WorldWideScience

Sample records for mechanisms underlying enhanced

  1. Mechanisms underlying the social enhancement of vocal learning in songbirds.

    Science.gov (United States)

    Chen, Yining; Matheson, Laura E; Sakata, Jon T

    2016-06-14

    Social processes profoundly influence speech and language acquisition. Despite the importance of social influences, little is known about how social interactions modulate vocal learning. Like humans, songbirds learn their vocalizations during development, and they provide an excellent opportunity to reveal mechanisms of social influences on vocal learning. Using yoked experimental designs, we demonstrate that social interactions with adult tutors for as little as 1 d significantly enhanced vocal learning. Social influences on attention to song seemed central to the social enhancement of learning because socially tutored birds were more attentive to the tutor's songs than passively tutored birds, and because variation in attentiveness and in the social modulation of attention significantly predicted variation in vocal learning. Attention to song was influenced by both the nature and amount of tutor song: Pupils paid more attention to songs that tutors directed at them and to tutors that produced fewer songs. Tutors altered their song structure when directing songs at pupils in a manner that resembled how humans alter their vocalizations when speaking to infants, that was distinct from how tutors changed their songs when singing to females, and that could influence attention and learning. Furthermore, social interactions that rapidly enhanced learning increased the activity of noradrenergic and dopaminergic midbrain neurons. These data highlight striking parallels between humans and songbirds in the social modulation of vocal learning and suggest that social influences on attention and midbrain circuitry could represent shared mechanisms underlying the social modulation of vocal learning.

  2. Enhancement of sleep slow waves: underlying mechanisms and practical consequences.

    Directory of Open Access Journals (Sweden)

    Michele eBellesi

    2014-10-01

    Full Text Available Even modest sleep restriction, especially the loss of sleep slow wave activity, is invariably associated with slower EEG activity during wake, the occurrence of local sleep in an otherwise awake brain, and impaired performance due to cognitive and memory deficits. Recent studies not only confirm the beneficial role of sleep in memory consolidation, but also point to a specific role for sleep slow waves. Thus, the implementation of methods to enhance sleep slow waves without unwanted arousals or lightening of sleep could have significant practical implications. Here we first review the evidence that it is possible to enhance sleep slow waves in humans using transcranial direct-current stimulation and transcranial magnetic stimulation. Since these methods are currently impractical and their safety is questionable, especially for chronic long-term exposure, we then discuss novel data suggesting that it is possible to enhance slow waves using sensory stimuli. We consider the physiology of the K-complex, a peripheral evoked slow wave, and show that, among different sensory modalities, acoustic stimulation is the most effective in increasing the magnitude of slow waves, likely through the activation of non-lemniscal ascending pathways to the thalamo-cortical system. In addition, we discuss how intensity and frequency of the acoustic stimuli, as well as exact timing and pattern of stimulation, affect sleep enhancement. Finally, we discuss automated algorithms that read the EEG and, in real-time, adjust the stimulation parameters in a closed-loop manner to obtain an increase in sleep slow waves and avoid undesirable arousals. In conclusion, while discussing the mechanisms that underlie the generation of sleep slow waves, we review the converging evidence showing that acoustic stimulation is safe and represents an ideal tool for slow wave sleep enhancement.

  3. Enhancement of sleep slow waves: underlying mechanisms and practical consequences.

    Science.gov (United States)

    Bellesi, Michele; Riedner, Brady A; Garcia-Molina, Gary N; Cirelli, Chiara; Tononi, Giulio

    2014-01-01

    Even modest sleep restriction, especially the loss of sleep slow wave activity (SWA), is invariably associated with slower electroencephalogram (EEG) activity during wake, the occurrence of local sleep in an otherwise awake brain, and impaired performance due to cognitive and memory deficits. Recent studies not only confirm the beneficial role of sleep in memory consolidation, but also point to a specific role for sleep slow waves. Thus, the implementation of methods to enhance sleep slow waves without unwanted arousals or lightening of sleep could have significant practical implications. Here we first review the evidence that it is possible to enhance sleep slow waves in humans using transcranial direct-current stimulation (tDCS) and transcranial magnetic stimulation. Since these methods are currently impractical and their safety is questionable, especially for chronic long-term exposure, we then discuss novel data suggesting that it is possible to enhance slow waves using sensory stimuli. We consider the physiology of the K-complex (KC), a peripheral evoked slow wave, and show that, among different sensory modalities, acoustic stimulation is the most effective in increasing the magnitude of slow waves, likely through the activation of non-lemniscal ascending pathways to the thalamo-cortical system. In addition, we discuss how intensity and frequency of the acoustic stimuli, as well as exact timing and pattern of stimulation, affect sleep enhancement. Finally, we discuss automated algorithms that read the EEG and, in real-time, adjust the stimulation parameters in a closed-loop manner to obtain an increase in sleep slow waves and avoid undesirable arousals. In conclusion, while discussing the mechanisms that underlie the generation of sleep slow waves, we review the converging evidence showing that acoustic stimulation is safe and represents an ideal tool for slow wave sleep (SWS) enhancement.

  4. Enhancement of sleep slow waves: underlying mechanisms and practical consequences.

    OpenAIRE

    Michele eBellesi; Brady A Riedner; Garcia-Molina, Gary N.; Chiara eCirelli; Giulio eTononi

    2014-01-01

    Even modest sleep restriction, especially the loss of sleep slow wave activity, is invariably associated with slower EEG activity during wake, the occurrence of local sleep in an otherwise awake brain, and impaired performance due to cognitive and memory deficits. Recent studies not only confirm the beneficial role of sleep in memory consolidation, but also point to a specific role for sleep slow waves. Thus, the implementation of methods to enhance sleep slow waves without unwanted arousals ...

  5. Examination of mechanisms underlying enhanced memory performance in action video game players: a pilot study.

    Science.gov (United States)

    Li, Xianchun; Cheng, Xiaojun; Li, Jiaying; Pan, Yafeng; Hu, Yi; Ku, Yixuan

    2015-01-01

    Previous studies have shown enhanced memory performance resulting from extensive action video game playing. The mechanisms underlying the cognitive benefit were investigated in the current study. We presented two types of retro-cues, with variable intervals to memory array (Task 1) or test array (Task 2), during the retention interval in a change detection task. In Task 1, action video game players demonstrated steady performance while non-action video game players showed decreased performance as cues occurred later, indicating their performance difference increased as the cue-to-memory-array intervals became longer. In Task 2, both participant groups increased their performance at similar rates as cues presented later, implying the performance difference in two groups were irrespective of the test-array-to-cue intervals. These findings suggested that memory benefit from game plays is not attributable to the higher ability of overcoming interference from the test array, but to the interactions between the two processes of protection from decay and resistance from interference, or from alternative hypotheses. Implications for future studies were discussed.

  6. Heavy-ion radiobiology: new approaches to delineate mechanisms underlying enhanced biological effectiveness.

    Science.gov (United States)

    Blakely, E A; Kronenberg, A

    1998-11-01

    Shortly after the discovery of polonium and radium by Marie Curie and her husband and colleague, Pierre Curie, it was learned that exposure to these alpha-particle emitters produced deleterious biological effects. The mechanisms underlying the increased biological effectiveness of densely ionizing radiations, including alpha particles, neutrons and highly energetic heavy charged particles, remain an active area of investigation. In this paper, we review recent advances in several areas of the radiobiology of these densely ionizing radiations, also known as heavy ions. Advances are described in the areas of DNA damage and repair, chromosome aberrations, mutagenesis, neoplastic transformation in vitro, genomic instability, normal tissue radiobiology and carcinogenesis in vivo. We focus on technical innovations, including novel applications of pulsed-field gel electrophoresis, fluorescence in situ hybridization (FISH), linkage analysis, and studies of gene expression and protein expression. We also highlight the use of new cellular and animal systems, including those with defined DNA repair deficiencies, as well as epithelial cell model systems to assess neoplastic transformation both in vitro and in vivo. The studies reviewed herein have had a substantial impact on our understanding of the genotoxic effects of heavy ions as well as their distinct effects on tissue homeostasis. The use of these radiations in cancer therapy is also discussed. The use of both heavy-ion and proton therapy is on the upswing in several centers around the world, due to their unique energy deposition characteristics that enhance the therapeutic effect and help reduce damage to normal tissue.

  7. Heavy-ion radiobiology: new approaches to delineate mechanisms underlying enhanced biological effectiveness

    Science.gov (United States)

    Blakely, E. A.; Kronenberg, A.; Chatterjee, A. (Principal Investigator)

    1998-01-01

    Shortly after the discovery of polonium and radium by Marie Curie and her husband and colleague, Pierre Curie, it was learned that exposure to these alpha-particle emitters produced deleterious biological effects. The mechanisms underlying the increased biological effectiveness of densely ionizing radiations, including alpha particles, neutrons and highly energetic heavy charged particles, remain an active area of investigation. In this paper, we review recent advances in several areas of the radiobiology of these densely ionizing radiations, also known as heavy ions. Advances are described in the areas of DNA damage and repair, chromosome aberrations, mutagenesis, neoplastic transformation in vitro, genomic instability, normal tissue radiobiology and carcinogenesis in vivo. We focus on technical innovations, including novel applications of pulsed-field gel electrophoresis, fluorescence in situ hybridization (FISH), linkage analysis, and studies of gene expression and protein expression. We also highlight the use of new cellular and animal systems, including those with defined DNA repair deficiencies, as well as epithelial cell model systems to assess neoplastic transformation both in vitro and in vivo. The studies reviewed herein have had a substantial impact on our understanding of the genotoxic effects of heavy ions as well as their distinct effects on tissue homeostasis. The use of these radiations in cancer therapy is also discussed. The use of both heavy-ion and proton therapy is on the upswing in several centers around the world, due to their unique energy deposition characteristics that enhance the therapeutic effect and help reduce damage to normal tissue.

  8. Communication: Enhanced oxygen reduction reaction and its underlying mechanism in Pd-Ir-Co trimetallic alloys

    Science.gov (United States)

    Ham, Hyung Chul; Manogaran, Dhivya; Lee, Kang Hee; Kwon, Kyungjung; Jin, Seon-ah; You, Dae Jong; Pak, Chanho; Hwang, Gyeong S.

    2013-11-01

    Based on a combined density functional theory and experimental study, we present that the electrochemical activity of Pd3Co alloy catalysts toward oxygen reduction reaction (ORR) can be enhanced by adding a small amount of Ir. While Ir tends to favorably exist in the subsurface layers, the underlying Ir atoms are found to cause a substantial modification in the surface electronic structure. As a consequence, we find that the activation barriers of O/OH hydrogenation reactions are noticeably lowered, which would be mainly responsible for the enhanced ORR activity. Furthermore, our study suggests that the presence of Ir in the near-surface region can suppress Co out-diffusion from the Pd3Co substrate, thereby improving the durability of Pd-Ir-Co catalysts. We also discuss the relative roles played by Ir and Co in enhancing the ORR activity relative to monometallic Pd catalysts.

  9. Enhanced Oil Recovery Using Micron-Size Polyacrylamide Elastic Microspheres (MPEMs): Underlying Mechanisms and Displacement Experiments

    KAUST Repository

    Yao, Chuanjin

    2015-10-12

    Micron-size polyacrylamide elastic microsphere (MPEM) is a newly developed profile control and oil displacement agent for enhanced oil recovery in heterogeneous reservoirs. In this study, laboratory experiments were performed to characterize the viscoelastic properties of MPEMs in brine water. A transparent sandpack micromodel was used to observe the microscopic flow and displacement mechanisms, and parallel-sandpack models were used to investigate the profile control and oil displacement performance using MPEMs in heterogeneous reservoirs. The results indicate that MPEMs almost do not increase the viscosity of injection water and can be conveniently injected using the original water injection pipelines. The microscopic profile control and oil displacement mechanisms of MPEMs in porous media mainly behave as selective-plugging in large pores, fluid diversion after MPEMs plugging, oil drainage caused by MPEMs breakthrough, and the mechanism of oil droplets converging into oil flow. MPEMs have a high plugging strength, which can tolerate a long-term water flushing. MPEMs can selectively enter and plug the large pores and pore-throats in high permeability sandpack, but almost do not damage the low permeability sandpack. MPEMs can effectively divert the water flow from the high permeability sandpack to the low permeability sandpack and improve the sweep efficiency of low permeability sandpack and low permeability area in the high permeability sandpack. The results also confirm the dynamic process of profile control and oil displacement using MPEMs in heterogeneous reservoirs.

  10. Enhancement and Mitigation Mechanisms of Protein Fouling of Ultrafiltration Membranes under Different Ionic Strengths.

    Science.gov (United States)

    Miao, Rui; Wang, Lei; Mi, Na; Gao, Zhe; Liu, Tingting; Lv, Yongtao; Wang, Xudong; Meng, Xiaorong; Yang, Yongzhe

    2015-06-02

    To determine further the enhancement and mitigation mechanisms of protein fouling, filtration experiments were carried out with polyvinylidene fluoride (PVDF) ultrafiltration (UF) membranes and bovine serum albumin (BSA) over a range of ionic strengths. The interaction forces, the adsorption behavior of BSA on the membrane surface, and the structure of the BSA adsorbed layers at corresponding ionic strengths were investigated. Results indicate that when the ionic strength increased from 0 to 1 mM, there was a decrease in the PVDF-BSA and BSA-BSA electrostatic repulsion forces, resulting in a higher deposition rate of BSA onto the membrane surface, and the formation of a denser BSA layer; consequently, membrane fouling was enhanced. However, at ionic strengths of 10 and 100 mM, membrane fouling and the BSA removal rate decreased significantly. This was mainly due to the increased hydration repulsion forces, which caused a decrease in the PVDF-BSA and BSA-BSA interaction forces accompanied by a decreased hydrodynamic radius and increased diffusion coefficient of BSA. Consequently, BSA passed more easily through the membrane and into permeate. There was less accumulation of BSA on the membrane surface. A more nonrigid and open structure BSA layer was formed on the membrane surface.

  11. Six habits to enhance MET performance under stress: A discussion paper reviewing team mechanisms for improved patient outcomes.

    Science.gov (United States)

    Fein, Erich C; Mackie, Benjamin; Chernyak-Hai, Lily; O'Quinn, C Richard V; Ahmed, Ezaz

    2016-05-01

    Effective team decision making has the potential to improve the quality of health care outcomes. Medical Emergency Teams (METs), a specific type of team led by either critical care nurses or physicians, must respond to and improve the outcomes of deteriorating patients. METs routinely make decisions under conditions of uncertainty and suboptimal care outcomes still occur. In response, the development and use of Shared Mental Models (SMMs), which have been shown to promote higher team performance under stress, may enhance patient outcomes. This discussion paper specifically focuses on the development and use of SMMs in the context of METs. Within this process, the psychological mechanisms promoting enhanced team performance are examined and the utility of this model is discussed through the narrative of six habits applied to MET interactions. A two stage, reciprocal model of both nonanalytic decision making within the acute care environment and analytic decision making during reflective action learning was developed. These habits are explored within the context of a MET, illustrating how applying SMMs and action learning processes may enhance team-based problem solving under stress. Based on this model, we make recommendations to enhance MET decision making under stress. It is suggested that the corresponding habits embedded within this model could be imparted to MET members and tested by health care researchers to assess the efficacy of this integrated decision making approach in respect to enhanced team performance and patient outcomes. Copyright © 2015. Published by Elsevier Ltd.

  12. Mechanisms underlying the basal forebrain enhancement of top-down and bottom-up attention.

    Science.gov (United States)

    Avery, Michael C; Dutt, Nikil; Krichmar, Jeffrey L

    2014-03-01

    Both attentional signals from frontal cortex and neuromodulatory signals from basal forebrain (BF) have been shown to influence information processing in the primary visual cortex (V1). These two systems exert complementary effects on their targets, including increasing firing rates and decreasing interneuronal correlations. Interestingly, experimental research suggests that the cholinergic system is important for increasing V1's sensitivity to both sensory and attentional information. To see how the BF and top-down attention act together to modulate sensory input, we developed a spiking neural network model of V1 and thalamus that incorporated cholinergic neuromodulation and top-down attention. In our model, activation of the BF had a broad effect that decreases the efficacy of top-down projections and increased the reliance of bottom-up sensory input. In contrast, we demonstrated how local release of acetylcholine in the visual cortex, which was triggered through top-down gluatmatergic projections, could enhance top-down attention with high spatial specificity. Our model matched experimental data showing that the BF and top-down attention decrease interneuronal correlations and increase between-trial reliability. We found that decreases in correlations were primarily between excitatory-inhibitory pairs rather than excitatory-excitatory pairs and suggest that excitatory-inhibitory decorrelation is necessary for maintaining low levels of excitatory-excitatory correlations. Increased inhibitory drive via release of acetylcholine in V1 may then act as a buffer, absorbing increases in excitatory-excitatory correlations that occur with attention and BF stimulation. These findings will lead to a better understanding of the mechanisms underyling the BF's interactions with attention signals and influences on correlations.

  13. Integrin β1 Gene Therapy Enhances in Vitro Creation of Tissue-Engineered Cartilage Under Periodic Mechanical Stress

    Directory of Open Access Journals (Sweden)

    Wenwei Liang

    2015-10-01

    Full Text Available Background/Aims: Periodic mechanical stress activates integrin β1-initiated signal pathways to promote chondrocyte proliferation and matrix synthesis. Integrin β1 overexpression has been demonstrated to play important roles in improving the activities and functions of several non-chondrocytic cell types. Therefore, in the current study, we evaluated the effects of integrin β1 up-regulation on periodic mechanical stress-induced chondrocyte proliferation, matrix synthesis and ERK1/2 phosphorylation in chondrocyte monolayer culture, and evaluated the quality of tissue-engineered cartilage constructed in vitro under periodic mechanical stress combined with integrin β1 up-regulation. Methods and Results: Our results revealed that under periodic mechanical stress, pre-treatment with integrin β1-wild type vector significantly enhanced chondrocyte proliferation and matrix synthesis and promoted ERK1/2 phosphorylation in comparison to mock transfectants. Furthermore, when chondrocytes were seeded in PLGA scaffolds, more accumulated GAG and type II collagen tissue were detected after Lv-integrin β1 transfection compared with sham controls exposed to periodic mechanical stress. In contrast, in the Lv-shRNA-integrin β1 group, the opposite results were observed. Conclusion: Our findings collectively suggest that in addition to periodic mechanical stress, integrin β1 up-regulation in chondrocytes could further improve the quality of tissue-engineered cartilage.

  14. Language Learning Enhanced by Massive Multiple Online Role-Playing Games (MMORPGs) and the Underlying Behavioral and Neural Mechanisms.

    Science.gov (United States)

    Zhang, Yongjun; Song, Hongwen; Liu, Xiaoming; Tang, Dinghong; Chen, Yue-E; Zhang, Xiaochu

    2017-01-01

    Massive Multiple Online Role-Playing Games (MMORPGs) have increased in popularity among children, juveniles, and adults since MMORPGs' appearance in this digital age. MMORPGs can be applied to enhancing language learning, which is drawing researchers' attention from different fields and many studies have validated MMORPGs' positive effect on language learning. However, there are few studies on the underlying behavioral or neural mechanism of such effect. This paper reviews the educational application of the MMORPGs based on relevant macroscopic and microscopic studies, showing that gamers' overall language proficiency or some specific language skills can be enhanced by real-time online interaction with peers and game narratives or instructions embedded in the MMORPGs. Mechanisms underlying the educational assistant role of MMORPGs in second language learning are discussed from both behavioral and neural perspectives. We suggest that attentional bias makes gamers/learners allocate more cognitive resources toward task-related stimuli in a controlled or an automatic way. Moreover, with a moderating role played by activation of reward circuit, playing the MMORPGs may strengthen or increase functional connectivity from seed regions such as left anterior insular/frontal operculum (AI/FO) and visual word form area to other language-related brain areas.

  15. Language Learning Enhanced by Massive Multiple Online Role-Playing Games (MMORPGs) and the Underlying Behavioral and Neural Mechanisms

    Science.gov (United States)

    Zhang, Yongjun; Song, Hongwen; Liu, Xiaoming; Tang, Dinghong; Chen, Yue-e; Zhang, Xiaochu

    2017-01-01

    Massive Multiple Online Role-Playing Games (MMORPGs) have increased in popularity among children, juveniles, and adults since MMORPGs’ appearance in this digital age. MMORPGs can be applied to enhancing language learning, which is drawing researchers’ attention from different fields and many studies have validated MMORPGs’ positive effect on language learning. However, there are few studies on the underlying behavioral or neural mechanism of such effect. This paper reviews the educational application of the MMORPGs based on relevant macroscopic and microscopic studies, showing that gamers’ overall language proficiency or some specific language skills can be enhanced by real-time online interaction with peers and game narratives or instructions embedded in the MMORPGs. Mechanisms underlying the educational assistant role of MMORPGs in second language learning are discussed from both behavioral and neural perspectives. We suggest that attentional bias makes gamers/learners allocate more cognitive resources toward task-related stimuli in a controlled or an automatic way. Moreover, with a moderating role played by activation of reward circuit, playing the MMORPGs may strengthen or increase functional connectivity from seed regions such as left anterior insular/frontal operculum (AI/FO) and visual word form area to other language-related brain areas. PMID:28303097

  16. Effects of cerium on growth and physiological mechanism in plants under enhanced ultraviolet-B radiation

    Institute of Scientific and Technical Information of China (English)

    LIANG Chan-juan; HUANG Xiao-hua; TAO Wen-yi; ZHOU Qing

    2006-01-01

    Effect of cerium (Ce3+) on the growth, photosynthesis and antioxidant enzyme system in rape seedlings (Brassica juncea L.)exposed to two levels of UV-B radiation (T1: 0.15 W/m2 and T2:0.35 W/m2) was studied by hydroponics under laboratory conditions.After 5 d of UV-B treatment, the aboveground growth indices were obviously decreased by 13.2%-44.1%(T1) and 21.4%-49.3%(T2), compared to CK, and except active absorption area of roots, the belowground indices by 14.1%-35.6%(T1) and 20.3%-42.6%(T2). For Ce+UV-B treatments, the aboveground and belowground growth indices were decreased respectively by 4.1%-23.6%, 5.2%-23.3%(Ce+T1) and 10.8%-28.4%, 7.0%-27.8%(Ce+T2), lower than those of UV-B treatments. The decrease of growth indices appeared to be the result of changes of physiological processes. Two levels of UV-B radiation induced the decrease in chlorophyll content, net photosynthesis rate, transpiration rate, stomatal conductance and water use efficiency by 11.2%-25.9%(T1) and 20.9%-56.9%(T2), whereas increase in membrane permeability and activities of antioxidant enzymes including superoxide dismutase(SOD),catalase (CAT) and peroxidase (POD) by 6.9%, 22.8%, 21.5%, 9.5%(T1) and 36.6%, 122.3%, 103.5%, 208.9%(T2), respectively. The reduction of the photosynthetic parameters in Ce+UV-B treatments was lessened to 3.2%-13.8%(Ce+T1) and 4.9%-27.6%(Ce+T2),and the increase of membrane permeability and activities of antioxidant enzymes except POD in the same treatments were lessened to 2.4%, 8.4%, 6.6%(Ce+T1) and 30.1%, 116.7%, 75.4%(Ce+T2). These results indicate that the regulative effect of Ce on photosynthesis and antioxidant enzymatic function is the ecophysiological basis of alleviating the suppression of UV-B radiation on growth of seedlings. Furthermore, the protective effect of Ce on seedlings exposed to T1 level of UV-B radiation is superior to T2 level.

  17. Desorption of hydrocarbon chains by association with ionic and nonionic surfactants under flow as a mechanism for enhanced oil recovery.

    Science.gov (United States)

    Terrón-Mejía, Ketzasmin A; López-Rendón, Roberto; Goicochea, Armando Gama

    2017-08-29

    The need to extract oil from wells where it is embedded on the surfaces of rocks has led to the development of new and improved enhanced oil recovery techniques. One of those is the injection of surfactants with water vapor, which promotes desorption of oil that can then be extracted using pumps, as the surfactants encapsulate the oil in foams. However, the mechanisms that lead to the optimal desorption of oil and the best type of surfactants to carry out desorption are not well known yet, which warrants the need to carry out basic research on this topic. In this work, we report non equilibrium dissipative particle dynamics simulations of model surfactants and oil molecules adsorbed on surfaces, with the purpose of studying the efficiency of the surfactants to desorb hydrocarbon chains, that are found adsorbed over flat surfaces. The model surfactants studied correspond to nonionic and cationic surfactants, and the hydrocarbon desorption is studied as a function of surfactant concentration under increasing Poiseuille flow. We obtain various hydrocarbon desorption isotherms for every model of surfactant proposed, under flow. Nonionic surfactants are found to be the most effective to desorb oil and the mechanisms that lead to this phenomenon are presented and discussed.

  18. Chemosensitizing effects of carbon-based nanomaterials in cancer cells: enhanced apoptosis and inhibition of proliferation as underlying mechanisms

    Science.gov (United States)

    Erdmann, Kati; Ringel, Jessica; Hampel, Silke; Rieger, Christiane; Huebner, Doreen; Wirth, Manfred P.; Fuessel, Susanne

    2014-10-01

    Recent studies have shown that carbon nanomaterials such as carbon nanofibres (CNFs) and multi-walled carbon nanotubes (CNTs) can exert antitumor activities themselves and sensitize cancer cells to conventional chemotherapeutics such as carboplatin and cisplatin. In the present study, the chemosensitizing effect of CNFs and CNTs on cancer cells of urological origin was investigated regarding the underlying mechanisms. Prostate cancer (DU-145, PC-3) and bladder cancer (EJ28) cells were treated with carbon nanomaterials (CNFs, CNTs) and chemotherapeutics (carboplatin, cisplatin) alone as well as in combination for 24 h. Forty-eight (EJ28) or 72 h (DU-145, PC-3) after the end of treatment the effects on cellular proliferation, clonogenic survival, cell death rate and cell cycle distribution were evaluated. Depending on the cell line, simultaneous administration of chemotherapeutics and carbon nanomaterials produced an additional inhibition of cellular proliferation and clonogenic survival of up to 77% and 98%, respectively, compared to the inhibitory effects of the chemotherapeutics alone. These strongly enhanced antiproliferative effects were accompanied by an elevated cell death rate, which was predominantly mediated via apoptosis and not by necrosis. The antitumor effects of combinations with CNTs were less pronounced than those with CNFs. The enhanced effects of the combinatory treatments on cellular function were mostly of additive to partly synergistic nature. Furthermore, cell cycle analysis demonstrated an arrest at the G2/M phase mediated by a monotreatment with chemotherapeutics. Following combinatory treatments, mostly less than or nearly additive increases of cell fractions in the G2/M phase could be observed. In conclusion, the pronounced chemosensitizing effects of CNFs and CNTs were mediated by an enhanced apoptosis and inhibition of proliferation. The combination of carbon-based nanomaterials and conventional chemotherapeutics represents a novel

  19. Distinct TRPV1- and TRPA1-based mechanisms underlying enhancement of oral ulcerative mucositis-induced pain by 5-fluorouracil.

    Science.gov (United States)

    Yamaguchi, Kiichiro; Ono, Kentaro; Hitomi, Suzuro; Ito, Misa; Nodai, Tomotaka; Goto, Tetsuya; Harano, Nozomu; Watanabe, Seiji; Inoue, Hiromasa; Miyano, Kanako; Uezono, Yasuhito; Matoba, Motohiro; Inenaga, Kiyotoshi

    2016-05-01

    In many patients with cancer, chemotherapy-induced severe oral ulcerative mucositis causes intractable pain, leading to delays and interruptions in therapy. However, the pain mechanism in oral ulcerative mucositis after chemotherapy has not been extensively studied. In this study, we investigated spontaneous pain and mechanical allodynia in a preclinical model of oral ulcerative mucositis after systemic administration of the chemotherapy drug 5-fluorouracil, using our proprietary pain assay system for conscious rats. 5-Fluorouracil caused leukopenia but did not induce pain-related behaviors. After 5-fluorouracil administration, oral ulcers were developed with topical acetic acid treatment. Compared with saline-treated rats, 5-fluorouracil-exposed rats showed more severe mucositis with excessive bacterial loading due to a lack of leukocyte infiltration, as well as enhancements of spontaneous pain and mechanical allodynia. Antibacterial drugs, the lipid A inhibitor polymyxin B and the TRPV1/TRPA1 channel pore-passing anesthetic QX-314, suppressed both the spontaneous pain and the mechanical allodynia. The cyclooxygenase inhibitor indomethacin and the TRPV1 antagonist SB-366791 inhibited the spontaneous pain, but not the mechanical allodynia. In contrast, the TRPA1 antagonist HC-030031 and the N-formylmethionine receptor FPR1 antagonist Boc MLF primarily suppressed the mechanical allodynia. These results suggest that 5-fluorouracil-associated leukopenia allows excessive oral bacterial infection in the oral ulcerative region, resulting in the enhancement of spontaneous pain through continuous TRPV1 activation and cyclooxygenase pathway, and mechanical allodynia through mechanical sensitization of TRPA1 caused by neuronal effects of bacterial toxins. These distinct pain mechanisms explain the difficulties encountered with general treatments for oral ulcerative mucositis-induced pain in patients with cancer and suggest more effective approaches.

  20. Riskfactors and underlying mechanisms

    OpenAIRE

    2015-01-01

    Childhood interpersonal traumatizations increase the risk for revictimizations as well as for psychological disorders like the posttraumatic stress disorder (PTSD). Different variables and mechanisms underlying revictimization are discussed in current literature. However, empiri-cal data on revictimization is poor and inconsistant. Guilt and shame following traumatic events are considered as risk factors for the development and persistence of PTSD. PTSD is frequently associated with trauma-re...

  1. Enhanced Anharmonicity Under Pressure

    Science.gov (United States)

    Errea, Ion; Rousseau, Bruno; Bergara, Aitor

    2012-07-01

    Contradicting common sense, pressure does not monotonically harden the phonons in many systems but makes some specific modes soften at given points of the first Brilloiun zone, even inducing dynamical instabilities that drive structural phase transitions. As the harmonic part of the ionic potential becomes smaller, higher order terms turn out to be more and more important. In AlH3, for instance, anharmonicity suppresses the predicted high superconducting transition temperature at 110 GPa in agreement with experiments. Furthermore, anharmonicity stabilizes the high-pressure simple cubic phase of calcium even at zero temperature, explaining its mechanical stability. We will review the calculations performed in these two systems and show that anharmonicity can be tackled making use of perturbation theory or the so called self-consistent harmonic approximation.

  2. Mechanisms underlying uremic encephalopathy.

    Science.gov (United States)

    Scaini, Giselli; Ferreira, Gabriela Kozuchovski; Streck, Emilio Luiz

    2010-06-01

    In patients with renal failure, encephalopathy is a common problem that may be caused by uremia, thiamine deficiency, dialysis, transplant rejection, hypertension, fluid and electrolyte disturbances or drug toxicity. In general, encephalopathy presents with a symptom complex progressing from mild sensorial clouding to delirium and coma. This review discusses important issues regarding the mechanisms underlying the pathophysiology of uremic encephalopathy. The pathophysiology of uremic encephalopathy up to now is uncertain, but several factors have been postulated to be involved; it is a complex and probably multifactorial process. Hormonal disturbances, oxidative stress, accumulation of metabolites, imbalance in excitatory and inhibitory neurotransmitters, and disturbance of the intermediary metabolism have been identified as contributing factors. Despite continuous therapeutic progress, most neurological complications of uremia, like uremic encephalopathy, fail to fully respond to dialysis and many are elicited or aggravated by dialysis or renal transplantation. On the other hand, previous studies showed that antioxidant therapy could be used as an adjuvant therapy for the treatment of these neurological complications.

  3. Mechanisms underlying enhancements in muscle force and power output during maximal cycle ergometer exercise induced by chronic β2-adrenergic stimulation in men

    DEFF Research Database (Denmark)

    Hostrup, Morten; Kalsen, Anders; Onslev, Johan

    2015-01-01

    of muscle proteins involved in growth, ion handling, lactate production and clearance increased (P≤0.05) with the intervention in TER compared to PLA, with no change in oxidative enzymes. Our observations suggest that muscle hypertrophy is the primary mechanism underlying enhancements in muscle force......The study was a randomized placebo-controlled trial investigating mechanisms by which chronic β2-adrenergic stimulation enhances muscle force and power output during maximal cycle ergometer exercise in young men. Eighteen trained men were assigned to an experimental group (oral terbutaline 5 mg∙30...... kgbw(-1) twice daily; TER, n=9) or a control group (placebo; PLA, n=9) for a four-week intervention. No changes were observed with the intervention in PLA. Isometric muscle force of the quadriceps increased (P≤0.01) by 97±29 N (mean±SE) with the intervention in TER compared to PLA. Peak and mean power...

  4. Tetanic contraction induces enhancement of fatigability and sarcomeric damage in atrophic skeletal muscle and its underlying molecular mechanisms.

    Science.gov (United States)

    Yu, Zhi-Bin

    2013-11-01

    Muscle unloading due to long-term exposure of weightlessness or simulated weightlessness causes atrophy, loss of functional capacity, impaired locomotor coordination, and decreased resistance to fatigue in the antigravity muscles of the lower limbs. Besides reducing astronauts' mobility in space and on returning to a gravity environment, the molecular mechanisms for the adaptation of skeletal muscle to unloading also play an important medical role in conditions such as disuse and paralysis. The tail-suspended rat model was used to simulate the effects of weightlessness on skeletal muscles and to induce muscle unloading in the rat hindlimb. Our series studies have shown that the maximum of twitch tension and the twitch duration decreased significantly in the atrophic soleus muscles, the maximal tension of high-frequency tetanic contraction was significantly reduced in 2-week unloaded soleus muscles, however, the fatigability of high-frequency tetanic contraction increased after one week of unloading. The maximal isometric tension of intermittent tetanic contraction at optimal stimulating frequency did not alter in 1- and 2-week unloaded soleus, but significantly decreased in 4-week unloaded soleus. The 1-week unloaded soleus, but not extensor digitorum longus (EDL), was more susceptible to fatigue during intermittent tetanic contraction than the synchronous controls. The changes in K+ channel characteristics may increase the fatigability during high-frequency tetanic contraction in atrophic soleus muscles. High fatigability of intermittent tetanic contraction may be involved in enhanced activity of sarcoplasmic reticulum Ca(2+)-ATPase (SERCA) and switching from slow to fast isoform of myosin heavy chain, tropomyosin, troponin I and T subunit in atrophic soleus muscles. Unloaded soleus muscle also showed a decreased protein level of neuronal nitric oxide synthase (nNOS), and the reduction in nNOS-derived NO increased frequency of calcium sparks and elevated

  5. Piezoelectric enhancement under negative pressure

    Science.gov (United States)

    Kvasov, Alexander; McGilly, Leo J.; Wang, Jin; Shi, Zhiyong; Sandu, Cosmin S.; Sluka, Tomas; Tagantsev, Alexander K.; Setter, Nava

    2016-07-01

    Enhancement of ferroelectric properties, both spontaneous polarization and Curie temperature under negative pressure had been predicted in the past from first principles and recently confirmed experimentally. In contrast, piezoelectric properties are expected to increase by positive pressure, through polarization rotation. Here we investigate the piezoelectric response of the classical PbTiO3, Pb(Zr,Ti)O3 and BaTiO3 perovskite ferroelectrics under negative pressure from first principles and find significant enhancement. Piezoelectric response is then tested experimentally on free-standing PbTiO3 and Pb(Zr,Ti)O3 nanowires under self-sustained negative pressure, confirming the theoretical prediction. Numerical simulations verify that negative pressure in nanowires is the origin of the enhanced electromechanical properties. The results may be useful in the development of highly performing piezoelectrics, including lead-free ones.

  6. Biochemical mechanisms underlying atherogenesis

    Directory of Open Access Journals (Sweden)

    Dr.P.V.L.N. Srinivasa Rao

    2012-02-01

    Full Text Available Atherosclerosis remains one of the major causes of death and premature disability in developed countries. Though atherosclerosis was formerly considered a bland lipid storage disease, substantial advances in basic and experimental sciences have illuminated the role of endothelium, inflammation and immune mechanisms in its pathogenesis. Current concept of atherosclerosis is that of a dynamic and progressive disease arising from in- jury to endothelium, also known as endothelial dysfunction and an inflammatory response to that injury. The lesions of atherosclerosis occur principally in large and medium sized arteries. Atherosclerosis affects various regions of the circulation preferentially and can lead to ischemia of heart, brain or extremities resulting in in- farction.This produces distinct clinical manifestations depending on the vessel involved. Several predisposing factors to cardiovascular diseases such as diabetes mellitus, hypertension, obesity, infections act as triggers to the devel- opment of atherosclerosis by causing endothelial dysfunction and/or promoting inflammatory response. The evolution of pathogenetic mechanisms has passed through various directions such as oxidative stress, inflam- mation and immune responses. It is now known that all these are not acting independently but are interrelated and getting unified in the current concept of atherogenesis. The following discussion aims at providing an in- sight into these developments which can help in a better comprehension of the disease and management of its clinical complications

  7. Enhanced biocatalysis mechanism under microwave irradiation in isoquercitrin production revealed by circular dichroism and surface plasmon resonance spectroscopy.

    Science.gov (United States)

    Gong, An; Zhu, Dan; Mei, Yi-Yuan; Xu, Xiao-Hui; Wu, Fu-An; Wang, Jun

    2016-04-01

    An efficient and rapid process for isoquercitrin production by hesperidinase-catalyzed hydrolysis of rutin was successfully developed under microwave irradiation detecting the affinity by circular dichroism (CD) and surface plasmon resonance (SPR) spectroscopy. A maximum isoquercitrin yield of 91.5±2.7% was obtained in 10min with the conditions of 10g/L hesperidinase, 2g/L rutin, 30°C and microwave power density 88.9W/L. Enzymatic reaction rate and Vm/Km in the microwave reactor were 6.34-fold higher than in a continuous flow microreactor and 1.24-fold higher than in a biphasic system. CD and SPR analysis results also showed that hesperidinase has a better selectivity and affinity (3.3-fold than in a batch reactor) to generate isoquercitrin under microwave irradiation. Microwave irradiation greatly improved the reaction efficiency and productivity, leading to a more positive economical assessment. The binding affinity indicates the presence of strong multivalent interactions between rutin and hesperidinase under microwave irradiation.

  8. Transcriptional and epigenetic mechanisms underlying enhanced in vitro adipocyte differentiation by the brominated flame retardant BDE-47

    DEFF Research Database (Denmark)

    Kamstra, Jorke H; Hruba, Eva; Blumberg, Bruce

    2014-01-01

    adipocyte differentiation following exposure to BDE-47 or the antidiabetic drug troglitazone (TROG). BDE-47 modestly activated the key adipogenic transcription factor peroxisome proliferator-activated receptor gamma (PPARγ) in COS7 cells, transiently transfected with a GAL4 reporter construct. Increased...... gene expression was observed for Pparγ2, leptin (Lep), and glucose-6-phophatase catalytic subunit (G6pc) in differentiated 3T3-L1 cells after BDE-47 exposure compared to TROG. Methylation-sensitive high resolution melting (MS-HRM) revealed significant demethylation of three CpG sites in the Pparγ2...... promoter after exposure to both BDE-47 and TROG in differentiated 3T3-L1 cells. This study shows the potential of BDE-47 to induce adipocyte differentiation through various mechanisms that include Pparγ2 gene induction and promoter demethylation accompanied by activation of PPARγ, and possible disruption...

  9. Neodymium-Doped TiO2 with Anatase and Brookite Two Phases: Mechanism for Photocatalytic Activity Enhancement under Visible Light and the Role of Electron

    Directory of Open Access Journals (Sweden)

    Douga Nassoko

    2012-01-01

    Full Text Available Titanium dioxide (TiO2 doped with neodymium (Nd, one rare earth element, has been synthesized by a sol-gel method for the photocatalytic degradation of rhodamine-B under visible light. The prepared samples are characterized by X-ray diffractometer, Raman spectroscopy, UV-Vis diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, and Brunauer-Emmett-Teller measurement. The results indicate that the prepared samples have anatase and brookite phases. Additionally, Nd as Nd3+ may enter into the lattice of TiO2 and the presence of Nd3+ substantially enhances the photocatalytic activity of TiO2 under visible light. In order to further explore the mechanism of photocatalytic degradation of organic pollutant, photoluminescence spectrometer and scavenger addition method have been employed. It is found that hydroxide radicals produced by Nd-doped TiO2 under visible light are one of reactive species for Rh-B degradation and photogenerated electrons are mainly responsible for the formation of the reactive species.

  10. Mechanisms underlying enhancements in muscle force and power output during maximal cycle ergometer exercise induced by chronic β2-adrenergic stimulation in men.

    Science.gov (United States)

    Hostrup, Morten; Kalsen, Anders; Onslev, Johan; Jessen, Søren; Haase, Christoffer; Habib, Sajad; Ørtenblad, Niels; Backer, Vibeke; Bangsbo, Jens

    2015-09-01

    The study was a randomized placebo-controlled trial investigating mechanisms by which chronic β2-adrenergic stimulation enhances muscle force and power output during maximal cycle ergometer exercise in young men. Eighteen trained men were assigned to an experimental group [oral terbutaline 5 mg/30 kg body weight (bw) twice daily (TER); n = 9] or a control group [placebo (PLA); n = 9] for a 4-wk intervention. No changes were observed with the intervention in PLA. Isometric muscle force of the quadriceps increased (P ≤ 0.01) by 97 ± 29 N (means ± SE) with the intervention in TER compared with PLA. Peak and mean power output during 30 s of maximal cycling increased (P ≤ 0.01) by 32 ± 8 and 25 ± 9 W, respectively, with the intervention in TER compared with PLA. Maximal oxygen consumption (V̇o2max) and time to fatigue during incremental cycling did not change with the intervention. Lean body mass increased by 1.95 ± 0.8 kg (P ≤ 0.05) with the intervention in TER compared with PLA. Change in single fiber cross-sectional area of myosin heavy chain (MHC) I (1,205 ± 558 μm(2); P ≤ 0.01) and MHC II fibers (1,277 ± 595 μm(2); P ≤ 0.05) of the vastus lateralis muscle was higher for TER than PLA with the intervention, whereas no changes were observed in MHC isoform distribution. Expression of muscle proteins involved in growth, ion handling, lactate production, and clearance increased (P ≤ 0.05) with the intervention in TER compared with PLA, with no change in oxidative enzymes. Our observations suggest that muscle hypertrophy is the primary mechanism underlying enhancements in muscle force and peak power during maximal cycling induced by chronic β2-adrenergic stimulation in humans.

  11. Enhanced self-administration of the CB1 receptor agonist WIN55,212-2 in olfactory bulbectomized rats: evaluation of possible serotonergic and dopaminergic underlying mechanisms

    Directory of Open Access Journals (Sweden)

    Petra eAmchova

    2014-03-01

    Full Text Available Depression has been associated with drug consumption, including heavy or problematic cannabis use. According to an animal model of depression and substance use disorder comorbidity, we combined the olfactory bulbectomy model of depression with intravenous drug self-administration procedure to verify whether depressive-like rats displayed higher voluntary intake of the CB1 receptor agonist WIN55,212-2 (WIN, 12.5 µg/kg/infusion. To this aim, olfactory-bulbectomized (OBX and sham-operated (SHAM Lister Hooded rats were allowed to self-administer WIN by lever-pressing under a continuous (FR-1 schedule of reinforcement in 2h daily sessions. Data showed that both OBX and SHAM rats developed stable WIN intake; yet, responses in OBX were constantly higher than in SHAM rats soon after the first week of training. In addition, OBX rats took significantly longer to extinguish the drug-seeking behaviour after vehicle substitution. Acute pre-treatment with serotonin 5HT1B receptor agonist, CGS-12066B (2.5-10 mg/kg, did not significantly modify WIN intake in OBX and SHAM Lister Hooded rats. Furthermore, acute pre-treatment with CGS-12066B (10 and 15 mg/kg did not alter responses in parallel groups of OBX and SHAM Sprague Dawley rats self-administering methamphetamine under higher (FR-2 reinforcement schedule with nose-poking as operandum. Finally, dopamine levels in the nucleus accumbens of OBX rats did not increase in response to a WIN challenge, as in SHAM rats, indicating a dopaminergic dysfunction in bulbectomized rats. Altogether, our findings suggest that a depressive state may alter cannabinoid CB1 receptor agonist-induced brain reward function and that a dopaminergic rather than a 5-HT1B mechanism is likely to underlie enhanced WIN self-administration in OBX rats.

  12. Molecular mechanisms underlying bacterial persisters

    DEFF Research Database (Denmark)

    Maisonneuve, Etienne; Gerdes, Kenn

    2014-01-01

    All bacteria form persisters, cells that are multidrug tolerant and therefore able to survive antibiotic treatment. Due to the low frequencies of persisters in growing bacterial cultures and the complex underlying molecular mechanisms, the phenomenon has been challenging to study. However, recent...... technological advances in microfluidics and reporter genes have improved this scenario. Here, we summarize recent progress in the field, revealing the ubiquitous bacterial stress alarmone ppGpp as an emerging central regulator of multidrug tolerance and persistence, both in stochastically and environmentally...... induced persistence. In several different organisms, toxin-antitoxin modules function as effectors of ppGpp-induced persistence....

  13. Enhanced properties of MgO-Al2O3 composite materials with Al powder addition under 1300 °C creep test and its mechanism analysis

    Science.gov (United States)

    Jiang, Peng; Ma, Jiajia; Li, Yong; Yue, Dandan; Tong, Shanghao; Xue, Wendong

    2017-04-01

    The Al-MgO-Al2O3 composite samples were prepared with alumina (fused corundum and sintered alumina), high purity sintered magnesia and aluminum powder. Creep test was carried out at 1300 °C and studied. The results show that the creep rate of sample without aluminum addition decreases gradually. The creep properties of the MgO-Al2O3 composite material are improved by aluminum powder addition, with the sample demonstrating an increase creep rate. The physical properties of the samples are enhanced by aluminum powder addition as well. The mechanism of the improvement on the sample is analyzed by different characterization methods and kinetics calculations. Our results indicates that the AlN and MgAl2O4 spinel phases which are formed during the creep test are acting as the reinforcing phases and therefore enhance the creep performance of the samples.

  14. Neural mechanisms underlying breathing complexity.

    Directory of Open Access Journals (Sweden)

    Agathe Hess

    Full Text Available Breathing is maintained and controlled by a network of automatic neurons in the brainstem that generate respiratory rhythm and receive regulatory inputs. Breathing complexity therefore arises from respiratory central pattern generators modulated by peripheral and supra-spinal inputs. Very little is known on the brainstem neural substrates underlying breathing complexity in humans. We used both experimental and theoretical approaches to decipher these mechanisms in healthy humans and patients with chronic obstructive pulmonary disease (COPD. COPD is the most frequent chronic lung disease in the general population mainly due to tobacco smoke. In patients, airflow obstruction associated with hyperinflation and respiratory muscles weakness are key factors contributing to load-capacity imbalance and hence increased respiratory drive. Unexpectedly, we found that the patients breathed with a higher level of complexity during inspiration and expiration than controls. Using functional magnetic resonance imaging (fMRI, we scanned the brain of the participants to analyze the activity of two small regions involved in respiratory rhythmogenesis, the rostral ventro-lateral (VL medulla (pre-Bötzinger complex and the caudal VL pons (parafacial group. fMRI revealed in controls higher activity of the VL medulla suggesting active inspiration, while in patients higher activity of the VL pons suggesting active expiration. COPD patients reactivate the parafacial to sustain ventilation. These findings may be involved in the onset of respiratory failure when the neural network becomes overwhelmed by respiratory overload We show that central neural activity correlates with airflow complexity in healthy subjects and COPD patients, at rest and during inspiratory loading. We finally used a theoretical approach of respiratory rhythmogenesis that reproduces the kernel activity of neurons involved in the automatic breathing. The model reveals how a chaotic activity in

  15. Enhanced Expectancies Improve Performance Under Pressure

    OpenAIRE

    McKay, Brad; Lewthwaite, Rebecca; Wulf,Gabriele

    2012-01-01

    Beyond skill, beliefs in requisite abilities and expectations can affect performance. This experiment examined effects of induced perceptions of ability to perform well under generic situations of challenge. Participants (N = 31) first completed one block of 20 trials on a throwing accuracy task. They then completed questionnaires ostensibly measuring individual differences in the ability to perform under pressure. Enhanced-expectancy group participants were told that they were well-suited to...

  16. Metacognitive mechanisms underlying lucid dreaming.

    Science.gov (United States)

    Filevich, Elisa; Dresler, Martin; Brick, Timothy R; Kühn, Simone

    2015-01-21

    Lucid dreaming is a state of awareness that one is dreaming, without leaving the sleep state. Dream reports show that self-reflection and volitional control are more pronounced in lucid compared with nonlucid dreams. Mostly on these grounds, lucid dreaming has been associated with metacognition. However, the link to lucid dreaming at the neural level has not yet been explored. We sought for relationships between the neural correlates of lucid dreaming and thought monitoring. Human participants completed a questionnaire assessing lucid dreaming ability, and underwent structural and functional MRI. We split participants based on their reported dream lucidity. Participants in the high-lucidity group showed greater gray matter volume in the frontopolar cortex (BA9/10) compared with those in the low-lucidity group. Further, differences in brain structure were mirrored by differences in brain function. The BA9/10 regions identified through structural analyses showed increases in blood oxygen level-dependent signal during thought monitoring in both groups, and more strongly in the high-lucidity group. Our results reveal shared neural systems between lucid dreaming and metacognitive function, in particular in the domain of thought monitoring. This finding contributes to our understanding of the mechanisms enabling higher-order consciousness in dreams. Copyright © 2015 the authors 0270-6474/15/351082-07$15.00/0.

  17. Molecular Mechanisms Underlying Hepatocellular Carcinoma

    Directory of Open Access Journals (Sweden)

    Christian Trepo

    2009-11-01

    Full Text Available Hepatocarcinogenesis is a complex process that remains still partly understood. That might be explained by the multiplicity of etiologic factors, the genetic/epigenetic heterogeneity of tumors bulks and the ignorance of the liver cell types that give rise to tumorigenic cells that have stem cell-like properties. The DNA stress induced by hepatocyte turnover, inflammation and maybe early oncogenic pathway activation and sometimes viral factors, leads to DNA damage response which activates the key tumor suppressive checkpoints p53/p21Cip1 and p16INK4a/pRb responsible of cell cycle arrest and cellular senescence as reflected by the cirrhosis stage. Still obscure mechanisms, but maybe involving the Wnt signaling and Twist proteins, would allow pre-senescent hepatocytes to bypass senescence, acquire immortality by telomerase reactivation and get the last genetic/epigenetic hits necessary for cancerous transformation. Among some of the oncogenic pathways that might play key driving roles in hepatocarcinogenesis, c-myc and the Wnt/β-catenin signaling seem of particular interest. Finally, antiproliferative and apoptosis deficiencies involving TGF-β, Akt/PTEN, IGF2 pathways for instance are prerequisite for cancerous transformation. Of evidence, not only the transformed liver cell per se but the facilitating microenvironment is of fundamental importance for tumor bulk growth and metastasis.

  18. Real-time observations of mechanical stimulus-induced enhancements of mechanical properties in osteoblast cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Xu; Liu Xiaoli; Sun Jialun [State Key Laboratory of Bioactive Materials, School of Physics, Nankai University, Tianjin 300073 (China); He Shuojie [State Key Laboratory of Bioactive Materials, School of Physics, Nankai University, Tianjin 300073 (China); Department of Physics, Pusan National University, Pusan (Korea, Republic of); Lee, Imshik [State Key Laboratory of Bioactive Materials, School of Physics, Nankai University, Tianjin 300073 (China)], E-mail: ilee@nankai.edu.cn2; Pak, Hyuk Kyu [Department of Physics, Pusan National University, Pusan (Korea, Republic of)

    2008-09-15

    Osteoblast, playing a key role in the pathophysiology of osteoporosis, is one of the mechanical stress sensitive cells. The effects of mechanical load-induced changes of mechanical properties in osteoblast cells were studied at real-time. Osteoblasts obtained from young Wister rats were exposed to mechanical loads in different frequencies and resting intervals generated by atomic force microscopy (AFM) probe tip and simultaneously measured the changes of the mechanical properties by AFM. The enhancement of the mechanical properties was observed and quantified by the increment of the apparent Young's modulus, E{sup *}. The observed mechanical property depended on the frequency of applied tapping loads. For the resting interval is 50 s, the mechanical load-induced enhancement of E{sup *}-values disappears. It seems that the enhanced mechanical property was recover able under no additional mechanical stimulus.

  19. Molecular mechanism of the sweet taste enhancers.

    Science.gov (United States)

    Zhang, Feng; Klebansky, Boris; Fine, Richard M; Liu, Haitian; Xu, Hong; Servant, Guy; Zoller, Mark; Tachdjian, Catherine; Li, Xiaodong

    2010-03-01

    Positive allosteric modulators of the human sweet taste receptor have been developed as a new way of reducing dietary sugar intake. Besides their potential health benefit, the sweet taste enhancers are also valuable tool molecules to study the general mechanism of positive allosteric modulations of T1R taste receptors. Using chimeric receptors, mutagenesis, and molecular modeling, we reveal how these sweet enhancers work at the molecular level. Our data argue that the sweet enhancers follow a similar mechanism as the natural umami taste enhancer molecules. Whereas the sweeteners bind to the hinge region and induce the closure of the Venus flytrap domain of T1R2, the enhancers bind close to the opening and further stabilize the closed and active conformation of the receptor.

  20. Mechanisms Underlying Enhanced Noradrenaline-Induced Femoral Arterial Contractions of Spontaneously Hypertensive Rats: Involvement of Endothelium-Derived Factors and Cyclooxygenase-Derived Prostanoids.

    Science.gov (United States)

    Matsumoto, Takayuki; Watanabe, Shun; Iguchi, Maika; Ando, Makoto; Oda, Mirai; Nagata, Mako; Yamada, Kosuke; Taguchi, Kumiko; Kobayashi, Tsuneo

    2016-01-01

    We investigated the relationship between noradrenaline (NAd)-induced contractions, endothelial function, and hypertension in femoral arteries isolated from spontaneously hypertensive rats (SHR). In the femoral arteries of SHR, vs. age-matched control Wistar Kyoto (WKY) rats, contractions induced by NAd were increased. These effects were enhanced by endothelial denudation, which abolished the differences between the two groups. NAd-induced contractions were enhanced by nitric oxide (NO) synthase inhibition, and further increased by the blockade of endothelium-derived hyperpolarizing factor (EDHF). Conversely, NAd-induced contractions were inhibited by cyclooxygenase (COX) inhibition. In addition, in SHR arteries, acetylcholine-induced relaxation was reduced, and components of endothelium-derived factors were altered, such as increased COX-derived vasoconstrictor prostanoids, reduced EDHF, and preserved NO-mediated relaxation. In the femoral arteries of SHR, the production of prostanoids [6-keto prostaglandin (PG)F1α (a metabolite of prostacyclin (PGI2), PGE2, and PGF2α] and COX-2 protein were increased compared with that in WKY rats. By contrast, contractions induced by beraprost (a stable PGI2 analogue), PGE2, and U46619 (thromboxane/prostanoid receptor agonist) were similar between the SHR and WKY groups. Thus, NAd-induced femoral arterial contractions are augmented in SHR resulting from endothelial dysfunction and increased COX-derived vasoconstrictor prostanoid levels.

  1. Molecular Mechanisms Underlying Psychological Stress and Cancer.

    Science.gov (United States)

    Shin, Kyeong Jin; Lee, Yu Jin; Yang, Yong Ryoul; Park, Seorim; Suh, Pann-Ghill; Follo, Matilde Yung; Cocco, Lucio; Ryu, Sung Ho

    2016-01-01

    Psychological stress is an emotion experienced when people are under mental pressure or encounter unexpected problems. Extreme or repetitive stress increases the risk of developing human disease, including cardiovascular disease (CVD), immune diseases, mental disorders, and cancer. Several studies have shown an association between psychological stress and cancer growth and metastasis in animal models and case studies of cancer patients. Stress induces the secretion of stress-related mediators, such as catecholamine, cortisol, and oxytocin, via the activation of the hypothalamic-pituitary-adrenocortical (HPA) axis or the sympathetic nervous system (SNS). These stress-related hormones and neurotransmitters adversely affect stress-induced tumor progression and cancer therapy. Catecholamine is the primary factor that influences tumor progression. It can regulate diverse cellular signaling pathways through adrenergic receptors (ADRs), which are expressed by several types of cancer cells. Activated ADRs enhance the proliferation and invasion abilities of cancer cells, alter cell activity in the tumor microenvironment, and regulate the interaction between cancer and its microenvironment to promote tumor progression. Additionally, other stress mediators, such as glucocorticoids and oxytocin, and their cognate receptors are involved in stress-induced cancer growth and metastasis. Here, we will review how each receptor-mediated signal cascade contributes to tumor initiation and progression and discuss how we can use these molecular mechanisms for cancer therapy.

  2. Microbial Mechanisms Enhancing Soil C Storage

    Energy Technology Data Exchange (ETDEWEB)

    Zak, Donald [Univ. of Michigan, Ann Arbor, MI (United States)

    2015-09-24

    Human activity has globally increased the amount of nitrogen (N) entering ecosystems, which could foster higher rates of C sequestration in the N-limited forests of the Northern Hemisphere. Presently, these ecosystems are a large global sink for atmospheric CO2, the magnitude of which could be influenced by the input of human-derived N from the atmosphere. Nevertheless, empirical studies and simulation models suggest that anthropogenic N deposition could have either an important or inconsequential effect on C storage in forests of the Northern Hemisphere, a set of observations that continues to fuel scientific discourse. Although a relatively simple set of physiological processes control the C balance of terrestrial ecosystems, we still fail to understand how these processes directly and indirectly respond to greater N availability in the environment. The uptake of anthropogenic N by N-limited forest trees and a subsequent enhancement of net primary productivity have been the primary mechanisms thought to increase ecosystem C storage in Northern Hemisphere forests. However, there are reasons to expect that anthropogenic N deposition could slow microbial activity in soil, decrease litter decay, and increase soil C storage. Fungi dominate the decay of plant detritus in forests and, under laboratory conditions, high inorganic N concentrations can repress the transcription of genes coding for enzymes which depolymerize lignin in plant detritus; this observation presents the possibility that anthropogenic N deposition could elicit a similar effect under field conditions. In our 18-yr-long field experiment, we have been able to document that simulated N deposition, at a rate expected in the near future, resulted in a significant decline in cellulolytic and lignolytic microbial activity, slowed plant litter decay, and increased soil C storage (+10%); this response is not portrayed in any biogeochemical model simulating the effect of atmospheric N deposition on ecosystem C

  3. Peeling mechanism of tomato under infrared heating

    Science.gov (United States)

    Critical behaviors of peeling tomatoes using infrared heat are thermally induced peel loosening and subsequent cracking. However, the mechanism of peel loosening and cracking due to infrared heating remains unclear. This study aimed at investigating the mechanism of peeling tomatoes under infrared h...

  4. Mechanisms underlying the exquisite sensitivity of Candida albicans to combinatorial cationic and oxidative stress that enhances the potent fungicidal activity of phagocytes.

    Science.gov (United States)

    Kaloriti, Despoina; Jacobsen, Mette; Yin, Zhikang; Patterson, Miranda; Tillmann, Anna; Smith, Deborah A; Cook, Emily; You, Tao; Grimm, Melissa J; Bohovych, Iryna; Grebogi, Celso; Segal, Brahm H; Gow, Neil A R; Haynes, Ken; Quinn, Janet; Brown, Alistair J P

    2014-07-15

    Immune cells exploit reactive oxygen species (ROS) and cationic fluxes to kill microbial pathogens, such as the fungus Candida albicans. Yet, C. albicans is resistant to these stresses in vitro. Therefore, what accounts for the potent antifungal activity of neutrophils? We show that simultaneous exposure to oxidative and cationic stresses is much more potent than the individual stresses themselves and that this combinatorial stress kills C. albicans synergistically in vitro. We also show that the high fungicidal activity of human neutrophils is dependent on the combinatorial effects of the oxidative burst and cationic fluxes, as their pharmacological attenuation with apocynin or glibenclamide reduced phagocytic potency to a similar extent. The mechanistic basis for the extreme potency of combinatorial cationic plus oxidative stress--a phenomenon we term stress pathway interference--lies with the inhibition of hydrogen peroxide detoxification by the cations. In C. albicans this causes the intracellular accumulation of ROS, the inhibition of Cap1 (a transcriptional activator that normally drives the transcriptional response to oxidative stress), and altered readouts of the stress-activated protein kinase Hog1. This leads to a loss of oxidative and cationic stress transcriptional outputs, a precipitous collapse in stress adaptation, and cell death. This stress pathway interference can be suppressed by ectopic catalase (Cat1) expression, which inhibits the intracellular accumulation of ROS and the synergistic killing of C. albicans cells by combinatorial cationic plus oxidative stress. Stress pathway interference represents a powerful fungicidal mechanism employed by the host that suggests novel approaches to potentiate antifungal therapy. Importance: The immune system combats infection via phagocytic cells that recognize and kill pathogenic microbes. Human neutrophils combat Candida infections by killing this fungus with a potent mix of chemicals that includes

  5. An investigation into the mechanism underlying enhanced ...

    African Journals Online (AJOL)

    driniev

    hydrolysis of complex carbon in a biosulphidogenic recycling sludge bed ... little solid waste as possible (Gazea et al., 1996), and must be suitable for .... mary sludge (PS) obtained from Grahamstown Municipal Works was used ... organic contaminants. ..... Mine Water Treatment and Management Practices in South Africa.

  6. Under-Exposed Image Enhancement Based on Relaxed Luminance Optimization

    National Research Council Canada - National Science Library

    Chunxiao Liu; Feng Yang

    2013-01-01

    ... optimization based under-exposed image clearness enhancement algorithm, which treats it as the simultaneous augmentation of luminance and contrast, and combines them in an optimization framework under...

  7. Mechanisms underlying the hepatotoxic effects of ecstasy.

    Science.gov (United States)

    Carvalho, Márcia; Pontes, Helena; Remião, Fernando; Bastos, Maria L; Carvalho, Félix

    2010-08-01

    3,4-Methylenedioxymethamphetamine (MDMA or ecstasy) is a worldwide illegally used amphetamine-derived designer drug known to be hepatotoxic to humans. Jaundice, hepatomegaly, centrilobular necrosis, hepatitis and fibrosis represent some of the adverse effects caused by MDMA in the liver. Although there is irrefutable evidence of MDMA-induced hepatocellular damage, the mechanisms responsible for that toxicity remain to be thoroughly clarified. One well thought-of mechanism imply MDMA metabolism in the liver into reactive metabolites as responsible for the MDMA-elicited hepatotoxicity. However, other factors, including MDMA-induced hyperthermia, the increase in neurotransmitters efflux, the oxidation of biogenic amines, polydrug abuse pattern, and environmental features accompanying illicit MDMA use, may increase the risk for liver complications. Liver damage patterns of MDMA in animals and humans and current research on the mechanisms underlying the hepatotoxic effects of MDMA will be highlighted in this review.

  8. Mechanical characteristics and microcosmic mechanisms of granite under temperature loads

    Institute of Scientific and Technical Information of China (English)

    XU Xiao-li; GAO Feng; SHEN Xiao-ming; XIE He-ping

    2008-01-01

    The relationships between mechanical characteristics of rock and microcosmic mechanism at high temperatures were investigated by MTS815, as well as the stress-strain behavior of granite under the action of temperatures ranging from room tem-perature to 1200 ℃. Based on a micropore structure analyzer and SEM, the changes in rock porosity and micro'structural mor-phology of sample fractures and brittle-plastic characteristics under high temperatures were analyzed. The results are as follows: 1) Mechanical characteristics do not show obvious variations before 800 ℃; strength decreases suddenly after 800 ℃ and bearing capacity is almost lost at 1200 ℃. 2) Rock porosity increases with rising temperatures; the threshold temperature is about 800 ℃;at this temperature its effect is basically uniform with strength decreasing rapidly. 3) The failure type of granite is a brittle tensile fracture at temperatures below 800 ℃ which transforms into plasticity at temperatures higher than 800 ℃ and crystal formation takes place at this time. Chemical reactions take place at 1200 ℃. Failure of granite under high temperature is a common result of thermal stress as indicated by an increase in the thermal expansion coefficient, transformation to crystal formation of minerals and structural chemical reactions.

  9. DNA under Force: Mechanics, Electrostatics, and Hydration

    Directory of Open Access Journals (Sweden)

    Jingqiang Li

    2015-02-01

    Full Text Available Quantifying the basic intra- and inter-molecular forces of DNA has helped us to better understand and further predict the behavior of DNA. Single molecule technique elucidates the mechanics of DNA under applied external forces, sometimes under extreme forces. On the other hand, ensemble studies of DNA molecular force allow us to extend our understanding of DNA molecules under other forces such as electrostatic and hydration forces. Using a variety of techniques, we can have a comprehensive understanding of DNA molecular forces, which is crucial in unraveling the complex DNA functions in living cells as well as in designing a system that utilizes the unique properties of DNA in nanotechnology.

  10. Surface Damage Mechanism of Monocrystalline Si Under Mechanical Loading

    Science.gov (United States)

    Zhao, Qingliang; Zhang, Quanli; To, Suet; Guo, Bing

    2017-03-01

    Single-point diamond scratching and nanoindentation on monocrystalline silicon wafer were performed to investigate the surface damage mechanism of Si under the contact loading. The results showed that three typical stages of material removal appeared during dynamic scratching, and a chemical reaction of Si with the diamond indenter and oxygen occurred under the high temperature. In addition, the Raman spectra of the various points in the scratching groove indicated that the Si-I to β-Sn structure (Si-II) and the following β-Sn structure (Si-II) to amorphous Si transformation appeared under the rapid loading/unloading condition of the diamond grit, and the volume change induced by the phase transformation resulted in a critical depth (ductile-brittle transition) of cut (˜60 nm ± 15 nm) much lower than the theoretical calculated results (˜387 nm). Moreover, it also led to abnormal load-displacement curves in the nanoindentation tests, resulting in the appearance of elbow and pop-out effects (˜270 nm at 20 s, 50 mN), which were highly dependent on the loading/unloading conditions. In summary, phase transformation of Si promoted surface deformation and fracture under both static and dynamic mechanical loading.

  11. Mechanical stability of iron under hydrostatic stresses

    Science.gov (United States)

    Mishra, K. L.; Thakur, O. P.; Thakur, K. P.

    1991-09-01

    A comprehensive investigation of the mechanics of iron subjected to arbitrary fluid pressure has been carried out. Apart from the classical elastic moduli ( k, μ, and μ') and conventional elastic moduli (Green and stretch moduli) computations are carried out for a family of generalised moduli of which the conventional moduli are just specific members. With the generalised moduli the mechanical stability of iron is investigated through Born criteria. It is found that classical stability, Green stability and stretch stability are all represented uniquely by the present generalised scheme. The definition of effective classical moduli under stresses enabled the amalgamation of the Born criteria of lattice stability into the single classical criteria of lattice stability of cubic crystal under hydrostatic loading environment. Computations are also carried out to investigate the coordinate and stress dependence of Young's modulus of elasticity, Poisson's ratio, mean velocity of elastic wave, and Debye temperature. Surprisingly, it is found that all these properties of solids play an important role in representing the mechanical stability of the solid. The path of uniaxial loading of iron is also investigated along with its internal energy variation on this path. This indicated the existance of stress-free fcc phase of iron on the path of uniaxial deformation at cell length a=3.6444 Å giving enthalpy of transformation (bcc→fcc) of 1.1 kJ/mol in good agreement with experimental results.

  12. Deformation Mechanisms of Gum Metals Under Nanoindentation

    Science.gov (United States)

    Sankaran, Rohini Priya

    defect structures to applied loading, we perform ex-situ nanoindentation. Nanoindentation is a convenient method as the plastic deformation is localized and probes a nominally defect free volume of the material. We subsequently characterize the defect structures in these alloys with both conventional TEM and advanced techniques such as HAADF HRSTEM and nanoprobe diffraction. These advanced techniques allow for a more thorough understanding of the observed deformation features. The main findings from this investigation are as follows. As expected we observe that a non-equilibrium phase, o, is present in the leaner beta-stabilized alloy, ST Ref-1. We do not find any direct evidence of secondary phases in STGM, and we find the beta phase in CWGM, along with lath microstructure with subgrain structure consisting of dislocation cell networks. Upon nanoindentation, we find twinning accompanied by beta nucleation on the twin boundary in ST Ref-1 samples. This result is consistent with previous findings and is reasonable considering the alloy is unstable with respect to beta transformation. We find deformation nanotwinning in cold worked gum metals under nanoindentation, which is initially surprising. We argue that when viewed as a nanocrystalline material, such a deformation mechanism is consistent with previous work, and furthermore, a deformation nanotwinned structure does not preclude an ideal shear mechanism from operating in the alloy. Lastly, we observe continuous lattice rotations in STGM under nanoindentation via nanoprobe diffraction. With this technique, for the first time we can demonstrate that the lattice rotations are truly continuous at the nanoscale. We can quantify this lattice rotation, and find that even though the rotation is large, it may be mediated by a reasonable geometrically necessary dislocation density, and note that similar rotations are typically observed in other materials under nanoindentation. HRSTEM and conventional TEM data confirm the

  13. Percutaneous absorption enhancers: mechanisms and potential

    Directory of Open Access Journals (Sweden)

    Letícia Norma Carpentieri-Rodrigues

    2007-11-01

    Full Text Available Transdermal applications of drugs present many advantages in terms of absorption, however this is not easily obtained through the transdermal route. The principle barrier is the stratum corneum and one of the strategies that have been found to promote cutaneous drug penetration is through the use of absorption enhancers. Many substances have been identified as absorption enhancers. Although the list of substances that promote absorption is growing, in most cases, there is a direct correlation between the effects of absorption enhancers and their skin toxicity. The use of these substances depends therefore on studies which focus on local and systemic toxicity, as well as action mechanisms.A via transdérmica para a absorção de fármacos apresenta várias vantagens, porém a absorção através desta via não é fácil de ser obtida. A principal barreira encontrada é o estrato córneo e uma das estratégias encontradas para promover a permeação cutânea de fármacos é o uso de promotores de absorção. Há uma variedade de substâncias identificadas como promotores de absorção. Enquanto a lista de substâncias de promotores de absorção percutânea vem aumentando, na maioria dos casos, há uma correlação entre o efeito promotor e a toxicidade para a pele. O emprego destas substâncias depende, portanto, de estudos enfocando a toxicidade local e sistêmica, bem como o mecanismo de ação.

  14. Evolved Mechanisms Versus Underlying Conditional Relations

    Directory of Open Access Journals (Sweden)

    Astorga Miguel López

    2015-03-01

    Full Text Available The social contracts theory claims that, in social exchange circumstances, human reasoning is not necessarily led by logic, but by certain evolved mental mechanisms that are useful for catching offenders. An emblematic experiment carried out with the intention to prove this thesis is the first experiment described by Fiddick, Cosmides, and Tooby in their paper of 2000. Lopez Astorga has questioned that experiment claiming that its results depend on an underlying conditional logical form not taken into account by Fiddick, Cosmides, and Tooby. In this paper, I propose an explanation alternative to that of Lopez Astorga, which does not depend on logical forms and is based on the mental models theory. Thus, I conclude that this other alternative explanation is one more proof that the experiment in question does not demonstrate the fundamental thesis of the social contracts theory.

  15. An Underlying Geometrical Manifold for Hamiltonian Mechanics

    CERN Document Server

    Horwitz, L P; Levitan, J; Lewkowicz, M

    2015-01-01

    We show that there exists an underlying manifold with a conformal metric and compatible connection form, and a metric type Hamiltonian (which we call the geometrical picture) that can be put into correspondence with the usual Hamilton-Lagrange mechanics. The requirement of dynamical equivalence of the two types of Hamiltonians, that the momenta generated by the two pictures be equal for all times, is sufficient to determine an expansion of the conformal factor, defined on the geometrical coordinate representation, in its domain of analyticity with coefficients to all orders determined by functions of the potential of the Hamilton-Lagrange picture, defined on the Hamilton-Lagrange coordinate representation, and its derivatives. Conversely, if the conformal function is known, the potential of a Hamilton-Lagrange picture can be determined in a similar way. We show that arbitrary local variations of the orbits in the Hamilton-Lagrange picture can be generated by variations along geodesics in the geometrical pictu...

  16. Research Skills Enhancement in Future Mechanical Engineers

    Directory of Open Access Journals (Sweden)

    Jorge Lino Alves

    2011-04-01

    Full Text Available Nowadays, the Web is a common tool for students searching information about the subjects taught in the different university courses. Although this is a good tool for the first rapid knowledge, a deeper study is usually demanded.

    After many years of teaching a course about ceramic and composite materials in the Integrated Master in Mechanical Engineering of Faculty of Engineering of University of Porto, Portugal, the authors used the Bologna reformulation of the mechanical engineering course to introduce new teaching methodologies based on a project based learning methodology.

    One of the main innovations is a practical work that comprises the study of a recent ceramic scientific paper, using all the actual available tools, elaboration of a scientific report, work presentation and participation in a debate.

    With this innovative teaching method the enrolment of the students was enhanced with a better knowledge about the ceramics subject and the skills related with the CDIO competences.

    This paper presents the reasons for this implementation and explains the teaching methodology adopted as well as the changes obtained in the students’ final results.

  17. Two distinct neural mechanisms underlying indirect reciprocity.

    Science.gov (United States)

    Watanabe, Takamitsu; Takezawa, Masanori; Nakawake, Yo; Kunimatsu, Akira; Yamasue, Hidenori; Nakamura, Mitsuhiro; Miyashita, Yasushi; Masuda, Naoki

    2014-03-18

    Cooperation is a hallmark of human society. Humans often cooperate with strangers even if they will not meet each other again. This so-called indirect reciprocity enables large-scale cooperation among nonkin and can occur based on a reputation mechanism or as a succession of pay-it-forward behavior. Here, we provide the functional and anatomical neural evidence for two distinct mechanisms governing the two types of indirect reciprocity. Cooperation occurring as reputation-based reciprocity specifically recruited the precuneus, a region associated with self-centered cognition. During such cooperative behavior, the precuneus was functionally connected with the caudate, a region linking rewards to behavior. Furthermore, the precuneus of a cooperative subject had a strong resting-state functional connectivity (rsFC) with the caudate and a large gray matter volume. In contrast, pay-it-forward reciprocity recruited the anterior insula (AI), a brain region associated with affective empathy. The AI was functionally connected with the caudate during cooperation occurring as pay-it-forward reciprocity, and its gray matter volume and rsFC with the caudate predicted the tendency of such cooperation. The revealed difference is consistent with the existing results of evolutionary game theory: although reputation-based indirect reciprocity robustly evolves as a self-interested behavior in theory, pay-it-forward indirect reciprocity does not on its own. The present study provides neural mechanisms underlying indirect reciprocity and suggests that pay-it-forward reciprocity may not occur as myopic profit maximization but elicit emotional rewards.

  18. Underlying mechanisms for commuting and migration processes

    Science.gov (United States)

    Simini, Filippo; Barabasi, Albert-Laszlo; Bagrow, James

    2012-02-01

    Both frequent commuting and long-term migration are complex human processes that strongly depend on socio-demographic, spatial, political, and even economic factors. We can describe both processes using weighted networks, in which nodes represent geographic locations and link weights denote the flux of individuals who commute (or migrate) between locations. Although both processes concern the movements of individuals, they are very different: commuting takes place on a daily (or weekly) basis and always between the same two locations, while migration is a rare, one-way displacement. Despite these differences, a recently proposed stochastic model, the Radiation model, provides evidence that both processes may be successfully described by the same underlying mechanism. For example, quantities of interest for either process, such as the distributions of trip length and destination populations, appear remarkably similar to the model's predictions. We explore the similarities and differences between commuting and migration both empirically, using census data for the United States, and theoretically, by comparing these commuting and migration networks to the predictions given by the Radiation model.

  19. Directional motion of liquid under mechanical vibrations

    Science.gov (United States)

    Costalonga, Maxime; Brunet, Philippe; Peerhossaini, Hassan

    2014-11-01

    When a liquid is submitted to mechanical vibrations, steady flows or motion can be generated by non-linear effects. One example is the steady acoustic streaming one can observe when an acoustic wave propagates in a fluid. At the scale of a droplet, steady motion of the whole amount of liquid can arise from zero-mean periodic forcing. As It has been observed by Brunet et al. (PRL 2007), a drop can climb an inclined surface when submitted to vertical vibrations above a threshold in acceleration. Later, Noblin et al. (PRL 2009) showed the velocity and the direction of motion of a sessile drop submitted to both horizontal and vertical vibrations can be tuned by the phase shift between these two excitations. Here we present an experimental study of the mean motion of a sessile drop under slanted vibrations, focusing on the effects of drop properties, as well as the inclination angle of the axis of vibrations. It is shown that the volume and viscosity strongly affect the drop mean velocity, and can even change the direction of its motion. In the case of a low viscous drop, gravity can become significant and be modulated by the inclination of the axis of vibrations. Contact line dynamic during the drop oscillations is also investigated.

  20. An underlying geometrical manifold for Hamiltonian mechanics

    Science.gov (United States)

    Horwitz, L. P.; Yahalom, A.; Levitan, J.; Lewkowicz, M.

    2017-02-01

    We show that there exists an underlying manifold with a conformal metric and compatible connection form, and a metric type Hamiltonian (which we call the geometrical picture), that can be put into correspondence with the usual Hamilton-Lagrange mechanics. The requirement of dynamical equivalence of the two types of Hamiltonians, that the momenta generated by the two pictures be equal for all times, is sufficient to determine an expansion of the conformal factor, defined on the geometrical coordinate representation, in its domain of analyticity with coefficients to all orders determined by functions of the potential of the Hamiltonian-Lagrange picture, defined on the Hamilton-Lagrange coordinate representation, and its derivatives. Conversely, if the conformal function is known, the potential of a Hamilton-Lagrange picture can be determined in a similar way. We show that arbitrary local variations of the orbits in the Hamilton-Lagrange picture can be generated by variations along geodesics in the geometrical picture and establish a correspondence which provides a basis for understanding how the instability in the geometrical picture is manifested in the instability of the the original Hamiltonian motion.

  1. Vascular Adventitia Calcification and Its Underlying Mechanism.

    Directory of Open Access Journals (Sweden)

    Na Li

    Full Text Available Previous research on vascular calcification has mainly focused on the vascular intima and media. However, we show here that vascular calcification may also occur in the adventitia. The purpose of this work is to help elucidate the pathogenic mechanisms underlying vascular calcification. The calcified lesions were examined by Von Kossa staining in ApoE-/- mice which were fed high fat diets (HFD for 48 weeks and human subjects aged 60 years and older that had died of coronary heart disease, heart failure or acute renal failure. Explant cultured fibroblasts and smooth muscle cells (SMCswere obtained from rat adventitia and media, respectively. After calcification induction, cells were collected for Alizarin Red S staining. Calcified lesions were observed in the aorta adventitia and coronary artery adventitia of ApoE-/-mice, as well as in the aorta adventitia of human subjects examined. Explant culture of fibroblasts, the primary cell type comprising the adventitia, was successfully induced for calcification after incubation with TGF-β1 (20 ng/ml + mineralization media for 4 days, and the phenotype conversion vascular adventitia fibroblasts into myofibroblasts was identified. Culture of SMCs, which comprise only a small percentage of all cells in the adventitia, in calcifying medium for 14 days resulted in significant calcification.Vascular calcification can occur in the adventitia. Adventitia calcification may arise from the fibroblasts which were transformed into myofibroblasts or smooth muscle cells.

  2. Human Cooperation and Its Underlying Mechanisms.

    Science.gov (United States)

    Strang, Sabrina; Park, Soyoung Q

    2017-01-01

    Cooperation is a uniquely human behavior and can be observed across cultures. In order to maintain cooperative behavior in society, people are willing to punish deviant behavior on their own expenses and even without any personal benefits. Cooperation has been object of research in several disciplines. Psychologists, economists, sociologists, biologists, and anthropologists have suggested several motives possibly underlying cooperative behavior. In recent years, there has been substantial progress in understanding neural mechanisms enforcing cooperation. Psychological as well as economic theories were tested for their plausibility using neuroscientific methods. For example, paradigms from behavioral economics were adapted to be tested in the magnetic resonance imaging (MRI) scanner. Also, related brain functions were modulated by using transmagnetic brain stimulation (TMS). While cooperative behavior has often been associated with positive emotions, noncooperative behavior was found to be linked to negative emotions. On a neural level, the temporoparietal junction (TPJ), the striatum, and other reward-related brain areas have been shown to be activated by cooperation, whereas noncooperation has mainly been associated with activity in the insula.

  3. Mechanisms Underlying T Cell Immunosenescence: Aging and Cytomegalovirus Infection

    Science.gov (United States)

    Tu, Wenjuan; Rao, Sudha

    2016-01-01

    The ability of the human immune system to protect against infectious disease declines with age and efficacy of vaccination reduces significantly in the elderly. Aging of the immune system, also termed as immunosenescence, involves many changes in human T cell immunity that is characterized by a loss in naïve T cell population and an increase in highly differentiated CD28- memory T cell subset. There is extensive data showing that latent persistent human cytomegalovirus (HCMV) infection is also associated with age-related immune dysfunction in the T cells, which might enhance immunosenescence. Understanding the molecular mechanisms underlying age-related and HCMV-related immunosenescence is critical for the development of effective age-targeted vaccines and immunotherapies. In this review, we will address the role of both aging and HCMV infection that contribute to the T cell senescence and discuss the potential molecular mechanisms in aged T cells. PMID:28082969

  4. Deformable liposomes and ethosomes: mechanism of enhanced skin delivery.

    Science.gov (United States)

    Elsayed, Mustafa M A; Abdallah, Ossama Y; Naggar, Viviane F; Khalafallah, Nawal M

    2006-09-28

    Despite intensive research, the mechanisms by which vesicular systems deliver drugs into intact skin are not yet fully understood. In the current study, possible mechanisms by which deformable liposomes and ethosomes improve skin delivery of ketotifen under non-occlusive conditions were investigated. In vitro permeation and skin deposition behavior of deformable liposomes and ethosomes, having ketotifen both inside and outside the vesicles (no separation of free ketotifen), having ketotifen only inside the vesicles (free ketotifen separated) and having ketotifen only outside the vesicles (ketotifen solution added to empty vesicles), was studied using rabbit pinna skin. Results suggested that both the penetration enhancing effect and the intact vesicle permeation into the stratum corneum might play a role in improving skin delivery of drugs by deformable liposomes, under non-occlusive conditions, and that the penetration enhancing effect was of greater importance in case of ketotifen. Regarding ethosomes, results indicated that ketotifen should be incorporated in ethosomal vesicles for optimum skin delivery. Ethosomes were not able to improve skin delivery of non-entrapped ketotifen.

  5. Adaptive response: some underlying mechanisms and open questions

    Directory of Open Access Journals (Sweden)

    Evgeniya G. Dimova

    2008-01-01

    Full Text Available Organisms are affected by different DNA damaging agents naturally present in the environment or released as a result of human activity. Many defense mechanisms have evolved in organisms to minimize genotoxic damage. One of them is induced radioresistance or adaptive response. The adaptive response could be considered as a nonspecific phenomenon in which exposure to minimal stress could result in increased resistance to higher levels of the same or to other types of stress some hours later. A better understanding of the molecular mechanism underlying the adaptive response may lead to an improvement of cancer treatment, risk assessment and risk management strategies, radiation protection, e.g. of astronauts during long-term space flights. In this mini-review we discuss some open questions and the probable underlying mechanisms involved in adaptive response: the transcription of many genes and the activation of numerous signaling pathways that trigger cell defenses - DNA repair systems, induction of proteins synthesis, enhanced detoxification of free radicals and antioxidant production.

  6. Fundamental Mechanisms Affecting Friction Welding under Vacuum

    Science.gov (United States)

    1991-06-01

    z Professor Koichi Masubuchi Ocean Engineering Dept., Thesis Supervisor ~Certified by - CProfessor Ltmest Rabinowicz Mechanical Engineering Dept...welding and oxide layer affects. 60 REFERENCES 1. Rabinowicz ,E., "Friction and Wear of Materials", Wiley, 1964 2. SmithM., "Effect of Vacuum on the...Professor ELnest Rabinowicz Mechanical Engineering Dept., Thesis Reader Accepted by- 14,~/G 1, ~ Z a- ’A. Douglas Carn-chtir,-hirman Departmental Graduate

  7. Curved Nanotube Structures under Mechanical Loading

    Directory of Open Access Journals (Sweden)

    Hamidreza Yazdani Sarvestani

    2015-01-01

    Full Text Available Configuration of carbon nanotube (CNT has been the subject of research to perform theoretical development for analyzing nanocomposites. A new theoretical solution is developed to study curved nanotube structures subjected to mechanical loadings. A curved nanotube structure is considered. A nonlocal displacement-based solution is proposed by using a displacement approach of Toroidal Elasticity based on Eringen’s theory of nonlocal continuum mechanics. The governing equations of curved nanotube structures are developed in toroidal coordinate system. The method of successive approximation is used to discretize the displacement-based governing equations and find the general solution subjected to bending moment. The numerical results show that all displacement components increase with increasing the nonlocal parameter. The present theoretical study highlights the significance of the geometry and nonlocal parameter effects on mechanical behavior of nanotube structures.

  8. Enhancement of mechanical properties of 123 superconductors

    Science.gov (United States)

    Balachandran, Uthamalingam

    1995-01-01

    A composition and method of preparing YBa.sub.2 Cu.sub.3 O.sub.7-x superconductor. Addition of tin oxide containing compounds to YBCO superconductors results in substantial improvement of fracture toughness and other mechanical properties without affect on T.sub.c. About 5-20% additions give rise to substantially improved mechanical properties.

  9. Molecular mechanisms underlying the Arabidopsis circadian clock.

    Science.gov (United States)

    Nakamichi, Norihito

    2011-10-01

    A wide range of biological processes exhibit circadian rhythm, enabling plants to adapt to the environmental day-night cycle. This rhythm is generated by the so-called 'circadian clock'. Although a number of genetic approaches have identified >25 clock-associated genes involved in the Arabidopsis clock mechanism, the molecular functions of a large part of these genes are not known. Recent comprehensive studies have revealed the molecular functions of several key clock-associated proteins. This progress has provided mechanistic insights into how key clock-associated proteins are integrated, and may help in understanding the essence of the clock's molecular mechanisms.

  10. Mechanisms of enhanced lung injury during sepsis

    DEFF Research Database (Denmark)

    Czermak, B J; Breckwoldt, M; Ravage, Z B;

    1999-01-01

    A major complication in sepsis is progressively impaired lung function and susceptibility to intrapulmonary infection. Why sepsis predisposes the lung to injury is not clear. In the current studies, rats were rendered septic by cecal ligation/puncture and evaluated for increased susceptibility...... to injury after a direct pulmonary insult (deposition of IgG immune complexes or airway instillation of lipopolysaccharide). By itself, cecal ligation/puncture did not produce evidence of lung injury. However, after a direct pulmonary insult, lung injury in septic animals was significantly enhanced...... or treatment with anti-C5a abolished all evidence of enhanced lung injury in septic animals. When stimulated in vitro, bronchoalveolar lavage macrophages from septic animals had greatly enhanced CXC chemokine responses as compared with macrophages from sham-operated animals or from septic animals that had been...

  11. Rules and mechanisms governing octahedral tilts in perovskites under pressure

    Science.gov (United States)

    Xiang, H. J.; Guennou, Mael; Íñiguez, Jorge; Kreisel, Jens; Bellaiche, L.

    2017-08-01

    The rotation of octahedra (octahedral tilting) is common in A B O3 perovskites and relevant to many physical phenomena, ranging from electronic and magnetic properties, metal-insulator transitions to improper ferroelectricity. Hydrostatic pressure is an efficient way to tune and control octahedral tiltings. However, the pressure behavior of such tiltings can dramatically differ from one material to another, with the origins of such differences remaining controversial. In this paper, we discover several new mechanisms and formulate a set of simple rules that allow us to understand how pressure affects oxygen octahedral tiltings via the use and analysis of first-principles results for a variety of compounds. Besides the known A -O interactions, we reveal that the interactions between specific B ions and oxygen ions contribute to the tilting instability. We explain the previously reported trend that the derivative of the oxygen octahedral tilting with respect to pressure (dR /dP ) usually decreases with both the tolerance factor and the ionization state of the A ion by illustrating the key role of A -O interactions and their change under pressure. Furthermore, three new mechanisms/rules are discovered, namely that (i) the octahedral rotations in A B O3 perovskites with empty low-lying d states on the B site are greatly enhanced by pressure, in order to lower the electronic kinetic energy; (ii) dR /dP is enhanced when the system possesses weak tilt instabilities, and (iii) for the most common phase exhibited by perovskites—the orthorhombic Pbnm state—the in-phase and antiphase octahedral rotations are not automatically both suppressed or both enhanced by the application of pressure because of a trilinear coupling between these two rotation types and an antipolar mode involving the A ions. We further predict that the polarization associated with the so-called hybrid improper ferroelectricity could be manipulated by hydrostatic pressure by indirectly controlling the

  12. Money Multiplier under Reserve Option Mechanism

    OpenAIRE

    Halit AKTURK; Gocen, Hasan; Duran, Suleyman

    2015-01-01

    This paper introduces a generalized money (M2) multiplier formula to the literature for a monetary system with Reserve Option Mechanism (ROM). Various features of the proposed multiplier are then explored using monthly Turkish data during the decade 2005 to 2015. We report a step increase in the magnitude and a slight upward adjustment in the long-run trend of the multiplier with the adoption of ROM. We provide evidence for substantial change in the seasonal pattern of the multiplier, cash ra...

  13. Molecular Mechanisms Underlying the Arabidopsis Circadian Clock

    OpenAIRE

    Nakamichi, Norihito

    2011-01-01

    A wide range of biological processes exhibit circadian rhythm, enabling plants to adapt to the environmental day–night cycle. This rhythm is generated by the so-called ‘circadian clock’. Although a number of genetic approaches have identified >25 clock-associated genes involved in the Arabidopsis clock mechanism, the molecular functions of a large part of these genes are not known. Recent comprehensive studies have revealed the molecular functions of several key clock-associated proteins. Thi...

  14. Investigation of Mechanisms Underlying Odor Recognition.

    Science.gov (United States)

    1984-02-01

    olfactory epithelium of the rat using a procedure similar to that used in .amphibian forms (e.g., Kubie & Moulton, 1979). The detailed description of most...distinct differences in responsiveness of the underlying receptor sheet depending upon the region stimulated (e.g., Kauer & Moulton, 1979; Kubie M...patterns of olfactory bulb neurons using odor stimulation of small nasal areas in the salamander. J. Physiol. (London), 1974, 243, 717-737. Kubie , J.S

  15. Mechanisms underlying the noradrenergic modulation of longitudinal coordination during swimming in Xenopus laevis tadpoles

    DEFF Research Database (Denmark)

    Merrywest, Simon D; McDearmid, Jonathan R; Kjaerulff, Ole

    2003-01-01

    the mechanisms underlying the reduction of RC-delay s by NA. When recording from motor neurons caudal to the twelfth postotic cleft, the mid-cycle inhibition was weak and sometimes absent, compared to more rostral locations. NA enhanced and even unmasked inhibition in these caudal neurons and enhanced inhibition......, will preferentially facilitate rebound firing in caudal neurons, advancing their firing relative to more rostral neurons, whilst additionally increasing the networks ability to sustain the longer cycle periods under NA....

  16. Environmental genotoxicity: Probing the underlying mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Shugart, L. [Oak Ridge National Lab., TN (United States); Theodorakis, C. [Tennessee Univ., Knoxville, TN (United States)

    1993-12-31

    Environmental pollution is a complex issue because of the diversity of anthropogenic agents, both chemical and physical, that have been detected and catalogued. The consequences to biota from exposure to genotoxic agents present an additional problem because of the potential for these agents to produce adverse change at the cellular and organismal levels. Past studies in genetic toxicology at the Oak Ridge National Laboratory have focused on structural damage to the DNA of environmental species that may occur after exposure to genotoxic agents and the use of this information to document exposure and to monitor remediation. In an effort to predict effects at the population, community and ecosystem levels, current studies in genetic ecotoxicology are attempting to characterize the biological mechanisms at the gene level that regulate and limit the response of an individual organism to genotoxic factors in their environment.

  17. Mechanisms that enhance sustainability of p53 pulses.

    Directory of Open Access Journals (Sweden)

    Jae Kyoung Kim

    Full Text Available The tumor suppressor p53 protein shows various dynamic responses depending on the types and extent of cellular stresses. In particular, in response to DNA damage induced by γ-irradiation, cells generate a series of p53 pulses. Recent research has shown the importance of sustaining repeated p53 pulses for recovery from DNA damage. However, far too little attention has been paid to understanding how cells can sustain p53 pulses given the complexities of genetic heterogeneity and intrinsic noise. Here, we explore potential molecular mechanisms that enhance the sustainability of p53 pulses by developing a new mathematical model of the p53 regulatory system. This model can reproduce many experimental results that describe the dynamics of p53 pulses. By simulating the model both deterministically and stochastically, we found three potential mechanisms that improve the sustainability of p53 pulses: 1 the recently identified positive feedback loop between p53 and Rorα allows cells to sustain p53 pulses with high amplitude over a wide range of conditions, 2 intrinsic noise can often prevent the dampening of p53 pulses even after mutations, and 3 coupling of p53 pulses in neighboring cells via cytochrome-c significantly reduces the chance of failure in sustaining p53 pulses in the presence of heterogeneity among cells. Finally, in light of these results, we propose testable experiments that can reveal important mechanisms underlying p53 dynamics.

  18. Dissociable mechanisms underlying individual differences in visual working memory capacity.

    Science.gov (United States)

    Gulbinaite, Rasa; Johnson, Addie; de Jong, Ritske; Morey, Candice C; van Rijn, Hedderik

    2014-10-01

    Individuals scoring relatively high on measures of working memory tend to be more proficient at controlling attention to minimize the effect of distracting information. It is currently unknown whether such superior attention control abilities are mediated by stronger suppression of irrelevant information, enhancement of relevant information, or both. Here we used steady-state visual evoked potentials (SSVEPs) with the Eriksen flanker task to track simultaneously the attention to relevant and irrelevant information by tagging target and distractors with different frequencies. This design allowed us to dissociate attentional biasing of perceptual processing (via SSVEPs) and stimulus processing in the frontal cognitive control network (via time-frequency analyses of EEG data). We show that while preparing for the upcoming stimulus, high- and low-WMC individuals use different strategies: High-WMC individuals show attentional suppression of the irrelevant stimuli, whereas low-WMC individuals demonstrate attentional enhancement of the relevant stimuli. Moreover, behavioral performance was predicted by trial-to-trial fluctuations in strength of distractor-suppression for high-WMC participants. We found no evidence for WMC-related differences in cognitive control network functioning, as measured by midfrontal theta-band power. Taken together, these findings suggest that early suppression of irrelevant information is a key underlying neural mechanism by which superior attention control abilities are implemented.

  19. MECHANISMS UNDERLYING MATERNAL VENOUS ADAPTATION IN PREGNANCY

    Science.gov (United States)

    Jones, Cresta Wedel; Mandala, Maurizio; Barron, Carolyn; Bernstein, Ira; Osol, George

    2009-01-01

    To define the effects of pregnancy on mechanical properties and reactivity, mesenteric veins from late pregnant (LP) and virgin control (NP) rats were pressurized to determine gestational changes in size and distensibility. Reactivity studies used an adrenergic constrictor (norepinephrine, NE) and an endothelium-mediated vasodilator (acetylcholine, ACh). The contribution of nitric oxide (NO) to endothelial function was evaluated with pharmacologic inhibition of NO synthase. Roles of NO and cGMP in smooth muscle vasodilation were determined by using an NO donor with and without cGMP inhibition using ODQ, a selective inhibitor of guanylyl cyclase. In pregnancy, endothelium-dependent vasodilation markedly increased (largely due to endogenous NO), smooth muscle response to NO decreased (primarily related to cGMP production), and NE sensitivity decreased considerably, with no changes in vessel size or distensibility. Our results identify a pro-vasodilatory state in the systemic venous system which would serve to facilitate the accommodation to plasma volume expansion requisite for normal pregnancy. PMID:19318688

  20. Changes of trabecular bone under control of biologically mechanical mechanism

    Science.gov (United States)

    Wang, C.; Zhang, C. Q.; Dong, X.; Wu, H.

    2008-10-01

    In this study, a biological process of bone remodeling was considered as a closed loop feedback control system, which enables bone to optimize and renew itself over a lifetime. A novel idea of combining strain-adaptive and damage-induced remodeling algorithms at Basic Multicellular Unit (BMU) level was introduced. In order to make the outcomes get closer to clinical observation, the stochastic occurrence of microdamage was involved and a hypothesis that remodeling activation probability is related to the value of damage rate was assumed. Integrated with Finite Element Analysis (FEA), the changes of trabecular bone in morphology and material properties were simulated in the course of five years. The results suggest that deterioration and anisotropy of trabecluar bone are inevitable with natural aging, and that compression rather than tension can be applied to strengthen the ability of resistance to fracture. This investigation helps to gain more insight the mechanism of bone loss and identify improved treatment and prevention for osteoporosis or stress fracture.

  1. Imprinting in Plants and Its Underlying Mechanisms

    Institute of Scientific and Technical Information of China (English)

    Hongyu Zhang; Abed Chaudhury; Xianjun Wu

    2013-01-01

    Genomic imprinting (or imprinting) refers to an epigenetic phenomenon by which the allelic expression of a gene depends on the parent of origin.It has evolved independently in placental mammals and flowering plants.In plants,imprinting is mainly found in endosperm.Recent genome-wide surveys in Arabidopsis,rice,and maize identified hundreds of imprinted genes in endosperm.Since these genes are of diverse functions,endosperm development is regulated at different regulatory levels.The imprinted expression of only a few genes is conserved between Arabidopsis and monocots,suggesting that imprinting evolved quickly during speciation.In Arabidopsis,DEMETER (DME) mediates hypomethylation in the maternal genome at numerous loci (mainly transposons and repeats) in the central cell and results in many differentially methylated regions between parental genomes in the endosperm,and subsequent imprinted expression of some genes.In addition,histone modification mediated by Polycomb group (PcG) proteins is also involved in regulating imprinting.DMEinduced hypomethylated alleles in the central cell are considered to produce small interfering RNAs (siRNAs) which are imported to the egg to reinforce DNA methylation.In parallel,the activity of DME in the vegetative cell of the male gametophyte demethylates many regions which overlap with the demethylated regions in the central cell.siRNAs from the demethylated regions are hypothesized to be also transferred into sperm to reinforce DNA methylation.Imprinting is partly the result of genome-wide epigenetic reprogramming in the central cell and vegetative cell and evolved under different selective pressures.

  2. The discovery and mechanism of sweet taste enhancers.

    Science.gov (United States)

    Li, Xiaodong; Servant, Guy; Tachdjian, Catherine

    2011-08-01

    Excess sugar intake posts several health problems. Artificial sweeteners have been used for years to reduce dietary sugar content, but they are not ideal substitutes for sugar owing to their off-taste. A new strategy focused on allosteric modulation of the sweet taste receptor led to identification of sweet taste 'enhancers' for the first time. The enhancer molecules do not taste sweet, but greatly potentiate the sweet taste of sucrose and sucralose selectively. Following a similar mechanism as the natural umami taste enhancers, the sweet enhancer molecules cooperatively bind with the sweeteners to the Venus flytrap domain of the human sweet taste receptor and stabilize the active conformation. Now that the approach has proven successful, enhancers for other sweeteners and details of the molecular mechanism for the enhancement are being actively pursued.

  3. Early bilingualism enhances mechanisms of false-belief reasoning.

    Science.gov (United States)

    Kovács, Agnes Melinda

    2009-01-01

    In their first years, children's understanding of mental states seems to improve dramatically, but the mechanisms underlying these changes are still unclear. Such 'theory of mind' (ToM) abilities may arise during development, or have an innate basis, developmental changes reflecting limitations of other abilities involved in ToM tasks (e.g. inhibition). Special circumstances such as early bilingualism may enhance ToM development or other capacities required by ToM tasks. Here we compare 3-year-old bilinguals and monolinguals on a standard ToM task, a modified ToM task and a control task involving physical reasoning. The modified ToM task mimicked a language-switch situation that bilinguals often encounter and that could influence their ToM abilities. If such experience contributes to an early consolidation of ToM in bilinguals, they should be selectively enhanced in the modified task. In contrast, if bilinguals have an advantage due to better executive inhibitory abilities involved in ToM tasks, they should outperform monolinguals on both ToM tasks, inhibitory demands being similar. Bilingual children showed an advantage on the two ToM tasks but not on the control task. The precocious success of bilinguals may be associated with their well-developed control functions formed during monitoring and selecting languages.

  4. Alcohol consumption enhances antiretroviral painful peripheral neuropathy by mitochondrial mechanisms.

    Science.gov (United States)

    Ferrari, Luiz F; Levine, Jon D

    2010-09-01

    A major dose-limiting side effect of human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS) chemotherapies, such as the nucleoside reverse transcriptase inhibitors (NRTIs), is a small-fiber painful peripheral neuropathy, mediated by its mitochondrial toxicity. Co-morbid conditions may also contribute to this dose-limiting effect of HIV/AIDS treatment. Alcohol abuse, which alone also produces painful neuropathy, is one of the most important co-morbid risk factors for peripheral neuropathy in patients with HIV/AIDS. Despite the prevalence of this problem and its serious impact on the quality of life and continued therapy in HIV/AIDS patients, the mechanisms by which alcohol abuse exacerbates highly active antiretroviral therapy (HAART)-induced neuropathic pain has not been demonstrated. In this study, performed in rats, we investigated the cellular mechanism by which consumed alcohol impacts antiretroviral-induced neuropathic pain. NRTI 2',3'-dideoxycytidine (ddC; 50 mg/kg) neuropathy was mitochondrial-dependent and PKCε-independent, and alcohol-induced painful neuropathy was PKCε-dependent and mitochondrial-independent. At low doses, ddC (5 mg/kg) and alcohol (6.5% ethanol diet for 1 week), which alone do not affect nociception, together produce profound mechanical hyperalgesia. This hyperalgesia is mitochondrial-dependent but PKCε-independent. These experiments, which provide the first model for studying the impact of co-morbidity in painful neuropathy, support the clinical impression that alcohol consumption enhances HIV/AIDS therapy neuropathy, and provide evidence for a role of mitochondrial mechanisms underlying this interaction.

  5. Dopaminergic mechanisms underlying catalepsy, fear and anxiety: do they interact?

    Science.gov (United States)

    Colombo, Ana Caroline; de Oliveira, Amanda Ribeiro; Reimer, Adriano Edgar; Brandão, Marcus Lira

    2013-11-15

    Haloperidol is a dopamine D2 receptor antagonist that induces catalepsy when systemically administered to rodents. The haloperidol-induced catalepsy is a state of akinesia and rigidity very similar to that seen in Parkinson's disease. There exists great interest in knowing whether or not some degree of emotionality underlies catalepsy. If so, what kind of emotional distress would permeate such motor disturbance? This study is an attempt to shed some light on this issue through an analysis of ultrasound vocalizations (USVs) of 22 kHz, open-field test, and contextual conditioned fear in rats with some degree of catalepsy induced by haloperidol. Systemic administration of haloperidol caused catalepsy and decreased exploratory activity in the open-field. There was no difference in the emission of USVs between groups during the catalepsy or the exploratory behavior in the open-field test. In the contextual conditioned fear, when administered before training session, haloperidol did not change the emission of USVs or the freezing response. When administered before testing session, haloperidol enhanced the freezing response and decreased the emission of USVs on the test day. These findings suggest that the involvement of dopaminergic mechanisms in threatening situations depends on the nature of the aversive stimulus. Activation of D2 receptors occurs in the setting up of adaptive responses to conditioned fear stimuli so that these mechanisms seem to be important for the emission of 22 kHz USVs during the testing phase of the contextual conditioned fear, but not during the training session or the open-field test (unconditioned fear stimuli). Catalepsy, on the other hand, is the result of the blockage of D2 receptors in neural circuits associated to motor behavior that appears to be dissociated from those directly linked to dopamine-mediated neural mechanisms associated to fear.

  6. Mechanisms underlying temperature extremes in Iberia: a Lagrangian perspective

    Directory of Open Access Journals (Sweden)

    João A. Santos

    2015-04-01

    Full Text Available The mechanisms underlying the occurrence of temperature extremes in Iberia are analysed considering a Lagrangian perspective of the atmospheric flow, using 6-hourly ERA-Interim reanalysis data for the years 1979–2012. Daily 2-m minimum temperatures below the 1st percentile and 2-m maximum temperatures above the 99th percentile at each grid point over Iberia are selected separately for winter and summer. Four categories of extremes are analysed using 10-d backward trajectories initialized at the extreme temperature grid points close to the surface: winter cold (WCE and warm extremes (WWE, and summer cold (SCE and warm extremes (SWE. Air masses leading to temperature extremes are first transported from the North Atlantic towards Europe for all categories. While there is a clear relation to large-scale circulation patterns in winter, the Iberian thermal low is important in summer. Along the trajectories, air mass characteristics are significantly modified through adiabatic warming (air parcel descent, upper-air radiative cooling and near-surface warming (surface heat fluxes and radiation. High residence times over continental areas, such as over northern-central Europe for WCE and, to a lesser extent, over Iberia for SWE, significantly enhance these air mass modifications. Near-surface diabatic warming is particularly striking for SWE. WCE and SWE are responsible for the most extreme conditions in a given year. For WWE and SCE, strong temperature advection associated with important meridional air mass transports are the main driving mechanisms, accompanied by comparatively minor changes in the air mass properties. These results permit a better understanding of mechanisms leading to temperature extremes in Iberia.

  7. [Neural mechanism underlying autistic savant and acquired savant syndrome].

    Science.gov (United States)

    Takahata, Keisuke; Kato, Motoichiro

    2008-07-01

    , especially that of the prefrontal cortex and the posterior regions of the brain. (3) Autistic models, including those based on weak central coherence theory (Frith, 1989), that focus on how savant skills emerge from an autistic brain. Based on recent neuroimaging studies of ASD, Just et al. (2004) suggested the underconnectivity theory, which emphasizes the disruption of long-range connectivity and the relative intact or even more enhanced local connectivity in the autistic brain. All the models listed above have certain advantages and shortcomings. At the end of this review, we propose another integrative model of savant syndrome. In this model, we predict an altered balance of local/global connectivity patterns that contribute to an altered functional segregation/integration ratio. In particular, we emphasize the crucial role played by the disruption of global connectivity in a parallel distributed cortical network, which might result in impairment in integrated cognitive processing, such as impairment in executive function and social cognition. On the other hand, the reduced inter-regional collaboration could lead to a disinhibitory enhancement of neural activity and connectivity in local cortical regions. In addition, enhanced connectivity in the local brain regions is partly due to the abnormal organization of the cortical network as a result of developmental and pathological states. This enhanced local connectivity results in the specialization and facilitation of low-level cognitive processing. The disruption of connectivity between the prefrontal cortex and other regions is considered to be a particularly important factor because the prefrontal region shows the most influential inhibitory control on other cortical areas. We propose that these neural mechanisms as the underlying causes for the emergence of savant ability in ASD and FTD patients.

  8. Molecular mechanisms underlying phosphate sensing, signaling, and adaptation in plants

    Institute of Scientific and Technical Information of China (English)

    Zhaoliang Zhang; Hong Liao; William J. Lucas

    2014-01-01

    As an essential plant macronutrient, the low availability of phosphorus (P) in most soils imposes serious limitation on crop production. Plants have evolved complex responsive and adaptive mechanisms for acquisition, remobiliza-tion and recycling of phosphate (Pi) to maintain P homeostasis. Spatio-temporal molecular, physiological, and biochemical Pi deficiency responses developed by plants are the consequence of local and systemic sensing and signaling pathways. Pi deficiency is sensed local y by the root system where hormones serve as important signaling components in terms of develop-mental reprogramming, leading to changes in root system architecture. Root-to-shoot and shoot-to-root signals, delivered through the xylem and phloem, respectively, involving Pi itself, hormones, miRNAs, mRNAs, and sucrose, serve to coordinate Pi deficiency responses at the whole-plant level. A combination of chromatin remodeling, transcriptional and posttranslational events contribute to global y regulating a wide range of Pi deficiency responses. In this review, recent advances are evaluated in terms of progress toward developing a comprehen-sive understanding of the molecular events underlying control over P homeostasis. Application of this knowledge, in terms of developing crop plants having enhanced attributes for P use efficiency, is discussed from the perspective of agricultural sustainability in the face of diminishing global P supplies.

  9. Neural mechanisms underlying the induction and relief of perceptual curiosity

    Directory of Open Access Journals (Sweden)

    Marieke eJepma

    2012-02-01

    Full Text Available Curiosity is one of the most basic biological drives in both animals and humans, and has been identified as a key motive for learning and discovery. Despite the importance of curiosity and related behaviors, the topic has been largely neglected in human neuroscience; hence little is known about the neurobiological mechanisms underlying curiosity. We used functional magnetic resonance imaging (fMRI to investigate what happens in our brain during the induction and subsequent relief of perceptual curiosity. Our core findings were that (i the induction of perceptual curiosity, through the presentation of ambiguous visual input, activated the anterior insula and anterior cingulate cortex, brain regions sensitive to conflict and arousal; (ii the relief of perceptual curiosity, through visual disambiguation, activated regions of the striatum that have been related to reward processing; and (iii the relief of perceptual curiosity was associated with hippocampal activation and enhanced incidental memory. These findings provide the first demonstration of the neural basis of human perceptual curiosity. Our results provide neurobiological support for a classic psychological theory of curiosity, which holds that curiosity is an aversive condition of increased arousal whose termination is rewarding and facilitates memory.

  10. Neural mechanisms underlying the induction and relief of perceptual curiosity.

    Science.gov (United States)

    Jepma, Marieke; Verdonschot, Rinus G; van Steenbergen, Henk; Rombouts, Serge A R B; Nieuwenhuis, Sander

    2012-01-01

    Curiosity is one of the most basic biological drives in both animals and humans, and has been identified as a key motive for learning and discovery. Despite the importance of curiosity and related behaviors, the topic has been largely neglected in human neuroscience; hence little is known about the neurobiological mechanisms underlying curiosity. We used functional magnetic resonance imaging (fMRI) to investigate what happens in our brain during the induction and subsequent relief of perceptual curiosity. Our core findings were that (1) the induction of perceptual curiosity, through the presentation of ambiguous visual input, activated the anterior insula and anterior cingulate cortex (ACC), brain regions sensitive to conflict and arousal; (2) the relief of perceptual curiosity, through visual disambiguation, activated regions of the striatum that have been related to reward processing; and (3) the relief of perceptual curiosity was associated with hippocampal activation and enhanced incidental memory. These findings provide the first demonstration of the neural basis of human perceptual curiosity. Our results provide neurobiological support for a classic psychological theory of curiosity, which holds that curiosity is an aversive condition of increased arousal whose termination is rewarding and facilitates memory.

  11. Neural mechanisms underlying the induction and relief of perceptual curiosity

    Science.gov (United States)

    Jepma, Marieke; Verdonschot, Rinus G.; van Steenbergen, Henk; Rombouts, Serge A. R. B.; Nieuwenhuis, Sander

    2012-01-01

    Curiosity is one of the most basic biological drives in both animals and humans, and has been identified as a key motive for learning and discovery. Despite the importance of curiosity and related behaviors, the topic has been largely neglected in human neuroscience; hence little is known about the neurobiological mechanisms underlying curiosity. We used functional magnetic resonance imaging (fMRI) to investigate what happens in our brain during the induction and subsequent relief of perceptual curiosity. Our core findings were that (1) the induction of perceptual curiosity, through the presentation of ambiguous visual input, activated the anterior insula and anterior cingulate cortex (ACC), brain regions sensitive to conflict and arousal; (2) the relief of perceptual curiosity, through visual disambiguation, activated regions of the striatum that have been related to reward processing; and (3) the relief of perceptual curiosity was associated with hippocampal activation and enhanced incidental memory. These findings provide the first demonstration of the neural basis of human perceptual curiosity. Our results provide neurobiological support for a classic psychological theory of curiosity, which holds that curiosity is an aversive condition of increased arousal whose termination is rewarding and facilitates memory. PMID:22347853

  12. Molecular mechanisms underlying phosphate sensing, signaling, and adaptation in plants.

    Science.gov (United States)

    Zhang, Zhaoliang; Liao, Hong; Lucas, William J

    2014-03-01

    As an essential plant macronutrient, the low availability of phosphorus (P) in most soils imposes serious limitation on crop production. Plants have evolved complex responsive and adaptive mechanisms for acquisition, remobilization and recycling of phosphate (Pi) to maintain P homeostasis. Spatio-temporal molecular, physiological, and biochemical Pi deficiency responses developed by plants are the consequence of local and systemic sensing and signaling pathways. Pi deficiency is sensed locally by the root system where hormones serve as important signaling components in terms of developmental reprogramming, leading to changes in root system architecture. Root-to-shoot and shoot-to-root signals, delivered through the xylem and phloem, respectively, involving Pi itself, hormones, miRNAs, mRNAs, and sucrose, serve to coordinate Pi deficiency responses at the whole-plant level. A combination of chromatin remodeling, transcriptional and posttranslational events contribute to globally regulating a wide range of Pi deficiency responses. In this review, recent advances are evaluated in terms of progress toward developing a comprehensive understanding of the molecular events underlying control over P homeostasis. Application of this knowledge, in terms of developing crop plants having enhanced attributes for P use efficiency, is discussed from the perspective of agricultural sustainability in the face of diminishing global P supplies.

  13. Underlying mechanisms of improving physical activity behavior after rehabilitation

    NARCIS (Netherlands)

    van der Ploeg, Hidde P; Streppel, Kitty R M; van der Beek, Allard J; van der Woude, Luc H V; van Harten, Wim H; van Mechelen, Willem; van der Woude, Lucas

    2008-01-01

    BACKGROUND: Regular physical activity is beneficial for the health and functioning of people with a disability. Effective components of successful physical activity promotion interventions should be identified and disseminated. PURPOSE: To study the underlying mechanisms of the combined sport stimul

  14. Underlying mechanisms of improving physical activity behavior after rehabilitation

    NARCIS (Netherlands)

    Ploeg, van der Hidde P.; Streppel, Kitty R.M.; Beek, van der Allard J.; Woude, Luc H.V.; Harten, van Wim H.; Mechelen, van Willem

    2008-01-01

    Background: Regular physical activity is beneficial for the health and functioning of people with a disability. Effective components of successful physical activity promotion interventions should be identified and disseminated. Purpose: To study the underlying mechanisms of the combined sport stimul

  15. Enhancement of CO2 Absorption under Taylor Flow in the Presence of Fine Particles

    Institute of Scientific and Technical Information of China (English)

    CAI Wangfeng; ZHANG Jiao; ZHANG Xubin; WANG Yan; QI Xiangjuan

    2013-01-01

    The physical absorption of CO2 in water containing different types of particles was studied in a microchannel operated under Taylor flow.The maximum enhancement factors of 1.43-2.15 were measured for activated carbon(AcC)particles.The analysis shows that the enhancement effect can be attributed to the shuttle mechanism.Considering the separate contributions of mass transfer from bubble cap and liquid film,a heterogeneous enhancement model is developed.According to this model,the enhancement factors ECap,EFilm and Eov are mainly determined by mass transfer coefficient KL(KLCap and KL Film),adsorptive capacity of particles m,and coverage fraction of particles at gas-liquid interface ζ.With,both effects of particle-to-interface adhesion and apparent viscosity included,the model predicts the enhancement effect of AcC particles reasonably well.

  16. [An incentive mechanism for environment management under unsymmetrical information].

    Science.gov (United States)

    Guo, J; Zheng, Z; Fu, G

    2001-01-01

    Information unsymmtry is a big obstacle in environment management. In this paper, an incentive mechanism for implementation of effluent charge under unsymmetrical information was designed. This mechanism will provide incentives for true information and lower down the transaction cost in environment management.

  17. Enhancement of chromosomal damage by arsenic: implications for mechanism.

    Science.gov (United States)

    Yager, J W; Wiencke, J K

    1993-10-01

    Arsenic is a naturally occurring metalloid that has been associated with increased incidence of human cancer in certain highly exposed populations. Arsenic is released to the environment by natural means such as solubilization from geologic formations into water supplies. It is also released to occupational and community environments by such activities as nonferrous ore smelting and combustion of fuels containing arsenic. Several lines of evidence indicate that arsenic acts indirectly with other agents to ultimately enhance specific genotoxic effects that may lead to carcinogenesis. Work described here indicates that arsenite specifically potentiates chromosomal aberrations induced by a DNA crosslinking agent, 1,3-butadiene diepoxide, but does not effect the induction of sister chromatid exchanges under the same treatment conditions. It is proposed that the specific co-clastogenic effects of arsenite seen here may be mediated by its interference with DNA repair activities. Further understanding of the mechanism by which arsenic interacts with other environmental agents will result in more accurate estimates of risk from exposure to arsenic.

  18. [Mechanism of cardiac atrophy under weightlessness/simulated weightlessness].

    Science.gov (United States)

    Zhong, Guo-Hui; Ling, Shu-Kuan; Li, Ying-Xian

    2016-04-25

    Cardiac remodeling is the heart's response to external or internal stimuli. Weightlessness/simulated weightlessness leads to cardiac atrophy and heart function declining. Understanding the mechanism of cardiac atrophy under weightlessness is important to help astronaut recover from unloading-induced cardiovascular changes after spaceflight. Unloading-induced changes of hemodynamics, metabolic demands and neurohumoral regulation contribute to cardiac atrophy and function declining. During this process, Ca(2+)-related signaling, NF-κB signaling, ERK signaling, ubiquitin-proteasome pathway and autophagy are involved in weightlessness-induced cardiac atrophy. This article reviews the underlying mechanism of cardiac atrophy under weightlessness/simulated weightlessness.

  19. Plant-insect interactions under bacterial influence: ecological implications and underlying mechanisms.

    Science.gov (United States)

    Sugio, Akiko; Dubreuil, Géraldine; Giron, David; Simon, Jean-Christophe

    2015-02-01

    Plants and insects have been co-existing for more than 400 million years, leading to intimate and complex relationships. Throughout their own evolutionary history, plants and insects have also established intricate and very diverse relationships with microbial associates. Studies in recent years have revealed plant- or insect-associated microbes to be instrumental in plant-insect interactions, with important implications for plant defences and plant utilization by insects. Microbial communities associated with plants are rich in diversity, and their structure greatly differs between below- and above-ground levels. Microbial communities associated with insect herbivores generally present a lower diversity and can reside in different body parts of their hosts including bacteriocytes, haemolymph, gut, and salivary glands. Acquisition of microbial communities by vertical or horizontal transmission and possible genetic exchanges through lateral transfer could strongly impact on the host insect or plant fitness by conferring adaptations to new habitats. Recent developments in sequencing technologies and molecular tools have dramatically enhanced opportunities to characterize the microbial diversity associated with plants and insects and have unveiled some of the mechanisms by which symbionts modulate plant-insect interactions. Here, we focus on the diversity and ecological consequences of bacterial communities associated with plants and herbivorous insects. We also highlight the known mechanisms by which these microbes interfere with plant-insect interactions. Revealing such mechanisms in model systems under controlled environments but also in more natural ecological settings will help us to understand the evolution of complex multitrophic interactions in which plants, herbivorous insects, and micro-organisms are inserted.

  20. Surface-enhanced Raman scattering of Ethyl carbamate adsorbed on Ag20 cluster: Enhancement mechanism

    Science.gov (United States)

    Du, Junmei; Wang, Hongyan; Wang, Hui; Chen, Yuanzheng; Guo, Chunsheng; Gan, Liyong; Du, Muying

    2017-03-01

    The normal and surface-enhanced Raman scattering of EC are studied by using the M06-2X functional. Different contributions to Raman enhancements of EC adsorbed on Ag20 cluster are analyzed in detail to explore the enhancement mechanism. The adsorption of EC on Ag20 cluster involves the static chemical enhancement with enhancements factor (EF) of 10 by forming a new EC-Ag20 complex. The charge-transfer enhancement with EF of 104 is found when a 352 nm wavelength, corresponding to the absorption maximum of EC-Ag20 complex, is taken as an incident light. The electromagnetic enhancement EF of 3.6 × 106 due to the localized surface plasmon resonance (LSPR) of Ag nanosphere at the same excitation wavelength are acquired by the discrete dipole approximation (DDA) method. The combined effect of the chemical and electromagnetic enhancement results in the total relative enhancements factor up to 3.6 × 1010. The enhancement mechanisms are successfully explained by the combination of ab initio calculation and discrete dipole appropriation method.

  1. Mechanism of Growth Enhancement of Plants Induced by Active Species in Plasmas

    Science.gov (United States)

    Watanabe, Satoshi; Ono, Reoto; Hayashi, Nobuya

    2015-09-01

    Plant growth enhances when seeds are irradiated by plasma. However the mechanism of the growth enhancement by plasma has not been clarified. In this study, growth enhancement of plants using various active species and variation of plant cells are investigated. RF plasma is generated under conditions where pressure is 60 Pa and input electrical power is 60 W. Irradiation period varies from 0 (control) to 75 min. Air plasma shows maximum growth of plants with irradiation period of 60 min on the other hand, oxygen plasma shows the maximum growth with irradiation period of 15 min. From change of gaseous species and pressure dependence, growth enhancing factor is expected to be active oxygen species produced in plasma. According to gene expression analysis of Arabidopsis, there are two speculated mechanism of plant growth enhancement. The first is acceleration of cell cycle by gene expressions of photosynthesis and glycolytic pathway, and the second is increase of cell size via plant hormone production.

  2. Fluorescence excitation by enhanced plasmon upconversion under continuous wave illumination

    Science.gov (United States)

    Tasgin, Mehmet Emre; Salakhutdinov, Ildar; Kendziora, Dania; Abak, Musa Kurtulus; Turkpence, Deniz; Piantanida, Luca; Fruk, Ljiljana; Lazzarino, Marco; Bek, Alpan

    2016-09-01

    We demonstrate effective background-free continuous wave nonlinear optical excitation of molecules that are sandwiched between asymmetrically constructed plasmonic gold nanoparticle clusters. We observe that near infrared photons are converted to visible photons through efficient plasmonic second harmonic generation. Our theoretical model and simulations demonstrate that Fano resonances may be responsible for being able to observe nonlinear conversion using a continuous wave light source. We show that nonlinearity enhancement of plasmonic nanostructures via coupled quantum mechanical oscillators such as molecules can be several orders larger as compared to their classical counterparts.

  3. Switchable antimicrobial and antifouling hydrogels with enhanced mechanical properties.

    Science.gov (United States)

    Cao, Bin; Tang, Qiong; Li, Linlin; Humble, Jayson; Wu, Haiyan; Liu, Lingyun; Cheng, Gang

    2013-08-01

    New switchable hydrogels are developed. Under acidic conditions, hydrogels undergo self-cyclization and can catch and kill bacteria. Under neutral/basic conditions, hydrogels undergo ring-opening and can release killed bacterial cells and resist protein adsorption and bacterial attachment. Smart hydrogels also show a dramatically improved mechanical property, which is highly desired for biomedical applications.

  4. Novel Deployment Mechanism for Conventional Solar Array Enhancement

    Directory of Open Access Journals (Sweden)

    Hodgetts Paul A.

    2017-01-01

    Full Text Available A novel mechanism is described, by which flexible blankets could be deployed from existing solar panel designs. These blankets could be covered with flexible cells, or they could be reflective films to form a concentrator array. Either way, the performance of an existing array design could be enhanced.

  5. Issues in tokamak/stellarator transport and confinement enhancement mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, F.W.

    1990-08-01

    At present, the mechanism for anomalous energy transport in low-{beta} toroidal plasmas -- tokamaks and stellarators -- remains unclear, although transport by turbulent E {times} B velocities associated with nonlinear, fine-scale microinstabilities is a leading candidate. This article discusses basic theoretical concepts of various transport and confinement enhancement mechanisms as well as experimental ramifications which would enable one to distinguish among them and hence identify a dominant transport mechanism. While many of the predictions of fine-scale turbulence are born out by experiment, notable contradictions exist. Projections of ignition margin rest both on the scaling properties of the confinement mechanism and on the criteria for entering enhanced confinement regimes. At present, the greatest uncertainties lie with the basis for scaling confinement enhancement criteria. A series of questions, to be answered by new experimental/theoretical work, is posed to resolve these outstanding contradictions (or refute the fine-scale turbulence model) and to establish confinement enhancement criteria. 73 refs., 4 figs., 5 tabs.

  6. Conditions for enhanced performance of segmented thermoelectrics under load

    Science.gov (United States)

    Angst, Sebastian; Wolf, Dietrich E.

    2017-08-01

    The Onsager-de Groot-Callen transport theory is used to investigate the performance of double segmented thermoelectrics as generators. We show that such an inhomogeneous device usually performs worse than predicted by the effective transport coefficients. This is caused by the difference of the open circuit Seebeck voltage and the Seebeck voltage under operating conditions. The electrical current and the related interface Peltier effect cause a self-organization of the temperature profile such that the temperature drop across the material with the higher absolute Seebeck coefficient is reduced. However, including Joule heating we derive conditions for the opposite effect resulting in an enhanced power.

  7. Music and Memory in Alzheimer's Disease and The Potential Underlying Mechanisms.

    Science.gov (United States)

    Peck, Katlyn J; Girard, Todd A; Russo, Frank A; Fiocco, Alexandra J

    2016-01-01

    With population aging and a projected exponential expansion of persons diagnosed with Alzheimer's disease (AD), the development of treatment and prevention programs has become a fervent area of research and discovery. A growing body of evidence suggests that music exposure can enhance memory and emotional function in persons with AD. However, there is a paucity of research that aims to identify specific underlying neural mechanisms associated with music's beneficial effects in this particular population. As such, this paper reviews existing anecdotal and empirical evidence related to the enhancing effects of music exposure on cognitive function and further provides a discussion on the potential underlying mechanisms that may explain music's beneficial effect. Specifically, this paper will outline the potential role of the dopaminergic system, the autonomic nervous system, and the default network in explaining how music may enhance memory function in persons with AD.

  8. An Adaptive Mechanism for Accurate Query Answering under Differential Privacy

    CERN Document Server

    Li, Chao

    2012-01-01

    We propose a novel mechanism for answering sets of count- ing queries under differential privacy. Given a workload of counting queries, the mechanism automatically selects a different set of "strategy" queries to answer privately, using those answers to derive answers to the workload. The main algorithm proposed in this paper approximates the optimal strategy for any workload of linear counting queries. With no cost to the privacy guarantee, the mechanism improves significantly on prior approaches and achieves near-optimal error for many workloads, when applied under (\\epsilon, \\delta)-differential privacy. The result is an adaptive mechanism which can help users achieve good utility without requiring that they reason carefully about the best formulation of their task.

  9. Mechanical fatigue performance of PCL-chondroprogenitor constructs after cell culture under bioreactor mechanical stimulus.

    Science.gov (United States)

    Panadero, Juan Alberto; Sencadas, Vitor; Silva, Sonia C M; Ribeiro, Clarisse; Correia, Vitor; Gama, Francisco M; Gomez Ribelles, José Luis; Lanceros-Mendez, Senentxu

    2016-02-01

    In tissue engineering of cartilage, polymeric scaffolds are implanted in the damaged tissue and subjected to repeated compression loading cycles. The possibility of failure due to mechanical fatigue has not been properly addressed in these scaffolds. Nevertheless, the macroporous scaffold is susceptible to failure after repeated loading-unloading cycles. This is related to inherent discontinuities in the material due to the micropore structure of the macro-pore walls that act as stress concentration points. In this work, chondrogenic precursor cells have been seeded in poly-ε-caprolactone (PCL) scaffolds with fibrin and some were submitted to free swelling culture and others to cyclic loading in a bioreactor. After cell culture, all the samples were analyzed for fatigue behavior under repeated loading-unloading cycles. Moreover, some components of the extracellular matrix (ECM) were identified. No differences were observed between samples undergoing free swelling or bioreactor loading conditions, neither respect to matrix components nor to mechanical performance to fatigue. The ECM did not achieve the desired preponderance of collagen type II over collagen type I which is considered the main characteristic of hyaline cartilage ECM. However, prediction in PCL with ECM constructs was possible up to 600 cycles, an enhanced performance when compared to previous works. PCL after cell culture presents an improved fatigue resistance, despite the fact that the measured elastic modulus at the first cycle was similar to PCL with poly(vinyl alcohol) samples. This finding suggests that fatigue analysis in tissue engineering constructs can provide additional information missed with traditional mechanical measurements.

  10. Cooperative Mechanism of Supply Chain Under Asymmetric Information

    Institute of Scientific and Technical Information of China (English)

    郭敏; 王红卫; 瞿坦

    2003-01-01

    The cooperative mechanism is one main issue in the decentralized supply chain system, especially in an asymmetric information structure. We analyze the non-cooperative game behavior of a 2-echelon distribution supply chain, compare the results with the system optimal solution, and give the supplier dominated cooperative mechanisms. We also analyze the validity of our contract under the asymmetric retailers' holding cost information and give some useful conclusions.

  11. Enhanced biodecolorization of reactive dyes by basidiomycetes under static conditions.

    Science.gov (United States)

    Bibi, Ismat; Bhatti, Haq Nawaz

    2012-04-01

    This study presents the biodecolorization potential of basidiomycete fungi Trametes hirsuta, Pycnoporus sp., and Irpex sp. for different reactive dyes viz. Reactive Red 120, Remazol Brilliant Blue R (RBBR), Reactive Orange G, and Reactive Orange 16 under static and shaking conditions. The screening trials revealed that T. hirsuta exhibited maximum potential (83.75 %) for biodecolorization of RBBR dye under static conditions after the fifth day of incubation. However, the rate of biodecolorization of RBBR dye by Pycnoporus sp. was much slow and reached maximum (81.25 %) after 15 days of incubation under shaking conditions. By process optimization, enhanced decolorization (91.2 %) of RBBR by T. hirsuta was achieved at pH 5.5 within 24 h using a defined salt medium amended with p-coumaric acid under static conditions. pH was found to be an important parameter for the enzymatic system involved in RBBR dye decolorization by T. hirsuta and Pycnoporus sp. Biodecolorization of RBBR dye was determined by a reduction in optical density at the wavelength of maximum absorbance (λ, 578 nm) by UV-vis spectrophotometer. The shift in maximum wavelength toward shorter/longer wavelength in UV-vis scanning spectrum revealed the degradation of RBBR dye into different transformation products.

  12. Enhancement and suppression in the visual field under perceptual load.

    Science.gov (United States)

    Parks, Nathan A; Beck, Diane M; Kramer, Arthur F

    2013-01-01

    The perceptual load theory of attention proposes that the degree to which visual distractors are processed is a function of the attentional demands of a task-greater demands increase filtering of irrelevant distractors. The spatial configuration of such filtering is unknown. Here, we used steady-state visual evoked potentials (SSVEPs) in conjunction with time-domain event-related potentials (ERPs) to investigate the distribution of load-induced distractor suppression and task-relevant enhancement in the visual field. Electroencephalogram (EEG) was recorded while subjects performed a foveal go/no-go task that varied in perceptual load. Load-dependent distractor suppression was assessed by presenting a contrast reversing ring at one of three eccentricities (2, 6, or 11°) during performance of the go/no-go task. Rings contrast reversed at 8.3 Hz, allowing load-dependent changes in distractor processing to be tracked in the frequency-domain. ERPs were calculated to the onset of stimuli in the load task to examine load-dependent modulation of task-relevant processing. Results showed that the amplitude of the distractor SSVEP (8.3 Hz) was attenuated under high perceptual load (relative to low load) at the most proximal (2°) eccentricity but not at more eccentric locations (6 or 11°). Task-relevant ERPs revealed a significant increase in N1 amplitude under high load. These results are consistent with a center-surround configuration of load-induced enhancement and suppression in the visual field.

  13. Microbial surfactant-enhanced mineral oil recovery under laboratory conditions.

    Science.gov (United States)

    Bordoloi, N K; Konwar, B K

    2008-05-01

    Microbial enhanced oil recovery (MEOR) is potentially useful to recover incremental oil from a reservoir being beyond primary and secondary recovery operations. Effort has been made to isolate and characterize natural biosurfactant produced by bacterial isolates collected from various oil fields of ONGC in Assam. Production of biosurfactant has been considered to be an effective major index for the purpose of enhanced oil recovery. On the basis of the index, four promising bacterial isolates: Pseudomonas aeruginosa (MTCC7815), P. aeruginosa (MTCC7814), P. aeruginosa (MTCC7812) and P. aeruginosa (MTCC8165) were selected for subsequent testing. Biosurfactant produced by the promising bacterial isolates have been found to be effective in the recovery of crude oil from saturated column under laboratory conditions. Two bacterial strains: P. aeruginosa (MTCC7815) and P. aeruginosa (MTCC7812) have been found to be the highest producer of biosurfactant. Tensiometer studies revealed that biosurfactants produced by these bacterial strains could reduce the surface tension (sigma) of the growth medium from 68 to 30 mN m(-1) after 96 h of growth. The bacterial biosurfactants were found to be functionally stable at varying pH (2.5-11) conditions and temperature of 100 degrees C. The treatment of biosurfactant containing, cell free culture broth in crude oil saturated sand pack column could release about 15% more crude oil at 90 degrees C than at room temperature and 10% more than at 70 degrees C under laboratory condition.

  14. Numerical investigation of pulmonary drug delivery under mechanical ventilation conditions

    Science.gov (United States)

    Banerjee, Arindam; van Rhein, Timothy

    2012-11-01

    The effects of mechanical ventilation waveform on fluid flow and particle deposition were studied in a computer model of the human airways. The frequency with which aerosolized drugs are delivered to mechanically ventilated patients demonstrates the importance of understanding the effects of ventilation parameters. This study focuses specifically on the effects of mechanical ventilation waveforms using a computer model of the airways of patient undergoing mechanical ventilation treatment from the endotracheal tube to generation G7. Waveforms were modeled as those commonly used by commercial mechanical ventilators. Turbulence was modeled with LES. User defined particle force models were used to model the drag force with the Cunningham correction factor, the Saffman lift force, and Brownian motion force. The endotracheal tube (ETT) was found to be an important geometric feature, causing a fluid jet towards the right main bronchus, increased turbulence, and a recirculation zone in the right main bronchus. In addition to the enhanced deposition seen at the carinas of the airway bifurcations, enhanced deposition was also seen in the right main bronchus due to impaction and turbulent dispersion resulting from the fluid structures created by the ETT. Authors acknowledge financial support through University of Missouri Research Board Award.

  15. Marginally subcritical dynamics explain enhanced stimulus discriminability under attention.

    Science.gov (United States)

    Tomen, Nergis; Rotermund, David; Ernst, Udo

    2014-01-01

    Recent experimental and theoretical work has established the hypothesis that cortical neurons operate close to a critical state which describes a phase transition from chaotic to ordered dynamics. Critical dynamics are suggested to optimize several aspects of neuronal information processing. However, although critical dynamics have been demonstrated in recordings of spontaneously active cortical neurons, little is known about how these dynamics are affected by task-dependent changes in neuronal activity when the cortex is engaged in stimulus processing. Here we explore this question in the context of cortical information processing modulated by selective visual attention. In particular, we focus on recent findings that local field potentials (LFPs) in macaque area V4 demonstrate an increase in γ-band synchrony and a simultaneous enhancement of object representation with attention. We reproduce these results using a model of integrate-and-fire neurons where attention increases synchrony by enhancing the efficacy of recurrent interactions. In the phase space spanned by excitatory and inhibitory coupling strengths, we identify critical points and regions of enhanced discriminability. Furthermore, we quantify encoding capacity using information entropy. We find a rapid enhancement of stimulus discriminability with the emergence of synchrony in the network. Strikingly, only a narrow region in the phase space, at the transition from subcritical to supercritical dynamics, supports the experimentally observed discriminability increase. At the supercritical border of this transition region, information entropy decreases drastically as synchrony sets in. At the subcritical border, entropy is maximized under the assumption of a coarse observation scale. Our results suggest that cortical networks operate at such near-critical states, allowing minimal attentional modulations of network excitability to substantially augment stimulus representation in the LFPs.

  16. Prosodic cues enhance rule learning by changing speech segmentation mechanisms

    Directory of Open Access Journals (Sweden)

    Ruth eDe Diego-Balaguer

    2015-09-01

    Full Text Available Prosody has been claimed to have a critical role in the acquisition of grammatical information from speech. The exact mechanisms by which prosodic cues enhance learning are fully unknown. Rules from language often require the extraction of non-adjacent dependencies (e.g. he plays, he sings, he speaks. It has been proposed that pauses enhance learning because they allow computing non-adjacent relations helping word segmentation by removing the need to compute adjacent computations. So far only indirect evidence from behavioral and electrophysiological measures comparing learning effects after exposure to speech with and without pauses support this claim. By recording event-related potentials during the acquisition process of artificial languages with and without pauses between words with embedded non-adjacent rules we provide direct evidence on how the presence of pauses modifies the way speech is processed during learning to enhance segmentation and rule generalisation. The electrophysiological results indicate that pauses as short as 25 ms attenuated the N1 component irrespective of whether learning was possible or not. In addition, a P2 enhancement was present only when learning of non-adjacent dependencies was possible. The overall results support the claim that the simple presence of subtle pauses changed the segmentation mechanism used reflected in an exogenously driven N1 component attenuation and improving segmentation at the behavioral level. This effect can be dissociated from the endogenous P2 enhancement that is observed irrespective of the presence of pauses whenever non-adjacent dependencies are learned.

  17. Molecular mechanisms underlying the fetal programming of adult disease.

    Science.gov (United States)

    Vo, Thin; Hardy, Daniel B

    2012-08-01

    Adverse events in utero can be critical in determining quality of life and overall health. It is estimated that up to 50 % of metabolic syndrome diseases can be linked to an adverse fetal environment. However, the mechanisms linking impaired fetal development to these adult diseases remain elusive. This review uncovers some of the molecular mechanisms underlying how normal physiology may be impaired in fetal and postnatal life due to maternal insults in pregnancy. By understanding the mechanisms, which include epigenetic, transcriptional, endoplasmic reticulum (ER) stress, and reactive oxygen species (ROS), we also highlight how intervention in fetal and neonatal life may be able to prevent these diseases long-term.

  18. Emotional responses to music: the need to consider underlying mechanisms.

    Science.gov (United States)

    Juslin, Patrik N; Västfjäll, Daniel

    2008-10-01

    Research indicates that people value music primarily because of the emotions it evokes. Yet, the notion of musical emotions remains controversial, and researchers have so far been unable to offer a satisfactory account of such emotions. We argue that the study of musical emotions has suffered from a neglect of underlying mechanisms. Specifically, researchers have studied musical emotions without regard to how they were evoked, or have assumed that the emotions must be based on the "default" mechanism for emotion induction, a cognitive appraisal. Here, we present a novel theoretical framework featuring six additional mechanisms through which music listening may induce emotions: (1) brain stem reflexes, (2) evaluative conditioning, (3) emotional contagion, (4) visual imagery, (5) episodic memory, and (6) musical expectancy. We propose that these mechanisms differ regarding such characteristics as their information focus, ontogenetic development, key brain regions, cultural impact, induction speed, degree of volitional influence, modularity, and dependence on musical structure. By synthesizing theory and findings from different domains, we are able to provide the first set of hypotheses that can help researchers to distinguish among the mechanisms. We show that failure to control for the underlying mechanism may lead to inconsistent or non-interpretable findings. Thus, we argue that the new framework may guide future research and help to resolve previous disagreements in the field. We conclude that music evokes emotions through mechanisms that are not unique to music, and that the study of musical emotions could benefit the emotion field as a whole by providing novel paradigms for emotion induction.

  19. Research of the Mechanism of Enhancing Biological Treatment by Chitosan

    Institute of Scientific and Technical Information of China (English)

    CHEN Liang; QIN Bing; CHEN Dong-hui

    2006-01-01

    Chitosan of different molecular weight (M. W. ) was added into SBR bioreactor to treat domestic wastewater. From comparison of treatment efficiency, sludge activity, sludge structure etc., we revealed the mechanism that chitosan enhanced the biological treatment function of activated sludge. The results proved that, chitosan is certain to restrain the reaction of activated sludge, but it do improve the structure of sludge fiocs and increase the treatment efficiency of activated sludge. The bigger the M. W. of chitosan is, the better the efficiency of enhancing biological treatment can be.

  20. Neural Circuitry and Plasticity Mechanisms Underlying Delay Eyeblink Conditioning

    Science.gov (United States)

    Freeman, John H.; Steinmetz, Adam B.

    2011-01-01

    Pavlovian eyeblink conditioning has been used extensively as a model system for examining the neural mechanisms underlying associative learning. Delay eyeblink conditioning depends on the intermediate cerebellum ipsilateral to the conditioned eye. Evidence favors a two-site plasticity model within the cerebellum with long-term depression of…

  1. Surfactin restores and enhances swarming motility under heavy metal stress.

    Science.gov (United States)

    Singh, Anil Kumar; Dhanjal, Soniya; Cameotra, Swaranjit Singh

    2014-04-01

    The present work reports the importance of lipopeptide biosurfactant on swarming motility of multi-metal resistant (MMR) bacterium under heavy metal stress. The MMR bacteria strain CM100B, identified as Bacillus cereus, was isolated from the coal mine sample. The strain was able to grow and reduce several metals namely Cd(2+), Co(2+), Cu(2+), Ni(2+), Mn(2+) and Pb(2+) ions which are common environmental pollutants. Presence of toxic heavy metal ions in the swarming medium significantly altered the motility of CM100B. Presence of Cd(2+) and Pb(2+) ions inhibited development of peritrichous flagella, thus inhibiting swarming motility. However, the addition of anionic biosurfactant surfactin restored (in case of Cd(2+) and Pb(2+) ions) or enhanced (in case of Co(2+), Cu(2+), Ni(2+) and Mn(2+)) the swarming ability of CM100B. Zeta potential studies for determining bacterial cell surface charge indicated that surfactin provided a suitable swarming environment to bacteria even under metal stress by chelating to cationic metal ions. Non-ionic surfactant Triton X-100 was unable to restore swarming under Cd(2+) and Pb(2+) ion stress. Thus, suggesting that surfactin can aid in motility not only by reducing the surface tension of swarming medium but also by binding to metal ions in the presence of metal ions stress.

  2. Development of mechanism for enhancing data security in quantum cryptography

    CERN Document Server

    Singh, Ajit

    2011-01-01

    Nowadays security in communication is increasingly important to the network communication because many categories of data are required restriction on authorization of access, modify, delete and insert. Quantum cryptography is one of the solutions that use property of polarization to ensure that transmitted data is not tampered. The research paper provides the mechanism that enhances the data security in quantum cryptography during exchange of information. In first phase detailed explanation of Quantum key distribution's BB84 protocol is given. BB84 protocol is used as the basis for the mechanism. In next phase the proposed mechanism is explained. The proposed mechanism combines BB84 protocol at two levels, from sender to receiver and then from receiver to sender. Moreover, a logic circuit is used to combine the bits hence to reduce the probability of eavesdropping. The key obtained can be used to exchange the information securely further it can help in encryption and decryption of crucial data. Double level B...

  3. [Isolation of filamentous fungi capable of enhancing sludge dewaterability and study of mechanisms responsible for the sludge dewaterability enhancement].

    Science.gov (United States)

    Zhou, Yu-Jun; Fu, Hao-Yi; Fan, Xian-Feng; Wang, Zhen-Yu; Zheng, Guan-Yu

    2015-02-01

    To study the influence of filamentous fungi on the sludge dewaterability is very significant for the development of biological treatment methods for enhancing sludge dewaterability. In this study, filamentous fungi capable of enhancing sludge dewaterability were isolated from sewage sludge and the related mechanisms responsible for the sludge dewaterability enhancement were investigated. A filamentous fungus Mucor circinelloides ZG-3 was successfully isolated from sludge, and sludge dewaterability could be drastically improved by this fungus. Further study revealed that the enhancement of sludge dewaterability was influenced by inoculation method, inoculum size and solid content of sludge. The optimal inoculation method was mycelia inoculation, the optimal inoculum size was 10%, and the optimal solid content of sludge was about 4%. Under the optimized conditions, the specific resistance to filtration (SRF) of sludge could be decreased by 75.1% after being treated by M. circinelloides ZG-3. After the treatment, the COD value of sludge supernatant was only 310 mg x L(-1), and the treated sludge still exhibited good settleability. During the treatment of sewage sludge by M. circinelloides ZG-3, the mechanisms responsible for the sludge dewaterability enhancement included the degradation of sludge extracellular polymeric substances (EPS) and the decrease of sludge pH. Therefore, the treatment of sewage sludge using M. circinelloides ZG-3 is a useful and novel method for sludge conditioning.

  4. Mechanisms for training security inspectors to enhance human performance

    Energy Technology Data Exchange (ETDEWEB)

    Burkhalter, H.E.; Sessions, J.C.

    1988-01-01

    The Department of Energy (DOE) has established qualification standards for protective force personnel employed at nuclear facilities (10 CFR Part 1046 (Federal Register)). Training mechanisms used at Los Alamos to enhance human performance in meeting DOE standards include, but are not limited to, the following: for cardio-respiratory training, they utilize distance running, interval training, sprint training, pacing, indoor aerobics and circuit training; for muscular strength, free weights, weight machines, light hand weights, grip strength conditioners, and calistenics are employed; for muscular endurance, participants do high repetitions (15 - 40) using dumbbells, flex weights, resistive rubber bands, benches, and calisthenics; for flexibility, each training session devotes specific times to stretch the muscles involved for a particular activity. These training mechanisms with specific protocols can enhance human performance.

  5. Enhancing depression mechanisms in midbrain dopamine neurons achieves homeostatic resilience.

    Science.gov (United States)

    Friedman, Allyson K; Walsh, Jessica J; Juarez, Barbara; Ku, Stacy M; Chaudhury, Dipesh; Wang, Jing; Li, Xianting; Dietz, David M; Pan, Nina; Vialou, Vincent F; Neve, Rachael L; Yue, Zhenyu; Han, Ming-Hu

    2014-04-18

    Typical therapies try to reverse pathogenic mechanisms. Here, we describe treatment effects achieved by enhancing depression-causing mechanisms in ventral tegmental area (VTA) dopamine (DA) neurons. In a social defeat stress model of depression, depressed (susceptible) mice display hyperactivity of VTA DA neurons, caused by an up-regulated hyperpolarization-activated current (I(h)). Mice resilient to social defeat stress, however, exhibit stable normal firing of these neurons. Unexpectedly, resilient mice had an even larger I(h), which was observed in parallel with increased potassium (K(+)) channel currents. Experimentally further enhancing Ih or optogenetically increasing the hyperactivity of VTA DA neurons in susceptible mice completely reversed depression-related behaviors, an antidepressant effect achieved through resilience-like, projection-specific homeostatic plasticity. These results indicate a potential therapeutic path of promoting natural resilience for depression treatment.

  6. Biochar enhances yield and quality of tomato under reduced irrigation

    DEFF Research Database (Denmark)

    Saleem Akhtar, Saqib; Li, Guitong; Andersen, Mathias Neumann

    2014-01-01

    tBiochar is an amendment that can be used for enhancing soil water storage which may increase cropproductivity. The objective of this study was to investigate the effects of biochar on physiology, yield andquality of tomato under different irrigation regimes. From early flowering to fruit maturity...... stages, theplants were subjected to full irrigation (FI), deficit irrigation (DI) and partial root-zone drying irrigation(PRD) and two levels of biochar (0% and 5% by weight). In FI, the plants were irrigated daily to pot waterholding capacity while in DI and PRD, 70% of FI was irrigated on either...... the whole or one side of the pots,respectively. In PRD, irrigation was switched between sides when the soil water content of the dry sidedecreased to 15%. The results showed that addition of biochar increased the soil moisture contents in DIand PRD, which consequently improved physiology, yield, and quality...

  7. Enhancement and Suppression in the Visual Field under Perceptual Load

    Directory of Open Access Journals (Sweden)

    Nathan A Parks

    2013-05-01

    Full Text Available The perceptual load theory of attention proposes that the degree to which visual distractors are processed is a function of the attentional demands of a task – greater demands increase filtering of irrelevant distractors. The spatial configuration of such filtering is unknown. Here, we used steady-state visual evoked potentials (SSVEPs in conjunction with time-domain event-related potentials (ERPs to investigate the distribution of load-induced distractor suppression and task-relevant enhancement in the visual field. Electroencephalogram (EEG was recorded while subjects performed a foveal go/no-go task that varied in perceptual load. Load-dependent distractor suppression was assessed by presenting a contrast reversing ring at one of three eccentricities (2°, 6°, or 11° during performance of the go/no-go task. Rings contrast reversed at 8.3 Hz, allowing load-dependent changes in distractor processing to be tracked in the frequency-domain. ERPs were calculated to the onset of stimuli in the load task to examine load-dependent modulation of task-relevant processing. Results showed that the amplitude of the distractor SSVEP (8.3Hz was attenuated under high perceptual load (relative to low load at the most proximal (2° eccentricity but not at more eccentric locations (6˚ or 11˚. Task-relevant ERPs revealed a significant increase in N1 amplitude under high load. These results are consistent with a center-surround configuration of load-induced enhancement and suppression in the visual field.

  8. The local enhancement conundrum: in search of the adaptive value of a social learning mechanism.

    Science.gov (United States)

    Arbilly, Michal; Laland, Kevin N

    2014-02-01

    Social learning mechanisms are widely thought to vary in their degree of complexity as well as in their prevalence in the natural world. While learning the properties of a stimulus that generalize to similar stimuli at other locations (stimulus enhancement) prima facie appears more useful to an animal than learning about a specific stimulus at a specific location (local enhancement), empirical evidence suggests that the latter is much more widespread in nature. Simulating populations engaged in a producer-scrounger game, we sought to deploy mathematical models to identify the adaptive benefits of reliance on local enhancement and/or stimulus enhancement, and the alternative conditions favoring their evolution. Surprisingly, we found that while stimulus enhancement readily evolves, local enhancement is advantageous only under highly restricted conditions: when generalization of information was made unreliable or when error in social learning was high. Our results generate a conundrum over how seemingly conflicting empirical and theoretical findings can be reconciled. Perhaps the prevalence of local enhancement in nature is due to stimulus enhancement costs independent of the learning task itself (e.g. predation risk), perhaps natural habitats are often characterized by unreliable yet highly rewarding payoffs, or perhaps local enhancement occurs less frequently, and stimulus enhancement more frequently, than widely believed.

  9. Understanding ultrasound induced sonoporation: definitions and underlying mechanisms.

    Science.gov (United States)

    Lentacker, I; De Cock, I; Deckers, R; De Smedt, S C; Moonen, C T W

    2014-06-01

    In the past two decades, research has underlined the potential of ultrasound and microbubbles to enhance drug delivery. However, there is less consensus on the biophysical and biological mechanisms leading to this enhanced delivery. Sonoporation, i.e. the formation of temporary pores in the cell membrane, as well as enhanced endocytosis is reported. Because of the variety of ultrasound settings used and corresponding microbubble behavior, a clear overview is missing. Therefore, in this review, the mechanisms contributing to sonoporation are categorized according to three ultrasound settings: i) low intensity ultrasound leading to stable cavitation of microbubbles, ii) high intensity ultrasound leading to inertial cavitation with microbubble collapse, and iii) ultrasound application in the absence of microbubbles. Using low intensity ultrasound, the endocytotic uptake of several drugs could be stimulated, while short but intense ultrasound pulses can be applied to induce pore formation and the direct cytoplasmic uptake of drugs. Ultrasound intensities may be adapted to create pore sizes correlating with drug size. Small molecules are able to diffuse passively through small pores created by low intensity ultrasound treatment. However, delivery of larger drugs such as nanoparticles and gene complexes, will require higher ultrasound intensities in order to allow direct cytoplasmic entry.

  10. [Neuronal mechanisms underlying pain-induced negative emotions].

    Science.gov (United States)

    Minami, Masabumi

    2012-11-01

    Pain consists of sensory-discriminative and negative emotional components. Although the neuronal basis of the sensory component of pain has been studied extensively, the neuronal mechanisms underlying the negative emotional component are not well understood. Recently, behavioral studies using a conditioned place paradigm have successfully elucidated the neuronal circuits and mechanisms underlying the negative emotional component of pain. Excitotoxic lesions of the anterior cingulate cortex (ACC), central amygdaloid nucleus, basolateral amygdaloid nucleus (BLA), or bed nucleus of the stria terminalis (BNST) suppress intraplantar formalin-induced aversive responses. Glutamatergic transmission within the ACC and BLA via N-methyl-D-asparate (NMDA) receptors has been shown to play a critical role in these aversive responses. In the BNST, especially its ventral part, noradrenergic transmission via β-adrenergic receptors has been shown to be important for pain-induced aversion. Because persistent pain is frequently associated with psychological and emotional dysfunctions, studies on the neuronal circuits and molecular mechanisms involved in the negative emotional component of pain may have considerable clinical importance in the treatment of chronic pain. Here, I have reviewed behavioral studies investigating the neuronal mechanisms underlying the negative emotional component of pain and have introduced our data showing the pivotal role of amygdala and BNST in pain-induced aversion.

  11. Trichostatin A enhances estrogen receptor-alpha repression in MCF-7 breast cancer cells under hypoxia

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Hyunggyun; Park, Joonwoo; Shim, Myeongguk; Lee, YoungJoo, E-mail: yjlee@sejong.ac.kr

    2016-02-12

    Estrogen receptor (ER) is a crucial determinant of resistance to endocrine therapy, which may change during the progression of breast cancer. We previously showed that hypoxia induces ESR1 gene repression and ERα protein degradation via proteasome-mediated pathway in breast cancer cells. HDAC plays important roles in the regulation of histone and non-histone protein post-translational modification. HDAC inhibitors can induce epigenetic changes and have therapeutic potential for targeting various cancers. Trichostatin A exerts potent antitumor activities against breast cancer cells in vitro and in vivo. In this report, we show that TSA augments ESR1 gene repression at the transcriptional level and downregulates ERα protein expression under hypoxic conditions through a proteasome-mediated pathway. TSA-induced estrogen response element-driven reporter activity in the absence of estrogen was synergistically enhanced under hypoxia; however, TSA inhibited cell proliferation under both normoxia and hypoxia. Our data show that the hypoxia-induced repression of ESR1 and degradation of ERα are enhanced by concomitant treatment with TSA. These findings expand our understanding of hormone responsiveness in the tumor microenvironment; however, additional in-depth studies are required to elucidate the detailed mechanisms of TSA-induced ERα regulation under hypoxia. - Highlights: • TSA augments ESR1 gene repression at the transcriptional level under hypoxia. • TSA downregulates ERα protein expression under hypoxia. • TSA-induced ERα regulation under hypoxia is essential for understanding the behavior and progression of breast cancer.

  12. Mechanical Analysis of Concrete Specimen under Restrained Condition

    Institute of Scientific and Technical Information of China (English)

    MA Xinwei; NIU Changren; R D Hooton

    2005-01-01

    In order to quantify the development of the tensile stresses and obtain a reliable estimation of the cracking risk, the concrete was subjected to restrained conditions. The fully restrained condition was achieved by keeping the length constant of a concrete specimen. Comparing the free shrinkage with the restrained shrinkage,tensile creep could be discriminated from shrinkage. The testing method was introduced in details, and the mechanical behaviors under tensile load were analyzed. Results show that concrete exhibits a pronounced viscoelasticity. Under restrained condition, the self induced tensile stress increases with time. The lower the water to cement ratio, the larger the tensile stress at the same age. The tensile creep of hardening concrete is much larger than that of hardened concrete. The relationships among autogenous shrinkage under free condition, elastic strain and creep under restrained condition are described, and the mathematical model for the calculation of elastic strain and creep is proposed.

  13. Enhanced disinfection efficiency of mechanically mixed oxidants with free chlorine.

    Science.gov (United States)

    Son, Hyunju; Cho, Min; Kim, Jaeeun; Oh, Byungtaek; Chung, Hyenmi; Yoon, Jeyong

    2005-02-01

    To the best of our knowledge, this study is the first investigation to be performed into the potential benefits of mechanically mixed disinfectants in controlling bacterial inactivation. The purpose of this study was to evaluate the disinfection efficiency of mechanically mixed oxidants with identical oxidant concentrations, which were made by adding small amounts of subsidiary oxidants, namely ozone (O3), chlorine dioxide (ClO2), hydrogen peroxide (H2O2) and chlorite (ClO2(-)), to free available chlorine (Cl2), using Bacillus subtilis spores as the indicator microorganisms. The mechanically mixed oxidants containing Cl2/O3, Cl2/ClO2 and Cl2/ClO2(-) showed enhanced efficiencies (of up to 52%) in comparison with Cl2 alone, whereas no significant difference was observed between the mixed oxidant, Cl2/H2O2, and Cl2 alone. This enhanced disinfection efficiency can be explained by the synergistic effect of the mixed oxidant itself and the effect of intermediates such as ClO2(-)/ClO2, which are generated from the reaction between an excess of Cl2 and a small amount of O3/ClO2(-). Overall, this study suggests that mechanically mixed oxidants incorporating excess chlorine can constitute a new and moderately efficient method of disinfection.

  14. Nanomaterial-modulated autophagy: underlying mechanisms and functional consequences.

    Science.gov (United States)

    Zheng, Wei; Wei, Min; Li, Song; Le, Weidong

    2016-06-01

    Autophagy is an essential lysosome-dependent process that controls the quality of the cytoplasm and maintains cellular homeostasis, and dysfunction of this protein degradation system is correlated with various disorders. A growing body of evidence suggests that nanomaterials (NMs) have autophagy-modulating effects, thus predicting a valuable and promising application potential of NMs in the diagnosis and treatment of autophagy-related diseases. NMs exhibit unique physical, chemical and biofunctional properties, which may endow NMs with capabilities to modulate autophagy via various mechanisms. The present review highlights the impacts of various NMs on autophagy and their functional consequences. The possible underlying mechanisms for NM-modulated autophagy are also discussed.

  15. Enhanced entanglement of two different mechanical resonators via coherent feedback

    CERN Document Server

    Li, Jie; Zippilli, Stefano; Vitali, David; Zhang, Tiancai

    2016-01-01

    It is shown [New J. Phys. 17, 103037 (2015)] that extremely large and robust entanglement between two different mechanical resonators could be achieved, either dynamically or in the steady state, in an optomechanical system in which a single cavity mode driven by a suitably chosen two-tone field is coupled to two mechanical modes. The main limitation of the scheme is that the cavity decay rate must be much smaller than the two mechanical frequencies and their difference, allowing taking the rotating wave approximation where counter-rotating, non-resonant terms associated with the bichromatic driving are negligible. Here we show that, by simply adding a coherent feedback loop, the large entanglement can be remarkably enhanced and the effective cavity decay rate can be significantly reduced. Therefore, it improves the results of Ref. [New J. Phys. 17, 103037 (2015)] and meantime greatly extends the validity of the scheme.

  16. Damage Evolution On Mechanical Parts Under Cyclic Loading

    Science.gov (United States)

    Lestriez, P.; Bogard, F.; Shan, J. L.; Guo, Y. Q.

    2007-05-01

    This paper presents a fatigue damage model, based on the continuum damage mechanics and general thermodynamic theory, proposed by Lemaitre and Chaboche, for rolling bearings under very numerous loading cycles. A flow surface of fatigue using the Sines criterion is adopted. The coupling between the hardening plasticity and damage effects is considered in the constitutive equations. An explicit algorithm of weak coupling leads to a calculation very fast. This fatigue damage model is implemented into Abaqus/Explicit using a Vumat user's subroutine. Moreover, the damage variable in function of time is transformed into a function of number of cycles. An algorithm of cycle jump, with a criterion for choosing the number increment of cycles, is proposed, which allows to largely reduce the CPU time. The present damage simulation allows to determine the lifetime of mechanical parts under cyclic loading.

  17. Mental imagery in music performance: underlying mechanisms and potential benefits.

    Science.gov (United States)

    Keller, Peter E

    2012-04-01

    This paper examines the role of mental imagery in music performance. Self-reports by musicians, and various other sources of anecdotal evidence, suggest that covert auditory, motor, and/or visual imagery facilitate multiple aspects of music performance. The cognitive and motor mechanisms that underlie such imagery include working memory, action simulation, and internal models. Together these mechanisms support the generation of anticipatory images that enable thorough action planning and movement execution that is characterized by efficiency, temporal precision, and biomechanical economy. In ensemble performance, anticipatory imagery may facilitate interpersonal coordination by enhancing online predictions about others' action timing. Overlap in brain regions subserving auditory imagery and temporal prediction is consistent with this view. It is concluded that individual differences in anticipatory imagery may be a source of variation in expressive performance excellence and the quality of ensemble cohesion. Engaging in effortful musical imagery is therefore justified when artistic perfection is the goal. © 2012 New York Academy of Sciences.

  18. Continuous damage parameter calculation under thermo-mechanical random loading

    OpenAIRE

    Marko Nagode

    2014-01-01

    The paper presents a method on how the mean stress effect on fatigue damage can be taken into account under an arbitrary low cycle thermo-mechanical loading. From known stress, elastoplastic strain and temperature histories the cycle amplitudes and cycle mean values are extracted and the damage parameter is computed. In contrast to the existing methods the proposed method enables continuous damage parameter computation without the need of waiting for the cycles to close. The limitations of th...

  19. Shared Neural Mechanisms Underlying Social Warmth and Physical Warmth

    OpenAIRE

    Inagaki, TK; Eisenberger, NI

    2013-01-01

    Many of people's closest bonds grow out of socially warm exchanges and the warm feelings associated with being socially connected. Indeed, the neurobiological mechanisms underlying thermoregulation may be shared by those that regulate social warmth, the experience of feeling connected to other people. To test this possibility, we placed participants in a functional MRI scanner and asked them to (a) read socially warm and neutral messages from friends and family and (b) hold warm and neutral-t...

  20. Mechanisms Underlying Dysregulation of Electrolyte Absorption in IBD Associated Diarrhea

    OpenAIRE

    Priyamvada, Shubha; Gomes, Rochelle; Gill, Ravinder K.; Saksena, Seema; Alrefai, Waddah A.; Pradeep K Dudeja

    2015-01-01

    Inflammatory Bowel Diseases (IBD), including Crohn’s disease (CD) and ulcerative colitis (UC), are chronic, relapsing inflammatory disorders of the gastrointestinal tract. Chronic inflammation of the intestine affects the normal fluid and electrolyte absorption leading to diarrhea, the hallmark symptom of IBD. The management of IBD associated diarrhea still remains to be a challenge, and extensive studies over the last two decades have focused on investigating the molecular mechanisms underly...

  1. Modeling of Hysteresis Losses in Ferromagnetic Laminations under Mechanical Stress

    OpenAIRE

    Rasilo, Paavo; Singh, Deepak; Aydin, Ugur; Martin, Floran; Kouhia, Reijo; Belahcen, Anouar; Arkkio, Antero

    2015-01-01

    A novel approach for predicting magnetic hysteresis loops and losses in ferromagnetic laminations under mechanical stress is presented. The model is based on combining a Helmholtz free energy -based anhysteretic magnetoelastic constitutive law to a vector Jiles-Atherton hysteresis model. This paper focuses only on unidirectional and parallel magnetic fields and stresses, albeit the model is developed in full 3-D configuration in order to account also for strains perpendicular to the loading d...

  2. Control of a perturbed under-actuated mechanical system

    KAUST Repository

    Zayane, Chadia

    2015-11-05

    In this work, the trajectory tracking problem for an under-actuated mechanical system in presence of unknown input disturbances is addressed. The studied inertia wheel inverted pendulum falls in the class of non minimum phase systems. The proposed high order sliding mode control architecture including a controller and differentiator allows to track accurately the predefined trajectory and to stabilize the internal dynamics. The robustness of the proposed approach is illustrated through different perturbation and output noise configurations.

  3. Neural mechanisms underlying morphine withdrawal in addicted patients: a review

    Directory of Open Access Journals (Sweden)

    Nima Babhadiashar

    2015-06-01

    Full Text Available Morphine is one of the most potent alkaloid in opium, which has substantial medical uses and needs and it is the first active principle purified from herbal source. Morphine has commonly been used for relief of moderate to severe pain as it acts directly on the central nervous system; nonetheless, its chronic abuse increases tolerance and physical dependence, which is commonly known as opiate addiction. Morphine withdrawal syndrome is physiological and behavioral symptoms that stem from prolonged exposure to morphine. A majority of brain regions are hypofunctional over prolonged abstinence and acute morphine withdrawal. Furthermore, several neural mechanisms are likely to contribute to morphine withdrawal. The present review summarizes the literature pertaining to neural mechanisms underlying morphine withdrawal. Despite the fact that morphine withdrawal is a complex process, it is suggested that neural mechanisms play key roles in morphine withdrawal.

  4. An NMDA Receptor-Dependent Mechanism Underlies Inhibitory Synapse Development

    Directory of Open Access Journals (Sweden)

    Xinglong Gu

    2016-01-01

    Full Text Available In the mammalian brain, GABAergic synaptic transmission provides inhibitory balance to glutamatergic excitatory drive and controls neuronal output. The molecular mechanisms underlying the development of GABAergic synapses remain largely unclear. Here, we report that NMDA-type ionotropic glutamate receptors (NMDARs in individual immature neurons are the upstream signaling molecules essential for GABAergic synapse development, which requires signaling via Calmodulin binding motif in the C0 domain of the NMDAR GluN1 subunit. Interestingly, in neurons lacking NMDARs, whereas GABAergic synaptic transmission is strongly reduced, the tonic inhibition mediated by extrasynaptic GABAA receptors is increased, suggesting a compensatory mechanism for the lack of synaptic inhibition. These results demonstrate a crucial role for NMDARs in specifying the development of inhibitory synapses, and suggest an important mechanism for controlling the establishment of the balance between synaptic excitation and inhibition in the developing brain.

  5. A novel whole-cell mechanism for long-term memory enhancement.

    Directory of Open Access Journals (Sweden)

    Iris Reuveni

    Full Text Available Olfactory-discrimination learning was shown to induce a profound long-lasting enhancement in the strength of excitatory and inhibitory synapses of pyramidal neurons in the piriform cortex. Notably, such enhancement was mostly pronounced in a sub-group of neurons, entailing about a quarter of the cell population. Here we first show that the prominent enhancement in the subset of cells is due to a process in which all excitatory synapses doubled their strength and that this increase was mediated by a single process in which the AMPA channel conductance was doubled. Moreover, using a neuronal-network model, we show how such a multiplicative whole-cell synaptic strengthening in a sub-group of cells that form a memory pattern, sub-serves a profound selective enhancement of this memory. Network modeling further predicts that synaptic inhibition should be modified by complex learning in a manner that much resembles synaptic excitation. Indeed, in a subset of neurons all GABAA-receptors mediated inhibitory synapses also doubled their strength after learning. Like synaptic excitation, Synaptic inhibition is also enhanced by two-fold increase of the single channel conductance. These findings suggest that crucial learning induces a multiplicative increase in strength of all excitatory and inhibitory synapses in a subset of cells, and that such an increase can serve as a long-term whole-cell mechanism to profoundly enhance an existing Hebbian-type memory. This mechanism does not act as synaptic plasticity mechanism that underlies memory formation but rather enhances the response of already existing memory. This mechanism is cell-specific rather than synapse-specific; it modifies the channel conductance rather than the number of channels and thus has the potential to be readily induced and un-induced by whole-cell transduction mechanisms.

  6. Optical tests of a space mechanism under an adverse environment: GAIA secondary mirror mechanism under vaccum and thermal controlled conditions

    Science.gov (United States)

    Ramos Zapata, Gonzalo; Sánchez Rodríguez, Antonio; Belenguer Dávila, Tomás; Urgoiti, Eduardo; Ramírez Quintana, Argiñe

    2007-09-01

    In this work, the optical evaluation of a mechanism for space applications under vacuum and temperature controlled conditions at the facilities of the Space Instrumentation Laboratory (LINES) of the Aerospace Technical Nacional Institute of Spain (INTA) is reported. The mechanism was developed by the Spanish company SENER to fulfill the high performance requirements from ESA technology preparatory program for GAIA Astrometric Mission; in particular, a five degrees of freedom (dof), three translations and two rotations positioning mechanism for the secondary mirror of the GAIA instrument. Both interferometric tests and autocollimator measurements have been combined in order to extract the information about the accuracy of the mechanism movements as well as their repeatability under adverse environmental conditions: vacuum and thermal controlled conditions, up to a 10 -6mbar and 100K. The scope of this paper will cover the measurements concept selection, the presentation of verification activities, the results of such dedicated optical measurements, the correlation with the mechanical models and a brief description of the design process followed to meet the test requirements.

  7. Stellar performance: mechanisms underlying Milky Way orientation in dung beetles.

    Science.gov (United States)

    Foster, James J; El Jundi, Basil; Smolka, Jochen; Khaldy, Lana; Nilsson, Dan-Eric; Byrne, Marcus J; Dacke, Marie

    2017-04-05

    Nocturnal dung beetles (Scarabaeus satyrus) are currently the only animals that have been demonstrated to use the Milky Way for reliable orientation. In this study, we tested the capacity of S. satyrus to orient under a range of artificial celestial cues, and compared the properties of these cues with images of the Milky Way simulated for a beetle's visual system. We find that the mechanism that permits accurate stellar orientation under the Milky Way is based on an intensity comparison between different regions of the Milky Way. We determined the beetles' contrast sensitivity for this task in behavioural experiments in the laboratory, and found that the resulting threshold of 13% is sufficient to detect the contrast between the southern and northern arms of the Milky Way under natural conditions. This mechanism should be effective under extremely dim conditions and on nights when the Milky Way forms a near symmetrical band that crosses the zenith. These findings are discussed in the context of studies of stellar orientation in migratory birds and itinerant seals.This article is part of the themed issue 'Vision in dim light'. © 2017 The Author(s).

  8. Mechanical Response of Typical Cement Concrete Pavements under Impact Loading

    Directory of Open Access Journals (Sweden)

    Ding Fei

    2017-01-01

    Full Text Available In order to study the mechanical response of cement concrete pavements under impact loading, four types of typical cement concrete pavement structures are investigated experimentally and numerically under an impact load. Full-scale three-dimensional pavement slots are tested under an impact load and are monitored for the mechanical characteristics including the deflection of the pavement surface layer, the strain distribution at the bottom of the slab, and the plastic damage and cracking under the dynamic impact load. Numerical analysis is performed by developing a three-dimensional finite element model and by utilizing a cement concrete damage model. The results show that the calculation results based on the cement concrete damage model are in reasonable agreement with the experimental results based on the three-dimensional test slot experiment. The peak values of stress and strain as monitored by the sensors are analyzed and compared with the numerical results, indicating that the errors of numerical results from the proposed model are mostly within 10%. The rationality of the finite element model is verified, and the model is expected to be a suitable reference for the analysis and design of cement concrete pavements.

  9. Axial level-dependent molecular and cellular mechanisms underlying the genesis of the embryonic neural plate.

    Science.gov (United States)

    Kondoh, Hisato; Takada, Shinji; Takemoto, Tatsuya

    2016-06-01

    The transcription factor gene Sox2, centrally involved in neural primordial regulation, is activated by many enhancers. During the early stages of embryonic development, Sox2 is regulated by the enhancers N2 and N1 in the anterior neural plate (ANP) and posterior neural plate (PNP), respectively. This differential use of the enhancers reflects distinct regulatory mechanisms underlying the genesis of ANP and PNP. The ANP develops directly from the epiblast, triggered by nodal signal inhibition, and via the combined action of TFs SOX2, OTX2, POU3F1, and ZIC2, which promotes the the ANP development and inhibits other cell lineages. In contrast, the PNP is derived from neuromesodermal bipotential axial stem cells that develop into the neural plate when Sox2 is activated by the N1 enhancer, whereas they develop into the paraxial mesoderm when the N1 enhancer is repressed by the action of TBX6. The axial stem cells are maintained by the activity of WNT3a and T (Brachyury). However, at axial levels more anterior to the 8th somites (cervical levels), the development of both the neural plate and somite proceeds in the absence of WNT3a, T, or TBX6. These observations indicate that distinct molecular and cellular mechanisms determine neural plate genesis based on the axial level, and contradict the classical concept of the term "neural induction," which assumes a pan-neural plate mechanism.

  10. Neurometabolic mechanisms for memory enhancement and neuroprotection of methylene blue

    Science.gov (United States)

    Rojas, Julio C.; Bruchey, Aleksandra K.; Gonzalez-Lima, F.

    2011-01-01

    This paper provides the first review of the memory-enhancing and neuroprotective metabolic mechanisms of action of methylene blue in vivo. These mechanisms have important implications as a new neurobiological approach to improve normal memory and to treat memory impairment and neurodegeneration associated with mitochondrial dysfunction. Methylene blue’s action is unique because its neurobiological effects are not determined by regular drug-receptor interactions or drug-response paradigms. Methylene blue shows a hormetic dose-response, with opposite effects at low and high doses. At low doses, methylene blue is an electron cycler in the mitochondrial electron transport chain, with unparalleled antioxidant and cell respiration-enhancing properties that affect the function of the nervous system in a versatile manner. A major role of the respiratory enzyme cytochrome oxidase on the memory-enhancing effects of methylene blue is supported by available data. The memory-enhancing effects have been associated with improvement of memory consolidation in a network-specific and use-dependent fashion. In addition, low doses of methylene blue have also been used for neuroprotection against mitochondrial dysfunction in humans and experimental models of disease. The unique auto-oxidizing property of methylene blue and its pleiotropic effects on a number of tissue oxidases explain its potent neuroprotective effects at low doses. The evidence reviewed supports a mechanistic role of low-dose methylene blue as a promising and safe intervention for improving memory and for the treatment of acute and chronic conditions characterized by increased oxidative stress, neurodegeneration and memory impairment. PMID:22067440

  11. Mechanism Based Approaches for Rescuing and Enhancing Cognition

    Directory of Open Access Journals (Sweden)

    Gary eLynch

    2013-08-01

    Full Text Available Progress towards pharmacological means for enhancing memory and cognition has been retarded by the widely discussed failure of behavioral studies in animals to predict human outcomes. As a result, a number of groups have targeted cognition-related neurobiological mechanisms in animal models, with the assumption that these basic processes are highly conserved across mammals. Here we survey one such approach that begins with a form of synaptic plasticity intimately related to memory encoding in animals and likely operative in humans. An initial section will describe a detailed hypothesis concerning the signaling and structural events (a ‘substrate map’ that convert learning associated patterns of afferent activity into extremely stable increases in fast, excitatory transmission. We next describe results suggesting that all instances of intellectual impairment so far tested in rodent models involve a common endpoint failure in the substrate map. This will be followed by a clinically plausible proposal for obviating the ultimate defect in these models. We then take up the question of whether it is reasonable to expect, from either general principles or a very limited set of experimental results, that enhancing memory will expand the cognitive capabilities of high functioning brains. The final section makes several suggestions about how to improve translation of behavioral results from animals to humans. Collectively, the material covered here points to the following: 1 enhancement, in the sense of rescue, is not an unrealistic possibility for a broad array of neuropsychiatric disorders; 2 serendipity aside, developing means for improving memory in normals will likely require integration of information about mechanisms with new behavioral testing strategies; 3 a shift in emphasis from synapses to networks is a next, logical step in the evolution of the cognition enhancement field.

  12. Peripheral Receptor Mechanisms Underlying Orofacial Muscle Pain and Hyperalgesia

    Science.gov (United States)

    Saloman, Jami L.

    Musculoskeletal pain conditions, particularly those associated with temporomandibular joint and muscle disorders (TMD) are severely debilitating and affect approximately 12% of the population. Identifying peripheral nociceptive mechanisms underlying mechanical hyperalgesia, a prominent feature of persistent muscle pain, could contribute to the development of new treatment strategies for the management of TMD and other muscle pain conditions. This study provides evidence of functional interactions between ligand-gated channels, P2X3 and TRPV1/TRPA1, in trigeminal sensory neurons, and proposes that these interactions underlie the development of mechanical hyperalgesia. In the masseter muscle, direct P2X3 activation, via the selective agonist αβmeATP, induced a dose- and time-dependent hyperalgesia. Importantly, the αβmeATP-induced hyperalgesia was prevented by pretreatment of the muscle with a TRPV1 antagonist, AMG9810, or the TRPA1 antagonist, AP18. P2X3 was co-expressed with both TRPV1 and TRPA1 in masseter muscle afferents confirming the possibility for intracellular interactions. Moreover, in a subpopulation of P2X3 /TRPV1 positive neurons, capsaicin-induced Ca2+ transients were significantly potentiated following P2X3 activation. Inhibition of Ca2+-dependent kinases, PKC and CaMKII, prevented P2X3-mechanical hyperalgesia whereas blockade of Ca2+-independent PKA did not. Finally, activation of P2X3 induced phosphorylation of serine, but not threonine, residues in TRPV1 in trigeminal sensory neurons. Significant phosphorylation was observed at 15 minutes, the time point at which behavioral hyperalgesia was prominent. Similar data were obtained regarding another nonselective cation channel, the NMDA receptor (NMDAR). Our data propose P2X3 and NMDARs interact with TRPV1 in a facilitatory manner, which could contribute to the peripheral sensitization underlying masseter hyperalgesia. This study offers novel mechanisms by which individual pro-nociceptive ligand

  13. Enhanced dechlorination of tetrachloroethylene by zerovalent silicon in the presence of polyethylene glycol under anoxic conditions.

    Science.gov (United States)

    Lee, Chun-Chi; Doong, Ruey-An

    2011-03-15

    The combination of zerovalent silicon (Si(0)) with polyethylene glycol (PEG) is a novel technique to enhance the dechlorination efficiency and rate of chlorinated hydrocarbons. In this study, the dechlorination of tetrachloroethylene (PCE) by Si(0) in the presence of various concentrations of PEG was investigated under anoxic conditions. Several surfactants including cetyltrimethylammonium bromide (CTAB), sodium dodecyl sulfate (SDS), and Tween 80 were also selected for comparison. Addition of SDS and Tween 80 had little effect on the enhancement of PCE dechlorination, while CTAB and PEG significantly enhanced the dechlorination efficiency and rate of PCE by Si(0) under anoxic conditions. The Langmuir-Hinshelwood model was used to describe the dechlorination kinetics of PCE and could be simplified to pseudo-first-order kinetics at low PCE concentration. The rate constants (k(obs)) for PCE dechlorination were 0.21 and 0.36 h(-1) in the presence of CTAB and PEG, respectively. However, the reaction mechanisms for CTAB and PEG are different. CTAB could enhance the apparent water solubility of PCE in solution containing Si(0), leading to the enhancement of dechlorination efficiency and rate of PCE, while PEG prevented the formation of silicon dioxide, and significantly enhanced the dechlorination efficiency and rate of PCE at pH 8.3 ± 0.2. In addition, the dechlorination rate increased upon increasing PEG concentration and then leveled off to a plateau when the PEG concentration was higher than 0.2 μM. The k(obs) for PCE dechlorination by Si(0) in the presence of PEG was 106 times higher than that by Si(0) alone. Results obtained in this study would be helpful in facilitating the development of processes that could be useful for the enhanced degradation of cocontaminants by zerovalent silicon.

  14. An overview of skin penetration enhancers: penetration enhancing activity, skin irritation potential and mechanism of action

    Directory of Open Access Journals (Sweden)

    Sarunyoo Songkro

    2009-08-01

    Full Text Available Transdermal drug delivery has attracted considerable attention over the past 2-3 decades in regard of its many potentialadvantages. However, the role of the skin as a protective barrier renders skin absorption of most drugs problematic. Therefore,skin penetration enhancers are frequently used in the field of transdermal drug delivery in order to reversibly reduce thebarrier function of the stratum corneum, the outermost layer of the skin. To date, a wide range of chemical compounds havebeen shown to enhance the skin penetration of therapeutic drugs. This review presents a critical account of the most commonlyused chemical penetration enhancers (fatty acids and surfactants, and some newer classes of chemical enhancers (terpenes,polymers, monoolein, oxazolidinones, with emphasis on their efficacy, mechanism of action, and skin irritation potential. Thisreview also discusses the traditional and more recently developed methods for the screening and evaluation of chemical penetration enhancers, and addresses the continuing problems in the rational selection of a chemical penetration enhancer for a specific drug to be delivered via the transdermal route.

  15. Enhancement of FSO communications links under complex environment

    Science.gov (United States)

    Alnajjar, Satea H.; Noori, Ammar A.; Moosa, Arwa A.

    2017-06-01

    Free space optical communication is a line-of-sight (LOS) technology that uses lasers to provide optical bandwidth connections. Potential disturbance arising from the weather condition is one of the most effective factors that influence the bi-directional free space optics (FSO) performance. The complex weather condition in the Middle East region and Arabian Gulf has been dominated by dust storms activities. Dust storms directly affect the characteristics of FSO and consequently lead to an increase in the bit error rate (BER) and deterioration Q-factor to bad levels due to the high attenuation factor. In this research, the authors compare the differences between two bi-directional FSOs. One is the traditional link, and the other has been developed to enhance the system performance under the dust storms condition. The proposed design consists of dual FSO channels, and each one includes erbium-doped fiber amplifier (EDFA) optical amplifiers. This design has demonstrated the proficiency in addressing the attenuation that occurs due to weather stickers. The results prove there is an improvement in performance by measuring the Q-factor. In addition, BER can be significantly improved, and further communicating distance can be achieved by utilizing 1550 nm with multiple channels and EDFA.

  16. Enhancement of FSO communications links under complex environment

    Science.gov (United States)

    Alnajjar, Satea H.; Noori, Ammar A.; Moosa, Arwa A.

    2017-03-01

    Free space optical communication is a line-of-sight (LOS) technology that uses lasers to provide optical bandwidth connections. Potential disturbance arising from the weather condition is one of the most effective factors that influence the bi-directional free space optics (FSO) performance. The complex weather condition in the Middle East region and Arabian Gulf has been dominated by dust storms activities. Dust storms directly affect the characteristics of FSO and consequently lead to an increase in the bit error rate (BER) and deterioration Q-factor to bad levels due to the high attenuation factor. In this research, the authors compare the differences between two bi-directional FSOs. One is the traditional link, and the other has been developed to enhance the system performance under the dust storms condition. The proposed design consists of dual FSO channels, and each one includes erbium-doped fiber amplifier (EDFA) optical amplifiers. This design has demonstrated the proficiency in addressing the attenuation that occurs due to weather stickers. The results prove there is an improvement in performance by measuring the Q-factor. In addition, BER can be significantly improved, and further communicating distance can be achieved by utilizing 1550 nm with multiple channels and EDFA.

  17. Laboratory evidence for particle mobilization as a mechanism for permeability enhancement via dynamic stressing

    Science.gov (United States)

    Candela, Thibault; Brodsky, Emily E.; Marone, Chris; Elsworth, Derek

    2014-04-01

    It is well-established that seismic waves can increase the permeability in natural systems, yet the mechanism remains poorly understood. We investigate the underlying mechanics by generating well-controlled, repeatable permeability enhancement in laboratory experiments. Pore pressure oscillations, simulating dynamic stresses, were applied to intact and fractured Berea sandstone samples under confining stresses of tens of MPa. Dynamic stressing produces an immediate permeability enhancement ranging from 1 to 60%, which scales with the amplitude of the dynamic strain (7×10-7 to 7×10-6) followed by a gradual permeability recovery. We investigated the mechanism by: (1) recording deformation of samples both before and after fracturing during the experiment, (2) varying the chemistry of the water and therefore particle mobility, (3) evaluating the dependence of permeability enhancement and recovery on dynamic stress amplitude, and (4) examining micro-scale pore textures of the rock samples before and after experiments. We find that dynamic stressing does not produce permanent deformation in our samples. Water chemistry has a pronounced effect on the sensitivity to dynamic stressing, with the magnitude of permeability enhancement and the rate of permeability recovery varying with ionic strength of the pore fluid. Permeability recovery rates generally correlate with the permeability enhancement sensitivity. Microstructural observations of our samples show clearing of clay particulates from fracture surfaces during the experiment. From these four lines of evidence, we conclude that a flow-dependent mechanism associated with mobilization of fines controls both the magnitude of the permeability enhancement and the recovery rate in our experiments. We also find that permeability sensitivity to dynamic stressing increases after fracturing, which is a process that generates abundant particulate matter in situ. Our results suggest that fluid permeability in many areas of the

  18. Empirical extraction of mechanisms underlying real world network generation

    Science.gov (United States)

    Itzhack, Royi; Muchnik, Lev; Erez, Tom; Tsaban, Lea; Goldenberg, Jacob; Solomon, Sorin; Louzoun, Yoram

    2010-11-01

    The generation mechanisms of real world networks have been described using multiple models. The mathematical features of these models are usually extrapolated from statistical properties of a snapshot of these networks. We here propose an alternative method based on direct measurement of a sequence of consecutive snapshots to uncover the dynamics underlying real world generation. We assume that the probability of adding a node or an edge depends only on local features surrounding the newly added node/edge, and directly measure the contribution of these features to the node/edge addition probability. These measurements are performed using newly defined N-node local structures. Each N-node local structure represents the configuration of edges surrounding a newly added edge. The N-node local structure measurements reproduce for some networks the now classical addition of edges between high degree node mechanisms. It also provides quantitative estimates of more complex mechanisms driving other networks’ evolution, such as the effect of common first and second neighbors. This new methodology reveals the relative importance of different generation mechanisms. We show, for example, that the main mechanism driving hyperlink addition between two websites is the existence of a third website linking to both the source and the target of the new hyperlink.

  19. Mechanical properties of a collagen fibril under simulated degradation.

    Science.gov (United States)

    Malaspina, David C; Szleifer, Igal; Dhaher, Yasin

    2017-11-01

    Collagen fibrils are a very important component in most of the connective tissue in humans. An important process associated with several physiological and pathological states is the degradation of collagen. Collagen degradation is usually mediated by enzymatic and non-enzymatic processes. In this work we use molecular dynamics simulations to study the influence of simulated degradation on the mechanical properties of the collagen fibril. We applied tensile stress to the collagen fiber at different stages of degradation. We compared the difference in the fibril mechanical priorities due the removal of enzymatic crosslink, surface degradation and volumetric degradation. As anticipated, our results indicated that, regardless of the degradation scenario, fibril mechanical properties is reduced. The type of degradation mechanism (crosslink, surface or volumetric) expressed differential effect on the change in the fibril stiffness. Our simulation results showed dramatic change in the fibril stiffness with a small amount of degradation. This suggests that the hierarchical structure of the fibril is a key component for the toughness and is very sensitive to changes in the organization of the fibril. The overall results are intended to provide a theoretical framework for the understanding the mechanical behavior of collagen fibrils under degradation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Large Chip Production Mechanism under the Extreme Load Cutting Conditions

    Institute of Scientific and Technical Information of China (English)

    LIU Xianli; HE Genghuang; YAN Fugang; CHENG Yaonan; LIU Li

    2015-01-01

    There has existed a great deal of theory researches in term of chip production and chip breaking characteristics under conventional cutting and high speed cutting conditions, however, there isn’t sufficient research on chip formation mechanism as well as its influence on cutting state regarding large workpieces under extreme load cutting. This paper presents a model of large saw-tooth chip through applying finite element simulation method, which gives a profound analysis about the characteristics of the extreme load cutting as well as morphology and removal of the large chip. In the meantime, a calculation formula that gives a quantitative description of the saw-tooth level regarding the large chip is established on the basis of cutting experiments on high temperature and high strength steel 2.25Cr-1Mo-0.25V. The cutting experiments are carried out by using the scanning electron microscope and super depth of field electron microscope to measure and calculate the large chip produced under different cutting parameters, which can verify the validity of the established model. The calculating results show that the large saw-toothed chip is produced under the squeezing action between workpiece and cutting tools. In the meanwhile, the chip develops a hardened layer where contacts the cutting tool and the saw-tooth of the chip tend to form in transverse direction. This research creates the theoretical model for large chip and performs the cutting experiments under the extreme load cutting condition, as well as analyzes the production mechanism of the large chip in the macro and micro conditions. Therefore, the proposed research could provide theoretical guidance and technical support in improving productivity and cutting technology research.

  1. Redesign of Indonesian-made osteosynthesis plates to enhance their mechanical behavior.

    Science.gov (United States)

    Dewo, P; van der Houwen, E B; Suyitno; Marius, R; Magetsari, R; Verkerke, G J

    2015-02-01

    Mechanical properties determined by fatigue strength, ductility, and toughness are important measures for osteosynthesis plates in order to tolerate some load-bearing situations caused by muscle contractions and weight-bearing effects. Previous study indicated that Indonesian-made plates showed lower mechanical strength compared to the European AO standard plate. High stress under load-bearing situations often starts from surface of the plate; we therefore refined the grain size of the surface by using shot peening and surface mechanical attrition treatment (SMAT). Single cycle bending tests showed that shot-peened and SMAT-treated plates had significantly higher load limit and bending stress compared to the original plates (pIndonesian-made plates can be improved upon SMAT treatment leading to significant enhancement of mechanical strength thus is comparable to the standard plate. Our findings highlight the benefits of SMAT treatment to improve mechanical strength of Indonesian-made osteosynthesis plates.

  2. Theoretical considerations underlying Na(+) uptake mechanisms in freshwater fishes.

    Science.gov (United States)

    Parks, Scott K; Tresguerres, Martin; Goss, Greg G

    2008-11-01

    Ion and acid-base regulating mechanisms have been studied at the fish gill for almost a century. Original models proposed for Na(+) and Cl(-) uptake, and their linkage with H(+) and HCO(3)(-) secretion have changed substantially with the development of more sophisticated physiological techniques. At the freshwater fish gill, two dominant mechanisms for Na(+) uptake from dilute environments have persisted in the literature. The use of an apical Na(+)/H(+) exchanger driven by a basolateral Na(+)/K(+)-ATPase versus an apical Na(+) channel electrogenically coupled to an apical H(+)-ATPase have been the source of debate for a number of years. Advances in molecular biology have greatly enhanced our understanding of the basic ion transport mechanisms at the fish gill. However, it is imperative to ensure that thermodynamic principles are followed in the development of new models for gill ion transport. This review will focus on the recent molecular advances for Na(+) uptake in freshwater fish. Emphasis will be placed on thermodynamic constraints that prevent electroneutral apical NHE function in most freshwater environments. By combining recent advances in molecular and functional physiology of fish gills with thermodynamic considerations of ion transport, our knowledge in the field should continue to grow in a logical manner.

  3. Peptide Formation Mechanism on Montmorillonite Under Thermal Conditions

    Science.gov (United States)

    Fuchida, Shigeshi; Masuda, Harue; Shinoda, Keiji

    2014-02-01

    The oligomerization of amino acids is an essential process in the chemical evolution of proteins, which are precursors to life on Earth. Although some researchers have observed peptide formation on clay mineral surfaces, the mechanism of peptide bond formation on the clay mineral surface has not been clarified. In this study, the thermal behavior of glycine (Gly) adsorbed on montmorillonite was observed during heating experiments conducted at 150 °C for 336 h under dry, wet, and dry-wet conditions to clarify the mechanism. Approximately 13.9 % of the Gly monomers became peptides on montmorillonite under dry conditions, with diketopiperazine (cyclic dimer) being the main product. On the other hand, peptides were not synthesized in the absence of montmorillonite. Results of IR analysis showed that the Gly monomer was mainly adsorbed via hydrogen bonding between the positively charged amino groups and negatively charged surface sites (i.e., Lewis base sites) on the montmorillonite surface, indicating that the Lewis base site acts as a catalyst for peptide formation. In contrast, peptides were not detected on montmorillonite heated under wet conditions, since excess water shifted the equilibrium towards hydrolysis of the peptides. The presence of water is likely to control thermodynamic peptide production, and clay minerals, especially those with electrophilic defect sites, seem to act as a kinetic catalyst for the peptide formation reaction.

  4. Mechanisms underlying astringency: introduction to an oral tribology approach

    Science.gov (United States)

    Upadhyay, Rutuja; Brossard, Natalia; Chen, Jianshe

    2016-03-01

    Astringency is one of the predominant factors in the sensory experience of many foods and beverages ranging from wine to nuts. The scientific community is discussing mechanisms that explain this complex phenomenon, since there are no conclusive results which correlate well with sensory astringency. Therefore, the mechanisms and perceptual characteristics of astringency warrant further discussion and investigation. This paper gives a brief introduction of the fundamentals of oral tribology forming a basis of the astringency mechanism. It discusses the current state of the literature on mechanisms underlying astringency describing the existing astringency models. The review discusses the crucial role of saliva and its physiology which contributes significantly in astringency perception in the mouth. It also provides an overview of research concerned with the physiological and psychophysical factors that mediate the perception of this sensation, establishing the ground for future research. Thus, the overall aim of the review is to establish the critical roles of oral friction (thin-film lubrication) in the sensation of astringency and possibly of some other specific sensory features.

  5. Mechanisms underlying KCNQ1channel cell volume sensitivity

    DEFF Research Database (Denmark)

    Hammami, Sofia

    Cells are constantly exposed to changes in cell volume during cell metabolism, nutrient uptake, cell proliferation, cell migration and salt and water transport. In order to cope with these perturbations, potassium channels in line with chloride channels have been shown to be likely contributors...... to the process of cell volume adjustments. A great diversity of potassium channels being members of either the 6TM, 4 TM or 2 TM K+ channel gene family have been shown to be strictly regulated by small, fast changes in cell volume. However, the precise mechanism underlying the K+ channel sensitivity to cell...... mechanism of regulation. Besides being regulated by cell volume, KCNQ1 is also modulated by the interaction of the ß subunit KCNE1 giving rise to the cardiac IKs delayed rectifier potassium current. Apart from altering the kinetic characteristics of the KCNQ1 channel current, KCNE1 also augments the KCNQ1...

  6. Quasi-nano wear mechanism under repeated impact contact loading

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A new quasi-nano wear mechanism (QNWM) has been proposed in this paper based on the facts of wear curve turning under high energy impact contact loading.Its characteristic is that the wear rate of QNWM is only 1/10-1/3 that of delamination mechanism at the same energy density.The diameters of wear debris and pits on the worn surfaces fall into the quasi-nanometer scale (about 50-120 nm).The necessary and sufficient conditions,which bring about the QNWM,are:(i) the nano-structure (nano-crystalline + amorphous phase) in impact contact surface layer has formed by the intensive impact strain;(ii) the delamination wear cracking in sub-surface layer must be restrained;(iii) the microcracks of QNWM are produced in amorphous phase of surface nano-structure layer rather than in nano-crystalline.

  7. Mechanical Design of AM Fabricated Prismatic Rods under Torsion

    Directory of Open Access Journals (Sweden)

    Manzhirov Alexander V.

    2017-01-01

    Full Text Available We study the stress-strain state of viscoelastic prismatic rods fabricated or repaired by additive manufacturing technologies under torsion. An adequate description of the processes involved is given by methods of a new scientific field, mechanics of growing solids. Three main stages of the deformation process (before the beginning of growth, in the course of growth, and after the termination of growth are studied. Two versions of statement of two problems are given: (i given the torque, find the stresses, displacements, and torsion; (ii given the torsion, find the stresses, displacements, and torque. Solution methods using techniques of complex analysis are presented. The results can be used in mechanical and instrument engineering.

  8. Fine coal dewatering enhancement using mechanical thermal techniques

    Energy Technology Data Exchange (ETDEWEB)

    Patwardhan, A.; Mondal, K.; Chugh, Y.P.; Ping, H.; Singh, N. [Southern Illinois University-Carbondale, Carbondale, IL (USA). Department of Mining & Mineral Resources Engineering

    2002-07-01

    Studies were conducted in a laboratory pressure filter to evaluate and enhance the dewatering potential of thickener underflow samples from two operating coal mines in Illinois mining the No. 6 and No. 5 seams. Physical properties such as, size distribution, zeta potential variation with pH, microstructure and particle shape and ash content were characterized. In addition cake microstructure data was obtained through scanning electron microscopy. Experiments were conducted at a pressure of 42 psig. The initial solids content was varied from 8 to 30% to determine the impact of initial solids concentration on dewatering performance. A host of chemical treatments involving different surfactants and electrolytes were evaluated. In addition, mechanical agitation of cake and hot water treatment of the slurry was attempted. The introduction of copper ions into the slurry resulted in enhanced filtration rates due to reduced specific resistance to filtrate flow and increased porosity of the cake. Use of cationic and anionic surfactants reduced the total residual moisture by over 4%. The combined effect of a surfactant and copper ion resulted in further reduction in cake moisture along with significant improvement in dewatering rates. Elevating the temperature of the slurry to 55{degree}C showed only a slight improvement in filtration rate but produced the most compact cake with the lowest moisture content. Significant improvement in the dewatering kinetics from addition of electrolytes was also observed for the Illinois No. 5 seam sample. Statistical analysis of experimental data indicates dewatering enhancements as a result of electrolyte addition, hot water treatment and mechanical agitation. 20 refs., 5 figs., 7 tabs.

  9. Biochemical mechanisms of signaling: perspectives in plants under arsenic stress.

    Science.gov (United States)

    Islam, Ejazul; Khan, Muhammad Tahir; Irem, Samra

    2015-04-01

    Plants are the ultimate food source for humans, either directly or indirectly. Being sessile in nature, they are exposed to various biotic and abiotic stresses because of changing climate that adversely effects their growth and development. Contamination of heavy metals is one of the major abiotic stresses because of anthropogenic as well as natural factors which lead to increased toxicity and accumulation in plants. Arsenic is a naturally occurring metalloid toxin present in the earth crust. Due to its presence in terrestrial and aquatic environments, it effects the growth of plants. Plants can tolerate arsenic using several mechanisms like phytochelation, vacuole sequestration and activation of antioxidant defense systems. Several signaling mechanisms have evolved in plants that involve the use of proteins, calcium ions, hormones, reactive oxygen species and nitric oxide as signaling molecules to cope with arsenic toxicity. These mechanisms facilitate plants to survive under metal stress by activating their defense systems. The pathways by which these stress signals are perceived and responded is an unexplored area of research and there are lots of gaps still to be filled. A good understanding of these signaling pathways can help in raising the plants which can perform better in arsenic contaminated soil and water. In order to increase the survival of plants in contaminated areas there is a strong need to identify suitable gene targets that can be modified according to needs of the stakeholders using various biotechnological techniques. This review focuses on the signaling mechanisms of plants grown under arsenic stress and will give an insight of the different sensory systems in plants. Furthermore, it provides the knowledge about several pathways that can be exploited to develop plant cultivars which are resistant to arsenic stress or can reduce its uptake to minimize the risk of arsenic toxicity through food chain thus ensuring food security.

  10. Mechanism underlying carbon tetrachloride-inhibited protein synthesis in liver

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    AIM: To study the mechanism underlying carbon tetrachloride (CCl4)-induced alterations of protein synthesis in liver. METHODS: Male Sprague-Dawley rats were given CCl4 (1 mL/100 g body weight) and 3H-leucine incorporation. Malondialdehyde (MDA) level in the liver, in vitro response of hepatocyte nuclei nucleotide triphosphatase (NTPase) to free radicals, and nuclear export of total mRNA with 3'-poly A+ were measured respectively. Survival response of HepG2 cells to CCl4 treatment was assessed by methyl thia...

  11. Physical mechanisms underlying the strain-rate-dependent mechanical behavior of kangaroo shoulder cartilage

    Science.gov (United States)

    Thibbotuwawa, Namal; Oloyede, Adekunle; Li, Tong; Singh, Sanjleena; Senadeera, Wijitha; Gu, YuanTong

    2015-09-01

    Due to anatomical and biomechanical similarities to human shoulder, kangaroo was chosen as a model to study shoulder cartilage. Comprehensive enzymatic degradation and indentation tests were applied on kangaroo shoulder cartilage to study mechanisms underlying its strain-rate-dependent mechanical behavior. We report that superficial collagen plays a more significant role than proteoglycans in facilitating strain-rate-dependent behavior of the kangaroo shoulder cartilage. By comparing the mechanical properties of degraded and normal cartilages, it was noted that proteoglycan and collagen degradation significantly compromised strain-rate-dependent mechanical behavior of the cartilage. Superficial collagen contributed equally to the tissue behavior at all strain-rates. This is different to the studies reported on knee cartilage and confirms the importance of superficial collagen on shoulder cartilage mechanical behavior. A porohyperelastic numerical model also indicated that collagen disruption would lead to faster damage of the shoulder cartilage than when proteoglycans are depleted.

  12. Mechanisms underlying probucol-induced hERG-channel deficiency

    Directory of Open Access Journals (Sweden)

    Shi YQ

    2015-07-01

    Full Text Available Yuan-Qi Shi,1,* Cai-Chuan Yan,1,* Xiao Zhang,1 Meng Yan,1 Li-Rong Liu,1 Huai-Ze Geng,1 Lin Lv,1 Bao-Xin Li1,21Department of Pharmacology, Harbin Medical University, 2State-Province Key Laboratory of Biopharmaceutical Engineering, Harbin, Heilongjiang, People’s Republic of China*These authors contributed equally to this workAbstract: The hERG gene encodes the pore-forming α-subunit of the rapidly activating delayed rectifier potassium channel (IKr, which is important for cardiac repolarization. Reduction of IhERG due to genetic mutations or drug interferences causes long QT syndrome, leading to life-threatening cardiac arrhythmias (torsades de pointes or sudden death. Probucol is a cholesterol-lowering drug that could reduce hERG current by decreasing plasma membrane hERG protein expression and eventually cause long QT syndrome. Here, we investigated the mechanisms of probucol effects on IhERG and hERG-channel expression. Our data demonstrated that probucol reduces SGK1 expression, known as SGK isoform, in a concentration-dependent manner, resulting in downregulation of phosphorylated E3 ubiquitin ligase Nedd4-2 expression, but not the total level of Nedd4-2. As a result, the hERG protein reduces, due to the enhanced ubiquitination level. On the contrary, carbachol could enhance the phosphorylation level of Nedd4-2 as an alternative to SGK1, and thus rescue the ubiquitin-mediated degradation of hERG channels caused by probucol. These discoveries provide a novel mechanism of probucol-induced hERG-channel deficiency, and imply that carbachol or its analog may serve as potential therapeutic compounds for the handling of probucol cardiotoxicity.Keywords: long QT, hERG potassium channels, probucol, SGK1, Nedd4-2

  13. Enhancing Microstructure and Mechanical Properties of AZ31-MWCNT Nanocomposites through Mechanical Alloying

    Directory of Open Access Journals (Sweden)

    J. Jayakumar

    2013-01-01

    Full Text Available Multiwall carbon nanotubes (MWCNTs reinforced Mg alloy AZ31 nanocomposites were fabricated by mechanical alloying and powder metallurgy technique. The reinforcement material MWCNTs were blended in three weight fractions (0.33%, 0.66%, and 1% with the matrix material AZ31 (Al-3%, zinc-1% rest Mg and blended through mechanical alloying using a high energy planetary ball mill. Specimens of monolithic AZ31 and AZ31-MWCNT composites were fabricated through powder metallurgy technique. The microstructure, density, hardness, porosity, ductility, and tensile properties of monolithic AZ31 and AZ31-MWCNT nano composites were characterized and compared. The characterization reveals significant reduction in CNT (carbon nanoTube agglomeration and enhancement in microstructure and mechanical properties due to mechanical alloying through ball milling.

  14. Continuous damage parameter calculation under thermo-mechanical random loading.

    Science.gov (United States)

    Nagode, Marko

    2014-01-01

    The paper presents a method on how the mean stress effect on fatigue damage can be taken into account under an arbitrary low cycle thermo-mechanical loading. From known stress, elastoplastic strain and temperature histories the cycle amplitudes and cycle mean values are extracted and the damage parameter is computed. In contrast to the existing methods the proposed method enables continuous damage parameter computation without the need of waiting for the cycles to close. The limitations of the standardized damage parameters are thus surpassed. The damage parameters derived initially for closed and isothermal cycles assuming that the elastoplastic stress-strain response follows the Masing and memory rules can now be used to take the mean stress effect into account under an arbitrary low cycle thermo-mechanical loading. The method includes:•stress and elastoplastic strain history transformation into the corresponding amplitude and mean values;•stress and elastoplastic strain amplitude and mean value transformation into the damage parameter amplitude history;•damage parameter amplitude history transformation into the damage parameter history.

  15. Shared neural mechanisms underlying social warmth and physical warmth.

    Science.gov (United States)

    Inagaki, Tristen K; Eisenberger, Naomi I

    2013-11-01

    Many of people's closest bonds grow out of socially warm exchanges and the warm feelings associated with being socially connected. Indeed, the neurobiological mechanisms underlying thermoregulation may be shared by those that regulate social warmth, the experience of feeling connected to other people. To test this possibility, we placed participants in a functional MRI scanner and asked them to (a) read socially warm and neutral messages from friends and family and (b) hold warm and neutral-temperature objects (a warm pack and a ball, respectively). Findings showed an overlap between physical and social warmth: Participants felt warmer after reading the positive (compared with neutral) messages and more connected after holding the warm pack (compared with the ball). In addition, neural activity during social warmth overlapped with neural activity during physical warmth in the ventral striatum and middle insula, but neural activity did not overlap during another pleasant task (soft touch). Together, these results suggest that a common neural mechanism underlies physical and social warmth.

  16. Mechanisms Underlying the Antidepressant Response and Treatment Resistance

    Directory of Open Access Journals (Sweden)

    Marjorie Rose Levinstein

    2014-06-01

    Full Text Available Depression is a complex and heterogeneous disorder affecting millions of Americans. There are several different medications and other treatments that are available and effective for many patients with depression. However, a substantial percentage of patients fail to achieve remission with these currently available interventions, and relapse rates are high. Therefore, it is necessary to determine both the mechanisms underlying the antidepressant response and the differences between responders and non-responders to treatment. Delineation of these mechanisms largely relies on experiments that utilize animal models. Therefore, this review provides an overview of the various mouse models that are currently used to assess the antidepressant response, such as chronic mild stress, social defeat, and chronic corticosterone. We discuss how these mouse models can be used to advance our understanding of the differences between responders and non-responders to antidepressant treatment. We also provide an overview of experimental treatment modalities that are used for treatment-resistant depression, such as deep brain stimulation and ketamine administration. We will then review the various genetic polymorphisms and transgenic mice that display resistance to antidepressant treatment. Finally, we synthesize the published data to describe a potential neural circuit underlying the antidepressant response and treatment resistance.

  17. Food preferences and underlying mechanisms after bariatric surgery.

    Science.gov (United States)

    Behary, Preeshila; Miras, Alexander D

    2015-11-01

    Bariatric surgery leads to significant long-term weight loss, particularly Roux-en-Y gastric bypass (RYGB). The mechanisms underlying weight loss have not been fully uncovered. The aim of this review is to explore the changes in food preferences, as a novel mechanism contributing to weight loss, and also focus on the underlying processes modulating eating behaviour after bariatric surgery. Patients after gastric bypass are less hungry and prefer healthier food options. They develop an increased acuity to sweet taste, which is perceived as more intense. The appeal of sweet fatty food decreases, with functional MRI studies showing a corresponding reduction in activation of the brain reward centres to high-energy food cues. Patients experiencing post-ingestive symptoms with sweet and fatty food develop conditioned aversive behaviours towards the triggers. Gut hormones are elevated in RYGB and have the potential to influence the taste system and food hedonics. Current evidence supports a beneficial switch in food preferences after RYGB. Changes within the sensory and reward domain of taste and the development of post-ingestive symptoms appear to be implicated. Gut hormones may be the mediators of these alterations and therefore exploiting this property might prove beneficial for designing future obesity treatment.

  18. Molecular mechanisms underlying the effects of acupuncture on neuropathic pain**

    Institute of Scientific and Technical Information of China (English)

    Ziyong Ju; Huashun Cui; Xiaohui Guo; Huayuan Yang; Jinsen He; Ke Wang

    2013-01-01

    Acupuncture has been used to treat neuropathic pain for a long time, but its mechanisms of action remain unknown. In this study, we observed the effects of electroacupuncture and manual acu-puncture on neuropathic pain and on ephrin-B/EphB signaling in rats models of chronic constriction injury-induced neuropathic pain. The results showed that manual acupuncture and elec-puncture significantly reduced mechanical hypersensitivity fol owing chronic constriction injury, es-pecial y electroacupuncture treatment. Real-time PCR results revealed that ephrin-B1/B3 and EphB1/B2 mRNA expression levels were significantly increased in the spinal dorsal horns of chronic constriction injury rats. Electroacupuncture and manual acupuncture suppressed the high sion of ephrin-B1 mRNA, and elevated EphB3/B4 mRNA expression. Electroacupuncture signifi-cantly enhanced the mRNA expression of ephrin-B3 and EphB3/B6 in the dorsal horns of neuro-pathic pain rats. Western blot results revealed that electroacupuncture in particular, and manual acupuncture, significantly up-regulated ephrin-B3 protein levels in rat spinal dorsal horns. The re-sults of this study suggest that acupuncture could activate ephrin-B/EphB signaling in neuropathic pain rats and improve neurological function.

  19. Cell Mechanisms of Bone Tissue Loss Under Space Flight Conditions

    Science.gov (United States)

    Rodionova, Natalia

    Investigations on the space biosatellites has shown that the bone skeleton is one of the most im-portant targets of the effect space flight factors on the organism. Bone tissue cells were studied by electron microscopy in biosamples of rats' long bones flown on the board american station "SLS-2" and in experiments with modelling of microgravity ("tail suspension" method) with using autoradiography. The analysis of data permits to suppose that the processes of remod-eling in bone tissue at microgravity include the following succession of cell-to-cell interactions. Osteocytes as mechanosensory cells are first who respond to a changing "mechanical field". The next stage is intensification of osteolytic processes in osteocytes, leading to a volume en-largement of the osteocytic lacunae and removal of the "excess bone". Then mechanical signals have been transmitted through a system of canals and processes of the osteocytic syncitium to certain superficial bone zones and are perceived by osteoblasts and bone-lining cells (superficial osteocytes), as well as by the bone-marrow stromal cells. The sensitivity of stromal cells, pre-osteoblasts and osteoblasts, under microgravity was shown in a number of works. As a response to microgravity, the system of stromal cells -preosteoblasts -osteoblasts displays retardation of proliferation, differentiation and specific functions of osteogenetic cells. This is supported by the 3H-thymidine studies of the dynamics of differentiation of osteogenetic cells in remodeling zones. But unloading is not adequate and in part of the osteocytes are apoptotic changes as shown by our electron microscopic investigations. An osteocytic apoptosis can play the role in attraction the osteoclasts and in regulation of bone remodeling. The apoptotic bodies with a liquid flow through a system of canals are transferred to the bone surface, where they fulfil the role of haemoattractants for monocytes come here and form osteoclasts. The osteoclasts destroy

  20. Effects of manual hyperinflation in preterm newborns under mechanical ventilation

    Science.gov (United States)

    Viana, Camila Chaves; Nicolau, Carla Marques; Juliani, Regina Celia Turola Passos; de Carvalho, Werther Brunow; Krebs, Vera Lucia Jornada

    2016-01-01

    Objective To assess the effects of manual hyperinflation, performed with a manual resuscitator with and without the positive end-expiratory pressure valve, on the respiratory function of preterm newborns under mechanical ventilation. Methods Cross-sectional study of hemodynamically stable preterm newborns with gestational age of less than 32 weeks, under mechanical ventilation and dependent on it at 28 days of life. Manual hyperinflation was applied randomly, alternating the use or not of the positive end-expiratory pressure valve, followed by tracheal aspiration for ending the maneuver. For nominal data, the two-tailed Wilcoxon test was applied at the 5% significance level and 80% power. Results Twenty-eight preterm newborns, with an average birth weight of 1,005.71 ± 372.16g, an average gestational age of 28.90 ± 1.79 weeks, an average corrected age of 33.26 ± 1.78 weeks, and an average mechanical ventilation time of 29.5 (15 - 53) days, were studied. Increases in inspiratory and expiratory volumes occurred between time-points A5 (before the maneuver) and C1 (immediately after tracheal aspiration) in both the maneuver with the valve (p = 0.001 and p = 0.009) and without the valve (p = 0.026 and p = 0.001), respectively. There was also an increase in expiratory resistance between time-points A5 and C1 (p = 0.044). Conclusion Lung volumes increased when performing the maneuver with and without the valve, with a significant difference in the first minute after aspiration. There was a significant difference in expiratory resistance between the time-points A5 (before the maneuver) and C1 (immediately after tracheal aspiration) in the first minute after aspiration within each maneuver. PMID:27737427

  1. Molecular mechanisms underlying noncoding risk variations in psychiatric genetic studies.

    Science.gov (United States)

    Xiao, X; Chang, H; Li, M

    2017-01-03

    Recent large-scale genetic approaches such as genome-wide association studies have allowed the identification of common genetic variations that contribute to risk architectures of psychiatric disorders. However, most of these susceptibility variants are located in noncoding genomic regions that usually span multiple genes. As a result, pinpointing the precise variant(s) and biological mechanisms accounting for the risk remains challenging. By reviewing recent progresses in genetics, functional genomics and neurobiology of psychiatric disorders, as well as gene expression analyses of brain tissues, here we propose a roadmap to characterize the roles of noncoding risk loci in the pathogenesis of psychiatric illnesses (that is, identifying the underlying molecular mechanisms explaining the genetic risk conferred by those genomic loci, and recognizing putative functional causative variants). This roadmap involves integration of transcriptomic data, epidemiological and bioinformatic methods, as well as in vitro and in vivo experimental approaches. These tools will promote the translation of genetic discoveries to physiological mechanisms, and ultimately guide the development of preventive, therapeutic and prognostic measures for psychiatric disorders.Molecular Psychiatry advance online publication, 3 January 2017; doi:10.1038/mp.2016.241.

  2. Autophagy as a Possible Underlying Mechanism of Nanomaterial Toxicity

    Directory of Open Access Journals (Sweden)

    Vanessa Cohignac

    2014-07-01

    Full Text Available The rapid development of nanotechnologies is raising safety concerns because of the potential effects of engineered nanomaterials on human health, particularly at the respiratory level. Since the last decades, many in vivo studies have been interested in the pulmonary effects of different classes of nanomaterials. It has been shown that some of them can induce toxic effects, essentially depending on their physico-chemical characteristics, but other studies did not identify such effects. Inflammation and oxidative stress are currently the two main mechanisms described to explain the observed toxicity. However, the exact underlying mechanism(s still remain(s unknown and autophagy could represent an interesting candidate. Autophagy is a physiological process in which cytoplasmic components are digested via a lysosomal pathway. It has been shown that autophagy is involved in the pathogenesis and the progression of human diseases, and is able to modulate the oxidative stress and pro-inflammatory responses. A growing amount of literature suggests that a link between nanomaterial toxicity and autophagy impairment could exist. In this review, we will first summarize what is known about the respiratory effects of nanomaterials and we will then discuss the possible involvement of autophagy in this toxicity. This review should help understand why autophagy impairment could be taken as a promising candidate to fully understand nanomaterials toxicity.

  3. Piezoelectric compliant mechanism energy harvesters under large base excitations

    Science.gov (United States)

    Ma, Xiaokun; Trolier-McKinstry, Susan; Rahn, Christopher D.

    2016-09-01

    A piezoelectric compliant mechanism (PCM) energy harvester is designed, modeled, and analyzed that consists of a polyvinylidene diflouoride, PVDF unimorph clamped at its base and attached to a compliant mechanism at its tip. The compliant hinge stiffness is carefully tuned to approach a low frequency first mode with an efficient (nearly quadratic) shape that provides a uniform strain distribution. A nonlinear model of the PCM energy harvester under large base excitation is derived to determine the maximum power that can be generated by the device. Experiments with a fabricated PCM energy harvester prototype show that the compliant mechanism introduces a stiffening effect and a much wider bandwidth than a benchmark proof mass cantilever design. The PCM bridge structure self-limits the displacement and maximum strain at large excitations compared with the proof mass cantilever, improving the device robustness. The PCM outperforms the cantilever in both average power and power-strain sensitivity at high accelerations due to the PCM axial stretching effect and its more uniform strain distribution.

  4. nAChR agonist-induced cognition enhancement: integration of cognitive and neuronal mechanisms.

    Science.gov (United States)

    Sarter, Martin; Parikh, Vinay; Howe, William M

    2009-10-01

    The identification and characterization of drugs for the treatment of cognitive disorders has been hampered by the absence of comprehensive hypotheses. Such hypotheses consist of (a) a precisely defined cognitive operation that fundamentally underlies a range of cognitive abilities and capacities and, if impaired, contributes to the manifestation of diverse cognitive symptoms; (b) defined neuronal mechanisms proposed to mediate the cognitive operation of interest; (c) evidence indicating that the putative cognition enhancer facilitates these neuronal mechanisms; (d) and evidence indicating that the cognition enhancer facilitates cognitive performance by modulating these underlying neuronal mechanisms. The evidence on the neuronal and attentional effects of nAChR agonists, specifically agonists selective for alpha4beta2* nAChRs, has begun to support such a hypothesis. nAChR agonists facilitate the detection of signals by augmenting the transient increases in prefrontal cholinergic activity that are necessary for a signal to gain control over behavior in attentional contexts. The prefrontal microcircuitry mediating these effects include alpha4beta2* nAChRs situated on the terminals of thalamic inputs and the glutamatergic stimulation of cholinergic terminals via ionotropic glutamate receptors. Collectively, this evidence forms the basis for hypothesis-guided development and characterization of cognition enhancers.

  5. Enhanced mechanical behavior of a nanocrystallised stainless steel and its thermal stability

    Energy Technology Data Exchange (ETDEWEB)

    Roland, T. [ICD, LASMIS, University of Technology of Troyes, 10010 Troyes (France); Retraint, D. [ICD, LASMIS, University of Technology of Troyes, 10010 Troyes (France)]. E-mail: delphine.retraint@utt.fr; Lu, K. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110015 (China); Lu, J. [Department of Mechanical Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China)

    2007-02-15

    This paper discusses the mechanical properties of a nanocrystallised stainless steel obtained using surface mechanical attrition treatment (SMAT) and the underlying grain refinement mechanism using transmission electron microscopy (TEM). It was shown that grain refinement down to the nanometer range has the potential to significantly improve the mechanical properties of a 316L stainless steel which becomes comparable in strength to titanium alloys. Hence, promising structural applications could be considered for such a material. At the same time, the thermal stability of this nanocrystallised material was studied in the temperature range from 100 to 800 deg. C. The results show that the nanometer scaled microstructure is retained up to 600 deg. C and that a controlled annealing treatment could even lead to enhancement of both strength and ductility of this material. All these results are explained in terms of microstructural investigations, X-ray diffraction measurements, tensile and bending tests as well as microhardness measurements.

  6. Enhancement of Stainless Steel's Mechanical Properties via Carburizing Process

    Science.gov (United States)

    Ahmad, S.; Alias, S. K.; Abdullah, B.; Hafiz Mohd Bakri, Mohd.; Hafizuddin Jumadin, Muhammad; Mat Shah, Muhammad Amir

    2016-11-01

    Carburizing process is a method to disperse carbon into the steel surface in order to enhance its mechanical properties such as hardness and wear resistance. This paper study investigates the effect of carburizing temperature to the carbon dispersion layer in stainless steel. The standard AISI 304 stainless steel was carburized in two different temperatures which were 900°C and 950°C. The effect of carbon dispersion layers were observed and the results indicated that the increasing value of the average dispersion layer from 1.30 mm to 2.74 mm thickness was found to be related to increment of carburizing holding temperature . The increment of carbon thickness layer also resulted in improvement of hardness and tensile strength of carburized stainless steel.

  7. Exploration of mechanisms underlying the strain-rate-dependent mechanical property of single chondrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Trung Dung; Gu, YuanTong, E-mail: yuantong.gu@qut.edu.au [School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, Queensland (Australia)

    2014-05-05

    Based on the characterization by Atomic Force Microscopy, we report that the mechanical property of single chondrocytes has dependency on the strain-rates. By comparing the mechanical deformation responses and the Young's moduli of living and fixed chondrocytes at four different strain-rates, we explore the deformation mechanisms underlying this dependency property. We found that the strain-rate-dependent mechanical property of living cells is governed by both of the cellular cytoskeleton and the intracellular fluid when the fixed chondrocytes are mainly governed by their intracellular fluid, which is called the consolidation-dependent deformation behavior. Finally, we report that the porohyperelastic constitutive material model which can capture the consolidation-dependent behavior of both living and fixed chondrocytes is a potential candidature to study living cell biomechanics.

  8. Enhanced Pointing Gimbal Mechanisms for Next Generation Communication Antennas

    Science.gov (United States)

    Nalbandian, Ruben

    2013-09-01

    This paper summarizes the design and the development of a family of high precision Enhanced Pointing Gimbal Assemblies (EPGA) specifically targeting the next generation of satellite communication antenna technologies.The development and qualification of the first two EPGAs started some years ago. The purpose of this project has been to develop a gimbal based on a new rotary actuator technology achieving positioning performance superior to micro-stepping performance, to be used in highly accurate pointing and scanning mechanisms. The design also had to provide high stiffness and high load carrying capacity at the output stage.The design of this new line of gimbals is based on a rotary actuator with a high gear reduction ratio and high load carrying capacity output stage.Analysis of the latest missions, especially those for communication, earth observation and imaging, show that performance requirements for dual axis gimbals used for antenna pointing are becoming more and more demanding. Most recent Ka-band and future generation antenna technologies for smaller spot beams require finer resolutions of less than 0.003 degrees. Considerably larger solid core ( 3.0 meter diameter) and expandable wire-mesh ( 22 meter diameter) require higher load carrying capabilities and moment stiffness to sustain the launch and orbital maneuvering loads. The developed Enhanced Pointing Gimbal Assembly addresses those applications requiring small output step size, high precision pointing, and unpowered holding torque, which challenge the use of gimbals that use conventional rotary actuators.

  9. Pore scale mechanisms for enhanced vapor transport through partially saturated porous media

    Science.gov (United States)

    Shahraeeni, Ebrahim; Or, Dani

    2012-05-01

    Recent theoretical and experimental studies of vapor transport through porous media question the existence and significance of vapor transport enhancement mechanisms postulated by Philip and de Vries. Several enhancement mechanisms were proposed to rectify shortcomings of continuum models and to reconcile discrepancies between predicted and observed vapor fluxes. The absence of direct experimental and theoretical confirmation of these commonly invoked pore scale mechanisms prompted alternate explanations considering the (often neglected) role of transport via capillary connected pathways. The objective of this work was to quantify the specific roles of liquid bridges and of local thermal and capillary gradients on vapor transport at the pore scale. We considered a mechanistic pore scale model of evaporation and condensation dynamics as a building block for quantifying vapor diffusion through partially saturated porous media. Simulations of vapor diffusion in the presence of isolated liquid phase bridges reveal that the so-called enhanced vapor diffusion under isothermal conditions reflects a reduced gaseous diffusion path length. The presence of a thermal gradient may augment or hinder this effect depending on the direction of thermal relative to capillary gradients. As liquid phase saturation increases, capillary transport becomes significant and pore scale vapor enhancement is limited to low water contents as postulated by Philip and deVries. Calculations show that with assistance of a mild thermal gradient water vapor flux could be doubled relative to diffusion of an inert gas through the same system.

  10. Experimental study on sliding shaft lining mechanical mechanisms under ground subsidence conditions

    Institute of Scientific and Technical Information of China (English)

    姚直书; 杨俊杰; 孙文若

    2003-01-01

    Aimed at more than 60 shaft linings damaged in Huaibei, Datun, Xuzhou and Yanzhou mine areas, this paper presents a new type of sliding shaft lining with asphalt blocks sliding layer. By model test, it is obtained that the deformation characteristics and the mechanical mechanisms of the sliding shaft lining under the condition of ground subsidence. The research results provide a testing basis for the sliding shaft lining design. By now, this kind of sliding shaft lining had been applied in 9 shafts in China and Bangladesh.

  11. Computer simulation study of nanoparticle interaction with a lipid membrane under mechanical stress.

    Science.gov (United States)

    Lai, Kan; Wang, Biao; Zhang, Yong; Zheng, Yue

    2013-01-07

    Pore formation of lipid bilayers under mechanical stress is critical to biological processes. A series of coarse grained molecular dynamics simulations of lipid bilayers with carbon nanoparticles different in size have been performed. Surface tension was applied to study the disruption of lipid bilayers by nanoparticles and the formation of pores inside the bilayers. The presence of small nanoparticles enhances the probability of water penetration thus decreasing the membrane rupture tension, while big nanoparticles have the opposite effect. Nanoparticle volume affects bilayer strength indirectly, and particle surface density can complicate the interaction. The structural, dynamic, elastic properties and lateral densities of lipid bilayers with nanoparticles under mechanical stress were analyzed. The results demonstrate the ability of nanoparticles to adjust the structural and dynamic properties of a lipid membrane, and to efficiently regulate the pore formation behavior and hydrophobicity of membranes.

  12. Biodegradable HEMA-based hydrogels with enhanced mechanical properties.

    Science.gov (United States)

    Moghadam, Mohamadreza Nassajian; Pioletti, Dominique P

    2016-08-01

    Hydrogels are widely used in the biomedical field. Their main purposes are either to deliver biological active agents or to temporarily fill a defect until they degrade and are followed by new host tissue formation. However, for this latter application, biodegradable hydrogels are usually not capable to sustain any significant load. The development of biodegradable hydrogels presenting load-bearing capabilities would open new possibilities to utilize this class of material in the biomedical field. In this work, an original formulation of biodegradable photo-crosslinked hydrogels based on hydroxyethyl methacrylate (HEMA) is presented. The hydrogels consist of short-length poly(2-hydroxyethyl methacrylate) (PHEMA) chains in a star shape structure, obtained by introducing a tetra-functional chain transfer agent in the backbone of the hydrogels. They are cross-linked with a biodegradable N,O-dimethacryloyl hydroxylamine (DMHA) molecule sensitive to hydrolytic cleavage. We characterized the degradation properties of these hydrogels submitted to mechanical loadings. We showed that the developed hydrogels undergo long-term degradation and specially meet the two essential requirements of a biodegradable hydrogel suitable for load bearing applications: enhanced mechanical properties and low molecular weight degradation products. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1161-1169, 2016.

  13. Mechanisms underlying epithelium-dependent relaxation in rat bronchioles

    DEFF Research Database (Denmark)

    Kroigaard, Christel; Dalsgaard, Thomas; Simonsen, Ulf

    2010-01-01

    This study investigated the mechanisms underlying epithelium-derived hyperpolarizing factor (EpDHF)-type relaxation in rat bronchioles. Immunohistochemistry was performed, and rat bronchioles and pulmonary arteries were mounted in microvascular myographs for functional studies. An opener of small...... (SK(Ca)) and intermediate (IK(Ca))-conductance calcium-activated potassium channels, NS309 (6,7-dichloro-1H-indole-2,3-dione 3-oxime) was used to induce EpDHF-type relaxation. IK(Ca) and SK(Ca)3 positive immunoreactions were observed mainly in the epithelium and endothelium of bronchioles and arteries......, respectively. In 5-hydroxytryptamine (1 microM)-contracted bronchioles (828 +/- 20 microm, n = 84) and U46619 (0.03 microM)-contracted arteries (720 +/- 24 microm, n = 68), NS309 (0.001-10 microM) induced concentration-dependent relaxations that were reduced by epithelium/endothelium removal and by blocking IK...

  14. Conserved Molecular Mechanisms Underlying Homeostasis of the Golgi Complex

    Directory of Open Access Journals (Sweden)

    Cathal Wilson

    2010-01-01

    Full Text Available The Golgi complex performs a central function in the secretory pathway in the sorting and sequential processing of a large number of proteins destined for other endomembrane organelles, the plasma membrane, or secretion from the cell, in addition to lipid metabolism and signaling. The Golgi apparatus can be regarded as a self-organizing system that maintains a relatively stable morphofunctional organization in the face of an enormous flux of lipids and proteins. A large number of the molecular players that operate in these processes have been identified, their functions and interactions defined, but there is still debate about many aspects that regulate protein trafficking and, in particular, the maintenance of these highly dynamic structures and processes. Here, we consider how an evolutionarily conserved underlying mechanism based on retrograde trafficking that uses lipids, COPI, SNAREs, and tethers could maintain such a homeodynamic system.

  15. Mechanical behaviour of TWIP steel under shear loading

    Science.gov (United States)

    Vincze, G.; Butuc, M. C.; Barlat, F.

    2016-08-01

    Twinning induced plasticity steels (TWIP) are very good candidate for automotive industry applications because they potentially offer large energy absorption before failure due to their exceptional strain hardening capability and high strength. However, their behaviour is drastically influenced by the loading conditions. In this work, the mechanical behaviour of a TWIP steel sheet sample was investigated at room temperature under monotonic and reverse simple shear loading. It was shown that all the expected features of load reversal such as Bauschinger effect, transient strain hardening with high rate and permanent softening, depend on the prestrain level. This is in agreement with the fact that these effects, which occur during reloading, are related to the rearrangement of the dislocation structure induced during the predeformation. The homogeneous anisotropic hardening (HAH) approach proposed by Barlat et al. (2011) [1] was successfully employed to predict the experimental results.

  16. Neural mechanisms underlying nicotine addiction: acute positive reinforcement and withdrawal.

    Science.gov (United States)

    Watkins, S S; Koob, G F; Markou, A

    2000-02-01

    The neurobiology of nicotine addiction is reviewed within the context of neurobiological and behavioral theories postulated for other drugs of abuse. The roles of various neurotransmitter systems, including acetylcholine, dopamine, serotonin, glutamate, gamma-aminobutyric acid, and opioid peptides in acute nicotine reinforcement and withdrawal from chronic administration are examined followed by a discussion of potential neuroadaptations within these neurochemical systems that may lead to the development of nicotine dependence. The link between nicotine administration, depression and schizophrenia are also discussed. Finally, a theoretical model of the neurobiological mechanisms underlying acute nicotine withdrawal and protracted abstinence involves alterations within dopaminergic, serotonergic, and stress systems that are hypothesized to contribute to the negative affective state associated with nicotine abstinence.

  17. Mechanisms underlying allergy vaccination with recombinant hypoallergenic allergen derivatives.

    Science.gov (United States)

    Linhart, Birgit; Valenta, Rudolf

    2012-06-19

    Hundred years ago therapeutic vaccination with allergen-containing extracts has been introduced as a clinically effective, disease-modifying, allergen-specific and long-lasting form of therapy for allergy, a hypersensitivity disease affecting more than 25% of the population. Today, the structures of most of the disease-causing allergens have been elucidated and recombinant hypoallergenic allergen derivatives with reduced allergenic activity have been engineered to reduce side effects during allergen-specific immunotherapy (SIT). These recombinant hypoallergens have been characterized in vitro, in experimental animal models and in clinical trials in allergic patients. This review provides a summary of the molecular, immunological and preclinical evaluation criteria applied for this new generation of allergy vaccines. Furthermore, we summarize the mechanisms underlying SIT with recombinant hypoallergens which are thought to be responsible for their therapeutic effect.

  18. Damage Mechanics of Ferrite Ductile Iron under Uniaxial Stress

    Institute of Scientific and Technical Information of China (English)

    LIU Jin-hai; LI Guo-lu; FU Han-guang; HAO Xiao-yan; LIU Gen-sheng

    2003-01-01

    According to the principle of damage mechanics, the damage characteristics of ferrite nodular cast iron under uniaxial stress were studied by measuring electric resistance. The results show that the damage in nodular cast iron occurs when the applied stress is more than a certain extent, and the damage variable increases with stress. The evolutional law of damage variable as a function of stress was obtained. The damage threshold of nodular cast iron increases with nodularity, but it is below the yield strength, which provides reference significance to the design of machinery structure and the choice of materials. The critical damage variable is not related to the nodularity, which is about 0.060-0.068.

  19. POSSIBLE MECHANISMS UNDERLYING THE THERAPEUTIC EFFECTS OF TRANSCRANIAL MAGNETIC STIMULATION

    Directory of Open Access Journals (Sweden)

    Alexander eChervyakov

    2015-06-01

    Full Text Available Transcranial magnetic stimulation (TMS is an effective method used to diagnose and treat many neurological disorders. Although repetitive TMS (rTMS has been used to treat a variety of serious pathological conditions including stroke, depression, Parkinson's disease, epilepsy, pain, and migraines, the pathophysiological mechanisms underlying the effects of long-term TMS remain unclear. In the present review, the effects of rTMS on neurotransmitters and synaptic plasticity are described, including the classic interpretations of TMS effects on synaptic plasticity via long-term potentiation (LTP and long-term depression (LTD. We also discuss the effects of rTMS on the genetic apparatus of neurons, glial cells and the prevention of neuronal death. The neurotrophic effects of rTMS on dendritic growth and sprouting and neurotrophic factors are described, including change in brain-derived neurotrophic factor (BDNF concentration under the influence of rTMS. Also, non-classical effects of TMS related to biophysical effects of magnetic fields are described, including the quantum effects, the magnetic spin effects, genetic magnetoreception, the macromolecular effects of TMS, and the electromagnetic theory of consciousness. Finally, we discuss possible interpretations of TMS effects according to dynamical systems theory. Evidence suggests that a rTMS-induced magnetic field should be considered a separate physical factor that can be impactful at the subatomic level and that rTMS is capable of significantly altering the reactivity of molecules (radicals. It is thought that these factors underlie the therapeutic benefits of therapy with TMS. Future research on these mechanisms will be instrumental to the development of more powerful and reliable TMS treatment protocols.

  20. Data on the mechanisms underlying succinate-induced aortic contraction

    Directory of Open Access Journals (Sweden)

    Natália A. Gonzaga

    2016-12-01

    Full Text Available We describe the mechanisms underlying the vascular contraction induced by succinate. The data presented here are related to the article entitled “Pharmacological characterization of the mechanisms underlying the vascular effects of succinate” (L.N. Leite, N.A. Gonzaga, J.A. Simplicio, G.T. Vale, J.M. Carballido, J.C. Alves-Filho, C.R. Tirapelli, 2016 [1]. Succinate acts as a signaling molecule by binding to a G-protein-coupled receptor termed GPR91, “Citric acid cycle intermediates as ligands for orphan G-protein-coupled receptors” (W. He, F.J. Miao, D.C. Lin, R.T. Schwandner, Z. Wang, J. Gao, J.L. Chen, H. Tian, L. Ling, 2004 [2]. Here we include data on the contractile effect of succinate in the aorta. Succinate contracted both endothelium-intact and endothelium-denuded aortic rings isolated from male Wistar rats or C57BL/6 mice. Succinate was less effective at inducing contraction in arteries isolated from GPR91-deficient mice, when compared to its vascular effect in aortas from wild type mice. SB203508 (p38MAK inhibitor, SP600125 (JNK inhibitor and Y27632 (Rho-kinase inhibitor reduced succinate-induced contraction in both endothelium-intact and endothelium-denuded rat aortic rings, while PD98059 (ERK1/2 inhibitor did not affect succinate-induced contraction. The contractile response induced by succinate on endothelium-intact and endothelium-denuded rat aortic rings was reduced by indomethacin (non-selective cyclooxygenase inhibitor, H7 (protein kinase C inhibitor, verapamil (Ca2+ channel blocker and tiron (superoxide anion scavenger.

  1. Neurocomputational mechanisms underlying subjective valuation of effort costs

    Science.gov (United States)

    Giehl, Kathrin; Sillence, Annie

    2017-01-01

    In everyday life, we have to decide whether it is worth exerting effort to obtain rewards. Effort can be experienced in different domains, with some tasks requiring significant cognitive demand and others being more physically effortful. The motivation to exert effort for reward is highly subjective and varies considerably across the different domains of behaviour. However, very little is known about the computational or neural basis of how different effort costs are subjectively weighed against rewards. Is there a common, domain-general system of brain areas that evaluates all costs and benefits? Here, we used computational modelling and functional magnetic resonance imaging (fMRI) to examine the mechanisms underlying value processing in both the cognitive and physical domains. Participants were trained on two novel tasks that parametrically varied either cognitive or physical effort. During fMRI, participants indicated their preferences between a fixed low-effort/low-reward option and a variable higher-effort/higher-reward offer for each effort domain. Critically, reward devaluation by both cognitive and physical effort was subserved by a common network of areas, including the dorsomedial and dorsolateral prefrontal cortex, the intraparietal sulcus, and the anterior insula. Activity within these domain-general areas also covaried negatively with reward and positively with effort, suggesting an integration of these parameters within these areas. Additionally, the amygdala appeared to play a unique, domain-specific role in processing the value of rewards associated with cognitive effort. These results are the first to reveal the neurocomputational mechanisms underlying subjective cost–benefit valuation across different domains of effort and provide insight into the multidimensional nature of motivation. PMID:28234892

  2. Nonlinear Mechanics of MEMS Rectangular Microplates under Electrostatic Actuation

    KAUST Repository

    Saghir, Shahid

    2016-12-01

    The first objective of the dissertation is to develop a suitable reduced order model capable of investigating the nonlinear mechanical behavior of von-Karman plates under electrostatic actuation. The second objective is to investigate the nonlinear static and dynamic behavior of rectangular microplates under small and large actuating forces. In the first part, we present and compare various approaches to develop reduced order models for the nonlinear von-Karman rectangular microplates actuated by nonlinear electrostatic forces. The reduced-order models aim to investigate the static and dynamic behavior of the plate under small and large actuation forces. A fully clamped microplate is considered. Different types of basis functions are used in conjunction with the Galerkin method to discretize the governing equations. First we investigate the convergence with the number of modes retained in the model. Then for validation purpose, a comparison of the static results is made with the results calculated by a nonlinear finite element model. The linear eigenvalue problem for the plate under the electrostatic force is solved for a wide range of voltages up to pull-in. In the second part, we present an investigation of the static and dynamic behavior of a fully clamped microplate. We investigate the effect of different non-dimensional design parameters on the static response. The forced-vibration response of the plate is then investigated when the plate is excited by a harmonic AC load superimposed to a DC load. The dynamic behavior is examined near the primary and secondary (superharmonic and subharmonic) resonances. The microplate shows a strong hardening behavior due to the cubic nonlinearity of midplane stretching. However, the behavior switches to softening as the DC load is increased. Next, near-square plates are studied to understand the effect of geometric imperfections of microplates. In the final part of the dissertation, we investigate the mechanical behavior of

  3. Neurodevelopmental Disorders and Environmental Toxicants: Epigenetics as an Underlying Mechanism

    Directory of Open Access Journals (Sweden)

    Nguyen Quoc Vuong Tran

    2017-01-01

    Full Text Available The increasing prevalence of neurodevelopmental disorders, especially autism spectrum disorders (ASD and attention deficit hyperactivity disorder (ADHD, calls for more research into the identification of etiologic and risk factors. The Developmental Origin of Health and Disease (DOHaD hypothesizes that the environment during fetal and childhood development affects the risk for many chronic diseases in later stages of life, including neurodevelopmental disorders. Epigenetics, a term describing mechanisms that cause changes in the chromosome state without affecting DNA sequences, is suggested to be the underlying mechanism, according to the DOHaD hypothesis. Moreover, many neurodevelopmental disorders are also related to epigenetic abnormalities. Experimental and epidemiological studies suggest that exposure to prenatal environmental toxicants is associated with neurodevelopmental disorders. In addition, there is also evidence that environmental toxicants can result in epigenetic alterations, notably DNA methylation. In this review, we first focus on the relationship between neurodevelopmental disorders and environmental toxicants, in particular maternal smoking, plastic-derived chemicals (bisphenol A and phthalates, persistent organic pollutants, and heavy metals. We then review studies showing the epigenetic effects of those environmental factors in humans that may affect normal neurodevelopment.

  4. Potential mechanisms underlying CDK5 related Osteosarcoma progression.

    Science.gov (United States)

    Bao, Hang-Xing; Bi, Qing; Han, Yong; Zhao, Chen; Zou, Hai

    2017-05-01

    Identification of new prognostic biomarkers and therapeutic targets is of crucial importance for patients with osteosarcoma. Cyclin-dependent kinase 5 (CDK5) is overexpressed in several tumor types. However, the exact role CDK5 plays in osteosarcoma is still unknown. In this study, we explored the association between CDK5 expression and the prognosis of osteosarcoma patients using publicly available gene expression datasets. Potential molecular mechanisms underlying its pro-malignant role in cancer progression were also discussed. We demonstrated that tricarboxylic acid (TCA) cycle is activated while antigen presentation is repressed in patients with CDK5 overexpression and poor survival. This results indicated that sufficient energy production and tumor immune escape are important characteristics and potential therapeutic targets for this subgroup of osteosarcoma patients. Furthermore, several critical hub genes that are associated with CDK5 related osteosarcoma progression such as MELK were identified. This study discussed the pro-malignant role of CDK5 and potential mechanisms involved. Further preclinical and clinical studies to develop CDK5 based treatments are warranted.

  5. Thermal stability of nafion membranes under mechanical stress

    Energy Technology Data Exchange (ETDEWEB)

    Quintilii, M.; Struis, R. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    The feasibility of adequately modified fluoro-ionomer membranes (NAFION{sup R}) is demonstrated for the selective separation of methanol synthesis products from the raw reactor gas at temperatures around 200{sup o}C. For an economically relevant application of this concept on a technical scale the Nafion membranes should be thin ({approx_equal}10 {mu}m) and thermally stable over a long period of time (1-2 years). In cooperation with industry (Methanol Casale SA, Lugano (CH)), we test the thermal stability of Nafion hollow fibers and supported Nafion thin sheet membranes at temperatures between 160 and 200{sup o}C under mechanical stress by applying a gas pressure difference over the membrane surface ({Delta}P{<=} 40 bar). Tests with the hollow fibers revealed that Nafion has visco-elastic properties. Tests with 50 {mu}m thin Nafion sheets supported by a porous metal carrier at 200{sup o}C and {Delta}P=39 bar showed no mechanical defects over a period of 92 days. (author) 5 figs., 4 refs.

  6. Using Drosophila to discover mechanisms underlying type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Ronald W. Alfa

    2016-04-01

    Full Text Available Mechanisms of glucose homeostasis are remarkably well conserved between the fruit fly Drosophila melanogaster and mammals. From the initial characterization of insulin signaling in the fly came the identification of downstream metabolic pathways for nutrient storage and utilization. Defects in these pathways lead to phenotypes that are analogous to diabetic states in mammals. These discoveries have stimulated interest in leveraging the fly to better understand the genetics of type 2 diabetes mellitus in humans. Type 2 diabetes results from insulin insufficiency in the context of ongoing insulin resistance. Although genetic susceptibility is thought to govern the propensity of individuals to develop type 2 diabetes mellitus under appropriate environmental conditions, many of the human genes associated with the disease in genome-wide association studies have not been functionally studied. Recent advances in the phenotyping of metabolic defects have positioned Drosophila as an excellent model for the functional characterization of large numbers of genes associated with type 2 diabetes mellitus. Here, we examine results from studies modeling metabolic disease in the fruit fly and compare findings to proposed mechanisms for diabetic phenotypes in mammals. We provide a systematic framework for assessing the contribution of gene candidates to insulin-secretion or insulin-resistance pathways relevant to diabetes pathogenesis.

  7. Continuing to illuminate the mechanisms underlying UV-mediated melanomagenesis.

    Science.gov (United States)

    Dellinger, Ryan W; Liu-Smith, Feng; Meyskens, Frank L

    2014-09-05

    The incidence of melanoma is one of the fastest growing of all tumor types in the United States and the number of cases worldwide has doubled in the past 30 years. Melanoma, which arises from melanocytes, is an extremely aggressive tumor that invades the vascular and lymphatic systems to establish tumors elsewhere in the body. Melanoma is a particularly resilient cancer and systemic therapy approaches have achieved minimal success against metastatic melanoma resulting in only a few FDA-approved treatments with limited benefit. Leading treatments offer minimal efficacy with response rates generally under 15% in the long term with no clear effect on melanoma-related mortality. Even the recent success of the specific BRAF mutant inhibitor vemurafenib has been tempered somewhat since acquired resistance is rapidly observed. Thus, understanding the mechanism(s) of melanoma carcinogenesis is paramount to combating this deadly disease. Not only for the treatment of melanoma but, ultimately, for prevention. In this report, we will summarize our work to date regarding the characterization of ultraviolet radiation (UVR)-mediated melanomagenesis and highlight several promising avenues of ongoing research.

  8. Different neurophysiological mechanisms underlying word and rule extraction from speech.

    Science.gov (United States)

    De Diego Balaguer, Ruth; Toro, Juan Manuel; Rodriguez-Fornells, Antoni; Bachoud-Lévi, Anne-Catherine

    2007-11-14

    The initial process of identifying words from spoken language and the detection of more subtle regularities underlying their structure are mandatory processes for language acquisition. Little is known about the cognitive mechanisms that allow us to extract these two types of information and their specific time-course of acquisition following initial contact with a new language. We report time-related electrophysiological changes that occurred while participants learned an artificial language. These changes strongly correlated with the discovery of the structural rules embedded in the words. These changes were clearly different from those related to word learning and occurred during the first minutes of exposition. There is a functional distinction in the nature of the electrophysiological signals during acquisition: an increase in negativity (N400) in the central electrodes is related to word-learning and development of a frontal positivity (P2) is related to rule-learning. In addition, the results of an online implicit and a post-learning test indicate that, once the rules of the language have been acquired, new words following the rule are processed as words of the language. By contrast, new words violating the rule induce syntax-related electrophysiological responses when inserted online in the stream (an early frontal negativity followed by a late posterior positivity) and clear lexical effects when presented in isolation (N400 modulation). The present study provides direct evidence suggesting that the mechanisms to extract words and structural dependencies from continuous speech are functionally segregated. When these mechanisms are engaged, the electrophysiological marker associated with rule-learning appears very quickly, during the earliest phases of exposition to a new language.

  9. Different neurophysiological mechanisms underlying word and rule extraction from speech.

    Directory of Open Access Journals (Sweden)

    Ruth De Diego Balaguer

    Full Text Available The initial process of identifying words from spoken language and the detection of more subtle regularities underlying their structure are mandatory processes for language acquisition. Little is known about the cognitive mechanisms that allow us to extract these two types of information and their specific time-course of acquisition following initial contact with a new language. We report time-related electrophysiological changes that occurred while participants learned an artificial language. These changes strongly correlated with the discovery of the structural rules embedded in the words. These changes were clearly different from those related to word learning and occurred during the first minutes of exposition. There is a functional distinction in the nature of the electrophysiological signals during acquisition: an increase in negativity (N400 in the central electrodes is related to word-learning and development of a frontal positivity (P2 is related to rule-learning. In addition, the results of an online implicit and a post-learning test indicate that, once the rules of the language have been acquired, new words following the rule are processed as words of the language. By contrast, new words violating the rule induce syntax-related electrophysiological responses when inserted online in the stream (an early frontal negativity followed by a late posterior positivity and clear lexical effects when presented in isolation (N400 modulation. The present study provides direct evidence suggesting that the mechanisms to extract words and structural dependencies from continuous speech are functionally segregated. When these mechanisms are engaged, the electrophysiological marker associated with rule-learning appears very quickly, during the earliest phases of exposition to a new language.

  10. Power system security enhancement with unified power flow controller under multi-event contingency conditions

    National Research Council Canada - National Science Library

    S. Ravindra; Chintalapudi V. Suresh; S. Sivanagaraju; V.C. Veera Reddy

    2017-01-01

    .... An improved teaching learning based optimization (ITLBO) algorithm has been presented. To enhance the system security under contingency conditions in the presence of unified power flow controller (UPFC...

  11. Neurobiological mechanisms underlying the blocking effect in aversive learning.

    Science.gov (United States)

    Eippert, Falk; Gamer, Matthias; Büchel, Christian

    2012-09-19

    Current theories of classical conditioning assume that learning depends on the predictive relationship between events, not just on their temporal contiguity. Here we employ the classic experiment substantiating this reasoning-the blocking paradigm-in combination with functional magnetic resonance imaging (fMRI) to investigate whether human amygdala responses in aversive learning conform to these assumptions. In accordance with blocking, we demonstrate that significantly stronger behavioral and amygdala responses are evoked by conditioned stimuli that are predictive of the unconditioned stimulus than by conditioned stimuli that have received the same pairing with the unconditioned stimulus, yet have no predictive value. When studying the development of this effect, we not only observed that it was related to the strength of previous conditioned responses, but also that predictive compared with nonpredictive conditioned stimuli received more overt attention, as measured by fMRI-concurrent eye tracking, and that this went along with enhanced amygdala responses. We furthermore observed that prefrontal regions play a role in the development of the blocking effect: ventromedial prefrontal cortex (subgenual anterior cingulate) only exhibited responses when conditioned stimuli had to be established as nonpredictive for an outcome, whereas dorsolateral prefrontal cortex also showed responses when conditioned stimuli had to be established as predictive. Most importantly, dorsolateral prefrontal cortex connectivity to amygdala flexibly switched between positive and negative coupling, depending on the requirements posed by predictive relationships. Together, our findings highlight the role of predictive value in explaining amygdala responses and identify mechanisms that shape these responses in human fear conditioning.

  12. Microcracking in composite laminates under thermal and mechanical loading. Thesis

    Science.gov (United States)

    Maddocks, Jason R.

    1995-01-01

    Composites used in space structures are exposed to both extremes in temperature and applied mechanical loads. Cracks in the matrix form, changing the laminate thermoelastic properties. The goal of the present investigation is to develop a predictive methodology to quantify microcracking in general composite laminates under both thermal and mechanical loading. This objective is successfully met through a combination of analytical modeling and experimental investigation. In the analysis, the stress and displacement distributions in the vicinity of a crack are determined using a shear lag model. These are incorporated into an energy based cracking criterion to determine the favorability of crack formation. A progressive damage algorithm allows the inclusion of material softening effects and temperature-dependent material properties. The analysis is implemented by a computer code which gives predicted crack density and degraded laminate properties as functions of any thermomechanical load history. Extensive experimentation provides verification of the analysis. AS4/3501-6 graphite/epoxy laminates are manufactured with three different layups to investigate ply thickness and orientation effects. Thermal specimens are cooled to progressively lower temperatures down to -184 C. After conditioning the specimens to each temperature, cracks are counted on their edges using optical microscopy and in their interiors by sanding to incremental depths. Tensile coupons are loaded monotonically to progressively higher loads until failure. Cracks are counted on the coupon edges after each loading. A data fit to all available results provides input parameters for the analysis and shows them to be material properties, independent of geometry and loading. Correlation between experiment and analysis is generally very good under both thermal and mechanical loading, showing the methodology to be a powerful, unified tool. Delayed crack initiation observed in a few cases is attributed to a

  13. Mechanical Modeling of a WIPP Drum Under Pressure

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Jeffrey A. [Sandia National Laboratories, Albuquerque, NM (United States)

    2014-11-25

    Mechanical modeling was undertaken to support the Waste Isolation Pilot Plant (WIPP) technical assessment team (TAT) investigating the February 14th 2014 event where there was a radiological release at the WIPP. The initial goal of the modeling was to examine if a mechanical model could inform the team about the event. The intention was to have a model that could test scenarios with respect to the rate of pressurization. It was expected that the deformation and failure (inability of the drum to contain any pressure) would vary according to the pressurization rate. As the work progressed there was also interest in using the mechanical analysis of the drum to investigate what would happen if a drum pressurized when it was located under a standard waste package. Specifically, would the deformation be detectable from camera views within the room. A finite element model of a WIPP 55-gallon drum was developed that used all hex elements. Analyses were conducted using the explicit transient dynamics module of Sierra/SM to explore potential pressurization scenarios of the drum. Theses analysis show similar deformation patterns to documented pressurization tests of drums in the literature. The calculated failure pressures from previous tests documented in the literature vary from as little as 16 psi to 320 psi. In addition, previous testing documented in the literature shows drums bulging but not failing at pressures ranging from 69 to 138 psi. The analyses performed for this study found the drums failing at pressures ranging from 35 psi to 75 psi. When the drums are pressurized quickly (in 0.01 seconds) there is significant deformation to the lid. At lower pressurization rates the deformation of the lid is considerably less, yet the lids will still open from the pressure. The analyses demonstrate the influence of pressurization rate on deformation and opening pressure of the drums. Analyses conducted with a substantial mass on top of the closed drum demonstrate that the

  14. Structural and Mechanical Properties of Intermediate Filaments under Extreme Conditions and Disease

    Science.gov (United States)

    Qin, Zhao

    Intermediate filaments are one of the three major components of the cytoskeleton in eukaryotic cells. It was discovered during the recent decades that intermediate filament proteins play key roles to reinforce cells subjected to large-deformation as well as participate in signal transduction. However, it is still poorly understood how the nanoscopic structure, as well as the biochemical properties of these protein molecules contribute to their biomechanical functions. In this research we investigate the material function of intermediate filaments under various extreme mechanical conditions as well as disease states. We use a full atomistic model and study its response to mechanical stresses. Learning from the mechanical response obtained from atomistic simulations, we build mesoscopic models following the finer-trains-coarser principles. By using this multiple-scale model, we present a detailed analysis of the mechanical properties and associated deformation mechanisms of intermediate filament network. We reveal the mechanism of a transition from alpha-helices to beta-sheets with subsequent intermolecular sliding under mechanical force, which has been inferred previously from experimental results. This nanoscale mechanism results in a characteristic nonlinear force-extension curve, which leads to a delocalization of mechanical energy and prevents catastrophic fracture. This explains how intermediate filament can withstand extreme mechanical deformation of > 1 00% strain despite the presence of structural defects. We combine computational and experimental techniques to investigate the molecular mechanism of Hutchinson-Gilford progeria syndrome, a premature aging disease. We find that the mutated lamin tail .domain is more compact and stable than the normal one. This altered structure and stability may enhance the association of intermediate filaments with the nuclear membrane, providing a molecular mechanism of the disease. We study the nuclear membrane association

  15. A self-enhanced transport mechanism through long noncoding RNAs for X chromosome inactivation.

    Science.gov (United States)

    Li, Chunhe; Hong, Tian; Webb, Chiu-Ho; Karner, Heather; Sun, Sha; Nie, Qing

    2016-08-16

    X-chromosome inactivation (XCI) is the mammalian dosage compensation strategy for balancing sex chromosome content between females and males. While works exist on initiation of symmetric breaking, the underlying allelic choice mechanisms and dynamic regulation responsible for the asymmetric fate determination of XCI remain elusive. Here we combine mathematical modeling and experimental data to examine the mechanism of XCI fate decision by analyzing the signaling regulatory circuit associated with long noncoding RNAs (lncRNAs) involved in XCI. We describe three plausible gene network models that incorporate features of lncRNAs in their localized actions and rapid transcriptional turnovers. In particular, we show experimentally that Jpx (a lncRNA) is transcribed biallelically, escapes XCI, and is asymmetrically dispersed between two X's. Subjecting Jpx to our test of model predictions against previous experimental observations, we identify that a self-enhanced transport feedback mechanism is critical to XCI fate decision. In addition, the analysis indicates that an ultrasensitive response of Jpx signal on CTCF is important in this mechanism. Overall, our combined modeling and experimental data suggest that the self-enhanced transport regulation based on allele-specific nature of lncRNAs and their temporal dynamics provides a robust and novel mechanism for bi-directional fate decisions in critical developmental processes.

  16. Mechanical behavior and failure mechanism of pre-cracked specimen under uniaxial compression

    Science.gov (United States)

    Liu, Ting; Lin, Baiquan; Yang, Wei

    2017-08-01

    As a desirable permeability enhancement method, hydraulic slotting has been widely used for enhanced coal bed methane (ECBM) recovery in China. Aiming at the problem that the action mechanism of the slot on the mechanical properties of the slotted coal is still unclear, this paper investigates the effects of flaw inclination on the strength, deformation and cracking process of the pre-cracked specimens. The result shows that the stress-strain curves can be divided into three categories based on the stress behaviors, dropping step by step or dropping sharply, after the peak. With an increase of the flaw inclination, the strength and elastic modulus of the pre-cracked specimen increases gradually, which is verified by the numerical simulation and theoretical results. Analysis of the cracking processes indicates that the initiation position of the first crack in specimens with various flaw inclinations is different, which is caused by the various distributions of tensile and compressive stress concentration zones. The distribution of the stress field controls the cracking process which will in turn affect the stress field distribution. With the propagation of the cracks, the tensile stress concentration zones expand and the concentration degree lowers gradually, while the compressive stress concentration zones show the opposite variation trend. Based on the above results, an optimized slot arrangement method has been proposed for the field application of hydraulic slotting.

  17. An analytical model of the mechanical properties of bulk coal under confined stress

    Science.gov (United States)

    Wang, G.X.; Wang, Z.T.; Rudolph, V.; Massarotto, P.; Finley, R.J.

    2007-01-01

    This paper presents the development of an analytical model which can be used to relate the structural parameters of coal to its mechanical properties such as elastic modulus and Poisson's ratio under a confined stress condition. This model is developed primarily to support process modeling of coalbed methane (CBM) or CO2-enhanced CBM (ECBM) recovery from coal seam. It applied an innovative approach by which stresses acting on and strains occurring in coal are successively combined in rectangular coordinates, leading to the aggregated mechanical constants. These mechanical properties represent important information for improving CBM/ECBM simulations and incorporating within these considerations of directional permeability. The model, consisting of constitutive equations which implement a mechanically consistent stress-strains correlation, can be used as a generalized tool to study the mechanical and fluid behaviors of coal composites. An example using the model to predict the stress-strain correlation of coal under triaxial confined stress by accounting for the elastic and brittle (non-elastic) deformations is discussed. The result shows a good agreement between the prediction and the experimental measurement. ?? 2007 Elsevier Ltd. All rights reserved.

  18. Chemical enhancer solubility in human stratum corneum lipids and enhancer mechanism of action on stratum corneum lipid domain.

    Science.gov (United States)

    Ibrahim, Sarah A; Li, S Kevin

    2010-01-04

    Previously, chemical enhancer-induced permeation enhancement on human stratum corneum (SC) lipoidal pathway at enhancer thermodynamic activities approaching unity in the absence of cosolvents (defined as Emax) was determined and hypothesized to be related to the enhancer solubilities in the SC lipid domain. The objectives of the present study were to (a) quantify enhancer uptake into SC lipid domain at saturation, (b) elucidate enhancer mechanism(s) of action, and (c) study the SC lipid phase behavior at Emax. It was concluded that direct quantification of enhancer uptake into SC lipid domain using intact SC was complicated. Therefore a liposomal model of extracted human SC lipids was used. In the liposome study, enhancer uptake into extracted human SC lipid liposomes (EHSCLL) was shown to correlate with Emax. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and differential scanning calorimetry (DSC) were used to evaluate lipid phase alterations in enhancer-treated intact SC. IR spectra demonstrated an increase in the lipid domain fluidity and DSC thermograms indicated a decrease in the phase transition temperature with increasing Emax. These results suggest that the enhancer mechanism of action is through enhancer intercalation into SC intercellular lipids and subsequent lipid lamellae fluidization related to enhancer lipid concentration.

  19. Mechanism involved in enhancement of osteoblast differentiation by hyaluronic acid

    Energy Technology Data Exchange (ETDEWEB)

    Kawano, Michinao [Division of Maxillofacial Diagnostic and Surgical Science, Department of Oral and Maxillofacial Surgery, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Ariyoshi, Wataru [Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Iwanaga, Kenjiro [Division of Maxillofacial Diagnostic and Surgical Science, Department of Oral and Maxillofacial Surgery, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Okinaga, Toshinori [Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Habu, Manabu [Division of Maxillofacial Diagnostic and Surgical Science, Department of Oral and Maxillofacial Surgery, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Yoshioka, Izumi [Division of Oral and Maxillofacial Surgery, Department of Medicine of Sensory and Motor Organs, University of Miyazaki, Kiyotake, Miyazaki 889-1692 (Japan); Tominaga, Kazuhiro [Division of Maxillofacial Diagnostic and Surgical Science, Department of Oral and Maxillofacial Surgery, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Oral Bioresearch Center, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Nishihara, Tatsuji, E-mail: tatsujin@kyu-dent.ac.jp [Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Oral Bioresearch Center, Kyushu Dental College, Kitakyushu 803-8580 (Japan)

    2011-02-25

    Research highlights: {yields} In this study was to investigate the effects of HA on osteoblast differentiation induced by BMP-2. {yields} MG63 cells were incubated with BMP-2 and HA for various time periods. {yields} Phosphorylation of Smad 1/5/8, p38, and ERK proteins was determined by western blot analysis. To elucidate the nuclear translocation of phosphorylated Smad 1/5/8, stimulated cells were subjected to immunofluorescence microscopy. {yields} HA enhanced BMP-2 induces osteoblastic differentiation in MG63 cells via down-regulation of BMP-2 antagonists and ERK phosphorylation. -- Abstract: Objectives: Bone morphogenetic protein-2 (BMP-2) is expected to be utilized to fill bone defects and promote healing of fractures. However, it is unable to generate an adequate clinical response for use in bone regeneration. Recently, it was reported that glycosaminoglycans, including heparin, heparan sulfate, keratan sulfate, dermatan sulfate, chondroitin-4-sulfate, chondroitin-6-sulfate, and hyaluronic acid (HA), regulate BMP-2 activity, though the mechanism by which HA regulates osteogenic activities has not been fully elucidated. The aim of this study was to investigate the effects of HA on osteoblast differentiation induced by BMP-2. Materials and methods: Monolayer cultures of osteoblastic lineage MG63 cells were incubated with BMP-2 and HA for various time periods. To determine osteoblastic differentiation, alkaline phosphatase (ALP) activity in the cell lysates was quantified. Phosphorylation of Smad 1/5/8, p38, and ERK proteins was determined by Western blot analysis. To elucidate the nuclear translocation of phosphorylated Smad 1/5/8, stimulated cells were subjected to immunofluorescence microscopy. To further elucidate the role of HA in enhancement of BMP-2-induced Smad signaling, mRNA expressions of the BMP-2 receptor antagonists noggin and follistatin were detected using real-time RT-PCR. Results: BMP-2-induced ALP activation, Smad 1/5/8 phosphorylation, and

  20. Effects of delaying transplanting on agronomic traits and grain yield of rice under mechanical transplantation pattern.

    Directory of Open Access Journals (Sweden)

    Qihua Liu

    Full Text Available A delay in the mechanical transplantation (MT of rice seedlings frequently occurs in Huanghuai wheat-rice rotation cropping districts of China, due to the late harvest of wheat, the poor weather conditions and the insufficiency of transplanters, missing the optimum transplanting time and causing seedlings to age. To identify how delaying transplanting rice affects the agronomic characteristics including the growth duration, photosynthetic productivity and dry matter remobilization efficiency and the grain yield under mechanical transplanting pattern, an experiment with a split-plot design was conducted over two consecutive years. The main plot includes two types of cultivation: mechanical transplanting and artificial transplanting (AT. The subplot comprises four japonica rice cultivars. The results indicate that the rice jointing, booting, heading and maturity stages were postponed under MT when using AT as a control. The tiller occurrence number, dry matter weight per tiller, accumulative dry matter for the population, leaf area index, crop growth rate, photosynthetic potential, and dry matter remobilization efficiency of the leaf under MT significantly decreased compared to those under AT. In contrast, the reduction rate of the leaf area during the heading-maturity stage was markedly enhanced under MT. The numbers of effective panicles and filled grains per panicle and the grain yield significantly decreased under MT. A significant correlation was observed between the dry matter production, remobilization and distribution characteristics and the grain yield. We infer that, as with rice from old seedlings, the decrease in the tiller occurrence, the photosynthetic productivity and the assimilate remobilization efficiency may be important agronomic traits that are responsible for the reduced grain yield under MT.

  1. Video analysis of concussion injury mechanism in under-18 rugby

    Science.gov (United States)

    Hendricks, Sharief; O'Connor, Sam; Lambert, Michael; Brown, James C; Burger, Nicholas; Mc Fie, Sarah; Readhead, Clint; Viljoen, Wayne

    2016-01-01

    Background Understanding the mechanism of injury is necessary for the development of effective injury prevention strategies. Video analysis of injuries provides valuable information on the playing situation and athlete-movement patterns, which can be used to formulate these strategies. Therefore, we conducted a video analysis of the mechanism of concussion injury in junior-level rugby union and compared it with a representative and matched non-injury sample. Methods Injury reports for 18 concussion events were collected from the 2011 to 2013 under-18 Craven Week tournaments. Also, video footage was recorded for all 3 years. On the basis of the injury events, a representative ‘control’ sample of matched non-injury events in the same players was identified. The video footage, which had been recorded at each tournament, was then retrospectively analysed and coded. 10 injury events (5 tackle, 4 ruck, 1 aerial collision) and 83 non-injury events were analysed. Results All concussions were a result of contact with an opponent and 60% of players were unaware of the impending contact. For the measurement of head position on contact, 43% had a ‘down’ position, 29% the ‘up and forward’ and 29% the ‘away’ position (n=7). The speed of the injured tackler was observed as ‘slow’ in 60% of injurious tackles (n=5). In 3 of the 4 rucks in which injury occurred (75%), the concussed player was acting defensively either in the capacity of ‘support’ (n=2) or as the ‘jackal’ (n=1). Conclusions Training interventions aimed at improving peripheral vision, strengthening of the cervical muscles, targeted conditioning programmes to reduce the effects of fatigue, and emphasising safe and effective playing techniques have the potential to reduce the risk of sustaining a concussion injury. PMID:27900149

  2. Mechanisms underlying stage-1 TRPL channel translocation in Drosophila photoreceptors.

    Directory of Open Access Journals (Sweden)

    Minh-Ha Lieu

    Full Text Available BACKGROUND: TRP channels function as key mediators of sensory transduction and other cellular signaling pathways. In Drosophila, TRP and TRPL are the light-activated channels in photoreceptors. While TRP is statically localized in the signaling compartment of the cell (the rhabdomere, TRPL localization is regulated by light. TRPL channels translocate out of the rhabdomere in two distinct stages, returning to the rhabdomere with dark-incubation. Translocation of TRPL channels regulates their availability, and thereby the gain of the signal. Little, however, is known about the mechanisms underlying this trafficking of TRPL channels. METHODOLOGY/PRINCIPAL FINDINGS: We first examine the involvement of de novo protein synthesis in TRPL translocation. We feed flies cycloheximide, verify inhibition of protein synthesis, and test for TRPL translocation in photoreceptors. We find that protein synthesis is not involved in either stage of TRPL translocation out of the rhabdomere, but that re-localization to the rhabdomere from stage-1, but not stage-2, depends on protein synthesis. We also characterize an ex vivo eye preparation that is amenable to biochemical and genetic manipulation. We use this preparation to examine mechanisms of stage-1 TRPL translocation. We find that stage-1 translocation is: induced with ATP depletion, unaltered with perturbation of the actin cytoskeleton or inhibition of endocytosis, and slowed with increased membrane sterol content. CONCLUSIONS/SIGNIFICANCE: Our results indicate that translocation of TRPL out of the rhabdomere is likely due to protein transport, and not degradation/re-synthesis. Re-localization from each stage to the rhabdomere likely involves different strategies. Since TRPL channels can translocate to stage-1 in the absence of ATP, with no major requirement of the cytoskeleton, we suggest that stage-1 translocation involves simple diffusion through the apical membrane, which may be regulated by release of a

  3. Glass Fiber Reinforced Polypropylene Mechanical Properties Enhancement by Adhesion Improvement

    Directory of Open Access Journals (Sweden)

    Mariana Etcheverry

    2012-06-01

    Full Text Available Glass fibers (GF are the reinforcement agent most used in polypropylene (PP based composites, as they have good balance between properties and costs. However, their final properties are mainly determined by the strength and stability of the polymer-fiber interphase. Fibers do not act as an effective reinforcing material when the adhesion is weak. Also, the adhesion between phases can be easily degraded in aggressive environmental conditions such as high temperatures and/or elevated moisture, and by the stress fields to which the material may be exposed. Many efforts have been done to improve polymer-glass fiber adhesion by compatibility enhancement. The most used techniques include modifications in glass surface, polymer matrix and/or both. However, the results obtained do not show a good costs/properties improvement relationship. The aim of this work is to perform an accurate analysis regarding methods for GF/PP adhesion improvement and to propose a new route based on PP in-situ polymerization onto fibers. This route involves the modification of fibers with an aluminum alkyl and hydroxy-α-olefin and from there to enable the growth of the PP chains using direct metallocenic copolymerization. The adhesion improvements were further proved by fragmentation test, as well as by mechanical properties measurements. The strength and toughness increases three times and the interfacial strength duplicates in PP/GF composites prepared with in-situ polymerized fibers.

  4. Enhanced Mechanisms for Navigation and Tracking Services in Smart Phones

    Directory of Open Access Journals (Sweden)

    L.-C. Chen

    2013-03-01

    Full Text Available Combining Global Positioning System (GPS and Short Message Service (SMS, this paper develops a realisticsystem, called Mobile Navigation and Tracking System (MNTS, to provide navigation and target tracking services.MNTS is an Android based mobile application which integrated many enhanced mechanisms for navigation andtarget tracking services. MNTS not only provides users with the GPS navigation capability, but also supports QuickResponse (QR code decoding, nearby scenic spot searching, friend positioning and target tracking. In targettracking, MNTS utilizing SMS mainly adopts two proposed novel approaches: location prediction and dynamicthreshold to reduce the number of short message transmissions while maintaining location accuracy within anacceptable range. Location prediction utilizes the current target’s location, moving speed, bearing to predict its nextlocation. When the distance between the predicted location and the actual location exceeds a threshold, the targetsends a short message to the tracker to update the actual location. Based on the movement speed of the target,the threshold is dynamically adjusted to balance the location accuracy and the number of short messages.Furthermore, as MNTS is free and open-source software, service providers or developers can easily extend theirown services based on this system.

  5. Enhanced Mechanisms for Navigation and Tracking Services in Smart Phones

    Directory of Open Access Journals (Sweden)

    L.-C. Chen

    2013-04-01

    Full Text Available Combining Global Positioning System (GPS and Short Message Service (SMS, this paper develops a realistic system, called Mobile Navigation and Tracking System (MNTS, to provide navigation and target tracking services. MNTS is an Android based mobile application which integrated many enhanced mechanisms for navigation and target tracking services. MNTS not only provides users with the GPS navigation capability, but also supports Quick Response (QR code decoding, nearby scenic spot searching, friend positioning and target tracking. In target tracking, MNTS utilizing SMS mainly adopts two proposed novel approaches: location prediction and dynamic threshold to reduce the number of short message transmissions while maintaining location accuracy within an acceptable range. Location prediction utilizes the current target’s location, moving speed, bearing to predict its next location. When the distance between the predicted location and the actual location exceeds a threshold, the target sends a short message to the tracker to update the actual location. Based on the movement speed of the target, the threshold is dynamically adjusted to balance the location accuracy and the number of short messages. Furthermore, as MNTS is free and open-source software, service providers or developers can easily extend their own services based on this system.

  6. The mechanisms underlying long-term potentiation of C-fiber evoked field potentials in spinal dorsal horn

    Institute of Scientific and Technical Information of China (English)

    LIU Xian-Guo

    2008-01-01

    Long-term potentiation (LTP) of C-fiber evoked feld potentials in spinal dorsal horn is first reported in 1995. Since then, the mechanisms underlying the long-lasting enhancement in synaptic transmission between primary afferent C-fibers and neurons in spinal dorsal horn have been investigated by different laboratories. In this article, the related data were summarized and discussed.

  7. Neural substrates underlying stimulation-enhanced motor skill learning after stroke.

    Science.gov (United States)

    Lefebvre, Stéphanie; Dricot, Laurence; Laloux, Patrice; Gradkowski, Wojciech; Desfontaines, Philippe; Evrard, Frédéric; Peeters, André; Jamart, Jacques; Vandermeeren, Yves

    2015-01-01

    Motor skill learning is one of the key components of motor function recovery after stroke, especially recovery driven by neurorehabilitation. Transcranial direct current stimulation can enhance neurorehabilitation and motor skill learning in stroke patients. However, the neural mechanisms underlying the retention of stimulation-enhanced motor skill learning involving a paretic upper limb have not been resolved. These neural substrates were explored by means of functional magnetic resonance imaging. Nineteen chronic hemiparetic stroke patients participated in a double-blind, cross-over randomized, sham-controlled experiment with two series. Each series consisted of two sessions: (i) an intervention session during which dual transcranial direct current stimulation or sham was applied during motor skill learning with the paretic upper limb; and (ii) an imaging session 1 week later, during which the patients performed the learned motor skill. The motor skill learning task, called the 'circuit game', involves a speed/accuracy trade-off and consists of moving a pointer controlled by a computer mouse along a complex circuit as quickly and accurately as possible. Relative to the sham series, dual transcranial direct current stimulation applied bilaterally over the primary motor cortex during motor skill learning with the paretic upper limb resulted in (i) enhanced online motor skill learning; (ii) enhanced 1-week retention; and (iii) superior transfer of performance improvement to an untrained task. The 1-week retention's enhancement driven by the intervention was associated with a trend towards normalization of the brain activation pattern during performance of the learned motor skill relative to the sham series. A similar trend towards normalization relative to sham was observed during performance of a simple, untrained task without a speed/accuracy constraint, despite a lack of behavioural difference between the dual transcranial direct current stimulation and sham

  8. Particle behavior and char burnout mechanisms under pressurized combustion conditions

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, C.M.; Spliethoff, H.; Hein, K.R.G.

    1999-07-01

    Combined cycle systems with coal-fired gas turbines promise highest cycle efficiencies for this fuel. Pressurized pulverized coal combustion, in particular, yields high cycle efficiencies due to the high flue gas temperatures possible. The main problem, however, is to ensure a flue gas clean enough to meet the high gas turbine standards with a dirty fuel like coal. On the one hand, a profound knowledge of the basic chemical and physical processes during fuel conversion under elevated pressures is required whereas on the other hand suitable hot gas cleaning systems need to be developed. The objective of this work was to provide experimental data to enable a detailed description of pressurized coal combustion processes. A series of experiments were performed with two German hvb coals, Ensdorf and Goettelborn, and one German brown coal, Garzweiler, using a semi-technical scale pressurized entrained flow reactor. The parameters varied in the experiments were pressure, gas temperature and bulk gas oxygen concentration. A two-color pyrometer was used for in-situ determination of particle surface temperatures and particle sizes. Flue gas composition was measured and solid residue samples taken and subsequently analyzed. The char burnout reaction rates were determinated varying the parameters pressure, gas temperature and initial oxygen concentration. Variation of residence time was achieved by taking the samples at different points along the reaction zone. The most influential parameters on char burnout reaction rates were found to be oxygen partial pressure and fuel volatile content. With increasing pressure the burn-out reactions are accelerated and are mostly controlled by product desorption and pore diffusion being the limiting processes. The char burnout process is enhanced by a higher fuel volatile content.

  9. Neural mechanisms underlying balance control in Tai Chi.

    Science.gov (United States)

    Gatts, Strawberry

    2008-01-01

    The efficacy of Tai Chi (TC) to improve neuromuscular response characteristics underlying dynamic balance recovery in balance-impaired seniors at high risk for falling was examined during perturbed walking. Twenty-two subjects were randomized into TC or control groups. Nineteen subjects (68-92 years, BERG 44 or less) completed the study. TC training incorporated repetitive exercises using TC's essential motor/biomechanical strategies, techniques, and postural components. Control training used axial exercises, balance awareness/education and stress reduction. Groups trained 1.5 h/day, 5 days/week for 3 weeks. After post-testing, controls received TC training. Subjects walked across a force plate triggered to move forward 15 cm at 40 cm/s at heelstrike. Tibialis anterior and medial gastrocnemius responses during balance recovery were recorded from electromyograms. Four clinical measures of balance were also examined. TC subjects, but not controls, significantly reduced tibialis anterior response time from 148.92 +/- 45.11 ms to 98.67 +/- 17.22 ms (p < or = 0.004) and decreased co-contraction of antagonist muscles (p < or = 0.003) of the perturbed leg. All clinical balance measures significantly improved after TC. TC training transferred to improved neuromuscular responses controlling the ankle joint during perturbed gait in balance-impaired seniors who had surgical interventions to their back, hips, knees and arthritis. The fast, accurate neuromuscular activation crucial for efficacious response to slips also transferred to four clinical measures of functional balance. Significant enhancement was achieved with 3 weeks of training.

  10. Mechanism of attenuation of leptin signaling under chronic ligand stimulation

    Directory of Open Access Journals (Sweden)

    Bamberg-Lemper Simone

    2010-01-01

    Full Text Available Abstract Background Leptin is an adipocyte-derived hormone that acts via its hypothalamic receptor (LEPRb to regulate energy balance. A downstream effect essential for the weight-regulatory action of leptin is the phosphorylation and activation of the latent transcription factor STAT3 by LEPRb-associated Janus kinases (JAKs. Obesity is typically associated with chronically elevated leptin levels and a decreased ability of LEPRb to activate intracellular signal transduction pathways (leptin resistance. Here we have studied the roles of the intracellular tyrosine residues in the negative feedback regulation of LEPRb-signaling under chronic leptin stimulation. Results Mutational analysis showed that the presence of either Tyr985 and Tyr1077 in the intracellular domain of LEPRb was sufficient for the attenuation of STAT3 phosphorylation, whereas mutation of both tyrosines rendered LEPRb resistant to feedback regulation. Overexpression and RNA interference-mediated downregulation of suppressor of cytokine signaling 3 (SOCS3 revealed that both Tyr985 and Tyr1077 were capable of supporting the negative modulatory effect of SOCS3 in reporter gene assays. In contrast, the inhibitory effect of SOCS1 was enhanced by the presence of Tyr985 but not Tyr1077. Finally, the reduction of the STAT-phosphorylating activity of the LEPRb complex after 2 h of leptin stimulation was not accompanied by the dephosphorylation or degradation of LEPRb or the receptor-associated JAK molecule, but depended on Tyr985 and/or Tyr1077. Conclusions Both Tyr985 and Tyr1077 contribute to the negative regulation of LEPRb signaling. The inhibitory effects of SOCS1 and SOCS3 differ in the dependence on the tyrosine residues in the intracellular domain of LEPRb.

  11. Chromate enhanced visible light driven TiO₂ photocatalytic mechanism on Acid Orange 7 photodegradation.

    Science.gov (United States)

    Wang, Yeoung-Sheng; Shen, Jyun-Hong; Horng, Jao-Jia

    2014-06-15

    When hexavalent chromium (Cr(VI)) is added to a TiO2 photocatalytic reaction, the decolorization and mineralization efficiencies of azo dyes Acid Orange 7 (AO7) are enhanced even though the mechanism is unclear. This study used 5,5-dimethyl-l-pyrroline-N-oxide (DMPO) as the scavenger and the analysis of Electron Spin Resonance (ESR) to investigate this enhancement effect by observing the hydroxyl radical (OH) generation of the Cr(VI)/TiO2 system under UV and visible light (Vis) irradiation. With Cr(VI), the decolorization efficiencies were approximately 95% and 62% under UV and Vis, and those efficiencies were 25% less in the absence of Cr(VI). The phenomena of the DMPO-OH signals during the ESR analysis under Vis 405 and 550 nm irradiation were obviously the enhancement effects of Cr(VI) in aerobic conditions. In anoxic conditions, the catalytic effects of Cr(VI) could not be achieved due to the lack of a redox reaction between Cr(VI) and the adsorbed oxygen at the oxygen vacancy sites on the TiO2 surfaces. The results suggest that by introducing the agents of redox reactions such as chromate ions, we could lower the photoenergy of TiO2 needed and allow Vis irradiation to activate photocatalysis.

  12. Beyond membrane channelopathies: alternative mechanisms underlying complex human disease

    Institute of Scientific and Technical Information of China (English)

    Konstantinos Dean BOUDOULAS; Peter J MOHLER

    2011-01-01

    Over the past fifteen years, our understanding of the molecular mechanisms underlying human disease has flourished in large part due to the discovery of gene mutations linked with membrane ion channels and transporters. In fact, ion channel defects ("channelopathies" - the focus of this review series) have been associated with a spectrum of serious human disease phenotypes including cystic fibrosis, cardiac arrhythmia, diabetes, skeletal muscle defects, and neurological disorders. However, we now know that human disease, particularly excitable cell disease, may be caused by defects in non-ion channel polypeptides including in cellular components residing well beneath the plasma membrane. For example, over the past few years, a new class of potentially fatal cardiac arrhythmias has been linked with cytoplasmic proteins that include sub-membrane adapters such as ankyrin-B (ANK2),ankyrin-G (ANK3), and alpha-1 syntrophin, membrane coat proteins including caveolin-3 (CAV3), signaling platforms including yotiao (AKAPg), and cardiac enzymes (GPD1L). The focus of this review is to detail the exciting role of lamins, yet another class of gene products that have provided elegant new insight into human disease.

  13. Cellular mechanisms underlying spatiotemporal features of cholinergic retinal waves

    Science.gov (United States)

    Ford, Kevin J.; Félix, Aude L.; Feller, Marla B.

    2012-01-01

    Prior to vision, a transient network of recurrently connected cholinergic interneurons, called starburst amacrine cells (SACs), generates spontaneous retinal waves. Despite an absence of robust inhibition, cholinergic retinal waves initiate infrequently and propagate within finite boundaries. Here we combine a variety of electrophysiological and imaging techniques and computational modeling to elucidate the mechanisms underlying these spatial and temporal properties of waves in developing mouse retina. Waves initiate via rare spontaneous depolarizations of SACs. Waves propagate through recurrent cholinergic connections between SACs and volume release of ACh as demonstrated using paired recordings and a cell-based ACh optical sensor. Perforated patch recordings and two-photon calcium imaging reveal that individual SACs have slow afterhyperpolarizations that induce SACs to have variable depolarizations during sequential waves. Using a computational model in which the properties of SACs are based on these physiological measurements, we reproduce the slow frequency, speed, and finite size of recorded waves. This study represents a detailed description of the circuit that mediates cholinergic retinal waves and indicates that variability of the interneurons that generate this network activity may be critical for the robustness of waves across different species and stages of development. PMID:22262883

  14. Degradation Mechanism of Polyimide Film Under Square Impulse Voltages

    Institute of Scientific and Technical Information of China (English)

    LUO Yang; WU Guangning; XIA Jinfeng; ZHU Guangya; WANG Peng; CAO Kaijiang

    2013-01-01

    Partial discharge (PD) under a sequence of high-repetition-rate square pulses is one of the key factors leading to premature failure of insulation systems of inverter-fed motors.Polyimide (PI) film is an important type of insulating material used in the inverter-fed motors.In this paper,micro-morphology and structure change of PI film aged by bipolar continuous square impulse voltage (BCSIV) with amplitude above partial discharge inception voltage (PDIV) are investigated by scanning electron microscope (SEM).The chemical bonds of PI chain are analyzed through Fourier transform infrared spectroscopy (FTIR).The results show that the degradation mechanism of PI film is the fracturing of chemical bonds caused by the erosion from PDs.Three layers are displayed in both 100 HN film and 100 CR film.The degradation path of PI film is initiated from surface and then gradually extends to the interior with continuous aging.Nano-fillers can retard the degradation of PI film and prolong its lifetime.

  15. Mechanisms underlying the antihypertensive effects of garlic bioactives.

    Science.gov (United States)

    Shouk, Reem; Abdou, Aya; Shetty, Kalidas; Sarkar, Dipayan; Eid, Ali H

    2014-02-01

    Cardiovascular disease remains the leading cause of death worldwide with hypertension being a major contributing factor to cardiovascular disease-associated mortality. On a population level, non-pharmacological approaches, such as alternative/complementary medicine, including phytochemicals, have the potential to ameliorate cardiovascular risk factors, including high blood pressure. Several epidemiological studies suggest an antihypertensive effect of garlic (Allium sativum) and of many its bioactive components. The aim of this review is to present an in-depth discussion regarding the molecular, biochemical and cellular rationale underlying the antihypertensive properties of garlic and its bioactive constituents with a primary focus on S-allyl cysteine and allicin. Key studies, largely from PubMed, were selected and screened to develop a comprehensive understanding of the specific role of garlic and its bioactive constituents in the management of hypertension. We also reviewed recent advances focusing on the role of garlic bioactives, S-allyl cysteine and allicin, in modulating various parameters implicated in the pathogenesis of hypertension. These parameters include oxidative stress, nitric oxide bioavailability, hydrogen sulfide production, angiotensin converting enzyme activity, expression of nuclear factor-κB and the proliferation of vascular smooth muscle cells. This review suggests that garlic and garlic derived bioactives have significant medicinal properties with the potential for ameliorating hypertension and associated morbidity; however, further clinical and epidemiological studies are required to determine completely the specific physiological and biochemical mechanisms involved in disease prevention and management.

  16. Deciphering Molecular Mechanism Underlying Hypolipidemic Activity of Echinocystic Acid

    Directory of Open Access Journals (Sweden)

    Li Han

    2014-01-01

    Full Text Available Our previous study showed that a triterpene mixture, consisting of echinocystic acid (EA and oleanolic acid (OA at a ratio of 4 : 1, dose-dependently ameliorated the hyperlipidemia and atherosclerosis in rabbits fed with high fat/high cholesterol diets. This study was aimed at exploring the mechanisms underlying antihyperlipidemic effect of EA. Molecular docking simulation of EA was performed using Molegro Virtual Docker (version: 4.3.0 to investigate the potential targets related to lipid metabolism. Based on the molecular docking information, isotope labeling method or spectrophotometry was applied to examine the effect of EA on the activity of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA reductase, acyl-CoA:cholesterol acyltransferase (ACAT, and diacylglycerol acyltransferase (DGAT in rat liver microsomes. Our results revealed a strong affinity of EA towards ACAT and DGAT in molecular docking analysis, while low binding affinity existed between EA and HMG-CoA reductase as well as between EA and cholesteryl ester transfer protein. Consistent with the results of molecular docking, in vitro enzyme activity assays showed that EA inhibited ACAT and DGAT, with IC50 values of 103 and 139 μM, respectively, and exhibited no significant effect on HMG-CoA reductase activity. The present findings suggest that EA may exert hypolipidemic effect by inhibiting the activity of ACAT and DGAT.

  17. Acquisition of enhanced natural killer cell activity under anesthesia.

    Science.gov (United States)

    Hsueh, C M; Lorden, J F; Hiramoto, R N; Ghanta, V K

    1992-01-01

    An increase in natural killer (NK) cell activity can be conditioned with a one trial learning paradigm to demonstrate the interaction between the central nervous system (CNS) and the immune system. In order to demonstrate learning possibilities during 'non-conscious' state, mice were anesthetized with a ketamin/rompun mixture and underwent one trial learning with odor cue as the conditioned stimulus (CS) preceding the unconditioned stimulus (US). The results indicated that mice that were exposed to camphor odor cue under the influence of anesthesia can associate the signal with the poly I:C unconditioned stimulus and were able to recall the conditioned response upon reexposure to the CS. Secondly, the conditioned association made in a conscious state can be recalled by exposure to the same olfactory odor cue in a 'non-conscious' state. The increase in the conditioned change in NK cell activity of both situations was significantly higher than the control group. The results demonstrate that learning can take place and the learned response can be recalled under the reduced awareness caused by anesthesia. The findings we report are unusual and novel in that they demonstrate that the CNS can learn new associations under conditions where the host is apparently unaware of the signals being linked. Anesthesia combined with the long interstimulus interval indicates that certain neuronal pathways in the CNS are receptive to second signals (elicited by the US) even when the second signal is separated by one day. This means the conditioned learning of a physiological response can take place unconsciously at a separate level and under situations where the host is totally unaware of the events which the brain is processing and linking as incoming information.

  18. Enhancing informatics competency under uncertainty at the point of decision

    DEFF Research Database (Denmark)

    Kaltoft, Mette Kjer; Nielsen, Jesper Bo; Salkeld, Glenn

    2014-01-01

    or lacking. This final stage in 'translation to the bedside' has received relatively little attention in the medical, nursing, or health informatics literature, until the recent appearance of 'cognitive informatics'. Positive experience and feed-back from several thousand students who have experienced...... is true. They receive the proper Brier score and its decomposition as analytical feedback, along with graphic representations of their discrimination and calibration, the two key components of good correspondence. Provided with estimates of their sensitivity (mean probability true for true statements......, such as 'Probers', are proposed as an enhancement of professional courses and virtual learning environments, such as the TIGER initiative in nursing, through which the competency portfolio of all those seeking to deliver high quality person/patient-centred care can be expanded....

  19. Enhancement of wind stress evaluation method under storm conditions

    Science.gov (United States)

    Chen, Yingjian; Yu, Xiping

    2016-12-01

    Wind stress is an important driving force for many meteorological and oceanographical processes. However, most of the existing methods for evaluation of the wind stress, including various bulk formulas in terms of the wind speed at a given height and formulas relating the roughness height of the sea surface with wind conditions, predict an ever-increasing tendency of the wind stress coefficient as the wind speed increases, which is inconsistent with the field observations under storm conditions. The wave boundary layer model, which is based on the momentum and energy conservation, has the advantage to take into account the physical details of the air-sea interaction process, but is still invalid under storm conditions without a modification. By including the energy dissipation due to the presence of sea spray, which is speculated to be an important aspect of the air-sea interaction under storm conditions, the wave boundary layer model is improved in this study. The improved model is employed to estimate the wind stress caused by an idealized tropical cyclone motion. The computational results show that the wind stress coefficient reaches its maximal value at a wind speed of about 40 m/s and decreases as the wind speed further increases. This is in fairly good agreement with the field data.

  20. Antioxidant Property of Jobelyn as the Possible Mechanism Underlying

    Directory of Open Access Journals (Sweden)

    Solomon Umukoro

    2013-01-01

    Full Text Available   Introduction: Amnesia or loss of memory is the cardinal hallmark of Alzheimer’s disease (AD, a progressive neurodegenerative disorder associated with ageing process. Although, AD had been discovered over a century ago, drugs which could cure or halt the progression of the disease are yet to see the light of the day. However, there has been a growing interest in the use of phytomedicines with multipronged mechanisms of action that could target various aspects of the pathologies of AD. Jobelyn (JB is a potent antioxidant African polyherbal formulation with active components that have been acclaimed to show neuroprotection. T his investigation was carried out to evaluate whether JB has anti-amnesic and antioxidant activities.   Methods: The alteration of alternation behavior in the Y-maze paradigm was utilized as the test for memory function in mice. The effect of JB on a cetylcholinesterase (AChE activity, malondialdehyde (MDA level and the concentrations of glutathione (GSH in the frontal cortex and hippocampus were assessed in rats as means of providing insight into the mechanism underlying its anti-amnesic activity. The animals were given JB (1, 2.5 or 5mg/kg, i.p. daily for 7 days before the biochemical assays or test for memory functions were carried out.   Results: JB was found to produce a significant increase in the level of alternation behavior compared with the control, suggesting anti-amnesic activity. Also, JB reversed the memory impairment induced by scopolamine, which further indicates anti-amnesic property. Furthermore, JB demonstrated a significant inhibition of MDA formation in the frontal cortex and hippocampus of rats, indicating antioxidant property. In addition, it increased the defense armory of the brain tissues, as it significantly increased the concentrations of GSH in the frontal cortex and hippocampus of rats. However, JB did not demonstrate any inhibitory effect against AChE activity in the frontal cortex and

  1. Computerized approaches to enhance understanding of organic reaction mechanisms: CAN reaction mechanisms and CPLEX prelaboratory methodology

    Science.gov (United States)

    Al-Shammari, Abdulrahman G. Alhamzani

    2008-10-01

    Two approaches to enhance the understanding of organic reaction mechanisms are described. First, a new method for teaching organic reaction mechanisms that can be used in a Computer-Assisted Instruction (CAI) environment is proposed and tested (Chapter 1). The method concentrates upon the important intermediate structures, which are assumed to be on the reaction coordinate, and which can be evaluated and graded by currently available computer techniques. At the same time, the "curved arrows" that show the electron flow in a reaction mechanism are neglected, since they cannot be evaluated and graded with currently available computer techniques. By allowing student practice for learning organic reaction mechanisms using the Curved Arrow Neglect (CAN) method within a "Practice Makes Perfect" CAI method, student performance in the drawing of traditional reaction mechanisms, in which students had to include the "curved arrows" on their written classroom exams, was significantly enhanced. Second, computerized prelaboratory experiments (CPLEX) for organic chemistry laboratory 1 & 2 courses have been created, used, and evaluated (Chapters 2 and 3). These computerized prelabs are unique because they combine both "dry lab" actions with detailed animations of the actual chemistry occurring at the molecular level. The "dry lab" serves to simulate the actual physical manipulations of equipment and chemicals that occur in the laboratory experiment through the use of drag-and-drop computer technology. At the same time, these physical actions are accompanied on a separate part of the computer screen by animations showing the chemistry at the molecular level that is occurring in the experiment. These CPLEX modules were made into Internet accessible modules. The students were allowed to access the CPLEX modules prior to performing the actual laboratory experiment. A detailed evaluation of students' perception of the modules was accomplished via survey methodology during the entire

  2. Pluripotent Stem Cell Studies Elucidate the Underlying Mechanisms of Early Embryonic Development

    Directory of Open Access Journals (Sweden)

    Lingyu Li

    2011-03-01

    Full Text Available Early embryonic development is a multi-step process that is intensively regulated by various signaling pathways. Because of the complexity of the embryo and the interactions between the germ layers, it is very difficult to fully understand how these signals regulate embryo patterning. Recently, pluripotent stem cell lines derived from different developmental stages have provided an in vitro system for investigating molecular mechanisms regulating cell fate decisions. In this review, we summarize the major functions of the BMP, FGF, Nodal and Wnt signaling pathways, which have well-established roles in vertebrate embryogenesis. Then, we highlight recent studies in pluripotent stem cells that have revealed the stage-specific roles of BMP,FGF and Nodal pathways during neural differentiation. These findings enhance our understanding of the stepwise regulation of embryo patterning by particular signaling pathways and provide new insight into the mechanisms underlying early embryonic development.

  3. Study of mechanical behavior of AFM silicon tips under mechanical load

    Science.gov (United States)

    Kopycinska-Mueller, M.; Gluch, J.; Köhler, B.

    2016-11-01

    In this paper we address critical issues concerning calibration of AFM based methods used for nanoscale mechanical characterization of materials. It has been shown that calibration approaches based on macroscopic models for contact mechanics may yield excellent results in terms of the indentation modulus of the sample, but fail to provide a comprehensive and actual information concerning the tip-sample contact radius or the mechanical properties of the tip. Explanations for the severely reduced indentation modulus of the tip included the inadequacies of the models used for calculations of the tip-sample contact stiffness, discrepancies in the actual and ideal shape of the tip, presence of the amorphous silicon phase within the silicon tip, as well as negligence of the actual size of the stress field created in the tip during elastic interactions. To clarify these issues, we investigated the influence of the mechanical load applied to four AFM silicon tips on their crystalline state by exposing them to systematically increasing loads, evaluating the character of the tip-sample interactions via the load-unload stiffness curves, and assessing the state of the tips from HR-TEM images. The results presented in this paper were obtained in a series of relatively simple and basic atomic force acoustic microscopy (AFAM) experiments. The novel combination of TEM imaging of the AFM tips with the analysis of the load-unload stiffness curves gave us a detailed insight into their mechanical behavior under load conditions. We were able to identify the limits for the elastic interactions, as well as the hallmarks for phase transformation and dislocation formation and movement. The comparison of the physical dimensions of the AFM tips, geometry parameters determined from the values of the contact stiffness, and the information on the crystalline state of the tips allowed us a better understanding of the nanoscale contact.

  4. Unraveling the Molecular Mechanisms Underlying the Nasopharyngeal Bacterial Community Structure

    Directory of Open Access Journals (Sweden)

    Wouter A. A. de Steenhuijsen Piters

    2016-03-01

    Full Text Available The upper respiratory tract is colonized by a diverse array of commensal bacteria that harbor potential pathogens, such as Streptococcus pneumoniae. As long as the local microbial ecosystem—also called “microbiome”—is in balance, these potentially pathogenic bacterial residents cause no harm to the host. However, similar to macrobiological ecosystems, when the bacterial community structure gets perturbed, potential pathogens can overtake the niche and cause mild to severe infections. Recent studies using next-generation sequencing show that S. pneumoniae, as well as other potential pathogens, might be kept at bay by certain commensal bacteria, including Corynebacterium and Dolosigranulum spp. Bomar and colleagues are the first to explore a specific biological mechanism contributing to the antagonistic interaction between Corynebacterium accolens and S. pneumoniae in vitro [L. Bomar, S. D. Brugger, B. H. Yost, S. S. Davies, K. P. Lemon, mBio 7(1:e01725-15, 2016, doi:10.1128/mBio.01725-15]. The authors comprehensively show that C. accolens is capable of hydrolyzing host triacylglycerols into free fatty acids, which display antipneumococcal properties, suggesting that these bacteria might contribute to the containment of pneumococcus. This work exemplifies how molecular epidemiological findings can lay the foundation for mechanistic studies to elucidate the host-microbe and microbial interspecies interactions underlying the bacterial community structure. Next, translation of these results to an in vivo setting seems necessary to unveil the magnitude and importance of the observed effect in its natural, polymicrobial setting.

  5. Ionic mechanisms underlying cardiac toxicity of the organochloride solvent trichloromethane.

    Science.gov (United States)

    Zhou, Yuan; Wu, Hui-Jun; Zhang, Yan-Hui; Sun, Hai-Ying; Wong, Tak-Ming; Li, Gui-Rong

    2011-12-18

    Trichloromethane (chloroform) is widely used for industrial chemical synthesis and also as an organic solvent in laboratories or ingredient of pesticides. Sudden death resulted from cardiac arrhythmias has been reported in clinic with acute trichloromethane intoxication. The present study was designed to investigate ionic mechanisms underlying arrhythmogenic effect (cardiac toxicity) of trichloromethane in isolated rat hearts and ventricular myocytes and HEK 293 cells stably expressing human Nav1.5, HCN2, or hERG channel using conventional electrophysiological approaches. It was found that trichloromethane (5mM) induced bradycardia and atrial-ventricular conduction blockade or ventricular fibrillation, and inhibited cardiac contractile function in isolated rat hearts. It shortened action potential duration (APD) in isolated rat ventricular myocytes, and increased the threshold current for triggering action potential, but had no effect on the inward rectifier K(+) current I(K1). However, trichloromethane significantly inhibited the L-type calcium current I(Ca.L) and the transient outward potassium current I(to) in a concentration-dependent manner (IC(50)s: 1.01 and 2.4mM, respectively). In HEK 293 cells stably expressing cardiac ion channel genes, trichloromethane reduced hNav1.5, HCN2, and hERG currents with IC(50)s of 8.2, 3.3, and 4.0mM, respectively. These results demonstrate for the first time that trichloromethane can induce bradycardia or ventricular fibrillation, and the arrhythmogenic effect of trichloromethane is related to the inhibition of multiple ionic currents including I(Ca.L), I(to), I(Na), HCN2, and hERG channels.

  6. Mechanisms underlying the link between cannabis use and prospective memory.

    Directory of Open Access Journals (Sweden)

    Carrie Cuttler

    Full Text Available While the effects of cannabis use on retrospective memory have been extensively examined, only a limited number of studies have focused on the links between cannabis use and prospective memory. We conducted two studies to examine the links between cannabis use and both time-based and event-based prospective memory as well as potential mechanisms underlying these links. For the first study, 805 students completed an online survey designed to assess cannabis consumption, problems with cannabis use indicative of a disorder, and frequency of experiencing prospective memory failures. The results showed small to moderate sized correlations between cannabis consumption, problems with cannabis use, and prospective memory. However, a series of mediation analyses revealed that correlations between problems with cannabis use and prospective memory were driven by self-reported problems with retrospective memory. For the second study, 48 non-users (who had never used cannabis, 48 experimenters (who had used cannabis five or fewer times in their lives, and 48 chronic users (who had used cannabis at least three times a week for one year were administered three objective prospective memory tests and three self-report measures of prospective memory. The results revealed no objective deficits in prospective memory associated with chronic cannabis use. In contrast, chronic cannabis users reported experiencing more internally-cued prospective memory failures. Subsequent analyses revealed that this effect was driven by self-reported problems with retrospective memory as well as by use of alcohol and other drugs. Although our samples were not fully characterized with respect to variables such as neurological disorders and family history of substance use disorders, leaving open the possibility that these variables may play a role in the detected relationships, the present findings indicate that cannabis use has a modest effect on self-reported problems with

  7. Mechanisms underlying the long-term survival of the monocot Dracaena marginata under drought conditions.

    Science.gov (United States)

    Jupa, Radek; Plichta, Roman; Paschová, Zuzana; Nadezhdina, Nadezhda; Gebauer, Roman

    2017-09-01

    Efficient water management is essential for the survival of vascular plants under drought stress. While interrelations among drought stress, plant anatomy and physiological functions have been described in woody dicots, similar research is very limited for non-palm arborescent and shrubby monocots despite their generally high drought tolerance. In this study, potted transplants of Dracaena marginata Lam. in primary growth stage were exposed to several short- and long-term drought periods. Continuous measurements of sap flow and stem diameter, the evaluation of capacitance and leaf conductance, the quantification of non-structural carbohydrates (NSC), and organ-specific anatomical analyses were performed to reveal the mechanisms promoting plant resistance to limited soil moisture. The plants showed sensitive stomata regulation in the face of drying soil, but only intermediate resistance to water loss through cuticular transpiration. The water losses were compensated by water release from stem characterized by densely interconnected, parenchyma-rich ground tissue and considerable hydraulic capacitance. Our results suggest that the high concentration of osmotically active NSC in aboveground organs combined with the production of root pressures supported water uptake and the restoration of depleted reserves after watering. The described anatomical features and physiological mechanisms impart D. marginata with high resistance to irregular watering and long-term water scarcity. These findings should help to improve predictions with respect to the impacts of droughts on this plant group. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. A common molecular motif characterizes extracellular allosteric enhancers of GPCR aminergic receptors and suggests enhancer mechanism of action.

    Science.gov (United States)

    Root-Bernstein, Robert; Dillon, Patrick F

    2014-01-01

    Several classes of compounds that have no intrinsic activity on aminergic systems nonetheless enhance the potency of aminergic receptor ligands three-fold or more while significantly increasing their duration of activity, preventing tachyphylaxis and reversing fade. Enhancer compounds include ascorbic acid, ethylenediaminetetraacetic acid, corticosteroids, opioid peptides, opiates and opiate antagonists. This paper provides the first review of aminergic enhancement, demonstrating that all enhancers have a common, inobvious molecular motif and work through a common mechanism that is manifested by three common characteristics. First, aminergic enhancers bind directly to the amines they enhance, suggesting that the common structural motif is reflected in common binding targets. Second, one common target is the first extracellular loop of aminergic receptors. Third, at least some enhancers are antiphosphodiesterases. These observations suggest that aminergic enhancers act on the extracellular surface of aminergic receptors to keep the receptor in its high affinity state, trapping the ligand inside the receptor. Enhancer binding produces allosteric modifications of the receptor structure that interfere with phosphorylation of the receptor, thereby inhibiting down-regulation of the receptor. The mechanism explains how enhancers potentiate aminergic activity and increase duration of activity and makes testable predictions about additional compounds that should act as aminergic enhancers.

  9. β-环糊精及其衍生物对黄曲霉毒素B_1荧光增强机理研究%Mechanisms Underlying Fluorescence Enhancement of Aflatoxin B_1 by β-Cyclodextrin and Its Derivatives

    Institute of Scientific and Technical Information of China (English)

    张敏; 郭婷; 刘馨; 肖洁; 张宇昊; 马良

    2012-01-01

    The mechanisms underlying fluorescence enhancement of aflatoxin B1(AFB1) by β-cyclodextrin(β-CD) and its derivatives were explored using spectroscopy,Benesi-Hidebrand analysis and thermodynamics.Moreover the effects of methanol volume percentage,M-β-CD concentration,reaction time and interfering ions on fluorescence enhancement were analyzed.β-CD and its six derivatives showed an inclusion ratio to AFB1 of 1:1 at low concentrations and 2:1 at high concentrations.The thermodynamic parameters entropy change(ΔS),enthalpy change(ΔH) and free energy change(ΔG) for maximum inclusion constant between M-β-CD and AFB1 were negative,suggesting that the inclusion reaction is exothermic and can occur spontaneously.Enthalpy change was the dominant force during the formation of inclusion complexes.UV absorption spectra and KI quenching experiments showed that AFB1 could enter M-β-CD cavity to protect fluorescence.Therefore,β cyclodextrin and its derivatives can allow considerable enhancement in the fluorescence emission intensity of AFB1 by the formation of supramolecular inclusion complexes,resulting in increased sensitivity of AFB1fluorescence analysis.%利用光谱法、Benesi-Hildebrand法、热力学方法研究β-环糊精(β-CD)及其衍生物对黄曲霉毒素B1(AFB1)荧光增强机理,探讨溶剂中甲醇体积比、M-β-CD浓度、时间、干扰离子等因素对荧光增强作用的影响。根据Benesi-Hildebrand法确定7种β-环糊精及其衍生物在低浓度时与AFB1包络比为1:1,高浓度时包络比为2:1。采用热力学方法计算了包合常数最大的M-β-CD与AFB1包合过程的熵变(ΔS)、焓变(ΔH)及自由能变化(ΔG)均为负值,说明包合反应是放热反应且能自发进行,焓变是形成超分子包络物的主要驱动力。紫外吸收光谱及KI淬灭实验表明AFB1进入M-β-CD空腔从而使荧光得到保护。得出结论:7种β-环糊精及其衍生物与AFB1通过形成超分子

  10. Enhanced warming of the Northwest Atlantic Ocean under climate change

    Science.gov (United States)

    Saba, Vincent S.; Griffies, Stephen M.; Anderson, Whit G.; Winton, Michael; Alexander, Michael A.; Delworth, Thomas L.; Hare, Jonathan A.; Harrison, Matthew J.; Rosati, Anthony; Vecchi, Gabriel A.; Zhang, Rong

    2016-01-01

    The Intergovernmental Panel on Climate Change (IPCC) fifth assessment of projected global and regional ocean temperature change is based on global climate models that have coarse (˜100 km) ocean and atmosphere resolutions. In the Northwest Atlantic, the ensemble of global climate models has a warm bias in sea surface temperature due to a misrepresentation of the Gulf Stream position; thus, existing climate change projections are based on unrealistic regional ocean circulation. Here we compare simulations and an atmospheric CO2 doubling response from four global climate models of varying ocean and atmosphere resolution. We find that the highest resolution climate model (˜10 km ocean, ˜50 km atmosphere) resolves Northwest Atlantic circulation and water mass distribution most accurately. The CO2 doubling response from this model shows that upper-ocean (0-300 m) temperature in the Northwest Atlantic Shelf warms at a rate nearly twice as fast as the coarser models and nearly three times faster than the global average. This enhanced warming is accompanied by an increase in salinity due to a change in water mass distribution that is related to a retreat of the Labrador Current and a northerly shift of the Gulf Stream. Both observations and the climate model demonstrate a robust relationship between a weakening Atlantic Meridional Overturning Circulation (AMOC) and an increase in the proportion of Warm-Temperate Slope Water entering the Northwest Atlantic Shelf. Therefore, prior climate change projections for the Northwest Atlantic may be far too conservative. These results point to the need to improve simulations of basin and regional-scale ocean circulation.

  11. Inelastic deformation mechanisms in a transverse MMC lamina under compression

    Science.gov (United States)

    Newaz, Golam M.; Majumdar, Bhaskar S.

    1992-01-01

    An investigation was undertaken to study the inelastic deformation mechanisms in (90)(sub 8) Ti 15-3/SCS-6 lamina subjected to pure compression. Both mechanical behavior and microstructural evaluation were undertaken at room temperature, 538 and 650 C. Results indicate that mechanical response and deformation characteristics are significantly different in monotonic tension and compression. The inelastic deformation mechanisms in compression are controlled by radial fiber fracture, matrix plasticity and fiber-matrix debonding. The radial fiber fracture is a new damage mode observed for metal-matrix composites (MMC).

  12. Mechanisms of odor-tracking: multiple sensors for enhanced perception and behavior

    Directory of Open Access Journals (Sweden)

    Alex Gomez-Marin

    2010-03-01

    Full Text Available Early in evolution, the ability to sense and respond to changing environments must have provided a critical survival advantage to living organisms. From bacteria and worms to flies and vertebrates, sophisticated mechanisms have evolved to enhance odor detection and localization. Here, we review several modes of chemotaxis. We further consider the relevance of a striking and recurrent motif in the organization of invertebrate and vertebrate sensory systems, namely the existence of two symmetrical olfactory sensors. By combining our current knowledge about the olfactory circuits of larval and adult Drosophila, we examine the molecular and neural mechanisms underlying robust olfactory perception and extend these analyses to recent behavioral studies addressing the relevance and function of bilateral olfactory input for gradient detection. Finally, using a comparative theoretical approach based on Braitenberg’s vehicles, we speculate about the relationships between anatomy, circuit architecture and stereotypical orientation behaviors.

  13. Antileishmanial effect of silver nanoparticles and their enhanced antiparasitic activity under ultraviolet light

    Science.gov (United States)

    Allahverdiyev, Adil M; Abamor, Emrah Sefik; Bagirova, Malahat; Ustundag, Cem B; Kaya, Cengiz; Kaya, Figen; Rafailovich, Miriam

    2011-01-01

    Leishmaniasis is a protozoan vector-borne disease and is one of the biggest health problems of the world. Antileishmanial drugs have disadvantages such as toxicity and the recent development of resistance. One of the best-known mechanisms of the antibacterial effects of silver nanoparticles (Ag-NPs) is the production of reactive oxygen species to which Leishmania parasites are very sensitive. So far no information about the effects of Ag-NPs on Leishmania tropica parasites, the causative agent of leishmaniasis, exists in the literature. The aim of this study was to investigate the effects of Ag-NPs on biological parameters of L. tropica such as morphology, metabolic activity, proliferation, infectivity, and survival in host cells, in vitro. Consequently, parasite morphology and infectivity were impaired in comparison with the control. Also, enhanced effects of Ag-NPs were demonstrated on the morphology and infectivity of parasites under ultraviolet (UV) light. Ag-NPs demonstrated significant antileishmanial effects by inhibiting the proliferation and metabolic activity of promastigotes by 1.5- to threefold, respectively, in the dark, and 2- to 6.5-fold, respectively, under UV light. Of note, Ag-NPs inhibited the survival of amastigotes in host cells, and this effect was more significant in the presence of UV light. Thus, for the first time the antileishmanial effects of Ag-NPs on L. tropica parasites were demonstrated along with the enhanced antimicrobial activity of Ag-NPs under UV light. Determination of the antileishmanial effects of Ag-NPs is very important for the further development of new compounds containing nanoparticles in leishmaniasis treatment. PMID:22114501

  14. Antileishmanial effect of silver nanoparticles and their enhanced antiparasitic activity under ultraviolet light

    Directory of Open Access Journals (Sweden)

    Allahverdiyev AM

    2011-11-01

    Full Text Available Adil M Allahverdiyev1, Emrah Sefik Abamor1, Malahat Bagirova1, Cem B Ustundag2, Cengiz Kaya2, Figen Kaya2, Miriam Rafailovich3 1Department of Bioengineering; 2Department of Metallurgical and Materials Engineering, Yildiz Technical University, Esenler, Istanbul, Turkey; 3Department of Materials Science and Engineering, Stony Brook University, Stony Brook, NY, USA Abstract: Leishmaniasis is a protozoan vector-borne disease and is one of the biggest health problems of the world. Antileishmanial drugs have disadvantages such as toxicity and the recent development of resistance. One of the best-known mechanisms of the antibacterial effects of silver nanoparticles (Ag-NPs is the production of reactive oxygen species to which Leishmania parasites are very sensitive. So far no information about the effects of Ag-NPs on Leishmania tropica parasites, the causative agent of leishmaniasis, exists in the literature. The aim of this study was to investigate the effects of Ag-NPs on biological parameters of L. tropica such as morphology, metabolic activity, proliferation, infectivity, and survival in host cells, in vitro. Consequently, parasite morphology and infectivity were impaired in comparison with the control. Also, enhanced effects of Ag-NPs were demonstrated on the morphology and infectivity of parasites under ultraviolet (UV light. Ag-NPs demonstrated significant antileishmanial effects by inhibiting the proliferation and metabolic activity of promastigotes by 1.5- to threefold, respectively, in the dark, and 2- to 6.5-fold, respectively, under UV light. Of note, Ag-NPs inhibited the survival of amastigotes in host cells, and this effect was more significant in the presence of UV light. Thus, for the first time the antileishmanial effects of Ag-NPs on L. tropica parasites were demonstrated along with the enhanced antimicrobial activity of Ag-NPs under UV light. Determination of the antileishmanial effects of Ag-NPs is very important for the further

  15. Voriconazole Enhances the Osteogenic Activity of Human Osteoblasts In Vitro through a Fluoride-Independent Mechanism

    Science.gov (United States)

    Allen, Kahtonna C.; Sanchez, Carlos J.; Niece, Krista L.; Wenke, Joseph C.

    2015-01-01

    Periostitis, which is characterized by bony pain and diffuse periosteal ossification, has been increasingly reported with prolonged clinical use of voriconazole. While resolution of clinical symptoms following discontinuation of therapy suggests a causative role for voriconazole, the biological mechanisms contributing to voriconazole-induced periostitis are unknown. To elucidate potential mechanisms, we exposed human osteoblasts in vitro to voriconazole or fluconazole at 15 or 200 μg/ml (reflecting systemic or local administration, respectively), under nonosteogenic or osteogenic conditions, for 1, 3, or 7 days and evaluated the effects on cell proliferation (reflected by total cellular DNA) and osteogenic differentiation (reflected by alkaline phosphatase activity, calcium accumulation, and expression of genes involved in osteogenic differentiation). Release of free fluoride, vascular endothelial growth factor (VEGF), and platelet-derived growth factor (PDGF) was also measured in cell supernatants of osteoblasts exposed to triazoles, with an ion-selective electrode (for free fluoride) and enzyme-linked immunosorbent assays (ELISAs) (for VEGF and PDGF). Voriconazole but not fluconazole significantly enhanced the proliferation and differentiation of osteoblasts. In contrast to clinical observations, no increases in free fluoride levels were detected following exposure to either voriconazole or fluconazole; however, significant increases in the expression of VEGF and PDGF by osteoblasts were observed following exposure to voriconazole. Our results demonstrate that voriconazole can induce osteoblast proliferation and enhance osteogenic activity in vitro. Importantly, and in contrast to the previously proposed mechanism of fluoride-stimulated osteogenesis, our findings suggest that voriconazole-induced periostitis may also occur through fluoride-independent mechanisms that enhance the expression of cytokines that can augment osteoblastic activity. PMID:26324277

  16. [Study on main pharmacodynamics and underlying mechanisms of 999 Ganmaoling].

    Science.gov (United States)

    Xu, Qi-Hua; He, Rong; Peng, Bo; Ye, Zu-Guang; Li, Jian-Rong; Zhang, Yue-Fei; Dai, Zhi

    2016-04-01

    To observe synergistic effects of 999 Ganmaoling (GML) and its Chinese/Western materia medica (CMM and WMM) on pharmacodynamic action and to study underlying mechanisms, their anti-inflammatory, antipyretic effects were compared by assaying the increased capillary permeability induced by glacial acetic acid in mice, ear swelling induced by Xylene in mice, non-specific pleurisy induced by carrageenan in rats, and yeast induced fever in rats. Crystal violet (CV) and microbial activity (XTT) assay were used to evaluate the inhibition of GML and its CMM and WMM on KPN biofilm formation, and scanning electron microscopy (SEM) was applied for observing KPN biofilm morphology changes. The results showed that compared with control group, GML could reduce exudation amount of Evans-Blue and the degree of Ear swelling significantly, and CMM and WMM have no significant effects. The concentration of TNF-α and IL-1β of rat pleural effusion in GML, CMM and WMM group decreased significantly. The concentration of TNF-α, IL-1β and IL-8 in GML group, TNF-α, IL-8 in WMM group and IL-8 in CMM in rats serum decreased significantly. The body temperature in rats decreased significantly in GML and WMM group after 4-8 h of administration. CMM group showed no significant difference in rat body temperature compare with control. Compared with control group, GML (55-13.75 g•L⁻¹) could inhibit KPN biofilm formation and reduce number of viable cells in the KPN biofilm. CMM (45-22.5 g•L⁻¹) and WMM (10 g•L⁻¹) could also inhibit KPN biofilm formation and reduce number of viable cells (P<0.01). Result of SEM also showed that GML (55 g•L⁻¹) and its CMM (45 g•L⁻¹) and WMM (10 g•L⁻¹) could interfere the bacterial arrangement of KPN biofilm and extracellular matrix. GML and its CMM & WMM could inhibit the formation of KPN biofilm, CMM & WMM in GML showed synergism and complementation in inhibit KPN biofilm. Results showed that GML had obvious anti-inflammatory and

  17. Mechanisms underlying induction of allergic sensitization by Pru p 3.

    Science.gov (United States)

    Tordesillas, L; Cubells-Baeza, N; Gómez-Casado, C; Berin, C; Esteban, V; Barcik, W; O'Mahony, L; Ramirez, C; Pacios, L F; Garrido-Arandia, M; Díaz-Perales, A

    2017-06-15

    Recently, the nature of the lipid-ligand of Pru p 3, one of the most common plant food allergens in southern Europe, has been identified as a derivative of the alkaloid camptothecin bound to phytosphingosine. However, the origin of its immunological activity is still unknown. We sought to evaluate the role of the Pru p 3 lipid-ligand in the immunogenic activity of Pru p 3. In vitro cultures of different cell types (monocyte-derived dendritic cells [moDCs], PBMCs [peripheral blood mononuclear cells] and epithelial and iNKT-hybridoma cell lines) have been used to determine the immunological capacity of the ligand, by measuring cell proliferation, maturation markers and cytokine production. To study the capacity of the lipid-ligand to promote sensitization to Pru p 3 in vivo, a mouse model of anaphylaxis to peach has been produced and changes in the humoral and basophil responses have been analysed. The lipid-ligand of Pru p 3 induced maturation of moDCsc and proliferation of PBMCs. Its immunological activity resided in the phytosphingosine tail of the ligand. The adjuvant activity of the ligand was also confirmed in vivo, where the complex of Pru p 3-ligand induced higher levels of IgE than Pru p 3 alone. The immunological capacity of the Pru p 3 ligand was mediated by CD1d, as maturation of moDCs was inhibited by anti-CD1d antibodies and Pru p 3-ligand co-localized with CD1d on epithelial cells. Finally, Pru p 3-ligand presented by CD1d was able to interact with iNKTs. The Pru p 3 lipid-ligand could act as an adjuvant to promote sensitization to Pru p 3, through its recognition by CD1d receptors. This intrinsic adjuvant activity of the accompanying lipid cargo could be a general essential feature of the mechanism underlying the phenomenon of allergenicity. © 2017 John Wiley & Sons Ltd.

  18. Mechanisms of Enhanced Rice Growth and Nitrogen Uptake by Nitrate

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Rice is being increasingly cultivated in intermittently irrigated regions and also in aerobic soil in which Nitrate (NO3-)plays important role in nutrition of plant. However, there is no information regarding the influence of nitrate on the overall growth and uptake of nitrogen (N) in rice plant. Solution culture experiments were carried out to study the effects of NO3-on the plant growth, uptake of N, and uptake kinetics of NH4+ in four typical rice (Oryza sativa L.) cultivars (conventional indica, conventional japonica, hybrid indica, and hybrid japonica), and on plasma membrane potential in roots of two conventional rice cultivars (indica and japonica) at the seedling stage. The results obtained indicated that a ratio of 50/50 NH4+-N/NO3--N increased the average biomass of rice shoots and roots by 20% when compared with that of 100/0NH4+-N/NO3--N. In case of the 50/50 ratio, as compared with the 100/0 ratio, total N accumulated in shoots and roots of rice increased on an average by 42% and 57%, respectively. Conventional indica responds to NO3- more than any other cultivars that were tested. The NO3- supply increased the maximum uptake rate (Vmax) of NH4+ by rice but did not show any effect on the apparent Michaelis-Menten constant (Km) value, with the average value of Vmax for NH4+ among the four cultivars being increased by 31.5% in comparison with those in the absence of NO3-. This suggested that NO3-significantly increased the numbers of the ammonium transporters. However, the lack of effect on the Km value also suggested that the presence of NO3- had no effect on the affinity of the transporters for NH4+. The plasma membrane potential in the roots of conventional indica and japonica were greatly increased by the addition of NO3-, suggesting that NO3- could improve the uptake of N by roots of the rice plant. In conclusion, the mechanisms by which NO3- enhances the growth and N uptake of rice plant was found by the increased value of Vmax of NH4+ and

  19. Epigenetic mechanisms underlying learning and the inheritance of learned behaviors.

    Science.gov (United States)

    Dias, Brian G; Maddox, Stephanie A; Klengel, Torsten; Ressler, Kerry J

    2015-02-01

    Gene expression and regulation is an important sculptor of the behavior of organisms. Epigenetic mechanisms regulate gene expression not by altering the genetic alphabet but rather by the addition of chemical modifications to proteins associated with the alphabet or of methyl marks to the alphabet itself. Being dynamic, epigenetic mechanisms of gene regulation serve as an important bridge between environmental stimuli and genotype. In this review, we outline epigenetic mechanisms by which gene expression is regulated in animals and humans. Using fear learning as a framework, we then delineate how such mechanisms underlie learning and stress responsiveness. Finally, we discuss how epigenetic mechanisms might inform us about the transgenerational inheritance of behavioral traits that are being increasingly reported.

  20. Mechanisms and pharmacogenetic signals underlying thiazide diuretics blood pressure response.

    Science.gov (United States)

    Shahin, Mohamed H; Johnson, Julie A

    2016-04-01

    Thiazide (TZD) diuretics are among the most commonly prescribed antihypertensives globally; however their chronic blood pressure (BP) lowering mechanism remains unclear. Herein we discuss the current evidence regarding specific mechanisms regulating the antihypertensive effects of TZDs, suggesting that TZDs act via multiple complex and interacting mechanisms, including natriuresis with short term use and direct vasodilatory effects chronically. Additionally, we review pharmacogenomics signals that have been associated with TZDs BP-response in several cohorts (i.e. NEDD4L, PRKCA, EDNRA-GNAS, and YEATS4) and discuss how these genes might be related to TZD BP-response mechanism. Understanding the association between these genes and TZD BP mechanism might facilitate the development of new drugs and therapeutic approaches based on a deeper understanding of the determinants of BP-response.

  1. Disentangling the Impact of Control-Enhancing Mechanisms on Firm Performance

    DEFF Research Database (Denmark)

    Zattoni, Alessandro; Pedersen, Torben

    2011-01-01

    Governance scholars and investors traditionally advocate against the use of control enhancing mechanisms, i.e. mechanisms aimed at separating voting and cash flow rights. These mechanisms may, in fact, determine a deviation from the proportionality principle and may encourage large and controlling......, and (ii) the negative impact on firm performance of mechanisms aimed at enhancing control by leveraging voting power is mediated by the divergence in voting and cash flow rights....

  2. Handedness is related to neural mechanisms underlying hemispheric lateralization of face processing

    Science.gov (United States)

    Frässle, Stefan; Krach, Sören; Paulus, Frieder Michel; Jansen, Andreas

    2016-06-01

    While the right-hemispheric lateralization of the face perception network is well established, recent evidence suggests that handedness affects the cerebral lateralization of face processing at the hierarchical level of the fusiform face area (FFA). However, the neural mechanisms underlying differential hemispheric lateralization of face perception in right- and left-handers are largely unknown. Using dynamic causal modeling (DCM) for fMRI, we aimed to unravel the putative processes that mediate handedness-related differences by investigating the effective connectivity in the bilateral core face perception network. Our results reveal an enhanced recruitment of the left FFA in left-handers compared to right-handers, as evidenced by more pronounced face-specific modulatory influences on both intra- and interhemispheric connections. As structural and physiological correlates of handedness-related differences in face processing, right- and left-handers varied with regard to their gray matter volume in the left fusiform gyrus and their pupil responses to face stimuli. Overall, these results describe how handedness is related to the lateralization of the core face perception network, and point to different neural mechanisms underlying face processing in right- and left-handers. In a wider context, this demonstrates the entanglement of structurally and functionally remote brain networks, suggesting a broader underlying process regulating brain lateralization.

  3. Enhanced mechanical properties of type AISI301LN austenitic stainless steel through advanced thermo mechanical process

    Energy Technology Data Exchange (ETDEWEB)

    Huang Junxia, E-mail: huangjunxia@baosteel.com [Shanghai Baosteel Research Institute, Shanghai 200431 (China); Ye Xiaoning; Gu Jiaqing; Chen Xu [Shanghai Baosteel Research Institute, Shanghai 200431 (China); Xu Zhou [School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer 69% of strain induced martensite were obtained after 80% thickness reduction at 0 Degree-Sign C. Black-Right-Pointing-Pointer The best annealing regime was determined for diffusional controlled reversion. Black-Right-Pointing-Pointer The effect of grain size on mechanical properties conforms with the H-P relationship. - Abstract: The effect of annealing temperature and time on the grain size of reversed austenite and mechanical properties was studied based on AISI301LN austenitic stainless steel in this paper. Cold rolling at 0 Degree-Sign C was employed to obtain the strain-induced martensite, followed by annealing treatment at the temperature range of 650-900 Degree-Sign C for 1-20 min. The relationship between the volume fraction of strain-induced martensite and cold reduction was analyzed by Ferritescope MP30 and X-ray diffraction. The grain growth of reversed austenite was observed by FEG-SEM and the mechanical properties were determined by tensile tests and Vickers hardness tests. Austenite grain sizes under 3 {mu}m can be obtained after annealing in the range of 700-900 Degree-Sign C for 1-20 min. The finest austenite grain size was produced after annealing at 700 Degree-Sign C for 20 min, which had a good combination of yield strength ( Almost-Equal-To 830 MPa), tensile strength ( Almost-Equal-To 953 MPa) and elongation ( Almost-Equal-To 36%).

  4. Acetabular labral tears: contrast-enhanced MR imaging under continuous leg traction

    Energy Technology Data Exchange (ETDEWEB)

    Nishii, T. [Div. of Functional Diagnostic Imaging, Biomedical Research Center, Osaka Univ. Medical School, Suita (Japan); Nakanishi, K. [Dept. of Radiology, Osaka Univ. Medical School, Suita (Japan); Sugano, N. [Dept. of Orthopaedic Surgery, Osaka Univ. Medical School, Suita (Japan); Naito, H. [Div. of Functional Diagnostic Imaging, Biomedical Research Center, Osaka Univ. Medical School, Suita (Japan); Tamura, S. [Div. of Functional Diagnostic Imaging, Biomedical Research Center, Osaka Univ. Medical School, Suita (Japan); Ochi, T. [Dept. of Orthopaedic Surgery, Osaka Univ. Medical School, Suita (Japan)

    1996-05-01

    The objective of this study was to evaluate the effects of continuous leg traction on contrast-enhanced MR imaging of the hip joint and to determine whether MR imaging under these conditions is useful for demonstrating acetabular labral tears. Nineteen hips underwent MR imaging with a T1-weighted spin-echo sequence, followed by MR imaging under continuous leg traction after intravenous injection of gadolinium-DTPA. Joint fluid enhancement and labral contour detection were evaluated. Eleven hips had labral tears shown by conventional arthrography, arthroscopy and macroscopic surgical findings. Assessment of labral tears by MR imaging was correlated with the diagnosis based on these standard techniques. Joint fluid enhancement was obtained in all hips at 30 min after injection. Superior and inferior labral surfaces were completely delineated in 1 hip on the unenhanced MR images, and in 7 and 13 hips, respectively, on the enhanced images under traction. The enhanced images under traction depicted 9 of the 11 labral tears. Comparison between the unenhanced image and the enhanced image under traction avoided mistaking undercutting of the labrum for a tear in 4 hips. Contrast-enhanced MR imaging under traction was valuable for detecting labral tears non-invasively and without radiation. Follow-up examinations using this method in patients with acetabular dysplasia can help to clarify the natural course of labral disorders and enable better treatment planning. (orig./MG)

  5. Peripheral Attentional Targets under Covert Attention Lead to Paradoxically Enhanced Alpha Desynchronization in Neurofibromatosis Type 1.

    Science.gov (United States)

    Silva, Gilberto; Ribeiro, Maria J; Costa, Gabriel N; Violante, Inês; Ramos, Fabiana; Saraiva, Jorge; Castelo-Branco, Miguel

    2016-01-01

    The limited capacity of the human brain to process the full extent of visual information reaching the visual cortex requires the recruitment of mechanisms of information selection through attention. Neurofibromatosis type-1 (NF1) is a neurodevelopmental disease often exhibiting attentional deficits and learning disabilities, and is considered to model similar impairments common in other neurodevelopmental disorders such as autism. In a previous study, we found that patients with NF1 are more prone to miss targets under overt attention conditions. This finding was interpreted as a result of increased occipito-parietal alpha oscillations. In the present study, we used electroencephalography (EEG) to study alpha power modulations and the performance of patients with NF1 in a covert attention task. Covert attention was required in order to perceive changes (target offset) of a peripherally presented stimulus. Interestingly, alpha oscillations were found to undergo greater desynchronization under this task in the NF1 group compared with control subjects. A similar pattern of desynchronization was found for beta frequencies while no changes in gamma oscillations could be identified. These results are consistent with the notion that different attentional states and task demands generate different patterns of abnormal modulation of alpha oscillatory processes in NF1. Under covert attention conditions and while target offset was reported with relatively high accuracy (over 90% correct responses), excessive desynchronization was found. These findings suggest an abnormal modulation of oscillatory activity and attentional processes in NF1. Given the known role of alpha in modulating attention, we suggest that alpha patterns can show both abnormal increases and decreases that are task and performance dependent, in a way that enhanced alpha desynchronization may reflect a compensatory mechanism to keep performance at normal levels. These results suggest that dysregulation of

  6. Peripheral Attentional Targets under Covert Attention Lead to Paradoxically Enhanced Alpha Desynchronization in Neurofibromatosis Type 1.

    Directory of Open Access Journals (Sweden)

    Gilberto Silva

    Full Text Available The limited capacity of the human brain to process the full extent of visual information reaching the visual cortex requires the recruitment of mechanisms of information selection through attention. Neurofibromatosis type-1 (NF1 is a neurodevelopmental disease often exhibiting attentional deficits and learning disabilities, and is considered to model similar impairments common in other neurodevelopmental disorders such as autism. In a previous study, we found that patients with NF1 are more prone to miss targets under overt attention conditions. This finding was interpreted as a result of increased occipito-parietal alpha oscillations. In the present study, we used electroencephalography (EEG to study alpha power modulations and the performance of patients with NF1 in a covert attention task. Covert attention was required in order to perceive changes (target offset of a peripherally presented stimulus. Interestingly, alpha oscillations were found to undergo greater desynchronization under this task in the NF1 group compared with control subjects. A similar pattern of desynchronization was found for beta frequencies while no changes in gamma oscillations could be identified. These results are consistent with the notion that different attentional states and task demands generate different patterns of abnormal modulation of alpha oscillatory processes in NF1. Under covert attention conditions and while target offset was reported with relatively high accuracy (over 90% correct responses, excessive desynchronization was found. These findings suggest an abnormal modulation of oscillatory activity and attentional processes in NF1. Given the known role of alpha in modulating attention, we suggest that alpha patterns can show both abnormal increases and decreases that are task and performance dependent, in a way that enhanced alpha desynchronization may reflect a compensatory mechanism to keep performance at normal levels. These results suggest that

  7. Mechanical response of collagen molecule under hydrostatic compression

    Energy Technology Data Exchange (ETDEWEB)

    Saini, Karanvir, E-mail: karans@iitrpr.ac.in; Kumar, Navin

    2015-04-01

    Proteins like collagen are the basic building blocks of various body tissues (soft and hard). Collagen molecules find their presence in the skeletal system of the body where they bear mechanical loads from different directions, either individually or along with hydroxy-apatite crystals. Therefore, it is very important to understand the mechanical behavior of the collagen molecule which is subjected to multi-axial state of loading. The estimation of strains of collagen molecule along different directions resulting from the changes in hydrostatic pressure magnitude, can provide us new insights into its mechanical behavior. In the present work, full atomistic simulations have been used to study global (volumetric) as well as local (along different directions) mechanical properties of the hydrated collagen molecule which is subjected to different hydrostatic pressure magnitudes. To estimate the local mechanical properties, the strains of collagen molecule along its longitudinal and transverse directions have been acquired at different hydrostatic pressure magnitudes. In spite of non-homogeneous distribution of atoms within the collagen molecule, the calculated values of local mechanical properties have been found to carry the same order of magnitude along the longitudinal and transverse directions. It has been demonstrated that the values of global mechanical properties like compressibility, bulk modulus, etc. as well as local mechanical properties like linear compressibility, linear elastic modulus, etc. are functions of magnitudes of applied hydrostatic pressures. The mechanical characteristics of collagen molecule based on the atomistic model have also been compared with that of the continuum model in the present work. The comparison showed up orthotropic material behavior for the collagen molecule. The information on collagen molecule provided in the present study can be very helpful in designing the future bio-materials.

  8. Epigenetic Mechanisms Underlying Developmental Plasticity in Horned Beetles

    Directory of Open Access Journals (Sweden)

    Sophie Valena

    2012-01-01

    Full Text Available All developmental plasticity arises through epigenetic mechanisms. In this paper we focus on the nature, origins, and consequences of these mechanisms with a focus on horned beetles, an emerging model system in evolutionary developmental genetics. Specifically, we introduce the biological significance of developmental plasticity and summarize the most important facets of horned beetle biology. We then compare and contrast the epigenetic regulation of plasticity in horned beetles to that of other organisms and discuss how epigenetic mechanisms have facilitated innovation and diversification within and among taxa. We close by highlighting opportunities for future studies on the epigenetic regulation of plastic development in these and other organisms.

  9. Peripheral afferent mechanisms underlying acupuncture inhibition of cocaine behavioral effects in rats.

    Directory of Open Access Journals (Sweden)

    Seol Ah Kim

    Full Text Available Administration of cocaine increases locomotor activity by enhancing dopamine transmission. To explore the peripheral mechanisms underlying acupuncture treatment for drug addiction, we developed a novel mechanical acupuncture instrument (MAI for objective mechanical stimulation. The aim of this study was to evaluate whether acupuncture inhibition of cocaine-induced locomotor activity is mediated through specific peripheral nerves, the afferents from superficial or deep tissues, or specific groups of nerve fibers. Mechanical stimulation of acupuncture point HT7 with MAI suppressed cocaine-induced locomotor activity in a stimulus time-dependent manner, which was blocked by severing the ulnar nerve or by local anesthesia. Suppression of cocaine-induced locomotor activity was elicited after HT7 stimulation at frequencies of either 50 (for Meissner corpuscles or 200 (for Pacinian corpuscles Hz and was not affected by block of C/Aδ-fibers in the ulnar nerve with resiniferatoxin, nor generated by direct stimulation of C/Aδ-fiber afferents with capsaicin. These findings suggest that HT7 inhibition of cocaine-induced locomotor activity is mediated by A-fiber activation of ulnar nerve that originates in superficial and deep tissue.

  10. Underlying neural mechanisms of mirror therapy: Implications for motor rehabilitation in stroke

    Directory of Open Access Journals (Sweden)

    Kamal Narayan Arya

    2016-01-01

    Full Text Available Mirror therapy (MT is a valuable method for enhancing motor recovery in poststroke hemiparesis. The technique utilizes the mirror-illusion created by the movement of sound limb that is perceived as the paretic limb. MT is a simple and economical technique than can stimulate the brain noninvasively. The intervention unquestionably has neural foundation. But the underlying neural mechanisms inducing motor recovery are still unclear. In this review, the neural-modulation due to MT has been explored. Multiple areas of the brain such as the occipital lobe, dorsal frontal area and corpus callosum are involved during the simple MT regime. Bilateral premotor cortex, primary motor cortex, primary somatosensory cortex, and cerebellum also get reorganized to enhance the function of the damaged brain. The motor areas of the lesioned hemisphere receive visuo-motor processing information through the parieto-occipital lobe. The damaged motor cortex responds variably to the MT and may augment true motor recovery. Mirror neurons may also play a possible role in the cortico-stimulatory mechanisms occurring due to the MT.

  11. Apatite accumulation enhances the mechanical property of anammox granules

    NARCIS (Netherlands)

    Lin, Y. M.; Lotti, T.; Sharma, P. K.; van Loosdrecht, M. C. M.

    2013-01-01

    The strength of granular sludge is essential for the mechanical stability of the granules. Inorganic precipitants form a major factor influencing the strength of the granules. To check the possibility of apatite accumulation in anammox granules, and study its contribution to the mechanical strength

  12. Aging under stress and mechanical fragility of soft solids of laponite

    Science.gov (United States)

    Reddy, G. Ranjith K.; Joshi, Yogesh M.

    2008-11-01

    In this work, we investigate the aging behavior of soft glassy solids of aqueous suspension of laponite under shear flow. We observe that when an imposed time is normalized by a dominating relaxation time of the system, the rheological response at different ages shows superposition. Analysis of this behavior suggests that the structural evolution with age under a deformation field, as represented by the dependence of dominant relaxation mode on age, becomes weaker as the system becomes progressively less homogeneous due to enhanced attractive interactions caused by addition of salt. Creep-recovery behavior at same elastic modulus shows more viscous dissipation for a system having more salt, demonstrating increase in the mechanical fragility. This study shows that an increase in the concentration of salt, which enhances attractive interactions and causes greater inhomogeneity, leads to a state wherein the particles are held together by weaker interactions. This work leads to important insights into how microstructure affects the aging dynamics. We discuss the observed behavior in the context of aging in colloidal glasses and gels of aqueous suspension of laponite.

  13. Advanced waterflooding in chalk reservoirs: Understanding of underlying mechanisms

    DEFF Research Database (Denmark)

    Zahid, Adeel; Sandersen, Sara Bülow; Stenby, Erling Halfdan

    2011-01-01

    Over the last decade, a number of studies have shown SO42−, Ca2+ and Mg2+ to be potential determining ions, which may be added to the injected brine for improving oil recovery during waterflooding in chalk reservoirs. However the understanding of the mechanism leading to an increase in oil recove...... of a microemulsion phase could be the possible reasons for the observed increase in oil recovery with sulfate ions at high temperature in chalk reservoirs besides the mechanism of the rock wettability alteration, which has been reported in most previous studies.......Over the last decade, a number of studies have shown SO42−, Ca2+ and Mg2+ to be potential determining ions, which may be added to the injected brine for improving oil recovery during waterflooding in chalk reservoirs. However the understanding of the mechanism leading to an increase in oil recovery...

  14. Epigenetic mechanisms underlying the pathogenesis of neurogenetic diseases.

    Science.gov (United States)

    Qureshi, Irfan A; Mehler, Mark F

    2014-10-01

    There have been considerable advances in uncovering the complex genetic mechanisms that underlie nervous system disease pathogenesis, particularly with the advent of exome and whole genome sequencing techniques. The emerging field of epigenetics is also providing further insights into these mechanisms. Here, we discuss our understanding of the interplay that exists between genetic and epigenetic mechanisms in these disorders, highlighting the nascent field of epigenetic epidemiology-which focuses on analyzing relationships between the epigenome and environmental exposures, development and aging, other health-related phenotypes, and disease states-and next-generation research tools (i.e., those leveraging synthetic and chemical biology and optogenetics) for examining precisely how epigenetic modifications at specific genomic sites affect disease processes.

  15. Mechanisms underlying visceral hypersensitivity in irritable bowel syndrome.

    Science.gov (United States)

    Barbara, Giovanni; Cremon, Cesare; De Giorgio, Roberto; Dothel, Giovanni; Zecchi, Lisa; Bellacosa, Lara; Carini, Giovanni; Stanghellini, Vincenzo; Corinaldesi, Roberto

    2011-08-01

    Visceral hypersensitivity is currently considered a key pathophysiological mechanism involved in pain perception in large subgroups of patients with functional gastrointestinal disorders, including irritable bowel syndrome (IBS). In IBS, visceral hypersensitivity has been described in 20%-90% of patients. The contribution of the central nervous system and psychological factors to visceral hypersensitivity in patients with IBS may be significant, although still debated. Peripheral factors have gained increasing attention following the recognition that infectious enteritis may trigger the development of persistent IBS symptoms, and the identification of mucosal immune, neural, endocrine, microbiological, and intestinal permeability abnormalities. Growing evidence suggests that these factors play an important role in pain transmission from the periphery to the brain via sensory nerve pathways in large subsets of patients with IBS. In this review, we will report on recent data on mechanisms involved in visceral hypersensitivity in IBS, with particular attention paid to peripheral mechanisms.

  16. Cognitive interventions for addiction medicine: Understanding the underlying neurobiological mechanisms.

    Science.gov (United States)

    Zilverstand, Anna; Parvaz, Muhammad A; Moeller, Scott J; Goldstein, Rita Z

    2016-01-01

    Neuroimaging provides a tool for investigating the neurobiological mechanisms of cognitive interventions in addiction. The aim of this review was to describe the brain circuits that are recruited during cognitive interventions, examining differences between various treatment modalities while highlighting core mechanisms, in drug addicted individuals. Based on a systematic Medline search we reviewed neuroimaging studies on cognitive behavioral therapy, cognitive inhibition of craving, motivational interventions, emotion regulation, mindfulness, and neurofeedback training in addiction. Across intervention modalities, common results included the normalization of aberrant activity in the brain's reward circuitry, and the recruitment and strengthening of the brain's inhibitory control network. Results suggest that different cognitive interventions act, at least partly, through recruitment of a common inhibitory control network as a core mechanism. This implies potential transfer effects between training modalities. Overall, results confirm that chronically hypoactive prefrontal regions implicated in cognitive control in addiction can be normalized through cognitive means.

  17. Mechanisms underlying the inhibition of interferon signaling by viruses.

    Science.gov (United States)

    Devasthanam, Anand S

    2014-02-15

    A hallmark of the antiviral response is the induction of interferons. First discovered in 1957 by Issac and Lindeman, interferons are noted for their ability to interfere with viral replication. Interferons act via autocrine and paracrine pathways to induce an antiviral state in infected cells and in neighboring cells containing interferon receptors. Interferons are the frontline defenders against viral infection and their primary function is to locally restrict viral propagation. Viruses have evolved mechanisms to escape the host interferon response, thus gaining a replicative advantage in host cells. This review will discuss recent findings on the mechanisms viruses use to evade the host interferon response. This knowledge is important because the treatment of viral infections is a challenge of global proportions and a better understanding of the mechanisms viruses use to persist in the host may uncover valuable insights applicable to the discovery of novel drug targets.

  18. Strain-driven criticality underlies nonlinear mechanics of fibrous networks

    CERN Document Server

    Sharma, A; Rens, R; Vahabi, M; Jansen, K A; Koenderink, G H; MacKintosh, F C

    2016-01-01

    Networks with only central force interactions are floppy when their average connectivity is below an isostatic threshold. Although such networks are mechanically unstable, they can become rigid when strained. It was recently shown that the transition from floppy to rigid states as a function of simple shear strain is continuous, with hallmark signatures of criticality (Nat. Phys. 12, 584 (2016)). The nonlinear mechanical response of collagen networks was shown to be quantitatively described within the framework of such mechanical critical phenomenon. Here, we provide a more quantitative characterization of critical behavior in subisostatic networks. Using finite size scaling we demonstrate the divergence of strain fluctuations in the network at well-defined critical strain. We show that the characteristic strain corresponding to the onset of strain stiffening is distinct from but related to this critical strain in a way that depends on critical exponents. We confirm this prediction experimentally for collagen...

  19. Statistical Structures Underlying Quantum Mechanics and Social Science

    CERN Document Server

    Wright, R

    2003-01-01

    Common observations of the unpredictability of human behavior and the influence of one question on the answer to another suggest social science experiments are probabilistic and may be mutually incompatible with one another, characteristics attributed to quantum mechanics (as distinguished from classical mechanics). This paper examines this superficial similarity in depth using the Foulis-Randall Operational Statistics language. In contradistinction to physics, social science deals with complex, open systems for which the set of possible experiments is unknowable and outcome interference is a graded phenomenon resulting from the ways the human brain processes information. It is concluded that social science is, in some ways, "less classical" than quantum mechanics, but that generalized "quantum" structures may provide appropriate descriptions of social science experiments. Specific challenges to extending "quantum" structures to social science are identified.

  20. Nematodynamics modelling under extreme mechanical and electric stresses

    Science.gov (United States)

    Amoddeo, Antonino

    2015-01-01

    Nematic liquid crystals confined in asymmetric π-cells and subjected to intense electrical and mechanical stresses undergo strong distortions which can be relaxed by means of the order reconstruction, a fast switching mechanism connecting topologically different textures, assuming bulk and/or surface characteristics depending on both amplitude of the applied electric fields and anchoring angles of the nematic molecules on the confining surfaces. In the frame of the Landau-de Gennes order tensor theory, we provide a numerical model implemented with a moving mesh finite element method appropriate to describe the nematic order dynamics, allowing to map the switching properties of the nematic texture.

  1. Opto-mechanical measurement of micro-trap on atom chip via nonlinear cavity enhanced Raman scattering spectrum

    CERN Document Server

    Zhang, Lin

    2012-01-01

    High-gain resonant nonlinear Raman scattering on trapped cold atoms within a high-fineness ring optical cavity is simply explained under a nonlinear opto-mechanical mechanism, and a proposal using it to detect frequency of micro-trap on atom chip is presented. The enhancement of scattering spectrum is due to coherent Raman conversion between two different cavity modes mediated by collective vibrations of atoms through nonlinear opto-mechanical couplings. The physical conditions of this technique are roughly estimated on Rubidium atoms, and a simple quantum analysis as well as a multi-body semiclassical simulation on this nonlinear Raman process is conducted.

  2. MECHANICAL BEHAVIORS OF SATURATED SAND UNDER COMPLICATED LOADING

    Institute of Scientific and Technical Information of China (English)

    ShaoShengjun

    2004-01-01

    The different physical states of saturated sand, including shear elasticity, positive dilatancy, and negative dilatancy (preliminary negative dilatancy, secondary negative dilatancy and reversal negative dilatancy) are revealed based on the pore water pressure response of saturated sand in undrained dynamic torsional tests of thin cylinder samples and also checked by the drained cyclic triaxial tests under a given mean effective normal stress. According to the effective stress path of different physical states under the undrained cyclic torsional tests the physical state transformation surface, stress history boundary and yield surface are determined, and the state boundary surface is also determined by the range of effective frictional stress state movement.Based on the moving yield surface without rotation, and the expanding stress history boundary surface relevant to the stress path variations under different physical states in 3D stress space,a physical state model is proposed to provide a new approach to calculating the transient pore water pressure under the undrained condition,and the volume strain of dilatation under drained condition in this paper.

  3. Electro-Chemically Enhanced Mechanical Polishing of Nickel Mandrels

    Science.gov (United States)

    Gubarev, Mikhail; Ramsey, Brian; Engelhaupt, Darell

    2006-01-01

    Grinding and mechanical polishing techniques used for x-ray optics mandrel figuring lead to mid-frequency surface ripple. These small figure variations have to be addressed in order to improve the performance of the resulting x-ray mirrors. If the electrochemical etching is combined with mechanical polishing, the figuring and the surface finishing cm be done simultaneously and be used to correct the mid-frequency surface ripple. It is shown that the electrochemical mechanical polishing method allows selective removal of nickel alloy without mandrel surface microroughness degradation.

  4. Preparation, Characterization, and Enhanced Thermal and Mechanical Properties of Epoxy-Titania Composites

    Science.gov (United States)

    Rubab, Zakya; Siddiqi, Humaira M.; Saeed, Shaukat

    2014-01-01

    This paper presents the synthesis and thermal and mechanical properties of epoxy-titania composites. First, submicron titania particles are prepared via surfactant-free sol-gel method using TiCl4 as precursor. These particles are subsequently used as inorganic fillers (or reinforcement) for thermally cured epoxy polymers. Epoxy-titania composites are prepared via mechanical mixing of titania particles with liquid epoxy resin and subsequently curing the mixture with an aliphatic diamine. The amount of titania particles integrated into epoxy matrix is varied between 2.5 and 10.0 wt.% to investigate the effect of sub-micron titania particles on thermal and mechanical properties of epoxy-titania composites. These composites are characterized by X-ray photoelectron (XPS) spectroscopy, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetric (TG), and mechanical analyses. It is found that sub-micron titania particles significantly enhance the glass transition temperature (>6.7%), thermal oxidative stability (>12.0%), tensile strength (>21.8%), and Young's modulus (>16.8%) of epoxy polymers. Epoxy-titania composites with 5.0 wt.% sub-micron titania particles perform best at elevated temperatures as well as under high stress. PMID:24578638

  5. Mechanical behaviour of adhesive joint under tensile and shear loading

    NARCIS (Netherlands)

    Jiang, X.; Kolstein, M.H.; Bijlaard, F.S.K.

    2013-01-01

    Due to various advantages of Fibre-Reinforced Polymer (FRP) decks, the FRP to steel composite bridge system is being increasingly used in new bridge structures as well as rehabilitation projects for old bridges. This paper focuses on the mechanical behaviours and failure modes of the adhesively-bond

  6. Peer influence: neural mechanisms underlying in-group conformity

    NARCIS (Netherlands)

    Stallen, Mirre; Smidts, A.; Sanfey, A.G.

    2013-01-01

    People often conform to the behavior of others with whom they identify. However, it is unclear what fundamental mechanisms underlie this type of conformity. Here, we investigate the processes mediating in-group conformity by using functional magnetic resonance imaging (fMRI). Participants completed

  7. Peer influence: Neural mechanisms underlying in-group conformity

    NARCIS (Netherlands)

    M. Stallen (Mirre); A. Smidts (Ale); A.G. Sanfey (Alan)

    2013-01-01

    textabstractPeople often conform to the behavior of others with whom they identify. However, it is unclear what fundamental mechanisms underlie this type of conformity. Here, we investigate the processes mediating in-group conformity by using functional magnetic resonance imaging (fMRI). Participant

  8. Believing versus interacting: Behavioural and neural mechanisms underlying interpersonal coordination

    DEFF Research Database (Denmark)

    Konvalinka, Ivana; Bauer, Markus; Kilner, James

    When two people engage in a bidirectional interaction with each other, they use both bottom-up sensorimotor mechanisms such as monitoring and adapting to the behaviour of the other, as well as top-down cognitive processes, modulating their beliefs and allowing them to make decisions. Most researc...

  9. A possible mechanism of current in medium under electromagnetic wave

    Institute of Scientific and Technical Information of China (English)

    Zhang Tao

    2006-01-01

    In this paper a possible mechanism of current in medium is presented. Comparison between this current and the magnetization current was made. Expression for this current was derived. This work is helpful to understanding the interaction between medium and electromagnetic wave.

  10. Peer influence: neural mechanisms underlying in-group conformity

    NARCIS (Netherlands)

    Stallen, Mirre; Smidts, A.; Sanfey, A.G.

    2013-01-01

    People often conform to the behavior of others with whom they identify. However, it is unclear what fundamental mechanisms underlie this type of conformity. Here, we investigate the processes mediating in-group conformity by using functional magnetic resonance imaging (fMRI). Participants completed

  11. Peer influence: Neural mechanisms underlying in-group conformity

    NARCIS (Netherlands)

    M. Stallen (Mirre); A. Smidts (Ale); A.G. Sanfey (Alan)

    2013-01-01

    textabstractPeople often conform to the behavior of others with whom they identify. However, it is unclear what fundamental mechanisms underlie this type of conformity. Here, we investigate the processes mediating in-group conformity by using functional magnetic resonance imaging (fMRI).

  12. A review of mechanisms underlying anticarcinogenicity by brassica vegetables

    NARCIS (Netherlands)

    Verhoeven, D.T.H.; Verhagen, H.; Goldbohm, R.A.; Brandt, P.A. van den; Poppel, G. van

    1997-01-01

    The mechanisms by which brassica vegetables might decrease the risk of cancer are reviewed in this paper. Brassicas, including all types of cabbages, broccoli, cauliflower and Brussels sprouts, may be protective against cancer due to their relatively high glucosinolate content. Glucosinolates are us

  13. Microbial Mechanisms Underlying Acidity-induced Reduction in Soil Respiration Under Nitrogen Fertilization

    Science.gov (United States)

    Niu, S.; Li, Y.

    2016-12-01

    Terrestrial ecosystems are receiving increasing amounts of reactive nitrogen (N) due to anthropogenic activities, which largely changes soil respiration and its feedback to climate change. N enrichment can not only increase N availability but also induce soil acidification, both may affect soil microbial activity and root growth with a consequent impact on soil respiration. However, it remains unclear whether elevated N availability or soil acidity has greater impact on soil respiration (Rs). We conducted a manipulative experiment to simulate N enrichment (10 g m-2 yr-1 NH4NO3) and soil acidity (0.552 mol H+ m-2 yr-1 sulfuric acid) and studied their effects on Rs and its components in a temperate forest. Our results showed that soil pH was reduced by 0.2 under N addition or acid addition treatment. Acid addition significantly decreased autotrophic respiration (Ra) and heterotrophic respiration (Rh) by 21.5% and 22.7% in 2014, 34.8% and 21.9% in 2015, respectively, resulting in a reduction of Rs by 22.2% in 2014 and 26.1% in 2015. Nitrogen enrichment reduced Ra, Rh, Rs by 21.9%, 16.2%, 18.6% in 2014 and 22.1%, 5.9%, 11.7% in 2015, respectively. The reductions of Rs and its components were attributable to decrease of fine root biomass, microbial biomass, and cellulose degrading enzymes. N addition did not change microbial community but acid addition increased both fungal and arbuscular mycorrhiza fungi PLFAs, and N plus acid addition significantly enhanced fungal to bacterial ratio. All the hydrolase enzymes were reduced more by soil acidity (43-50%) than nitrogen addition (30-39%). Structural equation model showed that soil acidity played more important role than N availability in reducing soil respiration mainly by changing microbial extracellular enzymes. We therefore suggest that N deposition induced indirect effect of soil acidification on microbial properties is critical and should be taken into account to better understand and predict ecosystem C cycling in

  14. Dislocation mechanism of deuterium retention in tungsten under plasma implantation.

    Science.gov (United States)

    Dubinko, V I; Grigorev, P; Bakaev, A; Terentyev, D; van Oost, G; Gao, F; Van Neck, D; Zhurkin, E E

    2014-10-01

    We have developed a new theoretical model for deuterium (D) retention in tungsten-based alloys on the basis of its being trapped at dislocations and transported to the surface via the dislocation network with parameters determined by ab initio calculations. The model is used to explain experimentally observed trends of D retention under sub-threshold implantation, which does not produce stable lattice defects to act as traps for D in conventional models. Saturation of D retention with implantation dose and effects due to alloying of tungsten with, e.g. tantalum, are evaluated, and comparison of the model predictions with experimental observations under high-flux plasma implantation conditions is presented.

  15. Mechanisms of astrocytic K(+) clearance and swelling under high extracellular K(+) concentrations.

    Science.gov (United States)

    Murakami, Shingo; Kurachi, Yoshihisa

    2016-03-01

    In response to the elevation of extracellular K(+) concentration ([K(+)]out), astrocytes clear excessive K(+) to maintain conditions necessary for neural activity. K(+) clearance in astrocytes occurs via two processes: K(+) uptake and K(+) spatial buffering. High [K(+)]out also induces swelling in astrocytes, leading to edema and cell death in the brain. Despite the importance of astrocytic K(+) clearance and swelling, the underlying mechanisms remain unclear. Here, we report results from a simulation analysis of astrocytic K(+) clearance and swelling. Astrocyte models were constructed by incorporating various mechanisms such as intra/extracellular ion concentrations of Na(+), K(+), and Cl(-), cell volume, and models of Na,K-ATPase, Na-K-Cl cotransporter (NKCC), K-Cl cotransporter, inwardly-rectifying K(+) (KIR) channel, passive Cl(-) current, and aquaporin channel. The simulated response of astrocyte models under the uniform distribution of high [K(+)]out revealed significant contributions of NKCC and Na,K-ATPase to increases of intracellular K(+) and Cl(-) concentrations, and swelling. Moreover, we found that, under the non-uniform distribution of high [K(+)]out, KIR channels localized at synaptic clefts absorbed excess K(+) by depolarizing the equivalent potential of K(+) (E K) above membrane potential, while K(+) released through perivascular KIR channels was enhanced by hyperpolarizing E K and depolarizing membrane potential. Further analysis of simulated drug effects revealed that astrocyte swelling was modulated by blocking each of the ion channels and transporters. Our simulation analysis revealed controversial mechanisms of astrocytic K(+) clearance and swelling resulting from complex interactions among ion channels and transporters.

  16. Dynamics of mechanical system for electromechanical integrated toroidal drive under electric disturbance

    Institute of Scientific and Technical Information of China (English)

    许立忠; 郝秀红

    2014-01-01

    Based on electromagnetics and mechanics, electromechanical coupled dynamic equations for the drive were developed. Using method of perturbation, free vibrations of the mechanical system under electric disturbance were investigated. The forced responses of the mechanical system to mechanical excitation under electric disturbance were also presented. It is known that for the system with electric disturbance, as time grows, beat occurs. When electric disturbing frequency is near to the natural frequencies of the mechanical system or their integer multiple, resonance vibrations occur. The forced responses of the mechanical system to mechanical excitation under electric disturbance are compound vibrations decided by mechanical excitation, electric disturbance and parameters of the system. The coupled resonance vibration caused by electric disturbance and mechanical excitation was discussed as well. The conditions under which above coupled resonance occurs were presented. The results show that when the difference of the excitation frequency and the perturbation frequency is equal to some order of natural frequency, coupled resonance vibrations occur.

  17. Enhanced chemical reactivity of graphene induced by mechanical strain.

    Science.gov (United States)

    Bissett, Mark A; Konabe, Satoru; Okada, Susumu; Tsuji, Masaharu; Ago, Hiroki

    2013-11-26

    Control over chemical reactivity is essential in the field of nanotechnology. Graphene is a two-dimensional atomic sheet of sp(2) hybridized carbon with exceptional properties that can be altered by chemical functionalization. Here, we transferred single-layer graphene onto a flexible substrate and investigated the functionalization using different aryl diazonium molecules while applying mechanical strain. We found that mechanical strain can alter the structure of graphene, and dramatically increase the reaction rate, by a factor of up to 10, as well as increase the final degree of functionalization. Furthermore, we demonstrate that mechanical strain enables functionalization of graphene for both p- and n-type dopants, where unstrained graphene showed negligible reactivity. Theoretical calculations were also performed to support the experimental findings. Our findings offer a simple approach to control the chemical reactivity of graphene through the application of mechanical strain, allowing for a tuning of the properties of graphene.

  18. Mechanisms underlying social inequality in post-menopausal breast cancer.

    Science.gov (United States)

    Hvidtfeldt, Ulla Arthur

    2014-10-01

    This thesis is based on studies conducted in the period 2010-2014 at Department of Public Health, University of Copenhagen and at Department of Epidemiology and Population Health, Albert Einstein College of Medicine, New York. The results are presented in three scientific papers and a synopsis. The main objective of the thesis was to determine mechanisms underlying social inequality (defined by educational level) in postmenopausal breast cancer (BC) by addressing mediating effects through hormone therapy (HT) use, BMI, lifestyle and reproductive factors. The results of previous studies suggest that the higher risk of postmenopausal BC among women of high socioeconomic position (SEP) may be explained by reproductive factors and health behaviors. Women of higher SEP generally have fewer children and give birth at older ages than women of low SEP, and these factors have been found to affect the risk of BC - probably through altered hormone levels. Adverse effects on BC risk have also been documented for modifiable health behaviors that may affect hormone levels, such as alcohol consumption, high BMI, physical inactivity, and HT use. Alcohol consumption and HT use are likewise more common among women of higher SEP. The analyses were based on the Social Inequality in Cancer (SIC) cohort and a subsample of the Women's Health Initiative Observational Study (WHI-OS). The SIC cohort was derived by pooling 6 individual studies from the Copenhagen area including 33,562 women (1,733 BC cases) aged 50-70 years at baseline. The subsample of WHI-OS consisted of two case-cohort studies with measurements of endogenous estradiol (N = 1,601) and insulin (N = 791). Assessment of mediation often relies on comparing multiplicative models with and without the potential mediator. Such approaches provide potentially biased results, because they do not account for mediator-outcome confounding, exposure-dependent mediator-outcome confounding, exposure-mediator interaction and interactions

  19. Enhanced Reputation Mechanism for Mobile Ad Hoc Networks

    OpenAIRE

    Liu, Jinshan; Issarny, Valérie

    2004-01-01

    International audience; Interactions between entities unknown to each other are inevitable in the ambient intelligence vision of service access anytime, anywhere. Trust management through a reputation mechanism to facilitate such interactions is recognized as a vital part of mobile ad hoc networks, which features lack of infrastructure, autonomy, mobility and resource scarcity of composing light-weight terminals. However, the design of a reputation mechanism is faced by challenges of how to e...

  20. Acupuncture De-qi: From Characterization to Underlying Mechanism

    Directory of Open Access Journals (Sweden)

    Shi-Peng Zhu

    2013-01-01

    Full Text Available De-qi refers to the participant’s subjective sensations and objective body responses as well as the acupuncturist’s perceptions while the acupuncturist needles certain acupoints in the participant’s body. In recent years, De-qi is getting increasing attention of the researchers and many efforts have been made to understand its mechanism. By the broad literature survey, this paper explores the subjective De-qi sensation of the patients, its influencing factors, and the resulting physiological responses. The purpose of this paper is expected to find out a possible mechanism of De-qi and to provide certain scientific evidence for acupuncture fundamental research and clinical practice.

  1. Molecular Mechanism Underlying Lymphatic Metastasis in Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Zhiwen Xiao

    2014-01-01

    Full Text Available As the most challenging human malignancies, pancreatic cancer is characterized by its insidious symptoms, low rate of surgical resection, high risk of local invasion, metastasis and recurrence, and overall dismal prognosis. Lymphatic metastasis, above all, is recognized as an early adverse event in progression of pancreatic cancer and has been described to be an independent poor prognostic factor. It should be noted that the occurrence of lymphatic metastasis is not a casual or stochastic but an ineluctable and designed event. Increasing evidences suggest that metastasis-initiating cells (MICs and the microenvironments may act as a double-reed style in this crime. However, the exact mechanisms on how they function synergistically for this dismal clinical course remain largely elusive. Therefore, a better understanding of its molecular and cellular mechanisms involved in pancreatic lymphatic metastasis is urgently required. In this review, we will summarize the latest advances on lymphatic metastasis in pancreatic cancer.

  2. Peer influence: neural mechanisms underlying in-group conformity.

    Science.gov (United States)

    Stallen, Mirre; Smidts, Ale; Sanfey, Alan G

    2013-01-01

    People often conform to the behavior of others with whom they identify. However, it is unclear what fundamental mechanisms underlie this type of conformity. Here, we investigate the processes mediating in-group conformity by using functional magnetic resonance imaging (fMRI). Participants completed a perceptual decision-making task while undergoing fMRI, during which they were exposed to the judgments of both in-group and out-group members. Our data suggest that conformity to the in-group is mediated by both positive affect as well as the cognitive capacity of perspective taking. Examining the processes that drive in-group conformity by utilizing a basic decision-making paradigm combined with neuroimaging methods provides important insights into the potential mechanisms of conformity. These results may provide an integral step in developing more effective campaigns using group conformity as a tool for behavioral change.

  3. Peer influence: Neural mechanisms underlying in-group conformity

    Directory of Open Access Journals (Sweden)

    Mirre eStallen

    2013-03-01

    Full Text Available People often conform to the behavior of others with whom they identify. However, it is unclear what fundamental mechanisms underlie this type of conformity. Here, we investigate the processes mediating in-group conformity by using functional magnetic resonance imaging (fMRI. Participants completed a perceptual decision-making task while undergoing fMRI, during which they were exposed to the judgments of both in-group and out-group members. Our data suggest that conformity to the in-group is mediated by both positive affect as well as the cognitive capacity of perspective taking. Examining the processes that drive in-group conformity by utilizing a basic decision-making paradigm combined with neuroimaging methods provides important insights into the potential mechanisms of conformity. These results may provide an integral step in developing more effective campaigns using group conformity as a tool for behavioral change.

  4. Molecular Mechanisms Underlying Genomic Instability in Brca-Deficient Cells

    Science.gov (United States)

    2014-11-01

    Instability during DNA Replication." 10: April 12, 2013-University of Zurich Cancer Mini-Symposium in Grindelwald, Switzerland - “Genome Stability during...53BP1DB, 53BP18A, o 45 min recovery) and immunoprecipitation was performed with anti- FLAG antib immunoprecipitated protein (right). (B) Isogenic...explore the mechanism of PTIP recruitment to DSBs, we expressed FLAG -tagged PTIP in WT, 53BP1/, and ATM/ MEFs and irradiated them with 10 Gy (Figure 6A

  5. Functional methods underlying classical mechanics, relativity and quantum theory

    OpenAIRE

    Kryukov, Alexey A.

    2013-01-01

    The paper investigates the physical content of a recently proposed mathematical framework that unifies the standard formalisms of classical mechanics, relativity and quantum theory. In the framework states of a classical particle are identified with Dirac delta functions. The classical space is "made" of these functions and becomes a submanifold in a Hilbert space of states of the particle. The resulting embedding of the classical space into the space of states is highly non-trivial and accou...

  6. The Survival Advantage: Underlying Mechanisms and Extant Limitations

    Directory of Open Access Journals (Sweden)

    Stephanie A. Kazanas

    2015-04-01

    Full Text Available Recently, researchers have begun to investigate the function of memory in our evolutionary history. According to Nairne and colleagues (e.g., Nairne, Pandeirada, and Thompson, 2008; Nairne, Thompson, and Pandeirada, 2007, the best mnemonic strategy for learning lists of unrelated words may be one that addresses the same problems that our Pleistocene ancestors faced: fitness-relevant problems including securing food and water, as well as protecting themselves from predators. Survival processing has been shown to promote better recall and recognition memory than many well-known mnemonic strategies (e.g., pleasantness ratings, imagery, generation, etc.. However, the survival advantage does not extend to all types of stimuli and tasks. The current review presents research that has replicated Nairne et al.'s (2007 original findings, in addition to the research designs that fail to replicate the survival advantage. In other words, there are specific manipulations in which survival processing does not appear to benefit memory any more than other strategies. Potential mechanisms for the survival advantage are described, with an emphasis on those that are the most plausible. These proximate mechanisms outline the memory processes that may contribute to the advantage, although the ultimate mechanism may be the congruity between the survival scenario and Pleistocene problem-solving.

  7. Rapid, Enhanced IV Characterization of Multi-Junction PV Devices under One Sun at NREL: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Moriarty, Tom; France, Ryan; Steiner, Myles

    2015-09-15

    Multi-junction technology is rapidly advancing, which puts increasing demands on IV characterization resources. We report on a tool and procedure for fast turn-around of IV data under the reference conditions, but also under controlled variations from the reference conditions. This enhanced data set can improve further iterations of device optimization.

  8. Enhancement in thermal and mechanical properties of bricks

    OpenAIRE

    Shibib Khalid S.; Qatta Haqi I.; Hamza Mohammed S.

    2013-01-01

    A new type of porous brick is proposed. Sawdust is initially well mixed with wet clay in order to create voids inside the brick during the firing process. The voids will enhance the total performance of the brick due to the reduction of its density and thermal conductivity and a minor reduction of its compressive stress. All these properties have been measured experimentally and good performance has been obtained. Although a minor reduction in compressive s...

  9. Moderate stress enhances memory persistence: are adrenergic mechanisms involved?

    Science.gov (United States)

    Parfitt, Gustavo Morrone; Barbosa, Ândrea Kraemer; Campos, Renan Costa; Koth, André Peres; Barros, Daniela Martí

    2012-10-01

    Memory persistence in the inhibitory avoidance (IA) task has been recently shown to require a new event of consolidation 12 hr after acquisition. The immobilization stress (IS) model is largely used to study the effects of stress on memory. In this study we investigated the interactions between stress by immobilization and its effect on the persistence of memory, and also a possible effect mediated by β-adrenergic modulation of stress on memory persistence. An enhancement of long-term memory (LTM) persistence caused by stress through immobilization applied 12 hr after IA training was observed when the animals were submitted to 15 min or 1 hr of IS, but not to 3 hr. The reversal of this memory enhancement caused by IS was observed when the β-adrenergic antagonist propranolol was infused intraperitoneally prior to stress, which implies that β-adrenergic receptors are involved in stress enhancement of LTM persistence. PsycINFO Database Record (c) 2012 APA, all rights reserved.

  10. Coated carbide drill performance under soluble coconut oil lubricant and nanoparticle enhanced MQL in drilling AISI P20

    Science.gov (United States)

    Jamil, N. A. M.; Azmi, A. I.; Fairuz, M. A.

    2016-02-01

    This research experimentally investigates the performance of a TiAlN coated carbide drill bit in drilling AISI P20 through two different kinds of lubricants, namely; soluble coconut oil (SCO) and nanoparticle-enhanced coconut oil (NECO) under minimum quantity lubrication system. The tool life and tool wear mechanism were studied using various cutting speeds of 50, 100 and 150 m/min with a constant feed of 0.01 mm/rev. Since the flank wear land was not regular along the cutting edge, the average flank wear (VB) was measured at several points using image analysis software. The drills were inspected using a scanning electron microscope to further elucidate the wear mechanism. The result indicates that drilling with the nanoparticle- enhanced lubricant was better in resisting the wear and improving the drill life to some extent

  11. Novel Au/CaIn2S4 nanocomposites with plasmon-enhanced photocatalytic performance under visible light irradiation

    Science.gov (United States)

    Li, Jie; Meng, Suci; Wang, Tianyong; Xu, Qing; Shao, Leqiang; Jiang, Deli; Chen, Min

    2017-02-01

    A series of Au/CaIn2S4 nanocomposites with different Au contents were prepared by a simple photoreduction process. Under visible light irradiation, the as-prepared Au/CaIn2S4 nanocomposites exhibited plasmon-enhanced photocatalytic activity for the degradation of methylene blue (MB) compared to that of bare CaIn2S4. The sample with 4 wt% Au hybridized CaIn2S4 exhibited the highest photocatalytic efficiency for MB degradation compared with those of the other nanocomposites. The mechanism for improving the photocatalytic performance of the Au/CaIn2S4 nanocomposites was proposed by using the photoluminescence measurement and electrochemical analyses. The enhanced photocatalytic performance could be attributed to the high separation efficiency of the photogenerated electron-hole pairs. This work could provide a new insight into the fabrication of CaIn2S4-based plasmonic photocatalysts with enhanced performance.

  12. Neural mechanisms underlying auditory feedback control of speech.

    Science.gov (United States)

    Tourville, Jason A; Reilly, Kevin J; Guenther, Frank H

    2008-02-01

    The neural substrates underlying auditory feedback control of speech were investigated using a combination of functional magnetic resonance imaging (fMRI) and computational modeling. Neural responses were measured while subjects spoke monosyllabic words under two conditions: (i) normal auditory feedback of their speech and (ii) auditory feedback in which the first formant frequency of their speech was unexpectedly shifted in real time. Acoustic measurements showed compensation to the shift within approximately 136 ms of onset. Neuroimaging revealed increased activity in bilateral superior temporal cortex during shifted feedback, indicative of neurons coding mismatches between expected and actual auditory signals, as well as right prefrontal and Rolandic cortical activity. Structural equation modeling revealed increased influence of bilateral auditory cortical areas on right frontal areas during shifted speech, indicating that projections from auditory error cells in posterior superior temporal cortex to motor correction cells in right frontal cortex mediate auditory feedback control of speech.

  13. Mechanical Behaviour of Bolted Joints Under Impact Rates of Loading

    Science.gov (United States)

    2012-01-01

    P., Pascoe , K., Polak, C., & Stroud, D. (1986). The Behaviour of Single-Lap Bolted Joints in CFRP Laminates. Composite Structures, 41-55...Interferometry. J Nondestruct Eval, 135-142. Smith, P., Pascoe , K., Polak, C., & Stroud, D. (1986). The Behaviour of Single-Lap Bolted Joints in...in [Kretsis & Matthews, 1985], [Smith, Pascoe , Polak, & Stroud, 1986],[Godwin & Matthews, 1980] UNCLASSIFIED UNCLASSIFIED implies that under

  14. Mechanisms of Fluid-Mud Interactions Under Waves

    Science.gov (United States)

    2011-01-01

    surface a corrugated appearance (Figure 12). Through careful analysis of these tests, it has been concluded that the waves are the result of a resonant...square meter per month. Analysis of X-radiographs from this field program has contributed to development of new theory relating hydrodynamics of...Shear near the base of the mobile fluid mud layer mixes coarser underlying rippled sediment with overlying finer sediment, producing laminations

  15. A potential mechanism underlying atypical antipsychotics-induced lipid disturbances.

    Science.gov (United States)

    Cai, H L; Tan, Q Y; Jiang, P; Dang, R L; Xue, Y; Tang, M M; Xu, P; Deng, Y; Li, H D; Yao, J K

    2015-10-20

    Previous findings suggested that a four-protein complex, including sterol-regulatory element-binding protein (SREBP), SREBP-cleavage-activating protein (SCAP), insulin-induced gene (INSIG) and progesterone receptor membrane component 1 (PGRMC1), within the endoplasmic reticulum appears to be an important regulator responsible for atypical antipsychotic drug (AAPD)-induced lipid disturbances. In the present study, effects of typical antipsychotic drug and AAPDs as well as treatment outcome of steroid antagonist mifepristone (MIF) on the PGRMC1/INSIG/SCAP/SREBP pathway were investigated in rat liver using real-time quantitative polymerase chain reaction (qPCR) and western blot analysis. In addition, serum triacylglycerol, total cholesterol, free fatty acids and various hormones including progesterone, corticosterone and insulin were measured simultaneously. Following treatment with clozapine or risperidone, both lipogenesis and cholesterogenesis were enhanced via inhibition of PGRMC1/INSIG-2 and activation of SCAP/SREBP expressions. Such metabolic disturbances, however, were not demonstrated in rats treated with aripiprazole (ARI) or haloperidol (HAL). Moreover, the add-on treatment of MIF was effective in reversing the AAPD-induced lipid disturbances by upregulating the expression of PGRMC1/INSIG-2 and subsequent downregulation of SCAP/SREBP. Taken together, our findings suggest that disturbances in lipid metabolism can occur at an early stage of AAPD treatment before the presence of weight gain. Such metabolic defects can be modified by an add-on treatment of steroid antagonist MIF enhancing the PGRMC1 pathway. Thus, it is likely that PGRMC1/INSIG-2 signaling may be a therapeutic target for AAPD-induced weight gain.

  16. Electronic, mechanical and dielectric properties of silicane under tensile strain

    Energy Technology Data Exchange (ETDEWEB)

    Jamdagni, Pooja, E-mail: j.poojaa1228@gmail.com; Sharma, Munish; Ahluwalia, P. K. [Physics Department, Himachal Pradesh University, Shimla, Himachal Pradesh, India 171005 (India); Kumar, Ashok [Physics Department, Panjab University, Chandigarh, India, 160014 (India); Thakur, Anil [Physics Department, Govt. Collage Solan, Himachal Pradesh, India,173212 (India)

    2015-05-15

    The electronic, mechanical and dielectric properties of fully hydrogenated silicene i.e. silicane in stable configuration are studied by means of density functional theory based calculations. The band gap of silicane monolayer can be flexibly reduced to zero when subjected to bi-axial tensile strain, leading to semi-conducting to metallic transition, whereas the static dielectric constant for in-plane polarization increases monotonically with increasing strain. Also the EEL function show the red shift in resonance peak with tensile strain. Our results offer useful insight for the application of silicane monolayer in nano-optical and electronics devices.

  17. Effects of light intensity on photosynthesis and photoprotective mechanisms in apple under progressive drought

    Institute of Scientific and Technical Information of China (English)

    MA Ping; BAI Tuan-hui; WANG Xiao-qian; MA Feng-wang

    2015-01-01

    The effects of light intensity on photosynthesis and photoprotective mechanisms under progressive drought were studied on apple trees (Malus domestica Borkh.) Fuji. The potted trees were exposed to drought stress for 12 days and different light conditions (100, 60 and 25% sunlight). During the progressive drought, the relative water content (RWC) in leaf declined and was faster in full light than in 60 and 25% sunlight. However, the decrease in the net photosynthetic rate (Pn), stomatal conductance (Gs) and Rubisco activity were slower under 100% sunlight condition than other light conditions. After the 6 days of drought, the maximum PSII quantum yield (Fv/Fm), the capacity of electrons move beyond QA- (1-Vj) and electron move from intersystem to PSI acceptor side (1-VI)/(1-VJ) decreased, with greater decline extent in brighter light. While RWCs were 〉75%, the variations in different light intensities of Gs and Rubisco activity at identical RWC, suggested the direct effects of light. While the little difference in the state of photosynthetic electron transport chain among tested light intensities indicates the results of faster water loss rate of light. Our results also demonstrated that the enhancement the de-epoxidations of xanthophyll cycle, activities of ascorbate peroxidase (APX) and catalase (CAT) were directly regulated by light intensity. While the higher photorespiration rate (Pr) under stronger light condition was mainly caused by faster water loss rate of light.

  18. Effects of light intensity on photosynthesis and photoprotective mechanisms in apple under progressive drought

    Institute of Scientific and Technical Information of China (English)

    MA Ping; BAI Tuan-hui; WANG Xiao-qian; MA Feng-wang

    2015-01-01

    The effects of light intensity on photosynthesis and photoprotective mechanisms under progressive drought were studied on apple trees (Malus domestica Borkh.) Fuji. The potted trees were exposed to drought stress for 12 days and different light conditions (100, 60 and 25%sunlight). During the progressive drought, the relative water content (RWC) in leaf declined and was faster in ful light than in 60 and 25%sunlight. However, the decrease in the net photosynthetic rate (Pn), stomatal conductance (Gs) and Rubisco activity were slower under 100%sunlight condition than other light conditions. After the 6 days of drought, the maximum PSII quantum yield (Fv/Fm), the capacity of electrons move beyond QA−(1–VJ) and electron move from intersystem to PSI acceptor side (1–VI)/(1–VJ) decreased, with greater decline extent in brighter light. While RWCs were>75%, the variations in different light intensities of Gs and Rubisco activity at identical RWC, suggested the direct effects of light. While the little difference in the state of photosynthetic electron transport chain among tested light intensities indicates the results of faster water loss rate of light. Our results also demonstrated that the enhancement the de-epoxidations of xanthophyl cycle, activities of ascorbate peroxidase (APX) and catalase (CAT) were directly regulated by light intensity. While the higher photorespiration rate (Pr) under stronger light condition was mainly caused by faster water loss rate of light.

  19. Partitioning-based mechanisms under personalized differential privacy

    Science.gov (United States)

    Li, Haoran; Xiong, Li; Ji, Zhanglong; Jiang, Xiaoqian

    2017-01-01

    Differential privacy has recently emerged in private statistical aggregate analysis as one of the strongest privacy guarantees. A limitation of the model is that it provides the same privacy protection for all individuals in the database. However, it is common that data owners may have different privacy preferences for their data. Consequently, a global differential privacy parameter may provide excessive privacy protection for some users, while insufficient for others. In this paper, we propose two partitioning-based mechanisms, privacy-aware and utility-based partitioning, to handle personalized differential privacy parameters for each individual in a dataset while maximizing utility of the differentially private computation. The privacy-aware partitioning is to minimize the privacy budget waste, while utility-based partitioning is to maximize the utility for a given aggregate analysis. We also develop a t-round partitioning to take full advantage of remaining privacy budgets. Extensive experiments using real datasets show the effectiveness of our partitioning mechanisms. PMID:28932827

  20. Mechanisms underlying vertebrate limb regeneration: lessons from the salamander.

    Science.gov (United States)

    Brockes, Jeremy P; Gates, Phillip B

    2014-06-01

    Limb regeneration in adult salamanders proceeds by formation of a mound of progenitor cells called the limb blastema. It provides several pointers for regenerative medicine. These include the role of differentiated cells in the origin of the blastema, the role of regenerating axons of peripheral nerves and the importance of cell specification in conferring morphogenetic autonomy on the blastema. One aspect of regeneration that has received less attention is the ability to undergo multiple episodes without detectable change in the outcome, and with minimal effect of aging. We suggest that, although such pointers are valuable, it is important to understand why salamanders are the only adult tetrapod vertebrates able to regenerate their limbs. Although this remains a controversial issue, the existence of salamander-specific genes that play a significant role in the mechanism of regeneration provides evidence for the importance of local evolution, rather than a purely ancestral mechanism. The three-finger protein called Prod1 is discussed in the present article as an exemplar of this approach.

  1. Ethanol Neurotoxicity in the Developing Cerebellum: Underlying Mechanisms and Implications

    Directory of Open Access Journals (Sweden)

    Ambrish Kumar

    2013-06-01

    Full Text Available Ethanol is the main constituent of alcoholic beverages that exerts toxicity to neuronal development. Ethanol affects synaptogenesis and prevents proper brain development. In humans, synaptogenesis takes place during the third trimester of pregnancy, and in rodents this period corresponds to the initial few weeks of postnatal development. In this period neuronal maturation and differentiation begin and neuronal cells start migrating to their ultimate destinations. Although the neuronal development of all areas of the brain is affected, the cerebellum and cerebellar neurons are more susceptible to the damaging effects of ethanol. Ethanol’s harmful effects include neuronal cell death, impaired differentiation, reduction of neuronal numbers, and weakening of neuronal plasticity. Neuronal development requires many hormones and growth factors such as retinoic acid, nerve growth factors, and cytokines. These factors regulate development and differentiation of neurons by acting through various receptors and their signaling pathways. Ethanol exposure during development impairs neuronal signaling mechanisms mediated by the N-methyl-d-aspartate (NMDA receptors, the retinoic acid receptors, and by growth factors such as brain-derived neurotrophic factor (BDNF, insulin-like growth factor 1 (IGF-I, and basic fibroblast growth factor (bFGF. In combination, these ethanol effects disrupt cellular homeostasis, reduce the survival and migration of neurons, and lead to various developmental defects in the brain. Here we review the signaling mechanisms that are required for proper neuronal development, and how these processes are impaired by ethanol resulting in harmful consequences to brain development.

  2. Obesity and cancer--mechanisms underlying tumour progression and recurrence.

    Science.gov (United States)

    Park, Jiyoung; Morley, Thomas S; Kim, Min; Clegg, Deborah J; Scherer, Philipp E

    2014-08-01

    Over the past several years, the field of cancer research has directed increased interest towards subsets of obesity-associated tumours, which include mammary, renal, oesophageal, gastrointestinal and reproductive cancers in both men and women. The increased risk of breast cancer that is associated with obesity has been widely reported; this has drawn much attention and as such, warrants investigation of the key mechanisms that link the obese state with cancer aetiology. For instance, the obese setting provides a unique adipose tissue microenvironment with concomitant systemic endocrine alterations that favour both tumour initiation and progression. Major metabolic differences exist within tumours that distinguish them from non-transformed healthy tissues. Importantly, considerable metabolic differences are induced by tumour cells in the stromal vascular fraction that surrounds them. The precise mechanisms that underlie the association of obesity with cancer and the accompanying metabolic changes that occur in the surrounding microenvironment remain elusive. Nonetheless, specific therapeutic agents designed for patients with obesity who develop tumours are clearly needed. This Review discusses recent advances in understanding the contributions of obesity to cancer and their implications for tumour treatment.

  3. Obesity and cancer—mechanisms underlying tumour progression and recurrence

    Science.gov (United States)

    Kim, Min; Clegg, Deborah J.; Scherer, Philipp E.

    2015-01-01

    Over the past several years, the field of cancer research has directed increased interest towards subsets of obesity-associated tumours, which include mammary, renal, oesophageal, gastrointestinal and reproductive cancers in both men and women. The increased risk of breast cancer that is associated with obesity has been widely reported; this has drawn much attention and as such, warrants investigation of the key mechanisms that link the obese state with cancer aetiology. For instance, the obese setting provides a unique adipose tissue microenvironment with concomitant systemic endocrine alterations that favour both tumour initiation and progression. Major metabolic differences exist within tumours that distinguish them from non-transformed healthy tissues. Importantly, considerable metabolic differences are induced by tumour cells in the stromal vascular fraction that surrounds them. The precise mechanisms that underlie the association of obesity with cancer and the accompanying metabolic changes that occur in the surrounding microenvironment remain elusive. Nonetheless, specific therapeutic agents designed for patients with obesity who develop tumours are clearly needed. This Review discusses recent advances in understanding the contributions of obesity to cancer and their implications for tumour treatment. PMID:24935119

  4. Silk Fibroin-Sophorolipid Gelation: Deciphering the Underlying Mechanism.

    Science.gov (United States)

    Dubey, Parul; Kumar, Sugam; Aswal, Vinod K; Ravindranathan, Sapna; Rajamohanan, Pattuparambil R; Prabhune, Asmita; Nisal, Anuya

    2016-10-10

    Silk fibroin (SF) protein, produced by silkworm Bombyx mori, is a promising biomaterial, while sophorolipid (SL) is an amphiphilic functional biosurfactant synthesized by nonpathogenic yeast Candida bombicola. SL is a mixture of two forms, acidic (ASL) and lactonic (LSL), which when added to SF results in accelerated gelation of silk fibroin. LSL is known to have multiple biological functionalities and hence hydrogels of these green molecules have promising applications in the biomedical sector. In this work, SANS, NMR, and rheology are employed to examine the assembling properties of individual and mixed SLs and their interactions with SF to understand the mechanism that leads to rapid gelation. SANS and NMR studies show that ASL assembles to form charged micelles, while LSL forms micellar assemblies and aggregates of a mass fractal nature. ASL and LSL together form larger mixed micelles, all of which interact differently with SF. It is shown that preferential binding of LSL to SF causes rapid unfolding of the SF chain leading to the formation of intermolecular beta sheets, which trigger fast gelation. Based on the observations, a mechanism for gelation of SF in the presence of different sophorolipids is proposed.

  5. Gastric sensitivity and reflexes: basic mechanisms underlying clinical problems.

    Science.gov (United States)

    Azpiroz, Fernando; Feinle-Bisset, Christine; Grundy, David; Tack, Jan

    2014-02-01

    Both reflex and sensory mechanisms control the function of the stomach, and disturbances in these mechanisms may explain the pathophysiology of disorders of gastric function. The objective of this report is to perform a literature-based critical analysis of new, relevant or conflicting information on gastric sensitivity and reflexes, with particular emphasis on the comprehensive integration of basic and clinical research data. The stomach exerts both phasic and tonic muscular (contractile and relaxatory) activity. Gastric tone determines the capacity of the stomach and mediates both gastric accommodation to a meal as well as gastric emptying, by partial relaxation or progressive recontraction, respectively. Perception and reflex afferent pathways from the stomach are activated independently by specific stimuli, suggesting that the terminal nerve endings operate as specialized receptors. Particularly, perception appears to be related to stimulation of tension receptors, while the existence of volume receptors in the stomach is uncertain. Reliable techniques have been developed to measure gastric perception and reflexes both in experimental and clinical conditions, and have facilitated the identification of abnormal responses in patients with gastric disorders. Gastroparesis is characterised by impaired gastric tone and contractility, whereas patients with functional dyspepsia have impaired accommodation, associated with antral distention and increased gastric sensitivity. An integrated view of fragmented knowledge allows the design of pathophysiological models in an attempt to explain disorders of gastric function, and may facilitate the development of mechanistically orientated treatments.

  6. Flow in porous media, phase and ultralow interfacial tensions: Mechanisms of enhanced petroleum recovery

    Energy Technology Data Exchange (ETDEWEB)

    Davis, H.T.; Scriven, L.E.

    1991-07-01

    A major program of university research, longer-ranged and more fundamental in approach than industrial research, into basic mechanisms of enhancing petroleum recovery and into underlying physics, chemistry, geology, applied mathematics, computation, and engineering science has been built at Minnesota. The original focus was surfactant-based chemical flooding, but the approach taken was sufficiently fundamental that the research, longer-ranged than industrial efforts, has become quite multidirectional. Topics discussed are volume controlled porosimetry; fluid distribution and transport in porous media at low wetting phase saturation; molecular dynamics of fluids in ultranarrow pores; molecular dynamics and molecular theory of wetting and adsorption; new numerical methods to handle initial and boundary conditions in immiscible displacement; electron microscopy of surfactant fluid microstructure; low cost system for animating liquid crystallites viewed with polarized light; surfaces of constant mean curvature with prescribed contact angle.

  7. Possible mechanism for enhancing the trapping and cooling of antihydrogen

    Science.gov (United States)

    Cesar, C. L.; Robicheaux, F.; Zagury, N.

    2009-10-01

    We propose a usage of microwave radiation in a magnetic trap for improving the cooling and trapping of cold antihydrogen atoms which are initially produced in high magnetic moment states. Inducing transitions toward lower magnetic moments near the turning points of the atom in the trap, followed by spontaneous emission, should enhance the number of trappable atoms. We present results of simulations based on a typical experimental condition of the antihydrogen experiments at CERN. This technique should also be applicable to other trapped high magnetic moment Rydberg atoms.

  8. Mechanisms Underlying the Antidepressant Response of Acupuncture via PKA/CREB Signaling Pathway

    National Research Council Canada - National Science Library

    Huili Jiang; Xuhui Zhang; Yu Wang; Huimin Zhang; Jing Li; Xinjing Yang; Bingcong Zhao; Chuntao Zhang; Miao Yu; Mingmin Xu; Qiuyun Yu; Xingchen Liang; Xiang Li; Peng Shi; Tuya Bao

    2017-01-01

    .... The objective was to identify the mechanisms underlying the antidepressant response of acupuncture through PKA signaling pathway in depression rats by employing the PKA signaling pathway inhibitor...

  9. Mechanisms Underlying Mammalian Hybrid Sterility in Two Feline Interspecies Models.

    Science.gov (United States)

    Davis, Brian W; Seabury, Christopher M; Brashear, Wesley A; Li, Gang; Roelke-Parker, Melody; Murphy, William J

    2015-10-01

    The phenomenon of male sterility in interspecies hybrids has been observed for over a century, however, few genes influencing this recurrent phenotype have been identified. Genetic investigations have been primarily limited to a small number of model organisms, thus limiting our understanding of the underlying molecular basis of this well-documented "rule of speciation." We utilized two interspecies hybrid cat breeds in a genome-wide association study employing the Illumina 63 K single-nucleotide polymorphism array. Collectively, we identified eight autosomal genes/gene regions underlying associations with hybrid male sterility (HMS) involved in the function of the blood-testis barrier, gamete structural development, and transcriptional regulation. We also identified several candidate hybrid sterility regions on the X chromosome, with most residing in close proximity to complex duplicated regions. Differential gene expression analyses revealed significant chromosome-wide upregulation of X chromosome transcripts in testes of sterile hybrids, which were enriched for genes involved in chromatin regulation of gene expression. Our expression results parallel those reported in Mus hybrids, supporting the "Large X-Effect" in mammalian HMS and the potential epigenetic basis for this phenomenon. These results support the value of the interspecies feline model as a powerful tool for comparison to rodent models of HMS, demonstrating unique aspects and potential commonalities that underpin mammalian reproductive isolation.

  10. Mechanical Alterations Associated with Repeated Treadmill Sprinting under Heat Stress

    Science.gov (United States)

    Brocherie, Franck; Morin, Jean-Benoit; Racinais, Sébastien; Millet, Grégoire P.; Périard, Julien D.

    2017-01-01

    Purpose Examine the mechanical alterations associated with repeated treadmill sprinting performed in HOT (38°C) and CON (25°C) conditions. Methods Eleven recreationally active males performed a 30-min warm-up followed by three sets of five 5-s sprints with 25-s recovery and 3-min between sets in each environment. Constant-velocity running for 1-min at 10 and 20 km.h-1 was also performed prior to and following sprinting. Results Mean skin (37.2±0.7 vs. 32.7±0.8°C; P<0.001) and core (38.9±0.2 vs. 38.8±0.3°C; P<0.05) temperatures, together with thermal comfort (P<0.001) were higher following repeated sprinting in HOT vs. CON. Step frequency and vertical stiffness were lower (-2.6±1.6% and -5.5±5.5%; both P<0.001) and contact time (+3.2±2.4%; P<0.01) higher in HOT for the mean of sets 1–3 compared to CON. Running distance per sprint decreased from set 1 to 3 (-7.0±6.4%; P<0.001), with a tendency for shorter distance covered in HOT vs. CON (-2.7±3.4%; P = 0.06). Mean vertical (-2.6±5.5%; P<0.01), horizontal (-9.1±4.4%; P<0.001) and resultant ground reaction forces (-3.0±2.8%; P<0.01) along with vertical stiffness (-12.9±2.3%; P<0.001) and leg stiffness (-8.4±2.7%; P<0.01) decreased from set 1 to 3, independently of conditions. Propulsive power decreased from set 1 to 3 (-16.9±2.4%; P<0.001), with lower propulsive power values in set 2 (-6.6%; P<0.05) in HOT vs. CON. No changes in constant-velocity running patterns occurred between conditions, or from pre-to-post repeated-sprint exercise. Conclusions Thermal strain alters step frequency and vertical stiffness during repeated sprinting; however without exacerbating mechanical alterations. The absence of changes in constant-velocity running patterns suggests a strong link between fatigue-induced velocity decrements during sprinting and mechanical alterations. PMID:28146582

  11. Functional methods underlying classical mechanics, relativity and quantum theory

    Science.gov (United States)

    Kryukov, A.

    2013-04-01

    The paper investigates the physical content of a recently proposed mathematical framework that unifies the standard formalisms of classical mechanics, relativity and quantum theory. In the framework states of a classical particle are identified with Dirac delta functions. The classical space is "made" of these functions and becomes a submanifold in a Hilbert space of states of the particle. The resulting embedding of the classical space into the space of states is highly non-trivial and accounts for numerous deep relations between classical and quantum physics and relativity. One of the most striking results is the proof that the normal probability distribution of position of a macroscopic particle (equivalently, position of the corresponding delta state within the classical space submanifold) yields the Born rule for transitions between arbitrary quantum states.

  12. Mechanisms underlying rapid aldosterone effects in the kidney.

    LENUS (Irish Health Repository)

    Thomas, Warren

    2011-03-17

    The steroid hormone aldosterone is a key regulator of electrolyte transport in the kidney and contributes to both homeostatic whole-body electrolyte balance and the development of renal and cardiovascular pathologies. Aldosterone exerts its action principally through the mineralocorticoid receptor (MR), which acts as a ligand-dependent transcription factor in target tissues. Aldosterone also stimulates the activation of protein kinases and secondary messenger signaling cascades that act independently on specific molecular targets in the cell membrane and also modulate the transcriptional action of aldosterone through MR. This review describes current knowledge regarding the mechanisms and targets of rapid aldosterone action in the nephron and how aldosterone integrates these responses into the regulation of renal physiology.

  13. Mechanisms underlying rapid aldosterone effects in the kidney.

    LENUS (Irish Health Repository)

    Thomas, Warren

    2012-02-01

    The steroid hormone aldosterone is a key regulator of electrolyte transport in the kidney and contributes to both homeostatic whole-body electrolyte balance and the development of renal and cardiovascular pathologies. Aldosterone exerts its action principally through the mineralocorticoid receptor (MR), which acts as a ligand-dependent transcription factor in target tissues. Aldosterone also stimulates the activation of protein kinases and secondary messenger signaling cascades that act independently on specific molecular targets in the cell membrane and also modulate the transcriptional action of aldosterone through MR. This review describes current knowledge regarding the mechanisms and targets of rapid aldosterone action in the nephron and how aldosterone integrates these responses into the regulation of renal physiology.

  14. Molecular mechanism for cavitation in water under tension

    CERN Document Server

    Menzl, Georg; Geiger, Philipp; Caupin, Frédéric; Abascal, Jose L F; Valeriani, Chantal; Dellago, Christoph

    2016-01-01

    Despite its relevance in biology and engineering, the molecular mechanism driving cavitation in water remains unknown. Using computer simulations, we investigate the structure and dynamics of vapor bubbles emerging from metastable water at negative pressures. We find that in the early stages of cavitation, bubbles are irregularly shaped and become more spherical as they grow. Nevertheless, the free energy of bubble formation can be perfectly reproduced in the framework of classical nucleation theory (CNT) if the curvature dependence of the surface tension is taken into account. Comparison of the observed bubble dynamics to the predictions of the macroscopic Rayleigh--Plesset (RP) equation, augmented with thermal fluctuations, demonstrates that the growth of nanoscale bubbles is governed by viscous forces. Combining the dynamical prefactor determined from the RP equation with the free energy of CNT yields an analytical expression for the cavitation rate that reproduces the simulation results very well over a w...

  15. Aging and emotional memory: cognitive mechanisms underlying the positivity effect.

    Science.gov (United States)

    Spaniol, Julia; Voss, Andreas; Grady, Cheryl L

    2008-12-01

    Younger adults tend to remember negative information better than positive or neutral information (negativity bias). The negativity bias is reduced in aging, with older adults occasionally exhibiting superior memory for positive, as opposed to negative or neutral, information (positivity bias). Two experiments with younger (N=24 in Experiment 1, N=25 in Experiment 2; age range: 18-35 years) and older adults (N=24 in both experiments; age range: 60-85 years) investigated the cognitive mechanisms responsible for age-related differences in recognition memory for emotional information. Results from diffusion model analyses (R. Ratcliff, 1978) indicated that the effects of valence on response bias were similar in both age groups but that Age x Valence interactions emerged in memory retrieval. Specifically, older adults experienced greater overall familiarity for positive items than younger adults. We interpret this finding in terms of an age-related increase in the accessibility of positive information in long-term memory.

  16. Mechanical characterization of stomach tissue under uniaxial tensile action.

    Science.gov (United States)

    Jia, Z G; Li, W; Zhou, Z R

    2015-02-26

    In this article, the tensile properties of gastric wall were investigated by using biomechanical test and theoretical analysis. The samples of porcine stomach strips from smaller and greater curvature of the stomach were cut in longitudinal and circumferential direction, respectively. The loading-unloading, stress relaxation, strain creep, tensile fracture tests were performed at mucosa-submucosa, serosa-muscle and intact layer, respectively. Results showed that the biomechanical properties of the porcine stomach depended on the layers, orientations and locations of the gastric wall and presented typical viscoelastic, nonlinear and anisotropic mechanical properties. During loading-unloading test, the stress of serosa-muscle layer in the longitudinal direction was 15-20% more than that in the circumferential direction at 12% stretch ratio, while it could reach about 40% for the intact layer and 50% for the mucosa-submucosa layer. The results of stress relaxation and strain creep showed that the variation degree was obviously faster in the circumferential direction than that in the longitudinal direction, and the ultimate residual values were also different for the different layers, orientations and locations. In the process of fracture test, the serosa-muscle layer fractured firstly followed by the mucosa-submucosa layer when the intact layer was tested, the longitudinal strips firstly began to fracture and the required stress value was about twice as much as that in the circumferential strips. The anisotropy and heterogeneity of mechanical characterization of the porcine stomach were related to its complicated geometry, structure and functions. The results would help us to understand the biomechanics of soft organ tissue. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Enhanced densification, strength and molecular mechanisms in shock compressed porous silicon

    Science.gov (United States)

    Lane, J. Matthew D.; Vogler, Tracy J.

    2015-06-01

    In most porous materials, void collapse during shock compression couples mechanical energy to thermal energy. Increased temperature drives up pressures and lowers densities in the final Hugoniot states as compared to full-density samples. Some materials, however, exhibit an anomalous enhanced densification in their Hugoniot states when porosity is introduced. We have recently shown that silicon is such a material, and demonstrated a molecular mechanism for the effect using molecular simulation. We will review results from large-scale non-equilibrium molecular dynamics (NEMD) and Hugoniotstat simulations of shock compressed porous silicon, highlighting the mechanism by which porosity produces local shear which nucleate partial phase transition and localized melting at shock pressures below typical thresholds in these materials. Further, we will characterize the stress states and strength of the material as a function of porosity from 5 to 50 percent and with various porosity microstructures. Sandia National Laboratories is a multi program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  18. Approaches for enhancement of N₂ fixation efficiency of chickpea (Cicer arietinum L.) under limiting nitrogen conditions.

    Science.gov (United States)

    Esfahani, Maryam Nasr; Sulieman, Saad; Schulze, Joachim; Yamaguchi-Shinozaki, Kazuko; Shinozaki, Kazuo; Tran, Lam-Son

    2014-04-01

    Chickpea (Cicer arietinum) is an important pulse crop in many countries in the world. The symbioses between chickpea and Mesorhizobia, which fix N₂ inside the root nodules, are of particular importance for chickpea's productivity. With the aim of enhancing symbiotic efficiency in chickpea, we compared the symbiotic efficiency of C-15, Ch-191 and CP-36 strains of Mesorhizobium ciceri in association with the local elite chickpea cultivar 'Bivanij' as well as studied the mechanism underlying the improvement of N₂ fixation efficiency. Our data revealed that C-15 strain manifested the most efficient N₂ fixation in comparison with Ch-191 or CP-36. This finding was supported by higher plant productivity and expression levels of the nifHDK genes in C-15 nodules. Nodule specific activity was significantly higher in C-15 combination, partially as a result of higher electron allocation to N₂ versus H⁺. Interestingly, a striking difference in nodule carbon and nitrogen composition was observed. Sucrose cleavage enzymes displayed comparatively lower activity in nodules established by either Ch-191 or CP-36. Organic acid formation, particularly that of malate, was remarkably higher in nodules induced by C-15 strain. As a result, the best symbiotic efficiency observed with C-15-induced nodules was reflected in a higher concentration of the total and several major amino metabolites, namely asparagine, glutamine, glutamate and aspartate. Collectively, our findings demonstrated that the improved efficiency in chickpea symbiotic system, established with C-15, was associated with the enhanced capacity of organic acid formation and the activities of the key enzymes connected to the nodule carbon and nitrogen metabolism. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  19. Enhanced stability and mechanical strength of sodium alginate composite films.

    Science.gov (United States)

    Liu, Sijun; Li, Yong; Li, Lin

    2017-03-15

    This work aims to study how three kinds of nanofillers: graphene oxide (GO), ammonia functionalized graphene oxide (AGO), and triethoxylpropylaminosilane functionalized silica, can affect stability and mechanical strength of sodium alginate (SA) composite films. The filler/sodium alginate (SA) solutions were first studied by rheology to reveal effects of various fillers on zero shear viscosity η0. SA composite films were then prepared by a solution mixing-evaporation method. The structure, morphology and properties of SA composite films were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffractometry (XRD), thermogravimetric analysis (TGA), field emission scanning electron microscopy (FESEM), contact angle and mechanical testing. Compared to GO and silica, the presence of AGO significantly improved the interaction between AGO and SA, which led to the increase in stability and mechanical strength of the resulting SA composite films. The tensile strength and elongation at break of AGO/SA composite film at 3wt% AGO loading were increased by 114.9% and 194.4%, respectively, in contrast to pure SA film. Furthermore, the stability of AGO/SA composite films at high temperatures and in a wet environment were better than that of silica/SA and GO/SA composite films. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Algorithmic mechanisms for reliable crowdsourcing computation under collusion.

    Science.gov (United States)

    Fernández Anta, Antonio; Georgiou, Chryssis; Mosteiro, Miguel A; Pareja, Daniel

    2015-01-01

    We consider a computing system where a master processor assigns a task for execution to worker processors that may collude. We model the workers' decision of whether to comply (compute the task) or not (return a bogus result to save the computation cost) as a game among workers. That is, we assume that workers are rational in a game-theoretic sense. We identify analytically the parameter conditions for a unique Nash Equilibrium where the master obtains the correct result. We also evaluate experimentally mixed equilibria aiming to attain better reliability-profit trade-offs. For a wide range of parameter values that may be used in practice, our simulations show that, in fact, both master and workers are better off using a pure equilibrium where no worker cheats, even under collusion, and even for colluding behaviors that involve deviating from the game.

  1. Algorithmic mechanisms for reliable crowdsourcing computation under collusion.

    Directory of Open Access Journals (Sweden)

    Antonio Fernández Anta

    Full Text Available We consider a computing system where a master processor assigns a task for execution to worker processors that may collude. We model the workers' decision of whether to comply (compute the task or not (return a bogus result to save the computation cost as a game among workers. That is, we assume that workers are rational in a game-theoretic sense. We identify analytically the parameter conditions for a unique Nash Equilibrium where the master obtains the correct result. We also evaluate experimentally mixed equilibria aiming to attain better reliability-profit trade-offs. For a wide range of parameter values that may be used in practice, our simulations show that, in fact, both master and workers are better off using a pure equilibrium where no worker cheats, even under collusion, and even for colluding behaviors that involve deviating from the game.

  2. Neural mechanisms underlying melodic perception and memory for pitch.

    Science.gov (United States)

    Zatorre, R J; Evans, A C; Meyer, E

    1994-04-01

    The neural correlates of music perception were studied by measuring cerebral blood flow (CBF) changes with positron emission tomography (PET). Twelve volunteers were scanned using the bolus water method under four separate conditions: (1) listening to a sequence of noise bursts, (2) listening to unfamiliar tonal melodies, (3) comparing the pitch of the first two notes of the same set of melodies, and (4) comparing the pitch of the first and last notes of the melodies. The latter two conditions were designed to investigate short-term pitch retention under low or high memory load, respectively. Subtraction of the obtained PET images, superimposed on matched MRI scans, provides anatomical localization of CBF changes associated with specific cognitive functions. Listening to melodies, relative to acoustically matched noise sequences, resulted in CBF increases in the right superior temporal and right occipital cortices. Pitch judgments of the first two notes of each melody, relative to passive listening to the same stimuli, resulted in right frontal-lobe activation. Analysis of the high memory load condition relative to passive listening revealed the participation of a number of cortical and subcortical regions, notably in the right frontal and right temporal lobes, as well as in parietal and insular cortex. Both pitch judgment conditions also revealed CBF decreases within the left primary auditory cortex. We conclude that specialized neural systems in the right superior temporal cortex participate in perceptual analysis of melodies; pitch comparisons are effected via a neural network that includes right prefrontal cortex, but active retention of pitch involves the interaction of right temporal and frontal cortices.

  3. An electrophysiological insight into visual attention mechanisms underlying schizotypy.

    Science.gov (United States)

    Fuggetta, Giorgio; Bennett, Matthew A; Duke, Philip A

    2015-07-01

    A theoretical framework has been put forward to understand attention deficits in schizophrenia (Luck SJ & Gold JM. Biological Psychiatry. 2008; 64:34-39). We adopted this framework to evaluate any deficits in attentional processes in schizotypy. Sixteen low schizotypal (LoS) and 16 high schizotypal (HiS) individuals performed a novel paradigm combining a match-to-sample task, with inhibition of return (using spatially uninformative cues) and memory-guided efficient visual-search within one trial sequence. Behavioural measures and event-related potentials (ERPs) were recorded. Behaviourally, HiS individuals exhibited a spatial cueing effect while LoS individuals showed the more typical inhibition of return effect. These results suggest HiS individuals have a relative deficit in rule selection - the endogenous control process involved in disengaging attention from the uninformative location cue. ERP results showed that the late-phase of N2pc evoked by the target stimulus had greater peak latency and amplitude in HiS individuals. This suggests a relative deficit in the implementation of selection - the process of focusing attention onto target features that enhances relevant/suppresses irrelevant inputs. This is a different conclusion than when the same theoretical framework has been applied to schizophrenia, which argues little or no deficit in implementation of selection amongst patients. Also, HiS individuals exhibited earlier onset and greater amplitude of the mismatch-triggered negativity component. In summary, our results indicate deficits of both control and implementation of selection in HiS individuals.

  4. The Mechanisms Underlying the ASD Advantage in Visual Search.

    Science.gov (United States)

    Kaldy, Zsuzsa; Giserman, Ivy; Carter, Alice S; Blaser, Erik

    2016-05-01

    A number of studies have demonstrated that individuals with autism spectrum disorders (ASDs) are faster or more successful than typically developing control participants at various visual-attentional tasks (for reviews, see Dakin and Frith in Neuron 48:497-507, 2005; Simmons et al. in Vis Res 49:2705-2739, 2009). This "ASD advantage" was first identified in the domain of visual search by Plaisted et al. (J Child Psychol Psychiatry 39:777-783, 1998). Here we survey the findings of visual search studies from the past 15 years that contrasted the performance of individuals with and without ASD. Although there are some minor caveats, the overall consensus is that-across development and a broad range of symptom severity-individuals with ASD reliably outperform controls on visual search. The etiology of the ASD advantage has not been formally specified, but has been commonly attributed to 'enhanced perceptual discrimination', a superior ability to visually discriminate between targets and distractors in such tasks (e.g. O'Riordan in Cognition 77:81-96, 2000). As well, there is considerable evidence for impairments of the attentional network in ASD (for a review, see Keehn et al. in J Child Psychol Psychiatry 37:164-183, 2013). We discuss some recent results from our laboratory that support an attentional, rather than perceptual explanation for the ASD advantage in visual search. We speculate that this new conceptualization may offer a better understanding of some of the behavioral symptoms associated with ASD, such as over-focusing and restricted interests.

  5. Experimental Evidence of Directivity-Enhancing Mechanisms in Nonlinear Lattices

    CERN Document Server

    Ganesh, R

    2016-01-01

    In this letter, we experimentally investigate the directional characteristics of propagating, finite-amplitude wave packets in lattice materials, with an emphasis on the functionality enhancement due to the nonlinearly-generated higher harmonics. To this end, we subject a thin, periodically perforated sheet to out-of-plane harmonic excitations, and we design a systematic measurement and data processing routine that leverages the full-wavefield reconstruction capabilities of a laser vibrometer to precisely delineate the effects of nonlinearity. We demonstrate experimentally that the interplay of dispersion, nonlinearity, and modal complexity which is involved in the generation and propagation of higher harmonics gives rise to secondary wave packets with characteristics that conform to the dispersion relation of the corresponding linear structure. Furthermore, these nonlinearly generated wave features display modal and directional characteristics that are complementary to those exhibited by the fundamental harm...

  6. Role of five-fold twin boundary on the enhanced mechanical properties of fcc Fe nanowires.

    Science.gov (United States)

    Wu, J Y; Nagao, S; He, J Y; Zhang, Z L

    2011-12-14

    The role of 5-fold twin boundary on the structural and mechanical properties of fcc Fe nanowire under tension is explored by classical molecular dynamics. Twin-stabilized fcc nanowire with various diameters (6-24 nm) are examined by tension tests at several temperatures ranging from 0.01 to 1100 K. Significant increase in the Young's modulus of the smaller nanowires is revealed to originate from the central area of quinquefoliolate-like stress-distribution over the 5-fold twin, rather than from the surface tension that is often considered as the main source of such size-effects found in nanostructures. Because of the excess compressive stress caused by crossing twin-boundaries, the atoms in the center behave stiffer than those in bulk and even expand laterally under axial tension, providing locally negative Poisson's ratio. The yield strength of nanowire is also enhanced by the twin boundary that suppresses dislocation nucleation within a fcc twin-domain; therefore, the plasticity of nanowire is initiated by strain-induced fcc→bcc phase transformation that destroys the twin structure. After the yield, the nucleated bcc phase immediately spreads to the entire area, and forms a multigrain structure to realize ductile deformation followed by necking. As temperature elevated close to the critical temperature between bcc and fcc phases, the increased stability of fcc phase competes with the phase transformation under tension, and hence dislocation nucleations in fcc phase are observed exclusively at the highest temperature in our study.

  7. Consensus paper: pathological mechanisms underlying neurodegeneration in spinocerebellar ataxias.

    Science.gov (United States)

    Matilla-Dueñas, A; Ashizawa, T; Brice, A; Magri, S; McFarland, K N; Pandolfo, M; Pulst, S M; Riess, O; Rubinsztein, D C; Schmidt, J; Schmidt, T; Scoles, D R; Stevanin, G; Taroni, F; Underwood, B R; Sánchez, I

    2014-04-01

    Intensive scientific research devoted in the recent years to understand the molecular mechanisms or neurodegeneration in spinocerebellar ataxias (SCAs) are identifying new pathways and targets providing new insights and a better understanding of the molecular pathogenesis in these diseases. In this consensus manuscript, the authors discuss their current views on the identified molecular processes causing or modulating the neurodegenerative phenotype in spinocerebellar ataxias with the common opinion of translating the new knowledge acquired into candidate targets for therapy. The following topics are discussed: transcription dysregulation, protein aggregation, autophagy, ion channels, the role of mitochondria, RNA toxicity, modulators of neurodegeneration and current therapeutic approaches. Overall point of consensus includes the common vision of neurodegeneration in SCAs as a multifactorial, progressive and reversible process, at least in early stages. Specific points of consensus include the role of the dysregulation of protein folding, transcription, bioenergetics, calcium handling and eventual cell death with apoptotic features of neurons during SCA disease progression. Unresolved questions include how the dysregulation of these pathways triggers the onset of symptoms and mediates disease progression since this understanding may allow effective treatments of SCAs within the window of reversibility to prevent early neuronal damage. Common opinions also include the need for clinical detection of early neuronal dysfunction, for more basic research to decipher the early neurodegenerative process in SCAs in order to give rise to new concepts for treatment strategies and for the translation of the results to preclinical studies and, thereafter, in clinical practice.

  8. The neural sociometer: brain mechanisms underlying state self-esteem.

    Science.gov (United States)

    Eisenberger, Naomi I; Inagaki, Tristen K; Muscatell, Keely A; Byrne Haltom, Kate E; Leary, Mark R

    2011-11-01

    On the basis of the importance of social connection for survival, humans may have evolved a "sociometer"-a mechanism that translates perceptions of rejection or acceptance into state self-esteem. Here, we explored the neural underpinnings of the sociometer by examining whether neural regions responsive to rejection or acceptance were associated with state self-esteem. Participants underwent fMRI while viewing feedback words ("interesting," "boring") ostensibly chosen by another individual (confederate) to describe the participant's previously recorded interview. Participants rated their state self-esteem in response to each feedback word. Results demonstrated that greater activity in rejection-related neural regions (dorsal ACC, anterior insula) and mentalizing regions was associated with lower-state self-esteem. Additionally, participants whose self-esteem decreased from prescan to postscan versus those whose self-esteem did not showed greater medial prefrontal cortical activity, previously associated with self-referential processing, in response to negative feedback. Together, the results inform our understanding of the origin and nature of our feelings about ourselves.

  9. RISK FACTORS FOR PANCREATIC CANCER: UNDERLYING MECHANISMS AND POTENTIAL TARGETS

    Directory of Open Access Journals (Sweden)

    Thomas eKolodecik

    2014-01-01

    Full Text Available Purpose of the review:Pancreatic cancer is extremely aggressive, forming highly chemo-resistant tumors, and has one of the worst prognoses. The evolution of this cancer is multi-factorial. Repeated acute pancreatic injury and inflammation are important contributing factors in the development of pancreatic cancer. This article attempts to understand the common pathways linking pancreatitis to pancreatic cancer.Recent Findings:Intracellular activation of both pancreatic enzymes and the transcription factor NF-kB are important mechanisms that induce acute pancreatitis. Recurrent pancreatic injury due to genetic susceptibility, environmental factors such as smoking, alcohol intake, and conditions such as obesity lead to increases in oxidative stress, impaired autophagy and constitutive activation of inflammatory pathways. These processes can stimulate pancreatic stellate cells, thereby increasing fibrosis and encouraging chronic disease development. Activation of oncogneic Kras mutations through inflammation, coupled with altered levels of tumor suppressor proteins (p53 and p16 can ultimately lead to development of pancreatic cancer. Summary:Although our understanding of pancreatitis and pancreatic cancer has tremendously increased over many years, much remains to be elucidated in terms of common pathways linking these conditions.

  10. Risk factors for pancreatic cancer: underlying mechanisms and potential targets

    Science.gov (United States)

    Kolodecik, Thomas; Shugrue, Christine; Ashat, Munish; Thrower, Edwin C.

    2014-01-01

    Purpose of the review: Pancreatic cancer is extremely aggressive, forming highly chemo-resistant tumors, and has one of the worst prognoses. The evolution of this cancer is multi-factorial. Repeated acute pancreatic injury and inflammation are important contributing factors in the development of pancreatic cancer. This article attempts to understand the common pathways linking pancreatitis to pancreatic cancer. Recent findings: Intracellular activation of both pancreatic enzymes and the transcription factor NF-κB are important mechanisms that induce acute pancreatitis (AP). Recurrent pancreatic injury due to genetic susceptibility, environmental factors such as smoking, alcohol intake, and conditions such as obesity lead to increases in oxidative stress, impaired autophagy and constitutive activation of inflammatory pathways. These processes can stimulate pancreatic stellate cells, thereby increasing fibrosis and encouraging chronic disease development. Activation of oncogenic Kras mutations through inflammation, coupled with altered levels of tumor suppressor proteins (p53 and p16) can ultimately lead to development of pancreatic cancer. Summary: Although our understanding of pancreatitis and pancreatic cancer has tremendously increased over many years, much remains to be elucidated in terms of common pathways linking these conditions. PMID:24474939

  11. Raynaud's Phenomenon: A Brief Review of the Underlying Mechanisms.

    Science.gov (United States)

    Fardoun, Manal M; Nassif, Joseph; Issa, Khodr; Baydoun, Elias; Eid, Ali H

    2016-01-01

    Raynaud's phenomenon (RP) is characterized by exaggerated cold-induced vasoconstriction. This augmented vasoconstriction occurs by virtue of a reflex response to cooling via the sympathetic nervous system as well as by local activation of α2C adrenoceptors (α2C-AR). In a cold-initiated, mitochondrion-mediated mechanism involving reactive oxygen species and the Rho/ROCK pathway, cytoskeletal rearrangement in vascular smooth muscle cells orchestrates the translocation of α2C-AR to the cell membrane, where this receptor readily interacts with its ligand. Different parameters are involved in this spatial and functional rescue of α2C-AR. Of notable relevance is the female hormone, 17β-estradiol, or estrogen. This is consistent with the high prevalence of RP in premenopausal women compared to age-matched males. In addition to dissecting the role of these various players, the contribution of pollution as well as genetic background to the onset and prevalence of RP are also discussed. Different therapeutic approaches employed as treatment modalities for this disease are also highlighted and analyzed. The lack of an appropriate animal model for RP mandates that more efforts be undertaken in order to better understand and eventually treat this disease. Although several lines of treatment are utilized, it is important to note that precaution is often effective in reducing severity or frequency of RP attacks.

  12. Raynaud's Phenomenon: a Brief Review of the Underlying Mechanisms

    Directory of Open Access Journals (Sweden)

    Manal Fardoun

    2016-11-01

    Full Text Available Raynaud's phenomenon (RP is characterized by exaggerated cold-induced vasoconstriction. This augmented vasoconstriction occurs by virtue of a reflex response to cooling via the sympathetic nervous system as well as by local activation of α2C adrenoceptors (α2C-AR. In a cold-initiated, mitochondrion-mediated mechanism involving reactive oxygen species and the Rho/ROCK pathway, cytoskeletal rearrangement in vascular smooth muscle cells (VSMCs orchestrates the translocation of α2C-AR to the cell membrane, where this receptor readily interacts with its ligand. Different parameters are involved in this spatial and functional rescue of α2C-AR. Of notable relevance is the female hormone, 17β-estradiol, or estrogen. This is consistent with the high prevalence of RP in pre-menopausal women compared to age-matched males. In addition to dissecting the role of these various players, the contribution of pollution as well as genetic background to the onset and prevalence of RP are also discussed. Different therapeutic approaches employed as treatment modalities for this disease are also highlighted and analyzed. The lack of an appropriate animal model for RP mandates that more efforts be undertaken in order to better understand and eventually treat this disease. Although several lines of treatment are utilized, it is important to note that precaution is often effective in reducing severity or frequency of RP attacks.

  13. Psychophysiological mechanisms underlying spatial attention in children with primary headache.

    Science.gov (United States)

    Iacovelli, Elisa; Tarantino, Samuela; De Ranieri, Cristiana; Vollono, Catello; Galli, Federica; De Luca, Massimiliano; Capuano, Alessandro; Porro, Arianna; Balestri, Martina; Guidetti, Vincenzo; Vigevano, Federico; Biondi, Gianni; Drewes, Asbjoern M; Valeriani, Massimiliano

    2012-09-01

    Neurophysiological studies to evaluate spatial attention in children with primary headache are lacking. Tactile spatial attention modulates the N140 somatosensory evoked potential (SEP) amplitude. The aims of the study are: (1) to investigate the effect of spatial attention on the N140 amplitude in children with migraine and tension-type headache (TTH) and in healthy children, and (2) to correlate the neurophysiological results with a neuropsychological test for spatial attention. We studied 16 patients with migraine without aura (MoA), 12 TTH children and 10 healthy subjects. "Deux Barrage" test for spatial attention was administered. SEPs were recorded in a neutral condition (NC) and in a spatial attention condition (SAC). No significant differences in neuropsychological measures were found between MoA, TTH and healthy subjects. The N140 amplitude increase during SAC, as compared to NC, was significantly higher in patients than in healthy controls. Migraineurs showed a positive correlation between the N140 amplitude increase during SAC and their neuropsychological performance. Although spatial attention performances in children with headache are as good as in controls, the N140 amplitude increase during SAC in headache patients suggests that the psychophysiological mechanisms subtending spatial attention are different from those in healthy children. Copyright © 2011 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  14. Neural mechanisms underlying social conformity in an ultimatum game

    Directory of Open Access Journals (Sweden)

    Zhenyu eWei

    2013-12-01

    Full Text Available When individuals’ actions are incongruent with those of the group they belong to, they may change their initial behavior in order to conform to the group norm. This phenomenon is known as social conformity. In the present study, we used event-related functional magnetic resonance imaging (fMRI to investigate brain activity in response to group opinion during an ultimatum game. Results showed that participants changed their choices when these choices conflicted with the normative opinion of the group they were members of, especially in conditions of unfair treatment. The fMRI data revealed that a conflict with group norms activated the brain regions involved in norm violations and behavioral adjustment. Furthermore, in the reject-unfair condition, we observed that a conflict with group norms activated the medial frontal gyrus. These findings contribute to recent research examining neural mechanisms involved in detecting violations of social norms, and provide information regarding the neural representation of conformity behavior in an economic game.

  15. Fracture mechanisms of glass particles under dynamic compression

    Energy Technology Data Exchange (ETDEWEB)

    Parab, Niranjan D.; Guo, Zherui; Hudspeth, M.; Claus, Benjamin; Fezzaa, Kamel; Sun, Tao; Chen, Weinong W.

    2017-08-01

    In this study, dynamic fracture mechanisms of single and contacting spherical glass particles were observed using high speed synchrotron X-ray phase contrast imaging. A modified Kolsky bar setup was used to apply controlled dynamic compressive loading on the soda-lime glass particles. Four different configurations of particle arrangements with one, two, three, and five particles were studied. In single particle experiments, cracking initiated near the contact area between the particle and the platen, subsequently fragmenting the particle in many small sub-particles. In multi-particle experiments, a crack was observed to initiate from the point just outside the contact area between two particles. The initiated crack propagated at an angle to the horizontal loading direction, resulting in separation of a fragment. However, this fragment separation did not affect the ability of the particle to withstand further contact loading. On further compression, large number of cracks initiated in the particle with the highest number of particle-particle contacts near one of the particle-particle contacts. The initiated cracks roughly followed the lines joining the contact points. Subsequently, the initiated cracks along with the newly developed sub-cracks bifurcated rapidly as they propagated through the particle and fractured the particle explosively into many small fragments, leaving the other particles nearly intact.

  16. Mechanical Model for Dynamic Behavior of Concrete Under Impact Loading

    Science.gov (United States)

    Sun, Yuanxiang

    Concrete is a geo-material which is used substantively in the civil building and military safeguard. One coupled model of damage and plasticity to describe the complex behavior of concrete subjected to impact loading is proposed in this research work. The concrete is assumed as homogeneous continuum with pre-existing micro-cracks and micro-voids. Damage to concrete is caused due to micro-crack nucleation, growth and coalescence, and defined as the probability of fracture at a given crack density. It induces a decrease of strength and stiffness of concrete. Compaction of concrete is physically a collapse of the material voids. It produces the plastic strain in the concrete and, at the same time, an increase of the bulk modulus. In terms of crack growth model, micro-cracks are activated, and begin to propagate gradually. When crack density reaches a critical value, concrete takes place the smashing destroy. The model parameters for mortar are determined using plate impact experiment with uni-axial strain state. Comparison with the test results shows that the proposed model can give consistent prediction of the impact behavior of concrete. The proposed model may be used to design and analysis of concrete structures under impact and shock loading. This work is supported by State Key Laboratory of Explosion science and Technology, Beijing Institute of Technology (YBKT14-02).

  17. Neural mechanism underlying autobiographical memory modulated by remoteness and emotion

    Science.gov (United States)

    Ge, Ruiyang; Fu, Yan; Wang, DaHua; Yao, Li; Long, Zhiying

    2012-03-01

    Autobiographical memory is the ability to recollect past events from one's own life. Both emotional tone and memory remoteness can influence autobiographical memory retrieval along the time axis of one's life. Although numerous studies have been performed to investigate brain regions involved in retrieving processes of autobiographical memory, the effect of emotional tone and memory age on autobiographical memory retrieval remains to be clarified. Moreover, whether the involvement of hippocampus in consolidation of autobiographical events is time dependent or independent has been controversial. In this study, we investigated the effect of memory remoteness (factor1: recent and remote) and emotional valence (factor2: positive and negative) on neural correlates underlying autobiographical memory by using functional magnetic resonance imaging (fMRI) technique. Although all four conditions activated some common regions known as "core" regions in autobiographical memory retrieval, there are some other regions showing significantly different activation for recent versus remote and positive versus negative memories. In particular, we found that bilateral hippocampal regions were activated in the four conditions regardless of memory remoteness and emotional valence. Thus, our study confirmed some findings of previous studies and provided further evidence to support the multi-trace theory which believes that the role of hippocampus involved in autobiographical memory retrieval is time-independent and permanent in memory consolidation.

  18. Molecular mechanism underlying RAG1/RAG2 synaptic complex formation.

    Science.gov (United States)

    Shlyakhtenko, Luda S; Gilmore, Jamie; Kriatchko, Aleksei N; Kumar, Sushil; Swanson, Patrick C; Lyubchenko, Yuri L

    2009-07-31

    Two lymphoid cell-specific proteins, RAG1 and RAG2 (RAG), initiate V(D)J recombination by assembling a synaptic complex with recombination signal sequences (RSSs) abutting two different antigen receptor gene coding segments, and then introducing a DNA double strand break at the end of each RSS. Despite the biological importance of this system, the structure of the synaptic complex, and the RAG protein stoichiometry and arrangement of DNA within the synaptosome, remains poorly understood. Here we applied atomic force microscopy to directly visualize and characterize RAG synaptic complexes. We report that the pre-cleavage RAG synaptic complex contains about twice the protein content as a RAG complex bound to a single RSS, with a calculated mass consistent with a pair of RAG heterotetramers. In the synaptic complex, the RSSs are predominantly oriented in a side-by-side configuration with no DNA strand crossover. The mass of the synaptic complex, and the conditions under which it is formed in vitro, favors an association model of assembly in which isolated RAG-RSS complexes undergo synapsis mediated by RAG protein-protein interactions. The replacement of Mg2+ cations with Ca2+ leads to a dramatic change in protein stoichiometry for all RAG-RSS complexes, suggesting that the cation composition profoundly influences the type of complex assembled.

  19. Molecular Mechanism Underlying RAG1/RAG2 Synaptic Complex Formation*

    Science.gov (United States)

    Shlyakhtenko, Luda S.; Gilmore, Jamie; Kriatchko, Aleksei N.; Kumar, Sushil; Swanson, Patrick C.; Lyubchenko, Yuri L.

    2009-01-01

    Two lymphoid cell-specific proteins, RAG1 and RAG2 (RAG), initiate V(D)J recombination by assembling a synaptic complex with recombination signal sequences (RSSs) abutting two different antigen receptor gene coding segments, and then introducing a DNA double strand break at the end of each RSS. Despite the biological importance of this system, the structure of the synaptic complex, and the RAG protein stoichiometry and arrangement of DNA within the synaptosome, remains poorly understood. Here we applied atomic force microscopy to directly visualize and characterize RAG synaptic complexes. We report that the pre-cleavage RAG synaptic complex contains about twice the protein content as a RAG complex bound to a single RSS, with a calculated mass consistent with a pair of RAG heterotetramers. In the synaptic complex, the RSSs are predominantly oriented in a side-by-side configuration with no DNA strand crossover. The mass of the synaptic complex, and the conditions under which it is formed in vitro, favors an association model of assembly in which isolated RAG-RSS complexes undergo synapsis mediated by RAG protein-protein interactions. The replacement of Mg2+ cations with Ca2+ leads to a dramatic change in protein stoichiometry for all RAG-RSS complexes, suggesting that the cation composition profoundly influences the type of complex assembled. PMID:19502597

  20. Mechanism underlying prolongevity induced by bifidobacteria in Caenorhabditis elegans.

    Science.gov (United States)

    Komura, Tomomi; Ikeda, Takanori; Yasui, Chikako; Saeki, Shigeru; Nishikawa, Yoshikazu

    2013-02-01

    Lactobacilli and bifidobacteria are probiotic bacteria that modify host defense systems and have the ability to extend the lifespan of the nematode Caenorhabditis elegans. Here, we attempted to elucidate the mechanism by which bifidobacteria prolong the lifespan of C. elegans. When the nematode was fed Bifidobacterium infantis (BI) mixed at various ratios with the standard food bacterium Escherichia coli strain OP50 (OP), the mean lifespan of worms was extended in a dose-dependent manner. Worms fed BI displayed higher locomotion and produced more offspring than control worms. The growth curves of nematodes were similar regardless of the amount of BI mixed with OP, suggesting that BI did not induce prolongevity effects through caloric restriction. Notably, feeding worms the cell wall fraction of BI alone was sufficient to promote prolongevity. The accumulation of protein carbonyls and lipofuscin, a biochemical marker of aging, was also lower in worms fed BI; however, the worms displayed similar susceptibility to heat, hydrogen peroxide, and paraquat, an inducer of free radicals, as the control worms. As a result of BI feeding, loss-of-function mutants of daf-16, jnk-1, aak-2, tol-1, and tir-1 exhibited a longer lifespan than OP-fed control worms, but BI failed to extend the lifespan of pmk-1, skn-1, and vhp-1 mutants. As skn-1 induces phase 2 detoxification enzymes, our findings suggest that cell wall components of bifidobacteria increase the average lifespan of C. elegans via activation of skn-1, regulated by the p38 MAPK pathway, but not by general activation of the host defense system via DAF-16.

  1. Nanostructured interfaces for enhancing mechanical properties of composites: Computational micromechanical studies

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon

    2015-01-01

    Computational micromechanical studies of the effect of nanostructuring and nanoengineering of interfaces, phase and grain boundaries of materials on the mechanical properties and strength of materials and the potential of interface nanostructuring to enhance the materials properties are reviewed....

  2. Mechanisms controlling the spatial structure of midlatitude storm tracks and their variation under global warming

    Science.gov (United States)

    Kaspi, Y.; Tamarin, T.

    2016-12-01

    The Atlantic and Pacific storm tracks in the northern hemisphere are characterized by a downstream poleward deflection, which has important consequences for the distribution of heat, wind and precipitation in the midlatitudes. In this study, the spatial structure of the storm tracks is examined by tracking transient cyclonic eddies in an idealized GCM with a localized ocean heat flux. The localized atmospheric response is decomposed in terms of a time-zonal mean background flow, a stationary wave and a transient eddy field. The Lagrangian tracks are used to construct cyclone composites and perform a spatially varying PV budget. Three distinct mechanisms that contribute to the poleward tilt emerge: transient nonlinear advection, latent heat release and stationary advection. The downstream evolution of the PV composites shows the different role played by the stationary wave in each region. Our results imply that in the region where the tilt is maximized, all three mechanisms contribute to the poleward propagation of the low level PV anomaly associated with cyclones. Upstream of that region, the stationary wave is opposing the former two and the poleward tendency is therefore reduced. Through repeated experiments with enhanced strength of the heating source, it is shown that the poleward deflection of the storms enhances when the amplitude of the stationary wave increases. For a global warming scenario, we find that poleward deflection due to transient nonlinear advection and latent heating will strengthen, meaning that the poleward motion of individual cyclones increases with increasing global mean temperatures. Our results imply that for a 4 K rise in the global mean surface temperature, the averaged poleward drift of cyclones will increase by approximately 1 degree of latitude. This will have significant impact on midlatitude climate, and implies that localized storm tracks, such as the Atlantic and Pacific storm tracks, will exhibit a more poleward deflected shape

  3. Enhancement in thermal and mechanical properties of bricks

    Directory of Open Access Journals (Sweden)

    Shibib Khalid S.

    2013-01-01

    Full Text Available A new type of porous brick is proposed. Sawdust is initially well mixed with wet clay in order to create voids inside the brick during the firing process. The voids will enhance the total performance of the brick due to the reduction of its density and thermal conductivity and a minor reduction of its compressive stress. All these properties have been measured experimentally and good performance has been obtained. Although a minor reduction in compressive stress has been observed with increased porosity, this property has still been larger than that of the common used hollow brick. Data obtained by this work lead to a new type of effective brick having a good performance with no possibility that mortar enters inside the holes which is the case with the common used hollow bricks. The mortar has a determent effect on thermal properties of the wall since it has some higher thermal conductivity and density than that of brick which increases the wall overall density and thermal conductivity of the wall.

  4. Mechanical properties of double-stranded DNA biolayers immobilized on microcantilever under axial compression.

    Science.gov (United States)

    Zhang, Neng-Hui; Chen, Jian-Zhong

    2009-07-22

    In label-free biodetections based on microcantilever technology, double-stranded DNA (dsDNA) structures form through the linkage between probe single-stranded DNA (ssDNA) molecules immobilized on solid substrates and target ssDNA molecules in solutions. Mechanical/electrical properties of these biolayers are important factors for nanomechanical deflections of microcantilevers. In this paper, the biolayer immobilized on microcantilever is treated as a bar with a macroscopic elastic modulus on the basis of continuum mechanics viewpoints. In consideration of hydration force, screened electrostatic repulsion and conformational fluctuation in biolayers, load-deformation curves of dsDNA biolayers under axial compression are depicted with the help of the energy conservation law and a mesoscopic free energy presented by Strey et al. (1997, 1999) [Strey, H.H., Parsegian, V.A., Podgornik, R., 1997. Equation of state for DNA liquid crystals: fluctuation enhanced electrostatic double layer repulsion. Physical Review Letters 78, 895-898; Strey, H.H., Parsegian, V.A., Podgornik, R., 1999. Equation of state for polymer liquid crystals: theory and experiment. Physical Review E 59, 999-1008] from a liquid crystal theory. And the analytical relation between macroscopic Young's modulus of biolayers and nanoscopic geometrical properties of dsDNA, packing density, buffer salt solution concentration, etc. is also formulated.

  5. Corticonic models of brain mechanisms underlying cognition and intelligence

    Science.gov (United States)

    Farhat, Nabil H.

    underlying intelligence and other higher level brain functions.

  6. Global mechanisms for sustaining and enhancing PES schemes

    Energy Technology Data Exchange (ETDEWEB)

    Farley, Josh; Moulaert, Azur; Lee, Dan; Krause, Abby [Department of Community Development and Applied Economics, University of Vermont, Burlington, VT 05405 (United States); Aquino, Andre [World Bank Carbon Finance Unit (United States); Daniels, Amy [US Forest Service, WO Research and Development (United States)

    2010-09-15

    An international payment for ecosystem service (IPES) schemes may be one of the only mechanisms available to stimulate the provision of vital non-marketed ecosystem services at the global level, as those nations that benefit from global ecosystem services (GES) cannot readily force other sovereign nations to provide them. Currently, international trade offers trillions of dollars in incentives for countries to convert natural capital into marketable goods and services, and few payments to entice countries to conserve natural capital in order to sustain critical non-marketed ecosystem services. We examine the biophysical characteristics of climate change and biodiversity to understand the obstacles to developing effective IPES schemes. We find that none of the existing schemes for providing GES are adequate, given the scale of the problem. A cap and auction scheme for CO{sub 2} emissions among wealthy nations could fund IPES and simultaneously deter carbon emissions. To disburse funds, we should adapt Brazil's ICMS ecologico, and apportion available funds to targeted countries in proportion to how well they meet specific criteria designed to measure the provision of GES. Individual countries can then develop their own policies for increasing provision of these services, ensured of compensation if they do so. Indirect IPES should include funding for freely available technologies that protect or provide GES, such as the low carbon energy alternatives that will be essential for curbing climate change. Markets rely on the price mechanism to generate profits, which rations technology to those who can afford it, reducing adoption rates, innovation and total value. (author)

  7. Mechanisms of Enhanced Cell Killing at Low Doses: Implications for Radiation Risk

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Peter J. Johnston; Dr. George D. Wilson

    2003-10-15

    We have shown that cell lethality actually measured after exposure to low-doses of low-LET radiation, is markedly enhanced relative to the cell lethality previously expected by extrapolation of the high-dose cell-killing response. Net cancer risk is a balance between cell transformation and cell kill and such enhanced lethality may more than compensate for transformation at low radiation doses over a least the first 10 cGy of low-LET exposure. This would lead to a non-linear, threshold, dose-risk relationship. Therefore our data imply the possibility that the adverse effects of small radiation doses (<10 cGy) could be overestimated in specific cases. It is now important to research the mechanisms underlying the phenomenon of low-dose hypersensitivity to cell killing, in order to determine whether this can be generalized to safely allow an increase in radiation exposure limits. This would have major cost-reduction implications for the whole EM program.

  8. Dunaliella spp. Under Environmental Stress: Enhancing Lipid Production and Optimizing Harvest

    Science.gov (United States)

    Mixson, Stephanie Marie

    environmental stressor. Glycerol production, a known mechanism of osmoregulation in Dunaliella, was measured in a short-term salinity stress experiment and found to significantly increase 30 min to 24 hr after exposure. In addition, the glycerol biosynthesis gene, glycerol-3-phosphate dehydrogenase or GPDH, was significantly expressed 30 min to 2 hr in response to hyperosmotic stress. The data suggest that Dunaliella strains may incorporate a proportion of glycerol as triacylglycerol (TAG) under short-term, high-salinity stress. High lipid-producing strains were grown in mass culture, but at this time the commercialization of harvesting has not been proven economically feasible. Autoflocculation, electro-flocculation, and hollow-fiber filtration were compared as potential harvesting mechanisms for the mass culture of Dunaliella spp. Hollow-fiber filtration (>99% biomass recovery) as harvesting mechanism offers many attractive advantages (i.e. reuse of filtrate as culture medium) when compared to auto-flocculation and indirect electroflocculation (>95% biomass recovery). This research provides evidence that Dunaliella can be used as a source of biofuel because these strains can be mass-cultured; their lipids enhanced through a simple high-salinity adjustment; and commercially harvested.

  9. A multi-scale continuum model of skeletal muscle mechanics predicting force enhancement based on actin-titin interaction.

    Science.gov (United States)

    Heidlauf, Thomas; Klotz, Thomas; Rode, Christian; Altan, Ekin; Bleiler, Christian; Siebert, Tobias; Röhrle, Oliver

    2016-12-01

    Although recent research emphasises the possible role of titin in skeletal muscle force enhancement, this property is commonly ignored in current computational models. This work presents the first biophysically based continuum-mechanical model of skeletal muscle that considers, in addition to actin-myosin interactions, force enhancement based on actin-titin interactions. During activation, titin attaches to actin filaments, which results in a significant reduction in titin's free molecular spring length and therefore results in increased titin forces during a subsequent stretch. The mechanical behaviour of titin is included on the microscopic half-sarcomere level of a multi-scale chemo-electro-mechanical muscle model, which is based on the classic sliding-filament and cross-bridge theories. In addition to titin stress contributions in the muscle fibre direction, the continuum-mechanical constitutive relation accounts for geometrically motivated, titin-induced stresses acting in the muscle's cross-fibre directions. Representative simulations of active stretches under maximal and submaximal activation levels predict realistic magnitudes of force enhancement in fibre direction. For example, stretching the model by 20 % from optimal length increased the isometric force at the target length by about 30 %. Predicted titin-induced stresses in the muscle's cross-fibre directions are rather insignificant. Including the presented development in future continuum-mechanical models of muscle function in dynamic situations will lead to more accurate model predictions during and after lengthening contractions.

  10. NanoClusters Enhance Drug Delivery in Mechanical Ventilation

    Science.gov (United States)

    Pornputtapitak, Warangkana

    The overall goal of this thesis was to develop a dry powder delivery system for patients on mechanical ventilation. The studies were divided into two parts: the formulation development and the device design. The pulmonary system is an attractive route for drug delivery since the lungs have a large accessible surface area for treatment or drug absorption. For ventilated patients, inhaled drugs have to successfully navigate ventilator tubing and an endotracheal tube. Agglomerates of drug nanoparticles (also known as 'NanoClusters') are fine dry powder aerosols that were hypothesized to enable drug delivery through ventilator circuits. This Thesis systematically investigated formulations of NanoClusters and their aerosol performance in a conventional inhaler and a device designed for use during mechanical ventilation. These engineered powders of budesonide (NC-Bud) were delivered via a MonodoseRTM inhaler or a novel device through commercial endotracheal tubes, and analyzed by cascade impaction. NC-Bud had a higher efficiency of aerosol delivery compared to micronized stock budesonide. The delivery efficiency was independent of ventilator parameters such as inspiration patterns, inspiration volumes, and inspiration flow rates. A novel device designed to fit directly to the ventilator and endotracheal tubing connections and the MonodoseRTM inhaler showed the same efficiency of drug delivery. The new device combined with NanoCluster formulation technology, therefore, allowed convenient and efficient drug delivery through endotracheal tubes. Furthermore, itraconazole (ITZ), a triazole antifungal agent, was formulated as a NanoCluster powder via milling (top-down process) or precipitation (bottom-up process) without using any excipients. ITZ NanoClusters prepared by wet milling showed better aerosol performance compared to micronized stock ITZ and ITZ NanoClusters prepared by precipitation. ITZ NanoClusters prepared by precipitation methods also showed an amorphous state

  11. Enhanced photosensitized degradation of rhodamine B on CdS/TiO{sub 2} nanocomposites under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wenjuan [Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Sciences and Engineering, Nanjing University of Information Sciences and Engineering, Nanjing 210044 (China); Research Institute of Photocatalysis, State Key Laboratory Breeding Base of Photocatalysis, Fuzhou University, Fuzhou 350002 (China); Shandong Province Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu 273165 (China); Cui, Xiaoli [Shandong Province Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu 273165 (China); Wang, Peixian; Shao, Yu [Research Institute of Photocatalysis, State Key Laboratory Breeding Base of Photocatalysis, Fuzhou University, Fuzhou 350002 (China); Li, Danzhen, E-mail: dzli@fzu.edu.cn [Research Institute of Photocatalysis, State Key Laboratory Breeding Base of Photocatalysis, Fuzhou University, Fuzhou 350002 (China); Teng, Fei [Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Sciences and Engineering, Nanjing University of Information Sciences and Engineering, Nanjing 210044 (China)

    2013-09-01

    Graphical abstract: The photosensitized degradation of RhB was largely enhanced by the synergistic effect of the RhB and CdS/TiO{sub 2} nanocomposite. The composite of the two inorganic semiconductors with appropriate oxidation reduction energy levels enhanced the charge separation and extended the absorption response to visible region. - Highlights: • CdS/TiO{sub 2} nanocomposites were synthesized by a simple hydrothermal method. • Samples prepared at 200 °C, 12 h, CdS/TiO{sub 2} = 12% possessed the best activity. • The photosensitized degradation of RhB was largely enhanced by the composite. • The better activity was due to the synergistic effect of the RhB and CdS/TiO{sub 2}. - Abstract: Visible-light-driven photocatalysts, CdS/TiO{sub 2} nanocomposites were synthesized by a simple hydrothermal method. Their formation and structures were characterized by X-ray diffractometer, transmission electron microscopy, diffuse reflectance spectroscopy, and X-ray photoelectron spectroscopy. Taking rhodamine B (RhB) as a model, their photocatalytic activities in aqueous phase under visible light irradiation (420 < λ < 800 nm) were tested. The results showed that the composite of CdS and TiO{sub 2} with appropriate oxidation reduction energy levels enhanced the charge separation and extended the absorption response into visible light region. Thus, the photosensitized degradation of RhB was largely enhanced. The degradation mechanism was explored concretely.

  12. Project on Transfer Mechanism of Radioactive Source Term Under Severe Accident

    Institute of Scientific and Technical Information of China (English)

    SUN; Xue-ting; JI; Song-tao; CHEN; Lin-lin

    2012-01-01

    <正>The "Transfer mechanism of radioactive source term under severe accident" is a sub-project of the research program of "Mechanism and phenomenology of severe accident". An aerosol transfer mechanism experimental facility is built to simulate the passive containment cooling system (PCCS) of advanced pressurizer reactors to research effects to the transfer process of fission products under severe accident. An advanced CFD method is also utilized to research the effects. The objective of this project is to understand

  13. Microstructure engineering from metallic powder blends for enhanced mechanical properties

    Science.gov (United States)

    Langlois, P.; Fagnon, N.; Dirras, G.

    2010-07-01

    The present work focuses on the transformation of high-purity Ni powder blends of controlled volume fractions (40 and 60 %) of nanometre-sized (100 nm) and micrometre-sized (544 nm) particles into bulk samples as part of a strategy for producing ultrafine-grained materials usefully exhibiting both strength and ductility. The process involved cold isostatic pressing at 1.5 GPa and sintering. The resulting bulk samples had relative densities near 95 %, were texture-free, and exhibited two different grain size distributions with an average value of 600 ± 30 nm. The mechanical properties were investigated by compression and microhardness tests, both at room temperature, and compared to the behaviour of a sample processed from micrometre-sized powder only. Samples prepared from the blends exhibited high yield stresses of 440 and 550 MPa after compression, and they did sustain work hardening. Tests conducted before and after compression up to 50 % deformation showed the same relative amount of hardness increase around 20 %, which was three times lower than that of the monolithic sample for which a decrease of the average grain size close to 26 % was measured.

  14. Spherical agglomerates of lactose with enhanced mechanical properties.

    Science.gov (United States)

    Lamešić, Dejan; Planinšek, Odon; Lavrič, Zoran; Ilić, Ilija

    2017-01-10

    The aim of this study was to prepare spherical agglomerates of lactose and to evaluate their physicochemical properties, flow properties, particle friability and compaction properties, and to compare them to commercially available types of lactose for direct compression (spray-dried, granulated and anhydrous β-lactose). Porous spherical agglomerates of α-lactose monohydrate with radially arranged prism-like primary particles were prepared exhibiting a high specific surface area. All types of lactose analysed had passable or better flow properties, except for anhydrous β-lactose, which had poor flowability. Particle friability was more pronounced in larger granulated lactose particles; however, particle structure was retained in all samples analysed. The mechanical properties of spherical agglomerates of lactose, in terms of compressibility, established with Walker analysis, and compactibility, established with a compactibility profile, were found to be superior to any commercially available types of lactose. Higher compactibility of spherical agglomerates of lactose is ascribed to significantly higher particle surface area due to a unique internal structure with higher susceptibility to fragmentation. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Microstructure engineering from metallic powder blends for enhanced mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Langlois, P; Fagnon, N [LIMHP, Universite Paris 13, CNRS, Institut Galilee, 99 av. J.-B. Clement, 93430 Villetaneuse (France); Dirras, G, E-mail: dirras@univ-paris13.f [LPMTM, Universite Paris 13, CNRS, Institut Galilee, 99 av. J.-B. Clement, 93430 Villetaneuse (France)

    2010-07-01

    The present work focuses on the transformation of high-purity Ni powder blends of controlled volume fractions (40 and 60 %) of nanometre-sized (100 nm) and micrometre-sized (544 nm) particles into bulk samples as part of a strategy for producing ultrafine-grained materials usefully exhibiting both strength and ductility. The process involved cold isostatic pressing at 1.5 GPa and sintering. The resulting bulk samples had relative densities near 95 %, were texture-free, and exhibited two different grain size distributions with an average value of 600 {+-} 30 nm. The mechanical properties were investigated by compression and microhardness tests, both at room temperature, and compared to the behaviour of a sample processed from micrometre-sized powder only. Samples prepared from the blends exhibited high yield stresses of 440 and 550 MPa after compression, and they did sustain work hardening. Tests conducted before and after compression up to 50 % deformation showed the same relative amount of hardness increase around 20 %, which was three times lower than that of the monolithic sample for which a decrease of the average grain size close to 26 % was measured.

  16. Experimental study of critical heat flux enhancement with hypervapotron structure under natural circulation conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Fangxin [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing (China); Chang, Huajian [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing (China); State Nuclear Power Technology R& D Center (Beijing), Beijing (China); Zhao, Yufeng, E-mail: zhaoyufeng@snptc.com.cn [State Nuclear Power Technology R& D Center (Beijing), Beijing (China); Zhang, Ming; Gao, Tianfang [State Nuclear Power Technology R& D Center (Beijing), Beijing (China); Chen, Peipei [State Power Investment Corporation, Beijing (China)

    2017-05-15

    Highlights: • Natural circulation tests are performed to study the effect of hypervapotron on CHF. • Hypervapotron structure improves CHF under natural circulation conditions. • Visualization data illustrate vapor blanket behavior under subcooled flow conditions. - Abstract: The enhancement of critical heat flux with a hypervapotron structure under natural circulation conditions is investigated in this study. Subcooled flow boiling CHF experiments are performed using smooth and hypervapotron surfaces at different inclination angles under natural circulation conditions. The experimental facility, TESEC (Test of External Vessel Surface with Enhanced Cooling), is designed to conduct CHF experiments in a 30 mm by 61 mm rectangular flow channel with a 200 mm long heated surface along the flow direction. The two-phase flow of subcooled flow boiling on both smooth and hypervapotron heating plates is observed and analyzed by the high-speed visualization technology. The results show that both smooth surface and hypervapotron surface CHF data exhibit a similar trend against inclination angles compared with the CHF results under forced flow condition on the same facility in earlier studies. However, the CHF enhancement of the hypervapotron structure is evidently more significant than the one under forced flow conditions. The experiments also indicate that the natural flow rates are higher with hypervapotron structure. The initiation of CHF is analyzed under transient subcooling and flow rate conditions for both smooth and hypervapotron heating surfaces. An explanation is given for the significant enhancement effect caused by the hypervapotron surface under natural circulation conditions. The visualization data are exhibited to demonstrate the behavior of the vapor blanket at various inclination angles and on different surfaces. The geometric data of the vapor blanket are quantified by an image post-processing method. It is found that the thickness of the vapor blanket

  17. Evidence for particle mobilization as a mechanism for permeability enhancement via dynamic stressing

    Science.gov (United States)

    Candela, T.; Brodsky, E. E.; Marone, C.; Elsworth, D.

    2013-12-01

    Dynamic permeability change by seismic waves is a well-established natural phenomenon yet the mechanism remains poorly understood. We investigate the mechanism by generating well-controlled repeatable permeability enhancement in a laboratory experiment. Each experiment proceeded as: (1) pore pressure oscillations, simulating dynamic stresses, were applied at one end of intact Berea sandstone samples under triaxial stresses of tens of megapascals, (2) samples were fractured within the apparatus, and (3) pore pressure oscillations resumed post-fracturing. In this way, both the fracture and porous media response to the dynamic stresses were investigated. In addition, we controled the mobility of fine particles by adjusting the pore fluid chemistry (deionized water, and brines of: NaCl 5%, NaCl 35%, CaCl2 5%). Our results are consistent with natural observations. Dynamic stressing produces an immediate permeability enhancement ranging from 1-60%, which scales with the amplitude of the dynamic strain, 7*10^-7 to 7*10^-6, followed by a progressive permeability recovery. In our experiments a flow-dependent mechanism associated with mobilization of fines appears to control both the magnitude of the permeability enhancement and the recovery rate. Both processes operate at two time scales, i.e., fast flushing/unclogging of the fines during the pore pressure oscillations and progressive clogging of the pore throats by particle migration, and were influenced by the fluid chemistry. The dynamic permeability changes were not associated with permanent deformation. We show that: 1) injection of unequilibrated fluids favors particle mobilization, and 2) transient permeability change results from the migration of fines which in turn results from dynamic stressing. Our results suggest that areas where pore fluids are in disequilibrium should be more sensitive to dynamic stressing. Interestingly, early observations of dynamic earthquake-triggering revealed preferential triggering in

  18. Coupled mechanical-electrical-thermal modeling for short-circuit prediction in a lithium-ion cell under mechanical abuse

    Science.gov (United States)

    Zhang, Chao; Santhanagopalan, Shriram; Sprague, Michael A.; Pesaran, Ahmad A.

    2015-09-01

    In order to better understand the behavior of lithium-ion batteries under mechanical abuse, a coupled modeling methodology encompassing the mechanical, electrical and thermal response is presented for predicting short-circuit under external crush. The combined mechanical-electrical-thermal response is simulated in a commercial finite element software LS-DYNA® using a representative-sandwich finite-element model, where electrical-thermal modeling is conducted after an instantaneous mechanical crush. The model includes an explicit representation of each individual component such as the active material, current collector, separator, etc., and predicts their mechanical deformation under quasi-static indentation. Model predictions show good agreement with experiments: the fracture of the battery structure under an indentation test is accurately predicted. The electrical-thermal simulation predicts the current density and temperature distribution in a reasonable manner. Whereas previously reported models consider the mechanical response exclusively, we use the electrical contact between active materials following the failure of the separator as a criterion for short-circuit. These results are used to build a lumped representative sandwich model that is computationally efficient and captures behavior at the cell level without resolving the individual layers.

  19. Enhanced ozonation degradation of di-n-butyl phthalate by zero-valent zinc in aqueous solution: performance and mechanism.

    Science.gov (United States)

    Wen, Gang; Wang, Sheng-Jun; Ma, Jun; Huang, Ting-Lin; Liu, Zheng-Qian; Zhao, Lei; Su, Jun-Feng

    2014-01-30

    Enhanced ozonation degradation of di-n-butyl phthalate (DBP) by zero-valent zinc (ZVZ) has been investigated using a semi-continuous reactor in aqueous solution. The results indicated that the combination of ozone (O3) and ZVZ showed an obvious synergetic effect, i.e. an improvement of 54.8% on DBP degradation was obtained by the O3/ZVZ process after 10min reaction compared to the cumulative effect of O3 alone and O2/ZVZ. The degradation efficiency of DBP increased gradually with the increase of ZVZ dosage, enhanced as solution pH increasing from 2.0 to 10.0, and more amount of DBP was degraded with the initial concentration of DBP arising from 0.5 to 2.0mgL(-1). Recycling use of ZVZ resulted in the enhancement of DBP degradation, because the newly formed zinc oxide took part in the reaction. The mechanism investigation demonstrated that the enhancement effect was attributed to the introduction of ZVZ, which could promote the utilization of O3, enhance the formation of superoxide radical by reducing O2 via one-electron transfer, accelerate the production of hydrogen peroxide and the generation of hydroxyl radical. Additionally, the newly formed zinc oxide on ZVZ surface also contributed to the enhancement of DBP degradation in the recycling use of ZVZ. Most importantly, the O3/ZVZ process was also effective in enhanced ozonation degradation of DBP under the background of actual waters.

  20. Mechanical behaviors and failure processes of precracked specimens under uniaxial compression: A perspective from microscopic displacement patterns

    Science.gov (United States)

    Liu, Ting; Lin, Baiquan; Zou, Quanle; Zhu, Chuanjie; Yan, Fazhi

    2016-03-01

    Hydraulic slotting is an efficient permeability enhancement method that has been widely used in China for enhanced coalbed methane (ECBM) recovery. Although some research has been conducted on hydraulic slotting, the mechanical behaviors such as strength, deformation, and cracking processes of coal treated by this technique are still unclear. This paper numerically investigates the mechanical behaviors of specimens containing combined flaws with various inclination angles. Research results show that different flaw inclination angles result in variations in strength and deformation of precracked specimens. We also analyzed the crack initiation, propagation, and coalescence processes to understand the underlying mechanisms for the aforementioned variations. To evaluate the crack initiation and propagation process and its corresponding mechanisms, we proposed 12 types of displacement field modes from the perspective of particles relative motion. Based on this, evolution of the displacement field during loading process is analyzed and 11 types of crack and three types of crack initiation modes are extracted from the cracking processes of specimens with different inclination angles. Analysis of the displacement field not only indicates the type of each crack, but also reveals the formation mechanism of the three crack initiation modes. A comparison between the numerical results and the previous laboratory test results shows that numerical simulation can reproduce most of the phenomenon observed in the laboratory test. The research result is expected to contribute to the further understanding of the mechanical behavior of coal subjected to hydraulic slotting or the stability of rock structures.

  1. Mechanical design of mussel byssus: material yield enhances attachment strength

    Science.gov (United States)

    Bell; Gosline

    1996-01-01

    The competitive dominance of mussels in the wave-swept rocky intertidal zone is in part due to their ability to maintain a secure attachment. Mussels are tethered to the substratum by a byssus composed of numerous extracellular, collagenous threads secreted by the foot. Each byssal thread has three serially arranged parts: a corrugated proximal region, a smooth distal region and an adhesive plaque. This study examines the material and structural properties of the byssal threads of three mussel species: Mytilus californianus, M. trossulus, and M. galloprovincialis. Tensile tests in general reveal similar material properties among species: the proximal region has a lower initial modulus, a lower ultimate stress and a higher ultimate strain than the distal region. The distal region also yields at a stress well below its ultimate value. In whole thread tests, the proximal region and adhesive plaque are common sites of structural failure and are closely matched in strength, while the distal region appears to be excessively strong. We propose that the high strength of the distal region is the byproduct of a material designed to yield and extend before structural failure occurs. Experimental and theoretical evidence is presented suggesting that thread yield and extensibility provide two important mechanisms for increasing the overall attachment strength of the mussel: (1) the reorientation of threads towards the direction of applied load, and (2) the 'recruitment' of more threads into tension and the consequent distribution of applied load over a larger cross-sectional area, thereby reducing the stress on each thread. This distal region yield behavior is most striking for M. californianus and may be a key to its success in extreme wave-swept environments.

  2. Stretch-induced enhancement of mechanical power output in human multijoint exercise with countermovement.

    Science.gov (United States)

    Takarada, Y; Hirano, Y; Ishige, Y; Ishii, N

    1997-11-01

    The relation between the eccentric force developed during a countermovement and the mechanical power output was studied in squatting exercises under nominally isotonic load (50% of 1-repetition maximum). The subjects (n = 5) performed squatting exercises with a countermovement at varied deceleration rates before lifting the load. The ground reaction force and video images were recorded to obtain the power output of the body. Net muscle moments acting at hip, knee, and ankle joints were calculated from video recordings by using inverse dynamics. When an intense deceleration was taken at the end of downward movement, large eccentric force was developed, and the mechanical power subsequently produced during the lifting movement was consistently larger than that produced without the countermovement. Both maximal and mean power outputs during concentric actions increased initially with the eccentric force, whereas they began to decline when the eccentric force exceeded approximately 1.4 times the sum of load and body weight. Video-image analysis showed that this characteristic relation was predominantly determined by the torque around the knee joint. Electromyographic analyses showed no consistent increase in time-averaged integrated electromyograph from vastus lateralis with the power output, suggesting that the enhancement of power output is primarily caused by the prestretch-induced improvement of an intrinsic force-generating capability of the agonist muscle.

  3. Loss mechanisms and back surface field effect in photon enhanced thermionic emission converters

    Science.gov (United States)

    Segev, Gideon; Rosenwaks, Yossi; Kribus, Abraham

    2013-07-01

    Photon Enhanced Thermionic Emission (PETE) solar converters are based on emission of energetic electrons from a semiconductor cathode that is illuminated and heated with solar radiation. By using a semiconductor cathode, photo generated electrons enable high electron emission at temperatures much lower than the common range for thermionic emitters. Simple models show that PETE conversion can theoretically reach high efficiency, for example, above 40% at concentration of 1000 suns. In this work, we present a detailed one-dimensional model of PETE conversion, accounting for recombination mechanisms, surface effects, and spatial distribution of potential and carrier concentration. As in the previous PETE models, negative space charge effects, photon recycling, and temperature gradients are not considered. The conversion efficiency was calculated for Si and GaAs based cathodes under a wide range of operating conditions. The calculated efficiencies are lower than predictions of previous zero-dimensional models. We analyze the loss mechanisms and show that electron recombination at the cathode contact is a significant loss. An electron-blocking junction at the cathode back contact is therefore essential for achieving high efficiency. The predicted efficiencies for Si and GaAs cathodes with homo-junction back surface field layers are both around 31%, but with more favorable assumptions on the contact structure, it may be near 40%. The analysis leads to important conclusions regarding the selection of cathode material and back surface junction configuration.

  4. Oxidative stress enhances Axl-mediated cell migration through an Akt1/Rac1-dependent mechanism.

    Science.gov (United States)

    Huang, Jhy-Shrian; Cho, Chun-Yu; Hong, Chih-Chen; Yan, Ming-De; Hsieh, Mao-Chih; Lay, Jong-Ding; Lai, Gi-Ming; Cheng, Ann-Lii; Chuang, Shuang-En

    2013-12-01

    Persistent oxidative stress is common in cancer cells because of abnormal generation of reactive oxygen species (ROS) and has been associated with malignant phenotypes, such as chemotherapy resistance and metastasis. Both overexpression of Axl and abnormal ROS elevation have been linked to cell transformation and increased cell migration. However, the relationship between Axl and ROS in malignant cell migration has not been previously evaluated. Using an in vitro human lung cancer model, we examined the redox state of lung adenocarcinoma cell lines of low metastatic (CL1-0) and high metastatic (CL1-5) potentials. Here we report that Axl activation elicits ROS accumulation through the oxidase-coupled small GTPase Rac1. We also observed that oxidative stress could activate Axl phosphorylation to synergistically enhance cell migration. Further, Axl signaling activated by H2O2 treatment results in enhancement of cell migration via a PI3K/Akt-dependent pathway. The kinase activity of Axl is required for the Axl-mediated cell migration and prolongs the half-life of phospho-Akt under oxidative stress. Finally, downregulation of Akt1, but not Akt2, by RNAi in Axl-overexpressing cells inhibits the amount of activated Rac1 and the ability to migrate induced by H2O2 treatment. Together, these results show that a novel Axl-signaling cascade induced by H2O2 treatment triggers cell migration through the PI3K/Akt1/Rac1 pathway. Elucidation of redox regulation in Axl-related malignant migration may provide new molecular insights into the mechanisms underlying tumor progression.

  5. Enhancing network performance under single link failure with AS-disjoint BGP extension

    DEFF Research Database (Denmark)

    Manolova, Anna Vasileva; Romeral, S.; Ruepp, Sarah Renée

    2009-01-01

    In this paper we propose an enhancement of the BGP protocol for obtaining AS-disjoint paths in GMPLS multi-domain networks. We evaluate the benefits of having AS-disjoint paths under single inter-domain link failure for two main applications: routing of future connection requests during routing...

  6. Revisiting Taylor Dispersion: Differential enhancement of rotational and translational diffusion under oscillatory shear

    Science.gov (United States)

    Leahy, Brian; Ong, Desmond; Cheng, Xiang; Cohen, Itai

    2013-03-01

    The idea of Taylor dispersion - enhancement of translational diffusion under shear - has found applications in fields from pharmacology to chemical engineering. Here, in a combination of experiment and simulations, we study the translational and rotational diffusion of colloidal dimers under triangle-wave oscillatory shear. We find that the rotational diffusion is enhanced, in addition to the enhanced translational diffusion. This ``rotational Taylor dispersion'' depends strongly on the strain rate (Peclet number), aspect ratio, and the shear strain, in contradistinction to translational Taylor dispersion in a shear flow, which depends only weakly on strain rate and aspect ratio. This separate tunability of translations and orientations promises important applications in mixing and self-assembly of solutions of anisometric colloids. We discuss the corresponding effect on the structure and rheology of denser suspensions of rod-like particles. B. L. acknowledges supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.

  7. Functional significance of the Frank-Starling mechanism under physiological and pathophysiological conditions.

    Science.gov (United States)

    Jacob, R; Dierberger, B; Kissling, G

    1992-11-01

    The functional significance of the Frank-Starling mechanism under physiological and pathophysiological conditions is discussed, based mainly on animal experiment results (in the dog, pig and rat). The dependence of individual stroke volume on end-diastolic volume can be described adequately using Frank's diagram. This can be illustrated by varying filling pressure (respiratory cycle, vascular tone in the capacitance system, body position, circulating blood volume) and by alterations in the duration of the filling period (heart rate and rhythm, rate of relaxation) and in ventricular compliance (wall thickness, fibrosis; contracture, rigor). The functional importance of the Frank-Starling mechanism lies mainly in adapting left to right ventricular output. During upright physical exercise an increase in end-diastolic volume due to the action of the peripheral muscle pump and increased venous tone can assist in enhancing stroke volume. Reduced contractility leads to a shift of the operating point to the right in the pressure-volume diagram, thus tending to prevent a decrease in stroke volume. However, the consequences of increased circulating blood volume in chronic heart failure are, as a rule, mainly detrimental (congestive symptoms; myocardial component of coronary resistance; cardiac energetics). Reduced contractility results in a flattening of the relation between stroke volume (or stroke work) and end-diastolic volume. Furthermore, the Starling mechanism is prevented from becoming effective if the sarcomere-length reserve is exhausted, or in the presence of inadequate sarcomere extension due to impaired relaxation or reduced distensibility of the ventricular wall. The latter is illustrated using the example of a dilated fibrotic left ventricle from a rat with experimental supravalvular aortic stenosis.

  8. Enhancement of second-harmonic generation from silicon stripes under external cylindrical strain.

    Science.gov (United States)

    Zhao, Ji-Hong; Chen, Qi-Dai; Chen, Zhan-Guo; Jia, Gang; Su, Wen; Jiang, Ying; Yan, Zhao-Xu; Dolgova, T V; Aktsipetrov, O A; Sun, Hong-Bo

    2009-11-01

    The enhanced second-harmonic (SH) generation from Si (111) stripes induced by external cylindrical strain is investigated. The dependence of the intensity of the strain-induced SH on the sample azimuth shows that the Si under cylindrical strain has 3m symmetry, which is similar to that of the Si (111) surface. Further studies indicate that the intensity of the enhanced SH is a quadratic function of the cylindrical strain within the magnitude that the Si stripe can bear. For the p-polarized and s-polarized SH, the intensities are, respectively, enhanced by 47.9% and 13% at epsilon(0)=2.93x10(-4). The enhancement of SH is due to the contributions from the strain-induced second-order nonlinear susceptibility chi(strain)(2) to the bulk dipole.

  9. Failure mechanism of coated biomaterials under high impact-sliding contact stresses

    Science.gov (United States)

    Chen, Ying

    This study uses a newly developed testing method--- inclined cyclic impact-sliding test to investigate the failure behaviors of different types of biomaterials, (SS316L, Ti6Al4V and CoCr) coated by different coatings (TiN, DLC and PEO), under extremely high dynamic contact stress conditions. This test method can simulate the combined impact and sliding/rolling loading conditions, which is very practical in many aspects of commercial usages. During the tests, fatigue cracking, chipping, peeling and material transferring were observed in damaged area. This research is mainly focused on the failure behaviors of load-bearing materials which cyclic impacting and sliding are always involved. This purpose was accomplished in the three stages: First, impact-sliding test was carried out on TiN coated unhardened M2. It was found that soft substrate can cause early failure of coating due to the considerable plastic deformation in the substrate. In this case, stronger substrate is required to support coating better when tested under high contact stresses. Second, PEO coated Ti-6Al-4V was tested under pure sliding and impact-sliding wear conditions. PEO coating was found not strong enough to afford the high contact pressure under cyclic impact-sliding wear test due to its porous surface structure. However, the wear performance of PEO coating was enhanced due to the sub-stoichiometric oxide. To sum up, for load-bearing biomedical implants involved in high impacting movement, PEO coating may not be a promising surface protection. Third, the dense, smooth PVD/CVD bio-inert coatings were reconsidered. DLC and TiN coatings, combined by different substrates together with different interface materials were tested under the cyclic impact-sliding test using a set of proper loading. The results show that to choose a proper combination of coating, interface and substrate based on their mechanical properties is of great importance under the test condition. Hard substrates provide support

  10. Effects of fibrillation on the wood fibers' enzymatic hydrolysis enhanced by mechanical refining.

    Science.gov (United States)

    Liu, Wei; Wang, Bing; Hou, Qingxi; Chen, Wei; Wu, Ming

    2016-04-01

    The hardwood bleached kraft pulp (HBKP) fibers were pretreated by PFI mill to obtain the substrates, the effects of fibrillation on HBKP fibers' enzymatic hydrolysis was studied. The results showed that the enzymatic hydrolysis efficiency was enhanced obviously by mechanical refining. The mechanical refining alterated the fibers' characteristics such as fibrillation degree, specific surface area, swelling ability, crystallinity, fiber length and fines content. All these factors correlating to the enzymatic hydrolysis were evaluated through mathematical analysis. Among these factors, the fibrillation degree has the profoundest impact on the enzymatic hydrolysis of wood fibers. Consequently, the mechanical refining aiming for a high fibrillation degree was feasible to enhance the enzymatic hydrolysis of lignocellulosic biomass.

  11. Fracture mechanics in new designed power module under thermo-mechanical loads

    Directory of Open Access Journals (Sweden)

    Durand Camille

    2014-06-01

    Full Text Available Thermo-mechanically induced failure is a major reliability issue in the microelectronic industry. On this account, a new type of Assembly Interconnected Technology used to connect MOSFETs in power modules has been developed. The reliability is increased by using a copper clip soldered on the top side of the chip, avoiding the use of aluminium wire bonds, often responsible for the failure of the device. Thus the new designed MOSFET package does not follow the same failure mechanisms as standard modules. Thermal and power cycling tests were performed on these new packages and resulting failures were analyzed. Thermo-mechanical simulations including cracks in the aluminium metallization and intermetallics (IMC were performed using Finite Element Analysis in order to better understand crack propagation and module behaviour.

  12. Power system security enhancement with unified power flow controller under multi-event contingency conditions

    Directory of Open Access Journals (Sweden)

    S. Ravindra

    2017-03-01

    Full Text Available Power system security analysis plays key role in enhancing the system security and to avoid the system collapse condition. In this paper, a novel severity function is formulated using transmission line loadings and bus voltage magnitude deviations. The proposed severity function and generation fuel cost objectives are analyzed under transmission line(s and/or generator(s contingency conditions. The system security under contingency conditions is analyzed using optimal power flow problem. An improved teaching learning based optimization (ITLBO algorithm has been presented. To enhance the system security under contingency conditions in the presence of unified power flow controller (UPFC, it is necessary to identify an optimal location to install this device. Voltage source based power injection model of UPFC, incorporation procedure and optimal location identification strategy based on line overload sensitivity indexes are proposed. The entire proposed methodology is tested on standard IEEE-30 bus test system with supporting numerical and graphical results.

  13. Study on Enhancement in Gibbsite Precipitation of Bayer Process under 33 kHz Ultrasound

    Institute of Scientific and Technical Information of China (English)

    Jihua ZHAO; Qiyuan CHEN

    2003-01-01

    The enhancement of gibbsite precipitation in Bayer process by 33 kHz ultrasound has been studied. From orthomethod experiment, the optimized operating parameters of treatment under 33 kHz ultrasonic cleaner have obtained.Compared with crystallization of Al(OH)3 without treatment of ultrasound, the precipitation time is reduced by 15 h when the precipitation ratio is 45%. From the results of grain size distribution and SEM photographs of gibbsite, it is found that secondary nucleation and agglomeration could be enhanced under 33 kHz ultrasound. The products are same from comparison of X-ray powder diffraction, but the Raman spectrum of sodium aluminate solution under 33 kHz ultrasound is different from that without ultrasound.

  14. Electrical Response of Cement-Based Piezoelectric Ceramic Composites under Mechanical Loadings

    Directory of Open Access Journals (Sweden)

    Biqin Dong

    2011-01-01

    Full Text Available Electrical responses of cement-based piezoelectric ceramic composites under mechanical loadings are studied. A simple high order model is presented to explain the nonlinear phenomena, which is found in the electrical response of the composites under large mechanical loadings. For general situation, this nonlinear piezoelectric effect is quite small, and the composite is suitable for dynamic mechanical sensor as holding high static stability. The experimental results are consistent with the relationship quite well. The study shows that cement-based piezoelectric composite is suitable for potential application as dynamic mechanical sensor with excellent dynamic response and high static stability.

  15. Methylphenidate enhances NMDA-receptor response in medial prefrontal cortex via sigma-1 receptor: a novel mechanism for methylphenidate action.

    Directory of Open Access Journals (Sweden)

    Chun-Lei Zhang

    Full Text Available Methylphenidate (MPH, commercially called Ritalin or Concerta, has been widely used as a drug for Attention Deficit Hyperactivity Disorder (ADHD. Noteworthily, growing numbers of young people using prescribed MPH improperly for pleasurable enhancement, take high risk of addiction. Thus, understanding the mechanism underlying high level of MPH action in the brain becomes an important goal nowadays. As a blocker of catecholamine transporters, its therapeutic effect is explained as being due to proper modulation of D1 and α2A receptor. Here we showed that higher dose of MPH facilitates NMDA-receptor mediated synaptic transmission via a catecholamine-independent mechanism, in layer V∼VI pyramidal cells of the rat medial prefrontal cortex (PFC. To indicate its postsynaptic action, we next found that MPH facilitates NMDA-induced current and such facilitation could be blocked by σ1 but not D1/5 and α2 receptor antagonists. And this MPH eliciting enhancement of NMDA-receptor activity involves PLC, PKC and IP3 receptor mediated intracellular Ca(2+ increase, but does not require PKA and extracellular Ca(2+ influx. Our additional pharmacological studies confirmed that higher dose of MPH increases locomotor activity via interacting with σ1 receptor. Together, the present study demonstrates for the first time that MPH facilitates NMDA-receptor mediated synaptic transmission via σ1 receptor, and such facilitation requires PLC/IP3/PKC signaling pathway. This novel mechanism possibly explains the underlying mechanism for MPH induced addictive potential and other psychiatric side effects.

  16. Enhanced photocatalytic performance of BiVO4 in aqueous AgNO3 solution under visible light irradiation

    Science.gov (United States)

    Huang, Chien-Kai; Wu, Tsunghsueh; Huang, Chang-Wei; Lai, Chi-Yung; Wu, Mei-Yao; Lin, Yang-Wei

    2017-03-01

    Monoclinic-phase bismuth vanadate (BiVO4) with a 2.468 eV band gap exhibited enhanced synergic photodegradation activity toward methylene blue (MB) when combined with silver ions (Ag+) in an aqueous solution under visible light irradiation. The mass ratio of AgNO3 to BiVO4 and the calcination temperature were discovered to considerably affect the degradation activity of BiVO4/Ag+. Superior photocatalytic performance was obtained when BiVO4 was mixed with 0.01%(w/v) AgNO3 solution, and complete degradation of MB was achieved after 25 min visible light irradiation, outperforming BiVO4 or AgNO3 solution alone. The enhanced photodegradation was investigated using systematic luminescence measurements, electrochemical impedance spectroscopy, and scavenger addition, after which a photocatalytic mechanism for MB degradation under visible light irradiation was identified that involved oxygen radicals and holes. This study also discovered the two dominating processes involved in enhancing the electron-hole separation efficiency and reducing their recombination rate, namely photoreduction of Ag+ and the formation of a BiVO4/Ag heterojunction. The synergic effect between BiVO4 and Ag+ was discovered to be unique. BiVO4/Ag+ was successfully used to degrade two other dyes and disinfect Escherichia Coli. A unique fluorescent technique using BiVO4 and a R6G solution to detect Ag+ ions in water was discovered.

  17. Fundamental study of failure mechanisms of pressure vessels under thermo-mechanical cycling in multiphase environments

    Science.gov (United States)

    Penso Mula, Jorge Antonio

    Cracking and bulging in welded and internally lined pressure vessels that work in thermal-mechanical cycling services have been well known problems in the petrochemical, power and nuclear industries. Published literature and industry surveys show that similar problems have been occurring during the last 50 years. Understanding the causes of cracking and bulging would lead to improvements in the reliability of these pressure vessels. This study attempts to add information required for improving the knowledge and fundamental understanding of these problems. Cracking and bulging, most often in the weld areas, commonly experienced in delayed coking units (e.g. coke drums) in oil refineries are typical examples. The coke drum was selected for this study because of the existing field experience and past industrial investigation results that were available to serve as the baseline references for the analytical studies performed for this dissertation. Another reason for selecting the delayed coking units for this study was due to their high economical yields. Shutting down these units would cause a high negative economic impact on the refinery operations. Several failure mechanisms were hypothesized. The finite element method was used to analyze these significant variables and to verify the hypotheses. In conclusion, a fundamental explanation of the occurrence of bulging and cracking in pressure vessels in multiphase environments has been developed. Several important factors have been identified, including the high convection coefficient of the boiling layer during filling and quenching, the mismatch in physical, thermal and mechanical properties in the dissimilar weld of the clad plates and process conditions such as heating and quenching rate and warming time. Material selection for coke drums should consider not only fatigue strength but also corrosion resistance at high temperatures and low temperatures. Cracking occurs due to low cycle fatigue and corrosion. The FEA

  18. Exterior beam-column joint study with non-conventional reinforcement detailing using mechanical anchorage under reversal loading

    Indian Academy of Sciences (India)

    S Rajagopal; S Prabavathy

    2014-10-01

    Reinforced concrete structures beam-column joints are the most critical regions in seismic prone areas. Proper reinforcement anchorage is essential to enhance the performance of the joints. An attempt has been made to appraise the performance of the anchorages and joints. The anchorages are detailed as per ACI-352 (mechanical anchorages), ACI-318 (conventional bent hooks) and IS-456 (conventional full anchorage). The joints are detailed without confinement in group-I and with additional X-cross bar in group-II. To assess the seismic performance, the specimens are assembled into two groups of three specimens each and were tested under reversal loading, The specimen with T-type mechanical anchorage (Headed bar) and T-type mechanical anchorage combination with X-cross bar exhibited significant improvement in seismic performance: load-displacement capacity, displacement ductility, stiffness degradation, controlled crack capacity in the joint shear panel and also reduced congestion of reinforcement in joint core.

  19. A novel role of dendritic gap junction and mechanisms underlying its interaction with thalamocortical conductance in fast spiking inhibitory neurons

    Directory of Open Access Journals (Sweden)

    Sun Qian-Quan

    2009-10-01

    Full Text Available Abstract Background Little is known about the roles of dendritic gap junctions (GJs of inhibitory interneurons in modulating temporal properties of sensory induced responses in sensory cortices. Electrophysiological dual patch-clamp recording and computational simulation methods were used in combination to examine a novel role of GJs in sensory mediated feed-forward inhibitory responses in barrel cortex layer IV and its underlying mechanisms. Results Under physiological conditions, excitatory post-junctional potentials (EPJPs interact with thalamocortical (TC inputs within an unprecedented few milliseconds (i.e. over 200 Hz to enhance the firing probability and synchrony of coupled fast-spiking (FS cells. Dendritic GJ coupling allows fourfold increase in synchrony and a significant enhancement in spike transmission efficacy in excitatory spiny stellate cells. The model revealed the following novel mechanisms: 1 rapid capacitive current (Icap underlies the activation of voltage-gated sodium channels; 2 there was less than 2 milliseconds in which the Icap underlying TC input and EPJP was coupled effectively; 3 cells with dendritic GJs had larger input conductance and smaller membrane response to weaker inputs; 4 synchrony in inhibitory networks by GJ coupling leads to reduced sporadic lateral inhibition and increased TC transmission efficacy. Conclusion Dendritic GJs of neocortical inhibitory networks can have very powerful effects in modulating the strength and the temporal properties of sensory induced feed-forward inhibitory and excitatory responses at a very high frequency band (>200 Hz. Rapid capacitive currents are identified as main mechanisms underlying interaction between two transient synaptic conductances.

  20. Mechanism of instability of carbides in Fe–TaC alloy under high energy electron irradiation at 673 K

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Hiroaki, E-mail: abe.hiroaki@imr.tohoku.ac.jp [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, Miyagi 980-8577 (Japan); Ishizaki, Takahiro [Graduate School of Engineering, Tohoku University, 6-6 Aramaki Aza Aoba, Aoba, Sendai, Miyagi 980-8579 (Japan); Kano, Sho [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, Miyagi 980-8577 (Japan); Li, Feng [Graduate School of Engineering, Tohoku University, 6-6 Aramaki Aza Aoba, Aoba, Sendai, Miyagi 980-8579 (Japan); Satoh, Yuhki [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, Miyagi 980-8577 (Japan); Tanigawa, Hiroyasu; Hamaguchi, Dai [Japan Atomic Energy Agency, Rokkasho 039-3212 (Japan); Nagase, Takeshi; Yasuda, Hidehiro [Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, 7-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan)

    2014-12-15

    Highlights: • Fe–TaC alloy was fabricated as a model alloy for F82H steel. • Instability of TaC in Fe was observed under high energy electron irradiation at 673 K. • The rate of shrinkage depended on energy, flux, degree of beam focus. • Displacement of Ta in TaC, or radiation-enhanced diffusion of Ta are the mechanism of instability. - Abstract: Reduced activation ferritic/martensitic steels (RAFMs), such as F82H steel, are designed to enhance the high-temperature strength by formation of MX-type nanometer-scale precipitates, mainly TaC. However, their instability under irradiation was recently reported. The purpose of this work, therefore, is to clarify the mechanism employing simultaneous observations under electron irradiation at elevated temperature in a high voltage electron microscope. In this work, Fe-0.2 wt.% TaC was fabricated as a model alloy of F82H steel. The instability of the precipitates was observed under electron irradiation at 1 MeV or above. The remarkable shrinkage and disappearance were clearly observed under irradiation with 1.5 MeV and above. On the contrary, the precipitates were mostly stable below 0.75 MeV. Two kinds of mechanism of the irradiation-induced instability were deduced from the electron-energy dependence. One is the dissolution and diffusion of tantalum from precipitates in ferrite matrix. The other is the displacements of tantalum in precipitates that introduce dissolution of Ta into matrix.

  1. Supplementation of exogenous adenosine 5'-triphosphate enhances mechanical properties of 3D cell-agarose constructs for cartilage tissue engineering.

    Science.gov (United States)

    Gadjanski, Ivana; Yodmuang, Supansa; Spiller, Kara; Bhumiratana, Sarindr; Vunjak-Novakovic, Gordana

    2013-10-01

    Formation of tissue-engineered cartilage is greatly enhanced by mechanical stimulation. However, direct mechanical stimulation is not always a suitable method, and the utilization of mechanisms underlying mechanotransduction might allow for a highly effective and less aggressive alternate means of stimulation. In particular, the purinergic, adenosine 5'-triphosphate (ATP)-mediated signaling pathway is strongly implicated in mechanotransduction within the articular cartilage. We investigated the effects of transient and continuous exogenous ATP supplementation on mechanical properties of cartilaginous constructs engineered using bovine chondrocytes and human mesenchymal stem cells (hMSCs) encapsulated in an agarose hydrogel. For both cell types, we have observed significant increases in equilibrium and dynamic compressive moduli after transient ATP treatment applied in the fourth week of cultivation. Continuous ATP treatment over 4 weeks of culture only slightly improved the mechanical properties of the constructs, without major changes in the total glycosaminoglycan (GAG) and collagen content. Structure-function analyses showed that transiently ATP-treated constructs, and in particular those based on hMSCs, had the highest level of correlation between compositional and mechanical properties. Transiently treated groups showed intense staining of the territorial matrix for GAGs and collagen type II. These results indicate that transient ATP treatment can improve functional mechanical properties of cartilaginous constructs based on chondrogenic cells and agarose hydrogels, possibly by improving the structural organization of the bulk phase and territorial extracellular matrix (ECM), that is, by increasing correlation slopes between the content of the ECM components (GAG, collagen) and mechanical properties of the construct.

  2. Do horizontal saccadic eye movements increase interhemispheric coherence? Investigation of a hypothesized neural mechanism underlying EMDR

    Directory of Open Access Journals (Sweden)

    Zoe eSamara

    2011-03-01

    Full Text Available Series of horizontal saccadic eye movements (EMs are known to improve episodic memory retrieval in healthy adults and to facilitate the processing of traumatic memories in eye-movement desensitization and reprocessing (EMDR therapy. Several authors have proposed that EMs achieve these effects by increasing the functional connectivity of the two brain hemispheres, but direct evidence for this proposal is lacking. The aim of this study was to investigate whether memory enhancement following bilateral EMs is associated with increased interhemispheric coherence in the electroencephalogram (EEG. Fourteen healthy young adults were asked to freely recall lists of studied neutral and emotional words after a series of bilateral EMs and a control procedure. Baseline EEG activity was recorded before and after the EM and control procedures. Phase and amplitude coherence between bilaterally homologous brain areas were calculated for six frequency bands and electrode pairs across the entire scalp. Behavioral analyses showed that participants recalled more emotional (but not neutral words following the EM procedure than following the control procedure. However, the EEG analyses indicated no evidence that the EMs altered participants’ interhemispheric coherence or that improvements in recall were correlated with such changes in coherence. These findings cast doubt on the interhemispheric interaction hypothesis, and therefore may have important implications for future research on the neurobiological mechanism underlying EMDR.

  3. The Brain Mechanisms Underlying the Cognitive Benefits of Bilingualism may be Extraordinarily Difficult to Discover

    Directory of Open Access Journals (Sweden)

    Kenneth R. Paap

    2014-12-01

    Full Text Available The hypothesis that coordinating two or more languages leads to an enhancement in executive functioning has been intensely studied for the past decade with very mixed results. The purpose of this review and analysis is to consider why it has been (and will continue to be difficult to discover the brain mechanisms underlying any cognitive benefits to bilingualism. Six reasons are discussed: 1 the phenomenon may not actually exist; 2 the cognitive neuroscientists investigating bilingual advantages may have been studying the wrong component of executive functioning; 3 most experiments use risky small numbers of participants and are underpowered; 4 the neural differences between groups do not align with the behavioral differences; 5 neural differences sometimes suffer from valence ambiguity, that is, disagreements whether “more” implies better or worse functioning and 6 neural differences often suffer from kind ambiguity, that is, disagreements regarding what type of mental events the pattern of activation in a region-of-interest actually reflects.

  4. Interactivity effects in social media marketing on brand engagement: an investigation of underlying mechanisms

    NARCIS (Netherlands)

    Antheunis, M.L.; van Noort, G.; Eisend, M.; Langner, T.

    2011-01-01

    Although, SNS advertising spending increases, research on SNS campaigning is still underexposed. First, this study aims to investigate the effect of SNS campaign interactivity on the receivers brand engagement, taking four underlying mechanisms into account (brand identification, campaign divergence

  5. Mechanisms underlying the effects of prenatal psychosocial stress on child outcomes: beyond the HPA axis

    NARCIS (Netherlands)

    Beijers, R.; Buitelaar, J.K.; Weerth, C. de

    2014-01-01

    Accumulating evidence from preclinical and clinical studies indicates that maternal psychosocial stress and anxiety during pregnancy adversely affect child outcomes. However, knowledge on the possible mechanisms underlying these relations is limited. In the present paper, we review the most often

  6. Interactivity effects in social media marketing on brand engagement: an investigation of underlying mechanisms

    NARCIS (Netherlands)

    Antheunis, M.L.; van Noort, G.; Eisend, M.; Langner, T.

    2011-01-01

    Although, SNS advertising spending increases, research on SNS campaigning is still underexposed. First, this study aims to investigate the effect of SNS campaign interactivity on the receivers brand engagement, taking four underlying mechanisms into account (brand identification, campaign

  7. News with an attitude: assessing the mechanisms underlying the effects of opinionated news

    NARCIS (Netherlands)

    Boukes, M.; Boomgaarden, H.G.; Moorman, M.; de Vreese, C.H.

    2014-01-01

    Opinionated news targets communities of likeminded viewers, relies on dramaturgical storytelling techniques, and shares characteristics with political satire. Accordingly, opinionated news should be understood as a specific form of political entertainment. We have investigated the mechanisms underly

  8. Conditions of structure formation in sparingly alloyed steels intended for service under enhanced wear

    Science.gov (United States)

    Krylova, S. E.; Gryzunov, V. I.; Firsova, N. V.; Sokolov, S. O.

    2011-09-01

    A new armor lining steel 100Kh3G2MTR is fabricated and investigated. Different regimes of heat treatment of the steel are studied for the purpose of achieving optimal characteristics of abrasive and shock-abrasive resistance in combination with enhanced surface hardness with satisfactory strength and impact toughness of the metallic matrix. Astructural analysis is performed and the mechanism of phase transformations in the surface layer in the course of heat treatment and in service is described.

  9. Influence of Antioxidant-Enhanced Polymers in Bitumen Rheology and Bituminous Concrete Mixtures Mechanical Performance

    Directory of Open Access Journals (Sweden)

    Samer Dessouky

    2015-01-01

    Full Text Available This paper evaluates the effect of polymer enhancement with antioxidant in the rheological properties of bitumen and mechanical properties of bituminous concrete mixture (BCM. In this study, two antioxidant-enhanced polymers were utilized in mitigating bitumen hardening due to aging. The rheological testing consists of temperature sweep using Dynamic Shear Rheometer at various aging conditions. Critical stiffness temperature data from the sweep test suggested that enhanced polymer exhibits less long-term hardening and brittleness compared to standard polymer. The mechanical testing consists of dynamic modulus, indirect tensile, flow number, and beam fatigue tests on BCM exposed to short-term aging. Hamburg wheel tracking test was also performed to assess moisture-damage susceptibility. It is found that the enhanced-polymer BCM exhibited higher modulus, higher tensile strength ratio, improved rutting resistance, lower moisture-damage susceptibility, and slightly increased fatigue life as compared to standard-polymer BCM.

  10. Enhanced mechanical and thermal properties of regenerated cellulose/graphene composite fibers.

    Science.gov (United States)

    Tian, Mingwei; Qu, Lijun; Zhang, Xiansheng; Zhang, Kun; Zhu, Shifeng; Guo, Xiaoqing; Han, Guangting; Tang, Xiaoning; Sun, Yaning

    2014-10-13

    In this study, a wet spinning method was applied to fabricate regenerated cellulose fibers filled with low graphene loading which was systematically characterized by SEM, TEM, FTIR and XRD techniques. Subsequently, the mechanical and thermal properties of the resulting fibers were investigated. With only 0.2 wt% loading of graphene, a ∼ 50% improvement of tensile strength and 25% enhancement of Young's modulus were obtained and the modified Halpin-Tsai model was built to predict the mechanical properties of composite fibers. Thermal analysis of the composite fibers showed remarkably enhanced thermal stability and dynamic heat transfer performance of graphene-filled cellulose composite fiber, also, the presence of graphene oxide can significantly enhance the thermal conductivity of the composite fiber. This work provided a facile way to improve mechanical and thermal properties of regenerated cellulose fibers. The resultant composite fibers have potential application in thermal insulation and reinforced fibrous materials. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Neural mechanisms underlying balance improvement with short term Tai Chi training.

    Science.gov (United States)

    Gatts, Strawberry K; Woollacott, Marjorie Hines

    2006-02-01

    Though previous research has shown that Tai Chi reduces falls risk in older adults, no studies have examined underlying neural mechanisms responsible for balance improvement. We aimed to determine the efficacy of Tai Chi training in improving neuromuscular response characteristics underlying balance control in balance-impaired older adults. Twenty-two balance-impaired older adults were randomly divided into Tai Chi (TC) or control groups. Nineteen subjects (age 68-92, BERG 44 or less) completed the study. TC training included repetitive exercises using TC motor and biomechanical strategies, techniques, and postural elements. Control training included axial mobility exercises, balance/awareness education and stress reduction. Groups trained 1.5 hours/day, 5 days/week for 3 weeks. After post-testing the control group received TC training. Subjects walked across a force plate triggered to move forward 15 cm at 40 cm/sec at heel strike. Tibialis anterior (TA) and medial gastrocnemius (GA) responses during balance recovery were measured with electromyograms (EMGs). Four clinical measures of balance were also recorded. TC subjects, but not controls, significantly reduced both TA response time from 148.92 +/- 45.11 ms to 98.67 +/- 17.22 ms (p < or = 0.004) and occurrence of co-contraction of antagonist muscles (p < or = 0.003) of the perturbed leg. Clinical balance measures also significantly improved after TC. TC enhanced neuromuscular responses controlling the ankle joint of the perturbed leg. Fast, accurate neuromuscular activation is crucial for efficacious response to slips or trips.

  12. Plasma-enhanced microwave solid-state synthesis of cadmium sulfide: reaction mechanism and optical properties.

    Science.gov (United States)

    Du, Ke-zhao; Chaturvedi, Apoorva; Wang, Xing-zhi; Zhao, Yi; Zhang, Ke-ke; Iqbal Bakti Utama, M; Hu, Peng; Jiang, Hui; Xiong, Qi-hua; Kloc, Christian

    2015-08-14

    CdS synthesis by plasma-enhanced microwave physical vapor transport (PMPVT) has been developed in this work. The photoluminescence (PL), absorbance, Raman spectra and the mechanism of CdS crystal growth have been investigated. Furthermore, plasma-enhanced microwave chemical vapour transport (PMCVT) synthesis of CdS with additional chemical transport agents has been explored. In addition, other II-VI chalcogenides were also synthesized by PMPVT.

  13. [Review on the main microorganisms and their metabolic mechanisms in enhanced biological phosphorus removal (EBPR) systems].

    Science.gov (United States)

    Sun, Xue; Zhu, Wei-Jing; Wang, Liang; Wu, Wei-Xiang

    2014-03-01

    Enhanced biological phosphorus removal (EBPR) process is applied widely for removing phosphorus from wastewater. Studies on functional microorganisms and their metabolic mechanisms are fundamental to effective regulation for stable operation and performance improvement of EBPR process. Two main types of microorganisms in EBPR systems, polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs) were selected to summarize their metabolic mechanisms such as substrate uptake mechanisms, glycogen degradation pathways, extent of TCA cycle involvement and metabolic similarity between PAOs and GAOs. Application of molecular biology techniques in microbiology and metabolic mechanisms involved in the EBPR system was evaluated. Potential future research areas for the EBPR system and process optimization were also proposed.

  14. Cognitive mechanisms underlying disorganization of thought in a genetic syndrome (47,XXY)

    NARCIS (Netherlands)

    Van Rijn, Sophie; Aleman, Andre; De Sonneville, Leo; Swaab, Hanna

    2009-01-01

    Because of the risk for development of psychopathology such as psychotic symptoms, it has been suggested that studying men with the XXY karyotype may help in the search for underlying cognitive, neural and genetic mechanisms. The aim of this study was to identify cognitive mechanisms that may contri

  15. Hydrophilic Modification of Multi-Walled Carbon Nanotube for Building Photonic Crystals with Enhanced Color Visibility and Mechanical Strength

    Directory of Open Access Journals (Sweden)

    Feihu Li

    2016-04-01

    Full Text Available Low color visibility and poor mechanical strength of polystyrene (PS photonic crystal films have been the main shortcomings for the potential applications in paints or displays. This paper presents a simple method to fabricate PS/MWCNTs (multi-walled carbon nanotubes composite photonic crystal films with enhanced color visibility and mechanical strength. First, MWCNTs was modified through radical addition reaction by aniline 2,5-double sulfonic acid diazonium salt to generate hydrophilic surface and good water dispersity. Then the MWCNTs dispersion was blended with PS emulsion to form homogeneous PS/MWCNTs emulsion mixtures and fabricate composite films through thermal-assisted method. The obtained films exhibit high color visibility under natural light and improved mechanical strength owing to the light-adsorption property and crosslinking effect of MWCNTs. The utilization of MWCNTs in improving the properties of photonic crystals is significant for various applications, such as in paints and displays.

  16. Feeding enhances skeletal growth and energetic stores of an Atlantic coral under significantly elevated CO2

    Science.gov (United States)

    Drenkard, L.; Cohen, A. L.; McCorkle, D. C.; dePutron, S.; Zicht, A.

    2011-12-01

    Many corals living under the relatively acidic conditions of naturally high-CO2 reefs are calcifying as fast or faster than their conspecifics on naturally low CO2 reefs. These observations are inconsistent with most experimental work that shows a negative impact of ocean acidification on coral calcification. We investigated the link between coral nutritional (energetic) status and the calcification response to significantly elevated CO2. Juveniles of the Atlantic brooding coral, Favia fragum were reared for three weeks under fully crossed CO2 and feeding conditions: ambient (μar =1.6+-0.2) and high CO2 (μar =3.7+-0.3); fed and unfed. In most measured parameters, the effect of feeding is much stronger than the effect of CO2. Nutritionally enhanced (fed) corals, regardless of CO2 condition, have higher concentrations of total lipid and their skeletons are both significantly larger and more developmentally advanced than those of corals relying solely on autotrophy. In measurements of corallite weight, where the impact of CO2 is most apparent, no statistical difference is observed between unfed corals under ambient CO2 conditions and fed corals reared under 1600 ppm CO2. Our results suggest that coral energetic status, which can be enhanced by heterotrophic feeding but depleted by stressors such as bleaching, will play a key role in the coral response to ocean acidification and thus, in the resilience of reef ecosystems under climate change.

  17. Enhanced Efficiencies for High-Concentration, Multijunction PV Systems by Optimizing Grid Spacing under Nonuniform Illumination

    Directory of Open Access Journals (Sweden)

    Pratibha Sharma

    2014-01-01

    Full Text Available The design of a triple junction solar cell’s front contact grid can significantly affect cell conversion efficiency under high concentration. We consider one aspect of grid design, choosing a linear grid within a distributed resistance cell model to optimize finger spacings at concentrations between 500 and 2500 suns under uniform and nonuniform illumination. Optimization for maximum efficiency under Gaussian irradiance profiles is done by SPICE analysis. Relative to the optimized uniform illumination designs, we find enhancements of 0.5% to 2% in absolute efficiencies for uniform spacing. Efficiency enhancement with nonuniform spacing under nonuniform illumination is also evaluated. Our model suggests that, at lower concentrations (<1000 suns, the penalty for using uniformly spaced fingers instead of nonuniformly spaced fingers is <0.1%. However, at a concentration of 2500 suns the penalty increases to 0.3%. Thus, relative to a uniform irradiance optimization, an absolute efficiency increase of 2.3% can be attained for an optimized nonuniform spacing given the Gaussian irradiance profile under consideration.

  18. Abnormal enhancement of interface trap generation under dynamic oxide field stress at MHz region

    OpenAIRE

    Zhu, Shiyang; Nakajima, Anri

    2005-01-01

    By stressing metal-oxide-semiconductor field-effect transistors with ultrathin silicon dioxide or oxynitride gate dielectrics under square wave form voltage at the MHz region, an abnormal enhancement of interface trap generation in the midchannel region has been observed at some special frequencies. A hypothesis, including self-accelerating interface trap generation originated from the positive feedback of a charge pumping current to be contributed by the stress-induced near-interface oxide t...

  19. Tailoring Gut Microbiota for Enhanced Resilience and Performance Under Sleep-Deprived Conditions

    Science.gov (United States)

    2016-08-01

    To achieve these objectives, we will first develop a new humanized rat model harboring the gut microbiota from five-ten healthy normal human donors...fecal microbiota collected from normal healthy human donors will be used to inoculate pseudo germ-free (GF) Sprague Dawley (SD) rats to develop...AFRL-RH-WP-TR-2017-0001 Tailoring Gut Microbiota for Enhanced Resilience and Performance under Sleep-Deprived Conditions. Victor T. Chan

  20. Magnetosomes extracted from Magnetospirillum magneticum strain AMB-1 showed enhanced peroxidase-like activity under visible-light irradiation.

    Science.gov (United States)

    Li, Kefeng; Chen, Chuanfang; Chen, Changyou; Wang, Yuzhan; Wei, Zhao; Pan, Weidong; Song, Tao

    2015-05-01

    Magnetosomes are intracellular structures produced by magnetotactic bacteria and are magnetic nanoparticles surrounded by a lipid bilayer membrane. Magnetosomes reportedly possess intrinsic enzyme mimetic activity similar to that found in horseradish peroxidase (HRP) and can scavenge reactive oxygen species depending on peroxidase activity. Our previous study has demonstrated the phototaxis characteristics of Magnetospirillum magneticum strain AMB-1 cells, but the mechanism is not well understood. Therefore, we studied the relationship between visible-light irradiation and peroxidase-like activity of magnetosomes extracted from M. magneticum strain AMB-1. We then compared this characteristic with that of HRP, iron ions, and naked magnetosomes using 3,3',5,5'-tetramethylbenzidine as a peroxidase substrate in the presence of H2O2. Results showed that HRP and iron ions had different activities from those of magnetosomes and naked magnetosomes when exposed to visible-light irradiation. Magnetosomes and naked magnetosomes had enhanced peroxidase-like activities under visible-light irradiation, but magnetosomes showed less affinity toward substrates than naked magnetosomes under visible-light irradiation. These results suggested that the peroxidase-like activity of magnetosomes may follow an ordered ternary mechanism rather than a ping-pong mechanism. This finding may provide new insight into the function of magnetosomes in the phototaxis in magnetotactic bacteria.

  1. Mechanical stress activates Smad pathway through PKCδ to enhance interleukin-11 gene transcription in osteoblasts.

    Directory of Open Access Journals (Sweden)

    Shinsuke Kido

    Full Text Available BACKGROUND: Mechanical stress rapidly induces ΔFosB expression in osteoblasts, which binds to interleukin (IL-11 gene promoter to enhance IL-11 expression, and IL-11 enhances osteoblast differentiation. Because bone morphogenetic proteins (BMPs also stimulate IL-11 expression in osteoblasts, there is a possibility that BMP-Smad signaling is involved in the enhancement of osteoblast differentiation by mechanical stress. The present study was undertaken to clarify whether mechanical stress affects BMP-Smad signaling, and if so, to elucidate the role of Smad signaling in mechanical stress-induced enhancement of IL-11 gene transcription. METHODOLOGY/PRINCIPAL FINDINGS: Mechanical loading by fluid shear stress (FSS induced phosphorylation of BMP-specific receptor-regulated Smads (BR-Smads, Smad1/5, in murine primary osteoblasts (mPOBs. FSS rapidly phosphorylated Y311 of protein kinase C (PKCδ, and phosphorylated PKCδ interacted with BR-Smads to phosphorylate BR-Smads. Transfection of PKCδ siRNA or Y311F mutant PKCδ abrogated BR-Smads phosphorylation and suppressed IL-11 gene transcription enhanced by FSS. Activated BR-Smads bound to the Smad-binding element (SBE of IL-11 gene promoter and formed complex with ΔFosB/JunD heterodimer via binding to the C-terminal region of JunD. Site-directed mutagenesis in the SBE and the AP-1 site revealed that both SBE and AP-1 sites were required for full activation of IL-11 gene promoter by FSS. CONCLUSIONS/SIGNIFICANCE: These results demonstrate that PKCδ-BR-Smads pathway plays an important role in the intracellular signaling in response to mechanical stress, and that a cross-talk between PKCδ-BR-Smads and ΔFosB/JunD pathways synergistically stimulates IL-11 gene transcription in response to mechanical stress.

  2. Enhancement of multipartite entanglement in an open system under non-inertial frames

    Science.gov (United States)

    Sun, Wen-Yang; Wang, Dong; Yang, Jie; Ye, Liu

    2017-04-01

    In this paper, multipartite entanglement enhancement in an open system under non-inertial frames via local non-unitary operations is explored. Explicitly, we investigate an available methodology to enhance tripartite entanglement of X-state, when the systems suffer from amplitude damping (AD) noise and one subsystem is under non-inertial frames. As an illustration, we consider three cases (one subsystem or multi-subsystem suffers from decoherence) by using local non-unitary operations, and the corresponding entanglement behaviors are revealed. It turns out that the local non-unitary operation can enhance entanglement to some degree. The Unruh effect and decoherence will influence the tripartite entanglement. However, the impact of Unruh effect on tripartite entanglement is weaker than that of decoherence. In addition, we obtain an interesting result: One can estimate and probe the decoherence strength (AD noise) in accordance with the change of local non-unitary operation strength and genuinely multipartite entanglement variation. Therefore, our work may be beneficial to explore the dynamic behavior of tripartite entanglement in open systems under relativity frame.

  3. Brain mechanisms underlying the effects of aging on different aspects of selective attention

    NARCIS (Netherlands)

    Geerligs, Linda; Saliasi, Emi; Maurits, Natasha M; Renken, Remco J; Lorist, Monicque M

    2014-01-01

    The ability to suppress irrelevant information declines with age, while the ability to enhance relevant information remains largely intact. We examined mechanisms behind this dissociation in an fMRI study, using a selective attention task in which relevant and irrelevant information appeared simulta

  4. Flow mechanism and heat transfer enhancement in longitudinal-flow tube bundle of shell-and-tube heat exchanger

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The flow disturbance and heat transfer mechanism in the tube bundle of rod baffle shell-and-tube heat exchanger were analyzed, on the basis of which and combined with the concept of heat transfer enhancement in the core flow, a new type of shell-and-tube heat exchanger with combination of rod and van type spoiler was designed. Corresponding mathematical and physical models on the shell side about the new type heat exchanger were established, and fluid flow and heat transfer characteristics were numerically analyzed. The simulation results showed that heat transfer coefficient of the new type of heat exchanger approximated to that of rod baffle heat exchanger, but flow pressure drop was much less than the latter, indicating that comprehensive performance of the former is superior to that of the latter. Compared with rod baffle heat exchanger, heat transfer coefficient of the heat exchanger under investigation is higher under same pressure drop, especially under the high Reynolds numbers.

  5. Mechanism of Enhancing Extraction of Vanadium from Stone Coal by Roasting with MgO

    Directory of Open Access Journals (Sweden)

    Fang Chen

    2017-02-01

    Full Text Available In this paper, the extraction of vanadium from stone coal by roasting with MgO and leaching with sulfuric acid has been investigated, and the mechanism analysis of stone coal roasting with MgO was studied. The results indicated that under the conditions that the mass fraction of the particles with grain size of 0–0.074 mm in raw ore was 75%, the roasting temperature was 500 °C, the roasting time was 1 h, MgO addition was 3 wt %, the sulfuric acid concentration was 20 vol %, the liquid-to-solid ratio was 1.5 mL/g, the leaching temperature was 95 °C, and leaching time was 2 h, resulting in a vanadium leaching efficiency of 86.63%, which increased by 7.73% compared with that of blank roasting. The mechanism analysis showed that the degree of calcite decomposition was low and, thus, magnesium vanadate was more easily formed than calcium vanadate below 500 °C. Moreover, magnesium vanadate was easier to dissolve than calcium vanadate during the sulfuric acid leaching process. Thus, the vanadium leaching efficiency was enhanced by using MgO as a roasting additive below 500 °C. Additionally, at high temperature the formation of tremolite would consume calcium oxide produced from the decomposition of calcite, thus, the formation of calcium vanadate was hindered, and V2O5 would react with MgO to form magnesium vanadate. Therefore, the vanadium leaching efficiency of roasting with MgO was higher than that of blank roasting at high temperature.

  6. Electro-oxidation process and mechanism of molybdenite decomposition under ultrasonic effect

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    According to the characteristics and shortcomings of the traditional roasting process and the electro-oxidation process in the molybdenum metallurgical industry,the ultrasound electro-oxidation process was proposed to strengthen the oxidative decomposition or leaching of molybdenum.Laboratory work was carried out in an electrochemical cell with 15 nun electrode spacing at 25℃ under ultrasonic effect.The optimum conditions were found through experiments.The electro-oxidation mechanism of molybdenite decomposition under ultrasonic was investigated.A model of electro-oxidation mechanism of molybdenum under ultrasonic was given.

  7. Mechanical analysis on individualized finite element of temporal-mandibular joint under overlarge jaw opening status.

    Science.gov (United States)

    Sun, Mingxu; Yang, Jianjun; Zhou, Ruizhi; Li, Ningyi; Xia, Junnan; Gu, Fang

    2015-01-01

    Analyze the stress status of temporal-mandibular joint (TMJ) of a healthy volunteer under the overlarge jaw opening status through the finite element method, with the purpose of clarifying the loading features of each structure in the joint area, and achieving further understanding of the pathogenesis of the temporomandibular disorders (TMD). Collect the CBCT and MRI data of a volunteer respectively under the maximum jaw opening, establish the finite element model (FEM) of TMJ under the maximum jaw opening status through a series of software, image segmentation, rectification, meshing, material evaluation and other related processing, simulate the mechanical environment of this joint area under this status, and analyze the stress status of the articular disc, condyle cartilage, and condyle process. Based on CT and MRI image data, build 3D model and FEM of TMJ, fully simulate the mechanical environment under the large jaw opening status, and calculate the stress value of the articular disc, condyle process and condylar cartilage. This research result reminds us that the normal people's articular disc are easy to generate stress concentration under large jaw opening, but its stress is far less than the one under the tight biting status. Perhaps the TMJ symptom induced under the large jaw opening status is mainly caused by the displacement of the articular disc. Under the large jaw opening status, the condylar cartilage plays a vital role in dispersing the stress. This method can be applied for carrying out individualized mechanical analysis on the patients with TMD.

  8. Adaptive engineering of a hyperthermophilic archaeon on CO and discovering the underlying mechanism by multi-omics analysis.

    Science.gov (United States)

    Lee, Seong Hyuk; Kim, Min-Sik; Lee, Jae-Hak; Kim, Tae Wan; Bae, Seung Seob; Lee, Sung-Mok; Jung, Hae Chang; Yang, Tae-Jun; Choi, Ae Ran; Cho, Yong-Jun; Lee, Jung-Hyun; Kwon, Kae Kyoung; Lee, Hyun Sook; Kang, Sung Gyun

    2016-03-15

    The hyperthermophilic archaeon Thermococcus onnurineus NA1 can grow and produce H2 on carbon monoxide (CO) and its H2 production rates have been improved through metabolic engineering. In this study, we applied adaptive evolution to enhance H2 productivity. After over 150 serial transfers onto CO medium, cell density, CO consumption rate and H2 production rate increased. The underlying mechanism for those physiological changes could be explained by using multi-omics approaches including genomic, transcriptomic and epigenomic analyses. A putative transcriptional regulator was newly identified to regulate the expression levels of genes related to CO oxidation. Transcriptome analysis revealed significant changes in the transcript levels of genes belonging to the categories of transcription, translation and energy metabolism. Our study presents the first genome-scale methylation pattern of hyperthermophilic archaea. Adaptive evolution led to highly enhanced H2 productivity at high CO flow rates using synthesis gas produced from coal gasification.

  9. An investigation of enhanced secondary ion emission under Au(n)+ (n = 1-7) bombardment.

    Science.gov (United States)

    Nagy, G; Gelb, L D; Walker, A V

    2005-05-01

    We investigate the mechanism of the nonlinear secondary ion yield enhancement using Au(n)+ (n = 1, 2, 3, 5, 7) primary ions bombarding thin films of Irganox 1010, DL-phenylalanine and polystyrene on Si, Al, and Ag substrates. The largest differences in secondary ion yields are found using Au+, Au2+, and Au3+ primary ion beams. A smaller increase in secondary ion yield is observed using Au5+ and Au7+ primary ions. The yield enhancement is found to be larger on Si than on Al, while the ion yield is smaller using an Au+ beam on Si than on Al. Using Au(n)+ ion structures obtained from Density Functional Theory, we demonstrate that the secondary yield enhancement is not simply due to an increase in energy per area deposited into the surface (energy deposition density). Instead, based on simple mechanical arguments and molecular dynamics results from Medvedeva et al, we suggest a mechanism for nonlinear secondary ion yield enhancement wherein the action of multiple concerted Au impacts leads to efficient energy transfer to substrate atoms in the near surface region and an increase in the number of secondary ions ejected from the surface. Such concerted impacts involve one, two, or three Au atoms, which explains well the large nonlinear yield enhancements observed going from Au+ to Au2+ to Au3+ primary ions. This model is also able to explain the observed substrate effect. For an Au+ ion passing through the more open Si surface, it contacts fewer substrate atoms than in the more dense Al surface. Less energy is deposited in the Si surface region by the Au+ primary ion and the secondary ion yield will be lower for adsorbates on Si than on Al. In the case of Au(n)+ the greater density of Al leads to earlier break-up of the primary ion and a consequent reduction in energy transfer to the near-surface region when compared with Si. This results in higher secondary ion yields and yield enhancements on silicon than aluminum substrates.

  10. Researches of mechanical behaviour of the bone micro volumes and porous ceramics under uniaxial compression

    Science.gov (United States)

    Kolmakova, T. V.; Buyakova, S. P.; Kulkov, S. N.

    2017-02-01

    The research results of the mechanics are presented and the effective mechanical characteristics under uniaxial compression of the simulative micro volume of the compact bone are defined subject to the direction of the collagen-mineral fibers, porosity and mineral content. The experimental and computer studies of the mechanics are performed and the effective mechanical characteristics of the porous zirconium oxide ceramics are defined. The recommendations are developed on the selection of the ceramic samples designed to replace the fragment of the compact bone of a definite structure and mineral content.

  11. Research of mechanics of the compact bone microvolume and porous ceramics under uniaxial compression

    Science.gov (United States)

    Kolmakova, T. V.; Buyakova, S. P.; Kul'kov, S. N.

    2015-11-01

    The research results of the mechanics are presented and the effective mechanical characteristics under uniaxial compression of the simulative microvolume of the compact bone are defined subject to the direction of the collagen-mineral fibers, porosity and mineral content. The experimental studies of the mechanics are performed and the effective mechanical characteristics of the produced porous zirconium oxide ceramics are defined. The recommendations are developed on the selection of the ceramic samples designed to replace the fragment of the compact bone of a definite structure and mineral content.

  12. Deformation and failure mechanisms of graphite/epoxy composites under static loading

    Science.gov (United States)

    Clements, L. L.

    1981-01-01

    The mechanisms of deformation and failure of graphite epoxy composites under static loading were clarified. The influence of moisture and temperature upon these mechanisms were also investigated. Because the longitudinal tensile properties are the most critical to the performance of the composite, these properties were investigated in detail. Both ultimate and elastic mechanical properties were investigated, but the study of mechanisms emphasized those leading to failure of the composite. The graphite epoxy composite selected for study was the system being used in several NASA sponsored flight test programs.

  13. Enhanced root exudation stimulates soil nitrogen transformations in a subalpine coniferous forest under experimental warming.

    Science.gov (United States)

    Yin, Huajun; Li, Yufei; Xiao, Juan; Xu, Zhenfeng; Cheng, Xinyin; Liu, Qing

    2013-07-01

    Despite the perceived importance of exudation to forest ecosystem function, few studies have attempted to examine the effects of elevated temperature and nutrition availability on the rates of root exudation and associated microbial processes. In this study, we performed an experiment in which in situ exudates were collected from Picea asperata seedlings that were transplanted in disturbed soils exposed to two levels of temperature (ambient temperature and infrared heater warming) and two nitrogen levels (unfertilized and 25 g N m(-2)  a(-1) ). Here, we show that the trees exposed to an elevated temperature increased their exudation rates I (μg C g(-1) root biomass h(-1) ), II (μg C cm(-1)  root length h(-1) ) and III (μg C cm(-2)  root area h(-1) ) in the unfertilized plots. The altered morphological and physiological traits of the roots exposed to experimental warming could be responsible for this variation in root exudation. Moreover, these increases in root-derived C were positively correlated with the microbial release of extracellular enzymes involved in the breakdown of organic N (R(2)  = 0.790; P = 0.038), which was coupled with stimulated microbial activity and accelerated N transformations in the unfertilized soils. In contrast, the trees exposed to both experimental warming and N fertilization did not show increased exudation rates or soil enzyme activity, indicating that the stimulatory effects of experimental warming on root exudation depend on soil fertility. Collectively, our results provide preliminary evidence that an increase in the release of root exudates into the soil may be an important physiological adjustment by which the sustained growth responses of plants to experimental warming may be maintained via enhanced soil microbial activity and soil N transformation. Accordingly, the underlying mechanisms by which plant root-microbe interactions influence soil organic matter decomposition and N cycling should be incorporated

  14. Multichannel and repeatable self-healing of mechanical enhanced graphene-thermoplastic polyurethane composites.

    Science.gov (United States)

    Huang, Lu; Yi, Ningbo; Wu, Yingpeng; Zhang, Yi; Zhang, Qian; Huang, Yi; Ma, Yanfeng; Chen, Yongsheng

    2013-04-18

    A novel self-healing material, which was fabricated using few-layered graphene (FG) and thermoplastic polyurethane (TPU) via a facile method, not only exhibits a mechanical enhanced property, but also can be repeatedly healed by various methods including infrared (IR) light, electricity and electromagnetic wave with healing efficiencies higher than 98%.

  15. The Microstructural Evolution and Mechanical Properties of Zr-Based Metallic Glass under Different Strain Rate Compressions

    Directory of Open Access Journals (Sweden)

    Tao-Hsing Chen

    2015-04-01

    Full Text Available In this study, the high strain rate deformation behavior and the microstructure evolution of Zr-Cu-Al-Ni metallic glasses under various strain rates were investigated. The influence of strain and strain rate on the mechanical properties and fracture behavior, as well as microstructural properties was also investigated. Before mechanical testing, the structure and thermal stability of the Zr-Cu-Al-Ni metallic glasses were studied with X-ray diffraction (XRD and differential scanning calorimeter. The mechanical property experiments and microstructural observations of Zr-Cu-Al-Ni metallic glasses under different strain rates ranging from 10−3 to 5.1 × 103 s−1 and at temperatures of 25 °C were investigated using compressive split-Hopkinson bar (SHPB and an MTS tester. An in situ transmission electron microscope (TEM nanoindenter was used to carry out compression tests and investigate the deformation behavior arising at nanopillars of the Zr-based metallic glass. The formation and interaction of shear band during the plastic deformation were investigated. Moreover, it was clearly apparent that the mechanical strength and ductility could be enhanced by impeding the penetration of shear bands with reinforced particles.

  16. Revealing the Mechanism of Low-Energy Electron Yield Enhancement from Sensitizing Nanoparticles

    CERN Document Server

    Verkhovtsev, Alexey V; Solov'yov, Andrey V

    2014-01-01

    We provide a physical explanation for enhancement of the low-energy electron production by sensitizing nanoparticles due to irradiation by fast ions. It is demonstrated that a significant increase in the number of emitted electrons arises from the collective electron excitations in the nanoparticle. We predict a new mechanism of the yield enhancement due to the plasmon excitations and quantitatively estimate its contribution to the electron production. Revealing the nanoscale mechanism of the electron yield enhancement, we provide an efficient tool for evaluating the yield of emitted electron from various sensitizers. It is shown that the number of low-energy electrons generated by the gold and platinum nanoparticles of a given size exceeds that produced by the equivalent volume of water and by other metallic (e.g., gadolinium) nanoparticles by an order of magnitude. This observation emphasizes the sensitization effect of the noble metal nanoparticles and endorses their application in novel technologies of ca...

  17. Incorporation of N–ZnO/CdS/Graphene oxide composite photocatalyst for enhanced photocatalytic activity under visible light

    Energy Technology Data Exchange (ETDEWEB)

    Huo, Pengwei, E-mail: huopw1@163.com [School of Chemistry & Chemical Engineering Jiangsu University Zhenjiang, 212013 (China); Institute of Green Chemistry and Chemical Technology, Jiangsu University, Zhenjiang, 212013 (China); Zhou, Mingjun; Tang, Yanfeng [School of Chemistry & Chemical Engineering Jiangsu University Zhenjiang, 212013 (China); Liu, Xinlin [School of Energy & Power Engineering Jiangsu University Zhenjiang, 212013 (China); Ma, Changchang; Yu, Longbao [School of Chemistry & Chemical Engineering Jiangsu University Zhenjiang, 212013 (China); Yan, Yongsheng, E-mail: yys@mail.ujs.edu.cn [School of Chemistry & Chemical Engineering Jiangsu University Zhenjiang, 212013 (China); Institute of Green Chemistry and Chemical Technology, Jiangsu University, Zhenjiang, 212013 (China)

    2016-06-15

    N–ZnO/CdS/Graphene oxide (GO) composite photocatalysts have been successfully synthesized by hydrothermal method. The as-prepared composite photocatalysts were characterized by X-ray diffraction (XRD), Raman, scanning electron microscopy(SEM), transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), fourier transform infrared (FT-IR) spectra, UV–vis diffuse reflectance spectra (UV–vis DRS), thermogravimetry (TG) and photoluminescence (PL). The as-prepared photocatalysts exhibited strong visible light photocatalytic activity toward to degradation of antibiotics under ambient conditions. Particularly, the N–ZnO/CdS/GO composite photocatalysts showed the higher photocatalytic degradation rate (86%) of ciprofloxacin CIP under visible light irradiation than the pure photocatalysts. Compared with degradation of different antibiotics (tetracycline (TC), oxytetracycline hydrochloride (OTC-HCl) and levofloxacin (LEV)), the N–ZnO/CdS/GO composite photocatalysts also exhibited high photocatalytic activities. According to the experiments, the role of GO in the composite photocatalysts acted as an electron conductor, and also enhanced the separation rate of electrons and holes which greatly improved the photocatalytic activity. Lastly, the mechanism of enhanced photocatalytic degradation of CIP was also discussed. - Highlights: • N–ZnO/CdS/GO composite was synthesized by the hydrothermal processes. • N–ZnO/CdS composites prevent pure CdS or ZnO from photocorrosion. • N–ZnO/CdS/GO shows the remarkable photocatalytic activity and stability.

  18. Enhanced transparency, mechanical durability, and antibacterial activity of zinc nanoparticles on glass substrate

    Science.gov (United States)

    Choi, Hyung-Jin; Choi, Jin-Seok; Park, Byeong-Ju; Eom, Ji-Ho; Heo, So-Young; Jung, Min-Wook; An, Ki-Seok; Yoon, Soon-Gil

    2014-09-01

    Homogeneously distributed zinc nanoparticles (NPs) on the glass substrate were investigated for the transmittance, mechanical durability, and antibacterial effect. The buffered Ti NPs between Zn NPs and glass substrate were studied for an enhancement of the transmittance and mechanical endurance. The Ti NPs buffered Zn NPs showed a high transmittance of approximately 91.5% (at a wavelength of 550 nm) and a strong antibacterial activity for Staphylococcus aureus and Escherichia coli bacteria. The buffered Ti NPs are attractive for an excellent mechanical endurance of the Zn NPs. The Zn NPs did not require the protection layer to prevent the degradation of the performance for both the antibacterial effect and the transmittance.

  19. Enhanced interaction between a mechanical oscillator and two coupled resonant electrical circuits

    CERN Document Server

    Dmitriev, A V

    2014-01-01

    This paper reports result of calculation and experimental realization of an electromechanical system that consists of a high-Q mechanical oscillator parametrically coupled in the manner of a capacitive transducer with a RF circuit, which is in turn inductively coupled with another RF circuit. The system operates in the resolved sideband regime when the mechanical oscillator's frequency is larger than the electrical circuits' bandwidths. Using two coupled RF circuits allowed one to enhance the interaction between them and the mechanical oscillator which is one of flexural vibrational modes of a free-edge circular silicon wafer. Such a coupled electromechanical system can be used as a high-sensitive capacitive vibration sensor.

  20. Enhanced Thermo-Optical Switching of Paraffin-Wax Composite Spots under Laser Heating

    Science.gov (United States)

    Said, Asmaa; Salah, Abeer; Abdel Fattah, Gamal

    2017-01-01

    Thermo-optical switches are of particular significance in communications networks where increasingly high switching speeds are required. Phase change materials (PCMs), in particular those based on paraffin wax, provide wealth of exciting applications with unusual thermally-induced switching properties, only limited by paraffin’s rather low thermal conductivity. In this paper, the use of different carbon fillers as thermal conductivity enhancers for paraffin has been investigated, and a novel structure based on spot of paraffin wax as a thermo-optic switch is presented. Thermo-optical switching parameters are enhanced with the addition of graphite and graphene, due to the extreme thermal conductivity of the carbon fillers. Differential Scanning Calorimetry (DSC) and Scanning electron microscope (SEM) are performed on paraffin wax composites, and specific heat capacities are calculated based on DSC measurements. Thermo-optical switching based on transmission is measured as a function of the host concentration under conventional electric heating and laser heating of paraffin-carbon fillers composites. Further enhancements in thermo-optical switching parameters are studied under Nd:YAG laser heating. This novel structure can be used in future networks with huge bandwidth requirements and electric noise free remote aerial laser switching applications. PMID:28772884

  1. Dense Nanostructured Nickel Produced by SPS from Mechanically Activated Powders: Enhancement of Mechanical Properties

    Directory of Open Access Journals (Sweden)

    F. Naimi

    2013-01-01

    Full Text Available An investigation was performed to evaluate the potential of the spark plasma sintering process in producing dense nanostructured materials. Microstructured and nanostructured nickel was sintered by SPS starting from nickel powder (APS 3–7 m in the as-received state and after a mechanical activation using a high-energy ball mill. First, a sintering study to determine SPS processing conditions to reach full densification was carried out with specimens 50 mm in diameter and 10 mm in height. In a second step, an experimental investigation was undertaken with dense nickel disks to generate tensile properties. The tensile tests were performed at a strain rate of 10−3 s−1 with specimens 16 mm in gage length and 4 mm in gage diameter. Tensile ductility in excess of 40% was reached with the microstructured nickel. For the nanostructured nickel, high yield stresses in excess of 600 MPa were measured with a tensile ductility of 30%. These results were analyzed through densification and microstructure measurements.

  2. CO2 sequestration in deep coal seams: experimental characterization of the fundamental underlying mechanisms

    Science.gov (United States)

    Pini, R.; Mazzotti, M.

    2012-04-01

    The process of injecting and storing carbon dioxide (CO2) into suitable deep geological formations, such as saline aquifers, (depleted) oil or gas reservoirs, and unmineable coal seams, is referred to as CO2 sequestration. In little more than a decade, this technology has emerged as one of the most important options for reducing CO2 emissions. Among the different options, unmineable coal seams are not as broadly distributed as saline aquifers or oil/gas reservoirs, but their peculiarity resides in the proven capacity of retaining significant amount of gas (mainly methane, CH4) for a very long time. Additionally, the injection of CO2 into the coal reservoir would enhance the recovery of this natural gas, a source of energy that will most likely play a key role in the power sector over the next 20 years from now. This process is called Enhanced Coal Bed Methane (ECBM) recovery and, as for enhanced oil recovery, it allows in principle offsetting the costs associated to the storage operation. A study was undertaken aimed at the experimental characterization of the fundamental mechanisms that take place during the process of injection and storage in coal reservoirs, namely adsorption and swelling (Pini et al 2010), and of their effects on the coal's permeability (Pini et al. 2009), the property that plays a dominant role in controlling fluid transport in a porous rock. An apparatus has been built that allows measuring the permeability of rock cores under typical reservoir conditions (high pressure and temperature) by the so-called transient step method. For this study, a coal core from the Sulcis coal mine in Sardinia (Italy) has been used. In the experiments, an inert gas (helium) was used to investigate the effects of the effective pressure on the permeability of the coal sample, whereas two adsorbing gases (CO2 and N2) to quantify those of adsorption and swelling. The experiments have been interpreted by a one-dimensional model that describes the fluid transport

  3. Modeling shear failure and permeability enhancement due to coupled Thermal-Hydrological-Mechanical processes in Enhanced Geothermal Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Kelkar, Sharad [Los Alamos National Laboratory

    2011-01-01

    The connectivity and accessible surface area of flowing fractures, whether natural or man-made, is possibly the single most important factor, after temperature, which determines the feasibility of an Enhanced Geothermal System (EGS). Rock deformation and in-situ stress changes induced by injected fluids can lead to shear failure on preexisting fractures which can generate microseismic events, and also enhance the permeability and accessible surface area of the geothermal formation. Hence, the ability to accurately model the coupled thermal-hydrologic-mechanical (THM) processes in fractured geological formations is critical in effective EGS reservoir development and management strategies. The locations of the microseismic events can serve as indicators of the zones of enhanced permeability, thus providing vital information for verification of the coupled THM models. We will describe a general purpose computational code, FEHM, developed for this purpose, that models coupled THM processes during multiphase fluid flow and transport in fractured porous media. The code incorporates several models of fracture aperture and stress behavior combined with permeability relationships. We provide field scale examples of applications to geothermal systems to demonstrate the utility of the method.

  4. Mechanism of instability of carbides in Fe-TaC alloy under high energy electron irradiation at 673 K

    Science.gov (United States)

    Abe, Hiroaki; Ishizaki, Takahiro; Kano, Sho; Li, Feng; Satoh, Yuhki; Tanigawa, Hiroyasu; Hamaguchi, Dai; Nagase, Takeshi; Yasuda, Hidehiro

    2014-12-01

    Reduced activation ferritic/martensitic steels (RAFMs), such as F82H steel, are designed to enhance the high-temperature strength by formation of MX-type nanometer-scale precipitates, mainly TaC. However, their instability under irradiation was recently reported. The purpose of this work, therefore, is to clarify the mechanism employing simultaneous observations under electron irradiation at elevated temperature in a high voltage electron microscope. In this work, Fe-0.2 wt.% TaC was fabricated as a model alloy of F82H steel. The instability of the precipitates was observed under electron irradiation at 1 MeV or above. The remarkable shrinkage and disappearance were clearly observed under irradiation with 1.5 MeV and above. On the contrary, the precipitates were mostly stable below 0.75 MeV. Two kinds of mechanism of the irradiation-induced instability were deduced from the electron-energy dependence. One is the dissolution and diffusion of tantalum from precipitates in ferrite matrix. The other is the displacements of tantalum in precipitates that introduce dissolution of Ta into matrix.

  5. Mechanical properties of gold twinned nanocubes under different triaxial tensile rates

    Science.gov (United States)

    Yang, Zailin; Zhang, Guowei; Luo, Gang; Sun, Xiaoqing; Zhao, Jianwei

    2016-08-01

    The gold twinned nanocubes under different triaxial tensile rates are explored by molecular dynamics simulation. Hydrostatic stress and Mises stress are defined in order to understand triaxial stresses. Twin boundaries prevent dislocations between twin boundaries from developing and dislocation angles are inconspicuous, which causes little difference between triaxial stresses. The mechanical properties of the nanocubes under low and high tensile rates are different. The curves of nanocubes under high tensile rates are more abrupt than those under low tensile rates. When the tensile rate is extremely big, the loadings are out of the nanocubes and there are not deformation and fracture in the internal nanocubes.

  6. Enhanced Brewer Dobson circulation reduces N2O warming potential under climate change

    Science.gov (United States)

    Kracher, Daniela; Reick, Christian; Manzini, Elisa; Schultz, Martin; Stein, Olaf

    2016-04-01

    One implication of climate change is an enhancement of the Brewer Dobson circulation (BDC) triggering the exchange between troposphere and stratosphere. This change in atmospheric dynamics will have effects on atmospheric constituents, especially those with stratospheric sinks such as ozone depleting substances (ODS) including nitrous oxide (N2O). N2O is the most important currently emitted ODS, and the third most important anthropogenic greenhouse gas. Under enhanced BDC, more N2O is transported from the troposphere into the stratosphere, reaching higher altitudes, resulting in an increased N2O sink and a decrease in N2O lifetime. Some aspects of the effect of an enhanced BDC on lifetimes of ODS have already been examined with focus on its implications for ozone. In this study, we examine the effect of a decreasing N2O lifetime in light of climate change. To this end we conduct idealized transient global warming simulations with ECHAM, the atmosphere component of the MPI Earth System Model. As we prescribe surface flux boundary conditions for N2O, we are able to examine further implications of an enhanced N2O sink on atmospheric abundance, which is an important factor for e.g. generating concentration scenarios. Due the idealized simulation setup, we derive findings that are scenario-independent and can easily be extended to other global warming scenarios.

  7. Privacy-Enhanced and Multifunctional Health Data Aggregation under Differential Privacy Guarantees

    Science.gov (United States)

    Ren, Hao; Li, Hongwei; Liang, Xiaohui; He, Shibo; Dai, Yuanshun; Zhao, Lian

    2016-01-01

    With the rapid growth of the health data scale, the limited storage and computation resources of wireless body area sensor networks (WBANs) is becoming a barrier to their development. Therefore, outsourcing the encrypted health data to the cloud has been an appealing strategy. However, date aggregation will become difficult. Some recently-proposed schemes try to address this problem. However, there are still some functions and privacy issues that are not discussed. In this paper, we propose a privacy-enhanced and multifunctional health data aggregation scheme (PMHA-DP) under differential privacy. Specifically, we achieve a new aggregation function, weighted average (WAAS), and design a privacy-enhanced aggregation scheme (PAAS) to protect the aggregated data from cloud servers. Besides, a histogram aggregation scheme with high accuracy is proposed. PMHA-DP supports fault tolerance while preserving data privacy. The performance evaluation shows that the proposal leads to less communication overhead than the existing one. PMID:27626417

  8. Privacy-Enhanced and Multifunctional Health Data Aggregation under Differential Privacy Guarantees.

    Science.gov (United States)

    Ren, Hao; Li, Hongwei; Liang, Xiaohui; He, Shibo; Dai, Yuanshun; Zhao, Lian

    2016-09-10

    With the rapid growth of the health data scale, the limited storage and computation resources of wireless body area sensor networks (WBANs) is becoming a barrier to their development. Therefore, outsourcing the encrypted health data to the cloud has been an appealing strategy. However, date aggregation will become difficult. Some recently-proposed schemes try to address this problem. However, there are still some functions and privacy issues that are not discussed. In this paper, we propose a privacy-enhanced and multifunctional health data aggregation scheme (PMHA-DP) under differential privacy. Specifically, we achieve a new aggregation function, weighted average (WAAS), and design a privacy-enhanced aggregation scheme (PAAS) to protect the aggregated data from cloud servers. Besides, a histogram aggregation scheme with high accuracy is proposed. PMHA-DP supports fault tolerance while preserving data privacy. The performance evaluation shows that the proposal leads to less communication overhead than the existing one.

  9. A hybrid atomistic electrodynamics-quantum mechanical approach for simulating surface-enhanced Raman scattering.

    Science.gov (United States)

    Payton, John L; Morton, Seth M; Moore, Justin E; Jensen, Lasse

    2014-01-21

    Surface-enhanced Raman scattering (SERS) is a technique that has broad implications for biological and chemical sensing applications by providing the ability to simultaneously detect and identify a single molecule. The Raman scattering of molecules adsorbed on metal nanoparticles can be enhanced by many orders of magnitude. These enhancements stem from a twofold mechanism: an electromagnetic mechanism (EM), which is due to the enhanced local field near the metal surface, and a chemical mechanism (CM), which is due to the adsorbate specific interactions between the metal surface and the molecules. The local field near the metal surface can be significantly enhanced due to the plasmon excitation, and therefore chemists generally accept that the EM provides the majority of the enhancements. While classical electrodynamics simulations can accurately simulate the local electric field around metal nanoparticles, they offer few insights into the spectral changes that occur in SERS. First-principles simulations can directly predict the Raman spectrum but are limited to small metal clusters and therefore are often used for understanding the CM. Thus, there is a need for developing new methods that bridge the electrodynamics simulations of the metal nanoparticle and the first-principles simulations of the molecule to facilitate direct simulations of SERS spectra. In this Account, we discuss our recent work on developing a hybrid atomistic electrodynamics-quantum mechanical approach to simulate SERS. This hybrid method is called the discrete interaction model/quantum mechanics (DIM/QM) method and consists of an atomistic electrodynamics model of the metal nanoparticle and a time-dependent density functional theory (TDDFT) description of the molecule. In contrast to most previous work, the DIM/QM method enables us to retain a detailed atomistic structure of the nanoparticle and provides a natural bridge between the electronic structure methods and the macroscopic

  10. Antioxidant Property Enhancement of Sweet Potato Flour under Simulated Gastrointestinal pH

    Directory of Open Access Journals (Sweden)

    Maznah Ismail

    2012-07-01

    Full Text Available Sweet potato is known to be rich in healthful antioxidants, but the stability of its antioxidant properties under gastrointestinal pH is very much unknown. Hence, this study aimed to evaluate the changes in antioxidant properties (total contents of phenolics and flavonoids as well as antioxidant activity of sweet potato flour (SPF under simulated gastrointestinal pH conditions. It was found that the yield of SPF crude phenolic extract increased from 0.29 to 3.22 g/100 g SPF upon subjection to gastrointestinal pH conditions (p < 0.05. Also elevated significantly were the total phenolic content (TPC, total flavonoid content (TFC and antioxidant activity of SPF (p < 0.05. In summary, the antioxidant properties of SPF were enhanced under gastrointestinal pH conditions, suggesting that SPF might possess a considerable amount of bound phenolic and other antioxidative compounds. The antioxidant properties of SPF are largely influenced by pH and thus might be enhanced during the in vivo digestive process.

  11. Mechanical response under contact loads of AlCrN-coated tool materials

    Science.gov (United States)

    Yang, J.; Botero, C. A.; Cornu, N.; Ramírez, G.; Mestra, A.; Llanes, L.

    2013-12-01

    The mechanical behavior under contact loading of systems consisting of PVD AlCrN film deposited onto two distinct hard substrates - cemented carbides and tool steel is studied by means of indentation testing techniques, under monotonic and cyclic condition. Experimental work includes assessment of critical applied loads for emergence of circular cracks at the coating surface, as well as evaluation of both surface and subsurface damage evolution. Results indicate that both coated systems are susceptible to mechanical degradation associated with repetitive contact load. Furthermore, significant differences on contact fatigue behavior between the two studied coated systems are evidenced under consideration of cracking evolution at top surface and penetration towards the substrate. In this regard, the intrinsic mechanical properties of the substrate are pointed out as key feature for rationalizing the experimental findings.

  12. Enhanced optoelectronic property of ZnO under negative pressure condition: a first-principles study

    Science.gov (United States)

    Singh, Santosh; Nath Tripathi, Madhvendra

    2016-08-01

    In contrary to high pressure phases of ZnO, recent experimental evidence suggests that β-BeO type lattice modification of ZnO may be realised under negative pressure condition generated by lattice mismatch or by applying strain. The first-principles calculation based on density functional theory (DFT) is employed to investigate the negative pressure phase β-BeO, and the outcomes of the structural, electronic, and optical properties of this phase are compared with the ambient condition wurtzite B4 phase of ZnO. Our phase transition study shows that the B4 phase transforms into the β-BeO phase around negative pressure of -4 GPa and this new phase retains its structural stability even under more negative pressure. Further, the volume of the β-BeO phase increases resulting in a low-density phase with more anisotropic nature and distorted tetrahedral around Zn (or O) atoms along with (2 + 2) coordination as compared to B4 phase. The electronic structure of low-density β-BeO phase changes significantly, however, the band gaps of both the phases are almost same. The change in electronic structure of β-BeO phase turns into a significant blue shift in lower energy region of optical spectra. Moreover, the smaller effective mass values of charge carriers in β-BeO phase compared to B4 phase indicate high mobilities of charge carriers to attain enhanced conductivity. Further, the analysis of optical properties of β-BeO phase indicate the smaller values of reflectivity and absorption coefficients and consequently an enhanced transmittance value of 90% in visible region of optical spectra. The lower effective masses of charge carriers and enhancement in transmittance makes the low density negative pressure β-BeO phase suitable for achieving enhanced optoelectronic property of ZnO.

  13. DETERMINATION OF THE EFFECTIVE RADIAL THERMAL DIFFUSIVITY FOR EVALUATING ENHANCED HEAT TRANSFER IN TUBES UNDER NON-NEWTONIAN LAMINAR FLOW

    Directory of Open Access Journals (Sweden)

    A. O. Morais

    2015-06-01

    Full Text Available AbstractEnhanced heat transfer in tubes under laminar flow conditions can be found in coils or corrugated tubes or in the presence of high wall relative roughness, curves, pipe fittings or mechanical vibration. Modeling these cases can be complex because of the induced secondary flow. A modification of the Graetz problem for non-Newtonian power-law flow is proposed to take into account the augmented heat transfer by the introduction of an effective radial thermal diffusivity. The induced mixing was modeled as an increased radial heat transfer in a straight tube. Three experiments using a coiled tube and a tubular heat exchanger with high relative wall roughness are presented in order to show how this parameter can be obtained. Results were successfully correlated with Reynolds number. This approach can be useful for modeling laminar flow reactors (LFR and tubular heat exchangers available in the chemical and food industries.

  14. Quantum versus classical foundation of statistical mechanics under experimentally realistic conditions.

    Science.gov (United States)

    Reimann, Peter; Evstigneev, Mykhaylo

    2013-11-01

    Focusing on isolated macroscopic systems, described in terms of either a quantum mechanical or a classical model, our two key questions are how far does an initial ensemble (usually far from equilibrium and largely unknown in detail) evolve towards a stationary long-time behavior (equilibration) and how far is this steady state in agreement with the microcanonical ensemble as predicted by statistical mechanics (thermalization). A recently developed quantum mechanical treatment of the problem is briefly summarized, putting particular emphasis on the realistic modeling of experimental measurements and nonequilibrium initial conditions. Within this framework, equilibration can be proven under very weak assumptions about those measurements and initial conditions, while thermalization still requires quite strong additional hypotheses. An analogous approach within the framework of classical mechanics is developed and compared with the quantum case. In particular, the assumptions to guarantee classical equilibration are now rather strong, while thermalization then follows under relatively weak additional conditions.

  15. Evaluation of explosive sublimation as the mechanism of nanosecond laser ablation of tungsten under vacuum conditions

    Science.gov (United States)

    Oderji, Hassan Yousefi; Farid, Nazar; Sun, Liying; Fu, Cailong; Ding, Hongbin

    2016-08-01

    A non-equilibrium mechanism for nanosecond laser ablation is suggested herein, and its predictions are compared to the results of W experiments performed under vacuum conditions. A mechanism of particle formation is explained via this model, with partial sublimation of the superheated irradiated zone of the target considered to be the mechanism of laser ablation. In this study, a mixture of vapor and particles was explosively generated and subsequently prevented the rest of a laser pulse from reaching its intended target. This mechanism was found to play an essential role in the ablation of W under vacuum conditions, and it provides a theoretical justification for particle formation. Moreover, special considerations were taken into account for the expansion of plasma into a vacuum. The model was evaluated by measuring the mass of ablated particles using a quartz crystal deposition monitor and time-resolved optical emission spectroscopy. The results of this model were found to be in good agreement with experimental values.

  16. Enhanced fouling by inorganic and organic foulants on pressure retarded osmosis (PRO) hollow fiber membranes under high pressures

    KAUST Repository

    Chen, Sicong

    2015-04-01

    We have studied, for the first time, the fouling behavior of pressure retarded osmosis (PRO) hollow fiber membranes under low, moderate and high hydraulic pressures. The thin film composite (TFC) polyethersulfone (PES) membrane has a high water permeability and good mechanical strength. Membrane fouling by gypsum (CaSO4·2H2O) scalants, sodium alginate, and the combined foulants was examined under various pressures up to an ultrahigh hydraulic pressure of 18bar. In the combined fouling experiments, the membranes were conditioned by one of foulants followed by the other. Flux decline results suggested that such conditioning could increase the rate of combined fouling because of the change in membrane surface chemistry. Specially, the co-existence of gypsum crystals and alginate under 0bar led to the synergistic combined fouling and resulted in a greater flux decline than the sum of individual fouling. Interestingly, such gypsum-alginate synergistic fouling was not observed under high pressure PRO tests because the increased reverse salt flux inhibited the formation of gypsum crystals. Therefore, alginate fouling could be the dominant fouling mechanism for both (1) alginate conditioning and then scalants fouling, and (2) scalants conditioning and then alginate fouling PRO processes under 8bar and 18bar. Since the reverse salt flux increases from 5.6±1.1g/m2h at 0bar to 74.3±9.7g/m2h at 8bar, and finally to 150.5±2.5g/m2h under 18bar, the reverse salt ions lead to substantial declines of normalized flux under 8bar and 18bar because the reverse sodium ions not only reduce the effective driving force across the PRO membrane but also induce a significant cake-enhanced sodium concentration polarization layer and facilitate alginate gelation near the membrane surface. Therefore, the removal of alginate type foulants from the feed water stream may become essential for the success of PRO processes under high pressures.

  17. Mechanical behavior of the U-anchor of super-CFRP rod under tensile loading

    OpenAIRE

    Djamaluddin, Rudy; yamaguchi, Kohei; Hino, Shinichi

    2014-01-01

    - A suitable anchoring system is required to anchor a CFRP tendon due to its sensitivity in lateral pressure. Recent developed anchors are still relying on lateral pressure in anchoring CFRP tendons. A new CFRP unit equipped with U-anchor at both end of the rod body without any jointing (namely of Super CFRP, S-CFRP) has been developed. This paper presents the mechanical behavior as well as failure mechanism of U-anchor under direct loading and loaded under embedded within concrete, respec...

  18. Adsorption mechanism of different coal ranks under variable temperature and pressure conditions

    Institute of Scientific and Technical Information of China (English)

    ZHANG Qing-ling

    2008-01-01

    Variable temperature and pressure adsorption tests were conducted on four coal samples with different coal ranks, under simulated temperatures and pressures corresponding to coal reservoirs at different depths. The regularity of the variation in the amounts of adsorption by coals under variable temperature and pressure and 30 ~C isothermal conditions are compared and the adsorption characteristics of coal under the composite effect of temperature and pressure were obtained. The adsorption test and data processing method of coal under variable temperature and pressure are presented and the effect of the mechanism of tempera-ture and pressure on the adsorption capacity of coal has been studied. The research results are of significant importance in the in-vestigation of coalbed methane storage mechanism and for the prediction of the amounts of coalbed methane at various depths.

  19. Mechanical model for yield strength of nanocrystalline materials under high strain rate loading

    Institute of Scientific and Technical Information of China (English)

    朱荣涛; 周剑秋; 马璐; 张振忠

    2008-01-01

    To understand the high strain rate deformation mechanism and determine the grain size,strain rate and porosity dependent yield strength of nanocrystalline materials,a new mechanical model based on the deformation mechanism of nanocrystalline materials under high strain rate loading was developed.As a first step of the research,the yield behavior of the nanocrystalline materials under high strain rate loading was mainly concerned in the model and uniform deformation was assumed for simplification.Nanocrystalline materials were treated as composites consisting of grain interior phase and grain boundary phase,and grain interior and grain boundary deformation mechanisms under high strain rate loading were analyzed,then Voigt model was applied to coupling grain boundary constitutive relation with mechanical model for grain interior phase to describe the overall yield mechanical behavior of nanocrystalline materials.The predictions by the developed model on the yield strength of nanocrysatlline materials at high strain rates show good agreements with various experimental data.Further discussion was presented for calculation results and relative experimental observations.

  20. CFD Analysis of Migration Mechanism of Source Term Under Severe Accident

    Institute of Scientific and Technical Information of China (English)

    CHEN; Lin-lin; SUN; Xue-ting; JI; Song-tao

    2013-01-01

    The analysis of the migration of source term under severe accident is one of the important aspects of‘Studies on Migration Mechanism of the Source Term under Severe Accident’,which is a significant task of the National Large Advanced PWR Research Program.This research aims at building up a method for analyzing fission product behavior in the containment with CFD code.The effect of PCCS(Passive

  1. Model test study of evaporation mechanism of sand under constant atmospheric condition

    OpenAIRE

    Cui, Yu Jun; Ding, Wenqi; SONG, Weikang

    2014-01-01

    The evaporation mechanism of Fontainebleau sand using a large-scale model chamber is studied. First, the evaporation test on a layer of water above sand surface is performed under various atmospheric conditions, validating the performance of the chamber and the calculation method of actual evaporation rate by comparing the calculated and measured cumulative evaporations. Second,the evaporation test on sand without water layer is conducted under constant atmospheric condition. Both the evoluti...

  2. Clavulanic acid increases dopamine release in neuronal cells through a mechanism involving enhanced vesicle trafficking

    Science.gov (United States)

    Kost, Gina Chun; Selvaraj, Senthil; Lee, Young Bok; Kim, Deog Joong; Ahn, Chang-Ho; Singh, Brij B

    2011-01-01

    Clavulanic acid is a CNS-modulating compound with exceptional blood-brain barrier permeability and safety profile. Clavulanic acid has been proposed to have anti-depressant activity and is currently entering Phase IIb clinical trials for the treatment of Major Depressive Disorder (MDD). Studies have also shown that clavulanic acid suppresses anxiety and enhances sexual functions in rodent and primate models by a mechanism involving central nervous system (CNS) modulation, although its detailed mechanism of action has yet to be elucidated. To further examine its potential as a CNS modulating agent as well as its mechanism of action, we investigated the effects of clavulanic acid in neuronal cells. Our results indicate that clavulanic acid enhances dopamine release in PC12 and SH-SY5Y cells without affecting dopamine synthesis. Furthermore, using affinity chromatography we were able to identify two proteins, Munc18-1 and Rab4 that potentially bind to clavulanic acid and play a critical role in neurosecretion and the vesicle trafficking process. Consistent with this result, an increase in the translocation of Munc18-1 and Rab4 from the cytoplasm to the plasma membrane was observed in clavulanic acid treated cells. Overall, these data suggest that clavulanic acid enhances dopamine release in a mechanism involving Munc18-1 and Rab4 modulation and warrants further investigation of its therapeutic use in CNS disorders, such as depression. PMID:21964384

  3. Clavulanic acid increases dopamine release in neuronal cells through a mechanism involving enhanced vesicle trafficking.

    Science.gov (United States)

    Kost, Gina Chun; Selvaraj, Senthil; Lee, Young Bok; Kim, Deog Joong; Ahn, Chang-Ho; Singh, Brij B

    2011-10-24

    Clavulanic acid is a CNS-modulating compound with exceptional blood-brain barrier permeability and safety profile. Clavulanic acid has been proposed to have anti-depressant activity and is currently entering Phase IIb clinical trials for the treatment of Major Depressive Disorder (MDD). Studies have also shown that clavulanic acid suppresses anxiety and enhances sexual functions in rodent and primate models by a mechanism involving central nervous system (CNS) modulation, although its detailed mechanism of action has yet to be elucidated. To further examine its potential as a CNS modulating agent as well as its mechanism of action, we investigated the effects of clavulanic acid in neuronal cells. Our results indicate that clavulanic acid enhances dopamine release in PC12 and SH-SY5Y cells without affecting dopamine synthesis. Furthermore, using affinity chromatography we were able to identify two proteins, Munc18-1 and Rab4 that potentially bind to clavulanic acid and play a critical role in neurosecretion and the vesicle trafficking process. Consistent with this result, an increase in the translocation of Munc18-1 and Rab4 from the cytoplasm to the plasma membrane was observed in clavulanic acid treated cells. Overall, these data suggest that clavulanic acid enhances dopamine release in a mechanism involving Munc18-1 and Rab4 modulation and warrants further investigation of its therapeutic use in CNS disorders, such as depression.

  4. A Mobility-Aware Link Enhancement Mechanism for Vehicular Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    Huang Chenn-Jung

    2008-01-01

    Full Text Available Abstract With the growth up of internet in mobile commerce, researchers have reproduced various mobile applications that vary from entertainment and commercial services to diagnostic and safety tools. Mobility management has widely been recognized as one of the most challenging problems for seamless access to wireless networks. In this paper, a novel link enhancement mechanism is proposed to deal with mobility management problem in vehicular ad hoc networks. Two machine learning techniques, namely, particle swarm optimization and fuzzy logic systems, are incorporated into the proposed schemes to enhance the accuracy of prediction of link break and congestion occurrence. The experimental results verify the effectiveness and feasibility of the proposed schemes.

  5. A Mobility-Aware Link Enhancement Mechanism for Vehicular Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    Kai-Wen Hu

    2008-04-01

    Full Text Available With the growth up of internet in mobile commerce, researchers have reproduced various mobile applications that vary from entertainment and commercial services to diagnostic and safety tools. Mobility management has widely been recognized as one of the most challenging problems for seamless access to wireless networks. In this paper, a novel link enhancement mechanism is proposed to deal with mobility management problem in vehicular ad hoc networks. Two machine learning techniques, namely, particle swarm optimization and fuzzy logic systems, are incorporated into the proposed schemes to enhance the accuracy of prediction of link break and congestion occurrence. The experimental results verify the effectiveness and feasibility of the proposed schemes.

  6. Enhanced power saving mechanism for supporting multicast services in 802.11 wireless LANs

    Institute of Scientific and Technical Information of China (English)

    Yong HE; Rui-xi YUAN; Xiao-jun MA; Jun LI

    2009-01-01

    Traditional 802. 11 power saving mechanism (PSM) treats multicast and broadcast traffic equally, and suffers significant performance degradation with multicast background traffic. This paper proposes an enhanced PSM that effectively differentiates multicast streams. It re-arranges the virtual bitmap of the traffic indication map (TIM) to carry traffic status for multicast groups and introduces a concept of sequential transmission of multi-addressed data to facilitate differentiation among multicast groups. Our analysis shows that the enhanced PSM can effectively save power in mixed traffic environments.

  7. New insights into the molecular mechanisms of thrombosis from high resolution surface enhanced Raman microscopy

    Science.gov (United States)

    Keyes, Tia E.; Leane, Deirdre; Forster, Robert J.; Moran, Niamh; Kenny, Dermot

    2005-06-01

    Occlusion of a blood vessel due to thrombosis can reduce or completely stop blood supply to different tissues or organs with the clinical consequences of myocardial infarction or stroke. Platelets are the cellular component which initiate thrombus formation, they activate in response to a variety of signals, such as interactions with a damaged blood vessel. αIIbβ3 is a membrane bound integrin protein responsible for regulating adhesion of the activated platelet to damaged blood vessels. It exists in both activated and non-activated states displaying high and low affinity respectively for ligands such as fibrinogen. αIIbβ3 determines the "stickiness" of the blood platelet and is therefore, a logical target for therapeutic measures to control thrombus formation. During the past decade considerable progress has been made to identify the role of the αIIbβ3 complex in platelet-mediated thrombus formation and the structure of αIIbβ3 has been extrapolated from the crystal structure of related integrins. However, despite these advances, the bimolecular mechanisms underlying the activation of αIIbβ3 remain poorly understood. In this contribution, we describe methodologies of deriving surface enhanced Raman spectroscopy of αIIbβ3 on nanostructured metal surfaces, fabricated by a number of methods. We compare activation of αIIbβ3 by SERS using a range of known activation conditions including Mn(II), EDTA and dithiotheritol (DTT). By studying the behaviour of the disulfide and CS marker vibrations in the spectral region 400 to 800 cm-1 using SERS we confirm that activation results in significant conformational change in the protein, and most interestingly, that the response is not the same for every agonist. This mechanistic difference has implications for the biochemical study of this protein (and indeed for understanding the role of this integrin in response to different agonists).

  8. Cadmium removal by Euglena gracilis is enhanced under anaerobic growth conditions

    Energy Technology Data Exchange (ETDEWEB)

    Santiago-Martínez, M. Geovanni; Lira-Silva, Elizabeth; Encalada, Rusely; Pineda, Erika; Gallardo-Pérez, Juan Carlos [Departamento de Bioquímica, Instituto Nacional de Cardiología (Mexico); Zepeda-Rodriguez, Armando [Facultad de Medicina, UNAM, Mexico City (Mexico); Moreno-Sánchez, Rafael; Saavedra, Emma [Departamento de Bioquímica, Instituto Nacional de Cardiología (Mexico); Jasso-Chávez, Ricardo, E-mail: rjass_cardiol@yahoo.com.mx [Departamento de Bioquímica, Instituto Nacional de Cardiología (Mexico)

    2015-05-15

    Highlights: • The protist Euglena gracilis had the ability to grow and remove large amounts of Cd{sup 2+} under anaerobic conditions. • High biomass was attained by combination of glycolytic and mitochondrial carbon sources. • Routes of degradation of glucose, glutamate and malate under anaerobic conditions in E. gracilis are described. • Biosorption was the main mechanism of Cd{sup 2+} removal in anaerobiosis, whereas the Cd{sup 2+} intracellularly accumulated was inactivated by thiol-molecules and polyphosphate. - Abstract: The facultative protist Euglena gracilis, a heavy metal hyper-accumulator, was grown under photo-heterotrophic and extreme conditions (acidic pH, anaerobiosis and with Cd{sup 2+}) and biochemically characterized. High biomass (8.5 × 10{sup 6} cells mL{sup −1}) was reached after 10 days of culture. Under anaerobiosis, photosynthetic activity built up a microaerophilic environment of 0.7% O{sub 2}, which was sufficient to allow mitochondrial respiratory activity: glutamate and malate were fully consumed, whereas 25–33% of the added glucose was consumed. In anaerobic cells, photosynthesis but not respiration was activated by Cd{sup 2+} which induced higher oxidative stress. Malondialdehyde (MDA) levels were 20 times lower in control cells under anaerobiosis than in aerobiosis, although Cd{sup 2+} induced a higher MDA production. Cd{sup 2+} stress induced increased contents of chelating thiols (cysteine, glutathione and phytochelatins) and polyphosphate. Biosorption (90%) and intracellular accumulation (30%) were the mechanisms by which anaerobic cells removed Cd{sup 2+} from medium, which was 36% higher versus aerobic cells. The present study indicated that E. gracilis has the ability to remove Cd{sup 2+} under anaerobic conditions, which might be advantageous for metal removal in sediments from polluted water bodies or bioreactors, where the O{sub 2} concentration is particularly low.

  9. Modeling and numerical analysis of granite rock specimen under mechanical loading and fire

    Institute of Scientific and Technical Information of China (English)

    Luc Leroy Ngueyep. Mambou; Joseph Ndop; Jean-Marie Bienvenu Ndjaka

    2015-01-01

    The effect of ISO 834 fire on the mechanical properties of granite rock specimen submitted to uniaxial loading is numerically investigated. Based on Newton’s second law, the rate-equation model of granite rock specimen under mechanical load and fire is established. The effect of heat treatment on the me-chanical performance of granite is analyzed at the center and the ends of specimen. At the free end of granite rock specimen, it is shown that from 20 ?C to 500 ?C, the internal stress and internal strain are weak; whereas above 500 ?C, they start to increase rapidly, announcing the imminent collapse. At the center of specimen, the analysis of the internal stress and internal strain reveals that the fire reduces the mechanical performance of granite significantly. Moreover, it is found that after 3 min of exposure to fire, the mechanical energy necessary to fragment the granite can be reduced up to 80%.

  10. Mechanisms for decoration of dislocations by small dislocation loops under cascade damage conditions

    DEFF Research Database (Denmark)

    Trinkaus, H.; Singh, B.N.; Foreman, A.J.E.

    1997-01-01

    In metals under cascade damage conditions, dislocations are frequently found to be decorated with a high density of small clusters of self-interstitial atoms (SIAs) in the form of dislocation loops, particularly during the early stages of the microstructural evolution in well annealed pure metals....... This effect may arise as a result of either (a) migration and enhanced agglomeration of single SIAs in the form of loops in the strain field of the dislocation or (b) glide and trapping of SIA loops (produced directly in the cascades) in the strain field of the dislocation, In the present paper, both...... of these possibilities are examined. It is shown that the strain field of the dislocation causes a SIA depletion in the compressive as well as in the dilatational region resulting in a reduced rather than enhanced agglomeration of SIAs. (SIA depletion may, however, induce enhanced vacancy agglomeration near dislocations...

  11. Enhanced growth of Juniperus thurifera under a warmer climate is explained by a positive carbon gain under cold and drought.

    Science.gov (United States)

    Gimeno, Teresa E; Camarero, J Julio; Granda, Elena; Pías, Beatriz; Valladares, Fernando

    2012-03-01

    Juniperus thurifera L. is an endemic conifer of the western Mediterranean Basin where it is subjected to a severe climatic stress characterized by low winter temperatures and summer drought. Given the trend of increased warming-induced drought stress in this area and the climatic sensitivity of this species, we expect a negative impact of climate change on growth and ecophysiological performance of J. thurifera in the harsh environments where it dominates. To evaluate this, we measured long- and short-term radial growth using dendrochronology, photosynthesis and water-use efficiency in males, females and juveniles in three sites in Central Spain. Climate was monitored and completed with historical records. Mean annual temperature has increased +0.2 °C per decade in the study area, and the main warming trends corresponded to spring (+0.2 °C per decade) and summer (+0.3 °C per decade). Radial growth and maximum photosynthesis peaked in spring and autumn. Positive photosynthetic rates were maintained all year long, albeit at reduced rates in winter and summer. Radial growth was enhanced by wet conditions in the previous autumn and by warm springs and high precipitation in summer of the year of tree-ring formation. Cloud cover during the summer increased growth, while cloudy winters led to impaired carbon gain and reduced growth in the long term. We argue that maintenance of carbon gain under harsh conditions (low winter temperatures and dry summer months) and plastic xylogenesis underlie J. thurifera's ability to profit from changing climatic conditions such as earlier spring onset and erratic summer rainfall. Our results highlight that not only the magnitude but also the sign of the impact of climate change on growth and persistence of Mediterranean trees is species specific.

  12. Enhanced dichloroethene biodegradation in fractured rock under biostimulated and bioaugmented conditions

    Science.gov (United States)

    Bradley, Paul M.; Journey, Celeste A.; Kirshtein, Julie D.; Voytek, Mary A.; Lacombe, Pierre J.; Imbrigiotta, Thomas E.; Chapelle, Francis H.; Tiedeman, Claire J.; Goode, Daniel J.

    2012-01-01

    Significant microbial reductive dechlorination of [1,2 14C] cis-dichloroethene (DCE) was observed in anoxic microcosms prepared with unamended, fractured rock aquifer materials, which were colonized in situ at multiple depths in two boreholes at the Naval Air Warfare Center (NAWC) in West Trenton, New Jersey. The lack of significant reductive dechlorination in corresponding water-only treatments indicated that chlororespiration activity in unamended, fractured rock treatments was primarily associated with colonized core material. In these unamended fractured rock microcosms, activity was highest in the shallow zones and generally decreased with increasing depth. Electron-donor amendment (biostimulation) enhanced chlororespiration in some but not all treatments. In contrast, combining electron-donor amendment with KB1 amendment (bioaugmentation) enhanced chlororespiration in all treatments and substantially reduced the variability in chlororespiration activity both within and between treatments. These results indicate (1) that a potential for chlororespiration-based bioremediation exists at NAWC Trenton but is limited under nonengineered conditions, (2) that the limitation on chlororespiration activity is not entirely due to electron-donor availability, and (3) that a bioaugmentation approach can substantially enhance in situ bioremediation if the requisite amendments can be adequately distributed throughout the fractured rock matrix.

  13. Improving the durability of a drag-reducing nanocoating by enhancing its mechanical stability.

    Science.gov (United States)

    Cheng, Mengjiao; Zhang, Songsong; Dong, Hongyu; Han, Shihui; Wei, Hao; Shi, Feng

    2015-02-25

    The durability of superhydrophobic surface is a major problem to restrict industrial application of superhydrophobic materials from laboratory research, which can be attributed to a more general issue of mechanical stability for superhydrophobic coatings. Therefore, in order to handle this issue, we have fabricated a mechanically stable drag-reducing coating composed of elastic polydimethylsiloxane (PDMS) and hydrophobic copper particles on model ships, which can resist mechanical abrasion and has displayed a durable drag-reducing effect. In comparison with normal Au superhydrophobic coatings, the as-prepared PDMS/copper coatings showed durable drag reduction performance with a similar drag-reducing rate before (26%) and after (24%) mechanical abrasion. The mechanism for the enhanced mechanical stability and maintained drag reduction of the superhydrophobic surfaces was investigated through characterizations of surface morphology, surface wettability, and water adhesive force evaluation before and after abrasion. This is the first demonstration to realize the application of durable drag reduction by improving the mechanical stability of superhydrophobic coatings. We do believe that superhydrophobic surfaces with good resistance to mechanical abrasion or scratching may draw wide attention and gain significant applications with durable drag-reducing properties.

  14. Enhancing buckling capacity of a rectangular plate under uniaxial compression by utilizing an auxetic material

    Institute of Scientific and Technical Information of China (English)

    Zhang Yongcun; Li Xiaobin; Liu Shutian

    2016-01-01

    Auxetic materials have previously been shown to enhance various performances due to its unusual property of becoming fatter when uniaxially stretched and thinner when uniaxially com-pressed (i.e., the materials exhibit a negative Poisson’s ratio). The current study focuses on assessing the potential of an auxetic material to enhance the buckling capacity of a rectangular plate under uniaxial compression. The in-plane translational restraint along the unloaded edges that was often neglected in open literature is taken into consideration in our buckling model proposed in this study. The closed-form expressions for the critical buckling coefficient of the rectangle are provided and the predicted results agree well with those determined by the finite element method. Further-more, the results indicate that the buckling performance of a rectangular plate under uniaxial com-pression can be significantly improved by replacing the traditional material that has a positive Poisson’s ratio with an auxetic material when there is in-plane translation restraint along the unloaded edges.

  15. Markedly enhanced absorption and direct radiative forcing of black carbon under polluted urban environments

    Science.gov (United States)

    Peng, Jianfei; Hu, Min; Guo, Song; Du, Zhuofei; Zheng, Jing; Shang, Dongjie; Levy Zamora, Misti; Zeng, Limin; Shao, Min; Wu, Yu-Sheng; Zheng, Jun; Wang, Yuan; Glen, Crystal R.; Collins, Donald R.; Molina, Mario J.

    2016-04-01

    Black carbon (BC) exerts profound impacts on air quality and climate because of its high absorption cross-section over a broad range of electromagnetic spectra, but the current results on absorption enhancement of BC particles during atmospheric aging remain conflicting. Here, we quantified the aging and variation in the optical properties of BC particles under ambient conditions in Beijing, China, and Houston, United States, using a novel environmental chamber approach. BC aging exhibits two distinct stages, i.e., initial transformation from a fractal to spherical morphology with little absorption variation and subsequent growth of fully compact particles with a large absorption enhancement. The timescales to achieve complete morphology modification and an absorption amplification factor of 2.4 for BC particles are estimated to be 2.3 h and 4.6 h, respectively, in Beijing, compared with 9 h and 18 h, respectively, in Houston. Our findings indicate that BC under polluted urban environments could play an essential role in pollution development and contribute importantly to large positive radiative forcing. The variation in direct radiative forcing is dependent on the rate and timescale of BC aging, with a clear distinction between urban cities in developed and developing countries, i.e., a higher climatic impact in more polluted environments. We suggest that mediation in BC emissions achieves a cobenefit in simultaneously controlling air pollution and protecting climate, especially for developing countries.

  16. Enhanced neuroendocrine response to insulin tolerance test performed under increased ambient temperature.

    Science.gov (United States)

    Jezová, D; Kvetnanský, R; Nazar, K; Vigas, M

    1998-01-01

    The hypothesis that an increase in ambient temperature modulates neuroendocrine response in clinically used provocative pituitary function tests was verified. Healthy male volunteers were subjected to insulin tolerance tests in two randomized trials. In the first trial hypoglycemia was induced by a bolus injection of insulin (0.1 U per kg of BW, i.v.) at room temperature. In the second trial, the subjects were exposed to increased ambient temperature for 45 min before insulin injection and for 45 min thereafter. The environmental temperature was selected to increase body temperature less than 1C. Under conditions of increased temperature basal hormone levels as measured in antecubital venous blood samples failed to be modified and the hypoglycemia was less severe. Nevertheless, the responses of most (beta-endorphin, ACTH, prolactin, catecholamines), but not all (growth hormone, cortisol), hormones to hypoglycemia were exaggerated. The remarkable increase in ACTH and beta-endorphin release was not accompanied by concomitant increase of plasma cortisol response. The sympathetic-adrenomedullary system was significantly activated, which was manifested particularly by enhanced norepinephrine release. Growth hormone response to hypoglycemia was not modified, while that of prolactin was enhanced. Thus during evaluation of neuroendocrine function under clinical conditions, changes in ambient and body temperature should not be underestimated.

  17. Significant enhancement of ${\\rm H_2}$ formation in disk galaxies under strong ram pressure

    CERN Document Server

    Henderson, Benjamin

    2016-01-01

    We show, for the first time, that ${\\rm H_2}$ formation on dust grains can be enhanced in disk galaxies under strong ram-pressure (RP). We numerically investigate how the time evolution, of ${\\rm H}$ {\\sc i} and ${\\rm H_2}$ components in disk galaxies orbiting a group/cluster of galaxies, can be influenced by hydrodynamical interaction between the gaseous components of the galaxies and the hot intra-cluster medium (ICM). We find that compression of ${\\rm H}$ {\\sc i} caused by RP increases ${\\rm H_2}$ formation in disk galaxies, before RP rapidly strips ${\\rm H}$ {\\sc i}, cutting off the fuel supply and causing a drop in ${\\rm H_2}$ density. We also find that the level of this ${\\rm H_2}$ formation enhancement in a disk galaxy under RP depends on the mass of its host cluster dark matter (DM) halo, initial positions and velocities of the disk galaxy, and disk inclination angle with respect to the orbital plane. We demonstrate that dust growth is a key factor in the evolution of the ${\\rm H}$ {\\sc i} and ${\\rm H...

  18. Matrix metalloproteinase-2 enhances platelet deposition on collagen under flow conditions.

    Science.gov (United States)

    Guglielmini, Giuseppe; Appolloni, Viviana; Momi, Stefania; De Groot, Philip G; Battiston, Monica; De Marco, Luigi; Falcinelli, Emanuela; Gresele, Paolo

    2016-01-01

    Platelets contain and release matrix metalloproteinase-2 (MMP-2) that in turn potentiates platelet aggregation. Platelet deposition on a damaged vascular wall is the first, crucial, step leading to thrombosis. Little is known about the effects of MMP-2 on platelet activation and adhesion under flow conditions. We studied the effect of MMP-2 on shear-dependent platelet activation using the O'Brien filtration system, and on platelet deposition using a parallel-plate perfusion chamber. Preincubation of human whole blood with active MMP-2 (50 ng/ml, i.e. 0.78 nM) shortened filter closure time (from 51.8 ± 3.6 sec to 40 ± 2.7 sec, pMMP-2 inhibitor. High shear stress induced the release of MMP-2 from platelets, while TIMP-2 levels were not significantly reduced, therefore, the MMP-2/TIMP-2 ratio increased significantly showing enhanced MMP-2 activity. Preincubation of whole blood with active MMP-2 (0.5 to 50 ng/ml, i.e 0.0078 to 0.78 nM) increased dose-dependently human platelet deposition on collagen under high shear-rate flow conditions (3000 sec⁻¹) (maximum +47.0 ± 11.9%, pMMP-2 inhibitor reduced platelet deposition. In real-time microscopy studies, increased deposition of platelets on collagen induced by MMP-2 started 85 sec from the beginning of perfusion, and was abolished by a GPIIb/IIIa antagonist, while MMP-2 had no effect on platelet deposition on fibrinogen or VWF. Confocal microscopy showed that MMP-2 enhances thrombus volume (+20.0 ± 3.0% vs control) rather than adhesion. In conclusion, we show that MMP-2 potentiates shear-induced platelet activation by enhancing thrombus formation.

  19. Arbuscular mycorrhizae enhance metal lead uptake and growth of host plants under a sand culture experiment.

    Science.gov (United States)

    Chen, Xin; Wu, Chunhua; Tang, Jianjun; Hu, Shuijin

    2005-07-01

    A sand culture experiment was conducted to investigate whether mycorrhizal colonization and mycorrhizal fungal vesicular numbers were influenced by metal lead, and whether mycorrhizae enhance host plants tolerance to metal lead. Metal lead was applied as Pb(NO3)2 in solution at three levels (0, 300 and 600 mg kg(-1) sand). Five mycorrhizal host plant species, Kummerowia striata (Thunb.) Schindl, Ixeris denticulate L., Lolium perenne L., Trifolium repens L. and Echinochloa crusgalli var. mitis were used to examine Pb-mycorrhizal interactions. The arbuscular mycorrhizal inoculum consisted of mixed spores of mycorrhizal fungal species directly isolated from orchard soil. Compared to the untreated control, both Pb concentrations reduced mycorrhizal colonization by 3.8-70.4%. Numbers of AM fungal vesicles increased by 13.2-51.5% in 300 mg Pb kg(-1) sand but decreased by 9.4-50.9% in 600 mg Pb kg(-1) sand. Mycorrhizae significantly enhanced Pb accumulation both in shoot by 10.2-85.5% and in root by 9.3-118.4%. Mycorrhizae also enhanced shoot biomass and shoot P concentration under both Pb concentrations. Root/shoot ratios of Pb concentration were higher in highly mycorrhizal plant species (K.striata, I. denticulate, and E. crusgalli var. mitis) than that in poorly mycorrhizal ones (L. perenne and T. repens,). Mycorrhizal inoculation increased the root/shoot ratio of Pb concentration of highly mycorrhizal plant species by 7.6-57.2% but did not affect the poorly mycorrhizal ones. In the treatments with 300 Pb mg kg(-1) sand, plant species with higher vesicular numbers tended to show higher root/shoot ratios of the Pb concentration. We suggest that under an elevated Pb condition, mycorrhizae could promote plant growth by increasing P uptake and mitigate Pb toxicity by sequestrating more Pb in roots.

  20. Analysis of using EMG and mechanical sensors to enhance intent recognition in powered lower limb prostheses

    Science.gov (United States)

    Young, A. J.; Kuiken, T. A.; Hargrove, L. J.

    2014-10-01

    Objective. The purpose of this study was to determine the contribution of electromyography (EMG) data, in combination with a diverse array of mechanical sensors, to locomotion mode intent recognition in transfemoral amputees using powered prostheses. Additionally, we determined the effect of adding time history information using a dynamic Bayesian network (DBN) for both the mechanical and EMG sensors. Approach. EMG signals from the residual limbs of amputees have been proposed to enhance pattern recognition-based intent recognition systems for powered lower limb prostheses, but mechanical sensors on the prosthesis—such as inertial measurement units, position and velocity sensors, and load cells—may be just as useful. EMG and mechanical sensor data were collected from 8 transfemoral amputees using a powered knee/ankle prosthesis over basic locomotion modes such as walking, slopes and stairs. An offline study was conducted to determine the benefit of different sensor sets for predicting intent. Main results. EMG information was not as accurate alone as mechanical sensor information (p < 0.05) for any classification strategy. However, EMG in combination with the mechanical sensor data did significantly reduce intent recognition errors (p < 0.05) both for transitions between locomotion modes and steady-state locomotion. The sensor time history (DBN) classifier significantly reduced error rates compared to a linear discriminant classifier for steady-state steps, without increasing the transitional error, for both EMG and mechanical sensors. Combining EMG and mechanical sensor data with sensor time history reduced the average transitional error from 18.4% to 12.2% and the average steady-state error from 3.8% to 1.0% when classifying level-ground walking, ramps, and stairs in eight transfemoral amputee subjects. Significance. These results suggest that a neural interface in combination with time history methods for locomotion mode classification can enhance intent

  1. Mechanisms underlying the effects of prenatal psychosocial stress on child outcomes: beyond the HPA axis

    NARCIS (Netherlands)

    Beijers, R.; Buitelaar, J.K.; Weerth, C. de

    2014-01-01

    Accumulating evidence from preclinical and clinical studies indicates that maternal psychosocial stress and anxiety during pregnancy adversely affect child outcomes. However, knowledge on the possible mechanisms underlying these relations is limited. In the present paper, we review the most often pr

  2. Mechanisms underlying prorenin actions on hypothalamic neurons implicated in cardiometabolic control

    Directory of Open Access Journals (Sweden)

    Soledad Pitra

    2016-10-01

    Conclusions: We identified novel neuronal targets and cellular mechanisms underlying PR/PRR actions in critical hypothalamic neurons involved in cardiometabolic regulation. This fundamental mechanistic information regarding central PR/PRR actions is essential for the development of novel RAS-based therapeutic targets for the treatment of cardiometabolic disorders in obesity and hypertension.

  3. The Mediated MIMIC Model for Understanding the Underlying Mechanism of DIF

    Science.gov (United States)

    Cheng, Ying; Shao, Can; Lathrop, Quinn N.

    2016-01-01

    Due to its flexibility, the multiple-indicator, multiple-causes (MIMIC) model has become an increasingly popular method for the detection of differential item functioning (DIF). In this article, we propose the mediated MIMIC model method to uncover the underlying mechanism of DIF. This method extends the usual MIMIC model by including one variable…

  4. Compressive damage mechanism of GFRP composites under off-axis loading: Experimental and numerical investigations

    DEFF Research Database (Denmark)

    Zhou, H.W.; Li, H.Y.; Gui, L.L.;

    2013-01-01

    Experimental and computational studies of the microscale mechanisms of damage formation and evolution in unidirectional glass fiber reinforced polymer composites (GFRP) under axial and off-axis compressive loading are carried out. A series of compressive testing of the composites with different a...

  5. Unraveling the mechanisms underlying postural instability in Parkinson's disease using dynamic posturography

    NARCIS (Netherlands)

    Nonnekes, J.H.; Kam, D. de; Geurts, A.; Weerdesteijn, V.G.; Bloem, B.R.

    2013-01-01

    Postural instability, one of the cardinal symptoms of Parkinson's disease (PD), has devastating consequences for affected patients. Better strategies to prevent falls are needed, but this calls for an improved understanding of the complex mechanisms underlying postural instability. We must also impr

  6. Relative Damage Stress: Dominant Mechanical Factor for the Failure of Soldered Joints under Temperature Cycling

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    By temperature normalization of the concept of equivalent damage stress proposed by Lemaitre,a new concept of relative damage stress has been put forward as the dominant mechanical factor for the failure of soldered joints under temperature cycling. Finite element numerical simulation results showed that the highest value of relative damage stress occurred at the high temperaturehold time during temperature cycling history.

  7. Experimental Investigation on Mechanical Behavior and Permeability Evolution of a Porous Limestone Under Compression

    Science.gov (United States)

    Han, B.; Xie, S. Y.; Shao, J. F.

    2016-09-01

    This paper presents an experimental investigation on the mechanical behavior and permeability evolution of a typical porous limestone, the Anstrude limestone. Hydrostatic and triaxial compression tests are first performed under drained condition to study the basic mechanical behavior of the porous rock. Permeability measurement under both hydrostatic and triaxial compression is carried out for investigating effects of stress state on the permeability evolution along the axial direction of sample. The obtained results allow to identifying two basic plastic deformation mechanisms, the plastic shearing and pore collapse, and their effects on the permeability evolution. Under low confining pressures, the permeability diminution in the elastic phase is controlled by deviatoric stress. After the onset of plastic shearing, the deviatoric stress induces a plastic volumetric dilatation and a permeability increase. When the deviatoric stress reaches the peak strength or after the onset of shear bands, the permeability slightly decreases. Under high confining pressures, the deviatoric stress also induces a permeability diminution before the onset of plastic pore collapse. After the onset of pore collapse, the deviatoric stress leads to a plastic volumetric compaction and permeability decrease. When the deviatoric stress reaches the onset of plastic shearing, the two plastic mechanisms are in competition, the permeability continuously decreases but with a reduced rate. Finally, after the compaction-dilatation transition, the plastic shearing dominates the deformation process while the pore collapse still controls the permeability evolution.

  8. Motivational and control mechanisms underlying adolescent cannabis use disorders: a prospective study

    NARCIS (Netherlands)

    Cousijn, J.; van Benthem, P.; van der Schee, E.; Spijkerman, R.

    2015-01-01

    Cannabis use disorders (CUDs) are the most prevalent substance use disorders among adolescents in treatment. Yet, little is known about the neuropsychological mechanisms underlying adolescent CUDs. Studies in adult cannabis users suggest a significant role for cognitive control and cannabis-oriented

  9. Asymmetric migration of human keratinocytes under mechanical stretch and cocultured fibroblasts in a wound repair model.

    Directory of Open Access Journals (Sweden)

    Dongyuan Lü

    Full Text Available Keratinocyte migration during re-epithelization is crucial in wound healing under biochemical and biomechanical microenvironment. However, little is known about the underlying mechanisms whereby mechanical tension and cocultured fibroblasts or keratinocytes modulate the migration of keratinocytes or fibroblasts. Here we applied a tensile device together with a modified transwell assay to determine the lateral and transmembrane migration dynamics of human HaCaT keratinocytes or HF fibroblasts. A novel pattern of asymmetric migration was observed for keratinocytes when they were cocultured with non-contact fibroblasts, i.e., the accumulative distance of HaCaT cells was significantly higher when moving away from HF cells or migrating from down to up cross the membrane than that when moving close to HF cells or when migrating from up to down, whereas HF migration was symmetric. This asymmetric migration was mainly regulated by EGF derived from fibroblasts, but not transforming growth factor α or β1 production. Mechanical stretch subjected to fibroblasts fostered keratinocyte asymmetric migration by increasing EGF secretion, while no role of mechanical stretch was found for EGF secretion by keratinocytes. These results provided a new insight into understanding the regulating mechanisms of two- or three-dimensional migration of keratinocytes or fibroblasts along or across dermis and epidermis under biomechanical microenvironment.

  10. In-situcross-linked PVDF membranes with enhanced mechanical durability for vacuum membrane distillation

    KAUST Repository

    Zuo, Jian

    2016-05-12

    A novel and effective one-step method has been demonstrated to fabricate cross-linked polyvinylidene fluoride (PVDF) membranes with better mechanical properties and flux for seawater desalination via vacuum membrane distillation (VMD). This method involves the addition of two functional nonsolvent additives; namely, water and ethylenediamine (EDA), into the polymer casting solution. The former acts as a pore forming agent, while the latter performs as a cross-linking inducer. The incorporation of water tends to increase membrane flux via increasing porosity and pore size but sacrifices membrane mechanical properties. Conversely, the presence of EDA enhances membrane mechanical properties through in-situ cross-linking reaction. Therefore, by synergistically combining the effects of both functional additives, the resultant PVDF membranes have shown good MD performance and mechanical properties simultaneously. The parameters that affect the cross-link reaction and membrane mechanical properties such as reaction duration and EDA concentration have been systematically studied. The membranes cast from an optimal reaction condition comprising 0.8 wt % EDA and 3-hour reaction not only shows a 40% enhancement in membrane Young\\'s Modulus compared to the one without EDA but also achieves a good VMD flux of 43.6 L/m2-h at 60°C. This study may open up a totally new approach to design next-generation high performance MD membranes. © 2016 American Institute of Chemical Engineers AIChE J, 62: 4013–4022, 2016

  11. Failure Mechanisms and Life Prediction of Thermal and Environmental Barrier Coatings under Thermal Gradients

    Science.gov (United States)

    Zju, Dongming; Ghosn, Louis J.; Miller, Robert A.

    2008-01-01

    Ceramic thermal and environmental barrier coatings (TEBCs) will play an increasingly important role in gas turbine engines because of their ability to further raise engine temperatures. However, the issue of coating durability is of major concern under high-heat-flux conditions. In particular, the accelerated coating delamination crack growth under the engine high heat-flux co