT/CT, the patterns of NT/NT, ST/ST and the rotational tillage patterns (NT/ST, CT/NT and CT/ST) decreased the mean mass diameter of soil mechanical stable aggregate. The patterns of NT/NT, ST/ST and NT/ST increased the content of soil water-stable aggregate with the particle size >0.25 mm (WR 0.25 ) and their mean mass diameter, especially in the depth of 20-50 cm. These patterns reduced the proportion of aggregate destruction (PAD). Compared with CT/CT, the patterns of NT/ST, CT/NT, NT/NT and ST/ST increased the content of SOC in 0-10 cm soil layer. The content of SOC decreased as the increases of soil depth for all tillage patterns, but the decrease in SOC of three single tillage patterns (ST/ST, NT/NT and CT/CT) was larger than that of three rotational tillage patterns. Compared with CT/CT, the other five tillage patterns increased soil water storage in 0-200 cm soil profile, crop yield and WUE in maize. The yield and WUE in NT/ST pattern were significantly increased by 15.1% and 27.5%, respectively. Both corn yield and WUE were significantly and positively correlated with soil water storage in 0-200 cm soil profile in field during the cropping and fallow periods. Moreover, soil water storage during the cropping period was positively correlated with WR 0.25 , but negatively correlated with PAD in 0-50 cm soil layer. Particularly, maize yield, WUE and soil water storage during the cropping period were closely related to WR 0.25 in 20

  4. Effect of Salinity and Silicon on Seed Yield and Yield Components of Purslane Portulaca oleracea L.(

    Directory of Open Access Journals (Sweden)

    Z Rahimi

    2011-01-01

    Full Text Available Abstract In order to study the effects on salinity and silicon application on yield and yield components of purslane (Portulaca oleracea L., an experiment was conducted in a completely randomized desgin with three replications and two factors consisted of four different levels of salinity using NaCl (0, 7, 14, 21dS/m and two levels of silicon (application of one mMol sodium silicate and not application. Increasing salinity concentration significantly caused a negative effect on seed yield. But yield components such as number and weight of seed were more sensitive than number of capsul in main stem in final seed yield. Application of silicon increased seed yield in control but was not significant in salinity levels and leaves and stem biomass. Seed yield and total seed weight in branches was significantly decresed. Weight of 1000 seed in main stem and branches was not significantly different in salinity levels. As a result, purslane could be extremely tolerated to saline conditions, so it seems that it can be cultivated in saline soils and arid regions. Also applied silicon can be increase yield and plant tolerance to environmental stress. Keywords: 1000 seed, Branches, Capsul, Dry weight

  5. Yield stress fluids slowly yield to analysis

    NARCIS (Netherlands)

    Bonn, D.; Denn, M.M.

    2009-01-01

    We are surrounded in everyday life by yield stress fluids: materials that behave as solids under small stresses but flow like liquids beyond a critical stress. For example, paint must flow under the brush, but remain fixed in a vertical film despite the force of gravity. Food products (such as

  6. New performance data for {open_quotes}Emery 3002{close_quotes} and {open_quotes}Emery 3004,{close_quotes} two Army-approved safe materials to replace DOP in mask and filter testing

    Energy Technology Data Exchange (ETDEWEB)

    Carlon, H.R.; Guelta, M.A. [Army Edgewood Research, Development and Engineering Center, Aberdeen Proving Ground, MD (United States)

    1995-02-01

    At the 22nd Conference in Denver, we reported that the U.S. Army Surgeon General (SGJ) had approved our developmental material {open_quotes}Emery 3004{close_quotes} as a safe replacement for the suspected carcinogen DOP (dioctyl phthalate) in mask and filter testing throughout the Army. Subsequently the SG approved a second, less viscous material, {open_quotes}Emery 3002,{close_quotes} for similar applications. We have measured the viscosities and surface tensions of these liquids over a wide range of temperatures, and have initiated liquid breakup studies through Laskin and two-fluid nozzles. New measurements have been carried out with both liquids, e.g. using the ATI, Inc., TDA-4A cold generator to disperse aerosols for which droplet size distributions were measured using the TSI, Inc., Differential Mobility Particle Sizer (DMPS). Among the findings were that Emery 3004 performs much like DOP in the TDA-4A, with some possible advantages, while Emery 3002 in the TDA-4A produces mean droplet diameters about one-half those of Emery 3004 or DOP. This suggests that Emery 3002 could yield more rigorous filter tests with a smaller consumption of material. New laboratory results will be summarized. Sources of the {open_quotes}Emery{close_quotes} materials will be discussed since the production facility formerly operated by Emery is now run by the Ethyl Corporation and the source products are now known as {open_quotes}Ethylflo 192{close_quotes} (Emery 3002) and{open_quotes}Ethylflo 194{close_quotes} (Emery 3004).

  7. The formation mechanism of 4179 Toutatis' elongated bi-lobed structure in a close Earth encounter scenario

    Science.gov (United States)

    Hu, Shoucun; Ji, Jianghui; Richardson, Derek C.; Zhao, Yuhui; Zhang, Yun

    2018-04-01

    The optical images of near-Earth asteroid 4179 Toutatis acquired by Chang'e-2 spacecraft show that Toutatis has an elongated contact binary configuration, with the contact point located along the long axis. We speculate that such configuration may have resulted from a low-speed impact between two components. In this work, we performed a series of numerical simulations and compared the results with the optical images, to examine the mechanism and better understand the formation of Toutatis. Herein we propose an scenario that an assumed separated binary precursor could undergo a close encounter with Earth, leading to an impact between the primary and secondary, and the elongation is caused by Earth's tide. The precursor is assumed to be a doubly synchronous binary with a semi-major axis of 4 Rp (radius of primary) and the two components are represented as spherical cohesionless self-gravitating granular aggregates. The mutual orbits are simulated in a Monte Carlo routine to provide appropriate parameters for our N-body simulations of impact and tidal distortion. We employ the pkdgrav package with a soft-sphere discrete element method (SSDEM) to explore the entire scenarios. The results show that contact binary configurations are natural outcomes under this scenario, whereas the shape of the primary is almost not affected by the impact of the secondary. However, our simulations further provide an elongated contact binary configuration best-matching to the shape of Toutatis at an approaching distance rp = 1.4 ˜ 1.5 Re (Earth radius), indicative of a likely formation scenario for configurations of Toutatis-like elongated contact binaries.

  8. Effect of Zeolite, Selenium and Silicon on Yield, Yield Components and Some Physiological Traits of Canola under Salt Stress Conditions

    Directory of Open Access Journals (Sweden)

    A Bybordi

    2016-07-01

    Full Text Available Introduction Canola can be cultivated in large areas of the country due to its specific characteristics such as suitable composition of the fatty acids, its germination ability under low temperature, as well as its good compatibility with different climates. Canola is a high demanding crop in terms of fertilizers so that it uptakes considerable amount of nutrients from the soil during the growing season. Canola cultivation in poor soils or application of imbalanced fertilizers, especially nitrogen, can reduce qualitaty and quantity of final yield. On the other hand, salinity is known as one of the major limiting factors in canola production. Therefore, the aim of this study is the application of zeolite, selenium and silicon treatments to amend soil and increasing salinity tolerance in canola. Materials and Methods In order to study the effect of soil applied zeolite and foliar application of selenium and silicon on yield, yield components and some physiological traits of canola grown under salinity stress, a factorial experiment in randomized complete block design was conducted in Agriculture and Natural Resource Research Center in East Azerbaijan during 2011-2013 cropping seasons. Zeolite was applied at three levels (0, 5 and 10 ton ha-1 and foliar selenium and silicon were applied at three levels as well (each one zero, 2 and 4 g l-1. For this purpose, seedbed was prepared using plow and disk and then plot were designed. Canola seeds, cultivar Okapi, were sown in sandy loam soil with 4 dS.m-1 salinity at the depth of 2-3 cm. Irrigation was performed using local well based on 60% field capacity using the closed irrigation system. Potassium selentae and potassium silicate were used for selenium and silicon treatments. Treatments at rosette and stem elongation stages were sprayed on plants using a calibrated pressurized backpack sprayer. At flowering stage, photosynthesis rate was recorded. Then leaf samples were randomly collected to assay

  9. Effect of nitrogen and water deficit type on the yield gap between the potential and attainable wheat yield

    Directory of Open Access Journals (Sweden)

    Jiangang Liu

    2015-12-01

    Full Text Available Water deficit and N fertilizer are the two primary limiting factors for wheat yield in the North China plain, the most important winter wheat (Triticum aestivum L. production area in China. Analyzing the yield gap between the potential yield and the attainable yield can quantify the potential for increasing wheat production and exploring the limiting factors to yield gap in the high-yielding farming region of North China Plain. The Decision Support System for Agrotechnology Transfer (DSSAT model was used to identify methods to increase the grain yield and decrease the gap. In order to explore the impact of N and cultivars on wheat yield in the different drought types, the climate conditions during 1981 to 2011 growing seasons was categorized into low, moderate, and severe water deficit classes according to the anomaly percentage of the water deficit rate during the entire wheat growing season. There are differences (P < 0.0001 in the variations of the potential yields among three cultivars over 30 yr. For all three water deficit types, the more recent cultivars Jimai22 and Shijiazhuang8 had higher yields compared to the older 'Jinan17'. As the N fertilizer rate increased, the yield gap decreased more substantially during the low water deficit years because of the significant increase in attainable yield. Overall, the yield gaps were smaller with less water stress. Replacement of cultivars and appropriate N fertilizer application based on the forecasted drought types can narrow the yield gap effectively.

  10. Sustainable Rent-Based Closed-Loop Supply Chain for Fashion Products

    Directory of Open Access Journals (Sweden)

    Zhi-Hua Hu

    2014-10-01

    Full Text Available The textile and clothing industry generates much pollution and consumes a large amount of resources. Improper uses and disposal of clothing products make the problems much more severe. Fast fashion products shorten the valid lifecycle and generate more waste than regular clothing products. Considering the features of fashion products, a system of a rent-based closed-loop supply chain is developed to improve the sustainability of fashion products. The supply chain processes (fashion design and manufacturing, laundry, logistics and disposal, the operations management issues (inventory management, closed-loop logistics, human-clothing matching, booking system and the rental pricing and the sustainability promotion aspects (customization, responsive system, culture and policy aspects are investigated by devising sustainable strategies. The rationalities of the developed system and strategies are reviewed and elucidated in detail. The results may contribute to building sustainable closed-loop fashion supply chains, the related information systems and operational and managerial mechanisms.

  11. A person in a closed environment as a psychological problem

    Directory of Open Access Journals (Sweden)

    YuliyaV. Klochko

    2013-12-01

    Full Text Available This article addresses an ethically weighted problem which is related to modern psychology: when a person lives in a closed environment. A new approach to solving this problem is being examined. It is based on the finding of substantial new functional aspects of the cognitive processes of making and losing meaning. The study of this sub-discipline started with O.K. Tikhomirov’s theory of thinking. The phenomenon of “adaptability to changes in lifestyle” is being analyzed. The substantial characteristics of the notion of a “closed environment” as well as the psychological manifestations which appear when one is forced to live in a closed environment or choses to live in one of his or her own volition are being revealed. According to the author, the new approach will allow us to come closer to understanding and being able to explain the psychological mechanisms of the mental upheaval which prisoners in solitary confinement experience.

  12. Synthetic Brassica napus L.: Development and Studies on Morphological Characters, Yield Attributes, and Yield

    Directory of Open Access Journals (Sweden)

    M. A. Malek

    2012-01-01

    Full Text Available Brassica napus was synthesized by hybridization between its diploid progenitor species B. rapa and B. oleracea followed by chromosome doubling. Cross with B. rapa as a female parent was only successful. Among three colchicine treatments (0.10, 0.15, and 0.20%, 0.15% gave the highest success (86% of chromosome doubling in the hybrids (AC; 2=19. Synthetic B. napus (AACC, 2=38 was identified with bigger petals, fertile pollens and seed setting. Synthetic B. napus had increased growth over parents and exhibited wider ranges with higher coefficients of variations than parents for morphological and yield contributing characters, and yield per plant. Siliqua length as well as beak length in synthetic B. napus was longer than those of the parents. Number of seeds per siliqua, 1000-seed weight and seed yield per plant in synthetic B. napus were higher than those of the parents. Although flowering time in synthetic B. napus was earlier than both parents, however the days to maturity was little higher over early maturing B. rapa parent. The synthesized B. napus has great potential to produce higher seed yield. Further screening and evaluation is needed for selection of desirable genotypes having improved yield contributing characters and higher seed yield.

  13. Modeling mechanical effects on promotion and retardation of martensitic transformation

    Energy Technology Data Exchange (ETDEWEB)

    Maalekian, Mehran, E-mail: mehran.maalekian@ubc.ca [Department of Materials Engineering, University of British Columbia, 309-6350 Stores Road, Vancouver, B.C. V61Z4 (Canada); Kozeschnik, Ernst [Christian Doppler Laboratory for ' Early Stages of Precipitation' , Institute of Materials Science and Technology, Vienna University of Technology (Austria)

    2011-01-25

    Research highlights: {yields} Compressive elastic stresses up to 250 MPa are applied in continuous cooling. {yields} Using the thermodynamic data and maximum value of the mechanical driving force the predicted increase in M{sub s} ({approx}0.1 K/MPa) is in agreement with experiment {yields} Austenite was deformed plastically at different temperatures (800 deg. C-1100 deg. C). {yields} High deformation temperature (i.e. 1100 deg. C) as well as low plastic strain (i.e. {epsilon}{sub ave} {approx} 30%) do not affect martensite transformation noticeably, whereas lower deformation temperature (e.g. 900 deg. C) and large plastic strain (i.e. {epsilon}{sub ave} {approx} 70%) retards martensite transformation. {yields} The theory of mechanical stabilization predicts the depression of M{sub s}. - Abstract: The influence of compressive stress and prior plastic deformation of austenite on the martensite transformation in a eutectoid steel is studied both experimentally and theoretically. It is demonstrated that martensite formation is assisted by stress but it is retarded when transformation occurs from deformed austenite. With the quantitative modeling of the problem based on the theory of displacive shear transformation, the explanation of the two opposite roles of mechanical treatment prior to or simultaneously to martensite transformation is presented.

  14. Approaches to achieve high grain yield and high resource use efficiency in rice

    Directory of Open Access Journals (Sweden)

    Jianchang YANG

    2015-06-01

    Full Text Available This article discusses approaches to simultaneously increase grain yield and resource use efficiency in rice. Breeding nitrogen efficient cultivars without sacrificing rice yield potential, improving grain fill in later-flowering inferior spikelets and enhancing harvest index are three important approaches to achieving the dual goal of high grain yield and high resource use efficiency. Deeper root distribution and higher leaf photosynthetic N use efficiency at lower N rates could be used as selection criteria to develop N-efficient cultivars. Enhancing sink activity through increasing sugar-spikelet ratio at the heading time and enhancing the conversion efficiency from sucrose to starch though increasing the ratio of abscisic acid to ethylene in grains during grain fill could effectively improve grain fill in inferior spikelets. Several practices, such as post-anthesis controlled soil drying, an alternate wetting and moderate soil drying regime during the whole growing season, and non-flooded straw mulching cultivation, could substantially increase grain yield and water use efficiency, mainly via enhanced remobilization of stored carbon from vegetative tissues to grains and improved harvest index. Further research is needed to understand synergistic interaction between water and N on crop and soil and the mechanism underlying high resource use efficiency in high-yielding rice.

  15. Yield strength of attached copper film

    International Nuclear Information System (INIS)

    Zhang Yan; Zhang Jian-Min

    2011-01-01

    Variation of stress in attached copper film with an applied strain is measured by X-ray diffraction combined with a four-point bending method. A lower slope of the initial elastic segment of the curve of X-ray measured stress versus applied strain results from incomplete elastic strain transferred from the substrate to the film due to insufficiently strong interface cohesion. So the slope of the initial elastic segment of the X-ray stress (or X-ray strain directly) of the film against the substrate applied strain may be used to measure the film-substrate cohesive strength. The yield strength of the attached copper film is much higher than that of the bulk material and varies linearly with the inverse of the film thickness. (condensed matter: structural, mechanical, and thermal properties)

  16. Effect of Nitrogen and Phosphorus on Yield and Yield Components of Sesame (Sesamumindicum L.)

    OpenAIRE

    Muhammad Ibrahim; Manzoor Hussain; Ahmad Khan; Yousaf Jamal; Muhammad Ali; Muhammad Faisal Anwar Malik

    2014-01-01

    Nitrogen is a structural component of chlorophyll and protein therefore adequate supply of nitrogen is beneficial for both carbohydrates and protein metabolism as it promotes cell division and cell enlargement, resulting in more leaf area and thus ensuring good seed and dry matter yield. Theexperiment entitled effect of nitrogen and phosphorus on yield and yield components of sesame were conducted at New Developmental Farm of the University of Agriculture Peshawar during kharif 2013. Randomiz...

  17. Emotional closeness to parents and grandparents: A moderated mediation model predicting adolescent adjustment.

    Science.gov (United States)

    Attar-Schwartz, Shalhevet

    2015-09-01

    Warm and emotionally close relationships with parents and grandparents have been found in previous studies to be linked with better adolescent adjustment. The present study, informed by Family Systems Theory and Intergenerational Solidarity Theory, uses a moderated mediation model analyzing the contribution of the dynamics of these intergenerational relationships to adolescent adjustment. Specifically, it examines the mediating role of emotional closeness to the closest grandparent in the relationship between emotional closeness to a parent (the offspring of the closest grandparent) and adolescent adjustment difficulties. The model also examines the moderating role of emotional closeness to parents in the relationship between emotional closeness to grandparents and adjustment difficulties. The study was based on a sample of 1,405 Jewish Israeli secondary school students (ages 12-18) who completed a structured questionnaire. It was found that emotional closeness to the closest grandparent was more strongly associated with reduced adjustment difficulties among adolescents with higher levels of emotional closeness to their parents. In addition, adolescent adjustment and emotional closeness to parents was partially mediated by emotional closeness to grandparents. Examining the family conditions under which adolescents' relationships with grandparents is stronger and more beneficial for them can help elucidate variations in grandparent-grandchild ties and expand our understanding of the mechanisms that shape child outcomes. (c) 2015 APA, all rights reserved).

  18. One-Bath Pretreatment for Enhanced Color Yield of Ink-Jet Prints Using Reactive Inks

    Directory of Open Access Journals (Sweden)

    Wei Ma

    2017-11-01

    Full Text Available In order to facilely increase the color yield of ink-jet prints using reactive inks, one-bath pretreatment of cotton fabrics with pretreatment formulation containing sodium alginate, glycidyltrimethylammonium chloride (GTA, sodium hydroxide, and urea is designed for realizing sizing and cationization at the same time. The pretreatment conditions, including the concentrations of GTA and alkali, baking temperature, and time are optimized based on the result of thecolor yield on cationic cotton for magenta ink. The mechanism for color yield enhancement on GTA-modified fabrics is discussed and the stability of GTA in the print paste is investigated. Scanning electron microscopey, tear strength, and thermogravimetric analysis of the modified and unmodified cotton are studied and compared. Using the optimal pretreatment conditions, color yield on the cationic cotton for magenta, cyan, yellow, and black reactive inks are increased by 128.7%, 142.5%, 71.0%, and 38.1%, respectively, compared with the corresponding color yield on the uncationized cotton. Much less wastewater is produced using this one-bath pretreatment method. Colorfastness of the reactive dyes on the modified and unmodified cotton is compared and boundary clarity between different colors is evaluated by ink-jet printing of colorful patterns.

  19. Statistical rice yield modeling using blended MODIS-Landsat based crop phenology metrics in Taiwan

    Science.gov (United States)

    Chen, C. R.; Chen, C. F.; Nguyen, S. T.; Lau, K. V.

    2015-12-01

    Taiwan is a populated island with a majority of residents settled in the western plains where soils are suitable for rice cultivation. Rice is not only the most important commodity, but also plays a critical role for agricultural and food marketing. Information of rice production is thus important for policymakers to devise timely plans for ensuring sustainably socioeconomic development. Because rice fields in Taiwan are generally small and yet crop monitoring requires information of crop phenology associating with the spatiotemporal resolution of satellite data, this study used Landsat-MODIS fusion data for rice yield modeling in Taiwan. We processed the data for the first crop (Feb-Mar to Jun-Jul) and the second (Aug-Sep to Nov-Dec) in 2014 through five main steps: (1) data pre-processing to account for geometric and radiometric errors of Landsat data, (2) Landsat-MODIS data fusion using using the spatial-temporal adaptive reflectance fusion model, (3) construction of the smooth time-series enhanced vegetation index 2 (EVI2), (4) rice yield modeling using EVI2-based crop phenology metrics, and (5) error verification. The fusion results by a comparison bewteen EVI2 derived from the fusion image and that from the reference Landsat image indicated close agreement between the two datasets (R2 > 0.8). We analysed smooth EVI2 curves to extract phenology metrics or phenological variables for establishment of rice yield models. The results indicated that the established yield models significantly explained more than 70% variability in the data (p-value 0.8), in both cases. The root mean square error (RMSE) and mean absolute error (MAE) used to measure the model accuracy revealed the consistency between the estimated yields and the government's yield statistics. This study demonstrates advantages of using EVI2-based phenology metrics (derived from Landsat-MODIS fusion data) for rice yield estimation in Taiwan prior to the harvest period.

  20. Study on Yield and Yield Components of Wheat Genotypes under Different Moisture Regimes

    Directory of Open Access Journals (Sweden)

    E. Mogtader

    2012-10-01

    Full Text Available In order to study grain yield and yield components of 16 advanced wheat lines under rainfed and supplementary irrigation conditions, this research was conducted in randomized block design with 3 replications at Maragheh Research Station during 2008-09 seasons. Analysis of variance revealed significant differences for date to heading, plant height, 1000 kernel weight, tiller number, spike length, seed number per spike, spikelet number per spike, peduncle length, harvest index, leaf, sheath length and grain yield. Results also showed that the lines No. 4 (91-142 a 61/3/F35.70/MO73//1D13.1/MLT and 16 (Azar2 with 1895 and 1878 Kg/ha, lines No. 4 and 7 (YUMAI13/5/NAI60/3/14.53/ODIN//CI13441 with 2132 and 2285 Kg/ha had highest grain yield under rainfed and supplementary irrigated conditions respectively. Based on results these 16 lines and cultivars were grouped in 4 and 3 distinct classes using Ward’s Method of cluster analysis under rainfed and irrigated conditions. Path analysis indicated that vigor at shooting stage, seed number per spike and HI were positive important traits to select lines for high yielding potential in this study. HI and TKW had also positive effects on grain under supplementary irrigation.

  1. Closed-Loop Deep Brain Stimulation for Refractory Chronic Pain

    Directory of Open Access Journals (Sweden)

    Prasad Shirvalkar

    2018-03-01

    Full Text Available Pain is a subjective experience that alerts an individual to actual or potential tissue damage. Through mechanisms that are still unclear, normal physiological pain can lose its adaptive value and evolve into pathological chronic neuropathic pain. Chronic pain is a multifaceted experience that can be understood in terms of somatosensory, affective, and cognitive dimensions, each with associated symptoms and neural signals. While there have been many attempts to treat chronic pain, in this article we will argue that feedback-controlled ‘closed-loop’ deep brain stimulation (DBS offers an urgent and promising route for treatment. Contemporary DBS trials for chronic pain use “open-loop” approaches in which tonic stimulation is delivered with fixed parameters to a single brain region. The impact of key variables such as the target brain region and the stimulation waveform is unclear, and long-term efficacy has mixed results. We hypothesize that chronic pain is due to abnormal synchronization between brain networks encoding the somatosensory, affective and cognitive dimensions of pain, and that multisite, closed-loop DBS provides an intuitive mechanism for disrupting that synchrony. By (1 identifying biomarkers of the subjective pain experience and (2 integrating these signals into a state-space representation of pain, we can create a predictive model of each patient's pain experience. Then, by establishing how stimulation in different brain regions influences individual neural signals, we can design real-time, closed-loop therapies tailored to each patient. While chronic pain is a complex disorder that has eluded modern therapies, rich historical data and state-of-the-art technology can now be used to develop a promising treatment.

  2. A Novel Approach for Forecasting Crop Production and Yield Using Remotely Sensed Satellite Images

    Science.gov (United States)

    Singh, R. K.; Budde, M. E.; Senay, G. B.; Rowland, J.

    2017-12-01

    Forecasting crop production in advance of crop harvest plays a significant role in drought impact management, improved food security, stabilizing food grain market prices, and poverty reduction. This becomes essential, particularly in Sub-Saharan Africa, where agriculture is a critical source of livelihoods, but lacks good quality agricultural statistical data. With increasing availability of low cost satellite data, faster computing power, and development of modeling algorithms, remotely sensed images are becoming a common source for deriving information for agricultural, drought, and water management. Many researchers have shown that the Normalized Difference Vegetation Index (NDVI), based on red and near-infrared reflectance, can be effectively used for estimating crop production and yield. Similarly, crop production and yield have been closely related to evapotranspiration (ET) also as there are strong linkages between production/yield and transpiration based on plant physiology. Thus, we combined NDVI and ET information from remotely sensed images for estimating total production and crop yield prior to crop harvest for Niger and Burkina Faso in West Africa. We identified the optimum time (dekads 23-29) for cumulating NDVI and ET and developed a new algorithm for estimating crop production and yield. We used the crop data from 2003 to 2008 to calibrate our model and the data from 2009 to 2013 for validation. Our results showed that total crop production can be estimated within 5% of actual production (R2 = 0.98) about 30-45 days before end of the harvest season. This novel approach can be operationalized to provide a valuable tool to decision makers for better drought impact management in drought-prone regions of the world.

  3. Behaviour and design considerations for continuous flow closed-open-closed liquid microchannels.

    Science.gov (United States)

    Melin, Jessica; van der Wijngaart, Wouter; Stemme, Göran

    2005-06-01

    This paper introduces a method of combining open and closed microchannels in a single component in a novel way which couples the benefits of both open and closed microfluidic systems and introduces interesting on-chip microfluidic behaviour. Fluid behaviour in such a component, based on continuous pressure driven flow and surface tension, is discussed in terms of cross sectional flow behaviour, robustness, flow-pressure performance, and its application to microfluidic interfacing. The closed-open-closed microchannel possesses the versatility of upstream and downstream closed microfluidics along with open fluidic direct access. The device has the advantage of eliminating gas bubbles present upstream when these enter the open channel section. The unique behaviour of this device opens the door to applications including direct liquid sample interfacing without the need for additional and bulky sample tubing.

  4. The four variational principles of mechanics

    International Nuclear Information System (INIS)

    Gray, C.G.; Karl, G.; Novikov, V.A.

    1996-01-01

    We argue that there are four basic forms of the variational principles of mechanics: Hamilton close-quote s least action principle (HP), the generalized Maupertuis principle (MP), and their two reciprocal principles, RHP and RMP. This set is invariant under reciprocity and Legendre transformations. One of these forms (HP) is in the literature: only special cases of the other three are known. The generalized MP has a weaker constraint compared to the traditional formulation, only the mean energy bar E is kept fixed between virtual paths. This reformulation of MP alleviates several weaknesses of the old version. The reciprocal Maupertuis principle (RMP) is the classical limit of Schroedinger close-quote s variational principle of quantum mechanics, and this connection emphasizes the importance of the reciprocity transformation for variational principles. Two unconstrained formulations (UHP and UMP) of these four principles are also proposed, with completely specified Lagrange multipliers Percival close-quote s variational principle for invariant tori and variational principles for scattering orbits are derived from the RMP. The RMP is very convenient for approximate variational solutions to problems in mechanics using Ritz type methods Examples are provided. Copyright copyright 1996 Academic Press, Inc

  5. Liquid air fueled open–closed cycle Stirling engine

    International Nuclear Information System (INIS)

    Xu, Weiqing; Wang, Jia; Cai, Maolin; Shi, Yan

    2015-01-01

    Highlights: • Energy of liquid air is divided into cryogenic energy and expansion energy. • Open–closed cycle Stirling mechanism is employed to improve efficiency. • The Schmidt theory is modified to describe temperature variation in cold space. - Abstract: An unconventional Stirling engine is proposed and its theoretical analysis is performed. The engine belongs to a “cryogenic heat engine” that is fueled by cryogenic medium. Conventional “cryogenic heat engine” employs liquid air as pressure source, but disregards its heat-absorbing ability. Therefore, its efficiency can only be improved by increasing vapor pressure, accordingly increasing the demand on pressure resistance and sealing. In the proposed engine, the added Stirling mechanism helps achieve its high efficiency and simplicity by utilizing the heat-absorbing ability of liquid air. On one hand, based on Stirling mechanism, gas in the hot space absorbs heat from atmosphere when expanding; gas in the cold space is cooled down by liquid air when compressed. Taking atmosphere as heat source and liquid air as heat sink, a closed Stirling cycle is formed. On the other hand, an exhaust port is set in the hot space. When expanding in the hot space, the vaporized gas is discharged through the exhaust port. Thus, an open cycle is established. To model and analyze the system, the Schmidt theory is modified to describe temperature variation in the cold space, and irreversible characteristic of regenerator is incorporated in the thermodynamic model. The results obtained from the model show that under the same working pressure, the efficiency of the proposed engine is potentially higher than that of conventional ones and to achieve the same efficiency, the working pressure could be lower with the new mechanism. Its efficiency could be improved by reducing temperature difference between the regenerator and the cold/hot space, increasing the swept volume ratio, decreasing the liquid–gas ratio. To keep

  6. Effects of commercial organic fertilizers on the yield and yield structure of potato cultivars

    Directory of Open Access Journals (Sweden)

    Filipović Vladimir

    2012-01-01

    Full Text Available The research work has dealt with investigations of two type commercial organic fertilizers (DCM ECO-MIX 4 NPK 7:7:10 i GUANITO NPK 6:15:3 effects on the yield and yield structure of three potato cultivars (Cleopatra, Carrera and Sylvana. The control variant was used in plots without the use of organic fertilizers. The field experiment was performed in 2012. in a populated area Dobrica (N 45° 13’, E 20° 51’, 78 m.s.l. at the experimental farm plot Belča on which is certified organic production, on anthropogenic soil subtype chernozem on carbonate terrace. The results of research showed that the lowest tuber yield was determined in the control treatment (20,87 t ha-1, while the highest yield was achieved with a commercial organic fertilizer DCM ECO-MIX 4 (23,96 t ha-1. Number of tubers per plant corresponded to the characteristics of the studied cultivars. The largest number of tubers per plant was correlated with yield. Specifically, individual variants of the two greatest yields had the highest average number of tubers per plant. Cultivar Cleopatra of variant with GUANITO achieved 17,51 tubers per plant, while cultivar Sylvana of variant with DCM ECO-MIX 4 achieved 17,38 tubers per plant.

  7. Understanding Yield Anomalies in ICF Implosions via Fully Kinetic Simulations

    Science.gov (United States)

    Taitano, William

    2017-10-01

    In the quest towards ICF ignition, plasma kinetic effects are among prime candidates for explaining some significant discrepancies between experimental observations and rad-hydro simulations. To assess their importance, high-fidelity fully kinetic simulations of ICF capsule implosions are needed. Owing to the extremely multi-scale nature of the problem, kinetic codes have to overcome nontrivial numerical and algorithmic challenges, and very few options are currently available. Here, we present resolutions of some long-standing yield discrepancy conundrums using a novel, LANL-developed, 1D-2V Vlasov-Fokker-Planck code iFP. iFP possesses an unprecedented fidelity and features fully implicit time-stepping, exact mass, momentum, and energy conservation, and optimal grid adaptation in phase space, all of which are critically important for ensuring long-time numerical accuracy of the implosion simulations. Specifically, we concentrate on several anomalous yield degradation instances observed in Omega campaigns, with the so-called ``Rygg effect'', or an anomalous yield scaling with the fuel composition, being a prime example. Understanding the physical mechanisms responsible for such degradations in non-ignition-grade Omega experiments is of great interest, as such experiments are often used for platform and diagnostic development, which are then used in ignition-grade experiments on NIF. In the case of Rygg's experiments, effects of a kinetic stratification of fuel ions on the yield have been previously proposed as the anomaly explanation, studied with a kinetic code FPION, and found unimportant. We have revisited this issue with iFP and obtained excellent yield-over-clean agreement with the original Rygg results, and several subsequent experiments. This validates iFP and confirms that the kinetic fuel stratification is indeed at the root of the observed yield degradation. This work was sponsored by the Metropolis Postdoctoral Fellowship, LDRD office, Thermonuclear Burn

  8. Genetic basis of yield and some yield related traits in basmati rice

    International Nuclear Information System (INIS)

    Saleem, M.Y.; Haq, M.A.; Mirza, J.I.

    2010-01-01

    Additive, dominance and epistasis components of genetic variation for yield and some yield related traits were assessed through modified triple test cross technique in Basmati rice. Epistasis was found an important part of genetic variation for plant height, tillers per plant, secondary branches per panicle, grains per panicle, 1000-grain weight and yield per plant except primary branches per panicle and panicle length. Bifurcation of epistasis showed that additive x additive (i) type and additive x dominance + dominance x dominance (j + l) types of non-allelic interactions were involved in the expression of these traits. Additive and dominance type of gene action influenced the expression of primary branches per panicle and panicle length. No evidence of directional dominance was observed for these two traits. For plant height, tillers per plant, secondary branches per panicle, grains per panicle, 1000-grain weight and yield per plant, recurrent selection or bi parental mating may be exercised in F2 and following generations however, selection of desired plants may be postponed till F5 or F6 generations to permit maximum obsession of epistatic effects to develop desired cultivar(s) in Basmati rice.(author)

  9. Global thermo-mechanical effects from a KBS-3 type repository

    International Nuclear Information System (INIS)

    Hakami, E.; Olofsson, Stig-Olof

    1998-01-01

    The objective of this study has been to identify the global thermo-mechanical effects in the bedrock hosting a nuclear waste repository. Numerical thermo-mechanical modeling using distinct element models was performed. The number of fracture zones, the heat intensity of the waste, the material properties of the rock mass and the boundary conditions of the models were varied. Different models for multi-level repositories were also analyzed and compared to the main single-level case. Further, the global influence from the excavation of repository tunnels and deposition holes was examined by introducing weaker rock mass material properties in the repository region of one model. The maximum compression stress obtained for the main model is 44 MPa and occurs at the repository level after about 100 years of deposition. Due to thermal expansion, the rock mass displaces upward, and the maximum heave at the ground surface after 1000 years is calculated to be 16 cm. In the area close to the ground surface the horizontal stresses reduce, causing the rock to yield in tension down to a depth of about 80 meters. The fracture zones show opening displacements at shallow depths and closing and shearing at the repository level. The maximum displacements are 0.3-2.5 cm for closing, 0.0-0.8 cm for opening and 0.2-2.2 cm for shearing. The resultant stresses and displacements depend in large part on the assumptions made concerning the heat intensity of the waste. In the main model, an initial heat intensity of 10 W/m 2 is assumed, which gives larger effects than the case with 6 W/m 2 . Another important input parameter for the analysis is the Young's modulus of the rock mass. In the main model, a value of 30 GPa is assumed. Higher values of Young's modulus give larger thermo-mechanical effects. All multi-level repository layouts give rise to higher temperatures than the single-level layout, causing the compressive stresses to increase more at the repository level. The multi

  10. Closed form solution to a second order boundary value problem and its application in fluid mechanics

    International Nuclear Information System (INIS)

    Eldabe, N.T.; Elghazy, E.M.; Ebaid, A.

    2007-01-01

    The Adomian decomposition method is used by many researchers to investigate several scientific models. In this Letter, the modified Adomian decomposition method is applied to construct a closed form solution for a second order boundary value problem with singularity

  11. Yield-determining factors in high-solids enzymatic hydrolysis of lignocellulose

    Directory of Open Access Journals (Sweden)

    Felby Claus

    2009-06-01

    Full Text Available Abstract Background Working at high solids (substrate concentrations is advantageous in enzymatic conversion of lignocellulosic biomass as it increases product concentrations and plant productivity while lowering energy and water input. However, for a number of lignocellulosic substrates it has been shown that at increasing substrate concentration, the corresponding yield decreases in a fashion which can not be explained by current models and knowledge of enzyme-substrate interactions. This decrease in yield is undesirable as it offsets the advantages of working at high solids levels. The cause of the 'solids effect' has so far remained unknown. Results The decreasing conversion at increasing solids concentrations was found to be a generic or intrinsic effect, describing a linear correlation from 5 to 30% initial total solids content (w/w. Insufficient mixing has previously been shown not to be involved in the effect. Hydrolysis experiments with filter paper showed that neither lignin content nor hemicellulose-derived inhibitors appear to be responsible for the decrease in yields. Product inhibition by glucose and in particular cellobiose (and ethanol in simultaneous saccharification and fermentation at the increased concentrations at high solids loading plays a role but could not completely account for the decreasing conversion. Adsorption of cellulases was found to decrease at increasing solids concentrations. There was a strong correlation between the decreasing adsorption and conversion, indicating that the inhibition of cellulase adsorption to cellulose is causing the decrease in yield. Conclusion Inhibition of enzyme adsorption by hydrolysis products appear to be the main cause of the decreasing yields at increasing substrate concentrations in the enzymatic decomposition of cellulosic biomass. In order to facilitate high conversions at high solids concentrations, understanding of the mechanisms involved in high-solids product inhibition

  12. An adjustment in NiTi closed coil spring for an extended range of activation.

    Science.gov (United States)

    Ravipati, Raghu Ram; Sivakumar, Arunachalam; Sudhakar, P; Padmapriya, C V; Bhaskar, Mummudi; Azharuddin, Mohammad

    2014-01-01

    The Nickel Titanium (NiTi) closed coil springs serve as an efficient force delivery system in orthodontic space closure mechanics. The closed coil springs with the eyelets come in various lengths to broaden its force characteristics for an expedient space closure. However, at a certain point of time of progressive space closure, the coil spring can be expanded no further for an adequate force delivery. In such situations, the clinician prefers to replace the existing spring with another short length spring. The present article describes a simple conservative technique for progressively re-activating the same NiTi closed coil spring for complete space closure.

  13. On the Transportability of Ms Versus Yield Relationships

    Science.gov (United States)

    Patton, H. J.; Randall, G. E.

    2014-12-01

    A physical basis for transporting magnitude (M) versus yield (W) relationships between test sites is essential for improved yield estimation. A case in point is an Ms relationship transported from the Nevada Test Site, which gives W estimates of North Korean tests roughly a factor of two larger than mb-based estimates. In order to test the performance of this relation, we transport it to Semipalatinsk (STS) where W and source media information are available. The transported Ms - W relation was developed for water-saturated tuff/rhyolite, and Rayleigh-wave generation was corrected for the effects of source medium compaction due to spall slapdown. Coupling variations with burial depth and the effects of compaction, both functions of W in tuff/rhyolite, are mitigated for shots in hard rock. As such, it is satisfying that Ms for STS shots are seen to scale similarly as the transported relation, ~0.8log[W]. However, they are offset downward by 0.4 - 0.5 magnitude units. A negative offset is consistent with the effects of tectonic release, but research has shown the inadequacy of double-couple (DC) mechanisms to improve correlations of moment magnitude Mw - W relations. Source medium properties are not a factor because larger amplitude Green's functions in weak rock trade off with reduced source strength relative to explosions in hard rock. In this paper, the role of late-time damage due to non-linear, free-surface interactions, modeled with an Mzz source, is explored. Combining this source with DC mechanisms, we show the non-uniqueness of models to satisfy long-period surface-wave observations, and investigate overcoming this difficulty with full waveform modeling of Borovoye seismograms.

  14. Quantifying potential yield and water-limited yield of summer maize in the North China Plain

    Science.gov (United States)

    Jiang, Mingnuo; Liu, Chaoshun; Chen, Maosi

    2017-09-01

    The North China Plain is a major food producing region in China, and climate change could pose a threat to food production in the region. Based on China Meteorological Forcing Dataset, simulating the growth of summer maize in North China Plain from 1979 to 2015 with the regional implementation of crop growth model WOFOST. The results showed that the model can reflect the potential yield and water-limited yield of Summer Maize in North China Plain through the calibration and validation of WOFOST model. After the regional implementation of model, combined with the reanalysis data, the model can better reproduce the regional history of summer maize yield in the North China Plain. The yield gap in Southeastern Beijing, southern Tianjin, southern Hebei province, Northwestern Shandong province is significant, these means the water condition is the main factor to summer maize yield in these regions.

  15. GDP growth and the yield curvature

    DEFF Research Database (Denmark)

    Møller, Stig Vinther

    2014-01-01

    This paper examines the forecastability of GDP growth using information from the term structure of yields. In contrast to previous studies, the paper shows that the curvature of the yield curve contributes with much more forecasting power than the slope of yield curve. The yield curvature also...... predicts bond returns, implying a common element to time-variation in expected bond returns and expected GDP growth....

  16. The fluid mechanics of channel fracturing flows: experiment

    Science.gov (United States)

    Rashedi, Ahmadreza; Tucker, Zachery; Ovarlez, Guillaume; Hormozi, Sarah

    2017-11-01

    We show our preliminary experimental results on the role of fluid mechanics in channel fracturing flows, particularly yield stress fracturing fluids. Recent trends in the oil industry have included the use of cyclic pumping of a proppant slurry interspersed with a yield stress fracturing fluid, which is found to increase wells productivity, if particles disperse in a certain fashion. Our experimental study aims to investigate the physical mechanisms responsible for dispersing the particles (proppant) within a yield stress carrier fluid, and to measure the dispersion of proppant slugs in various fracturing regimes. To this end we have designed and built a unique experimental setup that resembles a fracture configuration coupled with a particle image/tracking velocimetry setup operating at micro to macro dimensions. Moreover, we have designed optically engineered suspensions of complex fluids with tunable yield stress and consistency, well controlled density match-mismatch properties and refractive indices for both X-rays and visible lights. We present our experimental system and preliminary results. NSF (Grant No. CBET-1554044- CAREER), ACS PRF (Grant No. 55661-DNI9).

  17. Systematics in delayed neutron yields

    Energy Technology Data Exchange (ETDEWEB)

    Ohsawa, Takaaki [Kinki Univ., Higashi-Osaka, Osaka (Japan). Atomic Energy Research Inst.

    1998-03-01

    An attempt was made to reproduce the systematic trend observed in the delayed neutron yields for actinides on the basis of the five-Gaussian representation of the fission yield together with available data sets for delayed neutron emission probability. It was found that systematic decrease in DNY for heavier actinides is mainly due to decrease of fission yields of precursors in the lighter side of the light fragment region. (author)

  18. Hydrology and sediment yield calibration for the Barasona reservoir catchment (Spain) using SWAT

    Science.gov (United States)

    Palazón, Leticia; Navas, Ana

    2013-04-01

    Hydrological and soil erosion models, as Soil and Water Assessment Tool (SWAT), have become very useful tools and increasingly serve as vital components of integrated environmental assessments that provide information outside of direct field experiments and causal observation. The purpose of this study was to improve the calibration of SWAT model to use it in an alpine catchment as a simulator of processes related to water quality and soil erosion. SWAT is spatially semi-distributed, agro-hydrological model that operates on a daily time step (as a minimum) at basin scale. It is designed to predict the impact of management on water, sediment and agricultural chemical yields in ungaged catchments. SWAT provides physically based algorithms as an option to define many of the important components of the hydrologic cycle. The input requirements of the model are used to describe the climate, soil properties, topography, vegetation, and land management practices. SWAT analyzes small or large catchments by discretising into sub-basins, which are then further subdivided into hydrological response units (HRUs) with homogeneous land use, soil type and slope. SWAT model (SWAT2009) coupled with a GIS interface (ArcSWAT), was applied to the Barasona reservoir catchment located in the central Spanish Pyrenees. The 1509 km2 agro-forestry catchment presents a mountain type climate, an altitudinal range close to 3000 meters and a precipitation variation close to 1000 mm/km. The mountainous characteristics of the catchment, in addition to the scarcity of climate data in the region, require specific calibration for some processes. Snowfall and snowmelt are significant processes in the hydrologic regime of the area and were calibrated in a previous work. In this work some of the challenges of the catchment to model with SWAT which affected the hydrology and the sediment yield simulation were performed as improvement of the previous calibration. Two reservoirs, a karst system which

  19. An assessment of irrigation needs and crop yield for the United States under potential climate changes

    Science.gov (United States)

    Brumbelow, Kelly; Georgakakos, Aris P.

    2000-01-01

    Past assessments of climate change on U.S. agriculture have mostly focused on changes in crop yield. Few studies have included the entire conterminous U.S., and few studies have assessed changing irrigation requirements. None have included the effects of changing soil moisture characteristics as determined by changing climatic forcing. This study assesses changes in irrigation requirements and crop yields for five crops in the areas of the U.S. where they have traditionally been grown. Physiologically-based crop models are used to incorporate inputs of climate, soils, agricultural management, and drought stress tolerance. Soil moisture values from a macroscale hydrologic model run under a future climate scenario are used to initialize soil moisture content at the beginning of each growing season. Historical crop yield data is used to calibrate model parameters and determine locally acceptable drought stress as a management parameter. Changes in irrigation demand and crop yield are assessed for both means and extremes by comparing results for atmospheric forcing close to the present climate with those for a future climate scenario. Assessments using the Canadian Center for Climate Modeling and Analysis General Circulation Model (CGCM1) indicate greater irrigation demands in the southern U.S. and decreased irrigation demands in the northern and western U.S. Crop yields typically increase except for winter wheat in the southern U.S. and corn. Variability in both irrigation demands and crop yields increases in most cases. Assessment results for the CGCM1 climate scenario are compared to those for the Hadley Centre for Climate Prediction and Research GCM (HadCM2) scenario for southwestern Georgia. The comparison shows significant differences in irrigation and yield trends, both in magnitude and direction. The differences reflect the high forecast uncertainty of current GCMs. Nonetheless, both GCMs indicate higher variability in future climatic forcing and, consequently

  20. Economics of food intake in mice: energy yield of the reinforcer.

    Science.gov (United States)

    Rowland, Neil E; Giddings, Ashley M; Minervini, Vanessa; Robertson, Kimberly L

    2014-09-01

    One of the Zeitgeists of the field for the study of ingestive behavior is that organisms are endowed with internal self-regulatory mechanisms that ensure optimal nutrition. However, the alarming increase in the prevalence of obesity challenges us to reconsider the extent to which internal regulatory mechanisms affect food intake, especially in a free market economy. Cued by the pioneering work of George Collier and his students, we have been examining food intake (demand) in mice when the effort or price of food is manipulated. We present two new experiments in mice that investigate the effect of energy yield per unit of food earned on working for food. The first experiment shows that when the nominal energy yield of each food pellet is halved by cellulose dilution, mice show relatively inelastic calorie-related demand despite the fact the cellulose diluted diet is unpalatable. The second experiment shows that the size of the pellet reinforcer does not have a major effect on food demand except in the extreme condition of small reward and high unit price. New analyses of distributions of responding are presented which suggest that mice work for "target" numbers of food rewards with only a small influence of price or energy gain. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. High-resolution mapping of yield curve shape and evolution for high porosity sandstones

    Science.gov (United States)

    Bedford, J. D.; Faulkner, D.; Wheeler, J.; Leclere, H.

    2017-12-01

    The onset of permanent inelastic deformation for porous rock is typically defined by a yield curve plotted in P-Q space, where P is the effective mean stress and Q is the differential stress. Sandstones usually have broadly elliptical shaped yield curves, with the low pressure side of the ellipse associated with localized brittle faulting (dilation) and the high pressure side with distributed ductile deformation (compaction). However recent works have shown that these curves might not be perfectly elliptical and that significant evolution in shape occurs with continued deformation. We therefore use a novel stress-probing methodology to map in high-resolution the yield curve shape for Boise and Idaho Gray sandstones (36-38% porosity) and also investigate curve evolution with increasing deformation. The data reveal yield curves with a much flatter geometry than previously recorded for porous sandstone and that the compactive side of the curve is partly comprised of a near vertical limb. The yield curve evolution is found to be strongly dependent on the nature of inelastic strain. Samples that were compacted under a deviatoric load, with a component of inelastic shear strain, were found to have yield curves with peaks that are approximately 50% higher than similar porosity samples that were hydrostatically compacted (i.e. purely volumetric strain). The difference in yield curve evolution along the different loading paths is attributed to mechanical anisotropy that develops during deviatoric loading by the closure of preferentially orientated fractures. Increased shear strain also leads to the formation of a plateau at the peak of the yield curve as samples deform along the deviatoric loading path. These results have important implications for understanding how the strength of porous rock evolves along different stress paths, including during fluid extraction from hydrocarbon reservoirs where the stress state is rarely isotropic.

  2. Effect of Hot Rolling on the Microstructure and Mechanical Properties of Nitrogen Alloyed Austenitic Stainless Steel

    Science.gov (United States)

    Chenna Krishna, S.; Karthick, N. K.; Jha, Abhay K.; Pant, Bhanu; Cherian, Roy M.

    2018-05-01

    In the present investigation, the effect of multi-pass hot rolling in the temperature range of 700-1000 °C on the microstructure and mechanical properties of nitrogen alloyed austenitic stainless steel was studied with the aid of optical microscopy, tensile testing and x-ray diffraction measurements. The microstructural changes that occurred in the hot rolled specimens were elongation of grains in rolling direction, nucleation of new grains at the grain boundaries of elongated grains and growth of nucleated grains to form fully recrystallized grains. Elongated grains formed at lower rolling temperature (700-800 °C) due to inadequate strain/temperature for the initiation of dynamic recrystallization. At higher rolling temperature (900-1000 °C), fine grains formed due to dynamic recrystallization. Tensile properties showed strong dependency on the rolling temperature. Tensile strength increased with the decrease in the rolling temperature at the cost of ductility. Maximum strength was observed in samples hot rolled at 700 °C with yield strength of 917 MPa and ductility of 25%. This variation in the tensile properties with the rolling temperature is attributed to changes in the dislocation density and grain structure. The estimated yield strength from the dislocation density, solid solution and grain boundary strengthening closely matched with experimentally determined yield strength confirming the role of dislocation density and grain size in the strengthening.

  3. Toxic Combustion Product Yields as a Function of Equivalence Ratio and Flame Retardants in Under-Ventilated Fires: Bench-Large-Scale Comparisons

    Directory of Open Access Journals (Sweden)

    David A. Purser

    2016-09-01

    Full Text Available In large-scale compartment fires; combustion product yields vary with combustion conditions mainly in relation to the fuel:air equivalence ratio (Φ and the effects of gas-phase flame retardants. Yields of products of inefficient combustion; including the major toxic products CO; HCN and organic irritants; increase considerably as combustion changes from well-ventilated (Φ < 1 to under-ventilated (Φ = 1–3. It is therefore essential that bench-scale toxicity tests reproduce this behaviour across the Φ range. Yield data from repeat compartment fire tests for any specific fuel show some variation on either side of a best-fit curve for CO yield as a function of Φ. In order to quantify the extent to which data from the steady state tube furnace (SSTF [1]; ISO TS19700 [2] represents compartment fire yields; the range and average deviations of SSTF data for CO yields from the compartment fire best-fit curve were compared to those for direct compartment fire measurements for six different polymeric fuels with textile and non-textile applications and for generic post-flashover fire CO yield data. The average yields; range and standard deviations of the SSTF data around the best-fit compartment fire curves were found to be close to those for the compartment fire data. It is concluded that SSTF data are as good a predictor of compartment fire yields as are repeat compartment fire test data.

  4. Molecular dynamics simulations with electronic stopping can reproduce experimental sputtering yields of metals impacted by large cluster ions

    Science.gov (United States)

    Tian, Jiting; Zhou, Wei; Feng, Qijie; Zheng, Jian

    2018-03-01

    An unsolved problem in research of sputtering from metals induced by energetic large cluster ions is that molecular dynamics (MD) simulations often produce sputtering yields much higher than experimental results. Different from the previous simulations considering only elastic atomic interactions (nuclear stopping), here we incorporate inelastic electrons-atoms interactions (electronic stopping, ES) into MD simulations using a friction model. In this way we have simulated continuous 45° impacts of 10-20 keV C60 on a Ag(111) surface, and found that the calculated sputtering yields can be very close to the experimental results when the model parameter is appropriately assigned. Conversely, when we ignore the effect of ES, the yields are much higher, just like the previous studies. We further expand our research to the sputtering of Au induced by continuous keV C60 or Ar100 bombardments, and obtain quite similar results. Our study indicates that the gap between the experimental and the simulated sputtering yields is probably induced by the ignorance of ES in the simulations, and that a careful treatment of this issue is important for simulations of cluster-ion-induced sputtering, especially for those aiming to compare with experiments.

  5. Fission yield measurements at IGISOL

    Science.gov (United States)

    Lantz, M.; Al-Adili, A.; Gorelov, D.; Jokinen, A.; Kolhinen, V. S.; Mattera, A.; Moore, I.; Penttilä, H.; Pomp, S.; Prokofiev, A. V.; Rakopoulos, V.; Rinta-Antila, S.; Simutkin, V.; Solders, A.

    2016-06-01

    The fission product yields are an important characteristic of the fission process. In fundamental physics, knowledge of the yield distributions is needed to better understand the fission process. For nuclear energy applications good knowledge of neutroninduced fission-product yields is important for the safe and efficient operation of nuclear power plants. With the Ion Guide Isotope Separator On-Line (IGISOL) technique, products of nuclear reactions are stopped in a buffer gas and then extracted and separated by mass. Thanks to the high resolving power of the JYFLTRAP Penning trap, at University of Jyväskylä, fission products can be isobarically separated, making it possible to measure relative independent fission yields. In some cases it is even possible to resolve isomeric states from the ground state, permitting measurements of isomeric yield ratios. So far the reactions U(p,f) and Th(p,f) have been studied using the IGISOL-JYFLTRAP facility. Recently, a neutron converter target has been developed utilizing the Be(p,xn) reaction. We here present the IGISOL-technique for fission yield measurements and some of the results from the measurements on proton induced fission. We also present the development of the neutron converter target, the characterization of the neutron field and the first tests with neutron-induced fission.

  6. Fission yield measurements at IGISOL

    Directory of Open Access Journals (Sweden)

    Lantz M.

    2016-01-01

    Full Text Available The fission product yields are an important characteristic of the fission process. In fundamental physics, knowledge of the yield distributions is needed to better understand the fission process. For nuclear energy applications good knowledge of neutroninduced fission-product yields is important for the safe and efficient operation of nuclear power plants. With the Ion Guide Isotope Separator On-Line (IGISOL technique, products of nuclear reactions are stopped in a buffer gas and then extracted and separated by mass. Thanks to the high resolving power of the JYFLTRAP Penning trap, at University of Jyväskylä, fission products can be isobarically separated, making it possible to measure relative independent fission yields. In some cases it is even possible to resolve isomeric states from the ground state, permitting measurements of isomeric yield ratios. So far the reactions U(p,f and Th(p,f have been studied using the IGISOL-JYFLTRAP facility. Recently, a neutron converter target has been developed utilizing the Be(p,xn reaction. We here present the IGISOL-technique for fission yield measurements and some of the results from the measurements on proton induced fission. We also present the development of the neutron converter target, the characterization of the neutron field and the first tests with neutron-induced fission.

  7. Pipe closing device

    International Nuclear Information System (INIS)

    Klahn, F.C.; Nolan, J.H.; Wills, C.

    1979-01-01

    The closing device closes the upper end of a support tube for monitoring samples. It meshes with the upper connecting piece of the monitorung sample capsule, and loads the capsule within the bore of the support tube, so that it is fixed but can be released. The closing device consists of an interlocking component with a chamber and several ratchets which hang down. The interlocking component surrounds the actuating component for positioning the ratchets. The interlocking and actuating components are movable axially relative to each other. (DG) [de

  8. Humans, geometric similarity and the Froude number: is ''reasonably close'' really close enough?

    Science.gov (United States)

    Kramer, Patricia Ann; Sylvester, Adam D

    2013-02-15

    Understanding locomotor energetics is imperative, because energy expended during locomotion, a requisite feature of primate subsistence, is lost to reproduction. Although metabolic energy expenditure can only be measured in extant species, using the equations of motion to calculate mechanical energy expenditure offers unlimited opportunities to explore energy expenditure, particularly in extinct species on which empirical experimentation is impossible. Variability, either within or between groups, can manifest as changes in size and/or shape. Isometric scaling (or geometric similarity) requires that all dimensions change equally among all individuals, a condition that will not be met in naturally developing populations. The Froude number (Fr), with lower limb (or hindlimb) length as the characteristic length, has been used to compensate for differences in size, but does not account for differences in shape.To determine whether or not shape matters at the intraspecific level, we used a mechanical model that had properties that mimic human variation in shape. We varied crural index and limb segment circumferences (and consequently, mass and inertial parameters) among nine populations that included 19 individuals that were of different size. Our goal in the current work is to understand whether shape variation changes mechanical energy sufficiently enough to make shape a critical factor in mechanical and metabolic energy assessments.Our results reaffirm that size does not affect mass-specific mechanical cost of transport (Alexander and Jayes, 1983) among geometrically similar individuals walking at equal Fr. The known shape differences among modern humans, however, produce sufficiently large differences in internal and external work to account for much of the observed variation in metabolic energy expenditure, if mechanical energy is correlated with metabolic energy. Any species or other group that exhibits shape differences should be affected similarly to that which

  9. Effect of different tillage intensity on yields and yield-forming factors in winter wheat

    Directory of Open Access Journals (Sweden)

    Martin Houšť

    2012-01-01

    Full Text Available The paper presents results of a study on application of minimum tillage technologies when growing winter wheat. Experiments were performed in the sugar-beet-growing region with loamy chernozem within the period of 2005–2009. Aanalysed and evaluated were effects of different methods of soil processing on yield-forming factors in stands of winter wheat grown after three different preceding crops (i.e. alfalfa, maize for silage and pea. Evaluated were the following four variants of tillage: (1 conventional ploughing to the depth of 0.22 m (Variant 1; (2 ploughing to the depth of 0.15 m (Variant 2; (3 direct sowing into the untilled soil (Variant 3, and (4 shallow tillage to the depth of 0.10 m (Variant 4.The effect of different tillage intensity on winter wheat yields was statistically non-significant after all forecrops. After alfalfa, the highest and the lowest average yields were recorded in Variant 2 (i.e. with ploughing to the depth of 0.15 m and Variant 3 (direct sowing into the untilled soil, respectively. After maize grown for silage, higher yields were obtained in Variant 2 and Variant 1 (conventional ploughing while in Variants 4 and 3 the obtained yields were lower. When growing winter wheat after pea as a preceding crop, the highest and the lowest average yields were recorded after direct sowing (Variant 3 and in Variant 1 (i.e. ploughing to the depth of 0.22 m, respectively. Results of studies on effect of different tillage technologies on yields of winter wheat crops indicate that under the given pedological and climatic conditions it is possible to apply methods of reduced tillage intensity. However, the choice of the corresponding technology must be performed with regard to the type of preceding crop.

  10. The potential of satellite-observed crop phenology to enhance yield gap assessments in smallholder landscapes

    Directory of Open Access Journals (Sweden)

    John M A Duncan

    2015-08-01

    Full Text Available Many of the undernourished people on the planet obtain their entitlements to food via agricultural-based livelihood strategies, often on underperforming croplands and smallholdings. In this context, expanding cropland extent is not a viable strategy for smallholders to meet their food needs. Therefore, attention must shift to increasing productivity on existing plots and ensuring yield gaps do not widen. Thus, supporting smallholder farmers to sustainably increase the productivity of their lands is one part of a complex solution to realising universal food security. However, the information (e.g. location and causes of cropland underperformance required to support measures to close yield gaps in smallholder landscapes are often not available. This paper reviews the potential of crop phenology, observed from satellites carrying remote sensing sensors, to fill this information gap. It is suggested that on a theoretical level phenological approaches can reveal greater intra-cropland thematic detail, and increase the accuracy of crop extent maps and crop yield estimates. However, on a practical level the spatial mismatch between the resolution at which crop phenology can be estimated from satellite remote sensing data and the scale of yield variability in smallholder croplands inhibits its use in this context. Similarly, the spatial coverage of remote sensing-derived phenology offers potential for integration with ancillary spatial datasets to identify causes of yield gaps. To reflect the complexity of smallholder cropping systems requires ancillary datasets at fine spatial resolutions which, often, are not available. This further precludes the use of crop phenology in attempts to unpick the causes of yield gaps. Research agendas should focus on generating fine spatial resolution crop phenology, either via data fusion or through new sensors (e.g. Sentinel-2 in smallholder croplands. This has potential to transform the applied use of remote sensing

  11. Temperature dependence of poly(lactic acid) mechanical properties

    DEFF Research Database (Denmark)

    Zhou, Chengbo; Guo, Huilong; Li, Jingqing

    2016-01-01

    The mechanical properties of polymers are not only determined by their structures, but also related to the temperature field in which they are located. The yield behaviors, Young's modulus and structures of injection-molded poly(lactic acid) (PLA) samples after annealing at different temperatures....... The crystallinity increases with increasing annealing temperature and a' form crystal is formed when the annealing temperature is higher than 100 oC. The stretched samples with low crystallinity show the first yield at draw temperatures below the glass transition temperature (Tg) and the second yield above Tg....... For the samples annealed between 80 and 120 oC, a peculiar double yield appears when stretched within 50–60 oC and only the first or the second yield can be found at the lower and higher draw temperatures. The yield strain and yield stress together with Young's modulus were obtained and discussed in terms...

  12. Analysis of a closed-kinematic chain robot manipulator

    Science.gov (United States)

    Nguyen, Charles C.; Pooran, Farhad J.

    1988-01-01

    Presented are the research results from the research grant entitled: Active Control of Robot Manipulators, sponsored by the Goddard Space Flight Center (NASA) under grant number NAG-780. This report considers a class of robot manipulators based on the closed-kinematic chain mechanism (CKCM). This type of robot manipulators mainly consists of two platforms, one is stationary and the other moving, and they are coupled together through a number of in-parallel actuators. Using spatial geometry and homogeneous transformation, a closed-form solution is derived for the inverse kinematic problem of the six-degree-of-freedom manipulator, built to study robotic assembly in space. Iterative Newton Raphson method is employed to solve the forward kinematic problem. Finally, the equations of motion of the above manipulators are obtained by employing the Lagrangian method. Study of the manipulator dynamics is performed using computer simulation whose results show that the robot actuating forces are strongly dependent on the mass and centroid locations of the robot links.

  13. Radiolysis of liquid water: an attempt to reconcile Monte-Carlo calculations with new experimental hydrated electron yield data at early times

    International Nuclear Information System (INIS)

    Muroya, Y.; Meesungnoen, J.; Jay-Gerin, J.-P.; Filali-Mouhim, A.; Goulet, T.; Katsumura, Y.; Mankhetkorn, S.

    2002-01-01

    A re-examination of our Monte-Carlo modeling of the radiolysis of liquid water by low linear-energy-transfer (LET ∼ 0.3 keV μm -1 ) radiation is undertaken herein in an attempt to reconcile the results of our simulation code with recently revised experimental hydrated electron (e aq - ) yield data at early times. The thermalization distance of subexcitation electrons, the recombination cross section of the electrons with their water parent cations prior to thermalization, and the branching ratios of the different competing mechanisms in the dissociative decay of vibrationally excited states of water molecules were taken as adjustable parameters in our simulations. Using a global-fit procedure, we have been unable to find a set of values for those parameters to simultaneously reproduce (i) the revised e aq - yield of 4.0 ± 0.2 molecules per 100 eV at 'time zero' (that is, a reduction of ∼20% over the hitherto accepted value of 4.8 molecules per 100 eV), (ii) the newly measured e aq - decay kinetic profile from 100 ps to 10 ns, and (iii) the time-dependent yields of the other radiolytic species H . , . OH, H 2 , and H 2 O 2 (up to ∼1 μs). The lowest possible limiting 'time-zero' yield of e aq - that we could in fact obtain, while ensuring an acceptable agreement between all computed and experimental yields, was ∼4.4 to 4.5 molecules per 100 eV. Under these conditions, the mean values of the electron thermalization distance and of the geminate electron-cation recombination probability, averaged over the subexcitation electron 'entry spectrum,' are found to be equal to ∼139 A and ∼18%, respectively. These values are to be compared with those obtained in our previous simulations of liquid water radiolysis, namely ∼88 A and ∼5.5%, respectively. Our average electron thermalization distance is also to be compared with the typical size (∼64-80 A) of the initial hydrated electron distributions estimated in current deterministic models of 'spur' chemistry

  14. Estimates of Sputter Yields of Solar-Wind Heavy Ions of Lunar Regolith Materials

    Science.gov (United States)

    Barghouty, Abdulmasser F.; Adams, James H., Jr.

    2008-01-01

    At energies of approximately 1 keV/amu, solar-wind protons and heavy ions interact with the lunar surface materials via a number of microscopic interactions that include sputtering. Solar-wind induced sputtering is a main mechanism by which the composition of the topmost layers of the lunar surface can change, dynamically and preferentially. This work concentrates on sputtering induced by solar-wind heavy ions. Sputtering associated with slow (speeds the electrons speed in its first Bohr orbit) and highly charged ions are known to include both kinetic and potential sputtering. Potential sputtering enjoys some unique characteristics that makes it of special interest to lunar science and exploration. Unlike the yield from kinetic sputtering where simulation and approximation schemes exist, the yield from potential sputtering is not as easy to estimate. This work will present a preliminary numerical scheme designed to estimate potential sputtering yields from reactions relevant to this aspect of solar-wind lunar-surface coupling.

  15. Precise measurement of {gamma}(K{yields}e {nu}({gamma}))/{gamma}(K{yields}{mu} {nu}({gamma})) and study of K{yields}e {nu} {gamma}

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosino, F.; Massarotti, P.; Meola, S.; Napolitano, M. [Dipartimento di Scienze Fisiche dell' Universita ' ' Federico II' ' , Napoli (Italy); INFN Sezione di Napoli, Napoli (Italy); Antonelli, A.; Antonelli, M.; Bencivenni, G.; Bloise, C.; Bossi, F.; Capon, G.; Capussela, T.; Ciambrone, P.; De Lucia, E.; De Simone, P.; Dreucci, M.; Felici, G.; Gatti, C.; Giovannella, S.; Jacewicz, M.; Lanfranchi, G.; Miscetti, S.; Moulson, M.; Murtas, F.; Palutan, M.; Santangelo, P.; Sciascia, B.; Sibidanov, A.; Spadaro, T.; Venanzoni, G. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Archilli, F. [Dipartimento di Fisica dell' Universita ' ' Tor Vergata' ' , Rome (Italy); INFN Sezione di Roma Tor Vergata, Rome (Italy); Beltrame, P.; Denig, A.; Mueller, S. [Johannes Gutenberg-Universitaet, Institut fuer Kernphysik, Mainz (Germany); Bini, C.; De Santis, A.; De Zorzi, G.; Di Domenico, A.; Fiore, S.; Franzini, P.; Gauzzi, P. [Dipartimento di Fisica dell' Universita ' ' La Sapienza' ' , Rome (Italy); INFN Sezione di Roma, Rome (Italy); Bocchetta, S.; Ceradini, F.; Di Micco, B.; Nguyen, F. [Dipartimento di Fisica dell' Universita ' ' Roma Tre' ' , Rome (Italy); INFN Sezione di Roma Tre, Rome (Italy); Branchini, P.; Graziani, E.; Passeri, A.; Tortora, L. [INFN Sezione di Roma Tre, Rome (Italy); Capriotti, D. [Dipartimento di Fisica dell' Universita ' ' Roma Tre' ' , Rome (Italy); Di Donato, C. [INFN Sezione di Napoli, Napoli (Italy); Kulikov, V. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Lee-Franzini, J. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); State University of New York, Physics Department, Stony Brook (United States); Martini, M.; Patera, V.; Versaci, R. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Dipartimento di Energetica dell' Universita ' ' La Sapienza' ' , Rome (Italy); Valente, P. [INFN Sezione di Roma, Rome (Italy)

    2009-12-15

    We present a precise measurement of the ratio R{sub K}={gamma}(K{yields}e{nu}({gamma}))/{gamma}(K{yields}{mu}{nu}({gamma})) and a study of the radiative process K{yields}e{nu}{gamma}, performed with the KLOE detector. The results are based on data collected at the Frascati e{sup +}e{sup -} collider DA {phi}NE for an integrated luminosity of 2.2 fb{sup -1}. We find R{sub K}=(2.493{+-}0.025{sub stat}{+-}0.019{sub syst}) x 10{sup -5}, in agreement with the Standard Model expectation. This result is used to improve constraints on parameters of the Minimal Supersymmetric Standard Model with lepton flavor violation. We also measured the differential decay rate d {gamma}(K{yields}e{nu}{gamma})/dE{sub {gamma}} for photon energies 10

  16. Decoupling mechanisms-paying for conservation

    Energy Technology Data Exchange (ETDEWEB)

    Cross, P.S.

    1993-07-15

    In 1988, the National Association of Regulatory Utility Commissioners issued a policy statement that said [open quotes]ratemaking practices should align utilities' pursuit of profit with least-cost planning.[close quotes] This policy coincided with then-current thinkingg at a number of state commissions about the much-touted goal of encouraging utilities to invest in conservation, or demand-side management (DSM) programs, rather than in generating resources to meet system load requirements. Besides utility concerns about recovering conservation program investments, regulators also notices a built-in [open quotes]disincentive[close quotes] to investment in the traditional ratemaking format: If profit is tied to sales, then utilities will always shy away from aggressively promoting conservation. Or so the thinkin went. [open quotes]Decoupling mechanisms[close quotes] were born to remove this disincentive. A number of states have implemented these mechanisms, while several others are investigating the issue. One chief drawback of the mechanisms is that if sales go down, rates go up to cover the shortfall. (Of course, rates go down if sales exceed forecasted levels.) A major problem has been that rate increases have occurred at exactly the wrong time, during economic slowdowns when utilities are struggling to retain price-sensitive customers and residential ratepayers are least likely to bear with quiet stoicism the burden placed on family budgets. Decoupling is seen by some as a step backwards in the move to competitive regulatory reforms that seek to encourage utilities to behave like free-market companies. Indeed, the newest decoupling mechanisms face serious challenge.

  17. Casting and stress-strain simulations of a cast ductile iron component using microstructure based mechanical behavior

    International Nuclear Information System (INIS)

    Olofsson, Jakob; Svensson, Ingvar L

    2012-01-01

    The industrial demand for increased component performance with concurrent reductions in component weight, development times and verifications using physical prototypes drives the need to use the full potential of casting and Finite Element Method (FEM) simulations to correctly predict the mechanical behavior of cast components in service. The mechanical behavior of the component is determined by the casting process, and factors as component geometry and casting process parameters are known to affect solidification and microstructure formation throughout the component and cause local variations in mechanical behavior as well as residual stresses. Though residual stresses are known to be an important factor in the mechanical behavior of the component, the importance of local mechanical behavior is not well established and the material is typically considered homogeneous throughout the component. This paper deals with the influence of solidification and solid state transformation on microstructure formation and the effect of local microstructure variations on the mechanical behavior of the cast component in service. The current work aims to investigate the coupling between simulation of solidification, microstructure and local variations in mechanical behavior and stress-strain simulation. This is done by performing several simulations of a ductile iron component using a recently developed simulation strategy, a closed chain of simulations for cast components, able to predict and describe the local variations in not only elastic but also plastic behavior throughout the component by using microstructural parameters determined by simulations of microstructural evolution in the component during the casting process. In addition the residual stresses are considered. The results show that the FEM simulation results are significantly affected by including microstructure based mechanical behavior. When the applied load is low and the component is subjected to stress levels

  18. Yield-scaled global warming potential of two irrigation management systems in a highly productive rice system

    Directory of Open Access Journals (Sweden)

    Silvana Tarlera

    2016-02-01

    Full Text Available ABSTRACT Water management impacts both methane (CH4 and nitrous oxide (N2O emissions from rice paddy fields. Although controlled irrigation is one of the most important tools for reducing CH4emission in rice production systems it can also increase N2O emissions and reduce crop yields. Over three years, CH4 and N2O emissions were measured in a rice field in Uruguay under two different irrigation management systems, using static closed chambers: conventional water management (continuous flooding after 30 days of emergence, CF30; and an alternative system (controlled deficit irrigation allowing for wetting and drying, AWDI. AWDI showed mean cumulative CH4 emission values of 98.4 kg CH4 ha−1, 55 % lower compared to CF30, while no differences in nitrous oxide emissions were observed between treatments ( p > 0.05. No yield differences between irrigation systems were observed in two of the rice seasons ( p > 0.05 while AWDI promoted yield reduction in one of the seasons ( p< 0.05. When rice yield and greenhouse gases (GHG emissions were considered together, the AWDI irrigation system allowed for lower yield-scaled total global warming potential (GWP. Higher irrigation water productivity was achieved under AWDI in two of the three rice seasons. These findings suggest that AWDI could be an option for reducing GHG emissions and increasing irrigation water productivity. However, AWDI may compromise grain yield in certain years, reflecting the importance of the need for fine tuning of this irrigation strategy and an assessment of the overall tradeoff between relationships in order to promote its adoption by farmers.

  19. Terapascal static pressure generation with ultrahigh yield strength nanodiamond.

    Science.gov (United States)

    Dubrovinskaia, Natalia; Dubrovinsky, Leonid; Solopova, Natalia A; Abakumov, Artem; Turner, Stuart; Hanfland, Michael; Bykova, Elena; Bykov, Maxim; Prescher, Clemens; Prakapenka, Vitali B; Petitgirard, Sylvain; Chuvashova, Irina; Gasharova, Biliana; Mathis, Yves-Laurent; Ershov, Petr; Snigireva, Irina; Snigirev, Anatoly

    2016-07-01

    Studies of materials' properties at high and ultrahigh pressures lead to discoveries of unique physical and chemical phenomena and a deeper understanding of matter. In high-pressure research, an achievable static pressure limit is imposed by the strength of available strong materials and design of high-pressure devices. Using a high-pressure and high-temperature technique, we synthesized optically transparent microballs of bulk nanocrystalline diamond, which were found to have an exceptional yield strength (~460 GPa at a confining pressure of ~70 GPa) due to the unique microstructure of bulk nanocrystalline diamond. We used the nanodiamond balls in a double-stage diamond anvil cell high-pressure device that allowed us to generate static pressures beyond 1 TPa, as demonstrated by synchrotron x-ray diffraction. Outstanding mechanical properties (strain-dependent elasticity, very high hardness, and unprecedented yield strength) make the nanodiamond balls a unique device for ultrahigh static pressure generation. Structurally isotropic, homogeneous, and made of a low-Z material, they are promising in the field of x-ray optical applications.

  20. Closed loop problems in biomechanics. Part II--an optimization approach.

    Science.gov (United States)

    Vaughan, C L; Hay, J G; Andrews, J G

    1982-01-01

    A closed loop problem in biomechanics may be defined as a problem in which there are one or more closed loops formed by the human body in contact with itself or with an external system. Under certain conditions the problem is indeterminate--the unknown forces and torques outnumber the equations. Force transducing devices, which would help solve this problem, have serious drawbacks, and existing methods are inaccurate and non-general. The purposes of the present paper are (1) to develop a general procedure for solving closed loop problems; (2) to illustrate the application of the procedure; and (3) to examine the validity of the procedure. A mathematical optimization approach is applied to the solution of three different closed loop problems--walking up stairs, vertical jumping and cartwheeling. The following conclusions are drawn: (1) the method described is reasonably successful for predicting horizontal and vertical reaction forces at the distal segments although problems exist for predicting the points of application of these forces; (2) the results provide some support for the notion that the human neuromuscular mechanism attempts to minimize the joint torques and thus, to a certain degree, the amount of muscular effort; (3) in the validation procedure it is desirable to have a force device for each of the distal segments in contact with a fixed external system; and (4) the method is sufficiently general to be applied to all classes of closed loop problems.

  1. Map of open and closed chromatin domains in Drosophila genome.

    Science.gov (United States)

    Milon, Beatrice; Sun, Yezhou; Chang, Weizhong; Creasy, Todd; Mahurkar, Anup; Shetty, Amol; Nurminsky, Dmitry; Nurminskaya, Maria

    2014-11-18

    Chromatin compactness has been considered a major determinant of gene activity and has been associated with specific chromatin modifications in studies on a few individual genetic loci. At the same time, genome-wide patterns of open and closed chromatin have been understudied, and are at present largely predicted from chromatin modification and gene expression data. However the universal applicability of such predictions is not self-evident, and requires experimental verification. We developed and implemented a high-throughput analysis for general chromatin sensitivity to DNase I which provides a comprehensive epigenomic assessment in a single assay. Contiguous domains of open and closed chromatin were identified by computational analysis of the data, and correlated to other genome annotations including predicted chromatin "states", individual chromatin modifications, nuclear lamina interactions, and gene expression. While showing that the widely trusted predictions of chromatin structure are correct in the majority of cases, we detected diverse "exceptions" from the conventional rules. We found a profound paucity of chromatin modifications in a major fraction of closed chromatin, and identified a number of loci where chromatin configuration is opposite to that expected from modification and gene expression patterns. Further, we observed that chromatin of large introns tends to be closed even when the genes are expressed, and that a significant proportion of active genes including their promoters are located in closed chromatin. These findings reveal limitations of the existing predictive models, indicate novel mechanisms of epigenetic regulation, and provide important insights into genome organization and function.

  2. High yield growth of uniform ZnS nanospheres with strong photoluminescence properties

    International Nuclear Information System (INIS)

    Li, Yuan; Li, Qing; Wu, Huijie; Zhang, Jin; Lin, Hua; Nie, Ming; Zhang, Yu

    2013-01-01

    Graphical abstract: High-yield ZnS nanospheres with an average diameter of 80 nm were fabricated successfully in aqueous solution at 100 °C by the assistance of surfactant PVP. It was found that PVP plays a crucial role in the formation of uniform ZnS nanospheres. A possible self-assembling growth mechanism was proposed. The UV–vis spectrum indicates that the as-prepared ZnS nanospheres exhibit a dramatic blue-shift. PL spectrum reveals that the ZnS nanospheres have a strong visible emission peak centered at 516 nm with excitation light of 400 nm. Highlights: ► High-yield ZnS nanospheres were generated conveniently in aqueous solution. ► The amount of surfactant PVP plays a crucial role on the morphology and size of the products. ► A tentative explanation for the growth mechanism of ZnS nanospheres was proposed. ► The UV–vis spectrum indicated that the sample exhibits a dramatic blue-shift. ► PL spectrum reveals that ZnS nanospheres have a strong visible emission peak centered at 516 nm with excitation light of 400 nm. - Abstract: High yield ZnS nanospheres were generated conveniently in aqueous solution with the assistance of surfactant polyvinyl pyrrolidone (PVP). The products were characterized by XRD, EDX, XPS, FESEM, TEM and HRTEM. The as-prepared ZnS nanospheres were uniform with an average diameter of 80 nm. The role of PVP in the forming of ZnS nanospheres was investigated. The results indicated that surfactant PVP plays a crucial role on the morphology and size of the products. Moreover, a tentative explanation for the growth mechanism of ZnS nanospheres was proposed. UV–vis and PL absorption spectrum were used to investigate the optical properties of ZnS nanospheres. The UV–vis spectrum indicated that the sample exhibits a dramatic blue-shift. PL spectrum reveals that ZnS nanospheres have a strong visible emission peak centered at 516 nm with excitation light of 400 nm.

  3. Effects of closed immersion filtered water flow velocity on the ablation threshold of bisphenol A polycarbonate during excimer laser machining

    International Nuclear Information System (INIS)

    Dowding, Colin; Lawrence, Jonathan

    2010-01-01

    A closed flowing thick film filtered water immersion technique ensures a controlled geometry for both the optical interfaces of the flowing liquid film and allows repeatable control of flow-rate during machining. This has the action of preventing splashing, ensures repeatable machining conditions and allows control of liquid flow velocity. To investigate the impact of this technique on ablation threshold, bisphenol A polycarbonate samples have been machined using KrF excimer laser radiation passing through a medium of filtered water flowing at a number of flow velocities, that are controllable by modifying the liquid flow-rates. An average decrease in ablation threshold of 7.5% when using turbulent flow velocity regime closed thick film filtered water immersed ablation, compared to ablation using a similar beam in ambient air; however, the use of laminar flow velocities resulted in negligible differences between closed flowing thick film filtered water immersion and ambient air. Plotting the recorded threshold fluence achieved with varying flow velocity showed that an optimum flow velocity of 3.00 m/s existed which yielded a minimum ablation threshold of 112 mJ/cm 2 . This is attributed to the distortion of the ablation plume effected by the flowing immersion fluid changing the ablation mechanism: at laminar flow velocities Bremsstrahlung attenuation decreases etch rate, at excessive flow velocities the plume is completely destroyed, removing the effect of plume etching. Laminar flow velocity regime ablation is limited by slow removal of debris causing a non-linear etch rate over 'n' pulses which is a result of debris produced by one pulse remaining suspended over the feature for the next pulse. The impact of closed thick film filtered water immersed ablation is dependant upon beam fluence: high fluence beams achieved greater etch efficiency at high flow velocities as the effect of Bremsstrahlung attenuation is removed by the action of the fluid on the plume; low

  4. Mechanical properties of silk of the Australian golden orb weavers Nephila pilipes and Nephilaplumipes.

    Science.gov (United States)

    Kerr, Genevieve G; Nahrung, Helen F; Wiegand, Aaron; Kristoffersen, Joanna; Killen, Peter; Brown, Cameron; Macdonald, Joanne

    2018-02-22

    Silks from orb-weaving spiders are exceptionally tough, producing a model polymer for biomimetic fibre development. The mechanical properties of naturally spun silk threads from two species of Australian orb-weavers, Nephila pilipes and Nephila plumipes , were examined here in relation to overall thread diameter, the size and number of fibres within threads, and spider size. N. pilipes , the larger of the two species, had significantly tougher silk with higher strain capacity than its smaller congener, producing threads with average toughness of 150 MJ m -3 , despite thread diameter, mean fibre diameter and number of fibres per thread not differing significantly between the two species. Within N. pilipes , smaller silk fibres were produced by larger spiders, yielding tougher threads. In contrast, while spider size was correlated with thread diameter in N. plumipes , there were no clear patterns relating to silk toughness, which suggests that the differences in properties between the silk of the two species arise through differing molecular structure. Our results support previous studies that found that the mechanical properties of silk differ between distantly related spider species, and extends on that work to show that the mechanical and physical properties of silk from more closely related species can also differ remarkably. © 2018. Published by The Company of Biologists Ltd.

  5. Some aspects of fracture assessment diagrams, plastic zone size corrections and contour integrals in post-yield fracture mechanics

    International Nuclear Information System (INIS)

    Ainsworth, R.A.

    1981-03-01

    The CEGB failure assessment route is briefly described and is shown to be consistent with a plastic zone size correction method. Modifications to the assessment route which have recently been suggested for describing the effects of thermal and residual stresses are examined. It is shown that the plastic zone size correction method may be used to include local thermal and residual stresses in the assessment route in a simple manner. The assessment route is compared with finite-element solutions for a thermal stress problem and with strip-yield model solutions for a residual stress problem. In using finite-element solutions there are different contour integral methods available for calculating a post-yield fracture parameter. The J-integral of Rice and the J*-integral of Blackburn are examined and compared and the appropriate parameter is identified. (author)

  6. Geoelectrical parameter-based multivariate regression borehole yield model for predicting aquifer yield in managing groundwater resource sustainability

    Directory of Open Access Journals (Sweden)

    Kehinde Anthony Mogaji

    2016-07-01

    Full Text Available This study developed a GIS-based multivariate regression (MVR yield rate prediction model of groundwater resource sustainability in the hard-rock geology terrain of southwestern Nigeria. This model can economically manage the aquifer yield rate potential predictions that are often overlooked in groundwater resources development. The proposed model relates the borehole yield rate inventory of the area to geoelectrically derived parameters. Three sets of borehole yield rate conditioning geoelectrically derived parameters—aquifer unit resistivity (ρ, aquifer unit thickness (D and coefficient of anisotropy (λ—were determined from the acquired and interpreted geophysical data. The extracted borehole yield rate values and the geoelectrically derived parameter values were regressed to develop the MVR relationship model by applying linear regression and GIS techniques. The sensitivity analysis results of the MVR model evaluated at P ⩽ 0.05 for the predictors ρ, D and λ provided values of 2.68 × 10−05, 2 × 10−02 and 2.09 × 10−06, respectively. The accuracy and predictive power tests conducted on the MVR model using the Theil inequality coefficient measurement approach, coupled with the sensitivity analysis results, confirmed the model yield rate estimation and prediction capability. The MVR borehole yield prediction model estimates were processed in a GIS environment to model an aquifer yield potential prediction map of the area. The information on the prediction map can serve as a scientific basis for predicting aquifer yield potential rates relevant in groundwater resources sustainability management. The developed MVR borehole yield rate prediction mode provides a good alternative to other methods used for this purpose.

  7. Effect of Supplementary Irrigation on Yield, Yield Components and Protein Percentages of Chickpea Cultivars in Ilam, Iran

    Directory of Open Access Journals (Sweden)

    A. Maleki

    2012-01-01

    Full Text Available In order to study the effect of supplementary irrigation on yield, yield components and protein percentages of three cultivars of chickpea an experiment carried out as split plot, based on randomized complete blocks design, with three replications in Ilam, in 2009-2010 growing season. Irrigation treatments were: control, without irrigation (I0, irrigation at the stage of %50 blooming, irrigation at the stage of %50 flowering, irrigation at the stage of pods filling, which were allocated to main plots and genotypes, ILC482, Filip93-93 and local variety to sub plots. Irrigation treatments had significantly effect on seed and biological yields, harvest index, pod numbers per plant, seed numbers per pod and 100 seed weight. The Filip93-93 produced highest (1140.51 kg/ha and the local variety lowest seed yields (1056.98 kg/ha.Irrigation at the stage of pod filling and blooming increased by seed yield %41.3 and %29.3 respectively as  compared to control .Irrigation at the pod filling period produced the highest seed yield. The Filip93-93 produced highest yield (1263.31 kg/ha when the field irrigated at pod filling stage and the local variety at control treatment (without irrigation the lowest seed yield (893.26 kg/ha.

  8. Yield gap determinants for wheat production in major irrigated cropping zones of punjab, pakistan

    International Nuclear Information System (INIS)

    Hussain, A.; Aujla, K.M.; Badar, N.

    2014-01-01

    Yield gap is useful measurement for crop productivity and the extent to which crop productivity falls below some potential level. The study was carried out to analyze the yield gap and determinants of wheat production in the Punjab province of Pakistan. It is based on cross sectional data from 210 farmers for the crop year 2009-10. Results suggest that farm level wheat yields are less than the potential yield level by 33.0%, 43.0% and 50.6% in the mixed-cropping, cotton-wheat and rice-wheat zones of the province, respectively. Ordinary least square regression analysis of wheat production by assuming Cobb-Douglas specification reveals that the number of irrigations, usage of farm yard manure and fertilizers contribute positively and significantly to wheat crop production. Coefficients of dummy variables for cropping zones indicate that farmers in the mixed cropping zone are obtaining better yield of the wheat crop as compared to their counterparts in other selected cropping zones. These results suggested that farmers can increase wheat productivity by increasing the use of factor inputs; however, poverty may be a constraint on realizing these gains. Thus, wheat production can be increased in the country by helping resource poor farmers through suitable support mechanisms. (author)

  9. Will energy crop yields meet expectations?

    International Nuclear Information System (INIS)

    Searle, Stephanie Y.; Malins, Christopher J.

    2014-01-01

    Expectations are high for energy crops. Government policies in the United States and Europe are increasingly supporting biofuel and heat and power from cellulose, and biomass is touted as a partial solution to energy security and greenhouse gas mitigation. Here, we review the literature for yields of 5 major potential energy crops: Miscanthus spp., Panicum virgatum (switchgrass), Populus spp. (poplar), Salix spp. (willow), and Eucalyptus spp. Very high yields have been achieved for each of these types of energy crops, up to 40 t ha −1  y −1 in small, intensively managed trials. But yields are significantly lower in semi-commercial scale trials, due to biomass losses with drying, harvesting inefficiency under real world conditions, and edge effects in small plots. To avoid competition with food, energy crops should be grown on non-agricultural land, which also lowers yields. While there is potential for yield improvement for each of these crops through further research and breeding programs, for several reasons the rate of yield increase is likely to be slower than historically has been achieved for cereals; these include relatively low investment, long breeding periods, low yield response of perennial grasses to fertilizer, and inapplicability of manipulating the harvest index. Miscanthus × giganteus faces particular challenges as it is a sterile hybrid. Moderate and realistic expectations for the current and future performance of energy crops are vital to understanding the likely cost and the potential of large-scale production. - Highlights: • This review covers Miscanthus, switchgrass, poplar, willow, and Eucalyptus. • High yields of energy crops are typically from small experimental plots. • Field scale yields are lower due to real world harvesting losses and edge effects. • The potential for yield improvement of energy crops is relatively limited. • Expectations must be realistic for successful policies and commercial production

  10. Diagnostic yield of pleural biopsy in exudative pleural effusion.

    Science.gov (United States)

    Devkota, K C; Chokhani, R; Gautam, S

    2014-09-01

    To know the diagnostic role of pleural biopsy in determining underlying etiological causes of exudative pleural effusion. A total of 47 patients, aged 16-104 years with mean age of 47.36 years, of either sex, with exudative pleural effusion underwent closed pleural biopsy with Abram's needle in standard way. Average 4-6 biopsy specimens were obtained from each patient, which were sent for histopathological examination. In this study, 47 cases of exudative pleural effusion were included, among them 26 (55.31%) cases were male and 21 (44.69%) were female with mean age 47.36 years. Cough was reported by 42 (89.36%) cases, expectoration 28 (59.57%), hemoptysis 3 (6.38%), breathlessness 27 (57.44%), wheezing 3 (6.38%), chest pain 38 (80.85%) and fever by 30 (63.82%) cases. Out of 47 cases, 28 (59.57%) cases had a positive yield, whereas in 19 (40.43%) cases the result was nonspecific inflammation. Out of 28 (59.57%) cases with positive yield 21 (44.68%) were found to have granulomatous inflammation and 10 (21.28%) cases were malignant. Among malignant pleural effusion, 4 cases were squamous cell carcinoma; 3 small cell carcinoma; 1 case adenocarcinoma and 1 case found to have mesothelioma. Tuberculosis and malignancy are the two most common causes of exudative pleural effusion in our set up. Pleural biopsy is a safe, simple and well validated diagnostic tool that helps us to differentiate between malignancy and tuberculosis.

  11. Yield of reversible colloidal gels during flow start-up: release from kinetic arrest.

    Science.gov (United States)

    Johnson, Lilian C; Landrum, Benjamin J; Zia, Roseanna N

    2018-06-05

    Yield of colloidal gels during start-up of shear flow is characterized by an overshoot in shear stress that accompanies changes in network structure. Prior studies of yield of reversible colloidal gels undergoing strong flow model the overshoot as the point at which network rupture permits fluidization. However, yield under weak flow, which is of interest in many biological and industrial fluids shows no such disintegration. The mechanics of reversible gels are influenced by bond strength and durability, where ongoing rupture and re-formation impart aging that deepens kinetic arrest [Zia et al., J. Rheol., 2014, 58, 1121], suggesting that yield be viewed as release from kinetic arrest. To explore this idea, we study reversible colloidal gels during start-up of shear flow via dynamic simulation, connecting rheological yield to detailed measurements of structure, bond dynamics, and potential energy. We find that pre-yield stress grows temporally with the changing roles of microscopic transport processes: early time behavior is set by Brownian diffusion; later, advective displacements permit relative particle motion that stretches bonds and stores energy. Stress accumulates in stretched, oriented bonds until yield, which is a tipping point to energy release, and is passed with a fully intact network, where the loss of very few bonds enables relaxation of many, easing glassy arrest. This is immediately followed by a reversal to growth in potential energy during bulk plastic deformation and condensation into larger particle domains, supporting the view that yield is an activated release from kinetic arrest. The continued condensation of dense domains and shrinkage of network surfaces, along with a decrease in the potential energy, permit the gel to evolve toward more complete phase separation, supporting our view that yield of weakly sheared gels is a 'non-equilibrium phase transition'. Our findings may be particularly useful for industrial or other coatings, where weak

  12. Effects of rainfall intensity and slope gradient on runoff and sediment yield characteristics of bare loess soil.

    Science.gov (United States)

    Wu, Lei; Peng, Mengling; Qiao, Shanshan; Ma, Xiao-Yi

    2018-02-01

    Soil erosion is a universal phenomenon on the Loess Plateau but it exhibits complex and typical mechanism which makes it difficult to understand soil loss laws on slopes. We design artificial simulated rainfall experiments including six rainfall intensities (45, 60, 75, 90, 105, 120 mm/h) and five slopes (5°, 10°, 15°, 20°, 25°) to reveal the fundamental changing trends of runoff and sediment yield on bare loess soil. Here, we show that the runoff yield within the initial 15 min increased rapidly and its trend gradually became stable. Trends of sediment yield under different rainfall intensities are various. The linear correlation between runoff and rainfall intensity is obvious for different slopes, but the correlations between sediment yield and rainfall intensity are weak. Runoff and sediment yield on the slope surface both presents an increasing trend when the rainfall intensity increases from 45 mm/h to 120 mm/h, but the increasing trend of runoff yield is higher than that of sediment yield. The sediment yield also has an overall increasing trend when the slope changes from 5° to 25°, but the trend of runoff yield is not obvious. Our results may provide data support and underlying insights needed to guide the management of soil conservation planning on the Loess Plateau.

  13. Exponential yield sensitivity to long-wavelength asymmetries in three-dimensional simulations of inertial confinement fusion capsule implosions

    Energy Technology Data Exchange (ETDEWEB)

    Haines, Brian M., E-mail: bmhaines@lanl.gov [Los Alamos National Laboratory, MS T087, Los Alamos, New Mexico 87545 (United States)

    2015-08-15

    In this paper, we perform a series of high-resolution 3D simulations of an OMEGA-type inertial confinement fusion (ICF) capsule implosion with varying levels of initial long-wavelength asymmetries in order to establish the physical energy loss mechanism for observed yield degradation due to long-wavelength asymmetries in symcap (gas-filled capsule) implosions. These simulations demonstrate that, as the magnitude of the initial asymmetries is increased, shell kinetic energy is increasingly retained in the shell instead of being converted to fuel internal energy. This is caused by the displacement of fuel mass away from and shell material into the center of the implosion due to complex vortical flows seeded by the long-wavelength asymmetries. These flows are not fully turbulent, but demonstrate mode coupling through non-linear instability development during shell stagnation and late-time shock interactions with the shell interface. We quantify this effect by defining a separation lengthscale between the fuel mass and internal energy and show that this is correlated with yield degradation. The yield degradation shows an exponential sensitivity to the RMS magnitude of the long-wavelength asymmetries. This strong dependence may explain the lack of repeatability frequently observed in OMEGA ICF experiments. In contrast to previously reported mechanisms for yield degradation due to turbulent instability growth, yield degradation is not correlated with mixing between shell and fuel material. Indeed, an integrated measure of mixing decreases with increasing initial asymmetry magnitude due to delayed shock interactions caused by growth of the long-wavelength asymmetries without a corresponding delay in disassembly.

  14. Foodservice yield and fabrication times for beef as influenced by purchasing options and merchandising styles.

    Science.gov (United States)

    Weatherly, B H; Griffin, D B; Johnson, H K; Walter, J P; De La Zerda, M J; Tipton, N C; Savell, J W

    2001-12-01

    Selected beef subprimals were obtained from fabrication lines of three foodservice purveyors to assist in the development of a software support program for the beef foodservice industry. Subprimals were fabricated into bone-in or boneless foodservice ready-to-cook portion-sized cuts and associated components by professional meat cutters. Each subprimal was cut to generate mean foodservice cutting yields and labor requirements, which were calculated from observed weights (kilograms) and processing times (seconds). Once fabrication was completed, data were analyzed to determine means and standard errors of percentage yields and processing times for each subprimal. Subprimals cut to only one end point were evaluated for mean foodservice yields and processing times, but no comparisons were made within subprimal. However, those traditionally cut into various end points were additionally compared by cutting style. Subprimals cut by a single cutting style included rib, roast-ready; ribeye roll, lip-on, bone-in; brisket, deckle-off, boneless; top (inside) round; and bottom sirloin butt, flap, boneless. Subprimals cut into multiple end points or styles included ribeye, lip-on; top sirloin, cap; tenderloin butt, defatted; shortloin, short-cut; strip loin, boneless; top sirloin butt, boneless; and tenderloin, full, side muscle on, defatted. Mean yields of portion cuts, and mean fabrication times required to manufacture these cuts differed (P < 0.05) by cutting specification of the final product. In general, as the target portion size of fabricated steaks decreased, the mean number of steaks derived from any given subprimal cut increased, causing total foodservice yield to decrease and total processing time to increase. Therefore, an inverse relationship tended to exist between processing times and foodservice yields. With a method of accurately evaluating various beef purchase options, such as traditional commodity subprimals, closely trimmed subprimals, and pre-cut portion

  15. Mechanical Properties of Austenitic Stainless Steel Made by Additive Manufacturing.

    Science.gov (United States)

    Luecke, William E; Slotwinski, John A

    2014-01-01

    Using uniaxial tensile and hardness testing, we evaluated the variability and anisotropy of the mechanical properties of an austenitic stainless steel, UNS S17400, manufactured by an additive process, selective laser melting. Like wrought materials, the mechanical properties depend on the orientation introduced by the processing. The recommended stress-relief heat treatment increases the tensile strength, reduces the yield strength, and decreases the extent of the discontinuous yielding. The mechanical properties, assessed by hardness, are very uniform across the build plate, but the stress-relief heat treatment introduced a small non-uniformity that had no correlation to position on the build plate. Analysis of the mechanical property behavior resulted in four conclusions. (1) The within-build and build-to-build tensile properties of the UNS S17400 stainless steel are less repeatable than mature engineering structural alloys, but similar to other structural alloys made by additive manufacturing. (2) The anisotropy of the mechanical properties of the UNS S17400 material of this study is larger than that of mature structural alloys, but is similar to other structural alloys made by additive manufacturing. (3) The tensile mechanical properties of the UNS S17400 material fabricated by selective laser melting are very different from those of wrought, heat-treated 17-4PH stainless steel. (4) The large discontinuous yielding strain in all tests resulted from the formation and propagation of Lüders bands.

  16. CLOSE COMPANIONS TO YOUNG STARS. I. A LARGE SPECTROSCOPIC SURVEY IN CHAMAELEON I AND TAURUS-AURIGA

    International Nuclear Information System (INIS)

    Nguyen, Duy Cuong; Brandeker, Alexis; Van Kerkwijk, Marten H.; Jayawardhana, Ray

    2012-01-01

    We present the results of a multiplicity survey of 212 T Tauri stars in the Chamaeleon I and Taurus-Auriga star-forming regions, based on high-resolution spectra from the Magellan Clay 6.5 m telescope. From these data, we achieved a typical radial velocity (RV) precision of ∼80 m s –1 with slower rotators yielding better precision, in general. For 174 of these stars, we obtained multi-epoch data with sufficient time baselines to identify binaries based on RV variations. We identified eight close binaries and four close triples, of which three and two, respectively, are new discoveries. The spectroscopic multiplicity fractions we find for Chamaeleon I (7%) and Taurus-Auriga (6%) are similar to each other, and to the results of field star surveys in the same mass and period regime. However, unlike the results from imaging surveys, the frequency of systems with close companions in our sample is not seen to depend on primary mass. Additionally, we do not find a strong correlation between accretion and close multiplicity. This implies that close companions are not likely the main source of the accretion shut down observed in weak-lined T Tauri stars. Our results also suggest that sufficient RV precision can be achieved for at least a subset of slowly rotating young stars to search for hot Jupiter planets.

  17. Preparation and properties of mesoporous silica/bismaleimide/diallylbisphenol composites with improved thermal stability, mechanical and dielectric properties

    Directory of Open Access Journals (Sweden)

    2011-06-01

    Full Text Available New composites with improved thermal stability, mechanical and dielectric properties were developed, which consist of 2,2'-diallylbisphenol A (DBA/4,4'-bismaleimidodiphenylmethane (BDM resin and a new kind of organic/inorganic mesoporous silica (MPSA. Typical properties (curing behavior and mechanism, thermal stability, mechanical and dielectric properties of the composites were systematically investigated, and their origins were discussed. Results show that MPSA/DBA/BDM composites have similar curing temperature as DBA/BDM resin does; however, they have different curing mechanisms, and thus different crosslinked networks. The content of MPSA has close relation with the integrated performance of cured composites. Compared with cured DBA/BDM resin, composites with suitable content of MPSA show obviously improved flexural strength and modulus as well as impact strength; in addition, all composites not only have lower dielectric constant and similar frequency dependence, more interestingly, they also exhibit better stability of frequency on dielectric loss. For thermal stability, the addition of MPSA to DBA/BDM resin significantly decreases the coefficient of thermal expansion, and improves the char yield at high temperature with a slightly reduced glass transition temperature. All these differences in macro-properties are attributed to the different crosslinked networks between MPSA/DBA/BDM composites and DBA/BDM resin.

  18. School Closings in Philadelphia

    Science.gov (United States)

    Jack, James; Sludden, John

    2013-01-01

    In 2012, the School District of Philadelphia closed six schools. In 2013, it closed 24. The closure of 30 schools has occurred amid a financial crisis, headlined by the district's $1.35 billion deficit. School closures are one piece of the district's plan to cut expenditures and close its budget gap. The closures are also intended to make…

  19. Seed yield components and their potential interaction in grasses - to what extend does seed weigth influence yield?

    DEFF Research Database (Denmark)

    Boelt, B; Gislum, R

    2010-01-01

     In a first-year seed crop of red fescue (Festuca rubra L.) the degree of lodging was controlled by the use of Moddus (Trinexapac-ethyl). Seed weight was found to increase by the decreasing degree of lodging prior to harvest. The higher seed weights were accompanied by higher yields even though...... the number of reproductive tillers and floret site utilization (FSU) were unaffected by the treatments. Seed yield is affected by several yield components and reflects the interaction between the seed yield potential (e.g. number of reproductive tillers, number of spikelets and florets/spikelet per...... reproductive tiller), the utilization of the potential (e.g. seed set, seed weight) and the realization of the seed yield potential, defined as the number of florets forming a saleable seed. The realization of the seed yield potential is affected by seed retention, seed weight and other traits associated...

  20. Tailoring the yield and characteristics of wood cellulose nanocrystals (CNC) using concentrated acid hydrolysis

    Science.gov (United States)

    Liheng Chen; Qianqian Wang; Kolby Hirth; Carlos Baez; Umesh P. Agarwal; J. Y. Zhu

    2015-01-01

    Cellulose nanocrystals (CNC) have recently received much attention in the global scientific community for their unique mechanical and optical properties. Here, we conducted the first detailed exploration of the basic properties of CNC, such as morphology, crystallinity, degree of sulfation and yield, as a function of production condition variables. The rapid cellulose...

  1. Yielding the yield-stress analysis: a study focused on the effects of elasticity on the settling of a single spherical particle in simple yield-stress fluids.

    Science.gov (United States)

    Fraggedakis, D; Dimakopoulos, Y; Tsamopoulos, J

    2016-06-28

    The sedimentation of a single particle in materials that exhibit simultaneously elastic, viscous and plastic behavior is examined in an effort to explain phenomena that contradict the nature of purely yield-stress materials. Such phenomena include the loss of the fore-and-aft symmetry with respect to an isolated settling particle under creeping flow conditions and the appearance of the "negative wake" behind it. Despite the fact that similar observations have been reported in studies involving viscoelastic fluids, researchers conjectured that thixotropy is responsible for these phenomena, as the aging of yield-stress materials is another common feature. By means of transient calculations, we study the effect of elasticity on both the fluidized and the solid phase. The latter is considered to behave as an ideal Hookean solid. The material properties of the model are determined under the isotropic kinematic hardening framework via Large Amplitude Oscillatory Shear (LAOS) measurements. In this way, we are able to predict accurately the unusual phenomena observed in experiments with simple yield-stress materials, irrespective of the appearance of slip on the particle surface. Viscoelasticity favors the formation of intense shear and extensional stresses downstream of the particle, significantly changing the entrapment mechanism in comparison to that observed in viscoplastic fluids. Therefore, the critical conditions under which the entrapment of the particle occurs deviate from the well-known criterion established theoretically by Beris et al. (1985) and verified experimentally by Tabuteau et al. (2007) for similar materials under conditions that elastic effects are negligible. Our predictions are in quantitative agreement with published experimental results by Holenberg et al. (2012) on the loss of the fore-aft symmetry and the formation of the negative wake in Carbopol with well-characterized rheology. Additionally, we propose simple expressions for the Stokes drag

  2. Yield and strength properties of the Ti-6-22-22S alloy over a wide strain rate and temperature range

    International Nuclear Information System (INIS)

    Krueger, L.; Kanel, G.I.; Razorenov, S.V.; Bezrouchko, G.S.; Meyer, L.

    2002-01-01

    A mechanical behavior of the Ti-6-22-22S alloy was studied under uniaxial strain conditions at shock-wave loading and under uniaxial compressive stress conditions over a strain rate range of 10-4 s-1 to 103 s-1. The test temperature was varied from -175 deg. C to 620 deg. C. The strain-rate and the temperature dependencies of the yield stress obtained from the uniaxial stress tests and from the shock-wave experiments are in a good agreement and demonstrate a significant decrease in the yield strength as the temperature increases. This indicates the thermal activation mechanism of plastic deformation of the alloy is maintained at strain rates up to 106 s-1. Variation of sample thickness from 2.24 to 10 mm results in relatively small variations in the dynamic yield strength and the spall strength over the whole temperature range

  3. Effect of Application of Pseudomonas fluorescent Strains on Yield and Yield Components of Rapeseed Cultivars

    Directory of Open Access Journals (Sweden)

    R Najafi

    2015-09-01

    Full Text Available Plant growth promoting rhizobacteria has been identified as an alternative to chemical fertilizer to enhance plant growth and yield directly and indirectly. Use of rhizosphere free living bacteria is one of the methods for crop production and leads to improvement of resources absorption. In order to study of yield, yield components and radiation use efficiency, under application of PGPR condition, an experiment was carried out in 2008 growing season at Agriculture and natural resources research station of Mashhad. The cultivars selected from three rapeseed species belong to Brassica napus, Brassica rapa and Brassica juncea (landrace, BP.18، Goldrush، Parkland، Hyola330، Hyola401. Experimental factorial design was randomized in complete block with three replications. Treatments included six varieties of Rapeseed and inoculations were four levels as non–inoculation, inoculation with P. fluorescens169, P. putida108 and use then together. Results showed that strains of fluorescent pseudomonas bacteria had greatest effects on yield and yield components cultivars. A significant difference in the number of pods per plant and 1000 seed weight observed. The cultivars were different in all treats except 1000 seed weight. Overall results indicated that application of growth stimulating bacteria in combination with different cultivars, had a positive effect growth, yield characteristics of plant varieties of rapeseed plants.

  4. Reaction Mechanism of Mycobacterium Tuberculosis Glutamine Synthetase Using Quantum Mechanics/Molecular Mechanics Calculations.

    Science.gov (United States)

    Moreira, Cátia; Ramos, Maria J; Fernandes, Pedro Alexandrino

    2016-06-27

    This paper is devoted to the understanding of the reaction mechanism of mycobacterium tuberculosis glutamine synthetase (mtGS) with atomic detail, using computational quantum mechanics/molecular mechanics (QM/MM) methods at the ONIOM M06-D3/6-311++G(2d,2p):ff99SB//B3LYP/6-31G(d):ff99SB level of theory. The complete reaction undergoes a three-step mechanism: the spontaneous transfer of phosphate from ATP to glutamate upon ammonium binding (ammonium quickly loses a proton to Asp54), the attack of ammonia on phosphorylated glutamate (yielding protonated glutamine), and the deprotonation of glutamine by the leaving phosphate. This exothermic reaction has an activation free energy of 21.5 kcal mol(-1) , which is consistent with that described for Escherichia coli glutamine synthetase (15-17 kcal mol(-1) ). The participating active site residues have been identified and their role and energy contributions clarified. This study provides an insightful atomic description of the biosynthetic reaction that takes place in this enzyme, opening doors for more accurate studies for developing new anti-tuberculosis therapies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Modified stress intensity factor as a crack growth parameter applicable under large scale yielding conditions

    International Nuclear Information System (INIS)

    Yasuoka, Tetsuo; Mizutani, Yoshihiro; Todoroki, Akira

    2014-01-01

    High-temperature water stress corrosion cracking has high tensile stress sensitivity, and its growth rate has been evaluated using the stress intensity factor, which is a linear fracture mechanics parameter. Stress corrosion cracking mainly occurs and propagates around welded metals or heat-affected zones. These regions have complex residual stress distributions and yield strength distributions because of input heat effects. The authors previously reported that the stress intensity factor becomes inapplicable when steep residual stress distributions or yield strength distributions occur along the crack propagation path, because small-scale yielding conditions deviate around those distributions. Here, when the stress intensity factor is modified by considering these distributions, the modified stress intensity factor may be used for crack growth evaluation for large-scale yielding