WorldWideScience

Sample records for mechanisms regulating gene

  1. A framework for modelling gene regulation which accommodates non-equilibrium mechanisms.

    Science.gov (United States)

    Ahsendorf, Tobias; Wong, Felix; Eils, Roland; Gunawardena, Jeremy

    2014-12-05

    Gene regulation has, for the most part, been quantitatively analysed by assuming that regulatory mechanisms operate at thermodynamic equilibrium. This formalism was originally developed to analyse the binding and unbinding of transcription factors from naked DNA in eubacteria. Although widely used, it has made it difficult to understand the role of energy-dissipating, epigenetic mechanisms, such as DNA methylation, nucleosome remodelling and post-translational modification of histones and co-regulators, which act together with transcription factors to regulate gene expression in eukaryotes. Here, we introduce a graph-based framework that can accommodate non-equilibrium mechanisms. A gene-regulatory system is described as a graph, which specifies the DNA microstates (vertices), the transitions between microstates (edges) and the transition rates (edge labels). The graph yields a stochastic master equation for how microstate probabilities change over time. We show that this framework has broad scope by providing new insights into three very different ad hoc models, of steroid-hormone responsive genes, of inherently bounded chromatin domains and of the yeast PHO5 gene. We find, moreover, surprising complexity in the regulation of PHO5, which has not yet been experimentally explored, and we show that this complexity is an inherent feature of being away from equilibrium. At equilibrium, microstate probabilities do not depend on how a microstate is reached but, away from equilibrium, each path to a microstate can contribute to its steady-state probability. Systems that are far from equilibrium thereby become dependent on history and the resulting complexity is a fundamental challenge. To begin addressing this, we introduce a graph-based concept of independence, which can be applied to sub-systems that are far from equilibrium, and prove that history-dependent complexity can be circumvented when sub-systems operate independently. As epigenomic data become increasingly

  2. Regulation of gene expression and pain states by epigenetic mechanisms.

    Science.gov (United States)

    Géranton, Sandrine M; Tochiki, Keri K

    2015-01-01

    The induction of inflammatory or neuropathic pain states is known to involve molecular activity in the spinal superficial dorsal horn and dorsal root ganglia, including intracellular signaling events which lead to changes in gene expression. These changes ultimately cause alterations in macromolecular synthesis, synaptic transmission, and structural architecture which support central sensitization, a process required for the establishment of long-term pain states. Epigenetic mechanisms are essential for long-term synaptic plasticity and modulation of gene expression. This is because epigenetic modifications are known to regulate gene transcription by aiding the physical relaxation or condensation of chromatin. These processes are therefore potential regulators of the molecular changes underlying permanent pain states. A handful of studies have emerged in the field of pain epigenetics; however, the field is still very much in its infancy. This chapter draws upon other specialities which have extensively investigated epigenetic mechanisms, such as learning and memory and oncology. After defining epigenetics as well as the recent field of "neuroepigenetics" and the main molecular mechanisms involved, this chapter describes the role of these mechanisms in the synaptic plasticity seen in learning and memory, and address those epigenetic mechanisms that have been linked with the development of acute and prolonged pain states. Finally, the idea that long-lasting epigenetic modifications could contribute to the transition from acute to chronic pain states by supporting maladaptive molecular changes is discussed. © 2015 Elsevier Inc. All rights reserved.

  3. The Role of Epigenetic Mechanisms in the Regulation of Gene Expression in the Nervous System.

    Science.gov (United States)

    Cholewa-Waclaw, Justyna; Bird, Adrian; von Schimmelmann, Melanie; Schaefer, Anne; Yu, Huimei; Song, Hongjun; Madabhushi, Ram; Tsai, Li-Huei

    2016-11-09

    Neuroepigenetics is a newly emerging field in neurobiology that addresses the epigenetic mechanism of gene expression regulation in various postmitotic neurons, both over time and in response to environmental stimuli. In addition to its fundamental contribution to our understanding of basic neuronal physiology, alterations in these neuroepigenetic mechanisms have been recently linked to numerous neurodevelopmental, psychiatric, and neurodegenerative disorders. This article provides a selective review of the role of DNA and histone modifications in neuronal signal-induced gene expression regulation, plasticity, and survival and how targeting these mechanisms could advance the development of future therapies. In addition, we discuss a recent discovery on how double-strand breaks of genomic DNA mediate the rapid induction of activity-dependent gene expression in neurons. Copyright © 2016 the authors 0270-6474/16/3611427-08$15.00/0.

  4. Mechanisms of Hypoxic Up-Regulation of Versican Gene Expression in Macrophages.

    Directory of Open Access Journals (Sweden)

    Fattah Sotoodehnejadnematalahi

    Full Text Available Hypoxia is a hallmark of many pathological tissues. Macrophages accumulate in hypoxic sites and up-regulate a range of hypoxia-inducible genes. The matrix proteoglycan versican has been identified as one such gene, but the mechanisms responsible for hypoxic induction are not fully characterised. Here we investigate the up-regulation of versican by hypoxia in primary human monocyte-derived macrophages (HMDM, and, intriguingly, show that versican mRNA is up-regulated much more highly (>600 fold by long term hypoxia (5 days than by 1 day of hypoxia (48 fold. We report that versican mRNA decay rates are not affected by hypoxia, demonstrating that hypoxic induction of versican mRNA is mediated by increased transcription. Deletion analysis of the promoter identified two regions required for high level promoter activity of luciferase reporter constructs in human macrophages. The hypoxia-inducible transcription factor HIF-1 has previously been implicated as a key potential regulator of versican expression in hypoxia, however our data suggest that HIF-1 up-regulation is unlikely to be principally responsible for the high levels of induction observed in HMDM. Treatment of HMDM with two distinct specific inhibitors of Phosphoinositide 3-kinase (PI3K, LY290042 and wortmannin, significantly reduced induction of versican mRNA by hypoxia and provides evidence of a role for PI3K in hypoxic up-regulation of versican expression.

  5. Post-transcriptional regulation of gene expression in Yersinia species

    Directory of Open Access Journals (Sweden)

    Chelsea A Schiano

    2012-11-01

    Full Text Available Proper regulation of gene expression is required by bacterial pathogens to respond to continually changing environmental conditions and the host response during the infectious process. While transcriptional regulation is perhaps the most well understood form of controlling gene expression, recent studies have demonstrated the importance of post-transcriptional mechanisms of gene regulation that allow for more refined management of the bacterial response to host conditions. Yersinia species of bacteria are known to use various forms of post-transcriptional regulation for control of many virulence-associated genes. These include regulation by cis- and trans-acting small non-coding RNAs, RNA-binding proteins, RNases, and thermoswitches. The effects of these and other regulatory mechanisms on Yersinia physiology can be profound and have been shown to influence type III secretion, motility, biofilm formation, host cell invasion, intracellular survival and replication, and more. In this review, we will discuss these and other post-transcriptional mechanisms and their influence on virulence gene regulation, with a particular emphasis on how these processes influence the virulence of Yersinia in the host.

  6. Gene Regulation, Modulation, and Their Applications in Gene Expression Data Analysis

    Directory of Open Access Journals (Sweden)

    Mario Flores

    2013-01-01

    Full Text Available Common microarray and next-generation sequencing data analysis concentrate on tumor subtype classification, marker detection, and transcriptional regulation discovery during biological processes by exploring the correlated gene expression patterns and their shared functions. Genetic regulatory network (GRN based approaches have been employed in many large studies in order to scrutinize for dysregulation and potential treatment controls. In addition to gene regulation and network construction, the concept of the network modulator that has significant systemic impact has been proposed, and detection algorithms have been developed in past years. Here we provide a unified mathematic description of these methods, followed with a brief survey of these modulator identification algorithms. As an early attempt to extend the concept to new RNA regulation mechanism, competitive endogenous RNA (ceRNA, into a modulator framework, we provide two applications to illustrate the network construction, modulation effect, and the preliminary finding from these networks. Those methods we surveyed and developed are used to dissect the regulated network under different modulators. Not limit to these, the concept of “modulation” can adapt to various biological mechanisms to discover the novel gene regulation mechanisms.

  7. Stiff mutant genes of Phycomyces target turgor pressure and wall mechanical properties to regulate elongation growth rate

    Directory of Open Access Journals (Sweden)

    Joseph K. E. Ortega

    2012-05-01

    Full Text Available Regulation of cell growth is paramount to all living organisms. In plants, algae and fungi, regulation of expansive growth of cells is required for development and morphogenesis. Also, many sensory responses of stage IVb sporangiophores of Phycomyces blakesleeanus are produced by regulating elongation growth rate (growth responses and differential elongation growth rate (tropic responses. Stiff mutant sporangiophores exhibit diminished tropic responses and are found to be defective in at least four genes; madD, madE, madF and madG. Prior experimental research suggests that the defective genes affect growth regulation, but this was not verified. All the growth of the single-celled stalk of the stage IVb sporangiophore occurs in a short region termed the growth zone. Prior experimental and theoretical research indicates that elongation growth rate of the stage IVb sporangiophore can be regulated by controlling the cell wall mechanical properties within the growth zone and the magnitude of the turgor pressure. A quantitative biophysical model for elongation growth rate is required to elucidate the relationship between wall mechanical properties and turgor pressure during growth regulation. In this study, it is hypothesized that the mechanical properties of the wall within the growth zone of stiff mutant sporangiophores are different compared to wild type. A biophysical equation for elongation growth rate is derived for fungal and plant cells with a growth zone. Two strains of stiff mutants are studied, C149 madD120 (- and C216 geo- (-. Experimental results demonstrate that turgor pressure is larger but irreversible deformation rates of the wall within the growth zone and growth zone length are smaller for stiff mutant sporangiophores compared to wild type. These findings explain the diminished tropic responses of the stiff mutant sporangiophores and suggest that the defective genes affect the amount of wall-building material delivered to the inner

  8. Expression regulation of design process gene in product design

    DEFF Research Database (Denmark)

    Li, Bo; Fang, Lusheng; Li, Bo

    2011-01-01

    To improve the design process efficiency, this paper proposes the principle and methodology that design process gene controls the characteristics of design process under the framework of design process reuse and optimization based on design process gene. First, the concept of design process gene...... is proposed and analyzed, as well as its three categories i.e., the operator gene, the structural gene and the regulator gene. Second, the trigger mechanism that design objectives and constraints trigger the operator gene is constructed. Third, the expression principle of structural gene is analyzed...... with the example of design management gene. Last, the regulation mode that the regulator gene regulates the expression of the structural gene is established and it is illustrated by taking the design process management gene as an example. © (2011) Trans Tech Publications....

  9. Down-Regulation of Gene Expression by RNA-Induced Gene Silencing

    Science.gov (United States)

    Travella, Silvia; Keller, Beat

    Down-regulation of endogenous genes via post-transcriptional gene silencing (PTGS) is a key to the characterization of gene function in plants. Many RNA-based silencing mechanisms such as post-transcriptional gene silencing, co-suppression, quelling, and RNA interference (RNAi) have been discovered among species of different kingdoms (plants, fungi, and animals). One of the most interesting discoveries was RNAi, a sequence-specific gene-silencing mechanism initiated by the introduction of double-stranded RNA (dsRNA), homologous in sequence to the silenced gene, which triggers degradation of mRNA. Infection of plants with modified viruses can also induce RNA silencing and is referred to as virus-induced gene silencing (VIGS). In contrast to insertional mutagenesis, these emerging new reverse genetic approaches represent a powerful tool for exploring gene function and for manipulating gene expression experimentally in cereal species such as barley and wheat. We examined how RNAi and VIGS have been used to assess gene function in barley and wheat, including molecular mechanisms involved in the process and available methodological elements, such as vectors, inoculation procedures, and analysis of silenced phenotypes.

  10. Activity-regulated genes as mediators of neural circuit plasticity.

    Science.gov (United States)

    Leslie, Jennifer H; Nedivi, Elly

    2011-08-01

    Modifications of neuronal circuits allow the brain to adapt and change with experience. This plasticity manifests during development and throughout life, and can be remarkably long lasting. Evidence has linked activity-regulated gene expression to the long-term structural and electrophysiological adaptations that take place during developmental critical periods, learning and memory, and alterations to sensory map representations in the adult. In all these cases, the cellular response to neuronal activity integrates multiple tightly coordinated mechanisms to precisely orchestrate long-lasting, functional and structural changes in brain circuits. Experience-dependent plasticity is triggered when neuronal excitation activates cellular signaling pathways from the synapse to the nucleus that initiate new programs of gene expression. The protein products of activity-regulated genes then work via a diverse array of cellular mechanisms to modify neuronal functional properties. Synaptic strengthening or weakening can reweight existing circuit connections, while structural changes including synapse addition and elimination create new connections. Posttranscriptional regulatory mechanisms, often also dependent on activity, further modulate activity-regulated gene transcript and protein function. Thus, activity-regulated genes implement varied forms of structural and functional plasticity to fine-tune brain circuit wiring. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Gene regulation is governed by a core network in hepatocellular carcinoma.

    Science.gov (United States)

    Gu, Zuguang; Zhang, Chenyu; Wang, Jin

    2012-05-01

    Hepatocellular carcinoma (HCC) is one of the most lethal cancers worldwide, and the mechanisms that lead to the disease are still relatively unclear. However, with the development of high-throughput technologies it is possible to gain a systematic view of biological systems to enhance the understanding of the roles of genes associated with HCC. Thus, analysis of the mechanism of molecule interactions in the context of gene regulatory networks can reveal specific sub-networks that lead to the development of HCC. In this study, we aimed to identify the most important gene regulations that are dysfunctional in HCC generation. Our method for constructing gene regulatory network is based on predicted target interactions, experimentally-supported interactions, and co-expression model. Regulators in the network included both transcription factors and microRNAs to provide a complete view of gene regulation. Analysis of gene regulatory network revealed that gene regulation in HCC is highly modular, in which different sets of regulators take charge of specific biological processes. We found that microRNAs mainly control biological functions related to mitochondria and oxidative reduction, while transcription factors control immune responses, extracellular activity and the cell cycle. On the higher level of gene regulation, there exists a core network that organizes regulations between different modules and maintains the robustness of the whole network. There is direct experimental evidence for most of the regulators in the core gene regulatory network relating to HCC. We infer it is the central controller of gene regulation. Finally, we explored the influence of the core gene regulatory network on biological pathways. Our analysis provides insights into the mechanism of transcriptional and post-transcriptional control in HCC. In particular, we highlight the importance of the core gene regulatory network; we propose that it is highly related to HCC and we believe further

  12. An Ultrasensitive Mechanism Regulates Influenza Virus-Induced Inflammation.

    Directory of Open Access Journals (Sweden)

    Jason E Shoemaker

    2015-06-01

    Full Text Available Influenza viruses present major challenges to public health, evident by the 2009 influenza pandemic. Highly pathogenic influenza virus infections generally coincide with early, high levels of inflammatory cytokines that some studies have suggested may be regulated in a strain-dependent manner. However, a comprehensive characterization of the complex dynamics of the inflammatory response induced by virulent influenza strains is lacking. Here, we applied gene co-expression and nonlinear regression analysis to time-course, microarray data developed from influenza-infected mouse lung to create mathematical models of the host inflammatory response. We found that the dynamics of inflammation-associated gene expression are regulated by an ultrasensitive-like mechanism in which low levels of virus induce minimal gene expression but expression is strongly induced once a threshold virus titer is exceeded. Cytokine assays confirmed that the production of several key inflammatory cytokines, such as interleukin 6 and monocyte chemotactic protein 1, exhibit ultrasensitive behavior. A systematic exploration of the pathways regulating the inflammatory-associated gene response suggests that the molecular origins of this ultrasensitive response mechanism lie within the branch of the Toll-like receptor pathway that regulates STAT1 phosphorylation. This study provides the first evidence of an ultrasensitive mechanism regulating influenza virus-induced inflammation in whole lungs and provides insight into how different virus strains can induce distinct temporal inflammation response profiles. The approach developed here should facilitate the construction of gene regulatory models of other infectious diseases.

  13. VEGF selectively induces Down syndrome critical region 1 gene expression in endothelial cells: a mechanism for feedback regulation of angiogenesis?

    International Nuclear Information System (INIS)

    Yao, Y.-G; Duh, Elia J.

    2004-01-01

    The Down syndrome critical region 1 (DSCR1) gene (also known as MCIP1, Adapt78) encodes a regulatory protein that binds to calcineurin catalytic A subunit and acts as a regulator of the calcineurin-mediated signaling pathway. We show in this study that DSCR1 is greatly induced in endothelial cells in response to VEGF, TNF-α, and A23187 treatment, and that this up-regulation is inhibited by inhibitors of the calcineurin-NFAT (nuclear factor of activated T cells) signaling pathway as well as by PKC inhibition and a Ca 2+ chelator. We hypothesized that the up-regulation of DSCR1 gene expression in endothelial cells could act as an endogenous feedback inhibitor for angiogenesis by regulating the calcineurin-NFAT signaling pathway. Our transient transfection analyses confirm that the overexpression of DSCR1 abrogates the up-regulation of reporter gene expression driven by both the cyclooxygenase 2 and DSCR1 promoters in response to stimulators. Our results indicate that DSCR1 up-regulation may represent a potential molecular mechanism underlying the regulation of angiogenic genes activated by the calcineurin-NFAT signaling pathway in endothelial cells

  14. Reconstructing a Network of Stress-Response Regulators via Dynamic System Modeling of Gene Regulation

    Directory of Open Access Journals (Sweden)

    Wei-Sheng Wu

    2008-01-01

    Full Text Available Unicellular organisms such as yeasts have evolved mechanisms to respond to environmental stresses by rapidly reorganizing the gene expression program. Although many stress-response genes in yeast have been discovered by DNA microarrays, the stress-response transcription factors (TFs that regulate these stress-response genes remain to be investigated. In this study, we use a dynamic system model of gene regulation to describe the mechanism of how TFs may control a gene’s expression. Then, based on the dynamic system model, we develop the Stress Regulator Identification Algorithm (SRIA to identify stress-response TFs for six kinds of stresses. We identified some general stress-response TFs that respond to various stresses and some specific stress-response TFs that respond to one specifi c stress. The biological significance of our findings is validated by the literature. We found that a small number of TFs is probably suffi cient to control a wide variety of expression patterns in yeast under different stresses. Two implications can be inferred from this observation. First, the response mechanisms to different stresses may have a bow-tie structure. Second, there may be regulatory cross-talks among different stress responses. In conclusion, this study proposes a network of stress-response regulators and the details of their actions.

  15. Regulation Mechanism of the ald Gene Encoding Alanine Dehydrogenase in Mycobacterium smegmatis and Mycobacterium tuberculosis by the Lrp/AsnC Family Regulator AldR.

    Science.gov (United States)

    Jeong, Ji-A; Hyun, Jaekyung; Oh, Jeong-Il

    2015-10-01

    In the presence of alanine, AldR, which belongs to the Lrp/AsnC family of transcriptional regulators and regulates ald encoding alanine dehydrogenase in Mycobacterium smegmatis, changes its quaternary structure from a homodimer to an octamer with an open-ring conformation. Four AldR-binding sites (O2, O1, O4, and O3) with a consensus sequence of GA/T-N2-NWW/WWN-N2-A/TC were identified upstream of the M. smegmatis ald gene by means of DNase I footprinting analysis. O2, O1, and O4 are required for the induction of ald expression by alanine, while O3 is directly involved in the repression of ald expression. In addition to O3, both O1 and O4 are also necessary for full repression of ald expression in the absence of alanine, due to cooperative binding of AldR dimers to O1, O4, and O3. Binding of a molecule of the AldR octamer to the ald control region was demonstrated to require two AldR-binding sites separated by three helical turns between their centers and one additional binding site that is in phase with the two AldR-binding sites. The cooperative binding of AldR dimers to DNA requires three AldR-binding sites that are aligned with a periodicity of three helical turns. The aldR gene is negatively autoregulated independently of alanine. Comparative analysis of ald expression of M. smegmatis and Mycobacterium tuberculosis in conjunction with sequence analysis of both ald control regions led us to suggest that the expression of the ald genes in both mycobacterial species is regulated by the same mechanism. In mycobacteria, alanine dehydrogenase (Ald) is the enzyme required both to utilize alanine as a nitrogen source and to grow under hypoxic conditions by maintaining the redox state of the NADH/NAD(+) pool. Expression of the ald gene was reported to be regulated by the AldR regulator that belongs to the Lrp/AsnC (feast/famine) family, but the underlying mechanism was unknown. This study revealed the regulation mechanism of ald in Mycobacterium smegmatis and

  16. Brucella abortus: pathogenicity and gene regulation of virulence

    Directory of Open Access Journals (Sweden)

    Olga Rivas-Solano

    2015-06-01

    Full Text Available Brucella abortus is a zoonotic intracellular facultative pathogen belonging to the subdivision α2 of class Proteobacteria. It causes a worldwide distributed zoonotic disease called brucellosis. The main symptoms are abortion and sterility in cattle, as well as an undulant febrile condition in humans. In endemic regions like Central America, brucellosis has a high socioeconomic impact. A basic research project was recently conducted at the ITCR with the purpose of studying gene regulation of virulence, structure and immunogenicity in B. abortus. The present review was written as part of this project. B. abortus virulence seems to be determined by its ability to invade, survive and replicate inside professional and non-professional phagocytes. It reaches its intracellular replicative niche without the activation of host antimicrobial mechanisms of innate immunity. It also has gene regulation mechanisms for a rapid adaptation to an intracellular environment such as the two-component signal transduction system BvrR/BvrS and the quorum sensing regulator called Vjbr, as well as other transcription factors. All of them integrate a complex gene regulation network.

  17. Prostate Cancer Epigenetics: A Review on Gene Regulation

    Directory of Open Access Journals (Sweden)

    Lena Diaw

    2007-01-01

    Full Text Available Prostate cancer is the most common cancer in men in western countries, and its incidence is increasing steadily worldwide. Molecular changes including both genetic and epigenetic events underlying the development and progression of this disease are still not well understood. Epigenetic events are involved in gene regulation and occur through different mechanisms such as DNA methylation and histone modifi cations. Both DNA methylation and histone modifi cations affect gene regulation and play important roles either independently or by interaction in tumor initiation and progression. This review will discuss the genes associated with epigenetic alterations in prostate cancer progression: their regulation and importance as possible markers for the disease.

  18. Mechanisms for the environmental regulation of gene expression

    Indian Academy of Sciences (India)

    2005-01-07

    Jan 7, 2005 ... The environment can play a significant role in the production of phenotypes. However, the developmental mechanisms by which the environmental agents effect normal development are just becoming known. At least three paths have been found through which the environment can modify gene activity.

  19. Prostate Cancer Epigenetics: A Review on Gene Regulation

    OpenAIRE

    Diaw, Lena; Woodson, Karen; Gillespie, John W.

    2007-01-01

    Prostate cancer is the most common cancer in men in western countries, and its incidence is increasing steadily worldwide. Molecular changes including both genetic and epigenetic events underlying the development and progression of this disease are still not well understood. Epigenetic events are involved in gene regulation and occur through different mechanisms such as DNA methylation and histone modifi cations. Both DNA methylation and histone modifi cations affect gene regulation and play ...

  20. Regulation of gene expression in Escherichia coli and its bacteriophage

    International Nuclear Information System (INIS)

    Higgins, C.F.

    1986-01-01

    This chapter reviews the study of prokaryotic gene expression beginning with a look at the regulation of the lactose operon and the mechanism of attenuation in the tryptophan operon to the more recent development of recombinant DNA technology. The chapter deals almost entirely with escherichia coli and its bacteriophage. The only experimental technique which the authors explore in some detail is the construction and use of gene and operon fusions which have revolutionized the study of gene expression. Various mechanisms by which E. Coli regulate the cellular levels of individual messenger-RNA species are described. Translational regulation of the cellular levels of messenger-RNA include signals encoded within the messenger-RNA molecule itself and regulatory molecules which interact with the messenger-RNA and alter it translational efficiency

  1. Clustering gene expression regulators: new approach to disease subtyping.

    Directory of Open Access Journals (Sweden)

    Mikhail Pyatnitskiy

    Full Text Available One of the main challenges in modern medicine is to stratify different patient groups in terms of underlying disease molecular mechanisms as to develop more personalized approach to therapy. Here we propose novel method for disease subtyping based on analysis of activated expression regulators on a sample-by-sample basis. Our approach relies on Sub-Network Enrichment Analysis algorithm (SNEA which identifies gene subnetworks with significant concordant changes in expression between two conditions. Subnetwork consists of central regulator and downstream genes connected by relations extracted from global literature-extracted regulation database. Regulators found in each patient separately are clustered together and assigned activity scores which are used for final patients grouping. We show that our approach performs well compared to other related methods and at the same time provides researchers with complementary level of understanding of pathway-level biology behind a disease by identification of significant expression regulators. We have observed the reasonable grouping of neuromuscular disorders (triggered by structural damage vs triggered by unknown mechanisms, that was not revealed using standard expression profile clustering. For another experiment we were able to suggest the clusters of regulators, responsible for colorectal carcinoma vs adenoma discrimination and identify frequently genetically changed regulators that could be of specific importance for the individual characteristics of cancer development. Proposed approach can be regarded as biologically meaningful feature selection, reducing tens of thousands of genes down to dozens of clusters of regulators. Obtained clusters of regulators make possible to generate valuable biological hypotheses about molecular mechanisms related to a clinical outcome for individual patient.

  2. Evolution of stress-regulated gene expression in duplicate genes of Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Cheng Zou

    2009-07-01

    Full Text Available Due to the selection pressure imposed by highly variable environmental conditions, stress sensing and regulatory response mechanisms in plants are expected to evolve rapidly. One potential source of innovation in plant stress response mechanisms is gene duplication. In this study, we examined the evolution of stress-regulated gene expression among duplicated genes in the model plant Arabidopsis thaliana. Key to this analysis was reconstructing the putative ancestral stress regulation pattern. By comparing the expression patterns of duplicated genes with the patterns of their ancestors, duplicated genes likely lost and gained stress responses at a rapid rate initially, but the rate is close to zero when the synonymous substitution rate (a proxy for time is > approximately 0.8. When considering duplicated gene pairs, we found that partitioning of putative ancestral stress responses occurred more frequently compared to cases of parallel retention and loss. Furthermore, the pattern of stress response partitioning was extremely asymmetric. An analysis of putative cis-acting DNA regulatory elements in the promoters of the duplicated stress-regulated genes indicated that the asymmetric partitioning of ancestral stress responses are likely due, at least in part, to differential loss of DNA regulatory elements; the duplicated genes losing most of their stress responses were those that had lost more of the putative cis-acting elements. Finally, duplicate genes that lost most or all of the ancestral responses are more likely to have gained responses to other stresses. Therefore, the retention of duplicates that inherit few or no functions seems to be coupled to neofunctionalization. Taken together, our findings provide new insight into the patterns of evolutionary changes in gene stress responses after duplication and lay the foundation for testing the adaptive significance of stress regulatory changes under highly variable biotic and abiotic environments.

  3. Synergistic Effect of Auto-Activation and Small RNA Regulation on Gene Expression

    Science.gov (United States)

    Xiong, Li-Ping; Ma, Yu-Qiang; Tang, Lei-Han

    2010-09-01

    Auto-activation and small ribonucleic acid (RNA)-mediated regulation are two important mechanisms in controlling gene expression. We study the synergistic effect of these two regulations on gene expression. It is found that under this combinatorial regulation, gene expression exhibits bistable behaviors at the transition regime, while each of these two regulations, if working solely, only leads to monostability. Within the stochastic framework, the base pairing strength between sRNA and mRNA plays an important role in controlling the transition time between on and off states. The noise strength of protein number in the off state approaches 1 and is smaller than that in the on state. The noise strength also depends on which parameters, the feedback strength or the synthesis rate of small RNA, are tuned in switching the gene expression on and off. Our findings may provide a new insight into gene-regulation mechanism and can be applied in synthetic biology.

  4. Synergistic Effect of Auto-Activation and Small RNA Regulation on Gene Expression

    International Nuclear Information System (INIS)

    Li-Ping, Xiong; Yu-Qiang, Ma; Lei-Han, Tang

    2010-01-01

    Auto-activation and small ribonucleic acid (RNA)-mediated regulation are two important mechanisms in controlling gene expression. We study the synergistic effect of these two regulations on gene expression. It is found that under this combinatorial regulation, gene expression exhibits bistable behaviors at the transition regime, while each of these two regulations, if working solely, only leads to monostability. Within the stochastic framework, the base pairing strength between sRNA and mRNA plays an important role in controlling the transition time between on and off states. The noise strength of protein number in the off state approaches 1 and is smaller than that in the on state. The noise strength also depends on which parameters, the feedback strength or the synthesis rate of small RNA, are tuned in switching the gene expression on and off. Our findings may provide a new insight into gene-regulation mechanism and can be applied in synthetic biology

  5. miRNA-mediated functional changes through co-regulating function related genes.

    Directory of Open Access Journals (Sweden)

    Jie He

    Full Text Available BACKGROUND: MicroRNAs play important roles in various biological processes involving fairly complex mechanism. Analysis of genome-wide miRNA microarray demonstrate that a single miRNA can regulate hundreds of genes, but the regulative extent on most individual genes is surprisingly mild so that it is difficult to understand how a miRNA provokes detectable functional changes with such mild regulation. RESULTS: To explore the internal mechanism of miRNA-mediated regulation, we re-analyzed the data collected from genome-wide miRNA microarray with bioinformatics assay, and found that the transfection of miR-181b and miR-34a in Hela and HCT-116 tumor cells regulated large numbers of genes, among which, the genes related to cell growth and cell death demonstrated high Enrichment scores, suggesting that these miRNAs may be important in cell growth and cell death. MiR-181b induced changes in protein expression of most genes that were seemingly related to enhancing cell growth and decreasing cell death, while miR-34a mediated contrary changes of gene expression. Cell growth assays further confirmed this finding. In further study on miR-20b-mediated osteogenesis in hMSCs, miR-20b was found to enhance osteogenesis by activating BMPs/Runx2 signaling pathway in several stages by co-repressing of PPARγ, Bambi and Crim1. CONCLUSIONS: With its multi-target characteristics, miR-181b, miR-34a and miR-20b provoked detectable functional changes by co-regulating functionally-related gene groups or several genes in the same signaling pathway, and thus mild regulation from individual miRNA targeting genes could have contributed to an additive effect. This might also be one of the modes of miRNA-mediated gene regulation.

  6. Epigenetic regulation on the gene expression signature in esophagus adenocarcinoma.

    Science.gov (United States)

    Xi, Ting; Zhang, Guizhi

    2017-02-01

    Understanding the molecular mechanisms represents an important step in the development of diagnostic and therapeutic measures of esophagus adenocarcinoma (NOS). The objective of this study is to identify the epigenetic regulation on gene expression in NOS, shedding light on the molecular mechanisms of NOS. In this study, 78 patients with NOS were included and the data of mRNA, miRNA and DNA methylation of were downloaded from The Cancer Genome Atlas (TCGA). Differential analysis between NOS and controls was performed in terms of gene expression, miRNA expression, and DNA methylation. Bioinformatic analysis was followed to explore the regulation mechanisms of miRNA and DNA methylationon gene expression. Totally, up to 1320 differentially expressed genes (DEGs) and 32 differentially expressed miRNAs were identified. 240 DEGs that were not only the target genes but also negatively correlated with the screened differentially expressed miRNAs. 101 DEGs were found to be highlymethylated in CpG islands. Then, 8 differentially methylated genes (DMGs) were selected, which showed down-regulated expression in NOS. Among of these genes, 6 genes including ADHFE1, DPP6, GRIA4, CNKSR2, RPS6KA6 and ZNF135 were target genes of differentially expressed miRNAs (hsa-mir-335, hsa-mir-18a, hsa-mir-93, hsa-mir-106b and hsa-mir-21). The identified altered miRNA, genes and DNA methylation site may be applied as biomarkers for diagnosis and prognosis of NOS. Copyright © 2016 Elsevier GmbH. All rights reserved.

  7. Global identification of bursicon-regulated genes in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Beerntsen Brenda

    2008-09-01

    these genes play important roles in regulating the cuticle sclerotization and wing expansion processes. The data obtained here will form the basis for future studies aimed at elucidating the exact mechanisms upstream from the secretion of bursicon and its binding to target cells.

  8. Regulation of meiotic gene expression in plants

    Directory of Open Access Journals (Sweden)

    Adele eZhou

    2014-08-01

    Full Text Available With the recent advances in genomics and sequencing technologies, databases of transcriptomes representing many cellular processes have been built. Meiotic transcriptomes in plants have been studied in Arabidopsis thaliana, rice (Oryza sativa, wheat (Triticum aestivum, petunia (Petunia hybrida, sunflower (Helianthus annuus, and maize (Zea mays. Studies in all organisms, but particularly in plants, indicate that a very large number of genes are expressed during meiosis, though relatively few of them seem to be required for the completion of meiosis. In this review, we focus on gene expression at the RNA level and analyze the meiotic transcriptome datasets and explore expression patterns of known meiotic genes to elucidate how gene expression could be regulated during meiosis. We also discuss mechanisms, such as chromatin organization and non-coding RNAs, that might be involved in the regulation of meiotic transcription patterns.

  9. Regulation of Gene Expression in Protozoa Parasites

    Directory of Open Access Journals (Sweden)

    Consuelo Gomez

    2010-01-01

    Full Text Available Infections with protozoa parasites are associated with high burdens of morbidity and mortality across the developing world. Despite extensive efforts to control the transmission of these parasites, the spread of populations resistant to drugs and the lack of effective vaccines against them contribute to their persistence as major public health problems. Parasites should perform a strict control on the expression of genes involved in their pathogenicity, differentiation, immune evasion, or drug resistance, and the comprehension of the mechanisms implicated in that control could help to develop novel therapeutic strategies. However, until now these mechanisms are poorly understood in protozoa. Recent investigations into gene expression in protozoa parasites suggest that they possess many of the canonical machineries employed by higher eukaryotes for the control of gene expression at transcriptional, posttranscriptional, and epigenetic levels, but they also contain exclusive mechanisms. Here, we review the current understanding about the regulation of gene expression in Plasmodium sp., Trypanosomatids, Entamoeba histolytica and Trichomonas vaginalis.

  10. Regulation of gene expression in protozoa parasites.

    Science.gov (United States)

    Gomez, Consuelo; Esther Ramirez, M; Calixto-Galvez, Mercedes; Medel, Olivia; Rodríguez, Mario A

    2010-01-01

    Infections with protozoa parasites are associated with high burdens of morbidity and mortality across the developing world. Despite extensive efforts to control the transmission of these parasites, the spread of populations resistant to drugs and the lack of effective vaccines against them contribute to their persistence as major public health problems. Parasites should perform a strict control on the expression of genes involved in their pathogenicity, differentiation, immune evasion, or drug resistance, and the comprehension of the mechanisms implicated in that control could help to develop novel therapeutic strategies. However, until now these mechanisms are poorly understood in protozoa. Recent investigations into gene expression in protozoa parasites suggest that they possess many of the canonical machineries employed by higher eukaryotes for the control of gene expression at transcriptional, posttranscriptional, and epigenetic levels, but they also contain exclusive mechanisms. Here, we review the current understanding about the regulation of gene expression in Plasmodium sp., Trypanosomatids, Entamoeba histolytica and Trichomonas vaginalis.

  11. A Hox Gene, Antennapedia, Regulates Expression of Multiple Major Silk Protein Genes in the Silkworm Bombyx mori.

    Science.gov (United States)

    Tsubota, Takuya; Tomita, Shuichiro; Uchino, Keiro; Kimoto, Mai; Takiya, Shigeharu; Kajiwara, Hideyuki; Yamazaki, Toshimasa; Sezutsu, Hideki

    2016-03-25

    Hoxgenes play a pivotal role in the determination of anteroposterior axis specificity during bilaterian animal development. They do so by acting as a master control and regulating the expression of genes important for development. Recently, however, we showed that Hoxgenes can also function in terminally differentiated tissue of the lepidopteranBombyx mori In this species,Antennapedia(Antp) regulates expression of sericin-1, a major silk protein gene, in the silk gland. Here, we investigated whether Antpcan regulate expression of multiple genes in this tissue. By means of proteomic, RT-PCR, and in situ hybridization analyses, we demonstrate that misexpression of Antpin the posterior silk gland induced ectopic expression of major silk protein genes such assericin-3,fhxh4, and fhxh5 These genes are normally expressed specifically in the middle silk gland as is Antp Therefore, the evidence strongly suggests that Antpactivates these silk protein genes in the middle silk gland. The putativesericin-1 activator complex (middle silk gland-intermolt-specific complex) can bind to the upstream regions of these genes, suggesting that Antpdirectly activates their expression. We also found that the pattern of gene expression was well conserved between B. moriand the wild species Bombyx mandarina, indicating that the gene regulation mechanism identified here is an evolutionarily conserved mechanism and not an artifact of the domestication of B. mori We suggest that Hoxgenes have a role as a master control in terminally differentiated tissues, possibly acting as a primary regulator for a range of physiological processes. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Post-transcriptional trafficking and regulation of neuronal gene expression.

    Science.gov (United States)

    Goldie, Belinda J; Cairns, Murray J

    2012-02-01

    Intracellular messenger RNA (mRNA) traffic and translation must be highly regulated, both temporally and spatially, within eukaryotic cells to support the complex functional partitioning. This capacity is essential in neurons because it provides a mechanism for rapid input-restricted activity-dependent protein synthesis in individual dendritic spines. While this feature is thought to be important for synaptic plasticity, the structures and mechanisms that support this capability are largely unknown. Certainly specialized RNA binding proteins and binding elements in the 3' untranslated region (UTR) of translationally regulated mRNA are important, but the subtlety and complexity of this system suggests that an intermediate "specificity" component is also involved. Small non-coding microRNA (miRNA) are essential for CNS development and may fulfill this role by acting as the guide strand for mediating complex patterns of post-transcriptional regulation. In this review we examine post-synaptic gene regulation, mRNA trafficking and the emerging role of post-transcriptional gene silencing in synaptic plasticity.

  13. BMPs regulate msx gene expression in the dorsal neuroectoderm of Drosophila and vertebrates by distinct mechanisms.

    Science.gov (United States)

    Esteves, Francisco F; Springhorn, Alexander; Kague, Erika; Taylor, Erika; Pyrowolakis, George; Fisher, Shannon; Bier, Ethan

    2014-09-01

    In a broad variety of bilaterian species the trunk central nervous system (CNS) derives from three primary rows of neuroblasts. The fates of these neural progenitor cells are determined in part by three conserved transcription factors: vnd/nkx2.2, ind/gsh and msh/msx in Drosophila melanogaster/vertebrates, which are expressed in corresponding non-overlapping patterns along the dorsal-ventral axis. While this conserved suite of "neural identity" gene expression strongly suggests a common ancestral origin for the patterning systems, it is unclear whether the original regulatory mechanisms establishing these patterns have been similarly conserved during evolution. In Drosophila, genetic evidence suggests that Bone Morphogenetic Proteins (BMPs) act in a dosage-dependent fashion to repress expression of neural identity genes. BMPs also play a dose-dependent role in patterning the dorsal and lateral regions of the vertebrate CNS, however, the mechanism by which they achieve such patterning has not yet been clearly established. In this report, we examine the mechanisms by which BMPs act on cis-regulatory modules (CRMs) that control localized expression of the Drosophila msh and zebrafish (Danio rerio) msxB in the dorsal central nervous system (CNS). Our analysis suggests that BMPs act differently in these organisms to regulate similar patterns of gene expression in the neuroectoderm: repressing msh expression in Drosophila, while activating msxB expression in the zebrafish. These findings suggest that the mechanisms by which the BMP gradient patterns the dorsal neuroectoderm have reversed since the divergence of these two ancient lineages.

  14. BMPs regulate msx gene expression in the dorsal neuroectoderm of Drosophila and vertebrates by distinct mechanisms.

    Directory of Open Access Journals (Sweden)

    Francisco F Esteves

    2014-09-01

    Full Text Available In a broad variety of bilaterian species the trunk central nervous system (CNS derives from three primary rows of neuroblasts. The fates of these neural progenitor cells are determined in part by three conserved transcription factors: vnd/nkx2.2, ind/gsh and msh/msx in Drosophila melanogaster/vertebrates, which are expressed in corresponding non-overlapping patterns along the dorsal-ventral axis. While this conserved suite of "neural identity" gene expression strongly suggests a common ancestral origin for the patterning systems, it is unclear whether the original regulatory mechanisms establishing these patterns have been similarly conserved during evolution. In Drosophila, genetic evidence suggests that Bone Morphogenetic Proteins (BMPs act in a dosage-dependent fashion to repress expression of neural identity genes. BMPs also play a dose-dependent role in patterning the dorsal and lateral regions of the vertebrate CNS, however, the mechanism by which they achieve such patterning has not yet been clearly established. In this report, we examine the mechanisms by which BMPs act on cis-regulatory modules (CRMs that control localized expression of the Drosophila msh and zebrafish (Danio rerio msxB in the dorsal central nervous system (CNS. Our analysis suggests that BMPs act differently in these organisms to regulate similar patterns of gene expression in the neuroectoderm: repressing msh expression in Drosophila, while activating msxB expression in the zebrafish. These findings suggest that the mechanisms by which the BMP gradient patterns the dorsal neuroectoderm have reversed since the divergence of these two ancient lineages.

  15. Gene regulatory mechanisms in infected fish

    DEFF Research Database (Denmark)

    Schyth, Brian Dall; Hajiabadi, Seyed Amir Hossein Jalali; Kristensen, Lasse Bøgelund Juel

    2011-01-01

    molecules produced by the eukaryotic cell is used to program the RNA Induced Silencing Complex (RISC) for cleavage of specific mRNA transcripts and/or translational repression in the cytoplasm or even chromatin methylation in the nucleus. All processes leading to silencing of the target gene. MicroRNAs (or...... differentiation. Thus the expression of these miRNAs might be steered by different mechanisms in different cell types and have different roles in terms of the genes they target in different cell types. Thus gene regulation and function is better looked upon as a web of interactions. Data from zebrafish studies...

  16. The cell cycle-regulated genes of Schizosaccharomyces pombe.

    Science.gov (United States)

    Oliva, Anna; Rosebrock, Adam; Ferrezuelo, Francisco; Pyne, Saumyadipta; Chen, Haiying; Skiena, Steve; Futcher, Bruce; Leatherwood, Janet

    2005-07-01

    Many genes are regulated as an innate part of the eukaryotic cell cycle, and a complex transcriptional network helps enable the cyclic behavior of dividing cells. This transcriptional network has been studied in Saccharomyces cerevisiae (budding yeast) and elsewhere. To provide more perspective on these regulatory mechanisms, we have used microarrays to measure gene expression through the cell cycle of Schizosaccharomyces pombe (fission yeast). The 750 genes with the most significant oscillations were identified and analyzed. There were two broad waves of cell cycle transcription, one in early/mid G2 phase, and the other near the G2/M transition. The early/mid G2 wave included many genes involved in ribosome biogenesis, possibly explaining the cell cycle oscillation in protein synthesis in S. pombe. The G2/M wave included at least three distinctly regulated clusters of genes: one large cluster including mitosis, mitotic exit, and cell separation functions, one small cluster dedicated to DNA replication, and another small cluster dedicated to cytokinesis and division. S. pombe cell cycle genes have relatively long, complex promoters containing groups of multiple DNA sequence motifs, often of two, three, or more different kinds. Many of the genes, transcription factors, and regulatory mechanisms are conserved between S. pombe and S. cerevisiae. Finally, we found preliminary evidence for a nearly genome-wide oscillation in gene expression: 2,000 or more genes undergo slight oscillations in expression as a function of the cell cycle, although whether this is adaptive, or incidental to other events in the cell, such as chromatin condensation, we do not know.

  17. The Cell Cycle–Regulated Genes of Schizosaccharomyces pombe

    Science.gov (United States)

    Oliva, Anna; Rosebrock, Adam; Ferrezuelo, Francisco; Pyne, Saumyadipta; Chen, Haiying; Skiena, Steve

    2005-01-01

    Many genes are regulated as an innate part of the eukaryotic cell cycle, and a complex transcriptional network helps enable the cyclic behavior of dividing cells. This transcriptional network has been studied in Saccharomyces cerevisiae (budding yeast) and elsewhere. To provide more perspective on these regulatory mechanisms, we have used microarrays to measure gene expression through the cell cycle of Schizosaccharomyces pombe (fission yeast). The 750 genes with the most significant oscillations were identified and analyzed. There were two broad waves of cell cycle transcription, one in early/mid G2 phase, and the other near the G2/M transition. The early/mid G2 wave included many genes involved in ribosome biogenesis, possibly explaining the cell cycle oscillation in protein synthesis in S. pombe. The G2/M wave included at least three distinctly regulated clusters of genes: one large cluster including mitosis, mitotic exit, and cell separation functions, one small cluster dedicated to DNA replication, and another small cluster dedicated to cytokinesis and division. S. pombe cell cycle genes have relatively long, complex promoters containing groups of multiple DNA sequence motifs, often of two, three, or more different kinds. Many of the genes, transcription factors, and regulatory mechanisms are conserved between S. pombe and S. cerevisiae. Finally, we found preliminary evidence for a nearly genome-wide oscillation in gene expression: 2,000 or more genes undergo slight oscillations in expression as a function of the cell cycle, although whether this is adaptive, or incidental to other events in the cell, such as chromatin condensation, we do not know. PMID:15966770

  18. Oestrogen regulates the expression of cathepsin E-A-like gene ...

    Indian Academy of Sciences (India)

    Hang Zheng

    2018-02-28

    Feb 28, 2018 ... 1College of Animal Science and Veterinary Medicine, Henan Agricultural .... evaluated the expression regulation mechanism of the gene ... C with ad libitum water and food. ... embryonic liver following the method previously described .... Cloning and sequence analysis of chicken cathepsin E-A-like gene.

  19. An Effective Tri-Clustering Algorithm Combining Expression Data with Gene Regulation Information

    Directory of Open Access Journals (Sweden)

    Ao Li

    2009-04-01

    Full Text Available Motivation: Bi-clustering algorithms aim to identify sets of genes sharing similar expression patterns across a subset of conditions. However direct interpretation or prediction of gene regulatory mechanisms may be difficult as only gene expression data is used. Information about gene regulators may also be available, most commonly about which transcription factors may bind to the promoter region and thus control the expression level of a gene. Thus a method to integrate gene expression and gene regulation information is desirable for clustering and analyzing. Methods: By incorporating gene regulatory information with gene expression data, we define regulated expression values (REV as indicators of how a gene is regulated by a specific factor. Existing bi-clustering methods are extended to a three dimensional data space by developing a heuristic TRI-Clustering algorithm. An additional approach named Automatic Boundary Searching algorithm (ABS is introduced to automatically determine the boundary threshold. Results: Results based on incorporating ChIP-chip data representing transcription factor-gene interactions show that the algorithms are efficient and robust for detecting tri-clusters. Detailed analysis of the tri-cluster extracted from yeast sporulation REV data shows genes in this cluster exhibited significant differences during the middle and late stages. The implicated regulatory network was then reconstructed for further study of defined regulatory mechanisms. Topological and statistical analysis of this network demonstrated evidence of significant changes of TF activities during the different stages of yeast sporulation, and suggests this approach might be a general way to study regulatory networks undergoing transformations.

  20. Novel mechanism of gene regulation: the protein Rv1222 of Mycobacterium tuberculosis inhibits transcription by anchoring the RNA polymerase onto DNA.

    Science.gov (United States)

    Rudra, Paulami; Prajapati, Ranjit Kumar; Banerjee, Rajdeep; Sengupta, Shreya; Mukhopadhyay, Jayanta

    2015-07-13

    We propose a novel mechanism of gene regulation in Mycobacterium tuberculosis where the protein Rv1222 inhibits transcription by anchoring RNA polymerase (RNAP) onto DNA. In contrast to our existing knowledge that transcriptional repressors function either by binding to DNA at specific sequences or by binding to RNAP, we show that Rv1222-mediated transcription inhibition requires simultaneous binding of the protein to both RNAP and DNA. We demonstrate that the positively charged C-terminus tail of Rv1222 is responsible for anchoring RNAP on DNA, hence the protein slows down the movement of RNAP along the DNA during transcription elongation. The interaction between Rv1222 and DNA is electrostatic, thus the protein could inhibit transcription from any gene. As Rv1222 slows down the RNA synthesis, upon expression of the protein in Mycobacterium smegmatis or Escherichia coli, the growth rate of the bacteria is severely impaired. The protein does not possess any significant affinity for DNA polymerase, thus, is unable to inhibit DNA synthesis. The proposed mechanism by which Rv1222 inhibits transcription reveals a new repertoire of prokaryotic gene regulation. © Crown copyright 2015.

  1. Conserved Epigenetic Mechanisms Could Play a Key Role in Regulation of Photosynthesis and Development-Related Genes during Needle Development of Pinus radiata.

    Science.gov (United States)

    Valledor, Luis; Pascual, Jesús; Meijón, Mónica; Escandón, Mónica; Cañal, María Jesús

    2015-01-01

    Needle maturation is a complex process that involves cell growth, differentiation and tissue remodelling towards the acquisition of full physiological competence. Leaf induction mechanisms are well known; however, those underlying the acquisition of physiological competence are still poorly understood, especially in conifers. We studied the specific epigenetic regulation of genes defining organ function (PrRBCS and PrRBCA) and competence and stress response (PrCSDP2 and PrSHMT4) during three stages of needle development and one de-differentiated control. Gene-specific changes in DNA methylation and histone were analysed by bisulfite sequencing and chromatin immunoprecipitation (ChIP). The expression of PrRBCA and PrRBCS increased during needle maturation and was associated with the progressive loss of H3K9me3, H3K27me3 and the increase in AcH4. The maturation-related silencing of PrSHMT4 was correlated with increased H3K9me3 levels, and the repression of PrCSDP2, to the interplay between AcH4, H3K27me3, H3K9me3 and specific DNA methylation. The employ of HAT and HDAC inhibitors led to a further determination of the role of histone acetylation in the regulation of our target genes. The integration of these results with high-throughput analyses in Arabidopsis thaliana and Populus trichocarpa suggests that the specific epigenetic mechanisms that regulate photosynthetic genes are conserved between the analysed species.

  2. Conserved Epigenetic Mechanisms Could Play a Key Role in Regulation of Photosynthesis and Development-Related Genes during Needle Development of Pinus radiata.

    Directory of Open Access Journals (Sweden)

    Luis Valledor

    Full Text Available Needle maturation is a complex process that involves cell growth, differentiation and tissue remodelling towards the acquisition of full physiological competence. Leaf induction mechanisms are well known; however, those underlying the acquisition of physiological competence are still poorly understood, especially in conifers. We studied the specific epigenetic regulation of genes defining organ function (PrRBCS and PrRBCA and competence and stress response (PrCSDP2 and PrSHMT4 during three stages of needle development and one de-differentiated control. Gene-specific changes in DNA methylation and histone were analysed by bisulfite sequencing and chromatin immunoprecipitation (ChIP. The expression of PrRBCA and PrRBCS increased during needle maturation and was associated with the progressive loss of H3K9me3, H3K27me3 and the increase in AcH4. The maturation-related silencing of PrSHMT4 was correlated with increased H3K9me3 levels, and the repression of PrCSDP2, to the interplay between AcH4, H3K27me3, H3K9me3 and specific DNA methylation. The employ of HAT and HDAC inhibitors led to a further determination of the role of histone acetylation in the regulation of our target genes. The integration of these results with high-throughput analyses in Arabidopsis thaliana and Populus trichocarpa suggests that the specific epigenetic mechanisms that regulate photosynthetic genes are conserved between the analysed species.

  3. Systems approach identifies an organic nitrogen-responsive gene network that is regulated by the master clock control gene CCA1.

    Science.gov (United States)

    Gutiérrez, Rodrigo A; Stokes, Trevor L; Thum, Karen; Xu, Xiaodong; Obertello, Mariana; Katari, Manpreet S; Tanurdzic, Milos; Dean, Alexis; Nero, Damion C; McClung, C Robertson; Coruzzi, Gloria M

    2008-03-25

    Understanding how nutrients affect gene expression will help us to understand the mechanisms controlling plant growth and development as a function of nutrient availability. Nitrate has been shown to serve as a signal for the control of gene expression in Arabidopsis. There is also evidence, on a gene-by-gene basis, that downstream products of nitrogen (N) assimilation such as glutamate (Glu) or glutamine (Gln) might serve as signals of organic N status that in turn regulate gene expression. To identify genome-wide responses to such organic N signals, Arabidopsis seedlings were transiently treated with ammonium nitrate in the presence or absence of MSX, an inhibitor of glutamine synthetase, resulting in a block of Glu/Gln synthesis. Genes that responded to organic N were identified as those whose response to ammonium nitrate treatment was blocked in the presence of MSX. We showed that some genes previously identified to be regulated by nitrate are under the control of an organic N-metabolite. Using an integrated network model of molecular interactions, we uncovered a subnetwork regulated by organic N that included CCA1 and target genes involved in N-assimilation. We validated some of the predicted interactions and showed that regulation of the master clock control gene CCA1 by Glu or a Glu-derived metabolite in turn regulates the expression of key N-assimilatory genes. Phase response curve analysis shows that distinct N-metabolites can advance or delay the CCA1 phase. Regulation of CCA1 by organic N signals may represent a novel input mechanism for N-nutrients to affect plant circadian clock function.

  4. Glucose Regulates the Expression of the Apolipoprotein A5 Gene

    Energy Technology Data Exchange (ETDEWEB)

    Fruchart, Jamila; Nowak, Maxime; Helleboid-Chapman, Audrey; Jakel, Heidelinde; Moitrot, Emmanuelle; Rommens, Corinne; Pennacchio, Len A.; Fruchart-Najib, Jamila; Fruchart, Jean-Charles

    2008-04-07

    The apolipoprotein A5 gene (APOA5) is a key player in determining triglyceride concentrations in humans and mice. Since diabetes is often associated with hypertriglyceridemia, this study explores whether APOA5 gene expression is regulated by alteration in glucose homeostasis and the related pathways. D-glucose activates APOA5 gene expression in a time- and dose-dependent manner in hepatocytes, and the glycolytic pathway involved was determined using D-glucose analogs and metabolites. Together, transient transfections, electrophoretic mobility shift assays and chromatin immunoprecipitation assays show that this regulation occurs at the transcriptional level through an increase of USF1/2 binding to an E-box in the APOA5 promoter. We show that this phenomenon is not due to an increase of mRNA or protein expression levels of USF. Using protein phosphatases 1 and 2A inhibitor, we demonstrate that D-glucose regulates APOA5 gene via a dephosphorylation mechanism, thereby resulting in an enhanced USF1/2-promoter binding. Last, subsequent suppressions of USF1/2 and phosphatases mRNA through siRNA gene silencing abolished the regulation. We demonstrate that APOA5 gene is up regulated by D-glucose and USF through phosphatase activation. These findings may provide a new cross talk between glucose and lipid metabolism.

  5. The cell cycle-regulated genes of Schizosaccharomyces pombe.

    Directory of Open Access Journals (Sweden)

    Anna Oliva

    2005-07-01

    Full Text Available Many genes are regulated as an innate part of the eukaryotic cell cycle, and a complex transcriptional network helps enable the cyclic behavior of dividing cells. This transcriptional network has been studied in Saccharomyces cerevisiae (budding yeast and elsewhere. To provide more perspective on these regulatory mechanisms, we have used microarrays to measure gene expression through the cell cycle of Schizosaccharomyces pombe (fission yeast. The 750 genes with the most significant oscillations were identified and analyzed. There were two broad waves of cell cycle transcription, one in early/mid G2 phase, and the other near the G2/M transition. The early/mid G2 wave included many genes involved in ribosome biogenesis, possibly explaining the cell cycle oscillation in protein synthesis in S. pombe. The G2/M wave included at least three distinctly regulated clusters of genes: one large cluster including mitosis, mitotic exit, and cell separation functions, one small cluster dedicated to DNA replication, and another small cluster dedicated to cytokinesis and division. S. pombe cell cycle genes have relatively long, complex promoters containing groups of multiple DNA sequence motifs, often of two, three, or more different kinds. Many of the genes, transcription factors, and regulatory mechanisms are conserved between S. pombe and S. cerevisiae. Finally, we found preliminary evidence for a nearly genome-wide oscillation in gene expression: 2,000 or more genes undergo slight oscillations in expression as a function of the cell cycle, although whether this is adaptive, or incidental to other events in the cell, such as chromatin condensation, we do not know.

  6. Growth rate regulated genes and their wide involvement in the Lactococcus lactis stress responses

    Directory of Open Access Journals (Sweden)

    Redon Emma

    2008-07-01

    Full Text Available Abstract Background The development of transcriptomic tools has allowed exhaustive description of stress responses. These responses always superimpose a general response associated to growth rate decrease and a specific one corresponding to the stress. The exclusive growth rate response can be achieved through chemostat cultivation, enabling all parameters to remain constant except the growth rate. Results We analysed metabolic and transcriptomic responses of Lactococcus lactis in continuous cultures at different growth rates ranging from 0.09 to 0.47 h-1. Growth rate was conditioned by isoleucine supply. Although carbon metabolism was constant and homolactic, a widespread transcriptomic response involving 30% of the genome was observed. The expression of genes encoding physiological functions associated with biogenesis increased with growth rate (transcription, translation, fatty acid and phospholipids metabolism. Many phages, prophages and transposon related genes were down regulated as growth rate increased. The growth rate response was compared to carbon and amino-acid starvation transcriptomic responses, revealing constant and significant involvement of growth rate regulations in these two stressful conditions (overlap 27%. Two regulators potentially involved in the growth rate regulations, llrE and yabB, have been identified. Moreover it was established that genes positively regulated by growth rate are preferentially located in the vicinity of replication origin while those negatively regulated are mainly encountered at the opposite, thus indicating the relationship between genes expression and their location on chromosome. Although stringent response mechanism is considered as the one governing growth deceleration in bacteria, the rigorous comparison of the two transcriptomic responses clearly indicated the mechanisms are distinct. Conclusion This work of integrative biology was performed at the global level using transcriptomic analysis

  7. Hox gene regulation in the central nervous system of Drosophila

    Directory of Open Access Journals (Sweden)

    Maheshwar eGummalla

    2014-04-01

    Full Text Available Hox genes specify the structures that form along the anteroposterior (AP axis of bilateria. Within the genome, they often form clusters where, remarkably enough, their position within the clusters reflects the relative positions of the structures they specify along the AP axis. This correspondence between genomic organization and gene expression pattern has been conserved through evolution and provides a unique opportunity to study how chromosomal context affects gene regulation. In Drosophila, a general rule, often called posterior dominance, states that Hox genes specifying more posterior structures repress the expression of more anterior Hox genes. This rule explains the apparent spatial complementarity of Hox gene expression patterns in Drosophila. Here we review a noticeable exception to this rule where the more-posteriorly expressed Abd-B hox gene fails to repress the more-anterior abd-A gene in cells of the central nervous system (CNS. While Abd-B is required to repress ectopic expression of abd-A in the posterior epidermis, abd-A repression in the posterior CNS is accomplished by a different mechanism that involves a large 92kb long non-coding RNA (lncRNA encoded by the intergenic region separating abd-A and Abd-B (the iab8ncRNA. Dissection of this lncRNA revealed that abd-A is repressed by the lncRNA using two redundant mechanisms. The 1st mechanism is mediated by a microRNA (mir-iab-8 encoded by intronic sequence within the large iab8-ncRNA. Meanwhile, the second mechanism seems to involve transcriptional interference by the long iab-8 ncRNA on the abd-A promoter. Recent work demonstrating CNS-specific regulation of genes by ncRNAs in Drosophila, seem to highlight a potential role for the iab-8-ncRNA in the evolution of the Drosophila hox complexes

  8. Cytochrome P450 2A5 and bilirubin: Mechanisms of gene regulation and cytoprotection

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sangsoo Daniel; Antenos, Monica [Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, N1G 2W1 (Canada); Squires, E. James [Department of Animal and Poultry Sciences, University of Guelph, Guelph, Ontario, N1G 2W1 (Canada); Kirby, Gordon M., E-mail: gkirby@uoguelph.ca [Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, N1G 2W1 (Canada)

    2013-07-15

    Bilirubin (BR) has recently been identified as the first endogenous substrate for cytochrome P450 2A5 (CYP2A5) and it has been suggested that CYP2A5 plays a major role in BR clearance as an alternative mechanism to BR conjugation by uridine-diphosphate glucuronyltransferase 1A1. This study investigated the mechanisms of Cyp2a5 gene regulation by BR and the cytoprotective role of CYP2A5 in BR hepatotoxicity. BR induced CYP2A5 expression at the mRNA and protein levels in a dose-dependent manner in primary mouse hepatocytes. BR treatment also caused nuclear translocation of Nuclear factor-E2 p45-related factor 2 (Nrf2) in hepatocytes. In reporter assays, BR treatment of primary hepatocytes transfected with a Cyp2a5 promoter-luciferase reporter construct resulted in a 2-fold induction of Cyp2a5 reporter activity. Furthermore, cotransfection of the hepatocytes with a Nrf2 expression vector without BR treatment resulted in an increase in Cyp2a5 reporter activity of approximately 2-fold and BR treatment of Nrf2 cotransfectants further increased reporter activity by 4-fold. In addition, site-directed mutation of the ARE in the reporter construct completely abolished both the BR- and Nrf2-mediated increases in reporter activity. The cytoprotective role of CYP2A5 against BR-mediated apoptosis was also examined in Hepa 1–6 cells that lack endogenous CYP2A5. Transient overexpression of CYP2A5 partially blocked BR-induced caspase-3 cleavage in Hepa 1–6 cells. Furthermore, in vitro degradation of BR was increased by microsomes from Hepa 1–6 cells overexpressing CYP2A5 compared to control cells transfected with an empty vector. Collectively, these results suggest that Nrf2-mediated CYP2A5 transactivation in response to BR may provide an additional mechanism for adaptive cytoprotection against BR hepatotoxicity. - Highlights: • The mechanism of Cyp2a5 gene regulation by BR was investigated. • The cytoprotective role of CYP2A5 in BR hepatotoxicity was determined. • BR

  9. Effects of sex steroids on expression of genes regulating growth-related mechanisms in rainbow trout (Oncorhynchus mykiss).

    Science.gov (United States)

    Cleveland, Beth M; Weber, Gregory M

    2015-05-15

    Effects of a single injection of 17β-estradiol (E2), testosterone (T), or 5β-dihydrotestosterone (DHT) on expression of genes central to the growth hormone (GH)/insulin-like growth factor (IGF) axis, muscle-regulatory factors, transforming growth factor-beta (TGFβ) superfamily signaling cascade, and estrogen receptors were determined in rainbow trout (Oncorhynchus mykiss) liver and white muscle tissue. In liver in addition to regulating GH sensitivity and IGF production, sex steroids also affected expression of IGF binding proteins, as E2, T, and DHT increased expression of igfbp2b and E2 also increased expression of igfbp2 and igfbp4. Regulation of this system also occurred in white muscle in which E2 increased expression of igf1, igf2, and igfbp5b1, suggesting anabolic capacity may be maintained in white muscle in the presence of E2. In contrast, DHT decreased expression of igfbp5b1. DHT and T decreased expression of myogenin, while other muscle regulatory factors were either not affected or responded similarly for all steroid treatments. Genes within the TGFβ superfamily signaling cascade responded to steroid treatment in both liver and muscle, suggesting a regulatory role for sex steroids in the ability to transmit signals initiated by TGFβ superfamily ligands, with a greater number of genes responding in liver than in muscle. Estrogen receptors were also regulated by sex steroids, with era1 expression increasing for all treatments in muscle, but only E2- and T-treatment in liver. E2 reduced expression of erb2 in liver. Collectively, these data identify how physiological mechanisms are regulated by sex steroids in a manner that promotes the disparate effects of androgens and estrogens on growth in salmonids. Published by Elsevier Inc.

  10. Photosynthetic control of electron transport and the regulation of gene expression.

    Science.gov (United States)

    Foyer, Christine H; Neukermans, Jenny; Queval, Guillaume; Noctor, Graham; Harbinson, Jeremy

    2012-02-01

    The term 'photosynthetic control' describes the short- and long-term mechanisms that regulate reactions in the photosynthetic electron transport (PET) chain so that the rate of production of ATP and NADPH is coordinated with the rate of their utilization in metabolism. At low irradiances these mechanisms serve to optimize light use efficiency, while at high irradiances they operate to dissipate excess excitation energy as heat. Similarly, the production of ATP and NADPH in ratios tailored to meet demand is finely tuned by a sophisticated series of controls that prevents the accumulation of high NAD(P)H/NAD(P) ratios and ATP/ADP ratios that would lead to potentially harmful over-reduction and inactivation of PET chain components. In recent years, photosynthetic control has also been extrapolated to the regulation of gene expression because mechanisms that are identical or similar to those that serve to regulate electron flow through the PET chain also coordinate the regulated expression of genes encoding photosynthetic proteins. This requires coordinated gene expression in the chloroplasts, mitochondria, and nuclei, involving complex networks of forward and retrograde signalling pathways. Photosynthetic control operates to control photosynthetic gene expression in response to environmental and metabolic changes. Mining literature data on transcriptome profiles of C(3) and C(4) leaves from plants grown under high atmospheric carbon dioxide (CO(2)) levels compared with those grown with ambient CO(2) reveals that the transition to higher photorespiratory conditions in C(3) plants enhances the expression of genes associated with cyclic electron flow pathways in Arabidopsis thaliana, consistent with the higher ATP requirement (relative to NADPH) of photorespiration.

  11. Sox9 gene regulation and the loss of the XY/XX sex-determining mechanism in the mole vole Ellobius lutescens.

    Science.gov (United States)

    Bagheri-Fam, Stefan; Sreenivasan, Rajini; Bernard, Pascal; Knower, Kevin C; Sekido, Ryohei; Lovell-Badge, Robin; Just, Walter; Harley, Vincent R

    2012-01-01

    In most mammals, the Y chromosomal Sry gene initiates testis formation within the bipotential gonad, resulting in male development. SRY is a transcription factor and together with SF1 it directly up-regulates the expression of the pivotal sex-determining gene Sox9 via a 1.3-kb cis-regulatory element (TESCO) which contains an evolutionarily conserved region (ECR) of 180 bp. Remarkably, several rodent species appear to determine sex in the absence of Sry and a Y chromosome, including the mole voles Ellobius lutescens and Ellobius tancrei, whereas Ellobius fuscocapillus of the same genus retained Sry. The sex-determining mechanisms in the Sry-negative species remain elusive. We have cloned and sequenced 1.1 kb of E. lutescens TESCO which shares 75% sequence identity with mouse TESCO indicating that testicular Sox9 expression in E. lutescens might still be regulated via TESCO. We have also cloned and sequenced the ECRs of E. tancrei and E. fuscocapillus. While the three Ellobius ECRs are highly similar (94-97% sequence identity), they all display a 14-bp deletion (Δ14) removing a highly conserved SOX/TCF site. Introducing Δ14 into mouse TESCO increased both basal activity and SF1-mediated activation of TESCO in HEK293T cells. We propose a model whereby Δ14 may have triggered up-regulation of Sox9 in XX gonads leading to destabilization of the XY/XX sex-determining mechanism in Ellobius. E. lutescens/E. tancrei and E. fuscocapillus could have independently stabilized their sex determination mechanisms by Sry-independent and Sry-dependent approaches, respectively.

  12. Prediction of epigenetically regulated genes in breast cancer cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Loss, Leandro A; Sadanandam, Anguraj; Durinck, Steffen; Nautiyal, Shivani; Flaucher, Diane; Carlton, Victoria EH; Moorhead, Martin; Lu, Yontao; Gray, Joe W; Faham, Malek; Spellman, Paul; Parvin, Bahram

    2010-05-04

    Methylation of CpG islands within the DNA promoter regions is one mechanism that leads to aberrant gene expression in cancer. In particular, the abnormal methylation of CpG islands may silence associated genes. Therefore, using high-throughput microarrays to measure CpG island methylation will lead to better understanding of tumor pathobiology and progression, while revealing potentially new biomarkers. We have examined a recently developed high-throughput technology for measuring genome-wide methylation patterns called mTACL. Here, we propose a computational pipeline for integrating gene expression and CpG island methylation profles to identify epigenetically regulated genes for a panel of 45 breast cancer cell lines, which is widely used in the Integrative Cancer Biology Program (ICBP). The pipeline (i) reduces the dimensionality of the methylation data, (ii) associates the reduced methylation data with gene expression data, and (iii) ranks methylation-expression associations according to their epigenetic regulation. Dimensionality reduction is performed in two steps: (i) methylation sites are grouped across the genome to identify regions of interest, and (ii) methylation profles are clustered within each region. Associations between the clustered methylation and the gene expression data sets generate candidate matches within a fxed neighborhood around each gene. Finally, the methylation-expression associations are ranked through a logistic regression, and their significance is quantified through permutation analysis. Our two-step dimensionality reduction compressed 90% of the original data, reducing 137,688 methylation sites to 14,505 clusters. Methylation-expression associations produced 18,312 correspondences, which were used to further analyze epigenetic regulation. Logistic regression was used to identify 58 genes from these correspondences that showed a statistically signifcant negative correlation between methylation profles and gene expression in the

  13. Alternative splicing: a novel mechanism of regulation identified in the chorismate mutase gene of the potato cyst nematode Globodera rostochiensis.

    Science.gov (United States)

    Lu, Shun-Wen; Tian, Duanhua; Borchardt-Wier, Harmony B; Wang, Xiaohong

    2008-11-01

    Chorismate mutase (CM) secreted from the stylet of plant-parasitic nematodes plays an important role in plant parasitism. We isolated and characterized a new nematode CM gene (Gr-cm-1) from the potato cyst nematode, Globodera rostochiensis. The Gr-cm-1 gene was found to exist in the nematode genome as a single-copy gene that has two different alleles, Gr-cm-1A and Gr-cm-1B, both of which could give rise to two different mRNA transcripts of Gr-cm-1 and Gr-cm-1-IRII. In situ mRNA hybridization showed that the Gr-cm-1 gene was exclusively expressed within the subventral oesophageal gland cells of the nematode. Gr-cm-1 was demonstrated to encode a functional CM (GR-CM-1) potentially having a dimeric structure as the secreted bacterial *AroQ CMs. Gr-cm-1-IRII, generated by retention of intron 2 of the Gr-cm-1 pre-mRNA through alternative splicing (AS), would encode a truncated protein (GR-CM-1t) lacking the CM domain with no CM activity. The quantitative real-time reverse transcription-PCR assay revealed that splicing of the Gr-cm-1 gene was developmentally regulated; Gr-cm-1 was up-regulated whereas Gr-cm-1-IRII was down-regulated in early nematode parasitic stages compared to the preparasitic juvenile stage. Low-temperature SDS-PAGE analysis revealed that GR-CM-1 could form homodimers when expressed in Escherichia coli and the dimerization domain was retained in the truncated GR-CM-1t protein. The specific interaction between the two proteins was demonstrated in yeast. Our data suggested that the novel splice variant might function as a dominant negative isoform through heterodimerization with the full-length GR-CM-1 protein and that AS may represent an important mechanism for regulating CM activity during nematode parasitism.

  14. Regulation of hepatic PPARγ2 and lipogenic gene expression by melanocortin

    International Nuclear Information System (INIS)

    Poritsanos, Nicole J.; Wong, Davie; Vrontakis, Maria E.; Mizuno, Tooru M.

    2008-01-01

    The central melanocortin system regulates hepatic lipid metabolism. Hepatic lipogenic gene expression is regulated by transcription factors including sterol regulatory element-binding protein 1c (SREBP-1c), carbohydrate responsive element-binding protein (ChREBP), and peroxisome proliferator-activated receptor γ2 (PPARγ2). However, it is unclear if central melanocortin signaling regulates hepatic lipogenic gene expression through the activation of these transcription factors. To delineate the molecular mechanisms by which the melanocortin system regulates hepatic lipid metabolism, we examined the effect of intracerebroventricular injection of SHU9119, a melanocortin receptor antagonist, on hepatic expression levels of genes involved in lipid metabolism in mice. SHU9119 treatment increased hepatic triglyceride content and mRNA levels of lipogenic genes, SREBP-1c, and PPARγ2, whereas it did not cause any changes in hepatic ChREBP mRNA levels. These findings suggest that reduced central melanocortin signaling increases hepatic lipid deposition by stimulating hepatic lipogenic gene expression at least partly through the activation of SREBP-1c and PPARγ2

  15. Identification of Cell Cycle-Regulated Genes by Convolutional Neural Network.

    Science.gov (United States)

    Liu, Chenglin; Cui, Peng; Huang, Tao

    2017-01-01

    The cell cycle-regulated genes express periodically with the cell cycle stages, and the identification and study of these genes can provide a deep understanding of the cell cycle process. Large false positives and low overlaps are big problems in cell cycle-regulated gene detection. Here, a computational framework called DLGene was proposed for cell cycle-regulated gene detection. It is based on the convolutional neural network, a deep learning algorithm representing raw form of data pattern without assumption of their distribution. First, the expression data was transformed to categorical state data to denote the changing state of gene expression, and four different expression patterns were revealed for the reported cell cycle-regulated genes. Then, DLGene was applied to discriminate the non-cell cycle gene and the four subtypes of cell cycle genes. Its performances were compared with six traditional machine learning methods. At last, the biological functions of representative cell cycle genes for each subtype are analyzed. Our method showed better and more balanced performance of sensitivity and specificity comparing to other machine learning algorithms. The cell cycle genes had very different expression pattern with non-cell cycle genes and among the cell-cycle genes, there were four subtypes. Our method not only detects the cell cycle genes, but also describes its expression pattern, such as when its highest expression level is reached and how it changes with time. For each type, we analyzed the biological functions of the representative genes and such results provided novel insight to the cell cycle mechanisms. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Advance in the Study of the Mechanisms Regulated by Sphingosine-1-Phosphate

    Science.gov (United States)

    Ye, Fei; Kong, Xiangqian; Luo, Cheng

    2010-09-01

    Sphingosine-1-phosphate (S1P) is a bioactive lipid messenger in the cells that regulate gene expression and NF-KB signal pathway through unknown mechanisms. Recently, Cheng Luo, associate professor of DDDC in Shanghai Institute of Materia Medica, whose project was funded by the National Natural Science Foundation of China, joined in a research team led by Professor Sarah Spiegel of Virginia Commonwealth University. The team continuously made significant breakthroughs in understanding the regulation mechanism of Sphingosine-1-Phosphate. In September 2009, in a paper published on SCIENCE magazine (Science 2009, 325: 1254-7), they firstly demonstrated that S1P is a physiologically important regulator of histone deacetylases (HDACs), HDACs are direct intracellular targets of S1P. Furthermore, they identified the mechanism that S1P regulates gene expression through regulating the activity of HDACs. In June 24th, 2010, in another paper to be published on NATURE magazine (Nature 2010, June 24th, advance online publication) which reports the regulation of NF-KB signaling pathway by S1P. They demonstrate that S1P is the missing cofactor for TRAF2 (tumour-necrosis factor receptor-associated factor 2) and indicate a new paradigm for the regulation of lysine-63-linked poly-ubiquitination. The study also highlight the key role of SphK1 and its product S1P in TNF-α signalling and the canonical NF-KB activation pathway, and then play crucial role in inflammatory, antiapoptotic and immune processes. The identification of new mechanisms by which S1P regulates gene expression and TNF and NF-KB signaling pathway will light up the road to develop novel inhibitors that might be useful for treatment of cancer and inflammatory diseases.

  17. Discovering hidden relationships between renal diseases and regulated genes through 3D network visualizations

    Directory of Open Access Journals (Sweden)

    Bhavnani Suresh K

    2010-11-01

    Full Text Available Abstract Background In a recent study, two-dimensional (2D network layouts were used to visualize and quantitatively analyze the relationship between chronic renal diseases and regulated genes. The results revealed complex relationships between disease type, gene specificity, and gene regulation type, which led to important insights about the underlying biological pathways. Here we describe an attempt to extend our understanding of these complex relationships by reanalyzing the data using three-dimensional (3D network layouts, displayed through 2D and 3D viewing methods. Findings The 3D network layout (displayed through the 3D viewing method revealed that genes implicated in many diseases (non-specific genes tended to be predominantly down-regulated, whereas genes regulated in a few diseases (disease-specific genes tended to be up-regulated. This new global relationship was quantitatively validated through comparison to 1000 random permutations of networks of the same size and distribution. Our new finding appeared to be the result of using specific features of the 3D viewing method to analyze the 3D renal network. Conclusions The global relationship between gene regulation and gene specificity is the first clue from human studies that there exist common mechanisms across several renal diseases, which suggest hypotheses for the underlying mechanisms. Furthermore, the study suggests hypotheses for why the 3D visualization helped to make salient a new regularity that was difficult to detect in 2D. Future research that tests these hypotheses should enable a more systematic understanding of when and how to use 3D network visualizations to reveal complex regularities in biological networks.

  18. Divergent mechanisms underlie Smad4-mediated positive regulation of the three genes encoding the basement membrane component laminin-332 (laminin-5)

    International Nuclear Information System (INIS)

    Zboralski, Dirk; Böckmann, Miriam; Zapatka, Marc; Hoppe, Sabine; Schöneck, Anna; Hahn, Stephan A; Schmiegel, Wolff; Schwarte-Waldhoff, Irmgard

    2008-01-01

    Functional inactivation of the tumor suppressor Smad4 in colorectal and pancreatic carcinogenesis occurs coincident with the transition to invasive growth. Breaking the basement membrane (BM) barrier, a prerequisite for invasive growth, can be due to tumor induced proteolytic tissue remodeling or to reduced synthesis of BM molecules by incipient tumor cells. Laminin-332 (laminin-5), a heterotrimeric BM component composed of α3-, β3- and γ2-chains, has recently been identified as a target structure of Smad4 and represents the first example for expression control of an essential BM component by a tumor and invasion suppressor. Biochemically Smad4 is a transmitter of signals of the TGFβ superfamily of cytokines. We have reported previously, that Smad4 functions as a positive transcriptional regulator of constitutive and of TGFβ-induced transcription of all three genes encoding Laminin-332, LAMA3, LAMB3 and LAMC2. Promoter-reporter constructs harboring 4 kb upstream regions, each of the three genes encoding Laminin-322 as well as deletion and mutations constructs were established. Promoter activities and TGFβ induction were assayed through transient transfections in Smad4-negative human cancer cells and their stable Smad4-positive derivatives. Functionally relevant binding sites were subsequently confirmed through chromatin immunoprecipitation. Herein, we report that Smad4 mediates transcriptional regulation through three different mechanisms, namely through Smad4 binding to a functional SBE site exclusively in the LAMA3 promoter, Smad4 binding to AP1 (and Sp1) sites presumably via interaction with AP1 family components and lastly a Smad4 impact on transcription of AP1 factors. Whereas Smad4 is essential for positive regulation of all three genes, the molecular mechanisms are significantly divergent between the LAMA3 promoter as compared to the LAMB3 and LAMC2 promoters. We hypothesize that this divergence in modular regulation of the three promoters may lay the

  19. Sp1 and CREB regulate basal transcription of the human SNF2L gene

    International Nuclear Information System (INIS)

    Xia Yu; Jiang Baichun; Zou Yongxin; Gao Guimin; Shang Linshan; Chen Bingxi; Liu Qiji; Gong Yaoqin

    2008-01-01

    Imitation Switch (ISWI) is a member of the SWI2/SNF2 superfamily of ATP-dependent chromatin remodelers, which are involved in multiple nuclear functions, including transcriptional regulation, replication, and chromatin assembly. Mammalian genomes encode two ISWI orthologs, SNF2H and SNF2L. In order to clarify the molecular mechanisms governing the expression of human SNF2L gene, we functionally examined the transcriptional regulation of human SNF2L promoter. Reporter gene assays demonstrated that the minimal SNF2L promoter was located between positions -152 to -86 relative to the transcription start site. In this region we have identified a cAMP-response element (CRE) located at -99 to -92 and a Sp1-binding site at -145 to -135 that play a critical role in regulating basal activity of human SNF2L gene, which were proven by deletion and mutation of specific binding sites, EMSA, and down-regulating Sp1 and CREB via RNAi. This study provides the first insight into the mechanisms that control basal expression of human SNF2L gene

  20. Regulation of vesicular trafficking by Parkinson's disease-associated genes

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Inoshita

    2015-10-01

    Full Text Available The regulatory mechanisms that control intracellular vesicular trafficking play important roles in cellular function and viability. Neurons have specific vesicular trafficking systems for synaptic vesicle formation, release and recycling. Synaptic vesicular trafficking impairments induce neuronal dysfunction and physiological and behavioral disorders. Parkinson's disease (PD is an age-dependent neurodegenerative disorder characterized by dopamine depletion and loss of dopamine neurons in the midbrain. The molecular mechanism responsible for the neurodegeneration that occurs during PD is still not understood; however, recent functional analyses of familial PD causative genes suggest that a number of PD causative genes regulate intracellular vesicular trafficking, including synaptic vesicular dynamics. This review focuses on recent insights regarding the functions of PD causative genes, their relationship with vesicular trafficking and how mutations associated with PD affect vesicular dynamics and neuronal survival.

  1. The human oxytocin gene promoter is regulated by estrogens.

    Science.gov (United States)

    Richard, S; Zingg, H H

    1990-04-15

    Gonadal steroids affect brain function primarily by altering the expression of specific genes, yet the specific mechanisms by which neuronal target genes undergo such regulation are unknown. Recent evidence suggests that the expression of the neuropeptide gene for oxytocin (OT) is modulated by estrogens. We therefore examined the possibility that this regulation occurred via a direct interaction of the estrogen-receptor complex with cis-acting elements flanking the OT gene. DNA-mediated gene transfer experiments were performed using Neuro-2a neuroblastoma cells and chimeric plasmids containing portions of the human OT gene 5'-glanking region linked to the chloramphenicol acetyltransferase gene. We identified a 19-base pair region located at -164 to -146 upstream of the transcription start site which is capable of conferring estrogen responsiveness to the homologous as well as to a heterologous promoter. The hormonal response is strictly dependent on the presence of intracellular estrogen receptors, since estrogen induced stimulation occurred only in Neuro-2a cells co-transfected with an expression vector for the human estrogen receptor. The identified region contains a novel imperfect palindrome (GGTGACCTTGACC) with sequence similarity to other estrogen response elements (EREs). To define cis-acting elements that function in synergism with the ERE, sequences 3' to the ERE were deleted, including the CCAAT box, two additional motifs corresponding to the right half of the ERE palindrome (TGACC), as well as a CTGCTAA heptamer similar to the "elegans box" found in Caenorhabditis elegans. Interestingly, optimal function of the identified ERE was fully independent of these elements and only required a short promoter region (-49 to +36). Our studies define a molecular mechanism by which estrogens can directly modulate OT gene expression. However, only a subset of OT neurons are capable of binding estrogens, therefore, direct action of estrogens on the OT gene may be

  2. Fine tuning of RFX/DAF-19-regulated target gene expression through binding to multiple sites in Caenorhabditis elegans

    OpenAIRE

    Chu, Jeffery S. C.; Tarailo-Graovac, Maja; Zhang, Di; Wang, Jun; Uyar, Bora; Tu, Domena; Trinh, Joanne; Baillie, David L.; Chen, Nansheng

    2011-01-01

    In humans, mutations of a growing list of regulatory factor X (RFX) target genes have been associated with devastating genetics disease conditions including ciliopathies. However, mechanisms underlying RFX transcription factors (TFs)-mediated gene expression regulation, especially differential gene expression regulation, are largely unknown. In this study, we explore the functional significance of the co-existence of multiple X-box motifs in regulating differential gene expression in Caenorha...

  3. Social Regulation of Gene Expression in Threespine Sticklebacks.

    Directory of Open Access Journals (Sweden)

    Anna K Greenwood

    Full Text Available Identifying genes that are differentially expressed in response to social interactions is informative for understanding the molecular basis of social behavior. To address this question, we described changes in gene expression as a result of differences in the extent of social interactions. We housed threespine stickleback (Gasterosteus aculeatus females in either group conditions or individually for one week, then measured levels of gene expression in three brain regions using RNA-sequencing. We found that numerous genes in the hindbrain/cerebellum had altered expression in response to group or individual housing. However, relatively few genes were differentially expressed in either the diencephalon or telencephalon. The list of genes upregulated in fish from social groups included many genes related to neural development and cell adhesion as well as genes with functions in sensory signaling, stress, and social and reproductive behavior. The list of genes expressed at higher levels in individually-housed fish included several genes previously identified as regulated by social interactions in other animals. The identified genes are interesting targets for future research on the molecular mechanisms of normal social interactions.

  4. Intrinsic limits to gene regulation by global crosstalk

    Science.gov (United States)

    Friedlander, Tamar; Prizak, Roshan; Guet, Calin; Barton, Nicholas H.; Tkacik, Gasper

    Gene activity is mediated by the specificity of binding interactions between special proteins, called transcription factors, and short regulatory sequences on the DNA, where different protein species preferentially bind different DNA targets. Limited interaction specificity may lead to crosstalk: a regulatory state in which a gene is either incorrectly activated due to spurious interactions or remains erroneously inactive. Since each protein can potentially interact with numerous DNA targets, crosstalk is inherently a global problem, yet has previously not been studied as such. We construct a theoretical framework to analyze the effects of global crosstalk on gene regulation, using statistical mechanics. We find that crosstalk in regulatory interactions puts fundamental limits on the reliability of gene regulation that are not easily mitigated by tuning proteins concentrations or by complex regulatory schemes proposed in the literature. Our results suggest that crosstalk imposes a previously unexplored global constraint on the functioning and evolution of regulatory networks, which is qualitatively distinct from the known constraints that act at the level of individual gene regulatory elements. The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) under REA Grant agreement Nr. 291734 (T.F.) and ERC Grant Nr. 250152 (N.B.).

  5. Local and global responses in complex gene regulation networks

    Science.gov (United States)

    Tsuchiya, Masa; Selvarajoo, Kumar; Piras, Vincent; Tomita, Masaru; Giuliani, Alessandro

    2009-04-01

    An exacerbated sensitivity to apparently minor stimuli and a general resilience of the entire system stay together side-by-side in biological systems. This apparent paradox can be explained by the consideration of biological systems as very strongly interconnected network systems. Some nodes of these networks, thanks to their peculiar location in the network architecture, are responsible for the sensitivity aspects, while the large degree of interconnection is at the basis of the resilience properties of the system. One relevant feature of the high degree of connectivity of gene regulation networks is the emergence of collective ordered phenomena influencing the entire genome and not only a specific portion of transcripts. The great majority of existing gene regulation models give the impression of purely local ‘hard-wired’ mechanisms disregarding the emergence of global ordered behavior encompassing thousands of genes while the general, genome wide, aspects are less known. Here we address, on a data analysis perspective, the discrimination between local and global scale regulations, this goal was achieved by means of the examination of two biological systems: innate immune response in macrophages and oscillating growth dynamics in yeast. Our aim was to reconcile the ‘hard-wired’ local view of gene regulation with a global continuous and scalable one borrowed from statistical physics. This reconciliation is based on the network paradigm in which the local ‘hard-wired’ activities correspond to the activation of specific crucial nodes in the regulation network, while the scalable continuous responses can be equated to the collective oscillations of the network after a perturbation.

  6. Epigenetic Regulation of the Oxytocin Receptor Gene: Implications for Behavioral Neuroscience

    Directory of Open Access Journals (Sweden)

    Robert eKumsta

    2013-05-01

    Full Text Available Genetic approaches have improved our understanding of the neurobiological basis of social behavior and cognition. For instance, common polymorphisms of genes involved in oxytocin signaling have been associated with sociobehavioral phenotypes in healthy samples as well as in subjects with mental disorders. More recently, attention has been drawn to epigenetic mechanisms, which regulate genetic function and expression without changes to the underlying DNA sequence. We provide an overview of the functional importance of oxytocin receptor gene (OXTR promoter methylation and summarize studies that have investigated the role of OXTR methylation in behavioral phenotypes. There is first evidence that OXTR methylation is associated with autism, high callous-unemotional traits, and differential activation of brain regions involved in social perception. Furthermore, psychosocial stress exposure might dynamically regulate OXTR. Given evidence that epigenetic states of genes can be modified by experiences, especially those occurring in sensitive periods early in development, we conclude with a discussion on the effects of traumatic experience on the developing oxytocin system. Epigenetic modification of genes involved in oxytocin signaling might be involved in the mechanisms mediating the long-term influence of early adverse experiences on socio-behavioral outcomes.

  7. Ironing Out the Unconventional Mechanisms of Iron Acquisition and Gene Regulation in Chlamydia

    Directory of Open Access Journals (Sweden)

    Nick D. Pokorzynski

    2017-09-01

    Full Text Available The obligate intracellular pathogen Chlamydia trachomatis, along with its close species relatives, is known to be strictly dependent upon the availability of iron. Deprivation of iron in vitro induces an aberrant morphological phenotype termed “persistence.” This persistent phenotype develops in response to various immunological and nutritional insults and may contribute to the development of sub-acute Chlamydia-associated chronic diseases in susceptible populations. Given the importance of iron to Chlamydia, relatively little is understood about its acquisition and its role in gene regulation in comparison to other iron-dependent bacteria. Analysis of the genome sequences of a variety of chlamydial species hinted at the involvement of unconventional mechanisms, being that Chlamydia lack many conventional systems of iron homeostasis that are highly conserved in other bacteria. Herein we detail past and current research regarding chlamydial iron biology in an attempt to provide context to the rapid progress of the field in recent years. We aim to highlight recent discoveries and innovations that illuminate the strategies involved in chlamydial iron homeostasis, including the vesicular mode of acquiring iron from the intracellular environment, and the identification of a putative iron-dependent transcriptional regulator that is synthesized as a fusion with a ABC-type transporter subunit. These recent findings, along with the noted absence of iron-related homologs, indicate that Chlamydia have evolved atypical approaches to the problem of iron homeostasis, reinvigorating research into the iron biology of this pathogen.

  8. Role of annexin gene and its regulation during zebrafish caudal fin regeneration.

    Science.gov (United States)

    Saxena, Sandeep; Purushothaman, Sruthi; Meghah, Vuppalapaty; Bhatti, Bhawna; Poruri, Akhila; Meena Lakshmi, Mula G; Sarath Babu, Nukala; Narasimha Murthy, Ch Lakshmi; Mandal, Komal K; Kumar, Arvind; Idris, Mohammed M

    2016-05-01

    The molecular mechanism of epimorphic regeneration is elusive due to its complexity and limitation in mammals. Epigenetic regulatory mechanisms play a crucial role in development and regeneration. This investigation attempted to reveal the role of epigenetic regulatory mechanisms, such as histone H3 and H4 lysine acetylation and methylation during zebrafish caudal fin regeneration. It was intriguing to observe that H3K9,14 acetylation, H4K20 trimethylation, H3K4 trimethylation and H3K9 dimethylation along with their respective regulatory genes, such as GCN5, SETd8b, SETD7/9, and SUV39h1, were differentially regulated in the regenerating fin at various time points of post-amputation. Annexin genes have been associated with regeneration; this study reveals the significant up-regulation of ANXA2a and ANXA2b transcripts and their protein products during the regeneration process. Chromatin immunoprecipitation and PCR analysis of the regulatory regions of the ANXA2a and ANXA2b genes demonstrated the ability to repress two histone methylations, H3K27me3 and H4K20me3, in transcriptional regulation during regeneration. It is hypothesized that this novel insight into the diverse epigenetic mechanisms that play a critical role during the regeneration process may help to strategize the translational efforts, in addition to identifying the molecules involved in vertebrate regeneration. © 2016 by the Wound Healing Society.

  9. Polyunsaturated fatty acid regulation of gene transcription: a molecular mechanism to improve the metabolic syndrome.

    Science.gov (United States)

    Clarke, S D

    2001-04-01

    This review addresses the hypothesis that polyunsaturated fatty acids (PUFA), particularly those of the (n-3) family, play pivotal roles as "fuel partitioners" in that they direct fatty acids away from triglyceride storage and toward oxidation, and that they enhance glucose flux to glycogen. In doing this, PUFA may protect against the adverse symptoms of the metabolic syndrome and reduce the risk of heart disease. PUFA exert their beneficial effects by up-regulating the expression of genes encoding proteins involved in fatty acid oxidation while simultaneously down-regulating genes encoding proteins of lipid synthesis. PUFA govern oxidative gene expression by activating the transcription factor peroxisome proliferator-activated receptor alpha. PUFA suppress lipogenic gene expression by reducing the nuclear abundance and DNA-binding affinity of transcription factors responsible for imparting insulin and carbohydrate control to lipogenic and glycolytic genes. In particular, PUFA suppress the nuclear abundance and expression of sterol regulatory element binding protein-1 and reduce the DNA-binding activities of nuclear factor Y, Sp1 and possibly hepatic nuclear factor-4. Collectively, the studies discussed suggest that the fuel "repartitioning" and gene expression actions of PUFA should be considered among criteria used in defining the dietary needs of (n-6) and (n-3) and in establishing the dietary ratio of (n-6) to (n-3) needed for optimum health benefit.

  10. Inferring Gene Regulatory Networks Using Conditional Regulation Pattern to Guide Candidate Genes.

    Directory of Open Access Journals (Sweden)

    Fei Xiao

    Full Text Available Combining path consistency (PC algorithms with conditional mutual information (CMI are widely used in reconstruction of gene regulatory networks. CMI has many advantages over Pearson correlation coefficient in measuring non-linear dependence to infer gene regulatory networks. It can also discriminate the direct regulations from indirect ones. However, it is still a challenge to select the conditional genes in an optimal way, which affects the performance and computation complexity of the PC algorithm. In this study, we develop a novel conditional mutual information-based algorithm, namely RPNI (Regulation Pattern based Network Inference, to infer gene regulatory networks. For conditional gene selection, we define the co-regulation pattern, indirect-regulation pattern and mixture-regulation pattern as three candidate patterns to guide the selection of candidate genes. To demonstrate the potential of our algorithm, we apply it to gene expression data from DREAM challenge. Experimental results show that RPNI outperforms existing conditional mutual information-based methods in both accuracy and time complexity for different sizes of gene samples. Furthermore, the robustness of our algorithm is demonstrated by noisy interference analysis using different types of noise.

  11. Transcriptional regulation of gene expression clusters in motor neurons following spinal cord injury

    Directory of Open Access Journals (Sweden)

    Westerdahl Ann-Charlotte

    2010-06-01

    Full Text Available Abstract Background Spinal cord injury leads to neurological dysfunctions affecting the motor, sensory as well as the autonomic systems. Increased excitability of motor neurons has been implicated in injury-induced spasticity, where the reappearance of self-sustained plateau potentials in the absence of modulatory inputs from the brain correlates with the development of spasticity. Results Here we examine the dynamic transcriptional response of motor neurons to spinal cord injury as it evolves over time to unravel common gene expression patterns and their underlying regulatory mechanisms. For this we use a rat-tail-model with complete spinal cord transection causing injury-induced spasticity, where gene expression profiles are obtained from labeled motor neurons extracted with laser microdissection 0, 2, 7, 21 and 60 days post injury. Consensus clustering identifies 12 gene clusters with distinct time expression profiles. Analysis of these gene clusters identifies early immunological/inflammatory and late developmental responses as well as a regulation of genes relating to neuron excitability that support the development of motor neuron hyper-excitability and the reappearance of plateau potentials in the late phase of the injury response. Transcription factor motif analysis identifies differentially expressed transcription factors involved in the regulation of each gene cluster, shaping the expression of the identified biological processes and their associated genes underlying the changes in motor neuron excitability. Conclusions This analysis provides important clues to the underlying mechanisms of transcriptional regulation responsible for the increased excitability observed in motor neurons in the late chronic phase of spinal cord injury suggesting alternative targets for treatment of spinal cord injury. Several transcription factors were identified as potential regulators of gene clusters containing elements related to motor neuron hyper

  12. Transcriptional regulation of gene expression clusters in motor neurons following spinal cord injury.

    Science.gov (United States)

    Ryge, Jesper; Winther, Ole; Wienecke, Jacob; Sandelin, Albin; Westerdahl, Ann-Charlotte; Hultborn, Hans; Kiehn, Ole

    2010-06-09

    Spinal cord injury leads to neurological dysfunctions affecting the motor, sensory as well as the autonomic systems. Increased excitability of motor neurons has been implicated in injury-induced spasticity, where the reappearance of self-sustained plateau potentials in the absence of modulatory inputs from the brain correlates with the development of spasticity. Here we examine the dynamic transcriptional response of motor neurons to spinal cord injury as it evolves over time to unravel common gene expression patterns and their underlying regulatory mechanisms. For this we use a rat-tail-model with complete spinal cord transection causing injury-induced spasticity, where gene expression profiles are obtained from labeled motor neurons extracted with laser microdissection 0, 2, 7, 21 and 60 days post injury. Consensus clustering identifies 12 gene clusters with distinct time expression profiles. Analysis of these gene clusters identifies early immunological/inflammatory and late developmental responses as well as a regulation of genes relating to neuron excitability that support the development of motor neuron hyper-excitability and the reappearance of plateau potentials in the late phase of the injury response. Transcription factor motif analysis identifies differentially expressed transcription factors involved in the regulation of each gene cluster, shaping the expression of the identified biological processes and their associated genes underlying the changes in motor neuron excitability. This analysis provides important clues to the underlying mechanisms of transcriptional regulation responsible for the increased excitability observed in motor neurons in the late chronic phase of spinal cord injury suggesting alternative targets for treatment of spinal cord injury. Several transcription factors were identified as potential regulators of gene clusters containing elements related to motor neuron hyper-excitability, the manipulation of which potentially could be

  13. Detection and sequence analysis of accessory gene regulator genes of Staphylococcus pseudintermedius isolates

    Directory of Open Access Journals (Sweden)

    M. Ananda Chitra

    2015-07-01

    Full Text Available Background: Staphylococcus pseudintermedius (SP is the major pathogenic species of dogs involved in a wide variety of skin and soft tissue infections. The accessory gene regulator (agr locus of Staphylococcus aureus has been extensively studied, and it influences the expression of many virulence genes. It encodes a two-component signal transduction system that leads to down-regulation of surface proteins and up-regulation of secreted proteins during in vitro growth of S. aureus. The objective of this study was to detect and sequence analyzing the AgrA, B, and D of SP isolated from canine skin infections. Materials and Methods: In this study, we have isolated and identified SP from canine pyoderma and otitis cases by polymerase chain reaction (PCR and confirmed by PCR-restriction fragment length polymorphism. Primers for SP agrA and agrBD genes were designed using online primer designing software and BLAST searched for its specificity. Amplification of the agr genes was carried out for 53 isolates of SP by PCR and sequencing of agrA, B, and D were carried out for five isolates and analyzed using DNAstar and Mega5.2 software. Results: A total of 53 (59% SP isolates were obtained from 90 samples. 15 isolates (28% were confirmed to be methicillinresistant SP (MRSP with the detection of the mecA gene. Accessory gene regulator A, B, and D genes were detected in all the SP isolates. Complete nucleotide sequences of the above three genes for five isolates were submitted to GenBank, and their accession numbers are from KJ133557 to KJ133571. AgrA amino acid sequence analysis showed that it is mainly made of alpha-helices and is hydrophilic in nature. AgrB is a transmembrane protein, and AgrD encodes the precursor of the autoinducing peptide (AIP. Sequencing of the agrD gene revealed that the 5 canine SP strains tested could be divided into three Agr specificity groups (RIPTSTGFF, KIPTSTGFF, and RIPISTGFF based on the putative AIP produced by each strain

  14. Analysis of barosensitive mechanisms in yeast for Pressure Regulated Fermentation

    Science.gov (United States)

    Nomura, Kazuki; Iwahashi, Hitoshi; Iguchi, Akinori; Shigematsu, Toru

    2013-06-01

    Introduction: We are intending to develop a novel food processing technology, Pressure Regulated Fermentation (PReF), using pressure sensitive (barosensitive) fermentation microorganisms. Objectives of our study are to clarify barosensitive mechanisms for application to PReF technology. We isolated Saccharomyces cerevisiae barosensitive mutant a924E1 that was derived from the parent KA31a. Methods: Gene expression levels were analyzed by DNA microarray. The altered genes of expression levels were classified according to the gene function. Mutated genes were estimated by mating and producing diploid strains and confirmed by PCR of mitochondrial DNA (mtDNA). Results and Discussion: Gene expression profiles showed that genes of `Energy' function and that of encoding protein localized in ``Mitochondria'' were significantly down regulated in the mutant. These results suggest the respiratory deficiency and relationship between barosensitivity and respiratory deficiency. Since the respiratory functions of diploids showed non Mendelian inheritance, the respiratory deficiency was indicated to be due to mtDNA mutation. PCR analysis showed that the region of COX1 locus was deleted. COX1 gene encodes the subunit 1 of cytochrome c oxidase. For this reason, barosensitivity is strongly correlated with mitochondrial functions.

  15. Retrotransposons as regulators of gene expression.

    Science.gov (United States)

    Elbarbary, Reyad A; Lucas, Bronwyn A; Maquat, Lynne E

    2016-02-12

    Transposable elements (TEs) are both a boon and a bane to eukaryotic organisms, depending on where they integrate into the genome and how their sequences function once integrated. We focus on two types of TEs: long interspersed elements (LINEs) and short interspersed elements (SINEs). LINEs and SINEs are retrotransposons; that is, they transpose via an RNA intermediate. We discuss how LINEs and SINEs have expanded in eukaryotic genomes and contribute to genome evolution. An emerging body of evidence indicates that LINEs and SINEs function to regulate gene expression by affecting chromatin structure, gene transcription, pre-mRNA processing, or aspects of mRNA metabolism. We also describe how adenosine-to-inosine editing influences SINE function and how ongoing retrotransposition is countered by the body's defense mechanisms. Copyright © 2016, American Association for the Advancement of Science.

  16. The odyssey of a young gene: structure-function studies in human glutamate dehydrogenases reveal evolutionary-acquired complex allosteric regulation mechanisms.

    Science.gov (United States)

    Zaganas, Ioannis V; Kanavouras, Konstantinos; Borompokas, Nikolas; Arianoglou, Giovanna; Dimovasili, Christina; Latsoudis, Helen; Vlassi, Metaxia; Mastorodemos, Vasileios

    2014-01-01

    Mammalian glutamate dehydrogenase (GDH) catalyzes the reversible inter-conversion of glutamate to α-ketoglutarate and ammonia, interconnecting carbon skeleton and nitrogen metabolism. In addition, it functions as an energy switch by its ability to fuel the Krebs cycle depending on the energy status of the cell. As GDH lies at the intersection of several metabolic pathways, its activity is tightly regulated by several allosteric compounds that are metabolic intermediates. In contrast to other mammals that have a single GDH-encoding gene, humans and great apes possess two isoforms of GDH (hGDH1 and hGDH2, encoded by the GLUD1 and GLUD2 genes, respectively) with distinct regulation pattern, but remarkable sequence similarity (they differ, in their mature form, in only 15 of their 505 amino-acids). The GLUD2 gene is considered a very young gene, emerging from the GLUD1 gene through retro-position only recently (<23 million years ago). The new hGDH2 iso-enzyme, through random mutations and natural selection, is thought to have conferred an evolutionary advantage that helped its persistence through primate evolution. The properties of the two highly homologous human GDHs have been studied using purified recombinant hGDH1 and hGDH2 proteins obtained by expression of the corresponding cDNAs in Sf21 cells. According to these studies, in contrast to hGDH1 that maintains basal activity at 35-40 % of its maximal, hGDH2 displays low basal activity that is highly responsive to activation by rising levels of ADP and/or L-leucine which can also act synergistically. While hGDH1 is inhibited potently by GTP, hGDH2 shows remarkable GTP resistance. Furthermore, the two iso-enzymes are differentially inhibited by estrogens, polyamines and neuroleptics, and also differ in heat-lability. To elucidate the molecular mechanisms that underlie these different regulation patterns of the two iso-enzymes (and consequently the evolutionary adaptation of hGDH2 to a new functional role), we have

  17. Differential regulation of the foraging gene associated with task behaviors in harvester ants

    Directory of Open Access Journals (Sweden)

    Kleeman Lindsay

    2011-08-01

    Full Text Available Abstract Background The division of labor in social insect colonies involves transitions by workers from one task to another and is critical to the organization and ecological success of colonies. The differential regulation of genetic pathways is likely to be a key mechanism involved in plasticity of social insect task behavior. One of the few pathways implicated in social organization involves the cGMP-activated protein kinase gene, foraging, a gene associated with foraging behavior in social insect species. The association of the foraging gene with behavior is conserved across diverse species, but the observed expression patterns and proposed functions of this gene vary across taxa. We compared the protein sequence of foraging across social insects and explored whether the differential regulation of this gene is associated with task behaviors in the harvester ant, Pogonomyrmex occidentalis. Results Phylogenetic analysis of the coding region of the foraging gene reveals considerable conservation in protein sequence across insects, particularly among hymenopteran species. The absence of amino acid variation in key active and binding sites suggests that differences in behaviors associated with this gene among species may be the result of changes in gene expression rather than gene divergence. Using real time qPCR analyses with a harvester ant ortholog to foraging (Pofor, we found that the brains of harvester ant foragers have a daily fluctuation in expression of foraging with mRNA levels peaking at midday. In contrast, young workers inside the nest have low levels of Pofor mRNA with no evidence of daily fluctuations in expression. As a result, the association of foraging expression with task behavior within a species changes depending on the time of day the individuals are sampled. Conclusions The amino acid protein sequence of foraging is highly conserved across social insects. Differences in foraging behaviors associated with this gene among

  18. Co-ordinate regulation of lactate metabolism genes in yeast: the role of the lactate permease gene JEN1.

    Science.gov (United States)

    Lodi, T; Fontanesi, F; Guiard, B

    2002-01-01

    In the yeast Saccharomyces cerevisiae, the first step in lactate metabolism is its transport across the plasma membrane, a proton symport process mediated by the product of the gene JEN1. Under aerobic conditions, the expression of JEN1 is regulated by the carbon source: the gene is repressed by glucose and induced by non-fermentable substrates. JEN1 expression is also controlled by oxygen availability, but is unaffected by the absence of haem biosynthesis. JEN1 is negatively regulated by the repressors Mig1p and Mig2p, and requires Cat8p for full derepression. In this report we demonstrate that, in addition to these regulators, the Hap2/3/4/5 complex interacts specifically with a CAAT-box element in the JEN1 promoter, and acts to derepress JEN1 expression. We also provide evidence for transcriptional stimulation of JEN1 by the protein kinase Snf1p. Data are presented which provide a better understanding of the molecular mechanisms implicated in the co-regulation of genes involved in the metabolism of lactate.

  19. Transcriptional regulation of the HMGA1 gene by octamer-binding proteins Oct-1 and Oct-2.

    Directory of Open Access Journals (Sweden)

    Eusebio Chiefari

    Full Text Available The High-Mobility Group AT-Hook 1 (HMGA1 protein is an architectural transcription factor that binds to AT-rich sequences in the promoter region of DNA and functions as a specific cofactor for gene activation. Previously, we demonstrated that HMGA1 is a key regulator of the insulin receptor (INSR gene and an important downstream target of the INSR signaling cascade. Moreover, from a pathogenic point of view, overexpression of HMGA1 has been associated with human cancer, whereas functional variants of the HMGA1 gene have been recently linked to type 2 diabetes mellitus and metabolic syndrome. However, despite of this biological and pathological relevance, the mechanisms that control HMGA1 gene expression remain unknown. In this study, to define the molecular mechanism(s that regulate HMGA1 gene expression, the HMGA1 gene promoter was investigated by transient transfection of different cell lines, either before or after DNA and siRNA cotransfections. An octamer motif was identified as an important element of transcriptional regulation of this gene, the interaction of which with the octamer transcription factors Oct-1 and Oct-2 is crucial in modulating HMGA1 gene and protein expression. Additionally, we demonstrate that HMGA1 binds its own promoter and contributes to its transactivation by Oct-2 (but not Oct-1, supporting its role in an auto-regulatory circuit. Overall, our results provide insight into the transcriptional regulation of the HMGA1 gene, revealing a differential control exerted by both Oct-1 and Oct-2. Furthermore, they consistently support the hypothesis that a putative defect in Oct-1 and/or Oct-2, by affecting HMGA1 expression, may cause INSR dysfunction, leading to defects of the INSR signaling pathway.

  20. Regulation of number and size of digits by posterior Hox genes: a dose-dependent mechanism with potential evolutionary implications.

    Science.gov (United States)

    Zákány, J; Fromental-Ramain, C; Warot, X; Duboule, D

    1997-12-09

    The proper development of digits, in tetrapods, requires the activity of several genes of the HoxA and HoxD homeobox gene complexes. By using a variety of loss-of-function alleles involving the five Hox genes that have been described to affect digit patterning, we report here that the group 11, 12, and 13 genes control both the size and number of murine digits in a dose-dependent fashion, rather than through a Hox code involving differential qualitative functions. A similar dose-response is observed in the morphogenesis of the penian bone, the baculum, which further suggests that digits and external genitalia share this genetic control mechanism. A progressive reduction in the dose of Hox gene products led first to ectrodactyly, then to olygodactyly and adactyly. Interestingly, this transition between the pentadactyl to the adactyl formula went through a step of polydactyly. We propose that in the distal appendage of polydactylous short-digited ancestral tetrapods, such as Acanthostega, the HoxA complex was predominantly active. Subsequent recruitment of the HoxD complex contributed to both reductions in digit number and increase in digit length. Thus, transition through a polydactylous limb before reaching and stabilizing the pentadactyl pattern may have relied, at least in part, on asynchronous and independent changes in the regulation of HoxA and HoxD gene complexes.

  1. Post-transcriptional bursting in genes regulated by small RNA molecules

    Science.gov (United States)

    Rodrigo, Guillermo

    2018-03-01

    Gene expression programs in living cells are highly dynamic due to spatiotemporal molecular signaling and inherent biochemical stochasticity. Here we study a mechanism based on molecule-to-molecule variability at the RNA level for the generation of bursts of protein production, which can lead to heterogeneity in a cell population. We develop a mathematical framework to show numerically and analytically that genes regulated post transcriptionally by small RNA molecules can exhibit such bursts due to different states of translation activity (on or off), mostly revealed in a regime of few molecules. We exploit this framework to compare transcriptional and post-transcriptional bursting and also to illustrate how to tune the resulting protein distribution with additional post-transcriptional regulations. Moreover, because RNA-RNA interactions are predictable with an energy model, we define the kinetic constants of on-off switching as functions of the two characteristic free-energy differences of the system, activation and formation, with a nonequilibrium scheme. Overall, post-transcriptional bursting represents a distinctive principle linking gene regulation to gene expression noise, which highlights the importance of the RNA layer beyond the simple information transfer paradigm and significantly contributes to the understanding of the intracellular processes from a first-principles perspective.

  2. The ASK1 gene regulates B function gene expression in cooperation with UFO and LEAFY in Arabidopsis.

    Science.gov (United States)

    Zhao, D; Yu, Q; Chen, M; Ma, H

    2001-07-01

    The Arabidopsis floral regulatory genes APETALA3 (AP3) and PISTILLATA (PI) are required for the B function according to the ABC model for floral organ identity. AP3 and PI expression are positively regulated by the LEAFY (LFY) and UNUSUAL FLORAL ORGANS (UFO) genes. UFO encodes an F-box protein, and we have shown previously that UFO genetically interacts with the ASK1 gene encoding a SKP1 homologue; both the F-box containing protein and SKP1 are subunits of ubiquitin ligases. We show here that the ask1-1 mutation can enhance the floral phenotypes of weak lfy and ap3 mutants; therefore, like UFO, ASK1 also interacts with LFY and AP3 genetically. Furthermore, our results from RNA in situ hybridizations indicate that ASK1 regulates early AP3 and PI expression. These results support the idea that UFO and ASK1 together positively regulate AP3 and PI expression. We propose that the UFO and ASK1 proteins are components of a ubiquitin ligase that mediates the proteolysis of a repressor of AP3 and PI expression. Our genetic studies also indicate that ASK1 and UFO play a role in regulating the number of floral organ primordia, and we discuss possible mechanisms for such a regulation.

  3. Gene profile analysis of osteoblast genes differentially regulated by histone deacetylase inhibitors

    Directory of Open Access Journals (Sweden)

    Lamblin Anne-Francoise

    2007-10-01

    Full Text Available Abstract Background Osteoblast differentiation requires the coordinated stepwise expression of multiple genes. Histone deacetylase inhibitors (HDIs accelerate the osteoblast differentiation process by blocking the activity of histone deacetylases (HDACs, which alter gene expression by modifying chromatin structure. We previously demonstrated that HDIs and HDAC3 shRNAs accelerate matrix mineralization and the expression of osteoblast maturation genes (e.g. alkaline phosphatase, osteocalcin. Identifying other genes that are differentially regulated by HDIs might identify new pathways that contribute to osteoblast differentiation. Results To identify other osteoblast genes that are altered early by HDIs, we incubated MC3T3-E1 preosteoblasts with HDIs (trichostatin A, MS-275, or valproic acid for 18 hours in osteogenic conditions. The promotion of osteoblast differentiation by HDIs in this experiment was confirmed by osteogenic assays. Gene expression profiles relative to vehicle-treated cells were assessed by microarray analysis with Affymetrix GeneChip 430 2.0 arrays. The regulation of several genes by HDIs in MC3T3-E1 cells and primary osteoblasts was verified by quantitative real-time PCR. Nine genes were differentially regulated by at least two-fold after exposure to each of the three HDIs and six were verified by PCR in osteoblasts. Four of the verified genes (solute carrier family 9 isoform 3 regulator 1 (Slc9a3r1, sorbitol dehydrogenase 1, a kinase anchor protein, and glutathione S-transferase alpha 4 were induced. Two genes (proteasome subunit, beta type 10 and adaptor-related protein complex AP-4 sigma 1 were suppressed. We also identified eight growth factors and growth factor receptor genes that are significantly altered by each of the HDIs, including Frizzled related proteins 1 and 4, which modulate the Wnt signaling pathway. Conclusion This study identifies osteoblast genes that are regulated early by HDIs and indicates pathways that

  4. Analysis of the highly diverse gene borders in Ebola virus reveals a distinct mechanism of transcriptional regulation.

    Science.gov (United States)

    Brauburger, Kristina; Boehmann, Yannik; Tsuda, Yoshimi; Hoenen, Thomas; Olejnik, Judith; Schümann, Michael; Ebihara, Hideki; Mühlberger, Elke

    2014-11-01

    Ebola virus (EBOV) belongs to the group of nonsegmented negative-sense RNA viruses. The seven EBOV genes are separated by variable gene borders, including short (4- or 5-nucleotide) intergenic regions (IRs), a single long (144-nucleotide) IR, and gene overlaps, where the neighboring gene end and start signals share five conserved nucleotides. The unique structure of the gene overlaps and the presence of a single long IR are conserved among all filoviruses. Here, we sought to determine the impact of the EBOV gene borders during viral transcription. We show that readthrough mRNA synthesis occurs in EBOV-infected cells irrespective of the structure of the gene border, indicating that the gene overlaps do not promote recognition of the gene end signal. However, two consecutive gene end signals at the VP24 gene might improve termination at the VP24-L gene border, ensuring efficient L gene expression. We further demonstrate that the long IR is not essential for but regulates transcription reinitiation in a length-dependent but sequence-independent manner. Mutational analysis of bicistronic minigenomes and recombinant EBOVs showed no direct correlation between IR length and reinitiation rates but demonstrated that specific IR lengths not found naturally in filoviruses profoundly inhibit downstream gene expression. Intriguingly, although truncation of the 144-nucleotide-long IR to 5 nucleotides did not substantially affect EBOV transcription, it led to a significant reduction of viral growth. Our current understanding of EBOV transcription regulation is limited due to the requirement for high-containment conditions to study this highly pathogenic virus. EBOV is thought to share many mechanistic features with well-analyzed prototype nonsegmented negative-sense RNA viruses. A single polymerase entry site at the 3' end of the genome determines that transcription of the genes is mainly controlled by gene order and cis-acting signals found at the gene borders. Here, we examined

  5. The hematopoietic transcription factor PU.1 regulates RANK gene expression in myeloid progenitors

    International Nuclear Information System (INIS)

    Kwon, Oh Hyung; Lee, Chong-Kil; Lee, Young Ik; Paik, Sang-Gi; Lee, Hyun-Jun

    2005-01-01

    Osteoclasts are bone resorbing cells of hematopoietic origin. The hematopoietic transcription factor PU.1 is critical for osteoclastogenesis; however, the molecular mechanisms of PU.1-regulated osteoclastogenesis have not been explored. Here, we present evidence that the receptor activator of nuclear factor κB (RANK) gene that has been shown to be crucial for osteoclastogenesis is a transcriptional target of PU.1. The PU.1 -/- progenitor cells failed to express the RANK gene and reconstitution of PU.1 in these cells induced RANK expression. Treatment of the PU.1 reconstituted cells with M-CSF and RANKL further augmented the RANK gene expression. To explore the regulatory mechanism of the RANK gene expression by PU.1, we have cloned the human RANK promoter. Transient transfection assays have revealed that the 2.2-kb RANK promoter was functional in a monocyte line RAW264.7, whereas co-transfection of PU.1 transactivated the RANK promoter in HeLa cells. Taken together, these results suggest that PU.1 regulates the RANK gene transcription and this may represent one of the key roles of PU.1 in osteoclast differentiation

  6. Plant responses to environmental stress: regulation and functions of the Arabidopsis TCH genes

    Science.gov (United States)

    Braam, J.; Sistrunk, M. L.; Polisensky, D. H.; Xu, W.; Purugganan, M. M.; Antosiewicz, D. M.; Campbell, P.; Johnson, K. A.; McIntire, L. V. (Principal Investigator)

    1997-01-01

    Expression of the Arabidopsis TCH genes is markedly upregulated in response to a variety of environmental stimuli including the seemingly innocuous stimulus of touch. Understanding the mechanism(s) and factors that control TCH gene regulation will shed light on the signaling pathways that enable plants to respond to environmental conditions. The TCH proteins include calmodulin, calmodulin-related proteins and a xyloglucan endotransglycosylase. Expression analyses and localization of protein accumulation indicates that the potential sites of TCH protein function include expanding cells and tissues under mechanical strain. We hypothesize that at least a subset of the TCH proteins may collaborate in cell wall biogenesis.

  7. Synergistic and Dose-Controlled Regulation of Cellulase Gene Expression in Penicillium oxalicum.

    Science.gov (United States)

    Li, Zhonghai; Yao, Guangshan; Wu, Ruimei; Gao, Liwei; Kan, Qinbiao; Liu, Meng; Yang, Piao; Liu, Guodong; Qin, Yuqi; Song, Xin; Zhong, Yaohua; Fang, Xu; Qu, Yinbo

    2015-09-01

    Filamentous fungus Penicillium oxalicum produces diverse lignocellulolytic enzymes, which are regulated by the combinations of many transcription factors. Here, a single-gene disruptant library for 470 transcription factors was constructed and systematically screened for cellulase production. Twenty transcription factors (including ClrB, CreA, XlnR, Ace1, AmyR, and 15 unknown proteins) were identified to play putative roles in the activation or repression of cellulase synthesis. Most of these regulators have not been characterized in any fungi before. We identified the ClrB, CreA, XlnR, and AmyR transcription factors as critical dose-dependent regulators of cellulase expression, the core regulons of which were identified by analyzing several transcriptomes and/or secretomes. Synergistic and additive modes of combinatorial control of each cellulase gene by these regulatory factors were achieved, and cellulase expression was fine-tuned in a proper and controlled manner. With one of these targets, the expression of the major intracellular β-glucosidase Bgl2 was found to be dependent on ClrB. The Bgl2-deficient background resulted in a substantial gene activation by ClrB and proved to be closely correlated with the relief of repression mediated by CreA and AmyR during cellulase induction. Our results also signify that probing the synergistic and dose-controlled regulation mechanisms of cellulolytic regulators and using it for reconstruction of expression regulation network (RERN) may be a promising strategy for cellulolytic fungi to develop enzyme hyper-producers. Based on our data, ClrB was identified as focal point for the synergistic activation regulation of cellulase expression by integrating cellulolytic regulators and their target genes, which refined our understanding of transcriptional-regulatory network as a "seesaw model" in which the coordinated regulation of cellulolytic genes is established by counteracting activators and repressors.

  8. LCGbase: A Comprehensive Database for Lineage-Based Co-regulated Genes.

    Science.gov (United States)

    Wang, Dapeng; Zhang, Yubin; Fan, Zhonghua; Liu, Guiming; Yu, Jun

    2012-01-01

    Animal genes of different lineages, such as vertebrates and arthropods, are well-organized and blended into dynamic chromosomal structures that represent a primary regulatory mechanism for body development and cellular differentiation. The majority of genes in a genome are actually clustered, which are evolutionarily stable to different extents and biologically meaningful when evaluated among genomes within and across lineages. Until now, many questions concerning gene organization, such as what is the minimal number of genes in a cluster and what is the driving force leading to gene co-regulation, remain to be addressed. Here, we provide a user-friendly database-LCGbase (a comprehensive database for lineage-based co-regulated genes)-hosting information on evolutionary dynamics of gene clustering and ordering within animal kingdoms in two different lineages: vertebrates and arthropods. The database is constructed on a web-based Linux-Apache-MySQL-PHP framework and effective interactive user-inquiry service. Compared to other gene annotation databases with similar purposes, our database has three comprehensible advantages. First, our database is inclusive, including all high-quality genome assemblies of vertebrates and representative arthropod species. Second, it is human-centric since we map all gene clusters from other genomes in an order of lineage-ranks (such as primates, mammals, warm-blooded, and reptiles) onto human genome and start the database from well-defined gene pairs (a minimal cluster where the two adjacent genes are oriented as co-directional, convergent, and divergent pairs) to large gene clusters. Furthermore, users can search for any adjacent genes and their detailed annotations. Third, the database provides flexible parameter definitions, such as the distance of transcription start sites between two adjacent genes, which is extendable to genes that flanking the cluster across species. We also provide useful tools for sequence alignment, gene

  9. Regulation of eucaryotic gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Brent, R.; Ptashne, M.S

    1989-05-23

    This patent describes a method of regulating the expression of a gene in a eucaryotic cell. The method consists of: providing in the eucaryotic cell, a peptide, derived from or substantially similar to a peptide of a procaryotic cell able to bind to DNA upstream from or within the gene, the amount of the peptide being sufficient to bind to the gene and thereby control expression of the gene.

  10. Global gene expression in muscle from fasted/refed trout reveals up-regulation of genes promoting myofibre hypertrophy but not myofibre production.

    Science.gov (United States)

    Rescan, Pierre-Yves; Le Cam, Aurelie; Rallière, Cécile; Montfort, Jérôme

    2017-06-07

    Compensatory growth is a phase of rapid growth, greater than the growth rate of control animals, that occurs after a period of growth-stunting conditions. Fish show a capacity for compensatory growth after alleviation of dietary restriction, but the underlying cellular mechanisms are unknown. To learn more about the contribution of genes regulating hypertrophy (an increase in muscle fibre size) and hyperplasia (the generation of new muscle fibres) in the compensatory muscle growth response in fish, we used high-density microarray analysis to investigate the global gene expression in muscle of trout during a fasting-refeeding schedule and in muscle of control-fed trout displaying normal growth. The compensatory muscle growth signature, as defined by genes up-regulated in muscles of refed trout compared with control-fed trout, showed enrichment in functional categories related to protein biosynthesis and maturation, such as RNA processing, ribonucleoprotein complex biogenesis, ribosome biogenesis, translation and protein folding. This signature was also enriched in chromatin-remodelling factors of the protein arginine N-methyl transferase family. Unexpectedly, functional categories related to cell division and DNA replication were not inferred from the molecular signature of compensatory muscle growth, and this signature contained virtually none of the genes previously reported to be up-regulated in hyperplastic growth zones of the late trout embryo myotome and to potentially be involved in production of new myofibres, notably genes encoding myogenic regulatory factors, transmembrane receptors essential for myoblast fusion or myofibrillar proteins predominant in nascent myofibres. Genes promoting myofibre growth, but not myofibre formation, were up-regulated in muscles of refed trout compared with continually fed trout. This suggests that a compensatory muscle growth response, resulting from the stimulation of hypertrophy but not the stimulation of hyperplasia

  11. MiR-210 disturbs mitotic progression through regulating a group of mitosis-related genes

    OpenAIRE

    He, Jie; Wu, Jiangbin; Xu, Naihan; Xie, Weidong; Li, Mengnan; Li, Jianna; Jiang, Yuyang; Yang, Burton B.; Zhang, Yaou

    2012-01-01

    MiR-210 is up-regulated in multiple cancer types but its function is disputable and further investigation is necessary. Using a bioinformatics approach, we identified the putative target genes of miR-210 in hypoxia-induced CNE cells from genome-wide scale. Two functional gene groups related to cell cycle and RNA processing were recognized as the major targets of miR-210. Here, we investigated the molecular mechanism and biological consequence of miR-210 in cell cycle regulation, particularly ...

  12. Expression profiling of genes regulated by TGF-beta: Differential regulation in normal and tumour cells

    Directory of Open Access Journals (Sweden)

    Takahashi Takashi

    2007-04-01

    Full Text Available Abstract Background TGF-beta is one of the key cytokines implicated in various disease processes including cancer. TGF-beta inhibits growth and promotes apoptosis in normal epithelial cells and in contrast, acts as a pro-tumour cytokine by promoting tumour angiogenesis, immune-escape and metastasis. It is not clear if various actions of TGF-beta on normal and tumour cells are due to differential gene regulations. Hence we studied the regulation of gene expression by TGF-beta in normal and cancer cells. Results Using human 19 K cDNA microarrays, we show that 1757 genes are exclusively regulated by TGF-beta in A549 cells in contrast to 733 genes exclusively regulated in HPL1D cells. In addition, 267 genes are commonly regulated in both the cell-lines. Semi-quantitative and real-time qRT-PCR analysis of some genes agrees with the microarray data. In order to identify the signalling pathways that influence TGF-beta mediated gene regulation, we used specific inhibitors of p38 MAP kinase, ERK kinase, JNK kinase and integrin signalling pathways. The data suggest that regulation of majority of the selected genes is dependent on at least one of these pathways and this dependence is cell-type specific. Interestingly, an integrin pathway inhibitor, RGD peptide, significantly affected TGF-beta regulation of Thrombospondin 1 in A549 cells. Conclusion These data suggest major differences with respect to TGF-beta mediated gene regulation in normal and transformed cells and significant role of non-canonical TGF-beta pathways in the regulation of many genes by TGF-beta.

  13. Ageing in relation to skeletal muscle dysfunction: redox homoeostasis to regulation of gene expression.

    Science.gov (United States)

    Goljanek-Whysall, Katarzyna; Iwanejko, Lesley A; Vasilaki, Aphrodite; Pekovic-Vaughan, Vanja; McDonagh, Brian

    2016-08-01

    Ageing is associated with a progressive loss of skeletal muscle mass, quality and function-sarcopenia, associated with reduced independence and quality of life in older generations. A better understanding of the mechanisms, both genetic and epigenetic, underlying this process would help develop therapeutic interventions to prevent, slow down or reverse muscle wasting associated with ageing. Currently, exercise is the only known effective intervention to delay the progression of sarcopenia. The cellular responses that occur in muscle fibres following exercise provide valuable clues to the molecular mechanisms regulating muscle homoeostasis and potentially the progression of sarcopenia. Redox signalling, as a result of endogenous generation of ROS/RNS in response to muscle contractions, has been identified as a crucial regulator for the adaptive responses to exercise, highlighting the redox environment as a potentially core therapeutic approach to maintain muscle homoeostasis during ageing. Further novel and attractive candidates include the manipulation of microRNA expression. MicroRNAs are potent gene regulators involved in the control of healthy and disease-associated biological processes and their therapeutic potential has been researched in the context of various disorders, including ageing-associated muscle wasting. Finally, we discuss the impact of the circadian clock on the regulation of gene expression in skeletal muscle and whether disruption of the peripheral muscle clock affects sarcopenia and altered responses to exercise. Interventions that include modifying altered redox signalling with age and incorporating genetic mechanisms such as circadian- and microRNA-based gene regulation, may offer potential effective treatments against age-associated sarcopenia.

  14. Up-regulation of cholesterol associated genes as novel resistance mechanism in glioblastoma cells in response to archazolid B

    Energy Technology Data Exchange (ETDEWEB)

    Hamm, Rebecca; Zeino, Maen [Institute of Pharmacy and Biochemistry, Department of Pharmaceutical Biology, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz (Germany); Frewert, Simon [Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research and Department of Pharmaceutical Biotechnology, Saarland University, Saarbrücken (Germany); Efferth, Thomas, E-mail: efferth@uni-mainz.de [Institute of Pharmacy and Biochemistry, Department of Pharmaceutical Biology, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz (Germany)

    2014-11-15

    Treatment of glioblastoma multiforme (GBM), the most common and aggressive lethal brain tumor, represents a great challenge. Despite decades of research, the survival prognosis of GBM patients is unfavorable and more effective therapeutics are sorely required. Archazolid B, a potent vacuolar H{sup +}-ATPase inhibitor influencing cellular pH values, is a promising new compound exerting cytotoxicity in the nanomolar range on wild-type U87MG glioblastoma cells and U87MG.∆EGFR cells transfected with a mutant epidermal growth factor receptor (EGFR) gene. Gene expression profiling using microarray technology showed that archazolid B caused drastic disturbances in cholesterol homeostasis. Cholesterol, a main component of cellular membranes, is known to be essential for GBM growth and cells bearing EGFRvIII mutation are highly dependent on exogenous cholesterol. Archazolid B caused excessive accumulation of free cholesterol within intracellular compartments thus depleting cellular cholesterol and leading to up-regulation of SREBP targeted genes, including LDLR and HMGCR, the key enzyme of cholesterol biosynthesis. This cholesterol response is considered to be a novel resistance mechanism induced by archazolid B. We surmise that re-elevation of cholesterol levels in archazolid B treated cells may be mediated by newly synthesized cholesterol, since the drug leads to endosomal/lysosomal malfunction and cholesterol accumulation.

  15. Up-regulation of cholesterol associated genes as novel resistance mechanism in glioblastoma cells in response to archazolid B

    International Nuclear Information System (INIS)

    Hamm, Rebecca; Zeino, Maen; Frewert, Simon; Efferth, Thomas

    2014-01-01

    Treatment of glioblastoma multiforme (GBM), the most common and aggressive lethal brain tumor, represents a great challenge. Despite decades of research, the survival prognosis of GBM patients is unfavorable and more effective therapeutics are sorely required. Archazolid B, a potent vacuolar H + -ATPase inhibitor influencing cellular pH values, is a promising new compound exerting cytotoxicity in the nanomolar range on wild-type U87MG glioblastoma cells and U87MG.∆EGFR cells transfected with a mutant epidermal growth factor receptor (EGFR) gene. Gene expression profiling using microarray technology showed that archazolid B caused drastic disturbances in cholesterol homeostasis. Cholesterol, a main component of cellular membranes, is known to be essential for GBM growth and cells bearing EGFRvIII mutation are highly dependent on exogenous cholesterol. Archazolid B caused excessive accumulation of free cholesterol within intracellular compartments thus depleting cellular cholesterol and leading to up-regulation of SREBP targeted genes, including LDLR and HMGCR, the key enzyme of cholesterol biosynthesis. This cholesterol response is considered to be a novel resistance mechanism induced by archazolid B. We surmise that re-elevation of cholesterol levels in archazolid B treated cells may be mediated by newly synthesized cholesterol, since the drug leads to endosomal/lysosomal malfunction and cholesterol accumulation

  16. MiR-210 disturbs mitotic progression through regulating a group of mitosis-related genes.

    Science.gov (United States)

    He, Jie; Wu, Jiangbin; Xu, Naihan; Xie, Weidong; Li, Mengnan; Li, Jianna; Jiang, Yuyang; Yang, Burton B; Zhang, Yaou

    2013-01-07

    MiR-210 is up-regulated in multiple cancer types but its function is disputable and further investigation is necessary. Using a bioinformatics approach, we identified the putative target genes of miR-210 in hypoxia-induced CNE cells from genome-wide scale. Two functional gene groups related to cell cycle and RNA processing were recognized as the major targets of miR-210. Here, we investigated the molecular mechanism and biological consequence of miR-210 in cell cycle regulation, particularly mitosis. Hypoxia-induced up-regulation of miR-210 was highly correlated with the down-regulation of a group of mitosis-related genes, including Plk1, Cdc25B, Cyclin F, Bub1B and Fam83D. MiR-210 suppressed the expression of these genes by directly targeting their 3'-UTRs. Over-expression of exogenous miR-210 disturbed mitotic progression and caused aberrant mitosis. Furthermore, miR-210 mimic with pharmacological doses reduced tumor formation in a mouse metastatic tumor model. Taken together, these results implicate that miR-210 disturbs mitosis through targeting multi-genes involved in mitotic progression, which may contribute to its inhibitory role on tumor formation.

  17. In vitro selection of mutants: Inducible gene regulation for salt tolerance

    International Nuclear Information System (INIS)

    Winicov, I.; Bastola, D.R.; Deutch, C.E.; Pethe, V.V.; Petrusa, L.

    2001-01-01

    Regulation of differentially expressed genes in plants may be involved in inducing tolerance to stress. Isogenic salt-sensitive and salt-tolerant alfalfa lines were investigated for molecular differences in their response to salt. The genes, which are differentially induced by salt in the salt-tolerant alfalfa cells and are also regulated by salt at the whole plant level, were cloned. Both transcriptional and post- transcriptional mechanisms influenced salt-induced product accumulation in the salt-tolerant alfalfa. The salt-tolerant plants doubled proline concentration rapidly in roots, while salt-sensitive plants showed a delayed response. To understand the regulatory system in the salt-tolerant alfalfa, two genes that are expressed in roots were studied. Alfin1 encodes a zinc-finger type putative DNA transcription factor conserved in alfalfa, rice and Arabidopsis, and MsPRP2 encodes a protein that serves as a cell wall- membrane linker in roots. Recombinant Alfin1 protein was selected, amplified, cloned and its consensus sequence was identified. The recombinant Alfin1 also bound specifically to fragments of the MsPRP2 promoter in vitro, containing the Alfin1 binding consensus sequence. The results show unambiguously binding specificity of Alfin1 DNA, supporting its role in gene regulation. Alfin1 function was tested in transformed alfalfa in vivo by over-expressing Alfin1 from 35S CaMV promoter. The transgenic plants appeared normal. However, plants harboring the anti-sense construct did not grow well in soil, indicating that Alfin1 expression was essential. Alfin1 over-expression in transgenic alfalfa led to enhanced levels of MsPRP2 transcript accumulation, demonstrating that Alfin1 functioned in vivo in gene regulation. Since MsPRP2 gene is also induced by salt, it is likely that Alfin1 is an important transcription factor for gene regulation in salt-tolerant alfalfa, and an excellent target for manipulation to improve salt tolerance. (author)

  18. Pseudogenes regulate parental gene expression via ceRNA network.

    Science.gov (United States)

    An, Yang; Furber, Kendra L; Ji, Shaoping

    2017-01-01

    The concept of competitive endogenous RNA (ceRNA) was first proposed by Salmena and colleagues. Evidence suggests that pseudogene RNAs can act as a 'sponge' through competitive binding of common miRNA, releasing or attenuating repression through sequestering miRNAs away from parental mRNA. In theory, ceRNAs refer to all transcripts such as mRNA, tRNA, rRNA, long non-coding RNA, pseudogene RNA and circular RNA, because all of them may become the targets of miRNA depending on spatiotemporal situation. As binding of miRNA to the target RNA is not 100% complementary, it is possible that one miRNA can bind to multiple target RNAs and vice versa. All RNAs crosstalk through competitively binding to miRNAvia miRNA response elements (MREs) contained within the RNA sequences, thus forming a complex regulatory network. The ratio of a subset of miRNAs to the corresponding number of MREs determines repression strength on a given mRNA translation or stability. An increase in pseudogene RNA level can sequester miRNA and release repression on the parental gene, leading to an increase in parental gene expression. A massive number of transcripts constitute a complicated network that regulates each other through this proposed mechanism, though some regulatory significance may be mild or even undetectable. It is possible that the regulation of gene and pseudogene expression occurring in this manor involves all RNAs bearing common MREs. In this review, we will primarily discuss how pseudogene transcripts regulate expression of parental genes via ceRNA network and biological significance of regulation. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  19. Investigation of epigenetic gene regulation in Arabidopsis modulated by gamma radiation

    International Nuclear Information System (INIS)

    Woo, Hye Ryun; Kim, Jae Sung; Lee, Myung Jin; Lee, Dong Joon; Kim, Young Min; Jung, Joon Yong; Han, Wan Keun; Kang, Soo Jin

    2011-12-01

    To investigate epigenetic gene regulation in Arabidopsis modulated by gamma radiation, we examined the changes in DNA methylation and histone modification after gamma radiation and investigated the effects of gamma radiation on epigenetic information and gene expression. We have selected 14 genes with changes in DNA methylation by gamma radiation, analyzed the changes of histone modification in the selected genes to reveal the relationship between DNA methylation and histone modification by gamma radiation. We have also analyzed the effects of gamma radiation on gene expression to investigate the relationship between epigenetic information and gene expression by gamma radiation. The results will be useful to reveal the effects of gamma radiation on DNA methylation, histone modification and gene expression. We anticipate that the information generated in this proposal will help to find out the mechanism underlying the changes in epigenetic information by gamma radiation

  20. Regulating expressin of cell and tissue-specific genes by modifying transcription

    Energy Technology Data Exchange (ETDEWEB)

    Beachy, Roger N. [Donald Danforth Plant Science Center, St. Louis, MO (United States); Dai, Shunhong [Donald Danforth Plant Science Center, St. Louis, MO (United States)

    2009-12-15

    Transcriptional regulation is the primary step to control gene expression, therefore function. Such regulation is achieved primarily via a combination of the activities of the promoter cis regulatory DNA elements and trans regulatory proteins that function through binding to these DNA elements. Our research supported by this program has led to the identification of rice bZIP transcription factors RF2a, RF2b and RLP1 that play key roles in regulating the activity of a vascular tissue specific promoter isolated from Rice Tungro Bacilliform Virus (RTBV) through their interactions with the Box II essential cis element located in the promoter. RF2a, RF2b and RLP1 possess multiple regulatory domains. Functional characterization reveals that those domains can activate or repress the activity of the RTBV promoter. Studies of transcriptional regulation of the RTBV promoter by this group of bZIP proteins not only provide insights about gene expression in the vascular tissue, but also insights about general mechanisms of transcription activation and repression. The knowledge gained from this research will also enable us to develop a well-described set of tools that can be used to control expression of multiple genes in transgenic plants and to improve biofuel feedstock.

  1. Regulation of Flavonoid Biosynthetic Genes in Germinating Arabidopsis Seedlings.

    Science.gov (United States)

    Kubasek, WL; Shirley, BW; McKillop, A; Goodman, HM; Briggs, W; Ausubel, FM

    1992-01-01

    Many higher plants, including Arabidopsis, transiently display purple anthocyanin pigments just after seed germination. We observed that steady state levels of mRNAs encoded by four flavonoid biosynthetic genes, PAL1 (encoding phenylalanine ammonia-lyase 1), CHS (encoding chalcone synthase), CHI (encoding chalcone isomerase), and DFR (encoding dihydroflavonol reductase), were temporally regulated, peaking in 3-day-old seedlings grown in continuous white light. Except for the case of PAL1 mRNA, mRNA levels for these flavonoid genes were very low in seedlings grown in darkness. Light induction studies using seedlings grown in darkness showed that PAL1 mRNA began to accumulate before CHS and CHI mRNAs, which, in turn, began to accumulate before DFR mRNA. This order of induction is the same as the order of the biosynthetic steps in flavonoid biosynthesis. Our results suggest that the flavonoid biosynthetic pathway is coordinately regulated by a developmental timing mechanism during germination. Blue light and UVB light induction experiments using red light- and dark-grown seedlings showed that the flavonoid biosynthetic genes are induced most effectively by UVB light and that blue light induction is mediated by a specific blue light receptor. PMID:12297632

  2. Epigenetic mechanisms of peptidergic regulation of gene expression during aging of human cells.

    Science.gov (United States)

    Ashapkin, V V; Linkova, N S; Khavinson, V Kh; Vanyushin, B F

    2015-03-01

    Expression levels of genes encoding specific transcription factors and other functionally important proteins vary upon aging of pancreatic and bronchial epithelium cell cultures. The peptides KEDW and AEDL tissue-specifically affect gene expression in pancreatic and bronchial cell cultures, respectively. It is established in this work that the DNA methylation patterns of the PDX1, PAX6, NGN3, NKX2-1, and SCGB1A1 gene promoter regions change upon aging in pancreatic and bronchial cell cultures in correlation with variations in their expression levels. Thus, stable changes in gene expression upon aging of cell cultures could be caused by changes in their promoter methylation patterns. The methylation patterns of the PAX4 gene in pancreatic cells as well as those of the FOXA1, SCGB3A2, and SFTPA1 genes in bronchial cells do not change upon aging and are unaffected by peptides, whereas their expression levels change in both cases. The promoter region of the FOXA2 gene in pancreatic cells contains a small number of methylated CpG sites, their methylation levels being affected by cell culture aging and KEDW, though without any correlation with gene expression levels. The promoter region of the FOXA2 gene is completely unmethylated in bronchial cells irrespective of cell culture age and AEDL action. Changes in promoter methylation might be the cause of age- and peptide-induced variations in expression levels of the PDX1, PAX6, and NGN3 genes in pancreatic cells and NKX2-1 and SCGB1A1 genes in bronchial cells. Expression levels of the PAX4 and FOXA2 genes in pancreatic cells and FOXA1, FOXA2, SCGB3A2, and SFTPA1 genes in bronchial cells seem to be controlled by some other mechanisms.

  3. Autism and increased paternal age related changes in global levels of gene expression regulation.

    Directory of Open Access Journals (Sweden)

    Mark D Alter

    2011-02-01

    Full Text Available A causal role of mutations in multiple general transcription factors in neurodevelopmental disorders including autism suggested that alterations in global levels of gene expression regulation might also relate to disease risk in sporadic cases of autism. This premise can be tested by evaluating for changes in the overall distribution of gene expression levels. For instance, in mice, variability in hippocampal-dependent behaviors was associated with variability in the pattern of the overall distribution of gene expression levels, as assessed by variance in the distribution of gene expression levels in the hippocampus. We hypothesized that a similar change in variance might be found in children with autism. Gene expression microarrays covering greater than 47,000 unique RNA transcripts were done on RNA from peripheral blood lymphocytes (PBL of children with autism (n = 82 and controls (n = 64. Variance in the distribution of gene expression levels from each microarray was compared between groups of children. Also tested was whether a risk factor for autism, increased paternal age, was associated with variance. A decrease in the variance in the distribution of gene expression levels in PBL was associated with the diagnosis of autism and a risk factor for autism, increased paternal age. Traditional approaches to microarray analysis of gene expression suggested a possible mechanism for decreased variance in gene expression. Gene expression pathways involved in transcriptional regulation were down-regulated in the blood of children with autism and children of older fathers. Thus, results from global and gene specific approaches to studying microarray data were complimentary and supported the hypothesis that alterations at the global level of gene expression regulation are related to autism and increased paternal age. Global regulation of transcription, thus, represents a possible point of convergence for multiple etiologies of autism and other

  4. Medicago truncatula SOC1 Genes Are Up-regulated by Environmental Cues That Promote Flowering

    Directory of Open Access Journals (Sweden)

    Jared B. Fudge

    2018-04-01

    Full Text Available Like Arabidopsis thaliana, the flowering of the legume Medicago truncatula is promoted by long day (LD photoperiod and vernalization. However, there are differences in the molecular mechanisms involved, with orthologs of two key Arabidopsis thaliana regulators, FLOWERING LOCUS C (FLC and CONSTANS (CO, being absent or not having a role in flowering time function in Medicago. In Arabidopsis, the MADS-box transcription factor gene, SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (AtSOC1, plays a key role in integrating the photoperiodic and vernalization pathways. In this study, we set out to investigate whether the Medicago SOC1 genes play a role in regulating flowering time. Three Medicago SOC1 genes were identified and characterized (MtSOC1a–MtSOC1c. All three MtSOC1 genes, when heterologously expressed, were able to promote earlier flowering of the late-flowering Arabidopsis soc1-2 mutant. The three MtSOC1 genes have different patterns of expression. However, consistent with a potential role in flowering time regulation, all three MtSOC1 genes are expressed in the shoot apex and are up-regulated in the shoot apex of plants in response to LD photoperiods and vernalization. The up-regulation of MtSOC1 genes was reduced in Medicago fta1-1 mutants, indicating that they are downstream of MtFTa1. Insertion mutant alleles of Medicago soc1b do not flower late, suggestive of functional redundancy among Medicago SOC1 genes in promoting flowering.

  5. Transcriptional feedback regulation of YUCCA genes in response to auxin levels in Arabidopsis.

    Science.gov (United States)

    Suzuki, Masashi; Yamazaki, Chiaki; Mitsui, Marie; Kakei, Yusuke; Mitani, Yuka; Nakamura, Ayako; Ishii, Takahiro; Soeno, Kazuo; Shimada, Yukihisa

    2015-08-01

    The IPyA pathway, the major auxin biosynthesis pathway, is transcriptionally regulated through a negative feedback mechanism in response to active auxin levels. The phytohormone auxin plays an important role in plant growth and development, and levels of active free auxin are determined by biosynthesis, conjugation, and polar transport. Unlike conjugation and polar transport, little is known regarding the regulatory mechanism of auxin biosynthesis. We discovered that expression of genes encoding indole-3-pyruvic acid (IPyA) pathway enzymes is regulated by elevated or reduced active auxin levels. Expression levels of TAR2, YUC1, YUC2, YUC4, and YUC6 were downregulated in response to synthetic auxins [1-naphthaleneacetic acid (NAA) and 2,4-dichlorophenoxyacetic acid (2,4-D)] exogenously applied to Arabidopsis thaliana L. seedlings. Concomitantly, reduced levels of endogenous indole-3-acetic acid (IAA) were observed. Alternatively, expression of these YUCCA genes was upregulated by the auxin biosynthetic inhibitor kynurenine in Arabidopsis seedlings, accompanied by reduced IAA levels. These results indicate that expression of YUCCA genes is regulated by active auxin levels. Similar results were also observed in auxin-overproduction and auxin-deficient mutants. Exogenous application of IPyA to Arabidopsis seedlings preincubated with kynurenine increased endogenous IAA levels, while preincubation with 2,4-D reduced endogenous IAA levels compared to seedlings exposed only to IPyA. These results suggest that in vivo conversion of IPyA to IAA was enhanced under reduced auxin levels, while IPyA to IAA conversion was depressed in the presence of excess auxin. Based on these results, we propose that the IPyA pathway is transcriptionally regulated through a negative feedback mechanism in response to active auxin levels.

  6. Leucine zipper, down regulated in cancer-1 gene expression in prostate cancer

    OpenAIRE

    Salemi, Michele; Barone, Nunziata; La Vignera, Sandro; Condorelli, Rosita A.; Recupero, Domenico; Galia, Antonio; Fraggetta, Filippo; Aiello, Anna Maria; Pepe, Pietro; Castiglione, Roberto; Vicari, Enzo; Calogero, Aldo E.

    2016-01-01

    Numerous genetic alterations have been implicated in the development of prostate cancer (PCa). DNA and protein microarrays have enabled the identification of genes associated with apoptosis, which is important in PCa development. Despite the molecular mechanisms are not entirely understood, inhibition of apoptosis is a critical pathophysiological factor that contributes to the onset and progression of PCa. Leucine zipper, down-regulated in cancer 1 (LDOC-1) is a known regulator of the nuclear...

  7. Models of Aire-dependent gene regulation for thymic negative selection

    Directory of Open Access Journals (Sweden)

    Dina eDanso-Abeam

    2011-05-01

    Full Text Available Mutations in the Autoimmune Regulator (AIRE gene lead to Autoimmune Polyendocrinopathy Syndrome type 1 (APS1, characterized by the development of multi-organ autoimmune damage. The mechanism by which defects in AIRE result in autoimmunity has been the subject of intense scrutiny. At the cellular level, the working model explains most of the clinical and immunological characteristics of APS1, with AIRE driving the expression of tissue restricted antigens (TRAs in the epithelial cells of the thymic medulla. This TRA expression results in effective negative selection of TRA-reactive thymocytes, preventing autoimmune disease. At the molecular level, the mechanism by which AIRE initiates TRA expression in the thymic medulla remains unclear. Multiple different models for the molecular mechanism have been proposed, ranging from classical transcriptional activity, to random induction of gene expression, to epigenetic tag recognition effect, to altered cell biology. In this review, we evaluate each of these models and discuss their relative strengths and weaknesses.

  8. TiGER: a database for tissue-specific gene expression and regulation.

    Science.gov (United States)

    Liu, Xiong; Yu, Xueping; Zack, Donald J; Zhu, Heng; Qian, Jiang

    2008-06-09

    Understanding how genes are expressed and regulated in different tissues is a fundamental and challenging question. However, most of currently available biological databases do not focus on tissue-specific gene regulation. The recent development of computational methods for tissue-specific combinational gene regulation, based on transcription factor binding sites, enables us to perform a large-scale analysis of tissue-specific gene regulation in human tissues. The results are stored in a web database called TiGER (Tissue-specific Gene Expression and Regulation). The database contains three types of data including tissue-specific gene expression profiles, combinatorial gene regulations, and cis-regulatory module (CRM) detections. At present the database contains expression profiles for 19,526 UniGene genes, combinatorial regulations for 7,341 transcription factor pairs and 6,232 putative CRMs for 2,130 RefSeq genes. We have developed and made publicly available a database, TiGER, which summarizes and provides large scale data sets for tissue-specific gene expression and regulation in a variety of human tissues. This resource is available at 1.

  9. TiGER: A database for tissue-specific gene expression and regulation

    Directory of Open Access Journals (Sweden)

    Zack Donald J

    2008-06-01

    Full Text Available Abstract Background Understanding how genes are expressed and regulated in different tissues is a fundamental and challenging question. However, most of currently available biological databases do not focus on tissue-specific gene regulation. Results The recent development of computational methods for tissue-specific combinational gene regulation, based on transcription factor binding sites, enables us to perform a large-scale analysis of tissue-specific gene regulation in human tissues. The results are stored in a web database called TiGER (Tissue-specific Gene Expression and Regulation. The database contains three types of data including tissue-specific gene expression profiles, combinatorial gene regulations, and cis-regulatory module (CRM detections. At present the database contains expression profiles for 19,526 UniGene genes, combinatorial regulations for 7,341 transcription factor pairs and 6,232 putative CRMs for 2,130 RefSeq genes. Conclusion We have developed and made publicly available a database, TiGER, which summarizes and provides large scale data sets for tissue-specific gene expression and regulation in a variety of human tissues. This resource is available at 1.

  10. Iron homeostasis in Arabidopsis thaliana: transcriptomic analyses reveal novel FIT-regulated genes, iron deficiency marker genes and functional gene networks.

    Science.gov (United States)

    Mai, Hans-Jörg; Pateyron, Stéphanie; Bauer, Petra

    2016-10-03

    FIT (FER-LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR) is the central regulator of iron uptake in Arabidopsis thaliana roots. We performed transcriptome analyses of six day-old seedlings and roots of six week-old plants using wild type, a fit knock-out mutant and a FIT over-expression line grown under iron-sufficient or iron-deficient conditions. We compared genes regulated in a FIT-dependent manner depending on the developmental stage of the plants. We assembled a high likelihood dataset which we used to perform co-expression and functional analysis of the most stably iron deficiency-induced genes. 448 genes were found FIT-regulated. Out of these, 34 genes were robustly FIT-regulated in root and seedling samples and included 13 novel FIT-dependent genes. Three hundred thirty-one genes showed differential regulation in response to the presence and absence of FIT only in the root samples, while this was the case for 83 genes in the seedling samples. We assembled a virtual dataset of iron-regulated genes based on a total of 14 transcriptomic analyses of iron-deficient and iron-sufficient wild-type plants to pinpoint the best marker genes for iron deficiency and analyzed this dataset in depth. Co-expression analysis of this dataset revealed 13 distinct regulons part of which predominantly contained functionally related genes. We could enlarge the list of FIT-dependent genes and discriminate between genes that are robustly FIT-regulated in roots and seedlings or only in one of those. FIT-regulated genes were mostly induced, few of them were repressed by FIT. With the analysis of a virtual dataset we could filter out and pinpoint new candidates among the most reliable marker genes for iron deficiency. Moreover, co-expression and functional analysis of this virtual dataset revealed iron deficiency-induced and functionally distinct regulons.

  11. Life in a changing world: TCH gene regulation of expression and responses to environmental signals

    Science.gov (United States)

    Braam, J.; Sistrunk, M. L.; Polisensky, D. H.; Xu, W.; Purugganan, M. M.; Antosiewicz, D. M.; Campbell, P.; Johnson, K. A.

    1996-01-01

    The Arabidopsis TCH genes were discovered as a consequence of their marked upregulation of expression in response to seemingly innocuous stimuli such as touch. Further analyses have indicated that these genes are upregulated by a variety of diverse stimuli. Understanding the mechanism(s) and factors that control TCH gene regulation will shed light on the signaling pathways that enable plants to respond to changing environmental conditions. The TCH proteins include calmodulin, calmodulin-related proteins and a xyloglucan endotransglycosylase. Expression analyses and localization of protein accumulation indicate that the potential sites of TCH protein function include expanding cells and tissues under mechanical strain. We hypothesize that the TCH proteins may collaborate in cell wall biogenesis.

  12. A CHROMATIN MODIFYING ENZYME, SDG8, IS REQUIRED FOR MORPHOLOGICAL, GENE EXPRESSION, AND EPIGENETIC RESPONSES TO MECHANICAL STIMULATION

    Directory of Open Access Journals (Sweden)

    Christopher Ian Cazzonelli

    2014-10-01

    Full Text Available Thigmomorphogenesis is viewed as being a response process of acclimation to short repetitive bursts of mechanical stimulation or touch. The underlying molecular mechanisms that coordinate changes in how touch signals lead to long-term morphological changes are enigmatic. Touch responsive gene expression is rapid and transient, and no transcription factor or DNA regulatory motif has been reported that could confer a genome wide mechanical stimulus. We report here on a chromatin modifying enzyme, SDG8/ASHH2, which can regulate the expression of many touch responsive genes identified in Arabidopsis. SDG8 is required for the permissive expression of touch induced genes; and the loss of function of sdg8 perturbs the maximum levels of induction on selected touch gene targets. SDG8 is required to maintain permissive H3K4 trimethylation marks surrounding the Arabidopsis touch-inducible gene TOUCH 3 (TCH3, which encodes a calmodulin-like protein (CML12. The gene neighbouring was also slightly down regulated, revealing a new target for SDG8 mediated chromatin modification. Finally, sdg8 mutants show perturbed morphological response to wind-agitated mechanical stimuli, implicating an epigenetic memory-forming process in the acclimation response of thigmomorphogenesis.

  13. A chromatin modifying enzyme, SDG8, is involved in morphological, gene expression, and epigenetic responses to mechanical stimulation.

    Science.gov (United States)

    Cazzonelli, Christopher I; Nisar, Nazia; Roberts, Andrea C; Murray, Kevin D; Borevitz, Justin O; Pogson, Barry J

    2014-01-01

    Thigmomorphogenesis is viewed as being a response process of acclimation to short repetitive bursts of mechanical stimulation or touch. The underlying molecular mechanisms that coordinate changes in how touch signals lead to long-term morphological changes are enigmatic. Touch responsive gene expression is rapid and transient, and no transcription factor or DNA regulatory motif has been reported that could confer a genome wide mechanical stimulus. We report here on a chromatin modifying enzyme, SDG8/ASHH2, which can regulate the expression of many touch responsive genes identified in Arabidopsis. SDG8 is required for the permissive expression of touch induced genes; and the loss of function of sdg8 perturbs the maximum levels of induction on selected touch gene targets. SDG8 is required to maintain permissive H3K4 trimethylation marks surrounding the Arabidopsis touch-inducible gene TOUCH 3 (TCH3), which encodes a calmodulin-like protein (CML12). The gene neighboring was also slightly down regulated, revealing a new target for SDG8 mediated chromatin modification. Finally, sdg8 mutants show perturbed morphological response to wind-agitated mechanical stimuli, implicating an epigenetic memory-forming process in the acclimation response of thigmomorphogenesis.

  14. The dynamic landscape of gene regulation during Bombyx mori oogenesis.

    Science.gov (United States)

    Zhang, Qiang; Sun, Wei; Sun, Bang-Yong; Xiao, Yang; Zhang, Ze

    2017-09-11

    Oogenesis in the domestic silkworm (Bombyx mori) is a complex process involving previtellogenesis, vitellogenesis and choriogenesis. During this process, follicles show drastic morphological and physiological changes. However, the genome-wide regulatory profiles of gene expression during oogenesis remain to be determined. In this study, we obtained time-series transcriptome data and used these data to reveal the dynamic landscape of gene regulation during oogenesis. A total of 1932 genes were identified to be differentially expressed among different stages, most of which occurred during the transition from late vitellogenesis to early choriogenesis. Using weighted gene co-expression network analysis, we identified six stage-specific gene modules that correspond to multiple regulatory pathways. Strikingly, the biosynthesis pathway of the molting hormone 20-hydroxyecdysone (20E) was enriched in one of the modules. Further analysis showed that the ecdysteroid 20-hydroxylase gene (CYP314A1) of steroidgenesis genes was mainly expressed in previtellogenesis and early vitellogenesis. However, the 20E-inactivated genes, particularly the ecdysteroid 26-hydroxylase encoding gene (Cyp18a1), were highly expressed in late vitellogenesis. These distinct expression patterns between 20E synthesis and catabolism-related genes might ensure the rapid decline of the hormone titer at the transition point from vitellogenesis to choriogenesis. In addition, we compared landscapes of gene regulation between silkworm (Lepidoptera) and fruit fly (Diptera) oogeneses. Our results show that there is some consensus in the modules of gene co-expression during oogenesis in these insects. The data presented in this study provide new insights into the regulatory mechanisms underlying oogenesis in insects with polytrophic meroistic ovaries. The results also provide clues for further investigating the roles of epigenetic reconfiguration and circadian rhythm in insect oogenesis.

  15. Rice PLASTOCHRON genes regulate leaf maturation downstream of the gibberellin signal transduction pathway.

    Science.gov (United States)

    Mimura, Manaki; Nagato, Yasuo; Itoh, Jun-Ichi

    2012-05-01

    Rice PLASTOCHRON 1 (PLA1) and PLA2 genes regulate leaf maturation and plastochron, and their loss-of-function mutants exhibit small organs and rapid leaf emergence. They encode a cytochrome P450 protein CYP78A11 and an RNA-binding protein, respectively. Their homologs in Arabidopsis and maize are also associated with plant development/organ size. Despite the importance of PLA genes in plant development, their molecular functions remain unknown. Here, we investigated how PLA1 and PLA2 genes are related to phytohormones. We found that gibberellin (GA) is the major phytohormone that promotes PLA1 and PLA2 expression. GA induced PLA1 and PLA2 expression, and conversely the GA-inhibitor uniconazole suppressed PLA1 and PLA2 expression. In pla1-4 and pla2-1 seedlings, expression levels of GA biosynthesis genes and the signal transduction gene were similar to those in wild-type seedlings. GA treatment slightly down-regulated the GA biosynthesis gene GA20ox2 and up-regulated the GA-catabolizing gene GA2ox4, whereas the GA biosynthesis inhibitor uniconazole up-regulated GA20ox2 and down-regulated GA2ox4 both in wild-type and pla mutants, suggesting that the GA feedback mechanism is not impaired in pla1 and pla2. To reveal how GA signal transduction affects the expression of PLA1 and PLA2, PLA expression in GA-signaling mutants was examined. In GA-insensitive mutant, gid1 and less-sensitive mutant, Slr1-d1, PLA1 and PLA2 expression was down-regulated. On the other hand, the expression levels of PLA1 and PLA2 were highly enhanced in a GA-constitutive-active mutant, slr1-1, causing ectopic overexpression. These results indicate that both PLA1 and PLA2 act downstream of the GA signal transduction pathway to regulate leaf development.

  16. The pseudokinase NIPI-4 is a novel regulator of antimicrobial peptide gene expression.

    Directory of Open Access Journals (Sweden)

    Sid Ahmed Labed

    Full Text Available Hosts have developed diverse mechanisms to counter the pathogens they face in their natural environment. Throughout the plant and animal kingdoms, the up-regulation of antimicrobial peptides is a common response to infection. In C. elegans, infection with the natural pathogen Drechmeria coniospora leads to rapid induction of antimicrobial peptide gene expression in the epidermis. Through a large genetic screen we have isolated many new mutants that are incapable of upregulating the antimicrobial peptide nlp-29 in response to infection (i.e. with a Nipi or 'no induction of peptide after infection' phenotype. More than half of the newly isolated Nipi mutants do not correspond to genes previously associated with the regulation of antimicrobial peptides. One of these, nipi-4, encodes a member of a nematode-specific kinase family. NIPI-4 is predicted to be catalytically inactive, thus to be a pseudokinase. It acts in the epidermis downstream of the PKC∂ TPA-1, as a positive regulator of nlp antimicrobial peptide gene expression after infection. It also controls the constitutive expression of antimicrobial peptide genes of the cnc family that are targets of TGFß regulation. Our results open the way for a more detailed understanding of how host defense pathways can be molded by environmental pathogens.

  17. Distinct Skeletal Muscle Gene Regulation from Active Contraction, Passive Vibration, and Whole Body Heat Stress in Humans.

    Directory of Open Access Journals (Sweden)

    Michael A Petrie

    Full Text Available Skeletal muscle exercise regulates several important metabolic genes in humans. We know little about the effects of environmental stress (heat and mechanical stress (vibration on skeletal muscle. Passive mechanical stress or systemic heat stress are often used in combination with many active exercise programs. We designed a method to deliver a vibration stress and systemic heat stress to compare the effects with active skeletal muscle contraction.The purpose of this study is to examine whether active mechanical stress (muscle contraction, passive mechanical stress (vibration, or systemic whole body heat stress regulates key gene signatures associated with muscle metabolism, hypertrophy/atrophy, and inflammation/repair.Eleven subjects, six able-bodied and five with chronic spinal cord injury (SCI participated in the study. The six able-bodied subjects sat in a heat stress chamber for 30 minutes. Five subjects with SCI received a single dose of limb-segment vibration or a dose of repetitive electrically induced muscle contractions. Three hours after the completion of each stress, we performed a muscle biopsy (vastus lateralis or soleus to analyze mRNA gene expression.We discovered repetitive active muscle contractions up regulated metabolic transcription factors NR4A3 (12.45 fold, PGC-1α (5.46 fold, and ABRA (5.98 fold; and repressed MSTN (0.56 fold. Heat stress repressed PGC-1α (0.74 fold change; p < 0.05; while vibration induced FOXK2 (2.36 fold change; p < 0.05. Vibration similarly caused a down regulation of MSTN (0.74 fold change; p < 0.05, but to a lesser extent than active muscle contraction. Vibration induced FOXK2 (p < 0.05 while heat stress repressed PGC-1α (0.74 fold and ANKRD1 genes (0.51 fold; p < 0.05.These findings support a distinct gene regulation in response to heat stress, vibration, and muscle contractions. Understanding these responses may assist in developing regenerative rehabilitation interventions to improve muscle cell

  18. Expression microarray identifies the unliganded glucocorticoid receptor as a regulator of gene expression in mammary epithelial cells

    International Nuclear Information System (INIS)

    Ritter, Heather D; Mueller, Christopher R

    2014-01-01

    While glucocorticoids and the liganded glucocorticoid receptor (GR) have a well-established role in the maintenance of differentiation and suppression of apoptosis in breast tissue, the involvement of unliganded GR in cellular processes is less clear. Our previous studies implicated unliganded GR as a positive regulator of the BRCA1 tumour suppressor gene in the absence of glucocorticoid hormone, which suggested it could play a similar role in the regulation of other genes. An shRNA vector directed against GR was used to create mouse mammary cell lines with depleted endogenous levels of this receptor in order to further characterize the role of GR in breast cells. An expression microarray screen for targets of unliganded GR was performed using our GR-depleted cell lines maintained in the absence of glucocorticoids. Candidate genes positively regulated by unliganded GR were identified, classified by Gene Ontology and Ingenuity Pathway Analysis, and validated using quantitative real-time reverse transcriptase PCR. Chromatin immunoprecipitation and dual luciferase expression assays were conducted to further investigate the mechanism through which unliganded GR regulates these genes. Expression microarray analysis revealed 260 targets negatively regulated and 343 targets positively regulated by unliganded GR. A number of the positively regulated targets were involved in pro-apoptotic networks, possibly opposing the activity of liganded GR targets. Validation and further analysis of five candidates from the microarray indicated that two of these, Hsd11b1 and Ch25h, were regulated by unliganded GR in a manner similar to Brca1 during glucocorticoid treatment. Furthermore, GR was shown to interact directly with and upregulate the Ch25h promoter in the absence, but not the presence, of hydrocortisone (HC), confirming our previously described model of gene regulation by unliganded GR. This work presents the first identification of targets of unliganded GR. We propose that

  19. Detection of genes regulated by Lmx1b during limb dorsalization.

    Science.gov (United States)

    Feenstra, Jennifer M; Kanaya, Kohei; Pira, Charmaine U; Hoffman, Sarah E; Eppey, Richard J; Oberg, Kerby C

    2012-05-01

    Lmx1b is a homeodomain transcription factor that regulates dorsal identity during limb development. Lmx1b knockout (KO) mice develop distal ventral-ventral limbs. Although induction of Lmx1b is linked to Wnt7a expression in the dorsal limb ectoderm, the downstream targets of Lmx1b that accomplish limb dorsalization are unknown. To identify genes targeted by Lmx1b, we compared gene arrays from Lmx1b KO and wild type mouse limbs during limb dorsalization, i.e., 11.5, 12.5, and 13.5 days post coitum. We identified 54 target genes that were differentially expressed in all three stages. Several skeletal targets, including Emx2, Matrilin1 and Matrilin4, demonstrated a loss of scapular expression in the Lmx1b KO mice, supporting a role for Lmx1b in scapula development. Furthermore, the relative abundance of extracellular matrix-related soft tissue targets regulated by Lmx1b, such as collagens and proteoglycans, suggests a mechanism that includes changes in the extracellular matrix composition to accomplish limb dorsalization. Our study provides the most comprehensive characterization of genes regulated by Lmx1b during limb development to-date and provides targets for further investigation. © 2012 The Authors. Development, Growth & Differentiation © 2012 Japanese Society of Developmental Biologists.

  20. Regulation of transcription of cellulases- and hemicellulases-encoding genes in Aspergillus niger and Hypocrea jecorina (Trichoderma reesei)

    NARCIS (Netherlands)

    Stricker, A.R.; Mach, R.L.; Graaff, de L.H.

    2008-01-01

    The filamentous fungi Aspergillus niger and Hypocrea jecorina (Trichoderma reesei) have been the subject of many studies investigating the mechanism of transcriptional regulation of hemicellulase- and cellulase-encoding genes. The transcriptional regulator XlnR that was initially identified in A.

  1. Skeletal muscle gene expression in response to resistance exercise: sex specific regulation

    Directory of Open Access Journals (Sweden)

    Burant Charles F

    2010-11-01

    Full Text Available Abstract Background The molecular mechanisms underlying the sex differences in human muscle morphology and function remain to be elucidated. The sex differences in the skeletal muscle transcriptome in both the resting state and following anabolic stimuli, such as resistance exercise (RE, might provide insight to the contributors of sexual dimorphism of muscle phenotypes. We used microarrays to profile the transcriptome of the biceps brachii of young men and women who underwent an acute unilateral RE session following 12 weeks of progressive training. Bilateral muscle biopsies were obtained either at an early (4 h post-exercise or late recovery (24 h post-exercise time point. Muscle transcription profiles were compared in the resting state between men (n = 6 and women (n = 8, and in response to acute RE in trained exercised vs. untrained non-exercised control muscle for each sex and time point separately (4 h post-exercise, n = 3 males, n = 4 females; 24 h post-exercise, n = 3 males, n = 4 females. A logistic regression-based method (LRpath, following Bayesian moderated t-statistic (IMBT, was used to test gene functional groups and biological pathways enriched with differentially expressed genes. Results This investigation identified extensive sex differences present in the muscle transcriptome at baseline and following acute RE. In the resting state, female muscle had a greater transcript abundance of genes involved in fatty acid oxidation and gene transcription/translation processes. After strenuous RE at the same relative intensity, the time course of the transcriptional modulation was sex-dependent. Males experienced prolonged changes while females exhibited a rapid restoration. Most of the biological processes involved in the RE-induced transcriptional regulation were observed in both males and females, but sex specificity was suggested for several signaling pathways including activation of notch signaling and TGF-beta signaling in females

  2. Determining Physical Mechanisms of Gene Expression Regulation from Single Cell Gene Expression Data

    OpenAIRE

    Ezer, Daphne; Moignard, Victoria; G?ttgens, Berthold; Adryan, Boris

    2016-01-01

    Many genes are expressed in bursts, which can contribute to cell-to-cell heterogeneity. It is now possible to measure this heterogeneity with high throughput single cell gene expression assays (single cell qPCR and RNA-seq). These experimental approaches generate gene expression distributions which can be used to estimate the kinetic parameters of gene expression bursting, namely the rate that genes turn on, the rate that genes turn off, and the rate of transcription. We construct a complete ...

  3. Identification of Plagl1/Zac1 binding sites and target genes establishes its role in the regulation of extracellular matrix genes and the imprinted gene network.

    Science.gov (United States)

    Varrault, Annie; Dantec, Christelle; Le Digarcher, Anne; Chotard, Laëtitia; Bilanges, Benoit; Parrinello, Hugues; Dubois, Emeric; Rialle, Stéphanie; Severac, Dany; Bouschet, Tristan; Journot, Laurent

    2017-10-13

    PLAGL1/ZAC1 undergoes parental genomic imprinting, is paternally expressed, and is a member of the imprinted gene network (IGN). It encodes a zinc finger transcription factor with anti-proliferative activity and is a candidate tumor suppressor gene on 6q24 whose expression is frequently lost in various neoplasms. Conversely, gain of PLAGL1 function is responsible for transient neonatal diabetes mellitus, a rare genetic disease that results from defective pancreas development. In the present work, we showed that Plagl1 up-regulation was not associated with DNA damage-induced cell cycle arrest. It was rather associated with physiological cell cycle exit that occurred with contact inhibition, growth factor withdrawal, or cell differentiation. To gain insights into Plagl1 mechanism of action, we identified Plagl1 target genes by combining chromatin immunoprecipitation and genome-wide transcriptomics in transfected cell lines. Plagl1-elicited gene regulation correlated with multiple binding to the proximal promoter region through a GC-rich motif. Plagl1 target genes included numerous genes involved in signaling, cell adhesion, and extracellular matrix composition, including collagens. Plagl1 targets also included 22% of the 409 genes that make up the IGN. Altogether, this work identified Plagl1 as a transcription factor that coordinated the regulation of a subset of IGN genes and controlled extracellular matrix composition. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. Up-regulation of integrin β3 in radioresistant pancreatic cancer impairs adenovirus-mediated gene therapy

    International Nuclear Information System (INIS)

    Egami, Takuya; Ohuchida, Kenoki; Yasui, Takaharu; Onimaru, Manabu; Toma, Hiroki; Sato, Norihiro; Tanaka, Masao; Mizumoto, Kazuhiro; Matsumoto, Kunio

    2009-01-01

    Adenovirus-mediated gene therapy is a promising approach for the treatment of pancreatic cancer. We previously reported that radiation enhanced adenovirus-mediated gene expression in pancreatic cancer, suggesting that adenoviral gene therapy might be more effective in radioresistant pancreatic cancer cells. In the present study, we compared the transduction efficiency of adenovirus-delivered genes in radiosensitive and radioresistant cells, and investigated the underlying mechanisms. We used an adenovirus expressing the hepatocyte growth factor antagonist, NK4 (Ad-NK4), as a representative gene therapy. We established two radioresistant human pancreatic cancer cell lines using fractionated irradiation. Radiosensitive and radioresistant pancreatic cancer cells were infected with Ad-NK4, and NK4 levels in the cells were measured. In order to investigate the mechanisms responsible for the differences in the transduction efficiency between these cells, we measured expression of the genes mediating adenovirus infection and endocytosis. The results revealed that NK4 levels in radioresistant cells were significantly lower (P<0.01) than those in radiosensitive cells, although there were no significant differences in adenovirus uptake between radiosensitive cells and radioresistant cells. Integrin β3 was up-regulated and the Coxsackie virus and adenovirus receptor was down-regulated in radioresistant cells, and inhibition of integrin β3 promoted adenovirus gene transfer. These results suggest that inhibition of integrin β3 in radioresistant pancreatic cancer cells could enhance adenovirus-mediated gene therapy. (author)

  5. Gene up-regulation in response to predator kairomones in the water flea, Daphnia pulex

    Directory of Open Access Journals (Sweden)

    Okada Yasukazu

    2010-04-01

    Full Text Available Abstract Background Numerous cases of predator-induced polyphenisms, in which alternate phenotypes are produced in response to extrinsic stimuli, have been reported in aquatic taxa to date. The genus Daphnia (Branchiopoda, Cladocera provides a model experimental system for the study of the developmental mechanisms and evolutionary processes associated with predator-induced polyphenisms. In D. pulex, juveniles form neckteeth in response to predatory kairomones released by Chaoborus larvae (Insecta, Diptera. Results Previous studies suggest that the timing of the sensitivity to kairomones in D. pulex can generally be divided into the embryonic and postembryonic developmental periods. We therefore examined which of the genes in the embryonic and first-instar juvenile stages exhibit different expression levels in the presence or absence of predator kairomones. Employing a candidate gene approach and identifying differentially-expressed genes revealed that the morphogenetic factors, Hox3, extradenticle and escargot, were up-regulated by kairomones in the postembryonic stage and may potentially be responsible for defense morph formation. In addition, the juvenile hormone pathway genes, JHAMT and Met, and the insulin signaling pathway genes, InR and IRS-1, were up-regulated in the first-instar stage. It is well known that these hormonal pathways are involved in physiological regulation following morphogenesis in many insect species. During the embryonic stage when morphotypes were determined, one of the novel genes identified by differential display was up-regulated, suggesting that this gene may be related to morphotype determination. Biological functions of the up-regulated genes are discussed in the context of defense morph formation. Conclusions It is suggested that, following the reception of kairomone signals, the identified genes are involved in a series of defensive phenotypic alterations and the production of a defensive phenotype.

  6. Regulation of K-Cl cotransport: from function to genes.

    Science.gov (United States)

    Adragna, N C; Di Fulvio, M; Lauf, P K

    2004-10-01

    cotransporter and the cytoskeleton appears to depend on the cellular origin and experimental conditions. Pathophysiologically, K-Cl COT is altered in sickle cell anemia and neuropathies, and it has also been proposed to play a role in blood pressure control. Four closely related human genes code for KCCs (KCC1-4). Although considerable information is accumulating on tissue distribution, function and pathologies associated with the different isoforms, little is known about the genetic regulation of the KCC genes in terms of transcriptional and post-transcriptional regulation. A few reports indicate that the NO/cGMP/PKG signaling pathway regulates KCC1 and KCC3 mRNA expression in VSMCs at the post-transcriptional level. However, the detailed mechanisms of post-transcriptional regulation of KCC genes and of regulation of KCC2 and KCC4 mRNA expression are unknown. The K-Cl COT field is expected to expand further over the next decades, as new isoforms and/or regulatory pathways are discovered and its implication in health and disease is revealed.

  7. Comparative Analysis of Tocopherol Biosynthesis Genes and Its Transcriptional Regulation in Soybean Seeds.

    Science.gov (United States)

    T, Vinutha; Bansal, Navita; Kumari, Khushboo; Prashat G, Rama; Sreevathsa, Rohini; Krishnan, Veda; Kumari, Sweta; Dahuja, Anil; Lal, S K; Sachdev, Archana; Praveen, Shelly

    2017-12-20

    Tocopherols composed of four isoforms (α, β, γ, and δ) and its biosynthesis comprises of three pathways: methylerythritol 4-phosphate (MEP), shikimate (SK) and tocopherol-core pathways regulated by 25 enzymes. To understand pathway regulatory mechanism at transcriptional level, gene expression profile of tocopherol-biosynthesis genes in two soybean genotypes was carried out, the results showed significantly differential expression of 5 genes: 1-deoxy-d-xylulose-5-P-reductoisomerase (DXR), geranyl geranyl reductase (GGDR) from MEP, arogenate dehydrogenase (TyrA), tyrosine aminotransferase (TAT) from SK and γ-tocopherol methyl transferase 3 (γ-TMT3) from tocopherol-core pathways. Expression data were further analyzed for total tocopherol (T-toc) and α-tocopherol (α-toc) content by coregulation network and gene clustering approaches, the results showed least and strong association of γ-TMT3/tocopherol cyclase (TC) and DXR/DXS, respectively, with gene clusters of tocopherol biosynthesis suggested the specific role of γ-TMT3/TC in determining tocopherol accumulation and intricacy of DXR/DXS genes in coordinating precursor pathways toward tocopherol biosynthesis in soybean seeds. Thus, the present study provides insight into the major role of these genes regulating the tocopherol synthesis in soybean seeds.

  8. Developmental transitions in Arabidopsis are regulated by antisense RNAs resulting from bidirectionally transcribed genes.

    Science.gov (United States)

    Krzyczmonik, Katarzyna; Wroblewska-Swiniarska, Agata; Swiezewski, Szymon

    2017-07-03

    Transcription terminators are DNA elements located at the 3' end of genes that ensure efficient cleavage of nascent RNA generating the 3' end of mRNA, as well as facilitating disengagement of elongating DNA-dependent RNA polymerase II. Surprisingly, terminators are also a potent source of antisense transcription. We have recently described an Arabidopsis antisense transcript originating from the 3' end of a master regulator of Arabidopsis thaliana seed dormancy DOG1. In this review, we discuss the broader implications of our discovery in light of recent developments in yeast and Arabidopsis. We show that, surprisingly, the key features of terminators that give rise to antisense transcription are preserved between Arabidopsis and yeast, suggesting a conserved mechanism. We also compare our discovery to known antisense-based regulatory mechanisms, highlighting the link between antisense-based gene expression regulation and major developmental transitions in plants.

  9. From genes to milk: genomic organization and epigenetic regulation of the mammary transcriptome.

    Science.gov (United States)

    Lemay, Danielle G; Pollard, Katherine S; Martin, William F; Freeman Zadrowski, Courtneay; Hernandez, Joseph; Korf, Ian; German, J Bruce; Rijnkels, Monique

    2013-01-01

    Even in genomes lacking operons, a gene's position in the genome influences its potential for expression. The mechanisms by which adjacent genes are co-expressed are still not completely understood. Using lactation and the mammary gland as a model system, we explore the hypothesis that chromatin state contributes to the co-regulation of gene neighborhoods. The mammary gland represents a unique evolutionary model, due to its recent appearance, in the context of vertebrate genomes. An understanding of how the mammary gland is regulated to produce milk is also of biomedical and agricultural importance for human lactation and dairying. Here, we integrate epigenomic and transcriptomic data to develop a comprehensive regulatory model. Neighborhoods of mammary-expressed genes were determined using expression data derived from pregnant and lactating mice and a neighborhood scoring tool, G-NEST. Regions of open and closed chromatin were identified by ChIP-Seq of histone modifications H3K36me3, H3K4me2, and H3K27me3 in the mouse mammary gland and liver tissue during lactation. We found that neighborhoods of genes in regions of uniquely active chromatin in the lactating mammary gland, compared with liver tissue, were extremely rare. Rather, genes in most neighborhoods were suppressed during lactation as reflected in their expression levels and their location in regions of silenced chromatin. Chromatin silencing was largely shared between the liver and mammary gland during lactation, and what distinguished the mammary gland was mainly a small tissue-specific repertoire of isolated, expressed genes. These findings suggest that an advantage of the neighborhood organization is in the collective repression of groups of genes via a shared mechanism of chromatin repression. Genes essential to the mammary gland's uniqueness are isolated from neighbors, and likely have less tolerance for variation in expression, properties they share with genes responsible for an organism's survival.

  10. Pou1f1, the key transcription factor related to somatic growth in tilapia (Orechromis niloticus), is regulated by two independent post-transcriptional regulation mechanisms.

    Science.gov (United States)

    Wang, Dongfang; Qin, Jingkai; Jia, Jirong; Yan, Peipei; Li, Wensheng

    2017-01-29

    This study aims to determine the post-transcriptional regulation mechanism of the transcription factor pou1f1 (pou class 1 homeobox 1), which is the key gene for pituitary development, somatic growth in vertebrates, and transcription of several hormone genes in teleost fish. MicroRNA miR-223-3p was identified as a bona fide target of pou1f; overexpression of miR-223-3p in primary pituitary cells led to the down-regulation of pou1f1 and downstream genes, and inhibition of miR-223-3p led to the up-regulation of pou1f1 in Nile tilapia dispersed primary pituitary cells. An adenylate-uridylate-rich element (AU-Rich element) was found in the 3'UTR of pou1f1 mRNA, and deletion of the AU-Rich element led to slower mRNA decay and therefore more protein output. A potential mutual relationship between miR-223-3p and the AU-rich element was also investigated, and the results demonstrated that with or without the AU-Rich element, miR-223-3p induced the up-regulation of a reporter system under serum starvation conditions, indicating that miR-223-3p and the AU-Rich element function independent of each other. This study is the first to investigate the post-transcriptional mechanism of pou1f1, which revealed that miR-223-3p down-regulated pou1f1 and downstream gene expressions, and the AU-Rich element led to rapid decay of pou1f1 mRNA. MicroRNA miR-223-3p and the AU-Rich element co-regulated the post-transcriptional expression of pou1f1 independently in Nile tilapia, demonstrating that pou1f1 is under the control of a dual post-transcription regulation mechanism. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. PPARγ regulates the expression of cholesterol metabolism genes in alveolar macrophages

    International Nuclear Information System (INIS)

    Baker, Anna D.; Malur, Anagha; Barna, Barbara P.; Kavuru, Mani S.; Malur, Achut G.; Thomassen, Mary Jane

    2010-01-01

    Peroxisome proliferator-activated receptor-gamma (PPARγ) is a nuclear transcription factor involved in lipid metabolism that is constitutively expressed in the alveolar macrophages of healthy individuals. PPARγ has recently been implicated in the catabolism of surfactant by alveolar macrophages, specifically the cholesterol component of surfactant while the mechanism remains unclear. Studies from other tissue macrophages have shown that PPARγ regulates cholesterol influx, efflux, and metabolism. PPARγ promotes cholesterol efflux through the liver X receptor-alpha (LXRα) and ATP-binding cassette G1 (ABCG1). We have recently shown that macrophage-specific PPARγ knockout (PPARγ KO) mice accumulate cholesterol-laden alveolar macrophages that exhibit decreased expression of LXRα and ABCG1 and reduced cholesterol efflux. We hypothesized that in addition to the dysregulation of these cholesterol efflux genes, the expression of genes involved in cholesterol synthesis and influx was also dysregulated and that replacement of PPARγ would restore regulation of these genes. To investigate this hypothesis, we have utilized a Lentivirus expression system (Lenti-PPARγ) to restore PPARγ expression in the alveolar macrophages of PPARγ KO mice. Our results show that the alveolar macrophages of PPARγ KO mice have decreased expression of key cholesterol synthesis genes and increased expression of cholesterol receptors CD36 and scavenger receptor A-I (SRA-I). The replacement of PPARγ (1) induced transcription of LXRα and ABCG1; (2) corrected suppressed expression of cholesterol synthesis genes; and (3) enhanced the expression of scavenger receptors CD36. These results suggest that PPARγ regulates cholesterol metabolism in alveolar macrophages.

  12. Gravity-regulated gene expression in Arabidopsis thaliana

    Science.gov (United States)

    Sederoff, Heike; Brown, Christopher S.; Heber, Steffen; Kajla, Jyoti D.; Kumar, Sandeep; Lomax, Terri L.; Wheeler, Benjamin; Yalamanchili, Roopa

    Plant growth and development is regulated by changes in environmental signals. Plants sense environmental changes and respond to them by modifying gene expression programs to ad-just cell growth, differentiation, and metabolism. Functional expression of genes comprises many different processes including transcription, translation, post-transcriptional and post-translational modifications, as well as the degradation of RNA and proteins. Recently, it was discovered that small RNAs (sRNA, 18-24 nucleotides long), which are heritable and systemic, are key elements in regulating gene expression in response to biotic and abiotic changes. Sev-eral different classes of sRNAs have been identified that are part of a non-cell autonomous and phloem-mobile network of regulators affecting transcript stability, translational kinetics, and DNA methylation patterns responsible for heritable transcriptional silencing (epigenetics). Our research has focused on gene expression changes in response to gravistimulation of Arabidopsis roots. Using high-throughput technologies including microarrays and 454 sequencing, we iden-tified rapid changes in transcript abundance of genes as well as differential expression of small RNA in Arabidopsis root apices after minutes of reorientation. Some of the differentially regu-lated transcripts are encoded by genes that are important for the bending response. Functional mutants of those genes respond faster to reorientation than the respective wild type plants, indicating that these proteins are repressors of differential cell elongation. We compared the gravity responsive sRNAs to the changes in transcript abundances of their putative targets and identified several potential miRNA: target pairs. Currently, we are using mutant and transgenic Arabidopsis plants to characterize the function of those miRNAs and their putative targets in gravitropic and phototropic responses in Arabidopsis.

  13. Antibody-independent mechanisms regulate the establishment of chronic Plasmodium infection

    Science.gov (United States)

    Lin, Jingwen; Cunningham, Deirdre; Tumwine, Irene; Kushinga, Garikai; McLaughlin, Sarah; Spence, Philip; Böhme, Ulrike; Sanders, Mandy; Conteh, Solomon; Bushell, Ellen; Metcalf, Tom; Billker, Oliver; Duffy, Patrick E.; Newbold, Chris; Berriman, Matthew; Langhorne, Jean

    2017-01-01

    Malaria is caused by parasites of the genus Plasmodium. All human-infecting Plasmodium species can establish long-lasting chronic infections1–5, creating an infectious reservoir to sustain transmission1,6. It is widely accepted that maintenance of chronic infection involves evasion of adaptive immunity by antigenic variation7. However, genes involved in this process have been identified in only two of five human-infecting species: P. falciparum and P. knowlesi. Furthermore, little is understood about the early events in establishment of chronic infection in these species. Using a rodent model we demonstrate that only a minority of parasites from among the infecting population, expressing one of several clusters of virulence-associated pir genes, establishes a chronic infection. This process occurs in different species of parasite and in different hosts. Establishment of chronicity is independent of adaptive immunity and therefore different from the mechanism proposed for maintainance of chronic P. falciparum infections7–9. Furthermore, we show that the proportions of parasites expressing different types of pir genes regulate the time taken to establish a chronic infection. Since pir genes are common to most, if not all, species of Plasmodium10, this process may be a common way of regulating the establishment of chronic infections. PMID:28165471

  14. Senescence-related functional nuclear barrier by down-regulation of nucleo-cytoplasmic trafficking gene expression

    International Nuclear Information System (INIS)

    Kim, Sung Young; Ryu, Sung Jin; Ahn, Hong Ju; Choi, Hae Ri; Kang, Hyun Tae; Park, Sang Chul

    2010-01-01

    One of the characteristic natures of senescent cells is the hypo- or irresponsiveness not only to growth factors but also to apoptotic stress. In the present study, we confirmed the inhibition of nuclear translocation of activated p-ERK1/2 and NF-kB p50 in response to growth stimuli or LPS in the senescent human diploid fibroblasts. In order to elucidate the underlying mechanism for the senescence-associated hypo-responsiveness, we carried out the comparison study for gene expression profiles through microarray analysis. In consequence, we observed the vast reduction in expression of nucleo-cytoplasmic trafficking genes in senescent cells, when compared with those in young cells. Expression levels of several nucleoporins, karyopherin α, karyopherin β, Ran, and Ran-regulating factors were confirmed to be down-regulated in senescent HDFs by using RT-PCR and Western blot methods. Taken together, these data suggest the operation of certain senescence-associated functional nuclear barriers by down-regulation of the nucleo-cytoplasmic trafficking genes in the senescent cells.

  15. Senescence-related functional nuclear barrier by down-regulation of nucleo-cytoplasmic trafficking gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Young; Ryu, Sung Jin; Ahn, Hong Ju; Choi, Hae Ri; Kang, Hyun Tae [Department of Biochemistry and Molecular Biology, Aging and Apoptosis Research Center, Institute on Aging, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of); Park, Sang Chul, E-mail: scpark@snu.ac.kr [Department of Biochemistry and Molecular Biology, Aging and Apoptosis Research Center, Institute on Aging, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of)

    2010-01-01

    One of the characteristic natures of senescent cells is the hypo- or irresponsiveness not only to growth factors but also to apoptotic stress. In the present study, we confirmed the inhibition of nuclear translocation of activated p-ERK1/2 and NF-kB p50 in response to growth stimuli or LPS in the senescent human diploid fibroblasts. In order to elucidate the underlying mechanism for the senescence-associated hypo-responsiveness, we carried out the comparison study for gene expression profiles through microarray analysis. In consequence, we observed the vast reduction in expression of nucleo-cytoplasmic trafficking genes in senescent cells, when compared with those in young cells. Expression levels of several nucleoporins, karyopherin {alpha}, karyopherin {beta}, Ran, and Ran-regulating factors were confirmed to be down-regulated in senescent HDFs by using RT-PCR and Western blot methods. Taken together, these data suggest the operation of certain senescence-associated functional nuclear barriers by down-regulation of the nucleo-cytoplasmic trafficking genes in the senescent cells.

  16. Divergent regulation of Arabidopsis SAUR genes

    NARCIS (Netherlands)

    Mourik, van Hilda; Dijk, van Aalt D.J.; Stortenbeker, Niek; Angenent, Gerco C.; Bemer, Marian

    2017-01-01

    Background: Small Auxin-Upregulated RNA (SAUR) genes encode growth regulators that induce cell elongation. Arabidopsis contains more than 70 SAUR genes, of which the growth-promoting function has been unveiled in seedlings, while their role in other tissues remained largely unknown. Here, we

  17. The Mechanisms of Virulence Regulation by Small Noncoding RNAs in Low GC Gram-Positive Pathogens

    Directory of Open Access Journals (Sweden)

    Stephanie Pitman

    2015-12-01

    Full Text Available The discovery of small noncoding regulatory RNAs (sRNAs in bacteria has grown tremendously recently, giving new insights into gene regulation. The implementation of computational analysis and RNA sequencing has provided new tools to discover and analyze potential sRNAs. Small regulatory RNAs that act by base-pairing to target mRNAs have been found to be ubiquitous and are the most abundant class of post-transcriptional regulators in bacteria. The majority of sRNA studies has been limited to E. coli and other gram-negative bacteria. However, examples of sRNAs in gram-positive bacteria are still plentiful although the detailed gene regulation mechanisms behind them are not as well understood. Strict virulence control is critical for a pathogen’s survival and many sRNAs have been found to be involved in that process. This review outlines the targets and currently known mechanisms of trans-acting sRNAs involved in virulence regulation in various gram-positive pathogens. In addition, their shared characteristics such as CU interaction motifs, the role of Hfq, and involvement in two-component regulators, riboswitches, quorum sensing, or toxin/antitoxin systems are described.

  18. Inhibitory PAS domain protein is a negative regulator of hypoxia-inducible gene expression

    Science.gov (United States)

    Makino, Yuichi; Cao, Renhai; Svensson, Kristian; Bertilsson, Göran; Asman, Mikael; Tanaka, Hirotoshi; Cao, Yihai; Berkenstam, Anders; Poellinger, Lorenz

    2001-11-01

    Alteration of gene expression is a crucial component of adaptive responses to hypoxia. These responses are mediated by hypoxia-inducible transcription factors (HIFs). Here we describe an inhibitory PAS (Per/Arnt/Sim) domain protein, IPAS, which is a basic helix-loop-helix (bHLH)/PAS protein structurally related to HIFs. IPAS contains no endogenous transactivation function but demonstrates dominant negative regulation of HIF-mediated control of gene expression. Ectopic expression of IPAS in hepatoma cells selectively impairs induction of genes involved in adaptation to a hypoxic environment, notably the vascular endothelial growth factor (VEGF) gene, and results in retarded tumour growth and tumour vascular density in vivo. In mice, IPAS was predominantly expressed in Purkinje cells of the cerebellum and in corneal epithelium of the eye. Expression of IPAS in the cornea correlates with low levels of expression of the VEGF gene under hypoxic conditions. Application of an IPAS antisense oligonucleotide to the mouse cornea induced angiogenesis under normal oxygen conditions, and demonstrated hypoxia-dependent induction of VEGF gene expression in hypoxic corneal cells. These results indicate a previously unknown mechanism for negative regulation of angiogenesis and maintenance of an avascular phenotype.

  19. Regulation of RNA-dependent RNA polymerase 1 and isochorismate synthase gene expression in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Lydia J R Hunter

    Full Text Available RNA-dependent RNA polymerases (RDRs function in anti-viral silencing in Arabidopsis thaliana and other plants. Salicylic acid (SA, an important defensive signal, increases RDR1 gene expression, suggesting that RDR1 contributes to SA-induced virus resistance. In Nicotiana attenuata RDR1 also regulates plant-insect interactions and is induced by another important signal, jasmonic acid (JA. Despite its importance in defense RDR1 regulation has not been investigated in detail.In Arabidopsis, SA-induced RDR1 expression was dependent on 'NON-EXPRESSER OF PATHOGENESIS-RELATED GENES 1', indicating regulation involves the same mechanism controlling many other SA- defense-related genes, including pathogenesis-related 1 (PR1. Isochorismate synthase 1 (ICS1 is required for SA biosynthesis. In defensive signal transduction RDR1 lies downstream of ICS1. However, supplying exogenous SA to ics1-mutant plants did not induce RDR1 or PR1 expression to the same extent as seen in wild type plants. Analysing ICS1 gene expression using transgenic plants expressing ICS1 promoter:reporter gene (β-glucuronidase constructs and by measuring steady-state ICS1 transcript levels showed that SA positively regulates ICS1. In contrast, ICS2, which is expressed at lower levels than ICS1, is unaffected by SA. The wound-response hormone JA affects expression of Arabidopsis RDR1 but jasmonate-induced expression is independent of CORONATINE-INSENSITIVE 1, which conditions expression of many other JA-responsive genes. Transiently increased RDR1 expression following tobacco mosaic virus inoculation was due to wounding and was not a direct effect of infection. RDR1 gene expression was induced by ethylene and by abscisic acid (an important regulator of drought resistance. However, rdr1-mutant plants showed normal responses to drought.RDR1 is regulated by a much broader range of phytohormones than previously thought, indicating that it plays roles beyond those already suggested in virus

  20. Transcriptional regulator-mediated activation of adaptation genes triggers CRISPR de novo spacer acquisition

    DEFF Research Database (Denmark)

    Liu, Tao; Li, Yingjun; Wang, Xiaodi

    2015-01-01

    Acquisition of de novo spacer sequences confers CRISPR-Cas with a memory to defend against invading genetic elements. However, the mechanism of regulation of CRISPR spacer acquisition remains unknown. Here we examine the transcriptional regulation of the conserved spacer acquisition genes in Type I......, it was demonstrated that the transcription level of csa1, cas1, cas2 and cas4 was significantly enhanced in a csa3a-overexpression strain and, moreover, the Csa1 and Cas1 protein levels were increased in this strain. Furthermore, we demonstrated the hyperactive uptake of unique spacers within both CRISPR loci...... in the presence of the csa3a overexpression vector. The spacer acquisition process is dependent on the CCN PAM sequence and protospacer selection is random and non-directional. These results suggested a regulation mechanism of CRISPR spacer acquisition where a single transcriptional regulator senses the presence...

  1. Untangling the Contributions of Sex-Specific Gene Regulation and X-Chromosome Dosage to Sex-Biased Gene Expression in Caenorhabditis elegans

    Science.gov (United States)

    Kramer, Maxwell; Rao, Prashant; Ercan, Sevinc

    2016-01-01

    Dosage compensation mechanisms equalize the level of X chromosome expression between sexes. Yet the X chromosome is often enriched for genes exhibiting sex-biased, i.e., imbalanced expression. The relationship between X chromosome dosage compensation and sex-biased gene expression remains largely unexplored. Most studies determine sex-biased gene expression without distinguishing between contributions from X chromosome copy number (dose) and the animal’s sex. Here, we uncoupled X chromosome dose from sex-specific gene regulation in Caenorhabditis elegans to determine the effect of each on X expression. In early embryogenesis, when dosage compensation is not yet fully active, X chromosome dose drives the hermaphrodite-biased expression of many X-linked genes, including several genes that were shown to be responsible for hermaphrodite fate. A similar effect is seen in the C. elegans germline, where X chromosome dose contributes to higher hermaphrodite X expression, suggesting that lack of dosage compensation in the germline may have a role in supporting higher expression of X chromosomal genes with female-biased functions in the gonad. In the soma, dosage compensation effectively balances X expression between the sexes. As a result, somatic sex-biased expression is almost entirely due to sex-specific gene regulation. These results suggest that lack of dosage compensation in different tissues and developmental stages allow X chromosome copy number to contribute to sex-biased gene expression and function. PMID:27356611

  2. C/EBPβ Mediates Growth Hormone-Regulated Expression of Multiple Target Genes

    Science.gov (United States)

    Cui, Tracy X.; Lin, Grace; LaPensee, Christopher R.; Calinescu, Anda-Alexandra; Rathore, Maanjot; Streeter, Cale; Piwien-Pilipuk, Graciela; Lanning, Nathan; Jin, Hui; Carter-Su, Christin; Qin, Zhaohui S.

    2011-01-01

    Regulation of c-Fos transcription by GH is mediated by CCAAT/enhancer binding protein β (C/EBPβ). This study examines the role of C/EBPβ in mediating GH activation of other early response genes, including Cyr61, Btg2, Socs3, Zfp36, and Socs1. C/EBPβ depletion using short hairpin RNA impaired responsiveness of these genes to GH, as seen for c-Fos. Rescue with wild-type C/EBPβ led to GH-dependent recruitment of the coactivator p300 to the c-Fos promoter. In contrast, rescue with C/EBPβ mutated at the ERK phosphorylation site at T188 failed to induce GH-dependent recruitment of p300, indicating that ERK-mediated phosphorylation of C/EBPβ at T188 is required for GH-induced recruitment of p300 to c-Fos. GH also induced the occupancy of phosphorylated C/EBPβ and p300 on Cyr61, Btg2, and Socs3 at predicted C/EBP-cAMP response element-binding protein motifs in their promoters. Consistent with a role for ERKs in GH-induced expression of these genes, treatment with U0126 to block ERK phosphorylation inhibited their GH-induced expression. In contrast, GH-dependent expression of Zfp36 and Socs1 was not inhibited by U0126. Thus, induction of multiple early response genes by GH in 3T3-F442A cells is mediated by C/EBPβ. A subset of these genes is regulated similarly to c-Fos, through a mechanism involving GH-stimulated ERK 1/2 activation, phosphorylation of C/EBPβ, and recruitment of p300. Overall, these studies suggest that C/EBPβ, like the signal transducer and activator of transcription proteins, regulates multiple genes in response to GH. PMID:21292824

  3. The NSL Complex Regulates Housekeeping Genes in Drosophila

    Science.gov (United States)

    Raja, Sunil Jayaramaiah; Holz, Herbert; Luscombe, Nicholas M.; Manke, Thomas; Akhtar, Asifa

    2012-01-01

    MOF is the major histone H4 lysine 16-specific (H4K16) acetyltransferase in mammals and Drosophila. In flies, it is involved in the regulation of X-chromosomal and autosomal genes as part of the MSL and the NSL complexes, respectively. While the function of the MSL complex as a dosage compensation regulator is fairly well understood, the role of the NSL complex in gene regulation is still poorly characterized. Here we report a comprehensive ChIP–seq analysis of four NSL complex members (NSL1, NSL3, MBD-R2, and MCRS2) throughout the Drosophila melanogaster genome. Strikingly, the majority (85.5%) of NSL-bound genes are constitutively expressed across different cell types. We find that an increased abundance of the histone modifications H4K16ac, H3K4me2, H3K4me3, and H3K9ac in gene promoter regions is characteristic of NSL-targeted genes. Furthermore, we show that these genes have a well-defined nucleosome free region and broad transcription initiation patterns. Finally, by performing ChIP–seq analyses of RNA polymerase II (Pol II) in NSL1- and NSL3-depleted cells, we demonstrate that both NSL proteins are required for efficient recruitment of Pol II to NSL target gene promoters. The observed Pol II reduction coincides with compromised binding of TBP and TFIIB to target promoters, indicating that the NSL complex is required for optimal recruitment of the pre-initiation complex on target genes. Moreover, genes that undergo the most dramatic loss of Pol II upon NSL knockdowns tend to be enriched in DNA Replication–related Element (DRE). Taken together, our findings show that the MOF-containing NSL complex acts as a major regulator of housekeeping genes in flies by modulating initiation of Pol II transcription. PMID:22723752

  4. An excited state underlies gene regulation of a transcriptional riboswitch

    Science.gov (United States)

    Zhao, Bo; Guffy, Sharon L.; Williams, Benfeard; Zhang, Qi

    2017-01-01

    Riboswitches control gene expression through ligand-dependent structural rearrangements of the sensing aptamer domain. However, we found that the Bacillus cereus fluoride riboswitch aptamer adopts identical tertiary structures in solution with and without ligand. Using chemical exchange saturation transfer (CEST) NMR spectroscopy, we revealed that the structured ligand-free aptamer transiently accesses a low-populated (~1%) and short-lived (~3 ms) excited conformational state that unravels a conserved ‘linchpin’ base pair to signal transcription termination. Upon fluoride binding, this highly localized fleeting process is allosterically suppressed to activate transcription. We demonstrated that this mechanism confers effective fluoride-dependent gene activation over a wide range of transcription rates, which is essential for robust toxicity response across diverse cellular conditions. These results unveil a novel switching mechanism that employs ligand-dependent suppression of an aptamer excited state to coordinate regulatory conformational transitions rather than adopting distinct aptamer ground-state tertiary architectures, exemplifying a new mode of ligand-dependent RNA regulation. PMID:28719589

  5. Thermodynamics-based models of transcriptional regulation with gene sequence.

    Science.gov (United States)

    Wang, Shuqiang; Shen, Yanyan; Hu, Jinxing

    2015-12-01

    Quantitative models of gene regulatory activity have the potential to improve our mechanistic understanding of transcriptional regulation. However, the few models available today have been based on simplistic assumptions about the sequences being modeled or heuristic approximations of the underlying regulatory mechanisms. In this work, we have developed a thermodynamics-based model to predict gene expression driven by any DNA sequence. The proposed model relies on a continuous time, differential equation description of transcriptional dynamics. The sequence features of the promoter are exploited to derive the binding affinity which is derived based on statistical molecular thermodynamics. Experimental results show that the proposed model can effectively identify the activity levels of transcription factors and the regulatory parameters. Comparing with the previous models, the proposed model can reveal more biological sense.

  6. Global identification of genes regulated by estrogen signaling and demethylation in MCF-7 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Putnik, Milica, E-mail: milica.putnik@ki.se [Department of Biosciences and Nutrition, Novum, Karolinska Institutet, Huddinge S-14183 (Sweden); Zhao, Chunyan, E-mail: chunyan.zhao@ki.se [Department of Biosciences and Nutrition, Novum, Karolinska Institutet, Huddinge S-14183 (Sweden); Gustafsson, Jan-Ake, E-mail: jan-ake.gustafsson@ki.se [Department of Biosciences and Nutrition, Novum, Karolinska Institutet, Huddinge S-14183 (Sweden); Department of Biology and Biochemistry, Science and Engineering Research Center Bldg, University of Houston, Houston, TX 77204-5056 (United States); Dahlman-Wright, Karin, E-mail: karin.dahlman-wright@ki.se [Department of Biosciences and Nutrition, Novum, Karolinska Institutet, Huddinge S-14183 (Sweden)

    2012-09-14

    Highlights: Black-Right-Pointing-Pointer Estrogen signaling and demethylation can both control gene expression in breast cancers. Black-Right-Pointing-Pointer Cross-talk between these mechanisms is investigated in human MCF-7 breast cancer cells. Black-Right-Pointing-Pointer 137 genes are influenced by both 17{beta}-estradiol and demethylating agent 5-aza-2 Prime -deoxycytidine. Black-Right-Pointing-Pointer A set of genes is identified as targets of both estrogen signaling and demethylation. Black-Right-Pointing-Pointer There is no direct molecular interplay of mediators of estrogen and epigenetic signaling. -- Abstract: Estrogen signaling and epigenetic modifications, in particular DNA methylation, are involved in regulation of gene expression in breast cancers. Here we investigated a potential regulatory cross-talk between these two pathways by identifying their common target genes and exploring underlying molecular mechanisms in human MCF-7 breast cancer cells. Gene expression profiling revealed that the expression of approximately 140 genes was influenced by both 17{beta}-estradiol (E2) and a demethylating agent 5-aza-2 Prime -deoxycytidine (DAC). Gene ontology (GO) analysis suggests that these genes are involved in intracellular signaling cascades, regulation of cell proliferation and apoptosis. Based on previously reported association with breast cancer, estrogen signaling and/or DNA methylation, CpG island prediction and GO analysis, we selected six genes (BTG3, FHL2, PMAIP1, BTG2, CDKN1A and TGFB2) for further analysis. Tamoxifen reverses the effect of E2 on the expression of all selected genes, suggesting that they are direct targets of estrogen receptor. Furthermore, DAC treatment reactivates the expression of all selected genes in a dose-dependent manner. Promoter CpG island methylation status analysis revealed that only the promoters of BTG3 and FHL2 genes are methylated, with DAC inducing demethylation, suggesting DNA methylation directs repression of

  7. Global identification of genes regulated by estrogen signaling and demethylation in MCF-7 breast cancer cells

    International Nuclear Information System (INIS)

    Putnik, Milica; Zhao, Chunyan; Gustafsson, Jan-Åke; Dahlman-Wright, Karin

    2012-01-01

    Highlights: ► Estrogen signaling and demethylation can both control gene expression in breast cancers. ► Cross-talk between these mechanisms is investigated in human MCF-7 breast cancer cells. ► 137 genes are influenced by both 17β-estradiol and demethylating agent 5-aza-2′-deoxycytidine. ► A set of genes is identified as targets of both estrogen signaling and demethylation. ► There is no direct molecular interplay of mediators of estrogen and epigenetic signaling. -- Abstract: Estrogen signaling and epigenetic modifications, in particular DNA methylation, are involved in regulation of gene expression in breast cancers. Here we investigated a potential regulatory cross-talk between these two pathways by identifying their common target genes and exploring underlying molecular mechanisms in human MCF-7 breast cancer cells. Gene expression profiling revealed that the expression of approximately 140 genes was influenced by both 17β-estradiol (E2) and a demethylating agent 5-aza-2′-deoxycytidine (DAC). Gene ontology (GO) analysis suggests that these genes are involved in intracellular signaling cascades, regulation of cell proliferation and apoptosis. Based on previously reported association with breast cancer, estrogen signaling and/or DNA methylation, CpG island prediction and GO analysis, we selected six genes (BTG3, FHL2, PMAIP1, BTG2, CDKN1A and TGFB2) for further analysis. Tamoxifen reverses the effect of E2 on the expression of all selected genes, suggesting that they are direct targets of estrogen receptor. Furthermore, DAC treatment reactivates the expression of all selected genes in a dose-dependent manner. Promoter CpG island methylation status analysis revealed that only the promoters of BTG3 and FHL2 genes are methylated, with DAC inducing demethylation, suggesting DNA methylation directs repression of these genes in MCF-7 cells. In a further analysis of the potential interplay between estrogen signaling and DNA methylation, E2 treatment

  8. A Subset of Autism-Associated Genes Regulate the Structural Stability of Neurons

    Science.gov (United States)

    Lin, Yu-Chih; Frei, Jeannine A.; Kilander, Michaela B. C.; Shen, Wenjuan; Blatt, Gene J.

    2016-01-01

    Autism spectrum disorder (ASD) comprises a range of neurological conditions that affect individuals’ ability to communicate and interact with others. People with ASD often exhibit marked qualitative difficulties in social interaction, communication, and behavior. Alterations in neurite arborization and dendritic spine morphology, including size, shape, and number, are hallmarks of almost all neurological conditions, including ASD. As experimental evidence emerges in recent years, it becomes clear that although there is broad heterogeneity of identified autism risk genes, many of them converge into similar cellular pathways, including those regulating neurite outgrowth, synapse formation and spine stability, and synaptic plasticity. These mechanisms together regulate the structural stability of neurons and are vulnerable targets in ASD. In this review, we discuss the current understanding of those autism risk genes that affect the structural connectivity of neurons. We sub-categorize them into (1) cytoskeletal regulators, e.g., motors and small RhoGTPase regulators; (2) adhesion molecules, e.g., cadherins, NCAM, and neurexin superfamily; (3) cell surface receptors, e.g., glutamatergic receptors and receptor tyrosine kinases; (4) signaling molecules, e.g., protein kinases and phosphatases; and (5) synaptic proteins, e.g., vesicle and scaffolding proteins. Although the roles of some of these genes in maintaining neuronal structural stability are well studied, how mutations contribute to the autism phenotype is still largely unknown. Investigating whether and how the neuronal structure and function are affected when these genes are mutated will provide insights toward developing effective interventions aimed at improving the lives of people with autism and their families. PMID:27909399

  9. Constitutive, Institutive and Up-Regulation of Carotenogenesis Regulatory Mechanism via In Vitro Culture Model System and Elicitors

    International Nuclear Information System (INIS)

    Rashidi Othman; Fatimah Azzahra Mohd Zaifuddin; Norazian Mohd Hassan

    2015-01-01

    Phyto hormone abscisic acid (ABA) plays a regulatory role in many physiological processes in plants and is regulated and controlled by specific key factors or genes. Different environmental stress conditions such as water, drought, cold, light, and temperature result in increased amounts of ABA. The action of ABA involves modification of gene expression and analysis of in vitro callus model system cultures revealed several potential of constitutive, institutive and up-regulation acting regulatory mechanisms. Therefore, this study was aimed at establishing in vitro cultures as potential research tools to study the regulatory mechanisms of the carotenoid biosynthesis in selected plant species through a controlled environment. The presence and absence of zeaxanthin and neoxanthin in callus cultures and intact plants could be explained by changes in gene expression in response to stress. Abiotic stress can alter gene expression and trigger cellular metabolism in plants. This study suggested that the key factors which involved in regulatory mechanisms of individual carotenoid biosynthesis in a particular biology system of plants can be either be silenced or activated. Therefore, based on the results in this study environmental stress is made possible for enhancement or enrichment of certain carotenoid of interest in food crops without altering the genes. (author)

  10. The rules of gene expression in plants: Organ identity and gene body methylation are key factors for regulation of gene expression in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Gutiérrez Rodrigo A

    2008-09-01

    capable of restraining the capacity of a gene to respond to internal/external cues. Our findings suggest a prominent role for epigenetic mechanisms in the regulation of gene expression in plants.

  11. Cytomegalovirus replicon-based regulation of gene expression in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Hermine Mohr

    Full Text Available There is increasing evidence for a connection between DNA replication and the expression of adjacent genes. Therefore, this study addressed the question of whether a herpesvirus origin of replication can be used to activate or increase the expression of adjacent genes. Cell lines carrying an episomal vector, in which reporter genes are linked to the murine cytomegalovirus (MCMV origin of lytic replication (oriLyt, were constructed. Reporter gene expression was silenced by a histone-deacetylase-dependent mechanism, but was resolved upon lytic infection with MCMV. Replication of the episome was observed subsequent to infection, leading to the induction of gene expression by more than 1000-fold. oriLyt-based regulation thus provided a unique opportunity for virus-induced conditional gene expression without the need for an additional induction mechanism. This principle was exploited to show effective late trans-complementation of the toxic viral protein M50 and the glycoprotein gO of MCMV. Moreover, the application of this principle for intracellular immunization against herpesvirus infection was demonstrated. The results of the present study show that viral infection specifically activated the expression of a dominant-negative transgene, which inhibited viral growth. This conditional system was operative in explant cultures of transgenic mice, but not in vivo. Several applications are discussed.

  12. VE-Cadherin-Mediated Epigenetic Regulation of Endothelial Gene Expression.

    Science.gov (United States)

    Morini, Marco F; Giampietro, Costanza; Corada, Monica; Pisati, Federica; Lavarone, Elisa; Cunha, Sara I; Conze, Lei L; O'Reilly, Nicola; Joshi, Dhira; Kjaer, Svend; George, Roger; Nye, Emma; Ma, Anqi; Jin, Jian; Mitter, Richard; Lupia, Michela; Cavallaro, Ugo; Pasini, Diego; Calado, Dinis P; Dejana, Elisabetta; Taddei, Andrea

    2018-01-19

    data extend the knowledge of polycomb-mediated regulation of gene expression to endothelial cell differentiation and vessel maturation. The identified mechanism opens novel therapeutic opportunities to modulate endothelial gene expression and induce vascular normalization through pharmacological inhibition of the polycomb-mediated repression system. © 2017 The Authors.

  13. FRUITING GENES OF SCHIZOPHYLLUM-COMMUNE ARE TRANSCRIPTIONALLY REGULATED

    NARCIS (Netherlands)

    SCHUREN, FHJ; VANDERLENDE, TR; WESSELS, JGH

    Fruiting genes in Schizophyllum commune are controlled by the mating-type genes and other regulatory genes. To examine whether differential accumulation of mRNAs for these fruiting genes is caused by transcriptional regulation, run-on transcription assaYs were performed with nuclei isolated from

  14. LPS challenge regulates gene expression and tissue localization of a Ciona intestinalis gene through an alternative polyadenylation mechanism.

    Directory of Open Access Journals (Sweden)

    Aiti Vizzini

    Full Text Available A subtractive hybridization strategy for the identification of differentially expressed genes was performed between LPS-challenged and naive Ciona intestinalis. This strategy allowed the characterization of two transcripts (Ci8short and Ci8long generated by the use of two Alternative Polyadenylation sites. The Ci8long transcript contains a protein domain with relevant homology to several components of the Receptor Transporting Protein (RTP family not present in the Ci8short mRNA. By means of Real Time PCR and Northern Blot, the Ci8short and Ci8long transcripts showed a different pattern of gene expression with the Ci8short mRNA being strongly activated after LPS injection in the pharynx. In situ hybridization analysis demonstrated that the activation of the APA site also influenced the tissue localization of the Ci8short transcript. This analysis showed that the Ci8long mRNA was expressed in hemocytes meanwhile the Ci8short mRNA was highly transcribed also in vessel endothelial cells and in the epithelium of pharynx. These findings demonstrated that regulation of gene expression based on different polyadenylation sites is an ancestral powerful strategy influencing both the level of expression and tissue distribution of alternative transcripts.

  15. Transcriptional Regulation in Ebola Virus: Effects of Gene Border Structure and Regulatory Elements on Gene Expression and Polymerase Scanning Behavior.

    Science.gov (United States)

    Brauburger, Kristina; Boehmann, Yannik; Krähling, Verena; Mühlberger, Elke

    2016-02-15

    The highly pathogenic Ebola virus (EBOV) has a nonsegmented negative-strand (NNS) RNA genome containing seven genes. The viral genes either are separated by intergenic regions (IRs) of variable length or overlap. The structure of the EBOV gene overlaps is conserved throughout all filovirus genomes and is distinct from that of the overlaps found in other NNS RNA viruses. Here, we analyzed how diverse gene borders and noncoding regions surrounding the gene borders influence transcript levels and govern polymerase behavior during viral transcription. Transcription of overlapping genes in EBOV bicistronic minigenomes followed the stop-start mechanism, similar to that followed by IR-containing gene borders. When the gene overlaps were extended, the EBOV polymerase was able to scan the template in an upstream direction. This polymerase feature seems to be generally conserved among NNS RNA virus polymerases. Analysis of IR-containing gene borders showed that the IR sequence plays only a minor role in transcription regulation. Changes in IR length were generally well tolerated, but specific IR lengths led to a strong decrease in downstream gene expression. Correlation analysis revealed that these effects were largely independent of the surrounding gene borders. Each EBOV gene contains exceptionally long untranslated regions (UTRs) flanking the open reading frame. Our data suggest that the UTRs adjacent to the gene borders are the main regulators of transcript levels. A highly complex interplay between the different cis-acting elements to modulate transcription was revealed for specific combinations of IRs and UTRs, emphasizing the importance of the noncoding regions in EBOV gene expression control. Our data extend those from previous analyses investigating the implication of noncoding regions at the EBOV gene borders for gene expression control. We show that EBOV transcription is regulated in a highly complex yet not easily predictable manner by a set of interacting cis

  16. Regulation of gene expression in neuronal tissue by RNA interference and editing

    DEFF Research Database (Denmark)

    Venø, Morten Trillingsgaard

    No tissue in the mammalian organism is more complex than the brain. This complexity is in part the result of precise timing and interplay of a large number mechanisms modulating gene expression post-transcriptionally. Fine-tuning mechanisms such as A-to-I editing of RNA transcripts and regulation...... mediated by microRNAs are crucial for the correct function of the mammalian brain. We are addressing A-to-I editing and regulation by microRNAs with spatio-temporal resolution in the embryonic porcine brain by Solexa sequencing of microRNAs and 454 sequencing of edited neuronal messenger RNAs, resulting...... in detailed data of both of these fine-tuning mechanisms in the embryonic development of the pig. Editing levels of transcripts examined are generally seen to increase through development, in agreement with editing of specific microRNA also examined in the Solexa sequencing study. Three studies examining...

  17. Integrating genome-wide genetic variations and monocyte expression data reveals trans-regulated gene modules in humans.

    Directory of Open Access Journals (Sweden)

    Maxime Rotival

    2011-12-01

    Full Text Available One major expectation from the transcriptome in humans is to characterize the biological basis of associations identified by genome-wide association studies. So far, few cis expression quantitative trait loci (eQTLs have been reliably related to disease susceptibility. Trans-regulating mechanisms may play a more prominent role in disease susceptibility. We analyzed 12,808 genes detected in at least 5% of circulating monocyte samples from a population-based sample of 1,490 European unrelated subjects. We applied a method of extraction of expression patterns-independent component analysis-to identify sets of co-regulated genes. These patterns were then related to 675,350 SNPs to identify major trans-acting regulators. We detected three genomic regions significantly associated with co-regulated gene modules. Association of these loci with multiple expression traits was replicated in Cardiogenics, an independent study in which expression profiles of monocytes were available in 758 subjects. The locus 12q13 (lead SNP rs11171739, previously identified as a type 1 diabetes locus, was associated with a pattern including two cis eQTLs, RPS26 and SUOX, and 5 trans eQTLs, one of which (MADCAM1 is a potential candidate for mediating T1D susceptibility. The locus 12q24 (lead SNP rs653178, which has demonstrated extensive disease pleiotropy, including type 1 diabetes, hypertension, and celiac disease, was associated to a pattern strongly correlating to blood pressure level. The strongest trans eQTL in this pattern was CRIP1, a known marker of cellular proliferation in cancer. The locus 12q15 (lead SNP rs11177644 was associated with a pattern driven by two cis eQTLs, LYZ and YEATS4, and including 34 trans eQTLs, several of them tumor-related genes. This study shows that a method exploiting the structure of co-expressions among genes can help identify genomic regions involved in trans regulation of sets of genes and can provide clues for understanding the

  18. A Functional Role for the Epigenetic Regulator ING1 in Activity-induced Gene Expression in Primary Cortical Neurons.

    Science.gov (United States)

    Leighton, Laura J; Zhao, Qiongyi; Li, Xiang; Dai, Chuanyang; Marshall, Paul R; Liu, Sha; Wang, Yi; Zajaczkowski, Esmi L; Khandelwal, Nitin; Kumar, Arvind; Bredy, Timothy W; Wei, Wei

    2018-01-15

    Epigenetic regulation of activity-induced gene expression involves multiple levels of molecular interaction, including histone and DNA modifications, as well as mechanisms of DNA repair. Here we demonstrate that the genome-wide deposition of inhibitor of growth family member 1 (ING1), which is a central epigenetic regulatory protein, is dynamically regulated in response to activity in primary cortical neurons. ING1 knockdown leads to decreased expression of genes related to synaptic plasticity, including the regulatory subunit of calcineurin, Ppp3r1. In addition, ING1 binding at a site upstream of the transcription start site (TSS) of Ppp3r1 depends on yet another group of neuroepigenetic regulatory proteins, the Piwi-like family, which are also involved in DNA repair. These findings provide new insight into a novel mode of activity-induced gene expression, which involves the interaction between different epigenetic regulatory mechanisms traditionally associated with gene repression and DNA repair. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  19. Identification of let-7-regulated oncofetal genes

    DEFF Research Database (Denmark)

    Boyerinas, Benjamin; Park, Sun-Mi; Shomron, Noam

    2008-01-01

    -regulated at the end of embryonic development. Let-7 is often down-regulated early during cancer development, suggesting that let-7-regulated oncofetal genes (LOG) may become reexpressed in cancer cells. Using comparative bioinformatics, we have identified 12 conserved LOGs that include HMGA2 and IMP-1/CRD-BP. IMP-1...

  20. Motif analysis unveils the possible co-regulation of chloroplast genes and nuclear genes encoding chloroplast proteins.

    Science.gov (United States)

    Wang, Ying; Ding, Jun; Daniell, Henry; Hu, Haiyan; Li, Xiaoman

    2012-09-01

    Chloroplasts play critical roles in land plant cells. Despite their importance and the availability of at least 200 sequenced chloroplast genomes, the number of known DNA regulatory sequences in chloroplast genomes are limited. In this paper, we designed computational methods to systematically study putative DNA regulatory sequences in intergenic regions near chloroplast genes in seven plant species and in promoter sequences of nuclear genes in Arabidopsis and rice. We found that -35/-10 elements alone cannot explain the transcriptional regulation of chloroplast genes. We also concluded that there are unlikely motifs shared by intergenic sequences of most of chloroplast genes, indicating that these genes are regulated differently. Finally and surprisingly, we found five conserved motifs, each of which occurs in no more than six chloroplast intergenic sequences, are significantly shared by promoters of nuclear-genes encoding chloroplast proteins. By integrating information from gene function annotation, protein subcellular localization analyses, protein-protein interaction data, and gene expression data, we further showed support of the functionality of these conserved motifs. Our study implies the existence of unknown nuclear-encoded transcription factors that regulate both chloroplast genes and nuclear genes encoding chloroplast protein, which sheds light on the understanding of the transcriptional regulation of chloroplast genes.

  1. Transcriptional and epigenetic regulation of KIAA1199 gene expression in human breast cancer.

    Directory of Open Access Journals (Sweden)

    Cem Kuscu

    Full Text Available Emerging evidence has demonstrated that upregulated expression of KIAA1199 in human cancer bodes for poor survival. The regulatory mechanism controlling KIAA1199 expression in cancer remains to be characterized. In the present study, we have isolated and characterized the human KIAA1199 promoter in terms of regulation of KIAA1199 gene expression. A 3.3 kb fragment of human genomic DNA containing the 5'-flanking sequence of the KIAA1199 gene possesses both suppressive and activating elements. Employing a deletion mutagenesis approach, a 1.4 kb proximal region was defined as the basic KIAA1199 promoter containing a TATA-box close to the transcription start site. A combination of 5'-primer extension study with 5'RACE DNA sequencing analysis revealed one major transcription start site that is utilized in the human KIAA1199 gene. Bioinformatics analysis suggested that the 1.4 kb KIAA1199 promoter contains putative activating regulatory elements, including activator protein-1(AP-1, Twist-1, and NF-κB sites. Sequential deletion and site-direct mutagenesis analysis demonstrated that the AP-1 and distal NF-κB sites are required for KIAA1199 gene expression. Further analyses using an electrophoretic mobility-shift assay and chromatin immunoprecipitation confirmed the requirement of these cis- and trans-acting elements in controlling KIAA1199 gene expression. Finally, we found that upregulated KIAA1199 expression in human breast cancer specimens correlated with hypomethylation of the regulatory region. Involvement of DNA methylation in regulation of KIAA1199 expression was recapitulated in human breast cancer cell lines. Taken together, our study unraveled the regulatory mechanisms controlling KIAA1199 gene expression in human cancer.

  2. Integrative analysis of a cross-loci regulation network identifies App as a gene regulating insulin secretion from pancreatic islets.

    Directory of Open Access Journals (Sweden)

    Zhidong Tu

    Full Text Available Complex diseases result from molecular changes induced by multiple genetic factors and the environment. To derive a systems view of how genetic loci interact in the context of tissue-specific molecular networks, we constructed an F2 intercross comprised of >500 mice from diabetes-resistant (B6 and diabetes-susceptible (BTBR mouse strains made genetically obese by the Leptin(ob/ob mutation (Lep(ob. High-density genotypes, diabetes-related clinical traits, and whole-transcriptome expression profiling in five tissues (white adipose, liver, pancreatic islets, hypothalamus, and gastrocnemius muscle were determined for all mice. We performed an integrative analysis to investigate the inter-relationship among genetic factors, expression traits, and plasma insulin, a hallmark diabetes trait. Among five tissues under study, there are extensive protein-protein interactions between genes responding to different loci in adipose and pancreatic islets that potentially jointly participated in the regulation of plasma insulin. We developed a novel ranking scheme based on cross-loci protein-protein network topology and gene expression to assess each gene's potential to regulate plasma insulin. Unique candidate genes were identified in adipose tissue and islets. In islets, the Alzheimer's gene App was identified as a top candidate regulator. Islets from 17-week-old, but not 10-week-old, App knockout mice showed increased insulin secretion in response to glucose or a membrane-permeant cAMP analog, in agreement with the predictions of the network model. Our result provides a novel hypothesis on the mechanism for the connection between two aging-related diseases: Alzheimer's disease and type 2 diabetes.

  3. Microarray and Proteomic Analysis of Brassinosteroid- and Gibberellin-Regulated Gene and Protein Expression in Rice

    OpenAIRE

    Yang, Guangxiao; Komatsu, Setsuko

    2016-01-01

    Brassinosteroid (BR) and gibberellin (GA) are two groups of plant growth regulators essential for normal plant growth and development. To gain insight into the molecular mechanism by which BR and GA regulate the growth and development of plants, especially the monocot plant rice, it is necessary to identify and analyze more genes and proteins that are regulated by them. With the availability of draft sequences of two major types, japonica and indica rice, it has become possible to analyze exp...

  4. Phasevarion mediated epigenetic gene regulation in Helicobacter pylori.

    Directory of Open Access Journals (Sweden)

    Yogitha N Srikhanta

    Full Text Available Many host-adapted bacterial pathogens contain DNA methyltransferases (mod genes that are subject to phase-variable expression (high-frequency reversible ON/OFF switching of gene expression. In Haemophilus influenzae and pathogenic Neisseria, the random switching of the modA gene, associated with a phase-variable type III restriction modification (R-M system, controls expression of a phase-variable regulon of genes (a "phasevarion", via differential methylation of the genome in the modA ON and OFF states. Phase-variable type III R-M systems are also found in Helicobacter pylori, suggesting that phasevarions may also exist in this key human pathogen. Phylogenetic studies on the phase-variable type III modH gene revealed that there are 17 distinct alleles in H. pylori, which differ only in their DNA recognition domain. One of the most commonly found alleles was modH5 (16% of isolates. Microarray analysis comparing the wild-type P12modH5 ON strain to a P12ΔmodH5 mutant revealed that six genes were either up- or down-regulated, and some were virulence-associated. These included flaA, which encodes a flagella protein important in motility and hopG, an outer membrane protein essential for colonization and associated with gastric cancer. This study provides the first evidence of this epigenetic mechanism of gene expression in H. pylori. Characterisation of H. pylori modH phasevarions to define stable immunological targets will be essential for vaccine development and may also contribute to understanding H. pylori pathogenesis.

  5. Protracted abstinence from distinct drugs of abuse shows regulation of a common gene network.

    Science.gov (United States)

    Le Merrer, Julie; Befort, Katia; Gardon, Olivier; Filliol, Dominique; Darcq, Emmanuel; Dembele, Doulaye; Becker, Jerome A J; Kieffer, Brigitte L

    2012-01-01

    Addiction is a chronic brain disorder. Prolonged abstinence from drugs of abuse involves dysphoria, high stress responsiveness and craving. The neurobiology of drug abstinence, however, is poorly understood. We previously identified a unique set of hundred mu-opioid receptor-dependent genes in the extended amygdala, a key site for hedonic and stress processing in the brain. Here we examined these candidate genes either immediately after chronic morphine, nicotine, Δ9-tetrahydrocannabinol or alcohol, or following 4 weeks of abstinence. Regulation patterns strongly differed among chronic groups. In contrast, gene regulations strikingly converged in the abstinent groups and revealed unforeseen common adaptations within a novel huntingtin-centered molecular network previously unreported in addiction research. This study demonstrates that, regardless the drug, a specific set of transcriptional regulations develops in the abstinent brain, which possibly contributes to the negative affect characterizing protracted abstinence. This transcriptional signature may represent a hallmark of drug abstinence and a unitary adaptive molecular mechanism in substance abuse disorders. © 2011 The Authors, Addiction Biology © 2011 Society for the Study of Addiction.

  6. Arid5b facilitates chondrogenesis by recruiting the histone demethylase Phf2 to Sox9-regulated genes

    Science.gov (United States)

    Hata, Kenji; Takashima, Rikako; Amano, Katsuhiko; Ono, Koichiro; Nakanishi, Masako; Yoshida, Michiko; Wakabayashi, Makoto; Matsuda, Akio; Maeda, Yoshinobu; Suzuki, Yutaka; Sugano, Sumio; Whitson, Robert H.; Nishimura, Riko; Yoneda, Toshiyuki

    2013-11-01

    Histone modification, a critical step for epigenetic regulation, is an important modulator of biological events. Sox9 is a transcription factor critical for endochondral ossification; however, proof of its epigenetic regulation remains elusive. Here we identify AT-rich interactive domain 5b (Arid5b) as a transcriptional co-regulator of Sox9. Arid5b physically associates with Sox9 and synergistically induces chondrogenesis. Growth of Arid5b-/- mice is retarded with delayed endochondral ossification. Sox9-dependent chondrogenesis is attenuated in Arid5b-deficient cells. Arid5b recruits Phf2, a histone lysine demethylase, to the promoter region of Sox9 target genes and stimulates H3K9me2 demethylation of these genes. In the promoters of chondrogenic marker genes, H3K9me2 levels are increased in Arid5b-/- chondrocytes. Finally, we show that Phf2 knockdown inhibits Sox9-induced chondrocyte differentiation. Our findings establish an epigenomic mechanism of skeletal development, whereby Arid5b promotes chondrogenesis by facilitating Phf2-mediated histone demethylation of Sox9-regulated chondrogenic gene promoters.

  7. Non-classical mechanisms of transcriptional regulation by the vitamin D receptor: insights into calcium homeostasis, immune system regulation and cancer chemoprevention.

    Science.gov (United States)

    Dimitrov, Vassil; Salehi-Tabar, Reyhaneh; An, Beum-Soo; White, John H

    2014-10-01

    Hormonal 1,25-dihydroxyvitamin D [1,25(OH)2D] signals through the nuclear vitamin D receptor (VDR), a ligand-regulated transcription factor. Gene expression profiling studies have revealed that 1,25(OH)2D signaling through the VDR can lead to activation or repression of target gene transcription in roughly equal proportions. Classically, transcriptional regulation by the VDR, similar to other nuclear receptors, has been characterized by its capacity to recognize high affinity cognate vitamin D response elements (VDREs), located in the regulatory regions of target genes. Several biochemical studies revealed that the VDRE-bound receptor recruits a series of coregulatory proteins, leading to transactivation of adjacent target genes. However, genome-wide and other analyses of VDR binding have revealed that a subset of VDR binding sites does not contain VDREs, and that VDREs are not associated with transcriptionally repressed VDR target genes. Work over the last ∼20 years and in particular recent findings have revealed a diverse array of mechanisms by which VDR can form complexes with several other classes of transcriptional activators, leading to repression of gene transcription. Moreover, these efforts have led to several insights into the molecular basis for the physiological regulation of calcium homeostasis, immune system function and cancer chemoprevention by 1,25(OH)2D/VDR signaling. This article is part of a Special Issue entitled '16th Vitamin D Workshop'. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. TALE activators regulate gene expression in a position- and strand-dependent manner in mammalian cells.

    Science.gov (United States)

    Uhde-Stone, Claudia; Cheung, Edna; Lu, Biao

    2014-01-24

    Transcription activator-like effectors (TALEs) are a class of transcription factors that are readily programmable to regulate gene expression. Despite their growing popularity, little is known about binding site parameters that influence TALE-mediated gene activation in mammalian cells. We demonstrate that TALE activators modulate gene expression in mammalian cells in a position- and strand-dependent manner. To study the effects of binding site location, we engineered TALEs customized to recognize specific DNA sequences located in either the promoter or the transcribed region of reporter genes. We found that TALE activators robustly activated reporter genes when their binding sites were located within the promoter region. In contrast, TALE activators inhibited the expression of reporter genes when their binding sites were located on the sense strand of the transcribed region. Notably, this repression was independent of the effector domain utilized, suggesting a simple blockage mechanism. We conclude that TALE activators in mammalian cells regulate genes in a position- and strand-dependent manner that is substantially different from gene activation by native TALEs in plants. These findings have implications for optimizing the design of custom TALEs for genetic manipulation in mammalian cells. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Intrinsic limits to gene regulation by global crosstalk

    Science.gov (United States)

    Friedlander, Tamar; Prizak, Roshan; Guet, Călin C.; Barton, Nicholas H.; Tkačik, Gašper

    2016-01-01

    Gene regulation relies on the specificity of transcription factor (TF)–DNA interactions. Limited specificity may lead to crosstalk: a regulatory state in which a gene is either incorrectly activated due to noncognate TF–DNA interactions or remains erroneously inactive. As each TF can have numerous interactions with noncognate cis-regulatory elements, crosstalk is inherently a global problem, yet has previously not been studied as such. We construct a theoretical framework to analyse the effects of global crosstalk on gene regulation. We find that crosstalk presents a significant challenge for organisms with low-specificity TFs, such as metazoans. Crosstalk is not easily mitigated by known regulatory schemes acting at equilibrium, including variants of cooperativity and combinatorial regulation. Our results suggest that crosstalk imposes a previously unexplored global constraint on the functioning and evolution of regulatory networks, which is qualitatively distinct from the known constraints that act at the level of individual gene regulatory elements. PMID:27489144

  10. Mel-18, a mammalian Polycomb gene, regulates angiogenic gene expression of endothelial cells.

    Science.gov (United States)

    Jung, Ji-Hye; Choi, Hyun-Jung; Maeng, Yong-Sun; Choi, Jung-Yeon; Kim, Minhyung; Kwon, Ja-Young; Park, Yong-Won; Kim, Young-Myeong; Hwang, Daehee; Kwon, Young-Guen

    2010-10-01

    Mel-18 is a mammalian homolog of Polycomb group (PcG) genes. Microarray analysis revealed that Mel-18 expression was induced during endothelial progenitor cell (EPC) differentiation and correlates with the expression of EC-specific protein markers. Overexpression of Mel-18 promoted EPC differentiation and angiogenic activity of ECs. Accordingly, silencing Mel-18 inhibited EC migration and tube formation in vitro. Gene expression profiling showed that Mel-18 regulates angiogenic genes including kinase insert domain receptor (KDR), claudin 5, and angiopoietin-like 2. Our findings demonstrate, for the first time, that Mel-18 plays a significant role in the angiogenic function of ECs by regulating endothelial gene expression. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. RKIP Suppresses Breast Cancer Metastasis to the Bone by Regulating Stroma-Associated Genes

    International Nuclear Information System (INIS)

    Bevilacqua, E.; Frankenberger, C.A.; Rosner, M.R.

    2012-01-01

    In the past decade cancer research has recognized the importance of tumor stroma interactions for the progression of primary tumors to an aggressive and invasive phenotype and for colonization of new organs in the context of metastasis. The dialogue between tumor cells and the surrounding stroma is a complex and dynamic phenomenon, as many cell types and soluble factors are involved. While the function of many of the players involved in this cross talk have been studied, the regulatory mechanisms and signaling pathways that control their expression have not been investigated in depth. By using a novel, interdisciplinary approach applied to the mechanism of action of the metastasis suppressor, Raf kinase inhibitory protein (RKIP), we identified a signaling pathway that suppresses invasion and metastasis through regulation of stroma-associated genes. Conceptually, the approach we developed uses a master regulator and expression arrays from breast cancer patients to formulate hypotheses based on clinical data. Experimental validation is followed by further bioinformatics analysis to establish the clinical significance of discoveries. Using RKIP as an example we show here that this multi-step approach can be used to identify gene regulatory mechanisms that affect tumor-stroma interactions that in turn influence metastasis to the bone or other organs

  12. Tet1 oxidase regulates neuronal gene transcription, active DNA hydroxymethylation, object location memory, and threat recognition memory

    Directory of Open Access Journals (Sweden)

    Dinesh Kumar

    2015-10-01

    Full Text Available A dynamic equilibrium between DNA methylation and demethylation of neuronal activity-regulated genes is crucial for memory processes. However, the mechanisms underlying this equilibrium remain elusive. Tet1 oxidase has been shown to play a key role in the active DNA demethylation in the central nervous system. In this study, we used Tet1 gene knockout (Tet1KO mice to examine the involvement of Tet1 in memory consolidation and storage in the adult brain. We found that Tet1 ablation leads to altered expression of numerous neuronal activity-regulated genes, compensatory upregulation of active demethylation pathway genes, and upregulation of various epigenetic modifiers. Moreover, Tet1KO mice showed an enhancement in the consolidation and storage of threat recognition (cued and contextual fear conditioning and object location memories. We conclude that Tet1 plays a critical role in regulating neuronal transcription and in maintaining the epigenetic state of the brain associated with memory consolidation and storage.

  13. cDREM: inferring dynamic combinatorial gene regulation.

    Science.gov (United States)

    Wise, Aaron; Bar-Joseph, Ziv

    2015-04-01

    Genes are often combinatorially regulated by multiple transcription factors (TFs). Such combinatorial regulation plays an important role in development and facilitates the ability of cells to respond to different stresses. While a number of approaches have utilized sequence and ChIP-based datasets to study combinational regulation, these have often ignored the combinational logic and the dynamics associated with such regulation. Here we present cDREM, a new method for reconstructing dynamic models of combinatorial regulation. cDREM integrates time series gene expression data with (static) protein interaction data. The method is based on a hidden Markov model and utilizes the sparse group Lasso to identify small subsets of combinatorially active TFs, their time of activation, and the logical function they implement. We tested cDREM on yeast and human data sets. Using yeast we show that the predicted combinatorial sets agree with other high throughput genomic datasets and improve upon prior methods developed to infer combinatorial regulation. Applying cDREM to study human response to flu, we were able to identify several combinatorial TF sets, some of which were known to regulate immune response while others represent novel combinations of important TFs.

  14. Frequency Modulation of Transcriptional Bursting Enables Sensitive and Rapid Gene Regulation.

    Science.gov (United States)

    Li, Congxin; Cesbron, François; Oehler, Michael; Brunner, Michael; Höfer, Thomas

    2018-04-25

    Gene regulation is a complex non-equilibrium process. Here, we show that quantitating the temporal regulation of key gene states (transcriptionally inactive, active, and refractory) provides a parsimonious framework for analyzing gene regulation. Our theory makes two non-intuitive predictions. First, for transcription factors (TFs) that regulate transcription burst frequency, as opposed to amplitude or duration, weak TF binding is sufficient to elicit strong transcriptional responses. Second, refractoriness of a gene after a transcription burst enables rapid responses to stimuli. We validate both predictions experimentally by exploiting the natural, optogenetic-like responsiveness of the Neurospora GATA-type TF White Collar Complex (WCC) to blue light. Further, we demonstrate that differential regulation of WCC target genes is caused by different gene activation rates, not different TF occupancy, and that these rates are tuned by both the core promoter and the distance between TF-binding site and core promoter. In total, our work demonstrates the relevance of a kinetic, non-equilibrium framework for understanding transcriptional regulation. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Using riboswitches to regulate gene expression and define gene function in mycobacteria.

    Science.gov (United States)

    Van Vlack, Erik R; Seeliger, Jessica C

    2015-01-01

    Mycobacteria include both environmental species and many pathogenic species such as Mycobacterium tuberculosis, an intracellular pathogen that is the causative agent of tuberculosis in humans. Inducible gene expression is a powerful tool for examining gene function and essentiality, both in in vitro culture and in host cell infections. The theophylline-inducible artificial riboswitch has recently emerged as an alternative to protein repressor-based systems. The riboswitch is translationally regulated and is combined with a mycobacterial promoter that provides transcriptional control. We here provide methods used by our laboratory to characterize the riboswitch response to theophylline in reporter strains, recombinant organisms containing riboswitch-regulated endogenous genes, and in host cell infections. These protocols should facilitate the application of both existing and novel artificial riboswitches to the exploration of gene function in mycobacteria. © 2015 Elsevier Inc. All rights reserved.

  16. Regulation of gene expression in vertebrate skeletal muscle

    Energy Technology Data Exchange (ETDEWEB)

    Carvajal, Jaime J., E-mail: jaime.carvajal@icr.ac.uk; Rigby, Peter W.J., E-mail: peter.rigby@icr.ac.uk

    2010-11-01

    During embryonic development the integration of numerous synergistic signalling pathways turns a single cell into a multicellular organism with specialized cell types and highly structured, organized tissues. To achieve this, cells must grow, proliferate, differentiate and die according to their spatiotemporal position. Unravelling the mechanisms by which a cell adopts the correct fate in response to its local environment remains one of the fundamental goals of biological research. In vertebrates skeletal myogenesis is coordinated by the activation of the myogenic regulatory factors (MRFs) in response to signals that are interpreted by their associated regulatory elements in different precursor cells during development. The MRFs trigger a cascade of transcription factors and downstream structural genes, ultimately resulting in the generation of one of the fundamental histotypes. In this review we discuss the regulation of the different MRFs in relation to their position in the myogenic cascade, the changes in the general transcriptional machinery during muscle differentiation and the emerging importance of miRNA regulation in skeletal myogenesis.

  17. Gene regulation and noise reduction by coupling of stochastic processes

    Science.gov (United States)

    Ramos, Alexandre F.; Hornos, José Eduardo M.; Reinitz, John

    2015-02-01

    Here we characterize the low-noise regime of a stochastic model for a negative self-regulating binary gene. The model has two stochastic variables, the protein number and the state of the gene. Each state of the gene behaves as a protein source governed by a Poisson process. The coupling between the two gene states depends on protein number. This fact has a very important implication: There exist protein production regimes characterized by sub-Poissonian noise because of negative covariance between the two stochastic variables of the model. Hence the protein numbers obey a probability distribution that has a peak that is sharper than those of the two coupled Poisson processes that are combined to produce it. Biochemically, the noise reduction in protein number occurs when the switching of the genetic state is more rapid than protein synthesis or degradation. We consider the chemical reaction rates necessary for Poisson and sub-Poisson processes in prokaryotes and eucaryotes. Our results suggest that the coupling of multiple stochastic processes in a negative covariance regime might be a widespread mechanism for noise reduction.

  18. Gene regulation and noise reduction by coupling of stochastic processes.

    Science.gov (United States)

    Ramos, Alexandre F; Hornos, José Eduardo M; Reinitz, John

    2015-02-01

    Here we characterize the low-noise regime of a stochastic model for a negative self-regulating binary gene. The model has two stochastic variables, the protein number and the state of the gene. Each state of the gene behaves as a protein source governed by a Poisson process. The coupling between the two gene states depends on protein number. This fact has a very important implication: There exist protein production regimes characterized by sub-Poissonian noise because of negative covariance between the two stochastic variables of the model. Hence the protein numbers obey a probability distribution that has a peak that is sharper than those of the two coupled Poisson processes that are combined to produce it. Biochemically, the noise reduction in protein number occurs when the switching of the genetic state is more rapid than protein synthesis or degradation. We consider the chemical reaction rates necessary for Poisson and sub-Poisson processes in prokaryotes and eucaryotes. Our results suggest that the coupling of multiple stochastic processes in a negative covariance regime might be a widespread mechanism for noise reduction.

  19. Identification of epigenetically regulated genes that predict patient outcome in neuroblastoma

    International Nuclear Information System (INIS)

    Carén, Helena; Djos, Anna; Nethander, Maria; Sjöberg, Rose-Marie; Kogner, Per; Enström, Camilla; Nilsson, Staffan; Martinsson, Tommy

    2011-01-01

    Epigenetic mechanisms such as DNA methylation and histone modifications are important regulators of gene expression and are frequently involved in silencing tumor suppressor genes. In order to identify genes that are epigenetically regulated in neuroblastoma tumors, we treated four neuroblastoma cell lines with the demethylating agent 5-Aza-2'-deoxycytidine (5-Aza-dC) either separately or in conjunction with the histone deacetylase inhibitor trichostatin A (TSA). Expression was analyzed using whole-genome expression arrays to identify genes activated by the treatment. These data were then combined with data from genome-wide DNA methylation arrays to identify candidate genes silenced in neuroblastoma due to DNA methylation. We present eight genes (KRT19, PRKCDBP, SCNN1A, POU2F2, TGFBI, COL1A2, DHRS3 and DUSP23) that are methylated in neuroblastoma, most of them not previously reported as such, some of which also distinguish between biological subsets of neuroblastoma tumors. Differential methylation was observed for the genes SCNN1A (p < 0.001), PRKCDBP (p < 0.001) and KRT19 (p < 0.01). Among these, the mRNA expression of KRT19 and PRKCDBP was significantly lower in patients that have died from the disease compared with patients with no evidence of disease (fold change -8.3, p = 0.01 for KRT19 and fold change -2.4, p = 0.04 for PRKCDBP). In our study, a low methylation frequency of SCNN1A, PRKCDBP and KRT19 is significantly associated with favorable outcome in neuroblastoma. It is likely that analysis of specific DNA methylation will be one of several methods in future patient therapy stratification protocols for treatment of childhood neuroblastomas

  20. Opposing roles of STAT4 and Dnmt3a in Th1 gene regulation

    Science.gov (United States)

    Pham, Duy; Yu, Qing; Walline, Crystal C.; Muthukrishnan, Rajarajeswari; Blum, Janice S.; Kaplan, Mark H.

    2013-01-01

    The Signal Transducer and Activator of Transcription factor STAT4 is a critical regulator of Th1 differentiation and inflammatory disease. Yet, how STAT4 regulates gene expression is still unclear. In this report, we define a STAT4-dependent sequence of events including H3K4 methylation, Jmjd3 association with STAT4 target loci, and a Jmjd3-dependent decrease in H3K27 trimethylation and DNA methyltransferase (Dnmt) 3a association with STAT4 target loci. Dnmt3a has an obligate role in repressing Th1 gene expression, and in Th1 cultures deficient in both STAT4 and Dnmt3a, there is recovery in the expression of a subset of Th1 genes that is sufficient to increase IFNγ production. Moreover, although STAT4-deficient mice are protected from the development of EAE, mice deficient in STAT4 and conditionally-deficient in Dnmt3a in T cells develop paralysis. Th1 genes that are de-repressed in the absence of Dnmt3a have greater induction following the ectopic expression of the Th1-associated transcription factors T-bet and Hlx1. Together, these data demonstrate that STAT4 and Dnmt3a play opposing roles in regulating Th1 gene expression, and that one mechanism for STAT4-dependent gene programming is in establishing a de-repressed genetic state susceptible to transactivation by additional fate-determining transcription factors. PMID:23772023

  1. SETD1A modulates cell cycle progression through a miRNA network that regulates p53 target genes

    OpenAIRE

    Tajima, Ken; Yae, Toshifumi; Javaid, Sarah; Tam, Oliver; Comaills, Valentine; Morris, Robert; Wittner, Ben S.; Liu, Mingzhu; Engstrom, Amanda; Takahashi, Fumiyuki; Black, Joshua C.; Ramaswamy, Sridhar; Shioda, Toshihiro; Hammell, Molly; Haber, Daniel A.

    2015-01-01

    Expression of the p53-inducible antiproliferative gene BTG2 is suppressed in many cancers in the absence of inactivating gene mutations, suggesting alternative mechanisms of silencing. Using a shRNA screen targeting 43 histone lysine methyltransferases (KMTs), we show that SETD1A suppresses BTG2 expression through its induction of several BTG2-targeting miRNAs. This indirect but highly specific mechanism, by which a chromatin regulator that mediates transcriptional activating marks can lead t...

  2. Microarray Analysis on Gene Regulation by Estrogen, Progesterone and Tamoxifen in Human Endometrial Stromal Cells

    Directory of Open Access Journals (Sweden)

    Chun-E Ren

    2015-03-01

    Full Text Available Epithelial stromal cells represent a major cellular component of human uterine endometrium that is subject to tight hormonal regulation. Through cell-cell contacts and/or paracrine mechanisms, stromal cells play a significant role in the malignant transformation of epithelial cells. We isolated stromal cells from normal human endometrium and investigated the morphological and transcriptional changes induced by estrogen, progesterone and tamoxifen. We demonstrated that stromal cells express appreciable levels of estrogen and progesterone receptors and undergo different morphological changes upon hormonal stimulation. Microarray analysis indicated that both estrogen and progesterone induced dramatic alterations in a variety of genes associated with cell structure, transcription, cell cycle, and signaling. However, divergent patterns of changes, and in some genes opposite effects, were observed for the two hormones. A large number of genes are identified as novel targets for hormonal regulation. These hormone-responsive genes may be involved in normal uterine function and the development of endometrial malignancies.

  3. POSSIBLE RELATED FUNCTIONS OF THE NON-HOMOLOGOUS CO-REGULATED GENE PAIR PDCD10 AND SERPINI1

    Directory of Open Access Journals (Sweden)

    Concetta Scimone

    2017-04-01

    Full Text Available Gene expression in mammalians is a very finely controlled mechanism, and bidirectional promoters can be considered one of the most compelling examples of the accuracy of genic expression coordination. As recently reported, a bidirectional promoter regulates the expression of the PDCD10(whose mutations cause familial Cerebral Cavernous Malformations (CCMs and SERPINI1 gene pair, even though they are non-homologous genes. The aim of this study was to identify any potential common roles of these two coregulated genes. An in-silico approach was used to identify functional correlations, using the BioGraph, IPA® and Cytoscape tools and the KEGG pathway database. The results obtained show that PDCD10 and SERPINI1 may co-regulate some cellular processes, particularly those related to focal adhesion maintenance. All common pathways identified for PDCD10 and SERPINI1 are closely associated with the pathogenic characteristics of CCMs; we thus hypothesize that genes involved in these networks may contribute to the development of CCMs.

  4. Posttranscriptional Regulation of the Neurofibromatosis 2 Gene

    Science.gov (United States)

    2006-07-01

    signaling and division were downregulated, including an apoptosis - related, putative tumor suppressor gene, LUCA-15, which was downregulated in seven of... embryologically from the outgrowth of the developing brain (Martinez-Morales et al., 2004). It is comprised of two major layers, the inner layer (prospective...eight genes involved with cell signaling and division were down- regulated. These include an apoptosis -related, putative tumor suppressor gene LUCA-15

  5. Sex Differences in Drosophila Somatic Gene Expression: Variation and Regulation by doublesex

    Directory of Open Access Journals (Sweden)

    Michelle N. Arbeitman

    2016-07-01

    Full Text Available Sex differences in gene expression have been widely studied in Drosophila melanogaster. Sex differences vary across strains, but many molecular studies focus on only a single strain, or on genes that show sexually dimorphic expression in many strains. How extensive variability is and whether this variability occurs among genes regulated by sex determination hierarchy terminal transcription factors is unknown. To address these questions, we examine differences in sexually dimorphic gene expression between two strains in Drosophila adult head tissues. We also examine gene expression in doublesex (dsx mutant strains to determine which sex-differentially expressed genes are regulated by DSX, and the mode by which DSX regulates expression. We find substantial variation in sex-differential expression. The sets of genes with sexually dimorphic expression in each strain show little overlap. The prevalence of different DSX regulatory modes also varies between the two strains. Neither the patterns of DSX DNA occupancy, nor mode of DSX regulation explain why some genes show consistent sex-differential expression across strains. We find that the genes identified as regulated by DSX in this study are enriched with known sites of DSX DNA occupancy. Finally, we find that sex-differentially expressed genes and genes regulated by DSX are highly enriched on the fourth chromosome. These results provide insights into a more complete pool of potential DSX targets, as well as revealing the molecular flexibility of DSX regulation.

  6. PPAR{gamma} regulates the expression of cholesterol metabolism genes in alveolar macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Anna D.; Malur, Anagha; Barna, Barbara P.; Kavuru, Mani S. [Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, East Carolina University (United States); Malur, Achut G. [Department of Microbiology and Immunology, East Carolina University (United States); Thomassen, Mary Jane, E-mail: thomassenm@ecu.edu [Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, East Carolina University (United States); Department of Microbiology and Immunology, East Carolina University (United States)

    2010-03-19

    Peroxisome proliferator-activated receptor-gamma (PPAR{gamma}) is a nuclear transcription factor involved in lipid metabolism that is constitutively expressed in the alveolar macrophages of healthy individuals. PPAR{gamma} has recently been implicated in the catabolism of surfactant by alveolar macrophages, specifically the cholesterol component of surfactant while the mechanism remains unclear. Studies from other tissue macrophages have shown that PPAR{gamma} regulates cholesterol influx, efflux, and metabolism. PPAR{gamma} promotes cholesterol efflux through the liver X receptor-alpha (LXR{alpha}) and ATP-binding cassette G1 (ABCG1). We have recently shown that macrophage-specific PPAR{gamma} knockout (PPAR{gamma} KO) mice accumulate cholesterol-laden alveolar macrophages that exhibit decreased expression of LXR{alpha} and ABCG1 and reduced cholesterol efflux. We hypothesized that in addition to the dysregulation of these cholesterol efflux genes, the expression of genes involved in cholesterol synthesis and influx was also dysregulated and that replacement of PPAR{gamma} would restore regulation of these genes. To investigate this hypothesis, we have utilized a Lentivirus expression system (Lenti-PPAR{gamma}) to restore PPAR{gamma} expression in the alveolar macrophages of PPAR{gamma} KO mice. Our results show that the alveolar macrophages of PPAR{gamma} KO mice have decreased expression of key cholesterol synthesis genes and increased expression of cholesterol receptors CD36 and scavenger receptor A-I (SRA-I). The replacement of PPAR{gamma} (1) induced transcription of LXR{alpha} and ABCG1; (2) corrected suppressed expression of cholesterol synthesis genes; and (3) enhanced the expression of scavenger receptors CD36. These results suggest that PPAR{gamma} regulates cholesterol metabolism in alveolar macrophages.

  7. Poly-γ-glutamic Acid Synthesis, Gene Regulation, Phylogenetic Relationships, and Role in Fermentation.

    Science.gov (United States)

    Hsueh, Yi-Huang; Huang, Kai-Yao; Kunene, Sikhumbuzo Charles; Lee, Tzong-Yi

    2017-12-07

    Poly-γ-glutamic acid (γ-PGA) is a biodegradable biopolymer produced by several bacteria, including Bacillus subtilis and other Bacillus species; it has good biocompatibility, is non-toxic, and has various potential biological applications in the food, pharmaceutical, cosmetic, and other industries. In this review, we have described the mechanisms of γ-PGA synthesis and gene regulation, its role in fermentation, and the phylogenetic relationships among various pgsBCAE , a biosynthesis gene cluster of γ-PGA, and pgdS , a degradation gene of γ-PGA. We also discuss potential applications of γ-PGA and highlight the established genetic recombinant bacterial strains that produce high levels of γ-PGA, which can be useful for large-scale γ-PGA production.

  8. Recrudescence mechanisms and gene expression profile of the reproductive tracts from chickens during the molting period.

    Directory of Open Access Journals (Sweden)

    Wooyoung Jeong

    Full Text Available The reproductive system of chickens undergoes dynamic morphological and functional tissue remodeling during the molting period. The present study identified global gene expression profiles following oviductal tissue regression and regeneration in laying hens in which molting was induced by feeding high levels of zinc in the diet. During the molting and recrudescence processes, progressive morphological and physiological changes included regression and re-growth of reproductive organs and fluctuations in concentrations of testosterone, progesterone, estradiol and corticosterone in blood. The cDNA microarray analysis of oviductal tissues revealed the biological significance of gene expression-based modulation in oviductal tissue during its remodeling. Based on the gene expression profiles, expression patterns of selected genes such as, TF, ANGPTL3, p20K, PTN, AvBD11 and SERPINB3 exhibited similar patterns in expression with gradual decreases during regression of the oviduct and sequential increases during resurrection of the functional oviduct. Also, miR-1689* inhibited expression of Sp1, while miR-17-3p, miR-22* and miR-1764 inhibited expression of STAT1. Similarly, chicken miR-1562 and miR-138 reduced the expression of ANGPTL3 and p20K, respectively. These results suggest that these differentially regulated genes are closely correlated with the molecular mechanism(s for development and tissue remodeling of the avian female reproductive tract, and that miRNA-mediated regulation of key genes likely contributes to remodeling of the avian reproductive tract by controlling expression of those genes post-transcriptionally. The discovered global gene profiles provide new molecular candidates responsible for regulating morphological and functional recrudescence of the avian reproductive tract, and provide novel insights into understanding the remodeling process at the genomic and epigenomic levels.

  9. Fine-Mapping Resolves Eae23 into Two QTLs and Implicates ZEB1 as a Candidate Gene Regulating Experimental Neuroinflammation in Rat

    OpenAIRE

    Stridh, Pernilla; Thessen Hedreul, Melanie; Beyeen, Amennai Daniel; Adzemovic, Milena Z.; Laaksonen, Hannes; Gillett, Alan; ?ckinger, Johan; Marta, Monica; Lassmann, Hans; Becanovic, Kristina; Jagodic, Maja; Olsson, Tomas

    2010-01-01

    BACKGROUND: To elucidate mechanisms involved in multiple sclerosis (MS), we studied genetic regulation of experimental autoimmune encephalomyelitis (EAE) in rats, assuming a conservation of pathogenic pathways. In this study, we focused on Eae23, originally identified to regulate EAE in a (LEW.1AV1xPVG.1AV1)F2 cross. Our aim was to determine whether one or more genes within the 67 Mb region regulate EAE and to define candidate risk genes. METHODOLOGY/PRINCIPAL FINDINGS: We used high resolutio...

  10. Npas4 regulates excitatory-inhibitory balance within neural circuits through cell-type-specific gene programs.

    Science.gov (United States)

    Spiegel, Ivo; Mardinly, Alan R; Gabel, Harrison W; Bazinet, Jeremy E; Couch, Cameron H; Tzeng, Christopher P; Harmin, David A; Greenberg, Michael E

    2014-05-22

    The nervous system adapts to experience by inducing a transcriptional program that controls important aspects of synaptic plasticity. Although the molecular mechanisms of experience-dependent plasticity are well characterized in excitatory neurons, the mechanisms that regulate this process in inhibitory neurons are only poorly understood. Here, we describe a transcriptional program that is induced by neuronal activity in inhibitory neurons. We find that, while neuronal activity induces expression of early-response transcription factors such as Npas4 in both excitatory and inhibitory neurons, Npas4 activates distinct programs of late-response genes in inhibitory and excitatory neurons. These late-response genes differentially regulate synaptic input to these two types of neurons, promoting inhibition onto excitatory neurons while inducing excitation onto inhibitory neurons. These findings suggest that the functional outcomes of activity-induced transcriptional responses are adapted in a cell-type-specific manner to achieve a circuit-wide homeostatic response. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Distinct Skeletal Muscle Gene Regulation from Active Contraction, Passive Vibration, and Whole Body Heat Stress in Humans.

    Science.gov (United States)

    Petrie, Michael A; Kimball, Amy L; McHenry, Colleen L; Suneja, Manish; Yen, Chu-Ling; Sharma, Arpit; Shields, Richard K

    2016-01-01

    Skeletal muscle exercise regulates several important metabolic genes in humans. We know little about the effects of environmental stress (heat) and mechanical stress (vibration) on skeletal muscle. Passive mechanical stress or systemic heat stress are often used in combination with many active exercise programs. We designed a method to deliver a vibration stress and systemic heat stress to compare the effects with active skeletal muscle contraction. The purpose of this study is to examine whether active mechanical stress (muscle contraction), passive mechanical stress (vibration), or systemic whole body heat stress regulates key gene signatures associated with muscle metabolism, hypertrophy/atrophy, and inflammation/repair. Eleven subjects, six able-bodied and five with chronic spinal cord injury (SCI) participated in the study. The six able-bodied subjects sat in a heat stress chamber for 30 minutes. Five subjects with SCI received a single dose of limb-segment vibration or a dose of repetitive electrically induced muscle contractions. Three hours after the completion of each stress, we performed a muscle biopsy (vastus lateralis or soleus) to analyze mRNA gene expression. We discovered repetitive active muscle contractions up regulated metabolic transcription factors NR4A3 (12.45 fold), PGC-1α (5.46 fold), and ABRA (5.98 fold); and repressed MSTN (0.56 fold). Heat stress repressed PGC-1α (0.74 fold change; p muscle contraction. Vibration induced FOXK2 (p muscle contractions. Understanding these responses may assist in developing regenerative rehabilitation interventions to improve muscle cell development, growth, and repair.

  12. Linking gene regulation to cell behaviors in the posterior growth zone of sequentially segmenting arthropods.

    Science.gov (United States)

    Williams, Terri A; Nagy, Lisa M

    2017-05-01

    Virtually all arthropods all arthropods add their body segments sequentially, one by one in an anterior to posterior progression. That process requires not only segment specification but typically growth and elongation. Here we review the functions of some of the key genes that regulate segmentation: Wnt, caudal, Notch pathway, and pair-rule genes, and discuss what can be inferred about their evolution. We focus on how these regulatory factors are integrated with growth and elongation and discuss the importance and challenges of baseline measures of growth and elongation. We emphasize a perspective that integrates the genetic regulation of segment patterning with the cellular mechanisms of growth and elongation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. VE-Cadherin–Mediated Epigenetic Regulation of Endothelial Gene Expression

    Science.gov (United States)

    Morini, Marco F.; Giampietro, Costanza; Corada, Monica; Pisati, Federica; Lavarone, Elisa; Cunha, Sara I.; Conze, Lei L.; O’Reilly, Nicola; Joshi, Dhira; Kjaer, Svend; George, Roger; Nye, Emma; Ma, Anqi; Jin, Jian; Mitter, Richard; Lupia, Michela; Cavallaro, Ugo; Pasini, Diego; Calado, Dinis P.

    2018-01-01

    levels of claudin-5 and VE-PTP. Conclusions: These data extend the knowledge of polycomb-mediated regulation of gene expression to endothelial cell differentiation and vessel maturation. The identified mechanism opens novel therapeutic opportunities to modulate endothelial gene expression and induce vascular normalization through pharmacological inhibition of the polycomb-mediated repression system. PMID:29233846

  14. Mining disease genes using integrated protein-protein interaction and gene-gene co-regulation information.

    Science.gov (United States)

    Li, Jin; Wang, Limei; Guo, Maozu; Zhang, Ruijie; Dai, Qiguo; Liu, Xiaoyan; Wang, Chunyu; Teng, Zhixia; Xuan, Ping; Zhang, Mingming

    2015-01-01

    In humans, despite the rapid increase in disease-associated gene discovery, a large proportion of disease-associated genes are still unknown. Many network-based approaches have been used to prioritize disease genes. Many networks, such as the protein-protein interaction (PPI), KEGG, and gene co-expression networks, have been used. Expression quantitative trait loci (eQTLs) have been successfully applied for the determination of genes associated with several diseases. In this study, we constructed an eQTL-based gene-gene co-regulation network (GGCRN) and used it to mine for disease genes. We adopted the random walk with restart (RWR) algorithm to mine for genes associated with Alzheimer disease. Compared to the Human Protein Reference Database (HPRD) PPI network alone, the integrated HPRD PPI and GGCRN networks provided faster convergence and revealed new disease-related genes. Therefore, using the RWR algorithm for integrated PPI and GGCRN is an effective method for disease-associated gene mining.

  15. Activation of the Constitutive Androstane Receptor induces hepatic lipogenesis and regulates Pnpla3 gene expression in a LXR-independent way

    International Nuclear Information System (INIS)

    Marmugi, Alice; Lukowicz, Céline; Lasserre, Frederic; Montagner, Alexandra; Polizzi, Arnaud; Ducheix, Simon; Goron, Adeline; Gamet-Payrastre, Laurence; Gerbal-Chaloin, Sabine; Pascussi, Jean Marc; Moldes, Marthe; Pineau, Thierry; Guillou, Hervé; Mselli-Lakhal, Laila

    2016-01-01

    The Constitutive Androstane Receptor (CAR, NR1I3) has been newly described as a regulator of energy metabolism. A relevant number of studies using animal models of obesity suggest that CAR activation could be beneficial on the metabolic balance. However, this remains controversial and the underlying mechanisms are still unknown. This work aimed to investigate the effect of CAR activation on hepatic energy metabolism during physiological conditions, i.e. in mouse models not subjected to metabolic/nutritional stress. Gene expression profiling in the liver of CAR knockout and control mice on chow diet and treated with a CAR agonist highlighted CAR-mediated up-regulations of lipogenic genes, concomitant with neutral lipid accumulation. A strong CAR-mediated up-regulation of the patatin-like phospholipase domain-containing protein 3 (Pnpla3) was demonstrated. Pnpla3 is a gene whose polymorphism is associated with the pathogenesis of nonalcoholic fatty liver disease (NAFLD) development. This observation was confirmed in human hepatocytes treated with the antiepileptic drug and CAR activator, phenobarbital and in immortalized human hepatocytes treated with CITCO. Studying the molecular mechanisms controlling Pnpla3 gene expression, we demonstrated that CAR does not act by a direct regulation of Pnpla3 transcription or via the Liver X Receptor but may rather involve the transcription factor Carbohydrate Responsive Element-binding protein. These data provide new insights into the regulation by CAR of glycolytic and lipogenic genes and on pathogenesis of steatosis. This also raises the question concerning the impact of drugs and environmental contaminants in lipid-associated metabolic diseases. - Highlights: • Induction of hepatic glycolytic and lipogenic genes upon CAR activation by TCPOBOP. • These effects are not mediated by the nuclear receptor LXR. • CAR activation resulted in hepatic lipid accumulation. • Pnpla3 expression is regulated by CAR in mouse liver and

  16. Activation of the Constitutive Androstane Receptor induces hepatic lipogenesis and regulates Pnpla3 gene expression in a LXR-independent way

    Energy Technology Data Exchange (ETDEWEB)

    Marmugi, Alice; Lukowicz, Céline; Lasserre, Frederic; Montagner, Alexandra; Polizzi, Arnaud; Ducheix, Simon; Goron, Adeline; Gamet-Payrastre, Laurence [INRA, TOXALIM (Research Centre in Food Toxicology), Toulouse (France); Université de Toulouse, INP, UPS, TOXALIM, Toulouse (France); Gerbal-Chaloin, Sabine [Institute of Regenerative Medicine and Biotherapy, INSERM, U1183 Montpellier (France); Pascussi, Jean Marc [Centre National de la Recherche Scientifique, UMR5203, Institut de Génomique Fonctionnelle, Montpellier (France); Moldes, Marthe [Centre de Recherche Saint-Antoine, INSERM, UMR 938, Sorbonne Universités, Université Paris 6, Paris (France); Institut Hospitalo-Universitaire ICAN, Paris (France); Pineau, Thierry; Guillou, Hervé [INRA, TOXALIM (Research Centre in Food Toxicology), Toulouse (France); Université de Toulouse, INP, UPS, TOXALIM, Toulouse (France); Mselli-Lakhal, Laila, E-mail: laila.lakhal@toulouse.inra.fr [INRA, TOXALIM (Research Centre in Food Toxicology), Toulouse (France); Université de Toulouse, INP, UPS, TOXALIM, Toulouse (France)

    2016-07-15

    The Constitutive Androstane Receptor (CAR, NR1I3) has been newly described as a regulator of energy metabolism. A relevant number of studies using animal models of obesity suggest that CAR activation could be beneficial on the metabolic balance. However, this remains controversial and the underlying mechanisms are still unknown. This work aimed to investigate the effect of CAR activation on hepatic energy metabolism during physiological conditions, i.e. in mouse models not subjected to metabolic/nutritional stress. Gene expression profiling in the liver of CAR knockout and control mice on chow diet and treated with a CAR agonist highlighted CAR-mediated up-regulations of lipogenic genes, concomitant with neutral lipid accumulation. A strong CAR-mediated up-regulation of the patatin-like phospholipase domain-containing protein 3 (Pnpla3) was demonstrated. Pnpla3 is a gene whose polymorphism is associated with the pathogenesis of nonalcoholic fatty liver disease (NAFLD) development. This observation was confirmed in human hepatocytes treated with the antiepileptic drug and CAR activator, phenobarbital and in immortalized human hepatocytes treated with CITCO. Studying the molecular mechanisms controlling Pnpla3 gene expression, we demonstrated that CAR does not act by a direct regulation of Pnpla3 transcription or via the Liver X Receptor but may rather involve the transcription factor Carbohydrate Responsive Element-binding protein. These data provide new insights into the regulation by CAR of glycolytic and lipogenic genes and on pathogenesis of steatosis. This also raises the question concerning the impact of drugs and environmental contaminants in lipid-associated metabolic diseases. - Highlights: • Induction of hepatic glycolytic and lipogenic genes upon CAR activation by TCPOBOP. • These effects are not mediated by the nuclear receptor LXR. • CAR activation resulted in hepatic lipid accumulation. • Pnpla3 expression is regulated by CAR in mouse liver and

  17. Tight regulation of the intS gene of the KplE1 prophage: a new paradigm for integrase gene regulation.

    Directory of Open Access Journals (Sweden)

    Gaël Panis

    2010-10-01

    Full Text Available Temperate phages have the ability to maintain their genome in their host, a process called lysogeny. For most, passive replication of the phage genome relies on integration into the host's chromosome and becoming a prophage. Prophages remain silent in the absence of stress and replicate passively within their host genome. However, when stressful conditions occur, a prophage excises itself and resumes the viral cycle. Integration and excision of phage genomes are mediated by regulated site-specific recombination catalyzed by tyrosine and serine recombinases. In the KplE1 prophage, site-specific recombination is mediated by the IntS integrase and the TorI recombination directionality factor (RDF. We previously described a sub-family of temperate phages that is characterized by an unusual organization of the recombination module. Consequently, the attL recombination region overlaps with the integrase promoter, and the integrase and RDF genes do not share a common activated promoter upon lytic induction as in the lambda prophage. In this study, we show that the intS gene is tightly regulated by its own product as well as by the TorI RDF protein. In silico analysis revealed that overlap of the attL region with the integrase promoter is widely encountered in prophages present in prokaryotic genomes, suggesting a general occurrence of negatively autoregulated integrase genes. The prediction that these integrase genes are negatively autoregulated was biologically assessed by studying the regulation of several integrase genes from two different Escherichia coli strains. Our results suggest that the majority of tRNA-associated integrase genes in prokaryotic genomes could be autoregulated and that this might be correlated with the recombination efficiency as in KplE1. The consequences of this unprecedented regulation for excessive recombination are discussed.

  18. PHF6 regulates phenotypic plasticity through chromatin organization within lineage-specific genes.

    Science.gov (United States)

    Soto-Feliciano, Yadira M; Bartlebaugh, Jordan M E; Liu, Yunpeng; Sánchez-Rivera, Francisco J; Bhutkar, Arjun; Weintraub, Abraham S; Buenrostro, Jason D; Cheng, Christine S; Regev, Aviv; Jacks, Tyler E; Young, Richard A; Hemann, Michael T

    2017-05-15

    Developmental and lineage plasticity have been observed in numerous malignancies and have been correlated with tumor progression and drug resistance. However, little is known about the molecular mechanisms that enable such plasticity to occur. Here, we describe the function of the plant homeodomain finger protein 6 (PHF6) in leukemia and define its role in regulating chromatin accessibility to lineage-specific transcription factors. We show that loss of Phf6 in B-cell leukemia results in systematic changes in gene expression via alteration of the chromatin landscape at the transcriptional start sites of B-cell- and T-cell-specific factors. Additionally, Phf6 KO cells show significant down-regulation of genes involved in the development and function of normal B cells, show up-regulation of genes involved in T-cell signaling, and give rise to mixed-lineage lymphoma in vivo. Engagement of divergent transcriptional programs results in phenotypic plasticity that leads to altered disease presentation in vivo, tolerance of aberrant oncogenic signaling, and differential sensitivity to frontline and targeted therapies. These findings suggest that active maintenance of a precise chromatin landscape is essential for sustaining proper leukemia cell identity and that loss of a single factor (PHF6) can cause focal changes in chromatin accessibility and nucleosome positioning that render cells susceptible to lineage transition. © 2017 Soto-Feliciano et al.; Published by Cold Spring Harbor Laboratory Press.

  19. Regulation of tumor necrosis factor gene expression by ionizing radiation in human myeloid leukemia cells and peripheral blood monocytes

    International Nuclear Information System (INIS)

    Sherman, M.L.; Datta, R.; Hallahan, D.E.; Weichselbaum, R.R.; Kufe, D.W.

    1991-01-01

    Previous studies have demonstrated that ionizing radiation induces the expression of certain cytokines, such as TNF alpha/cachectin. However, there is presently no available information regarding the molecular mechanisms responsible for the regulation of cytokine gene expression by ionizing radiation. In this report, we describe the regulation of the TNF gene by ionizing radiation in human myeloid leukemia cells. The increase in TNF transcripts by x rays was both time- and dose-dependent as determined by Northern blot analysis. Similar findings were obtained in human peripheral blood monocytes. Transcriptional run-on analyses have demonstrated that ionizing radiation stimulates the rate of TNF gene transcription. Furthermore, induction of TNF mRNA was increased in the absence of protein synthesis. In contrast, ionizing radiation had little effect on the half-life of TNF transcripts. These findings indicate that the increase in TNF mRNA observed after irradiation is regulated by transcriptional mechanisms and suggest that production of this cytokine by myeloid cells may play a role in the pathophysiologic effects of ionizing radiation

  20. [Molecular mechanisms in sex determination: from gene regulation to pathology].

    Science.gov (United States)

    Ravel, C; Chantot-Bastaraud, S; Siffroi, J-P

    2004-01-01

    Testis determination is the complex process by which the bipotential gonad becomes a normal testis during embryo development. As a consequence, this process leads to sexual differentiation corresponding to the masculinization of both genital track and external genitalia. The whole phenomenon is under genetic control and is particularly driven by the presence of the Y chromosome and by the SRY gene, which acts as the key initiator of the early steps of testis determination. However, many other autosomal genes, present in both males and females, are expressed during testis formation in a gene activation pathway, which is far to be totally elucidated. All these genes act in a dosage-sensitive manner by which quantitative gene abnormalities, due to chromosomal deletions, duplications or mosaicism, may lead to testis determination failure and sex reversal.

  1. A combination of independent transcriptional regulators shapes bacterial virulence gene expression during infection.

    Directory of Open Access Journals (Sweden)

    Samuel A Shelburne

    2010-03-01

    Full Text Available Transcriptional regulatory networks are fundamental to how microbes alter gene expression in response to environmental stimuli, thereby playing a critical role in bacterial pathogenesis. However, understanding how bacterial transcriptional regulatory networks function during host-pathogen interaction is limited. Recent studies in group A Streptococcus (GAS suggested that the transcriptional regulator catabolite control protein A (CcpA influences many of the same genes as the control of virulence (CovRS two-component gene regulatory system. To provide new information about the CcpA and CovRS networks, we compared the CcpA and CovR transcriptomes in a serotype M1 GAS strain. The transcript levels of several of the same genes encoding virulence factors and proteins involved in basic metabolic processes were affected in both DeltaccpA and DeltacovR isogenic mutant strains. Recombinant CcpA and CovR bound with high-affinity to the promoter regions of several co-regulated genes, including those encoding proteins involved in carbohydrate and amino acid metabolism. Compared to the wild-type parental strain, DeltaccpA and DeltacovRDeltaccpA isogenic mutant strains were significantly less virulent in a mouse myositis model. Inactivation of CcpA and CovR alone and in combination led to significant alterations in the transcript levels of several key GAS virulence factor encoding genes during infection. Importantly, the transcript level alterations in the DeltaccpA and DeltacovRDeltaccpA isogenic mutant strains observed during infection were distinct from those occurring during growth in laboratory medium. These data provide new knowledge regarding the molecular mechanisms by which pathogenic bacteria respond to environmental signals to regulate virulence factor production and basic metabolic processes during infection.

  2. Circadian clock gene LATE ELONGATED HYPOCOTYL directly regulates the timing of floral scent emission in Petunia.

    Science.gov (United States)

    Fenske, Myles P; Hewett Hazelton, Kristen D; Hempton, Andrew K; Shim, Jae Sung; Yamamoto, Breanne M; Riffell, Jeffrey A; Imaizumi, Takato

    2015-08-04

    Flowers present a complex display of signals to attract pollinators, including the emission of floral volatiles. Volatile emission is highly regulated, and many species restrict emissions to specific times of the day. This rhythmic emission of scent is regulated by the circadian clock; however, the mechanisms have remained unknown. In Petunia hybrida, volatile emissions are dominated by products of the floral volatile benzenoid/phenylpropanoid (FVBP) metabolic pathway. Here we demonstrate that the circadian clock gene P. hybrida LATE ELONGATED HYPOCOTYL (LHY; PhLHY) regulates the daily expression patterns of the FVBP pathway genes and floral volatile production. PhLHY expression peaks in the morning, antiphasic to the expression of P. hybrida GIGANTEA (PhGI), the master scent regulator ODORANT1 (ODO1), and many other evening-expressed FVBP genes. Overexpression phenotypes of PhLHY in Arabidopsis caused an arrhythmic clock phenotype, which resembles those of LHY overexpressors. In Petunia, constitutive expression of PhLHY depressed the expression levels of PhGI, ODO1, evening-expressed FVBP pathway genes, and FVBP emission in flowers. Additionally, in the Petunia lines in which PhLHY expression was reduced, the timing of peak expression of PhGI, ODO1, and the FVBP pathway genes advanced to the morning. Moreover, PhLHY protein binds to cis-regulatory elements called evening elements that exist in promoters of ODO1 and other FVBP genes. Thus, our results imply that PhLHY directly sets the timing of floral volatile emission by restricting the expression of ODO1 and other FVBP genes to the evening in Petunia.

  3. Gene expression profiles in Parkinson disease prefrontal cortex implicate FOXO1 and genes under its transcriptional regulation.

    Directory of Open Access Journals (Sweden)

    Alexandra Dumitriu

    2012-06-01

    Full Text Available Parkinson disease (PD is a complex neurodegenerative disorder with largely unknown genetic mechanisms. While the degeneration of dopaminergic neurons in PD mainly takes place in the substantia nigra pars compacta (SN region, other brain areas, including the prefrontal cortex, develop Lewy bodies, the neuropathological hallmark of PD. We generated and analyzed expression data from the prefrontal cortex Brodmann Area 9 (BA9 of 27 PD and 26 control samples using the 44K One-Color Agilent 60-mer Whole Human Genome Microarray. All samples were male, without significant Alzheimer disease pathology and with extensive pathological annotation available. 507 of the 39,122 analyzed expression probes were different between PD and control samples at false discovery rate (FDR of 5%. One of the genes with significantly increased expression in PD was the forkhead box O1 (FOXO1 transcription factor. Notably, genes carrying the FoxO1 binding site were significantly enriched in the FDR-significant group of genes (177 genes covered by 189 probes, suggesting a role for FoxO1 upstream of the observed expression changes. Single-nucleotide polymorphisms (SNPs selected from a recent meta-analysis of PD genome-wide association studies (GWAS were successfully genotyped in 50 out of the 53 microarray brains, allowing a targeted expression-SNP (eSNP analysis for 52 SNPs associated with PD affection at genome-wide significance and the 189 probes from FoxO1 regulated genes. A significant association was observed between a SNP in the cyclin G associated kinase (GAK gene and a probe in the spermine oxidase (SMOX gene. Further examination of the FOXO1 region in a meta-analysis of six available GWAS showed two SNPs significantly associated with age at onset of PD. These results implicate FOXO1 as a PD-relevant gene and warrant further functional analyses of its transcriptional regulatory mechanisms.

  4. Epigenetic Regulation of Inflammatory Cytokines and Associated Genes in Human Malignancies

    Directory of Open Access Journals (Sweden)

    Rehana Yasmin

    2015-01-01

    Full Text Available Inflammation is a multifaceted defense response of immune system against infection. Chronic inflammation has been implicated as an imminent threat for major human malignancies and is directly linked to various steps involved in tumorigenesis. Inflammatory cytokines, interleukins, interferons, transforming growth factors, chemokines, and adhesion molecules have been associated with chronic inflammation. Numerous cytokines are reported to be aberrantly regulated by different epigenetic mechanisms like DNA methylation and histone modifications in tumor tissues, contributing to pathogenesis of tumor in multiple ways. Some of these cytokines also work as epigenetic regulators of other crucial genes in tumor biology, either directly or indirectly. Such regulations are reported in lung, breast, cervical, gastric, colorectal, pancreatic, prostate, and head and neck cancers. Epigenetics of inflammatory mediators in cancer is currently subject of extensive research. These investigations may help in understanding cancer biology and to develop effective therapeutic strategies. The purpose of this paper is to have a brief view of the aberrant regulation of inflammatory cytokines in human malignancies.

  5. Specific down-regulation of spermatogenesis genes targeted by 22G RNAs in hybrid sterile males associated with an X-Chromosome introgression.

    Science.gov (United States)

    Li, Runsheng; Ren, Xiaoliang; Bi, Yu; Ho, Vincy Wing Sze; Hsieh, Chia-Ling; Young, Amanda; Zhang, Zhihong; Lin, Tingting; Zhao, Yanmei; Miao, Long; Sarkies, Peter; Zhao, Zhongying

    2016-09-01

    Hybrid incompatibility (HI) prevents gene flow between species, thus lying at the heart of speciation genetics. One of the most common HIs is male sterility. Two superficially contradictory observations exist for hybrid male sterility. First, an introgression on the X Chromosome is more likely to produce male sterility than on autosome (so-called large-X theory); second, spermatogenesis genes are enriched on the autosomes but depleted on the X Chromosome (demasculinization of X Chromosome). Analysis of gene expression in Drosophila hybrids suggests a genetic interaction between the X Chromosome and autosomes that is essential for male fertility. However, the prevalence of such an interaction and its underlying mechanism remain largely unknown. Here we examine the interaction in nematode species by contrasting the expression of both coding genes and transposable elements (TEs) between hybrid sterile males and its parental nematode males. We use two lines of hybrid sterile males, each carrying an independent introgression fragment from Caenorhabditis briggsae X Chromosome in an otherwise Caenorhabditis nigoni background, which demonstrate similar defects in spermatogenesis. We observe a similar pattern of down-regulated genes that are specific for spermatogenesis between the two hybrids. Importantly, the down-regulated genes caused by the X Chromosome introgressions show a significant enrichment on the autosomes, supporting an epistatic interaction between the X Chromosome and autosomes. We investigate the underlying mechanism of the interaction by measuring small RNAs and find that a subset of 22G RNAs specifically targeting the down-regulated spermatogenesis genes is significantly up-regulated in hybrids, suggesting that perturbation of small RNA-mediated regulation may contribute to the X-autosome interaction. © 2016 Li et al.; Published by Cold Spring Harbor Laboratory Press.

  6. Ethylene regulates Apple (Malus x domestica) fruit softening through a dose x time-dependent mechanism and through differential sensitivities and dependencies of cell wall-modifying genes.

    Science.gov (United States)

    Ireland, Hilary S; Gunaseelan, Kularajathevan; Muddumage, Ratnasiri; Tacken, Emma J; Putterill, Jo; Johnston, Jason W; Schaffer, Robert J

    2014-05-01

    In fleshy fruit species that have a strong requirement for ethylene to ripen, ethylene is synthesized autocatalytically, producing increasing concentrations as the fruits ripen. Apple fruit with the ACC OXIDASE 1 (ACO1) gene suppressed cannot produce ethylene autocatalytically at ripening. Using these apple lines, an ethylene sensitivity dependency model was previously proposed, with traits such as softening showing a high dependency for ethylene as well as low sensitivity. In this study, it is shown that the molecular control of fruit softening is a complex process, with different cell wall-related genes being independently regulated and exhibiting differential sensitivities to and dependencies on ethylene at the transcriptional level. This regulation is controlled through a dose × time mechanism, which results in a temporal transcriptional response that would allow for progressive cell wall disassembly and thus softening. This research builds on the sensitivity dependency model and shows that ethylene-dependent traits can progress over time to the same degree with lower levels of ethylene. This suggests that a developmental clock measuring cumulative ethylene controls the fruit ripening process.

  7. Different control mechanisms regulate glucoamylase and protease gene transcription in Aspergillus oryzae in solid-state and submerged fermentation

    NARCIS (Netherlands)

    Biesebeke, R. te; Biezen, N. van; Vos, W.M. de; Hondel, C.A.M.J.J. van den; Punt, P.J.

    2005-01-01

    Solid-state fermentation (SSF) with Aspergillus oryzae results in high levels of secreted protein. However, control mechanisms of gene expression in SSF have been only poorly studied. In this study we show that both glucoamylase (glaB) and protease (alpA, nptB) genes are highly expressed during

  8. Tet1 Oxidase Regulates Neuronal Gene Transcription, Active DNA Hydroxy-methylation, Object Location Memory, and Threat Recognition Memory.

    Science.gov (United States)

    Kumar, Dinesh; Aggarwal, Milan; Kaas, Garrett A; Lewis, John; Wang, Jing; Ross, Daniel L; Zhong, Chun; Kennedy, Andrew; Song, Hongjun; Sweatt, J David

    2015-10-01

    A dynamic equilibrium between DNA methylation and demethylation of neuronal activity-regulated genes is crucial for memory processes. However, the mechanisms underlying this equilibrium remain elusive. Tet1 oxidase has been shown to play a key role in the active DNA demethylation in the CNS. In this study, we used Tet1 gene knockout (Tet1KO) mice to examine the involvement of Tet1 in memory consolidation and storage in the adult brain. We found that Tet1 ablation leads to: altered expression of numerous neuronal activity-regulated genes, compensatory upregulation of active demethylation pathway genes, and upregulation of various epigenetic modifiers. Moreover, Tet1KO mice showed an enhancement in the consolidation and storage of threat recognition (cued and contextual fear conditioning) and object location memories. We conclude that Tet1 plays a critical role in regulating neuronal transcription and in maintaining the epigenetic state of the brain associated with memory consolidation and storage.

  9. Alu Elements as Novel Regulators of Gene Expression in Type 1 Diabetes Susceptibility Genes?

    Science.gov (United States)

    Kaur, Simranjeet; Pociot, Flemming

    2015-07-13

    Despite numerous studies implicating Alu repeat elements in various diseases, there is sparse information available with respect to the potential functional and biological roles of the repeat elements in Type 1 diabetes (T1D). Therefore, we performed a genome-wide sequence analysis of T1D candidate genes to identify embedded Alu elements within these genes. We observed significant enrichment of Alu elements within the T1D genes (p-value genes harboring Alus revealed significant enrichment for immune-mediated processes (p-value genes harboring inverted Alus (IRAlus) within their 3' untranslated regions (UTRs) that are known to regulate the expression of host mRNAs by generating double stranded RNA duplexes. Our in silico analysis predicted the formation of duplex structures by IRAlus within the 3'UTRs of T1D genes. We propose that IRAlus might be involved in regulating the expression levels of the host T1D genes.

  10. dPORE-miRNA: Polymorphic regulation of microRNA genes

    KAUST Repository

    Schmeier, Sebastian; Schaefer, Ulf; MacPherson, Cameron R.; Bajic, Vladimir B.

    2011-01-01

    Background: MicroRNAs (miRNAs) are short non-coding RNA molecules that act as post-transcriptional regulators and affect the regulation of protein-coding genes. Mostly transcribed by PolII, miRNA genes are regulated at the transcriptional level similarly to protein-coding genes. In this study we focus on human miRNAs. These miRNAs are involved in a variety of pathways and can affect many diseases. Our interest is on possible deregulation of the transcription initiation of the miRNA encoding genes, which is facilitated by variations in the genomic sequence of transcriptional control regions (promoters). Methodology: Our aim is to provide an online resource to facilitate the investigation of the potential effects of single nucleotide polymorphisms (SNPs) on miRNA gene regulation. We analyzed SNPs overlapped with predicted transcription factor binding sites (TFBSs) in promoters of miRNA genes. We also accounted for the creation of novel TFBSs due to polymorphisms not present in the reference genome. The resulting changes in the original TFBSs and potential creation of new TFBSs were incorporated into the Dragon Database of Polymorphic Regulation of miRNA genes (dPORE-miRNA). Conclusions: The dPORE-miRNA database enables researchers to explore potential effects of SNPs on the regulation of miRNAs. dPORE-miRNA can be interrogated with regards to: a/miRNAs (their targets, or involvement in diseases, or biological pathways), b/SNPs, or c/transcription factors. dPORE-miRNA can be accessed at http://cbrc.kaust.edu.sa/dpore and http://apps.sanbi.ac.za/dpore/. Its use is free for academic and non-profit users. © 2011 Schmeier et al.

  11. dPORE-miRNA: Polymorphic regulation of microRNA genes

    KAUST Repository

    Schmeier, Sebastian

    2011-02-04

    Background: MicroRNAs (miRNAs) are short non-coding RNA molecules that act as post-transcriptional regulators and affect the regulation of protein-coding genes. Mostly transcribed by PolII, miRNA genes are regulated at the transcriptional level similarly to protein-coding genes. In this study we focus on human miRNAs. These miRNAs are involved in a variety of pathways and can affect many diseases. Our interest is on possible deregulation of the transcription initiation of the miRNA encoding genes, which is facilitated by variations in the genomic sequence of transcriptional control regions (promoters). Methodology: Our aim is to provide an online resource to facilitate the investigation of the potential effects of single nucleotide polymorphisms (SNPs) on miRNA gene regulation. We analyzed SNPs overlapped with predicted transcription factor binding sites (TFBSs) in promoters of miRNA genes. We also accounted for the creation of novel TFBSs due to polymorphisms not present in the reference genome. The resulting changes in the original TFBSs and potential creation of new TFBSs were incorporated into the Dragon Database of Polymorphic Regulation of miRNA genes (dPORE-miRNA). Conclusions: The dPORE-miRNA database enables researchers to explore potential effects of SNPs on the regulation of miRNAs. dPORE-miRNA can be interrogated with regards to: a/miRNAs (their targets, or involvement in diseases, or biological pathways), b/SNPs, or c/transcription factors. dPORE-miRNA can be accessed at http://cbrc.kaust.edu.sa/dpore and http://apps.sanbi.ac.za/dpore/. Its use is free for academic and non-profit users. © 2011 Schmeier et al.

  12. Mechanisms for the environmental regulation of gene expression ...

    Indian Academy of Sciences (India)

    Unknown

    the larvae experience longer photoperiod and higher temperatures. ..... DeBaun et al 2003) has revealed that culture media con- ... The increasing amount of brown pigment correlates with the inactivation of the viable Agouti gene due to.

  13. MiR529a modulates panicle architecture through regulating SQUAMOSA PROMOTER BINDING-LIKE genes in rice (Oryza sativa).

    Science.gov (United States)

    Yue, Erkui; Li, Chao; Li, Yu; Liu, Zhen; Xu, Jian-Hong

    2017-07-01

    MiR529a affects rice panicle architecture by targeting OsSPL2,OsSPL14 and OsSPL17 genes that could regulate their downstream panicle related genes. The panicle architecture determines the grain yield and quality of rice, which could be regulated by many transcriptional factors. The SQUAMOSA PROMOTER BINDING-LIKE (SPL) transcription factors are involved in the regulation of panicle development, which are targeted by miR156 and miR529. The expression profile demonstrated that miR529a is preferentially expressed in the early panicle of rice and it might regulate panicle development in rice. However, the regulation mechanism of miR529-SPL is still not clear. In this study, we predicted five miR529a putative target genes, OsSPL2, OsSPL14, OsSPL16, OsSPL17 and OsSPL18, while only the expression of OsSPL2, OsSPL14, and OsSPL17 was regulated by miR529a in the rice panicle. Overexpression of miR529a dramatically affected panicle architecture, which was regulated by OsSPL2, OsSPL14, and OsSPL17. Furthermore, the 117, 35, and 25 pathway genes associated with OsSPL2, OsSPL14 and OsSPL17, respectively, were predicted, and they shared 20 putative pathway genes. Our results revealed that miR529a could play a vital role in the regulation of panicle architecture through regulating OsSPL2, OsSPL14, OsSPL17 and the complex networks formed by their pathway and downstream genes. These findings will provide new genetic resources for reshaping ideal plant architecture and breeding high yield rice varieties.

  14. Dissecting specific and global transcriptional regulation of bacterial gene expression

    NARCIS (Netherlands)

    Gerosa, Luca; Kochanowski, Karl; Heinemann, Matthias; Sauer, Uwe

    Gene expression is regulated by specific transcriptional circuits but also by the global expression machinery as a function of growth. Simultaneous specific and global regulation thus constitutes an additional-but often neglected-layer of complexity in gene expression. Here, we develop an

  15. Gonad Transcriptome Analysis of the Pacific Oyster Crassostrea gigas Identifies Potential Genes Regulating the Sex Determination and Differentiation Process.

    Science.gov (United States)

    Yue, Chenyang; Li, Qi; Yu, Hong

    2018-04-01

    The Pacific oyster Crassostrea gigas is a commercially important bivalve in aquaculture worldwide. C. gigas has a fascinating sexual reproduction system consisting of dioecism, sex change, and occasional hermaphroditism, while knowledge of the molecular mechanisms of sex determination and differentiation is still limited. In this study, the transcriptomes of male and female gonads at different gametogenesis stages were characterized by RNA-seq. Hierarchical clustering based on genes differentially expressed revealed that 1269 genes were expressed specifically in female gonads and 817 genes were expressed increasingly over the course of spermatogenesis. Besides, we identified two and one gene modules related to female and male gonad development, respectively, using weighted gene correlation network analysis (WGCNA). Interestingly, GO and KEGG enrichment analysis showed that neurotransmitter-related terms were significantly enriched in genes related to ovary development, suggesting that the neurotransmitters were likely to regulate female sex differentiation. In addition, two hub genes related to testis development, lncRNA LOC105321313 and Cg-Sh3kbp1, and one hub gene related to ovary development, Cg-Malrd1-like, were firstly investigated. This study points out the role of neurotransmitter and non-coding RNA regulation during gonad development and produces lists of novel relevant candidate genes for further studies. All of these provided valuable information to understand the molecular mechanisms of C. gigas sex determination and differentiation.

  16. Non-selective regulation of peroxide and superoxide resistance genes by PerR in Campylobacter jejuni

    Directory of Open Access Journals (Sweden)

    Jong-Chul eKim

    2015-02-01

    Full Text Available Campylobacter jejuni is an important foodborne pathogen. The molecular mechanisms for the regulation of oxidative stress resistance have not yet been understood fully in this bacterium. In this study, we investigated how PerR (peroxide stress regulator modulates the transcriptional regulation of both peroxide and superoxide resistance genes in C. jejuni, particularly under oxidative stress conditions. The transcriptional levels of ahpC, katA, and sodB were substantially increased by aeration and oxidant exposure. Interestingly, a perR mutation completely abrogated the transcriptional response of ahpC, katA and sodB to oxidants. Furthermore, we demonstrated that perR transcription was reduced by aeration and oxidant exposure. In contrast to the unique role of PerR homologs in peroxide stress regulation in other bacteria, interestingly, C. jejuni PerR directly regulates the transcription of sodB, the most important gene in superoxide defense, as evidenced by the alteration of sodB transcription by the perR mutation and direct binding of rPerR to the sodB promoter. In addition, we also observed notable morphological changes in C. jejuni from spiral rods to coccoid morphology under aerobic conditions. Based on the intracellular ATP levels, C. jejuni entered a viable-but-non-culturable state under aerobic conditions. These findings clearly demonstrate that C. jejuni possesses a unique regulatory mechanism of oxidative stress defense that does not specifically distinguish between peroxide and superoxide defense, and PerR plays a pivotal role in this non-selective regulation of oxidative stress resistance in C. jejuni.

  17. Presenilins Regulate Neurotrypsin Gene Expression and Neurotrypsin-dependent Agrin Cleavage via Cyclic AMP Response Element-binding Protein (CREB) Modulation*

    Science.gov (United States)

    Almenar-Queralt, Angels; Kim, Sonia N.; Benner, Christopher; Herrera, Cheryl M.; Kang, David E.; Garcia-Bassets, Ivan; Goldstein, Lawrence S. B.

    2013-01-01

    Presenilins, the catalytic components of the γ-secretase complex, are upstream regulators of multiple cellular pathways via regulation of gene transcription. However, the underlying mechanisms and the genes regulated by these pathways are poorly characterized. In this study, we identify Tequila and its mammalian ortholog Prss12 as genes negatively regulated by presenilins in Drosophila larval brains and mouse embryonic fibroblasts, respectively. Prss12 encodes the serine protease neurotrypsin, which cleaves the heparan sulfate proteoglycan agrin. Altered neurotrypsin activity causes serious synaptic and cognitive defects; despite this, the molecular processes regulating neurotrypsin expression and activity are poorly understood. Using γ-secretase drug inhibitors and presenilin mutants in mouse embryonic fibroblasts, we found that a mature γ-secretase complex was required to repress neurotrypsin expression and agrin cleavage. We also determined that PSEN1 endoproteolysis or processing of well known γ-secretase substrates was not essential for this process. At the transcriptional level, PSEN1/2 removal induced cyclic AMP response element-binding protein (CREB)/CREB-binding protein binding, accumulation of activating histone marks at the neurotrypsin promoter, and neurotrypsin transcriptional and functional up-regulation that was dependent on GSK3 activity. Upon PSEN1/2 reintroduction, this active epigenetic state was replaced by a methyl CpG-binding protein 2 (MeCP2)-containing repressive state and reduced neurotrypsin expression. Genome-wide analysis revealed hundreds of other mouse promoters in which CREB binding is similarly modulated by the presence/absence of presenilins. Our study thus identifies Tequila and neurotrypsin as new genes repressed by presenilins and reveals a novel mechanism used by presenilins to modulate CREB signaling based on controlling CREB recruitment. PMID:24145027

  18. Presenilins regulate neurotrypsin gene expression and neurotrypsin-dependent agrin cleavage via cyclic AMP response element-binding protein (CREB) modulation.

    Science.gov (United States)

    Almenar-Queralt, Angels; Kim, Sonia N; Benner, Christopher; Herrera, Cheryl M; Kang, David E; Garcia-Bassets, Ivan; Goldstein, Lawrence S B

    2013-12-06

    Presenilins, the catalytic components of the γ-secretase complex, are upstream regulators of multiple cellular pathways via regulation of gene transcription. However, the underlying mechanisms and the genes regulated by these pathways are poorly characterized. In this study, we identify Tequila and its mammalian ortholog Prss12 as genes negatively regulated by presenilins in Drosophila larval brains and mouse embryonic fibroblasts, respectively. Prss12 encodes the serine protease neurotrypsin, which cleaves the heparan sulfate proteoglycan agrin. Altered neurotrypsin activity causes serious synaptic and cognitive defects; despite this, the molecular processes regulating neurotrypsin expression and activity are poorly understood. Using γ-secretase drug inhibitors and presenilin mutants in mouse embryonic fibroblasts, we found that a mature γ-secretase complex was required to repress neurotrypsin expression and agrin cleavage. We also determined that PSEN1 endoproteolysis or processing of well known γ-secretase substrates was not essential for this process. At the transcriptional level, PSEN1/2 removal induced cyclic AMP response element-binding protein (CREB)/CREB-binding protein binding, accumulation of activating histone marks at the neurotrypsin promoter, and neurotrypsin transcriptional and functional up-regulation that was dependent on GSK3 activity. Upon PSEN1/2 reintroduction, this active epigenetic state was replaced by a methyl CpG-binding protein 2 (MeCP2)-containing repressive state and reduced neurotrypsin expression. Genome-wide analysis revealed hundreds of other mouse promoters in which CREB binding is similarly modulated by the presence/absence of presenilins. Our study thus identifies Tequila and neurotrypsin as new genes repressed by presenilins and reveals a novel mechanism used by presenilins to modulate CREB signaling based on controlling CREB recruitment.

  19. Intrinsic noise of microRNA-regulated genes and the ceRNA hypothesis.

    Directory of Open Access Journals (Sweden)

    Javad Noorbakhsh

    Full Text Available MicroRNAs are small noncoding RNAs that regulate genes post-transciptionally by binding and degrading target eukaryotic mRNAs. We use a quantitative model to study gene regulation by inhibitory microRNAs and compare it to gene regulation by prokaryotic small non-coding RNAs (sRNAs. Our model uses a combination of analytic techniques as well as computational simulations to calculate the mean-expression and noise profiles of genes regulated by both microRNAs and sRNAs. We find that despite very different molecular machinery and modes of action (catalytic vs stoichiometric, the mean expression levels and noise profiles of microRNA-regulated genes are almost identical to genes regulated by prokaryotic sRNAs. This behavior is extremely robust and persists across a wide range of biologically relevant parameters. We extend our model to study crosstalk between multiple mRNAs that are regulated by a single microRNA and show that noise is a sensitive measure of microRNA-mediated interaction between mRNAs. We conclude by discussing possible experimental strategies for uncovering the microRNA-mRNA interactions and testing the competing endogenous RNA (ceRNA hypothesis.

  20. Mining the 30UTR of Autism-implicated Genes for SNPs Perturbing MicroRNA Regulation

    Institute of Scientific and Technical Information of China (English)

    Varadharajan Vaishnavi; Mayakannan Manikandan; Arasambattu Kannan Munirajan

    2014-01-01

    Autism spectrum disorder (ASD) refers to a group of childhood neurodevelopmental dis-orders with polygenic etiology. The expression of many genes implicated in ASD is tightly regulated by various factors including microRNAs (miRNAs), a class of noncoding RNAs 22 nucleotides in length that function to suppress translation by pairing with‘miRNA recognition elements’ (MREs) present in the 30untranslated region (30UTR) of target mRNAs. This emphasizes the role played by miRNAs in regulating neurogenesis, brain development and differentiation and hence any perturba-tions in this regulatory mechanism might affect these processes as well. Recently, single nucleotide polymorphisms (SNPs) present within 30UTRs of mRNAs have been shown to modulate existing MREs or even create new MREs. Therefore, we hypothesized that SNPs perturbing miRNA-medi-ated gene regulation might lead to aberrant expression of autism-implicated genes, thus resulting in disease predisposition or pathogenesis in at least a subpopulation of ASD individuals. We developed a systematic computational pipeline that integrates data from well-established databases. By following a stringent selection criterion, we identified 9 MRE-modulating SNPs and another 12 MRE-creating SNPs in the 30UTR of autism-implicated genes. These high-confidence candidate SNPs may play roles in ASD and hence would be valuable for further functional validation.

  1. Poly-γ-glutamic Acid Synthesis, Gene Regulation, Phylogenetic Relationships, and Role in Fermentation

    Science.gov (United States)

    Hsueh, Yi-Huang; Huang, Kai-Yao; Kunene, Sikhumbuzo Charles; Lee, Tzong-Yi

    2017-01-01

    Poly-γ-glutamic acid (γ-PGA) is a biodegradable biopolymer produced by several bacteria, including Bacillus subtilis and other Bacillus species; it has good biocompatibility, is non-toxic, and has various potential biological applications in the food, pharmaceutical, cosmetic, and other industries. In this review, we have described the mechanisms of γ-PGA synthesis and gene regulation, its role in fermentation, and the phylogenetic relationships among various pgsBCAE, a biosynthesis gene cluster of γ-PGA, and pgdS, a degradation gene of γ-PGA. We also discuss potential applications of γ-PGA and highlight the established genetic recombinant bacterial strains that produce high levels of γ-PGA, which can be useful for large-scale γ-PGA production. PMID:29215550

  2. Poly-γ-glutamic Acid Synthesis, Gene Regulation, Phylogenetic Relationships, and Role in Fermentation

    Directory of Open Access Journals (Sweden)

    Yi-Huang Hsueh

    2017-12-01

    Full Text Available Poly-γ-glutamic acid (γ-PGA is a biodegradable biopolymer produced by several bacteria, including Bacillus subtilis and other Bacillus species; it has good biocompatibility, is non-toxic, and has various potential biological applications in the food, pharmaceutical, cosmetic, and other industries. In this review, we have described the mechanisms of γ-PGA synthesis and gene regulation, its role in fermentation, and the phylogenetic relationships among various pgsBCAE, a biosynthesis gene cluster of γ-PGA, and pgdS, a degradation gene of γ-PGA. We also discuss potential applications of γ-PGA and highlight the established genetic recombinant bacterial strains that produce high levels of γ-PGA, which can be useful for large-scale γ-PGA production.

  3. Pilocarpine-induced seizures trigger differential regulation of microRNA-stability related genes in rat hippocampal neurons.

    Science.gov (United States)

    Kinjo, Erika R; Higa, Guilherme S V; Santos, Bianca A; de Sousa, Erica; Damico, Marcio V; Walter, Lais T; Morya, Edgard; Valle, Angela C; Britto, Luiz R G; Kihara, Alexandre H

    2016-02-12

    Epileptogenesis in the temporal lobe elicits regulation of gene expression and protein translation, leading to reorganization of neuronal networks. In this process, miRNAs were described as being regulated in a cell-specific manner, although mechanistics of miRNAs activity are poorly understood. The specificity of miRNAs on their target genes depends on their intracellular concentration, reflecting the balance of biosynthesis and degradation. Herein, we confirmed that pilocarpine application promptly (PAPD4 gene expression in the hippocampus, two genes related to miRNA degradation and stability, respectively. Moreover, SE decreased the number of XRN2-positive cells in the hilus, while reduced the number of PAPD4-positive cells in CA1. XRN2 and PAPD4 levels did not change in calretinin- and CamKII-positive cells, although it was possible to determine that PAPD4, but not XRN2, was upregulated in parvalbumin-positive cells, revealing that SE induction unbalances the accumulation of these functional-opposed proteins in inhibitory interneurons that directly innervate distinct domains of pyramidal cells. Therefore, we were able to disclose a possible mechanism underlying the differential regulation of miRNAs in specific neurons during epileptogenesis.

  4. Gene regulation by growth factors

    International Nuclear Information System (INIS)

    Metz, R.; Gorham, J.; Siegfried, Z.; Leonard, D.; Gizang-Ginsberg, E.; Thompson, M.A.; Lawe, D.; Kouzarides, T.; Vosatka, R.; MacGregor, D.; Jamal, S.; Greenberg, M.E.; Ziff, E.B.

    1988-01-01

    To coordinate the proliferation and differentiation of diverse cell types, cells of higher eukaryotes communicate through the release of growth factors. These peptides interact with specific transmembrane receptors of other cells and thereby generate intracellular messengers. The many changes in cellular physiology and activity that can be induced by growth factors imply that growth factor-induced signals can reach the nucleus and control gene activity. Moreover, current evidence also suggests that unregulated signaling along such pathways can induce aberrant proliferation and the formation of tumors. This paper reviews investigations of growth factor regulation of gene expression conducted by the authors' laboratory

  5. Signal Transduction Pathways that Regulate CAB Gene Expression

    Energy Technology Data Exchange (ETDEWEB)

    Chory, Joanne

    2004-12-31

    The process of chloroplast differentiation, involves the coordinate regulation of many nuclear and chloroplast genes. The cues for the initiation of this developmental program are both extrinsic (e.g., light) and intrinsic (cell-type and plastid signals). During this project period, we utilized a molecular genetic approach to select for Arabidopsis mutants that did not respond properly to environmental light conditions, as well as mutants that were unable to perceive plastid damage. These latter mutants, called gun mutants, define two retrograde signaling pathways that regulate nuclear gene expression in response to chloroplasts. A major finding was to identify a signal from chloroplasts that regulates nuclear gene transcription. This signal is the build-up of Mg-Protoporphyrin IX, a key intermediate of the chlorophyll biosynthetic pathway. The signaling pathways downstream of this signal are currently being studied. Completion of this project has provided an increased understanding of the input signals and retrograde signaling pathways that control nuclear gene expression in response to the functional state of chloroplasts. These studies should ultimately influence our abilities to manipulate plant growth and development, and will aid in the understanding of the developmental control of photosynthesis.

  6. Signal Transduction Pathways that Regulate CAB Gene Expression

    Energy Technology Data Exchange (ETDEWEB)

    Chory, Joanne

    2006-01-16

    The process of chloroplast differentiation, involves the coordinate regulation of many nuclear and chloroplast genes. The cues for the initiation of this developmental program are both extrinsic (e.g., light) and intrinsic (cell-type and plastid signals). During this project period, we utilized a molecular genetic approach to select for Arabidopsis mutants that did not respond properly to environmental light conditions, as well as mutants that were unable to perceive plastid damage. These latter mutants, called gun mutants, define two retrograde signaling pathways that regulate nuclear gene expression in response to chloroplasts. A major finding was to identify a signal from chloroplasts that regulates nuclear gene transcription. This signal is the build-up of Mg-Protoporphyrin IX, a key intermediate of the chlorophyll biosynthetic pathway. The signaling pathways downstream of this signal are currently being studied. Completion of this project has provided an increased understanding of the input signals and retrograde signaling pathways that control nuclear gene expression in response to the functional state of chloroplasts. These studies should ultimately influence our abilities to manipulate plant growth and development, and will aid in the understanding of the developmental control of photosynthesis.

  7. Ethylene regulation of carotenoid accumulation and carotenogenic gene expression in colour-contrasted apricot varieties (Prunus armeniaca).

    Science.gov (United States)

    Marty, I; Bureau, S; Sarkissian, G; Gouble, B; Audergon, J M; Albagnac, G

    2005-07-01

    In order to elucidate the regulation mechanisms of carotenoid biosynthesis in apricot fruit (Prunus armeniaca), carotenoid content and carotenogenic gene expression were analysed as a function of ethylene production in two colour-contrasted apricot varieties. Fruits from Goldrich (GO) were orange, while Moniqui (MO) fruits were white. Biochemical analysis showed that GO accumulated precursors of the uncoloured carotenoids, phytoene and phytofluene, and the coloured carotenoid, beta-carotene, while Moniqui (MO) fruits only accumulated phytoene and phytofluene but no beta-carotene. Physiological analysis showed that ethylene production was clearly weaker in GO than in MO. Carotenogenic gene expression (Psy-1, Pds, and Zds) and carotenoid accumulation were measured with respect to ethylene production which is initiated in mature green fruits at the onset of the climacteric stage or following exo-ethylene or ethylene-receptor inhibitor (1-MCP) treatments. Results showed (i) systematically stronger expression of carotenogenic genes in white than in orange fruits, even for the Zds gene involved in beta-carotene synthesis that is undetectable in MO fruits, (ii) ethylene-induction of Psy-1 and Pds gene expression and the corresponding product accumulation, (iii) Zds gene expression and beta-carotene production independent of ethylene. The different results obtained at physiological, biochemical, and molecular levels revealed the complex regulation of carotenoid biosynthesis in apricots and led to suggestions regarding some possible ways to regulate it.

  8. Mechanisms of gap gene expression canalization in the Drosophila blastoderm

    Directory of Open Access Journals (Sweden)

    Samsonova Maria G

    2011-07-01

    Full Text Available Abstract Background Extensive variation in early gap gene expression in the Drosophila blastoderm is reduced over time because of gap gene cross regulation. This phenomenon is a manifestation of canalization, the ability of an organism to produce a consistent phenotype despite variations in genotype or environment. The canalization of gap gene expression can be understood as arising from the actions of attractors in the gap gene dynamical system. Results In order to better understand the processes of developmental robustness and canalization in the early Drosophila embryo, we investigated the dynamical effects of varying spatial profiles of Bicoid protein concentration on the formation of the expression border of the gap gene hunchback. At several positions on the anterior-posterior axis of the embryo, we analyzed attractors and their basins of attraction in a dynamical model describing expression of four gap genes with the Bicoid concentration profile accounted as a given input in the model equations. This model was tested against a family of Bicoid gradients obtained from individual embryos. These gradients were normalized by two independent methods, which are based on distinct biological hypotheses and provide different magnitudes for Bicoid spatial variability. We showed how the border formation is dictated by the biological initial conditions (the concentration gradient of maternal Hunchback protein being attracted to specific attracting sets in a local vicinity of the border. Different types of these attracting sets (point attractors or one dimensional attracting manifolds define several possible mechanisms of border formation. The hunchback border formation is associated with intersection of the spatial gradient of the maternal Hunchback protein and a boundary between the attraction basins of two different point attractors. We demonstrated how the positional variability for hunchback is related to the corresponding variability of the

  9. The evolution of Msx gene function: expression and regulation of a sea urchin Msx class homeobox gene.

    Science.gov (United States)

    Dobias, S L; Ma, L; Wu, H; Bell, J R; Maxson, R

    1997-01-01

    Msx- class homeobox genes, characterized by a distinct and highly conserved homeodomain, have been identified in a wide variety of metazoans from vertebrates to coelenterates. Although there is evidence that they participate in inductive tissue interactions that underlie vertebrate organogenesis, including those that pattern the neural crest, there is little information about their function in simple deuterostomes. Both to learn more about the ancient function of Msx genes, and to shed light on the evolution of developmental mechanisms within the lineage that gave rise to vertebrates, we have isolated and characterized Msx genes from ascidians and echinoderms. Here we describe the sequence and expression of a sea urchin (Strongylocentrotus purpouratus) Msx gene whose homeodomain is very similar to that of vertebrate Msx2. This gene, designated SpMsx, is first expressed in blastula stage embryos, apparently in a non-localized manner. Subsequently, during the early phases of gastrulation, SpMsx transcripts are expressed intensely in the invaginating archenteron and secondary mesenchyme, and at reduced levels in the ectoderm. In the latter part of gastrulation, SpMsx transcripts are concentrated in the oral ectoderm and gut, and continue to be expressed at those sites through the remainder of embryonic development. That vertebrate Msx genes are regulated by inductive tissue interactions and growth factors suggested to us that the restriction of SpMsx gene expression to the oral ectoderm and derivatives of the vegetal plate might similarly be regulated by the series of signaling events that pattern these embryonic territories. As a first test of this hypothesis, we examined the influence of exogastrulation and cell-dissociation on SpMsx gene expression. In experimentally-induced exogastrulae, SpMsx transcripts were distributed normally in the oral ectoderm, evaginated gut, and secondary mesenchyme. However, when embryos were dissociated into their component cells, Sp

  10. Co-Transcriptional Folding and Regulation Mechanisms of Riboswitches

    Directory of Open Access Journals (Sweden)

    Sha Gong

    2017-07-01

    Full Text Available Riboswitches are genetic control elements within non-coding regions of mRNA. These self-regulatory elements have been found to sense a range of small metabolites, ions, and other physical signals to exert regulatory control of transcription, translation, and splicing. To date, more than a dozen riboswitch classes have been characterized that vary widely in size and secondary structure. Extensive experiments and theoretical studies have made great strides in understanding the general structures, genetic mechanisms, and regulatory activities of individual riboswitches. As the ligand-dependent co-transcriptional folding and unfolding dynamics of riboswitches are the key determinant of gene expression, it is important to investigate the thermodynamics and kinetics of riboswitches both in the presence and absence of metabolites under the transcription. This review will provide a brief summary of the studies about the regulation mechanisms of the pbuE, SMK, yitJ, and metF riboswitches based on the ligand-dependent co-transcriptional folding of the riboswitches.

  11. Mechanisms of regulation in the interferon factor 3 (IRF- 3) pathway

    OpenAIRE

    Limmer, Kirsten

    2008-01-01

    Interferon regulatory factor 3 (IRF-3) plays a critical role in the host cell response to both bacterial and viral infection. IRF-3 is activated by Toll-like receptors (TLRs) and cytoplasmic nucleic acid sensors, and serves to upregulate interferon beta and interferon stimulated genes (ISGs), thereby providing a quick and effective response to infection. In this work, two novel mechanisms of regulation in the IRF-3 pathway are revealed. The first part of this thesis work shows that upon bindi...

  12. N-Myc regulates expression of pluripotency genes in neuroblastoma including lif, klf2, klf4, and lin28b.

    Directory of Open Access Journals (Sweden)

    Rebecca Cotterman

    2009-06-01

    Full Text Available myc genes are best known for causing tumors when overexpressed, but recent studies suggest endogenous myc regulates pluripotency and self-renewal of stem cells. For example, N-myc is associated with a number of tumors including neuroblastoma, but also plays a central role in the function of normal neural stem and precursor cells (NSC. Both c- and N-myc also enhance the production of induced pluripotent stem cells (iPSC and are linked to neural tumor stem cells. The mechanisms by which myc regulates normal and neoplastic stem-related functions remain largely open questions. Here from a global, unbiased search for N-Myc bound genes using ChIP-chip assays in neuroblastoma, we found lif as a putative N-Myc bound gene with a number of strong N-Myc binding peaks in the promoter region enriched for E-boxes. Amongst putative N-Myc target genes in expression microarray studies in neuroblastoma we also found lif and three additional important embryonic stem cell (ESC-related factors that are linked to production of iPSC: klf2, klf4, and lin28b. To examine the regulation of these genes by N-Myc, we measured their expression using neuroblastoma cells that contain a Tet-regulatable N-myc transgene (TET21N as well as NSC with a nestin-cre driven N-myc knockout. N-myc levels closely correlated with the expression of all of these genes in neuroblastoma and all but lif in NSC. Direct ChIP assays also indicate that N-Myc directly binds the lif promoter. N-Myc regulates trimethylation of lysine 4 of histone H3 in the promoter of lif and possibly in the promoters of several other stem-related genes. Together these findings indicate that N-Myc regulates overlapping stem-related gene expression programs in neuroblastoma and NSC, supporting a novel model by which amplification of the N-myc gene may drive formation of neuroblastoma. They also suggest mechanisms by which Myc proteins more generally contribute to maintenance of pluripotency and self-renewal of ESC as

  13. Silicon Regulates Potential Genes Involved in Major Physiological Processes in Plants to Combat Stress

    Directory of Open Access Journals (Sweden)

    Abinaya Manivannan

    2017-08-01

    Full Text Available Silicon (Si, the quasi-essential element occurs as the second most abundant element in the earth's crust. Biological importance of Si in plant kingdom has become inevitable particularly under stressed environment. In general, plants are classified as high, medium, and low silicon accumulators based on the ability of roots to absorb Si. The uptake of Si directly influence the positive effects attributed to the plant but Si supplementation proves to mitigate stress and recover plant growth even in low accumulating plants like tomato. The application of Si in soil as well as soil-less cultivation systems have resulted in the enhancement of quantitative and qualitative traits of plants even under stressed environment. Silicon possesses several mechanisms to regulate the physiological, biochemical, and antioxidant metabolism in plants to combat abiotic and biotic stresses. Nevertheless, very few reports are available on the aspect of Si-mediated molecular regulation of genes with potential role in stress tolerance. The recent advancements in the era of genomics and transcriptomics have opened an avenue for the determination of molecular rationale associated with the Si amendment to the stress alleviation in plants. Therefore, the present endeavor has attempted to describe the recent discoveries related to the regulation of vital genes involved in photosynthesis, transcription regulation, defense, water transport, polyamine synthesis, and housekeeping genes during abiotic and biotic stress alleviation by Si. Furthermore, an overview of Si-mediated modulation of multiple genes involved in stress response pathways such as phenylpropanoid pathway, jasmonic acid pathway, ABA-dependent or independent regulatory pathway have been discussed in this review.

  14. Identification of mechanosensitive genes during skeletal development: alteration of genes associated with cytoskeletal rearrangement and cell signalling pathways.

    Science.gov (United States)

    Rolfe, Rebecca A; Nowlan, Niamh C; Kenny, Elaine M; Cormican, Paul; Morris, Derek W; Prendergast, Patrick J; Kelly, Daniel; Murphy, Paula

    2014-01-20

    Mechanical stimulation is necessary for regulating correct formation of the skeleton. Here we test the hypothesis that mechanical stimulation of the embryonic skeletal system impacts expression levels of genes implicated in developmentally important signalling pathways in a genome wide approach. We use a mutant mouse model with altered mechanical stimulation due to the absence of limb skeletal muscle (Splotch-delayed) where muscle-less embryos show specific defects in skeletal elements including delayed ossification, changes in the size and shape of cartilage rudiments and joint fusion. We used Microarray and RNA sequencing analysis tools to identify differentially expressed genes between muscle-less and control embryonic (TS23) humerus tissue. We found that 680 independent genes were down-regulated and 452 genes up-regulated in humeri from muscle-less Spd embryos compared to littermate controls (at least 2-fold; corrected p-value ≤0.05). We analysed the resulting differentially expressed gene sets using Gene Ontology annotations to identify significant enrichment of genes associated with particular biological processes, showing that removal of mechanical stimuli from muscle contractions affected genes associated with development and differentiation, cytoskeletal architecture and cell signalling. Among cell signalling pathways, the most strongly disturbed was Wnt signalling, with 34 genes including 19 pathway target genes affected. Spatial gene expression analysis showed that both a Wnt ligand encoding gene (Wnt4) and a pathway antagonist (Sfrp2) are up-regulated specifically in the developing joint line, while the expression of a Wnt target gene, Cd44, is no longer detectable in muscle-less embryos. The identification of 84 genes associated with the cytoskeleton that are down-regulated in the absence of muscle indicates a number of candidate genes that are both mechanoresponsive and potentially involved in mechanotransduction, converting a mechanical stimulus

  15. Regulation of the ITGA2 gene by epigenetic mechanisms in prostate cancer.

    Science.gov (United States)

    Chin, Suyin Paulynn; Marthick, James R; West, Alison C; Short, Annabel K; Chuckowree, Jyoti; Polanowski, Andrea M; Thomson, Russell J; Holloway, Adele F; Dickinson, Joanne L

    2015-05-01

    Integrin alpha2 beta1 (α2 β1 ) plays an integral role in tumour cell invasion, metastasis and angiogenesis, and altered expression of the receptor has been linked to tumour prognosis in several solid tumours. However, the relationship is complex, with both increased and decreased expression associated with different stages of tumour metastases in several tumour types. The ITGA2 gene, which codes for the α2 subunit, was examined to investigate whether a large CpG island associated with its promoter region is involved in the differential expression of ITGA2 observed in prostate cancer. Bisulphite sequencing of the ITGA2 promoter was used to assess methylation in formalin-fixed paraffin-embedded (FFPE) prostate tumour specimens and prostate cancer cell lines, PC3, 22Rv1 and LNCaP. Changes in ITGA2 mRNA expression were measured using quantitative PCR. ITGA2 functionality was interrogated using cell migration scratch assays and siRNA knockdown experiments. Bisulphite sequencing revealed strikingly decreased methylation at key CpG sites within the promoter of tumour samples, when compared with normal prostate tissue. Altered methylation of this CpG island is also associated with differences in expression in the non-invasive LNCaP, and the highly metastatic PC3 and 22Rv1 prostate cancer cell lines. Further bisulphite sequencing confirmed that selected CpGs were highly methylated in LNCaP cells, whilst only low levels of methylation were observed in PC3 and 22Rv1 cells, correlating with ITGA2 transcript levels. Examination of the increased expression of ITGA2 was shown to influence migratory potential via scratch assay in PC3, 22Rv1 and LNCaP cells, and was confirmed by siRNA knockdown experiments. Taken together, our data supports the assertion that epigenetic modification of the ITGA2 promoter is a mechanism by which ITGA2 expression is regulated. © 2015 Wiley Periodicals, Inc.

  16. RNAi-Based Identification of Gene-Specific Nuclear Cofactor Networks Regulating Interleukin-1 Target Genes

    Directory of Open Access Journals (Sweden)

    Johanna Meier-Soelch

    2018-04-01

    Full Text Available The potent proinflammatory cytokine interleukin (IL-1 triggers gene expression through the NF-κB signaling pathway. Here, we investigated the cofactor requirements of strongly regulated IL-1 target genes whose expression is impaired in p65 NF-κB-deficient murine embryonic fibroblasts. By two independent small-hairpin (shRNA screens, we examined 170 genes annotated to encode nuclear cofactors for their role in Cxcl2 mRNA expression and identified 22 factors that modulated basal or IL-1-inducible Cxcl2 levels. The functions of 16 of these factors were validated for Cxcl2 and further analyzed for their role in regulation of 10 additional IL-1 target genes by RT-qPCR. These data reveal that each inducible gene has its own (quantitative requirement of cofactors to maintain basal levels and to respond to IL-1. Twelve factors (Epc1, H2afz, Kdm2b, Kdm6a, Mbd3, Mta2, Phf21a, Ruvbl1, Sin3b, Suv420h1, Taf1, and Ube3a have not been previously implicated in inflammatory cytokine functions. Bioinformatics analysis indicates that they are components of complex nuclear protein networks that regulate chromatin functions and gene transcription. Collectively, these data suggest that downstream from the essential NF-κB signal each cytokine-inducible target gene has further subtle requirements for individual sets of nuclear cofactors that shape its transcriptional activation profile.

  17. Molecular mechanisms of curcumin action: gene expression.

    Science.gov (United States)

    Shishodia, Shishir

    2013-01-01

    Curcumin derived from the tropical plant Curcuma longa has a long history of use as a dietary agent, food preservative, and in traditional Asian medicine. It has been used for centuries to treat biliary disorders, anorexia, cough, diabetic wounds, hepatic disorders, rheumatism, and sinusitis. The preventive and therapeutic properties of curcumin are associated with its antioxidant, anti-inflammatory, and anticancer properties. Extensive research over several decades has attempted to identify the molecular mechanisms of curcumin action. Curcumin modulates numerous molecular targets by altering their gene expression, signaling pathways, or through direct interaction. Curcumin regulates the expression of inflammatory cytokines (e.g., TNF, IL-1), growth factors (e.g., VEGF, EGF, FGF), growth factor receptors (e.g., EGFR, HER-2, AR), enzymes (e.g., COX-2, LOX, MMP9, MAPK, mTOR, Akt), adhesion molecules (e.g., ELAM-1, ICAM-1, VCAM-1), apoptosis related proteins (e.g., Bcl-2, caspases, DR, Fas), and cell cycle proteins (e.g., cyclin D1). Curcumin modulates the activity of several transcription factors (e.g., NF-κB, AP-1, STAT) and their signaling pathways. Based on its ability to affect multiple targets, curcumin has the potential for the prevention and treatment of various diseases including cancers, arthritis, allergies, atherosclerosis, aging, neurodegenerative disease, hepatic disorders, obesity, diabetes, psoriasis, and autoimmune diseases. This review summarizes the molecular mechanisms of modulation of gene expression by curcumin. Copyright © 2012 International Union of Biochemistry and Molecular Biology, Inc.

  18. Regulation of disease-responsive genes mediated by epigenetic factors: interaction of Arabidopsis-Pseudomonas.

    Science.gov (United States)

    De-La-Peña, Clelia; Rangel-Cano, Alicia; Alvarez-Venegas, Raúl

    2012-05-01

    Genes in eukaryotic organisms function within the context of chromatin, and the mechanisms that modulate the structure of chromatin are defined as epigenetic. In Arabidopsis, pathogen infection induces the expression of at least one histone deacetylase, suggesting that histone acetylation/deacetylation has an important role in the pathogenic response in plants. How/whether histone methylation affects gene response to pathogen infection is unknown. To gain a better understanding of the epigenetic mechanisms regulating the interaction between Pseudomonas syringae and Arabidopsis thaliana, we analysed three different Arabidopsis ash1-related (absent, small or homeotic discs 1) mutants. We found that the loss of function of ASHH2 and ASHR1 resulted in faster hypersensitive responses (HRs) to both mutant (hrpA) and pathogenic (DC3000) strains of P. syringae, whereas control (Col-0) and ashr3 mutants appeared to be more resistant to the infection after 2 days. Furthermore, we showed that, in the ashr3 background, the PR1 gene (PATHOGENESIS-RELATED GENE 1) displayed the highest expression levels on infection with DC3000, correlating with increased resistance against this pathogen. Our results show that, in both the ashr1 and ashh2 backgrounds, the histone H3 lysine 4 dimethylation (H3K4me2) levels decreased at the promoter region of PR1 on infection with the DC3000 strain, suggesting that an epigenetically regulated PR1 expression is involved in the plant defence. Our results suggest that histone methylation in response to pathogen infection may be a critical component in the signalling and defence processes occurring between plants and microbes. © 2011 THE AUTHORS. MOLECULAR PLANT PATHOLOGY © 2011 BSPP AND BLACKWELL PUBLISHING LTD.

  19. Temporal gene expression profiling reveals CEBPD as a candidate regulator of brain disease in prosaposin deficient mice

    Directory of Open Access Journals (Sweden)

    Ran Huimin

    2008-08-01

    Full Text Available Abstract Background Prosaposin encodes, in tandem, four small acidic activator proteins (saposins with specificities for glycosphingolipid (GSL hydrolases in lysosomes. Extensive GSL storage occurs in various central nervous system regions in mammalian prosaposin deficiencies. Results Our hypomorphic prosaposin deficient mouse, PS-NA, exhibited 45% WT levels of brain saposins and showed neuropathology that included neuronal GSL storage and Purkinje cell loss. Impairment of neuronal function was observed as early as 6 wks as demonstrated by the narrow bridges tests. Temporal transcriptome microarray analyses of brain tissues were conducted with mRNA from three prosaposin deficient mouse models: PS-NA, prosaposin null (PS-/- and a V394L/V394L glucocerebrosidase mutation combined with PS-NA (4L/PS-NA. Gene expression alterations in cerebrum and cerebellum were detectable at birth preceding the neuronal deficits. Differentially expressed genes encompassed a broad spectrum of cellular functions. The number of down-regulated genes was constant, but up-regulated gene numbers increased with age. CCAAT/enhancer-binding protein delta (CEBPD was the only up-regulated transcription factor in these two brain regions of all three models. Network analyses revealed that CEBPD has functional relationships with genes in transcription, pro-inflammation, cell death, binding, myelin and transport. Conclusion These results show that: 1 Regionally specific gene expression abnormalities precede the brain histological and neuronal function changes, 2 Temporal gene expression profiles provide insights into the molecular mechanism during the GSL storage disease course, and 3 CEBPD is a candidate regulator of brain disease in prosaposin deficiency to participate in modulating disease acceleration or progression.

  20. Regulatory RNAs in Bacillus subtilis : a Gram-Positive Perspective on Bacterial RNA-Mediated Regulation of Gene Expression

    NARCIS (Netherlands)

    Mars, Ruben A. T.; Nicolas, Pierre; Denham, Emma L.; van Dijl, Jan Maarten

    2016-01-01

    Bacteria can employ widely diverse RNA molecules to regulate their gene expression. Such molecules include trans-acting small regulatory RNAs, antisense RNAs, and a variety of transcriptional attenuation mechanisms in the 5= untranslated region. Thus far, most regulatory RNA research has focused on

  1. Regulation of the Drosophila Enhancer of split and invected-engrailed gene complexes by sister chromatid cohesion proteins.

    Directory of Open Access Journals (Sweden)

    Cheri A Schaaf

    2009-07-01

    Full Text Available The cohesin protein complex was first recognized for holding sister chromatids together and ensuring proper chromosome segregation. Cohesin also regulates gene expression, but the mechanisms are unknown. Cohesin associates preferentially with active genes, and is generally absent from regions in which histone H3 is methylated by the Enhancer of zeste [E(z] Polycomb group silencing protein. Here we show that transcription is hypersensitive to cohesin levels in two exceptional cases where cohesin and the E(z-mediated histone methylation simultaneously coat the entire Enhancer of split and invected-engrailed gene complexes in cells derived from Drosophila central nervous system. These gene complexes are modestly transcribed, and produce seven of the twelve transcripts that increase the most with cohesin knockdown genome-wide. Cohesin mutations alter eye development in the same manner as increased Enhancer of split activity, suggesting that similar regulation occurs in vivo. We propose that cohesin helps restrain transcription of these gene complexes, and that deregulation of similarly cohesin-hypersensitive genes may underlie developmental deficits in Cornelia de Lange syndrome.

  2. Estrogen regulation of microcephaly genes and evolution of brain sexual dimorphism in primates.

    Science.gov (United States)

    Shi, Lei; Lin, Qiang; Su, Bing

    2015-06-30

    Sexual dimorphism in brain size is common among primates, including humans, apes and some Old World monkeys. In these species, the brain size of males is generally larger than that of females. Curiously, this dimorphism has persisted over the course of primate evolution and human origin, but there is no explanation for the underlying genetic controls that have maintained this disparity in brain size. In the present study, we tested the effect of the female hormone (estradiol) on seven genes known to be related to brain size in both humans and nonhuman primates, and we identified half estrogen responsive elements (half EREs) in the promoter regions of four genes (MCPH1, ASPM, CDK5RAP2 and WDR62). Likewise, at sequence level, it appears that these half EREs are generally conserved across primates. Later testing via a reporter gene assay and cell-based endogenous expression measurement revealed that estradiol could significantly suppress the expression of the four affected genes involved in brain size. More intriguingly, when the half EREs were deleted from the promoters, the suppression effect disappeared, suggesting that the half EREs mediate the regulation of estradiol on the brain size genes. We next replicated these experiments using promoter sequences from chimpanzees and rhesus macaques, and observed a similar suppressive effect of estradiol on gene expression, suggesting that this mechanism is conserved among primate species that exhibit brain size dimorphism. Brain size dimorphism among certain primates, including humans, is likely regulated by estrogen through its sex-dependent suppression of brain size genes during development.

  3. Stabilizing in vitro ultrasound-mediated gene transfection by regulating cavitation.

    Science.gov (United States)

    Lo, Chia-Wen; Desjouy, Cyril; Chen, Shing-Ru; Lee, Jyun-Lin; Inserra, Claude; Béra, Jean-Christophe; Chen, Wen-Shiang

    2014-03-01

    It is well known that acoustic cavitation can facilitate the inward transport of genetic materials across cell membranes (sonoporation). However, partially due to the unstationary behavior of the initiation and leveling of cavitation, the sonoporation effect is usually unstable, especially in low intensity conditions. A system which is able to regulate the cavitation level during sonication by modulating the applied acoustic intensity with a feedback loop is implemented and its effect on in vitro gene transfection is tested. The regulated system provided better time stability and reproducibility of the cavitation levels than the unregulated conditions. Cultured hepatoma cells (BNL) mixed with 10 μg luciferase plasmids are exposed to 1-MHz pulsed ultrasound with or without cavitation regulation, and the gene transfection efficiency and cell viability are subsequently assessed. Experimental results show that for all exposure intensities (low, medium, and high), stable and intensity dependent, although not higher, gene expression could be achieved in the regulated cavitation system than the unregulated conditions. The cavitation regulation system provides a better control of cavitation and its bioeffect which are crucial important for clinical applications of ultrasound-mediated gene transfection. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Extravirgin olive oil up-regulates CB₁ tumor suppressor gene in human colon cancer cells and in rat colon via epigenetic mechanisms.

    Science.gov (United States)

    Di Francesco, Andrea; Falconi, Anastasia; Di Germanio, Clara; Micioni Di Bonaventura, Maria Vittoria; Costa, Antonio; Caramuta, Stefano; Del Carlo, Michele; Compagnone, Dario; Dainese, Enrico; Cifani, Carlo; Maccarrone, Mauro; D'Addario, Claudio

    2015-03-01

    Extravirgin olive oil (EVOO) represents the typical lipid source of the Mediterranean diet, an eating habit pattern that has been associated with a significant reduction of cancer risk. Diet is the more studied environmental factor in epigenetics, and many evidences suggest dysregulation of epigenetic pathways in cancer. The aim of our study was to investigate the effects of EVOO and its phenolic compounds on endocannabinoid system (ECS) gene expression via epigenetic regulation in both human colon cancer cells (Caco-2) and rats exposed to short- and long-term dietary EVOO. We observed a selective and transient up-regulation of CNR1 gene - encoding for type 1 cannabinoid receptor (CB₁) - that was evoked by exposure of Caco-2 cells to EVOO (100 ppm), its phenolic extracts (OPE, 50 μM) or authentic hydroxytyrosol (HT, 50 μM) for 24 h. None of the other major elements of the ECS (i.e., CB₂; GPR55 and TRPV1 receptors; and NAPE-PLD, DAGL, FAAH and MAGL enzymes) was affected at any time point. The stimulatory effect of OPE and HT on CB₁ expression was inversely correlated to DNA methylation at CNR1 promoter and was associated with reduced proliferation of Caco-2 cells. Interestingly, CNR1 gene was less expressed in Caco-2 cells when compared to normal colon mucosa cells, and again this effect was associated with higher level of DNA methylation at CNR1. Moreover, in agreement with the in vitro studies, we also observed a remarkable (~4-fold) and selective increase in CB₁ expression in the colon of rats receiving dietary EVOO supplementation for 10 days. Consistently, CpG methylation of rat Cnr1 promoter, miR23a and miR-301a, previously shown to be involved in the pathogenesis of colorectal cancer and predicted to target CB₁ mRNA, was reduced after EVOO administration down to ~50% of controls. Taken together, our findings demonstrating CB₁ gene expression modulation by EVOO or its phenolic compounds via epigenetic mechanism, both in vitro and in vivo, may

  5. In vivo RNAi screen reveals neddylation genes as novel regulators of Hedgehog signaling.

    Directory of Open Access Journals (Sweden)

    Juan Du

    Full Text Available Hedgehog (Hh signaling is highly conserved in all metazoan animals and plays critical roles in many developmental processes. Dysregulation of the Hh signaling cascade has been implicated in many diseases, including cancer. Although key components of the Hh pathway have been identified, significant gaps remain in our understanding of the regulation of individual Hh signaling molecules. Here, we report the identification of novel regulators of the Hh pathway, obtained from an in vivo RNA interference (RNAi screen in Drosophila. By selectively targeting critical genes functioning in post-translational modification systems utilizing ubiquitin (Ub and Ub-like proteins, we identify two novel genes (dUba3 and dUbc12 that negatively regulate Hh signaling activity. We provide in vivo and in vitro evidence illustrating that dUba3 and dUbc12 are essential components of the neddylation pathway; they function in an enzyme cascade to conjugate the ubiquitin-like NEDD8 modifier to Cullin proteins. Neddylation activates the Cullin-containing ubiquitin ligase complex, which in turn promotes the degradation of Cubitus interruptus (Ci, the downstream transcription factor of the Hh pathway. Our study reveals a conserved molecular mechanism of the neddylation pathway in Drosophila and sheds light on the complex post-translational regulations in Hh signaling.

  6. Combinatorial gene regulation in Plasmodium falciparum.

    NARCIS (Netherlands)

    Noort, V. van; Huynen, M.A.

    2006-01-01

    The malaria parasite Plasmodium falciparum has a complicated life cycle with large variations in its gene expression pattern, but it contains relatively few specific transcriptional regulators. To elucidate this paradox, we identified regulatory sequences, using an approach that integrates the

  7. Notch1-Dll4 signaling and mechanical force regulate leader cell formation during collective cell migration

    OpenAIRE

    Riahi, Reza; Sun, Jian; Wang, Shue; Long, Min; Zhang, Donna D.; Wong, Pak Kin

    2015-01-01

    At the onset of collective cell migration, a subset of cells within an initially homogenous population acquires a distinct “leader” phenotype with characteristic morphology and motility. However, the factors driving leader cell formation as well as the mechanisms regulating leader cell density during the migration process remain to be determined. Here, we use single cell gene expression analysis and computational modeling to show that leader cell identity is dynamically regulated by Dll4 sign...

  8. Regulation of Silk Genes by Hox and Homeodomain Proteins in the Terminal Differentiated Silk Gland of the Silkworm Bombyx mori

    Science.gov (United States)

    Takiya, Shigeharu; Tsubota, Takuya; Kimoto, Mai

    2016-01-01

    The silk gland of the silkworm Bombyx mori is a long tubular organ that is divided into several subparts along its anteroposterior (AP) axis. As a trait of terminal differentiation of the silk gland, several silk protein genes are expressed with unique regional specificities. Most of the Hox and some of the homeobox genes are also expressed in the differentiated silk gland with regional specificities. The expression patterns of Hox genes in the silk gland roughly correspond to those in embryogenesis showing “colinearity”. The central Hox class protein Antennapedia (Antp) directly regulates the expression of several middle silk gland–specific silk genes, whereas the Lin-1/Isl-1/Mec3 (LIM)-homeodomain transcriptional factor Arrowhead (Awh) regulates the expression of posterior silk gland–specific genes for silk fiber proteins. We summarize our results and discuss the usefulness of the silk gland of Bombyx mori for analyzing the function of Hox genes. Further analyses of the regulatory mechanisms underlying the region-specific expression of silk genes will provide novel insights into the molecular bases for target-gene selection and regulation by Hox and homeodomain proteins. PMID:29615585

  9. Regulation of Silk Genes by Hox and Homeodomain Proteins in the Terminal Differentiated Silk Gland of the Silkworm Bombyx mori

    Directory of Open Access Journals (Sweden)

    Shigeharu Takiya

    2016-05-01

    Full Text Available The silk gland of the silkworm Bombyx mori is a long tubular organ that is divided into several subparts along its anteroposterior (AP axis. As a trait of terminal differentiation of the silk gland, several silk protein genes are expressed with unique regional specificities. Most of the Hox and some of the homeobox genes are also expressed in the differentiated silk gland with regional specificities. The expression patterns of Hox genes in the silk gland roughly correspond to those in embryogenesis showing “colinearity”. The central Hox class protein Antennapedia (Antp directly regulates the expression of several middle silk gland–specific silk genes, whereas the Lin-1/Isl-1/Mec3 (LIM-homeodomain transcriptional factor Arrowhead (Awh regulates the expression of posterior silk gland–specific genes for silk fiber proteins. We summarize our results and discuss the usefulness of the silk gland of Bombyx mori for analyzing the function of Hox genes. Further analyses of the regulatory mechanisms underlying the region-specific expression of silk genes will provide novel insights into the molecular bases for target-gene selection and regulation by Hox and homeodomain proteins.

  10. Identification of Human HK Genes and Gene Expression Regulation Study in Cancer from Transcriptomics Data Analysis

    Science.gov (United States)

    Zhang, Zhang; Liu, Jingxing; Wu, Jiayan; Yu, Jun

    2013-01-01

    The regulation of gene expression is essential for eukaryotes, as it drives the processes of cellular differentiation and morphogenesis, leading to the creation of different cell types in multicellular organisms. RNA-Sequencing (RNA-Seq) provides researchers with a powerful toolbox for characterization and quantification of transcriptome. Many different human tissue/cell transcriptome datasets coming from RNA-Seq technology are available on public data resource. The fundamental issue here is how to develop an effective analysis method to estimate expression pattern similarities between different tumor tissues and their corresponding normal tissues. We define the gene expression pattern from three directions: 1) expression breadth, which reflects gene expression on/off status, and mainly concerns ubiquitously expressed genes; 2) low/high or constant/variable expression genes, based on gene expression level and variation; and 3) the regulation of gene expression at the gene structure level. The cluster analysis indicates that gene expression pattern is higher related to physiological condition rather than tissue spatial distance. Two sets of human housekeeping (HK) genes are defined according to cell/tissue types, respectively. To characterize the gene expression pattern in gene expression level and variation, we firstly apply improved K-means algorithm and a gene expression variance model. We find that cancer-associated HK genes (a HK gene is specific in cancer group, while not in normal group) are expressed higher and more variable in cancer condition than in normal condition. Cancer-associated HK genes prefer to AT-rich genes, and they are enriched in cell cycle regulation related functions and constitute some cancer signatures. The expression of large genes is also avoided in cancer group. These studies will help us understand which cell type-specific patterns of gene expression differ among different cell types, and particularly for cancer. PMID:23382867

  11. A generalized allosteric mechanism for cis-regulated cyclic nucleotide binding domains.

    Directory of Open Access Journals (Sweden)

    Alexandr P Kornev

    2008-04-01

    Full Text Available Cyclic nucleotides (cAMP and cGMP regulate multiple intracellular processes and are thus of a great general interest for molecular and structural biologists. To study the allosteric mechanism of different cyclic nucleotide binding (CNB domains, we compared cAMP-bound and cAMP-free structures (PKA, Epac, and two ionic channels using a new bioinformatics method: local spatial pattern alignment. Our analysis highlights four major conserved structural motifs: 1 the phosphate binding cassette (PBC, which binds the cAMP ribose-phosphate, 2 the "hinge," a flexible helix, which contacts the PBC, 3 the beta(2,3 loop, which provides precise positioning of an invariant arginine from the PBC, and 4 a conserved structural element consisting of an N-terminal helix, an eight residue loop and the A-helix (N3A-motif. The PBC and the hinge were included in the previously reported allosteric model, whereas the definition of the beta(2,3 loop and the N3A-motif as conserved elements is novel. The N3A-motif is found in all cis-regulated CNB domains, and we present a model for an allosteric mechanism in these domains. Catabolite gene activator protein (CAP represents a trans-regulated CNB domain family: it does not contain the N3A-motif, and its long range allosteric interactions are substantially different from the cis-regulated CNB domains.

  12. Proteomic Analyses Reveal the Mechanism of Dunaliella salina Ds-26-16 Gene Enhancing Salt Tolerance in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Yanlong Wang

    Full Text Available We previously screened the novel gene Ds-26-16 from a 4 M salt-stressed Dunaliella salina cDNA library and discovered that this gene conferred salt tolerance to broad-spectrum organisms, including E. coli (Escherichia coli, Haematococcus pluvialis and tobacco. To determine the mechanism of this gene conferring salt tolerance, we studied the proteome of E. coli overexpressing the full-length cDNA of Ds-26-16 using the iTRAQ (isobaric tags for relative and absolute quantification approach. A total of 1,610 proteins were identified, which comprised 39.4% of the whole proteome. Of the 559 differential proteins, 259 were up-regulated and 300 were down-regulated. GO (gene ontology and KEGG (Kyoto encyclopedia of genes and genomes enrichment analyses identified 202 major proteins, including those involved in amino acid and organic acid metabolism, energy metabolism, carbon metabolism, ROS (reactive oxygen species scavenging, membrane proteins and ABC (ATP binding cassette transporters, and peptidoglycan synthesis, as well as 5 up-regulated transcription factors. Our iTRAQ data suggest that Ds-26-16 up-regulates the transcription factors in E. coli to enhance salt resistance through osmotic balance, energy metabolism, and oxidative stress protection. Changes in the proteome were also observed in E. coli overexpressing the ORF (open reading frame of Ds-26-16. Furthermore, pH, nitric oxide and glycerol content analyses indicated that Ds-26-16 overexpression increases nitric oxide content but has no effect on glycerol content, thus confirming that enhanced nitric oxide synthesis via lower intercellular pH was one of the mechanisms by which Ds-26-16 confers salt tolerance to E. coli.

  13. Positive Gene Regulation by a Natural Protective miRNA Enables Arbuscular Mycorrhizal Symbiosis.

    Science.gov (United States)

    Couzigou, Jean-Malo; Lauressergues, Dominique; André, Olivier; Gutjahr, Caroline; Guillotin, Bruno; Bécard, Guillaume; Combier, Jean-Philippe

    2017-01-11

    Arbuscular mycorrhizal (AM) symbiosis associates most plants with fungi of the phylum Glomeromycota. The fungus penetrates into roots and forms within cortical cell branched structures called arbuscules for nutrient exchange. We discovered that miR171b has a mismatched cleavage site and is unable to downregulate the miR171 family target gene, LOM1 (LOST MERISTEMS 1). This mismatched cleavage site is conserved among plants that establish AM symbiosis, but not in non-mycotrophic plants. Unlike other members of the miR171 family, miR171b stimulates AM symbiosis and is expressed specifically in root cells that contain arbuscules. MiR171b protects LOM1 from negative regulation by other miR171 family members. These findings uncover a unique mechanism of positive post-transcriptional regulation of gene expression by miRNAs and demonstrate its relevance for the establishment of AM symbiosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Mechanical stress activates Smad pathway through PKCδ to enhance interleukin-11 gene transcription in osteoblasts.

    Directory of Open Access Journals (Sweden)

    Shinsuke Kido

    Full Text Available BACKGROUND: Mechanical stress rapidly induces ΔFosB expression in osteoblasts, which binds to interleukin (IL-11 gene promoter to enhance IL-11 expression, and IL-11 enhances osteoblast differentiation. Because bone morphogenetic proteins (BMPs also stimulate IL-11 expression in osteoblasts, there is a possibility that BMP-Smad signaling is involved in the enhancement of osteoblast differentiation by mechanical stress. The present study was undertaken to clarify whether mechanical stress affects BMP-Smad signaling, and if so, to elucidate the role of Smad signaling in mechanical stress-induced enhancement of IL-11 gene transcription. METHODOLOGY/PRINCIPAL FINDINGS: Mechanical loading by fluid shear stress (FSS induced phosphorylation of BMP-specific receptor-regulated Smads (BR-Smads, Smad1/5, in murine primary osteoblasts (mPOBs. FSS rapidly phosphorylated Y311 of protein kinase C (PKCδ, and phosphorylated PKCδ interacted with BR-Smads to phosphorylate BR-Smads. Transfection of PKCδ siRNA or Y311F mutant PKCδ abrogated BR-Smads phosphorylation and suppressed IL-11 gene transcription enhanced by FSS. Activated BR-Smads bound to the Smad-binding element (SBE of IL-11 gene promoter and formed complex with ΔFosB/JunD heterodimer via binding to the C-terminal region of JunD. Site-directed mutagenesis in the SBE and the AP-1 site revealed that both SBE and AP-1 sites were required for full activation of IL-11 gene promoter by FSS. CONCLUSIONS/SIGNIFICANCE: These results demonstrate that PKCδ-BR-Smads pathway plays an important role in the intracellular signaling in response to mechanical stress, and that a cross-talk between PKCδ-BR-Smads and ΔFosB/JunD pathways synergistically stimulates IL-11 gene transcription in response to mechanical stress.

  15. Critical role of types 2 and 3 deiodinases in the negative regulation of gene expression by T₃in the mouse cerebral cortex.

    Science.gov (United States)

    Hernandez, Arturo; Morte, Beatriz; Belinchón, Mónica M; Ceballos, Ainhoa; Bernal, Juan

    2012-06-01

    Thyroid hormones regulate brain development and function through the control of gene expression, mediated by binding of T(3) to nuclear receptors. Brain T(3) concentration is tightly controlled by homeostatic mechanisms regulating transport and metabolism of T(4) and T(3). We have examined the role of the inactivating enzyme type 3 deiodinase (D3) in the regulation of 43 thyroid hormone-dependent genes in the cerebral cortex of 30-d-old mice. D3 inactivation increased slightly the expression of two of 22 positively regulated genes and significantly decreased the expression of seven of 21 negatively regulated genes. Administration of high doses of T(3) led to significant changes in the expression of 12 positive genes and three negative genes in wild-type mice. The response to T(3) treatment was enhanced in D3-deficient mice, both in the number of genes and in the amplitude of the response, demonstrating the role of D3 in modulating T(3) action. Comparison of the effects on gene expression observed in D3 deficiency with those in hypothyroidism, hyperthyroidism, and type 2 deiodinase (D2) deficiency revealed that the negative genes are more sensitive to D2 and D3 deficiencies than the positive genes. This observation indicates that, in normal physiological conditions, D2 and D3 play critical roles in maintaining local T(3) concentrations within a very narrow range. It also suggests that negatively and positively regulated genes do not have the same physiological significance or that their regulation by thyroid hormone obeys different paradigms at the molecular or cellular levels.

  16. Regulation of crp gene expression by the catabolite repressor/activator, Cra, in Escherichia coli.

    Science.gov (United States)

    Zhang, Zhongge; Aboulwafa, Mohammad; Saier, Milton H

    2014-01-01

    Growth of E. coli on several carbon sources is dependent on the catabolite repressor/activator (Cra) protein although a Cra consensus DNA-binding site is not present in the control regions of the relevant catabolic operons. We show that Cra regulates growth by activating expression of the crp gene. It thereby mediates catabolite repression of catabolic operons by an indirect mechanism. © 2014 S. Karger AG, Basel.

  17. The Inflammation-Related Gene S100A12 Is Positively Regulated by C/EBPβ and AP-1 in Pigs

    Directory of Open Access Journals (Sweden)

    Xinyun Li

    2014-08-01

    Full Text Available S100A12 is involved in the inflammatory response and is considered an important marker for many inflammatory diseases in humans. Our previous studies indicated that the S100A12 gene was abundant in the immune tissues of pigs and was significantly upregulated during infection with Haemophilus parasuis (HPS or porcine circovirus type 2 (PCV2. In this study, the mechanism of transcriptional regulation of S100A12 was investigated in pigs. Our results showed that S100A12, CCAAT/enhancer-binding protein beta (C/EBPβ and activator protein-1 (AP-1 genes were up-regulated in PK-15 (ATCC, CCL-33 cells when treated with LPS or Poly I: C. Additionally, the promoter activity and expression level of the S100A12 gene were significantly upregulated when C/EBPβ or AP-1 were overexpressed. We utilized electromobility shift assays (EMSA to confirm that C/EBPβ and AP-1 could directly bind the S100A12 gene promoter. We also found that the transcriptional activity and expression levels of C/EBPβ and AP-1 could positively regulate each other. Furthermore, the promoter activity of the S100A12 gene was higher when C/EBPβ and AP-1 were cotransfected than when they were transfected individually. We concluded that the S100A12 gene was cooperatively and positively regulated by C/EBPβ and AP-1 in pigs. Our study offers new insight into the transcriptional regulation of the S100A12 gene.

  18. The FTF gene family regulates virulence and expression of SIX effectors in Fusarium oxysporum.

    Science.gov (United States)

    Niño-Sánchez, Jonathan; Casado-Del Castillo, Virginia; Tello, Vega; De Vega-Bartol, José J; Ramos, Brisa; Sukno, Serenella A; Díaz Mínguez, José María

    2016-09-01

    The FTF (Fusarium transcription factor) gene family comprises a single copy gene, FTF2, which is present in all the filamentous ascomycetes analysed, and several copies of a close relative, FTF1, which is exclusive to Fusarium oxysporum. An RNA-mediated gene silencing system was developed to target mRNA produced by all the FTF genes, and tested in two formae speciales: F. oxysporum f. sp. phaseoli (whose host is common bean) and F. oxysporum f. sp. lycopersici (whose host is tomato). Quantification of the mRNA levels showed knockdown of FTF1 and FTF2 in randomly isolated transformants of both formae speciales. The attenuation of FTF expression resulted in a marked reduction in virulence, a reduced expression of several SIX (Secreted In Xylem) genes, the best studied family of effectors in F. oxysporum, and lower levels of SGE1 (Six Gene Expression 1) mRNA, the presumptive regulator of SIX expression. Moreover, the knockdown mutants showed a pattern of colonization of the host plant similar to that displayed by strains devoid of FTF1 copies (weakly virulent strains). Gene knockout of FTF2 also resulted in a reduction in virulence, but to a lesser extent. These results demonstrate the role of the FTF gene expansion, mostly the FTF1 paralogues, as a regulator of virulence in F. oxysporum and suggest that the control of effector expression is the mechanism involved. © 2016 The Authors Molecular Plant Pathology Published by British Society for Plant Pathology and John Wiley & Sons Ltd.

  19. Co-ordinate transcriptional regulation of dopamine synthesis genes by alpha-synuclein in human neuroblastoma cell lines.

    Science.gov (United States)

    Baptista, Melisa J; O'Farrell, Casey; Daya, Sneha; Ahmad, Rili; Miller, David W; Hardy, John; Farrer, Matthew J; Cookson, Mark R

    2003-05-01

    Abnormal accumulation of alpha-synuclein in Lewy bodies is a neuropathological hallmark of both sporadic and familial Parkinson's disease (PD). Although mutations in alpha-synuclein have been identified in autosomal dominant PD, the mechanism by which dopaminergic cell death occurs remains unknown. We investigated transcriptional changes in neuroblastoma cell lines transfected with either normal or mutant (A30P or A53T) alpha-synuclein using microarrays, with confirmation of selected genes by quantitative RT-PCR. Gene products whose expression was found to be significantly altered included members of diverse functional groups such as stress response, transcription regulators, apoptosis-inducing molecules, transcription factors and membrane-bound proteins. We also found evidence of altered expression of dihydropteridine reductase, which indirectly regulates the synthesis of dopamine. Because of the importance of dopamine in PD, we investigated the expression of all the known genes in dopamine synthesis. We found co-ordinated downregulation of mRNA for GTP cyclohydrolase, sepiapterin reductase (SR), tyrosine hydroxylase (TH) and aromatic acid decarboxylase by wild-type but not mutant alpha-synuclein. These were confirmed at the protein level for SR and TH. Reduced expression of the orphan nuclear receptor Nurr1 was also noted, suggesting that the co-ordinate regulation of dopamine synthesis is regulated through this transcription factor.

  20. Exercise impacts brain-derived neurotrophic factor plasticity by engaging mechanisms of epigenetic regulation.

    Science.gov (United States)

    Gomez-Pinilla, F; Zhuang, Y; Feng, J; Ying, Z; Fan, G

    2011-02-01

    We have evaluated the possibility that the action of voluntary exercise on the regulation of brain-derived neurotrophic factor (BDNF), a molecule important for rat hippocampal learning, could involve mechanisms of epigenetic regulation. We focused the studies on the Bdnf promoter IV, as this region is highly responsive to neuronal activity. We have found that exercise stimulates DNA demethylation in Bdnf promoter IV, and elevates levels of activated methyl-CpG-binding protein 2, as well as BDNF mRNA and protein in the rat hippocampus. Chromatin immunoprecipitation assay showed that exercise increases acetylation of histone H3, and protein assessment showed that exercise elevates the ratio of acetylated :total for histone H3 but had no effects on histone H4 levels. Exercise also reduces levels of the histone deacetylase 5 mRNA and protein implicated in the regulation of the Bdnf gene [N.M. Tsankova et al. (2006)Nat. Neurosci., 9, 519-525], but did not affect histone deacetylase 9. Exercise elevated the phosphorylated forms of calcium/calmodulin-dependent protein kinase II and cAMP response element binding protein, implicated in the pathways by which neural activity influences the epigenetic regulation of gene transcription, i.e. Bdnf. These results showing the influence of exercise on the remodeling of chromatin containing the Bdnf gene emphasize the importance of exercise on the control of gene transcription in the context of brain function and plasticity. Reported information about the impact of a behavior, inherently involved in the daily human routine, on the epigenome opens exciting new directions and therapeutic opportunities in the war against neurological and psychiatric disorders. © 2010 The Authors. European Journal of Neuroscience © 2010 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  1. Regulation of methane genes and genome expression

    Energy Technology Data Exchange (ETDEWEB)

    John N. Reeve

    2009-09-09

    At the start of this project, it was known that methanogens were Archaeabacteria (now Archaea) and were therefore predicted to have gene expression and regulatory systems different from Bacteria, but few of the molecular biology details were established. The goals were then to establish the structures and organizations of genes in methanogens, and to develop the genetic technologies needed to investigate and dissect methanogen gene expression and regulation in vivo. By cloning and sequencing, we established the gene and operon structures of all of the “methane” genes that encode the enzymes that catalyze methane biosynthesis from carbon dioxide and hydrogen. This work identified unique sequences in the methane gene that we designated mcrA, that encodes the largest subunit of methyl-coenzyme M reductase, that could be used to identify methanogen DNA and establish methanogen phylogenetic relationships. McrA sequences are now the accepted standard and used extensively as hybridization probes to identify and quantify methanogens in environmental research. With the methane genes in hand, we used northern blot and then later whole-genome microarray hybridization analyses to establish how growth phase and substrate availability regulated methane gene expression in Methanobacterium thermautotrophicus ΔH (now Methanothermobacter thermautotrophicus). Isoenzymes or pairs of functionally equivalent enzymes catalyze several steps in the hydrogen-dependent reduction of carbon dioxide to methane. We established that hydrogen availability determine which of these pairs of methane genes is expressed and therefore which of the alternative enzymes is employed to catalyze methane biosynthesis under different environmental conditions. As were unable to establish a reliable genetic system for M. thermautotrophicus, we developed in vitro transcription as an alternative system to investigate methanogen gene expression and regulation. This led to the discovery that an archaeal protein

  2. The post-transcriptional regulator rsmA/csrA activates T3SS by stabilizing the 5' UTR of hrpG, the master regulator of hrp/hrc genes, in Xanthomonas.

    Directory of Open Access Journals (Sweden)

    Maxuel O Andrade

    2014-02-01

    Full Text Available The RsmA/CsrA family of the post-transcriptional regulators of bacteria is involved in the regulation of many cellular processes, including pathogenesis. In this study, we demonstrated that rsmA not only is required for the full virulence of the phytopathogenic bacterium Xanthomonas citri subsp. citri (XCC but also contributes to triggering the hypersensitive response (HR in non-host plants. Deletion of rsmA resulted in significantly reduced virulence in the host plant sweet orange and a delayed and weakened HR in the non-host plant Nicotiana benthamiana. Microarray, quantitative reverse-transcription PCR, western-blotting, and GUS assays indicated that RsmA regulates the expression of the type 3 secretion system (T3SS at both transcriptional and post-transcriptional levels. The regulation of T3SS by RsmA is a universal phenomenon in T3SS-containing bacteria, but the specific mechanism seems to depend on the interaction between a particular bacterium and its hosts. For Xanthomonads, the mechanism by which RsmA activates T3SS remains unknown. Here, we show that RsmA activates the expression of T3SS-encoding hrp/hrc genes by directly binding to the 5' untranslated region (UTR of hrpG, the master regulator of the hrp/hrc genes in XCC. RsmA stabilizes hrpG mRNA, leading to increased accumulation of HrpG proteins and subsequently, the activation of hrp/hrc genes. The activation of the hrp/hrc genes by RsmA via HrpG was further supported by the observation that ectopic overexpression of hrpG in an rsmA mutant restored its ability to cause disease in host plants and trigger HR in non-host plants. RsmA also stabilizes the transcripts of another T3SS-associated hrpD operon by directly binding to the 5' UTR region. Taken together, these data revealed that RsmA primarily activates T3SS by acting as a positive regulator of hrpG and that this regulation is critical to the pathogenicity of XCC.

  3. miR-31 and its host gene lncRNA LOC554202 are regulated by promoter hypermethylation in triple-negative breast cancer

    Directory of Open Access Journals (Sweden)

    Augoff Katarzyna

    2012-01-01

    Full Text Available Abstract Background microRNAs have been established as powerful regulators of gene expression in normal physiological as well as in pathological conditions, including cancer progression and metastasis. Recent studies have demonstrated a key role of miR-31 in the progression and metastasis of breast cancer. Downregulation of miR-31 enhances several steps of the invasion-metastasis cascade in breast cancer, i.e., local invasion, extravasation and survival in the circulation system, and metastatic colonization of distant sites. miR-31 exerts its metastasis-suppressor activity by targeting a cohort of pro-metastatic genes, including RhoA and WAVE3. The molecular mechanisms that lead to the loss of miR-31 and the activation of its pro-metastatic target genes during these specific steps of the invasion-metastasis cascade are however unknown. Results In the present report, we identify promoter hypermethylation as one of the major mechanisms for silencing miR-31 in breast cancer, and in the triple-negative breast cancer (TNBC cell lines of basal subtype, in particular. miR-31 maps to the intronic sequence of a novel long non-coding (lncRNA, LOC554202 and the regulation of its transcriptional activity is under control of LOC554202. Both miR-31 and the host gene LOC554202 are down-regulated in the TNBC cell lines of basal subtype and over-expressed in the luminal counterparts. Treatment of the TNBC cell lines with either a de-methylating agent alone or in combination with a de-acetylating agent resulted in a significant increase of both miR-31 and its host gene, suggesting an epigenetic mechanism for the silencing of these two genes by promoter hypermethylation. Finally, both methylation-specific PCR and sequencing of bisulfite-converted DNA demonstrated that the LOC554202 promoter-associated CpG island is heavily methylated in the TNBC cell lines and hypomethylated in the luminal subtypes. Conclusion Loss of miR-31 expression in TNBC cell lines is

  4. Signal transduction mechanisms of K+-Cl- cotransport regulation and relationship to disease.

    Science.gov (United States)

    Adragna, N C; Ferrell, C M; Zhang, J; Di Fulvio, M; Temprana, C F; Sharma, A; Fyffe, R E W; Cool, D R; Lauf, P K

    2006-01-01

    The K+-Cl- cotransport (COT) regulatory pathways recently uncovered in our laboratory and their implication in disease state are reviewed. Three mechanisms of K+-Cl- COT regulation can be identified in vascular cells: (1) the Li+-sensitive pathway, (2) the platelet-derived growth factor (PDGF)-sensitive pathway and (3) the nitric oxide (NO)-dependent pathway. Ion fluxes, Western blotting, semi-quantitative RT-PCR, immunofluorescence and confocal microscopy were used. Li+, used in the treatment of manic depression, stimulates volume-sensitive K+-Cl- COT of low K+ sheep red blood cells at cellular concentrations 3 mM, causes cell swelling, and appears to regulate K+-Cl- COT through a protein kinase C-dependent pathway. PDGF, a potent serum mitogen for vascular smooth muscle cells (VSMCs), regulates membrane transport and is involved in atherosclerosis. PDGF stimulates VSM K+-Cl- COT in a time- and concentration-dependent manner, both acutely and chronically, through the PDGF receptor. The acute effect occurs at the post-translational level whereas the chronic effect may involve regulation through gene expression. Regulation by PDGF involves the signalling molecules phosphoinositides 3-kinase and protein phosphatase-1. Finally, the NO/cGMP/protein kinase G pathway, involved in vasodilation and hence cardiovascular disease, regulates K+-Cl- COT in VSMCs at the mRNA expression and transport levels. A complex and diverse array of mechanisms and effectors regulate K+-Cl- COT and thus cell volume homeostasis, setting the stage for abnormalities at the genetic and/or regulatory level thus effecting or being affected by various pathological conditions.

  5. Multiple ETS family proteins regulate PF4 gene expression by binding to the same ETS binding site.

    Directory of Open Access Journals (Sweden)

    Yoshiaki Okada

    Full Text Available In previous studies on the mechanism underlying megakaryocyte-specific gene expression, several ETS motifs were found in each megakaryocyte-specific gene promoter. Although these studies suggested that several ETS family proteins regulate megakaryocyte-specific gene expression, only a few ETS family proteins have been identified. Platelet factor 4 (PF4 is a megakaryocyte-specific gene and its promoter includes multiple ETS motifs. We had previously shown that ETS-1 binds to an ETS motif in the PF4 promoter. However, the functions of the other ETS motifs are still unclear. The goal of this study was to investigate a novel functional ETS motif in the PF4 promoter and identify proteins binding to the motif. In electrophoretic mobility shift assays and a chromatin immunoprecipitation assay, FLI-1, ELF-1, and GABP bound to the -51 ETS site. Expression of FLI-1, ELF-1, and GABP activated the PF4 promoter in HepG2 cells. Mutation of a -51 ETS site attenuated FLI-1-, ELF-1-, and GABP-mediated transactivation of the promoter. siRNA analysis demonstrated that FLI-1, ELF-1, and GABP regulate PF4 gene expression in HEL cells. Among these three proteins, only FLI-1 synergistically activated the promoter with GATA-1. In addition, only FLI-1 expression was increased during megakaryocytic differentiation. Finally, the importance of the -51 ETS site for the activation of the PF4 promoter during physiological megakaryocytic differentiation was confirmed by a novel reporter gene assay using in vitro ES cell differentiation system. Together, these data suggest that FLI-1, ELF-1, and GABP regulate PF4 gene expression through the -51 ETS site in megakaryocytes and implicate the differentiation stage-specific regulation of PF4 gene expression by multiple ETS factors.

  6. Co-transcriptomic Analysis by RNA Sequencing to Simultaneously Measure Regulated Gene Expression in Host and Bacterial Pathogen

    KAUST Repository

    Ravasi, Timothy; Mavromatis, Charalampos Harris; Bokil, Nilesh J.; Schembri, Mark A.; Sweet, Matthew J.

    2016-01-01

    Intramacrophage pathogens subvert antimicrobial defence pathways using various mechanisms, including the targeting of host TLR-mediated transcriptional responses. Conversely, TLR-inducible host defence mechanisms subject intramacrophage pathogens to stress, thus altering pathogen gene expression programs. Important biological insights can thus be gained through the analysis of gene expression changes in both the host and the pathogen during an infection. Traditionally, research methods have involved the use of qPCR, microarrays and/or RNA sequencing to identify transcriptional changes in either the host or the pathogen. Here we describe the application of RNA sequencing using samples obtained from in vitro infection assays to simultaneously quantify both host and bacterial pathogen gene expression changes, as well as general approaches that can be undertaken to interpret the RNA sequencing data that is generated. These methods can be used to provide insights into host TLR-regulated transcriptional responses to microbial challenge, as well as pathogen subversion mechanisms against such responses.

  7. Co-transcriptomic Analysis by RNA Sequencing to Simultaneously Measure Regulated Gene Expression in Host and Bacterial Pathogen

    KAUST Repository

    Ravasi, Timothy

    2016-01-24

    Intramacrophage pathogens subvert antimicrobial defence pathways using various mechanisms, including the targeting of host TLR-mediated transcriptional responses. Conversely, TLR-inducible host defence mechanisms subject intramacrophage pathogens to stress, thus altering pathogen gene expression programs. Important biological insights can thus be gained through the analysis of gene expression changes in both the host and the pathogen during an infection. Traditionally, research methods have involved the use of qPCR, microarrays and/or RNA sequencing to identify transcriptional changes in either the host or the pathogen. Here we describe the application of RNA sequencing using samples obtained from in vitro infection assays to simultaneously quantify both host and bacterial pathogen gene expression changes, as well as general approaches that can be undertaken to interpret the RNA sequencing data that is generated. These methods can be used to provide insights into host TLR-regulated transcriptional responses to microbial challenge, as well as pathogen subversion mechanisms against such responses.

  8. Network-based differential gene expression analysis suggests cell cycle related genes regulated by E2F1 underlie the molecular difference between smoker and non-smoker lung adenocarcinoma

    Science.gov (United States)

    2013-01-01

    Background Differential gene expression (DGE) analysis is commonly used to reveal the deregulated molecular mechanisms of complex diseases. However, traditional DGE analysis (e.g., the t test or the rank sum test) tests each gene independently without considering interactions between them. Top-ranked differentially regulated genes prioritized by the analysis may not directly relate to the coherent molecular changes underlying complex diseases. Joint analyses of co-expression and DGE have been applied to reveal the deregulated molecular modules underlying complex diseases. Most of these methods consist of separate steps: first to identify gene-gene relationships under the studied phenotype then to integrate them with gene expression changes for prioritizing signature genes, or vice versa. It is warrant a method that can simultaneously consider gene-gene co-expression strength and corresponding expression level changes so that both types of information can be leveraged optimally. Results In this paper, we develop a gene module based method for differential gene expression analysis, named network-based differential gene expression (nDGE) analysis, a one-step integrative process for prioritizing deregulated genes and grouping them into gene modules. We demonstrate that nDGE outperforms existing methods in prioritizing deregulated genes and discovering deregulated gene modules using simulated data sets. When tested on a series of smoker and non-smoker lung adenocarcinoma data sets, we show that top differentially regulated genes identified by the rank sum test in different sets are not consistent while top ranked genes defined by nDGE in different data sets significantly overlap. nDGE results suggest that a differentially regulated gene module, which is enriched for cell cycle related genes and E2F1 targeted genes, plays a role in the molecular differences between smoker and non-smoker lung adenocarcinoma. Conclusions In this paper, we develop nDGE to prioritize

  9. Regulation of signaling genes by TGFβ during entry into dauer diapause in C. elegans

    Directory of Open Access Journals (Sweden)

    Patterson Garth I

    2004-09-01

    Full Text Available Abstract Background When resources are scant, C. elegans larvae arrest as long-lived dauers under the control of insulin/IGF- and TGFβ-related signaling pathways. However, critical questions remain regarding the regulation of this developmental event. How do three dozen insulin-like proteins regulate one tyrosine kinase receptor to control complex events in dauer, metabolism and aging? How are signals from the TGFβ and insulin/IGF pathways integrated? What gene expression programs do these pathways regulate, and how do they control complex downstream events? Results We have identified genes that show different levels of expression in a comparison of wild-type L2 or L3 larvae (non-dauer to TGFβ mutants at similar developmental stages undergoing dauer formation. Many insulin/IGF pathway and other known dauer regulatory genes have changes in expression that suggest strong positive feedback by the TGFβ pathway. In addition, many insulin-like ligand and novel genes with similarity to the extracellular domain of insulin/IGF receptors have altered expression. We have identified a large group of regulated genes with putative binding sites for the FOXO transcription factor, DAF-16. Genes with DAF-16 sites upstream of the transcription start site tend to be upregulated, whereas genes with DAF-16 sites downstream of the coding region tend to be downregulated. Finally, we also see strong regulation of many novel hedgehog- and patched-related genes, hormone biosynthetic genes, cell cycle genes, and other regulatory genes. Conclusions The feedback regulation of insulin/IGF pathway and other dauer genes that we observe would be predicted to amplify signals from the TGFβ pathway; this amplification may serve to ensure a decisive choice between "dauer" and "non-dauer", even if environmental cues are ambiguous. Up and down regulation of insulin-like ligands and novel genes with similarity to the extracellular domain of insulin/IGF receptors suggests opposing

  10. Two-stage gene regulation of the superoxide stress response soxRS system in Escherichia coli.

    Science.gov (United States)

    Nunoshiba, T

    1996-01-01

    All organisms have adapted to environmental changes by acquiring various functions controlled by gene regulation. In bacteria, a number of specific responses have been found to confer cell survival in various nutrient-limited conditions, and under physiological stresses such as high or low temperature, extreme pH, radiation, and oxidation (for review, see Neidhardt et al., 1987). In this article, I introduce an Escherichia coli (E. coli) global response induced by superoxide stress, the soxRS regulon. The functions controlled by this system consist of a wide variety of enzymes such as manganese-containing SOD (Mn-SOD); glucose 6-phosphate dehydrogenase (G6PD), the DNA repair enzyme endonuclease IV, fumarase C, NADPH:ferredoxin oxidoreductase, and aconitase. This response is positively regulated by a two-stage control system in which SoxR iron-sulfur protein senses exposure to superoxide and nitric oxide, and then activates transcription of the soxS gene, whose product stimulates the expression of the regulon genes. Our recent finding indicates that soxS transcription is initiated in a manner dependent on the rpoS gene encoding RNA polymerase sigma factor, theta s, in response to entering the stationary phase of growth. With this information, mechanisms for prokaryotic coordinating gene expression in response to superoxide stress and in stationary phase are discussed.

  11. Regulation of myelin genes implicated in psychiatric disorders by functional activity in axons

    Directory of Open Access Journals (Sweden)

    Philip R Lee

    2009-06-01

    Full Text Available Myelination is a highly dynamic process that continues well into adulthood in humans. Several recent gene expression studies have found abnormal expression of genes involved in myelination in the prefrontal cortex of brains from patients with schizophrenia and other psychiatric illnesses. Defects in myelination could contribute to the pathophysiology of psychiatric illness by impairing information processing as a consequence of altered impulse conduction velocity and synchrony between cortical regions carrying out higher level cognitive functions. Myelination can be altered by impulse activity in axons and by environmental experience. Psychiatric illness is treated by psychotherapy, behavioral modification, and drugs affecting neurotransmission, raising the possibility that myelinating glia may not only contribute to such disorders, but that activity-dependent effects on myelinating glia could provide one of the cellular mechanisms contributing to the therapeutic effects of these treatments. This review examines evidence showing that genes and gene networks important for myelination can be regulated by functional activity in axons.

  12. Regulation of gene expression in mammalian cells following ionizing radiation

    International Nuclear Information System (INIS)

    Boothman, D.A.; Lee, S.W

    1991-01-01

    Mammalian cells use a variety of mechanisms to control the expression of new gene transcrips elicited in response to ionizing radiation. Damage-induced proteins have been found which contain DNA binding sites located within the promoter regions of SV40 and human thymidine kinase genes. DNA binding proteins as well as proteins which bind to specific DNA lesions (e.g., XIP bp 175 binds specifically to X-ray-damaged DNA) may play a role in the initial recognition of DNA damage and may initiate DNA repair processes, along with new transcription. Mammalian gene expression after DNA damage is also regulated via the stabilization of preexisting mRNA transcripts. Stabilized mRNA transcripts are translated into protein products not previously present in the cell due to undefined posttranscriptional modifications. Thus far, the only example of mRNA stabilization following X-irradiation is the immediate induction of tissue-type plasminogen activator. Mammalian cells synthesize new mRNA transcripts indirect response to DNA damage. Using cDNA cloning, Northern RNA blotting and nuclear run-on techniques, the levels of a variety of known and previously unknown genes dramatically increase following X-irradiation. These genes/proteins now include; a) DNA binding transcripts factors, such as the UV-responsive element binding factors, ionizing radiation-induced DNA-binding proteins, and XIP bP 175; b) proto-oncogenes, such as c-fos, c-jun, and c-myc; c) several growth-related genes, (e.g., the gadd genes, protein kinase C, IL-1, and thymidine kinase); and d) a variety of other genes, including proteases, tumor necrosis factor-alpha, and DT diaphorase. Mammalian cells respond to X-irradiation by eliciting a very complex series of events resulting in the appearance of new genes and proteins. These gene products may affect DNA repair, adaptive responses, apoptosis, SOS-type mutagenic response, and/or carcinogenesis. (J.P.N.)

  13. A high-throughput fluorescence-based assay system for appetite-regulating gene and drug screening.

    Directory of Open Access Journals (Sweden)

    Yasuhito Shimada

    Full Text Available The increasing number of people suffering from metabolic syndrome and obesity is becoming a serious problem not only in developed countries, but also in developing countries. However, there are few agents currently approved for the treatment of obesity. Those that are available are mainly appetite suppressants and gastrointestinal fat blockers. We have developed a simple and rapid method for the measurement of the feeding volume of Danio rerio (zebrafish. This assay can be used to screen appetite suppressants and enhancers. In this study, zebrafish were fed viable paramecia that were fluorescently-labeled, and feeding volume was measured using a 96-well microplate reader. Gene expression analysis of brain-derived neurotrophic factor (bdnf, knockdown of appetite-regulating genes (neuropeptide Y, preproinsulin, melanocortin 4 receptor, agouti related protein, and cannabinoid receptor 1, and the administration of clinical appetite suppressants (fluoxetine, sibutramine, mazindol, phentermine, and rimonabant revealed the similarity among mechanisms regulating appetite in zebrafish and mammals. In combination with behavioral analysis, we were able to evaluate adverse effects on locomotor activities from gene knockdown and chemical treatments. In conclusion, we have developed an assay that uses zebrafish, which can be applied to high-throughput screening and target gene discovery for appetite suppressants and enhancers.

  14. Microarray profiling of progesterone-regulated endometrial genes during the rhesus monkey secretory phase

    Directory of Open Access Journals (Sweden)

    Okulicz William C

    2004-07-01

    Full Text Available Abstract Background In the endometrium the steroid hormone progesterone (P, acting through its nuclear receptors, regulates the expression of specific target genes and gene networks required for endometrial maturation. Proper endometrial maturation is considered a requirement for embryo implantation. Endometrial receptivity is a complex process that is spatially and temporally restricted and the identity of genes that regulate receptivity has been pursued by a number of investigators. Methods In this study we have used high density oligonucleotide microarrays to screen for changes in mRNA transcript levels between normal proliferative and adequate secretory phases in Rhesus monkey artificial menstrual cycles. Biotinylated cRNA was prepared from day 13 and days 21–23 of the reproductive cycle and transcript levels were compared by hybridization to Affymetrix HG-U95A arrays. Results Of ~12,000 genes profiled, we identified 108 genes that were significantly regulated during the shift from a proliferative to an adequate secretory endometrium. Of these genes, 39 were up-regulated at days 21–23 versus day 13, and 69 were down-regulated. Genes up-regulated in P-dominant tissue included: secretoglobin (uteroglobin, histone 2A, polo-like kinase (PLK, spermidine/spermine acetyltransferase 2 (SAT2, secretory leukocyte protease inhibitor (SLPI and metallothionein 1G (MT1G, all of which have been previously documented as elevated in the Rhesus monkey or human endometrium during the secretory phase. Genes down-regulated included: transforming growth factor beta-induced (TGFBI or BIGH3, matrix metalloproteinase 11 (stromelysin 3, proenkephalin (PENK, cysteine/glycine-rich protein 2 (CSRP2, collagen type VII alpha 1 (COL7A1, secreted frizzled-related protein 4 (SFRP4, progesterone receptor membrane component 1 (PGRMC1, chemokine (C-X-C ligand 12 (CXCL12 and biglycan (BGN. In addition, many novel/unknown genes were also identified. Validation of array data

  15. Identification of downstream metastasis-associated target genes regulated by LSD1 in colon cancer cells.

    Science.gov (United States)

    Chen, Jiang; Ding, Jie; Wang, Ziwei; Zhu, Jian; Wang, Xuejian; Du, Jiyi

    2017-03-21

    This study aims to identify downstream target genes regulated by lysine-specific demethylase 1 (LSD1) in colon cancer cells and investigate the molecular mechanisms of LSD1 influencing invasion and metastasis of colon cancer. We obtained the expression changes of downstream target genes regulated by small-interfering RNA-LSD1 and LSD1-overexpression via gene expression profiling in two human colon cancer cell lines. An Affymetrix Human Transcriptome Array 2.0 was used to identify differentially expressed genes (DEGs). We screened out LSD1-target gene associated with proliferation, metastasis, and invasion from DEGs via Gene Ontology and Pathway Studio. Subsequently, four key genes (CABYR, FOXF2, TLE4, and CDH1) were computationally predicted as metastasis-related LSD1-target genes. ChIp-PCR was applied after RT-PCR and Western blot validations to detect the occupancy of LSD1-target gene promoter-bound LSD1. A total of 3633 DEGs were significantly upregulated, and 4642 DEGs were downregulated in LSD1-silenced SW620 cells. A total of 4047 DEGs and 4240 DEGs were upregulated and downregulated in LSD1-overexpressed HT-29 cells, respectively. RT-PCR and Western blot validated the microarray analysis results. ChIP assay results demonstrated that LSD1 might be negative regulators for target genes CABYR and CDH1. The expression level of LSD1 is negatively correlated with mono- and dimethylation of histone H3 lysine4(H3K4) at LSD1- target gene promoter region. No significant mono-methylation and dimethylation of H3 lysine9 methylation was detected at the promoter region of CABYR and CDH1. LSD1- depletion contributed to the upregulation of CABYR and CDH1 through enhancing the dimethylation of H3K4 at the LSD1-target genes promoter. LSD1- overexpression mediated the downregulation of CABYR and CDH1expression through decreasing the mono- and dimethylation of H3K4 at LSD1-target gene promoter in colon cancer cells. CABYR and CDH1 might be potential LSD1-target genes in colon

  16. Bistability and oscillations in gene regulation mediated by small noncoding RNAs.

    Directory of Open Access Journals (Sweden)

    Dengyu Liu

    Full Text Available The interplay of small noncoding RNAs (sRNAs, mRNAs, and proteins has been shown to play crucial roles in almost all cellular processes. As key post-transcriptional regulators of gene expression, the mechanisms and roles of sRNAs in various cellular processes still need to be fully understood. When participating in cellular processes, sRNAs mainly mediate mRNA degradation or translational repression. Here, we show how the dynamics of two minimal architectures is drastically affected by these two mechanisms. A comparison is also given to reveal the implication of the fundamental differences. This study may help us to analyze complex networks assembled by simple modules more easily. A better knowledge of the sRNA-mediated motifs is also of interest for bio-engineering and artificial control.

  17. A palmitoylation switch mechanism regulates Rac1 function and membrane organization

    Science.gov (United States)

    Navarro-Lérida, Inmaculada; Sánchez-Perales, Sara; Calvo, María; Rentero, Carles; Zheng, Yi; Enrich, Carlos; Del Pozo, Miguel A

    2012-01-01

    The small GTPase Rac1 plays important roles in many processes, including cytoskeletal reorganization, cell migration, cell-cycle progression and gene expression. The initiation of Rac1 signalling requires at least two mechanisms: GTP loading via the guanosine triphosphate (GTP)/guanosine diphosphate (GDP) cycle, and targeting to cholesterol-rich liquid-ordered plasma membrane microdomains. Little is known about the molecular mechanisms governing this specific compartmentalization. We show that Rac1 can incorporate palmitate at cysteine 178 and that this post-translational modification targets Rac1 for stabilization at actin cytoskeleton-linked ordered membrane regions. Palmitoylation of Rac1 requires its prior prenylation and the intact C-terminal polybasic region and is regulated by the triproline-rich motif. Non-palmitoylated Rac1 shows decreased GTP loading and lower association with detergent-resistant (liquid-ordered) membranes (DRMs). Cells expressing no Rac1 or a palmitoylation-deficient mutant have an increased content of disordered membrane domains, and markers of ordered membranes isolated from Rac1-deficient cells do not correctly partition in DRMs. Importantly, cells lacking Rac1 palmitoylation show spreading and migration defects. These data identify palmitoylation as a mechanism for Rac1 function in actin cytoskeleton remodelling by controlling its membrane partitioning, which in turn regulates membrane organization. PMID:22157745

  18. Every which way--nanos gene regulation in echinoderms.

    Science.gov (United States)

    Oulhen, Nathalie; Wessel, Gary M

    2014-03-01

    Nanos is an essential factor of germ line success in all animals tested. This gene encodes a Zn-finger RNA-binding protein that in complex with its partner pumilio binds to and changes the fate of several known transcripts. We summarize here the documented functions of Nanos in several key organisms, and then emphasize echinoderms as a working model for how nanos expression is regulated. Nanos presence outside of the target cells is often detrimental to the animal, and in sea urchins, nanos expression appears to be regulated at every step of transcription, and post-transcriptional activity, making this gene product exciting, every which way. Copyright © 2013 Wiley Periodicals, Inc.

  19. Study of miRNA Based Gene Regulation, Involved in Solid Cancer, by the Assistance of Argonaute Protein

    Directory of Open Access Journals (Sweden)

    Surya Narayan Rath

    2016-09-01

    Full Text Available Solid tumor is generally observed in tissues of epithelial or endothelial cells of lung, breast, prostate, pancreases, colorectal, stomach, and bladder, where several genes transcription is regulated by the microRNAs (miRNAs. Argonaute (AGO protein is a family of protein which assists in miRNAs to bind with mRNAs of the target genes. Hence, study of the binding mechanism between AGO protein and miRNAs, and also with miRNAs-mRNAs duplex is crucial for understanding the RNA silencing mechanism. In the current work, 64 genes and 23 miRNAs have been selected from literatures, whose deregulation is well established in seven types of solid cancer like lung, breast, prostate, pancreases, colorectal, stomach, and bladder cancer. In silico study reveals, miRNAs namely, miR-106a, miR-21, and miR-29b-2 have a strong binding affinity towards PTEN, TGFBR2, and VEGFA genes, respectively, suggested as important factors in RNA silencing mechanism. Furthermore, interaction between AGO protein (PDB ID-3F73, chain A with selected miRNAs and with miRNAs-mRNAs duplex were studied computationally to understand their binding at molecular level. The residual interaction and hydrogen bonding are inspected in Discovery Studio 3.5 suites. The current investigation throws light on understanding miRNAs based gene silencing mechanism in solid cancer.

  20. Bacterial competition reveals differential regulation of the pks genes by Bacillus subtilis.

    Science.gov (United States)

    Vargas-Bautista, Carol; Rahlwes, Kathryn; Straight, Paul

    2014-02-01

    Bacillus subtilis is adaptable to many environments in part due to its ability to produce a broad range of bioactive compounds. One such compound, bacillaene, is a linear polyketide/nonribosomal peptide. The pks genes encode the enzymatic megacomplex that synthesizes bacillaene. The majority of pks genes appear to be organized as a giant operon (>74 kb from pksC-pksR). In previous work (P. D. Straight, M. A. Fischbach, C. T. Walsh, D. Z. Rudner, and R. Kolter, Proc. Natl. Acad. Sci. U. S. A. 104:305-310, 2007, doi:10.1073/pnas.0609073103), a deletion of the pks operon in B. subtilis was found to induce prodiginine production by Streptomyces coelicolor. Here, colonies of wild-type B. subtilis formed a spreading population that induced prodiginine production from Streptomyces lividans, suggesting differential regulation of pks genes and, as a result, bacillaene. While the parent colony showed widespread induction of pks expression among cells in the population, we found the spreading cells uniformly and transiently repressed the expression of the pks genes. To identify regulators that control pks genes, we first determined the pattern of pks gene expression in liquid culture. We next identified mutations in regulatory genes that disrupted the wild-type pattern of pks gene expression. We found that expression of the pks genes requires the master regulator of development, Spo0A, through its repression of AbrB and the stationary-phase regulator, CodY. Deletions of degU, comA, and scoC had moderate effects, disrupting the timing and level of pks gene expression. The observed patterns of expression suggest that complex regulation of bacillaene and other antibiotics optimizes competitive fitness for B. subtilis.

  1. Stat3 inhibition attenuates mechanical allodynia through transcriptional regulation of chemokine expression in spinal astrocytes.

    Directory of Open Access Journals (Sweden)

    Xiaodong Liu

    Full Text Available BACKGROUND: Signal transducer and activator of transcription 3 (Stat3 is known to induce cell proliferation and inflammation by regulating gene transcription. Recent studies showed that Stat3 modulates nociceptive transmission by reducing spinal astrocyte proliferation. However, it is unclear whether Stat3 also contributes to the modulation of nociceptive transmission by regulating inflammatory response in spinal astrocytes. This study aimed at investigating the role of Stat3 on neuroinflammation during development of pain in rats after intrathecal injection of lipopolysaccharide (LPS. METHODS: Stat3 specific siRNA oligo and synthetic selective inhibitor (Stattic were applied to block the activity of Stat3 in primary astrocytes or rat spinal cord, respectively. LPS was used to induce the expression of proinflammatory genes in all studies. Immunofluorescence staining of cells and slices of spinal cord was performed to monitor Stat3 activation. The impact of Stat3 inhibition on proinflammatory genes expression was determined by cytokine antibody array, enzyme-linked immunosorbent assay and real-time polymerase chain reaction. Mechanical allodynia, as determined by the threshold pressure that could induce hind paw withdrawal after application of standardized von Frey filaments, was used to detect the effects of Stat3 inhibition after pain development with intrathecal LPS injection. RESULTS: Intrathecal injection of LPS activated Stat3 in reactive spinal astrocytes. Blockade of Stat3 activity attenuated mechanical allodynia significantly and was correlated with a lower number of reactive astrocytes in the spinal dorsal horn. In vitro study demonstrated that Stat3 modulated inflammatory response in primary astrocytes by transcriptional regulation of chemokine expression including Cx3cl1, Cxcl5, Cxcl10 and Ccl20. Similarly, inhibition of Stat3 reversed the expression of these chemokines in the spinal dorsal horn. CONCLUSIONS: Stat3 acted as a

  2. The 5th Symposium on Post-Transcriptional Regulation of Plant Gene Expression (PTRoPGE)

    Energy Technology Data Exchange (ETDEWEB)

    Karen S. Browning; Marie Petrocek; Bonnie Bartel

    2006-06-01

    The 5th Symposium on Post-Transcriptional Regulation of Plant Gene Expression (PTRoPGE) will be held June 8-12, 2005 at the University of Texas at Austin. Exciting new and ongoing discoveries show significant regulation of gene expression occurs after transcription. These post-transcriptional control events in plants range from subtle regulation of transcribed genes and phosphorylation, to the processes of gene regulation through small RNAs. This meeting will focus on the regulatory role of RNA, from transcription, through translation and finally degradation. The cross-disciplinary design of this meeting is necessary to encourage interactions between researchers that have a common interest in post-transcriptional gene expression in plants. By bringing together a diverse group of plant molecular biologist and biochemists at all careers stages from across the world, this meeting will bring about more rapid progress in understanding how plant genomes work and how genes are finely regulated by post-transcriptional processes to ultimately regulate cells.

  3. Distinguishing the Transcription Regulation Patterns in Promoters of Human Genes with Different Function or Evolutionary Age

    KAUST Repository

    Alam, Tanvir

    2012-07-01

    Distinguishing transcription regulatory patterns of different gene groups is a common problem in various bioinformatics studies. In this work we developed a methodology to deal with such a problem based on machine learning techniques. We applied our method to two biologically important problems related to detecting a difference in transcription regulation of: a/ protein-coding and long non-coding RNAs (lncRNAs) in human, as well as b/ a difference between primate-specific and non-primate-specific long non-coding RNAs. Our method is capable to classify RNAs using various regulatory features of genes that transcribe into these RNAs, such as nucleotide frequencies, transcription factor binding sites, de novo sequence motifs, CpG islands, repetitive elements, histone modification marks, and others. Ten-fold cross-validation tests suggest that our model can distinguish protein-coding and non-coding RNAs with accuracy above 80%. Twenty-fold cross-validation tests suggest that our model can distinguish primate-specific from non-primate-specific promoters of lncRNAs with accuracy above 80%. Consequently, we can hypothesize that transcription of the groups of genes mentioned above are regulated by different mechanisms. Feature selection techniques allowed us to reduce the number of features significantly while keeping the accuracy around 80%. Consequently, we can conclude that selected features play significant role in transcription regulation of coding and non-coding genes, as well as primate-specific and non-primate-specific lncRNA genes.

  4. Dietary methanol regulates human gene activity.

    Directory of Open Access Journals (Sweden)

    Anastasia V Shindyapina

    Full Text Available Methanol (MeOH is considered to be a poison in humans because of the alcohol dehydrogenase (ADH-mediated conversion of MeOH to formaldehyde (FA, which is toxic. Our recent genome-wide analysis of the mouse brain demonstrated that an increase in endogenous MeOH after ADH inhibition led to a significant increase in the plasma MeOH concentration and a modification of mRNA synthesis. These findings suggest endogenous MeOH involvement in homeostasis regulation by controlling mRNA levels. Here, we demonstrate directly that study volunteers displayed increasing concentrations of MeOH and FA in their blood plasma when consuming citrus pectin, ethanol and red wine. A microarray analysis of white blood cells (WBC from volunteers after pectin intake showed various responses for 30 significantly differentially regulated mRNAs, most of which were somehow involved in the pathogenesis of Alzheimer's disease (AD. There was also a decreased synthesis of hemoglobin mRNA, HBA and HBB, the presence of which in WBC RNA was not a result of red blood cells contamination because erythrocyte-specific marker genes were not significantly expressed. A qRT-PCR analysis of volunteer WBCs after pectin and red wine intake confirmed the complicated relationship between the plasma MeOH content and the mRNA accumulation of both genes that were previously identified, namely, GAPDH and SNX27, and genes revealed in this study, including MME, SORL1, DDIT4, HBA and HBB. We hypothesized that human plasma MeOH has an impact on the WBC mRNA levels of genes involved in cell signaling.

  5. Vitamin A and feeding statuses modulate the insulin-regulated gene expression in Zucker lean and fatty primary rat hepatocytes.

    Directory of Open Access Journals (Sweden)

    Wei Chen

    Full Text Available Unattended hepatic insulin resistance predisposes individuals to dyslipidemia, type 2 diabetes and many other metabolic complications. The mechanism of hepatic insulin resistance at the gene expression level remains unrevealed. To examine the effects of vitamin A (VA, total energy intake and feeding conditions on the insulin-regulated gene expression in primary hepatocytes of Zucker lean (ZL and fatty (ZF rats, we analyze the expression levels of hepatic model genes in response to the treatments of insulin and retinoic acid (RA. We report that the insulin- and RA-regulated glucokinase, sterol regulatory element-binding protein-1c and cytosolic form of phosphoenolpyruvate carboxykinase expressions are impaired in hepatocytes of ZF rats fed chow or a VA sufficient (VAS diet ad libitum. The impairments are partially corrected when ZF rats are fed a VA deficient (VAD diet ad libitum or pair-fed a VAS diet to the intake of their VAD counterparts in non-fasting conditions. Interestingly in the pair-fed ZL and ZF rats, transient overeating on the last day of pair-feeding regimen changes the expression levels of some VA catabolic genes, and impairs the insulin- and RA-regulated gene expression in hepatocytes. These results demonstrate that VA and feeding statuses modulate the hepatic insulin sensitivity at the gene expression level.

  6. The ULT1 and ULT2 trxG genes play overlapping roles in Arabidopsis development and gene regulation.

    Science.gov (United States)

    Monfared, Mona M; Carles, Cristel C; Rossignol, Pascale; Pires, Helena R; Fletcher, Jennifer C

    2013-09-01

    The epigenetic regulation of gene expression is critical for ensuring the proper deployment and stability of defined genome transcription programs at specific developmental stages. The cellular memory of stable gene expression states during animal and plant development is mediated by the opposing activities of Polycomb group (PcG) factors and trithorax group (trxG) factors. Yet, despite their importance, only a few trxG factors have been characterized in plants and their roles in regulating plant development are poorly defined. In this work, we report that the closely related Arabidopsis trxG genes ULTRAPETALA1 (ULT1) and ULT2 have overlapping functions in regulating shoot and floral stem cell accumulation, with ULT1 playing a major role but ULT2 also making a minor contribution. The two genes also have a novel, redundant activity in establishing the apical–basal polarity axis of the gynoecium, indicating that they function in differentiating tissues. Like ULT1 proteins, ULT2 proteins have a dual nuclear and cytoplasmic localization, and the two proteins physically associate in planta. Finally, we demonstrate that ULT1 and ULT2 have very similar overexpression phenotypes and regulate a common set of key development target genes, including floral MADS-box genes and class I KNOX genes. Our results reveal that chromatin remodeling mediated by the ULT1 and ULT2 proteins is necessary to control the development of meristems and reproductive organs. They also suggest that, like their animal counterparts, plant trxG proteins may function in multi-protein complexes to up-regulate the expression of key stage- and tissue-specific developmental regulatory genes.

  7. Global SUMO proteome responses guide gene regulation, mRNA biogenesis, and plant stress responses

    Directory of Open Access Journals (Sweden)

    Magdalena eMazur

    2012-09-01

    Full Text Available Small-ubiquitin-like MOdifier (SUMO is a key regulator of abiotic stress, disease resistance and development in plants. The identification of >350 plant SUMO targets has revealed many processes modulated by SUMO and potential consequences of SUMO on its targets. Importantly, highly related proteins are SUMO-modified in plants, yeast, and metazoans. Overlapping SUMO targets include heat-shock proteins, transcription regulators, histones, histone-modifying enzymes, proteins involved in DNA damage repair, but also proteins involved in mRNA biogenesis and nucleo-cytoplasmic transport. Proteomics studies indicate key roles for SUMO in gene repression by controlling histone (deacetylation activity at genomic loci. The responsible heavily sumoylated transcriptional repressor complexes are recruited by EAR (Ethylene-responsive element binding factor [ERF]-associated Amphiphilic Repression-motif containing transcription factors in plants. These transcription factors are not necessarily themselves a SUMO target. Conversely, SUMO acetylation prevents binding of downstream partners by preventing binding of SIMs (SUMO-interaction peptide motifs presents in these partners, while SUMO acetylation has emerged as mechanism to recruit specifically bromodomains; bromodomain are generally linked with gene activation. These findings strengthen the idea of a bidirectional sumo-/acetylation switch in gene regulation. Quantitative proteomics has highlighted that global sumoylation provides a dynamic response to protein damage involving SUMO chain-mediated protein degradation, but also SUMO E3 ligase-dependent transcription of HSP (Heat-shock protein genes. With these insights in SUMO function and novel technical advancements, we can now study SUMO dynamics in responses to (abiotic stress in plants.

  8. Systemic responses to inhaled ozone in mice: cachexia and down-regulation of liver xenobiotic metabolizing genes

    Energy Technology Data Exchange (ETDEWEB)

    Last, Jerold A [Pulmonary and Critical Care Medicine, School of Medicine, Toxic Substances Program, 1131 Surge I, University of California, Davis, CA 95616-8723 (United States); Gohil, Kishorchandra [Pulmonary and Critical Care Medicine, School of Medicine, Toxic Substances Program, 1131 Surge I, University of California, Davis, CA 95616-8723 (United States); Mathrani, Vivek C [Pulmonary and Critical Care Medicine, School of Medicine, Toxic Substances Program, 1131 Surge I, University of California, Davis, CA 95616-8723 (United States); Kenyon, Nicholas J [Pulmonary and Critical Care Medicine, School of Medicine, Toxic Substances Program, 1131 Surge I, University of California, Davis, CA 95616-8723 (United States)

    2005-10-15

    Rats or mice acutely exposed to high concentrations of ozone show an immediate and significant weight loss, even when allowed free access to food and water. The mechanisms underlying this systemic response to ozone have not been previously elucidated. We have applied the technique of global gene expression analysis to the livers of C57BL mice acutely exposed to ozone. Mice lost up to 14% of their original body weight, with a 42% decrease in total food consumption. We previously had found significant up-regulation of genes encoding proliferative enzymes, proteins related to acute phase reactions and cytoskeletal functions, and other biomarkers of a cachexia-like inflammatory state in lungs of mice exposed to ozone. These results are consistent with a general up-regulation of different gene families responsive to NF-{kappa}B in the lungs of the exposed mice. In the present study, we observed significant down-regulation of different families of mRNAs in the livers of the exposed mice, including genes related to lipid and fatty acid metabolism, and to carbohydrate metabolism in this tissue, consistent with a systemic cachexic response. Several interferon-dependent genes were down-regulated in the liver, suggesting a possible role for interferon as a signaling molecule between lung and liver. In addition, transcription of several mRNAs encoding enzymes of xenobiotic metabolism in the livers of mice exposed to ozone was decreased, suggesting cytokine-mediated suppression of cytochrome P450 expression. This finding may explain a previously controversial report from other investigators more than 20 years ago of prolongation of pentobarbital sleeping time in mice exposed to ozone.

  9. Systemic responses to inhaled ozone in mice: cachexia and down-regulation of liver xenobiotic metabolizing genes

    International Nuclear Information System (INIS)

    Last, Jerold A.; Gohil, Kishorchandra; Mathrani, Vivek C.; Kenyon, Nicholas J.

    2005-01-01

    Rats or mice acutely exposed to high concentrations of ozone show an immediate and significant weight loss, even when allowed free access to food and water. The mechanisms underlying this systemic response to ozone have not been previously elucidated. We have applied the technique of global gene expression analysis to the livers of C57BL mice acutely exposed to ozone. Mice lost up to 14% of their original body weight, with a 42% decrease in total food consumption. We previously had found significant up-regulation of genes encoding proliferative enzymes, proteins related to acute phase reactions and cytoskeletal functions, and other biomarkers of a cachexia-like inflammatory state in lungs of mice exposed to ozone. These results are consistent with a general up-regulation of different gene families responsive to NF-κB in the lungs of the exposed mice. In the present study, we observed significant down-regulation of different families of mRNAs in the livers of the exposed mice, including genes related to lipid and fatty acid metabolism, and to carbohydrate metabolism in this tissue, consistent with a systemic cachexic response. Several interferon-dependent genes were down-regulated in the liver, suggesting a possible role for interferon as a signaling molecule between lung and liver. In addition, transcription of several mRNAs encoding enzymes of xenobiotic metabolism in the livers of mice exposed to ozone was decreased, suggesting cytokine-mediated suppression of cytochrome P450 expression. This finding may explain a previously controversial report from other investigators more than 20 years ago of prolongation of pentobarbital sleeping time in mice exposed to ozone

  10. Leucine zipper, down regulated in cancer-1 gene expression in prostate cancer

    Science.gov (United States)

    Salemi, Michele; Barone, Nunziata; La Vignera, Sandro; Condorelli, Rosita A.; Recupero, Domenico; Galia, Antonio; Fraggetta, Filippo; Aiello, Anna Maria; Pepe, Pietro; Castiglione, Roberto; Vicari, Enzo; Calogero, Aldo E.

    2016-01-01

    Numerous genetic alterations have been implicated in the development of prostate cancer (PCa). DNA and protein microarrays have enabled the identification of genes associated with apoptosis, which is important in PCa development. Despite the molecular mechanisms are not entirely understood, inhibition of apoptosis is a critical pathophysiological factor that contributes to the onset and progression of PCa. Leucine zipper, down-regulated in cancer 1 (LDOC-1) is a known regulator of the nuclear factor (NF)-mediated pathway of apoptosis through the inhibition of NF-κB. The present study investigated the expression of the LDOC-1 gene in LNCaP, PC-3, PNT1A and PNT2 prostate cell lines by reverse transcription-quantitative polymerase chain reaction. In addition LDOC-1 protein expression in normal prostate tissues and PCa was studied by immunohistochemistry. LDOC-1 messenger RNA resulted overexpressed in LNCaP and PC-3 PCa cell lines compared with the two normal prostate cell lines PNT1A and PNT2. The results of immunohistochemistry demonstrated a positive cytoplasmic LDOC-1 staining in all PCa and normal prostate samples, whereas no nuclear staining was observed in any sample. Furthermore, a more intense signal was evidenced in PCa samples. LDOC-1 gene overexpression in PCa suggests an activity of LDOC-1 in PCa cell lines. PMID:27698860

  11. Paralogous Genes as a Tool to Study the Regulation of Gene Expression

    DEFF Research Database (Denmark)

    Hoffmann, Robert D

    The genomes of plants are marked by reoccurring events of whole-genome duplication. These events are major contributors to speciation and provide the genetic material for organisms to evolve ever greater complexity. Duplicated genes, referred to as paralogs, may be retained because they acquired...... regions. These results suggest that a concurrent purifying selection acts on coding and non-coding sequences of paralogous genes in A. thaliana. Mutational analyses of the promoters from a paralogous gene pair were performed in transgenic A. thaliana plants. The results revealed a 170-bp long DNA sequence...... that forms a bifunctional cis-regulatory module; it represses gene expression in the sporophyte while activating it in pollen. This finding is important for many aspects of gene regulation and the transcriptional changes underlying gametophyte development. In conclusion, the presented thesis suggests that...

  12. Identification of a cis-regulatory element by transient analysis of co-ordinately regulated genes

    Directory of Open Access Journals (Sweden)

    Allan Andrew C

    2008-07-01

    Full Text Available Abstract Background Transcription factors (TFs co-ordinately regulate target genes that are dispersed throughout the genome. This co-ordinate regulation is achieved, in part, through the interaction of transcription factors with conserved cis-regulatory motifs that are in close proximity to the target genes. While much is known about the families of transcription factors that regulate gene expression in plants, there are few well characterised cis-regulatory motifs. In Arabidopsis, over-expression of the MYB transcription factor PAP1 (PRODUCTION OF ANTHOCYANIN PIGMENT 1 leads to transgenic plants with elevated anthocyanin levels due to the co-ordinated up-regulation of genes in the anthocyanin biosynthetic pathway. In addition to the anthocyanin biosynthetic genes, there are a number of un-associated genes that also change in expression level. This may be a direct or indirect consequence of the over-expression of PAP1. Results Oligo array analysis of PAP1 over-expression Arabidopsis plants identified genes co-ordinately up-regulated in response to the elevated expression of this transcription factor. Transient assays on the promoter regions of 33 of these up-regulated genes identified eight promoter fragments that were transactivated by PAP1. Bioinformatic analysis on these promoters revealed a common cis-regulatory motif that we showed is required for PAP1 dependent transactivation. Conclusion Co-ordinated gene regulation by individual transcription factors is a complex collection of both direct and indirect effects. Transient transactivation assays provide a rapid method to identify direct target genes from indirect target genes. Bioinformatic analysis of the promoters of these direct target genes is able to locate motifs that are common to this sub-set of promoters, which is impossible to identify with the larger set of direct and indirect target genes. While this type of analysis does not prove a direct interaction between protein and DNA

  13. Structure of Vibrio cholerae ToxT reveals a mechanism for fatty acid regulation of virulence genes

    Energy Technology Data Exchange (ETDEWEB)

    Lowden, Michael J.; Skorupski, Karen; Pellegrini, Maria; Chiorazzo, Michael G.; Taylor, Ronald K.; Kull, F. Jon (Dartmouth)

    2010-03-04

    Cholera is an acute intestinal infection caused by the bacterium Vibrio cholerae. In order for V. cholerae to cause disease, it must produce two virulence factors, the toxin-coregulated pilus (TCP) and cholera toxin (CT), whose expression is controlled by a transcriptional cascade culminating with the expression of the AraC-family regulator, ToxT. We have solved the 1.9 {angstrom} resolution crystal structure of ToxT, which reveals folds in the N- and C-terminal domains that share a number of features in common with AraC, MarA, and Rob as well as the unexpected presence of a buried 16-carbon fatty acid, cis-palmitoleate. The finding that cis-palmitoleic acid reduces TCP and CT expression in V. cholerae and prevents ToxT from binding to DNA in vitro provides a direct link between the host environment of V. cholerae and regulation of virulence gene expression.

  14. LHX3 interacts with inhibitor of histone acetyltransferase complex subunits LANP and TAF-1β to modulate pituitary gene regulation.

    Science.gov (United States)

    Hunter, Chad S; Malik, Raleigh E; Witzmann, Frank A; Rhodes, Simon J

    2013-01-01

    LIM-homeodomain 3 (LHX3) is a transcription factor required for mammalian pituitary gland and nervous system development. Human patients and animal models with LHX3 gene mutations present with severe pediatric syndromes that feature hormone deficiencies and symptoms associated with nervous system dysfunction. The carboxyl terminus of the LHX3 protein is required for pituitary gene regulation, but the mechanism by which this domain operates is unknown. In order to better understand LHX3-dependent pituitary hormone gene transcription, we used biochemical and mass spectrometry approaches to identify and characterize proteins that interact with the LHX3 carboxyl terminus. This approach identified the LANP/pp32 and TAF-1β/SET proteins, which are components of the inhibitor of histone acetyltransferase (INHAT) multi-subunit complex that serves as a multifunctional repressor to inhibit histone acetylation and modulate chromatin structure. The protein domains of LANP and TAF-1β that interact with LHX3 were mapped using biochemical techniques. Chromatin immunoprecipitation experiments demonstrated that LANP and TAF-1β are associated with LHX3 target genes in pituitary cells, and experimental alterations of LANP and TAF-1β levels affected LHX3-mediated pituitary gene regulation. Together, these data suggest that transcriptional regulation of pituitary genes by LHX3 involves regulated interactions with the INHAT complex.

  15. Control of radiation sensitivity of mammalian cells. Regulation of expression of DNA repair genes

    International Nuclear Information System (INIS)

    Yoshida, Kayo; Morita, Takashi

    2003-01-01

    This review describes authors' investigations concerning regulation of expression of DNA repair genes for the purpose of control of radiosensitivity of mammalian cells for cancer radiotherapy. One of their experiments concerns the enhancement of sensitivity to radiation and anti-tumor agents by suppressing the expression of mammalian Rad51 gene which playing a central role in recombination repair against DNA double-strand break, by RNA interference (RNAi). Described are the mode of action of RNAi, mechanism of suppression of Rad51 gene expression by it, enhancing effect in radiosensitivity, stable suppression and enhancement by hairpin RNA and its possible usefulness in cancer therapy. The other concerns the histone H2AX gene, which delivering the repair signal post phosphorylation in chromatin against the double-strand break. Experimental results of suppression of the histone H2AX gene by tet-off system, enhancement of radiosensitivity by the suppression and functional recovery by the gene transfer are described, and the radiosensitivity can be thus artificially controlled by tetracycline in authors' F9 2AX (tet/tet) cells. (N.I.)

  16. Gene regulatory networks elucidating huanglongbing disease mechanisms.

    Directory of Open Access Journals (Sweden)

    Federico Martinelli

    Full Text Available Next-generation sequencing was exploited to gain deeper insight into the response to infection by Candidatus liberibacter asiaticus (CaLas, especially the immune disregulation and metabolic dysfunction caused by source-sink disruption. Previous fruit transcriptome data were compared with additional RNA-Seq data in three tissues: immature fruit, and young and mature leaves. Four categories of orchard trees were studied: symptomatic, asymptomatic, apparently healthy, and healthy. Principal component analysis found distinct expression patterns between immature and mature fruits and leaf samples for all four categories of trees. A predicted protein - protein interaction network identified HLB-regulated genes for sugar transporters playing key roles in the overall plant responses. Gene set and pathway enrichment analyses highlight the role of sucrose and starch metabolism in disease symptom development in all tissues. HLB-regulated genes (glucose-phosphate-transporter, invertase, starch-related genes would likely determine the source-sink relationship disruption. In infected leaves, transcriptomic changes were observed for light reactions genes (downregulation, sucrose metabolism (upregulation, and starch biosynthesis (upregulation. In parallel, symptomatic fruits over-expressed genes involved in photosynthesis, sucrose and raffinose metabolism, and downregulated starch biosynthesis. We visualized gene networks between tissues inducing a source-sink shift. CaLas alters the hormone crosstalk, resulting in weak and ineffective tissue-specific plant immune responses necessary for bacterial clearance. Accordingly, expression of WRKYs (including WRKY70 was higher in fruits than in leaves. Systemic acquired responses were inadequately activated in young leaves, generally considered the sites where most new infections occur.

  17. Regulation of the angiopoietin-2 gene by hCG in ovarian cancer cell line OVCAR-3.

    Science.gov (United States)

    Pietrowski, D; Wiehle, P; Sator, M; Just, A; Keck, C

    2010-05-01

    Angiogenesis is a crucial step in growing tissues including many tumors. It is regulated by pro- and antiangiogenic factors including the family of angiopoietins and their corresponding receptors. In previous work we have shown that in human ovarian cells the expression of angiopoietin 2 (ANG2) is regulated by human chorionic gonadotropin (hCG). To better understand the mechanisms of hCG-dependent regulation of the ANG2-gene we have now investigated upstream regulatory active elements of the ANG2-promoter in the ovarian carcinoma cell line OVCAR-3. We cloned several ANG2-promoter-fragments of different lengths into a luciferase reporter-gene-vector and analyzed the corresponding ANG2 expression before and after hCG stimulation. We identified regions of the ANG2-promoter between 1 048 bp and 613 bp upstream of the transcriptional start site where hCG-dependent pathways promote a significant downregulation of gene expression. By sequence analysis of this area we found several potential binding sites for transcription factors that are involved in regulation of ANG2-expression, vascular development and ovarian function. These encompass the forkhead family transcription factors FOXC2 and FOXO1 as well as the CCAAT/enhancer binding protein family (C/EBP). In conclusion, we have demonstrated that the regulation of ANG2-expression in ovarian cancer cells is hCG-dependent and we suggest that forkhead transcription factor and C/EBP-dependent pathways are involved in the regulation of ANG2-expression in ovarian cancer cells. Georg Thieme Verlag KG Stuttgart-New York.

  18. RNA-seq Transcriptional Profiling of an Arbuscular Mycorrhiza Provides Insights into Regulated and Coordinated Gene Expression in Lotus japonicus and Rhizophagus irregularis.

    Science.gov (United States)

    Handa, Yoshihiro; Nishide, Hiroyo; Takeda, Naoya; Suzuki, Yutaka; Kawaguchi, Masayoshi; Saito, Katsuharu

    2015-08-01

    Gene expression during arbuscular mycorrhizal development is highly orchestrated in both plants and arbuscular mycorrhizal fungi. To elucidate the gene expression profiles of the symbiotic association, we performed a digital gene expression analysis of Lotus japonicus and Rhizophagus irregularis using a HiSeq 2000 next-generation sequencer with a Cufflinks assembly and de novo transcriptome assembly. There were 3,641 genes differentially expressed during arbuscular mycorrhizal development in L. japonicus, approximately 80% of which were up-regulated. The up-regulated genes included secreted proteins, transporters, proteins involved in lipid and amino acid metabolism, ribosomes and histones. We also detected many genes that were differentially expressed in small-secreted peptides and transcription factors, which may be involved in signal transduction or transcription regulation during symbiosis. Co-regulated genes between arbuscular mycorrhizal and root nodule symbiosis were not particularly abundant, but transcripts encoding for membrane traffic-related proteins, transporters and iron transport-related proteins were found to be highly co-up-regulated. In transcripts of arbuscular mycorrhizal fungi, expansion of cytochrome P450 was observed, which may contribute to various metabolic pathways required to accommodate roots and soil. The comprehensive gene expression data of both plants and arbuscular mycorrhizal fungi provide a powerful platform for investigating the functional and molecular mechanisms underlying arbuscular mycorrhizal symbiosis. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  19. Controlled hydrostatic pressure stress downregulates the expression of ribosomal genes in preimplantation embryos: a possible protection mechanism?

    Science.gov (United States)

    Bock, I; Raveh-Amit, H; Losonczi, E; Carstea, A C; Feher, A; Mashayekhi, K; Matyas, S; Dinnyes, A; Pribenszky, C

    2016-04-01

    The efficiency of various assisted reproductive techniques can be improved by preconditioning the gametes and embryos with sublethal hydrostatic pressure treatment. However, the underlying molecular mechanism responsible for this protective effect remains unknown and requires further investigation. Here, we studied the effect of optimised hydrostatic pressure treatment on the global gene expression of mouse oocytes after embryonic genome activation. Based on a gene expression microarray analysis, a significant effect of treatment was observed in 4-cell embryos derived from treated oocytes, revealing a transcriptional footprint of hydrostatic pressure-affected genes. Functional analysis identified numerous genes involved in protein synthesis that were downregulated in 4-cell embryos in response to hydrostatic pressure treatment, suggesting that regulation of translation has a major role in optimised hydrostatic pressure-induced stress tolerance. We present a comprehensive microarray analysis and further delineate a potential mechanism responsible for the protective effect of hydrostatic pressure treatment.

  20. Regulation of T cell activation by HIV-1 accessory proteins: Vpr acts via distinct mechanisms to cooperate with Nef in NFAT-directed gene expression and to promote transactivation by CREB

    International Nuclear Information System (INIS)

    Lahti, Anna L.; Manninen, Aki; Saksela, Kalle

    2003-01-01

    Nef and Vpr are lentiviral accessory proteins that have been implicated in regulation of cellular gene expression. We noticed that Vpr can potentiate Nef-induced activation of nuclear factor of activated T cells (NFAT)-dependent transcription. Unlike Nef, which stimulated calcium signaling to activate NFAT, Vpr functioned farther downstream. Similar to the positive effects of Vpr on most of the transcriptional test systems that we used, potentiation of NFAT-directed gene expression was relatively modest in magnitude (two- to threefold) and depended on the cell cycle-arresting capacity of Vpr. By contrast, we found that Vpr could cause more than fivefold upregulation of cyclic AMP response element (CRE)-directed transcription via a mechanism that did not require Vpr-induced G2/M arrest. This effect, however, was only evident under suboptimal conditions known to lead to serine phosphorylation of the CRE binding factor (CREB) but not to CREB-dependent gene expression. This suggested that Vpr may act by stabilizing interactions with CREB and its transcriptional cofactor CREB binding protein (CBP). Indeed, this effect could be blocked by cotransfection of the adenoviral CBP inhibitor E1A. These results provide additional evidence for cell cycle-independent regulation of gene expression by Vpr and implicate CREB as a potentially important target for Vpr action in HIV-infected host cells

  1. Mobile gene silencing in Arabidopsis is regulated by hydrogen peroxide

    Directory of Open Access Journals (Sweden)

    Dacheng Liang

    2014-12-01

    Full Text Available In plants and nematodes, RNAi can spread from cells from which it is initiated to other cells in the organism. The underlying mechanism controlling the mobility of RNAi signals is not known, especially in the case of plants. A genetic screen designed to recover plants impaired in the movement but not the production or effectiveness of the RNAi signal identified RCI3, which encodes a hydrogen peroxide (H2O2-producing type III peroxidase, as a key regulator of silencing mobility in Arabidopsis thaliana. Silencing initiated in the roots of rci3 plants failed to spread into leaf tissue or floral tissue. Application of exogenous H2O2 reinstated the spread in rci3 plants and accelerated it in wild-type plants. The addition of catalase or MnO2, which breaks down H2O2, slowed the spread of silencing in wild-type plants. We propose that endogenous H2O2, under the control of peroxidases, regulates the spread of gene silencing by altering plasmodesmata permeability through remodelling of local cell wall structure, and may play a role in regulating systemic viral defence.

  2. Identification of new developmentally regulated genes involved in Streptomyces coelicolor sporulation.

    Science.gov (United States)

    Salerno, Paola; Persson, Jessica; Bucca, Giselda; Laing, Emma; Ausmees, Nora; Smith, Colin P; Flärdh, Klas

    2013-12-05

    The sporulation of aerial hyphae of Streptomyces coelicolor is a complex developmental process. Only a limited number of the genes involved in this intriguing morphological differentiation programme are known, including some key regulatory genes. The aim of this study was to expand our knowledge of the gene repertoire involved in S. coelicolor sporulation. We report a DNA microarray-based investigation of developmentally controlled gene expression in S. coelicolor. By comparing global transcription patterns of the wild-type parent and two mutants lacking key regulators of aerial hyphal sporulation, we found a total of 114 genes that had significantly different expression in at least one of the two mutants compared to the wild-type during sporulation. A whiA mutant showed the largest effects on gene expression, while only a few genes were specifically affected by whiH mutation. Seven new sporulation loci were investigated in more detail with respect to expression patterns and mutant phenotypes. These included SCO7449-7451 that affect spore pigment biogenesis; SCO1773-1774 that encode an L-alanine dehydrogenase and a regulator-like protein and are required for maturation of spores; SCO3857 that encodes a protein highly similar to a nosiheptide resistance regulator and affects spore maturation; and four additional loci (SCO4421, SCO4157, SCO0934, SCO1195) that show developmental regulation but no overt mutant phenotype. Furthermore, we describe a new promoter-probe vector that takes advantage of the red fluorescent protein mCherry as a reporter of cell type-specific promoter activity. Aerial hyphal sporulation in S. coelicolor is a technically challenging process for global transcriptomic investigations since it occurs only as a small fraction of the colony biomass and is not highly synchronized. Here we show that by comparing a wild-type to mutants lacking regulators that are specifically affecting processes in aerial hypha, it is possible to identify previously

  3. Structure of Rot, a global regulator of virulence genes in Staphylococcus aureus.

    Science.gov (United States)

    Zhu, Yuwei; Fan, Xiaojiao; Zhang, Xu; Jiang, Xuguang; Niu, Liwen; Teng, Maikun; Li, Xu

    2014-09-01

    Staphylococcus aureus is a highly versatile pathogen that can infect human tissue by producing a large arsenal of virulence factors that are tightly regulated by a complex regulatory network. Rot, which shares sequence similarity with SarA homologues, is a global regulator that regulates numerous virulence genes. However, the recognition model of Rot for the promoter region of target genes and the putative regulation mechanism remain elusive. In this study, the 1.77 Å resolution X-ray crystal structure of Rot is reported. The structure reveals that two Rot molecules form a compact homodimer, each of which contains a typical helix-turn-helix module and a β-hairpin motif connected by a flexible loop. Fluorescence polarization results indicate that Rot preferentially recognizes AT-rich dsDNA with ~30-base-pair nucleotides and that the conserved positively charged residues on the winged-helix motif are vital for binding to the AT-rich dsDNA. It is proposed that the DNA-recognition model of Rot may be similar to that of SarA, SarR and SarS, in which the helix-turn-helix motifs of each monomer interact with the major grooves of target dsDNA and the winged motifs contact the minor grooves. Interestingly, the structure shows that Rot adopts a novel dimerization model that differs from that of other SarA homologues. As expected, perturbation of the dimer interface abolishes the dsDNA-binding ability of Rot, suggesting that Rot functions as a dimer. In addition, the results have been further confirmed in vivo by measuring the transcriptional regulation of α-toxin, a major virulence factor produced by most S. aureus strains.

  4. Maternal Diabetes Alters Expression of MicroRNAs that Regulate Genes Critical for Neural Tube Development

    Directory of Open Access Journals (Sweden)

    Seshadri Ramya

    2017-07-01

    Full Text Available Maternal diabetes is known to cause neural tube defects (NTDs in embryos and neuropsychological deficits in infants. Several metabolic pathways and a plethora of genes have been identified to be deregulated in developing brain of embryos by maternal diabetes, although the exact mechanism remains unknown. Recently, miRNAs have been shown to regulate genes involved in brain development and maturation. Therefore, we hypothesized that maternal diabetes alters the expression of miRNAs that regulate genes involved in biological pathways critical for neural tube development and closure during embryogenesis. To address this, high throughput miRNA expression profiling in neural stem cells (NSCs isolated from the forebrain of embryos from normal or streptozotocin-induced diabetic pregnancy was carried out. It is known that maternal diabetes results in fetal hypoglycemia/hyperglycemia or hypoxia. Hence, NSCs from embryos of control pregnant mice were exposed to low or high glucose or hypoxia in vitro. miRNA pathway analysis revealed distinct deregulation of several biological pathways, including axon guidance pathway, which are critical for brain development in NSCs exposed to different treatments. Among the differentially expressed miRNAs, the miRNA-30 family members which are predicted to target genes involved in brain development was upregulated in NSCs from embryos of diabetic pregnancy when compared to control. miRNA-30b was found to be upregulated while its target gene Sirtuin 1 (Sirt1, as revealed by luciferase assay, was down regulated in NSCs from embryos of diabetic pregnancy. Further, overexpression of miRNA-30b in NSCs, resulted in decreased expression of Sirt1 protein, and altered the neuron/glia ratio. On the other hand, siRNA mediated knockdown of Sirt1 in NSCs promoted astrogenesis, indicating that miRNA-30b alters lineage specification via Sirt1. Overall, these results suggest that maternal diabetes alters the genes involved in neural tube

  5. Bacterial Competition Reveals Differential Regulation of the pks Genes by Bacillus subtilis

    Science.gov (United States)

    Vargas-Bautista, Carol; Rahlwes, Kathryn

    2014-01-01

    Bacillus subtilis is adaptable to many environments in part due to its ability to produce a broad range of bioactive compounds. One such compound, bacillaene, is a linear polyketide/nonribosomal peptide. The pks genes encode the enzymatic megacomplex that synthesizes bacillaene. The majority of pks genes appear to be organized as a giant operon (>74 kb from pksC-pksR). In previous work (P. D. Straight, M. A. Fischbach, C. T. Walsh, D. Z. Rudner, and R. Kolter, Proc. Natl. Acad. Sci. U. S. A. 104:305–310, 2007, doi:10.1073/pnas.0609073103), a deletion of the pks operon in B. subtilis was found to induce prodiginine production by Streptomyces coelicolor. Here, colonies of wild-type B. subtilis formed a spreading population that induced prodiginine production from Streptomyces lividans, suggesting differential regulation of pks genes and, as a result, bacillaene. While the parent colony showed widespread induction of pks expression among cells in the population, we found the spreading cells uniformly and transiently repressed the expression of the pks genes. To identify regulators that control pks genes, we first determined the pattern of pks gene expression in liquid culture. We next identified mutations in regulatory genes that disrupted the wild-type pattern of pks gene expression. We found that expression of the pks genes requires the master regulator of development, Spo0A, through its repression of AbrB and the stationary-phase regulator, CodY. Deletions of degU, comA, and scoC had moderate effects, disrupting the timing and level of pks gene expression. The observed patterns of expression suggest that complex regulation of bacillaene and other antibiotics optimizes competitive fitness for B. subtilis. PMID:24187085

  6. Pharmacogenomics genes show varying perceptibility to microRNA regulation

    DEFF Research Database (Denmark)

    Rukov, Jakob Lewin; Vinther, Jeppe; Shomron, Noam

    2011-01-01

    The aim of pharmacogenomics is to identify individual differences in genome and transcriptome composition and their effect on drug efficacy. MicroRNAs (miRNAs) are short noncoding RNAs that negatively regulate expression of the majority of animal genes, including many genes involved in drug...

  7. Frequent down-regulation of ABC transporter genes in prostate cancer

    International Nuclear Information System (INIS)

    Demidenko, Rita; Razanauskas, Deividas; Daniunaite, Kristina; Lazutka, Juozas Rimantas; Jankevicius, Feliksas; Jarmalaite, Sonata

    2015-01-01

    ATP-binding cassette (ABC) transporters are transmembrane proteins responsible for the efflux of a wide variety of substrates, including steroid metabolites, through the cellular membranes. For better characterization of the role of ABC transporters in prostate cancer (PCa) development, the profile of ABC transporter gene expression was analyzed in PCa and noncancerous prostate tissues (NPT). TaqMan Low Density Array (TLDA) human ABC transporter plates were used for the gene expression profiling in 10 PCa and 6 NPT specimens. ABCB1 transcript level was evaluated in a larger set of PCa cases (N = 78) and NPT (N = 15) by real-time PCR, the same PCa cases were assessed for the gene promoter hypermethylation by methylation-specific PCR. Expression of eight ABC transporter genes (ABCA8, ABCB1, ABCC6, ABCC9, ABCC10, ABCD2, ABCG2, and ABCG4) was significantly down-regulated in PCa as compared to NPT, and only two genes (ABCC4 and ABCG1) were up-regulated. Down-regulation of ABC transporter genes was prevalent in the TMPRSS2-ERG-negative cases. A detailed analysis of ABCB1 expression confirmed TLDA results: a reduced level of the transcript was identified in PCa in comparison to NPT (p = 0.048). Moreover, the TMPRSS2-ERG-negative PCa cases showed significantly lower expression of ABCB1 in comparison to NPT (p = 0.003) or the fusion-positive tumors (p = 0.002). Promoter methylation of ABCB1 predominantly occurred in PCa and was rarely detected in NPT (p < 0.001). The study suggests frequent down-regulation of the ABC transporter genes in PCa, especially in the TMPRSS2-ERG-negative tumors. The online version of this article (doi:10.1186/s12885-015-1689-8) contains supplementary material, which is available to authorized users

  8. Studying gene regulation in methanogenic archaea.

    Science.gov (United States)

    Rother, Michael; Sattler, Christian; Stock, Tilmann

    2011-01-01

    Methanogenic archaea are a unique group of strictly anaerobic microorganisms characterized by their ability, and dependence, to convert simple C1 and C2 compounds to methane for growth. The major models for studying the biology of methanogens are members of the Methanococcus and Methanosarcina species. Recent development of sophisticated tools for molecular analysis and for genetic manipulation allows investigating not only their metabolism but also their cell cycle, and their interaction with the environment in great detail. One aspect of such analyses is assessment and dissection of methanoarchaeal gene regulation, for which, at present, only a handful of cases have been investigated thoroughly, partly due to the great methodological effort required. However, it becomes more and more evident that many new regulatory paradigms can be unraveled in this unique archaeal group. Here, we report both molecular and physiological/genetic methods to assess gene regulation in Methanococcus maripaludis and Methanosarcina acetivorans, which should, however, be applicable for other methanogens as well. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Competition between virus-derived and endogenous small RNAs regulates gene expression in Caenorhabditis elegans.

    Science.gov (United States)

    Sarkies, Peter; Ashe, Alyson; Le Pen, Jérémie; McKie, Mikel A; Miska, Eric A

    2013-08-01

    Positive-strand RNA viruses encompass more than one-third of known virus genera and include many medically and agriculturally relevant human, animal, and plant pathogens. The nematode Caenorhabditis elegans and its natural pathogen, the positive-strand RNA virus Orsay, have recently emerged as a new animal model to understand the mechanisms and evolution of innate immune responses. In particular, the RNA interference (RNAi) pathway is required for C. elegans resistance to viral infection. Here we report the first genome-wide analyses of gene expression upon viral infection in C. elegans. Using the laboratory strain N2, we identify a novel C. elegans innate immune response specific to viral infection. A subset of these changes is driven by the RNAi response to the virus, which redirects the Argonaute protein RDE-1 from its endogenous small RNA cofactors, leading to loss of repression of endogenous RDE-1 targets. Additionally, we show that a C. elegans wild isolate, JU1580, has a distinct gene expression signature in response to viral infection. This is associated with a reduction in microRNA (miRNA) levels and an up-regulation of their target genes. Intriguingly, alterations in miRNA levels upon JU1580 infection are associated with a transformation of the antiviral transcriptional response into an antibacterial-like response. Together our data support a model whereby antiviral RNAi competes with endogenous small RNA pathways, causing widespread transcriptional changes. This provides an elegant mechanism for C. elegans to orchestrate its antiviral response, which may have significance for the relationship between small RNA pathways and immune regulation in other organisms.

  10. Regulation of human protein S gene (PROS1) transcription

    NARCIS (Netherlands)

    Wolf, Cornelia de

    2006-01-01

    This thesis describes the investigation of the transcriptional regulation of the gene for anticoagulant plasma Protein S, PROS1. Protein S is a cofactor for Protein C in the Protein C anticoagulant pathway. The coagulation cascade is negatively regulated by this pathway through inactivation of

  11. Cloning-free regulated monitoring of reporter and gene expression

    Directory of Open Access Journals (Sweden)

    Demirkaya Omer

    2009-03-01

    Full Text Available Abstract Background The majority of the promoters, their regulatory elements, and their variations in the human genome remain unknown. Reporter gene technology for transcriptional activity is a widely used tool for the study of promoter structure, gene regulation, and signaling pathways. Construction of transcriptional reporter vectors, including use of cis-acting sequences, requires cloning and time-demanding manipulations, particularly with introduced mutations. Results In this report, we describe a cloning-free strategy to generate transcriptionally-controllable linear reporter constructs. This approach was applied in common transcriptional models of inflammatory response and the interferon system. In addition, it was used to delineate minimal transcriptional activity of selected ribosomal protein promoters. The approach was tested for conversion of genes into TetO-inducible/repressible expression cassettes. Conclusion The simple introduction and tuning of any transcriptional control in the linear DNA product renders promoter activation and regulated gene studies simple and versatile.

  12. Virulence meets metabolism: Cra and KdpE gene regulation in enterohemorrhagic Escherichia coli.

    Science.gov (United States)

    Njoroge, Jacqueline W; Nguyen, Y; Curtis, Meredith M; Moreira, Cristiano G; Sperandio, Vanessa

    2012-10-16

    Gastrointestinal (GI) bacteria sense diverse environmental signals as cues for differential gene regulation and niche adaptation. Pathogens such as enterohemorrhagic Escherichia coli (EHEC), which causes bloody diarrhea, use these signals for the temporal and energy-efficient regulation of their virulence factors. One of the main virulence strategies employed by EHEC is the formation of attaching and effacing (AE) lesions on enterocytes. Most of the genes necessary for the formation of these lesions are grouped within a pathogenicity island, the locus of enterocyte effacement (LEE), whose expression requires the LEE-encoded regulator Ler. Here we show that growth of EHEC in glycolytic environments inhibits the expression of ler and consequently all other LEE genes. Conversely, growth within a gluconeogenic environment activates expression of these genes. This sugar-dependent regulation is achieved through two transcription factors: KdpE and Cra. Both Cra and KdpE directly bind to the ler promoter, and Cra's affinity to this promoter is catabolite dependent. Moreover, we show that the Cra and KdpE proteins interact in vitro and that KdpE's ability to bind DNA is enhanced by the presence of Cra. Cra is important for AE lesion formation, and KdpE contributes to this Cra-dependent regulation. The deletion of cra and kdpE resulted in the ablation of AE lesions. One of the many challenges that bacteria face within the GI tract is to successfully compete for carbon sources. Linking carbon metabolism to the precise coordination of virulence expression is a key step in the adaptation of pathogens to the GI environment. IMPORTANCE An appropriate and prompt response to environmental cues is crucial for bacterial survival. Cra and KdpE are two proteins found in both nonpathogenic and pathogenic bacteria that regulate genes in response to differences in metabolite concentration. In this work, we show that, in the deadly pathogen enterohemorrhagic Escherichia coli (EHEC) O157:H7

  13. Transcriptional Mechanisms Controlling miR-375 Gene Expression in the Pancreas

    Directory of Open Access Journals (Sweden)

    Tali Avnit-Sagi

    2012-01-01

    Full Text Available MicroRNAs (miRNAs are a class of small non-coding RNAs that play an important role in mediating a broad and expanding range of biological activities. miR-375 is expressed selectively in the pancreas. We have previously shown that selective expression of miR-375 in pancreatic beta cells is controlled by transcriptional mechanisms operating through a TATA box-containing promoter. Expression of miR-375 has been reported in non-beta cells within the endocrine pancreas, and indeed inactivation of miR-375 leads to perturbation in cell mass and number of both alpha and beta cells. Consistent with its expression throughout the endocrine pancreas, we now show that the promoter of the miR-375 gene shows selective activity in pancreatic endocrine alpha cells, comparable to that observed in beta cells. We previously identified a novel negative regulatory element located downstream of the miR-375 gene transcription start site. By generating luciferase reporter genes, we now show that the sequence is functional also when positioned upstream of a heterologous promoter, thus proving that the repressor effect is mediated at least in part at the level of transcription. Further characterization of the transcriptional control mechanism regulating expression of miR-375 and other pancreatic miRNAs will contribute to a better understanding of pancreas development and function.

  14. A role for circadian evening elements in cold-regulated gene expression in Arabidopsis.

    Science.gov (United States)

    Mikkelsen, Michael D; Thomashow, Michael F

    2009-10-01

    The plant transcriptome is dramatically altered in response to low temperature. The cis-acting DNA regulatory elements and trans-acting factors that regulate the majority of cold-regulated genes are unknown. Previous bioinformatic analysis has indicated that the promoters of cold-induced genes are enriched in the Evening Element (EE), AAAATATCT, a DNA regulatory element that has a role in circadian-regulated gene expression. Here we tested the role of EE and EE-like (EEL) elements in cold-induced expression of two Arabidopsis genes, CONSTANS-like 1 (COL1; At5g54470) and a gene encoding a 27-kDa protein of unknown function that we designated COLD-REGULATED GENE 27 (COR27; At5g42900). Mutational analysis indicated that the EE/EEL elements were required for cold induction of COL1 and COR27, and that their action was amplified through coupling with ABA response element (ABRE)-like (ABREL) motifs. An artificial promoter consisting solely of four EE motifs interspersed with three ABREL motifs was sufficient to impart cold-induced gene expression. Both COL1 and COR27 were found to be regulated by the circadian clock at warm growth temperatures and cold-induction of COR27 was gated by the clock. These results suggest that cold- and clock-regulated gene expression are integrated through regulatory proteins that bind to EE and EEL elements supported by transcription factors acting at ABREL sequences. Bioinformatic analysis indicated that the coupling of EE and EEL motifs with ABREL motifs is highly enriched in cold-induced genes and thus may constitute a DNA regulatory element pair with a significant role in configuring the low-temperature transcriptome.

  15. Cholesterol and phytosterols differentially regulate the expression of caveolin 1 and a downstream prostate cell growth-suppressor gene

    Science.gov (United States)

    Ifere, Godwin O.; Equan, Anita; Gordon, Kereen; Nagappan, Peri; Igietseme, Joseph U.; Ananaba, Godwin A.

    2010-01-01

    Background The purpose of our study was to show the distinction between the apoptotic and anti-proliferative signaling of phytosterols and cholesterol enrichment in prostate cancer cell lines, mediated by the differential transcription of caveolin-1, and N-myc downstream regulated gene1 (NDRG1), a pro-apoptotic androgen-regulated tumor suppressor. Methods PC-3 and DU145 cells were treated with sterols (cholesterol and phytosterols) for 72 h, followed by trypan blue dye exclusion measurement of necrosis and cell growth measured with a Coulter counter. Sterol induction of cell growth-suppressor gene expression was evaluated by mRNA transcription using RT-PCR, while cell cycle analysis was performed by FACS analysis. Altered expression of Ndrg1 protein was confirmed by Western blot analysis. Apoptosis was evaluated by real time RT-PCR amplification of P53, Bcl-2 gene and its related pro- and anti-apoptotic family members. Results Physiological doses (16 µM) of cholesterol and phytosterols were not cytotoxic in these cells. Cholesterol enrichment promoted cell growth (Pphytosterols significantly induced growth-suppression (Pphytosterols decreased mitotic subpopulations. We demonstrated for the first time that cholesterols concertedly attenuated the expression of caveolin-1(cav-1) and NDRG1 genes in both prostate cancer cell lines. Phytosterols had the opposite effect by inducing overexpression of cav-1, a known mediator of androgen-dependent signals that presumably control cell growth or apoptosis. Conclusions Cholesterol and phytosterol treatment differentially regulated the growth of prostate cancer cells and the expression of p53 and cav-1, a gene that regulates androgen-regulated signals. These sterols also differentially regulated cell cycle arrest, downstream pro-apoptotic androgen-regulated tumor-suppressor, NDRG1 suggesting that cav-1 may mediate pro-apoptotic NDRG1 signals. Elucidation of the mechanism for sterol modulation of growth and apoptosis signaling

  16. The human luteinizing hormone receptor gene promoter: activation by Sp1 and Sp3 and inhibitory regulation.

    Science.gov (United States)

    Geng, Y; Tsai-Morris, C H; Zhang, Y; Dufau, M L

    1999-09-24

    To understand the transcriptional mechanism(s) of human LH receptor (LHR) gene expression, we have identified the dominant functional cis-elements that regulate the activity of the promoter domain (-1 to -176 bp from ATG). Mutagenesis demonstrated that the promoter activity was dependent on two Sp1 domains (-79 bp, -120 bp) in a transformed normal placental cell (PLC) and the choriocarcinoma JAR cell. Both elements interacted with endogenous Sp1 and Sp3 factors but not with Sp2 or Sp4. In Drosophila SL2 cells, the promoter was activated by either Sp1 or Sp3. An ERE half-site (EREhs) at -174 bp was inhibitory (by 100%), but was unresponsive to estradiol and did not bind the estrogen receptor or orphan receptors ERR1 and SF-1. The 5' upstream sequence (-177 to -2056 bp) inhibited promoter activity in PLC by 60%, but only minimally in JAR cells. Activation of the human LHR promoter through Sp1/3 factors is negatively regulated through EREhs and upstream sequences to exert control of gene expression. Copyright 1999 Academic Press.

  17. Regulation of notochord-specific expression of Ci-Bra downstream genes in Ciona intestinalis embryos.

    Science.gov (United States)

    Takahashi, Hiroki; Hotta, Kohji; Takagi, Chiyo; Ueno, Naoto; Satoh, Nori; Shoguchi, Eiichi

    2010-02-01

    Brachyury, a T-box transcription factor, is expressed in ascidian embryos exclusively in primordial notochord cells and plays a pivotal role in differentiation of notochord cells. Previously, we identified approximately 450 genes downstream of Ciona intestinalis Brachyury (Ci-Bra), and characterized the expression profiles of 45 of these in differentiating notochord cells. In this study, we looked for cisregulatory sequences in minimal enhancers of 20 Ci-Bra downstream genes by electroporating region within approximately 3 kb upstream of each gene fused with lacZ. Eight of the 20 reporters were expressed in notochord cells. The minimal enchancer for each of these eight genes was narrowed to a region approximately 0.5-1.0-kb long. We also explored the genome-wide and coordinate regulation of 43 Ci-Bra-downstream genes. When we determined their chromosomal localization, it became evident that they are not clustered in a given region of the genome, but rather distributed evenly over 13 of the 14 pairs of chromosomes, suggesting that gene clustering does not contribute to coordinate control of the Ci-Bra downstream gene expression. Our results might provide Insights Into the molecular mechanisms underlying notochord formation in chordates.

  18. Epigenetic Regulation of Adipokines

    Directory of Open Access Journals (Sweden)

    Tho X. Pham

    2017-08-01

    Full Text Available Adipose tissue expansion in obesity leads to changes in the expression of adipokines, adipocyte-specific hormones that can regulate whole body energy metabolism. Epigenetic regulation of gene expression is a mechanism by which cells can alter gene expression through the modifications of DNA and histones. Epigenetic mechanisms, such as DNA methylation and histone modifications, are intimately tied to energy metabolism due to their dependence on metabolic intermediates such as S-adenosylmethionine and acetyl-CoA. Altered expression of adipokines in obesity may be due to epigenetic changes. The goal of this review is to highlight current knowledge of epigenetic regulation of adipokines.

  19. Transcriptional regulation of genes related to progesterone production.

    Science.gov (United States)

    Mizutani, Tetsuya; Ishikane, Shin; Kawabe, Shinya; Umezawa, Akihiro; Miyamoto, Kaoru

    2015-01-01

    Steroid hormones are synthesized from cholesterol in various tissues, mainly in the adrenal glands and gonads. Because these lipid-soluble steroid hormones immediately diffuse through the cells in which they are produced, their secretion directly reflects the activity of the genes related to their production. Progesterone is important not only for luteinization and maintenance of pregnancy, but also as a substrate for most other steroids. Steroidogenic acute regulatory protein (STAR), cytochrome P450 cholesterol side-chain cleavage enzyme (P450scc), and 3β-hydroxysteroid dehydrogenase/Δ(5)-Δ(4) isomerase (3β-HSD) are well-known proteins essential for progesterone production. In addition to them, glutathione S-transferase A1-1 and A3-3 are shown to exert Δ(5)-Δ(4) isomerization activity to produce progesterone in a cooperative fashion with 3β-HSD. 5-Aminolevulinic acid synthase 1, ferredoxin 1, and ferredoxin reductase also play a role in steroidogenesis as accessory factors. Members of the nuclear receptor 5A (NR5A) family (steroidogenic factor 1 and liver receptor homolog 1) play a crucial role in the transcriptional regulation of these genes. The NR5A family activates these genes by binding to NR5A responsive elements present within their promoter regions, as well as to the elements far from their promoters. In addition, various NR5A-interacting proteins including peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), nuclear receptor subfamily 0, group B, member 1 (DAX-1), and CCAAT/enhancer-binding proteins (C/EBP) are involved in the transcription of NR5A target genes and regulate the transcription either positively or negatively under both basal and tropic hormone-stimulated conditions. In this review, we describe the transcriptional regulation of genes related to progesterone production.

  20. The microRNA machinery regulates fasting-induced changes in gene expression and longevity in Caenorhabditis elegans.

    Science.gov (United States)

    Kogure, Akiko; Uno, Masaharu; Ikeda, Takako; Nishida, Eisuke

    2017-07-07

    Intermittent fasting (IF) is a dietary restriction regimen that extends the lifespans of Caenorhabditis elegans and mammals by inducing changes in gene expression. However, how IF induces these changes and promotes longevity remains unclear. One proposed mechanism involves gene regulation by microRNAs (miRNAs), small non-coding RNAs (∼22 nucleotides) that repress gene expression and whose expression can be altered by fasting. To test this proposition, we examined the role of the miRNA machinery in fasting-induced transcriptional changes and longevity in C. elegans We revealed that fasting up-regulated the expression of the miRNA-induced silencing complex (miRISC) components, including Argonaute and GW182, and the miRNA-processing enzyme DRSH-1 (the ortholog of the Drosophila Drosha enzyme). Our lifespan measurements demonstrated that IF-induced longevity was suppressed by knock-out or knockdown of miRISC components and was completely inhibited by drsh-1 ablation. Remarkably, drsh-1 ablation inhibited the fasting-induced changes in the expression of the target genes of DAF-16, the insulin/IGF-1 signaling effector in C. elegans Fasting-induced transcriptome alterations were substantially and modestly suppressed in the drsh-1 null mutant and the null mutant of ain-1 , a gene encoding GW182, respectively. Moreover, miRNA array analyses revealed that the expression levels of numerous miRNAs changed after 2 days of fasting. These results indicate that components of the miRNA machinery, especially the miRNA-processing enzyme DRSH-1, play an important role in mediating IF-induced longevity via the regulation of fasting-induced changes in gene expression. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. A large-scale RNA interference screen identifies genes that regulate autophagy at different stages.

    Science.gov (United States)

    Guo, Sujuan; Pridham, Kevin J; Virbasius, Ching-Man; He, Bin; Zhang, Liqing; Varmark, Hanne; Green, Michael R; Sheng, Zhi

    2018-02-12

    Dysregulated autophagy is central to the pathogenesis and therapeutic development of cancer. However, how autophagy is regulated in cancer is not well understood and genes that modulate cancer autophagy are not fully defined. To gain more insights into autophagy regulation in cancer, we performed a large-scale RNA interference screen in K562 human chronic myeloid leukemia cells using monodansylcadaverine staining, an autophagy-detecting approach equivalent to immunoblotting of the autophagy marker LC3B or fluorescence microscopy of GFP-LC3B. By coupling monodansylcadaverine staining with fluorescence-activated cell sorting, we successfully isolated autophagic K562 cells where we identified 336 short hairpin RNAs. After candidate validation using Cyto-ID fluorescence spectrophotometry, LC3B immunoblotting, and quantitative RT-PCR, 82 genes were identified as autophagy-regulating genes. 20 genes have been reported previously and the remaining 62 candidates are novel autophagy mediators. Bioinformatic analyses revealed that most candidate genes were involved in molecular pathways regulating autophagy, rather than directly participating in the autophagy process. Further autophagy flux assays revealed that 57 autophagy-regulating genes suppressed autophagy initiation, whereas 21 candidates promoted autophagy maturation. Our RNA interference screen identifies identified genes that regulate autophagy at different stages, which helps decode autophagy regulation in cancer and offers novel avenues to develop autophagy-related therapies for cancer.

  2. The Escherichia coli Cpx envelope stress response regulates genes of diverse function that impact antibiotic resistance and membrane integrity.

    Science.gov (United States)

    Raivio, Tracy L; Leblanc, Shannon K D; Price, Nancy L

    2013-06-01

    The Cpx envelope stress response mediates adaptation to stresses that cause envelope protein misfolding. Adaptation is partly conferred through increased expression of protein folding and degradation factors. The Cpx response also plays a conserved role in the regulation of virulence determinant expression and impacts antibiotic resistance. We sought to identify adaptive mechanisms that may be involved in these important functions by characterizing changes in the transcriptome of two different Escherichia coli strains when the Cpx response is induced. We show that, while there is considerable strain- and condition-specific variability in the Cpx response, the regulon is enriched for proteins and functions that are inner membrane associated under all conditions. Genes that were changed by Cpx pathway induction under all conditions were involved in a number of cellular functions and included several intergenic regions, suggesting that posttranscriptional regulation is important during Cpx-mediated adaptation. Some Cpx-regulated genes are centrally involved in energetics and play a role in antibiotic resistance. We show that a number of small, uncharacterized envelope proteins are Cpx regulated and at least two of these affect phenotypes associated with membrane integrity. Altogether, our work suggests new mechanisms of Cpx-mediated envelope stress adaptation and antibiotic resistance.

  3. Gene expression patterns regulating the seed metabolism in relation to deterioration/ageing of primed mung bean (Vigna radiata L.) seeds.

    Science.gov (United States)

    Sharma, Satyendra Nath; Maheshwari, Ankita; Sharma, Chitra; Shukla, Nidhi

    2018-03-01

    We are proposing mechanisms to account for the loss of viability (seed deterioration/ageing) and enhancement in seed quality (post-storage priming treatment). In order to understand the regulatory mechanism of these traits, we conducted controlled deterioration (CD) test for up to 8 d using primed mung bean seeds and examined how CD effects the expression of many genes, regulating the seed metabolism in relation to CD and priming. Germination declined progressively with increased duration of CD, and the priming treatment completely/partially reversed the inhibition depending on the duration of CD. The loss of germination capacity by CD was accompanied by a reduction in total RNA content and RNA integrity, indicating that RNA quantity and quality impacts seed longevity. Expression analysis revealed that biosynthesis genes of GA, ethylene, ABA and ROS-scavenging enzymes were differentially affected in response to duration of CD and priming, suggesting coordinately regulated mechanisms for controlling the germination capacity of seeds by modifying the permeability characteristics of biological membranes and activities of different enzymes. ABA genes were highly expressed when germination was delayed and inhibited by CD. Whereas, GA and ethylene genes were more highly expressed when germination was enhanced and permitted by priming under similar conditions. GSTI, a well characterized enzyme family involved in stress tolerance, was expressed in primed seeds over the period of CD, suggesting an additional protection against deterioration. The results are discussed in light of understanding the mechanisms underlying longevity/priming which are important issues economically and ecologically. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  4. Toward epigenetic and gene regulation models of specific language impairment: looking for links among growth, genes, and impairments

    Directory of Open Access Journals (Sweden)

    Rice Mabel L

    2012-11-01

    Full Text Available Abstract Children with specific language impairment (SLI are thought to have an inherited form of language impairment that spares other developmental domains. SLI shows strong heritability and recent linkage and association studies have replicated results for candidate genes. Regulatory regions of the genes may be involved. Behavioral growth models of language development of children with SLI reveal that the onset of language is delayed, and the growth trajectories of children with SLI parallel those of younger children without SLI. The rate of language acquisition decelerates in the pre-adolescent period, resulting in immature language levels for the children with SLI that persist into adolescence and beyond. Recent genetic and epigenetic discoveries and models relevant to language impairment are reviewed. T cell regulation of onset, acceleration, and deceleration signaling are described as potential conceptual parallels to the growth timing elements of language acquisition and impairment. A growth signaling disruption (GSD hypothesis is proposed for SLI, which posits that faulty timing mechanisms at the cellular level, intrinsic to neurocortical functioning essential for language onset and growth regulation, are at the core of the growth outcomes of SLI. The GSD highlights the need to document and account for growth patterns over childhood and suggests needed directions for future investigation.

  5. The characterization of DNA methylation-mediated regulation of bovine placental lactogen and bovine prolactin-related protein-1 genes

    Directory of Open Access Journals (Sweden)

    Patel Osman V

    2009-03-01

    Full Text Available Abstract Background Bovine trophoblast binucleate cells (BNC express a plethora of molecules including bovine placental lactogen (bPL, gene name is bCSH1 and bovine prolactin-related protein-1 (bPRP1. BCSH1 and bPRP1 are members of the growth hormone (GH/prolactin (PRL gene family, which are expressed simultaneously in BNC and are central to placentation and the progression of pregnancy in cattle. However, there is a paucity of information on the transcriptional regulatory mechanisms of both the bCSH1 and bPRP1 genes. Recent studies, however, have demonstrated that the expression of a number of genes is controlled by the methylation status of their promoter region. In the present study, we examined the cell-type-specific epigenetic alterations of the 5'-flanking region of the bCSH1 and bPRP1 genes to gain an insight into their regulatory mechanisms. Results Analysis of 5-aza-2'-deoxycytidine treatment demonstrated that bCSH1 expression is moderately induced in fibroblast cultures but enhanced in BT-1 cells. Sodium bisulfite based sequencing revealed that bCSH1 is hypomethylated in the cotyledonary tissue but not in the fetal skin, and this pattern was not altered with the progression of pregnancy. On the other hand, the methylation status of bPRP1 was similar between the cotyledon and fetal skin. The bPRP1 gene was exclusively hypermethylated in a bovine trophoblast cell-derived BT-1 cell-line. While the activity of bCSH1 was similar in both BT-1 and bovine fibroblast cells, that of bPRP1 was specific to BT-1. Treatment with a demethylating agent and luciferase assays provided in vitro evidence of the positive regulation of bCSH1 but not bPRP1. Conclusion This is the first report to identify the differential regulatory mechanisms of the bCSH1 and bPRP1 genes and indicates that bCSH1 might potentially be the only transcript that is subject to DNA methyltransferase regulation. The data indicates the possibility of novel kinetics of induction of

  6. Transcriptional Regulation of Chemokine Genes: A Link to Pancreatic Islet Inflammation?

    Directory of Open Access Journals (Sweden)

    Susan J. Burke

    2015-05-01

    Full Text Available Enhanced expression of chemotactic cytokines (aka chemokines within pancreatic islets likely contributes to islet inflammation by regulating the recruitment and activation of various leukocyte populations, including macrophages, neutrophils, and T-lymphocytes. Because of the powerful actions of these chemokines, precise transcriptional control is required. In this review, we highlight what is known about the signals and mechanisms that govern the transcription of genes encoding specific chemokine proteins in pancreatic islet β-cells, which include contributions from the NF-κB and STAT1 pathways. We further discuss increased chemokine expression in pancreatic islets during autoimmune-mediated and obesity-related development of diabetes.

  7. Combined chromatin and expression analysis reveals specific regulatory mechanisms within cytokine genes in the macrophage early immune response.

    Directory of Open Access Journals (Sweden)

    Maria Jesus Iglesias

    Full Text Available Macrophages play a critical role in innate immunity, and the expression of early response genes orchestrate much of the initial response of the immune system. Macrophages undergo extensive transcriptional reprogramming in response to inflammatory stimuli such as Lipopolysaccharide (LPS.To identify gene transcription regulation patterns involved in early innate immune responses, we used two genome-wide approaches--gene expression profiling and chromatin immunoprecipitation-sequencing (ChIP-seq analysis. We examined the effect of 2 hrs LPS stimulation on early gene expression and its relation to chromatin remodeling (H3 acetylation; H3Ac and promoter binding of Sp1 and RNA polymerase II phosphorylated at serine 5 (S5P RNAPII, which is a marker for transcriptional initiation. Our results indicate novel and alternative gene regulatory mechanisms for certain proinflammatory genes. We identified two groups of up-regulated inflammatory genes with respect to chromatin modification and promoter features. One group, including highly up-regulated genes such as tumor necrosis factor (TNF, was characterized by H3Ac, high CpG content and lack of TATA boxes. The second group, containing inflammatory mediators (interleukins and CCL chemokines, was up-regulated upon LPS stimulation despite lacking H3Ac in their annotated promoters, which were low in CpG content but did contain TATA boxes. Genome-wide analysis showed that few H3Ac peaks were unique to either +/-LPS condition. However, within these, an unpacking/expansion of already existing H3Ac peaks was observed upon LPS stimulation. In contrast, a significant proportion of S5P RNAPII peaks (approx 40% was unique to either condition. Furthermore, data indicated a large portion of previously unannotated TSSs, particularly in LPS-stimulated macrophages, where only 28% of unique S5P RNAPII peaks overlap annotated promoters. The regulation of the inflammatory response appears to occur in a very specific manner at

  8. Analysis of clock-regulated genes in Neurospora reveals widespread posttranscriptional control of metabolic potential

    Science.gov (United States)

    Hurley, Jennifer M.; Dasgupta, Arko; Emerson, Jillian M.; Zhou, Xiaoying; Ringelberg, Carol S.; Knabe, Nicole; Lipzen, Anna M.; Lindquist, Erika A.; Daum, Christopher G.; Barry, Kerrie W.; Grigoriev, Igor V.; Smith, Kristina M.; Galagan, James E.; Bell-Pedersen, Deborah; Freitag, Michael; Cheng, Chao; Loros, Jennifer J.; Dunlap, Jay C.

    2014-01-01

    Neurospora crassa has been for decades a principal model for filamentous fungal genetics and physiology as well as for understanding the mechanism of circadian clocks. Eukaryotic fungal and animal clocks comprise transcription-translation–based feedback loops that control rhythmic transcription of a substantial fraction of these transcriptomes, yielding the changes in protein abundance that mediate circadian regulation of physiology and metabolism: Understanding circadian control of gene expression is key to understanding eukaryotic, including fungal, physiology. Indeed, the isolation of clock-controlled genes (ccgs) was pioneered in Neurospora where circadian output begins with binding of the core circadian transcription factor WCC to a subset of ccg promoters, including those of many transcription factors. High temporal resolution (2-h) sampling over 48 h using RNA sequencing (RNA-Seq) identified circadianly expressed genes in Neurospora, revealing that from ∼10% to as much 40% of the transcriptome can be expressed under circadian control. Functional classifications of these genes revealed strong enrichment in pathways involving metabolism, protein synthesis, and stress responses; in broad terms, daytime metabolic potential favors catabolism, energy production, and precursor assembly, whereas night activities favor biosynthesis of cellular components and growth. Discriminative regular expression motif elicitation (DREME) identified key promoter motifs highly correlated with the temporal regulation of ccgs. Correlations between ccg abundance from RNA-Seq, the degree of ccg-promoter activation as reported by ccg-promoter–luciferase fusions, and binding of WCC as measured by ChIP-Seq, are not strong. Therefore, although circadian activation is critical to ccg rhythmicity, posttranscriptional regulation plays a major role in determining rhythmicity at the mRNA level. PMID:25362047

  9. Effect of exercise on photoperiod-regulated hypothalamic gene expression and peripheral hormones in the seasonal Dwarf Hamster Phodopus sungorus.

    Directory of Open Access Journals (Sweden)

    Ines Petri

    Full Text Available The Siberian hamster (Phodopus sungorus is a seasonal mammal responding to the annual cycle in photoperiod with anticipatory physiological adaptations. This includes a reduction in food intake and body weight during the autumn in anticipation of seasonally reduced food availability. In the laboratory, short-day induction of body weight loss can be reversed or prevented by voluntary exercise undertaken when a running wheel is introduced into the home cage. The mechanism by which exercise prevents or reverses body weight reduction is unknown, but one hypothesis is a reversal of short-day photoperiod induced gene expression changes in the hypothalamus that underpin body weight regulation. Alternatively, we postulate an exercise-related anabolic effect involving the growth hormone axis. To test these hypotheses we established photoperiod-running wheel experiments of 8 to 16 weeks duration assessing body weight, food intake, organ mass, lean and fat mass by magnetic resonance, circulating hormones FGF21 and insulin and hypothalamic gene expression. In response to running wheel activity, short-day housed hamsters increased body weight. Compared to short-day housed sedentary hamsters the body weight increase was accompanied by higher food intake, maintenance of tissue mass of key organs such as the liver, maintenance of lean and fat mass and hormonal profiles indicative of long day housed hamsters but there was no overall reversal of hypothalamic gene expression regulated by photoperiod. Therefore the mechanism by which activity induces body weight gain is likely to act largely independently of photoperiod regulated gene expression in the hypothalamus.

  10. Signaling pathways in PACAP regulation of VIP gene expression in human neuroblastoma cells

    DEFF Research Database (Denmark)

    Falktoft, B.; Georg, B.; Fahrenkrug, J.

    2009-01-01

    Ganglia expressing the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) innervate vasoactive intestinal peptide (VIP) containing neurons suggesting a role of PACAP in regulating VIP expression. Human NB-1 neuroblastoma cells were applied to study PACAP regulated VIP gene...... in PACAP regulation of the FOS and VIP gene expressions suggest for the first time a role of FOS in PACAP-induced VIP gene expression in human NB-1 neuroblastoma cells. (C) 2009 Elsevier Ltd. All rights reserved Udgivelsesdato: 2009/10...

  11. Thermo-Regulation of Genes Mediating Motility and Plant Interactions in Pseudomonas syringae

    Science.gov (United States)

    Hockett, Kevin L.; Burch, Adrien Y.; Lindow, Steven E.

    2013-01-01

    Pseudomonas syringae is an important phyllosphere colonist that utilizes flagellum-mediated motility both as a means to explore leaf surfaces, as well as to invade into leaf interiors, where it survives as a pathogen. We found that multiple forms of flagellum-mediated motility are thermo-suppressed, including swarming and swimming motility. Suppression of swarming motility occurs between 28° and 30°C, which coincides with the optimal growth temperature of P. syringae. Both fliC (encoding flagellin) and syfA (encoding a non-ribosomal peptide synthetase involved in syringafactin biosynthesis) were suppressed with increasing temperature. RNA-seq revealed 1440 genes of the P. syringae genome are temperature sensitive in expression. Genes involved in polysaccharide synthesis and regulation, phage and IS elements, type VI secretion, chemosensing and chemotaxis, translation, flagellar synthesis and motility, and phytotoxin synthesis and transport were generally repressed at 30°C, while genes involved in transcriptional regulation, quaternary ammonium compound metabolism and transport, chaperone/heat shock proteins, and hypothetical genes were generally induced at 30°C. Deletion of flgM, a key regulator in the transition from class III to class IV gene expression, led to elevated and constitutive expression of fliC regardless of temperature, but did not affect thermo-regulation of syfA. This work highlights the importance of temperature in the biology of P. syringae, as many genes encoding traits important for plant-microbe interactions were thermo-regulated. PMID:23527276

  12. Hypolipidemic effect of dietary pea proteins: Impact on genes regulating hepatic lipid metabolism.

    Science.gov (United States)

    Rigamonti, Elena; Parolini, Cinzia; Marchesi, Marta; Diani, Erika; Brambilla, Stefano; Sirtori, Cesare R; Chiesa, Giulia

    2010-05-01

    Controversial data on the lipid-lowering effect of dietary pea proteins have been provided and the mechanisms behind this effect are not completely understood. The aim of the study was to evaluate a possible hypolipidemic activity of a pea protein isolate and to determine whether pea proteins could affect the hepatic lipid metabolism through regulation of genes involved in cholesterol and fatty acid homeostasis. Rats were fed Nath's hypercholesterolemic diets for 28 days, the protein sources being casein or a pea protein isolate from Pisum sativum. After 14 and 28 days of dietary treatment, rats fed pea proteins had markedly lower plasma cholesterol and triglyceride levels than rats fed casein (pPea protein-fed rats displayed higher hepatic mRNA levels of LDL receptor versus those fed casein (ppea protein-fed rats than in rats fed casein (ppea proteins in rats. Moreover, pea proteins appear to affect cellular lipid homeostasis by upregulating genes involved in hepatic cholesterol uptake and by downregulating fatty acid synthesis genes.

  13. Temperature regulates splicing efficiency of the cold-inducible RNA-binding protein gene Cirbp

    Science.gov (United States)

    Gotic, Ivana; Omidi, Saeed; Fleury-Olela, Fabienne; Molina, Nacho; Naef, Felix; Schibler, Ueli

    2016-01-01

    In mammals, body temperature fluctuates diurnally around a mean value of 36°C–37°C. Despite the small differences between minimal and maximal values, body temperature rhythms can drive robust cycles in gene expression in cultured cells and, likely, animals. Here we studied the mechanisms responsible for the temperature-dependent expression of cold-inducible RNA-binding protein (CIRBP). In NIH3T3 fibroblasts exposed to simulated mouse body temperature cycles, Cirbp mRNA oscillates about threefold in abundance, as it does in mouse livers. This daily mRNA accumulation cycle is directly controlled by temperature oscillations and does not depend on the cells’ circadian clocks. Here we show that the temperature-dependent accumulation of Cirbp mRNA is controlled primarily by the regulation of splicing efficiency, defined as the fraction of Cirbp pre-mRNA processed into mature mRNA. As revealed by genome-wide “approach to steady-state” kinetics, this post-transcriptional mechanism is widespread in the temperature-dependent control of gene expression. PMID:27633015

  14. Identification of pathogenic genes and upstream regulators in age-related macular degeneration.

    Science.gov (United States)

    Zhao, Bin; Wang, Mengya; Xu, Jing; Li, Min; Yu, Yuhui

    2017-06-26

    Age-related macular degeneration (AMD) is the leading cause of irreversible blindness in older individuals. Our study aims to identify the key genes and upstream regulators in AMD. To screen pathogenic genes of AMD, an integrated analysis was performed by using the microarray datasets in AMD derived from the Gene Expression Omnibus (GEO) database. The functional annotation and potential pathways of differentially expressed genes (DEGs) were further discovered by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. We constructed the AMD-specific transcriptional regulatory network to find the crucial transcriptional factors (TFs) which target the DEGs in AMD. Quantitative real time polymerase chain reaction (qRT-PCR) was performed to verify the DEGs and TFs obtained by integrated analysis. From two GEO datasets obtained, we identified 1280 DEGs (730 up-regulated and 550 down-regulated genes) between AMD and normal control (NC). After KEGG analysis, steroid biosynthesis is a significantly enriched pathway for DEGs. The expression of 8 genes (TNC, GRP, TRAF6, ADAMTS5, GPX3, FAP, DHCR7 and FDFT1) was detected. Except for TNC and GPX3, the other 6 genes in qRT-PCR played the same pattern with that in our integrated analysis. The dysregulation of these eight genes may involve with the process of AMD. Two crucial transcription factors (c-rel and myogenin) were concluded to play a role in AMD. Especially, myogenin was associated with AMD by regulating TNC, GRP and FAP. Our finding can contribute to developing new potential biomarkers, revealing the underlying pathogenesis, and further raising new therapeutic targets for AMD.

  15. Genome-wide Analysis of Gene Regulation

    DEFF Research Database (Denmark)

    Chen, Yun

    to protein: through epigenetic modifications, transcription regulators or post-transcriptional controls. The following papers concern several layers of gene regulation with questions answered by different HTS approaches. Genome-wide screening of epigenetic changes by ChIP-seq allowed us to study both spatial...... and temporal alterations of histone modifications (Papers I and II). Coupling the data with machine learning approaches, we established a prediction framework to assess the most informative histone marks as well as their most influential nucleosome positions in predicting the promoter usages. (Papers I...... they regulated or if the sites had global elevated usage rates by multiple TFs. Using RNA-seq, 5’end-seq in combination with depletion of 5’exonuclease as well as nonsensemediated decay (NMD) factors, we systematically analyzed NMD substrates as well as their degradation intermediates in human cells (Paper V...

  16. Gonadotropin-releasing hormone regulates expression of the DNA damage repair gene, Fanconi anemia A, in pituitary gonadotroph cells.

    Science.gov (United States)

    Larder, Rachel; Chang, Lynda; Clinton, Michael; Brown, Pamela

    2004-09-01

    Gonadal function is critically dependant on regulated secretion of the gonadotropin hormones from anterior pituitary gonadotroph cells. Gonadotropin biosynthesis and release is triggered by the binding of hypothalamic GnRH to GnRH receptor expressed on the gonadotroph cell surface. The repertoire of regulatory molecules involved in this process are still being defined. We used the mouse L beta T2 gonadotroph cell line, which expresses both gonadotropin hormones, as a model to investigate GnRH regulation of gene expression and differential display reverse transcription-polymerase chain reaction (RT-PCR) to identify and isolate hormonally induced changes. This approach identified Fanconi anemia a (Fanca), a gene implicated in DNA damage repair, as a differentially expressed transcript. Mutations in Fanca account for the majority of cases of Fanconi anemia (FA), a recessively inherited disease identified by congenital defects, bone marrow failure, infertility, and cancer susceptibility. We confirmed expression and hormonal regulation of Fanca mRNA by quantitative RT-PCR, which showed that GnRH induced a rapid, transient increase in Fanca mRNA. Fanca protein was also acutely upregulated after GnRH treatment of L beta T2 cells. In addition, Fanca gene expression was confined to mature pituitary gonadotrophs and adult mouse pituitary and was not expressed in the immature alpha T3-1 gonadotroph cell line. Thus, this study extends the expression profile of Fanca into a highly specialized endocrine cell and demonstrates hormonal regulation of expression of the Fanca locus. We suggest that this regulatory mechanism may have a crucial role in the GnRH-response mechanism of mature gonadotrophs and perhaps the etiology of FA.

  17. Genome-wide screening of Saccharomyces cerevisiae genes regulated by vanillin.

    Science.gov (United States)

    Park, Eun-Hee; Kim, Myoung-Dong

    2015-01-01

    During pretreatment of lignocellulosic biomass, a variety of fermentation inhibitors, including acetic acid and vanillin, are released. Using DNA microarray analysis, this study explored genes of the budding yeast Saccharomyces cerevisiae that respond to vanillin-induced stress. The expression of 273 genes was upregulated and that of 205 genes was downregulated under vanillin stress. Significantly induced genes included MCH2, SNG1, GPH1, and TMA10, whereas NOP2, UTP18, FUR1, and SPR1 were down regulated. Sequence analysis of the 5'-flanking region of upregulated genes suggested that vanillin might regulate gene expression in a stress response element (STRE)-dependent manner, in addition to a pathway that involved the transcription factor Yap1p. Retardation in the cell growth of mutant strains indicated that MCH2, SNG1, and GPH1 are intimately involved in vanillin stress response. Deletion of the genes whose expression levels were decreased under vanillin stress did not result in a notable change in S. cerevisiae growth under vanillin stress. This study will provide the basis for a better understanding of the stress response of the yeast S. cerevisiae to fermentation inhibitors.

  18. Disruption of a cystine transporter downregulates expression of genes involved in sulfur regulation and cellular respiration

    Directory of Open Access Journals (Sweden)

    Jessica A. Simpkins

    2016-06-01

    Full Text Available Cystine and cysteine are important molecules for pathways such as redox signaling and regulation, and thus identifying cellular deficits upon deletion of the Saccharomyces cerevisiae cystine transporter Ers1p allows for a further understanding of cystine homeostasis. Previous complementation studies using the human ortholog suggest yeast Ers1p is a cystine transporter. Human CTNS encodes the protein Cystinosin, a cystine transporter that is embedded in the lysosomal membrane and facilitates the export of cystine from the lysosome. When CTNS is mutated, cystine transport is disrupted, leading to cystine accumulation, the diagnostic hallmark of the lysosomal storage disorder cystinosis. Here, we provide biochemical evidence for Ers1p-dependent cystine transport. However, the accumulation of intracellular cystine is not observed when the ERS1 gene is deleted from ers1-Δ yeast, supporting the existence of modifier genes that provide a mechanism in ers1-Δ yeast that prevents or corrects cystine accumulation. Upon comparison of the transcriptomes of isogenic ERS1+ and ers1-Δ strains of S. cerevisiae by DNA microarray followed by targeted qPCR, sixteen genes were identified as being differentially expressed between the two genotypes. Genes that encode proteins functioning in sulfur regulation, cellular respiration, and general transport were enriched in our screen, demonstrating pleiotropic effects of ers1-Δ. These results give insight into yeast cystine regulation and the multiple, seemingly distal, pathways that involve proper cystine recycling.

  19. Noise-induced multistability in the regulation of cancer by genes and pseudogenes

    Energy Technology Data Exchange (ETDEWEB)

    Petrosyan, K. G., E-mail: pkaren@phys.sinica.edu.tw [Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan (China); Hu, Chin-Kun, E-mail: huck@phys.sinica.edu.tw [Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan (China); National Center for Theoretical Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Business School, University of Shanghai for Science and Technology, Shanghai 200093 (China)

    2016-07-28

    We extend a previously introduced model of stochastic gene regulation of cancer to a nonlinear case having both gene and pseudogene messenger RNAs (mRNAs) self-regulated. The model consists of stochastic Boolean genetic elements and possesses noise-induced multistability (multimodality). We obtain analytical expressions for probabilities for the case of constant but finite number of microRNA molecules which act as a noise source for the competing gene and pseudogene mRNAs. The probability distribution functions display both the global bistability regime as well as even-odd number oscillations for a certain range of model parameters. Statistical characteristics of the mRNA’s level fluctuations are evaluated. The obtained results of the extended model advance our understanding of the process of stochastic gene and pseudogene expressions that is crucial in regulation of cancer.

  20. The precise regulation of different COR genes by individual CBF transcription factors in Arabidopsis thaliana.

    Science.gov (United States)

    Shi, Yihao; Huang, Jiaying; Sun, Tianshu; Wang, Xuefei; Zhu, Chenqi; Ai, Yuxi; Gu, Hongya

    2017-02-01

    The transcription factors CBF1/2/3 are reported to play a dominant role in the cold responsive network of Arabidopsis by directly regulating the expression levels of cold responsive (COR) genes. In this study, we obtained CRISPR/Cas9-mediated loss-of-function mutants of cbf1∼3. Over 3,000 COR genes identified by RNA-seq analysis showed a slight but significant change in their expression levels in the mutants compared to the wild-type plants after being treated at 4 °C for 12 h. The C-repeat (CRT) motif (5'-CCGAC-3') was enriched in promoters of genes that were up-regulated by CBF2 and CBF3 but not in promoters of genes up-regulated by CBF1. These data suggest that CBF2 and CBF3 play a more important role in directing the cold response by regulating different sets of downstream COR genes. More than 2/3 of COR genes were co-regulated by two or three CBFs and were involved mainly in cellular signal transduction and metabolic processes; less than 1/3 of the genes were regulated by one CBF, and those genes up-regulated were enriched in cold-related abiotic stress responses. Our results indicate that CBFs play an important role in the trade-off between cold tolerance and plant growth through the precise regulation of COR genes in the complicated transcriptional network. © 2016 The Authors. Journal of Integrative Plant Biology Published by John Wiley & Sons Australia, Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.

  1. Gene repressive mechanisms in the mouse brain involved in memory formation.

    Science.gov (United States)

    Yu, Nam-Kyung; Kaang, Bong-Kiun

    2016-04-01

    Gene regulation in the brain is essential for long-term plasticity and memory formation. Despite this established notion, the quantitative translational map in the brain during memory formation has not been reported. To systematically probe the changes in protein synthesis during memory formation, our recent study exploited ribosome profiling using the mouse hippocampal tissues at multiple time points after a learning event. Analysis of the resulting database revealed novel types of gene regulation after learning. First, the translation of a group of genes was rapidly suppressed without change in mRNA levels. At later time points, the expression of another group of genes was downregulated through reduction in mRNA levels. This reduction was predicted to be downstream of inhibition of ESR1 (Estrogen Receptor 1) signaling. Overexpressing Nrsn1, one of the genes whose translation was suppressed, or activating ESR1 by injecting an agonist interfered with memory formation, suggesting the functional importance of these findings. Moreover, the translation of genes encoding the translational machineries was found to be suppressed, among other genes in the mouse hippocampus. Together, this unbiased approach has revealed previously unidentified characteristics of gene regulation in the brain and highlighted the importance of repressive controls. [BMB Reports 2016; 49(4): 199-200].

  2. A large-scale RNA interference screen identifies genes that regulate autophagy at different stages

    DEFF Research Database (Denmark)

    Guo, Sujuan; Pridham, Kevin J; Virbasius, Ching-Man

    2018-01-01

    Dysregulated autophagy is central to the pathogenesis and therapeutic development of cancer. However, how autophagy is regulated in cancer is not well understood and genes that modulate cancer autophagy are not fully defined. To gain more insights into autophagy regulation in cancer, we performed...... with fluorescence-activated cell sorting, we successfully isolated autophagic K562 cells where we identified 336 short hairpin RNAs. After candidate validation using Cyto-ID fluorescence spectrophotometry, LC3B immunoblotting, and quantitative RT-PCR, 82 genes were identified as autophagy-regulating genes. 20 genes...... have been reported previously and the remaining 62 candidates are novel autophagy mediators. Bioinformatic analyses revealed that most candidate genes were involved in molecular pathways regulating autophagy, rather than directly participating in the autophagy process. Further autophagy flux assays...

  3. Response and binding elements for ligand-dependent positive transcription factors integrate positive and negative regulation of gene expression

    International Nuclear Information System (INIS)

    Rosenfeld, M.G.; Glass, C.K.; Adler, S.; Crenshaw, E.B. III; He, X.; Lira, S.A.; Elsholtz, H.P.; Mangalam, H.J.; Holloway, J.M.; Nelson, C.; Albert, V.R.; Ingraham, H.A.

    1988-01-01

    Accurate, regulated initiation of mRNA transcription by RNA polymerase II is dependent on the actions of a variety of positive and negative trans-acting factors that bind cis-acting promoter and enhancer elements. These transcription factors may exert their actions in a tissue-specific manner or function under control of plasma membrane or intracellular ligand-dependent receptors. A major goal in the authors' laboratory has been to identify the molecular mechanisms responsible for the serial activation of hormone-encoding genes in the pituitary during development and the positive and negative regulation of their transcription. The anterior pituitary gland contains phenotypically distinct cell types, each of which expresses unique trophic hormones: adrenocorticotropic hormone, thyroid-stimulating hormone, prolactin, growth hormone, and follicle-stimulating hormone/luteinizing hormone. The structurally related prolactin and growth hormone genes are expressed in lactotrophs and somatotrophs, respectively, with their expression virtually limited to the pituitary gland. The reported transient coexpression of these two structurally related neuroendocrine genes raises the possibility that the prolactin and growth hormone genes are developmentally controlled by a common factor(s)

  4. A laser pointer driven microheater for precise local heating and conditional gene regulation in vivo. Microheater driven gene regulation in zebrafish

    Directory of Open Access Journals (Sweden)

    Achermann Marc

    2009-12-01

    Full Text Available Abstract Background Tissue heating has been employed to study a variety of biological processes, including the study of genes that control embryonic development. Conditional regulation of gene expression is a particularly powerful approach for understanding gene function. One popular method for mis-expressing a gene of interest employs heat-inducible heat shock protein (hsp promoters. Global heat shock of hsp-promoter-containing transgenic animals induces gene expression throughout all tissues, but does not allow for spatial control. Local heating allows for spatial control of hsp-promoter-driven transgenes, but methods for local heating are cumbersome and variably effective. Results We describe a simple, highly controllable, and versatile apparatus for heating biological tissue and other materials on the micron-scale. This microheater employs micron-scale fiber optics and uses an inexpensive laser-pointer as a power source. Optical fibers can be pulled on a standard electrode puller to produce tips of varying sizes that can then be used to reliably heat 20-100 μm targets. We demonstrate precise spatiotemporal control of hsp70l:GFP transgene expression in a variety of tissue types in zebrafish embryos and larvae. We also show how this system can be employed as part of a new method for lineage tracing that would greatly facilitate the study of organogenesis and tissue regulation at any time in the life cycle. Conclusion This versatile and simple local heater has broad utility for the study of gene function and for lineage tracing. This system could be used to control hsp-driven gene expression in any organism simply by bringing the fiber optic tip in contact with the tissue of interest. Beyond these uses for the study of gene function, this device has wide-ranging utility in materials science and could easily be adapted for therapeutic purposes in humans.

  5. MTA3 regulates CGB5 and Snail genes in trophoblast

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ying [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, MI 49503 (United States); Miyazaki, Jun [Department of Obstetrics and Gynecology, Fujita Health University School of Medicine, Fujita Health University, Toyoake (Japan); Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake (Japan); Nishizawa, Haruki [Department of Obstetrics and Gynecology, Fujita Health University School of Medicine, Fujita Health University, Toyoake (Japan); Kurahashi, Hiroki [Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake (Japan); Leach, Richard, E-mail: Richard.Leach@hc.msu.edu [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, MI 49503 (United States); Department of Obstetrics, Gynecology and Women’s Health, Spectrum Health Medical Group, Grand Rapids, MI 49503 (United States); Wang, Kai, E-mail: Kai.Wang@hc.msu.edu [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, MI 49503 (United States)

    2013-04-19

    Highlights: •Impaired MTA3, raised CGB5 and Snail expression are associated with preeclampsia. •Knock-down of MTA3 causes up-regulation of CGB5 and Snail genes in BeWo cells. •MTA3 occupies CGB5 and Snail gene promoters in BeWo cells. -- Abstract: Secreted by the placental trophoblast, human chorionic gonadotropin (hCG) is an important hormone during pregnancy and is required for the maintenance of pregnancy. Previous studies have shown that dys-regulation of hCG expression is associated with preeclampsia. However, the exact relationship between altered hCG levels and development of preeclampsia is unknown. Metastasis associated protein 3 (MTA3), a chromatin remodeling protein, is abundantly expressed in the placental trophoblasts, but its function is unknown. In breast cancer, MTA3 has been shown to repress the expression of Snail and cell migration. However, whether MTA3 acts similarly in the trophoblast has not been investigated. In the present study, we examined the role of MTA3 in regulating the hCG β-subunit gene (gene name: CGB5) and Snail expression in the trophoblast cell line, BeWo, as well as its relevance to the high hCG expression levels seen in preeclampsia. First, we investigated MTA3 expression in preeclamptic placenta as compared to normal control placenta via gene expression microarray and qRT-PCR and found that MTA3 was significantly down-regulated, whereas both CGB5 and Snail were up-regulated in preeclamptic placenta. Secondly, we knocked down MTA3 gene in trophoblast cell line BeWo and found Snail and hCG were both up-regulated, suggesting that MTA3 represses Snail and hCG gene expression in trophoblasts. Next, we cloned the CGB5 and Snail promoters into the pGL3-basic vector individually and found that silencing of MTA3 by siRNA resulted in an increase of both CGB5 and Snail promoter activities. To confirm that this MTA3 inhibition is a direct effect, we performed a chromatin immune-precipitation (ChIP) assay and found that MTA3

  6. MTA3 regulates CGB5 and Snail genes in trophoblast

    International Nuclear Information System (INIS)

    Chen, Ying; Miyazaki, Jun; Nishizawa, Haruki; Kurahashi, Hiroki; Leach, Richard; Wang, Kai

    2013-01-01

    Highlights: •Impaired MTA3, raised CGB5 and Snail expression are associated with preeclampsia. •Knock-down of MTA3 causes up-regulation of CGB5 and Snail genes in BeWo cells. •MTA3 occupies CGB5 and Snail gene promoters in BeWo cells. -- Abstract: Secreted by the placental trophoblast, human chorionic gonadotropin (hCG) is an important hormone during pregnancy and is required for the maintenance of pregnancy. Previous studies have shown that dys-regulation of hCG expression is associated with preeclampsia. However, the exact relationship between altered hCG levels and development of preeclampsia is unknown. Metastasis associated protein 3 (MTA3), a chromatin remodeling protein, is abundantly expressed in the placental trophoblasts, but its function is unknown. In breast cancer, MTA3 has been shown to repress the expression of Snail and cell migration. However, whether MTA3 acts similarly in the trophoblast has not been investigated. In the present study, we examined the role of MTA3 in regulating the hCG β-subunit gene (gene name: CGB5) and Snail expression in the trophoblast cell line, BeWo, as well as its relevance to the high hCG expression levels seen in preeclampsia. First, we investigated MTA3 expression in preeclamptic placenta as compared to normal control placenta via gene expression microarray and qRT-PCR and found that MTA3 was significantly down-regulated, whereas both CGB5 and Snail were up-regulated in preeclamptic placenta. Secondly, we knocked down MTA3 gene in trophoblast cell line BeWo and found Snail and hCG were both up-regulated, suggesting that MTA3 represses Snail and hCG gene expression in trophoblasts. Next, we cloned the CGB5 and Snail promoters into the pGL3-basic vector individually and found that silencing of MTA3 by siRNA resulted in an increase of both CGB5 and Snail promoter activities. To confirm that this MTA3 inhibition is a direct effect, we performed a chromatin immune-precipitation (ChIP) assay and found that MTA3

  7. Triethylene Glycol Up-Regulates Virulence-Associated Genes and Proteins in Streptococcus mutans.

    Science.gov (United States)

    Sadeghinejad, Lida; Cvitkovitch, Dennis G; Siqueira, Walter L; Santerre, J Paul; Finer, Yoav

    2016-01-01

    Triethylene glycol dimethacrylate (TEGDMA) is a diluent monomer used pervasively in dental composite resins. Through hydrolytic degradation of the composites in the oral cavity it yields a hydrophilic biodegradation product, triethylene glycol (TEG), which has been shown to promote the growth of Streptococcus mutans, a dominant cariogenic bacterium. Previously it was shown that TEG up-regulated gtfB, an important gene contributing to polysaccharide synthesis function in biofilms. However, molecular mechanisms related to TEG's effect on bacterial function remained poorly understood. In the present study, S. mutans UA159 was incubated with clinically relevant concentrations of TEG at pH 5.5 and 7.0. Quantitative real-time PCR, proteomics analysis, and glucosyltransferase enzyme (GTF) activity measurements were employed to identify the bacterial phenotypic response to TEG. A S. mutans vicK isogenic mutant (SMΔvicK1) and its associated complemented strain (SMΔvicK1C), an important regulatory gene for biofilm-associated genes, were used to determine if this signaling pathway was involved in modulation of the S. mutans virulence-associated genes. Extracted proteins from S. mutans biofilms grown in the presence and absence of TEG were subjected to mass spectrometry for protein identification, characterization and quantification. TEG up-regulated gtfB/C, gbpB, comC, comD and comE more significantly in biofilms at cariogenic pH (5.5) and defined concentrations. Differential response of the vicK knock-out (SMΔvicK1) and complemented strains (SMΔvicK1C) implicated this signalling pathway in TEG-modulated cellular responses. TEG resulted in increased GTF enzyme activity, responsible for synthesizing insoluble glucans involved in the formation of cariogenic biofilms. As well, TEG increased protein abundance related to biofilm formation, carbohydrate transport, acid tolerance, and stress-response. Proteomics data was consistent with gene expression findings for the selected

  8. Epigenetic regulation of multiple tumor-related genes leads to suppression of breast tumorigenesis by dietary genistein.

    Directory of Open Access Journals (Sweden)

    Yuanyuan Li

    Full Text Available Breast cancer is one of the most lethal diseases in women; however, the precise etiological factors are still not clear. Genistein (GE, a natural isoflavone found in soybean products, is believed to be a potent chemopreventive agent for breast cancer. One of the most important mechanisms for GE inhibition of breast cancer may involve its potential in impacting epigenetic processes allowing reversal of aberrant epigenetic events during breast tumorigenesis. To investigate epigenetic regulation for GE impedance of breast tumorigenesis, we monitored epigenetic alterations of several key tumor-related genes in an established breast cancer transformation system. Our results show that GE significantly inhibited cell growth in a dose-dependent manner in precancerous breast cells and breast cancer cells, whereas it exhibited little effect on normal human mammary epithelial cells. Furthermore, GE treatment increased expression of two crucial tumor suppressor genes, p21(WAF1 (p21 and p16(INK4a (p16, although it decreased expression of two tumor promoting genes, BMI1 and c-MYC. GE treatment led to alterations of histone modifications in the promoters of p21 and p16 as well as the binding ability of the c-MYC-BMI1 complex to the p16 promoter contributing to GE-induced epigenetic activation of these tumor suppressor genes. In addition, an orally-fed GE diet prevented breast tumorigenesis and inhibited breast cancer development in breast cancer mice xenografts. Our results suggest that genistein may repress early breast tumorigenesis by epigenetic regulation of p21 and p16 by impacting histone modifications as well as the BMI1-c-MYC complex recruitment to the regulatory region in the promoters of these genes. These studies will facilitate more effective use of soybean product in breast cancer prevention and also help elucidate the mechanisms during the process of early breast tumorigenesis.

  9. Epigenetic regulation of multiple tumor-related genes leads to suppression of breast tumorigenesis by dietary genistein.

    Science.gov (United States)

    Li, Yuanyuan; Chen, Huaping; Hardy, Tabitha M; Tollefsbol, Trygve O

    2013-01-01

    Breast cancer is one of the most lethal diseases in women; however, the precise etiological factors are still not clear. Genistein (GE), a natural isoflavone found in soybean products, is believed to be a potent chemopreventive agent for breast cancer. One of the most important mechanisms for GE inhibition of breast cancer may involve its potential in impacting epigenetic processes allowing reversal of aberrant epigenetic events during breast tumorigenesis. To investigate epigenetic regulation for GE impedance of breast tumorigenesis, we monitored epigenetic alterations of several key tumor-related genes in an established breast cancer transformation system. Our results show that GE significantly inhibited cell growth in a dose-dependent manner in precancerous breast cells and breast cancer cells, whereas it exhibited little effect on normal human mammary epithelial cells. Furthermore, GE treatment increased expression of two crucial tumor suppressor genes, p21(WAF1) (p21) and p16(INK4a) (p16), although it decreased expression of two tumor promoting genes, BMI1 and c-MYC. GE treatment led to alterations of histone modifications in the promoters of p21 and p16 as well as the binding ability of the c-MYC-BMI1 complex to the p16 promoter contributing to GE-induced epigenetic activation of these tumor suppressor genes. In addition, an orally-fed GE diet prevented breast tumorigenesis and inhibited breast cancer development in breast cancer mice xenografts. Our results suggest that genistein may repress early breast tumorigenesis by epigenetic regulation of p21 and p16 by impacting histone modifications as well as the BMI1-c-MYC complex recruitment to the regulatory region in the promoters of these genes. These studies will facilitate more effective use of soybean product in breast cancer prevention and also help elucidate the mechanisms during the process of early breast tumorigenesis.

  10. DMPD: Interferon gene regulation: not all roads lead to Tolls. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 16095970 Interferon gene regulation: not all roads lead to Tolls. Jefferies CA, Fit...zgerald KA. Trends Mol Med. 2005 Sep;11(9):403-11. (.png) (.svg) (.html) (.csml) Show Interferon gene regulation: not all roads... lead to Tolls. PubmedID 16095970 Title Interferon gene regulation: not all roads lead to

  11. Genome-wide association study identifies candidate genes for starch content regulation in maize kernels

    Directory of Open Access Journals (Sweden)

    Na Liu

    2016-07-01

    Full Text Available Kernel starch content is an important trait in maize (Zea mays L. as it accounts for 65% to 75% of the dry kernel weight and positively correlates with seed yield. A number of starch synthesis-related genes have been identified in maize in recent years. However, many loci underlying variation in starch content among maize inbred lines still remain to be identified. The current study is a genome-wide association study that used a set of 263 maize inbred lines. In this panel, the average kernel starch content was 66.99%, ranging from 60.60% to 71.58% over the three study years. These inbred lines were genotyped with the SNP50 BeadChip maize array, which is comprised of 56,110 evenly spaced, random SNPs. Population structure was controlled by a mixed linear model (MLM as implemented in the software package TASSEL. After the statistical analyses, four SNPs were identified as significantly associated with starch content (P ≤ 0.0001, among which one each are located on chromosomes 1 and 5 and two are on chromosome 2. Furthermore, 77 candidate genes associated with starch synthesis were found within the 100-kb intervals containing these four QTLs, and four highly associated genes were within 20-kb intervals of the associated SNPs. Among the four genes, Glucose-1-phosphate adenylyltransferase (APS1; Gene ID GRMZM2G163437 is known as an important regulator of kernel starch content. The identified SNPs, QTLs, and candidate genes may not only be readily used for germplasm improvement by marker-assisted selection in breeding, but can also elucidate the genetic basis of starch content. Further studies on these identified candidate genes may help determine the molecular mechanisms regulating kernel starch content in maize and other important cereal crops.

  12. Every which way – nanos gene regulation in echinoderms

    Science.gov (United States)

    Oulhen, Nathalie; Wessel, Gary M.

    2014-01-01

    Nanos is an essential factor of germ line success in all animals tested. This gene encodes a Zn-finger RNA-binding protein that in complex with its partner pumilio, binds to and changes the fate of several known transcripts. We summarize here the documented functions of nanos in several key organisms, and then emphasize echinoderms as a working model for how nanos expression is regulated. Nanos presence outside of the target cells is often detrimental to the animal, and in sea urchins, nanos expression appears to be regulated at every step of transcription, and post-transcriptional activity, making this gene product exciting, every which way. PMID:24376110

  13. Serine/threonine/tyrosine phosphorylation regulates DNA binding of bacterial transcriptional regulators

    DEFF Research Database (Denmark)

    Kalantari, Aida; Derouiche, Abderahmane; Shi, Lei

    2015-01-01

    Reversible phosphorylation of bacterial transcriptional regulators (TRs) belonging to the family of two-component systems (TCSs) is a well-established mechanism for regulating gene expression. Recent evidence points to the fact that reversible phosphorylation of bacterial TRs on other types...

  14. [Regulation of heat shock gene expression in response to stress].

    Science.gov (United States)

    Garbuz, D G

    2017-01-01

    Heat shock (HS) genes, or stress genes, code for a number of proteins that collectively form the most ancient and universal stress defense system. The system determines the cell capability of adaptation to various adverse factors and performs a variety of auxiliary functions in normal physiological conditions. Common stress factors, such as higher temperatures, hypoxia, heavy metals, and others, suppress transcription and translation for the majority of genes, while HS genes are upregulated. Transcription of HS genes is controlled by transcription factors of the HS factor (HSF) family. Certain HSFs are activated on exposure to higher temperatures or other adverse factors to ensure stress-induced HS gene expression, while other HSFs are specifically activated at particular developmental stages. The regulation of the main mammalian stress-inducible factor HSF1 and Drosophila melanogaster HSF includes many components, such as a variety of early warning signals indicative of abnormal cell activity (e.g., increases in intracellular ceramide, cytosolic calcium ions, or partly denatured proteins); protein kinases, which phosphorylate HSFs at various Ser residues; acetyltransferases; and regulatory proteins, such as SUMO and HSBP1. Transcription factors other than HSFs are also involved in activating HS gene transcription; the set includes D. melanogaster GAF, mammalian Sp1 and NF-Y, and other factors. Transcription of several stress genes coding for molecular chaperones of the glucose-regulated protein (GRP) family is predominantly regulated by another stress-detecting system, which is known as the unfolded protein response (UPR) system and is activated in response to massive protein misfolding in the endoplasmic reticulum and mitochondrial matrix. A translational fine tuning of HS protein expression occurs via changing the phosphorylation status of several proteins involved in translation initiation. In addition, specific signal sequences in the 5'-UTRs of some HS

  15. Dynamical Processes in Ageing, Gene Regulation and Communication

    DEFF Research Database (Denmark)

    Bendtsen, Kristian Moss

    is that unstable activation and stable repression is a requirement for the motif to produce oscillations. The last part of this thesis studies the emergence of communication networks. In this study we constructed a simple e-mail game. E-mails from two session with 16 players, who had never met before, showed how......My thesis consists of three parts. The first part covers ageing phenomena. In the first project I measured the mobility of two DNA repair proteins. Contrasting diffusion coefficients from literature I was able to classify DNA repair protein into either "scanners" or "responders". In a second...... project we constructed a mathematical model and showed that if DNA damage is primarily caused by geno-toxic agents, it would be advantageous for cells to have a fragile DNA repair mechanism. The second part of my Ph.D. thesis covers gene regulation. In the first project we show how RNA polymerase can...

  16. DNA methylation-dependent regulation of TrkA, TrkB, and TrkC genes in human hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Wook [Laboratory of Molecular Disease and Cell Regulation, Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science, Incheon (Korea, Republic of); Lee, Jong-Joo [Department of Environmental Medical Biology, Institute of Tropical Medicine, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, 250 Seongsanno, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Kim, Min Soo [Laboratory of Molecular Disease and Cell Regulation, Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science, Incheon (Korea, Republic of); Son, Byung Ho [Department of Surgery, Kangbuk Samsung Hospital, Sungkyunkwan University, School of Medicine, 108 Pyung-dong, Jongro-gu, Seoul 110-746 (Korea, Republic of); Cho, Yong Kyun, E-mail: choyk2004@hanmail.net [Division of Gastroenterology, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University, School of Medicine, 108 Pyung-dong, Jongro-gu, Seoul 110-746 (Korea, Republic of); Kim, Hyoung-Pyo, E-mail: kimhp@yuhs.ac [Department of Environmental Medical Biology, Institute of Tropical Medicine, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, 250 Seongsanno, Seodaemun-gu, Seoul 120-752 (Korea, Republic of)

    2011-03-04

    Research highlights: {yields} Expression of TrkA, TrkB, and TrkC is significantly elevated in human hepatocellular carcinoma. {yields} Downregulation of Trks is correlated with their promoter hypermethylation. {yields} Inhibiting DNA methylation restored expression of Trks in normal liver cell lines. {yields} Trks promote the proliferation of hepatocellular carcinoma. {yields} Trks induce expression of the metastatic regulator, Twist. -- Abstract: The tropomyosin-related kinase (Trk) family of neurotrophin receptors, TrkA, TrkB and TrkC, has been implicated in the growth and survival of human cancers. Here we report that Trks are frequently overexpressed in hepatocellular carcinoma (HCC) from patients and human liver cancer cell lines. To unravel the underlying molecular mechanism(s) for this phenomenon, DNA methylation patterns of CpG islands in TrkA, TrkB, and TrkC genes were examined in normal and cancer cell lines derived from liver. A good correlation was observed between promoter hypermethylation and lower expression of TrkA, TrkB, and TrkC genes, which was supported by the data that inhibiting DNA methylation with 5-azacytidine restored expression of those genes in normal liver cell lines. Furthermore, Trks promoted the proliferation of HepG2 and induced expression of the metastatic regulator, Twist. These results suggest that Trks may contribute to growth and metastasis of liver cancer.

  17. DNA methylation-dependent regulation of TrkA, TrkB, and TrkC genes in human hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Jin, Wook; Lee, Jong-Joo; Kim, Min Soo; Son, Byung Ho; Cho, Yong Kyun; Kim, Hyoung-Pyo

    2011-01-01

    Research highlights: → Expression of TrkA, TrkB, and TrkC is significantly elevated in human hepatocellular carcinoma. → Downregulation of Trks is correlated with their promoter hypermethylation. → Inhibiting DNA methylation restored expression of Trks in normal liver cell lines. → Trks promote the proliferation of hepatocellular carcinoma. → Trks induce expression of the metastatic regulator, Twist. -- Abstract: The tropomyosin-related kinase (Trk) family of neurotrophin receptors, TrkA, TrkB and TrkC, has been implicated in the growth and survival of human cancers. Here we report that Trks are frequently overexpressed in hepatocellular carcinoma (HCC) from patients and human liver cancer cell lines. To unravel the underlying molecular mechanism(s) for this phenomenon, DNA methylation patterns of CpG islands in TrkA, TrkB, and TrkC genes were examined in normal and cancer cell lines derived from liver. A good correlation was observed between promoter hypermethylation and lower expression of TrkA, TrkB, and TrkC genes, which was supported by the data that inhibiting DNA methylation with 5-azacytidine restored expression of those genes in normal liver cell lines. Furthermore, Trks promoted the proliferation of HepG2 and induced expression of the metastatic regulator, Twist. These results suggest that Trks may contribute to growth and metastasis of liver cancer.

  18. Amyloid protein-mediated differential DNA methylation status regulates gene expression in Alzheimer’s disease model cell line

    International Nuclear Information System (INIS)

    Sung, Hye Youn; Choi, Eun Nam; Ahn Jo, Sangmee; Oh, Seikwan; Ahn, Jung-Hyuck

    2011-01-01

    Highlights: ► Genome-wide DNA methylation pattern in Alzheimer’s disease model cell line. ► Integrated analysis of CpG methylation and mRNA expression profiles. ► Identify three Swedish mutant target genes; CTIF, NXT2 and DDR2 gene. ► The effect of Swedish mutation on alteration of DNA methylation and gene expression. -- Abstract: The Swedish mutation of amyloid precursor protein (APP-sw) has been reported to dramatically increase beta amyloid production through aberrant cleavage at the beta secretase site, causing early-onset Alzheimer’s disease (AD). DNA methylation has been reported to be associated with AD pathogenesis, but the underlying molecular mechanism of APP-sw-mediated epigenetic alterations in AD pathogenesis remains largely unknown. We analyzed genome-wide interplay between promoter CpG DNA methylation and gene expression in an APP-sw-expressing AD model cell line. To identify genes whose expression was regulated by DNA methylation status, we performed integrated analysis of CpG methylation and mRNA expression profiles, and identified three target genes of the APP-sw mutant; hypomethylated CTIF (CBP80/CBP20-dependent translation initiation factor) and NXT2 (nuclear exporting factor 2), and hypermethylated DDR2 (discoidin domain receptor 2). Treatment with the demethylating agent 5-aza-2′-deoxycytidine restored mRNA expression of these three genes, implying methylation-dependent transcriptional regulation. The profound alteration in the methylation status was detected at the −435, −295, and −271 CpG sites of CTIF, and at the −505 to −341 region in the promoter of DDR2. In the promoter region of NXT2, only one CpG site located at −432 was differentially unmethylated in APP-sw cells. Thus, we demonstrated the effect of the APP-sw mutation on alteration of DNA methylation and subsequent gene expression. This epigenetic regulatory mechanism may contribute to the pathogenesis of AD.

  19. Disrupted auto-regulation of the spliceosomal gene SNRPB causes cerebro-costo-mandibular syndrome.

    Science.gov (United States)

    Lynch, Danielle C; Revil, Timothée; Schwartzentruber, Jeremy; Bhoj, Elizabeth J; Innes, A Micheil; Lamont, Ryan E; Lemire, Edmond G; Chodirker, Bernard N; Taylor, Juliet P; Zackai, Elaine H; McLeod, D Ross; Kirk, Edwin P; Hoover-Fong, Julie; Fleming, Leah; Savarirayan, Ravi; Majewski, Jacek; Jerome-Majewska, Loydie A; Parboosingh, Jillian S; Bernier, Francois P

    2014-07-22

    Elucidating the function of highly conserved regulatory sequences is a significant challenge in genomics today. Certain intragenic highly conserved elements have been associated with regulating levels of core components of the spliceosome and alternative splicing of downstream genes. Here we identify mutations in one such element, a regulatory alternative exon of SNRPB as the cause of cerebro-costo-mandibular syndrome. This exon contains a premature termination codon that triggers nonsense-mediated mRNA decay when included in the transcript. These mutations cause increased inclusion of the alternative exon and decreased overall expression of SNRPB. We provide evidence for the functional importance of this conserved intragenic element in the regulation of alternative splicing and development, and suggest that the evolution of such a regulatory mechanism has contributed to the complexity of mammalian development.

  20. Disrupted auto-regulation of the spliceosomal gene SNRPB causes cerebro–costo–mandibular syndrome

    Science.gov (United States)

    Lynch, Danielle C.; Revil, Timothée; Schwartzentruber, Jeremy; Bhoj, Elizabeth J.; Innes, A. Micheil; Lamont, Ryan E.; Lemire, Edmond G.; Chodirker, Bernard N.; Taylor, Juliet P.; Zackai, Elaine H.; McLeod, D. Ross; Kirk, Edwin P.; Hoover-Fong, Julie; Fleming, Leah; Savarirayan, Ravi; Boycott, Kym; MacKenzie, Alex; Brudno, Michael; Bulman, Dennis; Dyment, David; Majewski, Jacek; Jerome-Majewska, Loydie A.; Parboosingh, Jillian S.; Bernier, Francois P.

    2014-01-01

    Elucidating the function of highly conserved regulatory sequences is a significant challenge in genomics today. Certain intragenic highly conserved elements have been associated with regulating levels of core components of the spliceosome and alternative splicing of downstream genes. Here we identify mutations in one such element, a regulatory alternative exon of SNRPB as the cause of cerebro–costo–mandibular syndrome. This exon contains a premature termination codon that triggers nonsense-mediated mRNA decay when included in the transcript. These mutations cause increased inclusion of the alternative exon and decreased overall expression of SNRPB. We provide evidence for the functional importance of this conserved intragenic element in the regulation of alternative splicing and development, and suggest that the evolution of such a regulatory mechanism has contributed to the complexity of mammalian development. PMID:25047197

  1. Alterations in Hepatic FGF21, Co-Regulated Genes, and Upstream Metabolic Genes in Response to Nutrition, Ketosis and Inflammation in Peripartal Holstein Cows.

    Directory of Open Access Journals (Sweden)

    Haji Akbar

    Full Text Available In rodents, fibroblast growth factor 21 (FGF21 has emerged as a key metabolic regulator produced by liver. To gather preliminary data on the potential importance of FGF1, co-regulated genes, and upstream metabolic genes, we examined the hepatic mRNA expression in response to nutrition and inflammation in dairy cows. In experiment 1, induction of ketosis through feed restriction on d 5 postpartum upregulated FGF21, its co-receptor KLB, and PPARA but only elicited a numerical increase in serum FGF21 concentration. In experiment 2, cows in control (CON or receiving 50 g/d of L-carnitine (C50 from -14 through 21 d had increased FGF21, PPARA, and NFIL3 on d 10 compared with d 2 postpartum. In contrast, compared with CON and C50, 100 g/d L-carnitine (C100 resulted in lower FGF21, KLB, ANGPTL4, and ARNTL expression on d 10. In experiment 3, cows were fed during the dry period either a higher-energy (OVE; 1.62 Mcal/kg DM or lower-energy (CON; 1.34 Mcal/kg DM diet and received 0 (OVE:N, CON:N or 200 μg of LPS (OVE:Y, CON:Y into the mammary gland at d 7 postpartum. For FGF21 mRNA expression in CON, the LPS challenge (CON:Y prevented a decrease in expression between d 7 and 14 postpartum such that cows in CON:N had a 4-fold lower expression on d 14 compared with d 7. The inflammatory stimulus induced by LPS in CON:Y resulted in upregulation of PPARA on d 14 to a similar level as cows in OVE:N. In OVE:Y, expression of PPARA was lower than CON:N on d 7 and remained unchanged on d 14. On d 7, LPS led to a 4-fold greater serum FGF21 only in OVE but not in CON cows. In fact, OVE:Y reached the same serum FGF21 concentration as CON:N, suggesting a carryover effect of dietary energy level on signaling mechanisms within liver. Overall, results indicate that nutrition, ketosis, and inflammation during the peripartal period can alter hepatic FGF21, co-regulated genes, and upstream metabolic genes to various extents. The functional outcome of these changes merits

  2. Alterations in Hepatic FGF21, Co-Regulated Genes, and Upstream Metabolic Genes in Response to Nutrition, Ketosis and Inflammation in Peripartal Holstein Cows.

    Science.gov (United States)

    Akbar, Haji; Batistel, Fernanda; Drackley, James K; Loor, Juan J

    2015-01-01

    In rodents, fibroblast growth factor 21 (FGF21) has emerged as a key metabolic regulator produced by liver. To gather preliminary data on the potential importance of FGF1, co-regulated genes, and upstream metabolic genes, we examined the hepatic mRNA expression in response to nutrition and inflammation in dairy cows. In experiment 1, induction of ketosis through feed restriction on d 5 postpartum upregulated FGF21, its co-receptor KLB, and PPARA but only elicited a numerical increase in serum FGF21 concentration. In experiment 2, cows in control (CON) or receiving 50 g/d of L-carnitine (C50) from -14 through 21 d had increased FGF21, PPARA, and NFIL3 on d 10 compared with d 2 postpartum. In contrast, compared with CON and C50, 100 g/d L-carnitine (C100) resulted in lower FGF21, KLB, ANGPTL4, and ARNTL expression on d 10. In experiment 3, cows were fed during the dry period either a higher-energy (OVE; 1.62 Mcal/kg DM) or lower-energy (CON; 1.34 Mcal/kg DM) diet and received 0 (OVE:N, CON:N) or 200 μg of LPS (OVE:Y, CON:Y) into the mammary gland at d 7 postpartum. For FGF21 mRNA expression in CON, the LPS challenge (CON:Y) prevented a decrease in expression between d 7 and 14 postpartum such that cows in CON:N had a 4-fold lower expression on d 14 compared with d 7. The inflammatory stimulus induced by LPS in CON:Y resulted in upregulation of PPARA on d 14 to a similar level as cows in OVE:N. In OVE:Y, expression of PPARA was lower than CON:N on d 7 and remained unchanged on d 14. On d 7, LPS led to a 4-fold greater serum FGF21 only in OVE but not in CON cows. In fact, OVE:Y reached the same serum FGF21 concentration as CON:N, suggesting a carryover effect of dietary energy level on signaling mechanisms within liver. Overall, results indicate that nutrition, ketosis, and inflammation during the peripartal period can alter hepatic FGF21, co-regulated genes, and upstream metabolic genes to various extents. The functional outcome of these changes merits further study

  3. Frequent down-regulation of ABC transporter genes in prostate cancer.

    Science.gov (United States)

    Demidenko, Rita; Razanauskas, Deividas; Daniunaite, Kristina; Lazutka, Juozas Rimantas; Jankevicius, Feliksas; Jarmalaite, Sonata

    2015-10-12

    ATP-binding cassette (ABC) transporters are transmembrane proteins responsible for the efflux of a wide variety of substrates, including steroid metabolites, through the cellular membranes. For better characterization of the role of ABC transporters in prostate cancer (PCa) development, the profile of ABC transporter gene expression was analyzed in PCa and noncancerous prostate tissues (NPT). TaqMan Low Density Array (TLDA) human ABC transporter plates were used for the gene expression profiling in 10 PCa and 6 NPT specimens. ABCB1 transcript level was evaluated in a larger set of PCa cases (N = 78) and NPT (N = 15) by real-time PCR, the same PCa cases were assessed for the gene promoter hypermethylation by methylation-specific PCR. Expression of eight ABC transporter genes (ABCA8, ABCB1, ABCC6, ABCC9, ABCC10, ABCD2, ABCG2, and ABCG4) was significantly down-regulated in PCa as compared to NPT, and only two genes (ABCC4 and ABCG1) were up-regulated. Down-regulation of ABC transporter genes was prevalent in the TMPRSS2-ERG-negative cases. A detailed analysis of ABCB1 expression confirmed TLDA results: a reduced level of the transcript was identified in PCa in comparison to NPT (p = 0.048). Moreover, the TMPRSS2-ERG-negative PCa cases showed significantly lower expression of ABCB1 in comparison to NPT (p = 0.003) or the fusion-positive tumors (p = 0.002). Promoter methylation of ABCB1 predominantly occurred in PCa and was rarely detected in NPT (p ABC transporter genes in PCa, especially in the TMPRSS2-ERG-negative tumors.

  4. Structural basis for regulation of rhizobial nodulation and symbiosis gene expression by the regulatory protein NolR.

    Science.gov (United States)

    Lee, Soon Goo; Krishnan, Hari B; Jez, Joseph M

    2014-04-29

    The symbiosis between rhizobial microbes and host plants involves the coordinated expression of multiple genes, which leads to nodule formation and nitrogen fixation. As part of the transcriptional machinery for nodulation and symbiosis across a range of Rhizobium, NolR serves as a global regulatory protein. Here, we present the X-ray crystal structures of NolR in the unliganded form and complexed with two different 22-base pair (bp) double-stranded operator sequences (oligos AT and AA). Structural and biochemical analysis of NolR reveals protein-DNA interactions with an asymmetric operator site and defines a mechanism for conformational switching of a key residue (Gln56) to accommodate variation in target DNA sequences from diverse rhizobial genes for nodulation and symbiosis. This conformational switching alters the energetic contributions to DNA binding without changes in affinity for the target sequence. Two possible models for the role of NolR in the regulation of different nodulation and symbiosis genes are proposed. To our knowledge, these studies provide the first structural insight on the regulation of genes involved in the agriculturally and ecologically important symbiosis of microbes and plants that leads to nodule formation and nitrogen fixation.

  5. PARP-2 regulates cell cycle-related genes through histone deacetylation and methylation independently of poly(ADP-ribosyl)ation

    International Nuclear Information System (INIS)

    Liang, Ya-Chen; Hsu, Chiao-Yu; Yao, Ya-Li; Yang, Wen-Ming

    2013-01-01

    Highlights: ► PARP-2 acts as a transcription co-repressor independently of PARylation activity. ► PARP-2 recruits HDAC5, 7, and G9a and generates repressive chromatin. ► PARP-2 is recruited to the c-MYC promoter by DNA-binding factor YY1. ► PARP-2 represses cell cycle-related genes and alters cell cycle progression. -- Abstract: Poly(ADP-ribose) polymerase-2 (PARP-2) catalyzes poly(ADP-ribosyl)ation (PARylation) and regulates numerous nuclear processes, including transcription. Depletion of PARP-2 alters the activity of transcription factors and global gene expression. However, the molecular action of how PARP-2 controls the transcription of target promoters remains unclear. Here we report that PARP-2 possesses transcriptional repression activity independently of its enzymatic activity. PARP-2 interacts and recruits histone deacetylases HDAC5 and HDAC7, and histone methyltransferase G9a to the promoters of cell cycle-related genes, generating repressive chromatin signatures. Our findings propose a novel mechanism of PARP-2 in transcriptional regulation involving specific protein–protein interactions and highlight the importance of PARP-2 in the regulation of cell cycle progression

  6. Calmodulin Gene Expression in Response to Mechanical Wounding and Botrytis cinerea Infection in Tomato Fruit

    Directory of Open Access Journals (Sweden)

    Hui Peng

    2014-08-01

    Full Text Available Calmodulin, a ubiquitous calcium sensor, plays an important role in decoding stress-triggered intracellular calcium changes and regulates the functions of numerous target proteins involved in various plant physiological responses. To determine the functions of calmodulin in fleshy fruit, expression studies were performed on a family of six calmodulin genes (SlCaMs in mature-green stage tomato fruit in response to mechanical injury and Botrytis cinerea infection. Both wounding and pathogen inoculation triggered expression of all those genes, with SlCaM2 being the most responsive one to both treatments. Furthermore, all calmodulin genes were upregulated by salicylic acid and methyl jasmonate, two signaling molecules involved in plant immunity. In addition to SlCaM2, SlCaM1 was highly responsive to salicylic acid and methyl jasmonate. However, SlCaM2 exhibited a more rapid and stronger response than SlCaM1. Overexpression of SlCaM2 in tomato fruit enhanced resistance to Botrytis-induced decay, whereas reducing its expression resulted in increased lesion development. These results indicate that calmodulin is a positive regulator of plant defense in fruit by activating defense pathways including salicylate- and jasmonate-signaling pathways, and SlCaM2 is the major calmodulin gene responsible for this event.

  7. Identification of key genes and molecular mechanisms associated with dedifferentiated liposarcoma based on bioinformatic methods

    Directory of Open Access Journals (Sweden)

    Yu H

    2017-06-01

    . Furthermore, the dysregulated PPI network of DDLPS was constructed, and 14 hub genes were identified. Characteristic of DDLPS, the genes CDK4 and MDM2 were universally found to be up-regulated and amplified in gene copy number.Conclusion: This study used bioinformatics to comprehensively mine DDLPS microarray data in order to obtain a deeper understanding of the molecular mechanism of DDLPS. Keywords: dedifferentiated liposarcoma, molecular mechanisms, microarray, bioinformatic methods

  8. Identification of genes differentially regulated in rat alveolar bone wound healing by subtractive hybridization.

    Science.gov (United States)

    Ohira, T; Myokai, F; Shiomi, N; Yamashiro, K; Yamamoto, T; Murayama, Y; Arai, H; Nishimura, F; Takashiba, S

    2004-07-01

    Periodontal healing requires the participation of regulatory molecules, cells, and scaffold or matrix. Here, we hypothesized that a certain set of genes is expressed in alveolar bone wound healing. Reciprocal subtraction gave 400 clones from the injured alveolar bone of Wistar rats. Identification of 34 genes and analysis of their expression in injured tissue revealed several clusters of unique gene regulation patterns, including the up-regulation at 1 wk of cytochrome c oxidase regulating electron transfer and energy metabolism, presumably occurring at the site of inflammation; up-regulation at 2.5 wks of pro-alpha-2 type I collagen involving the formation of a connective tissue structure; and up-regulation at 1 and 2 wks and down-regulation at 2.5 and 4 wks of ubiquitin carboxyl-terminal hydrolase l3 involving cell cycle, DNA repair, and stress response. The differential expression of genes may be associated with the processes of inflammation, wound contraction, and formation of a connective tissue structure.

  9. In silico identification of NF-kappaB-regulated genes in pancreatic beta-cells

    Directory of Open Access Journals (Sweden)

    Eizirik Decio L

    2007-02-01

    Full Text Available Abstract Background Pancreatic beta-cells are the target of an autoimmune attack in type 1 diabetes mellitus (T1DM. This is mediated in part by cytokines, such as interleukin (IL-1β and interferon (IFN-γ. These cytokines modify the expression of hundreds of genes, leading to beta-cell dysfunction and death by apoptosis. Several of these cytokine-induced genes are potentially regulated by the IL-1β-activated transcription factor (TF nuclear factor (NF-κB, and previous studies by our group have shown that cytokine-induced NF-κB activation is pro-apoptotic in beta-cells. To identify NF-κB-regulated gene networks in beta-cells we presently used a discriminant analysis-based approach to predict NF-κB responding genes on the basis of putative regulatory elements. Results The performance of linear and quadratic discriminant analysis (LDA, QDA in identifying NF-κB-responding genes was examined on a dataset of 240 positive and negative examples of NF-κB regulation, using stratified cross-validation with an internal leave-one-out cross-validation (LOOCV loop for automated feature selection and noise reduction. LDA performed slightly better than QDA, achieving 61% sensitivity, 91% specificity and 87% positive predictive value, and allowing the identification of 231, 251 and 580 NF-κB putative target genes in insulin-producing INS-1E cells, primary rat beta-cells and human pancreatic islets, respectively. Predicted NF-κB targets had a significant enrichment in genes regulated by cytokines (IL-1β or IL-1β + IFN-γ and double stranded RNA (dsRNA, as compared to genes not regulated by these NF-κB-dependent stimuli. We increased the confidence of the predictions by selecting only evolutionary stable genes, i.e. genes with homologs predicted as NF-κB targets in rat, mouse, human and chimpanzee. Conclusion The present in silico analysis allowed us to identify novel regulatory targets of NF-κB using a supervised classification method based on

  10. Regulation of Neph3 gene in podocytes - key roles of transcription factors NF-kappaB and Sp1

    LENUS (Irish Health Repository)

    Ristola, Mervi

    2009-08-24

    Abstract Background Neph3 (filtrin) is expressed in the glomerular podocytes where it localizes at the specialized cell adhesion structures of the foot processes called slit diaphragms which form the outermost layer of the glomerular filtration barrier. Neph3 protein shows homology and structural similarity to Neph1, Neph2 and nephrin, which all are crucial for maintaining the normal glomerular ultrafiltration function. The exact function of Neph3 in the kidney is not known but we have previously shown that the level of Neph3 mRNA is decreased in proteinuric diseases. This suggests that Neph3 may play a role in the pathogenesis of kidney damage, and emphasizes the need to analyze the regulatory mechanisms of Neph3 gene. In this study we investigated the transcriptional regulation of Neph3 gene by identifying transcription factors that control Neph3 expression. Results We cloned and characterized approximately 5 kb fragment upstream of the Neph3 gene. Neph3 proximal promoter near the transcription start site was found to be devoid of TATA and CAAT boxes, but to contain a highly GC-rich area. Using promoter reporter gene constructs, we localized the main activating regulatory region of Neph3 gene in its proximal promoter region from -105 to -57. Within this region, putative transcription factor binding sites for NF-κB and Sp1 were found by computational analysis. Mutational screening indicated that NF-κB and Sp1 response elements are essential for the basal transcriptional activity of the Neph3 promoter. Co-transfection studies further showed that NF-κB and Sp1 regulate Neph3 promoter activity. In addition, overexpression of NF-κB increased endogenous Neph3 gene expression. Chromatin immunoprecipitation assay using cultured human podocytes demonstrated that both NF-κB and Sp1 interact with the Neph3 promoter. Conclusion Our results show that NF-κB and Sp1 are key regulators of Neph3 expression at the basal level in podocytes, therefore providing new insight

  11. DREAM mediates cAMP-dependent, Ca2+-induced stimulation of GFAP gene expression and regulates cortical astrogliogenesis.

    Science.gov (United States)

    Cebolla, Beatriz; Fernández-Pérez, Antonio; Perea, Gertrudis; Araque, Alfonso; Vallejo, Mario

    2008-06-25

    In the developing mouse brain, once the generation of neurons is mostly completed during the prenatal period, precisely coordinated signals act on competent neural precursors to direct their differentiation into astrocytes, which occurs mostly after birth. Among these signals, those provided by neurotrophic cytokines and bone morphogenetic proteins appear to have a key role in triggering the neurogenic to gliogenic switch and in regulating astrocyte numbers. In addition, we have reported previously that the neurotrophic peptide pituitary adenylate cyclase-activating polypeptide (PACAP) is able to promote astrocyte differentiation of cortical precursors via activation of a cAMP-dependent pathway. Signals acting on progenitor cells of the developing cortex to generate astrocytes activate glial fibrillary acidic protein (GFAP) gene expression, but the transcriptional mechanisms that regulate this activation are unclear. Here, we identify the previously known transcriptional repressor downstream regulatory element antagonist modulator (DREAM) as an activator of GFAP gene expression. We found that DREAM occupies specific sites on the GFAP promoter before and after differentiation is initiated by exposure of cortical progenitor cells to PACAP. PACAP raises intracellular calcium concentration via a mechanism that requires cAMP, and DREAM-mediated transactivation of the GFAP gene requires the integrity of calcium-binding domains. Cortical progenitor cells from dream(-/-) mice fail to express GFAP in response to PACAP. Moreover, the neonatal cortex of dream(-/-) mice exhibits a reduced number of astrocytes and increased number of neurons. These results identify the PACAP-cAMP-Ca(2+)-DREAM cascade as a new pathway to activate GFAP gene expression during astrocyte differentiation.

  12. Mig-6 regulates endometrial genes involved in cell cycle and progesterone signaling

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jung-Yoon; Kim, Tae Hoon; Lee, Jae Hee [Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, MI (United States); Dunwoodie, Sally L. [Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010 (Australia); St. Vincent' s Clinical School and the School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, New South Wales 2033 (Australia); Ku, Bon Jeong, E-mail: bonjeong@cnu.ac.kr [Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon (Korea, Republic of); Jeong, Jae-Wook, E-mail: JaeWook.Jeong@hc.msu.edu [Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, MI (United States); Department of Women' s Health, Spectrum Health System, Grand Rapids, MI (United States)

    2015-07-10

    Mitogen inducible gene 6 (Mig-6) is an important mediator of progesterone (P4) signaling to inhibit estrogen (E2) signaling in the uterus. Ablation of Mig-6 in the murine uterus leads to the development of endometrial hyperplasia and E2-induced endometrial cancer. To identify the molecular pathways regulated by Mig-6, we performed microarray analysis on the uterus of ovariectomized Mig-6{sup f/f} and PGR{sup cre/+}Mig-6{sup f/f} (Mig-6{sup d/d}) mice treated with vehicle or P4 for 6 h. The results revealed that 772 transcripts were significantly regulated in the Mig-6{sup d/d} uterus treated with vehicle as compared with Mig-6{sup f/f} mice. The pathway analysis showed that Mig-6 suppressed the expression of gene-related cell cycle regulation in the absence of ovarian steroid hormone. The epithelium of Mig-6{sup d/d} mice showed a significant increase in the number of proliferative cells compared to Mig-6{sup f/f} mice. This microarray analysis also revealed that 324 genes are regulated by P4 as well as Mig-6. Cited2, the developmentally important transcription factor, was identified as being regulated by the P4-Mig-6 axis. To determine the role of Cited2 in the uterus, we used the mice with Cited2 that were conditionally ablated in progesterone receptor-positive cells (PGR{sup cre/+}Cited2{sup f/f}; Cited2{sup d/d}). Ablation of Cited2 in the uterus resulted in a significant reduction in the ability of the uterus to undergo a hormonally induced decidual reaction. Identification and analysis of these responsive genes will help define the role of P4 as well as Mig-6 in regulating uterine biology. - Highlights: • We identify Mig-6- and P4-regulated uterine genes by microarray analysis. • Mig-6 suppresses cell cycle progression and epithelial cell proliferation in uterus. • We identify the Mig-6 dependent induced genes by P4. • Cited2 plays an important role for decidualization as a P4 and Mig-6 target gene.

  13. Mechanisms of dietary response in mice and primates: a role for EGR1 in regulating the reaction to human-specific nutritional content.

    Directory of Open Access Journals (Sweden)

    Kai Weng

    Full Text Available Humans have a widely different diet from other primate species, and are dependent on its high nutritional content. The molecular mechanisms responsible for adaptation to the human diet are currently unknown. Here, we addressed this question by investigating whether the gene expression response observed in mice fed human and chimpanzee diets involves the same regulatory mechanisms as expression differences between humans and chimpanzees.Using mouse and primate transcriptomic data, we identified the transcription factor EGR1 (early growth response 1 as a putative regulator of diet-related differential gene expression between human and chimpanzee livers. Specifically, we predict that EGR1 regulates the response to the high caloric content of human diets. However, we also show that close to 90% of the dietary response to the primate diet found in mice, is not observed in primates. This might be explained by changes in tissue-specific gene expression between taxa.Our results suggest that the gene expression response to the nutritionally rich human diet is partially mediated by the transcription factor EGR1. While this EGR1-driven response is conserved between mice and primates, the bulk of the mouse response to human and chimpanzee dietary differences is not observed in primates. This result highlights the rapid evolution of diet-related expression regulation and underscores potential limitations of mouse models in dietary studies.

  14. Statistical modelling of transcript profiles of differentially regulated genes

    Directory of Open Access Journals (Sweden)

    Sergeant Martin J

    2008-07-01

    Full Text Available Abstract Background The vast quantities of gene expression profiling data produced in microarray studies, and the more precise quantitative PCR, are often not statistically analysed to their full potential. Previous studies have summarised gene expression profiles using simple descriptive statistics, basic analysis of variance (ANOVA and the clustering of genes based on simple models fitted to their expression profiles over time. We report the novel application of statistical non-linear regression modelling techniques to describe the shapes of expression profiles for the fungus Agaricus bisporus, quantified by PCR, and for E. coli and Rattus norvegicus, using microarray technology. The use of parametric non-linear regression models provides a more precise description of expression profiles, reducing the "noise" of the raw data to produce a clear "signal" given by the fitted curve, and describing each profile with a small number of biologically interpretable parameters. This approach then allows the direct comparison and clustering of the shapes of response patterns between genes and potentially enables a greater exploration and interpretation of the biological processes driving gene expression. Results Quantitative reverse transcriptase PCR-derived time-course data of genes were modelled. "Split-line" or "broken-stick" regression identified the initial time of gene up-regulation, enabling the classification of genes into those with primary and secondary responses. Five-day profiles were modelled using the biologically-oriented, critical exponential curve, y(t = A + (B + CtRt + ε. This non-linear regression approach allowed the expression patterns for different genes to be compared in terms of curve shape, time of maximal transcript level and the decline and asymptotic response levels. Three distinct regulatory patterns were identified for the five genes studied. Applying the regression modelling approach to microarray-derived time course data

  15. Specific DNA-binding proteins and DNA sequences involved in steroid hormone regulation of gene expression

    International Nuclear Information System (INIS)

    Spelsberg, T.; Hora, J.; Horton, M.; Goldberger, A.; Littlefield, B.; Seelke, R.; Toyoda, H.

    1987-01-01

    Steroid hormones circulate in the blood and are taken by target cells via complexes with intracellular binding proteins termed receptors, that are hormone and tissue specific. Each receptor binds it specific steroid with very high affinity, having an equilibrium dissociation constant (K/sub d/) in the range of 10 -9 to 10 -10 M. Once bound by their specific steroid hormones, the steroid receptors undergo a conformational change which allows them to bind with high affinity to sites on chromatin, termed nuclear acceptor sites. There are estimated 5,000 to 10,000 of these sites expressed with an equal number not expressed (''masked'') in intact chromatin. The result of the binding to nuclear acceptor sites is an alteration of gene transcription or, in some cases, gene expression as measured by the changing levels of specific RNAs and proteins in that target tissue. Each steroid regulates specific effects on the RNA and protein profiles. The chronology of the above mechanism of action after injection of radiolabelled steroid as is follows: Steroid-receptor complex formation (1 minute), nuclear acceptor sites (2 minutes), effects on RNA synthesis (10 to 30 minutes), and finally the changing protein profiles via changes in protein synthesis and protein turnover (1 to 6 hours). Thus steroid receptors represent one of the first identified intracellular gene regulation proteins. The receptor molecules themselves are regulated by the presence or absence of the steroid molecule

  16. Non-thermal plasma treatment diminishes fungal viability and up-regulates resistance genes in a plant host.

    Science.gov (United States)

    Panngom, Kamonporn; Lee, Sang Hark; Park, Dae Hoon; Sim, Geon Bo; Kim, Yong Hee; Uhm, Han Sup; Park, Gyungsoon; Choi, Eun Ha

    2014-01-01

    Reactive oxygen and nitrogen species can have either harmful or beneficial effects on biological systems depending on the dose administered and the species of organism exposed, suggesting that application of reactive species can possibly produce contradictory effects in disease control, pathogen inactivation and activation of host resistance. A novel technology known as atmospheric-pressure non-thermal plasma represents a means of generating various reactive species that adversely affect pathogens (inactivation) while simultaneously up-regulating host defense genes. The anti-microbial efficacy of this technology was tested on the plant fungal pathogen Fusarium oxysporum f.sp. lycopersici and its susceptible host plant species Solanum lycopercicum. Germination of fungal spores suspended in saline was decreased over time after exposed to argon (Ar) plasma for 10 min. Although the majority of treated spores exhibited necrotic death, apoptosis was also observed along with the up-regulation of apoptosis related genes. Increases in the levels of peroxynitrite and nitrite in saline following plasma treatment may have been responsible for the observed spore death. In addition, increased transcription of pathogenesis related (PR) genes was observed in the roots of the susceptible tomato cultivar (S. lycopercicum) after exposure to the same Ar plasma dose used in fungal inactivation. These data suggest that atmospheric-pressure non-thermal plasma can be efficiently used to control plant fungal diseases by inactivating fungal pathogens and up-regulating mechanisms of host resistance.

  17. JMJD2A attenuation affects cell cycle and tumourigenic inflammatory gene regulation in lipopolysaccharide stimulated neuroectodermal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Das, Amitabh, E-mail: amitabhdas.kn@gmail.com [Department of Bionanotechnology, Hanyang University, Seoul 133-791 (Korea, Republic of); Chai, Jin Choul, E-mail: jincchai@gmail.com [Department of Molecular and Life Science, Hanyang University, 1271 Sa 3-dong, Ansan 426-791, Gyeonggi-do (Korea, Republic of); Jung, Kyoung Hwa, E-mail: khjung2@gmail.com [Department of Molecular and Life Science, Hanyang University, 1271 Sa 3-dong, Ansan 426-791, Gyeonggi-do (Korea, Republic of); Das, Nando Dulal, E-mail: nando.hu@gmail.com [Clinical Research Centre, Inha University School of Medicine, Incheon 400-711 (Korea, Republic of); Kang, Sung Chul, E-mail: gujiju11@gmail.com [Department of Molecular and Life Science, Hanyang University, 1271 Sa 3-dong, Ansan 426-791, Gyeonggi-do (Korea, Republic of); Lee, Young Seek, E-mail: yslee@hanyang.ac.kr [Department of Molecular and Life Science, Hanyang University, 1271 Sa 3-dong, Ansan 426-791, Gyeonggi-do (Korea, Republic of); Seo, Hyemyung, E-mail: hseo@hanyang.ac.kr [Department of Molecular and Life Science, Hanyang University, 1271 Sa 3-dong, Ansan 426-791, Gyeonggi-do (Korea, Republic of); Chai, Young Gyu, E-mail: ygchai@hanyang.ac.kr [Department of Bionanotechnology, Hanyang University, Seoul 133-791 (Korea, Republic of); Department of Molecular and Life Science, Hanyang University, 1271 Sa 3-dong, Ansan 426-791, Gyeonggi-do (Korea, Republic of)

    2014-11-01

    JMJD2A is a lysine trimethyl-specific histone demethylase that is highly expressed in a variety of tumours. The role of JMJD2A in tumour progression remains unclear. The objectives of this study were to identify JMJD2A-regulated genes and understand the function of JMJD2A in p53-null neuroectodermal stem cells (p53{sup −/−} NE-4Cs). We determined the effect of LPS as a model of inflammation in p53{sup −/−} NE-4Cs and investigated whether the epigenetic modifier JMJD2A alter the expression of tumourigenic inflammatory genes. Global gene expression was measured in JMJD2A knockdown (kd) p53{sup −/−} NE-4Cs and in LPS-stimulated JMJD2A-kd p53{sup −/−} NE-4C cells. JMJD2A attenuation significantly down-regulated genes were Cdca2, Ccnd2, Ccnd1, Crebbp, IL6rα, and Stat3 related with cell cycle, proliferation, and inflammatory-disease responses. Importantly, some tumour-suppressor genes including Dapk3, Timp2 and TFPI were significantly up-regulated but were not affected by silencing of the JMJD2B. Furthermore, we confirmed the attenuation of JMJD2A also down-regulated Cdca2, Ccnd2, Crebbp, and Rest in primary NSCs isolated from the forebrains of E15 embryos of C57/BL6J mice with effective p53 inhibitor pifithrin-α (PFT-α). Transcription factor (TF) motif analysis revealed known binding patterns for CDC5, MYC, and CREB, as well as three novel motifs in JMJD2A-regulated genes. IPA established molecular networks. The molecular network signatures and functional gene-expression profiling data from this study warrants further investigation as an effective therapeutic target, and studies to elucidate the molecular mechanism of JMJD2A-kd-dependent effects in neuroectodermal stem cells should be performed. - Highlights: • Significant up-regulation of epigenetic modifier JMJD2A mRNA upon LPS treatment. • Inhibition of JMJD2A attenuated key inflammatory and tumourigenic genes. • Establishing IPA based functional genomics in JMJD2A-attenuated p53{sup

  18. Epigenetic Mechanisms of Genomic Imprinting: Common Themes in the Regulation of Imprinted Regions in Mammals, Plants, and Insects

    Directory of Open Access Journals (Sweden)

    William A. MacDonald

    2012-01-01

    Full Text Available Genomic imprinting is a form of epigenetic inheritance whereby the regulation of a gene or chromosomal region is dependent on the sex of the transmitting parent. During gametogenesis, imprinted regions of DNA are differentially marked in accordance to the sex of the parent, resulting in parent-specific expression. While mice are the primary research model used to study genomic imprinting, imprinted regions have been described in a broad variety of organisms, including other mammals, plants, and insects. Each of these organisms employs multiple, interrelated, epigenetic mechanisms to maintain parent-specific expression. While imprinted genes and imprint control regions are often species and locus-specific, the same suites of epigenetic mechanisms are often used to achieve imprinted expression. This review examines some examples of the epigenetic mechanisms responsible for genomic imprinting in mammals, plants, and insects.

  19. Gonadotropin-Releasing Hormone Regulates Expression of the DNA Damage Repair Gene, Fanconi anemia A, in Pituitary Gonadotroph Cells1

    Science.gov (United States)

    Larder, Rachel; Chang, Lynda; Clinton, Michael; Brown, Pamela

    2007-01-01

    Gonadal function is critically dependant on regulated secretion of the gonadotropin hormones from anterior pituitary gonadotroph cells. Gonadotropin biosynthesis and release is triggered by the binding of hypothalamic GnRH to GnRH receptor expressed on the gonadotroph cell surface. The repertoire of regulatory molecules involved in this process are still being defined. We used the mouse LβT2 gonadotroph cell line, which expresses both gonadotropin hormones, as a model to investigate GnRH regulation of gene expression and differential display reverse transcription-polymerase chain reaction (RT-PCR) to identify and isolate hormonally induced changes. This approach identified Fanconi anemia a (Fanca), a gene implicated in DNA damage repair, as a differentially expressed transcript. Mutations in Fanca account for the majority of cases of Fanconi anemia (FA), a recessively inherited disease identified by congenital defects, bone marrow failure, infertility, and cancer susceptibility. We confirmed expression and hormonal regulation of Fanca mRNA by quantitative RT-PCR, which showed that GnRH induced a rapid, transient increase in Fanca mRNA. Fanca protein was also acutely upregulated after GnRH treatment of LβT2 cells. In addition, Fanca gene expression was confined to mature pituitary gonadotrophs and adult mouse pituitary and was not expressed in the immature αT3-1 gonadotroph cell line. Thus, this study extends the expression profile of Fanca into a highly specialized endocrine cell and demonstrates hormonal regulation of expression of the Fanca locus. We suggest that this regulatory mechanism may have a crucial role in the GnRH-response mechanism of mature gonadotrophs and perhaps the etiology of FA. PMID:15128600

  20. CDKL5 is a brain MeCP2 target gene regulated by DNA methylation.

    Science.gov (United States)

    Carouge, Delphine; Host, Lionel; Aunis, Dominique; Zwiller, Jean; Anglard, Patrick

    2010-06-01

    Rett syndrome and its "early-onset seizure" variant are severe neurodevelopmental disorders associated with mutations within the MECP2 and the CDKL5 genes. Antidepressants and drugs of abuse induce the expression of the epigenetic factor MeCP2, thereby influencing chromatin remodeling. We show that increased MeCP2 levels resulted in the repression of Cdkl5 in rat brain structures in response to cocaine, as well as in cells exposed to serotonin, or overexpressing MeCP2. In contrast, Cdkl5 was induced by siRNA-mediated knockdown of Mecp2 and by DNA-methyltransferase inhibitors, demonstrating its regulation by MeCP2 and by DNA methylation. Cdkl5 gene methylation and its methylation-dependent binding to MeCP2 were increased in the striatum of cocaine-treated rats. Our data demonstrate that Cdkl5 is a MeCP2-repressed target gene providing a link between genes the mutation of which generates overlapping symptoms. They highlight DNA methylation changes as a potential mechanism participating in the long-term plasticity triggered by pharmacological agents.

  1. Regulating Hypothalamus Gene Expression in Food Intake: Dietary Composition or Calorie Density?

    Directory of Open Access Journals (Sweden)

    Mi Jang

    2017-01-01

    Full Text Available BackgroundThe proportion of saturated fatty acids/unsaturated fatty acids in the diet seems to act as a physiological regulation on obesity, cardiovascular diseases, and diabetes. Differently composed fatty acid diets may induce satiety of the hypothalamus in different ways. However, the direct effect of the different fatty acid diets on satiety in the hypothalamus is not clear.MethodsThree experiments in mice were conducted to determine whether: different compositions of fatty acids affects gene mRNA expression of the hypothalamus over time; different types of fatty acids administered into the stomach directly affect gene mRNA expression of the hypothalamus; and fat composition changes in the diet affects gene mRNA expression of the hypothalamus.ResultsThe type of fat in cases of purified fatty acid administration directly into the stomach may cause changes of gene expressions in the hypothalamus. Gene expression by dietary fat may be regulated by calorie amount ingested rather than weight amount or type of fat.ConclusionTherefore, the calorie density factor of the diet in regulating hypothalamic gene in food intake may be detrimental, although the possibility of type of fat cannot be ruled out.

  2. QB1 - Stochastic Gene Regulation

    Energy Technology Data Exchange (ETDEWEB)

    Munsky, Brian [Los Alamos National Laboratory

    2012-07-23

    Summaries of this presentation are: (1) Stochastic fluctuations or 'noise' is present in the cell - Random motion and competition between reactants, Low copy, quantization of reactants, Upstream processes; (2) Fluctuations may be very important - Cell-to-cell variability, Cell fate decisions (switches), Signal amplification or damping, stochastic resonances; and (3) Some tools are available to mode these - Kinetic Monte Carlo simulations (SSA and variants), Moment approximation methods, Finite State Projection. We will see how modeling these reactions can tell us more about the underlying processes of gene regulation.

  3. Additional file 10: Figure S3. of Uncovering co-expression gene network modules regulating fruit acidity in diverse apples

    OpenAIRE

    Bai, Yang; Dougherty, Laura; Cheng, Lailiang; Zhong, Gan-Yuan; Xu, Kenong

    2015-01-01

    Other regulators from modules Turquoise and Brown and their assigned tight clusters. Elements and their contents, formats and messages are same as those noted in Fig. 8a. (A) Regulator M239684 and Cluster 41 of 68 genes. (B) Regulator M239684 and Cluster 5 of 14 genes. (C) Regulator M239684 and Cluster 7 of 14 genes. (D) Regulator M753318 and Cluster 23 of 11 genes. (E) Regulator M753318 and Cluster 32 of 11 genes. (F) Regulator M175481 and Cluster 2 of 16 genes. (G) Regulator M134341 and Cl...

  4. [Effect of PKA Gene on Acute Lymphoblastic Leukemia in Children and Its Mechanism].

    Science.gov (United States)

    Wang, Chao-Jie; Wang, Li-Juan; Zhao, Ding

    2018-02-01

    To explore the effect of PKA gene on acute T lymphocyte leukemia cells in children and its mechanism. Jurkat and Sup-T1 cells were divided into 2 group: control group (Jurkat and Sup-T1 cells treated with non-specific siRNA) and transfected group (Jurkat and Sup-T1 cells transfected with PKA siRNA). The effects of down-regulating the expression of PKA gene on the viability, proliferotion, migration and cell cycle distribution of Jurkat and Sup-T1 cells in 2 groups were analyzed by CCK-8 assay, transwell experiment, cell colony-formation test and flow cytometry; the cyclin-related protein levels after transfection with PKA siRNA were detected by Western blot. It was revealed that the expression of PKA in Jurkat and Sup-T1 cells decreased to different degree after siRNA transfection(PPKA gene expression can decrease the proliferation and migration of tumor cells, and also can restrict the cell proliferation through related cell cycle proteins.

  5. Estrogenic Endocrine Disrupting Chemicals Influencing NRF1 Regulated Gene Networks in the Development of Complex Human Brain Diseases.

    Science.gov (United States)

    Preciados, Mark; Yoo, Changwon; Roy, Deodutta

    2016-12-13

    During the development of an individual from a single cell to prenatal stages to adolescence to adulthood and through the complete life span, humans are exposed to countless environmental and stochastic factors, including estrogenic endocrine disrupting chemicals. Brain cells and neural circuits are likely to be influenced by estrogenic endocrine disruptors (EEDs) because they strongly dependent on estrogens. In this review, we discuss both environmental, epidemiological, and experimental evidence on brain health with exposure to oral contraceptives, hormonal therapy, and EEDs such as bisphenol-A (BPA), polychlorinated biphenyls (PCBs), phthalates, and metalloestrogens, such as, arsenic, cadmium, and manganese. Also we discuss the brain health effects associated from exposure to EEDs including the promotion of neurodegeneration, protection against neurodegeneration, and involvement in various neurological deficits; changes in rearing behavior, locomotion, anxiety, learning difficulties, memory issues, and neuronal abnormalities. The effects of EEDs on the brain are varied during the entire life span and far-reaching with many different mechanisms. To understand endocrine disrupting chemicals mechanisms, we use bioinformatics, molecular, and epidemiologic approaches. Through those approaches, we learn how the effects of EEDs on the brain go beyond known mechanism to disrupt the circulatory and neural estrogen function and estrogen-mediated signaling. Effects on EEDs-modified estrogen and nuclear respiratory factor 1 (NRF1) signaling genes with exposure to natural estrogen, pharmacological estrogen-ethinyl estradiol, PCBs, phthalates, BPA, and metalloestrogens are presented here. Bioinformatics analysis of gene-EEDs interactions and brain disease associations identified hundreds of genes that were altered by exposure to estrogen, phthalate, PCBs, BPA or metalloestrogens. Many genes modified by EEDs are common targets of both 17 β-estradiol (E2) and NRF1. Some of

  6. Mechanical confinement regulates cartilage matrix formation by chondrocytes

    Science.gov (United States)

    Lee, Hong-Pyo; Gu, Luo; Mooney, David J.; Levenston, Marc E.; Chaudhuri, Ovijit

    2017-12-01

    Cartilage tissue equivalents formed from hydrogels containing chondrocytes could provide a solution for replacing damaged cartilage. Previous approaches have often utilized elastic hydrogels. However, elastic stresses may restrict cartilage matrix formation and alter the chondrocyte phenotype. Here we investigated the use of viscoelastic hydrogels, in which stresses are relaxed over time and which exhibit creep, for three-dimensional (3D) culture of chondrocytes. We found that faster relaxation promoted a striking increase in the volume of interconnected cartilage matrix formed by chondrocytes. In slower relaxing gels, restriction of cell volume expansion by elastic stresses led to increased secretion of IL-1β, which in turn drove strong up-regulation of genes associated with cartilage degradation and cell death. As no cell-adhesion ligands are presented by the hydrogels, these results reveal cell sensing of cell volume confinement as an adhesion-independent mechanism of mechanotransduction in 3D culture, and highlight stress relaxation as a key design parameter for cartilage tissue engineering.

  7. Insights from the cold transcriptome and metabolome of Dendrobium officinale: global reprogramming of metabolic and gene regulation networks during cold acclimation

    Directory of Open Access Journals (Sweden)

    Zhi-Gang Wu

    2016-11-01

    Full Text Available Plant cold acclimation (CA is a genetically complex phenomenon involving gene regulation and expression. Little is known about the cascading pattern of gene regulatroy network and the link between genes and metabolites during CA. Dendrobium officinale (DOKM is an important medicinal and ornamental plant and hypersensitive to low temperature. Here, we used the large scale metabolomic and transcriptomic technologies to reveal the response to CA in DOKM seedlings based on the physiological profile analyses. Lowering temperature from 4 oC to -2 oC resulted in significant increase(P<0.01)in antioxidant activities and electrolyte leakage during 24 h. The fitness CA piont of 0 oC and control (20 oC during 20 h were firstly obtained according to physiological analyses. Subsequently, massive transcriptome and metabolome reprogramming occurred during CA. The gene to metabolite network demonstrated that the CA associated processes are highly energy demanding through activating hydrolysis of sugars, amino acids catabolism and citrate cycle. The expression levels of 2,767 genes were significantly affected by CA, including 153-fold upregulation of CBF transcription factor, 56-fold upregulation of MAPKKK16 protein kinase. Moreover, the gene interaction and regulation network analysis revealed that the CA as an active process, was regulated at the transcriptional, post-transcriptional, translational and post-translational levels. Our findings highligted a comprehensive regulatory mechanism including cold signal transduction, transcriptional regulation and gene expression, which contributes a deeper understanding of the highly complex regulatory program during CA in DOKM. Some marker genes identified in DOKM seedlings will allow us to understand the role of each individual during CA by further functional analyses.

  8. Characterization of upstream sequences of the LIM2 gene that bind developmentally regulated and lens-specific proteins

    Institute of Scientific and Technical Information of China (English)

    HSU Heng; Robert L. CHURCH

    2004-01-01

    During lens development, lens epithelial cells differentiate into fiber cells. To date, four major lens fiber cell intrinsic membrane proteins (MIP) ranging in size from 70 kD to 19 kD have been characterized. The second most abundant lens fiber cell intrinsic membrane protein is MP19. This protein probably is involved with lens cell communication and relates with cataractogenesis. The aim of this research is to characterize upstream sequences of the MP19 (also called LIM2) gene that bind developmentally regulated and lens-specific proteins. We have used the gel mobility assays and corresponding competition experiments to identify and characterize cis elements within approximately 500 bases of LIM2 upstream sequences. Our studies locate the positions of some cis elements, including a "CA" repeat, a methylation Hha I island, an FnuD II site, an Ap1 and an Ap2 consensus sequences, and identify some specific cis elements which relate to lens-specific transcription of LIM2. Our experiments also preliminarily identify trans factors which bind to specific cis elements of the LIM2 promoter and/or regulate transcription of LIM2. We conclude that developmental regulation and coordination of the MP 19 gene in ocular lens fiber cells is controlled by the presence of specific cis elements that bind regulatory trans factors that affect LIM2 gene expression. DNA methylation is one mechanism of controlling LIM2 gene expression during lens development.

  9. Co-ordinate regulation of genes involved in storage lipid mobilization in Arabidopsis thaliana.

    Science.gov (United States)

    Rylott, E L; Hooks, M A; Graham, I A

    2001-05-01

    Molecular genetic approaches in the model plant Arabidopsis thaliana (Col0) are shedding new light on the role and control of the pathways associated with the mobilization of lipid reserves during oilseed germination and post-germinative growth. Numerous independent studies have reported on the expression of individual genes encoding enzymes from the three major pathways: beta-oxidation, the glyoxylate cycle and gluconeogenesis. However, a single comprehensive study of representative genes and enzymes from the different pathways in a single plant species has not been done. Here we present results from Arabidopsis that demonstrate the co-ordinate regulation of gene expression and enzyme activities for the acyl-CoA oxidase- and 3-ketoacyl-CoA thiolase-mediated steps of beta-oxidation, the isocitrate lyase and malate synthase steps of the glyoxylate cycle and the phosphoenolpyruvate carboxykinase step of gluconeogenesis. The mRNA abundance and enzyme activities increase to a peak at stage 2, 48 h after the onset of seed germination, and decline thereafter either to undetectable levels (for malate synthase and isocitrate lyase) or low basal levels (for the genes of beta-oxidation and gluconeogenesis). The co-ordinate induction of all these genes at the onset of germination raises the possibility that a global regulatory mechanism operates to induce the expression of genes associated with the mobilization of storage reserves during the heterotrophic growth period.

  10. Epigenetic regulation of vascular NADPH oxidase expression and reactive oxygen species production by histone deacetylase-dependent mechanisms in experimental diabetes

    Directory of Open Access Journals (Sweden)

    Simona-Adriana Manea

    2018-06-01

    Full Text Available Reactive oxygen species (ROS generated by up-regulated NADPH oxidase (Nox contribute to structural-functional alterations of the vascular wall in diabetes. Epigenetic mechanisms, such as histone acetylation, emerged as important regulators of gene expression in cardiovascular disorders. Since their role in diabetes is still elusive we hypothesized that histone deacetylase (HDAC-dependent mechanisms could mediate vascular Nox overexpression in diabetic conditions. Non-diabetic and streptozotocin-induced diabetic C57BL/6J mice were randomized to receive vehicle or suberoylanilide hydroxamic acid (SAHA, a pan-HDAC inhibitor. In vitro studies were performed on a human aortic smooth muscle cell (SMC line. Aortic SMCs typically express Nox1, Nox4, and Nox5 subtypes. HDAC1 and HDAC2 proteins along with Nox1, Nox2, and Nox4 levels were found significantly elevated in the aortas of diabetic mice compared to non-diabetic animals. Treatment of diabetic mice with SAHA mitigated the aortic expression of Nox1, Nox2, and Nox4 subtypes and NADPH-stimulated ROS production. High concentrations of glucose increased HDAC1 and HDAC2 protein levels in cultured SMCs. SAHA significantly reduced the high glucose-induced Nox1/4/5 expression, ROS production, and the formation malondialdehyde-protein adducts in SMCs. Overexpression of HDAC2 up-regulated the Nox1/4/5 gene promoter activities in SMCs. Physical interactions of HDAC1/2 and p300 proteins with Nox1/4/5 promoters were detected at the sites of active transcription. High glucose induced histone H3K27 acetylation enrichment at the promoters of Nox1/4/5 genes in SMCs. The novel data of this study indicate that HDACs mediate vascular Nox up-regulation in diabetes. HDAC inhibition reduces vascular ROS production in experimental diabetes, possibly by a mechanism involving negative regulation of Nox expression. Keywords: NADPH oxidase, Epigenetics, HDAC, Histone acetylation, Diabetes

  11. The knottin-like Blufensin family regulates genes involved in nuclear import and the secretory pathway in barley-powdery mildew interactions

    Science.gov (United States)

    Xu, Weihui; Meng, Yan; Surana, Priyanka; Fuerst, Greg; Nettleton, Dan; Wise, Roger P.

    2015-01-01

    Plants have evolved complex regulatory mechanisms to control a multi-layered defense response to microbial attack. Both temporal and spatial gene expression are tightly regulated in response to pathogen ingress, modulating both positive and negative control of defense. BLUFENSINs, small knottin-like peptides in barley, wheat, and rice, are highly induced by attack from fungal pathogens, in particular, the obligate biotrophic fungus, Blumeria graminis f. sp. hordei (Bgh), causal agent of barley powdery mildew. Previous research indicated that Blufensin1 (Bln1) functions as a negative regulator of basal defense mechanisms. In the current report, we show that BLN1 and BLN2 can both be secreted to the apoplast and Barley stripe mosaic virus (BSMV)-mediated overexpression of Bln2 increases susceptibility of barley to Bgh. Bimolecular fluorescence complementation (BiFC) assays signify that BLN1 and BLN2 can interact with each other, and with calmodulin. We then used BSMV-induced gene silencing to knock down Bln1, followed by Barley1 GeneChip transcriptome analysis, to identify additional host genes influenced by Bln1. Analysis of differential expression revealed a gene set enriched for those encoding proteins annotated to nuclear import and the secretory pathway, particularly Importin α1-b and Sec61 γ subunits. Further functional analysis of these two affected genes showed that when silenced, they also reduced susceptibility to Bgh. Taken together, we postulate that Bln1 is co-opted by Bgh to facilitate transport of disease-related host proteins or effectors, influencing the establishment of Bgh compatibility on its barley host. PMID:26089830

  12. The molecular mechanism of gene-radiotherapy of tumor

    International Nuclear Information System (INIS)

    Zhu Xian

    2004-01-01

    Gene-radiotherapy of tumor is a new method which is induced by ionizing radiation. The molecular mechanism is to activate various molecular target by many ways and induce the apoptosis of tumor cell. It is a gene therapy based on the radiation-inducible property of the Egr-1 gene. It has good application prospect in therapy of tumor

  13. Dormancy-Associated MADS-Box (DAM) and the Abscisic Acid Pathway Regulate Pear Endodormancy Through a Feedback Mechanism.

    Science.gov (United States)

    Tuan, Pham Anh; Bai, Songling; Saito, Takanori; Ito, Akiko; Moriguchi, Takaya

    2017-08-01

    In the pear 'Kosui' (Pyrus pyrifolia Nakai), the dormancy-associated MADS-box (PpDAM1 = PpMADS13-1) gene has been reported to play an essential role in bud endodormancy. Here, we found that PpDAM1 up-regulated expression of 9-cis-epoxycarotenoid dioxygenase (PpNCED3), which is a rate-limiting gene for ABA biosynthesis. Transient assays with a dual luciferase reporter system (LUC assay) and electrophoretic mobility shift assay (EMSA) showed that PpDAM1 activated PpNCED3 expression by binding to the CArG motif in the PpNCED3 promoter. PpNCED3 expression was increased toward endodormancy release in lateral flower buds of 'Kosui', which is consistent with the induced levels of ABA, its catabolism (ABA 8'-hydroxylase) and signaling genes (type 2C protein phosphatase genes and SNF1-related protein kinase 2 genes). In addition, we found that an ABA response element (ABRE)-binding transcription factor, PpAREB1, exhibiting high expression concomitant with endodormancy release, bound to three ABRE motifs in the promoter region of PpDAM1 and negatively regulated its activity. Taken together, our results suggested a feedback regulation between PpDAM1 and the ABA metabolism and signaling pathway during endodormancy of pear. This first evidence of an interaction between a DAM and ABA biosynthesis in vitro will provide further insights into bud endodormancy regulatory mechanisms of deciduous trees including pear. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  14. The tailless ortholog nhr-67 regulates patterning of gene expression and morphogenesis in the C. elegans vulva.

    Directory of Open Access Journals (Sweden)

    Jolene S Fernandes

    2007-04-01

    Full Text Available Regulation of spatio-temporal gene expression in diverse cell and tissue types is a critical aspect of development. Progression through Caenorhabditis elegans vulval development leads to the generation of seven distinct vulval cell types (vulA, vulB1, vulB2, vulC, vulD, vulE, and vulF, each with its own unique gene expression profile. The mechanisms that establish the precise spatial patterning of these mature cell types are largely unknown. Dissection of the gene regulatory networks involved in vulval patterning and differentiation would help us understand how cells generate a spatially defined pattern of cell fates during organogenesis. We disrupted the activity of 508 transcription factors via RNAi and assayed the expression of ceh-2, a marker for vulB fate during the L4 stage. From this screen, we identified the tailless ortholog nhr-67 as a novel regulator of gene expression in multiple vulval cell types. We find that one way in which nhr-67 maintains cell identity is by restricting inappropriate cell fusion events in specific vulval cells, namely vulE and vulF. nhr-67 exhibits a dynamic expression pattern in the vulval cells and interacts with three other transcriptional regulators cog-1 (Nkx6.1/6.2, lin-11 (LIM, and egl-38 (Pax2/5/8 to generate the composite expression patterns of their downstream targets. We provide evidence that egl-38 regulates gene expression in vulB1, vulC, vulD, vulE, as well as vulF cells. We demonstrate that the pairwise interactions between these regulatory genes are complex and vary among the seven cell types. We also discovered a striking regulatory circuit that affects a subset of the vulval lineages: cog-1 and nhr-67 inhibit both one another and themselves. We postulate that the differential levels and combinatorial patterns of lin-11, cog-1, and nhr-67 expression are a part of a regulatory code for the mature vulval cell types.

  15. Early bovine embryos regulate oviduct epithelial cell gene expression during in vitro co-culture.

    Science.gov (United States)

    Schmaltz-Panneau, Barbara; Cordova, Amanda; Dhorne-Pollet, Sophie; Hennequet-Antier, Christelle; Uzbekova, Sveltlana; Martinot, Emmanuelle; Doret, Sarah; Martin, Patrice; Mermillod, Pascal; Locatelli, Yann

    2014-10-01

    In mammals, the oviduct may participate to the regulation of early embryo development. In vitro co-culture of early bovine embryos with bovine oviduct epithelial cells (BOEC) has been largely used to mimic the maternal environment. However, the mechanisms of BOEC action have not been clearly elucidated yet. The aim of this study was to determine the response of BOEC cultures to the presence of developing bovine embryos. A 21,581-element bovine oligonucleotide array was used compare the gene expression profiles of confluent BOEC cultured for 8 days with or without embryos. This study revealed 34 differentially expressed genes (DEG). Of these 34 genes, IFI6, ISG15, MX1, IFI27, IFI44, RSAD2, IFITM1, EPSTI1, USP18, IFIT5, and STAT1 expression increased to the greatest extent due to the presence of embryos with a major impact on antiviral and immune response. Among the mRNAs at least 25 are already described as induced by interferons. In addition, transcript levels of new candidate genes involved in the regulation of transcription, modulation of the maternal immune system and endometrial remodeling were found to be increased. We selected 7 genes and confirmed their differential expression by quantitative RT-PCR. The immunofluorescence imaging of cellular localization of STAT1 protein in BOEC showed a nuclear translocation in the presence of embryos, suggesting the activation of interferon signaling pathway. This first systematic study of BOEC transcriptome changes in response to the presence of embryos in cattle provides some evidences that these cells are able to adapt their transcriptomic profile in response to embryo signaling. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Orthogonal Cas9 proteins for RNA-guided gene regulation and editing

    Science.gov (United States)

    Church, George M.; Esvelt, Kevin; Mali, Prashant

    2017-03-07

    Methods of modulating expression of a target nucleic acid in a cell are provided including use of multiple orthogonal Cas9 proteins to simultaneously and independently regulate corresponding genes or simultaneously and independently edit corresponding genes.

  17. Calmodulin Gene Expression in Response to Mechanical Wounding and Botrytis cinerea Infection in Tomato Fruit

    OpenAIRE

    Peng, Hui; Yang, Tianbao; Jurick, Wayne M.

    2014-01-01

    Calmodulin, a ubiquitous calcium sensor, plays an important role in decoding stress-triggered intracellular calcium changes and regulates the functions of numerous target proteins involved in various plant physiological responses. To determine the functions of calmodulin in fleshy fruit, expression studies were performed on a family of six calmodulin genes (SlCaMs) in mature-green stage tomato fruit in response to mechanical injury and Botrytis cinerea infection. Both wounding and pathogen in...

  18. Rapid male-specific regulatory divergence and down regulation of spermatogenesis genes in Drosophila species hybrids.

    Directory of Open Access Journals (Sweden)

    Jennifer Ferguson

    Full Text Available In most crosses between closely related species of Drosophila, the male hybrids are sterile and show postmeiotic abnormalities. A series of gene expression studies using genomic approaches have found significant down regulation of postmeiotic spermatogenesis genes in sterile male hybrids. These results have led some to suggest a direct relationship between down regulation in gene expression and hybrid sterility. An alternative explanation to a cause-and-effect relationship between misregulation of gene expression and male sterility is rapid divergence of male sex regulatory elements leading to incompatible interactions in an interspecies hybrid genome. To test the effect of regulatory divergence in spermatogenesis gene expression, we isolated 35 fertile D. simulans strains with D. mauritiana introgressions in either the X, second or third chromosome. We analyzed gene expression in these fertile hybrid strains for a subset of spermatogenesis genes previously reported as significantly under expressed in sterile hybrids relative to D. simulans. We found that fertile autosomal introgressions can cause levels of gene down regulation similar to that of sterile hybrids. We also found that X chromosome heterospecific introgressions cause significantly less gene down regulation than autosomal introgressions. Our results provide evidence that rapid male sex gene regulatory divergence can explain misexpression of spermatogenesis genes in hybrids.

  19. Estrogenic Endocrine Disrupting Chemicals Influencing NRF1 Regulated Gene Networks in the Development of Complex Human Brain Diseases

    Directory of Open Access Journals (Sweden)

    Mark Preciados

    2016-12-01

    Full Text Available During the development of an individual from a single cell to prenatal stages to adolescence to adulthood and through the complete life span, humans are exposed to countless environmental and stochastic factors, including estrogenic endocrine disrupting chemicals. Brain cells and neural circuits are likely to be influenced by estrogenic endocrine disruptors (EEDs because they strongly dependent on estrogens. In this review, we discuss both environmental, epidemiological, and experimental evidence on brain health with exposure to oral contraceptives, hormonal therapy, and EEDs such as bisphenol-A (BPA, polychlorinated biphenyls (PCBs, phthalates, and metalloestrogens, such as, arsenic, cadmium, and manganese. Also we discuss the brain health effects associated from exposure to EEDs including the promotion of neurodegeneration, protection against neurodegeneration, and involvement in various neurological deficits; changes in rearing behavior, locomotion, anxiety, learning difficulties, memory issues, and neuronal abnormalities. The effects of EEDs on the brain are varied during the entire life span and far-reaching with many different mechanisms. To understand endocrine disrupting chemicals mechanisms, we use bioinformatics, molecular, and epidemiologic approaches. Through those approaches, we learn how the effects of EEDs on the brain go beyond known mechanism to disrupt the circulatory and neural estrogen function and estrogen-mediated signaling. Effects on EEDs-modified estrogen and nuclear respiratory factor 1 (NRF1 signaling genes with exposure to natural estrogen, pharmacological estrogen-ethinyl estradiol, PCBs, phthalates, BPA, and metalloestrogens are presented here. Bioinformatics analysis of gene-EEDs interactions and brain disease associations identified hundreds of genes that were altered by exposure to estrogen, phthalate, PCBs, BPA or metalloestrogens. Many genes modified by EEDs are common targets of both 17 β-estradiol (E2 and

  20. Lvr, a Signaling System That Controls Global Gene Regulation and Virulence in Pathogenic Leptospira

    Science.gov (United States)

    Adhikarla, Haritha; Wunder, Elsio A.; Mechaly, Ariel E.; Mehta, Sameet; Wang, Zheng; Santos, Luciane; Bisht, Vimla; Diggle, Peter; Murray, Gerald; Adler, Ben; Lopez, Francesc; Townsend, Jeffrey P.; Groisman, Eduardo; Picardeau, Mathieu; Buschiazzo, Alejandro; Ko, Albert I.

    2018-01-01

    Leptospirosis is an emerging zoonotic disease with more than 1 million cases annually. Currently there is lack of evidence for signaling pathways involved during the infection process of Leptospira. In our comprehensive genomic analysis of 20 Leptospira spp. we identified seven pathogen-specific Two-Component System (TCS) proteins. Disruption of two these TCS genes in pathogenic Leptospira strain resulted in loss-of-virulence in a hamster model of leptospirosis. Corresponding genes lvrA and lvrB (leptospira virulence regulator) are juxtaposed in an operon and are predicted to encode a hybrid histidine kinase and a hybrid response regulator, respectively. Transcriptome analysis of lvr mutant strains with disruption of one (lvrB) or both genes (lvrA/B) revealed global transcriptional regulation of 850 differentially expressed genes. Phosphotransfer assays demonstrated that LvrA phosphorylates LvrB and predicted further signaling downstream to one or more DNA-binding response regulators, suggesting that it is a branched pathway. Phylogenetic analyses indicated that lvrA and lvrB evolved independently within different ecological lineages in Leptospira via gene duplication. This study uncovers a novel-signaling pathway that regulates virulence in pathogenic Leptospira (Lvr), providing a framework to understand the molecular bases of regulation in this life-threatening bacterium. PMID:29600195

  1. Metabolic Genetic Screens Reveal Multidimensional Regulation of Virulence Gene Expression in Listeria monocytogenes and an Aminopeptidase That Is Critical for PrfA Protein Activation.

    Science.gov (United States)

    Friedman, Sivan; Linsky, Marika; Lobel, Lior; Rabinovich, Lev; Sigal, Nadejda; Herskovits, Anat A

    2017-06-01

    Listeria monocytogenes is an environmental saprophyte and intracellular bacterial pathogen. Upon invading mammalian cells, the bacterium senses abrupt changes in its metabolic environment, which are rapidly transduced to regulation of virulence gene expression. To explore the relationship between L. monocytogenes metabolism and virulence, we monitored virulence gene expression dynamics across a library of genetic mutants grown under two metabolic conditions known to activate the virulent state: charcoal-treated rich medium containing glucose-1-phosphate and minimal defined medium containing limiting concentrations of branched-chain amino acids (BCAAs). We identified over 100 distinct mutants that exhibit aberrant virulence gene expression profiles, the majority of which mapped to nonessential metabolic genes. Mutants displayed enhanced, decreased, and early and late virulence gene expression profiles, as well as persistent levels, demonstrating a high plasticity in virulence gene regulation. Among the mutants, one was noteworthy for its particularly low virulence gene expression level and mapped to an X-prolyl aminopeptidase (PepP). We show that this peptidase plays a role in posttranslational activation of the major virulence regulator, PrfA. Specifically, PepP mediates recruitment of PrfA to the cytoplasmic membrane, a step identified as critical for PrfA protein activation. This study establishes a novel step in the complex mechanism of PrfA activation and further highlights the cross regulation of metabolism and virulence. Copyright © 2017 American Society for Microbiology.

  2. Endogenous Methanol Regulates Mammalian Gene Activity

    Science.gov (United States)

    Komarova, Tatiana V.; Petrunia, Igor V.; Shindyapina, Anastasia V.; Silachev, Denis N.; Sheshukova, Ekaterina V.; Kiryanov, Gleb I.; Dorokhov, Yuri L.

    2014-01-01

    We recently showed that methanol emitted by wounded plants might function as a signaling molecule for plant-to-plant and plant-to-animal communications. In mammals, methanol is considered a poison because the enzyme alcohol dehydrogenase (ADH) converts methanol into toxic formaldehyde. However, the detection of methanol in the blood and exhaled air of healthy volunteers suggests that methanol may be a chemical with specific functions rather than a metabolic waste product. Using a genome-wide analysis of the mouse brain, we demonstrated that an increase in blood methanol concentration led to a change in the accumulation of mRNAs from genes primarily involved in detoxification processes and regulation of the alcohol/aldehyde dehydrogenases gene cluster. To test the role of ADH in the maintenance of low methanol concentration in the plasma, we used the specific ADH inhibitor 4-methylpyrazole (4-MP) and showed that intraperitoneal administration of 4-MP resulted in a significant increase in the plasma methanol, ethanol and formaldehyde concentrations. Removal of the intestine significantly decreased the rate of methanol addition to the plasma and suggested that the gut flora may be involved in the endogenous production of methanol. ADH in the liver was identified as the main enzyme for metabolizing methanol because an increase in the methanol and ethanol contents in the liver homogenate was observed after 4-MP administration into the portal vein. Liver mRNA quantification showed changes in the accumulation of mRNAs from genes involved in cell signalling and detoxification processes. We hypothesized that endogenous methanol acts as a regulator of homeostasis by controlling the mRNA synthesis. PMID:24587296

  3. Endogenous methanol regulates mammalian gene activity.

    Directory of Open Access Journals (Sweden)

    Tatiana V Komarova

    Full Text Available We recently showed that methanol emitted by wounded plants might function as a signaling molecule for plant-to-plant and plant-to-animal communications. In mammals, methanol is considered a poison because the enzyme alcohol dehydrogenase (ADH converts methanol into toxic formaldehyde. However, the detection of methanol in the blood and exhaled air of healthy volunteers suggests that methanol may be a chemical with specific functions rather than a metabolic waste product. Using a genome-wide analysis of the mouse brain, we demonstrated that an increase in blood methanol concentration led to a change in the accumulation of mRNAs from genes primarily involved in detoxification processes and regulation of the alcohol/aldehyde dehydrogenases gene cluster. To test the role of ADH in the maintenance of low methanol concentration in the plasma, we used the specific ADH inhibitor 4-methylpyrazole (4-MP and showed that intraperitoneal administration of 4-MP resulted in a significant increase in the plasma methanol, ethanol and formaldehyde concentrations. Removal of the intestine significantly decreased the rate of methanol addition to the plasma and suggested that the gut flora may be involved in the endogenous production of methanol. ADH in the liver was identified as the main enzyme for metabolizing methanol because an increase in the methanol and ethanol contents in the liver homogenate was observed after 4-MP administration into the portal vein. Liver mRNA quantification showed changes in the accumulation of mRNAs from genes involved in cell signalling and detoxification processes. We hypothesized that endogenous methanol acts as a regulator of homeostasis by controlling the mRNA synthesis.

  4. Aspects of gene structure and functional regulation of the isozymes of Na,K-ATPase

    DEFF Research Database (Denmark)

    Jorgensen, P.L.

    2001-01-01

    genomes, the genes of four alpha-subunit and at least three beta-subunit isoforms of Na,K-ATPase are identified and two gamma-subunits are expressed in kidney. The isoforms combine in a number of Na,K-ATPase isozymes that are expressed in a tissue and cell specific manner. Models of the molecular...... mechanism of regulation of these isozymes have become more reliable due to progress in understanding the three-dimensional protein structure and conformational transitions mediating transfer of energy from the P-domain to intramembrane Na+ and K+ binding sites....

  5. Post-transcriptional regulation of macrophage ABCA1, an early response gene to IFN-γ

    International Nuclear Information System (INIS)

    Alfaro Leon, Martha Leticia; Evans, Glenn F.; Farmen, Mark W.; Zuckerman, Steven H.

    2005-01-01

    Interferon-γ (IFN-γ) down-regulates receptors associated with reverse cholesterol transport including ABCA1. In the present study, the kinetics and mechanism of ABCA1 down-regulation were determined in mouse peritoneal macrophages. IFN-γ decreased ABCA1 mRNA 1 h following IFN-γ addition and was maximally reduced by 3 h. Down-regulation was protein synthesis dependent and involved post-transcriptional processes. ABCA1 message had a T 1/2 of 115 min in actinomycin treated cells that was reduced to a T 1/2 of 37 min by IFN-γ. The decrease in message stability was also associated with a rapid loss of ABCA1 protein, significant 3 h following IFN-γ addition. The kinetics of ABCA1 message and protein decrease was consistent with the early IFN-γ-induced changes in Stat1 phosphorylation and nuclear translocation observed in these cells. Therefore, ABCA1 can be considered as an early response gene to macrophage activation by IFN-γ with down-regulation occurring by message destabilization

  6. Chloroplast His-to-Asp signal transduction: a potential mechanism for plastid gene regulation in Heterosigma akashiwo (Raphidophyceae

    Directory of Open Access Journals (Sweden)

    Jacobs Michael A

    2007-05-01

    Full Text Available Abstract Background Maintenance of homeostasis requires that an organism perceive selected physical and chemical signals within an informationally dense environment. Functionally, an organism uses a variety of signal transduction arrays to amplify and convert these perceived signals into appropriate gene transcriptional responses. These changes in gene expression serve to modify selective metabolic processes and thus optimize reproductive success. Here we analyze a chloroplast-encoded His-to-Asp signal transduction circuit in the stramenopile Heterosigma akashiwo (Hada Hada ex Y. Hara et Chihara [syn. H. carterae (Hulburt F.J.R. Taylor]. The presence, structure and putative function of this protein pair are discussed in the context of their evolutionary homologues. Results Bioinformatic analysis of the Heterosigma akashiwo chloroplast genome sequence revealed the presence of a single two-component His-to-Asp (designated Tsg1/Trg1 pair in this stramenopile (golden-brown alga. These data represent the first documentation of a His-to-Asp array in stramenopiles and counter previous reports suggesting that such regulatory proteins are lacking in this taxonomic cluster. Comparison of the 43 kDa H. akashiwo Tsg1 with bacterial sensor kinases showed that the algal protein exhibits a moderately maintained PAS motif in the sensor kinase domain as well as highly conserved H, N, G1 and F motifs within the histidine kinase ATP binding site. Molecular modelling of the 27 kDa H. akashiwo Trg1 regulator protein was consistent with a winged helix-turn-helix identity – a class of proteins that is known to impact gene expression at the level of transcription. The occurrence of Trg1 protein in actively growing H. akashiwo cells was verified by Western analysis. The presence of a PhoB-like RNA polymerase loop in Trg1 and its homologues in the red-algal lineage support the hypothesis that Trg1 and its homologues interact with a sigma 70 (σ70 subunit (encoded by

  7. DNA context represents transcription regulation of the gene in mouse embryonic stem cells

    Science.gov (United States)

    Ha, Misook; Hong, Soondo

    2016-04-01

    Understanding gene regulatory information in DNA remains a significant challenge in biomedical research. This study presents a computational approach to infer gene regulatory programs from primary DNA sequences. Using DNA around transcription start sites as attributes, our model predicts gene regulation in the gene. We find that H3K27ac around TSS is an informative descriptor of the transcription program in mouse embryonic stem cells. We build a computational model inferring the cell-type-specific H3K27ac signatures in the DNA around TSS. A comparison of embryonic stem cell and liver cell-specific H3K27ac signatures in DNA shows that the H3K27ac signatures in DNA around TSS efficiently distinguish the cell-type specific H3K27ac peaks and the gene regulation. The arrangement of the H3K27ac signatures inferred from the DNA represents the transcription regulation of the gene in mESC. We show that the DNA around transcription start sites is associated with the gene regulatory program by specific interaction with H3K27ac.

  8. HOXB4 Gene Expression Is Regulated by CDX2 in Intestinal Epithelial Cells

    DEFF Research Database (Denmark)

    Jørgensen, Steffen; Coshun, Mehmet; Mikkelsen Homburg, Keld

    2016-01-01

    analysis and expression data from Caco2 cells also suggests a role for CDX2 in the regulation of HOXB4 gene expression in the intestinal epithelium. Thus, the aim of this study was to investigate whether HOXB4 gene expression is regulated by CDX2 in the intestinal epithelium. We demonstrated binding of CDX......The mammalian Caudal-related homeobox transcription factor 2 (CDX2) plays a key role in the homeobox regulatory network and is essential in regulating the expression of several homeobox (HOX) genes during embryonic development, particularly in the gut. Genome-wide CDX2 chromatin immunoprecipitation......2 to four different CDX2 binding sites in an enhancer region located upstream of the HOXB4 transcription start site. Mutations in the CDX2 binding sites reduced HOXB4 gene activity, and knock down of endogenous CDX2 expression by shRNA reduced HOXB4 gene expression. This is the first report...

  9. Mechanism and Regulation of Nucleocytoplasmic Trafficking of Smad

    Directory of Open Access Journals (Sweden)

    Chen Xiaochu

    2011-12-01

    Full Text Available Abstract Smad proteins are the intracellular mediators of transforming growth factor β (TGF-β signaling. Smads function as transcription factors and their activities require carboxyl-terminal phosphorylation by TGF-β receptor kinases which are embedded in the cell membrane. Therefore, the translocation of activated Smads from the cytoplasm into the nucleus is a rate-limiting step in TGF-β signal transduction into the nucleus. On the other hand, the export of Smads out of the nucleus turns off TGF-β effect. Such spatial control of Smad ensures a tight regulation of TGF-β target genes. Several cross-talk pathways have been shown to affect TGF-β signaling by impairing nuclear translocation of Smad, exemplifying the biological importance of the nuclear transport process. Many laboratories have investigated the underlying molecular mechanism of Smad nucleocytoplasmic translocation, combining genetics, biochemistry and sophisticated live cell imaging approaches. The last few years have witnessed the elucidation of several key players in Smad nuclear transport, most importantly the karyopherins that carry Smads across the nuclear envelope and nuclear pore proteins that facilitate the trans-nuclear envelope movement. The foundation is now set to further elucidate how the nuclear transport process is regulated and exploit such knowledge to manipulate TGF-β signaling. In this review we will discuss the current understanding of the molecular machinery responsible for nuclear import and export of Smads.

  10. Array2BIO: from microarray expression data to functional annotation of co-regulated genes

    Directory of Open Access Journals (Sweden)

    Rasley Amy

    2006-06-01

    Full Text Available Abstract Background There are several isolated tools for partial analysis of microarray expression data. To provide an integrative, easy-to-use and automated toolkit for the analysis of Affymetrix microarray expression data we have developed Array2BIO, an application that couples several analytical methods into a single web based utility. Results Array2BIO converts raw intensities into probe expression values, automatically maps those to genes, and subsequently identifies groups of co-expressed genes using two complementary approaches: (1 comparative analysis of signal versus control and (2 clustering analysis of gene expression across different conditions. The identified genes are assigned to functional categories based on Gene Ontology classification and KEGG protein interaction pathways. Array2BIO reliably handles low-expressor genes and provides a set of statistical methods for quantifying expression levels, including Benjamini-Hochberg and Bonferroni multiple testing corrections. An automated interface with the ECR Browser provides evolutionary conservation analysis for the identified gene loci while the interconnection with Crème allows prediction of gene regulatory elements that underlie observed expression patterns. Conclusion We have developed Array2BIO – a web based tool for rapid comprehensive analysis of Affymetrix microarray expression data, which also allows users to link expression data to Dcode.org comparative genomics tools and integrates a system for translating co-expression data into mechanisms of gene co-regulation. Array2BIO is publicly available at http://array2bio.dcode.org.

  11. Regulation of Cell and Gene Therapy Medicinal Products in Taiwan.

    Science.gov (United States)

    Lin, Yi-Chu; Wang, Po-Yu; Tsai, Shih-Chih; Lin, Chien-Liang; Tai, Hsuen-Yung; Lo, Chi-Fang; Wu, Shiow-Ing; Chiang, Yu-Mei; Liu, Li-Ling

    2015-01-01

    Owing to the rapid and mature development of emerging biotechnology in the fields of cell culture, cell preservation, and recombinant DNA technology, more and more cell or gene medicinal therapy products have been approved for marketing, to treat serious diseases which have been challenging to treat with current medical practice or medicine. This chapter will briefly introduce the Taiwan Food and Drug Administration (TFDA) and elaborate regulation of cell and gene therapy medicinal products in Taiwan, including regulatory history evolution, current regulatory framework, application and review procedures, and relevant jurisdictional issues. Under the promise of quality, safety, and efficacy of medicinal products, it is expected the regulation and environment will be more flexible, streamlining the process of the marketing approval of new emerging cell or gene therapy medicinal products and providing diverse treatment options for physicians and patients.

  12. Overexpression of Rice Auxilin-Like Protein, XB21, Induces Necrotic Lesions, up-Regulates Endocytosis-Related Genes, and Confers Enhanced Resistance to Xanthomonas oryzae pv. oryzae.

    Science.gov (United States)

    Park, Chang-Jin; Wei, Tong; Sharma, Rita; Ronald, Pamela C

    2017-12-01

    The rice immune receptor XA21 confers resistance to the bacterial pathogen, Xanthomonas oryzae pv. oryzae (Xoo). To elucidate the mechanism of XA21-mediated immunity, we previously performed a yeast two-hybrid screening for XA21 interactors and identified XA21 binding protein 21 (XB21). Here, we report that XB21 is an auxilin-like protein predicted to function in clathrin-mediated endocytosis. We demonstrate an XA21/XB21 in vivo interaction using co-immunoprecipitation in rice. Overexpression of XB21 in rice variety Kitaake and a Kitaake transgenic line expressing XA21 confers a necrotic lesion phenotype and enhances resistance to Xoo. RNA sequencing reveals that XB21 overexpression results in the differential expression of 8735 genes (4939 genes up- and 3846 genes down-regulated) (≥2-folds, FDR ≤0.01). The up-regulated genes include those predicted to be involved in 'cell death' and 'vesicle-mediated transport'. These results indicate that XB21 plays a role in the plant immune response and in regulation of cell death. The up-regulation of genes controlling 'vesicle-mediated transport' in XB21 overexpression lines is consistent with a functional role for XB21 as an auxilin.

  13. CCAAT/enhancer-binding proteins regulate expression of the human steroidogenic acute regulatory protein (StAR) gene.

    Science.gov (United States)

    Christenson, L K; Johnson, P F; McAllister, J M; Strauss, J F

    1999-09-10

    Two putative CCAAT/enhancer-binding protein (C/EBP) response elements were identified in the proximal promoter of the human steroidogenic acute regulatory protein (StAR) gene, which encodes a key protein-regulating steroid hormone synthesis. Expression of C/EBPalpha and -beta increased StAR promoter activity in COS-1 and HepG2 cells. Cotransfection of C/EBPalpha or -beta and steroidogenic factor 1, a transcription factor required for cAMP regulation of StAR expression, into COS-1 augmented 8-bromoadenosine 3':5'-cyclic monophosphate (8-Br-cAMP)-stimulated promoter activity. When the putative C/EBP response elements were mutated, individually or together, a pronounced decline in basal StAR promoter activity in human granulosa-lutein cells resulted, but the fold stimulation of promoter activity by 8-Br-cAMP was unaffected. Recombinant C/EBPalpha and -beta bound to the two identified sequences but not the mutated elements. Human granulosa-lutein cell nuclear extracts also bound these elements but not the mutated sequences. An antibody to C/EBPbeta, but not C/EBPalpha, supershifted the nuclear protein complex associated with the more distal element. The complex formed by nuclear extracts with the proximal element was not supershifted by either antibody. Western blot analysis revealed the presence of C/EBPalpha and C/EBPbeta in human granulosa-lutein cell nuclear extracts. C/EBPbeta levels were up-regulated 3-fold by 8-Br-cAMP treatment. Our studies demonstrate a role for C/EBPbeta as well as yet to be identified proteins, which can bind to C/EBP response elements, in the regulation of StAR gene expression and suggest a mechanism by which C/EBPbeta participates in the cAMP regulation of StAR gene transcription.

  14. Two cis-acting elements responsible for posttranscriptional trans-regulation of gene expression of human T-cell leukemia virus type I

    International Nuclear Information System (INIS)

    Seiki, Motoharu; Inoue, Junichiro; Hidaka, Makoto; Yoshida, Mitsuaki

    1988-01-01

    The pX sequence of human T-cell leukemia virus type I codes for two nuclear proteins, p40 tax and p27 rex and a cytoplasmic protein, p21 X-III . p40 tax activates transcription from the long terminal repeat (LTR), whereas p27 rex modulates posttranscriptional processing to accumulate gag and env mRNAs that retain intron sequences. In this paper, the authors identify two cis-acting sequence elements needed for regulation by p27 rex : a 5' splice signal and a specific sequence in the 3' LTR. These two sequence elements are sufficient for regulation by p27 rex ; expression of a cellular gene (metallothionein I) became sensitive to rex regulation when the LTR was inserted at the 3' end of this gene. The requirement for these two elements suggests and unusual regulatory mechanism of RNA processing in the nucleus

  15. Microarray analysis of androgen-regulated gene expression in testis: the use of the androgen-binding protein (ABP-transgenic mouse as a model

    Directory of Open Access Journals (Sweden)

    Grossman Gail

    2005-12-01

    Full Text Available Abstract Background Spermatogenesis is an androgen-dependent process, yet the molecular mechanisms of androgens' actions in testis are poorly understood. Transgenic mice overexpressing rat androgen-binding protein (ABP in their testes have reduced levels of intratesticular androgens and, as a result, show a progressive impairment of spermatogenesis. We used this model to characterize changes in global gene expression in testis in response to reduced bioavailability of androgens. Methods Total RNA was extracted from testes of 30-day old transgenic and wild-type control mice, converted to cRNA, labeled with biotin, and hybridized to oligonucleotide microarrays. Microarray results were confirmed by real-time reverse transcription polymerase chain reaction. Results Three-hundred-eighty-one genes (3.05% of all transcripts represented on the chips were up-regulated and 198 genes (1.59% were down-regulated by at least a factor of 2 in the androgen-deficient animals compared to controls. Genes encoding membrane proteins, intracellular signaling molecules, enzymes, proteins participating in the immune response, and those involved in cytoskeleton organization were significantly overrepresented in the up-regulated group. Among the down-regulated transcripts, those coding for extracellular proteins were overrepresented most dramatically, followed by those related to proteolysis, cell adhesion, immune response, and growth factor, cytokine, and ion channel activities. Transcripts with the greatest potential impact on cellular activities included several transcription factors, intracellular signal transducers, secreted signaling molecules and enzymes, and various cell surface molecules. Major nodes in the up-regulated network were IL-6, AGT, MYC, and A2M, those in the down-regulated network were IL-2, -4, and -10, MAPK8, SOCS1, and CREB1. Conclusion Microarray analysis followed by gene ontology profiling and connectivity analysis identified several functional

  16. Gene expression and stress response mediated by the epigenetic regulation of a transposable element small RNA.

    Directory of Open Access Journals (Sweden)

    Andrea D McCue

    2012-02-01

    Full Text Available The epigenetic activity of transposable elements (TEs can influence the regulation of genes; though, this regulation is confined to the genes, promoters, and enhancers that neighbor the TE. This local cis regulation of genes therefore limits the influence of the TE's epigenetic regulation on the genome. TE activity is suppressed by small RNAs, which also inhibit viruses and regulate the expression of genes. The production of TE heterochromatin-associated endogenous small interfering RNAs (siRNAs in the reference plant Arabidopsis thaliana is mechanistically distinct from gene-regulating small RNAs, such as microRNAs or trans-acting siRNAs (tasiRNAs. Previous research identified a TE small RNA that potentially regulates the UBP1b mRNA, which encodes an RNA-binding protein involved in stress granule formation. We demonstrate that this siRNA, siRNA854, is under the same trans-generational epigenetic control as the Athila family LTR retrotransposons from which it is produced. The epigenetic activation of Athila elements results in a shift in small RNA processing pathways, and new 21-22 nucleotide versions of Athila siRNAs are produced by protein components normally not responsible for processing TE siRNAs. This processing results in siRNA854's incorporation into ARGONAUTE1 protein complexes in a similar fashion to gene-regulating tasiRNAs. We have used reporter transgenes to demonstrate that the UPB1b 3' untranslated region directly responds to the epigenetic status of Athila TEs and the accumulation of siRNA854. The regulation of the UPB1b 3' untranslated region occurs both on the post-transcriptional and translational levels when Athila TEs are epigenetically activated, and this regulation results in the phenocopy of the ubp1b mutant stress-sensitive phenotype. This demonstrates that a TE's epigenetic activity can modulate the host organism's stress response. In addition, the ability of this TE siRNA to regulate a gene's expression in trans blurs

  17. The metabolic regulator CodY links L. monocytogenes metabolism to virulence by directly activating the virulence regulatory gene, prfA

    Science.gov (United States)

    Lobel, Lior; Sigal, Nadejda; Borovok, Ilya; Belitsky, Boris R.; Sonenshein, Abraham L.; Herskovits, Anat A.

    2015-01-01

    Summary Metabolic adaptations are critical to the ability of bacterial pathogens to grow within host cells and are normally preceded by sensing of host-specific metabolic signals, which in turn can influence the pathogen's virulence state. Previously, we reported that the intracellular bacterial pathogen Listeria monocytogenes responds to low availability of branched-chain amino acids (BCAA) within mammalian cells by up-regulating both BCAA biosynthesis and virulence genes. The induction of virulence genes required the BCAA-responsive transcription regulator, CodY, but the molecular mechanism governing this mode of regulation was unclear. In this report, we demonstrate that CodY directly binds the coding sequence of the L. monocytogenes master virulence activator gene, prfA, 15 nt downstream of its start codon, and that this binding results in up-regulation of prfA transcription specifically under low concentrations of BCAA. Mutating this site abolished CodY binding and reduced prfA transcription in macrophages, and attenuated bacterial virulence in mice. Notably, the mutated binding site did not alter prfA transcription or PrfA activity under other conditions that are known to activate PrfA, such as during growth in the presence of glucose-1-phosphate. This study highlights the tight crosstalk between L. monocytogenes metabolism and virulence' while revealing novel features of CodY-mediated regulation. PMID:25430920

  18. Splicing factor SR34b mutation reduces cadmium tolerance in Arabidopsis by regulating iron-regulated transporter 1 gene

    International Nuclear Information System (INIS)

    Zhang, Wentao; Du, Bojing; Liu, Di; Qi, Xiaoting

    2014-01-01

    Highlights: • Arabidopsis splicing factor SR34b gene is cadmium-inducible. • SR34b T-DNA insertion mutant is sensitive to cadmium due to high cadmium uptake. • SR34b is a regulator of cadmium transporter IRT1 at the posttranscription level. • These results highlight the roles of splicing factors in cadmium tolerance of plant. - Abstract: Serine/arginine-rich (SR) proteins are important splicing factors. However, the biological functions of plant SR proteins remain unclear especially in abiotic stresses. Cadmium (Cd) is a non-essential element that negatively affects plant growth and development. In this study, we provided clear evidence for SR gene involved in Cd tolerance in planta. Systemic expression analysis of 17 Arabidopsis SR genes revealed that SR34b is the only SR gene upregulated by Cd, suggesting its potential roles in Arabidopsis Cd tolerance. Consistent with this, a SR34b T-DNA insertion mutant (sr34b) was moderately sensitive to Cd, which had higher Cd 2+ uptake rate and accumulated Cd in greater amounts than wild-type. This was due to the altered expression of iron-regulated transporter 1 (IRT1) gene in sr34b mutant. Under normal growth conditions, IRT1 mRNAs highly accumulated in sr34b mutant, which was a result of increased stability of IRT1 mRNA. Under Cd stress, however, sr34b mutant plants had a splicing defect in IRT1 gene, thus reducing the IRT1 mRNA accumulation. Despite of this, sr34b mutant plants still constitutively expressed IRT1 proteins under Cd stress, thereby resulting in Cd stress-sensitive phenotype. We therefore propose the essential roles of SR34b in posttranscriptional regulation of IRT1 expression and identify it as a regulator of Arabidopsis Cd tolerance

  19. Splicing factor SR34b mutation reduces cadmium tolerance in Arabidopsis by regulating iron-regulated transporter 1 gene

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wentao; Du, Bojing; Liu, Di; Qi, Xiaoting, E-mail: qixiaoting@cnu.edu.cn

    2014-12-12

    Highlights: • Arabidopsis splicing factor SR34b gene is cadmium-inducible. • SR34b T-DNA insertion mutant is sensitive to cadmium due to high cadmium uptake. • SR34b is a regulator of cadmium transporter IRT1 at the posttranscription level. • These results highlight the roles of splicing factors in cadmium tolerance of plant. - Abstract: Serine/arginine-rich (SR) proteins are important splicing factors. However, th