WorldWideScience

Sample records for mechanisms provide insight

  1. Hydrodeoxygenation by deuterium gas--a powerful way to provide insight into the reaction mechanisms.

    Science.gov (United States)

    Ben, Haoxi; Ferguson, Glen A; Mu, Wei; Pu, Yunqiao; Huang, Fang; Jarvis, Mark; Biddy, Mary; Deng, Yulin; Ragauskas, Arthur J

    2013-11-28

    This study demonstrates the use of isotopic labelling and NMR to study the HDO process. As far as we know, this is the first reported effort to trace the incorporation of hydrogen in the HDO process of lignin pyrolysis oil thereby providing key fundamental insight into its reaction mechanism.

  2. Atomistic insight into the catalytic mechanism of glycosyltransferases by combined quantum mechanics/molecular mechanics (QM/MM) methods.

    Science.gov (United States)

    Tvaroška, Igor

    2015-02-11

    Glycosyltransferases catalyze the formation of glycosidic bonds by assisting the transfer of a sugar residue from donors to specific acceptor molecules. Although structural and kinetic data have provided insight into mechanistic strategies employed by these enzymes, molecular modeling studies are essential for the understanding of glycosyltransferase catalyzed reactions at the atomistic level. For such modeling, combined quantum mechanics/molecular mechanics (QM/MM) methods have emerged as crucial. These methods allow the modeling of enzymatic reactions by using quantum mechanical methods for the calculation of the electronic structure of the active site models and treating the remaining enzyme environment by faster molecular mechanics methods. Herein, the application of QM/MM methods to glycosyltransferase catalyzed reactions is reviewed, and the insight from modeling of glycosyl transfer into the mechanisms and transition states structures of both inverting and retaining glycosyltransferases are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. The biological and structural characterization of Mycobacterium tuberculosis UvrA provides novel insights into its mechanism of action.

    Science.gov (United States)

    Rossi, Franca; Khanduja, Jasbeer Singh; Bortoluzzi, Alessio; Houghton, Joanna; Sander, Peter; Güthlein, Carolin; Davis, Elaine O; Springer, Burkhard; Böttger, Erik C; Relini, Annalisa; Penco, Amanda; Muniyappa, K; Rizzi, Menico

    2011-09-01

    Mycobacterium tuberculosis is an extremely well adapted intracellular human pathogen that is exposed to multiple DNA damaging chemical assaults originating from the host defence mechanisms. As a consequence, this bacterium is thought to possess highly efficient DNA repair machineries, the nucleotide excision repair (NER) system amongst these. Although NER is of central importance to DNA repair in M. tuberculosis, our understanding of the processes in this species is limited. The conserved UvrABC endonuclease represents the multi-enzymatic core in bacterial NER, where the UvrA ATPase provides the DNA lesion-sensing function. The herein reported genetic analysis demonstrates that M. tuberculosis UvrA is important for the repair of nitrosative and oxidative DNA damage. Moreover, our biochemical and structural characterization of recombinant M. tuberculosis UvrA contributes new insights into its mechanism of action. In particular, the structural investigation reveals an unprecedented conformation of the UvrB-binding domain that we propose to be of functional relevance. Taken together, our data suggest UvrA as a potential target for the development of novel anti-tubercular agents and provide a biochemical framework for the identification of small-molecule inhibitors interfering with the NER activity in M. tuberculosis.

  4. New Insights on Neurobiological Mechanisms underlying Alcohol Addiction

    Science.gov (United States)

    Cui, Changhai; Noronha, Antonio; Morikawa, Hitoshi; Alvarez, Veronica A.; Stuber, Garret D.; Szumlinski, Karen K.; Kash, Thomas L.; Roberto, Marisa; Wilcox, Mark V.

    2012-01-01

    Alcohol dependence/addiction is mediated by complex neural mechanisms that involve multiple brain circuits and neuroadaptive changes in a variety of neurotransmitter and neuropeptide systems. Although recent studies have provided substantial information on the neurobiological mechanisms that drive alcohol drinking behavior, significant challenges remain in understanding how alcohol-induced neuroadaptations occur and how different neurocircuits and pathways cross-talk. This review article highlights recent progress in understanding neural mechanisms of alcohol addiction from the perspectives of the development and maintenance of alcohol dependence. It provides insights on cross talks of different mechanisms and reviews the latest studies on metaplasticity, structural plasticity, interface of reward and stress pathways, and cross-talk of different neural signaling systems involved in binge-like drinking and alcohol dependence. PMID:23159531

  5. Multi-omics analysis provides insight to the Ignicoccus hospitalis-Nanoarchaeum equitans association.

    Science.gov (United States)

    Rawle, Rachel A; Hamerly, Timothy; Tripet, Brian P; Giannone, Richard J; Wurch, Louie; Hettich, Robert L; Podar, Mircea; Copié, Valerie; Bothner, Brian

    2017-09-01

    Studies of interspecies interactions are inherently difficult due to the complex mechanisms which enable these relationships. A model system for studying interspecies interactions is the marine hyperthermophiles Ignicoccus hospitalis and Nanoarchaeum equitans. Recent independently-conducted 'omics' analyses have generated insights into the molecular factors modulating this association. However, significant questions remain about the nature of the interactions between these archaea. We jointly analyzed multiple levels of omics datasets obtained from published, independent transcriptomics, proteomics, and metabolomics analyses. DAVID identified functionally-related groups enriched when I. hospitalis is grown alone or in co-culture with N. equitans. Enriched molecular pathways were subsequently visualized using interaction maps generated using STRING. Key findings of our multi-level omics analysis indicated that I. hospitalis provides precursors to N. equitans for energy metabolism. Analysis indicated an overall reduction in diversity of metabolic precursors in the I. hospitalis-N. equitans co-culture, which has been connected to the differential use of ribosomal subunits and was previously unnoticed. We also identified differences in precursors linked to amino acid metabolism, NADH metabolism, and carbon fixation, providing new insights into the metabolic adaptions of I. hospitalis enabling the growth of N. equitans. This multi-omics analysis builds upon previously identified cellular patterns while offering new insights into mechanisms that enable the I. hospitalis-N. equitans association. Our study applies statistical and visualization techniques to a mixed-source omics dataset to yield a more global insight into a complex system, that was not readily discernable from separate omics studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Fluid mechanics in dentinal microtubules provides mechanistic insights into the difference between hot and cold dental pain.

    Science.gov (United States)

    Lin, Min; Luo, Zheng Yuan; Bai, Bo Feng; Xu, Feng; Lu, Tian Jian

    2011-03-23

    Dental thermal pain is a significant health problem in daily life and dentistry. There is a long-standing question regarding the phenomenon that cold stimulation evokes sharper and more shooting pain sensations than hot stimulation. This phenomenon, however, outlives the well-known hydrodynamic theory used to explain dental thermal pain mechanism. Here, we present a mathematical model based on the hypothesis that hot or cold stimulation-induced different directions of dentinal fluid flow and the corresponding odontoblast movements in dentinal microtubules contribute to different dental pain responses. We coupled a computational fluid dynamics model, describing the fluid mechanics in dentinal microtubules, with a modified Hodgkin-Huxley model, describing the discharge behavior of intradental neuron. The simulated results agreed well with existing experimental measurements. We thence demonstrated theoretically that intradental mechano-sensitive nociceptors are not "equally sensitive" to inward (into the pulp) and outward (away from the pulp) fluid flows, providing mechanistic insights into the difference between hot and cold dental pain. The model developed here could enable better diagnosis in endodontics which requires an understanding of pulpal histology, neurology and physiology, as well as their dynamic response to the thermal stimulation used in dental practices.

  7. Mechanisms of cell death in canine parvovirus-infected cells provide intuitive insights to developing nanotools for medicine

    Directory of Open Access Journals (Sweden)

    Jonna Nykky

    2010-06-01

    Full Text Available Jonna Nykky, Jenni E Tuusa, Sanna Kirjavainen, Matti Vuento, Leona GilbertNanoscience Center and Department of Biological and Environmental Science, University of Jyväskylä, FinlandAbstract: Viruses have great potential as nanotools in medicine for gene transfer, targeted gene delivery, and oncolytic cancer virotherapy. Here we have studied cell death mechanisms of canine parvovirus (CPV to increase the knowledge on the CPV life cycle in order to facilitate the development of better parvovirus vectors. Morphological studies of CPV-infected Norden laboratory feline kidney (NLFK cells and canine fibroma cells (A72 displayed characteristic apoptotic events. Apoptosis was further confirmed by activation of caspases and cellular DNA damage. However, results from annexin V-propidium iodide (PI labeling and membrane polarization assays indicated disruption of the plasma membrane uncommon to apoptosis. These results provide evidence that secondary necrosis followed apoptosis. In addition, two human cancer cell lines were found to be infected by CPV. This necrotic event over apoptotic cell death and infection in human cells provide insightful information when developing CPV as a nanotool for cancer treatments.Keywords: canine parvovirus, apoptosis, necrosis, nanoparticle, virotherapy

  8. Structure of the Hantavirus Nucleoprotein Provides Insights into the Mechanism of RNA Encapsidation

    Directory of Open Access Journals (Sweden)

    Daniel Olal

    2016-03-01

    Full Text Available Hantaviruses are etiological agents of life-threatening hemorrhagic fever with renal syndrome and hantavirus cardiopulmonary syndrome. The nucleoprotein (N of hantavirus is essential for viral transcription and replication, thus representing an attractive target for therapeutic intervention. We have determined the crystal structure of hantavirus N to 3.2 Å resolution. The structure reveals a two-lobed, mostly α-helical structure that is distantly related to that of orthobunyavirus Ns. A basic RNA binding pocket is located at the intersection between the two lobes. We provide evidence that oligomerization is mediated by amino- and C-terminal arms that bind to the adjacent monomers. Based on these findings, we suggest a model for the oligomeric ribonucleoprotein (RNP complex. Our structure provides mechanistic insights into RNA encapsidation in the genus Hantavirus and constitutes a template for drug discovery efforts aimed at combating hantavirus infections.

  9. Whole Genome Sequencing of Mycobacterium africanum Strains from Mali Provides Insights into the Mechanisms of Geographic Restriction.

    Science.gov (United States)

    Winglee, Kathryn; Manson McGuire, Abigail; Maiga, Mamoudou; Abeel, Thomas; Shea, Terrance; Desjardins, Christopher A; Diarra, Bassirou; Baya, Bocar; Sanogo, Moumine; Diallo, Souleymane; Earl, Ashlee M; Bishai, William R

    2016-01-01

    Mycobacterium africanum, made up of lineages 5 and 6 within the Mycobacterium tuberculosis complex (MTC), causes up to half of all tuberculosis cases in West Africa, but is rarely found outside of this region. The reasons for this geographical restriction remain unknown. Possible reasons include a geographically restricted animal reservoir, a unique preference for hosts of West African ethnicity, and an inability to compete with other lineages outside of West Africa. These latter two hypotheses could be caused by loss of fitness or altered interactions with the host immune system. We sequenced 92 MTC clinical isolates from Mali, including two lineage 5 and 24 lineage 6 strains. Our genome sequencing assembly, alignment, phylogeny and average nucleotide identity analyses enabled us to identify features that typify lineages 5 and 6 and made clear that these lineages do not constitute a distinct species within the MTC. We found that in Mali, lineage 6 and lineage 4 strains have similar levels of diversity and evolve drug resistance through similar mechanisms. In the process, we identified a putative novel streptomycin resistance mutation. In addition, we found evidence of person-to-person transmission of lineage 6 isolates and showed that lineage 6 is not enriched for mutations in virulence-associated genes. This is the largest collection of lineage 5 and 6 whole genome sequences to date, and our assembly and alignment data provide valuable insights into what distinguishes these lineages from other MTC lineages. Lineages 5 and 6 do not appear to be geographically restricted due to an inability to transmit between West African hosts or to an elevated number of mutations in virulence-associated genes. However, lineage-specific mutations, such as mutations in cell wall structure, secretion systems and cofactor biosynthesis, provide alternative mechanisms that may lead to host specificity.

  10. Molecular-level Insight into the Spectral Tuning Mechanism of the DsRed Chromophore

    DEFF Research Database (Denmark)

    List, Nanna Holmgaard; Olsen, Jógvan Magnus Haugaard; Jensen, Hans Jørgen Aagaard

    2012-01-01

    the protein. Our results indicate that this mainly is attributable to counter-directional contributions stemming from Lys163 and the conserved Arg95 with the former additionally identified as a key residue in the color tuning mechanism. The results provide new insights into the tuning mechanism of Ds...

  11. Metatranscriptome Analysis of Fig Flowers Provides Insights into Potential Mechanisms for Mutualism Stability and Gall Induction.

    Directory of Open Access Journals (Sweden)

    Ellen O Martinson

    Full Text Available A striking property of the mutualism between figs and their pollinating wasps is that wasps consistently oviposit in the inner flowers of the fig syconium, which develop into galls that house developing larvae. Wasps typically do not use the outer ring of flowers, which develop into seeds. To better understand differences between gall and seed flowers, we used a metatranscriptomic approach to analyze eukaryotic gene expression within fig flowers at the time of oviposition choice and early gall development. Consistent with the unbeatable seed hypothesis, we found significant differences in gene expression between gall- and seed flowers in receptive syconia prior to oviposition. In particular, transcripts assigned to flavonoids and carbohydrate metabolism were significantly up-regulated in gall flowers relative to seed flowers. In response to oviposition, gall flowers significantly up-regulated the expression of chalcone synthase, which previously has been connected to gall formation in other plants. We propose several genes encoding proteins with signal peptides or associations with venom of other Hymenoptera as candidate genes for gall initiation or growth. This study simultaneously evaluates the gene expression profile of both mutualistic partners in a plant-insect mutualism and provides insight into a possible stability mechanism in the ancient fig-fig wasp association.

  12. Insights into the Mechanisms of Chloroplast Division

    Directory of Open Access Journals (Sweden)

    Yamato Yoshida

    2018-03-01

    Full Text Available The endosymbiosis of a free-living cyanobacterium into an ancestral eukaryote led to the evolution of the chloroplast (plastid more than one billion years ago. Given their independent origins, plastid proliferation is restricted to the binary fission of pre-existing plastids within a cell. In the last 25 years, the structure of the supramolecular machinery regulating plastid division has been discovered, and some of its component proteins identified. More recently, isolated plastid-division machineries have been examined to elucidate their structural and mechanistic details. Furthermore, complex studies have revealed how the plastid-division machinery morphologically transforms during plastid division, and which of its component proteins play a critical role in generating the contractile force. Identifying the three-dimensional structures and putative functional domains of the component proteins has given us hints about the mechanisms driving the machinery. Surprisingly, the mechanisms driving plastid division resemble those of mitochondrial division, indicating that these division machineries likely developed from the same evolutionary origin, providing a key insight into how endosymbiotic organelles were established. These findings have opened new avenues of research into organelle proliferation mechanisms and the evolution of organelles.

  13. CRISPR-Cas adaptation: insights into the mechanism of action.

    Science.gov (United States)

    Amitai, Gil; Sorek, Rotem

    2016-02-01

    Since the first demonstration that CRISPR-Cas systems provide bacteria and archaea with adaptive immunity against phages and plasmids, numerous studies have yielded key insights into the molecular mechanisms governing how these systems attack and degrade foreign DNA. However, the molecular mechanisms underlying the adaptation stage, in which new immunological memory is formed, have until recently represented a major unresolved question. In this Progress article, we discuss recent discoveries that have shown both how foreign DNA is identified by the CRISPR-Cas adaptation machinery and the molecular basis for its integration into the chromosome to form an immunological memory. Furthermore, we describe the roles of each of the specific CRISPR-Cas components that are involved in memory formation, and consider current models for their evolutionary origin.

  14. Insights into the catalytic mechanism of dehydrogenase BphB: A quantum mechanics/molecular mechanics study.

    Science.gov (United States)

    Zhang, Ruiming; Shi, Xiangli; Sun, Yanhui; Zhang, Qingzhu; Wang, Wenxing

    2018-05-17

    The present study delineated the dehydrogenation mechanism of cis-2,3-dihydro-2,3-dihydroxybiphenyl (2,3-DDBPH) and cis-2,3-dihydro-2,3-dihydroxy-4,4'-dichlorobiphenyl (2,3-DD-4,4'-DBPH) by Pandoraea pnomenusa strain B-356 cis-2,3-dihydro-2,3-dihydroxybiphenyl dehydrogenase (BphB) in atomistic detail. The enzymatic process was investigated by a combined quantum mechanics/molecular mechanics (QM/MM) approach. Five different snapshots were extracted and calculated, which revealed that the Boltzmann-weighted average barriers of 2,3-DDBPH and 2,3-DD-4,4'-DBPH dehydrogenation processes are 10.7 and 11.5 kcal mol -1 , respectively. The established dehydrogenation mechanism provides new insight into the degradation processes of other chlorinated 2,3-DDBPH. In addition to Asn115, Ser142, and Lys149, the importance of Ile 89, Asn143, Pro184, Met 187, Thr189, and Lue 191 during the dehydrogenation process of 2,3-DDBPH and 2,3-DD-4,4'-DBPH were also highlighted to search for promising mutation targets for improving the catalytic efficiency of BphB. Copyright © 2018. Published by Elsevier Ltd.

  15. Vitiligo blood transcriptomics provides new insights into disease mechanisms and identifies potential novel therapeutic targets.

    Science.gov (United States)

    Dey-Rao, Rama; Sinha, Animesh A

    2017-01-28

    Significant gaps remain regarding the pathomechanisms underlying the autoimmune response in vitiligo (VL), where the loss of self-tolerance leads to the targeted killing of melanocytes. Specifically, there is incomplete information regarding alterations in the systemic environment that are relevant to the disease state. We undertook a genome-wide profiling approach to examine gene expression in the peripheral blood of VL patients and healthy controls in the context of our previously published VL-skin gene expression profile. We used several in silico bioinformatics-based analyses to provide new insights into disease mechanisms and suggest novel targets for future therapy. Unsupervised clustering methods of the VL-blood dataset demonstrate a "disease-state"-specific set of co-expressed genes. Ontology enrichment analysis of 99 differentially expressed genes (DEGs) uncovers a down-regulated immune/inflammatory response, B-Cell antigen receptor (BCR) pathways, apoptosis and catabolic processes in VL-blood. There is evidence for both type I and II interferon (IFN) playing a role in VL pathogenesis. We used interactome analysis to identify several key blood associated transcriptional factors (TFs) from within (STAT1, STAT6 and NF-kB), as well as "hidden" (CREB1, MYC, IRF4, IRF1, and TP53) from the dataset that potentially affect disease pathogenesis. The TFs overlap with our reported lesional-skin transcriptional circuitry, underscoring their potential importance to the disease. We also identify a shared VL-blood and -skin transcriptional "hot spot" that maps to chromosome 6, and includes three VL-blood dysregulated genes (PSMB8, PSMB9 and TAP1) described as potential VL-associated genetic susceptibility loci. Finally, we provide bioinformatics-based support for prioritizing dysregulated genes in VL-blood or skin as potential therapeutic targets. We examined the VL-blood transcriptome in context with our (previously published) VL-skin transcriptional profile to address

  16. Variations upon a theme: Australian lizards provide insights into the endocrine control of vertebrate reproductive cycles.

    Science.gov (United States)

    Jones, Susan M

    2017-04-01

    Australian lizards exhibit a broad array of different reproductive strategies and provide an extraordinary diversity and range of models with which to address fundamental problems in reproductive biology. Studies on lizards have frequently led to new insights into hormonal regulatory pathways or mechanisms of control, but we have detailed knowledge of the reproductive cycle in only a small percentage of known species. This review provides an overview and synthesis of current knowledge of the hormonal control of reproductive cycles in Australian lizards. Agamid lizards have provided useful models with which to test hypotheses about the hormonal regulation of the expression of reproductive behaviors, while research on viviparous skinks is providing insights into the evolution of the endocrine control of gestation. However, in order to better understand the potential risks that environmental factors such as climate change and endocrine disrupting chemicals pose to our fauna, better knowledge is required of the fundamental characteristics of the reproductive cycle in a broader range of lizard species. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Insights into Mechanisms of Chronic Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Abigail B. Diack

    2016-01-01

    Full Text Available Chronic neurodegenerative diseases such as Alzheimer’s disease (AD, Parkinson’s disease (PD, and prion diseases are characterised by the accumulation of abnormal conformers of a host encoded protein in the central nervous system. The process leading to neurodegeneration is still poorly defined and thus development of early intervention strategies is challenging. Unique amongst these diseases are Transmissible Spongiform Encephalopathies (TSEs or prion diseases, which have the ability to transmit between individuals. The infectious nature of these diseases has permitted in vivo and in vitro modelling of the time course of the disease process in a highly reproducible manner, thus early events can be defined. Recent evidence has demonstrated that the cell-to-cell spread of protein aggregates by a “prion-like mechanism” is common among the protein misfolding diseases. Thus, the TSE models may provide insights into disease mechanisms and testable hypotheses for disease intervention, applicable to a number of these chronic neurodegenerative diseases.

  18. Statistical mechanics provides novel insights into microtubule stability and mechanism of shrinkage.

    Directory of Open Access Journals (Sweden)

    Ishutesh Jain

    2015-02-01

    Full Text Available Microtubules are nano-machines that grow and shrink stochastically, making use of the coupling between chemical kinetics and mechanics of its constituent protofilaments (PFs. We investigate the stability and shrinkage of microtubules taking into account inter-protofilament interactions and bending interactions of intrinsically curved PFs. Computing the free energy as a function of PF tip position, we show that the competition between curvature energy, inter-PF interaction energy and entropy leads to a rich landscape with a series of minima that repeat over a length-scale determined by the intrinsic curvature. Computing Langevin dynamics of the tip through the landscape and accounting for depolymerization, we calculate the average unzippering and shrinkage velocities of GDP protofilaments and compare them with the experimentally known results. Our analysis predicts that the strength of the inter-PF interaction (E(s(m has to be comparable to the strength of the curvature energy (E(b(m such that E(s(m - E(b(m ≈ 1kBT, and questions the prevalent notion that unzippering results from the domination of bending energy of curved GDP PFs. Our work demonstrates how the shape of the free energy landscape is crucial in explaining the mechanism of MT shrinkage where the unzippered PFs will fluctuate in a set of partially peeled off states and subunit dissociation will reduce the length.

  19. The complex jujube genome provides insights into fruit tree biology.

    Science.gov (United States)

    Liu, Meng-Jun; Zhao, Jin; Cai, Qing-Le; Liu, Guo-Cheng; Wang, Jiu-Rui; Zhao, Zhi-Hui; Liu, Ping; Dai, Li; Yan, Guijun; Wang, Wen-Jiang; Li, Xian-Song; Chen, Yan; Sun, Yu-Dong; Liu, Zhi-Guo; Lin, Min-Juan; Xiao, Jing; Chen, Ying-Ying; Li, Xiao-Feng; Wu, Bin; Ma, Yong; Jian, Jian-Bo; Yang, Wei; Yuan, Zan; Sun, Xue-Chao; Wei, Yan-Li; Yu, Li-Li; Zhang, Chi; Liao, Sheng-Guang; He, Rong-Jun; Guang, Xuan-Min; Wang, Zhuo; Zhang, Yue-Yang; Luo, Long-Hai

    2014-10-28

    The jujube (Ziziphus jujuba Mill.), a member of family Rhamnaceae, is a major dry fruit and a traditional herbal medicine for more than one billion people. Here we present a high-quality sequence for the complex jujube genome, the first genome sequence of Rhamnaceae, using an integrated strategy. The final assembly spans 437.65 Mb (98.6% of the estimated) with 321.45 Mb anchored to the 12 pseudo-chromosomes and contains 32,808 genes. The jujube genome has undergone frequent inter-chromosome fusions and segmental duplications, but no recent whole-genome duplication. Further analyses of the jujube-specific genes and transcriptome data from 15 tissues reveal the molecular mechanisms underlying some specific properties of the jujube. Its high vitamin C content can be attributed to a unique high level expression of genes involved in both biosynthesis and regeneration. Our study provides insights into jujube-specific biology and valuable genomic resources for the improvement of Rhamnaceae plants and other fruit trees.

  20. Transcriptome Analysis of Manganese-deficient Chlamydomonas reinhardtii Provides Insight on the Chlorophyll Biosynthesis Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Lockhart, Ainsley; Zvenigorodsky, Natasha; Pedraza, Mary Ann; Lindquist, Erika

    2011-08-11

    The biosynthesis of chlorophyll and other tetrapyrroles is a vital but poorly understood process. Recent genomic advances with the unicellular green algae Chlamydomonas reinhardtii have created opportunity to more closely examine the mechanisms of the chlorophyll biosynthesis pathway via transcriptome analysis. Manganese is a nutrient of interest for complex reactions because of its multiple stable oxidation states and role in molecular oxygen coordination. C. reinhardtii was cultured in Manganese-deplete Tris-acetate-phosphate (TAP) media for 24 hours and used to create cDNA libraries for sequencing using Illumina TruSeq technology. Transcriptome analysis provided intriguing insight on possible regulatory mechanisms in the pathway. Evidence supports similarities of GTR (Glutamyl-tRNA synthase) to its Chlorella vulgaris homolog in terms of Mn requirements. Data was also suggestive of Mn-related compensatory up-regulation for pathway proteins CHLH1 (Manganese Chelatase), GUN4 (Magnesium chelatase activating protein), and POR1 (Light-dependent protochlorophyllide reductase). Intriguingly, data suggests possible reciprocal expression of oxygen dependent CPX1 (coproporphyrinogen III oxidase) and oxygen independent CPX2. Further analysis using RT-PCR could provide compelling evidence for several novel regulatory mechanisms in the chlorophyll biosynthesis pathway.

  1. New insights into the mechanisms of the ketogenic diet.

    Science.gov (United States)

    Boison, Detlev

    2017-04-01

    High-fat, low-carbohydrate ketogenic diets have been used for almost a century for the treatment of epilepsy. Used traditionally for the treatment of refractory pediatric epilepsies, in recent years the use of ketogenic diets has experienced a revival to include the treatment of adulthood epilepsies as well as conditions ranging from autism to chronic pain and cancer. Despite the ability of ketogenic diet therapy to suppress seizures refractory to antiepileptic drugs and reports of lasting seizure freedom, the underlying mechanisms are poorly understood. This review explores new insights into mechanisms mobilized by ketogenic diet therapies. Ketogenic diets act through a combination of mechanisms, which are linked to the effects of ketones and glucose restriction, and to interactions with receptors, channels, and metabolic enzymes. Decanoic acid, a component of medium-chain triclycerides, contributes to seizure control through direct α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor inhibition, whereas drugs targeting lactate dehydrogenase reduce seizures through inhibition of a metabolic pathway. Ketogenic diet therapy also affects DNA methylation, a novel epigenetic mechanism of the diet. Ketogenic diet therapy combines several beneficial mechanisms that provide broad benefits for the treatment of epilepsy with the potential to not only suppress seizures but also to modify the course of the epilepsy.

  2. Structure of sulfamidase provides insight into the molecular pathology of mucopolysaccharidosis IIIA

    International Nuclear Information System (INIS)

    Sidhu, Navdeep S.; Schreiber, Kathrin; Pröpper, Kevin; Becker, Stefan; Usón, Isabel; Sheldrick, George M.; Gärtner, Jutta; Krätzner, Ralph; Steinfeld, Robert

    2014-01-01

    Mucopolysaccharidosis IIIA is a fatal neurodegenerative disease that typically manifests itself in childhood and is caused by mutations in the gene for the lysosomal enzyme sulfamidase. The first structure of this enzyme is presented, which provides insight into the molecular basis of disease-causing mutations, and the enzymatic mechanism is proposed. Mucopolysaccharidosis type IIIA (Sanfilippo A syndrome), a fatal childhood-onset neurodegenerative disease with mild facial, visceral and skeletal abnormalities, is caused by an inherited deficiency of the enzyme N-sulfoglucosamine sulfohydrolase (SGSH; sulfamidase). More than 100 mutations in the SGSH gene have been found to reduce or eliminate its enzymatic activity. However, the molecular understanding of the effect of these mutations has been confined by a lack of structural data for this enzyme. Here, the crystal structure of glycosylated SGSH is presented at 2 Å resolution. Despite the low sequence identity between this unique N-sulfatase and the group of O-sulfatases, they share a similar overall fold and active-site architecture, including a catalytic formylglycine, a divalent metal-binding site and a sulfate-binding site. However, a highly conserved lysine in O-sulfatases is replaced in SGSH by an arginine (Arg282) that is positioned to bind the N-linked sulfate substrate. The structure also provides insight into the diverse effects of pathogenic mutations on SGSH function in mucopolysaccharidosis type IIIA and convincing evidence for the molecular consequences of many missense mutations. Further, the molecular characterization of SGSH mutations will lay the groundwork for the development of structure-based drug design for this devastating neurodegenerative disorder

  3. Structure of sulfamidase provides insight into the molecular pathology of mucopolysaccharidosis IIIA

    Energy Technology Data Exchange (ETDEWEB)

    Sidhu, Navdeep S. [University of Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen (Germany); University of Göttingen, Tammannstrasse 4, 37077 Göttingen (Germany); Schreiber, Kathrin [University of Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen (Germany); Pröpper, Kevin [University of Göttingen, Tammannstrasse 4, 37077 Göttingen (Germany); Becker, Stefan [Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen (Germany); Usón, Isabel [Instituto de Biologia Molecular de Barcelona (IBMB–CSIC), Barcelona Science Park, Baldiri Reixach 15, 08028 Barcelona (Spain); Institucio Catalana de Recerca i Estudis Avancats (ICREA), (Spain); Sheldrick, George M. [University of Göttingen, Tammannstrasse 4, 37077 Göttingen (Germany); Gärtner, Jutta; Krätzner, Ralph, E-mail: rkraetz@gwdg.de; Steinfeld, Robert, E-mail: rkraetz@gwdg.de [University of Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen (Germany)

    2014-05-01

    Mucopolysaccharidosis IIIA is a fatal neurodegenerative disease that typically manifests itself in childhood and is caused by mutations in the gene for the lysosomal enzyme sulfamidase. The first structure of this enzyme is presented, which provides insight into the molecular basis of disease-causing mutations, and the enzymatic mechanism is proposed. Mucopolysaccharidosis type IIIA (Sanfilippo A syndrome), a fatal childhood-onset neurodegenerative disease with mild facial, visceral and skeletal abnormalities, is caused by an inherited deficiency of the enzyme N-sulfoglucosamine sulfohydrolase (SGSH; sulfamidase). More than 100 mutations in the SGSH gene have been found to reduce or eliminate its enzymatic activity. However, the molecular understanding of the effect of these mutations has been confined by a lack of structural data for this enzyme. Here, the crystal structure of glycosylated SGSH is presented at 2 Å resolution. Despite the low sequence identity between this unique N-sulfatase and the group of O-sulfatases, they share a similar overall fold and active-site architecture, including a catalytic formylglycine, a divalent metal-binding site and a sulfate-binding site. However, a highly conserved lysine in O-sulfatases is replaced in SGSH by an arginine (Arg282) that is positioned to bind the N-linked sulfate substrate. The structure also provides insight into the diverse effects of pathogenic mutations on SGSH function in mucopolysaccharidosis type IIIA and convincing evidence for the molecular consequences of many missense mutations. Further, the molecular characterization of SGSH mutations will lay the groundwork for the development of structure-based drug design for this devastating neurodegenerative disorder.

  4. Flow-mediated dilation: can new approaches provide greater mechanistic insight into vascular dysfunction in preeclampsia and other diseases?

    Science.gov (United States)

    Weissgerber, Tracey L

    2014-11-01

    Endothelial dysfunction is a key feature of preeclampsia and may contribute to increased cardiovascular disease risk years after pregnancy. Flow-mediated dilation (FMD) is a non-invasive endothelial function test that predicts cardiovascular event risk. New protocols allow researchers to measure three components of the FMD response: FMD, low flow-mediated constriction, and shear stimulus. This review encourages researchers to think beyond "low FMD" by examining how these three components may provide additional insights into the mechanisms and location of vascular dysfunction. The review then examines what FMD studies reveal about vascular dysfunction in preeclampsia while highlighting opportunities to gain greater mechanistic insight from new protocols. Studies using traditional protocols show that FMD is low in mid-pregnancy prior to preeclampsia, at diagnosis, and for 3 years post-partum. However, FMD returns to normal by 10 years post-partum. Studies using new protocols are needed to gain more mechanistic insight.

  5. Human acid sphingomyelinase structures provide insight to molecular basis of Niemann–Pick disease

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yan-Feng; Metcalf, Matthew C.; Garman, Scott C.; Edmunds, Tim; Qiu, Huawei; Wei, Ronnie R. (Sanofi Aventis); (UMASS, Amherst)

    2016-10-26

    Acid sphingomyelinase (ASM) hydrolyzes sphingomyelin to ceramide and phosphocholine, essential components of myelin in neurons. Genetic alterations in ASM lead to ASM deficiency (ASMD) and have been linked to Niemann–Pick disease types A and B. Olipudase alfa, a recombinant form of human ASM, is being developed as enzyme replacement therapy to treat the non-neurological manifestations of ASMD. Here we present the human ASM holoenzyme and product bound structures encompassing all of the functional domains. The catalytic domain has a metallophosphatase fold, and two zinc ions and one reaction product phosphocholine are identified in a histidine-rich active site. The structures reveal the underlying catalytic mechanism, in which two zinc ions activate a water molecule for nucleophilic attack of the phosphodiester bond. Docking of sphingomyelin provides a model that allows insight into the selectivity of the enzyme and how the ASM domains collaborate to complete hydrolysis. Mapping of known mutations provides a basic understanding on correlations between enzyme dysfunction and phenotypes observed in ASMD patients.

  6. iTRAQ and RNA-Seq Analyses Provide New Insights into Regulation Mechanism of Symbiotic Germination of Dendrobium officinale Seeds (Orchidaceae).

    Science.gov (United States)

    Chen, Juan; Liu, Si Si; Kohler, Annegret; Yan, Bo; Luo, Hong Mei; Chen, Xiao Mei; Guo, Shun Xing

    2017-06-02

    Mycorrhizal fungi colonize orchid seeds and induce germination. This so-called symbiotic germination is a critical developmental process in the lifecycle of all orchid species. However, the molecular changes that occur during orchid seed symbiotic germination remain largely unknown. To better understand the molecular mechanism of orchid seed germination, we performed a comparative transcriptomic and proteomic analysis of the Chinese traditional medicinal orchid Dendrobium officinale to explore the change in protein expression at the different developmental stages during asymbiotic and symbiotic germination and identify the key proteins that regulate the symbiotic germination of orchid seeds. Among 2256 identified plant proteins, 308 were differentially expressed across three developmental stages during asymbiotic and symbiotic germination, and 229 were differentially expressed during symbiotic germination compared to asymbiotic development. Of these, 32 proteins were coup-regulated at both the proteomic and transcriptomic levels during symbiotic germination compared to asymbiotic germination. Our results suggest that symbiotic germination of D. officinale seeds shares a common signaling pathway with asymbiotic germination during the early germination stage. However, compared to asymbiotic germination, fungal colonization of orchid seeds appears to induce higher and earlier expression of some key proteins involved in lipid and carbohydrate metabolism and thus improves the efficiency of utilization of stored substances present in the embryo. This study provides new insight into the molecular basis of orchid seed germination.

  7. Insight into electronic mechanisms of nanosecond-laser ablation of silicon

    International Nuclear Information System (INIS)

    Marine, Wladimir; Patrone, Lionel; Ozerov, Igor; Bulgakova, Nadezhda M.

    2008-01-01

    We present experimental and theoretical studies of nanosecond ArF excimer laser desorption and ablation of silicon with insight into material removal mechanisms. The experimental studies involve a comprehensive analysis of the laser-induced plume dynamics and measurements of the charge gained by the target during irradiation time. At low laser fluences, well below the melting threshold, high-energy ions with a narrow energy distribution are observed. When the fluence is increased, a thermal component of the plume is formed superimposing on the nonthermal ions, which are still abundant. The origin of these ions is discussed on the basis of two modeling approaches, thermal and electronic, and we analyze the dynamics of silicon target excitation, heating, melting, and ablation. An electronic model is developed that provides insight into the charge-carrier transport in the target. We demonstrate that, contrary to a commonly accepted opinion, a complete thermalization between the electron and lattice subsystems is not reached during the nanosecond-laser pulse action. Moreover, the charging effects can retard the melting process and have an effect on the overall target behavior and laser-induced plume dynamics

  8. Chromosome-level genome map provides insights into diverse defense mechanisms in the medicinal fungus Ganoderma sinense

    Science.gov (United States)

    Zhu, Yingjie; Xu, Jiang; Sun, Chao; Zhou, Shiguo; Xu, Haibin; Nelson, David R.; Qian, Jun; Song, Jingyuan; Luo, Hongmei; Xiang, Li; Li, Ying; Xu, Zhichao; Ji, Aijia; Wang, Lizhi; Lu, Shanfa; Hayward, Alice; Sun, Wei; Li, Xiwen; Schwartz, David C.; Wang, Yitao; Chen, Shilin

    2015-01-01

    Fungi have evolved powerful genomic and chemical defense systems to protect themselves against genetic destabilization and other organisms. However, the precise molecular basis involved in fungal defense remain largely unknown in Basidiomycetes. Here the complete genome sequence, as well as DNA methylation patterns and small RNA transcriptomes, was analyzed to provide a holistic overview of secondary metabolism and defense processes in the model medicinal fungus, Ganoderma sinense. We reported the 48.96 Mb genome sequence of G. sinense, consisting of 12 chromosomes and encoding 15,688 genes. More than thirty gene clusters involved in the biosynthesis of secondary metabolites, as well as a large array of genes responsible for their transport and regulation were highlighted. In addition, components of genome defense mechanisms, namely repeat-induced point mutation (RIP), DNA methylation and small RNA-mediated gene silencing, were revealed in G. sinense. Systematic bioinformatic investigation of the genome and methylome suggested that RIP and DNA methylation combinatorially maintain G. sinense genome stability by inactivating invasive genetic material and transposable elements. The elucidation of the G. sinense genome and epigenome provides an unparalleled opportunity to advance our understanding of secondary metabolism and fungal defense mechanisms. PMID:26046933

  9. A proteomic approach provides new insights into the control of soil-borne plant pathogens by Bacillus species.

    Directory of Open Access Journals (Sweden)

    Omür Baysal

    Full Text Available Beneficial microorganisms (also known as biopesticides are considered to be one of the most promising methods for more rational and safe crop management practices. We used Bacillus strains EU07, QST713 and FZB24, and investigated their inhibitory effect on Fusarium. Bacterial cell cultures, cell-free supernatants and volatiles displayed varying degrees of suppressive effect. Proteomic analysis of secreted proteins from EU07 and FZB24 revealed the presence of lytic enzymes, cellulases, proteases, 1,4-β-glucanase and hydrolases, all of which contribute to degradation of the pathogen cell wall. Further proteomic investigations showed that proteins involved in metabolism, protein folding, protein degradation, translation, recognition and signal transduction cascade play an important role in the control of Fusarium oxysporum. Our findings provide new knowledge on the mechanism of action of Bacillus species and insight into biocontrol mechanisms.

  10. Kinetic and Structural Insights into the Mechanism of AMPylation by VopS Fic Domain*

    Science.gov (United States)

    Luong, Phi; Kinch, Lisa N.; Brautigam, Chad A.; Grishin, Nick V.; Tomchick, Diana R.; Orth, Kim

    2010-01-01

    The bacterial pathogen Vibrio parahemeolyticus manipulates host signaling pathways during infections by injecting type III effectors into the cytoplasm of the target cell. One of these effectors, VopS, blocks actin assembly by AMPylation of a conserved threonine residue in the switch 1 region of Rho GTPases. The modified GTPases are no longer able to interact with downstream effectors due to steric hindrance by the covalently linked AMP moiety. Herein we analyze the structure of VopS and its evolutionarily conserved catalytic residues. Steady-state analysis of VopS mutants provides kinetic understanding on the functional role of each residue for AMPylation activity by the Fic domain. Further mechanistic analysis of VopS with its two substrates, ATP and Cdc42, demonstrates that VopS utilizes a sequential mechanism to AMPylate Rho GTPases. Discovery of a ternary reaction mechanism along with structural insight provides critical groundwork for future studies for the family of AMPylators that modify hydroxyl-containing residues with AMP. PMID:20410310

  11. Kinetic and Structural Insights into the Mechanism of AMPylation by VopS Fic Domain

    Energy Technology Data Exchange (ETDEWEB)

    Luong, Phi; Kinch, Lisa N.; Brautigam, Chad A.; Grishin, Nick V.; Tomchick, Diana R.; Orth, Kim (UTSMC)

    2010-07-19

    The bacterial pathogen Vibrio parahemeolyticus manipulates host signaling pathways during infections by injecting type III effectors into the cytoplasm of the target cell. One of these effectors, VopS, blocks actin assembly by AMPylation of a conserved threonine residue in the switch 1 region of Rho GTPases. The modified GTPases are no longer able to interact with downstream effectors due to steric hindrance by the covalently linked AMP moiety. Herein we analyze the structure of VopS and its evolutionarily conserved catalytic residues. Steady-state analysis of VopS mutants provides kinetic understanding on the functional role of each residue for AMPylation activity by the Fic domain. Further mechanistic analysis of VopS with its two substrates, ATP and Cdc42, demonstrates that VopS utilizes a sequential mechanism to AMPylate Rho GTPases. Discovery of a ternary reaction mechanism along with structural insight provides critical groundwork for future studies for the family of AMPylators that modify hydroxyl-containing residues with AMP.

  12. The sea cucumber genome provides insights into morphological evolution and visceral regeneration.

    Science.gov (United States)

    Zhang, Xiaojun; Sun, Lina; Yuan, Jianbo; Sun, Yamin; Gao, Yi; Zhang, Libin; Li, Shihao; Dai, Hui; Hamel, Jean-François; Liu, Chengzhang; Yu, Yang; Liu, Shilin; Lin, Wenchao; Guo, Kaimin; Jin, Songjun; Xu, Peng; Storey, Kenneth B; Huan, Pin; Zhang, Tao; Zhou, Yi; Zhang, Jiquan; Lin, Chenggang; Li, Xiaoni; Xing, Lili; Huo, Da; Sun, Mingzhe; Wang, Lei; Mercier, Annie; Li, Fuhua; Yang, Hongsheng; Xiang, Jianhai

    2017-10-01

    Apart from sharing common ancestry with chordates, sea cucumbers exhibit a unique morphology and exceptional regenerative capacity. Here we present the complete genome sequence of an economically important sea cucumber, A. japonicus, generated using Illumina and PacBio platforms, to achieve an assembly of approximately 805 Mb (contig N50 of 190 Kb and scaffold N50 of 486 Kb), with 30,350 protein-coding genes and high continuity. We used this resource to explore key genetic mechanisms behind the unique biological characters of sea cucumbers. Phylogenetic and comparative genomic analyses revealed the presence of marker genes associated with notochord and gill slits, suggesting that these chordate features were present in ancestral echinoderms. The unique shape and weak mineralization of the sea cucumber adult body were also preliminarily explained by the contraction of biomineralization genes. Genome, transcriptome, and proteome analyses of organ regrowth after induced evisceration provided insight into the molecular underpinnings of visceral regeneration, including a specific tandem-duplicated prostatic secretory protein of 94 amino acids (PSP94)-like gene family and a significantly expanded fibrinogen-related protein (FREP) gene family. This high-quality genome resource will provide a useful framework for future research into biological processes and evolution in deuterostomes, including remarkable regenerative abilities that could have medical applications. Moreover, the multiomics data will be of prime value for commercial sea cucumber breeding programs.

  13. The sea cucumber genome provides insights into morphological evolution and visceral regeneration.

    Directory of Open Access Journals (Sweden)

    Xiaojun Zhang

    2017-10-01

    Full Text Available Apart from sharing common ancestry with chordates, sea cucumbers exhibit a unique morphology and exceptional regenerative capacity. Here we present the complete genome sequence of an economically important sea cucumber, A. japonicus, generated using Illumina and PacBio platforms, to achieve an assembly of approximately 805 Mb (contig N50 of 190 Kb and scaffold N50 of 486 Kb, with 30,350 protein-coding genes and high continuity. We used this resource to explore key genetic mechanisms behind the unique biological characters of sea cucumbers. Phylogenetic and comparative genomic analyses revealed the presence of marker genes associated with notochord and gill slits, suggesting that these chordate features were present in ancestral echinoderms. The unique shape and weak mineralization of the sea cucumber adult body were also preliminarily explained by the contraction of biomineralization genes. Genome, transcriptome, and proteome analyses of organ regrowth after induced evisceration provided insight into the molecular underpinnings of visceral regeneration, including a specific tandem-duplicated prostatic secretory protein of 94 amino acids (PSP94-like gene family and a significantly expanded fibrinogen-related protein (FREP gene family. This high-quality genome resource will provide a useful framework for future research into biological processes and evolution in deuterostomes, including remarkable regenerative abilities that could have medical applications. Moreover, the multiomics data will be of prime value for commercial sea cucumber breeding programs.

  14. Dynamic transcriptional profiling provides insights into tuberous root development in Rehmannia glutinosa

    Directory of Open Access Journals (Sweden)

    Peng eSun

    2015-06-01

    Full Text Available Rehmannia glutinosa, a herb of the Scrophulariaceae family, is widely cultivated in the Northern part of China. The tuberous root has well known medicinal properties; however, yield and quality are threatened by abiotic and biotic stresses. Understanding the molecular process of tuberous root development may help identify novel targets for its control. In the present study, we used Illumina sequencing and de novo assembly strategies to obtain a reference transcriptome that is relevant to tuberous root development. We then conducted RNA-seq quantification analysis to determine gene expression profiles of the adventitious root (AR, thickening adventitious root (TAR, and the developing tuberous root (DTR. Expression profiling identified a total of 6,974 differentially expressed unigenes during root developmental. Bioinformatics analysis and gene expression profiling revealed changes in phenylpropanoid biosynthesis, starch and sucrose metabolism, and plant hormone biosynthesis during root development. Moreover, we identified and allocated putative functions to the genes involved in tuberous root development, including genes related to major carbohydrate metabolism, hormone metabolism, and transcription regulation. The present study provides the initial description of gene expression profiles of AR, TAR, and DTR, which facilitates identification of genes of interest. Moreover, our work provides insights into the molecular mechanisms underlying tuberous root development and may assist in the design and development of improved breeding schemes for different R. glutinosa varieties through genetic manipulation.

  15. Structural insights into the molecular mechanisms of myasthenia gravis and their therapeutic implications

    Energy Technology Data Exchange (ETDEWEB)

    Noridomi, Kaori; Watanabe, Go; Hansen, Melissa N.; Han, Gye Won; Chen, Lin (USC)

    2017-04-25

    The nicotinic acetylcholine receptor (nAChR) is a major target of autoantibodies in myasthenia gravis (MG), an autoimmune disease that causes neuromuscular transmission dysfunction. Despite decades of research, the molecular mechanisms underlying MG have not been fully elucidated. Here, we present the crystal structure of the nAChR α1 subunit bound by the Fab fragment of mAb35, a reference monoclonal antibody that causes experimental MG and competes with ~65% of antibodies from MG patients. Our structures reveal for the first time the detailed molecular interactions between MG antibodies and a core region on nAChR α1. These structures suggest a major nAChR-binding mechanism shared by a large number of MG antibodies and the possibility to treat MG by blocking this binding mechanism. Structure-based modeling also provides insights into antibody-mediated nAChR cross-linking known to cause receptor degradation. Our studies establish a structural basis for further mechanistic studies and therapeutic development of MG.

  16. Modeling fMRI signals can provide insights into neural processing in the cerebral cortex.

    Science.gov (United States)

    Vanni, Simo; Sharifian, Fariba; Heikkinen, Hanna; Vigário, Ricardo

    2015-08-01

    Every stimulus or task activates multiple areas in the mammalian cortex. These distributed activations can be measured with functional magnetic resonance imaging (fMRI), which has the best spatial resolution among the noninvasive brain imaging methods. Unfortunately, the relationship between the fMRI activations and distributed cortical processing has remained unclear, both because the coupling between neural and fMRI activations has remained poorly understood and because fMRI voxels are too large to directly sense the local neural events. To get an idea of the local processing given the macroscopic data, we need models to simulate the neural activity and to provide output that can be compared with fMRI data. Such models can describe neural mechanisms as mathematical functions between input and output in a specific system, with little correspondence to physiological mechanisms. Alternatively, models can be biomimetic, including biological details with straightforward correspondence to experimental data. After careful balancing between complexity, computational efficiency, and realism, a biomimetic simulation should be able to provide insight into how biological structures or functions contribute to actual data processing as well as to promote theory-driven neuroscience experiments. This review analyzes the requirements for validating system-level computational models with fMRI. In particular, we study mesoscopic biomimetic models, which include a limited set of details from real-life networks and enable system-level simulations of neural mass action. In addition, we discuss how recent developments in neurophysiology and biophysics may significantly advance the modelling of fMRI signals. Copyright © 2015 the American Physiological Society.

  17. A mathematical model for carbon dioxide elimination: an insight for tuning mechanical ventilation.

    Science.gov (United States)

    Pomprapa, Anake; Schwaiberger, David; Lachmann, Burkhard; Leonhardt, Steffen

    2014-01-01

    The aim is to provide better understanding of carbon dioxide (CO2) elimination during ventilation for both the healthy and atelectatic condition, derived in a pressure-controlled mode. Therefore, we present a theoretical analysis of CO2 elimination of healthy and diseased lungs. Based on a single-compartment model, CO2 elimination is mathematically modeled and its contours were plotted as a function of temporal settings and driving pressure. The model was validated within some level of tolerance on an average of 4.9% using porcine dynamics. CO2 elimination is affected by various factors, including driving pressure, temporal variables from mechanical ventilator settings, lung mechanics and metabolic rate. During respiratory care, CO2 elimination is a key parameter for bedside monitoring, especially for patients with pulmonary disease. This parameter provides valuable insight into the status of an atelectatic lung and of cardiopulmonary pathophysiology. Therefore, control of CO2 elimination should be based on the fine tuning of the driving pressure and temporal ventilator settings. However, for critical condition of hypercapnia, airway resistance during inspiration and expiration should be additionally measured to determine the optimal percent inspiratory time (%TI) to maximize CO2 elimination for treating patients with hypercapnia.

  18. DMPD: Anti-inflammatory actions of PPAR ligands: new insights on cellular andmolecular mechanisms. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17981503 Anti-inflammatory actions of PPAR ligands: new insights on cellular andmol...) (.html) (.csml) Show Anti-inflammatory actions of PPAR ligands: new insights on cellular andmolecular mech...anisms. PubmedID 17981503 Title Anti-inflammatory actions of PPAR ligands: new insight

  19. Can Economics Provide Insights into Trust Infrastructure?

    Science.gov (United States)

    Vishik, Claire

    Many security technologies require infrastructure for authentication, verification, and other processes. In many cases, viable and innovative security technologies are never adopted on a large scale because the necessary infrastructure is slow to emerge. Analyses of such technologies typically focus on their technical flaws, and research emphasizes innovative approaches to stronger implementation of the core features. However, an observation can be made that in many cases the success of adoption pattern depends on non-technical issues rather than technology-lack of economic incentives, difficulties in finding initial investment, inadequate government support. While a growing body of research is dedicated to economics of security and privacy in general, few theoretical studies in this area have been completed, and even fewer that look at the economics of “trust infrastructure” beyond simple “cost of ownership” models. This exploratory paper takes a look at some approaches in theoretical economics to determine if they can provide useful insights into security infrastructure technologies and architectures that have the best chance to be adopted. We attempt to discover if models used in theoretical economics can help inform technology developers of the optimal business models that offer a better chance for quick infrastructure deployment.

  20. Balancing Venturi and Laissez-Faire Management Styles: Insights from Fluid Mechanical Analogs

    Directory of Open Access Journals (Sweden)

    Ruud Weijermars

    2007-12-01

    Full Text Available Mobilizing distributed Organizational Intelligence involves managerial efforts whereby the generation of new tacit knowledge requires dissemination of newly codified externalized knowledge. The managerial role in the early stage of knowledge creation is to support and stimulate the process of knowledge generation and to aid the diffusion of knowledge across organizational boundaries. In contrast, the subsequent 'harvesting' and goal-oriented application of knowledge requires convergence of human actors (H as carriers of distributed intelligence (DI. Optimization of the organizational performance and improved workflow efficiency is best effectuated by applying insights from fluid mechanical analogs. Several such analogs are introduced here and these provide insight that helps to funnel tacit and explicit knowledge into tangible asset value. Three sets of managerial lessons are inferred from the analogs: (1 Social bonding between professionals needs to be stimulated because professionals with strong social bonds (S can sustain effective workflows under relatively high pressures, while weak social bonds lead to turbulence and disruption; (2 Effective vision sharing is essential for goal-oriented and accelerated knowledge development in DI systems, and; (3 Managerial pressure may not overheat the critical limit that can be handled by resilient and strongly bonded DI networks, as this would result in disruptive turbulence even in experienced neural networks.

  1. Comparative transcriptome analysis provides new insights into erect and prostrate growth in bermudagrass (Cynodon dactylon L.).

    Science.gov (United States)

    Zhang, Bing; Xiao, Xiaolin; Zong, Junqin; Chen, Jingbo; Li, Jianjian; Guo, Hailin; Liu, Jianxiu

    2017-12-01

    Bermudagrass (Cynodon dactylon L.) is a prominent warm-season turf and forage grass species with multiple applications. In most C. dactylon cultivars and accessions, erect-growing stems (shoot) and prostrate-growing stems (stolon) often coexist. These two types of stems are both formed through tillering but grow in two directions with different tiller angles. Elucidating the mechanism of tiller angle regulation in bermudagrass could provide important clues to breed cultivars with different plant architectural features for diverse usage. In this study, we compared the stem internode transcriptome of two bermudagrass wild accessions with extremely different tiller angles and stem growth directions. A total of 2088 and 12,141 unigenes were preferentially expressed in prostrate-growing wild accession C792 and erect-growing wild accession C793, respectively. Kyoto Encyclopedia of Genes and Genomes (KEGG) Orthology-based Annotation System (KOBAS) analyses further indicated that light- and gravity-responsive genes were enriched in accession C792, whereas lignin synthesis-related genes were enriched in accession C793, which well explains the difference in lignification of vascular bundles and mechanical tissues in the two accessions. These results not only expand our understanding of the genetic control of tiller angle and stem growth direction in bermudagrass but also provide insight for future molecular breeding of C. dactylon and other turfgrass species with different plant architectures. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  2. Insight into the metabolic mechanism of scoparone on biomarkers for inhibiting Yanghuang syndrome.

    Science.gov (United States)

    Fang, Heng; Zhang, Aihua; Yu, Jingbo; Wang, Liang; Liu, Chang; Zhou, Xiaohang; Sun, Hui; Song, Qi; Wang, Xijun

    2016-11-21

    Scoparone (6,7-dimethoxycoumarin) is the representative ingredient of Yinchenhao (Artemisia capillaris Thunb.) which is a famous Chinese medicinal herb and shows favorable efficacy for all kinds of liver disease, specifically for the treatment of Yanghuang syndrome (YHS). The precise molecular mechanism concerning the action of scoparone on YHS is yet to be fully elucidated. The aim of the present study was to determine the mechanism of scoparone and evaluate its efficacy on metabolite levels. The differential expression of metabolites responsible for the pharmacological effects of scoparone was characterized and the protection effect of scoparone against this disease. Using multivariate statistical analysis, 33 biomarkers were identified using precise MS/MS and play an important role in the regulation of key metabolic pathways associated with liver disease. In addition, pathological results also showed consistent changes in the YHS model group and after treatment with scoparone, both the metabolic profile and histopathology resembled that of normal level, which suggesting favorable efficacy over the observed time period. The present work indicated that a metabolomics platform provided a new insight into understanding the mechanisms of action of natural medicines such as scoparone.

  3. Multiple Problem-Solving Strategies Provide Insight into Students' Understanding of Open-Ended Linear Programming Problems

    Science.gov (United States)

    Sole, Marla A.

    2016-01-01

    Open-ended questions that can be solved using different strategies help students learn and integrate content, and provide teachers with greater insights into students' unique capabilities and levels of understanding. This article provides a problem that was modified to allow for multiple approaches. Students tended to employ high-powered, complex,…

  4. Theoretical and experimental insights into the ·OH-mediated mineralization mechanism of flutriafol

    International Nuclear Information System (INIS)

    Liu, Siqi; Zhou, Xiezhen; Han, Weiqing; Li, Jiansheng; Sun, Xiuyun; Shen, Jinyou; Wang, Lianjun

    2017-01-01

    Highlights: • A complete ·OH-mediated degradation pathway of flutriafol is proposed. • Computational approach is effective to reveal the favorable transformation process. • The electrochemical experiments well verify the theoretical results. - Abstract: Flutriafol is one of the widely used triazole fungicides in global pesticides market, and its degradation mechanisms are important to develop powerful technologies to remove it. Insight into the kinetics and mechanisms of ·OH-mediated mineralization of flutriafol have been obtained using quantum chemical calculation and electrochemical experiment methods. The complete ·OH-mediated degradation pathway of flutriafol was proposed by density functional theory (DFT) simulation and the potential energy surface was mapped out for possible reactions. On the basis of DFT calculations, the optimal ·OH-mediated mineralization mechanism of flutriafol was revealed, and a series of intermediates were observed accumulated in the degradation process, most significance among which were (2-fluorophenyl) (4-fluorophenyl)-Methanone, phenol, dihydroxybenzenes, benzoquinones, muconic acids, maleic acids, oxalic acids and formic acid. To give deeper insight into the ·OH-mediated reaction mechanism, the electrostatic potential (ESP) and average local ionization energy (ALIE) analysis were conducted for o-benzoquinone and p-benzoquinone. The proposed mechanism was further validated by electrochemical experiments at TiO_2-NTs/SnO_2-Sb/PbO_2 anode. The main intermediates were identified and quantified by experimental method, indicating that the proposed ·OH-mediated degradation mechanism derived from DFT calculations was feasible. These detailed findings could be instrumental for a comprehensive understanding of the ·OH-mediated mineralization mechanism of flutriafol and the similar contaminants.

  5. Characterization of hairless (Hr) and FGF5 genes provides insights into the molecular basis of hair loss in cetaceans.

    Science.gov (United States)

    Chen, Zhuo; Wang, Zhengfei; Xu, Shixia; Zhou, Kaiya; Yang, Guang

    2013-02-09

    Hair is one of the main distinguishing characteristics of mammals and it has many important biological functions. Cetaceans originated from terrestrial mammals and they have evolved a series of adaptations to aquatic environments, which are of evolutionary significance. However, the molecular mechanisms underlying their aquatic adaptations have not been well explored. This study provided insights into the evolution of hair loss during the transition from land to water by investigating and comparing two essential regulators of hair follicle development and hair follicle cycling, i.e., the Hairless (Hr) and FGF5 genes, in representative cetaceans and their terrestrial relatives. The full open reading frame sequences of the Hr and FGF5 genes were characterized in seven cetaceans. The sequence characteristics and evolutionary analyses suggested the functional loss of the Hr gene in cetaceans, which supports the loss of hair during their full adaptation to aquatic habitats. By contrast, positive selection for the FGF5 gene was found in cetaceans where a series of positively selected amino acid residues were identified. This is the first study to investigate the molecular basis of the hair loss in cetaceans. Our investigation of Hr and FGF5, two indispensable regulators of the hair cycle, provide some new insights into the molecular basis of hair loss in cetaceans. The results suggest that positive selection for the FGF5 gene might have promoted the termination of hair growth and early entry into the catagen stage of hair follicle cycling. Consequently, the hair follicle cycle was disrupted and the hair was lost completely due to the loss of the Hr gene function in cetaceans. This suggests that cetaceans have evolved an effective and complex mechanism for hair loss.

  6. High Resolution Crystal Structures of Streptococcus pneumoniae Nicotinamidase with Trapped Intermediates Provide Insights into Catalytic Mechanism and Inhibition by Aldehydes∥,‡

    Science.gov (United States)

    French, Jarrod B.; Cen, Yana; Sauve, Anthony A.; Ealick, Steven E.

    2010-01-01

    Nicotinamidases are salvage enzymes that convert nicotinamide to nicotinic acid. These enzymes are essential for the recycling of nicotinamide into NAD+ in most prokaryotes, most single cell and multicellular eukaryotes, but not in mammals. The significance of these enzymes for nicotinamide salvage and for NAD+ homeostasis has increased interest in nicotinamidases as possible antibiotic targets. Nicotinamidases are also regulators of intracellular nicotinamide concentrations, thereby regulating signaling of downstream NAD+ consuming enzymes, such as the NAD+-dependent deacetylases (sirtuins). Here, we report several high resolution crystal structures of the nicotinamidase from Streptococcus pneumoniae (SpNic) in unliganded and ligand-bound forms. The structure of the C136S mutant in complex with nicotinamide provides details about substrate binding while a trapped nicotinoyl-thioester complexed with SpNic reveals the structure of the proposed thioester reaction intermediate. Examination of the active site of SpNic reveals several important features including a metal ion that coordinates the substrate and the catalytically relevant water molecule, and an oxyanion hole which both orients the substrate and offsets the negative charge that builds up during catalysis. Structures of this enzyme with bound nicotinaldehyde inhibitors elucidate the mechanism of inhibition and provide further details about the catalytic mechanism. In addition, we provide a biochemical analysis of the identity and role of the metal ion that orients the ligand in the active site and activates the water molecule responsible for hydrolysis of the substrate. These data provide structural evidence for several proposed reaction intermediates and allow for a more complete understanding of the catalytic mechanism of this enzyme. PMID:20853856

  7. High-resolution crystal structures of Streptococcus pneumoniae nicotinamidase with trapped intermediates provide insights into the catalytic mechanism and inhibition by aldehydes .

    Science.gov (United States)

    French, Jarrod B; Cen, Yana; Sauve, Anthony A; Ealick, Steven E

    2010-10-12

    Nicotinamidases are salvage enzymes that convert nicotinamide to nicotinic acid. These enzymes are essential for the recycling of nicotinamide into NAD(+) in most prokaryotes and most single-cell and multicellular eukaryotes, but not in mammals. The significance of these enzymes for nicotinamide salvage and for NAD(+) homeostasis has stimulated interest in nicotinamidases as possible antibiotic targets. Nicotinamidases are also regulators of intracellular nicotinamide concentrations, thereby regulating signaling of downstream NAD(+)-consuming enzymes, such as the NAD(+)-dependent deacetylases (sirtuins). Here, we report several high-resolution crystal structures of the nicotinamidase from Streptococcus pneumoniae (SpNic) in unliganded and ligand-bound forms. The structure of the C136S mutant in complex with nicotinamide provides details about substrate binding, while a trapped nicotinoyl thioester in a complex with SpNic reveals the structure of the proposed thioester reaction intermediate. Examination of the active site of SpNic reveals several important features, including a metal ion that coordinates the substrate and the catalytically relevant water molecule and an oxyanion hole that both orients the substrate and offsets the negative charge that builds up during catalysis. Structures of this enzyme with bound nicotinaldehyde inhibitors elucidate the mechanism of inhibition and provide further details about the catalytic mechanism. In addition, we provide a biochemical analysis of the identity and role of the metal ion that orients the ligand in the active site and activates the water molecule responsible for hydrolysis of the substrate. These data provide structural evidence of several proposed reaction intermediates and allow for a more complete understanding of the catalytic mechanism of this enzyme.

  8. Lipidomics: Novel insight into the biochemical mechanism of lipid metabolism and dysregulation-associated disease.

    Science.gov (United States)

    Zhao, Ying-Yong; Miao, Hua; Cheng, Xian-Long; Wei, Feng

    2015-10-05

    The application of lipidomics, after genomics, proteomics and metabolomics, offered largely opportunities to illuminate the entire spectrum of lipidome based on a quantitative or semi-quantitative level in a biological system. When combined with advances in proteomics and metabolomics high-throughput platforms, lipidomics provided the opportunity for analyzing the unique roles of specific lipids in complex cellular processes. Abnormal lipid metabolism was demonstrated to be greatly implicated in many human lifestyle-related diseases. In this review, we focused on lipidomic applications in brain injury disease, cancer, metabolic disease, cardiovascular disease, respiratory disease and infectious disease to discover disease biomarkers and illustrate biochemical metabolic pathways. We also discussed the analytical techniques, future perspectives and potential problems of lipidomic applications. The application of lipidomics in disease biomarker discovery provides the opportunity for gaining novel insights into biochemical mechanism. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. An Investigation of the Mechanical Properties of Some Martian Regolith Simulants with Respect to the Surface Properties at the InSight Mission Landing Site

    Science.gov (United States)

    Delage, Pierre; Karakostas, Foivos; Dhemaied, Amine; Belmokhtar, Malik; Lognonné, Philippe; Golombek, Matt; De Laure, Emmanuel; Hurst, Ken; Dupla, Jean-Claude; Kedar, Sharon; Cui, Yu Jun; Banerdt, Bruce

    2017-10-01

    In support of the InSight mission in which two instruments (the SEIS seismometer and the HP3 heat flow probe) will interact directly with the regolith on the surface of Mars, a series of mechanical tests were conducted on three different regolith simulants to better understand the observations of the physical and mechanical parameters that will be derived from InSight. The mechanical data obtained were also compared to data on terrestrial sands. The density of the regolith strongly influences its mechanical properties, as determined from the data on terrestrial sands. The elastoplastic compression volume changes were investigated through oedometer tests that also provided estimates of possible changes in density with depth. The results of direct shear tests provided values of friction angles that were compared with that of a terrestrial sand, and an extrapolation to lower density provided a friction angle compatible with that estimated from previous observations on the surface of Mars. The importance of the contracting/dilating shear volume changes of sands on the dynamic penetration of the mole was determined, with penetration facilitated by the ˜1.3 Mg/m3 density estimated at the landing site. Seismic velocities, measured by means of piezoelectric bender elements in triaxial specimens submitted to various isotropic confining stresses, show the importance of the confining stress, with lesser influence of density changes under compression. A power law relation of velocity as a function of confining stress with an exponent of 0.3 was identified from the tests, allowing an estimate of the surface seismic velocity of 150 m/s. The effect on the seismic velocity of a 10% proportion of rock in the regolith was also studied. These data will be compared with in situ data measured by InSight after landing.

  10. New insights into virulence mechanisms of rice pathogen Acidovorax avenae subsp. avenae strain RS-1 following exposure to ?-lactam antibiotics

    OpenAIRE

    Li, Bin; Ge, Mengyu; Zhang, Yang; Wang, Li; Ibrahim, Muhammad; Wang, Yanli; Sun, Guochang; Chen, Gongyou

    2016-01-01

    Recent research has shown that pathogen virulence can be altered by exposure to antibiotics, even when the growth rate is unaffected. Investigating this phenomenon provides new insights into understanding the virulence mechanisms of bacterial pathogens. This study investigates the phenotypic and transcriptomic responses of the rice pathogenic bacterium Acidovorax avenae subsp. avenae (Aaa) strain RS-1 to ?-lactam antibiotics especially Ampicillin (Amp). Our results indicate that exposure to A...

  11. High-Resolution Crystal Structures of Streptococcus pneumoniae Nicotinamidase with Trapped Intermediates Provide Insights into the Catalytic Mechanism and Inhibition by Aldehydes

    Energy Technology Data Exchange (ETDEWEB)

    French, Jarrod B.; Cen, Yana; Sauve, Anthony A.; Ealick, Steven E. (Cornell); (Weill-Med)

    2010-11-11

    Nicotinamidases are salvage enzymes that convert nicotinamide to nicotinic acid. These enzymes are essential for the recycling of nicotinamide into NAD{sup +} in most prokaryotes and most single-cell and multicellular eukaryotes, but not in mammals. The significance of these enzymes for nicotinamide salvage and for NAD{sup +} homeostasis has stimulated interest in nicotinamidases as possible antibiotic targets. Nicotinamidases are also regulators of intracellular nicotinamide concentrations, thereby regulating signaling of downstream NAD{sup +}-consuming enzymes, such as the NAD{sup +}-dependent deacetylases (sirtuins). Here, we report several high-resolution crystal structures of the nicotinamidase from Streptococcus pneumoniae (SpNic) in unliganded and ligand-bound forms. The structure of the C136S mutant in complex with nicotinamide provides details about substrate binding, while a trapped nicotinoyl thioester in a complex with SpNic reveals the structure of the proposed thioester reaction intermediate. Examination of the active site of SpNic reveals several important features, including a metal ion that coordinates the substrate and the catalytically relevant water molecule and an oxyanion hole that both orients the substrate and offsets the negative charge that builds up during catalysis. Structures of this enzyme with bound nicotinaldehyde inhibitors elucidate the mechanism of inhibition and provide further details about the catalytic mechanism. In addition, we provide a biochemical analysis of the identity and role of the metal ion that orients the ligand in the active site and activates the water molecule responsible for hydrolysis of the substrate. These data provide structural evidence of several proposed reaction intermediates and allow for a more complete understanding of the catalytic mechanism of this enzyme.

  12. Structural Insights into Diversity and n-Alkane Biodegradation Mechanisms of Alkane Hydroxylases

    Directory of Open Access Journals (Sweden)

    Yurui eJi

    2013-03-01

    Full Text Available Environmental microbes utilize four degradation pathways for the oxidation of n-alkanes. Although the enzymes degrading n-alkanes in different microbes may vary, enzymes functioning in the first step in the aerobic degradation of alkanes all belong to the alkane hydroxylases. Alkane hydroxylases are a class of enzymes that insert oxygen atoms derived from molecular oxygen into different sites of the alkane terminus (or termini depending on the type of enzymes. In this review, we summarize the different types of alkane hydroxylases, their degrading steps and compare typical enzymes from various classes with regard to their three dimensional structures, in order to provide insights into how the enzymes mediate their different roles in the degradation of n-alkanes and what determines their different substrate ranges. Through the above analyses, the degrading mechanisms of enzymes can be elucidated and molecular biological methods can be utilized to expand their catalytic roles in the petrochemical industry or in bioremediation of oil-contaminated environments.

  13. The pomegranate (Punica granatum L.) genome provides insights into fruit quality and ovule developmental biology.

    Science.gov (United States)

    Yuan, Zhaohe; Fang, Yanming; Zhang, Taikui; Fei, Zhangjun; Han, Fengming; Liu, Cuiyu; Liu, Min; Xiao, Wei; Zhang, Wenjing; Wu, Shan; Zhang, Mengwei; Ju, Youhui; Xu, Huili; Dai, He; Liu, Yujun; Chen, Yanhui; Wang, Lili; Zhou, Jianqing; Guan, Dian; Yan, Ming; Xia, Yanhua; Huang, Xianbin; Liu, Dongyuan; Wei, Hongmin; Zheng, Hongkun

    2017-12-22

    Pomegranate (Punica granatum L.) has an ancient cultivation history and has become an emerging profitable fruit crop due to its attractive features such as the bright red appearance and the high abundance of medicinally valuable ellagitannin-based compounds in its peel and aril. However, the limited genomic resources have restricted further elucidation of genetics and evolution of these interesting traits. Here, we report a 274-Mb high-quality draft pomegranate genome sequence, which covers approximately 81.5% of the estimated 336-Mb genome, consists of 2177 scaffolds with an N50 size of 1.7 Mb and contains 30 903 genes. Phylogenomic analysis supported that pomegranate belongs to the Lythraceae family rather than the monogeneric Punicaceae family, and comparative analyses showed that pomegranate and Eucalyptus grandis share the paleotetraploidy event. Integrated genomic and transcriptomic analyses provided insights into the molecular mechanisms underlying the biosynthesis of ellagitannin-based compounds, the colour formation in both peels and arils during pomegranate fruit development, and the unique ovule development processes that are characteristic of pomegranate. This genome sequence provides an important resource to expand our understanding of some unique biological processes and to facilitate both comparative biology studies and crop breeding. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  14. Comparative proteomic analysis provides insight into 10-hydroxy-2-decenoic acid biosynthesis in honey bee workers.

    Science.gov (United States)

    Yang, Xiao-Hui; Yang, Shi-Fa; Wang, Rui-Ming

    2017-07-01

    10-Hydroxy-2-decenoic acid (10-HDA) is the major compound produced from the mandibular glands (MGs) of honey bee workers. However, little information is available on the molecular mechanisms of 10-HDA biosynthesis. In our study, based on investigating the 10-HDA secretion pattern and the morphological characteristics of MGs from honey bee workers of different ages, a comparative proteomic analysis was performed in the MGs of workers with different 10-HDA production. In total, 59 up-regulated protein species representing 45 unique proteins were identified in high 10-HDA-producing workers by 2-DE-MALDI-TOF/TOF MS. These proteins were involved in carbohydrate/energy metabolism, fatty acid metabolism, protein metabolism and folding, antioxidation, cytoskeleton, development and cell signaling. Proteins related to fatty acid metabolism, including fatty acid synthase and β-oxidation enzymes, are potentially crucial proteins involved in 10-HDA biosynthesis pathway. And RNA interference (RNAi) results demonstrated that knockdown of electron transfer flavoprotein subunit beta (ETF-β), one of the protein related to fatty acid metabolism, decreased 10-HDA production of worker bees, suggesting that ETF-β was necessary for 10-HDA biosynthesis. This study reveals the characteristics of MGs of worker bees at different developmental stages and proteins associated with 10-HDA biosynthesis, which provides the first insight into the molecular mechanism of 10-HDA biosynthesis.

  15. Crystal structure of the Epithiospecifier Protein, ESP from Arabidopsis thaliana provides insights into its product specificity.

    Science.gov (United States)

    Zhang, Weiwei; Wang, Wenhe; Liu, Zihe; Xie, Yongchao; Wang, Hao; Mu, Yajuan; Huang, Yao; Feng, Yue

    2016-09-16

    Specifier proteins are important components of the glucosinolate-myrosinase system, which mediate plant defense against herbivory and pathogen attacks. Upon tissue disruption, glucosinolates are hydrolyzed to instable aglucones by myrosinases, and then aglucones will rearrange to form defensive isothiocyanates. Specifier proteins can redirect this reaction to form other products, such as simple nitriles, epithionitriles and organic thiocyanates instead of isothiocyanates based on the side chain structure of glucosinolate and the type of the specifier proteins. Nevertheless, the molecular mechanism underlying the different product spectrums of various specifier proteins was not fully understood. Here in this study, we solved the crystal structure of the Epithiospecifier Protein, ESP from Arabidopsis thaliana (AtESP) at 2.3 Å resolution. Structural comparisons with the previously solved structure of thiocyanate forming protein, TFP from Thlaspi arvense (TaTFP) reveal that AtESP shows a dimerization pattern different from TaTFP. Moreover, AtESP harbors a slightly larger active site pocket than TaTFP and several residues around the active site are different between the two proteins, which might account for the different product spectrums of the two proteins. Together, our structural study provides important insights into the molecular mechanisms of specifier proteins and shed light on the basis of their different product spectrums. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Improved Ribosome-Footprint and mRNA Measurements Provide Insights into Dynamics and Regulation of Yeast Translation

    Science.gov (United States)

    2016-02-11

    unlimited. Improved Ribosome-Footprint and mRNA Measurements Provide Insights into Dynamics and Regulation of Yeast Translation The views, opinions and...into Dynamics and Regulation of Yeast Translation Report Title Ribosome-footprint profiling provides genome-wide snapshots of translation, but...tend to slow translation. With the improved mRNA measurements, the variation attributable to translational control in exponentially growing yeast was

  17. Insights provided by Probabilistic Safety Assessment Relating to the Loss of Electrical Sources

    International Nuclear Information System (INIS)

    Lanore, Jeanne-Marie

    2015-01-01

    The loss of electrical sources is generally an important contributor to the risk related to nuclear plants. In particular the external hazards initiating events lead generally to a loss of electrical sources. This importance was underscored by the Fukushima accident. A strength of PSA is to provide insights not only into the causes of the event but also into the potential consequences (core damage prevention, large release prevention, and mitigation) with the corresponding risk impact. PSA could provide a measure of Defence-in-Depth in case of loss of a safety function. The task intends to illustrate the PSA capabilities with outstanding practical examples. The task will rely on a survey of existing PSAs. It will provide a complementary view for ROBELSYS task. The content and status of the task are summarized in 2 slides

  18. Transcriptome of American oysters, Crassostrea virginica, in response to bacterial challenge: insights into potential mechanisms of disease resistance.

    Science.gov (United States)

    McDowell, Ian C; Nikapitiya, Chamilani; Aguiar, Derek; Lane, Christopher E; Istrail, Sorin; Gomez-Chiarri, Marta

    2014-01-01

    The American oyster Crassostrea virginica, an ecologically and economically important estuarine organism, can suffer high mortalities in areas in the Northeast United States due to Roseovarius Oyster Disease (ROD), caused by the gram-negative bacterial pathogen Roseovarius crassostreae. The goals of this research were to provide insights into: 1) the responses of American oysters to R. crassostreae, and 2) potential mechanisms of resistance or susceptibility to ROD. The responses of oysters to bacterial challenge were characterized by exposing oysters from ROD-resistant and susceptible families to R. crassostreae, followed by high-throughput sequencing of cDNA samples from various timepoints after disease challenge. Sequence data was assembled into a reference transcriptome and analyzed through differential gene expression and functional enrichment to uncover genes and processes potentially involved in responses to ROD in the American oyster. While susceptible oysters experienced constant levels of mortality when challenged with R. crassostreae, resistant oysters showed levels of mortality similar to non-challenged oysters. Oysters exposed to R. crassostreae showed differential expression of transcripts involved in immune recognition, signaling, protease inhibition, detoxification, and apoptosis. Transcripts involved in metabolism were enriched in susceptible oysters, suggesting that bacterial infection places a large metabolic demand on these oysters. Transcripts differentially expressed in resistant oysters in response to infection included the immune modulators IL-17 and arginase, as well as several genes involved in extracellular matrix remodeling. The identification of potential genes and processes responsible for defense against R. crassostreae in the American oyster provides insights into potential mechanisms of disease resistance.

  19. A mollusk VDR/PXR/CAR-like (NR1J) nuclear receptor provides insight into ancient detoxification mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Cruzeiro, Catarina, E-mail: catarinarcruzeiro@hotmail.com [ICBAS - Institute of Biomedical Sciences Abel Salazar, U. Porto - University of Porto (Portugal); CIIMAR/CIMAR - Interdisciplinary Center of Marine and Environmental Research, U. Porto (Portugal); Lopes-Marques, Mónica, E-mail: monicaslm@hotmail.com [ICBAS - Institute of Biomedical Sciences Abel Salazar, U. Porto - University of Porto (Portugal); CIIMAR/CIMAR - Interdisciplinary Center of Marine and Environmental Research, U. Porto (Portugal); Ruivo, Raquel, E-mail: ruivo.raquel@gmail.com [CIIMAR/CIMAR - Interdisciplinary Center of Marine and Environmental Research, U. Porto (Portugal); Rodrigues-Oliveira, Nádia, E-mail: nadia.oliveira@ciimar.up.pt [CIIMAR/CIMAR - Interdisciplinary Center of Marine and Environmental Research, U. Porto (Portugal); Santos, Miguel M., E-mail: santos@ciimar.up.pt [CIIMAR/CIMAR - Interdisciplinary Center of Marine and Environmental Research, U. Porto (Portugal); FCUP - Faculty of Sciences, Department of Biology, U. Porto (Portugal); Rocha, Maria João, E-mail: mjsrocha@netcabo.pt [ICBAS - Institute of Biomedical Sciences Abel Salazar, U. Porto - University of Porto (Portugal); CIIMAR/CIMAR - Interdisciplinary Center of Marine and Environmental Research, U. Porto (Portugal); Rocha, Eduardo, E-mail: erocha@icbas.up.pt [ICBAS - Institute of Biomedical Sciences Abel Salazar, U. Porto - University of Porto (Portugal); CIIMAR/CIMAR - Interdisciplinary Center of Marine and Environmental Research, U. Porto (Portugal); Castro, L. Filipe C., E-mail: filipe.castro@ciimar.up.pt [CIIMAR/CIMAR - Interdisciplinary Center of Marine and Environmental Research, U. Porto (Portugal); FCUP - Faculty of Sciences, Department of Biology, U. Porto (Portugal)

    2016-05-15

    Highlights: • A nuclear receptor orthologue of the NR1J group is isolated from a mollusc. • The molluscan NR1J transactivates gene expression upon exposure to okadaic acid but not a pesticide, esfenvarelate and triclosan. • Lineage specific gene duplications and gene loss have occurred in the NR1J of protostomes with likely impacts on detoxification mechanisms. - Abstract: The origin and diversification of the metazoan endocrine systems represents a fundamental research issue in biology. Nuclear receptors are critical components of these systems. A particular group named VDR/PXR/CAR (NR1I/J) is central in the mediation of detoxification responses. While orthologues have been thoroughly characterized in vertebrates, a sparse representation is currently available for invertebrates. Here, we provide the first isolation and characterization of a lophotrochozoan protostome VDR/PXR/CAR nuclear receptor (NR1J), in the estuarine bivalve the peppery furrow shell (Scrobicularia plana). Using a reporter gene assay, we evaluated the xenobiotic receptor plasticity comparing the human PXR with the S. plana NR1Jβ. Our results show that the molluscan receptor responds to a natural toxin (okadaic acid) in a similar fashion to that reported for other invertebrates. In contrast, the pesticide esfenvalerate displayed a unique response, since it down regulated transactivation at higher concentrations, while for triclosan no response was observed. Additionally, we uncovered lineage specific gene duplications and gene loss in the gene group encoding NRs in protostomes with likely impacts on the complexity of detoxification mechanisms across different phyla. Our findings pave the way for the development of multi-specific sensor tools to screen xenobiotic compounds acting via the NR1I/J group.

  20. A mollusk VDR/PXR/CAR-like (NR1J) nuclear receptor provides insight into ancient detoxification mechanisms

    International Nuclear Information System (INIS)

    Cruzeiro, Catarina; Lopes-Marques, Mónica; Ruivo, Raquel; Rodrigues-Oliveira, Nádia; Santos, Miguel M.; Rocha, Maria João; Rocha, Eduardo; Castro, L. Filipe C.

    2016-01-01

    Highlights: • A nuclear receptor orthologue of the NR1J group is isolated from a mollusc. • The molluscan NR1J transactivates gene expression upon exposure to okadaic acid but not a pesticide, esfenvarelate and triclosan. • Lineage specific gene duplications and gene loss have occurred in the NR1J of protostomes with likely impacts on detoxification mechanisms. - Abstract: The origin and diversification of the metazoan endocrine systems represents a fundamental research issue in biology. Nuclear receptors are critical components of these systems. A particular group named VDR/PXR/CAR (NR1I/J) is central in the mediation of detoxification responses. While orthologues have been thoroughly characterized in vertebrates, a sparse representation is currently available for invertebrates. Here, we provide the first isolation and characterization of a lophotrochozoan protostome VDR/PXR/CAR nuclear receptor (NR1J), in the estuarine bivalve the peppery furrow shell (Scrobicularia plana). Using a reporter gene assay, we evaluated the xenobiotic receptor plasticity comparing the human PXR with the S. plana NR1Jβ. Our results show that the molluscan receptor responds to a natural toxin (okadaic acid) in a similar fashion to that reported for other invertebrates. In contrast, the pesticide esfenvalerate displayed a unique response, since it down regulated transactivation at higher concentrations, while for triclosan no response was observed. Additionally, we uncovered lineage specific gene duplications and gene loss in the gene group encoding NRs in protostomes with likely impacts on the complexity of detoxification mechanisms across different phyla. Our findings pave the way for the development of multi-specific sensor tools to screen xenobiotic compounds acting via the NR1I/J group.

  1. Comparative proteomic analysis provides new insights into cadmium accumulation in rice grain under cadmium stress

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Dawei, E-mail: dwxue@hznu.edu.cn [College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036 (China); State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006 (China); Jiang, Hua [State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Science, Hangzhou 310021 (China); Deng, Xiangxiong; Zhang, Xiaoqin [College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036 (China); Wang, Hua [State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Science, Hangzhou 310021 (China); Xu, Xiangbin [College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036 (China); Hu, Jiang; Zeng, Dali [State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006 (China); Guo, Longbiao, E-mail: guolongbiao@caas.cn [State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006 (China); Qian, Qian, E-mail: qianqian188@hotmail.com [College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036 (China); State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006 (China)

    2014-09-15

    Graphical abstract: - Highlights: • Cd is the most toxic heavy metal and is a major pollutant in rice grains. • The mechanism of Cd accumulation in rice grains has not been well demonstrated. • Proteomics analysis is carried out and the verification is implemented by QPCR. • Proteins associated with ROS and photosynthesis showed large variation in expression. - Abstract: Rice is one of the most important staple crops. During the growth season, rice plants are inevitably subjected to numerous stresses, among which heavy metal stress represented by cadmium contamination not only hindering the yield of rice but also affecting the food safety by Cd accumulating in rice grains. The mechanism of Cd accumulation in rice grains has not been well elucidated. In this study, we compare the proteomic difference between two genotypes with different Cd accumulation ability in grains. Verification of differentially expressed protein-encoding genes was analyzing by quantitative PCR (QPCR) and reanalysis of microarray expression data. Forty-seven proteins in total were successfully identified through proteomic screening. GO and KEGG enrichment analysis showed Cd accumulation triggered stress-related pathways in the cells, and strongly affecting metabolic pathways. Many proteins associated with nutrient reservoir and starch-related enzyme were identified in this study suggesting that a considerably damage on grain quality was caused. The results also implied stress response was initiated by the abnormal cells and the transmission of signals may mediated by reactive oxygen species (ROS). Our research will provide new insights into Cd accumulation in rice grain under Cd stress.

  2. X-ray structure reveals a new class and provides insight into evolution of alkaline phosphatases.

    Directory of Open Access Journals (Sweden)

    Subhash C Bihani

    Full Text Available The alkaline phosphatase (AP is a bi-metalloenzyme of potential applications in biotechnology and bioremediation, in which phosphate monoesters are nonspecifically hydrolysed under alkaline conditions to yield inorganic phosphate. The hydrolysis occurs through an enzyme intermediate in which the catalytic residue is phosphorylated. The reaction, which also requires a third metal ion, is proposed to proceed through a mechanism of in-line displacement involving a trigonal bipyramidal transition state. Stabilizing the transition state by bidentate hydrogen bonding has been suggested to be the reason for conservation of an arginine residue in the active site. We report here the first crystal structure of alkaline phosphatase purified from the bacterium Sphingomonas. sp. Strain BSAR-1 (SPAP. The crystal structure reveals many differences from other APs: 1 the catalytic residue is a threonine instead of serine, 2 there is no third metal ion binding pocket, and 3 the arginine residue forming bidentate hydrogen bonding is deleted in SPAP. A lysine and an aspargine residue, recruited together for the first time into the active site, bind the substrate phosphoryl group in a manner not observed before in any other AP. These and other structural features suggest that SPAP represents a new class of APs. Because of its direct contact with the substrate phosphoryl group, the lysine residue is proposed to play a significant role in catalysis. The structure is consistent with a mechanism of in-line displacement via a trigonal bipyramidal transition state. The structure provides important insights into evolutionary relationships between members of AP superfamily.

  3. The Clean Energy Manufacturing Analysis Center (CEMAC): Providing Analysis and Insights on Clean Technology Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Nicholi S [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-28

    The U.S. Department of Energy's Clean Energy Manufacturing Analysis Center (CEMAC) provides objective analysis and up-to-date data on global supply chains and manufacturing of clean energy technologies. Policymakers and industry leaders seek CEMAC insights to inform choices to promote economic growth and the transition to a clean energy economy.

  4. Global insights into acetic acid resistance mechanisms and genetic stability of Acetobacter pasteurianus strains by comparative genomics

    Science.gov (United States)

    Wang, Bin; Shao, Yanchun; Chen, Tao; Chen, Wanping; Chen, Fusheng

    2015-12-01

    Acetobacter pasteurianus (Ap) CICC 20001 and CGMCC 1.41 are two acetic acid bacteria strains that, because of their strong abilities to produce and tolerate high concentrations of acetic acid, have been widely used to brew vinegar in China. To globally understand the fermentation characteristics, acid-tolerant mechanisms and genetic stabilities, their genomes were sequenced. Genomic comparisons with 9 other sequenced Ap strains revealed that their chromosomes were evolutionarily conserved, whereas the plasmids were unique compared with other Ap strains. Analysis of the acid-tolerant metabolic pathway at the genomic level indicated that the metabolism of some amino acids and the known mechanisms of acetic acid tolerance, might collaboratively contribute to acetic acid resistance in Ap strains. The balance of instability factors and stability factors in the genomes of Ap CICC 20001 and CGMCC 1.41 strains might be the basis for their genetic stability, consistent with their stable industrial performances. These observations provide important insights into the acid resistance mechanism and the genetic stability of Ap strains and lay a foundation for future genetic manipulation and engineering of these two strains.

  5. Numerical Experiments Providing New Insights into Plasma Focus Fusion Devices

    Directory of Open Access Journals (Sweden)

    Sing Lee

    2010-04-01

    Full Text Available Recent extensive and systematic numerical experiments have uncovered new insights into plasma focus fusion devices including the following: (1 a plasma current limitation effect, as device static inductance is reduced towards very small values; (2 scaling laws of neutron yield and soft x-ray yield as functions of storage energies and currents; (3 a global scaling law for neutron yield as a function of storage energy combining experimental and numerical data showing that scaling deterioration has probably been interpreted as neutron ‘saturation’; and (4 a fundamental cause of neutron ‘saturation’. The ground-breaking insights thus gained may completely change the directions of plasma focus fusion research.

  6. New hyperekplexia mutations provide insight into glycine receptor assembly, trafficking, and activation mechanisms

    DEFF Research Database (Denmark)

    Bode, Anna; Wood, Sian-Elin; Mullins, Jonathan G L

    2013-01-01

    Hyperekplexia is a syndrome of readily provoked startle responses, alongside episodic and generalized hypertonia, that presents within the first month of life. Inhibitory glycine receptors are pentameric ligand-gated ion channels with a definitive and clinically well stratified linkage...... a structural mechanism for channel activation. Receptors incorporating p.P230S (which is heterozygous with p.R65W) desensitized much faster than wild type receptors and represent a new TM1 site capable of modulating desensitization. The recessive mutations p.R72C, p.R218W, p.L291P, p.D388A, and p.E375X...... precluded cell surface expression unless co-expressed with α1 wild type subunits. The recessive p.E375X mutation resulted in subunit truncation upstream of the TM4 domain. Surprisingly, on the basis of three independent assays, we were able to infer that p.E375X truncated subunits are incorporated...

  7. Transcriptomes and expression profiling of deep-sea corals from the Red Sea provide insight into the biology of azooxanthellate corals.

    Science.gov (United States)

    Yum, Lauren K; Baumgarten, Sebastian; Röthig, Till; Roder, Cornelia; Roik, Anna; Michell, Craig; Voolstra, Christian R

    2017-07-25

    Despite the importance of deep-sea corals, our current understanding of their ecology and evolution is limited due to difficulties in sampling and studying deep-sea environments. Moreover, a recent re-evaluation of habitat limitations has been suggested after characterization of deep-sea corals in the Red Sea, where they live at temperatures of above 20 °C at low oxygen concentrations. To gain further insight into the biology of deep-sea corals, we produced reference transcriptomes and studied gene expression of three deep-sea coral species from the Red Sea, i.e. Dendrophyllia sp., Eguchipsammia fistula, and Rhizotrochus typus. Our analyses suggest that deep-sea coral employ mitochondrial hypometabolism and anaerobic glycolysis to manage low oxygen conditions present in the Red Sea. Notably, we found expression of genes related to surface cilia motion that presumably enhance small particle transport rates in the oligotrophic deep-sea environment. This is the first study to characterize transcriptomes and in situ gene expression for deep-sea corals. Our work offers several mechanisms by which deep-sea corals might cope with the distinct environmental conditions present in the Red Sea As such, our data provide direction for future research and further insight to organismal response of deep-sea coral to environmental change and ocean warming.

  8. Transcriptomes and expression profiling of deep-sea corals from the Red Sea provide insight into the biology of azooxanthellate corals

    KAUST Repository

    Yum, Lauren

    2017-07-19

    Despite the importance of deep-sea corals, our current understanding of their ecology and evolution is limited due to difficulties in sampling and studying deep-sea environments. Moreover, a recent re-evaluation of habitat limitations has been suggested after characterization of deep-sea corals in the Red Sea, where they live at temperatures of above 20 °C at low oxygen concentrations. To gain further insight into the biology of deep-sea corals, we produced reference transcriptomes and studied gene expression of three deep-sea coral species from the Red Sea, i.e. Dendrophyllia sp., Eguchipsammia fistula, and Rhizotrochus typus. Our analyses suggest that deep-sea coral employ mitochondrial hypometabolism and anaerobic glycolysis to manage low oxygen conditions present in the Red Sea. Notably, we found expression of genes related to surface cilia motion that presumably enhance small particle transport rates in the oligotrophic deep-sea environment. This is the first study to characterize transcriptomes and in situ gene expression for deep-sea corals. Our work offers several mechanisms by which deep-sea corals might cope with the distinct environmental conditions present in the Red Sea As such, our data provide direction for future research and further insight to organismal response of deep-sea coral to environmental change and ocean warming.

  9. Transcriptomes and expression profiling of deep-sea corals from the Red Sea provide insight into the biology of azooxanthellate corals

    KAUST Repository

    Yum, Lauren; Baumgarten, Sebastian; Rö thig, Till; Roder, Cornelia; Roik, Anna Krystyna; Michell, Craig; Voolstra, Christian R.

    2017-01-01

    Despite the importance of deep-sea corals, our current understanding of their ecology and evolution is limited due to difficulties in sampling and studying deep-sea environments. Moreover, a recent re-evaluation of habitat limitations has been suggested after characterization of deep-sea corals in the Red Sea, where they live at temperatures of above 20 °C at low oxygen concentrations. To gain further insight into the biology of deep-sea corals, we produced reference transcriptomes and studied gene expression of three deep-sea coral species from the Red Sea, i.e. Dendrophyllia sp., Eguchipsammia fistula, and Rhizotrochus typus. Our analyses suggest that deep-sea coral employ mitochondrial hypometabolism and anaerobic glycolysis to manage low oxygen conditions present in the Red Sea. Notably, we found expression of genes related to surface cilia motion that presumably enhance small particle transport rates in the oligotrophic deep-sea environment. This is the first study to characterize transcriptomes and in situ gene expression for deep-sea corals. Our work offers several mechanisms by which deep-sea corals might cope with the distinct environmental conditions present in the Red Sea As such, our data provide direction for future research and further insight to organismal response of deep-sea coral to environmental change and ocean warming.

  10. Mudskipper genomes provide insights into the terrestrial adaptation of amphibious fishes.

    Science.gov (United States)

    You, Xinxin; Bian, Chao; Zan, Qijie; Xu, Xun; Liu, Xin; Chen, Jieming; Wang, Jintu; Qiu, Ying; Li, Wujiao; Zhang, Xinhui; Sun, Ying; Chen, Shixi; Hong, Wanshu; Li, Yuxiang; Cheng, Shifeng; Fan, Guangyi; Shi, Chengcheng; Liang, Jie; Tom Tang, Y; Yang, Chengye; Ruan, Zhiqiang; Bai, Jie; Peng, Chao; Mu, Qian; Lu, Jun; Fan, Mingjun; Yang, Shuang; Huang, Zhiyong; Jiang, Xuanting; Fang, Xiaodong; Zhang, Guojie; Zhang, Yong; Polgar, Gianluca; Yu, Hui; Li, Jia; Liu, Zhongjian; Zhang, Guoqiang; Ravi, Vydianathan; Coon, Steven L; Wang, Jian; Yang, Huanming; Venkatesh, Byrappa; Wang, Jun; Shi, Qiong

    2014-12-02

    Mudskippers are amphibious fishes that have developed morphological and physiological adaptations to match their unique lifestyles. Here we perform whole-genome sequencing of four representative mudskippers to elucidate the molecular mechanisms underlying these adaptations. We discover an expansion of innate immune system genes in the mudskippers that may provide defence against terrestrial pathogens. Several genes of the ammonia excretion pathway in the gills have experienced positive selection, suggesting their important roles in mudskippers' tolerance to environmental ammonia. Some vision-related genes are differentially lost or mutated, illustrating genomic changes associated with aerial vision. Transcriptomic analyses of mudskippers exposed to air highlight regulatory pathways that are up- or down-regulated in response to hypoxia. The present study provides a valuable resource for understanding the molecular mechanisms underlying water-to-land transition of vertebrates.

  11. Dust emission mechanisms in the central Sahara: new insights from remote field observations

    Science.gov (United States)

    Allen, C.; Washington, R.; Engelstaedter, S.

    2013-12-01

    North Africa is the world's largest source of mineral aerosol (dust). The Fennec Project, an international consortium led by the University of Oxford, is the first project to systematically instrument the remote central Sahara Desert. These observations have, among others, provided new insights into the atmospheric mechanisms of dust emission. Bordj Badji Mokhtar, in south-west Algeria, is within kilometres of the centre of the global mean summer dust maximum. The site, operated by Fennec partners ONM Algerie, has been heavily instrumented since summer 2011. During the Intensive Observation Period (IOP) in June 2011, four main emission mechanisms were observed and documented: cold pool outflows, low level jets (LLJs), monsoon surges and dry convective plumes. Establishing the relative importance of dust emission mechanisms has been a long-standing research goal. A detailed partitioning exercise of dust events during the IOP shows that 45% of the dust over BBM was generated by local emission in cold pool outflows, 14% by LLJs and only 2% by dry convective plumes. 27% of the dust was advected to the site rather than locally emitted and 12% of the dust was residual or ';background' dust. The work shows the primacy of cold pool outflows for dust emission in the region and also the important contribution of dust advection. In accordance with long-held ideas, the cube of wind speed is strongly correlated with dust emission. Surprisingly however, particles in long-range advection (>500km) were found to be larger than locally emitted dust. Although a clear LLJ wind structure is evident in the mean diurnal cycle during the IOP (12m/s peak winds at 935hPa between 04-05h), LLJs are only responsible for a relatively small amount of dust emission. There is significant daily variability in LLJ strength; the strongest winds are produced by a relatively small number of events. The position and strength of the Saharan Heat Low is strongly associated with the development (or

  12. Comparative transcriptomic analysis provides insights into antibacterial mechanisms of Branchiostoma belcheri under Vibrio parahaemolyticus infection.

    Science.gov (United States)

    Zhang, Qi-Lin; Zhu, Qian-Hua; Liang, Ming-Zhong; Wang, Feng; Guo, Jun; Deng, Xian-Yu; Chen, Jun-Yuan; Wang, Yu-Jun; Lin, Lian-Bing

    2018-05-01

    Amphioxus, a basal chordate, is widely considered to be an existing proxy of the invertebrate ancestor of vertebrates, and it exhibits susceptibility to various pathogen infections and pathogenic mimic challenges. Here, in order to understand more clearly its antibacterial mechanisms, we analyzed the ribosomal RNA (rRNA)-depleted transcriptome of Chinese amphioxus (Branchiostoma belcheri) infected with Vibrio parahaemolyticus (V. p.) via next-generation deep sequencing technology (RNA-seq). We identified a total of 3214 differentially expressed genes (DEGs) by comparing V. p.-infected and control transcriptome libraries, including 2219 significantly up-regulated and 995 significantly down-regulated DEGs in V. p.-infected amphioxus. The DEGs with the top 10 most dramatic expression fold changes after V. p. infection, as well as 53 immune-related DEGs (IRDs) belonging to four primary categories of innate immunity were analyzed further. Through gene ontology (GO) and pathway enrichment analysis, DEGs were found to be primarily related to immune processes, apoptosis, catabolic and metabolic processes, binding and enzyme activity, while pathways involving bacterial infection, immune signaling, immune response, cancer, and apoptosis were overrepresented. We validated the RNA-seq results by detecting the expression levels of 10 IRDs using qRT-PCR, and we surveyed the dynamic variation in gene expression for these IRDs at 0, 6, 12, 24, and 48 h after V. p. Subsequently, according to the RNA-seq results, the presence of a primitive Toll-like receptor (TLR)-mediated antibacterial immune signaling pathway was predicted in B. belcheri. This study provides valuable information regarding antibacterial immunity for further research into the evolution of immunity in vertebrates and broadens our understanding of the innate immune response against bacterial invasion in amphioxus. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. The structure of arabidopsis thaliana OST1 provides insights into the kinase regulation mechanism in response to osmotic stress

    KAUST Repository

    Yunta, Cristina; Martí nez-Ripoll, Martí n; Zhu, Jian-Kang; Albert, Armando

    2011-01-01

    SnRK [SNF1 (sucrose non-fermenting-1)-related protein kinase] 2.6 [open stomata 1 (OST1)] is well characterized at molecular and physiological levels to control stomata closure in response to water-deficit stress. OST1 is a member of a family of 10 protein kinases from Arabidopsis thaliana (SnRK2) that integrates abscisic acid (ABA)-dependent and ABA-independent signals to coordinate the cell response to osmotic stress. A subgroup of protein phosphatases type 2C binds OST1 and keeps the kinase dephosphorylated and inactive. Activation of OST1 relies on the ABA-dependent inhibition of the protein phosphatases type 2C and the subsequent self-phosphorylation of the kinase. The OST1 ABA-independent activation depends on a short sequence motif that is conserved among all the members of the SnRK2 family. However, little is known about the molecular mechanism underlying this regulation. The crystallographic structure of OST1 shows that ABA-independent regulation motif stabilizes the conformation of the kinase catalytically essential α C helix, and it provides the basis of the ABA-independent regulation mechanism for the SnRK2 family of protein kinases. © 2011 Elsevier Ltd. All rights reserved.

  14. The structure of arabidopsis thaliana OST1 provides insights into the kinase regulation mechanism in response to osmotic stress

    KAUST Repository

    Yunta, Cristina

    2011-11-01

    SnRK [SNF1 (sucrose non-fermenting-1)-related protein kinase] 2.6 [open stomata 1 (OST1)] is well characterized at molecular and physiological levels to control stomata closure in response to water-deficit stress. OST1 is a member of a family of 10 protein kinases from Arabidopsis thaliana (SnRK2) that integrates abscisic acid (ABA)-dependent and ABA-independent signals to coordinate the cell response to osmotic stress. A subgroup of protein phosphatases type 2C binds OST1 and keeps the kinase dephosphorylated and inactive. Activation of OST1 relies on the ABA-dependent inhibition of the protein phosphatases type 2C and the subsequent self-phosphorylation of the kinase. The OST1 ABA-independent activation depends on a short sequence motif that is conserved among all the members of the SnRK2 family. However, little is known about the molecular mechanism underlying this regulation. The crystallographic structure of OST1 shows that ABA-independent regulation motif stabilizes the conformation of the kinase catalytically essential α C helix, and it provides the basis of the ABA-independent regulation mechanism for the SnRK2 family of protein kinases. © 2011 Elsevier Ltd. All rights reserved.

  15. Deep transcriptome sequencing provides new insights into the structural and functional organization of the wheat genome.

    Science.gov (United States)

    Pingault, Lise; Choulet, Frédéric; Alberti, Adriana; Glover, Natasha; Wincker, Patrick; Feuillet, Catherine; Paux, Etienne

    2015-02-10

    Because of its size, allohexaploid nature, and high repeat content, the bread wheat genome is a good model to study the impact of the genome structure on gene organization, function, and regulation. However, because of the lack of a reference genome sequence, such studies have long been hampered and our knowledge of the wheat gene space is still limited. The access to the reference sequence of the wheat chromosome 3B provided us with an opportunity to study the wheat transcriptome and its relationships to genome and gene structure at a level that has never been reached before. By combining this sequence with RNA-seq data, we construct a fine transcriptome map of the chromosome 3B. More than 8,800 transcription sites are identified, that are distributed throughout the entire chromosome. Expression level, expression breadth, alternative splicing as well as several structural features of genes, including transcript length, number of exons, and cumulative intron length are investigated. Our analysis reveals a non-monotonic relationship between gene expression and structure and leads to the hypothesis that gene structure is determined by its function, whereas gene expression is subject to energetic cost. Moreover, we observe a recombination-based partitioning at the gene structure and function level. Our analysis provides new insights into the relationships between gene and genome structure and function. It reveals mechanisms conserved with other plant species as well as superimposed evolutionary forces that shaped the wheat gene space, likely participating in wheat adaptation.

  16. Large-scale GWAS identifies multiple loci for hand grip strength providing biological insights into muscular fitness

    DEFF Research Database (Denmark)

    Willems, Sara M; Wright, Daniel J.; Day, Felix R

    2017-01-01

    with involvement of psychomotor impairment (PEX14, LRPPRC and KANSL1). Mendelian randomization analyses are consistent with a causal effect of higher genetically predicted grip strength on lower fracture risk. In conclusion, our findings provide new biological insight into the mechanistic underpinnings of grip...... strength and the causal role of muscular strength in age-related morbidities and mortality....

  17. Independent Analysis of the Flagellum Surface and Matrix Proteomes Provides Insight into Flagellum Signaling in Mammalian-infectious Trypanosoma brucei*

    Science.gov (United States)

    Oberholzer, Michael; Langousis, Gerasimos; Nguyen, HoangKim T.; Saada, Edwin A.; Shimogawa, Michelle M.; Jonsson, Zophonias O.; Nguyen, Steven M.; Wohlschlegel, James A.; Hill, Kent L.

    2011-01-01

    The flagellum of African trypanosomes is an essential and multifunctional organelle that functions in motility, cell morphogenesis, and host-parasite interaction. Previous studies of the trypanosome flagellum have been limited by the inability to purify flagella without first removing the flagellar membrane. This limitation is particularly relevant in the context of studying flagellum signaling, as signaling requires surface-exposed proteins in the flagellar membrane and soluble signaling proteins in the flagellar matrix. Here we employ a combination of genetic and mechanical approaches to purify intact flagella from the African trypanosome, Trypanosoma brucei, in its mammalian-infectious stage. We combined flagellum purification with affinity-purification of surface-exposed proteins to conduct independent proteomic analyses of the flagellum surface and matrix fractions. The proteins identified encompass a broad range of molecular functionalities, including many predicted to function in signaling. Immunofluorescence and RNA interference studies demonstrate flagellum localization and function for proteins identified and provide insight into mechanisms of flagellum attachment and motility. The flagellum surface proteome includes many T. brucei-specific proteins and is enriched for proteins up-regulated in the mammalian-infectious stage of the parasite life-cycle. The combined results indicate that the flagellum surface presents a diverse and dynamic host-parasite interface that is well-suited for host-parasite signaling. PMID:21685506

  18. Analysis of the Phlebiopsis gigantea Genome, Transcriptome and Secretome Provides Insight into Its Pioneer Colonization Strategies of Wood

    Science.gov (United States)

    Hori, Chiaki; Ishida, Takuya; Igarashi, Kiyohiko; Samejima, Masahiro; Suzuki, Hitoshi; Master, Emma; Ferreira, Patricia; Ruiz-Dueñas, Francisco J.; Held, Benjamin; Canessa, Paulo; Larrondo, Luis F.; Schmoll, Monika; Druzhinina, Irina S.; Kubicek, Christian P.; Gaskell, Jill A.; Kersten, Phil; St. John, Franz; Glasner, Jeremy; Sabat, Grzegorz; Splinter BonDurant, Sandra; Syed, Khajamohiddin; Yadav, Jagjit; Mgbeahuruike, Anthony C.; Kovalchuk, Andriy; Asiegbu, Fred O.; Lackner, Gerald; Hoffmeister, Dirk; Rencoret, Jorge; Gutiérrez, Ana; Sun, Hui; Lindquist, Erika; Barry, Kerrie; Riley, Robert; Grigoriev, Igor V.; Henrissat, Bernard; Kües, Ursula; Berka, Randy M.; Martínez, Angel T.; Covert, Sarah F.; Blanchette, Robert A.; Cullen, Daniel

    2014-01-01

    Collectively classified as white-rot fungi, certain basidiomycetes efficiently degrade the major structural polymers of wood cell walls. A small subset of these Agaricomycetes, exemplified by Phlebiopsis gigantea, is capable of colonizing freshly exposed conifer sapwood despite its high content of extractives, which retards the establishment of other fungal species. The mechanism(s) by which P. gigantea tolerates and metabolizes resinous compounds have not been explored. Here, we report the annotated P. gigantea genome and compare profiles of its transcriptome and secretome when cultured on fresh-cut versus solvent-extracted loblolly pine wood. The P. gigantea genome contains a conventional repertoire of hydrolase genes involved in cellulose/hemicellulose degradation, whose patterns of expression were relatively unperturbed by the absence of extractives. The expression of genes typically ascribed to lignin degradation was also largely unaffected. In contrast, genes likely involved in the transformation and detoxification of wood extractives were highly induced in its presence. Their products included an ABC transporter, lipases, cytochrome P450s, glutathione S-transferase and aldehyde dehydrogenase. Other regulated genes of unknown function and several constitutively expressed genes are also likely involved in P. gigantea's extractives metabolism. These results contribute to our fundamental understanding of pioneer colonization of conifer wood and provide insight into the diverse chemistries employed by fungi in carbon cycling processes. PMID:25474575

  19. Do flood risk perceptions provide useful insights for flood risk management? Findings from central Vietnam

    OpenAIRE

    Bubeck, P.; Botzen, W.J.W.; Suu, L.T.T.; Aerts, J.C.J.H.

    2012-01-01

    Following the renewed attention for non-structural flood risk reduction measures implemented at the household level, there has been an increased interest in individual flood risk perceptions. The reason for this is the commonly-made assumption that flood risk perceptions drive the motivation of individuals to undertake flood risk mitigation measures, as well as the public's demand for flood protection, and therefore provide useful insights for flood risk management. This study empirically exa...

  20. Newly evolved introns in human retrogenes provide novel insights into their evolutionary roles

    Directory of Open Access Journals (Sweden)

    Kang Li-Fang

    2012-07-01

    Full Text Available Abstract Background Retrogenes generally do not contain introns. However, in some instances, retrogenes may recruit internal exonic sequences as introns, which is known as intronization. A retrogene that undergoes intronization is a good model with which to investigate the origin of introns. Nevertheless, previously, only two cases in vertebrates have been reported. Results In this study, we systematically screened the human (Homo sapiens genome for retrogenes that evolved introns and analyzed their patterns in structure, expression and origin. In total, we identified nine intron-containing retrogenes. Alignment of pairs of retrogenes and their parents indicated that, in addition to intronization (five cases, retrogenes also may have gained introns by insertion of external sequences into the genes (one case or reversal of the orientation of transcription (three cases. Interestingly, many intronizations were promoted not by base substitutions but by cryptic splice sites, which were silent in the parental genes but active in the retrogenes. We also observed that the majority of introns generated by intronization did not involve frameshifts. Conclusions Intron gains in retrogenes are not as rare as previously thought. Furthermore, diverse mechanisms may lead to intron creation in retrogenes. The activation of cryptic splice sites in the intronization of retrogenes may be triggered by the change of gene structure after retroposition. A high percentage of non-frameshift introns in retrogenes may be because non-frameshift introns do not dramatically affect host proteins. Introns generated by intronization in human retrogenes are generally young, which is consistent with previous findings for Caenorhabditis elegans. Our results provide novel insights into the evolutionary role of introns.

  1. A six-gene phylogeny provides new insights into choanoflagellate evolution.

    Science.gov (United States)

    Carr, Martin; Richter, Daniel J; Fozouni, Parinaz; Smith, Timothy J; Jeuck, Alexandra; Leadbeater, Barry S C; Nitsche, Frank

    2017-02-01

    Recent studies have shown that molecular phylogenies of the choanoflagellates (Class Choanoflagellatea) are in disagreement with their traditional taxonomy, based on morphology, and that Choanoflagellatea requires considerable taxonomic revision. Furthermore, phylogenies suggest that the morphological and ecological evolution of the group is more complex than has previously been recognized. Here we address the taxonomy of the major choanoflagellate order Craspedida, by erecting four new genera. The new genera are shown to be morphologically, ecologically and phylogenetically distinct from other choanoflagellate taxa. Furthermore, we name five novel craspedid species, as well as formally describe ten species that have been shown to be either misidentified or require taxonomic revision. Our revised phylogeny, including 18 new species and sequence data for two additional genes, provides insights into the morphological and ecological evolution of the choanoflagellates. We examine the distribution within choanoflagellates of these two additional genes, EF-1A and EFL, closely related translation GTPases which are required for protein synthesis. Mapping the presence and absence of these genes onto the phylogeny highlights multiple events of gene loss within the choanoflagellates. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Atomic Force Microscopy Provides New Mechanistic Insights into the Pathogenesis of Pemphigus

    Directory of Open Access Journals (Sweden)

    Franziska Vielmuth

    2018-03-01

    Full Text Available Autoantibodies binding to the extracellular domains of desmoglein (Dsg 3 and 1 are critical in the pathogenesis of pemphigus by mechanisms leading to impaired function of desmosomes and blister formation in the epidermis and mucous membranes. Desmosomes are highly organized protein complexes which provide strong intercellular adhesion. Desmosomal cadherins such as Dsgs, proteins of the cadherin superfamily which interact via their extracellular domains in Ca2+-dependent manner, are the transmembrane adhesion molecules clustered within desmosomes. Investigations on pemphigus cover a wide range of experimental approaches including biophysical methods. Especially atomic force microscopy (AFM has recently been applied increasingly because it allows the analysis of native materials such as cultured cells and tissues under near-physiological conditions. AFM provides information about the mechanical properties of the sample together with detailed interaction analyses of adhesion molecules. With AFM, it was recently demonstrated that autoantibodies directly inhibit Dsg interactions on the surface of living keratinocytes, a phenomenon which has long been considered the main mechanism causing loss of cell cohesion in pemphigus. In addition, AFM allows to study how signaling pathways altered in pemphigus control binding properties of Dsgs. More general, AFM and other biophysical studies recently revealed the importance of keratin filaments for regulation of Dsg binding and keratinocyte mechanical properties. In this mini-review, we reevaluate AFM studies in pemphigus and keratinocyte research, recapitulate what is known about the interaction mechanisms of desmosomal cadherins and discuss the advantages and limitations of AFM in these regards.

  3. Whole genome analysis of Leptospira licerasiae provides insight into leptospiral evolution and pathogenicity.

    Directory of Open Access Journals (Sweden)

    Jessica N Ricaldi

    Full Text Available The whole genome analysis of two strains of the first intermediately pathogenic leptospiral species to be sequenced (Leptospira licerasiae strains VAR010 and MMD0835 provides insight into their pathogenic potential and deepens our understanding of leptospiral evolution. Comparative analysis of eight leptospiral genomes shows the existence of a core leptospiral genome comprising 1547 genes and 452 conserved genes restricted to infectious species (including L. licerasiae that are likely to be pathogenicity-related. Comparisons of the functional content of the genomes suggests that L. licerasiae retains several proteins related to nitrogen, amino acid and carbohydrate metabolism which might help to explain why these Leptospira grow well in artificial media compared with pathogenic species. L. licerasiae strains VAR010(T and MMD0835 possess two prophage elements. While one element is circular and shares homology with LE1 of L. biflexa, the second is cryptic and homologous to a previously identified but unnamed region in L. interrogans serovars Copenhageni and Lai. We also report a unique O-antigen locus in L. licerasiae comprised of a 6-gene cluster that is unexpectedly short compared with L. interrogans in which analogous regions may include >90 such genes. Sequence homology searches suggest that these genes were acquired by lateral gene transfer (LGT. Furthermore, seven putative genomic islands ranging in size from 5 to 36 kb are present also suggestive of antecedent LGT. How Leptospira become naturally competent remains to be determined, but considering the phylogenetic origins of the genes comprising the O-antigen cluster and other putative laterally transferred genes, L. licerasiae must be able to exchange genetic material with non-invasive environmental bacteria. The data presented here demonstrate that L. licerasiae is genetically more closely related to pathogenic than to saprophytic Leptospira and provide insight into the genomic bases for

  4. Sequencing of the sea lamprey (Petromyzon marinus) genome provides insights into vertebrate evolution

    Science.gov (United States)

    Smith, Jeramiah J; Kuraku, Shigehiro; Holt, Carson; Sauka-Spengler, Tatjana; Jiang, Ning; Campbell, Michael S; Yandell, Mark D; Manousaki, Tereza; Meyer, Axel; Bloom, Ona E; Morgan, Jennifer R; Buxbaum, Joseph D; Sachidanandam, Ravi; Sims, Carrie; Garruss, Alexander S; Cook, Malcolm; Krumlauf, Robb; Wiedemann, Leanne M; Sower, Stacia A; Decatur, Wayne A; Hall, Jeffrey A; Amemiya, Chris T; Saha, Nil R; Buckley, Katherine M; Rast, Jonathan P; Das, Sabyasachi; Hirano, Masayuki; McCurley, Nathanael; Guo, Peng; Rohner, Nicolas; Tabin, Clifford J; Piccinelli, Paul; Elgar, Greg; Ruffier, Magali; Aken, Bronwen L; Searle, Stephen MJ; Muffato, Matthieu; Pignatelli, Miguel; Herrero, Javier; Jones, Matthew; Brown, C Titus; Chung-Davidson, Yu-Wen; Nanlohy, Kaben G; Libants, Scot V; Yeh, Chu-Yin; McCauley, David W; Langeland, James A; Pancer, Zeev; Fritzsch, Bernd; de Jong, Pieter J; Zhu, Baoli; Fulton, Lucinda L; Theising, Brenda; Flicek, Paul; Bronner, Marianne E; Warren, Wesley C; Clifton, Sandra W; Wilson, Richard K; Li, Weiming

    2013-01-01

    Lampreys are representatives of an ancient vertebrate lineage that diverged from our own ~500 million years ago. By virtue of this deeply shared ancestry, the sea lamprey (P. marinus) genome is uniquely poised to provide insight into the ancestry of vertebrate genomes and the underlying principles of vertebrate biology. Here, we present the first lamprey whole-genome sequence and assembly. We note challenges faced owing to its high content of repetitive elements and GC bases, as well as the absence of broad-scale sequence information from closely related species. Analyses of the assembly indicate that two whole-genome duplications likely occurred before the divergence of ancestral lamprey and gnathostome lineages. Moreover, the results help define key evolutionary events within vertebrate lineages, including the origin of myelin-associated proteins and the development of appendages. The lamprey genome provides an important resource for reconstructing vertebrate origins and the evolutionary events that have shaped the genomes of extant organisms. PMID:23435085

  5. Mechanisms of heterogeneous crystal growth in atomic systems: insights from computer simulations.

    Science.gov (United States)

    Gulam Razul, M S; Hendry, J G; Kusalik, P G

    2005-11-22

    In this paper we analyze the atomic-level structure of solid/liquid interfaces of Lennard-Jones fcc systems. The 001, 011, and 111 faces are examined during steady-state growth and melting of these crystals. The mechanisms of crystallization and melting are explored using averaged configurations generated during these steady-state runs, where subsequent tagging and labeling of particles at the interface provide many insights into the detailed atomic behavior at the freezing and melting interfaces. The interfaces are generally found to be rough and we observe the structure of freezing and melting interfaces to be very similar. Large structural fluctuations with solidlike and liquidlike characteristics are apparent in both the freezing and melting interfaces. The behavior at the interface observed under either growth or melting conditions reflects a competition between ordering and disordering processes. In addition, we observe atom hopping that imparts liquidlike characteristics to the solid side of the interfaces for all three crystal faces. Solid order is observed to extend as rough, three-dimensional protuberances through the interface, particularly for the 001 and 011 faces. We are also able to reconcile our different measures for the interfacial width and address the onset of asymmetry in the growth rates at high rates of crystal growth/melting.

  6. Multidimensional proteomics analysis of amniotic fluid to provide insight into the mechanisms of idiopathic preterm birth.

    Directory of Open Access Journals (Sweden)

    Irina A Buhimschi

    2008-04-01

    Full Text Available Though recent advancement in proteomics has provided a novel perspective on several distinct pathogenetic mechanisms leading to preterm birth (inflammation, bleeding, the etiology of most preterm births still remains elusive. We conducted a multidimensional proteomic analysis of the amniotic fluid to identify pathways related to preterm birth in the absence of inflammation or bleeding.A proteomic fingerprint was generated from fresh amniotic fluid using surface-enhanced laser desorbtion ionization time of flight (SELDI-TOF mass spectrometry in a total of 286 consecutive samples retrieved from women who presented with signs or symptoms of preterm labor or preterm premature rupture of the membranes. Inflammation and/or bleeding proteomic patterns were detected in 32% (92/286 of the SELDI tracings. In the remaining tracings, a hierarchical algorithm was applied based on descriptors quantifying similarity/dissimilarity among proteomic fingerprints. This allowed identification of a novel profile (Q-profile based on the presence of 5 SELDI peaks in the 10-12.5 kDa mass area. Women displaying the Q-profile (mean+/-SD, gestational age: 25+/-4 weeks, n = 40 were more likely to deliver preterm despite expectant management in the context of intact membranes and normal amniotic fluid clinical results. Utilizing identification-centered proteomics techniques (fluorescence two-dimensional differential gel electrophoresis, robotic tryptic digestion and mass spectrometry coupled with Protein ANalysis THrough Evolutionary Relationships (PANTHER ontological classifications, we determined that in amniotic fluids with Q-profile the differentially expressed proteins are primarily involved in non-inflammatory biological processes such as protein metabolism, signal transduction and transport.Proteomic profiling of amniotic fluid coupled with non-hierarchical bioinformatics algorithms identified a subgroup of patients at risk for preterm birth in the absence of intra

  7. Metabolic Mechanisms in Obesity and Type 2 Diabetes: Insights from Bariatric/Metabolic Surgery

    Directory of Open Access Journals (Sweden)

    Adriana Florinela Cătoi

    2015-11-01

    Full Text Available Obesity and the related diabetes epidemics represent a real concern worldwide. Bariatric/metabolic surgery emerged in last years as a valuable therapeutic option for obesity and related diseases, including type 2 diabetes mellitus (T2DM. The complicated network of mechanisms involved in obesity and T2DM have not completely defined yet. There is still a debate on which would be the first metabolic defect leading to metabolic deterioration: insulin resistance or hyperinsulinemia? Insight into the metabolic effects of bariatric/metabolic surgery has revealed that, beyond weight loss and food restriction, other mechanisms can be activated by the rearrangements of the gastrointestinal tract, such as the incretinic/anti-incretinic system, changes in bile acid composition and flow, and modifications of gut microbiota; all of them possibly involved in the remission of T2DM. The complete elucidation of these mechanisms will lead to a better understanding of the pathogenesis of this disease. Our aim was to review some of the metabolic mechanisms involved in the development of T2DM in obese patients as well as in the remission of this condition in patients submitted to bariatric/metabolic surgery.

  8. Tackling wicked problems: how theories of agency can provide new insights.

    Science.gov (United States)

    Varpio, Lara; Aschenbrener, Carol; Bates, Joanna

    2017-04-01

    This paper reviews why and how theories of agency can be used as analytical lenses to help health professions education (HPE) scholars address our community's wicked problems. Wicked problems are those that resist clear problem statements, defy traditional analysis approaches, and refuse definitive resolution (e.g. student remediation, assessments of professionalism, etc.). We illustrate how theories of agency can provide new insights into such challenges by examining the application of these theories to one particular wicked problem in HPE: interprofessional education (IPE). After searching the HPE literature and finding that theories of agency had received little attention, we borrowed techniques from narrative literature reviews to search databases indexing a broad scope of disciplines (i.e. ERIC, Web of Science, Scopus, MEDLINE and PubMed) for publications (1994-2014) that: (i) examined agency, or (ii) incorporated an agency-informed analytical perspective. The lead author identified the theories of agency used in these articles, and reviewed the texts on agency cited therein and the original sources of each theory. We identified 10 theories of agency that we considered to be applicable to HPE's wicked problems. To select a subset of theories for presentation in this paper, we discussed each theory in relation to some of HPE's wicked problems. Through debate and reflection, we unanimously agreed on the applicability of a subset of theories for illuminating HPE's wicked problems. This subset is described in this paper. We present four theories of agency: Butler's post-structural formulation; Giddens' sociological formulation; cultural historical activity theory's formulation, and Bandura's social cognitive psychology formulation. We introduce each theory and apply each to the challenges of engaging in IPE. Theories of agency can inform HPE scholarship in novel and generative ways. Each theory offers new insights into the roots of wicked problems and means for

  9. A new insight into the immobilization mechanism of Zn on biochar: the role of anions dissolved from ash

    Science.gov (United States)

    Qian, Tingting; Wang, Yujun; Fan, Tingting; Fang, Guodong; Zhou, Dongmei

    2016-09-01

    Biochar is considered to be a promising material for heavy metal immobilization in soil. However, the immobilization mechanisms of Zn2+ on biochars derived from many common waste biomasses are not completely understood. Herein, biochars (denoted as PN350, PN550, WS350, and WS550) derived from pine needle (PN) and wheat straw (WS) were prepared at two pyrolysis temperatures (350 °C and 550 °C). The immobilization behaviors and mechanisms of Zn2+ on these biochars were systematically investigated. The results show that compared with biochars produced at low temperature, biochars produced at high temperature contained higher amounts of ash and exhibited much higher sorption capacities of Zn2+. By using Zn K-edge EXAFS spectroscopy, we find that the formation of various Zn precipitates/minerals, which was caused by the release of OH-, CO32-, and Si species from biochar, was the immobilization mechanism of Zn2+ on PN and WS biochars. Hydrozincite and Zn(OH)2 were the main species formed on PN350, PN550, and WS350; while on WS550, besides hydrozincite, a large fraction of hemimorphite was formed. The occurrence of hydrozincite and hemimorphite on biochar during Zn2+ immobilization is firstly reported in our study, which provides a new insight into the immobilization mechanism of Zn2+ on biochar.

  10. Breaking the hydrophobicity of the MscL pore: insights into a charge-induced gating mechanism.

    Directory of Open Access Journals (Sweden)

    Balasubramanian Chandramouli

    Full Text Available The mechanosensitive channel of large conductance (MscL is a protein that responds to membrane tension by opening a transient pore during osmotic downshock. Due to its large pore size and functional reconstitution into lipid membranes, MscL has been proposed as a promising artificial nanovalve suitable for biotechnological applications. For example, site-specific mutations and tailored chemical modifications have shown how MscL channel gating can be triggered in the absence of tension by introducing charged residues at the hydrophobic pore level. Recently, engineered MscL proteins responsive to stimuli like pH or light have been reported. Inspired by experiments, we present a thorough computational study aiming at describing, with atomistic detail, the artificial gating mechanism and the molecular transport properties of a light-actuated bacterial MscL channel, in which a charge-induced gating mechanism has been enabled through the selective cleavage of photo-sensitive alkylating agents. Properties such as structural transitions, pore dimension, ion flux and selectivity have been carefully analyzed. Besides, the effects of charge on alternative sites of the channel with respect to those already reported have been addressed. Overall, our results provide useful molecular insights into the structural events accompanying the engineered MscL channel gating and the interplay of electrostatic effects, channel opening and permeation properties. In addition, we describe how the experimentally observed ionic current in a single-subunit charged MscL mutant is obtained through a hydrophobicity breaking mechanism involving an asymmetric inter-subunit motion.

  11. Mechanism-based Inhibitors of the Human Sirtuin 5 Deacylase: Structure-Activity Relationship, Biostructural, and Kinetic Insight

    DEFF Research Database (Denmark)

    Rajabi, Nima; Auth, Marina; Troelsen, Kathrin Rentzius

    2017-01-01

    to date. We provide rationalization of the mode of binding by solving co-crystal structures of selected inhibitors in complex with both human and zebrafish SIRT5, which provide insight for future optimization of inhibitors with more "drug-like" properties. Importantly, enzyme kinetic evaluation revealed...

  12. Long, paired A'A/Pahoehoe flows of Mauna Loa: Volcanological significance and insights they provide into volcano plumbing systems

    Science.gov (United States)

    Rowland, Scott K.; Walker, George P. L.

    1987-01-01

    The long lava flows of Mauna Loa, Hawaii have been cited as Earth's closed analogs to the large Martian flows. It is therefore important to understand the flow mechanics and characteristics of the Mauna Loa flows and to make use of these in an attempt to gain insights into Martian eruptive processes. Two fundamentally different kinds of long lava flows can be distinguished on Hawaiian volcanoes as in Martian flows. The two kinds may have identical initial viscosities, chemical compositions, flow lengths, and flow volumes, but their flow mechanisms and thermal energy budgets are radically different. One travels a distance set by the discharge rate as envisaged by Walker and Wadge, and the other travels a distance set mainly by the eruption duration and ground slope. In the Mauna Loa lavas, yield strength becomes an important flow morphology control only in the distal part of a'a lavas. The occurrence of paired flows on Mauna Loa yields insights into the internal plumbing systems of the volcano, and it is significant that all of the volume of the a'a flow must be stored in a magma chamber before eruption, while none of the volume of the pahoehoe needs to be so stored. Differentiation between the two kinds of flows on images of Martian volcanoes is possible and hence an improved understanding of these huge structures is acquired.

  13. Long, paired A'A/Pahoehoe flows of Mauna Loa: Volcanological significance and insights they provide into volcano plumbing systems

    International Nuclear Information System (INIS)

    Rowland, S.K.; Walker, G.P.L.

    1987-01-01

    The long lava flows of Mauna Loa, Hawaii have been cited as Earth's closed analogs to the large Martian flows. It is therefore important to understand the flow mechanics and characteristics of the Mauna Loa flows and to make use of these in an attempt to gain insights into Martian eruptive processes. Two fundamentally different kinds of long lava flows can be distinguished on Hawaiian volcanoes as in Martian flows. The two kinds may have identical initial viscosities, chemical compositions, flow lengths, and flow volumes, but their flow mechanisms and thermal energy budgets are radically different. One travels a distance set by the discharge rate as envisaged by Walker and Wadge, and the other travels a distance set mainly by the eruption duration and ground slope. In the Mauna Loa lavas, yield strength becomes an important flow morphology control only in the distal part of a'a lavas. The occurrence of paired flows on Mauna Loa yields insights into the internal plumbing systems of the volcano, and it is significant that all of the volume of the a'a flow must be stored in a magma chamber before eruption, while none of the volume of the pahoehoe needs to be so stored. Differentiation between the two kinds of flows on images of Martian volcanoes is possible and hence an improved understanding of these huge structures is acquired

  14. Insights into the Mechanism and Kinetics of Thermo-Oxidative Degradation of HFPE High Performance Polymer.

    Science.gov (United States)

    Kunnikuruvan, Sooraj; Parandekar, Priya V; Prakash, Om; Tsotsis, Thomas K; Nair, Nisanth N

    2016-06-02

    The growing requisite for materials having high thermo-oxidative stability makes the design and development of high performance materials an active area of research. Fluorination of the polymer backbone is a widely applied strategy to improve various properties of the polymer, most importantly the thermo-oxidative stability. Many of these fluorinated polymers are known to have thermo-oxidative stability up to 700 K. However, for space and aerospace applications, it is important to improve its thermo-oxidative stability beyond 700 K. Molecular-level details of the thermo-oxidative degradation of such polymers can provide vital information to improve the polymer. In this spirit, we have applied quantum mechanical and microkinetic analysis to scrutinize the mechanism and kinetics of the thermo-oxidative degradation of a fluorinated polymer with phenylethenyl end-cap, HFPE. This study gives an insight into the thermo-oxidative degradation of HFPE and explains most of the experimental observations on the thermo-oxidative degradation of this polymer. Thermolysis of C-CF3 bond in the dianhydride component (6FDA) of HFPE is found to be the rate-determining step of the degradation. Reaction pathways that are responsible for the experimentally observed weight loss of the polymer is also scrutinized. On the basis of these results, we propose a modification of HFPE polymer to improve its thermo-oxidative stability.

  15. Comparative genomics provide insights into evolution of trichoderma nutrition style.

    Science.gov (United States)

    Xie, Bin-Bin; Qin, Qi-Long; Shi, Mei; Chen, Lei-Lei; Shu, Yan-Li; Luo, Yan; Wang, Xiao-Wei; Rong, Jin-Cheng; Gong, Zhi-Ting; Li, Dan; Sun, Cai-Yun; Liu, Gui-Ming; Dong, Xiao-Wei; Pang, Xiu-Hua; Huang, Feng; Liu, Weifeng; Chen, Xiu-Lan; Zhou, Bai-Cheng; Zhang, Yu-Zhong; Song, Xiao-Yan

    2014-02-01

    Saprotrophy on plant biomass is a recently developed nutrition strategy for Trichoderma. However, the physiology and evolution of this new nutrition strategy is still elusive. We report the deep sequencing and analysis of the genome of Trichoderma longibrachiatum, an efficient cellulase producer. The 31.7-Mb genome, smallest among the sequenced Trichoderma species, encodes fewer nutrition-related genes than saprotrophic T. reesei (Tr), including glycoside hydrolases and nonribosomal peptide synthetase-polyketide synthase. Homology and phylogenetic analyses suggest that a large number of nutrition-related genes, including GH18 chitinases, β-1,3/1,6-glucanases, cellulolytic enzymes, and hemicellulolytic enzymes, were lost in the common ancestor of T. longibrachiatum (Tl) and Tr. dN/dS (ω) calculation indicates that all the nutrition-related genes analyzed are under purifying selection. Cellulolytic enzymes, the key enzymes for saprotrophy on plant biomass, are under stronger purifying selection pressure in Tl and Tr than in mycoparasitic species, suggesting that development of the nutrition strategy of saprotrophy on plant biomass has increased the selection pressure. In addition, aspartic proteases, serine proteases, and metalloproteases are subject to stronger purifying selection pressure in Tl and Tr, suggesting that these enzymes may also play important roles in the nutrition. This study provides insights into the physiology and evolution of the nutrition strategy of Trichoderma.

  16. Reduction of α,β-Unsaturated Ketones by Old Yellow Enzymes: Mechanistic Insights from Quantum Mechanics/Molecular Mechanics Calculations.

    Science.gov (United States)

    Lonsdale, Richard; Reetz, Manfred T

    2015-11-25

    Enoate reductases catalyze the reduction of activated C═C bonds with high enantioselectivity. The oxidative half-reaction, which involves the addition of a hydride and a proton to opposite faces of the C═C bond, has been studied for the first time by hybrid quantum mechanics/molecular mechanics (QM/MM). The reduction of 2-cyclohexen-1-one by YqjM from Bacillus subtilis was selected as the model system. Two-dimensional QM/MM (B3LYP-D/OPLS2005) reaction pathways suggest that the hydride and proton are added as distinct steps, with the former step preceding the latter. Furthermore, we present interesting insights into the reactivity of this enzyme, including the weak binding of the substrate in the active site, the role of the two active site histidine residues for polarization of the substrate C═O bond, structural details of the transition states to hydride and proton transfer, and the role of Tyr196 as proton donor. The information presented here will be useful for the future design of enantioselective YqjM mutants for other substrates.

  17. New insights into the binding and catalytic mechanisms of Bacillus thuringiensis lactonase: insights into B. thuringiensis AiiA mechanism.

    Directory of Open Access Journals (Sweden)

    Marc N Charendoff

    Full Text Available The lactonase enzyme (AiiA produced by Bacillus thuringiensis serves to degrade autoinducer-1 (AI-1 signaling molecules in what is an evolved mechanism by which to compete with other bacteria. Bioassays have been previously performed to determine whether the AI-1 aliphatic tail lengths have any effect on AiiA's bioactivity, however, data to date are conflicting. Additionally, specific residue contributions to the catalytic activity of AiiA provide for some interesting questions. For example, it has been proposed that Y194 serves to provide an oxyanion hole to AI-1 which is curious given the fact the substrate spans two Zn(2+ ions. These ions might conceivably provide enough charge to promote both ligand stability and the carbonyl activation necessary to drive a nucleophilic attack. To investigate these questions, multiple molecular dynamics simulations were performed across a family of seven acylated homoserine lactones (AHL along with their associated intermediate and product states. Distance analyses and interaction energy analyses were performed to investigate current bioassay data. Our simulations are consistent with experimental studies showing that AiiA degrades AHLs in a tail length independent manner. However, the presence of the tail is required for activity. Also, the putative oxyanion hole function of Y194 toward the substrate is not observed in any of the reactant or product state simulation trajectories, but does seem to show efficacy in stabilizing the intermediate state. Last, we argue through ionization state analyses, that the proton shuttling necessary for catalytic activity might be mediated by both water and substrate-based intra-molecular proton transfer. Based on this argument, an alternate catalytic mechanism is proposed.

  18. Can tobacco dependence provide insights into other drug addictions?

    Directory of Open Access Journals (Sweden)

    Joseph R. DiFranza

    2016-10-01

    Full Text Available Abstract Within the field of addiction research, individuals tend to operate within silos of knowledge focused on specific drug classes. The discovery that tobacco dependence develops in a progression of stages and that the latency to the onset of withdrawal symptoms after the last use of tobacco changes over time have provided insights into how tobacco dependence develops that might be applied to the study of other drugs. As physical dependence on tobacco develops, it progresses through previously unrecognized clinical stages of wanting, craving and needing. The latency to withdrawal is a measure of the asymptomatic phase of withdrawal, extending from the last use of tobacco to the emergence of withdrawal symptoms. Symptomatic withdrawal is characterized by a wanting phase, a craving phase, and a needing phase. The intensity of the desire to smoke that is triggered by withdrawal correlates with brain activity in addiction circuits. With repeated tobacco use, the latency to withdrawal shrinks from as long as several weeks to as short as several minutes. The shortening of the asymptomatic phase of withdrawal drives an escalation of smoking, first in terms of the number of smoking days/month until daily smoking commences, then in terms of cigarettes smoked/day. The discoveries of the stages of physical dependence and the latency to withdrawal raises the question, does physical dependence develop in stages with other drugs? Is the latency to withdrawal for other substances measured in weeks at the onset of dependence? Does it shorten over time? The research methods that uncovered how tobacco dependence emerges might be fruitfully applied to the investigation of other addictions.

  19. Qualitative insights on fundamental mechanics

    OpenAIRE

    Mardari, G. N.

    2002-01-01

    The gap between classical mechanics and quantum mechanics has an important interpretive implication: the Universe must have an irreducible fundamental level, which determines the properties of matter at higher levels of organization. We show that the main parameters of any fundamental model must be theory-independent. They cannot be predicted, because they cannot have internal causes. However, it is possible to describe them in the language of classical mechanics. We invoke philosophical reas...

  20. Herbarium records are reliable sources of phenological change driven by climate and provide novel insights into species' phenological cueing mechanisms.

    Science.gov (United States)

    Davis, Charles C; Willis, Charles G; Connolly, Bryan; Kelly, Courtland; Ellison, Aaron M

    2015-10-01

    Climate change has resulted in major changes in the phenology of some species but not others. Long-term field observational records provide the best assessment of these changes, but geographic and taxonomic biases limit their utility. Plant specimens in herbaria have been hypothesized to provide a wealth of additional data for studying phenological responses to climatic change. However, no study to our knowledge has comprehensively addressed whether herbarium data are accurate measures of phenological response and thus applicable to addressing such questions. We compared flowering phenology determined from field observations (years 1852-1858, 1875, 1878-1908, 2003-2006, 2011-2013) and herbarium records (1852-2013) of 20 species from New England, United States. Earliest flowering date estimated from herbarium records faithfully reflected field observations of first flowering date and substantially increased the sampling range across climatic conditions. Additionally, although most species demonstrated a response to interannual temperature variation, long-term temporal changes in phenological response were not detectable. Our findings support the use of herbarium records for understanding plant phenological responses to changes in temperature, and also importantly establish a new use of herbarium collections: inferring primary phenological cueing mechanisms of individual species (e.g., temperature, winter chilling, photoperiod). These latter data are lacking from most investigations of phenological change, but are vital for understanding differential responses of individual species to ongoing climate change. © 2015 Botanical Society of America.

  1. Mycobacterium tuberculosis whole genome sequencing and protein structure modelling provides insights into anti-tuberculosis drug resistance

    KAUST Repository

    Phelan, Jody

    2016-03-23

    Background Combating the spread of drug resistant tuberculosis is a global health priority. Whole genome association studies are being applied to identify genetic determinants of resistance to anti-tuberculosis drugs. Protein structure and interaction modelling are used to understand the functional effects of putative mutations and provide insight into the molecular mechanisms leading to resistance. Methods To investigate the potential utility of these approaches, we analysed the genomes of 144 Mycobacterium tuberculosis clinical isolates from The Special Programme for Research and Training in Tropical Diseases (TDR) collection sourced from 20 countries in four continents. A genome-wide approach was applied to 127 isolates to identify polymorphisms associated with minimum inhibitory concentrations for first-line anti-tuberculosis drugs. In addition, the effect of identified candidate mutations on protein stability and interactions was assessed quantitatively with well-established computational methods. Results The analysis revealed that mutations in the genes rpoB (rifampicin), katG (isoniazid), inhA-promoter (isoniazid), rpsL (streptomycin) and embB (ethambutol) were responsible for the majority of resistance observed. A subset of the mutations identified in rpoB and katG were predicted to affect protein stability. Further, a strong direct correlation was observed between the minimum inhibitory concentration values and the distance of the mutated residues in the three-dimensional structures of rpoB and katG to their respective drugs binding sites. Conclusions Using the TDR resource, we demonstrate the usefulness of whole genome association and convergent evolution approaches to detect known and potentially novel mutations associated with drug resistance. Further, protein structural modelling could provide a means of predicting the impact of polymorphisms on drug efficacy in the absence of phenotypic data. These approaches could ultimately lead to novel resistance

  2. New insights gained on mechanisms of low-energy proton-induced SEUs by minimizing energy straggle

    International Nuclear Information System (INIS)

    Dodds, Nathaniel Anson; Dodd, Paul E.; Shaneyfelt, Marty R.; Sexton, Frederick W.; Martinez, Marino J.; Black, Jeffrey D.; Marshall, P. W.; Reed, R. A.; McCurdy, M. W.; Weller, R. A.; Pellish, J. A.; Rodbell, K. P.; Gordon, M. S.

    2015-01-01

    In this study, we present low-energy proton single-event upset (SEU) data on a 65 nm SOI SRAM whose substrate has been completely removed. Since the protons only had to penetrate a very thin buried oxide layer, these measurements were affected by far less energy loss, energy straggle, flux attrition, and angular scattering than previous datasets. The minimization of these common sources of experimental interference allows more direct interpretation of the data and deeper insight into SEU mechanisms. The results show a strong angular dependence, demonstrate that energy straggle, flux attrition, and angular scattering affect the measured SEU cross sections, and prove that proton direct ionization is the dominant mechanism for low-energy proton-induced SEUs in these circuits

  3. Insights to regenerate materials: learning from nature

    Science.gov (United States)

    García-Aznar, J. M.; Valero, C.; Gómez-Benito, M. J.; Javierre, E.

    2016-08-01

    Self-healing materials, both biological and engineered, integrate the ability to repair themselves and recover their functionality using the resources inherently available to them. Although significant advances have been made, in recent years, for the design of different concepts of self-healing materials, this work aims to provide some insights into how living materials are able to regenerate or heal when a fracture or injury occurs. The main sensors that regulate this adaptive and regenerative behavior are the cells. These are able to sense the mechanical alterations in their surroundings and regulate their activity in order to remove dead tissue and/or create new tissue. Therefore, understanding how cells are able to regenerate tissues under complex and multiphysics conditions can define the biomimetics guidelines to heal through inert or traditional engineering materials. In this work, we present a combination of experiments and different kinds of multiscale and multiphysics models in order to understand how mechanics regulate some mechanisms at cell and tissue level. This combination of results aims to gain insight into the development of novel strategies for self-healing materials, mimicking the behavior induced by cells and biological tissues.

  4. [Poor insight and psychosis].

    Science.gov (United States)

    Giotakos, O

    2017-01-01

    A variety of phenomena might be considered as reflecting impaired insight in psychosis, like failure to recognize signs, symptoms or disease, failure to derive appropriate cognitive representations, despite recognition of the disease, and misattribution of the source or cause of the disease. The unawareness of tardive dyskinesia symptoms in schizophrenic patients points that self-awareness deficits in schizophrenia may be domain specific. Poor insight is an independent phenomenological and a prevalent feature in psychotic disorders in general, and in schizophrenia in particular, but we don't know yet if delusions in schizophrenia are the result of an entirely normal attempt to account for abnormal perceptual experiences or a product of abnormal experience but of normal reasoning. The theoretical approaches regarding impaired insight include the disturbed perceptual input, the impaired linkage between thought and emotion and the breakdown of the process of self-monitoring and error checking. The inability to distinguish between internally and externally generated mental events has been described by the metarepresentation theory. This theory includes the awareness of ones' goals, which leads to disorders of willed action, the awareness of intention, which leads to movement disorders, and the awareness of intentions of others, which leads to paranoid delusions. The theory of metarepresentation implies mainly output mechanisms, like the frontal cortex, while the input mechanism implies posterior brain systems, including the parietal lobe. There are many similarities between the disturbances of awareness seen in schizophrenia and those seen as a result of known neurological impairment. Neuropsychological models of impaired insight typically attribute the disturbance to any of a variety of core deficits in the processing of information. In this respect, lack of insight is on conceptual par with alogia, apraxia or aphasia in reflecting disturbed cognitive processing. In

  5. Qualitative insights on fundamental mechanics

    International Nuclear Information System (INIS)

    Mardari, Ghenadie N

    2007-01-01

    The gap between classical mechanics and quantum mechanics has an important interpretive implication: the Universe must have an irreducible fundamental level, which determines the properties of matter at higher levels of organization. We show that the main parameters of any fundamental model must be theory-independent. Moreover, such models must also contain discrete identical entities with constant properties. These conclusions appear to support the work of Kaniadakis on subquantum mechanics. A qualitative analysis is offered to suggest compatibility with relevant phenomena, as well as to propose new means for verification

  6. Genome-wide analysis of Pax8 binding provides new insights into thyroid functions

    Directory of Open Access Journals (Sweden)

    Ruiz-Llorente Sergio

    2012-04-01

    Full Text Available Abstract Background The transcription factor Pax8 is essential for the differentiation of thyroid cells. However, there are few data on genes transcriptionally regulated by Pax8 other than thyroid-related genes. To better understand the role of Pax8 in the biology of thyroid cells, we obtained transcriptional profiles of Pax8-silenced PCCl3 thyroid cells using whole genome expression arrays and integrated these signals with global cis-regulatory sequencing studies performed by ChIP-Seq analysis Results Exhaustive analysis of Pax8 immunoprecipitated peaks demonstrated preferential binding to intragenic regions and CpG-enriched islands, which suggests a role of Pax8 in transcriptional regulation of orphan CpG regions. In addition, ChIP-Seq allowed us to identify Pax8 partners, including proteins involved in tertiary DNA structure (CTCF and chromatin remodeling (Sp1, and these direct transcriptional interactions were confirmed in vivo. Moreover, both factors modulate Pax8-dependent transcriptional activation of the sodium iodide symporter (Nis gene promoter. We ultimately combined putative and novel Pax8 binding sites with actual target gene expression regulation to define Pax8-dependent genes. Functional classification suggests that Pax8-regulated genes may be directly involved in important processes of thyroid cell function such as cell proliferation and differentiation, apoptosis, cell polarity, motion and adhesion, and a plethora of DNA/protein-related processes. Conclusion Our study provides novel insights into the role of Pax8 in thyroid biology, exerted through transcriptional regulation of important genes involved in critical thyrocyte processes. In addition, we found new transcriptional partners of Pax8, which functionally cooperate with Pax8 in the regulation of thyroid gene transcription. Besides, our data demonstrate preferential location of Pax8 in non-promoter CpG regions. These data point to an orphan CpG island-mediated mechanism

  7. Transcriptomic Profiles of Brain Provide Insights into Molecular Mechanism of Feed Conversion Efficiency in Crucian Carp (Carassius auratus)

    Science.gov (United States)

    Pang, Meixia; Luo, Weiwei; Yu, Xiaomu; Zhou, Ying; Tong, Jingou

    2018-01-01

    Feed efficiency is an economically crucial trait for cultured animals, however, progress has been scarcely made in the genetic analyses of feed conversion efficiency (FCE) in fish because of the difficulties in measurement of trait phenotypes. In the present investigation, we present the first application of RNA sequencing (RNA-Seq) combined with differentially expressed genes (DEGs) analysis for identification of functional determinants related to FCE at the gene level in an aquaculture fish, crucian carp (Carassius auratus). Brain tissues of six crucian carp with extreme FCE performances were subjected to transcriptome analysis. A total of 544,612 unigenes with a mean size of 644.38 bp were obtained from Low- and High-FCE groups, and 246 DEGs that may be involved in FCE traits were identified in these two groups. qPCR confirmed that genes previously identified as up- or down-regulated by RNA-Seq were effectively up- or down-regulated under the studied conditions. Thirteen key genes, whose functions are associated with metabolism (Dgkk, Mgst3 and Guk1b), signal transduction (Vdnccsa1b, Tgfα, Nr4a1 and Tacr2) and growth (Endog, Crebrtc2, Myh7, Myh1, Myh14 and Igfbp7) were identified according to GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) annotations. Our novel findings provide useful pathway information and candidate genes for future studies of genetic mechanisms underlying FCE in crucian carp. PMID:29538345

  8. Transcriptomic Profiles of Brain Provide Insights into Molecular Mechanism of Feed Conversion Efficiency in Crucian Carp (Carassius auratus

    Directory of Open Access Journals (Sweden)

    Meixia Pang

    2018-03-01

    Full Text Available Feed efficiency is an economically crucial trait for cultured animals, however, progress has been scarcely made in the genetic analyses of feed conversion efficiency (FCE in fish because of the difficulties in measurement of trait phenotypes. In the present investigation, we present the first application of RNA sequencing (RNA-Seq combined with differentially expressed genes (DEGs analysis for identification of functional determinants related to FCE at the gene level in an aquaculture fish, crucian carp (Carassius auratus. Brain tissues of six crucian carp with extreme FCE performances were subjected to transcriptome analysis. A total of 544,612 unigenes with a mean size of 644.38 bp were obtained from Low- and High-FCE groups, and 246 DEGs that may be involved in FCE traits were identified in these two groups. qPCR confirmed that genes previously identified as up- or down-regulated by RNA-Seq were effectively up- or down-regulated under the studied conditions. Thirteen key genes, whose functions are associated with metabolism (Dgkk, Mgst3 and Guk1b, signal transduction (Vdnccsa1b, Tgfα, Nr4a1 and Tacr2 and growth (Endog, Crebrtc2, Myh7, Myh1, Myh14 and Igfbp7 were identified according to GO (Gene Ontology and KEGG (Kyoto Encyclopedia of Genes and Genomes annotations. Our novel findings provide useful pathway information and candidate genes for future studies of genetic mechanisms underlying FCE in crucian carp.

  9. Mechanics

    CERN Document Server

    Hartog, J P Den

    1961-01-01

    First published over 40 years ago, this work has achieved the status of a classic among introductory texts on mechanics. Den Hartog is known for his lively, discursive and often witty presentations of all the fundamental material of both statics and dynamics (and considerable more advanced material) in new, original ways that provide students with insights into mechanical relationships that other books do not always succeed in conveying. On the other hand, the work is so replete with engineering applications and actual design problems that it is as valuable as a reference to the practicing e

  10. The Asian arowana (Scleropages formosus) genome provides new insights into the evolution of an early lineage of teleosts

    DEFF Research Database (Denmark)

    Bian, Chao; Hu, Yinchang; Ravi, Vydianathan

    2016-01-01

    five Hox clusters. Differential gene expression among three varieties provides insights into the genetic basis of colour variation. A potential heterogametic sex chromosome is identified in the female arowana karyotype, suggesting that the sex is determined by a ZW/ZZ sex chromosomal system. The high...

  11. The value of basic research insights into atrial fibrillation mechanisms as a guide to therapeutic innovation: a critical analysis.

    Science.gov (United States)

    Heijman, Jordi; Algalarrondo, Vincent; Voigt, Niels; Melka, Jonathan; Wehrens, Xander H T; Dobrev, Dobromir; Nattel, Stanley

    2016-04-01

    Atrial fibrillation (AF) is an extremely common clinical problem associated with increased morbidity and mortality. Current antiarrhythmic options include pharmacological, ablation, and surgical therapies, and have significantly improved clinical outcomes. However, their efficacy remains suboptimal, and their use is limited by a variety of potentially serious adverse effects. There is a clear need for improved therapeutic options. Several decades of research have substantially expanded our understanding of the basic mechanisms of AF. Ectopic firing and re-entrant activity have been identified as the predominant mechanisms for arrhythmia initiation and maintenance. However, it has become clear that the clinical factors predisposing to AF and the cellular and molecular mechanisms involved are extremely complex. Moreover, all AF-promoting and maintaining mechanisms are dynamically regulated and subject to remodelling caused by both AF and cardiovascular disease. Accordingly, the initial presentation and clinical progression of AF patients are enormously heterogeneous. An understanding of arrhythmia mechanisms is widely assumed to be the basis of therapeutic innovation, but while this assumption seems self-evident, we are not aware of any papers that have critically examined the practical contributions of basic research into AF mechanisms to arrhythmia management. Here, we review recent insights into the basic mechanisms of AF, critically analyse the role of basic research insights in the development of presently used anti-AF therapeutic options and assess the potential value of contemporary experimental discoveries for future therapeutic innovation. Finally, we highlight some of the important challenges to the translation of basic science findings to clinical application. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  12. Hyper-dry conditions provide new insights into the cause of extreme floods after wildfire

    Science.gov (United States)

    Moody, John A.; Ebel, Brian A.

    2012-01-01

    A catastrophic wildfire in the foothills of the Rocky Mountains near Boulder, Colorado provided a unique opportunity to investigate soil conditions immediately after a wildfire and before alteration by rainfall. Measurements of near-surface (θ; and matric suction, ψ), rainfall, and wind velocity were started 8 days after the wildfire began. These measurements established that hyper-dryconditions (θ 3 cm-3; ψ > ~ 3 x 105 cm) existed and provided an in-situ retention curve for these conditions. These conditions exacerbate the effects of water repellency (natural and fire-induced) and limit the effectiveness of capillarity and gravity driven infiltration into fire-affected soils. The important consequence is that given hyper-dryconditions, the critical rewetting process before the first rain is restricted to the diffusion–adsorption of water-vapor. This process typically has a time scale of days to weeks (especially when the hydrologic effects of the ash layer are included) that is longer than the typical time scale (minutes to hours) of some rainstorms, such that under hyper-dryconditions essentially no rain infiltrates. The existence of hyper-dryconditions provides insight into why, frequently during the first rain storm after a wildfire, nearly all rainfall becomes runoff causing extremefloods and debris flows.

  13. A Flexible Binding Site Architecture Provides New Insights into CcpA Global Regulation in Gram-Positive Bacteria.

    Science.gov (United States)

    Yang, Yunpeng; Zhang, Lu; Huang, He; Yang, Chen; Yang, Sheng; Gu, Yang; Jiang, Weihong

    2017-01-24

    Catabolite control protein A (CcpA) is the master regulator in Gram-positive bacteria that mediates carbon catabolite repression (CCR) and carbon catabolite activation (CCA), two fundamental regulatory mechanisms that enable competitive advantages in carbon catabolism. It is generally regarded that CcpA exerts its regulatory role by binding to a typical 14- to 16-nucleotide (nt) consensus site that is called a catabolite response element (cre) within the target regions. However, here we report a previously unknown noncanonical flexible architecture of the CcpA-binding site in solventogenic clostridia, providing new mechanistic insights into catabolite regulation. This novel CcpA-binding site, named cre var , has a unique architecture that consists of two inverted repeats and an intervening spacer, all of which are variable in nucleotide composition and length, except for a 6-bp core palindromic sequence (TGTAAA/TTTACA). It was found that the length of the intervening spacer of cre var can affect CcpA binding affinity, and moreover, the core palindromic sequence of cre var is the key structure for regulation. Such a variable architecture of cre var shows potential importance for CcpA's diverse and fine regulation. A total of 103 potential cre var sites were discovered in solventogenic Clostridium acetobutylicum, of which 42 sites were picked out for electrophoretic mobility shift assays (EMSAs), and 30 sites were confirmed to be bound by CcpA. These 30 cre var sites are associated with 27 genes involved in many important pathways. Also of significance, the cre var sites are found to be widespread and function in a great number of taxonomically different Gram-positive bacteria, including pathogens, suggesting their global role in Gram-positive bacteria. In Gram-positive bacteria, the global regulator CcpA controls a large number of important physiological and metabolic processes. Although a typical consensus CcpA-binding site, cre, has been identified, it remains

  14. Structural insights into mechanisms for inhibiting amyloid β42 aggregation by non-catechol-type flavonoids.

    Science.gov (United States)

    Hanaki, Mizuho; Murakami, Kazuma; Akagi, Ken-ichi; Irie, Kazuhiro

    2016-01-15

    The prevention of 42-mer amyloid β-protein (Aβ42) aggregation is promising for the treatment of Alzheimer's disease. We previously described the site-specific inhibitory mechanism for Aβ42 aggregation by a catechol-type flavonoid, (+)-taxifolin, targeting Lys16,28 after its autoxidation. In contrast, non-catechol-type flavonoids (morin, datiscetin, and kaempferol) inhibited Aβ42 aggregation without targeting Lys16,28 with almost similar potencies to that of (+)-taxifolin. We herein provided structural insights into their mechanisms for inhibiting Aβ42 aggregation. Physicochemical analyses revealed that their inhibition did not require autoxidation. The (1)H-(15)N SOFAST-HMQC NMR of Aβ42 in the presence of morin and datiscetin revealed the significant perturbation of chemical shifts of His13,14 and Gln15, which were close to the intermolecular β-sheet region, Gln15-Ala21. His13,14 also played a role in radical formation at Tyr10, thereby inducing the oxidation of Met35, which has been implicated in Aβ42 aggregation. These results suggest the direct interaction of morin and datiscetin with the Aβ42 monomer. Although only kaempferol was oxidatively-degraded during incubation, its degradation products as well as kaempferol itself suppressed Aβ42 aggregation. However, neither kaempferol nor its decomposed products perturbed the chemical shifts of the Aβ42 monomer. Aggregation experiments using 1,1,1,3,3,3-hexafluoro-2-propanol-treated Aβ42 demonstrated that kaempferol and its degradation products inhibited the elongation rather than nucleation phase, implying that they interacted with small aggregates of Aβ42, but not with the monomer. In contrast, morin and datiscetin inhibited both phases. The position and number of hydroxyl groups on the B-ring of non-catechol-type flavonoids could be important for their inhibitory potencies and mechanisms against Aβ42 aggregation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Induced seismicity provides insight into why earthquake ruptures stop

    KAUST Repository

    Galis, Martin

    2017-12-21

    Injection-induced earthquakes pose a serious seismic hazard but also offer an opportunity to gain insight into earthquake physics. Currently used models relating the maximum magnitude of injection-induced earthquakes to injection parameters do not incorporate rupture physics. We develop theoretical estimates, validated by simulations, of the size of ruptures induced by localized pore-pressure perturbations and propagating on prestressed faults. Our model accounts for ruptures growing beyond the perturbed area and distinguishes self-arrested from runaway ruptures. We develop a theoretical scaling relation between the largest magnitude of self-arrested earthquakes and the injected volume and find it consistent with observed maximum magnitudes of injection-induced earthquakes over a broad range of injected volumes, suggesting that, although runaway ruptures are possible, most injection-induced events so far have been self-arrested ruptures.

  16. Transcriptome-based gene profiling provides novel insights into the characteristics of radish root response to Cr stress with next-generation sequencing

    Directory of Open Access Journals (Sweden)

    Yang eXie

    2015-03-01

    Full Text Available Radish (Raphanus sativus L. is an important worldwide root vegetable crop with high nutrient values and is adversely affected by non-essential heavy metals including chromium (Cr. Little is known about the molecular mechanism underlying Cr stress response in radish. In this study, RNA-Seq technique was employed to identify differentially expressed genes (DEGs under Cr stress. Based on de novo transcriptome assembly, there were 30,676 unigenes representing 60,881 transcripts isolated from radish root under Cr stress. Differential gene analysis revealed that 2,985 uingenes were significantly differentially expressed between Cr-free (CK and Cr-treated (Cr600 libraries, among which 1,424 were up-regulated and 1,561 down-regulated. Gene ontology (GO analysis revealed that these DEGs were mainly involved in primary metabolic process, response to abiotic stimulus, cellular metabolic process and small molecule metabolic process. Kyoto encyclopedia of genes and genomes (KEGG enrichment analysis showed that the DEGs were mainly involved in protein processing in endoplasmic reticulum, starch and sucrose metabolism, amino acid metabolism, glutathione metabolism, drug and xenobiotics by cytochrome P450 metabolism. RT-qPCR analysis showed that the expression patterns of 12 randomly selected DEGs were highly accordant with the results from RNA-seq. Furthermore, many candidate genes including signaling protein kinases, transcription factors and metal transporters, chelate compound biosynthesis and antioxidant system, were involved in defense and detoxification mechanisms of Cr stress response regulatory networks. These results would provide novel insight into molecular mechanism underlying plant responsiveness to Cr stress and facilitate further genetic manipulation on Cr uptake and accumulation in radish.

  17. Obsessive compulsive disorder networks: positron emission tomography and neuropsychology provide new insights.

    Directory of Open Access Journals (Sweden)

    Bruno Millet

    Full Text Available BACKGROUND: Deep brain stimulation has shed new light on the central role of the prefrontal cortex (PFC in obsessive compulsive disorder (OCD. We explored this structure from a functional perspective, synchronizing neuroimaging and cognitive measures. METHODS AND FINDINGS: This case-control cross-sectional study compared 15 OCD patients without comorbidities and not currently on serotonin reuptake inhibitors or cognitive behavioural therapy with 15 healthy controls (matched for age, sex and education level on resting-state (18FDG-PET scans and a neuropsychological battery assessing executive functions. We looked for correlations between metabolic modifications and impaired neuropsychological scores. Modifications in glucose metabolism were found in frontal regions (orbitofrontal cortex and dorsolateral cortices, the cingulate gyrus, insula and parietal gyrus. Neuropsychological differences between patients and controls, which were subtle, were correlated with the metabolism of the prefrontal, parietal, and temporal cortices. CONCLUSION: As expected, we confirmed previous reports of a PFC dysfunction in OCD patients, and established a correlation with cognitive deficits. Other regions outside the prefrontal cortex, including the dorsoparietal cortex and the insula, also appeared to be implicated in the pathophysiology of OCD, providing fresh insights on the complexity of OCD syndromes.

  18. Obsessive Compulsive Disorder Networks: Positron Emission Tomography and Neuropsychology Provide New Insights

    Science.gov (United States)

    Millet, Bruno; Dondaine, Thibaut; Reymann, Jean-Michel; Bourguignon, Aurélie; Naudet, Florian; Jaafari, Nematollah; Drapier, Dominique; Turmel, Valérie; Mesbah, Habiba; Vérin, Marc; Le Jeune, Florence

    2013-01-01

    Background Deep brain stimulation has shed new light on the central role of the prefrontal cortex (PFC) in obsessive compulsive disorder (OCD). We explored this structure from a functional perspective, synchronizing neuroimaging and cognitive measures. Methods and Findings This case-control cross-sectional study compared 15 OCD patients without comorbidities and not currently on serotonin reuptake inhibitors or cognitive behavioural therapy with 15 healthy controls (matched for age, sex and education level) on resting-state 18FDG-PET scans and a neuropsychological battery assessing executive functions. We looked for correlations between metabolic modifications and impaired neuropsychological scores. Modifications in glucose metabolism were found in frontal regions (orbitofrontal cortex and dorsolateral cortices), the cingulate gyrus, insula and parietal gyrus. Neuropsychological differences between patients and controls, which were subtle, were correlated with the metabolism of the prefrontal, parietal, and temporal cortices. Conclusion As expected, we confirmed previous reports of a PFC dysfunction in OCD patients, and established a correlation with cognitive deficits. Other regions outside the prefrontal cortex, including the dorsoparietal cortex and the insula, also appeared to be implicated in the pathophysiology of OCD, providing fresh insights on the complexity of OCD syndromes. PMID:23326403

  19. Figure-ground mechanisms provide structure for selective attention.

    Science.gov (United States)

    Qiu, Fangtu T; Sugihara, Tadashi; von der Heydt, Rüdiger

    2007-11-01

    Attention depends on figure-ground organization: figures draw attention, whereas shapes of the ground tend to be ignored. Recent research has revealed mechanisms for figure-ground organization in the visual cortex, but how these mechanisms relate to the attention process remains unclear. Here we show that the influences of figure-ground organization and volitional (top-down) attention converge in single neurons of area V2 in Macaca mulatta. Although we found assignment of border ownership for attended and for ignored figures, attentional modulation was stronger when the attended figure was located on the neuron's preferred side of border ownership. When the border between two overlapping figures was placed in the receptive field, responses depended on the side of attention, and enhancement was generally found on the neuron's preferred side of border ownership. This correlation suggests that the neural network that creates figure-ground organization also provides the interface for the top-down selection process.

  20. Recent density functional studies of hydrodesulfurization catalysts: insight into structure and mechanism

    International Nuclear Information System (INIS)

    Hinnemann, Berit; Moses, Poul Georg; Noerskov, Jens K

    2008-01-01

    The present article will highlight some recent density functional theory (DFT) studies of hydrodesulfurization (HDS) catalysts. It will be summarized how DFT in combination with experimental studies can give a detailed picture of the structure of the active phase. Furthermore, we have used DFT to investigate the reaction pathway for thiophene HDS, and we find that the reaction entails a complex interplay of different active sites, depending on reaction conditions. An investigation of pyridine inhibition confirmed some of these results. These fundamental insights constitute a basis for rational improvement of HDS catalysts, as they have provided important structure-activity relationships

  1. Mycorrhizal symbiosis: ancient signalling mechanisms co-opted

    NARCIS (Netherlands)

    Geurts, R.; Vleeshouwers, V.G.A.A.

    2012-01-01

    Mycorrhizal root endosymbiosis is an ancient property of land plants. Two parallel studies now provide novel insight into the mechanism driving this interaction and how it is used by other filamentous microbes like pathogenic oomycetes.

  2. Comparative Proteomic Analysis of the Graft Unions in Hickory (Carya cathayensis Provides Insights into Response Mechanisms to Grafting Process

    Directory of Open Access Journals (Sweden)

    Daoliang Yan

    2017-04-01

    Full Text Available Hickory (Carya cathayensis, a tree with high nutritional and economic value, is widely cultivated in China. Grafting greatly reduces the juvenile phase length and makes the large scale cultivation of hickory possible. To reveal the response mechanisms of this species to grafting, we employed a proteomics-based approach to identify differentially expressed proteins in the graft unions during the grafting process. Our study identified 3723 proteins, of which 2518 were quantified. A total of 710 differentially expressed proteins (DEPs were quantified and these were involved in various molecular functional and biological processes. Among these DEPs, 341 were up-regulated and 369 were down-regulated at 7 days after grafting compared with the control. Four auxin-related proteins were down-regulated, which was in agreement with the transcription levels of their encoding genes. The Kyoto Encyclopedia of Genes and Genomes (KEGG analysis showed that the ‘Flavonoid biosynthesis’ pathway and ‘starch and sucrose metabolism’ were both significantly up-regulated. Interestingly, five flavonoid biosynthesis-related proteins, a flavanone 3-hyfroxylase, a cinnamate 4-hydroxylase, a dihydroflavonol-4-reductase, a chalcone synthase, and a chalcone isomerase, were significantly up-regulated. Further experiments verified a significant increase in the total flavonoid contents in scions, which suggests that graft union formation may activate flavonoid biosynthesis to increase the content of a series of downstream secondary metabolites. This comprehensive analysis provides fundamental information on the candidate proteins and secondary metabolism pathways involved in the grafting process for hickory.

  3. Structural insights into microtubule doublet interactions inaxonemes

    Energy Technology Data Exchange (ETDEWEB)

    Downing, Kenneth H.; Sui, Haixin

    2007-06-06

    Coordinated sliding of microtubule doublets, driven by dynein motors, produces periodic beating of the axoneme. Recent structural studies of the axoneme have used cryo-electron tomography to reveal new details of the interactions among some of the multitude of proteins that form the axoneme and regulate its movement. Connections among the several sets of dyneins, in particular, suggest ways in which their actions may be coordinated. Study of the molecular architecture of isolated doublets has provided a structural basis for understanding the doublet's mechanical properties that are related to the bending of the axoneme, and has also offered insight into its potential role in the mechanism of dynein activity regulation.

  4. Pathophysiological mechanisms of sino-atrial dysfunction and ventricular conduction disease associated with SCN5A deficiency: insights from mouse models

    Directory of Open Access Journals (Sweden)

    Christopher L-H Huang

    2012-07-01

    Full Text Available Genetically modified mice provide a number of models for studying cardiac channelopathies related to cardiac Na+ channel (SCN5A abnormalities. We review key pathophysiological features in these murine models that may underlie clinical features observed in sinus node dysfunction and progressive cardiac conduction disease, thereby providing insights into their pathophysiological mechanisms. We describe loss of Na+ channel function and fibrotic changes associated with both loss and gain-of-function Na+ channel mutations. Recent reports further relate the progressive fibrotic changes to upregulation of TGF-β1 production and the transcription factors, Atf3, a stress-inducible gene, and Egr1, to the presence of heterozygous Scn5a inactivation. Both changes are thus directly implicated in the clinically observed disruptions in sino-atrial node pacemaker function, and sino-atrial and ventricular conduction, and their progression with age. Murine systems with genetic modifications in Scn5a thus prove a useful tool to address questions concerning roles of genetic and environmental modifiers on human SCN5A disease phenotypes.

  5. On the Modelling of Biological Patterns with Mechanochemical Models: Insights from Analysis and Computation

    KAUST Repository

    Moreo, P.; Gaffney, E. A.; Garcí a-Aznar, J. M.; Doblaré , M.

    2009-01-01

    The diversity of biological form is generated by a relatively small number of underlying mechanisms. Consequently, mathematical and computational modelling can, and does, provide insight into how cellular level interactions ultimately give rise

  6. Interlocking Friction Governs the Mechanical Fracture of Bilayer MoS2.

    Science.gov (United States)

    Jung, Gang Seob; Wang, Shanshan; Qin, Zhao; Martin-Martinez, Francisco J; Warner, Jamie H; Buehler, Markus J

    2018-04-24

    A molybdenum disulfide (MoS 2 ) layered system is a two-dimensional (2D) material, which is expected to provide the next generation of electronic devices together with graphene and other 2D materials. Due to its significance for future electronics applications, gaining a deep insight into the fundamental mechanisms upon MoS 2 fracture is crucial to prevent mechanical failure toward reliable applications. Here, we report direct experimental observation and atomic modeling of the complex failure behaviors of bilayer MoS 2 originating from highly variable interlayer frictions, elucidated with in situ transmission electron microscopy and large-scale reactive molecular dynamics simulations. Our results provide a systematic understanding of the effects that different stacking and loading conditions have on the failure mechanisms and crack-tip behaviors in the bilayer MoS 2 systems. Our findings unveil essential properties in fracture of this 2D material and provide mechanistic insight into its mechanical failure.

  7. A Molecular and Whole Body Insight of the Mechanisms Surrounding Glucose Disposal and Insulin Resistance with Hypoxic Treatment in Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    R. W. A. Mackenzie

    2016-01-01

    Full Text Available Although the mechanisms are largely unidentified, the chronic or intermittent hypoxic patterns occurring with respiratory diseases, such as chronic pulmonary disease or obstructive sleep apnea (OSA and obesity, are commonly associated with glucose intolerance. Indeed, hypoxia has been widely implicated in the development of insulin resistance either via the direct action on insulin receptor substrate (IRS and protein kinase B (PKB/Akt or indirectly through adipose tissue expansion and systemic inflammation. Yet hypoxia is also known to encourage glucose transport using insulin-dependent mechanisms, largely reliant on the metabolic master switch, 5′ AMP-activated protein kinase (AMPK. In addition, hypoxic exposure has been shown to improve glucose control in type 2 diabetics. The literature surrounding hypoxia-induced changes to glycemic control appears to be confusing and conflicting. How is it that the same stress can seemingly cause insulin resistance while increasing glucose uptake? There is little doubt that acute hypoxia increases glucose metabolism in skeletal muscle and does so using the same pathway as muscle contraction. The purpose of this review paper is to provide an insight into the mechanisms underpinning the observed effects and to open up discussions around the conflicting data surrounding hypoxia and glucose control.

  8. Studies of the aggregation of mutant proteins in vitro provide insights into the genetics of amyloid diseases.

    Science.gov (United States)

    Chiti, Fabrizio; Calamai, Martino; Taddei, Niccolo; Stefani, Massimo; Ramponi, Giampietro; Dobson, Christopher M

    2002-12-10

    Protein aggregation and the formation of highly insoluble amyloid structures is associated with a range of debilitating human conditions, which include Alzheimer's disease, Parkinson's disease, and the Creutzfeldt-Jakob disease. Muscle acylphosphatase (AcP) has already provided significant insights into mutational changes that modulate amyloid formation. In the present paper, we have used this system to investigate the effects of mutations that modify the charge state of a protein without affecting significantly the hydrophobicity or secondary structural propensities of the polypeptide chain. A highly significant inverse correlation was found to exist between the rates of aggregation of the protein variants under denaturing conditions and their overall net charge. This result indicates that aggregation is generally favored by mutations that bring the net charge of the protein closer to neutrality. In light of this finding, we have analyzed natural mutations associated with familial forms of amyloid diseases that involve alteration of the net charge of the proteins or protein fragments associated with the diseases. Sixteen mutations have been identified for which the mechanism of action that causes the pathological condition is not yet known or fully understood. Remarkably, 14 of these 16 mutations cause the net charge of the corresponding peptide or protein that converts into amyloid deposits to be reduced. This result suggests that charge has been a key parameter in molecular evolution to ensure the avoidance of protein aggregation and identifies reduction of the net charge as an important determinant in at least some forms of protein deposition diseases.

  9. Hyperons: Insights into baryon structures

    International Nuclear Information System (INIS)

    Lach, J.

    1991-08-01

    The baryon octet is composed mainly of hyperons. Modern high energy hyperon beams provide a tool for the study of hyperon static properties and interactions. Experiments with these beams have provided new insights into hyperon rare decays, magnetic moments, and interactions. These experiments provide us with insights into the strong, weak, and electromagnetic structure of the baryons. 65 refs., 45 figs., 5 tabs

  10. Effects of calcium (Ca(2+)) extrusion mechanisms on electrophysiological properties in a hypoglossal motoneuron: insight from a mathematical model.

    Science.gov (United States)

    Horn, Kyle G; Solomon, Irene C

    2014-01-01

    Spike-frequency dynamics and spike shape can provide insight into the types of ion channels present in any given neuron and give a sense for the precise response any neuron may have to a given input stimulus. Motoneuron firing frequency over time is especially important due to its direct effect on motor output. Of particular interest is intracellular Ca(2+), which exerts a powerful influence on both firing properties over time and spike shape. In order to better understand the cellular mechanisms for the regulation of intracellular Ca(2+) and their effect on spiking behavior, we have modified a computational model of an HM to include a variety of Ca(2+) handling processes. For the current study, a series of HM models that include Ca(2+) pumps, Na(+)/Ca(2+) exchangers, and a generic exponential decay of excess Ca(2+) were generated. Simulations from these models indicate that although each extrusion mechanism exerts a similar effect on voltage, the firing properties change distinctly with the inclusion of additional Ca(2+)-related mechanisms: BK channels, Ca(2+) buffering, and diffusion of [Ca(2+)]i modeled via a linear diffusion partial differential equation. While an exponential decay of Ca(2+) seems to adequately capture short-term changes in firing frequency seen in biological data, internal diffusion of Ca(2+) appears to be necessary for capturing longer term frequency changes. © 2014 Elsevier B.V. All rights reserved.

  11. Transcriptomic analyses on muscle tissues of Litopenaeus vannamei provide the first profile insight into the response to low temperature stress.

    Directory of Open Access Journals (Sweden)

    Wen Huang

    Full Text Available The Pacific white shrimp (Litopenaeus vannamei is an important cultured crustacean species worldwide. However, little is known about the molecular mechanism of this species involved in the response to cold stress. In this study, four separate RNA-Seq libraries of L. vannamei were generated from 13°C stress and control temperature. Total 29,662 of Unigenes and overall of 19,619 annotated genes were obtained. Three comparisons were carried out among the four libraries, in which 72 of the top 20% of differentially-expressed genes were obtained, 15 GO and 5 KEGG temperature-sensitive pathways were fished out. Catalytic activity (GO: 0003824 and Metabolic pathways (ko01100 were the most annotated GO and KEGG pathways in response to cold stress, respectively. In addition, Calcium, MAPK cascade, Transcription factor and Serine/threonine-protein kinase signal pathway were picked out and clustered. Serine/threonine-protein kinase signal pathway might play more important roles in cold adaptation, while other three signal pathway were not widely transcribed. Our results had summarized the differentially-expressed genes and suggested the major important signaling pathways and related genes. These findings provide the first profile insight into the molecular basis of L. vannamei response to cold stress.

  12. The mechanics of soft biological composites.

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Thao D. (Sandia National Laboratories, Livermore, CA); Grazier, John Mark; Boyce, Brad Lee; Jones, Reese E. (Sandia National Laboratories, Livermore, CA)

    2007-10-01

    Biological tissues are uniquely structured materials with technologically appealing properties. Soft tissues such as skin, are constructed from a composite of strong fibrils and fluid-like matrix components. This was the first coordinated experimental/modeling project at Sandia or in the open literature to consider the mechanics of micromechanically-based anisotropy and viscoelasticity of soft biological tissues. We have exploited and applied Sandia's expertise in experimentation and mechanics modeling to better elucidate the behavior of collagen fibril-reinforced soft tissues. The purpose of this project was to provide a detailed understanding of the deformation of ocular tissues, specifically the highly structured skin-like tissue in the cornea. This discovery improved our knowledge of soft/complex materials testing and modeling. It also provided insight into the way that cornea tissue is bio-engineered such that under physiologically-relevant conditions it has a unique set of properties which enhance functionality. These results also provide insight into how non-physiologic loading conditions, such as corrective surgeries, may push the cornea outside of its natural design window, resulting in unexpected non-linear responses. Furthermore, this project created a clearer understanding of the mechanics of soft tissues that could lead to bio-inspired materials, such as highly supple and impact resistant body armor, and improve our design of human-machine interfaces, such as micro-electrical-mechanical (MEMS) based prosthetics.

  13. Integrative Analyses of De Novo Mutations Provide Deeper Biological Insights into Autism Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    Atsushi Takata

    2018-01-01

    Full Text Available Recent studies have established important roles of de novo mutations (DNMs in autism spectrum disorders (ASDs. Here, we analyze DNMs in 262 ASD probands of Japanese origin and confirm the “de novo paradigm” of ASDs across ethnicities. Based on this consistency, we combine the lists of damaging DNMs in our and published ASD cohorts (total number of trios, 4,244 and perform integrative bioinformatics analyses. Besides replicating the findings of previous studies, our analyses highlight ATP-binding genes and fetal cerebellar/striatal circuits. Analysis of individual genes identified 61 genes enriched for damaging DNMs, including ten genes for which our dataset now contributes to statistical significance. Screening of compounds altering the expression of genes hit by damaging DNMs reveals a global downregulating effect of valproic acid, a known risk factor for ASDs, whereas cardiac glycosides upregulate these genes. Collectively, our integrative approach provides deeper biological and potential medical insights into ASDs.

  14. Molecular fossils in modern genomes provide physiological and geochemical insights to the ancient earth (Invited)

    Science.gov (United States)

    Dupont, C.; Caetano-Anolles, G.

    2010-12-01

    The genomes of extant organisms are ultimately derived from ancient life, thus theoretically contain insight to ancient physiology, ecology, and environments. In particular, metalloenzymes may be particularly insightful. The fundamental chemistry of trace elements dictates the molecular speciation and reactivity both within cells and the environment at large. Using protein structure and comparative genomics, we elucidate several major influences this chemistry has had upon biology. All of life exhibits the same proteome size-dependent scaling for the number of metal-binding proteins within a proteome. This fundamental evolutionary constant shows that the selection of one element occurs at the exclusion of another, with the eschewal of Fe for Zn and Ca being a defining feature of eukaryotic pro- teomes. Early life lacked both the structures required to control intracellular metal concentrations and the metal-binding proteins that catalyze electron transport and redox transformations. The development of protein structures for metal homeostasis coincided with the emergence of metal-specific structures, which predomi- nantly bound metals abundant in the Archean ocean. Potentially, this promoted the diversification of emerging lineages of Archaea and Bacteria through the establishment of biogeochemical cycles. In contrast, structures binding Cu and Zn evolved much later, pro- viding further evidence that environmental availability influenced the selection of the elements. The late evolving Zn-binding proteins are fundamental to eukaryotic cellular biology, and Zn bioavailabil- ity may have been a limiting factor in eukaryotic evolution. The results presented here provide an evolutionary timeline based on genomic characteristics, and key hypotheses can be tested by alternative geochemical methods.

  15. New technologies provide insights into genetic basis of psychiatric disorders and explain their co-morbidity.

    Science.gov (United States)

    Rudan, Igor

    2010-06-01

    The completion of Human Genome Project and the "HapMap" project was followed by translational activities from companies within the private sector. This led to the introduction of genome-wide scans based on hundreds of thousands of single nucleotide polymorphysms (SNP). These scans were based on common genetic variants in human populations. This new and powerful technology was then applied to the existing DNA-based datasets with information on psychiatric disorders. As a result, an unprecedented amount of novel scientific insights related to the underlying biology and genetics of psychiatric disorders was obtained. The dominant design of these studies, so called "genome-wide association studies" (GWAS), used statistical methods which minimized the risk of false positive reports and provided much greater power to detect genotype-phenotype associations. All findings were entirely data-driven rather than hypothesis-driven, which often made it difficult for researchers to understand or interpret the findings. Interestingly, this work in genetics is indicating how non-specific some genes are for psychiatric disorders, having associations in common for schizophrenia, bipolar disorder and autism. This suggests that the earlier stages of psychiatric disorders may be multi-valent and that early detection, coupled with a clearer understanding of the environmental factors, may allow prevention. At the present time, the rich "harvest" from GWAS still has very limited power to predict the variation in psychiatric disease status at individual level, typically explaining less than 5% of the total risk variance. The most recent studies of common genetic variation implicated the role of major histocompatibility complex in schizophrenia and other disorders. They also provided molecular evidence for a substantial polygenic component to the risk of psychiatric diseases, involving thousands of common alleles of very small effect. The studies of structural genetic variation, such as copy

  16. Mechanistic Insight into the Degradation of Nitrosamines via Aqueous-Phase UV Photolysis or a UV-Based Advanced Oxidation Process: Quantum Mechanical Calculations.

    Science.gov (United States)

    Minakata, Daisuke; Coscarelli, Erica

    2018-02-28

    Nitrosamines are a group of carcinogenic chemicals that are present in aquatic environments that result from byproducts of industrial processes and disinfection products. As indirect and direct potable reuse increase, the presence of trace nitrosamines presents challenges to water infrastructures that incorporate effluent from wastewater treatment. Ultraviolet (UV) photolysis or UV-based advanced oxidation processes that produce highly reactive hydroxyl radicals are promising technologies to remove nitrosamines from water. However, complex reaction mechanisms involving radicals limit our understandings of the elementary reaction pathways embedded in the overall reactions identified experimentally. In this study, we perform quantum mechanical calculations to identify the hydroxyl radical-induced initial elementary reactions with N -nitrosodimethylamine (NDMA), N -nitrosomethylethylamine, and N -nitrosomethylbutylamine. We also investigate the UV-induced NDMA degradation mechanisms. Our calculations reveal that the alkyl side chains of nitrosamine affect the reaction mechanism of hydroxyl radicals with each nitrosamine investigated in this study. Nitrosamines with one- or two-carbon alkyl chains caused the delocalization of the electron density, leading to slower subsequent degradation. Additionally, three major initial elementary reactions and the subsequent radical-involved reaction pathways are identified in the UV-induced NDMA degradation process. This study provides mechanistic insight into the elementary reaction pathways, and a future study will combine these results with the kinetic information to predict the time-dependent concentration profiles of nitrosamines and their transformation products.

  17. Mechanistic Insight into the Degradation of Nitrosamines via Aqueous-Phase UV Photolysis or a UV-Based Advanced Oxidation Process: Quantum Mechanical Calculations

    Directory of Open Access Journals (Sweden)

    Daisuke Minakata

    2018-02-01

    Full Text Available Nitrosamines are a group of carcinogenic chemicals that are present in aquatic environments that result from byproducts of industrial processes and disinfection products. As indirect and direct potable reuse increase, the presence of trace nitrosamines presents challenges to water infrastructures that incorporate effluent from wastewater treatment. Ultraviolet (UV photolysis or UV-based advanced oxidation processes that produce highly reactive hydroxyl radicals are promising technologies to remove nitrosamines from water. However, complex reaction mechanisms involving radicals limit our understandings of the elementary reaction pathways embedded in the overall reactions identified experimentally. In this study, we perform quantum mechanical calculations to identify the hydroxyl radical-induced initial elementary reactions with N-nitrosodimethylamine (NDMA, N-nitrosomethylethylamine, and N-nitrosomethylbutylamine. We also investigate the UV-induced NDMA degradation mechanisms. Our calculations reveal that the alkyl side chains of nitrosamine affect the reaction mechanism of hydroxyl radicals with each nitrosamine investigated in this study. Nitrosamines with one- or two-carbon alkyl chains caused the delocalization of the electron density, leading to slower subsequent degradation. Additionally, three major initial elementary reactions and the subsequent radical-involved reaction pathways are identified in the UV-induced NDMA degradation process. This study provides mechanistic insight into the elementary reaction pathways, and a future study will combine these results with the kinetic information to predict the time-dependent concentration profiles of nitrosamines and their transformation products.

  18. Ancient duplications and functional divergence in the interferon regulatory factors of vertebrates provide insights into the evolution of vertebrate immune systems.

    Science.gov (United States)

    Du, Kang; Zhong, Zaixuan; Fang, Chengchi; Dai, Wei; Shen, Yanjun; Gan, Xiaoni; He, Shunping

    2018-04-01

    Interferon regulatory factors (IRFs) were first discovered as transcription factors that regulate the transcription of human interferon (IFN)-β. Increasing evidence shows that they might be important players involved in Adaptive immune system (AIS) evolution. Although numbers of IRFs have been identified in chordates, the evolutionary history and functional diversity of this gene family during the early evolution of vertebrates have remained obscure. Using IRF HMM profile and HMMER searches, we identified 148 IRFs in 11 vertebrates and 4 protochordates. For them, we reconstructed the phylogenetic relationships, determined the synteny conservation, investigated the profile of natural selection, and analyzed the expression patterns in four "living fossil" vertebrates: lamprey, elephant shark, coelacanth and bichir. The results from phylogeny and synteny analysis imply that vertebrate IRFs evolved from three predecessors, instead of four as suggested in a previous study, as results from an ancient duplication followed by special expansions and lost during the vertebrate evolution. The profile of natural selection and expression reveals functional dynamics during the process. Together, they suggest that the 2nd whole-genome duplication (2WGD) provided raw materials for innovation in the IRF family, and that the birth of type-I IFN might be an important factor inducing the establishment of IRF-mediated immune networks. As a member involved in the AIS evolution, IRF provide insights into the process and mechanism involved in the complexity and novelties of vertebrate immune systems. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Physical insights into the blood-brain barrier translocation mechanisms

    Science.gov (United States)

    Theodorakis, Panagiotis E.; Müller, Erich A.; Craster, Richard V.; Matar, Omar K.

    2017-08-01

    The number of individuals suffering from diseases of the central nervous system (CNS) is growing with an aging population. While candidate drugs for many of these diseases are available, most of these pharmaceutical agents cannot reach the brain rendering most of the drug therapies that target the CNS inefficient. The reason is the blood-brain barrier (BBB), a complex and dynamic interface that controls the influx and efflux of substances through a number of different translocation mechanisms. Here, we present these mechanisms providing, also, the necessary background related to the morphology and various characteristics of the BBB. Moreover, we discuss various numerical and simulation approaches used to study the BBB, and possible future directions based on multi-scale methods. We anticipate that this review will motivate multi-disciplinary research on the BBB aiming at the design of effective drug therapies.

  20. Integrated application of transcriptomics and metabolomics provides insights into glycogen content regulation in the Pacific oyster Crassostrea gigas.

    Science.gov (United States)

    Li, Busu; Song, Kai; Meng, Jie; Li, Li; Zhang, Guofan

    2017-09-11

    stress. These findings will not only provide insights into the molecular mechanisms underlying oyster quality, but also promote research into the molecular breeding of oysters.

  1. A Flexible Binding Site Architecture Provides New Insights into CcpA Global Regulation in Gram-Positive Bacteria

    Directory of Open Access Journals (Sweden)

    Yunpeng Yang

    2017-01-01

    Full Text Available Catabolite control protein A (CcpA is the master regulator in Gram-positive bacteria that mediates carbon catabolite repression (CCR and carbon catabolite activation (CCA, two fundamental regulatory mechanisms that enable competitive advantages in carbon catabolism. It is generally regarded that CcpA exerts its regulatory role by binding to a typical 14- to 16-nucleotide (nt consensus site that is called a catabolite response element (cre within the target regions. However, here we report a previously unknown noncanonical flexible architecture of the CcpA-binding site in solventogenic clostridia, providing new mechanistic insights into catabolite regulation. This novel CcpA-binding site, named crevar, has a unique architecture that consists of two inverted repeats and an intervening spacer, all of which are variable in nucleotide composition and length, except for a 6-bp core palindromic sequence (TGTAAA/TTTACA. It was found that the length of the intervening spacer of crevar can affect CcpA binding affinity, and moreover, the core palindromic sequence of crevar is the key structure for regulation. Such a variable architecture of crevar shows potential importance for CcpA’s diverse and fine regulation. A total of 103 potential crevar sites were discovered in solventogenic Clostridium acetobutylicum, of which 42 sites were picked out for electrophoretic mobility shift assays (EMSAs, and 30 sites were confirmed to be bound by CcpA. These 30 crevar sites are associated with 27 genes involved in many important pathways. Also of significance, the crevar sites are found to be widespread and function in a great number of taxonomically different Gram-positive bacteria, including pathogens, suggesting their global role in Gram-positive bacteria.

  2. Targeted gene panels and microbiota analysis provide insight into the effects of effects of alternative production diet formulations on channel catfish nutritional physiology

    Science.gov (United States)

    The present research evaluated targeted gene panels and microbiota analysis to provide greater insight into the effects of alternatively-sourced dietary ingredients on production indices, gut health, changes in the gut microbiota and genes involved in the regulation of appetite, growth, metabolism, ...

  3. Creutzfeldt-Jakob Disease with Mixed Transcortical Aphasia: Insights into Echolalia

    OpenAIRE

    McPherson, S. E.; Kuratani, J. D.; Cummings, J. L.; Shih, J.; Mischel, P. S.; Vinters, H. V.

    1994-01-01

    Aphasia is a common manifestation of Creutzfeldt-Jakob disease (CJD), and investigation of the linguistic disorders of CJD patients may provide insights into the neurobiological mechanisms of language and aphasia. We report an autopsy-confirmed case of CJD in which the presenting symptom was change in language abilities. The patient ultimately evidenced mixed transcortical aphasia (MTA) with echolalia. Disruption of frontal-subcortical circuits with environmental dependency accounts for the s...

  4. Further Theoretical Insight into the Mechanical Properties of Polycaprolactone Loaded with Organic–Inorganic Hybrid Fillers

    Directory of Open Access Journals (Sweden)

    Saverio Maietta

    2018-02-01

    Full Text Available Experimental/theoretical analyses have already been performed on poly(ε-caprolactone (PCL loaded with organic–inorganic fillers (PCL/TiO2 and PCL/ZrO2 to find a correlation between the results from the small punch test and Young’s modulus of the materials. PCL loaded with Ti2 (PCL = 12, TiO2 = 88 wt % and Zr2 (PCL = 12, ZrO2 = 88 wt % hybrid fillers showed better performances than those obtained for the other particle composition. In this context, the aim of current research is to provide further insight into the mechanical properties of PCL loaded with sol–gel-synthesized organic–inorganic hybrid fillers for bone tissue engineering. For this reason, theoretical analyses were performed by the finite element method. The results from the small punch test and Young’s modulus of the materials were newly correlated. The obtained values of Young’s modulus (193 MPa for PCL, 378 MPa for PCL/Ti2 and 415 MPa for PCL/Zr2 were higher than those obtained from a previous theoretical modelling (144 MPa for PCL, 282 MPa for PCL/Ti2 and 310 MPa for PCL/Zr2. This correlation will be an important step for the evaluation of Young’s modulus, starting from the small punch test data.

  5. Genome-Wide Association Identifies Nine Common Variants Associated With Fasting Proinsulin Levels and Provides New Insights Into the Pathophysiology of Type 2 Diabetes

    NARCIS (Netherlands)

    Strawbridge, Rona J.; Dupuis, Josee; Prokopenko, Inga; Barker, Adam; Ahlqvist, Emma; Rybin, Denis; Petrie, John R.; Travers, Mary E.; Bouatia-Naji, Nabila; Dimas, Antigone S.; Nica, Alexandra; Wheeler, Eleanor; Chen, Han; Voight, Benjamin F.; Taneera, Jalal; Kanoni, Stavroula; Peden, John F.; Turrini, Fabiola; Gustafsson, Stefan; Zabena, Carina; Almgren, Peter; Barker, David J. P.; Barnes, Daniel; Dennison, Elaine M.; Eriksson, Johan G.; Eriksson, Per; Eury, Elodie; Folkersen, Lasse; Fox, Caroline S.; Frayling, Timothy M.; Goel, Anuj; Gu, Harvest F.; Horikoshi, Momoko; Isomaa, Bo; Jackson, Anne U.; Jameson, Karen A.; Kajantie, Eero; Kerr-Conte, Julie; Kuulasmaa, Teemu; Kuusisto, Johanna; Loos, Ruth J. F.; Luan, Jian'an; Makrilakis, Konstantinos; Manning, Alisa K.; Teresa Martinez-Larrad, Maria; Narisu, Narisu; Mannila, Maria Nastase; Ohrvik, John; Osmond, Clive; Pascoe, Laura

    2011-01-01

    OBJECTIVE-Proinsulin is a precursor of mature insulin and C-peptide. Higher circulating proinsulin levels are associated with impaired beta-cell function, raised glucose levels, insulin resistance, and type 2 diabetes (T2D). Studies of the insulin processing pathway could provide new insights about

  6. Genome-wide association identifies nine common variants associated with fasting proinsulin levels and provides new insights into the pathophysiology of type 2 diabetes

    NARCIS (Netherlands)

    Strawbridge, R.J.; Dupuis, J.; Prokopenko, I.; Barker, A.; Ahlqvist, E.; Rybin, D.; Petrie, J.R.; Travers, M.E.; Bouatia-Naji, N.; Dimas, A.S.; Nica, A.; Wheeler, E.; Chen, H.; Voight, B.F.; Taneera, J.; Kanoni, S.; Peden, J.F.; Turrini, F.; Gustafsson, S.; Zabena, C.; Almgren, P.; Barker, D.J.; Barnes, D.; Dennison, E.M.; Eriksson, J.G.; Eriksson, P.; Eury, E.; Folkersen, L.; Fox, C.S.; Frayling, T.M.; Goel, A.; Gu, H.F.; Horikoshi, M.; Isomaa, B.; Jackson, A.U.; Jameson, K.A.; Kajantie, E.; Kerr-Conte, J.; Kuulasmaa, T.; Kuusisto, J.; Loos, R.J.; Luan, J.; Makrilakis, K.; Manning, A.K.; Martinez-Larrad, M.T.; Narisu, N.; Nastase Mannila, M.; Ohrvik, J.; Osmond, C.; Pascoe, L.; Payne, F.; Sayer, A.A.; Sennblad, B.; Silveira, A.; Stancakova, A.; Stirrups, K.; Swift, A.J.; Syvanen, A.C.; Tuomi, T.; Hooft, F. van 't; Walker, M.; Weedon, M.N.; Xie, W.; Zethelius, B.; Ongen, H.; Malarstig, A.; Hopewell, J.C.; Saleheen, D.; Chambers, J.; Parish, S.; Danesh, J.; Kooner, J.; Ostenson, C.G.; Lind, L.; Cooper, C.C.; Serrano-Rios, M.; Ferrannini, E.; Forsen, T.J.; Clarke, R.; Franzosi, M.G.; Seedorf, U.; Watkins, H.; Froguel, P.; Johnson, P.; Deloukas, P.; Collins, F.S.; Laakso, M.; Dermitzakis, E.T.; Boehnke, M.; McCarthy, M.I.; Wareham, N.J.; Groop, L.; Pattou, F.; Gloyn, A.L.; Dedoussis, G.V.; Lyssenko, V.; Meigs, J.B.; Barroso, I.; Watanabe, R.M.; Heijer, M. den; Kiemeney, L.A.L.M.; et al.,

    2011-01-01

    OBJECTIVE: Proinsulin is a precursor of mature insulin and C-peptide. Higher circulating proinsulin levels are associated with impaired beta-cell function, raised glucose levels, insulin resistance, and type 2 diabetes (T2D). Studies of the insulin processing pathway could provide new insights about

  7. New and emerging biomarkers in left ventricular systolic dysfunction--insight into dilated cardiomyopathy.

    Science.gov (United States)

    Gopal, Deepa M; Sam, Flora

    2013-08-01

    Dilated cardiomyopathy (DCM) is characterized by deteriorating cardiac performance, impaired contraction and dilation of the left ventricle (or both ventricles). Blood markers--known as "biomarkers"--allow insight into underlying pathophysiologic mechanisms and biologic pathways while predicting outcomes and guiding heart failure management and/or therapies. In this review, we provide an alternative approach to conceptualize heart failure biomarkers: the cardiomyocyte, its surrounding microenvironment, and the macroenvironment, integrating these entities which may impact cellular processes involved in the pathogenesis and/or propagation of DCM. Newer biomarkers of left ventricular systolic dysfunction can be categorized under: (a) myocyte stress and stretch, (b) myocyte apoptosis, (c) cardiac interstitium, (d) inflammation, (e) oxidative stress, (f) cardiac energetics, (g) neurohormones, and (h) renal biomarkers. Biomarkers provide insight into the pathogenesis of DCM while predicting and potentially providing prognostic information in these patients with heart failure.

  8. Supplementary Material for: Mycobacterium tuberculosis whole genome sequencing and protein structure modelling provides insights into anti-tuberculosis drug resistance

    KAUST Repository

    Phelan, Jody

    2016-01-01

    Abstract Background Combating the spread of drug resistant tuberculosis is a global health priority. Whole genome association studies are being applied to identify genetic determinants of resistance to anti-tuberculosis drugs. Protein structure and interaction modelling are used to understand the functional effects of putative mutations and provide insight into the molecular mechanisms leading to resistance. Methods To investigate the potential utility of these approaches, we analysed the genomes of 144 Mycobacterium tuberculosis clinical isolates from The Special Programme for Research and Training in Tropical Diseases (TDR) collection sourced from 20 countries in four continents. A genome-wide approach was applied to 127 isolates to identify polymorphisms associated with minimum inhibitory concentrations for first-line anti-tuberculosis drugs. In addition, the effect of identified candidate mutations on protein stability and interactions was assessed quantitatively with well-established computational methods. Results The analysis revealed that mutations in the genes rpoB (rifampicin), katG (isoniazid), inhA-promoter (isoniazid), rpsL (streptomycin) and embB (ethambutol) were responsible for the majority of resistance observed. A subset of the mutations identified in rpoB and katG were predicted to affect protein stability. Further, a strong direct correlation was observed between the minimum inhibitory concentration values and the distance of the mutated residues in the three-dimensional structures of rpoB and katG to their respective drugs binding sites. Conclusions Using the TDR resource, we demonstrate the usefulness of whole genome association and convergent evolution approaches to detect known and potentially novel mutations associated with drug resistance. Further, protein structural modelling could provide a means of predicting the impact of polymorphisms on drug efficacy in the absence of phenotypic data. These approaches could ultimately lead to novel

  9. Interacting mechanism of ID3 HLH domain towards E2A/E12 transcription factor – An Insight through molecular dynamics and docking approach

    Directory of Open Access Journals (Sweden)

    Nishith Saurav Topno

    2016-03-01

    Full Text Available Inhibitor of DNA binding protein 3 (ID3 has long been characterized as an oncogene that implicates its functional role through its Helix–Loop–Helix (HLH domain upon protein–protein interaction. An insight into the dimerization brought by this domain helps in identifying the key residues that favor the mechanism behind it. Molecular dynamics (MD simulations were performed for the HLH proteins ID3 and Transcription factor E2-alpha (E2A/E12 and their ensemble complex (ID3-E2A/E12 to gather information about the HLH domain region and its role in the interaction process. Further evaluation of the results by Principal Component Analysis (PCA and Free Energy Landscape (FEL helped in revealing residues of E2A/E12: Lys570, Ala595, Val598, and Ile599 and ID3: Glu53, Gln63, and Gln66 buried in their HLH motifs imparting key roles in dimerization process. Furthermore the T-pad analysis results helped in identifying the key fluctuations and conformational transitions using the intrinsic properties of the residues present in the domain region of the proteins thus specifying their crucial role towards molecular recognition. The study provides an insight into the interacting mechanism of the ID3-E2A/E12 complex and maps the structural transitions arising in the essential conformational space indicating the key structural changes within the helical regions of the motif. It thereby describes how the internal dynamics of the proteins might regulate their intrinsic structural features and its subsequent functionality.

  10. Effects of Persistent Atrial Fibrillation-Induced Electrical Remodeling on Atrial Electro-Mechanics - Insights from a 3D Model of the Human Atria.

    Science.gov (United States)

    Adeniran, Ismail; MacIver, David H; Garratt, Clifford J; Ye, Jianqiao; Hancox, Jules C; Zhang, Henggui

    2015-01-01

    Atrial stunning, a loss of atrial mechanical contraction, can occur following a successful cardioversion. It is hypothesized that persistent atrial fibrillation-induced electrical remodeling (AFER) on atrial electrophysiology may be responsible for such impaired atrial mechanics. This simulation study aimed to investigate the effects of AFER on atrial electro-mechanics. A 3D electromechanical model of the human atria was developed to investigate the effects of AFER on atrial electro-mechanics. Simulations were carried out in 3 conditions for 4 states: (i) the control condition, representing the normal tissue (state 1) and the tissue 2-3 months after cardioversion (state 2) when the atrial tissue recovers its electrophysiological properties after completion of reverse electrophysiological remodelling; (ii) AFER-SR condition for AF-remodeled tissue with normal sinus rhythm (SR) (state 3); and (iii) AFER-AF condition for AF-remodeled tissue with re-entrant excitation waves (state 4). Our results indicate that at the cellular level, AFER (states 3 & 4) abbreviated action potentials and reduced the Ca2+ content in the sarcoplasmic reticulum, resulting in a reduced amplitude of the intracellular Ca2+ transient leading to decreased cell active force and cell shortening as compared to the control condition (states 1 & 2). Consequently at the whole organ level, atrial contraction in AFER-SR condition (state 3) was dramatically reduced. In the AFER-AF condition (state 4) atrial contraction was almost abolished. This study provides novel insights into understanding atrial electro-mechanics illustrating that AFER impairs atrial contraction due to reduced intracellular Ca2+ transients.

  11. Genome-wide association identifies nine common variants associated with fasting proinsulin levels and provides new insights into the pathophysiology of type 2 diabetes

    NARCIS (Netherlands)

    Strawbridge, Rona J.; Dupuis, Josée; Prokopenko, Inga; Barker, Adam; Ahlqvist, Emma; Rybin, Denis; Petrie, John R.; Travers, Mary E.; Bouatia-Naji, Nabila; Dimas, Antigone S.; Nica, Alexandra; Wheeler, Eleanor; Chen, Han; Voight, Benjamin F.; Taneera, Jalal; Kanoni, Stavroula; Peden, John F.; Turrini, Fabiola; Gustafsson, Stefan; Zabena, Carina; Almgren, Peter; Barker, David J. P.; Barnes, Daniel; Dennison, Elaine M.; Eriksson, Johan G.; Eriksson, Per; Eury, Elodie; Folkersen, Lasse; Fox, Caroline S.; Frayling, Timothy M.; Goel, Anuj; Gu, Harvest F.; Horikoshi, Momoko; Isomaa, Bo; Jackson, Anne U.; Jameson, Karen A.; Kajantie, Eero; Kerr-Conte, Julie; Kuulasmaa, Teemu; Kuusisto, Johanna; Loos, Ruth J. F.; Luan, Jian'an; Makrilakis, Konstantinos; Manning, Alisa K.; Martínez-Larrad, María Teresa; Narisu, Narisu; Nastase Mannila, Maria; Boekholdt, S. Matthijs; Kastelein, John J. P.; Rosendaal, Frits R.

    2011-01-01

    Proinsulin is a precursor of mature insulin and C-peptide. Higher circulating proinsulin levels are associated with impaired β-cell function, raised glucose levels, insulin resistance, and type 2 diabetes (T2D). Studies of the insulin processing pathway could provide new insights about T2D

  12. Timing reproduction in teleost fish: cues and mechanisms

    Science.gov (United States)

    Juntti, Scott A; Fernald, Russell D

    2016-01-01

    Fish comprise half of extant vertebrate species and use a rich variety of reproductive strategies that have yielded insights into the basic mechanisms that evolved for sex. To maximize the chances of fertilization and survival of offspring, fish species time reproduction to occur at optimal times. For years, ethologists have performed painstaking experiments to identify sensory inputs and behavioral outputs of the brain during mating. Here we review known mechanisms that generate sexual behavior, focusing on the factors that govern the timing of these displays. The development of new technologies, including high-throughput sequencing and genome engineering, have the potential to provide novel insights into how the vertebrate brain consummates mating at the appropriate time. PMID:26952366

  13. RNA-Seq analysis of Gtf2ird1 knockout epidermal tissue provides potential insights into molecular mechanisms underpinning Williams-Beuren syndrome.

    Science.gov (United States)

    Corley, Susan M; Canales, Cesar P; Carmona-Mora, Paulina; Mendoza-Reinosa, Veronica; Beverdam, Annemiek; Hardeman, Edna C; Wilkins, Marc R; Palmer, Stephen J

    2016-06-13

    mouse model. We have noted that a number of the dysregulated genes have known roles in brain development as well as epidermal differentiation and maintenance. Therefore, this study provides clues as to the underlying mechanisms that may be involved in the broader profile of WBS.

  14. Structures of parasite calreticulins provide insights into their flexibility and dual carbohydrate/peptide-binding properties.

    Science.gov (United States)

    Moreau, Christophe; Cioci, Gianluca; Iannello, Marina; Laffly, Emmanuelle; Chouquet, Anne; Ferreira, Arturo; Thielens, Nicole M; Gaboriaud, Christine

    2016-11-01

    Calreticulin (CRT) is a multifaceted protein, initially discovered as an endoplasmic reticulum (ER) chaperone protein, that is essential in calcium metabolism. Various implications in cancer, early development and immunology have been discovered more recently for CRT, as well as its role as a dominant 'eat-me' prophagocytic signal. Intriguingly, cell-surface exposure/secretion of CRT is among the infective strategies used by parasites such as Trypanosoma cruzi , Entamoeba histolytica , Taenia solium , Leishmania donovani and Schistosoma mansoni . Because of the inherent flexibility of CRTs, their analysis by X-ray crystallography requires the design of recombinant constructs suitable for crystallization, and thus only the structures of two very similar mammalian CRT lectin domains are known. With the X-ray structures of two distant parasite CRTs, insights into species structural determinants that might be harnessed to fight against the parasites without affecting the functions of the host CRT are now provided. Moreover, although the hypothesis that CRT can exhibit both open and closed conformations has been proposed in relation to its chaperone function, only the open conformation has so far been observed in crystal structures. The first evidence is now provided of a complex conformational transition with the junction reoriented towards P-domain closure. SAXS experiments also provided additional information about the flexibility of T. cruzi CRT in solution, thus complementing crystallographic data on the open conformation. Finally, regarding the conserved lectin-domain structure and chaperone function, evidence is provided of its dual carbohydrate/protein specificity and a new scheme is proposed to interpret such unusual substrate-binding properties. These fascinating features are fully consistent with previous experimental observations, as discussed considering the broad spectrum of CRT sequence conservations and differences.

  15. Insight and analysis problem solving in microbes to machines.

    Science.gov (United States)

    Clark, Kevin B

    2015-11-01

    A key feature for obtaining solutions to difficult problems, insight is oftentimes vaguely regarded as a special discontinuous intellectual process and/or a cognitive restructuring of problem representation or goal approach. However, this nearly century-old state of art devised by the Gestalt tradition to explain the non-analytical or non-trial-and-error, goal-seeking aptitude of primate mentality tends to neglect problem-solving capabilities of lower animal phyla, Kingdoms other than Animalia, and advancing smart computational technologies built from biological, artificial, and composite media. Attempting to provide an inclusive, precise definition of insight, two major criteria of insight, discontinuous processing and problem restructuring, are here reframed using terminology and statistical mechanical properties of computational complexity classes. Discontinuous processing becomes abrupt state transitions in algorithmic/heuristic outcomes or in types of algorithms/heuristics executed by agents using classical and/or quantum computational models. And problem restructuring becomes combinatorial reorganization of resources, problem-type substitution, and/or exchange of computational models. With insight bounded by computational complexity, humans, ciliated protozoa, and complex technological networks, for example, show insight when restructuring time requirements, combinatorial complexity, and problem type to solve polynomial and nondeterministic polynomial decision problems. Similar effects are expected from other problem types, supporting the idea that insight might be an epiphenomenon of analytical problem solving and consequently a larger information processing framework. Thus, this computational complexity definition of insight improves the power, external and internal validity, and reliability of operational parameters with which to classify, investigate, and produce the phenomenon for computational agents ranging from microbes to man-made devices. Copyright

  16. Insight into the Mechanism of Hydrolysis of Meropenem by OXA-23 Serine-β-lactamase Gained by Quantum Mechanics/Molecular Mechanics Calculations.

    Science.gov (United States)

    Sgrignani, Jacopo; Grazioso, Giovanni; De Amici, Marco

    2016-09-13

    The fast and constant development of drug resistant bacteria represents a serious medical emergency. To overcome this problem, the development of drugs with new structures and modes of action is urgently needed. In this work, we investigated, at the atomistic level, the mechanisms of hydrolysis of Meropenem by OXA-23, a class D β-lactamase, combining unbiased classical molecular dynamics and umbrella sampling simulations with classical force field-based and quantum mechanics/molecular mechanics potentials. Our calculations provide a detailed structural and dynamic picture of the molecular steps leading to the formation of the Meropenem-OXA-23 covalent adduct, the subsequent hydrolysis, and the final release of the inactive antibiotic. In this mechanistic framework, the predicted activation energy is in good agreement with experimental kinetic measurements, validating the expected reaction path.

  17. Improved understanding of protein complex offers insight into DNA

    Science.gov (United States)

    Summer Science Writing Internship Improved understanding of protein complex offers insight into DNA clearer understanding of the origin recognition complex (ORC) - a protein complex that directs DNA replication - through its crystal structure offers new insight into fundamental mechanisms of DNA replication

  18. New and Emerging Biomarkers in Left Ventricular Systolic Dysfunction - Insight into Dilated Cardiomyopathy

    Science.gov (United States)

    Gopal, Deepa M.; Sam, Flora

    2013-01-01

    Background Dilated cardiomyopathy (DCM) is characterized by deteriorating cardiac performance and impaired contraction and dilation of the left (or both) ventricles. Blood markers – known as “biomarkers” allow insight into underlying pathophysiologic mechanisms and biologic pathways, while predicting outcomes and guiding heart failure management and/or therapies. Content In this review, we provide an alternative approach to conceptualize heart failure biomarkers: the cardiomyocyte, its surrounding microenvironment, and the macroenvironment with clear interaction between these entities which may impact cellular processes involved in the pathogenesis and/or propagation of DCM. Newer biomarkers of left ventricular systolic dysfunction can be categorized under: (a) myocyte stress and stretch, (b) myocyte apoptosis, (c) cardiac interstitium, (d) inflammation, (e) oxidative stress, (f) cardiac energetics, (g) neurohormones and (h) renal biomarkers. Summary Biomarkers provide insight into the pathogenesis of DCM while predicting and potentially providing prognostic information in these patients with heart failure. PMID:23609585

  19. Physical mapping and BAC-end sequence analysis provide initial insights into the flax (Linum usitatissimum L.) genome.

    Science.gov (United States)

    Ragupathy, Raja; Rathinavelu, Rajkumar; Cloutier, Sylvie

    2011-05-09

    Flax (Linum usitatissimum L.) is an important source of oil rich in omega-3 fatty acids, which have proven health benefits and utility as an industrial raw material. Flax seeds also contain lignans which are associated with reducing the risk of certain types of cancer. Its bast fibres have broad industrial applications. However, genomic tools needed for molecular breeding were non existent. Hence a project, Total Utilization Flax GENomics (TUFGEN) was initiated. We report here the first genome-wide physical map of flax and the generation and analysis of BAC-end sequences (BES) from 43,776 clones, providing initial insights into the genome. The physical map consists of 416 contigs spanning ~368 Mb, assembled from 32,025 fingerprints, representing roughly 54.5% to 99.4% of the estimated haploid genome (370-675 Mb). The N50 size of the contigs was estimated to be ~1,494 kb. The longest contig was ~5,562 kb comprising 437 clones. There were 96 contigs containing more than 100 clones. Approximately 54.6 Mb representing 8-14.8% of the genome was obtained from 80,337 BES. Annotation revealed that a large part of the genome consists of ribosomal DNA (~13.8%), followed by known transposable elements at 6.1%. Furthermore, ~7.4% of sequence was identified to harbour novel repeat elements. Homology searches against flax-ESTs and NCBI-ESTs suggested that ~5.6% of the transcriptome is unique to flax. A total of 4064 putative genomic SSRs were identified and are being developed as novel markers for their use in molecular breeding. The first genome-wide physical map of flax constructed with BAC clones provides a framework for accessing target loci with economic importance for marker development and positional cloning. Analysis of the BES has provided insights into the uniqueness of the flax genome. Compared to other plant genomes, the proportion of rDNA was found to be very high whereas the proportion of known transposable elements was low. The SSRs identified from BES will be

  20. Fermi-LAT Gamma-Ray Bursts and Insights from Swift

    Science.gov (United States)

    Racusin, Judith L.

    2010-01-01

    A new revolution in Gamma-ray Burst (GRB) observations and theory has begun over the last two years since the launch of the Fermi Gamma-ray Space Telescope. The new window into high energy gamma-rays opened by the Fermi-Large Area Telescope (LAT) is providing insight into prompt emission mechanisms and possibly also afterglow physics. The LAT detected GRBs appear to be a new unique subset of extremely energetic and bright bursts compared to the large sample detected by Swift over the last 6 years. In this talk, I will discuss the context and recent discoveries from these LAT GRBs and the large database of broadband observations collected by the Swift X-ray Telescope (XRT) and UV/Optical Telescope (UVOT). Through comparisons between the GRBs detected by Swift-BAT, G8M, and LAT, we can learn about the unique characteristics, physical differences, and the relationships between each population. These population characteristics provide insight into the different physical parameters that contribute to the diversity of observational GRB properties.

  1. A genome-wide analysis of the RNA-guided silencing pathway in coffee reveals insights into its regulatory mechanisms.

    Directory of Open Access Journals (Sweden)

    Christiane Noronha Fernandes-Brum

    Full Text Available microRNAs (miRNAs are derived from self-complementary hairpin structures, while small-interfering RNAs (siRNAs are derived from double-stranded RNA (dsRNA or hairpin precursors. The core mechanism of sRNA production involves DICER-like (DCL in processing the smallRNAs (sRNAs and ARGONAUTE (AGO as effectors of silencing, and siRNA biogenesis also involves action of RNA-Dependent RNA Polymerase (RDR, Pol IV and Pol V in biogenesis. Several other proteins interact with the core proteins to guide sRNA biogenesis, action, and turnover. We aimed to unravel the components and functions of the RNA-guided silencing pathway in a non-model plant species of worldwide economic relevance. The sRNA-guided silencing complex members have been identified in the Coffea canephora genome, and they have been characterized at the structural, functional, and evolutionary levels by computational analyses. Eleven AGO proteins, nine DCL proteins (which include a DCL1-like protein that was not previously annotated, and eight RDR proteins were identified. Another 48 proteins implicated in smallRNA (sRNA pathways were also identified. Furthermore, we identified 235 miRNA precursors and 317 mature miRNAs from 113 MIR families, and we characterized ccp-MIR156, ccp-MIR172, and ccp-MIR390. Target prediction and gene ontology analyses of 2239 putative targets showed that significant pathways in coffee are targeted by miRNAs. We provide evidence of the expansion of the loci related to sRNA pathways, insights into the activities of these proteins by domain and catalytic site analyses, and gene expression analysis. The number of MIR loci and their targeted pathways highlight the importance of miRNAs in coffee. We identified several roles of sRNAs in C. canephora, which offers substantial insight into better understanding the transcriptional and post-transcriptional regulation of this major crop.

  2. Insights into the mechanisms of mercury sorption onto aluminum based drinking water treatment residuals.

    Science.gov (United States)

    Deliz Quiñones, Katherine; Hovsepyan, Anna; Oppong-Anane, Akua; Bonzongo, Jean-Claude J

    2016-04-15

    Several studies have demonstrated the ability of drinking water treatment residuals (WTRs) to efficiently sorb metal cations from aqueous solutions. Reported results have stimulated interest on the potential use of WTRs as sorbent for metal removal from contaminated aqueous effluents as well as in metal immobilization in contaminated soils. However, knowledge on mechanisms of metal sorption by WTRs remains very limited and data on the long-term stability of formed metal-WTR complexes as a function of changing key environmental parameters are lacking. In this study, chemical selective sequential extraction (SSE), scanning electron microscopy combined with X-ray energy dispersive spectrometer (SEM-EDS), and X-ray photoelectron spectroscopy (XPS) were used to gain insight into the different mechanisms of mercury (Hg) binding to aluminum based WTR (Al-WTRs). Results from sorption studies show that a significant portion of Hg becomes incorporated in the operationally defined residual fraction of Al-WTRs, and therefore, not prone to dissolution and mobility. The results of solid phase analyses suggested that Hg immobilization by Al-WTR occurs largely through its binding to oxygen donor atoms of mineral ligands driven by a combination of electrostatic forces and covalent bonding. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Animal behavior models of the mechanisms underlying antipsychotic atypicality.

    NARCIS (Netherlands)

    Geyer, M.A.; Ellenbroek, B.A.

    2003-01-01

    This review describes the animal behavior models that provide insight into the mechanisms underlying the critical differences between the actions of typical vs. atypical antipsychotic drugs. Although many of these models are capable of differentiating between antipsychotic and other psychotropic

  4. Crystal Structures of the Tetratricopeptide Repeat Domains of Kinesin Light Chains: Insight into Cargo Recognition Mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Haizhong; Lee, Han Youl; Tong, Yufeng; Hong, Bum-Soo; Kim, Kyung-Phil; Shen, Yang; Lim, Kyung Jik; Mackenzie, Farrell; Tempel, Wolfram; Park, Hee-Won (SGC-Toronto); (PPCS); (Toronto)

    2012-10-23

    Kinesin-1 transports various cargos along the axon by interacting with the cargos through its light chain subunit. Kinesin light chains (KLC) utilize its tetratricopeptide repeat (TPR) domain to interact with over 10 different cargos. Despite a high sequence identity between their TPR domains (87%), KLC1 and KLC2 isoforms exhibit differential binding properties towards some cargos. We determined the structures of human KLC1 and KLC2 tetratricopeptide repeat (TPR) domains using X-ray crystallography and investigated the different mechanisms by which KLCs interact with their cargos. Using isothermal titration calorimetry, we attributed the specific interaction between KLC1 and JNK-interacting protein 1 (JIP1) cargo to residue N343 in the fourth TRP repeat. Structurally, the N343 residue is adjacent to other asparagines and lysines, creating a positively charged polar patch within the groove of the TPR domain. Whereas, KLC2 with the corresponding residue S328 did not interact with JIP1. Based on these finding, we propose that N343 of KLC1 can form 'a carboxylate clamp' with its neighboring asparagine to interact with JIP1, similar to that of HSP70/HSP90 organizing protein-1's (HOP1) interaction with heat shock proteins. For the binding of cargos shared by KLC1 and KLC2, we propose a different site located within the groove but not involving N343. We further propose a third binding site on KLC1 which involves a stretch of polar residues along the inter-TPR loops that may form a network of hydrogen bonds to JIP3 and JIP4. Together, these results provide structural insights into possible mechanisms of interaction between KLC TPR domains and various cargo proteins.

  5. Comparative transcriptional profiling provides insights into the evolution and development of the zygomorphic flower of Vicia sativa (Papilionoideae.

    Directory of Open Access Journals (Sweden)

    Zhipeng Liu

    Full Text Available BACKGROUND: Vicia sativa (the common vetch possesses a predominant zygomorphic flower and belongs to the subfamily Papilionoideae, which is related to Arabidopsis thaliana in the eurosid II clade of the core eudicots. Each vetch flower consists of 21 concentrically arranged organs: the outermost five sepals, then five petals and ten stamens, and a single carpel in the center. METHODOLOGY/PRINCIPAL FINDINGS: We explored the floral transcriptome to examine a genome-scale genetic model of the zygomorphic flower of vetch. mRNA was obtained from an equal mixture of six floral organs, leaves and roots. De novo assembly of the vetch transcriptome using Illumina paired-end technology produced 71,553 unigenes with an average length of 511 bp. We then compared the expression changes in the 71,553 unigenes in the eight independent organs through RNA-Seq Quantification analysis. We predominantly analyzed gene expression patterns specific to each floral organ and combinations of floral organs that corresponded to the traditional ABC model domains. Comparative analyses were performed in the floral transcriptomes of vetch and Arabidopsis, and genomes of vetch and Medicago truncatula. CONCLUSIONS/SIGNIFICANCE: Our comparative analysis of vetch and Arabidopsis showed that the vetch flowers conform to a strict ABC model. We analyzed the evolution and expression of the TCP gene family in vetch at a whole-genome level, and several unigenes specific to three different vetch petals, which might offer some clues toward elucidating the molecular mechanisms underlying floral zygomorphy. Our results provide the first insights into the genome-scale molecular regulatory network that controls the evolution and development of the zygomorphic flower in Papilionoideae.

  6. Understanding mechanisms of toxicity: Insights from drug discovery research

    International Nuclear Information System (INIS)

    Houck, Keith A.; Kavlock, Robert J.

    2008-01-01

    Toxicology continues to rely heavily on use of animal testing for prediction of potential for toxicity in humans. Where mechanisms of toxicity have been elucidated, for example endocrine disruption by xenoestrogens binding to the estrogen receptor, in vitro assays have been developed as surrogate assays for toxicity prediction. This mechanistic information can be combined with other data such as exposure levels to inform a risk assessment for the chemical. However, there remains a paucity of such mechanistic assays due at least in part to lack of methods to determine specific mechanisms of toxicity for many toxicants. A means to address this deficiency lies in utilization of a vast repertoire of tools developed by the drug discovery industry for interrogating the bioactivity of chemicals. This review describes the application of high-throughput screening assays as experimental tools for profiling chemicals for potential for toxicity and understanding underlying mechanisms. The accessibility of broad panels of assays covering an array of protein families permits evaluation of chemicals for their ability to directly modulate many potential targets of toxicity. In addition, advances in cell-based screening have yielded tools capable of reporting the effects of chemicals on numerous critical cell signaling pathways and cell health parameters. Novel, more complex cellular systems are being used to model mammalian tissues and the consequences of compound treatment. Finally, high-throughput technology is being applied to model organism screens to understand mechanisms of toxicity. However, a number of formidable challenges to these methods remain to be overcome before they are widely applicable. Integration of successful approaches will contribute towards building a systems approach to toxicology that will provide mechanistic understanding of the effects of chemicals on biological systems and aid in rationale risk assessments

  7. Eggshell Porosity Provides Insight on Evolution of Nesting in Dinosaurs.

    Directory of Open Access Journals (Sweden)

    Kohei Tanaka

    Full Text Available Knowledge about the types of nests built by dinosaurs can provide insight into the evolution of nesting and reproductive behaviors among archosaurs. However, the low preservation potential of their nesting materials and nesting structures means that most information can only be gleaned indirectly through comparison with extant archosaurs. Two general nest types are recognized among living archosaurs: 1 covered nests, in which eggs are incubated while fully covered by nesting material (as in crocodylians and megapodes, and 2 open nests, in which eggs are exposed in the nest and brooded (as in most birds. Previously, dinosaur nest types had been inferred by estimating the water vapor conductance (i.e., diffusive capacity of their eggs, based on the premise that high conductance corresponds to covered nests and low conductance to open nests. However, a lack of statistical rigor and inconsistencies in this method render its application problematic and its validity questionable. As an alternative we propose a statistically rigorous approach to infer nest type based on large datasets of eggshell porosity and egg mass compiled for over 120 extant archosaur species and 29 archosaur extinct taxa/ootaxa. The presence of a strong correlation between eggshell porosity and nest type among extant archosaurs indicates that eggshell porosity can be used as a proxy for nest type, and thus discriminant analyses can help predict nest type in extinct taxa. Our results suggest that: 1 covered nests are likely the primitive condition for dinosaurs (and probably archosaurs, and 2 open nests first evolved among non-avian theropods more derived than Lourinhanosaurus and were likely widespread in non-avian maniraptorans, well before the appearance of birds. Although taphonomic evidence suggests that basal open nesters (i.e., oviraptorosaurs and troodontids were potentially the first dinosaurs to brood their clutches, they still partially buried their eggs in sediment

  8. Eggshell Porosity Provides Insight on Evolution of Nesting in Dinosaurs.

    Science.gov (United States)

    Tanaka, Kohei; Zelenitsky, Darla K; Therrien, François

    2015-01-01

    Knowledge about the types of nests built by dinosaurs can provide insight into the evolution of nesting and reproductive behaviors among archosaurs. However, the low preservation potential of their nesting materials and nesting structures means that most information can only be gleaned indirectly through comparison with extant archosaurs. Two general nest types are recognized among living archosaurs: 1) covered nests, in which eggs are incubated while fully covered by nesting material (as in crocodylians and megapodes), and 2) open nests, in which eggs are exposed in the nest and brooded (as in most birds). Previously, dinosaur nest types had been inferred by estimating the water vapor conductance (i.e., diffusive capacity) of their eggs, based on the premise that high conductance corresponds to covered nests and low conductance to open nests. However, a lack of statistical rigor and inconsistencies in this method render its application problematic and its validity questionable. As an alternative we propose a statistically rigorous approach to infer nest type based on large datasets of eggshell porosity and egg mass compiled for over 120 extant archosaur species and 29 archosaur extinct taxa/ootaxa. The presence of a strong correlation between eggshell porosity and nest type among extant archosaurs indicates that eggshell porosity can be used as a proxy for nest type, and thus discriminant analyses can help predict nest type in extinct taxa. Our results suggest that: 1) covered nests are likely the primitive condition for dinosaurs (and probably archosaurs), and 2) open nests first evolved among non-avian theropods more derived than Lourinhanosaurus and were likely widespread in non-avian maniraptorans, well before the appearance of birds. Although taphonomic evidence suggests that basal open nesters (i.e., oviraptorosaurs and troodontids) were potentially the first dinosaurs to brood their clutches, they still partially buried their eggs in sediment. Open nests

  9. High Resolution Insights into Snow Distribution Provided by Drone Photogrammetry

    Science.gov (United States)

    Redpath, T.; Sirguey, P. J.; Cullen, N. J.; Fitzsimons, S.

    2017-12-01

    accumulation and ablation, snow depth maps provide geostatistically robust insights into seasonal snow processes, with unprecedented detail. Such data may enhance understanding of physical processes controlling spatial and temporal distribution of seasonal snow, and their relative importance at varying spatial and temporal scales.

  10. Social network analysis provides insights into African swine fever epidemiology.

    Science.gov (United States)

    Lichoti, Jacqueline Kasiiti; Davies, Jocelyn; Kitala, Philip M; Githigia, Samuel M; Okoth, Edward; Maru, Yiheyis; Bukachi, Salome A; Bishop, Richard P

    2016-04-01

    Pig movements play a significant role in the spread of economically important infectious diseases such as the African swine fever. Characterization of movement networks between pig farms and through other types of farm and household enterprises that are involved in pig value chains can provide useful information on the role that different participants in the networks play in pathogen transmission. Analysis of social networks that underpin these pig movements can reveal pathways that are important in the transmission of disease, trade in commodities, the dissemination of information and the influence of behavioural norms. We assessed pig movements among pig keeping households within West Kenya and East Uganda and across the shared Kenya-Uganda border in the study region, to gain insight into within-country and trans-boundary pig movements. Villages were sampled using a randomized cluster design. Data were collected through interviews in 2012 and 2013 from 683 smallholder pig-keeping households in 34 villages. NodeXL software was used to describe pig movement networks at village level. The pig movement and trade networks were localized and based on close social networks involving family ties, friendships and relationships with neighbours. Pig movement network modularity ranged from 0.2 to 0.5 and exhibited good community structure within the network implying an easy flow of knowledge and adoption of new attitudes and beliefs, but also promoting an enhanced rate of disease transmission. The average path length of 5 defined using NodeXL, indicated that disease could easily reach every node in a cluster. Cross-border boar service between Uganda and Kenya was also recorded. Unmonitored trade in both directions was prevalent. While most pig transactions in the absence of disease, were at a small scale (sales during ASF outbreaks were to traders or other farmers from outside the sellers' village at a range of >10km. The close social relationships between actors in pig

  11. New insights into the pathophysiology of post-stroke spasticity

    Directory of Open Access Journals (Sweden)

    Sheng eLi

    2015-04-01

    Full Text Available Spasticity is one of many consequences after stroke. It is characterized by a velocity-dependent increase in resistance during passive stretch, resulting from hyperexcitability of the stretch reflex. The underlying mechanism of the hyperexcitable stretch reflex, however, remains poorly understood. Accumulated experimental evidence has supported supraspinal origins of spasticity, likely from an imbalance between descending inhibitory and facilitatory regulation of spinal stretch reflexes secondary to cortical disinhibition after stroke. The excitability of reticulospinal and vestibulospinal tracts has been assessed in stroke survivors with spasticity using non-invasive indirect measures. There are strong experimental findings that support the reticulospinal hyperexcitability as a prominent underlying mechanism of post-stroke spasticity. This mechanism can at least partly account for clinical features associated with spasticity and provide insightful guidance for clinical assessment and management of spasticity. However, the possible role of VST hyperexcitability can not be ruled out from indirect measures. In vivo measure of individual brainstem nuclei in stroke survivors with spasticity using advanced fMRI techniques in the future is probably able to provide direct evidence of pathogenesis of post-stroke spasticity.

  12. New insights into the pathophysiology of post-stroke spasticity.

    Science.gov (United States)

    Li, Sheng; Francisco, Gerard E

    2015-01-01

    Spasticity is one of many consequences after stroke. It is characterized by a velocity-dependent increase in resistance during passive stretch, resulting from hyperexcitability of the stretch reflex. The underlying mechanism of the hyperexcitable stretch reflex, however, remains poorly understood. Accumulated experimental evidence has supported supraspinal origins of spasticity, likely from an imbalance between descending inhibitory and facilitatory regulation of spinal stretch reflexes secondary to cortical disinhibition after stroke. The excitability of reticulospinal (RST) and vestibulospinal tracts (VSTs) has been assessed in stroke survivors with spasticity using non-invasive indirect measures. There are strong experimental findings that support the RST hyperexcitability as a prominent underlying mechanism of post-stroke spasticity. This mechanism can at least partly account for clinical features associated with spasticity and provide insightful guidance for clinical assessment and management of spasticity. However, the possible role of VST hyperexcitability cannot be ruled out from indirect measures. In vivo measure of individual brainstem nuclei in stroke survivors with spasticity using advanced fMRI techniques in the future is probably able to provide direct evidence of pathogenesis of post-stroke spasticity.

  13. Effects of Persistent Atrial Fibrillation-Induced Electrical Remodeling on Atrial Electro-MechanicsInsights from a 3D Model of the Human Atria

    Science.gov (United States)

    Adeniran, Ismail; MacIver, David H.; Garratt, Clifford J.; Ye, Jianqiao; Hancox, Jules C.; Zhang, Henggui

    2015-01-01

    Aims Atrial stunning, a loss of atrial mechanical contraction, can occur following a successful cardioversion. It is hypothesized that persistent atrial fibrillation-induced electrical remodeling (AFER) on atrial electrophysiology may be responsible for such impaired atrial mechanics. This simulation study aimed to investigate the effects of AFER on atrial electro-mechanics. Methods and Results A 3D electromechanical model of the human atria was developed to investigate the effects of AFER on atrial electro-mechanics. Simulations were carried out in 3 conditions for 4 states: (i) the control condition, representing the normal tissue (state 1) and the tissue 2–3 months after cardioversion (state 2) when the atrial tissue recovers its electrophysiological properties after completion of reverse electrophysiological remodelling; (ii) AFER-SR condition for AF-remodeled tissue with normal sinus rhythm (SR) (state 3); and (iii) AFER-AF condition for AF-remodeled tissue with re-entrant excitation waves (state 4). Our results indicate that at the cellular level, AFER (states 3 & 4) abbreviated action potentials and reduced the Ca2+ content in the sarcoplasmic reticulum, resulting in a reduced amplitude of the intracellular Ca2+ transient leading to decreased cell active force and cell shortening as compared to the control condition (states 1 & 2). Consequently at the whole organ level, atrial contraction in AFER-SR condition (state 3) was dramatically reduced. In the AFER-AF condition (state 4) atrial contraction was almost abolished. Conclusions This study provides novel insights into understanding atrial electro-mechanics illustrating that AFER impairs atrial contraction due to reduced intracellular Ca2+ transients. PMID:26606047

  14. Global China Insights

    NARCIS (Netherlands)

    Segers, Rien; Fischer, Ingrid

    Journal in which the Groningen Confucius Institute (GCI) shares different perspectives on China and provides insights into China from as many different aspects as possible. GCI aims to provide a full view of real China to the readers as well as featuring international and comprehensive perspectives,

  15. Global China Insights

    NARCIS (Netherlands)

    Segers, Rien; Havinga, Marieke; Fischer, Ingrid

    2013-01-01

    Journal in which the Groningen Confucius Institute (GCI) shares different perspectives on China and provides insights into China from as many different aspects as possible. GCI aims to provide a full view of real China to the readers as well as featuring international and comprehensive perspectives,

  16. Structures of parasite calreticulins provide insights into their flexibility and dual carbohydrate/peptide-binding properties

    Directory of Open Access Journals (Sweden)

    Christophe Moreau

    2016-11-01

    Full Text Available Calreticulin (CRT is a multifaceted protein, initially discovered as an endoplasmic reticulum (ER chaperone protein, that is essential in calcium metabolism. Various implications in cancer, early development and immunology have been discovered more recently for CRT, as well as its role as a dominant `eat-me' prophagocytic signal. Intriguingly, cell-surface exposure/secretion of CRT is among the infective strategies used by parasites such as Trypanosoma cruzi, Entamoeba histolytica, Taenia solium, Leishmania donovani and Schistosoma mansoni. Because of the inherent flexibility of CRTs, their analysis by X-ray crystallography requires the design of recombinant constructs suitable for crystallization, and thus only the structures of two very similar mammalian CRT lectin domains are known. With the X-ray structures of two distant parasite CRTs, insights into species structural determinants that might be harnessed to fight against the parasites without affecting the functions of the host CRT are now provided. Moreover, although the hypothesis that CRT can exhibit both open and closed conformations has been proposed in relation to its chaperone function, only the open conformation has so far been observed in crystal structures. The first evidence is now provided of a complex conformational transition with the junction reoriented towards P-domain closure. SAXS experiments also provided additional information about the flexibility of T. cruzi CRT in solution, thus complementing crystallographic data on the open conformation. Finally, regarding the conserved lectin-domain structure and chaperone function, evidence is provided of its dual carbohydrate/protein specificity and a new scheme is proposed to interpret such unusual substrate-binding properties. These fascinating features are fully consistent with previous experimental observations, as discussed considering the broad spectrum of CRT sequence conservations and differences.

  17. Computational Modeling and Analysis of Mechanically Painful Stimulations

    DEFF Research Database (Denmark)

    Manafi Khanian, Bahram

    Cuff algometry is used for quantitative assessment of deep-tissue sensitivity. The main purpose of this PhD dissertation is to provide a novel insight into the intrinsic and extrinsic factors which are involved in mechanically induced pain during cuff pressure algometry. A computational 3D finite...

  18. Integration of computational modeling with membrane transport studies reveals new insights into amino acid exchange transport mechanisms

    Science.gov (United States)

    Widdows, Kate L.; Panitchob, Nuttanont; Crocker, Ian P.; Please, Colin P.; Hanson, Mark A.; Sibley, Colin P.; Johnstone, Edward D.; Sengers, Bram G.; Lewis, Rohan M.; Glazier, Jocelyn D.

    2015-01-01

    Uptake of system L amino acid substrates into isolated placental plasma membrane vesicles in the absence of opposing side amino acid (zero-trans uptake) is incompatible with the concept of obligatory exchange, where influx of amino acid is coupled to efflux. We therefore hypothesized that system L amino acid exchange transporters are not fully obligatory and/or that amino acids are initially present inside the vesicles. To address this, we combined computational modeling with vesicle transport assays and transporter localization studies to investigate the mechanisms mediating [14C]l-serine (a system L substrate) transport into human placental microvillous plasma membrane (MVM) vesicles. The carrier model provided a quantitative framework to test the 2 hypotheses that l-serine transport occurs by either obligate exchange or nonobligate exchange coupled with facilitated transport (mixed transport model). The computational model could only account for experimental [14C]l-serine uptake data when the transporter was not exclusively in exchange mode, best described by the mixed transport model. MVM vesicle isolates contained endogenous amino acids allowing for potential contribution to zero-trans uptake. Both L-type amino acid transporter (LAT)1 and LAT2 subtypes of system L were distributed to MVM, with l-serine transport attributed to LAT2. These findings suggest that exchange transporters do not function exclusively as obligate exchangers.—Widdows, K. L., Panitchob, N., Crocker, I. P., Please, C. P., Hanson, M. A., Sibley, C. P., Johnstone, E. D., Sengers, B. G., Lewis, R. M., Glazier, J. D. Integration of computational modeling with membrane transport studies reveals new insights into amino acid exchange transport mechanisms. PMID:25761365

  19. Post-operative atrial fibrillation: a maze of mechanisms

    Science.gov (United States)

    Maesen, Bart; Nijs, Jan; Maessen, Jos; Allessie, Maurits; Schotten, Ulrich

    2012-01-01

    Post-operative atrial fibrillation (POAF) is one of the most frequent complications of cardiac surgery and an important predictor of patient morbidity as well as of prolonged hospitalization. It significantly increases costs for hospitalization. Insights into the pathophysiological factors causing POAF have been provided by both experimental and clinical investigations and show that POAF is ‘multi-factorial’. Facilitating factors in the mechanism of the arrhythmia can be classified as acute factors caused by the surgical intervention and chronic factors related to structural heart disease and ageing of the heart. Furthermore, some proarrhythmic mechanisms specifically occur in the setting of POAF. For example, inflammation and beta-adrenergic activation have been shown to play a prominent role in POAF, while these mechanisms are less important in non-surgical AF. More recently, it has been shown that atrial fibrosis and the presence of an electrophysiological substrate capable of maintaining AF also promote the arrhythmia, indicating that POAF has some proarrhythmic mechanisms in common with other forms of AF. The clinical setting of POAF offers numerous opportunities to study its mechanisms. During cardiac surgery, biopsies can be taken and detailed electrophysiological measurements can be performed. Furthermore, the specific time course of POAF, with the delayed onset and the transient character of the arrhythmia, also provides important insight into its mechanisms. This review discusses the mechanistic interaction between predisposing factors and the electrophysiological mechanisms resulting in POAF and their therapeutic implications. PMID:21821851

  20. Build platform that provides mechanical engagement with additive manufacturing prints

    Science.gov (United States)

    Elliott, Amelia M.

    2018-03-06

    A build platform and methods of fabricating an article with such a platform in an extrusion-type additive manufacturing machine are provided. A platform body 202 includes features 204 that extend outward from the body 202. The features 204 define protrusive areas 206 and recessive areas 208 that cooperate to mechanically engage the extruded material that forms the initial layers 220 of an article when the article is being fabricated by a nozzle 12 of the additive manufacturing machine 10.

  1. Correlation of proteome-wide changes with social immunity behaviors provides insight into resistance to the parasitic mite, Varroa destructor, in the honey bee (Apis mellifera).

    Science.gov (United States)

    Parker, Robert; Guarna, M Marta; Melathopoulos, Andony P; Moon, Kyung-Mee; White, Rick; Huxter, Elizabeth; Pernal, Stephen F; Foster, Leonard J

    2012-06-29

    Disease is a major factor driving the evolution of many organisms. In honey bees, selection for social behavioral responses is the primary adaptive process facilitating disease resistance. One such process, hygienic behavior, enables bees to resist multiple diseases, including the damaging parasitic mite Varroa destructor. The genetic elements and biochemical factors that drive the expression of these adaptations are currently unknown. Proteomics provides a tool to identify proteins that control behavioral processes, and these proteins can be used as biomarkers to aid identification of disease tolerant colonies. We sampled a large cohort of commercial queen lineages, recording overall mite infestation, hygiene, and the specific hygienic response to V. destructor. We performed proteome-wide correlation analyses in larval integument and adult antennae, identifying several proteins highly predictive of behavior and reduced hive infestation. In the larva, response to wounding was identified as a key adaptive process leading to reduced infestation, and chitin biosynthesis and immune responses appear to represent important disease resistant adaptations. The speed of hygienic behavior may be underpinned by changes in the antenna proteome, and chemosensory and neurological processes could also provide specificity for detection of V. destructor in antennae. Our results provide, for the first time, some insight into how complex behavioural adaptations manifest in the proteome of honey bees. The most important biochemical correlations provide clues as to the underlying molecular mechanisms of social and innate immunity of honey bees. Such changes are indicative of potential divergence in processes controlling the hive-worker maturation.

  2. High-throughput transcriptome sequencing analysis provides preliminary insights into the biotransformation mechanism of Rhodopseudomonas palustris treated with alpha-rhamnetin-3-rhamnoside.

    Science.gov (United States)

    Bi, Lei; Guan, Chun-jie; Yang, Guan-e; Yang, Fei; Yan, Hong-yu; Li, Qing-shan

    2016-04-01

    The purple photosynthetic bacterium Rhodopseudomonas palustris has been widely applied to enhance the therapeutic effects of traditional Chinese medicine using novel biotransformation technology. However, comprehensive studies of the R. palustris biotransformation mechanism are rare. Therefore, investigation of the expression patterns of genes involved in metabolic pathways that are active during the biotransformation process is essential to elucidate this complicated mechanism. To promote further study of the biotransformation of R. palustris, we assembled all R. palustris transcripts using Trinity software and performed differential expression analysis of the resulting unigenes. A total of 9725, 7341 and 10,963 unigenes were obtained by assembling the alpha-rhamnetin-3-rhamnoside-treated R. palustris (RPB) reads, control R. palustris (RPS) reads and combined RPB&RPS reads, respectively. A total of 9971 unigenes assembled from the RPB&RPS reads were mapped to the nr, nt, Swiss-Prot, Gene Ontology (GO), Clusters of Orthologous Groups (COGs) and Kyoto Encyclopedia of Genes and Genomes (KEGG) (E-value biotransformation in R. palustris. Furthermore, we propose two putative ARR biotransformation mechanisms in R. palustris. These analytical results represent a useful genomic resource for in-depth research into the molecular basis of biotransformation and genetic modification in R. palustris. Copyright © 2016 Elsevier GmbH. All rights reserved.

  3. A Comparative Genomic Survey Provides Novel Insights into Molecular Evolution of l-Aromatic Amino Acid Decarboxylase in Vertebrates

    Directory of Open Access Journals (Sweden)

    Yanping Li

    2018-04-01

    Full Text Available Melatonin is a pleiotropic molecule with various important physiological roles in vertebrates. l-aromatic amino acid decarboxylase (AAAD is the second enzyme for melatonin synthesis. By far, a clear-cut gene function of AAAD in the biosynthesis of melatonin has been unclear in vertebrates. Here, we provide novel insights into the evolution of AAAD based on 77 vertebrate genomes. According to our genome-wide alignments, we extracted a total of 151 aaad nucleotide sequences. A phylogenetic tree was constructed on the basis of these sequences and corresponding protein alignments, indicating that tetrapods and diploid bony fish genomes contained one aaad gene and a new aaad-like gene, which formed a novel AAAD family. However, in tetraploid teleosts, there were two copies of the aaad gene due to whole genome duplication. A subsequent synteny analysis investigated 81 aaad sequences and revealed their collinearity and systematic evolution. Interestingly, we discovered that platypus (Ornithorhynchus anatinus, Atlantic cod (Guadus morhua, Mexican tetra (Astyanax mexicanus, and a Sinocyclocheilus cavefish (S. anshuiensis have long evolutionary branches in the phylogenetic topology. We also performed pseudogene identification and selection pressure analysis; however, the results revealed a deletion of 37 amino acids in Atlantic cod and premature stop codons in the cave-restricted S. anshuiensis and A. mexicanus, suggesting weakening or disappearing rhythms in these cavefishes. Selective pressure analysis of aaad between platypus and other tetrapods showed that rates of nonsynonymous (Ka and synonymous (Ks substitutions were higher when comparing the platypus to other representative tetrapods, indicating that, in this semiaquatic mammal, the aaad gene experienced selection during the process of evolution. In summary, our current work provides novel insights into aaad genes in vertebrates from a genome-wide view.

  4. Complementation studies with the novel "Bungowannah" virus provide new insights in the compatibility of pestivirus proteins.

    Science.gov (United States)

    Richter, Maria; Reimann, Ilona; Wegelt, Anne; Kirkland, Peter D; Beer, Martin

    2011-09-30

    In recent years several atypical pestiviruses have been described. Bungowannah virus is the most divergent virus in this group. Therefore, heterologous complementation was used to clarify the phylogenetic relationship and to analyze the exchangeability of genome regions encoding structural proteins. Using a BVDV type 1 backbone, chimeric constructs with substituted envelope proteins E(rns), E1 and E2, were investigated. While all constructs replicated autonomously, infectious high titer chimeric virus could only be observed after exchanging the complete E1-E2 encoding region. The complementation of E1 and E2 alone resulted only in replicons. Complementation of BVDV-E(rns) was only efficient if Bungowannah virus-E(rns) was expressed from a bicistronic construct. Our data provide new insights in the compatibility of pestivirus proteins and demonstrate that heterologous complementation could be useful to characterize new pestiviruses. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Neural Mechanisms of Foraging

    OpenAIRE

    Kolling, Nils; Behrens, Timothy EJ; Mars, Rogier B; Rushworth, Matthew FS

    2012-01-01

    Behavioural economic studies, involving limited numbers of choices, have provided key insights into neural decision-making mechanisms. By contrast, animals’ foraging choices arise in the context of sequences of encounters with prey/food. On each encounter the animal chooses to engage or whether the environment is sufficiently rich that searching elsewhere is merited. The cost of foraging is also critical. We demonstrate humans can alternate between two modes of choice, comparative decision-ma...

  6. A mechanical wave system to show waveforms similar to quantum mechanical wavefunctions in a potential

    International Nuclear Information System (INIS)

    Faletič, Sergej

    2015-01-01

    Interviews with students suggest that even though they understand the formalism and the formal nature of quantum theory, they still often desire a mental picture of what the equations describe and some tangible experience with the wavefunctions. Here we discuss a mechanical wave system capable of reproducing correctly a mechanical equivalent of a quantum system in a potential, and the resulting waveforms in principle of any form. We have successfully reproduced the finite potential well, the potential barrier and the parabolic potential. We believe that these mechanical waveforms can provide a valuable experience base for introductory students to start from. We aim to show that mechanical systems that are described with the same mathematics as quantum mechanical, indeed behave in the same way. We believe that even if treated purely as a wave phenomenon, the system provides much insight into wave mechanics. This can be especially useful for physics teachers and others who often need to resort to concepts and experience rather than mathematics when explaining physical phenomena. (paper)

  7. A comprehensive comparison of four species of Onchidiidae provides insights on the morphological and molecular adaptations of invertebrates from shallow seas to wetlands

    Science.gov (United States)

    Wang, Dongfeng; Li, Jie; Liu, Xin; Wu, Xin

    2018-01-01

    The Onchidiidae family is ideal for studying the evolution of marine invertebrate species from sea to wetland environments. However, comparative studies of Onchidiidae species are rare. A total of 40 samples were collected from four species (10 specimens per onchidiid), and their histological and molecular differences were systematically evaluated to elucidate the morphological foundations underlying the adaptations of these species. A histological analysis was performed to compare the structures of respiratory organs (gill, lung sac, dorsal skin) among onchidiids, and transcriptome sequencing of four representative onchidiids was performed to investigate the molecular mechanisms associated with their respective habitats. Twenty-six SNP markers of Onchidium reevesii revealed some DNA polymorphisms determining visible traits. Non-muscle myosin heavy chain II (NMHC II) and myosin heavy chain (MyHC), which play essential roles in amphibian developmental processes, were found to be differentially expressed in different onchidiids and tissues. The species with higher terrestrial ability and increased integrated expression of Os-MHC (NMHC II gene) and the MyHC gene, illustrating that the expression levels of these genes were associated with the evolutionary degree. This study provides a comprehensive analysis of the adaptions of a diverse and widespread group of invertebrates, the Onchidiidae. Some onchidiids can breathe well through gills and skin when under seawater, and some can breathe well through lung sacs and skin when in wetlands. A histological comparison of respiratory organs and the relative expression levels of two genes provided insights into the adaptions of onchidiids that allowed their transition from shallow seas to wetlands. This work provides a valuable reference and might encourage further study. PMID:29698429

  8. Physically-insightful equivalent circuit models for electromagnetic periodic structures

    Science.gov (United States)

    Mesa, F.; Rodríguez-Berral, R.; Medina, F.

    2018-02-01

    In this presentation it will be discussed how to obtain analytical or quasi-analytical equivalent circuits to deal with periodic structures such as frequency selective surfaces and/or metasurfaces. Both the topology and the values of the involved elements of these circuits are obtained from a basic rationale to solve the corresponding integral equation. This procedure, besides providing a very efficient analysis/design tool, allows for a good physical insight into the operating mechanisms of the structure in contrast with the almost blind numerical scheme of commercial simulators.

  9. Insights Into Care Providers' Understandings of Life Story Work With Persons With Dementia: Findings From a Qualitative Study.

    Science.gov (United States)

    Berendonk, Charlotte; Caine, Vera

    2017-08-01

    In Germany, life story work, an approach which acknowledges humans as narrative beings and honors biographies, is required by health authorities to be integrated in care provided in nursing homes. Insufficient attention to life story work could place residents at risk of dehumanization, particularly residents with dementia, who depend on support of others to tell and make meaning of their life experiences. We conducted a qualitative study to gain insights into care providers' perceptions and practices of life story work with persons with dementia. Thirty-six care providers in 7 nursing homes participated in semistructured interviews or group discussions. We derived subjective theories (individual understandings) of care providers and higher-order concept patterns following the principles and processes of grounded theory. We found a great variation in participants' understandings of life story work. Some participants were unsure if and how life story work impacts persons with dementia. Starting points for improving the integration of life story work into practice are discussed. We conclude that care providers need a better understanding of life story work as a nursing intervention. The importance of the notion of humans as narrative beings and the multiple ways in which we story our lives as well as embody life stories needs to be further developed. Knowledge is required about the practical and systemic challenges of integrating life story work in the care of persons with dementia.

  10. Tuning Cell and Tissue Development by Combining Multiple Mechanical Signals.

    Science.gov (United States)

    Sinha, Ravi; Verdonschot, Nico; Koopman, Bart; Rouwkema, Jeroen

    2017-10-01

    Mechanical signals offer a promising way to control cell and tissue development. It has been established that cells constantly probe their mechanical microenvironment and employ force feedback mechanisms to modify themselves and when possible, their environment, to reach a homeostatic state. Thus, a correct mechanical microenvironment (external forces and mechanical properties and shapes of cellular surroundings) is necessary for the proper functioning of cells. In vitro or in the case of nonbiological implants in vivo, where cells are in an artificial environment, addition of the adequate mechanical signals can, therefore, enable the cells to function normally as in vivo. Hence, a wide variety of approaches have been developed to apply mechanical stimuli (such as substrate stretch, flow-induced shear stress, substrate stiffness, topography, and modulation of attachment area) to cells in vitro. These approaches have not just revealed the effects of the mechanical signals on cells but also provided ways for probing cellular molecules and structures that can provide a mechanistic understanding of the effects. However, they remain lower in complexity compared with the in vivo conditions, where the cellular mechanical microenvironment is the result of a combination of multiple mechanical signals. Therefore, combinations of mechanical stimuli have also been applied to cells in vitro. These studies have had varying focus-developing novel platforms to apply complex combinations of mechanical stimuli, observing the co-operation/competition between stimuli, combining benefits of multiple stimuli toward an application, or uncovering the underlying mechanisms of their action. In general, they provided new insights that could not have been predicted from previous knowledge. We present here a review of several such studies and the insights gained from them, thereby making a case for such studies to be continued and further developed.

  11. Innovative business models and financing mechanisms for distributed solar PV (DSPV) deployment in China

    International Nuclear Information System (INIS)

    Zhang, Sufang

    2016-01-01

    The Chinese government has in recent years put in place a large number of incentive policies for distributed solar PV (DSPV). However, some of these policies have not been well performed due to many constraints, particularly the lack of innovative business models and financing mechanisms. This paper looks into this issue through the approach of combining literature review and interactive research, including interactions with managers from China's policy and commercial banks and PV projects. A comprehensive literature review on DSPV business models and financing mechanisms are firstly reviewed. Then the rapid evolving business models and financing mechanisms in the United States are examined, which provides some insights for China. Subsequent to this, the existing innovative business models and financing mechanisms for DSPV deployment in China and challenges facing them are discussed. Built on this discussion, policy recommendations are provided at the end of the paper. This study provides some insights for renewable energy policy makers in China as well as in other countries. - Highlights: •Reviewed literature on DSPV business models and financing mechanisms. •Presented the US DSPV business models and financing mechanisms. •Examined China's DSPV business models and financing mechanisms. •Made policy recommendations for DSPV deployment in China.

  12. Genomic interrogation of mechanism(s) underlying cellular responses to toxicants

    International Nuclear Information System (INIS)

    Amin, Rupesh P.; Hamadeh, Hisham K.; Bushel, Pierre R.; Bennett, Lee; Afshari, Cynthia A.; Paules, Richard S.

    2002-01-01

    Assessment of the impact of xenobiotic exposure on human health and disease progression is complex. Knowledge of mode(s) of action, including mechanism(s) contributing to toxicity and disease progression, is valuable for evaluating compounds. Toxicogenomics, the subdiscipline which merges genomics with toxicology, holds the promise to contributing significantly toward the goal of elucidating mechanism(s) by studying genome-wide effects of xenobiotics. Global gene expression profiling, revolutionized by microarray technology and a crucial aspect of a toxicogenomic study, allows measuring transcriptional modulation of thousands of genes following exposure to a xenobiotic. We use our results from previous studies on compounds representing two different classes of xenobiotics (barbiturate and peroxisome proliferator) to discuss the application of computational approaches for analyzing microarray data to elucidate mechanism(s) underlying cellular responses to toxicants. In particular, our laboratory demonstrated that chemical-specific patterns of gene expression can be revealed using cDNA microarrays. Transcript profiling provides discrimination between classes of toxicants, as well as, genome-wide insight into mechanism(s) of toxicity and disease progression. Ultimately, the expectation is that novel approaches for predicting xenobiotic toxicity in humans will emerge from such information

  13. Physical mapping and BAC-end sequence analysis provide initial insights into the flax (Linum usitatissimum L. genome

    Directory of Open Access Journals (Sweden)

    Cloutier Sylvie

    2011-05-01

    Full Text Available Abstract Background Flax (Linum usitatissimum L. is an important source of oil rich in omega-3 fatty acids, which have proven health benefits and utility as an industrial raw material. Flax seeds also contain lignans which are associated with reducing the risk of certain types of cancer. Its bast fibres have broad industrial applications. However, genomic tools needed for molecular breeding were non existent. Hence a project, Total Utilization Flax GENomics (TUFGEN was initiated. We report here the first genome-wide physical map of flax and the generation and analysis of BAC-end sequences (BES from 43,776 clones, providing initial insights into the genome. Results The physical map consists of 416 contigs spanning ~368 Mb, assembled from 32,025 fingerprints, representing roughly 54.5% to 99.4% of the estimated haploid genome (370-675 Mb. The N50 size of the contigs was estimated to be ~1,494 kb. The longest contig was ~5,562 kb comprising 437 clones. There were 96 contigs containing more than 100 clones. Approximately 54.6 Mb representing 8-14.8% of the genome was obtained from 80,337 BES. Annotation revealed that a large part of the genome consists of ribosomal DNA (~13.8%, followed by known transposable elements at 6.1%. Furthermore, ~7.4% of sequence was identified to harbour novel repeat elements. Homology searches against flax-ESTs and NCBI-ESTs suggested that ~5.6% of the transcriptome is unique to flax. A total of 4064 putative genomic SSRs were identified and are being developed as novel markers for their use in molecular breeding. Conclusion The first genome-wide physical map of flax constructed with BAC clones provides a framework for accessing target loci with economic importance for marker development and positional cloning. Analysis of the BES has provided insights into the uniqueness of the flax genome. Compared to other plant genomes, the proportion of rDNA was found to be very high whereas the proportion of known transposable

  14. Human Performance on Insight Problem Solving: A Review

    Science.gov (United States)

    Chu, Yun; MacGregor, James N.

    2011-01-01

    The article provides a review of recent research on insight problem-solving performance. We discuss what insight problems are, the different types of classic and newer insight problems, and how we can classify them. We also explain some of the other aspects that affect insight performance, such as hints, analogs, training, thinking aloud, and…

  15. Genome-wide investigation of transcription factors provides insights into transcriptional regulation in Plutella xylostella.

    Science.gov (United States)

    Zhao, Qian; Ma, Dongna; Huang, Yuping; He, Weiyi; Li, Yiying; Vasseur, Liette; You, Minsheng

    2018-04-01

    Transcription factors (TFs), which play a vital role in regulating gene expression, are prevalent in all organisms and characterization of them may provide important clues for understanding regulation in vivo. The present study reports a genome-wide investigation of TFs in the diamondback moth, Plutella xylostella (L.), a worldwide pest of crucifers. A total of 940 TFs distributed among 133 families were identified. Phylogenetic analysis of insect species showed that some of these families were found to have expanded during the evolution of P. xylostella or Lepidoptera. RNA-seq analysis showed that some of the TF families, such as zinc fingers, homeobox, bZIP, bHLH, and MADF_DNA_bdg genes, were highly expressed in certain tissues including midgut, salivary glands, fat body, and hemocytes, with an obvious sex-biased expression pattern. In addition, a number of TFs showed significant differences in expression between insecticide susceptible and resistant strains, suggesting that these TFs play a role in regulating genes related to insecticide resistance. Finally, we identified an expansion of the HOX cluster in Lepidoptera, which might be related to Lepidoptera-specific evolution. Knockout of this cluster using CRISPR/Cas9 showed that the egg cannot hatch, indicating that this cluster may be related to egg development and maturation. This is the first comprehensive study on identifying and characterizing TFs in P. xylostella. Our results suggest that some TF families are expanded in the P. xylostella genome, and these TFs may have important biological roles in growth, development, sexual dimorphism, and resistance to insecticides. The present work provides a solid foundation for understanding regulation via TFs in P. xylostella and insights into the evolution of the P. xylostella genome.

  16. Structural Insights into the Mechanisms of Action of Short-Peptide HIV-1 Fusion Inhibitors Targeting the Gp41 Pocket

    Directory of Open Access Journals (Sweden)

    Xiujuan Zhang

    2018-02-01

    Full Text Available The deep hydrophobic pocket of HIV-1 gp41 has been considered a drug target, but short-peptides targeting this site usually lack potent antiviral activity. By applying the M-T hook structure, we previously generated highly potent short-peptide fusion inhibitors that specifically targeted the pocket site, such as MT-SC22EK, HP23L, and LP-11. Here, the crystal structures of HP23L and LP-11 bound to the target mimic peptide N36 demonstrated the critical intrahelical and interhelical interactions, especially verifying that the hook-like conformation was finely adopted while the methionine residue was replaced by the oxidation-less prone residue leucine, and that addition of an extra glutamic acid significantly enhanced the binding and inhibitory activities. The structure of HP23L bound to N36 with two mutations (E49K and L57R revealed the critical residues and motifs mediating drug resistance and provided new insights into the mechanism of action of inhibitors. Therefore, the present data help our understanding for the structure-activity relationship (SAR of HIV-1 fusion inhibitors and facilitate the development of novel antiviral drugs.

  17. Military Medics Insight into Providing Womens Health Services

    Science.gov (United States)

    2015-12-22

    determining a patient’s preference in a provider rather than gender (Buck & Littleton, 2014). Medics, particularly male medics, were keenly aware of...KS, Littleton HL. (2014). Stereotyped beliefs about male and female OB-GYNS: relationship to provider choice and patient satisfaction. Journal of...health care resource during deployment. Male and female IDCs felt obligated to educate women about how to conduct themselves on ship. In a

  18. World energy insight 2011

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-11-15

    The World Energy Insight 2011 is the official publication of the World Energy Council. It includes interviews, articles and case studies from a distinguished panel of World Energy Council Officers, CEOs, government ministers, academics and opinion formers from all areas of the energy sector and provides perspectives from around the globe. Government, industry and NGO's offer both policy and technology perspectives. The insights within this publication add to the work that WEC is doing to provide the forum for energy leaders, along with the on-going WEC studies and programmes on Energy Policies, 2050 Energy Scenarios, Energy Resources & Technologies, Energy for Urban Innovation, Rules Of Energy Trade and Global Energy Access.

  19. Investigating Insight as Sudden Learning

    Science.gov (United States)

    Ash, Ivan K.; Jee, Benjamin D.; Wiley, Jennifer

    2012-01-01

    Gestalt psychologists proposed two distinct learning mechanisms. Associative learning occurs gradually through the repeated co-occurrence of external stimuli or memories. Insight learning occurs suddenly when people discover new relationships within their prior knowledge as a result of reasoning or problem solving processes that re-organize or…

  20. Applied mechanics and mechatronics special topic volume with invited peer reviewed papers only

    CERN Document Server

    Trebuňa, František

    2014-01-01

    The issue ""Applied Mechanics and Mechatronics"" contains results of research from researchers and designers from several prominent universities and research institutes of Central Europe.The publication is divided into three following chapters: Modeling and Simulation of Mechanic and Mechatronic SystemsAnalysis and Design of Mechanic and Mechatronic SystemsExperimental methods in Mechanics and Mechatronics. The submitted publication provides insight on modern approaches and methods in designing, modeling and experimental analyzing of mechanic and mechatronics systems.

  1. In vitro analysis of RQC activities provides insights into the mechanism and function of CAT tailing

    Science.gov (United States)

    Osuna, Beatriz A; Howard, Conor J; KC, Subheksha; Frost, Adam; Weinberg, David E

    2017-01-01

    Ribosomes can stall during translation due to defects in the mRNA template or translation machinery, leading to the production of incomplete proteins. The Ribosome-associated Quality control Complex (RQC) engages stalled ribosomes and targets nascent polypeptides for proteasomal degradation. However, how each RQC component contributes to this process remains unclear. Here we demonstrate that key RQC activities—Ltn1p-dependent ubiquitination and Rqc2p-mediated Carboxy-terminal Alanine and Threonine (CAT) tail elongation—can be recapitulated in vitro with a yeast cell-free system. Using this approach, we determined that CAT tailing is mechanistically distinct from canonical translation, that Ltn1p-mediated ubiquitination depends on the poorly characterized RQC component Rqc1p, and that the process of CAT tailing enables robust ubiquitination of the nascent polypeptide. These findings establish a novel system to study the RQC and provide a framework for understanding how RQC factors coordinate their activities to facilitate clearance of incompletely synthesized proteins. DOI: http://dx.doi.org/10.7554/eLife.27949.001 PMID:28718767

  2. Recent application of PET in the pathological mechanisms of PD

    International Nuclear Information System (INIS)

    Tian Jiyu

    2003-01-01

    PET is the best method in the investigation of molecular pathology at present. In this review, the value of positron emission computed tomography for providing insight into the role of pathology mechanism, early diagnosis, differential diagnosis, mechanisms of motor fluctuations in Parkinson disease is reviewed. Especially it can be used for the early diagnosis of PD, thus being beneficial to the therapy of it

  3. An analysis of gene expression data involving examination of signaling pathways activation reveals new insights into the mechanism of action of minoxidil topical foam in men with androgenetic alopecia.

    Science.gov (United States)

    Stamatas, Georgios N; Wu, Jeff; Pappas, Apostolos; Mirmirani, Paradi; McCormick, Thomas S; Cooper, Kevin D; Consolo, Mary; Schastnaya, Jane; Ozerov, Ivan V; Aliper, Alexander; Zhavoronkov, Alex

    2017-01-01

    Androgenetic alopecia is the most common form of hair loss. Minoxidil has been approved for the treatment of hair loss, however its mechanism of action is still not fully clarified. In this study, we aimed to elucidate the effects of 5% minoxidil topical foam on gene expression and activation of signaling pathways in vertex and frontal scalp of men with androgenetic alopecia. We identified regional variations in gene expression and perturbed signaling pathways using in silico Pathway Activation Network Decomposition Analysis (iPANDA) before and after treatment with minoxidil. Vertex and frontal scalp of patients showed a generally similar response to minoxidil. Both scalp regions showed upregulation of genes that encode keratin associated proteins and downregulation of ILK, Akt, and MAPK signaling pathways after minoxidil treatment. Our results provide new insights into the mechanism of action of minoxidil topical foam in men with androgenetic alopecia.

  4. Unusually short chalcogen bonds involving organoselenium: insights into the Se-N bond cleavage mechanism of the antioxidant ebselen and analogues.

    Science.gov (United States)

    Thomas, Sajesh P; Satheeshkumar, K; Mugesh, Govindasamy; Guru Row, T N

    2015-04-27

    Structural studies on the polymorphs of the organoselenium antioxidant ebselen and its derivative show the potential of organic selenium to form unusually short Se⋅⋅⋅O chalcogen bonds that lead to conserved supramolecular recognition units. Se⋅⋅⋅O interactions observed in these polymorphs are the shortest such chalcogen bonds known for organoselenium compounds. The FTIR spectral evolution characteristics of this interaction from solution state to solid crystalline state further validates the robustness of this class of supramolecular recognition units. The strength and electronic nature of the Se⋅⋅⋅O chalcogen bonds were explored using high-resolution X-ray charge density analysis and atons-in-molecules (AIM) theoretical analysis. A charge density study unravels the strong electrostatic nature of Se⋅⋅⋅O chalcogen bonding and soft-metal-like behavior of organoselenium. An analysis of the charge density around Se-N and Se-C covalent bonds in conjunction with the Se⋅⋅⋅O chalcogen bonding modes in ebselen and its analogues provides insights into the mechanism of drug action in this class of organoselenium antioxidants. The potential role of the intermolecular Se⋅⋅⋅O chalcogen bonding in forming the intermediate supramolecular assembly that leads to the bond cleavage mechanism has been proposed in terms of electron density topological parameters in a series of molecular complexes of ebselen with reactive oxygen species (ROS). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. THE CORN-EGG PRICE TRANSMISSION MECHANISM

    OpenAIRE

    Babula, Ronald A.; Bessler, David A.

    1990-01-01

    A vector autoregression (VAR) model of corn, farm egg, and retail egg prices is estimated and shocked with a corn price increase. Impulse responses in egg prices, t-statistics for the impulse responses, and decompositions of forecast error variance are presented. Analyses of results provide insights on the corn/egg price transmission mechanism and on how corn price shocks pulsate through the egg-related economy.

  6. Genome-wide characterization of differentially expressed genes provides insights into regulatory network of heat stress response in radish (Raphanus sativus L.).

    Science.gov (United States)

    Wang, Ronghua; Mei, Yi; Xu, Liang; Zhu, Xianwen; Wang, Yan; Guo, Jun; Liu, Liwang

    2018-03-01

    Heat stress (HS) causes detrimental effects on plant morphology, physiology, and biochemistry that lead to drastic reduction in plant biomass production and economic yield worldwide. To date, little is known about HS-responsive genes involved in thermotolerance mechanism in radish. In this study, a total of 6600 differentially expressed genes (DEGs) from the control and Heat24 cDNA libraries of radish were isolated by high-throughput sequencing. With Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, some genes including MAPK, DREB, ERF, AP2, GST, Hsf, and Hsp were predominantly assigned in signal transductions, metabolic pathways, and biosynthesis and abiotic stress-responsive pathways. These pathways played significant roles in reducing stress-induced damages and enhancing heat tolerance in radish. Expression patterns of 24 candidate genes were validated by reverse-transcription quantitative PCR (RT-qPCR). Based mainly on the analysis of DEGs combining with the previous miRNAs analysis, the schematic model of HS-responsive regulatory network was proposed. To counter the effects of HS, a rapid response of the plasma membrane leads to the opening of specific calcium channels and cytoskeletal reorganization, after which HS-responsive genes are activated to repair damaged proteins and ultimately facilitate further enhancement of thermotolerance in radish. These results could provide fundamental insight into the regulatory network underlying heat tolerance in radish and facilitate further genetic manipulation of thermotolerance in root vegetable crops.

  7. Reaction Mechanism of Mycobacterium Tuberculosis Glutamine Synthetase Using Quantum Mechanics/Molecular Mechanics Calculations.

    Science.gov (United States)

    Moreira, Cátia; Ramos, Maria J; Fernandes, Pedro Alexandrino

    2016-06-27

    This paper is devoted to the understanding of the reaction mechanism of mycobacterium tuberculosis glutamine synthetase (mtGS) with atomic detail, using computational quantum mechanics/molecular mechanics (QM/MM) methods at the ONIOM M06-D3/6-311++G(2d,2p):ff99SB//B3LYP/6-31G(d):ff99SB level of theory. The complete reaction undergoes a three-step mechanism: the spontaneous transfer of phosphate from ATP to glutamate upon ammonium binding (ammonium quickly loses a proton to Asp54), the attack of ammonia on phosphorylated glutamate (yielding protonated glutamine), and the deprotonation of glutamine by the leaving phosphate. This exothermic reaction has an activation free energy of 21.5 kcal mol(-1) , which is consistent with that described for Escherichia coli glutamine synthetase (15-17 kcal mol(-1) ). The participating active site residues have been identified and their role and energy contributions clarified. This study provides an insightful atomic description of the biosynthetic reaction that takes place in this enzyme, opening doors for more accurate studies for developing new anti-tuberculosis therapies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Characteristics of Kodak Insight, an F-speed intraoral film.

    Science.gov (United States)

    Ludlow, J B; Platin, E; Mol, A

    2001-01-01

    This study reports film speed, contrast, exposure latitude, resolution, and response to processing solution depletion of Kodak Insight intraoral film. Densitometric curves were generated by using International Standards Organization protocol. Additional curves were generated for Ultra-speed, Ektaspeed Plus, and Insight films developed in progressively depleted processing solutions. Eight observers viewed images of a resolution test tool for maximum resolution assessment. Images of an aluminum step-wedge were reviewed to determine useful exposure latitude. Insight's sensitivity in fresh automatic processor solutions places it in the F-speed group. An average gradient of 1.8 was found with all film types. Insight provided 93% of the useful exposure latitude of Ektaspeed Plus film. Insight maintained contrast in progressively depleted processing solutions. Like Ektaspeed Plus, Insight was able to resolve at least 20 line-pairs per millimeter. Under International Standards Organization conditions, Insight required only 77% of the exposure of Ektaspeed Plus film. Insight film provided stable contrast in depleted processing solutions.

  9. Insight into silicate-glass corrosion mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Cailleteau, C; Angeli, F; Gin, S; Jollivet, P [CEA VALRHO, DEN, Lab Etude Comportement Long Terme, F-30207 Bagnols Sur Ceze, (France); Devreux, F [Ecole Polytech, CNRS, Lab Phys Mat Condensee, F-91128 Palaiseau, (France); Jestin, J [CEA, CNRS, Lab Leon Brillouin, F-91191 Gif Sur Yvette, (France); Spalla, O [CEA, DSM, Lab Interdisciplinaire Org Nanometr et Supramol, F-91191 Gif Sur Yvette, (France)

    2008-07-01

    The remarkable chemical durability of silicate glass makes it suitable for a wide range of applications. The slowdown of the aqueous glass corrosion kinetics that is frequently observed at long time is generally attributed to chemical affinity effects (saturation of the solution with respect to silica). Here, we demonstrate a new mechanism and highlight the impact of morphological transformations in the alteration layer on the leaching kinetics. A direct correlation between structure and reactivity is revealed by coupling the results of several structure-sensitive experiments with numerical simulations at mesoscopic scale. The sharp drop in the corrosion rate is shown to arise from densification of the outer layers of the alteration film, leading to pore closure. The presence of insoluble elements in the glass can inhibit the film restructuring responsible for this effect. This mechanism may be more broadly applicable to silicate minerals. (authors)

  10. The politics of insight.

    Science.gov (United States)

    Salvi, Carola; Cristofori, Irene; Grafman, Jordan; Beeman, Mark

    2016-01-01

    Previous studies showed that liberals and conservatives differ in cognitive style. Liberals are more flexible, and tolerant of complexity and novelty, whereas conservatives are more rigid, are more resistant to change, and prefer clear answers. We administered a set of compound remote associate problems, a task extensively used to differentiate problem-solving styles (via insight or analysis). Using this task, several researches have proven that self-reports, which differentiate between insight and analytic problem-solving, are reliable and are associated with two different neural circuits. In our research we found that participants self-identifying with distinct political orientations demonstrated differences in problem-solving strategy. Liberals solved significantly more problems via insight instead of in a step-by-step analytic fashion. Our findings extend previous observations that self-identified political orientations reflect differences in cognitive styles. More specifically, we show that type of political orientation is associated with problem-solving strategy. The data converge with previous neurobehavioural and cognitive studies indicating a link between cognitive style and the psychological mechanisms that mediate political beliefs.

  11. The politics of insight

    Science.gov (United States)

    Salvi, Carola; Cristofori, Irene; Grafman, Jordan; Beeman, Mark

    2016-01-01

    Previous studies showed that liberals and conservatives differ in cognitive style. Liberals are more flexible, and tolerant of complexity and novelty, whereas conservatives are more rigid, are more resistant to change, and prefer clear answers. We administered a set of compound remote associate problems, a task extensively used to differentiate problem-solving styles (via insight or analysis). Using this task, several researches have proven that self-reports, which differentiate between insight and analytic problem-solving, are reliable and are associated with two different neural circuits. In our research we found that participants self-identifying with distinct political orientations demonstrated differences in problem-solving strategy. Liberals solved significantly more problems via insight instead of in a step-by-step analytic fashion. Our findings extend previous observations that self-identified political orientations reflect differences in cognitive styles. More specifically, we show that type of political orientation is associated with problem-solving strategy. The data converge with previous neurobehavioural and cognitive studies indicating a link between cognitive style and the psychological mechanisms that mediate political beliefs. PMID:26810954

  12. Polycomb complexes and silencing mechanisms

    DEFF Research Database (Denmark)

    Lund, Anders H; van Lohuizen, Maarten

    2004-01-01

    Advances in the past couple of years have brought important new knowledge on the mechanisms by which Polycomb-group proteins regulate gene expression and on the consequences of their actions. The discovery of histone methylation imprints specific for Polycomb and Trithorax complexes has provided...... mechanistic insight on how this ancient epigenetic memory system acts to repress and indicates that it may share mechanistic aspects with other silencing and genome-protective processes, such as RNA interference....

  13. World energy insight 2011

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-11-15

    The World Energy Insight 2011 is the official publication of the World Energy Council. It includes interviews, articles and case studies from a distinguished panel of World Energy Council Officers, CEOs, government ministers, academics and opinion formers from all areas of the energy sector and provides perspectives from around the globe. Government, industry and NGO's offer both policy and technology perspectives. The insights within this publication add to the work that WEC is doing to provide the forum for energy leaders, along with the on-going WEC studies and programmes on Energy Policies, 2050 Energy Scenarios, Energy Resources & Technologies, Energy for Urban Innovation, Rules Of Energy Trade and Global Energy Access.

  14. Magnetic insights on seismogenic processes from scientific drilling of fault

    Science.gov (United States)

    Ferre, E. C.; Chou, Y. M.; Aubourg, C. T.; Li, H.; Doan, M. L.; Townend, J.; Sutherland, R.; Toy, V.

    2017-12-01

    Modern investigations through scientific drilling of recently seismogenic faults have provided remarkable insights on the physics of rupture processes. Following devastating earthquakes, several drilling programs focused since 1995 on the Nojima, Chelungpu, San Andreas, Wenchuan, Nankai Trough, Japan Trench and New Zealand Alpine faults. While these efforts were all crowned with success largely due to the multidisciplinarity of investigations, valuable insights were gained from rock magnetism and paleomagnetism and deserve to be highlighted. Continuous logging of magnetic properties allows detection of mineralogical and chemical changes in the host rock and fault zone particularly in slip zones, whether these are caused by frictional melting, elevation of temperature, ultracataclasis, or post-seismic fluid rock interaction. Further magnetic experiments on discrete samples including magnetic susceptibility, natural remanent magnetization, hysteresis properties, isothermal remanent magnetization acquisition and first order reversal curves, provide additional constrains on the nature, concentration and grain size of magnetic carriers. These experiments typically also inform on magnetization processes by thermal, chemical, or electrical mechanisms. Magnetic fabrics are generally not investigated on fault rocks from drill cores primarily in an effort to conserve the recovered core. However, recent methodological developments now would allow chemically non-destructive anisotropy of magnetic susceptibility (AMS) measurements to be performed on small 3.5 mm cubes. The mini-AMS method could provide crucial information on the kinematics of frictional melts produced during recent or ancient earthquakes and therefore would constrain the corresponding focal mechanisms. Finally, demagnetization experiments of the natural remanent magnetization (NRM) are one of the most powerful items in the magnetic toolkit because they provide chronological constrains on magnetization processes

  15. Insights into the mechanisms of mercury sorption onto aluminum based drinking water treatment residuals

    Energy Technology Data Exchange (ETDEWEB)

    Deliz Quiñones, Katherine, E-mail: Katherine.Deliz@amecfw.com; Hovsepyan, Anna, E-mail: anna_Hovsepyan@urscorp.com; Oppong-Anane, Akua; Bonzongo, Jean-Claude J., E-mail: bonzongo@ufl.edu

    2016-04-15

    Highlights: • Mercury sorption by Al-WTRs involves electrostatic forces and chemisorption. • Hg forms bonds with oxygen and sulfur atoms of Al-WTR’s organic ligands. • Mercury is incorporated into the residual fraction to form stable complexes. • Mercury binds mainly to SiO{sub x} species in the residual fraction. - Abstract: Several studies have demonstrated the ability of drinking water treatment residuals (WTRs) to efficiently sorb metal cations from aqueous solutions. Reported results have stimulated interest on the potential use of WTRs as sorbent for metal removal from contaminated aqueous effluents as well as in metal immobilization in contaminated soils. However, knowledge on mechanisms of metal sorption by WTRs remains very limited and data on the long-term stability of formed metal–WTR complexes as a function of changing key environmental parameters are lacking. In this study, chemical selective sequential extraction (SSE), scanning electron microscopy combined with X-ray energy dispersive spectrometer (SEM-EDS), and X-ray photoelectron spectroscopy (XPS) were used to gain insight into the different mechanisms of mercury (Hg) binding to aluminum based WTR (Al-WTRs). Results from sorption studies show that a significant portion of Hg becomes incorporated in the operationally defined residual fraction of Al-WTRs, and therefore, not prone to dissolution and mobility. The results of solid phase analyses suggested that Hg immobilization by Al-WTR occurs largely through its binding to oxygen donor atoms of mineral ligands driven by a combination of electrostatic forces and covalent bonding.

  16. Insights into the mechanisms of mercury sorption onto aluminum based drinking water treatment residuals

    International Nuclear Information System (INIS)

    Deliz Quiñones, Katherine; Hovsepyan, Anna; Oppong-Anane, Akua; Bonzongo, Jean-Claude J.

    2016-01-01

    Highlights: • Mercury sorption by Al-WTRs involves electrostatic forces and chemisorption. • Hg forms bonds with oxygen and sulfur atoms of Al-WTR’s organic ligands. • Mercury is incorporated into the residual fraction to form stable complexes. • Mercury binds mainly to SiO x species in the residual fraction. - Abstract: Several studies have demonstrated the ability of drinking water treatment residuals (WTRs) to efficiently sorb metal cations from aqueous solutions. Reported results have stimulated interest on the potential use of WTRs as sorbent for metal removal from contaminated aqueous effluents as well as in metal immobilization in contaminated soils. However, knowledge on mechanisms of metal sorption by WTRs remains very limited and data on the long-term stability of formed metal–WTR complexes as a function of changing key environmental parameters are lacking. In this study, chemical selective sequential extraction (SSE), scanning electron microscopy combined with X-ray energy dispersive spectrometer (SEM-EDS), and X-ray photoelectron spectroscopy (XPS) were used to gain insight into the different mechanisms of mercury (Hg) binding to aluminum based WTR (Al-WTRs). Results from sorption studies show that a significant portion of Hg becomes incorporated in the operationally defined residual fraction of Al-WTRs, and therefore, not prone to dissolution and mobility. The results of solid phase analyses suggested that Hg immobilization by Al-WTR occurs largely through its binding to oxygen donor atoms of mineral ligands driven by a combination of electrostatic forces and covalent bonding.

  17. Uranium sorption to natural substrates-insights provided by isotope exchange, selective extraction and surface complexation modelling approaches

    International Nuclear Information System (INIS)

    Waite, T.D.; Payne T.E.; Davis, J.A.

    1993-01-01

    An extensive experimental program has been conducted over the last three years into the interaction of U(VI) with both single oxides and clays and complex natural substrates from the weathered zone in the vicinity of a uranium ore body in northern Australia. While iron oxides have frequently been considered to account for much of the uptake on such natural substrates, the results of laboratory open-quotes pH edgeclose quotes studies and of isotope exchange and selective extraction studies suggest that other phases must also play a significant role in controlling the partitioning of U(VI) between solid and solution phases. Supporting studies on kaolinite, the dominant clay in this system, provide insight into the most appropriate method of modelling the interaction of U(VI) with these natural substrates. The problems still remaining in adequately describing sorption of radionuclides and trace elements to complex natural substrates are discussed

  18. The Rosa genome provides new insights into the domestication of modern roses.

    Science.gov (United States)

    Raymond, Olivier; Gouzy, Jérôme; Just, Jérémy; Badouin, Hélène; Verdenaud, Marion; Lemainque, Arnaud; Vergne, Philippe; Moja, Sandrine; Choisne, Nathalie; Pont, Caroline; Carrère, Sébastien; Caissard, Jean-Claude; Couloux, Arnaud; Cottret, Ludovic; Aury, Jean-Marc; Szécsi, Judit; Latrasse, David; Madoui, Mohammed-Amin; François, Léa; Fu, Xiaopeng; Yang, Shu-Hua; Dubois, Annick; Piola, Florence; Larrieu, Antoine; Perez, Magali; Labadie, Karine; Perrier, Lauriane; Govetto, Benjamin; Labrousse, Yoan; Villand, Priscilla; Bardoux, Claudia; Boltz, Véronique; Lopez-Roques, Céline; Heitzler, Pascal; Vernoux, Teva; Vandenbussche, Michiel; Quesneville, Hadi; Boualem, Adnane; Bendahmane, Abdelhafid; Liu, Chang; Le Bris, Manuel; Salse, Jérôme; Baudino, Sylvie; Benhamed, Moussa; Wincker, Patrick; Bendahmane, Mohammed

    2018-06-01

    Roses have high cultural and economic importance as ornamental plants and in the perfume industry. We report the rose whole-genome sequencing and assembly and resequencing of major genotypes that contributed to rose domestication. We generated a homozygous genotype from a heterozygous diploid modern rose progenitor, Rosa chinensis 'Old Blush'. Using single-molecule real-time sequencing and a meta-assembly approach, we obtained one of the most comprehensive plant genomes to date. Diversity analyses highlighted the mosaic origin of 'La France', one of the first hybrids combining the growth vigor of European species and the recurrent blooming of Chinese species. Genomic segments of Chinese ancestry identified new candidate genes for recurrent blooming. Reconstructing regulatory and secondary metabolism pathways allowed us to propose a model of interconnected regulation of scent and flower color. This genome provides a foundation for understanding the mechanisms governing rose traits and should accelerate improvement in roses, Rosaceae and ornamentals.

  19. 3D-structured illumination microscopy provides novel insight into architecture of human centrosomes

    Directory of Open Access Journals (Sweden)

    Katharina F. Sonnen

    2012-08-01

    Centrioles are essential for the formation of cilia and flagella. They also form the core of the centrosome, which organizes microtubule arrays important for cell shape, polarity, motility and division. Here, we have used super-resolution 3D-structured illumination microscopy to analyse the spatial relationship of 18 centriole and pericentriolar matrix (PCM components of human centrosomes at different cell cycle stages. During mitosis, PCM proteins formed extended networks with interspersed γ-Tubulin. During interphase, most proteins were arranged at specific distances from the walls of centrioles, resulting in ring staining, often with discernible density masses. Through use of site-specific antibodies, we found the C-terminus of Cep152 to be closer to centrioles than the N-terminus, illustrating the power of 3D-SIM to study protein disposition. Appendage proteins showed rings with multiple density masses, and the number of these masses was strongly reduced during mitosis. At the proximal end of centrioles, Sas-6 formed a dot at the site of daughter centriole assembly, consistent with its role in cartwheel formation. Plk4 and STIL co-localized with Sas-6, but Cep135 was associated mostly with mother centrioles. Remarkably, Plk4 formed a dot on the surface of the mother centriole before Sas-6 staining became detectable, indicating that Plk4 constitutes an early marker for the site of nascent centriole formation. Our study provides novel insights into the architecture of human centrosomes and illustrates the power of super-resolution microscopy in revealing the relative localization of centriole and PCM proteins in unprecedented detail.

  20. Nuclear Mechanics and Stem Cell Differentiation.

    Science.gov (United States)

    Mao, Xinjian; Gavara, Nuria; Song, Guanbin

    2015-12-01

    Stem cells are characterized by their self-renewal and multi-lineage differentiation potential. Stem cell differentiation is a prerequisite for the application of stem cells in regenerative medicine and clinical therapy. In addition to chemical stimulation, mechanical cues play a significant role in regulating stem cell differentiation. The integrity of mechanical sensors is necessary for the ability of cells to respond to mechanical signals. The nucleus, the largest and stiffest cellular organelle, interacts with the cytoskeleton as a key mediator of cell mechanics. Nuclear mechanics are involved in the complicated interactions of lamins, chromatin and nucleoskeleton-related proteins. Thus, stem cell differentiation is intimately associated with nuclear mechanics due to its indispensable role in mechanotransduction and mechanical response. This paper reviews several main contributions of nuclear mechanics, highlights the hallmarks of the nuclear mechanics of stem cells, and provides insight into the relationship between nuclear mechanics and stem cell differentiation, which may guide clinical applications in the future.

  1. Structure of Human GIVD Cytosolic Phospholipase A2 Reveals Insights into Substrate Recognition

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hui; Klein, Michael G.; Snell, Gyorgy; Lane, Weston; Zou, Hua; Levin, Irena; Li, Ke; Sang, Bi-Ching (Takeda Cali)

    2016-07-01

    Cytosolic phospholipases A2 (cPLA2s) consist of a family of calcium-sensitive enzymes that function to generate lipid second messengers through hydrolysis of membrane-associated glycerophospholipids. The GIVD cPLA2 (cPLA2δ) is a potential drug target for developing a selective therapeutic agent for the treatment of psoriasis. Here, we present two X-ray structures of human cPLA2δ, capturing an apo state, and in complex with a substrate-like inhibitor. Comparison of the apo and inhibitor-bound structures reveals conformational changes in a flexible cap that allows the substrate to access the relatively buried active site, providing new insight into the mechanism for substrate recognition. The cPLA2δ structure reveals an unexpected second C2 domain that was previously unrecognized from sequence alignments, placing cPLA2δ into the class of membrane-associated proteins that contain a tandem pair of C2 domains. Furthermore, our structures elucidate novel inter-domain interactions and define three potential calcium-binding sites that are likely important for regulation and activation of enzymatic activity. These findings provide novel insights into the molecular mechanisms governing cPLA2's function in signal transduction.

  2. Structure and elevator mechanism of the Na(+)-citrate transporter CitS

    NARCIS (Netherlands)

    Lolkema, Juke S; Slotboom, Dirk Jan

    2016-01-01

    The recently determined crystal structure of the bacterial Na(+)-citrate symporter CitS provides unexpected structural and mechanistic insights. The protein has a fold that has not been seen in other proteins, but the oligomeric state, domain organization and proposed transport mechanism strongly

  3. An integrated Biophysical CGE model to provide Sustainable Development Goal insights

    Science.gov (United States)

    Sanchez, Marko; Cicowiez, Martin; Howells, Mark; Zepeda, Eduardo

    2016-04-01

    Future projected changes in the energy system will inevitably result in changes to the level of appropriation of environmental resources, particularly land and water, and this will have wider implications for environmental sustainability, and may affect other sectors of the economy. An integrated climate, land, energy and water (CLEW) system will provide useful insights, particularly with regard to the environmental sustainability. However, it will require adequate integration with other tools to detect economic impacts and broaden the scope for policy analysis. A computable general equilibrium (CGE) model is a well suited tool to channel impacts, as detected in a CLEW analysis, onto all sectors of the economy, and evaluate trade-offs and synergies, including those of possible policy responses. This paper will show an application of such integration in a single-country CGE model with the following key characteristics. Climate is partly exogenous (as proxied by temperature and rainfall) and partly endogenous (as proxied by emissions generated by different sectors) and has an impact on endogenous variables such as land productivity and labor productivity. Land is a factor of production used in agricultural and forestry activities which can be of various types if land use alternatives (e.g., deforestation) are to be considered. Energy is an input to the production process of all economic sectors and a consumption good for households. Because it is possible to allow for substitution among different energy sources (e.g. renewable vs non-renewable) in the generation of electricity, the production process of energy products can consider the use of natural resources such as oil and water. Water, data permitting, can be considered as an input into the production process of agricultural sectors, which is particularly relevant in case of irrigation. It can also be considered as a determinant of total factor productivity in hydro-power generation. The integration of a CLEW

  4. Iron-Mediated Oxidation of Methoxyhydroquinone under Dark Conditions: Kinetic and Mechanistic Insights.

    Science.gov (United States)

    Yuan, Xiu; Davis, James A; Nico, Peter S

    2016-02-16

    Despite the biogeochemical significance of the interactions between natural organic matter (NOM) and iron species, considerable uncertainty still remains as to the exact processes contributing to the rates and extents of complexation and redox reactions between these important and complex environmental components. Investigations on the reactivity of low-molecular-weight quinones, which are believed to be key redox active compounds within NOM, toward iron species, could provide considerable insight into the kinetics and mechanisms of reactions involving NOM and iron. In this study, the oxidation of 2-methoxyhydroquinone (MH2Q) by ferric iron (Fe(III)) under dark conditions in the absence and presence of oxygen was investigated within a pH range of 4-6. Although Fe(III) was capable of stoichiometrically oxidizing MH2Q under anaerobic conditions, catalytic oxidation of MH2Q was observed in the presence of O2 due to further cycling between oxygen, semiquinone radicals, and iron species. A detailed kinetic model was developed to describe the predominant mechanisms, which indicated that both the undissociated and monodissociated anions of MH2Q were kinetically active species toward Fe(III) reduction, with the monodissociated anion being the key species accounting for the pH dependence of the oxidation. The generated radical intermediates, namely semiquinone and superoxide, are of great importance in reaction-chain propagation. The kinetic model may provide critical insight into the underlying mechanisms of the thermodynamic and kinetic characteristics of metal-organic interactions and assist in understanding and predicting the factors controlling iron and organic matter transformation and bioavailability in aquatic systems.

  5. Effect of TFE on the Helical Content of AK17 and HAL-1 Peptides: Theoretical Insights into the Mechanism of Helix Stabilization.

    Science.gov (United States)

    Vymětal, Jiří; Bednárová, Lucie; Vondrášek, Jiří

    2016-02-18

    Fluorinated alcohols such as 2,2,2-trifluoroethanol (TFE) are among the most frequently used cosolvents in experiment studies of peptides. They have significant effects on secondary structure and a particularly strong promotion of α-helix is induced by TFE. In this study we validated recently proposed force field parameters for TFE in molecular dynamics simulations with two model peptides-alanine-rich AK-17 and antimicrobial peptide halictine-1 (HAL-1). In the case of HAL-1, we characterized the effect of TFE on this peptide experimentally by ECD spectroscopy. Our TFE model in question reproduced the helix-promoting effect of TFE and provided insight into the mechanisms of TFE action on peptides. Our simulations confirmed the preferential interaction of TFE molecules with α-helices, although the TFE molecules accumulate in the vicinity of the peptides in various conformations. Moreover, we observed a significant effect of TFE on the thermodynamics of the helix-coil transition and a change in local conformational preferences in the unfolded (coil) state induced by TFE. In addition, our simulation-based analysis suggests that different mechanisms participate in helix stabilization in both model peptides in water and TFE solution. Our results thus support the picture of complex TFE action on peptides that is further diversified by the identity and intrinsic properties of the peptide.

  6. Bacterial Cell Mechanics.

    Science.gov (United States)

    Auer, George K; Weibel, Douglas B

    2017-07-25

    Cellular mechanical properties play an integral role in bacterial survival and adaptation. Historically, the bacterial cell wall and, in particular, the layer of polymeric material called the peptidoglycan were the elements to which cell mechanics could be primarily attributed. Disrupting the biochemical machinery that assembles the peptidoglycan (e.g., using the β-lactam family of antibiotics) alters the structure of this material, leads to mechanical defects, and results in cell lysis. Decades after the discovery of peptidoglycan-synthesizing enzymes, the mechanisms that underlie their positioning and regulation are still not entirely understood. In addition, recent evidence suggests a diverse group of other biochemical elements influence bacterial cell mechanics, may be regulated by new cellular mechanisms, and may be triggered in different environmental contexts to enable cell adaptation and survival. This review summarizes the contributions that different biomolecular components of the cell wall (e.g., lipopolysaccharides, wall and lipoteichoic acids, lipid bilayers, peptidoglycan, and proteins) make to Gram-negative and Gram-positive bacterial cell mechanics. We discuss the contribution of individual proteins and macromolecular complexes in cell mechanics and the tools that make it possible to quantitatively decipher the biochemical machinery that contributes to bacterial cell mechanics. Advances in this area may provide insight into new biology and influence the development of antibacterial chemotherapies.

  7. Improving insight and non-insight problem solving with brief interventions.

    Science.gov (United States)

    Wen, Ming-Ching; Butler, Laurie T; Koutstaal, Wilma

    2013-02-01

    Developing brief training interventions that benefit different forms of problem solving is challenging. In earlier research, Chrysikou (2006) showed that engaging in a task requiring generation of alternative uses of common objects improved subsequent insight problem solving. These benefits were attributed to a form of implicit transfer of processing involving enhanced construction of impromptu, on-the-spot or 'ad hoc' goal-directed categorizations of the problem elements. Following this, it is predicted that the alternative uses exercise should benefit abilities that govern goal-directed behaviour, such as fluid intelligence and executive functions. Similarly, an indirect intervention - self-affirmation (SA) - that has been shown to enhance cognitive and executive performance after self-regulation challenge and when under stereotype threat, may also increase adaptive goal-directed thinking and likewise should bolster problem-solving performance. In Experiment 1, brief single-session interventions, involving either alternative uses generation or SA, significantly enhanced both subsequent insight and visual-spatial fluid reasoning problem solving. In Experiment 2, we replicated the finding of benefits of both alternative uses generation and SA on subsequent insight problem-solving performance, and demonstrated that the underlying mechanism likely involves improved executive functioning. Even brief cognitive- and social-psychological interventions may substantially bolster different types of problem solving and may exert largely similar facilitatory effects on goal-directed behaviours. © 2012 The British Psychological Society.

  8. Mechanics of Suture Joints

    Science.gov (United States)

    Li, Yaning; Song, Juha; Ortiz, Christine; Boyce, Mary; Ortiz Group/DMSE/MIT Team; Boyce Group/ME/MIT Team

    2011-03-01

    Biological sutures are joints which connect two stiff skeletal or skeletal-like components. These joints possess a wavy geometry with a thin organic layer providing adhesion. Examples of biological sutures include mammalian skulls, the pelvic assembly of the armored fish Gasterosteus aculeatus (the three-spined stickleback), and the suture joints in the shell of the red-eared slider turtle. Biological sutures allow for movement and compliance, control stress concentrations, transmit loads, reduce fatigue stress and absorb energy. In this investigation, the mechanics of the role of suture geometry in providing a naturally optimized joint is explored. In particular, analytical and numerical micromechanical models of the suture joint are constructed. The anisotropic mechanical stiffness and strength are studied as a function of suture wavelength, amplitude and the material properties of the skeletal and organic components, revealing key insights into the optimized nature of these ubiquitous natural joints.

  9. Catalytic mechanism of phenylacetone monooxygenases for non-native linear substrates.

    Science.gov (United States)

    Carvalho, Alexandra T P; Dourado, Daniel F A R; Skvortsov, Timofey; de Abreu, Miguel; Ferguson, Lyndsey J; Quinn, Derek J; Moody, Thomas S; Huang, Meilan

    2017-10-11

    Phenylacetone monooxygenase (PAMO) is the most stable and thermo-tolerant member of the Baeyer-Villiger monooxygenase family, and therefore it is an ideal candidate for the synthesis of industrially relevant compounds. However, its limited substrate scope has largely limited its industrial applications. In the present work, we provide, for the first time, the catalytic mechanism of PAMO for the native substrate phenylacetone as well as for a linear non-native substrate 2-octanone, using molecular dynamics simulations, quantum mechanics and quantum mechanics/molecular mechanics calculations. We provide a theoretical basis for the preference of the enzyme for the native aromatic substrate over non-native linear substrates. Our study provides fundamental atomic-level insights that can be employed in the rational engineering of PAMO for wide applications in industrial biocatalysis, in particular, in the biotransformation of long-chain aliphatic oils into potential biodiesels.

  10. Genome-wide association identifies nine common variants associated with fasting proinsulin levels and provides new insights into the pathophysiology of type 2 diabetes

    OpenAIRE

    Strawbridge, Rona; Dupuis, Josée; Prokopenko, Inga; Barker, Adam; Ahlqvist, Emma; Rybin, Denis; Petrie, John; Bouatia-Naji, Nabila; Dimas, Antigone; Wheeler, Eleanor; Chen, Han; Voight, Benjamin; Taneera, Jalal; Kanoni, Stavroula; Peden, John

    2011-01-01

    textabstractOBJECTIVE - Proinsulin is a precursor of mature insulin and C-peptide. Higher circulating proinsulin levels are associated with impaired b-cell function, raised glucose levels, insulin resistance, and type 2 diabetes (T2D). Studies of the insulin processing pathway could provide new insights about T2D pathophysiology. RESEARCH DESIGN AND METHODS - We have conducted a meta-analysis of genome-wide association tests of ;2.5 million genotyped or imputed single nucleotide polymorphisms...

  11. Fetal programming by maternal stress: Insights from a conflict perspective.

    Science.gov (United States)

    Del Giudice, Marco

    2012-10-01

    Maternal stress during pregnancy has pervasive effects on the offspring's physiology and behavior, including the development of anxious, reactive temperament and increased stress responsivity. These outcomes can be seen as the result of adaptive developmental plasticity: maternal stress hormones carry useful information about the state of the external world, which can be used by the developing fetus to match its phenotype to the predicted environment. This account, however, neglects the inherent conflict of interest between mother and fetus about the outcomes of fetal programming. The aim of this paper is to extend the adaptive model of prenatal stress by framing mother-fetus interactions in an evolutionary conflict perspective. In the paper, I show how a conflict perspective provides many new insights in the functions and mechanisms of fetal programming, with particular emphasis on human pregnancy. I then take advantage of those insights to make sense of some puzzling features of maternal and fetal physiology and generate novel empirical predictions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Athena: Providing Insight into the History of the Universe

    Science.gov (United States)

    Murphy, Gloria A.

    2010-01-01

    The American Institute for Aeronautics and Astronautics has provided a Request for Proposal which calls for a manned mission to a Near-Earth Object. It is the goal of Team COLBERT to respond to their request by providing a reusable system that can be implemented as a solid stepping stone for future manned trips to Mars and beyond. Despite Team COLBERT consisting of only students in Aerospace Engineering, in order to achieve this feat, the team must employ the use of Systems Engineering. Tools and processes from Systems Engineering will provide quantitative and semi-quantitative tools for making design decisions and evaluating items such as budgets and schedules. This paper will provide an in-depth look at some of the Systems Engineering processes employed and will step through the design process of a Human Asteroid Exploration System.

  13. Plasticity following early-life brain injury: Insights from quantitative MRI.

    Science.gov (United States)

    Fiori, Simona; Guzzetta, Andrea

    2015-03-01

    Over the last decade, the application of novel advanced neuroimaging techniques to study congenital brain damage has provided invaluable insights into the mechanisms underlying early neuroplasticity. The concept that is clearly emerging, both from human and nun-human studies, is that functional reorganization in the immature brain is substantially different from that of the more mature, developed brain. This applies to the reorganization of language, the sensorimotor system, and the visual system. The rapid implementation and development of higher order imaging methods will offer increased, currently unavailable knowledge about the specific mechanisms of cerebral plasticity in infancy, which is essential to support the development of early therapeutic interventions aimed at supporting and enhancing functional reorganization during a time of greatest potential brain plasticity. Copyright © 2015. Published by Elsevier Inc.

  14. NEW INSIGHT INTO THE SOLAR SYSTEM’S TRANSITION DISK PHASE PROVIDED BY THE METAL-RICH CARBONACEOUS CHONDRITE ISHEYEVO

    International Nuclear Information System (INIS)

    Morris, Melissa A.; Garvie, Laurence A. J.; Knauth, L. Paul

    2015-01-01

    Many aspects of planet formation are controlled by the amount of gas remaining in the natal protoplanetary disks (PPDs). Infrared observations show that PPDs undergo a transition stage at several megayears, during which gas densities are reduced. Our Solar System would have experienced such a stage. However, there is currently no data that provides insight into this crucial time in our PPD’s evolution. We show that the Isheyevo meteorite contains the first definitive evidence for a transition disk stage in our Solar System. Isheyevo belongs to a class of metal-rich meteorites whose components have been dated at almost 5 Myr after formation of Ca, Al-rich inclusions, and exhibits unique sedimentary layers that imply formation through gentle sedimentation. We show that such layering can occur via the gentle sweep-up of material found in the impact plume resulting from the collision of two planetesimals. Such sweep-up requires gas densities consistent with observed transition disks (10 −12 –10 −11 g cm −3 ). As such, Isheyevo presents the first evidence of our own transition disk and provides new constraints on the evolution of our solar nebula

  15. NEW INSIGHT INTO THE SOLAR SYSTEM’S TRANSITION DISK PHASE PROVIDED BY THE METAL-RICH CARBONACEOUS CHONDRITE ISHEYEVO

    Energy Technology Data Exchange (ETDEWEB)

    Morris, Melissa A. [State University of New York, Cortland, NY 13045 (United States); Garvie, Laurence A. J. [Center for Meteorite Studies, Arizona State University, Tempe, AZ 85287 (United States); Knauth, L. Paul, E-mail: melissa.morris@cortland.edu [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287 (United States)

    2015-03-10

    Many aspects of planet formation are controlled by the amount of gas remaining in the natal protoplanetary disks (PPDs). Infrared observations show that PPDs undergo a transition stage at several megayears, during which gas densities are reduced. Our Solar System would have experienced such a stage. However, there is currently no data that provides insight into this crucial time in our PPD’s evolution. We show that the Isheyevo meteorite contains the first definitive evidence for a transition disk stage in our Solar System. Isheyevo belongs to a class of metal-rich meteorites whose components have been dated at almost 5 Myr after formation of Ca, Al-rich inclusions, and exhibits unique sedimentary layers that imply formation through gentle sedimentation. We show that such layering can occur via the gentle sweep-up of material found in the impact plume resulting from the collision of two planetesimals. Such sweep-up requires gas densities consistent with observed transition disks (10{sup −12}–10{sup −11} g cm{sup −3}). As such, Isheyevo presents the first evidence of our own transition disk and provides new constraints on the evolution of our solar nebula.

  16. Comparative proteomic analysis of fluoride treated rat bone provides new insights into the molecular mechanisms of fluoride toxicity.

    Science.gov (United States)

    Wei, Yan; Zeng, Beibei; Zhang, Hua; Chen, Cheng; Wu, Yanli; Wang, Nanlan; Wu, Yanqiu; Zhao, Danqing; Zhao, Yuxi; Iqbal, Javed; Shen, Liming

    2018-07-01

    Long-term excessive intake of fluoride (F) could lead to chronic fluorosis. To explore the underlying molecular mechanisms, present study is designed to elucidate the effect of fluoride on proteome expression of bone in sodium fluoride (NaF)-treated SD rats. Hematoxylin and eosin (H&E) staining was used to determine the severity of osteofluorosis, and bone samples were submitted for iTRAQ analysis. The results showed that the cortical thickness and trabecular area of femur bone in medium- and high-dose groups were higher than in control group. Contrary to this, trabecular area was reduced in the low-dose group, indicating that the bone mass was increased in medium- and high-dose groups, and decreased in the low-dose group. Thirteen (13), 35, and 34 differentially expressed proteins were identified in low-, medium-, and high-dose group, respectively. The medium- and high-dose groups shared a more similar protein expression pattern. These proteins were mainly associated with collagen metabolism, proteoglycans (PGs), matrix metalloproteinases (MMPs), etc. The results suggested that the effect of NaF on SD rats is in a dose-dependent manner. Some key proteins found here may be involved in affecting the bone tissues and bone marrow or muscle, and account for the complex pathology and clinical symptoms of fluorosis. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Relationship between cognition, clinical and cognitive insight in psychotic disorders : A review and meta-analysis

    NARCIS (Netherlands)

    Nair, Akshay; Palmer, Emma Claire; Aleman, Andre; David, Anthony S.

    The neurocognitive theory of insight posits that poor insight in psychotic illnesses is related to cognitive deficits in cognitive self-appraisal mechanisms. In this paper we perform a comprehensive meta-analysis examining relationships between clinical insight and neurocognition in psychotic

  18. Insights into carbon nanotube and graphene formation mechanisms from molecular simulations: a review

    International Nuclear Information System (INIS)

    Page, A J; Ding, F; Irle, S; Morokuma, K

    2015-01-01

    The discovery of carbon nanotubes (CNTs) and graphene over the last two decades has heralded a new era in physics, chemistry and nanotechnology. During this time, intense efforts have been made towards understanding the atomic-scale mechanisms by which these remarkable nanostructures grow. Molecular simulations have made significant contributions in this regard; indeed, they are responsible for many of the key discoveries and advancements towards this goal. Here we review molecular simulations of CNT and graphene growth, and in doing so we highlight the many invaluable insights gained from molecular simulations into these complex nanoscale self-assembly processes. This review highlights an often-overlooked aspect of CNT and graphene formation—that the two processes, although seldom discussed in the same terms, are in fact remarkably similar. Both can be viewed as a 0D → 1D → 2D transformation, which converts carbon atoms (0D) to polyyne chains (1D) to a complete sp 2 -carbon network (2D). The difference in the final structure (CNT or graphene) is determined only by the curvature of the catalyst and the strength of the carbon–metal interaction. We conclude our review by summarizing the present shortcomings of CNT/graphene growth simulations, and future challenges to this important area. (review article)

  19. Providing Real Research Opoportunities to Undergraduates

    Science.gov (United States)

    Ragozzine, Darin

    2016-01-01

    The current approach to undergraduate education focuses on teaching classes which provide the foundational knowledge for more applied experiences such as scientific research. Like most programs, Florida Institute of Technology (Florida Tech or FIT) strongly encourages undergraduate research, but is dominated by content-focused courses (e.g., "Physical Mechanics"). Research-like experiences are generally offered through "lab" classes, but these are almost always reproductions of past experiments: contrived, formulaic, and lacking the "heart" of real (i.e., potentially publishable) scientific research. Real research opportunities 1) provide students with realistic insight into the actual scientific process; 2) excite students far more than end-of-chapter problems; 3) provide context for the importance of learning math, physics, and astrophysics concepts; and 4) allow unique research progress for well-chosen problems. I have provided real research opportunities as an "Exoplanet Lab" component of my Introduction to Space Science (SPS1020) class at Florida Tech, generally taken by first-year majors in our Physics, Astronomy & Astrophysics, Planetary Science, and Astrobiology degree programs. These labs are a hybrid between citizen science (e.g., PlanetHunters) and simultaneously mentoring ~60 undergraduates in similar small research projects. These projects focus on problems that can be understood in the context of the course, but which benefit from "crowdsourcing". Examples include: dividing up the known planetary systems and developing a classification scheme and organizing them into populations (Fall 2013); searching through folded light curves to discover new exoplanets missed by previous pipelines (Fall 2014); and fitting n-body models to all exoplanets with known Transit Timing Variations to estimate planet masses (Fall 2015). The students love the fact that they are doing real potentially publishable research: not many undergraduates can claim to have discovered

  20. Mechanism-based Enzyme Inactivators of Phytosterol Biosynthesis

    Directory of Open Access Journals (Sweden)

    W. David Nes

    2004-03-01

    Full Text Available Current progress on the mechanism and substrate recognition by sterol methyl transferase (SMT, the role of mechanism-based inactivators, other inhibitors of SMT action to probe catalysis and phytosterol synthesis is reported. SMT is a membrane-bound enzyme which catalyzes the coupled C-methylation-deprotonation reaction of sterol acceptor molecules generating the 24-alkyl sterol side chains of fungal ergosterol and plant sitosterol. This C-methylation step can be rate-limiting in the post-lanosterol (fungal or post-cycloartenol (plant pathways. A series of sterol analogs designed to impair SMT activity irreversibly have provided deep insight into the C-methylation reaction and topography of the SMT active site and as reviewed provide leads for the development of antifungal agents.

  1. Geophysical insights on the GIA process provided by high-quality constraints from peripheral regions: An outlook on perspectives from North America and from the Mediterranean basin

    Science.gov (United States)

    Roy, K.; Peltier, W. R.

    2017-12-01

    Our understanding of the Earth-Ice-Ocean interactions that have accompanied the large glaciation-deglaciation process characteristic of the last half of the Pleistocene has benefited significantly from the development of high-quality models of the Glacial Isostatic Adjustment (GIA) process. These models provide fundamental insight on the large changes in sea level and land ice cover over this time period, as well as key constraints on the viscosity structure of the Earth's interior. Their development has benefited from the recent availability of high-quality constraints from regions of forebulge collapse. In particular, over North America, the joint use of high-quality sea level data from the U.S. East coast, together with the vast network of precise space-geodetic observations of crustal motion existing over most of the interior of the continent, has led to the latest ICE-7G_NA (VM7) model (Roy & Peltier, GJI, 2017). In this paper, exciting opportunities provided by such high-quality observations related to the GIA process will be discussed, not only in the context of the continuing effort to refine global models of this phenomenon, but also in terms of the fundamental insight they may provide on outstanding issues in high-pressure geophysics, paleoclimatology or hydrogeology. Specific examples where such high-quality observations can be used (either separately, or using a combination of independent sources) will be presented, focusing particularly on constraints from the North American continent and from the Mediterranean basin. This work will demonstrate that, given the high-quality of currently available constraints on the GIA process, considerable further geophysical insight can be obtained based upon the use of spherically-symmetric models of the viscosity structure of the planet.

  2. Reduced connectivity in the self-processing network of schizophrenia patients with poor insight.

    Directory of Open Access Journals (Sweden)

    Edith J Liemburg

    Full Text Available Lack of insight (unawareness of illness is a common and clinically relevant feature of schizophrenia. Reduced levels of self-referential processing have been proposed as a mechanism underlying poor insight. The default mode network (DMN has been implicated as a key node in the circuit for self-referential processing. We hypothesized that during resting state the DMN network would show decreased connectivity in schizophrenia patients with poor insight compared to patients with good insight. Patients with schizophrenia were recruited from mental health care centers in the north of the Netherlands and categorized in groups having good insight (n= 25 or poor insight (n = 19. All subjects underwent a resting state fMRI scan. A healthy control group (n = 30 was used as a reference. Functional connectivity of the anterior and posterior part of the DMN, identified using Independent Component Analysis, was compared between groups. Patients with poor insight showed lower connectivity of the ACC within the anterior DMN component and precuneus within the posterior DMN component compared to patients with good insight. Connectivity between the anterior and posterior part of the DMN was lower in patients than controls, and qualitatively different between the good and poor insight patient groups. As predicted, subjects with poor insight in psychosis showed decreased connectivity in DMN regions implicated in self-referential processing, although this concerned only part of the network. This finding is compatible with theories implying a role of reduced self-referential processing as a mechanism contributing to poor insight.

  3. Multiscale experimental mechanics of hierarchical carbon-based materials.

    Science.gov (United States)

    Espinosa, Horacio D; Filleter, Tobin; Naraghi, Mohammad

    2012-06-05

    Investigation of the mechanics of natural materials, such as spider silk, abalone shells, and bone, has provided great insight into the design of materials that can simultaneously achieve high specific strength and toughness. Research has shown that their emergent mechanical properties are owed in part to their specific self-organization in hierarchical molecular structures, from nanoscale to macroscale, as well as their mixing and bonding. To apply these findings to manmade materials, researchers have devoted significant efforts in developing a fundamental understanding of multiscale mechanics of materials and its application to the design of novel materials with superior mechanical performance. These efforts included the utilization of some of the most promising carbon-based nanomaterials, such as carbon nanotubes, carbon nanofibers, and graphene, together with a variety of matrix materials. At the core of these efforts lies the need to characterize material mechanical behavior across multiple length scales starting from nanoscale characterization of constituents and their interactions to emerging micro- and macroscale properties. In this report, progress made in experimental tools and methods currently used for material characterization across multiple length scales is reviewed, as well as a discussion of how they have impacted our current understanding of the mechanics of hierarchical carbon-based materials. In addition, insight is provided into strategies for bridging experiments across length scales, which are essential in establishing a multiscale characterization approach. While the focus of this progress report is in experimental methods, their concerted use with theoretical-computational approaches towards the establishment of a robust material by design methodology is also discussed, which can pave the way for the development of novel materials possessing unprecedented mechanical properties. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis

    Energy Technology Data Exchange (ETDEWEB)

    Martin, F.; Aerts, A.; Ahren, D.; Brun, A.; Danchin, E. G. J.; Duchaussoy, F.; Gibon, J.; Kohler, A.; Lindquist, E.; Peresa, V.; Salamov, A.; Shapiro, H. J.; Wuyts, J.; Blaudez, D.; Buee, M.; Brokstein, P.; Canback, B.; Cohen, D.; Courty, P. E.; Coutinho, P. M.; Delaruelle, C.; Detter, J. C.; Deveau, A.; DiFazio, S.; Duplessis, S.; Fraissinet-Tachet, L.; Lucic, E.; Frey-Klett, P.; Fourrey, C.; Feussner, I.; Gay, G.; Grimwood, J.; Hoegger, P. J.; Jain, P.; Kilaru, S.; Labbe, J.; Lin, Y. C.; Legue, V.; Le Tacon, F.; Marmeisse, R.; Melayah, D.; Montanini, B.; Muratet, M.; Nehls, U.; Niculita-Hirzel, H.; Secq, M. P. Oudot-Le; Peter, M.; Quesneville, H.; Rajashekar, B.; Reich, M.; Rouhier, N.; Schmutz, J.; Yin, T.; Chalot, M.; Henrissat, B.; Kues, U.; Lucas, S.; Van de Peer, Y.; Podila, G. K.; Polle, A.; Pukkila, P. J.; Richardson, P. M.; Rouze, P.; Sanders, I. R.; Stajich, J. E.; Tunlid, A.; Tuskan, G.; Grigoriev, I. V.

    2007-08-10

    Mycorrhizal symbioses the union of roots and soil fungi are universal in terrestrial ecosystems and may have been fundamental to land colonization by plants 1, 2. Boreal, temperate and montane forests all depend on ectomycorrhizae1. Identification of the primary factors that regulate symbiotic development and metabolic activity will therefore open the door to understanding the role of ectomycorrhizae in plant development and physiology, allowing the full ecological significance of this symbiosis to be explored. Here we report the genome sequence of the ectomycorrhizal basidiomycete Laccaria bicolor (Fig. 1) and highlight gene sets involved in rhizosphere colonization and symbiosis. This 65-megabase genome assembly contains 20,000 predicted protein-encoding genes and a very large number of transposons and repeated sequences. We detected unexpected genomic features, most notably a battery of effector-type small secreted proteins (SSPs) with unknown function, several of which are only expressed in symbiotic tissues. The most highly expressed SSP accumulates in the proliferating hyphae colonizing the host root. The ectomycorrhizae-specific SSPs probably have a decisive role in the establishment of the symbiosis. The unexpected observation that the genome of L. bicolor lacks carbohydrate-active enzymes involved in degradation of plant cell walls, but maintains the ability to degrade non-plant cell wall polysaccharides, reveals the dual saprotrophic and biotrophic lifestyle of the mycorrhizal fungus that enables it to grow within both soil and living plant roots. The predicted gene inventory of the L. bicolor genome, therefore, points to previously unknown mechanisms of symbiosis operating in biotrophic mycorrhizal fungi. The availability of this genome provides an unparalleled opportunity to develop a deeper understanding of the processes by which symbionts interact with plants within their ecosystem to perform vital functions in the carbon and nitrogen cycles that are

  5. Beyond disease susceptibility-Leveraging genome-wide association studies for new insights into complex disease biology.

    Science.gov (United States)

    Lee, J C

    2017-12-01

    Genetic studies in complex diseases have been highly successful, but have also been largely one-dimensional: predominantly focusing on the genetic contribution to disease susceptibility. While this is undoubtedly important-indeed it is a pre-requisite for understanding the mechanisms underlying disease development-there are many other important aspects of disease biology that have received comparatively little attention. In this review, I will discuss how existing genetic data can be leveraged to provide new insights into other aspects of disease biology, why such insights could change the way we think about complex disease, and how this could provide opportunities for better therapies and/or facilitate personalised medicine. To do this, I will use the example of Crohn's disease-a chronic form of inflammatory bowel disease that has been one of the main success stories in complex disease genetics. Indeed, thanks to genetic studies, we now have a much more detailed understanding of the processes involved in Crohn's disease development, but still know relatively little about what determines the subsequent disease course (prognosis) and why this differs so considerably between individuals. I will discuss how we came to realise that genetic variation plays an important role in determining disease prognosis and how this has changed the way we think about Crohn's disease genetics. This will illustrate how phenotypic data can be used to leverage new insights from genetic data and will provide a broadly applicable framework that could yield new insights into the biology of multiple diseases. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Mechanical Self-Assembly Science and Applications

    CERN Document Server

    2013-01-01

    Mechanical Self-Assembly: Science and Applications introduces a novel category of self-assembly driven by mechanical forces. This book discusses self-assembly in various types of small material structures including thin films, surfaces, and micro- and nano-wires, as well as the practice's potential application in micro and nanoelectronics, MEMS/NEMS, and biomedical engineering. The mechanical self-assembly process is inherently quick, simple, and cost-effective, as well as accessible to a large number of materials, such as curved surfaces for forming three-dimensional small structures. Mechanical self-assembly is complementary to, and sometimes offer advantages over, the traditional micro- and nano-fabrication. This book also: Presents a highly original aspect of the science of self-assembly Describes the novel methods of mechanical assembly used to fabricate a variety of new three-dimensional material structures in simple and cost-effective ways Provides simple insights to a number of biological systems and ...

  7. The evolution of Yellowstone's magmatic system over the past 630 kyr: Insights from the crystal record

    Science.gov (United States)

    Stelten, M. E.

    2017-12-01

    The Yellowstone Plateau volcanic field in northwestern Wyoming is one of the world's largest, active silicic volcanic centers, and has produced three caldera-forming "super eruptions" over the past 2.1 Myr. As a result, the petrologic evolution of Yellowstone's magmatic system has been the focus of numerous studies over the past 60 years. Early studies at Yellowstone focused on characterizing whole-rock chemical and isotopic variations observed in magmas erupted over Yellowstone's lifetime. While these have provided important insights into the source of Yellowstone magmas and the processes controlling their compositional evolution though time, whole-rock studies are limited in their ability to identify the mechanisms and timescales of rhyolite generation. In contrast, much of the recent work at Yellowstone has focused on applying micro-analytical techniques to characterize the age and composition of phenocrysts hosted in Yellowstone rhyolites. These studies have greatly advanced our understanding of the magmatic system at Yellowstone and have provided crucial new insights into the mechanisms and timescales of rhyolite generation. In particular, recent work has focused on applying micro-analytical techniques to study the age and origin of the [1] three caldera-forming eruptions that produced the Huckleberry Ridge, Mesa Falls, Lava Creek tuffs and [2] post-Lava Creek tuff intracaldera rhyolites that compose the Plateau Rhyolite. As a result, a wealth of crystal-chemical data now exists for rhyolites erupted throughout Yellowstone's 2.1 Myr history. These data provide a unique opportunity to create a detailed reconstruction of Yellowstone's magmatic system through time. In this contribution, I integrate available age, chemical, and isotopic data for phenocrysts hosted in Yellowstone rhyolites to construct a model for the evolution of Yellowstone's magmatic system from the caldera-forming eruption of the Lava Creek tuff at ca. 0.63 Ma to the present day. In particular

  8. Coupling functions: Universal insights into dynamical interaction mechanisms

    Science.gov (United States)

    Stankovski, Tomislav; Pereira, Tiago; McClintock, Peter V. E.; Stefanovska, Aneta

    2017-10-01

    The dynamical systems found in nature are rarely isolated. Instead they interact and influence each other. The coupling functions that connect them contain detailed information about the functional mechanisms underlying the interactions and prescribe the physical rule specifying how an interaction occurs. A coherent and comprehensive review is presented encompassing the rapid progress made recently in the analysis, understanding, and applications of coupling functions. The basic concepts and characteristics of coupling functions are presented through demonstrative examples of different domains, revealing the mechanisms and emphasizing their multivariate nature. The theory of coupling functions is discussed through gradually increasing complexity from strong and weak interactions to globally coupled systems and networks. A variety of methods that have been developed for the detection and reconstruction of coupling functions from measured data is described. These methods are based on different statistical techniques for dynamical inference. Stemming from physics, such methods are being applied in diverse areas of science and technology, including chemistry, biology, physiology, neuroscience, social sciences, mechanics, and secure communications. This breadth of application illustrates the universality of coupling functions for studying the interaction mechanisms of coupled dynamical systems.

  9. High pollution events in the Great Salt Lake Basin and its adjacent valleys. Insights on mechanisms and spatial distribution of the formation of secondary aerosol.

    Science.gov (United States)

    Franchin, A.; Middlebrook, A. M.; Baasandorj, M.; Brown, S. S.; Fibiger, D. L.; Goldberger, L.; McDuffie, E. E.; Moravek, A.; Murphy, J. G.; Thornton, J. A.; Womack, C.

    2017-12-01

    High pollution events are common in many locations in the U.S.A. and around the world. They can last several days or up to weeks and they negatively affect human health, deteriorate visibility, and increase premature mortality. The main causes for high pollution events are related to meteorology and sources. They often happen in the winter, when high emissions, stagnation and reduced mixing, due to a shallow boundary layer, cause high concentrations of pollutants to accumulate. In the last decades, the air quality in the U.S. has seen an overall improvement, due to the reductions in particulate and gaseous pollutants. However, some areas remain critical. The Great Salt Lake Basin and its adjacent valleys are currently areas where high pollution events are a serious environmental problem involving more than 2.4 million people. We will present the results of the Utah Wintertime Fine Particulate Study (UWFPS) that took place in winter 2017. During UWFPS, we carried out airborne measurements of aerosol chemical composition and precursor vapor concentrations over the Great Salt Lake Basin and its adjacent valleys. We will give insights into how and under which conditions conversion of precursor vapors into aerosol particles takes place in the area. We will also present a comparison of our measurements with models that will provide an insight of the mechanisms that lead to the formation of secondary aerosol particles. With the results of our work, we aim to inform strategies for pollution control in the future.

  10. Renal blood flow dynamics in inbred rat strains provides insight into autoregulation.

    Science.gov (United States)

    A Mitrou, Nicholas G; Cupples, William A

    2014-01-01

    Renal autoregulation maintains stable renal blood flow in the face of constantly fluctuating blood pressure. Autoregulation is also the only mechanism that protects the delicate glomerular capillaries when blood pressure increases. In order to understand autoregulation, the renal blood flow response to changing blood pressure is studied. The steadystate response of blood flow is informative, but limits investigation of the individual mechanisms of autoregulation. The dynamics of autoregulation can be probed with transfer function analysis. The frequency-domain analysis of autoregulation allows investigators to probe the relative activity of each mechanism of autoregulation. We discuss the methodology and interpretation of transfer function analysis. Autoregulation is routinely studied in the rat, of which there are many inbred strains. There are multiple strains of rat that are either selected or inbred as models of human pathology. We discuss relevant characteristics of Brown Norway, Spontaneously hypertensive, Dahl, and Fawn-Hooded hypertensive rats and explore differences among these strains in blood pressure, dynamic autoregulation, and susceptibility to hypertensive renal injury. Finally we show that the use of transfer function analysis in these rat strains has contributed to our understanding of the physiology and pathophysiology of autoregulation and hypertensive renal disease.Interestingly all these strains demonstrate effective tubuloglomerular feedback suggesting that this mechanism is not sufficient for effective autoregulation. In contrast, obligatory or conditional failure of the myogenic mechanism suggests that this component is both necessary and sufficient for autoregulation.

  11. New insight in the microscopic mechanism of the catalytic synthesis of ammonia

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Henriksen, Niels Engholm; Billing, Gert D.

    1995-01-01

    Theoretical quantum calculations and molecular beam experiments of the dissociative chemisorption of N-2 molecules on catalytic active metal surfaces have given new insight in the fundamental process of the ammonia synthesis. This new approach to the study of catalytic process supplements the con...

  12. Genetic correlates of insight in schizophrenia.

    Science.gov (United States)

    Xavier, Rose Mary; Vorderstrasse, Allison; Keefe, Richard S E; Dungan, Jennifer R

    2018-05-01

    Insight in schizophrenia is clinically important as it is associated with several adverse outcomes. Genetic contributions to insight are unknown. We examined genetic contributions to insight by investigating if polygenic risk scores (PRS) and candidate regions were associated with insight. Schizophrenia case-only analysis of the Clinical Antipsychotics Trials of Intervention Effectiveness trial. Schizophrenia PRS was constructed using Psychiatric Genomics Consortium (PGC) leave-one out GWAS as discovery data set. For candidate regions, we selected 105 schizophrenia-associated autosomal loci and 11 schizophrenia-related oligodendrocyte genes. We used regressions to examine PRS associations and set-based testing for candidate analysis. We examined data from 730 subjects. Best-fit PRS at p-threshold of 1e-07 was associated with total insight (R 2 =0.005, P=0.05, empirical P=0.054) and treatment insight (R 2 =0.005, P=0.048, empirical P=0.048). For models that controlled for neurocognition, PRS significantly predicted treatment insight but at higher p-thresholds (0.1 to 0.5) but did not survive correction. Patients with highest polygenic burden had 5.9 times increased risk for poor insight compared to patients with lowest burden. PRS explained 3.2% (P=0.002, empirical P=0.011) of variance in poor insight. Set-based analyses identified two variants associated with poor insight- rs320703, an intergenic variant (within-set P=6e-04, FDR P=0.046) and rs1479165 in SOX2-OT (within-set P=9e-04, FDR P=0.046). To the best of our knowledge, this is the first study examining genetic basis of insight. We provide evidence for genetic contributions to impaired insight. Relevance of findings and necessity for replication are discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. The Jujube Genome Provides Insights into Genome Evolution and the Domestication of Sweetness/Acidity Taste in Fruit Trees.

    Science.gov (United States)

    Huang, Jian; Zhang, Chunmei; Zhao, Xing; Fei, Zhangjun; Wan, KangKang; Zhang, Zhong; Pang, Xiaoming; Yin, Xiao; Bai, Yang; Sun, Xiaoqing; Gao, Lizhi; Li, Ruiqiang; Zhang, Jinbo; Li, Xingang

    2016-12-01

    Jujube (Ziziphus jujuba Mill.) belongs to the Rhamnaceae family and is a popular fruit tree species with immense economic and nutritional value. Here, we report a draft genome of the dry jujube cultivar 'Junzao' and the genome resequencing of 31 geographically diverse accessions of cultivated and wild jujubes (Ziziphus jujuba var. spinosa). Comparative analysis revealed that the genome of 'Dongzao', a fresh jujube, was ~86.5 Mb larger than that of the 'Junzao', partially due to the recent insertions of transposable elements in the 'Dongzao' genome. We constructed eight proto-chromosomes of the common ancestor of Rhamnaceae and Rosaceae, two sister families in the order Rosales, and elucidated the evolutionary processes that have shaped the genome structures of modern jujubes. Population structure analysis revealed the complex genetic background of jujubes resulting from extensive hybridizations between jujube and its wild relatives. Notably, several key genes that control fruit organic acid metabolism and sugar content were identified in the selective sweep regions. We also identified S-locus genes controlling gametophytic self-incompatibility and investigated haplotype patterns of the S locus in the jujube genomes, which would provide a guideline for parent selection for jujube crossbreeding. This study provides valuable genomic resources for jujube improvement, and offers insights into jujube genome evolution and its population structure and domestication.

  14. A comparative transcriptome analysis of a wild purple potato and its red mutant provides insight into the mechanism of anthocyanin transformation.

    Directory of Open Access Journals (Sweden)

    Fang Liu

    Full Text Available In this study, a red mutant was obtained through in vitro regeneration of a wild purple potato. High-performance liquid chromatography and Mass spectrometry analysis revealed that pelargonidin-3-O-glucoside and petunidin-3-O-glucoside were main anthocyanins in the mutant and wild type tubers, respectively. In order to thoroughly understand the mechanism of anthocyanin transformation in two materials, a comparative transcriptome analysis of the mutant and wild type was carried out through high-throughput RNA sequencing, and 295 differentially expressed genes (DEGs were obtained. Real-time qRT-PCR validation of DEGs was consistent with the transcriptome date. The DEGs mainly influenced biological and metabolic pathways, including phenylpropanoid biosynthesis and translation, and biosynthesis of flavone and flavonol. In anthocyanin biosynthetic pathway, the analysis of structural genes expressions showed that three genes, one encoding phenylalanine ammonia-lyase, one encoding 4-coumarate-CoA ligase and one encoding flavonoid 3',5'-hydroxylasem were significantly down-regulated in the mutant; one gene encoding phenylalanine ammonia-lyase was significantly up-regulated. Moreover, the transcription factors, such as bZIP family, MYB family, LOB family, MADS family, zf-HD family and C2H2 family, were significantly regulated in anthocyanin transformation. Response proteins of hormone, such as gibberellin, abscisic acid and brassinosteroid, were also significantly regulated in anthocyanin transformation. The information contributes to discovering the candidate genes in anthocyanin transformation, which can serve as a comprehensive resource for molecular mechanism research of anthocyanin transformation in potatoes.

  15. The Organization of Behavior Over Time: Insights from Mid-Session Reversal.

    Science.gov (United States)

    Rayburn-Reeves, Rebecca M; Cook, Robert G

    2016-01-01

    What are the mechanisms by which behavior is organized sequentially over time? The recently developed mid-session reversal (MSR) task offers new insights into this fundamental question. The typical MSR task is arranged to have a single reversed discrimination occurring in a consistent location within each session and across sessions. In this task, we examine the relevance of time, reinforcement, and other factors as the switching cue in the sequential modulation of control in MSR. New analyses also highlight some of the potential mechanisms underlying this serially organized behavior. MSR provides new evidence and we offer some ideas about how cues interact to compete for the control of behavior within and across sessions. We suggest that MSR is an excellent preparation for studying the competition among psychological states and their resolution toward action.

  16. Neurobiological Basis of Insight in Schizophrenia: A Systematic Review.

    Science.gov (United States)

    Xavier, Rose Mary; Vorderstrasse, Allison

    2016-01-01

    Insight in schizophrenia is defined as awareness into illness, symptoms, and need for treatment and has long been associated with cognition, other psychopathological symptoms, and several adverse clinical and functional outcomes. However, the biological basis of insight is not clearly understood. The aim of this systematic review was to critically evaluate and summarize advances in the study of the biological basis of insight in schizophrenia and to identify gaps in this knowledge. A literature search of PubMed, CINAHL, PsycINFO, and EMBASE databases was conducted using search terms to identify articles relevant to the biology of insight in schizophrenia published in the last 6 years. Articles that focused on etiology of insight in schizophrenia and those that examined the neurobiology of insight in schizophrenia or psychoses were chosen for analysis. Articles on insight in conditions other than schizophrenia or psychoses and which did not investigate the neurobiological underpinnings of insight were excluded from the review. Twenty-six articles met the inclusion criteria for this review. Of the 26 articles, 3 focused on cellular abnormalities and 23 were neuroimaging studies. Preliminary data identify the prefrontal cortex, cingulate cortex, and regions of the temporal and parietal lobe (precuneus, inferior parietal lobule) and hippocampus as the neural correlates of insight. A growing body of literature attests to the neurobiological basis of insight in schizophrenia. Current evidence supports the neurobiological basis of insight in schizophrenia and identifies specific neural correlates for insight types and its dimensions. Further studies that examine the precise biological mechanisms of insight are needed to apply this knowledge to effective clinical intervention development.

  17. A Rickettsia Genome Overrun by Mobile Genetic Elements Provides Insight into the Acquisition of Genes Characteristic of an Obligate Intracellular Lifestyle

    Science.gov (United States)

    Joardar, Vinita; Williams, Kelly P.; Driscoll, Timothy; Hostetler, Jessica B.; Nordberg, Eric; Shukla, Maulik; Walenz, Brian; Hill, Catherine A.; Nene, Vishvanath M.; Azad, Abdu F.; Sobral, Bruno W.; Caler, Elisabet

    2012-01-01

    We present the draft genome for the Rickettsia endosymbiont of Ixodes scapularis (REIS), a symbiont of the deer tick vector of Lyme disease in North America. Among Rickettsia species (Alphaproteobacteria: Rickettsiales), REIS has the largest genome sequenced to date (>2 Mb) and contains 2,309 genes across the chromosome and four plasmids (pREIS1 to pREIS4). The most remarkable finding within the REIS genome is the extraordinary proliferation of mobile genetic elements (MGEs), which contributes to a limited synteny with other Rickettsia genomes. In particular, an integrative conjugative element named RAGE (for Rickettsiales amplified genetic element), previously identified in scrub typhus rickettsiae (Orientia tsutsugamushi) genomes, is present on both the REIS chromosome and plasmids. Unlike the pseudogene-laden RAGEs of O. tsutsugamushi, REIS encodes nine conserved RAGEs that include F-like type IV secretion systems similar to that of the tra genes encoded in the Rickettsia bellii and R. massiliae genomes. An unparalleled abundance of encoded transposases (>650) relative to genome size, together with the RAGEs and other MGEs, comprise ∼35% of the total genome, making REIS one of the most plastic and repetitive bacterial genomes sequenced to date. We present evidence that conserved rickettsial genes associated with an intracellular lifestyle were acquired via MGEs, especially the RAGE, through a continuum of genomic invasions. Robust phylogeny estimation suggests REIS is ancestral to the virulent spotted fever group of rickettsiae. As REIS is not known to invade vertebrate cells and has no known pathogenic effects on I. scapularis, its genome sequence provides insight on the origin of mechanisms of rickettsial pathogenicity. PMID:22056929

  18. A recovery principle provides insight into auxin pattern control in the Arabidopsis root

    Science.gov (United States)

    Moore, Simon; Liu, Junli; Zhang, Xiaoxian; Lindsey, Keith

    2017-01-01

    Regulated auxin patterning provides a key mechanism for controlling root growth and development. We have developed a data-driven mechanistic model using realistic root geometry and formulated a principle to theoretically investigate quantitative auxin pattern recovery following auxin transport perturbation. This principle reveals that auxin patterning is potentially controlled by multiple combinations of interlinked levels and localisation of influx and efflux carriers. We demonstrate that (1) when efflux carriers maintain polarity but change levels, maintaining the same auxin pattern requires non-uniform and polar distribution of influx carriers; (2) the emergence of the same auxin pattern, from different levels of influx carriers with the same nonpolar localisation, requires simultaneous modulation of efflux carrier level and polarity; and (3) multiple patterns of influx and efflux carriers for maintaining an auxin pattern do not have spatially proportional correlation. This reveals that auxin pattern formation requires coordination between influx and efflux carriers. We further show that the model makes various predictions that can be experimentally validated. PMID:28220889

  19. Regulatory Mechanisms in the P4-ATPase Complex

    DEFF Research Database (Denmark)

    Costa, Sara

    . The functionality on the P4-ATPase complex is essential for several cellular processes, such as vesicle-mediated transport. However, the specific role of flippase activity in vesicle biogenesis and the regulatory mechanism behind this process is still poorly understood. In these studies, we identified...... affordable alternative using a microscope-based cytometer. This system can simultaneously provide information on flippase activity and expression levels. Taken together, the findings described in this thesis provide new tools for P4-ATPase characterization and valuable insights into the regulation...

  20. Decoding the mechanisms of Antikythera astronomical device

    CERN Document Server

    Lin, Jian-Liang

    2016-01-01

    This book presents a systematic design methodology for decoding the interior structure of the Antikythera mechanism, an astronomical device from ancient Greece. The historical background, surviving evidence and reconstructions of the mechanism are introduced, and the historical development of astronomical achievements and various astronomical instruments are investigated. Pursuing an approach based on the conceptual design of modern mechanisms and bearing in mind the standards of science and technology at the time, all feasible designs of the six lost/incomplete/unclear subsystems are synthesized as illustrated examples, and 48 feasible designs of the complete interior structure are presented. This approach provides not only a logical tool for applying modern mechanical engineering knowledge to the reconstruction of the Antikythera mechanism, but also an innovative research direction for identifying the original structures of the mechanism in the future. In short, the book offers valuable new insights for all...

  1. Silver vanadium diphosphate Ag2VP2O8: Electrochemistry and characterization of reduced material providing mechanistic insights

    International Nuclear Information System (INIS)

    Takeuchi, Esther S.; Lee, Chia-Ying; Cheng, Po-Jen; Menard, Melissa C.; Marschilok, Amy C.; Takeuchi, Kenneth J.

    2013-01-01

    Silver vanadium phosphorous oxides (Ag w V x P y O z ) are notable battery cathode materials due to their high energy density and demonstrated ability to form in-situ Ag metal nanostructured electrically conductive networks within the cathode. While analogous silver vanadium diphosphate materials have been prepared, electrochemical evaluations of these diphosphate based materials have been limited. We report here the first electrochemical study of a silver vanadium diphosphate, Ag 2 VP 2 O 8 , where the structural differences associated with phosphorous oxides versus diphosphates profoundly affect the associated electrochemistry. Reminiscent of Ag 2 VO 2 PO 4 reduction, in-situ formation of silver metal nanoparticles was observed with reduction of Ag 2 VP 2 O 8 . However, counter to Ag 2 VO 2 PO 4 reduction, Ag 2 VP 2 O 8 demonstrates a significant decrease in conductivity upon continued electrochemical reduction. Structural analysis contrasting the crystallography of the parent Ag 2 VP 2 O 8 with that of the proposed Li 2 VP 2 O 8 reduction product is employed to gain insight into the observed electrochemical reduction behavior, where the structural rigidity associated with the diphosphate anion may be associated with the observed particle fracturing upon deep electrochemical reduction. Further, the diphosphate anion structure may be associated with the high thermal stability of the partially reduced Ag 2 VP 2 O 8 materials, which bodes well for enhanced safety of batteries incorporating this material. - Graphical abstract: Structure and galvanostatic intermittent titration-type test data for silver vanadium diphosphate, Ag 2 VP 2 O 8 . Highlights: ► First electrochemical study of a silver vanadium diphosphate, Ag 2 VP 2 O 8 . ► In-situ formation of Ag 0 nanoparticles was observed upon electrochemical reduction. ► Structural analysis used to provide insight of the electrochemical behavior

  2. Genomic, Transcriptomic, and Proteomic Analysis Provide Insights Into the Cold Adaptation Mechanism of the Obligate Psychrophilic Fungus Mrakia psychrophila

    Directory of Open Access Journals (Sweden)

    Yao Su

    2016-11-01

    Full Text Available Mrakia psychrophila is an obligate psychrophilic fungus. The cold adaptation mechanism of psychrophilic fungi remains unknown. Comparative genomics analysis indicated that M. psychrophila had a specific codon usage preference, especially for codons of Gly and Arg and its major facilitator superfamily (MFS transporter gene family was expanded. Transcriptomic analysis revealed that genes involved in ribosome and energy metabolism were upregulated at 4°, while genes involved in unfolded protein binding, protein processing in the endoplasmic reticulum, proteasome, spliceosome, and mRNA surveillance were upregulated at 20°. In addition, genes related to unfolded protein binding were alternatively spliced. Consistent with other psychrophiles, desaturase and glycerol 3-phosphate dehydrogenase, which are involved in biosynthesis of unsaturated fatty acid and glycerol respectively, were upregulated at 4°. Cold adaptation of M. psychrophila is mediated by synthesizing unsaturated fatty acids to maintain membrane fluidity and accumulating glycerol as a cryoprotectant. The proteomic analysis indicated that the correlations between the dynamic patterns between transcript level changes and protein level changes for some pathways were positive at 4°, but negative at 20°. The death of M. psychrophila above 20° might be caused by an unfolded protein response.

  3. The elite cross-country skier provides unique insights into human exercise physiology.

    Science.gov (United States)

    Holmberg, H-C

    2015-12-01

    Successful cross-country skiing, one of the most demanding of endurance sports, involves considerable physiological challenges posed by the combined upper- and lower-body effort of varying intensity and duration, on hilly terrain, often at moderate altitude and in a cold environment. Over the years, this unique sport has helped physiologists gain novel insights into the limits of human performance and regulatory capacity. There is a long-standing tradition of researchers in this field working together with coaches and athletes to improve training routines, monitor progress, and refine skiing techniques. This review summarizes research on elite cross-country skiers, with special emphasis on the studies initiated by Professor Bengt Saltin. He often employed exercise as a means to learn more about the human body, successfully engaging elite endurance athletes to improve our understanding of the demands, characteristics, and specific effects associated with different types of exercise. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Spider genomes provide insight into composition and evolution of venom and silk

    Science.gov (United States)

    Sanggaard, Kristian W.; Bechsgaard, Jesper S.; Fang, Xiaodong; Duan, Jinjie; Dyrlund, Thomas F.; Gupta, Vikas; Jiang, Xuanting; Cheng, Ling; Fan, Dingding; Feng, Yue; Han, Lijuan; Huang, Zhiyong; Wu, Zongze; Liao, Li; Settepani, Virginia; Thøgersen, Ida B.; Vanthournout, Bram; Wang, Tobias; Zhu, Yabing; Funch, Peter; Enghild, Jan J.; Schauser, Leif; Andersen, Stig U.; Villesen, Palle; Schierup, Mikkel H; Bilde, Trine; Wang, Jun

    2014-01-01

    Spiders are ecologically important predators with complex venom and extraordinarily tough silk that enables capture of large prey. Here we present the assembled genome of the social velvet spider and a draft assembly of the tarantula genome that represent two major taxonomic groups of spiders. The spider genomes are large with short exons and long introns, reminiscent of mammalian genomes. Phylogenetic analyses place spiders and ticks as sister groups supporting polyphyly of the Acari. Complex sets of venom and silk genes/proteins are identified. We find that venom genes evolved by sequential duplication, and that the toxic effect of venom is most likely activated by proteases present in the venom. The set of silk genes reveals a highly dynamic gene evolution, new types of silk genes and proteins, and a novel use of aciniform silk. These insights create new opportunities for pharmacological applications of venom and biomaterial applications of silk. PMID:24801114

  5. Comparison of the Internal Dynamics of Metalloproteases Provides New Insights on Their Function and Evolution.

    Directory of Open Access Journals (Sweden)

    Henrique F Carvalho

    Full Text Available Metalloproteases have evolved in a vast number of biological systems, being one of the most diverse types of proteases and presenting a wide range of folds and catalytic metal ions. Given the increasing understanding of protein internal dynamics and its role in enzyme function, we are interested in assessing how the structural heterogeneity of metalloproteases translates into their dynamics. Therefore, the dynamical profile of the clan MA type protein thermolysin, derived from an Elastic Network Model of protein structure, was evaluated against those obtained from a set of experimental structures and molecular dynamics simulation trajectories. A close correspondence was obtained between modes derived from the coarse-grained model and the subspace of functionally-relevant motions observed experimentally, the later being shown to be encoded in the internal dynamics of the protein. This prompted the use of dynamics-based comparison methods that employ such coarse-grained models in a representative set of clan members, allowing for its quantitative description in terms of structural and dynamical variability. Although members show structural similarity, they nonetheless present distinct dynamical profiles, with no apparent correlation between structural and dynamical relatedness. However, previously unnoticed dynamical similarity was found between the relevant members Carboxypeptidase Pfu, Leishmanolysin, and Botulinum Neurotoxin Type A, despite sharing no structural similarity. Inspection of the respective alignments shows that dynamical similarity has a functional basis, namely the need for maintaining proper intermolecular interactions with the respective substrates. These results suggest that distinct selective pressure mechanisms act on metalloproteases at structural and dynamical levels through the course of their evolution. This work shows how new insights on metalloprotease function and evolution can be assessed with comparison schemes that

  6. The VBB SEIS experiment of InSight

    Science.gov (United States)

    De Raucourt, Sebastien; Gabsi, Taoufik; Tanguy, Nebut; Mimoun, David; Lognonne, Philippe; Gagnepain-Beyneix, Jeannine; Banerdt, William; Tillier, Sylvain; Hurst, Kenneth

    2012-07-01

    SEIS is the core payload of InSight, one of the three missions selected for competitive phase A in the frame of the 2010 Discovery AO. It aims at providing unique observation of the interior structure of Mars and to monitor seismic activity of Mars. SEIS will provide the first seismic model from another planet than Earth. SEIS is an hybrid seismometer composed of 3 SPs and 3 VBBs axes providing ground motion measurement from Dc to 50Hz. A leveling system will ensure the coupling between the ground and the sensors as well as the horizontality of the VBB sphere. This assembly will be deployed on the ground of Mars and will be shielded by a strong thermal insulation and a wind shield. The 24 bits low noise acquisition electronics will remain in the warm electronic box of the lander with the sensors feedback and leveling system electronics. The VBB sphere enclosed three single axis sensors. Those sensors are based on an inverted leaf spring pendulum, which convert ground acceleration into mobile mass displacement. A capacitive displacement sensor monitors this mass displacement to provide a measurement. A force feedback allows transfer function and sensitivity tuning. The VBB sensor has a very strong heritage from previous project and benefits from recent work to improve its performances. Both the mechanical design and the displacement sensors have optimized to improve performances while reducing technological risk and keeping a high TRL. From those development a self-noise well below 10 ^{-9} m.s ^{-2}/sqrt Hz is expected. Environmental sensitivity of SEIS has been minimized by the design of a very efficient wind and thermal shield. Remaining noise is expected to be very close to the VBB self-noise. Associated sources and budget will be discussed. If InSight is selected to fly in 2016, this experiment will provide very high quality seismic signal measurement with a wider bandwidth, higher sensitivity and lower noise than previous Mars seismometer (Viking and Optimism

  7. Insights into Pathophysiology from Medication-induced Tremor

    Directory of Open Access Journals (Sweden)

    John C. Morgan

    2017-10-01

    Full Text Available Background: Medication-induced tremor (MIT is common in clinical practice and there are many medications/drugs that can cause or exacerbate tremors. MIT typically occurs by enhancement of physiological tremor (EPT, but not all drugs cause tremor in this way. In this manuscript, we review how some common examples of MIT have informed us about the pathophysiology of tremor.Methods: We performed a PubMed literature search for published articles dealing with MIT and attempted to identify articles that especially dealt with the medication’s mechanism of inducing tremor.Results: There is a paucity of literature that deals with the mechanisms of MIT, with most manuscripts only describing the frequency and clinical settings where MIT is observed. That being said, MIT emanates from multiple mechanisms depending on the drug and it often takes an individualized approach to manage MIT in a given patient.Discussion: MIT has provided some insight into the mechanisms of tremors we see in clinical practice. The exact mechanism of MIT is unknown for most medications that cause tremor, but it is assumed that in most cases physiological tremor is influenced by these medications. Some medications (epinephrine that cause EPT likely lead to tremor by peripheral mechanisms in the muscle (β-adrenergic agonists, but others may influence the central component (amitriptyline. Other drugs can cause tremor, presumably by blockade of dopamine receptors in the basal ganglia (dopamine-blocking agents, by secondary effects such as causing hyperthyroidism (amiodarone, or by other mechanisms. We will attempt to discuss what is known and unknown about the pathophysiology of the most common MITs.

  8. Mechanism of human tooth eruption

    DEFF Research Database (Denmark)

    Kjær, Inger

    2014-01-01

    Human eruption is a unique developmental process in the organism. The aetiology or the mechanism behind eruption has never been fully understood and the scientific literature in the field is extremely sparse. Human and animal tissues provide different possibilities for eruption analyses, briefly ...... keeps this new theory in mind. Understanding the aetiology of the eruption process is necessary for treating deviant eruption courses....... to insight into the aetiology behind eruption. A new theory on the eruption mechanism is presented. Accordingly, the mechanism of eruption depends on the correlation between space in the eruption course, created by the crown follicle, eruption pressure triggered by innervation in the apical root membrane......, and the ability of the periodontal ligament to adapt to eruptive movements. Animal studies and studies on normal and pathological eruption in humans can support and explain different aspects in the new theory. The eruption mechanism still needs elucidation and the paper recommends that future research on eruption...

  9. Optical studies of boiling heat transfer: insights and limitations

    International Nuclear Information System (INIS)

    Kenning, David B.R.

    2004-01-01

    Optical studies provide valuable insights into the complex mechanisms of boiling heat transfer but the large gradients of temperature (and therefore of refractive index) deflect light and multiple reflections at interfaces limit the distance over which observations can be made. Optical measurements are thought of as non-intrusive but this is rarely true. Because they are difficult and time consuming, they constrain the design of boiling experiments and are applied to limited ranges of conditions. There is a risk that deductions from the observations will be applied (not necessarily by the authors) more generally than is justified. These characteristics of optical studies are illustrated by examples from forced convective film boiling on spheres and pool nucleate boiling

  10. Mechanisms of Memory Enhancement

    Science.gov (United States)

    Stern, Sarah A.

    2012-01-01

    The ongoing quest for memory enhancement is one that grows necessary as the global population increasingly ages. The extraordinary progress that has been made in the past few decades elucidating the underlying mechanisms of how long-term memories are formed has provided insight into how memories might also be enhanced. Capitalizing on this knowledge, it has been postulated that targeting many of the same mechanisms, including CREB activation, AMPA/NMDA receptor trafficking, neuromodulation (e.g. via dopamine, adrenaline, cortisol or acetylcholine) and metabolic processes (e.g. via glucose and insulin) may all lead to the enhancement of memory. These and other mechanisms and/or approaches have been tested via genetic or pharmacological methods in animal models, and several have been investigated in humans as well. In addition, a number of behavioral methods, including exercise and reconsolidation, may also serve to strengthen and enhance memories. By capitalizing on this knowledge and continuing to investigate these promising avenues, memory enhancement may indeed be achieved in the future. PMID:23151999

  11. Lectures on quantum mechanics

    CERN Document Server

    Weinberg, Steven

    2013-01-01

    Nobel Laureate Steven Weinberg combines his exceptional physical insight with his gift for clear exposition to provide a concise introduction to modern quantum mechanics. Ideally suited to a one-year graduate course, this textbook is also a useful reference for researchers. Readers are introduced to the subject through a review of the history of quantum mechanics and an account of classic solutions of the Schrödinger equation, before quantum mechanics is developed in a modern Hilbert space approach. The textbook covers many topics not often found in other books on the subject, including alternatives to the Copenhagen interpretation, Bloch waves and band structure, the Wigner–Eckart theorem, magic numbers, isospin symmetry, the Dirac theory of constrained canonical systems, general scattering theory, the optical theorem, the 'in-in' formalism, the Berry phase, Landau levels, entanglement and quantum computing. Problems are included at the ends of chapters, with solutions available for instructors at www.cam...

  12. Amyloid precursor protein overexpression depresses excitatory transmission through both presynaptic and postsynaptic mechanisms

    OpenAIRE

    Ting, Jonathan T.; Kelley, Brooke G.; Lambert, Talley J.; Cook, David G.; Sullivan, Jane M.

    2006-01-01

    Overexpression of the amyloid precursor protein (APP) in hippocampal neurons leads to elevated β-amyloid peptide (Aβ) production and consequent depression of excitatory transmission. The precise mechanisms underlying APP-induced synaptic depression are poorly understood. Uncovering these mechanisms could provide insight into how neuronal function is compromised before cell death during the early stages of Alzheimer's disease. Here we verify that APP up-regulation leads to depression of transm...

  13. New insights into insight: Neurophysiological correlates of the difference between the intrinsic "aha" and the extrinsic "oh yes" moment.

    Science.gov (United States)

    Rothmaler, Katrin; Nigbur, Roland; Ivanova, Galina

    2017-01-27

    Insight refers to a situation in which a problem solver immediately changes his understanding of a problem situation. This representational change can either be triggered by external stimuli, like a hint or the solution itself, or by internal solution attempts. In the present paper, the differences and similarities between these two phenomena, namely "extrinsic" and "intrinsic" insight, are examined. To this end, electroencephalogram (EEG) is recorded while subjects either recognize or generate solutions to German verbal compound remote associate problems (CRA). Based on previous studies, we compare the alpha power prior to insightful solution recognition with the alpha power prior to insightful solution generation. Results show that intrinsic insights are preceded by an increase in alpha power at right parietal electrodes, while extrinsic insights are preceded by a respective decrease. These results can be interpreted in two ways. In consistency with other studies, the increase in alpha power before intrinsic insights can be interpreted as an increased internal focus of attention. Accordingly, the decrease in alpha power before extrinsic insights may be associated with a more externally oriented focus of attention. Alternatively, the increase in alpha power prior to intrinsic insights can be interpreted as an active inhibition of solution-related information, while the alpha power decrease prior to extrinsic insights may reflect its activation. Regardless of the interpretation, the results provide strong evidence that extrinsic and intrinsic insight differ on the behavioral as well as the neurophysiological level. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Operating experience insights supporting ageing assessments

    International Nuclear Information System (INIS)

    Nitoi, M.

    2013-01-01

    Be effective in ageing management means looking at the right aspects, with the right techniques, and one of the most effective tool which could be used for that purpose is the analysis of operating experience. The paper has as objective to perform a review of available operating experience, with the aim to provide a better picture about the impact of ageing effects. The IAEA International Reporting System and NRC Licensee Event Reports were chosen as reference databases, both databases being internationally recognized as important sources of information about events occurrences in the nuclear power plants. The ageing related events identified in the selected time window were analyzed in detail, and the contributions of each major degradation mechanisms that have induced the ageing related events (specific to each defined group of components) was represented and discussed. The paper demonstrates the possibility to use operating experience insights in highlighting the ageing effects. (authors)

  15. A quantum mechanics/molecular mechanics study on the hydrolysis mechanism of New Delhi metallo-β-lactamase-1.

    Science.gov (United States)

    Zhu, Kongkai; Lu, Junyan; Liang, Zhongjie; Kong, Xiangqian; Ye, Fei; Jin, Lu; Geng, Heji; Chen, Yong; Zheng, Mingyue; Jiang, Hualiang; Li, Jun-Qian; Luo, Cheng

    2013-03-01

    New Delhi metallo-β-lactamase-1 (NDM-1) has emerged as a major global threat to human health for its rapid rate of dissemination and ability to make pathogenic microbes resistant to almost all known β-lactam antibiotics. In addition, effective NDM-1 inhibitors have not been identified to date. In spite of the plethora of structural and kinetic data available, the accurate molecular characteristics of and details on the enzymatic reaction of NDM-1 hydrolyzing β-lactam antibiotics remain incompletely understood. In this study, a combined computational approach including molecular docking, molecular dynamics simulations and quantum mechanics/molecular mechanics calculations was performed to characterize the catalytic mechanism of meropenem catalyzed by NDM-1. The quantum mechanics/molecular mechanics results indicate that the ionized D124 is beneficial to the cleavage of the C-N bond within the β-lactam ring. Meanwhile, it is energetically favorable to form an intermediate if no water molecule coordinates to Zn2. Moreover, according to the molecular dynamics results, the conserved residue K211 plays a pivotal role in substrate binding and catalysis, which is quite consistent with previous mutagenesis data. Our study provides detailed insights into the catalytic mechanism of NDM-1 hydrolyzing meropenem β-lactam antibiotics and offers clues for the discovery of new antibiotics against NDM-1 positive strains in clinical studies.

  16. Personal semantic memory: insights from neuropsychological research on amnesia.

    Science.gov (United States)

    Grilli, Matthew D; Verfaellie, Mieke

    2014-08-01

    This paper provides insight into the cognitive and neural mechanisms of personal semantic memory, knowledge that is specific and unique to individuals, by reviewing neuropsychological research on stable amnesia secondary to medial temporal lobe damage. The results reveal that personal semantic memory does not depend on a unitary set of cognitive and neural mechanisms. Findings show that autobiographical fact knowledge reflects an experience-near type of personal semantic memory that relies on the medial temporal lobe for retrieval, albeit less so than personal episodic memory. Additional evidence demonstrates that new autobiographical fact learning likely relies on the medial temporal lobe, but the extent to which remains unclear. Other findings show that retrieval of personal traits/roles and new learning of personal traits/roles and thoughts/beliefs are independent of the medial temporal lobe and thus may represent highly conceptual types of personal semantic memory that are stored in the neocortex. Published by Elsevier Ltd.

  17. Insight into the mechanism of action of temporin-SHa, a new broad-spectrum antiparasitic and antibacterial agent.

    Directory of Open Access Journals (Sweden)

    Zahid Raja

    Full Text Available Antimicrobial peptides (AMPs are promising drugs to kill resistant pathogens. In contrast to bacteria, protozoan parasites, such as Leishmania, were little studied. Therefore, the antiparasitic mechanism of AMPs is still unclear. In this study, we sought to get further insight into this mechanism by focusing our attention on temporin-SHa (SHa, a small broad-spectrum AMP previously shown to be active against Leishmania infantum. To improve activity, we designed analogs of SHa and compared the antibacterial and antiparasitic mechanisms. [K3]SHa emerged as a highly potent compound active against a wide range of bacteria, yeasts/fungi, and trypanosomatids (Leishmania and Trypanosoma, with leishmanicidal intramacrophagic activity and efficiency toward antibiotic-resistant strains of S. aureus and antimony-resistant L. infantum. Multipassage resistance selection demonstrated that temporins-SH, particularly [K3]SHa, are not prone to induce resistance in Escherichia coli. Analysis of the mode of action revealed that bacterial and parasite killing occur through a similar membranolytic mechanism involving rapid membrane permeabilization and depolarization. This was confirmed by high-resolution imaging (atomic force microscopy and field emission gun-scanning electron microscopy. Multiple combined techniques (nuclear magnetic resonance, surface plasmon resonance, differential scanning calorimetry allowed us to detail peptide-membrane interactions. [K3]SHa was shown to interact selectively with anionic model membranes with a 4-fold higher affinity (KD = 3 x 10-8 M than SHa. The amphipathic α-helical peptide inserts in-plane in the hydrophobic lipid bilayer and disrupts the acyl chain packing via a detergent-like effect. Interestingly, cellular events, such as mitochondrial membrane depolarization or DNA fragmentation, were observed in L. infantum promastigotes after exposure to SHa and [K3]SHa at concentrations above IC50. Our results indicate that these

  18. Neural signatures of attention: insights from decoding population activity patterns.

    Science.gov (United States)

    Sapountzis, Panagiotis; Gregoriou, Georgia G

    2018-01-01

    Understanding brain function and the computations that individual neurons and neuronal ensembles carry out during cognitive functions is one of the biggest challenges in neuroscientific research. To this end, invasive electrophysiological studies have provided important insights by recording the activity of single neurons in behaving animals. To average out noise, responses are typically averaged across repetitions and across neurons that are usually recorded on different days. However, the brain makes decisions on short time scales based on limited exposure to sensory stimulation by interpreting responses of populations of neurons on a moment to moment basis. Recent studies have employed machine-learning algorithms in attention and other cognitive tasks to decode the information content of distributed activity patterns across neuronal ensembles on a single trial basis. Here, we review results from studies that have used pattern-classification decoding approaches to explore the population representation of cognitive functions. These studies have offered significant insights into population coding mechanisms. Moreover, we discuss how such advances can aid the development of cognitive brain-computer interfaces.

  19. Mudskipper genomes provide insights into the terrestrial adaptation of amphibious fishes

    DEFF Research Database (Denmark)

    You, Xinxin; Bian, Chao; Zan, Qijie

    2014-01-01

    Mudskippers are amphibious fishes that have developed morphological and physiological adaptations to match their unique lifestyles. Here we perform whole-genome sequencing of four representative mudskippers to elucidate the molecular mechanisms underlying these adaptations. We discover an expansi...

  20. A mechanistic insight into the mechanical role of the stratum corneum during stretching and compression of the skin.

    Science.gov (United States)

    Leyva-Mendivil, Maria F; Page, Anton; Bressloff, Neil W; Limbert, Georges

    2015-09-01

    The study of skin biophysics has largely been driven by consumer goods, biomedical and cosmetic industries which aim to design products that efficiently interact with the skin and/or modify its biophysical properties for health or cosmetic benefits. The skin is a hierarchical biological structure featuring several layers with their own distinct geometry and mechanical properties. Up to now, no computational models of the skin have simultaneously accounted for these geometrical and material characteristics to study their complex biomechanical interactions under particular macroscopic deformation modes. The goal of this study was, therefore, to develop a robust methodology combining histological sections of human skin, image-processing and finite element techniques to address fundamental questions about skin mechanics and, more particularly, about how macroscopic strains are transmitted and modulated through the epidermis and dermis. The work hypothesis was that, as skin deforms under macroscopic loads, the stratum corneum does not experience significant strains but rather folds/unfolds during skin extension/compression. A sample of fresh human mid-back skin was processed for wax histology. Sections were stained and photographed by optical microscopy. The multiple images were stitched together to produce a larger region of interest and segmented to extract the geometry of the stratum corneum, viable epidermis and dermis. From the segmented structures a 2D finite element mesh of the skin composite model was created and geometrically non-linear plane-strain finite element analyses were conducted to study the sensitivity of the model to variations in mechanical properties. The hybrid experimental-computational methodology has offered valuable insights into the simulated mechanics of the skin, and that of the stratum corneum in particular, by providing qualitative and quantitative information on strain magnitude and distribution. Through a complex non-linear interplay

  1. Functional Insights Revealed by the Kinetic Mechanism of CRISPR/Cas9.

    Science.gov (United States)

    Raper, Austin T; Stephenson, Anthony A; Suo, Zucai

    2018-02-28

    The discovery of prokaryotic adaptive immunity prompted widespread use of the RNA-guided clustered regularly interspaced short palindromic repeat (CRISPR)-associated (Cas) endonuclease Cas9 for genetic engineering. However, its kinetic mechanism remains undefined, and details of DNA cleavage are poorly characterized. Here, we establish a kinetic mechanism of Streptococcus pyogenes Cas9 from guide-RNA binding through DNA cleavage and product release. Association of DNA to the binary complex of Cas9 and guide-RNA is rate-limiting during the first catalytic turnover, while DNA cleavage from a pre-formed ternary complex of Cas9, guide-RNA, and DNA is rapid. Moreover, an extremely slow release of DNA products essentially restricts Cas9 to be a single-turnover enzyme. By simultaneously measuring the contributions of the HNH and RuvC nuclease activities of Cas9 to DNA cleavage, we also uncovered the kinetic basis by which HNH conformationally regulates the RuvC cleavage activity. Together, our results provide crucial kinetic and functional details regarding Cas9 which will inform gene-editing experiments, guide future research to understand off-target DNA cleavage by Cas9, and aid in the continued development of Cas9 as a biotechnological tool.

  2. Discovery of extremely halophilic, methyl-reducing euryarchaea provides insights into the evolutionary origin of methanogenesis

    Science.gov (United States)

    Sorokin, Dimitry Y.; Makarova, Kira S.; Abbas, Ben; Ferrer, Manuel; Golyshin, Peter N.; Galinski, Erwin A.; Ciordia, Sergio; Mena, María Carmen; Merkel, Alexander Y.; Wolf, Yuri I.; van Loosdrecht, Mark C.M.; Koonin, Eugene V.

    2017-01-01

    Methanogenic archaea are major players in the global carbon cycle and in the biotechnology of anaerobic digestion. The phylum Euryarchaeota includes diverse groups of methanogens that are interspersed with non-methanogenic lineages. So far methanogens inhabiting hypersaline environments have been identified only within the order Methanosarcinales. We report the discovery of a deep phylogenetic lineage of extremophilic methanogens in hypersaline lakes, and present analysis of two nearly complete genomes from this group. Within the phylum Euryarchaeota, these isolates form a separate, class-level lineage “Methanonatronarchaeia” that is most closely related to the class Halobacteria. Similar to the Halobacteria, “Methanonatronarchaeia” are extremely halophilic and do not accumulate organic osmoprotectants. The high intracellular concentration of potassium implies that “Methanonatronarchaeia” employ the “salt-in” osmoprotection strategy. These methanogens are heterotrophic methyl-reducers that utilize C1-methylated compounds as electron acceptors and formate or hydrogen as electron donors. The genomes contain an incomplete and apparently inactivated set of genes encoding the upper branch of methyl group oxidation to CO2 as well as membrane-bound heterosulfide reductase and cytochromes. These features differentiates “Methanonatronarchaeia” from all known methyl-reducing methanogens. The discovery of extremely halophilic, methyl-reducing methanogens related to haloarchaea provides insights into the origin of methanogenesis and shows that the strategies employed by methanogens to thrive in salt-saturating conditions are not limited to the classical methylotrophic pathway. PMID:28555626

  3. Reduced Connectivity in the Self-Processing Network of Schizophrenia Patients with Poor Insight

    NARCIS (Netherlands)

    Liemburg, Edith J.; van der Meer, Lisette; Swart, Marte; Curcic-Blake, Branislava; Bruggeman, Richard; Knegtering, Henderikus; Aleman, Andre

    2012-01-01

    Lack of insight (unawareness of illness) is a common and clinically relevant feature of schizophrenia. Reduced levels of self-referential processing have been proposed as a mechanism underlying poor insight. The default mode network (DMN) has been implicated as a key node in the circuit for

  4. Localization of sclerotic-type chronic graft-vs-host disease to sites of skin injury: potential insight into the mechanism of isomorphic and isotopic responses.

    Science.gov (United States)

    Martires, Kathryn J; Baird, Kristin; Citrin, Deborah E; Hakim, Fran T; Pavletic, Steven Z; Cowen, Edward W

    2011-09-01

    The mechanisms responsible for the variable manifestations of chronic cutaneous graft-vs-host disease (cGVHD) are poorly understood. Localization of sclerotic-type chronic graft-vs-host disease to sites of skin injury (isomorphic and isotopic responses), a recognized phenomenon in morphea, suggests a potential common pathway between cGVHD and other sclerotic skin conditions. Four cases of sclerotic-type cGVHD developed at the site of disparate skin injuries (ionizing radiotherapy, repeated needle sticks, central catheter site, and varicella-zoster virus infection). We review the spectrum of previously reported cases of sclerotic and nonsclerotic cGVHD relating to external forces on the skin. Localization of sclerotic-type cGVHD may occur after many types of skin injury, including UV and ionizing radiotherapy, needle sticks, viral infection, and pressure or friction. Recognition of this phenomenon may be helpful for the early diagnosis of sclerotic disease. Recent insights into the immunological consequences of minor skin injury may provide important clues to the underlying pathogenesis of cGVHD-mediated skin disease.

  5. The Jujube Genome Provides Insights into Genome Evolution and the Domestication of Sweetness/Acidity Taste in Fruit Trees.

    Directory of Open Access Journals (Sweden)

    Jian Huang

    2016-12-01

    Full Text Available Jujube (Ziziphus jujuba Mill. belongs to the Rhamnaceae family and is a popular fruit tree species with immense economic and nutritional value. Here, we report a draft genome of the dry jujube cultivar 'Junzao' and the genome resequencing of 31 geographically diverse accessions of cultivated and wild jujubes (Ziziphus jujuba var. spinosa. Comparative analysis revealed that the genome of 'Dongzao', a fresh jujube, was ~86.5 Mb larger than that of the 'Junzao', partially due to the recent insertions of transposable elements in the 'Dongzao' genome. We constructed eight proto-chromosomes of the common ancestor of Rhamnaceae and Rosaceae, two sister families in the order Rosales, and elucidated the evolutionary processes that have shaped the genome structures of modern jujubes. Population structure analysis revealed the complex genetic background of jujubes resulting from extensive hybridizations between jujube and its wild relatives. Notably, several key genes that control fruit organic acid metabolism and sugar content were identified in the selective sweep regions. We also identified S-locus genes controlling gametophytic self-incompatibility and investigated haplotype patterns of the S locus in the jujube genomes, which would provide a guideline for parent selection for jujube crossbreeding. This study provides valuable genomic resources for jujube improvement, and offers insights into jujube genome evolution and its population structure and domestication.

  6. Taxonomic and functional diversity provides insight into microbial pathways and stress responses in the saline Qinghai Lake, China.

    Directory of Open Access Journals (Sweden)

    Qiuyuan Huang

    Full Text Available Microbe-mediated biogeochemical cycles contribute to the global climate system and have sensitive responses and feedbacks to environmental stress caused by climate change. Yet, little is known about the effects of microbial biodiversity (i.e., taxonmic and functional diversity on biogeochemical cycles in ecosytems that are highly sensitive to climate change. One such sensitive ecosystem is Qinghai Lake, a high-elevation (3196 m saline (1.4% lake located on the Tibetan Plateau, China. This study provides baseline information on the microbial taxonomic and functional diversity as well as the associated stress response genes. Illumina metagenomic and metatranscriptomic datasets were generated from lake water samples collected at two sites (B and E. Autotrophic Cyanobacteria dominated the DNA samples, while heterotrophic Proteobacteria dominated the RNA samples at both sites. Photoheterotrophic Loktanella was also present at both sites. Photosystem II was the most active pathway at site B; while, oxidative phosphorylation was most active at site E. Organisms that expressed photosystem II or oxidative phosphorylation also expressed genes involved in photoprotection and oxidative stress, respectively. Assimilatory pathways associated with the nitrogen cycle were dominant at both sites. Results also indicate a positive relationship between functional diversity and the number of stress response genes. This study provides insight into the stress resilience of microbial metabolic pathways supported by greater taxonomic diversity, which may affect the microbial community response to climate change.

  7. New insights into virulence mechanisms of rice pathogen Acidovorax avenae subsp. avenae strain RS-1 following exposure to ß-lactam antibiotics.

    Science.gov (United States)

    Li, Bin; Ge, Mengyu; Zhang, Yang; Wang, Li; Ibrahim, Muhammad; Wang, Yanli; Sun, Guochang; Chen, Gongyou

    2016-02-26

    Recent research has shown that pathogen virulence can be altered by exposure to antibiotics, even when the growth rate is unaffected. Investigating this phenomenon provides new insights into understanding the virulence mechanisms of bacterial pathogens. This study investigates the phenotypic and transcriptomic responses of the rice pathogenic bacterium Acidovorax avenae subsp. avenae (Aaa) strain RS-1 to ß-lactam antibiotics especially Ampicillin (Amp). Our results indicate that exposure to Amp does not influence bacterial growth and biofilm formation, but alters the virulence, colonization capacity, composition of extracellular polymeric substances and secretion of Type VI secretion system (T6SS) effector Hcp. This attenuation in virulence is linked to unique or differential expression of known virulence-associated genes based on genome-wide transcriptomic analysis. The reliability of expression data generated by RNA-Seq was verified with quantitative real-time PCR of 21 selected T6SS genes, where significant down-regulation in expression of hcp gene, corresponding to the reduction in secretion of Hcp, was observed under exposure to Amp. Hcp is highlighted as a potential target for Amp, with similar changes observed in virulence-associated phenotypes between exposure to Amp and mutation of hcp gene. In addition, Hcp secretion is reduced in knockout mutants of 4 differentially expressed T6SS genes.

  8. Shooting mechanisms in nature

    NARCIS (Netherlands)

    Sakes, Aimée; Wiel, van der Marleen; Henselmans, Paul W.J.; Leeuwen, van Johan L.; Dodou, Dimitra; Breedveld, Paul

    2016-01-01

    Background In nature, shooting mechanisms are used for a variety of purposes, including prey capture, defense, and reproduction. This review offers insight into the working principles of shooting mechanisms in fungi, plants, and animals in the light of the specific functional demands that these

  9. Insight into model mechanisms through automatic parameter fitting: a new methodological framework for model development.

    Science.gov (United States)

    Tøndel, Kristin; Niederer, Steven A; Land, Sander; Smith, Nicolas P

    2014-05-20

    Striking a balance between the degree of model complexity and parameter identifiability, while still producing biologically feasible simulations using modelling is a major challenge in computational biology. While these two elements of model development are closely coupled, parameter fitting from measured data and analysis of model mechanisms have traditionally been performed separately and sequentially. This process produces potential mismatches between model and data complexities that can compromise the ability of computational frameworks to reveal mechanistic insights or predict new behaviour. In this study we address this issue by presenting a generic framework for combined model parameterisation, comparison of model alternatives and analysis of model mechanisms. The presented methodology is based on a combination of multivariate metamodelling (statistical approximation of the input-output relationships of deterministic models) and a systematic zooming into biologically feasible regions of the parameter space by iterative generation of new experimental designs and look-up of simulations in the proximity of the measured data. The parameter fitting pipeline includes an implicit sensitivity analysis and analysis of parameter identifiability, making it suitable for testing hypotheses for model reduction. Using this approach, under-constrained model parameters, as well as the coupling between parameters within the model are identified. The methodology is demonstrated by refitting the parameters of a published model of cardiac cellular mechanics using a combination of measured data and synthetic data from an alternative model of the same system. Using this approach, reduced models with simplified expressions for the tropomyosin/crossbridge kinetics were found by identification of model components that can be omitted without affecting the fit to the parameterising data. Our analysis revealed that model parameters could be constrained to a standard deviation of on

  10. Conservation of a unique mechanism of immune evasion across the Lyssavirus genus.

    Science.gov (United States)

    Wiltzer, L; Larrous, F; Oksayan, S; Ito, N; Marsh, G A; Wang, L F; Blondel, D; Bourhy, H; Jans, D A; Moseley, G W

    2012-09-01

    The evasion of host innate immunity by Rabies virus, the prototype of the genus Lyssavirus, depends on a unique mechanism of selective targeting of interferon-activated STAT proteins by the viral phosphoprotein (P-protein). However, the immune evasion strategies of other lyssaviruses, including several lethal human pathogens, are unresolved. Here, we show that this mechanism is conserved between the most distantly related members of the genus, providing important insights into the pathogenesis and potential therapeutic targeting of lyssaviruses.

  11. Providing guidance for genomics-based cancer treatment decisions: insights from stakeholder engagement for post-prostatectomy radiation therapy.

    Science.gov (United States)

    Abe, James; Lobo, Jennifer M; Trifiletti, Daniel M; Showalter, Timothy N

    2017-08-24

    Despite the emergence of genomics-based risk prediction tools in oncology, there is not yet an established framework for communication of test results to cancer patients to support shared decision-making. We report findings from a stakeholder engagement program that aimed to develop a framework for using Markov models with individualized model inputs, including genomics-based estimates of cancer recurrence probability, to generate personalized decision aids for prostate cancer patients faced with radiation therapy treatment decisions after prostatectomy. We engaged a total of 22 stakeholders, including: prostate cancer patients, urological surgeons, radiation oncologists, genomic testing industry representatives, and biomedical informatics faculty. Slides were at each meeting to provide background information regarding the analytical framework. Participants were invited to provide feedback during the meeting, including revising the overall project aims. Stakeholder meeting content was reviewed and summarized by stakeholder group and by theme. The majority of stakeholder suggestions focused on aspects of decision aid design and formatting. Stakeholders were enthusiastic about the potential value of using decision analysis modeling with personalized model inputs for cancer recurrence risk, as well as competing risks from age and comorbidities, to generate a patient-centered tool to assist decision-making. Stakeholders did not view privacy considerations as a major barrier to the proposed decision aid program. A common theme was that decision aids should be portable across multiple platforms (electronic and paper), should allow for interaction by the user to adjust model inputs iteratively, and available to patients both before and during consult appointments. Emphasis was placed on the challenge of explaining the model's composite result of quality-adjusted life years. A range of stakeholders provided valuable insights regarding the design of a personalized decision

  12. Introductory quantum mechanics for semiconductor nanotechnology

    International Nuclear Information System (INIS)

    Kim, Dae Mann

    2010-01-01

    The result of the nano education project run by the Korean Nano Technology Initiative, this has been recommended for use as official textbook by the Korean Nanotechnology Research Society. The author is highly experienced in teaching both physics and engineering in academia and industry, and naturally adopts an interdisciplinary approach here. He is short on formulations but long on applications, allowing students to understand the essential workings of quantum mechanics without spending too much time covering the wide realms of physics. He takes care to provide sufficient technical background and motivation for students to pursue further studies of advanced quantum mechanics and stresses the importance of translating quantum insights into useful and tangible innovations and inventions. As such, this is the only work to cover semiconductor nanotechnology from the perspective of introductory quantum mechanics, with applications including mainstream semiconductor technologies as well as (nano)devices, ranging from photodetectors, laser diodes, and solar cells to transistors and Schottky contacts. Problems are also provided to test the reader's understanding and supplementary material available includes working presentation files, solutions and instructors manuals. (orig.)

  13. Psilocybin-induced spiritual experiences and insightfulness are associated with synchronization of neuronal oscillations.

    Science.gov (United States)

    Kometer, Michael; Pokorny, Thomas; Seifritz, Erich; Volleinweider, Franz X

    2015-10-01

    During the last years, considerable progress has been made toward understanding the neuronal basis of consciousness by using sophisticated behavioral tasks, brain-imaging techniques, and various psychoactive drugs. Nevertheless, the neuronal mechanisms underlying some of the most intriguing states of consciousness, including spiritual experiences, remain unknown. To elucidate state of consciousness-related neuronal mechanisms, human subjects were given psilocybin, a naturally occurring serotonergic agonist and hallucinogen that has been used for centuries to induce spiritual experiences in religious and medical rituals. In this double-blind, placebo-controlled study, 50 healthy human volunteers received a moderate dose of psilocybin, while high-density electroencephalogram (EEG) recordings were taken during eyes-open and eyes-closed resting states. The current source density and the lagged phase synchronization of neuronal oscillations across distributed brain regions were computed and correlated with psilocybin-induced altered states of consciousness. Psilocybin decreased the current source density of neuronal oscillations at 1.5-20 Hz within a neural network comprising the anterior and posterior cingulate cortices and the parahippocampal regions. Most intriguingly, the intensity levels of psilocybin-induced spiritual experience and insightfulness correlated with the lagged phase synchronization of delta oscillations (1.5-4 Hz) between the retrosplenial cortex, the parahippocampus, and the lateral orbitofrontal area. These results provide systematic evidence for the direct association of a specific spatiotemporal neuronal mechanism with spiritual experiences and enhanced insight into life and existence. The identified mechanism may constitute a pathway for modulating mental health, as spiritual experiences can promote sustained well-being and psychological resilience.

  14. Metabolomics: beyond biomarkers and towards mechanisms

    Science.gov (United States)

    Johnson, Caroline H.; Ivanisevic, Julijana; Siuzdak, Gary

    2017-01-01

    Metabolomics, which is the profiling of metabolites in biofluids, cells and tissues, is routinely applied as a tool for biomarker discovery. Owing to innovative developments in informatics and analytical technologies, and the integration of orthogonal biological approaches, it is now possible to expand metabolomic analyses to understand the systems-level effects of metabolites. Moreover, because of the inherent sensitivity of metabolomics, subtle alterations in biological pathways can be detected to provide insight into the mechanisms that underlie various physiological conditions and aberrant processes, including diseases. PMID:26979502

  15. Homeostasis as the Mechanism of Evolution

    Directory of Open Access Journals (Sweden)

    John S. Torday

    2015-09-01

    Full Text Available Homeostasis is conventionally thought of merely as a synchronic (same time servo-mechanism that maintains the status quo for organismal physiology. However, when seen from the perspective of developmental physiology, homeostasis is a robust, dynamic, intergenerational, diachronic (across-time mechanism for the maintenance, perpetuation and modification of physiologic structure and function. The integral relationships generated by cell-cell signaling for the mechanisms of embryogenesis, physiology and repair provide the needed insight to the scale-free universality of the homeostatic principle, offering a novel opportunity for a Systems approach to Biology. Starting with the inception of life itself, with the advent of reproduction during meiosis and mitosis, moving forward both ontogenetically and phylogenetically through the evolutionary steps involved in adaptation to an ever-changing environment, Biology and Evolution Theory need no longer default to teleology.

  16. Centromeric DNA characterization in the model grass Brachypodium distachyon provides insights on the evolution of the genus.

    Science.gov (United States)

    Li, Yinjia; Zuo, Sheng; Zhang, Zhiliang; Li, Zhanjie; Han, Jinlei; Chu, Zhaoqing; Hasterok, Robert; Wang, Kai

    2018-03-01

    Brachypodium distachyon is a well-established model monocot plant, and its small and compact genome has been used as an accurate reference for the much larger and often polyploid genomes of cereals such as Avena sativa (oats), Hordeum vulgare (barley) and Triticum aestivum (wheat). Centromeres are indispensable functional units of chromosomes and they play a core role in genome polyploidization events during evolution. As the Brachypodium genus contains about 20 species that differ significantly in terms of their basic chromosome numbers, genome size, ploidy levels and life strategies, studying their centromeres may provide important insight into the structure and evolution of the genome in this interesting and important genus. In this study, we isolated the centromeric DNA of the B. distachyon reference line Bd21 and characterized its composition via the chromatin immunoprecipitation of the nucleosomes that contain the centromere-specific histone CENH3. We revealed that the centromeres of Bd21 have the features of typical multicellular eukaryotic centromeres. Strikingly, these centromeres contain relatively few centromeric satellite DNAs; in particular, the centromere of chromosome 5 (Bd5) consists of only ~40 kb. Moreover, the centromeric retrotransposons in B. distachyon (CRBds) are evolutionarily young. These transposable elements are located both within and adjacent to the CENH3 binding domains, and have similar compositions. Moreover, based on the presence of CRBds in the centromeres, the species in this study can be grouped into two distinct lineages. This may provide new evidence regarding the phylogenetic relationships within the Brachypodium genus. © 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd.

  17. Insights from Human/Mouse genome comparisons

    Energy Technology Data Exchange (ETDEWEB)

    Pennacchio, Len A.

    2003-03-30

    Large-scale public genomic sequencing efforts have provided a wealth of vertebrate sequence data poised to provide insights into mammalian biology. These include deep genomic sequence coverage of human, mouse, rat, zebrafish, and two pufferfish (Fugu rubripes and Tetraodon nigroviridis) (Aparicio et al. 2002; Lander et al. 2001; Venter et al. 2001; Waterston et al. 2002). In addition, a high-priority has been placed on determining the genomic sequence of chimpanzee, dog, cow, frog, and chicken (Boguski 2002). While only recently available, whole genome sequence data have provided the unique opportunity to globally compare complete genome contents. Furthermore, the shared evolutionary ancestry of vertebrate species has allowed the development of comparative genomic approaches to identify ancient conserved sequences with functionality. Accordingly, this review focuses on the initial comparison of available mammalian genomes and describes various insights derived from such analysis.

  18. Simulations of CYP51A from Aspergillus fumigatus in a model bilayer provide insights into triazole drug resistance.

    Science.gov (United States)

    Nash, Anthony; Rhodes, Johanna

    2018-04-01

    Azole antifungal drugs target CYP51A in Aspergillus fumigatus by binding with the active site of the protein, blocking ergosterol biosynthesis. Resistance to azole antifungal drugs is now common, with a leucine to histidine amino acid substitution at position 98 the most frequent, predominantly conferring resistance to itraconazole, although cross-resistance has been reported in conjunction with other mutations. In this study, we create a homology model of CYP51A using a recently published crystal structure of the paralog protein CYP51B. The derived structures, wild type, and L98H mutant are positioned within a lipid membrane bilayer and subjected to molecular dynamics simulations in order improve the accuracy of both models. The structural analysis from our simulations suggests a decrease in active site surface from the formation of hydrogen bonds between the histidine substitution and neighboring polar side chains, potentially preventing the binding of azole drugs. This study yields a biologically relevant structure and set of dynamics of the A. fumigatus Lanosterol 14 alpha-demethylase enzyme and provides further insight into azole antifungal drug resistance.

  19. GABAergic Mechanisms in Schizophrenia: Linking Postmortem and In Vivo Studies

    Science.gov (United States)

    de Jonge, Jeroen C.; Vinkers, Christiaan H.; Hulshoff Pol, Hilleke E.; Marsman, Anouk

    2017-01-01

    Schizophrenia is a psychiatric disorder characterized by hallucinations, delusions, disorganized thinking, and impairments in cognitive functioning. Evidence from postmortem studies suggests that alterations in cortical γ-aminobutyric acid (GABAergic) neurons contribute to the clinical features of schizophrenia. In vivo measurement of brain GABA levels using magnetic resonance spectroscopy (MRS) offers the possibility to provide more insight into the relationship between problems in GABAergic neurotransmission and clinical symptoms of schizophrenia patients. This study reviews and links alterations in the GABA system in postmortem studies, animal models, and human studies in schizophrenia. Converging evidence implicates alterations in both presynaptic and postsynaptic components of GABAergic neurotransmission in schizophrenia, and GABA may thus play an important role in the pathophysiology of schizophrenia. MRS studies can provide direct insight into the GABAergic mechanisms underlying the development of schizophrenia as well as changes during its course. PMID:28848455

  20. GABAergic Mechanisms in Schizophrenia: Linking Postmortem and In Vivo Studies

    Directory of Open Access Journals (Sweden)

    Jeroen C. de Jonge

    2017-08-01

    Full Text Available Schizophrenia is a psychiatric disorder characterized by hallucinations, delusions, disorganized thinking, and impairments in cognitive functioning. Evidence from postmortem studies suggests that alterations in cortical γ-aminobutyric acid (GABAergic neurons contribute to the clinical features of schizophrenia. In vivo measurement of brain GABA levels using magnetic resonance spectroscopy (MRS offers the possibility to provide more insight into the relationship between problems in GABAergic neurotransmission and clinical symptoms of schizophrenia patients. This study reviews and links alterations in the GABA system in postmortem studies, animal models, and human studies in schizophrenia. Converging evidence implicates alterations in both presynaptic and postsynaptic components of GABAergic neurotransmission in schizophrenia, and GABA may thus play an important role in the pathophysiology of schizophrenia. MRS studies can provide direct insight into the GABAergic mechanisms underlying the development of schizophrenia as well as changes during its course.

  1. Phosphoproteomics by mass spectrometry: insights, implications, applications and limitations.

    Science.gov (United States)

    Mayya, Viveka; Han, David K

    2009-12-01

    Phosphorylation of proteins is a predominant, reversible post-translational modification. It is central to a wide variety of physiological responses and signaling mechanisms. Recent advances have allowed the global scope of phosphorylation to be addressed by mass spectrometry using phosphoproteomic approaches. In this perspective, we discuss four aspects of phosphoproteomics: the insights and implications from recently published phosphoproteomic studies and the applications and limitations of current phosphoproteomic strategies. Since approximately 50,000 known phosphorylation sites do not yet have any ascribed function, we present our perspectives on a major function of protein phosphorylation that may be of predictive value in hypothesis-based investigations. Finally, we discuss strategies to measure the stoichiometry of phosphorylation in a proteome-wide manner that is not provided by current phosphoproteomic approaches.

  2. Fermi-LAT Gamma-ray Bursts and Insight from Swift

    Science.gov (United States)

    Racusin, Judith L.

    2011-01-01

    A new revolution in GRB observation and theory has begun over the last 3 years since the launch of the Fermi gamma-ray space telescope. The new window into high energy gamma-rays opened by the Fermi-LAT is providing insight into prompt emission mechanisms and possibly also afterglow physics. The LAT detected GRBs appear to be a new unique subset of extremely energetic and bright bursts. In this talk I will discuss the context and recent discoveries from these LAT GRBs and the large database of broadband observations collected by Swift over the last 7 years and how through comparisons between the Swift, GBM, and LAT GRB samples, we can learn about the unique characteristics and relationships between each population.

  3. Transcriptome analysis of Crossostephium chinensis provides insight into the molecular basis of salinity stress responses.

    Directory of Open Access Journals (Sweden)

    Haiyan Yang

    Full Text Available Soil salinization is becoming a limitation to the utilization of ornamental plants worldwide. Crossostephium chinensis (Linnaeus Makino is often cultivated along the southeast coast of China for its desirable ornamental qualities and high salt tolerance. However, little is known about the genomic background of the salt tolerance mechanism in C. chinensis. In the present study, we used Illumina paired-end sequencing to systematically investigate leaf transcriptomes derived from C. chinensis seedlings grown under normal conditions and under salt stress. A total of 105,473,004 bp of reads were assembled into 163,046 unigenes, of which 65,839 (40.38% of the total and 54,342 (33.32% of the total were aligned in Swiss-Prot and Nr protein, respectively. A total of 11,331 (6.95% differentially expressed genes (DEGs were identified among three comparisons, including 2,239 in 'ST3 vs ST0', 5,880 in 'ST9 vs ST3' and 9,718 in 'ST9 vs ST0', and they were generally classified into 26 Gene Ontology terms and 58 Kyoto Encyclopedia of Genes and Genomes (KEGG pathway terms. Many genes encoding important transcription factors (e.g., WRKY, MYB, and AP2/EREBP and proteins involved in starch and sucrose metabolism, arginine and proline metabolism, plant hormone signal transduction, amino acid biosynthesis, plant-pathogen interactions and carbohydrate metabolism, among others, were substantially up-regulated under salt stress. These genes represent important candidates for studying the salt-response mechanism and molecular biology of C. chinensis and its relatives. Our findings provide a genomic sequence resource for functional genetic assignments in C. chinensis. These transcriptome datasets will help elucidate the molecular mechanisms responsible for salt-stress tolerance in C. chinensis and facilitate the breeding of new stress-tolerant cultivars for high-saline areas using this valuable genetic resource.

  4. Mechanically controllable break junctions for molecular electronics.

    Science.gov (United States)

    Xiang, Dong; Jeong, Hyunhak; Lee, Takhee; Mayer, Dirk

    2013-09-20

    A mechanically controllable break junction (MCBJ) represents a fundamental technique for the investigation of molecular electronic junctions, especially for the study of the electronic properties of single molecules. With unique advantages, the MCBJ technique has provided substantial insight into charge transport processes in molecules. In this review, the techniques for sample fabrication, operation and the various applications of MCBJs are introduced and the history, challenges and future of MCBJs are discussed. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Creutzfeldt-Jakob disease with mixed transcortical aphasia: insights into echolalia.

    Science.gov (United States)

    McPherson, S E; Kuratani, J D; Cummings, J L; Shih, J; Mischel, P S; Vinters, H V

    1994-01-01

    Aphasia is a common manifestation of Creutzfeldt-Jakob disease (CJD), and investigation of the linguistic disorders of CJD patients may provide insights into the neurobiological mechanisms of language and aphasia. We report an autopsy-confirmed case of CJD in which the presenting symptom was change in language abilities. The patient ultimately evidenced mixed transcortical aphasia (MTA) with echolalia. Disruption of frontal-subcortical circuits with environmental dependency accounts for the symptoms in MTA, including intact repetition and echolalia. Observation in this patient and a review of the literature suggest that frontal-subcortical circuit dysfunction may contribute to the syndrome of echolalia. This hypothesis offers an alternative explanation to "isolation" of the speech area as the cause of MTA.

  6. Conservation of a Unique Mechanism of Immune Evasion across the Lyssavirus Genus

    Science.gov (United States)

    Wiltzer, L.; Larrous, F.; Oksayan, S.; Ito, N.; Marsh, G. A.; Wang, L. F.; Blondel, D.; Bourhy, H.; Jans, D. A.

    2012-01-01

    The evasion of host innate immunity by Rabies virus, the prototype of the genus Lyssavirus, depends on a unique mechanism of selective targeting of interferon-activated STAT proteins by the viral phosphoprotein (P-protein). However, the immune evasion strategies of other lyssaviruses, including several lethal human pathogens, are unresolved. Here, we show that this mechanism is conserved between the most distantly related members of the genus, providing important insights into the pathogenesis and potential therapeutic targeting of lyssaviruses. PMID:22740405

  7. Archiving InSight Lander Science Data Using PDS4 Standards

    Science.gov (United States)

    Stein, T.; Guinness, E. A.; Slavney, S.

    2017-12-01

    The InSight Mars Lander is scheduled for launch in 2018, and science data from the mission will be archived in the NASA Planetary Data System (PDS) using the new PDS4 standards. InSight is a geophysical lander with a science payload that includes a seismometer, a probe to measure subsurface temperatures and heat flow, a suite of meteorology instruments, a magnetometer, an experiment using radio tracking, and a robotic arm that will provide soil physical property information based on interactions with the surface. InSight is not the first science mission to archive its data using PDS4. However, PDS4 archives do not currently contain examples of the kinds of data that several of the InSight instruments will produce. Whereas the existing common PDS4 standards were sufficient for most of archiving requirements of InSight, the data generated by a few instruments required development of several extensions to the PDS4 information model. For example, the seismometer will deliver a version of its data in SEED format, which is standard for the terrestrial seismology community. This format required the design of a new product type in the PDS4 information model. A local data dictionary has also been developed for InSight that contains attributes that are not part of the common PDS4 dictionary. The local dictionary provides metadata relevant to all InSight data sets, and attributes specific to several of the instruments. Additional classes and attributes were designed for the existing PDS4 geometry dictionary that will capture metadata for the lander position and orientation, along with camera models for stereo image processing. Much of the InSight archive planning and design work has been done by a Data Archiving Working Group (DAWG), which has members from the InSight project and the PDS. The group coordinates archive design, schedules and peer review of the archive documentation and test products. The InSight DAWG archiving effort for PDS is being led by the PDS Geosciences

  8. Why increased nuchal translucency is associated with congenital heart disease: a systematic review on genetic mechanisms

    NARCIS (Netherlands)

    Burger, N.B.; Bekker, M.N.; Groot, C.J. de; Christoffels, V.M.; Haak, M.C.

    2015-01-01

    This overview provides insight into the underlying genetic mechanism of the high incidence of cardiac defects in fetuses with increased nuchal translucency (NT). Nuchal edema, the morphological equivalent of increased NT, is likely to result from abnormal lymphatic development and is strongly

  9. Quantitative Proteomics Analysis Reveals Novel Insights into Mechanisms of Action of Long Noncoding RNA Hox Transcript Antisense Intergenic RNA (HOTAIR) in HeLa Cells*

    Science.gov (United States)

    Zheng, Peng; Xiong, Qian; Wu, Ying; Chen, Ying; Chen, Zhuo; Fleming, Joy; Gao, Ding; Bi, Lijun; Ge, Feng

    2015-01-01

    Long noncoding RNAs (lncRNAs), which have emerged in recent years as a new and crucial layer of gene regulators, regulate various biological processes such as carcinogenesis and metastasis. HOTAIR (Hox transcript antisense intergenic RNA), a lncRNA overexpressed in most human cancers, has been shown to be an oncogenic lncRNA. Here, we explored the role of HOTAIR in HeLa cells and searched for proteins regulated by HOTAIR. To understand the mechanism of action of HOTAIR from a systems perspective, we employed a quantitative proteomic strategy to systematically identify potential targets of HOTAIR. The expression of 170 proteins was significantly dys-regulated after inhibition of HOTAIR, implying that they could be potential targets of HOTAIR. Analysis of this data at the systems level revealed major changes in proteins involved in diverse cellular components, including the cytoskeleton and the respiratory chain. Further functional studies on vimentin (VIM), a key protein involved in the cytoskeleton, revealed that HOTAIR exerts its effects on migration and invasion of HeLa cells, at least in part, through the regulation of VIM expression. Inhibition of HOTAIR leads to mitochondrial dysfunction and ultrastructural alterations, suggesting a novel role of HOTAIR in maintaining mitochondrial function in cancer cells. Our results provide novel insights into the mechanisms underlying the function of HOTAIR in cancer cells. We expect that the methods used in this study will become an integral part of functional studies of lncRNAs. PMID:25762744

  10. Neurocognitive mechanisms of the flow state.

    Science.gov (United States)

    Harris, David J; Vine, Samuel J; Wilson, Mark R

    2017-01-01

    While the experience of flow is often described in attentional terms-focused concentration or task absorption-specific cognitive mechanisms have received limited interest. We propose that an attentional explanation provides the best way to advance theoretical models and produce practical applications, as well as providing potential solutions to core issues such as how an objectively difficult task can be subjectively effortless. Recent research has begun to utilize brain-imaging techniques to investigate neurocognitive changes during flow, which enables attentional mechanisms to be understood in greater detail. Some tensions within flow research are discussed; including the dissociation between psychophysiological and experiential measures, and the equivocal neuroimaging findings supporting prominent accounts of hypofrontality. While flow has received only preliminary investigation from a neuroscientific perspective, findings already provide important insights into the crucial role played by higher-order attentional networks, and clear indications of reduced activity in brain regions linked to self-referential processing. The manner in which these processes may benefit sporting performance are discussed. © 2017 Elsevier B.V. All rights reserved.

  11. Mechanics IUTAM USNC/TAM a history of people, events, and communities

    CERN Document Server

    Herakovich, Carl T

    2016-01-01

    This book provides a detailed history of the United States National Committee on Theoretical and Applied Mechanics (USNC/TAM) of the US National Academies, the relationship between the USNC/TAM and IUTAM, and a review of the many mechanicians who developed the field over time. It emphasizes the birth and growth of USNC/TAM, the birth and growth of the larger International Union of Theoretical and Applied Mechanics (IUTAM), and explores the work of mechanics from Aristotle to the present. Written by the former Secretary of USNC/TAM, Dr. Carl T. Herakovich of the University of Virginia, the book profiles luminaries of mechanics including Galileo, Newton, Bernoulli, Euler, Cauchy, Prandtl, Einstein, von Kármán, Timoshenko, and in so doing provides insight into centuries of scientific and technologic advance. Profiles the applied mathematicians and engineers who developed the field of mechanics in the context of the establishment of the USNC/TAM and the IUTAM Details the relationship between USNC/TAM and IUTAM ...

  12. Differential Modulation of Performance in Insight and Divergent Thinking Tasks with tDCS

    Science.gov (United States)

    Goel, Vinod; Eimontaite, Iveta; Goel, Amit; Schindler, Igor

    2015-01-01

    While both insight and divergent thinking tasks are used to study creativity, there are reasons to believe that the two may call upon very different mechanisms. To explore this hypothesis, we administered a verbal insight task (riddles) and a divergent thinking task (verbal fluency) to 16 native English speakers and 16 non-native English speakers…

  13. Anthelmintic metabolism in parasitic helminths: proteomic insights.

    Science.gov (United States)

    Brophy, Peter M; MacKintosh, Neil; Morphew, Russell M

    2012-08-01

    Anthelmintics are the cornerstone of parasitic helminth control. Surprisingly, understanding of the biochemical pathways used by parasitic helminths to detoxify anthelmintics is fragmented, despite the increasing global threat of anthelmintic resistance within the ruminant and equine industries. Reductionist biochemistry has likely over-estimated the enzymatic role of glutathione transferases in anthelmintic metabolism and neglected the potential role of the cytochrome P-450 superfamily (CYPs). Proteomic technologies offers the opportunity to support genomics, reverse genetics and pharmacokinetics, and provide an integrated insight into both the cellular mechanisms underpinning response to anthelmintics and also the identification of biomarker panels for monitoring the development of anthelmintic resistance. To date, there have been limited attempts to include proteomics in anthelmintic metabolism studies. Optimisations of membrane, post-translational modification and interaction proteomic technologies in helminths are needed to especially study Phase I CYPs and Phase III ABC transporter pumps for anthelmintics and their metabolites.

  14. Toughening Mechanisms in Nanolayered MAX Phase Ceramics—A Review

    Directory of Open Access Journals (Sweden)

    Xinhua Chen

    2017-03-01

    Full Text Available Advanced engineering and functional ceramics are sensitive to damage cracks, which delay the wide applications of these materials in various fields. Ceramic composites with enhanced fracture toughness may trigger a paradigm for design and application of the brittle components. This paper reviews the toughening mechanisms for the nanolayered MAX phase ceramics. The main toughening mechanisms for these ternary compounds were controlled by particle toughening, phase-transformation toughening and fiber-reinforced toughening, as well as texture toughening. Based on the various toughening mechanisms in MAX phase, models of SiC particles and fibers toughening Ti3SiC2 are established to predict and explain the toughening mechanisms. The modeling work provides insights and guidance to fabricate MAX phase-related composites with optimized microstructures in order to achieve the desired mechanical properties required for harsh application environments.

  15. Experimental and Theoretical Insights into the Inhibition Mechanism of Prion Fibrillation by Resveratrol and its Derivatives.

    Science.gov (United States)

    Li, Lanlan; Zhu, Yongchang; Zhou, Shuangyan; An, Xiaoli; Zhang, Yan; Bai, Qifeng; He, Yong-Xing; Liu, Huanxiang; Yao, Xiaojun

    2017-12-20

    Resveratrol and its derivatives have been shown to display beneficial effects to neurodegenerative diseases. However, the molecular mechanism of resveratrol and its derivatives on prion conformational conversion is poorly understood. In this work, the interaction mechanism between prion and resveratrol as well as its derivatives was investigated using steady-state fluorescence quenching, Thioflavin T binding assay, Western blotting, and molecular dynamics simulation. Protein fluorescence quenching method and Thioflavin T assay revealed that resveratrol and its derivatives could interact with prion and interrupt prion fibril formation. Molecular dynamics simulation results indicated that resveratrol can stabilize the PrP 127-147 peptide mainly through π-π stacking interactions between resveratrol and Tyr128. The hydrogen bonds interactions between resveratrol and the PrP 127-147 peptide could further reduce the flexibility and the propensity to aggregate. The results of this study not only can provide useful information about the interaction mechanism between resveratrol and prion, but also can provide useful clues for further design of new inhibitors inhibiting prion aggregation.

  16. Coupling of MIC-3 overexpression with the chromosomes 11 and 14 root-knot nematode (RKN) (Meloidogyne incognita) resistance QTLs provides insights into the regulation of the RKN resistance response in Upland cotton (Gossypium hirsutum).

    Science.gov (United States)

    Wubben, Martin J; Callahan, Franklin E; Jenkins, Johnie N; Deng, Dewayne D

    2016-09-01

    Genetic analysis of MIC-3 transgene with RKN resistance QTLs provides insight into the resistance regulatory mechanism and provides a framework for testing additional hypotheses. Resistance to root-knot nematode (RKN) (Meloidogyne incognita) in Upland cotton (Gossypium hirsutum) is mediated by two major quantitative trait loci (QTL) located on chromosomes 11 and 14. The MIC-3 (Meloidogyne Induced Cotton3) protein accumulates specifically within the immature galls of RKN-resistant plants that possess these QTLs. Recently, we showed that MIC-3 overexpression in an RKN-susceptible cotton genotype suppressed RKN egg production but not RKN-induced root galling. In this study, the MIC-3 overexpression construct T-DNA in the single-copy transgenic line '14-7-1' was converted into a codominant molecular marker that allowed the marker assisted selection of F2:3 cotton lines, derived from a cross between 14-7-1 and M-240 RNR, having all possible combinations of the chromosomes 11 and 14 QTLs with and without the MIC-3 overexpression construct. Root-knot nematode reproduction (eggs g(-1) root) and severity of RKN-induced root galling were assessed in these lines. We discovered that the addition of MIC-3 overexpression suppressed RKN reproduction in lines lacking both resistance QTLs and in lines having only the chromosome 14 QTL, suggesting an additive effect of the MIC-3 construct with this QTL. In contrast, MIC-3 overexpression did not improve resistance in lines having the single chromosome 11 QTL or in lines having both resistance QTLs, suggesting an epistatic interaction between the chromosome 11 QTL and the MIC-3 construct. Overexpression of MIC-3 did not affect the severity of RKN-induced root galling regardless of QTL genotype. These data provide new insights into the relative order of action of the chromosomes 11 and 14 QTLs and their potential roles in regulating MIC-3 expression as part of the RKN resistance response.

  17. Quantitative Hydraulic Models Of Early Land Plants Provide Insight Into Middle Paleozoic Terrestrial Paleoenvironmental Conditions

    Science.gov (United States)

    Wilson, J. P.; Fischer, W. W.

    2010-12-01

    Fossil plants provide useful proxies of Earth’s climate because plants are closely connected, through physiology and morphology, to the environments in which they lived. Recent advances in quantitative hydraulic models of plant water transport provide new insight into the history of climate by allowing fossils to speak directly to environmental conditions based on preserved internal anatomy. We report results of a quantitative hydraulic model applied to one of the earliest terrestrial plants preserved in three dimensions, the ~396 million-year-old vascular plant Asteroxylon mackei. This model combines equations describing the rate of fluid flow through plant tissues with detailed observations of plant anatomy; this allows quantitative estimates of two critical aspects of plant function. First and foremost, results from these models quantify the supply of water to evaporative surfaces; second, results describe the ability of plant vascular systems to resist tensile damage from extreme environmental events, such as drought or frost. This approach permits quantitative comparisons of functional aspects of Asteroxylon with other extinct and extant plants, informs the quality of plant-based environmental proxies, and provides concrete data that can be input into climate models. Results indicate that despite their small size, water transport cells in Asteroxylon could supply a large volume of water to the plant's leaves--even greater than cells from some later-evolved seed plants. The smallest Asteroxylon tracheids have conductivities exceeding 0.015 m^2 / MPa * s, whereas Paleozoic conifer tracheids do not reach this threshold until they are three times wider. However, this increase in conductivity came at the cost of little to no adaptations for transport safety, placing the plant’s vegetative organs in jeopardy during drought events. Analysis of the thickness-to-span ratio of Asteroxylon’s tracheids suggests that environmental conditions of reduced relative

  18. High-frequency DOC and nitrate measurements provide new insights into their export and their relationships to rainfall-runoff processes

    Science.gov (United States)

    Schwab, Michael; Klaus, Julian; Pfister, Laurent; Weiler, Markus

    2015-04-01

    Over the past decades, stream sampling protocols for environmental tracers were often limited by logistical and technological constraints. Long-term sampling programs would typically rely on weekly sampling campaigns, while high-frequency sampling would remain restricted to a few days or hours at best. We stipulate that the currently predominant sampling protocols are too coarse to capture and understand the full amplitude of rainfall-runoff processes and its relation to water quality fluctuations. Weekly sampling protocols are not suited to get insights into the hydrological system during high flow conditions. Likewise, high frequency measurements of a few isolated events do not allow grasping inter-event variability in contributions and processes. Our working hypothesis is based on the potential of a new generation of field-deployable instruments for measuring environmental tracers at high temporal frequencies over an extended period. With this new generation of instruments we expect to gain new insights into rainfall-runoff dynamics, both at intra- and inter-event scales. Here, we present the results of one year of DOC and nitrate measurements with the field deployable UV-Vis spectrometer spectro::lyser (scan Messtechnik GmbH). The instrument measures the absorption spectrum from 220 to 720 nm in situ and at high frequencies and derives DOC and nitrate concentrations. The measurements were carried out at 15 minutes intervals in the Weierbach catchment (0.47 km2) in Luxemburg. This fully forested catchment is characterized by cambisol soils and fractured schist as underlying bedrock. The time series of DOC and nitrate give insights into the high frequency dynamics of stream water. Peaks in DOC concentrations are closely linked to discharge peaks that occur during or right after a rainfall event. Those first discharge peaks can be linked to fast near surface runoff processes and are responsible for a remarkable amount of DOC export. A special characterisation of

  19. Size-dependent mechanical properties of 2D random nanofibre networks

    International Nuclear Information System (INIS)

    Lu, Zixing; Zhu, Man; Liu, Qiang

    2014-01-01

    The mechanical properties of nanofibre networks (NFNs) are size dependent with respect to different fibre diameters. In this paper, a continuum model is developed to reveal the size-dependent mechanical properties of 2D random NFNs. Since such size-dependent behaviours are attributed to different micromechanical mechanisms, the surface effects and the strain gradient (SG) effects are, respectively, introduced into the mechanical analysis of NFNs. Meanwhile, a modified fibre network model is proposed, in which the axial, bending and shearing deformations are incorporated. The closed-form expressions of effective modulus and Poisson's ratio are obtained for NFNs. Different from the results predicted by conventional fibre network model, the present model predicts the size-dependent mechanical properties of NFNs. It is found that both surface effects and SG effects have significant influences on the effective mechanical properties. Moreover, the present results show that the shearing deformation of fibre segment is also crucial to precisely evaluate the effective mechanical properties of NFNs. This work mainly aims to provide an insight into the micromechanical mechanisms of NFNs. Besides, this work is also expected to provide a more accurate theoretical model for 2D fibre networks. (paper)

  20. Building block method: a bottom-up modular synthesis methodology for distributed compliant mechanisms

    Directory of Open Access Journals (Sweden)

    G. Krishnan

    2012-03-01

    Full Text Available Synthesizing topologies of compliant mechanisms are based on rigid-link kinematic designs or completely automated optimization techniques. These designs yield mechanisms that match the kinematic specifications as a whole, but seldom yield user insight on how each constituent member contributes towards the overall mechanism performance. This paper reviews recent developments in building block based design of compliant mechanisms. A key aspect of such a methodology is formulating a representation of compliance at a (i single unique point of interest in terms of geometric quantities such as ellipses and vectors, and (ii relative compliance between distinct input(s and output(s in terms of load flow. This geometric representation provides a direct mapping between the mechanism geometry and their behavior, and is used to characterize simple deformable members that form a library of building blocks. The design space spanned by the building block library guides the decomposition of a given problem specification into tractable sub-problems that can be each solved from an entry in the library. The effectiveness of this geometric representation aids user insight in design, and enables discovery of trends and guidelines to obtain practical conceptual designs.

  1. New Insights about Enzyme Evolution from Large Scale Studies of Sequence and Structure Relationships*

    Science.gov (United States)

    Brown, Shoshana D.; Babbitt, Patricia C.

    2014-01-01

    Understanding how enzymes have evolved offers clues about their structure-function relationships and mechanisms. Here, we describe evolution of functionally diverse enzyme superfamilies, each representing a large set of sequences that evolved from a common ancestor and that retain conserved features of their structures and active sites. Using several examples, we describe the different structural strategies nature has used to evolve new reaction and substrate specificities in each unique superfamily. The results provide insight about enzyme evolution that is not easily obtained from studies of one or only a few enzymes. PMID:25210038

  2. Gene expression correlated with delay in shell formation in larval Pacific oysters (Crassostrea gigas) exposed to experimental ocean acidification provides insights into shell formation mechanisms.

    Science.gov (United States)

    De Wit, Pierre; Durland, Evan; Ventura, Alexander; Langdon, Chris J

    2018-02-22

    Despite recent work to characterize gene expression changes associated with larval development in oysters, the mechanism by which the larval shell is first formed is still largely unknown. In Crassostrea gigas, this shell forms within the first 24 h post fertilization, and it has been demonstrated that changes in water chemistry can cause delays in shell formation, shell deformations and higher mortality rates. In this study, we use the delay in shell formation associated with exposure to CO 2 -acidified seawater to identify genes correlated with initial shell deposition. By fitting linear models to gene expression data in ambient and low aragonite saturation treatments, we are able to isolate 37 annotated genes correlated with initial larval shell formation, which can be categorized into 1) ion transporters, 2) shell matrix proteins and 3) protease inhibitors. Clustering of the gene expression data into co-expression networks further supports the result of the linear models, and also implies an important role of dynein motor proteins as transporters of cellular components during the initial shell formation process. Using an RNA-Seq approach with high temporal resolution allows us to identify a conceptual model for how oyster larval calcification is initiated. This work provides a foundation for further studies on how genetic variation in these identified genes could affect fitness of oyster populations subjected to future environmental changes, such as ocean acidification.

  3. Facilitate insight by non-invasive brain stimulation.

    Directory of Open Access Journals (Sweden)

    Richard P Chi

    Full Text Available Our experiences can blind us. Once we have learned to solve problems by one method, we often have difficulties in generating solutions involving a different kind of insight. Yet there is evidence that people with brain lesions are sometimes more resistant to this so-called mental set effect. This inspired us to investigate whether the mental set effect can be reduced by non-invasive brain stimulation. 60 healthy right-handed participants were asked to take an insight problem solving task while receiving transcranial direct current stimulation (tDCS to the anterior temporal lobes (ATL. Only 20% of participants solved an insight problem with sham stimulation (control, whereas 3 times as many participants did so (p = 0.011 with cathodal stimulation (decreased excitability of the left ATL together with anodal stimulation (increased excitability of the right ATL. We found hemispheric differences in that a stimulation montage involving the opposite polarities did not facilitate performance. Our findings are consistent with the theory that inhibition to the left ATL can lead to a cognitive style that is less influenced by mental templates and that the right ATL may be associated with insight or novel meaning. Further studies including neurophysiological imaging are needed to elucidate the specific mechanisms leading to the enhancement.

  4. Unraveling interrelationships among psychopathology symptoms, cognitive domains and insight dimensions in chronic schizophrenia.

    Science.gov (United States)

    Xavier, Rose Mary; Pan, Wei; Dungan, Jennifer R; Keefe, Richard S E; Vorderstrasse, Allison

    2018-03-01

    Insight in schizophrenia is long known to have a complex relationship with psychopathology symptoms and cognition. However, very few studies have examined models that explain these interrelationships. In a large sample derived from the NIMH Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) schizophrenia trial (N=1391), we interrogated these interrelationships for potential causal pathways using structural equation modeling. Using the NIMH consensus model, latent variables were constructed for psychopathology symptom dimensions, including positive, negative, disorganized, excited and depressed from the Positive and Negative Syndrome Scale (PANSS) items. Neurocognitive variables were created from five predefined domains of working memory, verbal memory, reasoning, vigilance and processing speed. Illness insight and treatment insight were tested using latent variables constructed from the Illness and Treatment Attitude Questionnaire (ITAQ). Disorganized symptoms had the strongest effect on insight. Illness insight mediated the relationship of positive, depressed, and disorganized symptoms with treatment insight. Neurocognition mediated the relationship between disorganized and treatment insight and depressed symptoms and treatment insight. There was no effect of negative symptoms on either illness insight or treatment insight. Taken together, our results indicate overlapping and unique relational paths for illness and treatment insight dimensions, which could suggest differences in causal mechanisms and potential interventions to improve insight. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Distinct pattern of cerebral blood flow alterations specific to schizophrenics experiencing auditory verbal hallucinations with and without insight: a pilot study.

    Science.gov (United States)

    Jing, Rixing; Huang, Jiangjie; Jiang, Deguo; Lin, Xiaodong; Ma, Xiaolei; Tian, Hongjun; Li, Jie; Zhuo, Chuanjun

    2018-01-23

    Schizophrenia is associated with widespread and complex cerebral blood flow (CBF) disturbance. Auditory verbal hallucinations (AVH) and insight are the core symptoms of schizophrenia. However, to the best of our knowledge, very few studies have assessed the CBF characteristics of the AVH suffered by schizophrenic patients with and without insight. Based on our previous findings, Using a 3D pseudo-continuous ASL (pcASL) technique, we investigated the differences in AVH-related CBF alterations in schizophrenia patients with and without insight. We used statistical parametric mapping (SPM8) and statistical non-parametric mapping (SnPM13) to perform the fMRI analysis. We found that AVH-schizophrenia patients without insight showed an increased CBF in the left temporal pole and a decreased CBF in the right middle frontal gyrus when compared to AVH-schizophrenia patients with insight. Our novel findings suggest that AVH-schizophrenia patients without insight possess a more complex CBF disturbance. Simultaneously, our findings also incline to support the idea that the CBF aberrant in some specific brain regions may be the common neural basis of insight and AVH. Our findings support the mostly current hypotheses regarding AVH to some extent. Although our findings come from a small sample, it provide the evidence that indicate us to conduct a larger study to thoroughly explore the mechanisms of schizophrenia, especially the core symptoms of AVHs and insight.

  6. Genetic and biochemical evidences reveal novel insights into the ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Biosciences; Volume 41; Issue 4. Genetic and biochemical evidences reveal novel insights into the mechanism underlying Saccharomyces cerevisiae Sae2-mediated abrogation of DNA replication stress. INDRAJEET GHODKE K MUNIYAPPA. ARTICLE Volume 41 Issue 4 December 2016 pp ...

  7. Transcending the biomarker mindset: deciphering disease mechanisms at the single cell level.

    Science.gov (United States)

    Danna, Erika A; Nolan, Garry P

    2006-02-01

    The application of proteomics to disease research promises to enhance the understanding and treatment of many human maladies through the identification of molecular profiles associated with each disease. However, although much is made of the utility of molecular signatures as markers of disease state, insufficient emphasis is often placed on the simultaneous need for biological mechanism inquiry. Focused and detailed analyses of disease-associated signaling networks have the potential to be more mechanistically informative than large-scale proteomic profiling approaches, providing insight into the cellular processes involved in pathogenesis, disease progression and therapeutic resistance; while still providing diagnostic or clinical management direction. Phospho-specific flow cytometry provides a method for the analysis of pathological signaling networks, enabling the investigation of disease mechanisms at the single-cell level.

  8. Peer influence: neural mechanisms underlying in-group conformity.

    Science.gov (United States)

    Stallen, Mirre; Smidts, Ale; Sanfey, Alan G

    2013-01-01

    People often conform to the behavior of others with whom they identify. However, it is unclear what fundamental mechanisms underlie this type of conformity. Here, we investigate the processes mediating in-group conformity by using functional magnetic resonance imaging (fMRI). Participants completed a perceptual decision-making task while undergoing fMRI, during which they were exposed to the judgments of both in-group and out-group members. Our data suggest that conformity to the in-group is mediated by both positive affect as well as the cognitive capacity of perspective taking. Examining the processes that drive in-group conformity by utilizing a basic decision-making paradigm combined with neuroimaging methods provides important insights into the potential mechanisms of conformity. These results may provide an integral step in developing more effective campaigns using group conformity as a tool for behavioral change.

  9. Effects of laser shock processing on mechanical properties and micro-structure of ANSI 304 austenitic stainless steel

    International Nuclear Information System (INIS)

    Luo, K.Y.; Lu, J.Z.; Zhang, Y.K.; Zhou, J.Z.; Zhang, L.F.; Dai, F.Z.; Zhang, L.; Zhong, J.W.; Cui, C.Y.

    2011-01-01

    Highlights: → Effects of LSP on mechanical properties of stainless steel ANSI 304 are evaluated. → LSP can clearly enhance the values of mechanical properties in the shocked region. → Martensite transformation does not take place in the surface layer subjected to LSP. → Enhancement mechanisms of LSP on mechanical property of stainless steel are revealed. → The results can provide some insights on the surface modification of stainless steel. - Abstract: The aim of this article is to address the effects of a single laser shock processing (LSP) impact on the nano-hardness, elastic modulus, residual stress and phase transformation of ANSI 304 austenitic stainless steel. Residual stress distribution of the LSP-shocked region is determined by X-ray diffraction (XRD) with sin 2 ψ method, and the micro-structural features in the near-surface layer are characterized by using cross-sectional optical microscopy (OM), X-ray diffraction (XRD) and transmission electron microscopy (TEM). By comparing with the untreated samples, LSP can clearly improve nano-hardness, elastic modulus, and residual stress in the LSP-shocked region. The underlying enhancement mechanisms of LSP on nano-hardness, elastic modulus and residual stress of stainless steel ANSI 304 are also revealed. These studies may provide some important insights into surface modification for metal materials.

  10. Novel treatment strategies for chronic kidney disease: insights from the animal kingdom.

    Science.gov (United States)

    Stenvinkel, Peter; Painer, Johanna; Kuro-O, Makoto; Lanaspa, Miguel; Arnold, Walter; Ruf, Thomas; Shiels, Paul G; Johnson, Richard J

    2018-04-01

    Many of the >2 million animal species that inhabit Earth have developed survival mechanisms that aid in the prevention of obesity, kidney disease, starvation, dehydration and vascular ageing; however, some animals remain susceptible to these complications. Domestic and captive wild felids, for example, show susceptibility to chronic kidney disease (CKD), potentially linked to the high protein intake of these animals. By contrast, naked mole rats are a model of longevity and are protected from extreme environmental conditions through mechanisms that provide resistance to oxidative stress. Biomimetic studies suggest that the transcription factor nuclear factor erythroid 2-related factor 2 (NRF2) offers protection in extreme environmental conditions and promotes longevity in the animal kingdom. Similarly, during months of fasting, immobilization and anuria, hibernating bears are protected from muscle wasting, azotaemia, thrombotic complications, organ damage and osteoporosis - features that are often associated with CKD. Improved understanding of the susceptibility and protective mechanisms of these animals and others could provide insights into novel strategies to prevent and treat several human diseases, such as CKD and ageing-associated complications. An integrated collaboration between nephrologists and experts from other fields, such as veterinarians, zoologists, biologists, anthropologists and ecologists, could introduce a novel approach for improving human health and help nephrologists to find novel treatment strategies for CKD.

  11. Modification of C Terminus Provides New Insights into the Mechanism of alpha-Synuclein Aggregation

    Czech Academy of Sciences Publication Activity Database

    Afitska, Kseniia; Fučíková, A.; Shvadchak, Volodymyr V.; Yushchenko, Dmytro A.

    2017-01-01

    Roč. 113, č. 10 (2017), s. 2182-2191 ISSN 0006-3495 Institutional support: RVO:61388963 Keywords : alpha-synuclein * aggregation * kinetics Subject RIV: BO - Biophysics OBOR OECD: Biophysics Impact factor: 3.656, year: 2016

  12. Comparative MD analysis of the stability of transthyretin providing insight into the fibrillation mechanism

    DEFF Research Database (Denmark)

    Sørensen, Jesper; Hamelberg, Donald; Schiøtt, Birgit

    2007-01-01

    Proteins can misfold and aggregate, which is believed to be the cause of a variety of diseases, affecting very diverse organs in the body. Many questions about the nature of aggregation and the proteins that are involved in these events are still left unanswered. One of the proteins that is known...

  13. Post-donation telephonic interview of blood donors providing an insight into delayed adverse reactions: First attempt in India.

    Science.gov (United States)

    Tiwari, Aseem K; Aggarwal, Geet; Dara, Ravi C; Arora, Dinesh; Srivastava, Khushboo; Raina, Vimarsh

    2017-04-01

    Blood donor experiences both immediate adverse reactions (IAR) and delayed adverse reactions (DAR). With limited published data available on the incidence of DAR, a study was conducted to estimate incidence and profile of DAR through telephonic interview. Study was conducted over a 45-day period for consecutive volunteer whole blood donations at tertiary care hospital. Donors were divided into first-time, repeat and regular and were monitored for IAR. They were given written copy of post-donation advice. Donors were contacted telephonically three weeks post-donation and enquired about general wellbeing and specific DAR in accordance with a standard n international (International Society of Blood Transfusion) standard format. Donors participated in the study of which 1.6% donors experienced an IAR. Much larger number reported DAR (10.3% vs.1.6% pdonors (age donors (>50 years). First time (12.3%) and repeat donors (13.5%) had similar frequency of DAR but were lower among regular donors (6.7%). DARs are more common than IAR and are of different profile. Post-donation interview has provided an insight into donor experiences and can be used as a valuable tool in donor hemovigilance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Stents: Biomechanics, Biomaterials, and Insights from Computational Modeling.

    Science.gov (United States)

    Karanasiou, Georgia S; Papafaklis, Michail I; Conway, Claire; Michalis, Lampros K; Tzafriri, Rami; Edelman, Elazer R; Fotiadis, Dimitrios I

    2017-04-01

    Coronary stents have revolutionized the treatment of coronary artery disease. Improvement in clinical outcomes requires detailed evaluation of the performance of stent biomechanics and the effectiveness as well as safety of biomaterials aiming at optimization of endovascular devices. Stents need to harmonize the hemodynamic environment and promote beneficial vessel healing processes with decreased thrombogenicity. Stent design variables and expansion properties are critical for vessel scaffolding. Drug-elution from stents, can help inhibit in-stent restenosis, but adds further complexity as drug release kinetics and coating formulations can dominate tissue responses. Biodegradable and bioabsorbable stents go one step further providing complete absorption over time governed by corrosion and erosion mechanisms. The advances in computing power and computational methods have enabled the application of numerical simulations and the in silico evaluation of the performance of stent devices made up of complex alloys and bioerodible materials in a range of dimensions and designs and with the capacity to retain and elute bioactive agents. This review presents the current knowledge on stent biomechanics, stent fatigue as well as drug release and mechanisms governing biodegradability focusing on the insights from computational modeling approaches.

  15. Cell-Nonautonomous Mechanisms Underlying Cellular and Organismal Aging.

    Science.gov (United States)

    Medkour, Younes; Svistkova, Veronika; Titorenko, Vladimir I

    2016-01-01

    Cell-autonomous mechanisms underlying cellular and organismal aging in evolutionarily distant eukaryotes have been established; these mechanisms regulate longevity-defining processes within a single eukaryotic cell. Recent findings have provided valuable insight into cell-nonautonomous mechanisms modulating cellular and organismal aging in eukaryotes across phyla; these mechanisms involve a transmission of various longevity factors between different cells, tissues, and organisms. Herein, we review such cell-nonautonomous mechanisms of aging in eukaryotes. We discuss the following: (1) how low molecular weight transmissible longevity factors modulate aging and define longevity of cells in yeast populations cultured in liquid media or on solid surfaces, (2) how communications between proteostasis stress networks operating in neurons and nonneuronal somatic tissues define longevity of the nematode Caenorhabditis elegans by modulating the rates of aging in different tissues, and (3) how different bacterial species colonizing the gut lumen of C. elegans define nematode longevity by modulating the rate of organismal aging. Copyright © 2016. Published by Elsevier Inc.

  16. Application of Evolutionary Mechanisms of Enhancers for Development Effective Artificial Intelligence Systems for Providing Data Security

    Directory of Open Access Journals (Sweden)

    M. L. Garanina

    2010-06-01

    Full Text Available This article describes the base approaches of the methods of evolutionary mechanisms (special type of genes — enhancers for parameterizations of AI systems genotype. This method can help in increasing adaptability of AI systems for providing data security.

  17. Archaeal Genome Guardians Give Insights into Eukaryotic DNA Replication and Damage Response Proteins

    Directory of Open Access Journals (Sweden)

    David S. Shin

    2014-01-01

    Full Text Available As the third domain of life, archaea, like the eukarya and bacteria, must have robust DNA replication and repair complexes to ensure genome fidelity. Archaea moreover display a breadth of unique habitats and characteristics, and structural biologists increasingly appreciate these features. As archaea include extremophiles that can withstand diverse environmental stresses, they provide fundamental systems for understanding enzymes and pathways critical to genome integrity and stress responses. Such archaeal extremophiles provide critical data on the periodic table for life as well as on the biochemical, geochemical, and physical limitations to adaptive strategies allowing organisms to thrive under environmental stress relevant to determining the boundaries for life as we know it. Specifically, archaeal enzyme structures have informed the architecture and mechanisms of key DNA repair proteins and complexes. With added abilities to temperature-trap flexible complexes and reveal core domains of transient and dynamic complexes, these structures provide insights into mechanisms of maintaining genome integrity despite extreme environmental stress. The DNA damage response protein structures noted in this review therefore inform the basis for genome integrity in the face of environmental stress, with implications for all domains of life as well as for biomanufacturing, astrobiology, and medicine.

  18. Governance Mechanisms for the Promotion of Social Capital for Knowledge Transfer in Multinational Corporations

    DEFF Research Database (Denmark)

    Gooderham, Paul; Minbaeva, Dana; Pedersen, Torben

    2011-01-01

    are combined with theory on the determinants of social capital. Three governance mechanisms are identified: market-based mechanisms, hierarchical mechanisms, and social mechanisms. The findings, based on data from two Danish MNCs, indicate that although the use of social governance mechanisms promotes positive......The aim of this paper is to extend social capital approaches to knowledge transfer by identifying governance mechanisms that managers can deploy to promote the development of social capital. In order to achieve this objective, insights from the micro-level, knowledge governance approach...... assessment of social capital, hierarchical governance mechanisms constrain its development. The application of market-based governance mechanisms has no significant effect. In addition, the findings provide evidence that social capital has a positive impact on knowledge transfer...

  19. Creutzfeldt-Jakob Disease with Mixed Transcortical Aphasia: Insights into Echolalia

    Directory of Open Access Journals (Sweden)

    S. E. McPherson

    1994-01-01

    Full Text Available Aphasia is a common manifestation of Creutzfeldt-Jakob disease (CJD, and investigation of the linguistic disorders of CJD patients may provide insights into the neurobiological mechanisms of language and aphasia. We report an autopsy-confirmed case of CJD in which the presenting symptom was change in language abilities. The patient ultimately evidenced mixed transcortical aphasia (MTA with echolalia. Disruption of frontal-subcortical circuits with environmental dependency accounts for the symptoms in MTA, including intact repetition and echolalia. Observation in this patient and a review of the literature suggest that frontal-subcortical circuit dysfunction may contribute to the syndrome of echolalia. This hypothesis offers an alternative explanation to “isolation” of the speech area as the cause of MTA.

  20. Transcriptome analysis of the brain of the silkworm Bombyx mori infected with Bombyx mori nucleopolyhedrovirus: A new insight into the molecular mechanism of enhanced locomotor activity induced by viral infection.

    Science.gov (United States)

    Wang, Guobao; Zhang, Jianjia; Shen, Yunwang; Zheng, Qin; Feng, Min; Xiang, Xingwei; Wu, Xiaofeng

    2015-06-01

    Baculoviruses have been known to induce hyperactive behavior in their lepidopteran hosts for over a century. As a typical lepidopteran insect, the silkworm Bombyx mori displays enhanced locomotor activity (ELA) following infection with B. mori nucleopolyhedrovirus (BmNPV). Some investigations have focused on the molecular mechanisms underlying this abnormal hyperactive wandering behavior due to the virus; however, there are currently no reports about B. mori. Based on previous studies that have revealed that behavior is controlled by the central nervous system, the transcriptome profiles of the brains of BmNPV-infected and non-infected silkworm larvae were analyzed with the RNA-Seq technique to reveal the changes in the BmNPV-infected brain on the transcriptional level and to provide new clues regarding the molecular mechanisms that underlies BmNPV-induced ELA. Compared with the controls, a total of 742 differentially expressed genes (DEGs), including 218 up-regulated and 524 down-regulated candidates, were identified, of which 499, 117 and 144 DEGs could be classified into GO categories, KEGG pathways and COG annotations by GO, KEGG and COG analyses, respectively. We focused our attention on the DEGs that are involved in circadian rhythms, synaptic transmission and the serotonin receptor signaling pathway of B. mori. Our analyses suggested that these genes were related to the locomotor activity of B. mori via their essential roles in the regulations of a variety of behaviors and the down-regulation of their expressions following BmNPV infection. These results provide new insight into the molecular mechanisms of BmNPV-induced ELA. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Black Cohosh: Insights into its Mechanism(s of Action

    Directory of Open Access Journals (Sweden)

    Rachel L. Ruhlen

    2008-01-01

    Full Text Available The Women’s Health Initiative found that combination estrogen and progesterone hormone replacement therapy increases breast cancer and cardiovascular disease risk, which compelled many women to seek herbal alternatives such as black cohosh extract (BCE to relieve their menopausal symptoms. While several clinical trials document the efficacy of BCE in alleviating menopausal symptoms, preclinical studies to determine how BCE works have yielded conflicting results. Part of this is because there is not a universally accepted method to standardize the dose of black cohosh triterpenes, the presumed active ingredients in the extract. Although the mechanism by which BCE relieves symptoms is unknown, several hypotheses have been proposed: it acts 1 as a selective estrogen receptor modulator, 2 through serotonergic pathways, 3 as an antioxidant, or 4 on inflammatory pathways. We found that while the most prominent triterpene in BCE, 23-epi- 26-deoxyactein, suppresses cytokine-induced nitric oxide production in brain microglial cells, the whole BCE extract actually enhanced this pathway. A variety of activities have been reported for black cohosh and its compounds, but the absorption and tissue distribution of these compounds is unknown.

  2. The Clinical Utilisation of Respiratory Elastance Software (CURE Soft): a bedside software for real-time respiratory mechanics monitoring and mechanical ventilation management.

    Science.gov (United States)

    Szlavecz, Akos; Chiew, Yeong Shiong; Redmond, Daniel; Beatson, Alex; Glassenbury, Daniel; Corbett, Simon; Major, Vincent; Pretty, Christopher; Shaw, Geoffrey M; Benyo, Balazs; Desaive, Thomas; Chase, J Geoffrey

    2014-09-30

    Real-time patient respiratory mechanics estimation can be used to guide mechanical ventilation settings, particularly, positive end-expiratory pressure (PEEP). This work presents a software, Clinical Utilisation of Respiratory Elastance (CURE Soft), using a time-varying respiratory elastance model to offer this ability to aid in mechanical ventilation treatment. CURE Soft is a desktop application developed in JAVA. It has two modes of operation, 1) Online real-time monitoring decision support and, 2) Offline for user education purposes, auditing, or reviewing patient care. The CURE Soft has been tested in mechanically ventilated patients with respiratory failure. The clinical protocol, software testing and use of the data were approved by the New Zealand Southern Regional Ethics Committee. Using CURE Soft, patient's respiratory mechanics response to treatment and clinical protocol were monitored. Results showed that the patient's respiratory elastance (Stiffness) changed with the use of muscle relaxants, and responded differently to ventilator settings. This information can be used to guide mechanical ventilation therapy and titrate optimal ventilator PEEP. CURE Soft enables real-time calculation of model-based respiratory mechanics for mechanically ventilated patients. Results showed that the system is able to provide detailed, previously unavailable information on patient-specific respiratory mechanics and response to therapy in real-time. The additional insight available to clinicians provides the potential for improved decision-making, and thus improved patient care and outcomes.

  3. Giant panda׳s tooth enamel: Structure, mechanical behavior and toughening mechanisms under indentation.

    Science.gov (United States)

    Weng, Z Y; Liu, Z Q; Ritchie, R O; Jiao, D; Li, D S; Wu, H L; Deng, L H; Zhang, Z F

    2016-12-01

    The giant panda׳s teeth possess remarkable load-bearing capacity and damage resistance for masticating bamboos. In this study, the hierarchical structure and mechanical behavior of the giant panda׳s tooth enamel were investigated under indentation. The effects of loading orientation and location on mechanical properties of the enamel were clarified and the evolution of damage in the enamel under increasing load evaluated. The nature of the damage, both at and beneath the indentation surfaces, and the underlying toughening mechanisms were explored. Indentation cracks invariably were seen to propagate along the internal interfaces, specifically the sheaths between enamel rods, and multiple extrinsic toughening mechanisms, e.g., crack deflection/twisting and uncracked-ligament bridging, were active to shield the tips of cracks from the applied stress. The giant panda׳s tooth enamel is analogous to human enamel in its mechanical properties, yet it has superior hardness and Young׳s modulus but inferior toughness as compared to the bamboo that pandas primarily feed on, highlighting the critical roles of the integration of underlying tissues in the entire tooth and the highly hydrated state of bamboo foods. Our objective is that this study can aid the understanding of the structure-mechanical property relations in the tooth enamel of mammals and further provide some insight on the food habits of the giant pandas. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Macroscale patterns in body size of intertidal crustaceans provide insights on climate change effects

    Science.gov (United States)

    Dugan, Jenifer E.; Hubbard, David M.; Contreras, Heraldo; Duarte, Cristian; Acuña, Emilio; Schoeman, David S.

    2017-01-01

    Predicting responses of coastal ecosystems to altered sea surface temperatures (SST) associated with global climate change, requires knowledge of demographic responses of individual species. Body size is an excellent metric because it scales strongly with growth and fecundity for many ectotherms. These attributes can underpin demographic as well as community and ecosystem level processes, providing valuable insights for responses of vulnerable coastal ecosystems to changing climate. We investigated contemporary macroscale patterns in body size among widely distributed crustaceans that comprise the majority of intertidal abundance and biomass of sandy beach ecosystems of the eastern Pacific coasts of Chile and California, USA. We focused on ecologically important species representing different tidal zones, trophic guilds and developmental modes, including a high-shore macroalga-consuming talitrid amphipod (Orchestoidea tuberculata), two mid-shore scavenging cirolanid isopods (Excirolana braziliensis and E. hirsuticauda), and a low-shore suspension-feeding hippid crab (Emerita analoga) with an amphitropical distribution. Significant latitudinal patterns in body sizes were observed for all species in Chile (21° - 42°S), with similar but steeper patterns in Emerita analoga, in California (32°- 41°N). Sea surface temperature was a strong predictor of body size (-4% to -35% °C-1) in all species. Beach characteristics were subsidiary predictors of body size. Alterations in ocean temperatures of even a few degrees associated with global climate change are likely to affect body sizes of important intertidal ectotherms, with consequences for population demography, life history, community structure, trophic interactions, food-webs, and indirect effects such as ecosystem function. The consistency of results for body size and temperature across species with different life histories, feeding modes, ecological roles, and microhabitats inhabiting a single widespread coastal

  5. Localization and solitary waves in solid mechanics

    CERN Document Server

    Champneys, A R; Thompson, J M T

    1999-01-01

    This book is a collection of recent reprints and new material on fundamentally nonlinear problems in structural systems which demonstrate localized responses to continuous inputs. It has two intended audiences. For mathematicians and physicists it should provide useful new insights into a classical yet rapidly developing area of application of the rich subject of dynamical systems theory. For workers in structural and solid mechanics it introduces a new methodology for dealing with structural localization and the related topic of the generation of solitary waves. Applications range from classi

  6. Curly arrows meet electron density transfers in chemical reaction mechanisms: from electron localization function (ELF) analysis to valence-shell electron-pair repulsion (VSEPR) inspired interpretation.

    Science.gov (United States)

    Andrés, Juan; Berski, Sławomir; Silvi, Bernard

    2016-07-07

    Probing the electron density transfers during a chemical reaction can provide important insights, making possible to understand and control chemical reactions. This aim has required extensions of the relationships between the traditional chemical concepts and the quantum mechanical ones. The present work examines the detailed chemical insights that have been generated through 100 years of work worldwide on G. N. Lewis's ground breaking paper on The Atom and the Molecule (Lewis, G. N. The Atom and the Molecule, J. Am. Chem. Soc. 1916, 38, 762-785), with a focus on how the determination of reaction mechanisms can be reached applying the bonding evolution theory (BET), emphasizing how curly arrows meet electron density transfers in chemical reaction mechanisms and how the Lewis structure can be recovered. BET that combines the topological analysis of the electron localization function (ELF) and Thom's catastrophe theory (CT) provides a powerful tool providing insight into molecular mechanisms of chemical rearrangements. In agreement with physical laws and quantum theoretical insights, BET can be considered as an appropriate tool to tackle chemical reactivity with a wide range of possible applications. Likewise, the present approach retrieves the classical curly arrows used to describe the rearrangements of chemical bonds for a given reaction mechanism, providing detailed physical grounds for this type of representation. The ideas underlying the valence-shell-electron pair-repulsion (VSEPR) model applied to non-equilibrium geometries provide simple chemical explanations of density transfers. For a given geometry around a central atom, the arrangement of the electronic domain may comply or not with the VSEPR rules according with the valence shell population of the considered atom. A deformation yields arrangements which are either VSEPR defective (at least a domain is missing to match the VSEPR arrangement corresponding to the geometry of the ligands), VSEPR compliant

  7. The Association of DRD2 with Insight Problem Solving.

    Science.gov (United States)

    Zhang, Shun; Zhang, Jinghuan

    2016-01-01

    Although the insight phenomenon has attracted great attention from psychologists, it is still largely unknown whether its variation in well-functioning human adults has a genetic basis. Several lines of evidence suggest that genes involved in dopamine (DA) transmission might be potential candidates. The present study explored for the first time the association of dopamine D2 receptor gene ( DRD2 ) with insight problem solving. Fifteen single-nucleotide polymorphisms (SNPs) covering DRD2 were genotyped in 425 unrelated healthy Chinese undergraduates, and were further tested for association with insight problem solving. Both single SNP and haplotype analysis revealed several associations of DRD2 SNPs and haplotypes with insight problem solving. In conclusion, the present study provides the first evidence for the involvement of DRD2 in insight problem solving, future studies are necessary to validate these findings.

  8. Cadmium osteotoxicity in experimental animals: Mechanisms and relationship to human exposures

    International Nuclear Information System (INIS)

    Bhattacharyya, Maryka H.

    2009-01-01

    Extensive epidemiological studies have recently demonstrated increased cadmium exposure correlating significantly with decreased bone mineral density and increased fracture incidence in humans at lower exposure levels than ever before evaluated. Studies in experimental animals have addressed whether very low concentrations of dietary cadmium can negatively impact the skeleton. This overview evaluates results in experimental animals regarding mechanisms of action on bone and the application of these results to humans. Results demonstrate that long-term dietary exposures in rats, at levels corresponding to environmental exposures in humans, result in increased skeletal fragility and decreased mineral density. Cadmium-induced demineralization begins soon after exposure, within 24 h of an oral dose to mice. In bone culture systems, cadmium at low concentrations acts directly on bone cells to cause both decreases in bone formation and increases in bone resorption, independent of its effects on kidney, intestine, or circulating hormone concentrations. Results from gene expression microarray and gene knock-out mouse models provide insight into mechanisms by which cadmium may affect bone. Application of the results to humans is considered with respect to cigarette smoke exposure pathways and direct vs. indirect effects of cadmium. Clearly, understanding the mechanism(s) by which cadmium causes bone loss in experimental animals will provide insight into its diverse effects in humans. Preventing bone loss is critical to maintaining an active, independent lifestyle, particularly among elderly persons. Identifying environmental factors such as cadmium that contribute to increased fractures in humans is an important undertaking and a first step to prevention.

  9. Access to finance from different finance provider types

    NARCIS (Netherlands)

    Wulandari, Eliana; Meuwissen, Miranda P.M.; Karmana, Maman H.; Oude Lansink, Alfons G.J.M.

    2017-01-01

    Analysing farmer knowledge of the requirements of finance providers can provide valuable insights to policy makers about ways to improve farmers’ access to finance. This study compares farmer knowledge of the requirements to obtain finance with the actual requirements set by different finance

  10. The toxic effects of chlorophenols and associated mechanisms in fish

    International Nuclear Information System (INIS)

    Ge, Tingting; Han, Jiangyuan; Qi, Yongmei; Gu, Xueyan; Ma, Lin; Zhang, Chen; Naeem, Sajid; Huang, Dejun

    2017-01-01

    Highlights: • We review the toxic effects of chlorophenols (CPs) and underlying mechanisms in fish. • CPs induce lethal effects, oxidative stress, endocrine disruption, reproductive toxicity and apoptosis in fish. • CPs exhibit toxicity through multiple signaling pathways in fish and different pathways co-exist under the same conditions. • Studies on DNA methylation provide new insights into our understanding of epigenetic mechanisms of CPs-induced toxicity. • Mechanisms studies on CPs toxicity performed under environmental concentrations need more attentions. - Abstract: Chlorophenols (CPs) are ubiquitous contaminants in the environment primarily released from agricultural and industrial wastewater. These compounds are not readily degraded naturally, and easily accumulate in organs, tissues and cells via food chains, further leading to acute and chronic toxic effects on aquatic organisms. Herein, we review the available literature regarding CP toxicity in fish, with special emphasis on the potential toxic mechanisms. CPs cause oxidative stress via generation of reactive oxygen species, induction of lipid peroxidation and/or oxidative DNA damage along with inhibition of antioxidant systems. CPs affect immune system by altering the number of mature B cells and macrophages, while suppressing phagocytosis and down-regulating the expression of immune factors. CPs also disrupt endocrine function by affecting hormone levels, or inducing abnormal gene expression and interference with hormone receptors. CPs at relatively higher concentrations induce apoptosis via mitochondria-mediated pathway, cell death receptor-mediated pathway, and/or DNA damage-mediated pathway. CPs at relatively lower concentrations promote cell proliferation, and foster cancers-prone environment by increasing the rate of point mutations and oxidative DNA lesions. These toxic effects in fish are induced directly by CPs per se or indirectly by their metabolic products. In addition, recent

  11. The toxic effects of chlorophenols and associated mechanisms in fish

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Tingting; Han, Jiangyuan; Qi, Yongmei; Gu, Xueyan; Ma, Lin; Zhang, Chen; Naeem, Sajid; Huang, Dejun, E-mail: huangdj@lzu.edu.cn

    2017-03-15

    Highlights: • We review the toxic effects of chlorophenols (CPs) and underlying mechanisms in fish. • CPs induce lethal effects, oxidative stress, endocrine disruption, reproductive toxicity and apoptosis in fish. • CPs exhibit toxicity through multiple signaling pathways in fish and different pathways co-exist under the same conditions. • Studies on DNA methylation provide new insights into our understanding of epigenetic mechanisms of CPs-induced toxicity. • Mechanisms studies on CPs toxicity performed under environmental concentrations need more attentions. - Abstract: Chlorophenols (CPs) are ubiquitous contaminants in the environment primarily released from agricultural and industrial wastewater. These compounds are not readily degraded naturally, and easily accumulate in organs, tissues and cells via food chains, further leading to acute and chronic toxic effects on aquatic organisms. Herein, we review the available literature regarding CP toxicity in fish, with special emphasis on the potential toxic mechanisms. CPs cause oxidative stress via generation of reactive oxygen species, induction of lipid peroxidation and/or oxidative DNA damage along with inhibition of antioxidant systems. CPs affect immune system by altering the number of mature B cells and macrophages, while suppressing phagocytosis and down-regulating the expression of immune factors. CPs also disrupt endocrine function by affecting hormone levels, or inducing abnormal gene expression and interference with hormone receptors. CPs at relatively higher concentrations induce apoptosis via mitochondria-mediated pathway, cell death receptor-mediated pathway, and/or DNA damage-mediated pathway. CPs at relatively lower concentrations promote cell proliferation, and foster cancers-prone environment by increasing the rate of point mutations and oxidative DNA lesions. These toxic effects in fish are induced directly by CPs per se or indirectly by their metabolic products. In addition, recent

  12. Flotation mechanisms of molybdenite fines by neutral oils

    Science.gov (United States)

    Lin, Qing-quan; Gu, Guo-hua; Wang, Hui; Liu, You-cai; Fu, Jian-gang; Wang, Chong-qing

    2018-01-01

    The flotation mechanisms of molybdenite fines by neutral oils were investigated through microflotation test, turbidity measurements, infrared spectroscopy, and interfacial interaction calculations. The results of the flotation test show that at pH 2-11, the floatability of molybdenite fines in the presence of transformer oil is markedly better than that in the presence of kerosene and diesel oil. The addition of transformer oil, which enhances the floatability of molybdenite fines, promotes the aggregation of molybdenite particles. Fourier transform infrared measurements illustrate that physical interaction dominates the adsorption mechanism of neutral oil on molybdenite. Interfacial interaction calculations indicate that hydrophobic attraction is the crucial force that acts among the oil collector, water, and molybdenite. Strong hydrophobic attraction between the oily collector and water provides the strong dispersion capability of the collector in water. Furthermore, the dispersion capability of the collector, not the interaction strength between the oily collectors and molybdenite, has a highly significant role in the flotation system of molybdenite fines. Our findings provide insights into the mechanism of molybdenite flotation.

  13. Membrane transport mechanism 3D structure and beyond

    CERN Document Server

    Ziegler, Christine

    2014-01-01

    This book provides a molecular view of membrane transport by means of numerous biochemical and biophysical techniques. The rapidly growing number of atomic structures of transporters in different conformations and the constant progress in bioinformatics have recently added deeper insights.   The unifying mechanism of energized solute transport across membranes is assumed to consist of the conformational cycling of a carrier protein to provide access to substrate binding sites from either side of a cellular membrane. Due to the central role of active membrane transport there is considerable interest in deciphering the principles of one of the most fundamental processes in nature: the alternating access mechanism.   This book brings together particularly significant structure-function studies on a variety of carrier systems from different transporter families: Glutamate symporters, LeuT-like fold transporters, MFS transporters and SMR (RND) exporters, as well as ABC-type importers.   The selected examples im...

  14. Canine CNGA3 Gene Mutations Provide Novel Insights into Human Achromatopsia-Associated Channelopathies and Treatment.

    Directory of Open Access Journals (Sweden)

    Naoto Tanaka

    Full Text Available Cyclic nucleotide-gated (CNG ion channels are key mediators underlying signal transduction in retinal and olfactory receptors. Genetic defects in CNGA3 and CNGB3, encoding two structurally related subunits of cone CNG channels, lead to achromatopsia (ACHM. ACHM is a congenital, autosomal recessive retinal disorder that manifests by cone photoreceptor dysfunction, severely reduced visual acuity, impaired or complete color blindness and photophobia. Here, we report the first canine models for CNGA3-associated channelopathy caused by R424W or V644del mutations in the canine CNGA3 ortholog that accurately mimic the clinical and molecular features of human CNGA3-associated ACHM. These two spontaneous mutations exposed CNGA3 residues essential for the preservation of channel function and biogenesis. The CNGA3-R424W results in complete loss of cone function in vivo and channel activity confirmed by in vitro electrophysiology. Structural modeling and molecular dynamics (MD simulations revealed R424-E306 salt bridge formation and its disruption with the R424W mutant. Reversal of charges in a CNGA3-R424E-E306R double mutant channel rescued cGMP-activated currents uncovering new insights into channel gating. The CNGA3-V644del affects the C-terminal leucine zipper (CLZ domain destabilizing intersubunit interactions of the coiled-coil complex in the MD simulations; the in vitro experiments showed incompetent trimeric CNGA3 subunit assembly consistent with abnormal biogenesis of in vivo channels. These newly characterized large animal models not only provide a valuable system for studying cone-specific CNG channel function in health and disease, but also represent prime candidates for proof-of-concept studies of CNGA3 gene replacement therapy for ACHM patients.

  15. New insights about enzyme evolution from large scale studies of sequence and structure relationships.

    Science.gov (United States)

    Brown, Shoshana D; Babbitt, Patricia C

    2014-10-31

    Understanding how enzymes have evolved offers clues about their structure-function relationships and mechanisms. Here, we describe evolution of functionally diverse enzyme superfamilies, each representing a large set of sequences that evolved from a common ancestor and that retain conserved features of their structures and active sites. Using several examples, we describe the different structural strategies nature has used to evolve new reaction and substrate specificities in each unique superfamily. The results provide insight about enzyme evolution that is not easily obtained from studies of one or only a few enzymes. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Sleeping beauties in theoretical physics 26 surprising insights

    CERN Document Server

    Padmanabhan, Thanu

    2015-01-01

    This book addresses a fascinating set of questions in theoretical physics which will both entertain and enlighten all students, teachers and researchers and other physics aficionados. These range from Newtonian mechanics to quantum field theory and cover several puzzling issues that do not appear in standard textbooks. Some topics cover conceptual conundrums, the solutions to which lead to surprising insights; some correct popular misconceptions in the textbook discussion of certain topics; others illustrate deep connections between apparently unconnected domains of theoretical physics; and a few provide remarkably simple derivations of results which are not often appreciated. The connoisseur of theoretical physics will enjoy a feast of pleasant surprises skilfully prepared by an internationally acclaimed theoretical physicist. Each topic is introduced with proper background discussion and special effort is taken to make the discussion self-contained, clear and comprehensible to anyone with an undergraduate e...

  17. PPARγ controls pregnancy outcome through activation of EG-VEGF: new insights into the mechanism of placental development.

    Science.gov (United States)

    Garnier, Vanessa; Traboulsi, Wael; Salomon, Aude; Brouillet, Sophie; Fournier, Thierry; Winkler, Carine; Desvergne, Beatrice; Hoffmann, Pascale; Zhou, Qun-Yong; Congiu, Cenzo; Onnis, Valentina; Benharouga, Mohamed; Feige, Jean-Jacques; Alfaidy, Nadia

    2015-08-15

    PPARγ-deficient mice die at E9.5 due to placental abnormalities. The mechanism by which this occurs is unknown. We demonstrated that the new endocrine factor EG-VEGF controls the same processes as those described for PPARγ, suggesting potential regulation of EG-VEGF by PPARγ. EG-VEGF exerts its functions via prokineticin receptor 1 (PROKR1) and 2 (PROKR2). This study sought to investigate whether EG-VEGF mediates part of PPARγ effects on placental development. Three approaches were used: 1) in vitro, using human primary isolated cytotrophoblasts and the extravillous trophoblast cell line (HTR-8/SVneo); 2) ex vivo, using human placental explants (n = 46 placentas); and 3) in vivo, using gravid wild-type PPARγ(+/-) and PPARγ(-/-) mice. Major processes of placental development that are known to be controlled by PPARγ, such as trophoblast proliferation, migration, and invasion, were assessed in the absence or presence of PROKR1 and PROKR2 antagonists. In both human trophoblast cell and placental explants, we demonstrated that rosiglitazone, a PPARγ agonist, 1) increased EG-VEGF secretion, 2) increased EG-VEGF and its receptors mRNA and protein expression, 3) increased placental vascularization via PROKR1 and PROKR2, and 4) inhibited trophoblast migration and invasion via PROKR2. In the PPARγ(-/-) mouse placentas, EG-VEGF levels were significantly decreased, supporting an in vivo control of EG-VEGF/PROKRs system during pregnancy. The present data reveal EG-VEGF as a new mediator of PPARγ effects during pregnancy and bring new insights into the fine mechanism of trophoblast invasion. Copyright © 2015 the American Physiological Society.

  18. From membrane tension to channel gating: A principal energy transfer mechanism for mechanosensitive channels.

    Science.gov (United States)

    Zhang, Xuejun C; Liu, Zhenfeng; Li, Jie

    2016-11-01

    Mechanosensitive (MS) channels are evolutionarily conserved membrane proteins that play essential roles in multiple cellular processes, including sensing mechanical forces and regulating osmotic pressure. Bacterial MscL and MscS are two prototypes of MS channels. Numerous structural studies, in combination with biochemical and cellular data, provide valuable insights into the mechanism of energy transfer from membrane tension to gating of the channel. We discuss these data in a unified two-state model of thermodynamics. In addition, we propose a lipid diffusion-mediated mechanism to explain the adaptation phenomenon of MscS. © 2016 The Protein Society.

  19. Mechanisms of neuroblastoma regression

    Science.gov (United States)

    Brodeur, Garrett M.; Bagatell, Rochelle

    2014-01-01

    Recent genomic and biological studies of neuroblastoma have shed light on the dramatic heterogeneity in the clinical behaviour of this disease, which spans from spontaneous regression or differentiation in some patients, to relentless disease progression in others, despite intensive multimodality therapy. This evidence also suggests several possible mechanisms to explain the phenomena of spontaneous regression in neuroblastomas, including neurotrophin deprivation, humoral or cellular immunity, loss of telomerase activity and alterations in epigenetic regulation. A better understanding of the mechanisms of spontaneous regression might help to identify optimal therapeutic approaches for patients with these tumours. Currently, the most druggable mechanism is the delayed activation of developmentally programmed cell death regulated by the tropomyosin receptor kinase A pathway. Indeed, targeted therapy aimed at inhibiting neurotrophin receptors might be used in lieu of conventional chemotherapy or radiation in infants with biologically favourable tumours that require treatment. Alternative approaches consist of breaking immune tolerance to tumour antigens or activating neurotrophin receptor pathways to induce neuronal differentiation. These approaches are likely to be most effective against biologically favourable tumours, but they might also provide insights into treatment of biologically unfavourable tumours. We describe the different mechanisms of spontaneous neuroblastoma regression and the consequent therapeutic approaches. PMID:25331179

  20. What fans the fire: insights into mechanisms of leptin in metabolic syndrome-associated heart diseases.

    Science.gov (United States)

    Dong, Maolong; Ren, Jun

    2014-01-01

    Obesity and metabolic syndrome are one of the most devastating risk factors for cardiovascular diseases. The obesity gene product leptin plays a central role in the regulation of food intake and energy expenditure. The physiological and pathophysiological roles of leptin in cardiovascular system have been investigated extensively since its discovery in 1994. In addition to its well-established metabolic effects, more recent evidence have depicted a rather pivotal role of leptin in inflammation, oxidative stress, endoplasmic reticulum stress, apoptosis and tissue remodeling en route to the pathogenesis of type 2 diabetes mellitus, hypertension, atherosclerosis, and insulin resistance. Under physiological condition, leptin is known to reduce appetite, promote energy expenditure, increase sympathetic activity, facilitate glucose utilization and improve insulin sensitivity. In addition, leptin may regulate cardiac and vascular function through a nitric oxide-dependent mechanism. However, hyperleptinemia usually occurs with progressively increased body weight and metabolic syndrome development, leading to a state of global or selective leptin resistance. Both central and peripheral leptin resistance may be present under pathophysiological conditions such as inflammation, insulin resistance, hyperlipidemia and a cadre of other cardiovascular diseases including hypertension, atherosclerosis, obesity, ischemic heart disease and heart failure. In this review, we will discuss cardiovascular actions of leptin related to various components of metabolic syndrome. Particular emphasis will be given to insights derived from therapeutic interventions with lifestyle modification, cardiovascular drugs, anti-diabetic and anti-obesity drugs.

  1. A further insight into the biosorption mechanism of Au(III by infrared spectrometry

    Directory of Open Access Journals (Sweden)

    Lin Zhongyu

    2011-10-01

    Full Text Available Abstract Background The interactions of microbes with metal ions form an important basis for our study of biotechnological applications. Despite the recent progress in studying some properties of Au(III adsorption and reduction by Bacillus megatherium D01 biomass, there is still a need for additional data on the molecular mechanisms of biosorbents responsible for their interactions with Au(III to have a further insight and to make a better exposition. Results The biosorption mechanism of Au(III onto the resting cell of Bacillus megatherium D01 biomass on a molecular level has been further studied here. The infrared (IR spectroscopy on D01 biomass and that binding Au(III demonstrates that the molecular recognition of and binding to Au(III appear to occur mostly with oxygenous- and nitrogenous-active groups of polysaccharides and proteins in cell wall biopolymers, such as hydroxyl of saccharides, carboxylate anion of amino-acid residues (side-chains of polypeptide backbone, peptide bond (amide I and amide II bands, etc.; and that the active groups must serve as nucleation sites for Au(0 nuclei growth. A further investigation on the interactions of each of the soluble hydrolysates of D01, Bacillus licheniformis R08, Lactobacillus sp. strain A09 and waste Saccharomyces cerevisiae biomasses with Au(III by IR spectrometry clearly reveals an essential biomacromolecule-characteristic that seems the binding of Au(III to the oxygen of the peptide bond has caused a significant, molecular conformation-rearrangement in polypeptide backbones from β-pleated sheet to α-helices and/or β-turns of protein secondary structure; and that this changing appears to be accompanied by the occurrence, in the peptide bond, of much unbound -C=O and H-N- groups, being freed from the inter-molecular hydrogen-bonding of the β-pleated sheet and carried on the helical forms, as well as by the alternation in side chain steric positions of protein primary structure. This might

  2. Analytical insights into optimality and resonance in fish swimming

    Science.gov (United States)

    Kohannim, Saba; Iwasaki, Tetsuya

    2014-01-01

    This paper provides analytical insights into the hypothesis that fish exploit resonance to reduce the mechanical cost of swimming. A simple body–fluid fish model, representing carangiform locomotion, is developed. Steady swimming at various speeds is analysed using optimal gait theory by minimizing bending moment over tail movements and stiffness, and the results are shown to match with data from observed swimming. Our analysis indicates the following: thrust–drag balance leads to the Strouhal number being predetermined based on the drag coefficient and the ratio of wetted body area to cross-sectional area of accelerated fluid. Muscle tension is reduced when undulation frequency matches resonance frequency, which maximizes the ratio of tail-tip velocity to bending moment. Finally, hydrodynamic resonance determines tail-beat frequency, whereas muscle stiffness is actively adjusted, so that overall body–fluid resonance is exploited. PMID:24430125

  3. Some new insights into collimator design

    International Nuclear Information System (INIS)

    Metz, C.E.; Atkins, F.B.; Tsui, B.M.W.; Beck, R.N.

    1978-01-01

    Relationships among collimator design parameters, physical properties of the resulting images, and human observer performance are discussed. The insight provided by these relationships hopefully will prove useful to the individual who must design or select a collimator for a particular imaging task

  4. A genome-wide transcriptome map of pistachio (Pistacia vera L.) provides novel insights into salinity-related genes and marker discovery.

    Science.gov (United States)

    Moazzzam Jazi, Maryam; Seyedi, Seyed Mahdi; Ebrahimie, Esmaeil; Ebrahimi, Mansour; De Moro, Gianluca; Botanga, Christopher

    2017-08-17

    of NCED3 and SOS1 genes were observed between salt-sensitive and salt-tolerant cultivars. This study, as the first report on the whole transcriptome survey of P. vera, provides important resources and paves the way for functional and comparative genomic studies on this major tree to discover the salinity tolerance-related markers and stress response mechanisms for breeding of new pistachio cultivars with more salinity tolerance.

  5. Insights into Teaching Quantum Mechanics in Secondary and Lower Undergraduate Education

    Science.gov (United States)

    Krijtenburg-Lewerissa, K.; Pol, H. J.; Brinkman, A.; van Joolingen, W. R.

    2017-01-01

    This study presents a review of the current state of research on teaching quantum mechanics in secondary and lower undergraduate education. A conceptual approach to quantum mechanics is being implemented in more and more introductory physics courses around the world. Because of the differences between the conceptual nature of quantum mechanics and…

  6. Insights into the π-p → ηn reaction mechanism

    International Nuclear Information System (INIS)

    Durand, J.; Julia-Diaz, B.; Julia-Diaz, B.; Julia-Diaz, B.; Lee, T.S.H.; Sato, T.; Lee, T.S.H.; Sato, T.

    2009-01-01

    A dynamical coupled-channels formalism is used to investigate the eta-meson production mechanism on the proton induced by pions, in the total center-of-mass energy region from threshold up to 2 GeV. We show how and why studying exclusively total cross section data might turn out to be misleading in pinning down the reaction mechanism. (authors)

  7. Design Strategies for Efficient Access to Mobile Device Users via Amazon Mechanical Turk

    OpenAIRE

    Jacques, Jason; Kristensson, Per Ola

    2017-01-01

    It is often challenging to access a pool of mobile device users and instruct them to perform an interactive task. Yet such data is often vital to provide design insight at various stages of the design process of a mobile application, service or system. We propose accessing a pool of mobile device users via the microtask market Amazon Mechanical Turk (MTurk). While mobile device users are still a minority on MTurk, they provide unique opportunities for requesters. Not only does catering to mob...

  8. Pathophysiology of Degenerative Mitral Regurgitation: New 3-Dimensional Imaging Insights.

    Science.gov (United States)

    Antoine, Clemence; Mantovani, Francesca; Benfari, Giovanni; Mankad, Sunil V; Maalouf, Joseph F; Michelena, Hector I; Enriquez-Sarano, Maurice

    2018-01-01

    Despite its high prevalence, little is known about mechanisms of mitral regurgitation in degenerative mitral valve disease apart from the leaflet prolapse itself. Mitral valve is a complex structure, including mitral annulus, mitral leaflets, papillary muscles, chords, and left ventricular walls. All these structures are involved in physiological and pathological functioning of this valvuloventricular complex but up to now were difficult to analyze because of inherent limitations of 2-dimensional imaging. The advent of 3-dimensional echocardiography, computed tomography, and cardiac magnetic resonance imaging overcoming these limitations provides new insights into mechanistic analysis of degenerative mitral regurgitation. This review will detail the contribution of quantitative and qualitative dynamic analysis of mitral annulus and mitral leaflets by new imaging methods in the understanding of degenerative mitral regurgitation pathophysiology. © 2018 American Heart Association, Inc.

  9. The unconscious nature of insight: A dual-task paradigm investigation

    Directory of Open Access Journals (Sweden)

    Lebed A. A.

    2017-09-01

    Full Text Available Background. Insight is a specific part of the thinking process during creative problem solving. The experience of a sudden unexpected solution of the problem makes it distinct from other problem solving. Though the insight problem solving process is hidden from the observer and the solver himself, it is possible to study working memory changes during the problem-solving process in order to observe the tracks of insight. Objective. A critical experiment was carried out to determine whether it is legitimate to measure insight-problem-solving dynamics within a dual-task paradigm and working memory model. Also a verification was conducted of the hypothesis of whether insight problem solving competes for cognitive resources with unconscious processes. Design. We designed a special procedure based on Kahneman’s (1973 modified dual-task paradigm, allowing simultaneous performance of the problem-solving process and probe tasks of different types. The reaction time was measured for the probe task. ere were two problems conditions (insight and regular, and two probe tasks conditions (implicit and explicit. Participants: 32 participants, aged from 18 to 32 years (M = 19.81; σ = 2.51. Results. Significant differences in implicit probe reaction time were found between the dual-task condition (implicit categorization and insight problem solving and solo implicit probe condition (t(15 = –3.21, p = .006, d = –.76. A joint effect of problem type and probe type was found (F(1, 60= 4.85, p = .035, ηp2 = .07. Conclusion. The results support the idea that information processing of conscious and of unconscious processes are separate. Unconscious processing capacity is limited. Implicit skill seems to be operated by the same mechanisms as insight problem solving, therefore competing for a common resource. It was also shown that such hidden creative unconscious processes as insight can be tracked via working memory load.

  10. Integrated RNA- and protein profiling of fermentation and respiration in diploid budding yeast provides insight into nutrient control of cell growth and development.

    Science.gov (United States)

    Becker, Emmanuelle; Liu, Yuchen; Lardenois, Aurélie; Walther, Thomas; Horecka, Joe; Stuparevic, Igor; Law, Michael J; Lavigne, Régis; Evrard, Bertrand; Demougin, Philippe; Riffle, Michael; Strich, Randy; Davis, Ronald W; Pineau, Charles; Primig, Michael

    2015-04-24

    Diploid budding yeast undergoes rapid mitosis when it ferments glucose, and in the presence of a non-fermentable carbon source and the absence of a nitrogen source it triggers sporulation. Rich medium with acetate is a commonly used pre-sporulation medium, but our understanding of the molecular events underlying the acetate-driven transition from mitosis to meiosis is still incomplete. We identified 263 proteins for which mRNA and protein synthesis are linked or uncoupled in fermenting and respiring cells. Using motif predictions, interaction data and RNA profiling we find among them 28 likely targets for Ume6, a subunit of the conserved Rpd3/Sin3 histone deacetylase-complex regulating genes involved in metabolism, stress response and meiosis. Finally, we identify 14 genes for which both RNA and proteins are detected exclusively in respiring cells but not in fermenting cells in our sample set, including CSM4, SPR1, SPS4 and RIM4, which were thought to be meiosis-specific. Our work reveals intertwined transcriptional and post-transcriptional control mechanisms acting when a MATa/α strain responds to nutritional signals, and provides molecular clues how the carbon source primes yeast cells for entering meiosis. Our integrated genomics study provides insight into the interplay between the transcriptome and the proteome in diploid yeast cells undergoing vegetative growth in the presence of glucose (fermentation) or acetate (respiration). Furthermore, it reveals novel target genes involved in these processes for Ume6, the DNA binding subunit of the conserved histone deacetylase Rpd3 and the co-repressor Sin3. We have combined data from an RNA profiling experiment using tiling arrays that cover the entire yeast genome, and a large-scale protein detection analysis based on mass spectrometry in diploid MATa/α cells. This distinguishes our study from most others in the field-which investigate haploid yeast strains-because only diploid cells can undergo meiotic development

  11. Atomic Force Microscopy in Characterizing Cell Mechanics for Biomedical Applications: A Review.

    Science.gov (United States)

    Li, Mi; Dang, Dan; Liu, Lianqing; Xi, Ning; Wang, Yuechao

    2017-09-01

    Cell mechanics is a novel label-free biomarker for indicating cell states and pathological changes. The advent of atomic force microscopy (AFM) provides a powerful tool for quantifying the mechanical properties of single living cells in aqueous conditions. The wide use of AFM in characterizing cell mechanics in the past two decades has yielded remarkable novel insights in understanding the development and progression of certain diseases, such as cancer, showing the huge potential of cell mechanics for practical applications in the field of biomedicine. In this paper, we reviewed the utilization of AFM to characterize cell mechanics. First, the principle and method of AFM single-cell mechanical analysis was presented, along with the mechanical responses of cells to representative external stimuli measured by AFM. Next, the unique changes of cell mechanics in two types of physiological processes (stem cell differentiation, cancer metastasis) revealed by AFM were summarized. After that, the molecular mechanisms guiding cell mechanics were analyzed. Finally the challenges and future directions were discussed.

  12. Games in the Arctic: applying game theory insights to Arctic challenges

    Directory of Open Access Journals (Sweden)

    Scott Cole

    2014-08-01

    Full Text Available We illustrate the benefits of game theoretic analysis for assisting decision-makers in resolving conflicts and other challenges in a rapidly evolving region. We review a series of salient Arctic issues with global implications—managing open-access fisheries, opening Arctic areas for resource extraction and ensuring effective environmental regulation for natural resource extraction—and provide insights to help reach socially preferred outcomes. We provide an overview of game theoretic analysis in layman's terms, explaining how game theory can help researchers and decision-makers to better understand conflicts, and how to identify the need for, and improve the design of, policy interventions. We believe that game theoretic tools are particularly useful in a region with a diverse set of players ranging from countries to firms to individuals. We argue that the Arctic Council should take a more active governing role in the region by, for example, dispersing information to “players” in order to alleviate conflicts regarding the management of common-pool resources such as open-access fisheries and natural resource extraction. We also identify side payments—that is, monetary or in-kind compensation from one party of a conflict to another—as a key mechanism for reaching a more biologically, culturally and economically sustainable Arctic future. By emphasizing the practical insights generated from an academic discipline, we present game theory as an influential tool in shaping the future of the Arctic—for individual researchers, for inter-disciplinary research and for policy-makers themselves.

  13. Computational models of the pulmonary circulation: Insights and the move towards clinically directed studies

    Science.gov (United States)

    Tawhai, Merryn H.; Clark, Alys R.; Burrowes, Kelly S.

    2011-01-01

    Biophysically-based computational models provide a tool for integrating and explaining experimental data, observations, and hypotheses. Computational models of the pulmonary circulation have evolved from minimal and efficient constructs that have been used to study individual mechanisms that contribute to lung perfusion, to sophisticated multi-scale and -physics structure-based models that predict integrated structure-function relationships within a heterogeneous organ. This review considers the utility of computational models in providing new insights into the function of the pulmonary circulation, and their application in clinically motivated studies. We review mathematical and computational models of the pulmonary circulation based on their application; we begin with models that seek to answer questions in basic science and physiology and progress to models that aim to have clinical application. In looking forward, we discuss the relative merits and clinical relevance of computational models: what important features are still lacking; and how these models may ultimately be applied to further increasing our understanding of the mechanisms occurring in disease of the pulmonary circulation. PMID:22034608

  14. Vitamin B12: advances and insights

    DEFF Research Database (Denmark)

    individuals in critical life phases. This book has been written by experts who documented latest developments in the field. It is written for individuals looking for in depth knowledge of the nutritional, chemistry, biochemistry, health and medical relevance of the vitamin. The book provides insights...

  15. Analysis of SF and plasma cytokines provides insights into the mechanisms of inflammatory arthritis and may predict response to therapy.

    Science.gov (United States)

    Wright, Helen L; Bucknall, Roger C; Moots, Robert J; Edwards, Steven W

    2012-03-01

    Biologic drugs have revolutionized the care of RA, but are expensive and not universally effective. To further understand the inflammatory mechanisms underlying RA and identify potential biomarkers predicting response to therapy, we measured multiple cytokine concentrations in SF of patients with inflammatory arthritides (IAs) and, in a subset of patients with RA, correlated this with response to TNF-α inhibition. SF from 42 RA patients and 19 non-RA IA patients were analysed for 12 cytokines using a multiplex cytokine assay. Cytokines were also measured in the plasma of 16 RA patients before and following treatment with anti-TNF-α. Data were analysed using Mann-Whitney U-test, Spearman's rank correlation and cluster analysis with the Kruskal-Wallis test with Dunn's post-test analysis. RA SF contained significantly elevated levels of IL-1β, IL-1ra, IL-2, IL-4, IL-8, IL-10, IL-17, IFN-γ, G-CSF, GM-CSF and TNF-α compared with other IA SF. RA patients who did not respond to anti-TNF therapy had elevated IL-6 in their SF pre-therapy (P < 0.05), whereas responders had elevated IL-2 and G-CSF (P < 0.05). Plasma cytokine concentrations were not significantly modulated by TNF inhibitors, with the exception of IL-6, which decreased after 12 weeks (P < 0.05). Cytokine profiles in RA SF vary with treatment and response to therapy. Cytokine concentrations are significantly lower in plasma than in SF and relatively unchanged by TNF inhibitor therapy. Concentrations of IL-6, IL-2 and G-CSF in SF may predict response to TNF inhibitors.

  16. A multidisciplinary approach providing new insight into fruit flesh browning physiology in apple (Malus x domestica Borkh.).

    Science.gov (United States)

    Di Guardo, Mario; Tadiello, Alice; Farneti, Brian; Lorenz, Giorgia; Masuero, Domenico; Vrhovsek, Urska; Costa, Guglielmo; Velasco, Riccardo; Costa, Fabrizio

    2013-01-01

    In terms of the quality of minimally processed fruit, flesh browning is fundamentally important in the development of an aesthetically unpleasant appearance, with consequent off-flavours. The development of browning depends on the enzymatic action of the polyphenol oxidase (PPO). In the 'Golden Delicious' apple genome ten PPO genes were initially identified and located on three main chromosomes (2, 5 and 10). Of these genes, one element in particular, here called Md-PPO, located on chromosome 10, was further investigated and genetically mapped in two apple progenies ('Fuji x Pink Lady' and 'Golden Delicious x Braeburn'). Both linkage maps, made up of 481 and 608 markers respectively, were then employed to find QTL regions associated with fruit flesh browning, allowing the detection of 25 QTLs related to several browning parameters. These were distributed over six linkage groups with LOD values spanning from 3.08 to 4.99 and showed a rate of phenotypic variance from 26.1 to 38.6%. Anchoring of these intervals to the apple genome led to the identification of several genes involved in polyphenol synthesis and cell wall metabolism. Finally, the expression profile of two specific candidate genes, up and downstream of the polyphenolic pathway, namely phenylalanine ammonia lyase (PAL) and polyphenol oxidase (PPO), provided insight into flesh browning physiology. Md-PPO was further analyzed and two haplotypes were characterised and associated with fruit flesh browning in apple.

  17. A Multidisciplinary Approach Providing New Insight into Fruit Flesh Browning Physiology in Apple (Malus x domestica Borkh.)

    Science.gov (United States)

    Farneti, Brian; Lorenz, Giorgia; Masuero, Domenico; Vrhovsek, Urska; Costa, Guglielmo; Velasco, Riccardo; Costa, Fabrizio

    2013-01-01

    In terms of the quality of minimally processed fruit, flesh browning is fundamentally important in the development of an aesthetically unpleasant appearance, with consequent off-flavours. The development of browning depends on the enzymatic action of the polyphenol oxidase (PPO). In the ‘Golden Delicious’ apple genome ten PPO genes were initially identified and located on three main chromosomes (2, 5 and 10). Of these genes, one element in particular, here called Md-PPO, located on chromosome 10, was further investigated and genetically mapped in two apple progenies (‘Fuji x Pink Lady’ and ‘Golden Delicious x Braeburn’). Both linkage maps, made up of 481 and 608 markers respectively, were then employed to find QTL regions associated with fruit flesh browning, allowing the detection of 25 QTLs related to several browning parameters. These were distributed over six linkage groups with LOD values spanning from 3.08 to 4.99 and showed a rate of phenotypic variance from 26.1 to 38.6%. Anchoring of these intervals to the apple genome led to the identification of several genes involved in polyphenol synthesis and cell wall metabolism. Finally, the expression profile of two specific candidate genes, up and downstream of the polyphenolic pathway, namely phenylalanine ammonia lyase (PAL) and polyphenol oxidase (PPO), provided insight into flesh browning physiology. Md-PPO was further analyzed and two haplotypes were characterised and associated with fruit flesh browning in apple. PMID:24205065

  18. Polycrystalline deformation in engineering materials: Insights from neutron diffraction during loading

    International Nuclear Information System (INIS)

    Bourke, M.; Brown, D.

    1999-01-01

    In-situ measurements using the non-destructive penetration of neutrons are commonplace at neutron sources and permit investigations within environmental chambers at stress, pressure, or temperature. Many of these studies explore the microstructural performance of engineering materials under service conditions. For example, by measuring phase strains during the application of static loads, neutron diffraction provides insight into failure, relaxation and load transfer mechanisms. Mechanical loading of a sample on a neutron spectrometer is usually performed with a customized load frame (small enough to fit into the typically limited available space) with the load axis horizontal. Diffraction data are recorded using detectors that surround the sample and strains are determined from changes in the measured interplanar lattice spacings in directions determined by the scattering geometry. These elastic strains indicate how the applied stress is shared throughout the microstructure. During a test, conventional strain gauges also record the macroscopic strain; that is the sum of the plastic and elastic contributions. Beyond yield the plastic contribution usually dominates the total strain but the elastic phase strains respond to the applied stress at any given load and provide clues about which phase (in a multiphase system) or which crystal orientation (in a single phase polycrystal) dictates failure

  19. Hannay angle. Yet another symmetry-protected topological order parameter in classical mechanics

    International Nuclear Information System (INIS)

    Kariyado, Toshikaze; Hatsugai, Yasuhiro

    2016-01-01

    The topological way of thinking now goes beyond quantum solids, and topological characters of classical mechanical systems obeying Newton's law are attracting current interest. To provide a physical insight into the topological numbers in mechanics, we demonstrate the use of the Hannay angle, a “classical” Berry phase, as a symmetry-protected topological order parameter. The Hannay angle is derived using a canonical transformation that maps Newton's equation to a Schrödinger-type equation, and the condition for the quantization is discussed in connection with the symmetry in mechanics. Also, we demonstrate the use of the Hannay angle for a topological characterization of a spring-mass model focusing on the bulk-edge correspondence. (author)

  20. Molecular mechanics calculations on cobalt phthalocyanine dimers

    NARCIS (Netherlands)

    Heuts, J.P.A.; Schipper, E.T.W.M.; Piet, P.; German, A.L.

    1995-01-01

    In order to obtain insight into the structure of cobalt phthalocyanine dimers, molecular mechanics calculations were performed on dimeric cobalt phthalocyanine species. Molecular mechanics calculations are first presented on monomeric cobalt(II) phthalocyanine. Using the Tripos force field for the

  1. Unraveling the insight paradox: One-year longitudinal study on the relationships between insight, self-stigma, and life satisfaction among people with schizophrenia spectrum disorders.

    Science.gov (United States)

    Chio, Floria H N; Mak, Winnie W S; Chan, Randolph C H; Tong, Alan C Y

    2018-01-30

    The promotion of insight among people with schizophrenia spectrum disorders has posed a dilemma to service providers as higher insight has been linked to positive clinical outcomes but negative psychological outcomes. The negative meaning that people attached to the illness (self-stigma content) and the recurrence of such stigmatizing thoughts (self-stigma process) may explain why increased insight is associated with negative outcomes. The present study examined how the presence of high self-stigma content and self-stigma process may contribute to the negative association between insight and life satisfaction. A total of 181 people with schizophrenia spectrum disorders were assessed at baseline. 130 and 110 participants were retained and completed questionnaire at 6-month and 1-year follow-up, respectively. Results showed that baseline insight was associated with lower life satisfaction at 6-month when self-stigma process or self-stigma content was high. Furthermore, baseline insight was predictive of better life satisfaction at 1-year follow-up when self-stigma process was low. Findings suggested that the detrimental effects of insight can be a result from both the presence of cognitive content and habitual process of self-stigma. Future insight promotion interventions should also address self-stigma content and process among people with schizophrenia spectrum disorders so as to maximize the beneficial effects of insight. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Personal Perspectives on Providing Services to Foster Youth

    Science.gov (United States)

    Whitman, Kenyon L.

    2018-01-01

    Utilizing an academic capital framework and student perspectives, this chapter provides insight into the ways that programs and services can help students develop the skills needed to succeed in college.

  3. Proteomic analysis of FUS interacting proteins provides insights into FUS function and its role in ALS.

    Science.gov (United States)

    Kamelgarn, Marisa; Chen, Jing; Kuang, Lisha; Arenas, Alexandra; Zhai, Jianjun; Zhu, Haining; Gal, Jozsef

    2016-10-01

    Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease. Mutations in the Fused in Sarcoma/Translocated in Liposarcoma (FUS/TLS) gene cause a subset of familial ALS cases and are also implicated in sporadic ALS. FUS is typically localized to the nucleus. The ALS-related FUS mutations cause cytoplasmic mis-localization and the formation of stress granule-like structures. Abnormal cytoplasmic FUS localization was also found in a subset of frontotemporal dementia (FTLD) cases without FUS mutations. To better understand the function of FUS, we performed wild-type and mutant FUS pull-downs followed by proteomic identification of the interacting proteins. The FUS interacting partners we identified are involved in multiple pathways, including chromosomal organization, transcription, RNA splicing, RNA transport, localized translation, and stress response. FUS interacted with hnRNPA1 and Matrin-3, RNA binding proteins whose mutations were also reported to cause familial ALS, suggesting that hnRNPA1 and Matrin-3 may play common pathogenic roles with FUS. The FUS interactions displayed varied RNA dependence. Numerous FUS interacting partners that we identified are components of exosomes. We found that FUS itself was present in exosomes, suggesting that the secretion of FUS might contribute to the cell-to-cell spreading of FUS pathology. FUS interacting proteins were sequestered into the cytoplasmic mutant FUS inclusions that could lead to their mis-regulation or loss of function, contributing to ALS pathogenesis. Our results provide insights into the physiological functions of FUS as well as important pathways where mutant FUS can interfere with cellular processes and potentially contribute to the pathogenesis of ALS. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. How to Detect Insight Moments in Problem Solving Experiments

    Directory of Open Access Journals (Sweden)

    Ruben E. Laukkonen

    2018-03-01

    Full Text Available Arguably, it is not possible to study insight moments during problem solving without being able to accurately detect when they occur (Bowden and Jung-Beeman, 2007. Despite over a century of research on the insight moment, there is surprisingly little consensus on the best way to measure them in real-time experiments. There have also been no attempts to evaluate whether the different ways of measuring insight converge. Indeed, if it turns out that the popular measures of insight diverge, then this may indicate that researchers who have used one method may have been measuring a different phenomenon to those who have used another method. We compare the strengths and weaknesses of the two most commonly cited ways of measuring insight: The feelings-of-warmth measure adapted from Metcalfe and Wiebe (1987, and the self-report measure adapted from Bowden and Jung-Beeman (2007. We find little empirical agreement between the two measures, and conclude that the self-report measure of Aha! is superior both methodologically and theoretically, and provides a better representation of what is commonly regarded as insight. We go on to describe and recommend a novel visceral measure of insight using a dynamometer as described in Creswell et al. (2016.

  5. How to Detect Insight Moments in Problem Solving Experiments.

    Science.gov (United States)

    Laukkonen, Ruben E; Tangen, Jason M

    2018-01-01

    Arguably, it is not possible to study insight moments during problem solving without being able to accurately detect when they occur (Bowden and Jung-Beeman, 2007). Despite over a century of research on the insight moment, there is surprisingly little consensus on the best way to measure them in real-time experiments. There have also been no attempts to evaluate whether the different ways of measuring insight converge. Indeed, if it turns out that the popular measures of insight diverge , then this may indicate that researchers who have used one method may have been measuring a different phenomenon to those who have used another method. We compare the strengths and weaknesses of the two most commonly cited ways of measuring insight: The feelings-of-warmth measure adapted from Metcalfe and Wiebe (1987), and the self-report measure adapted from Bowden and Jung-Beeman (2007). We find little empirical agreement between the two measures, and conclude that the self-report measure of Aha! is superior both methodologically and theoretically, and provides a better representation of what is commonly regarded as insight. We go on to describe and recommend a novel visceral measure of insight using a dynamometer as described in Creswell et al. (2016).

  6. Payeeship, financial leverage, and the client-provider relationship.

    Science.gov (United States)

    Angell, Beth; Martinez, Noriko I; Mahoney, Colleen A; Corrigan, Patrick W

    2007-03-01

    Although representative payeeship provided within clinical settings is believed to have therapeutic benefits, its potential negative impact on the therapeutic alliance or client-provider relationship is of concern. This study examined the effects of payeeship and perceived financial leverage on positive and negative dimensions of the client-provider relationship. The sample consisted of 205 adults ages 18 to 65 with axis I disorders who were receiving mental health services from a large urban community mental health clinic. Information about money management characteristics and ratings of the client-provider relationship were collected via face-to-face interview. Fifty-three percent of the sample had a payee or money manager, and 79% of this group had a clinician payee. Respondents with co-occurring psychotic and substance use disorders, lower functioning, and lower insight about their illness were more likely to have a clinician payee. Forty percent of those with a clinician payee reported perceived financial leverage. Having a clinician payee was also associated with perceived financial leverage and with higher levels of conflict in the case management relationship. When examined in combination, financial leverage was found to mediate the effects of payeeship on conflict in the case management relationship (mean+/-SE=2.37+/-1.33, 95% confidence interval=16-5.52, pconflict in the therapeutic alliance when used as a source of treatment leverage. Although payeeship provides important support and may enhance functional outcomes for the patient, decisions about using the mechanism for promoting treatment adherence should take into account the potential disruption to the client-provider relationship.

  7. Epigenetic mechanisms in neurological disease.

    Science.gov (United States)

    Jakovcevski, Mira; Akbarian, Schahram

    2012-08-01

    The exploration of brain epigenomes, which consist of various types of DNA methylation and covalent histone modifications, is providing new and unprecedented insights into the mechanisms of neural development, neurological disease and aging. Traditionally, chromatin defects in the brain were considered static lesions of early development that occurred in the context of rare genetic syndromes, but it is now clear that mutations and maladaptations of the epigenetic machinery cover a much wider continuum that includes adult-onset neurodegenerative disease. Here, we describe how recent advances in neuroepigenetics have contributed to an improved mechanistic understanding of developmental and degenerative brain disorders, and we discuss how they could influence the development of future therapies for these conditions.

  8. Insights into the Reaction Mechanism of Aromatic Ring Cleavage by Homogentisate Dioxygenase: A Quantum Mechanical/Molecular Mechanical Study.

    Science.gov (United States)

    Qi, Yue; Lu, Jiarui; Lai, Wenzhen

    2016-05-26

    To elucidate the reaction mechanism of the ring cleavage of homogentisate by homogentisate dioxygenase, quantum mechanical/molecular mechanical (QM/MM) calculations were carried out by using two systems in different protonation states of the substrate C2 hydroxyl group. When the substrate C2 hydroxyl group is ionized (the ionized pathway), the superoxo attack on the substrate is the rate-limiting step in the catalytic cycle, with a barrier of 15.9 kcal/mol. Glu396 was found to play an important role in stabilizing the bridge species and its O-O cleavage product by donating a proton via a hydrogen-bonded water molecule. When the substrate C2 hydroxyl group is not ionized (the nonionized pathway), the O-O bond cleavage of the bridge species is the rate-limiting step, with a barrier of 15.3 kcal/mol. The QM/MM-optimized geometries for the dioxygen and alkylperoxo complexes using the nonionized model (for the C2 hydroxyl group) are in agreement with the experimental crystal structures, suggesting that the C2 hydroxyl group is more likely to be nonionized.

  9. THE AMAZING UNIVERSE OF RUSSIAN MULTINATIONALS: NEW INSIGHTS

    Directory of Open Access Journals (Sweden)

    CODRUŢA DURA

    2013-12-01

    Full Text Available Over the past few years, large multinational companies originating from Russia have shown outstanding performances alongside their road from regional dominance to global leaders. Taking stock of recent approaches in the literature and statistical data released by well-known international organizations, our papers aims to provide some new insights from the amazing universe of Russian multinationals, following the 2008-2009 global economic crisis. The list of the largest multinationals from Russia shows that corporations from oil & gas and metallurgical sector are prevailing, as a consequence of the resource – based character of the Russian economy. Although Russian giants represents a quite heterogeneous class of companies, they do share several common features such as their propel mechanism of expansion on the global business stage (leveraged by the resource-based nature of their home economy, their tendency to invest in the neighboring countries (like Commonwealth of Independent States or East European countries, their modes of entry (through brownfield projects etc.

  10. Figure-ground mechanisms provide structure for selective attention

    OpenAIRE

    Qiu, Fangtu T.; Sugihara, Tadashi; von der Heydt, Rüdiger

    2007-01-01

    Attention depends on figure-ground organization: figures draw attention, while shapes of the ground tend to be ignored. Recent research has demonstrated mechanisms of figure-ground organization in the visual cortex, but how they relate to the attention process remains unclear. Here we show that the influences of figure-ground organization and volitional (top-down) attention converge in single neurons of area V2. While assignment of border ownership was found for attended as well as for ignore...

  11. Theory of mind correlates with clinical insight but not cognitive insight in patients with schizophrenia.

    Science.gov (United States)

    Zhang, Qi; Li, Xu; Parker, Giverny J; Hong, Xiao-Hong; Wang, Yi; Lui, Simon S Y; Neumann, David L; Cheung, Eric F C; Shum, David H K; Chan, Raymond C K

    2016-03-30

    Research on the relationship between insight and social cognition, in particular Theory of Mind (ToM), in schizophrenia has yielded mixed findings to date. Very few studies, however, have assessed both clinical insight and cognitive insight when examining their relationships with ToM in schizophrenia. The current study thus investigated the relationship between clinical insight, cognitive insight, and ToM in a sample of 56 patients with schizophrenia and 30 healthy controls. Twenty-seven patients were classified as low in clinical insight according to their scores on the 'insight' item (G12) of the Positive and Negative Syndrome Scale (PANSS). Moreover, cognitive insight and ToM were assessed with the Beck Cognitive Insight Scale (BCIS) and the Yoni task, respectively. The results indicated that patients with poor clinical insight performed worse on tasks of second-order cognitive and affective ToM, while the ToM performance of patients with high clinical insight was equivalent to that of healthy controls. Furthermore, while clinical insight was correlated with ToM and clinical symptoms, cognitive insight did not correlate with clinical insight, ToM, or clinical symptoms. Clinical insight thus appears to be an important factor related to ToM in schizophrenia. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Genome-scale metabolic modeling to provide insight into the production of storage compounds during feast-famine cycles of activated sludge.

    Science.gov (United States)

    Tajparast, Mohammad; Frigon, Dominic

    2013-01-01

    Studying storage metabolism during feast-famine cycles of activated sludge treatment systems provides profound insight in terms of both operational issues (e.g., foaming and bulking) and process optimization for the production of value added by-products (e.g., bioplastics). We examined the storage metabolism (including poly-β-hydroxybutyrate [PHB], glycogen, and triacylglycerols [TAGs]) during feast-famine cycles using two genome-scale metabolic models: Rhodococcus jostii RHA1 (iMT1174) and Escherichia coli K-12 (iAF1260) for growth on glucose, acetate, and succinate. The goal was to develop the proper objective function (OF) for the prediction of the main storage compound produced in activated sludge for given feast-famine cycle conditions. For the flux balance analysis, combinations of three OFs were tested. For all of them, the main OF was to maximize growth rates. Two additional sub-OFs were used: (1) minimization of biochemical fluxes, and (2) minimization of metabolic adjustments (MoMA) between the feast and famine periods. All (sub-)OFs predicted identical substrate-storage associations for the feast-famine growth of the above-mentioned metabolic models on a given substrate when glucose and acetate were set as sole carbon sources (i.e., glucose-glycogen and acetate-PHB), in agreement with experimental observations. However, in the case of succinate as substrate, the predictions depended on the network structure of the metabolic models such that the E. coli model predicted glycogen accumulation and the R. jostii model predicted PHB accumulation. While the accumulation of both PHB and glycogen was observed experimentally, PHB showed higher dynamics during an activated sludge feast-famine growth cycle with succinate as substrate. These results suggest that new modeling insights between metabolic predictions and population ecology will be necessary to properly predict metabolisms likely to emerge within the niches of activated sludge communities. Nonetheless

  13. Early Age Fracture Mechanics and Cracking of Concrete

    DEFF Research Database (Denmark)

    Østergaard, Lennart

    2003-01-01

    . The reasons are the increased autogenous deformation, the high rate of heat evolution and a higher brittleness of these concretes. Due to these adverse mechanisms the interest in the full description of the behavior of early age concrete has increased dramatically in the last two or three decades. Almost all...... the fictitious crack model and the aim has been experimentally to determine the fracture mechanical properties related to this model. The results provide interesting and important insight into the development of the fracture properties in early age. It is found that the characteristic length has moments of low...... values in early age, which means that the cracking sensibility is higher at those time points. The possible influence of time-dependent effects in the fracture mechanical properties on the cracking behavior in early age has also been investigated. The reason for this has been the known fact...

  14. Temperature-modulated DSC provides new insight about nickel-titanium wire transformations.

    Science.gov (United States)

    Brantley, William A; Iijima, Masahiro; Grentzer, Thomas H

    2003-10-01

    Differential scanning calorimetry (DSC) is a well-known method for investigating phase transformations in nickel-titanium orthodontic wires; the microstructural phases and phase transformations in these wires have central importance for their clinical performance. The purpose of this study was to use the more recently developed technique of temperature-modulated DSC (TMDSC) to gain insight into transformations in 3 nickel-titanium orthodontic wires: Neo Sentalloy (GAC International, Islandia, NY), 35 degrees C Copper Ni-Ti (Ormco, Glendora, Calif) and Nitinol SE (3M Unitek, Monrovia, Calif). In the oral environment, the first 2 superelastic wires have shape memory, and the third wire has superelastic behavior but not shape memory. All wires had cross-section dimensions of 0.016 x 0.022 in. Archwires in the as-received condition and after bending 135 degrees were cut into 5 or 6 segments for test specimens. TMDSC analyses (Model 2910 DSC, TA Instruments, Wilmington, Del) were conducted between -125 degrees C and 100 degrees C, using a linear heating and cooling rate of 2 degrees C per min, an oscillation amplitude of 0.318 degrees C with a period of 60 seconds, and helium as the purge gas. For all 3 wire alloys, strong low-temperature martensitic transformations, resolved on the nonreversing heat-flow curves, were not present on the reversing heat-flow curves, and bending appeared to increase the enthalpy change for these peaks in some cases. For Neo Sentalloy, TMDSC showed that transformation between martensitic and austenitic nickel-titanium, suggested as occurring directly in the forward and reverse directions by conventional DSC, was instead a 2-step process involving the R-phase. Two-step transformations in the forward and reverse directions were also found for 35 degrees C Copper Ni-Ti and Nitinol SE. The TMDSC results show that structural transformations in these wires are complex. Some possible clinical implications of these observations are discussed.

  15. The temperature-dependent microstructure of PEDOT/PSS films: insights from morphological, mechanical and electrical analyses

    KAUST Repository

    Zhou, Jian

    2014-09-24

    Poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT/PSS) is a widely used conductive polymer in the field of flexible electronics. The ways its microstructure changes over a broad range of temperatures remain unclear. This paper describes microstructure changes at different temperatures and correlates the microstructure with its physical properties (mechanical and electrical). We used High-Angle Annular Dark-Field Scanning Electron Microscopy (HAADF-STEM) combined with electron energy loss spectroscopy (EELS) to determine the morphology and elemental atomic ratio of the film at different temperatures. These results together with the Atomic Force Microscopy (AFM) analysis provide the foundation for a model of how the temperature affects the microstructure of PEDOT/PSS. Moreover, dynamic mechanical analysis (DMA) and electrical characterization were performed to analyze the microstructure and physical property correlations.

  16. Ribavirin: recent insights into antiviral mechanisms of action.

    Science.gov (United States)

    Reyes, G R

    2001-09-01

    Ribavirin, a nucleoside analog, used in combination with interferon-alpha (IFN alpha) results in a substantial improvement in the sustained virologic response in chronic hepatitis C. Identified antiviral mechanisms of action for ribavirin include: (i) inhibition of viral encoded polymerases; (ii) inhibition of genomic RNA capping; and (iii) inhibition of cellular encoded enzymes that control de novo synthesis of purine nucleosides. More recently, ribavirin has been shown to engender a bias toward helper T-cell (CD4+) type 1 (Th1) cytokine responses in models of immunity. Recent detailed analysis has also shown that ribavirin can be utilized and incorporated by the polio viral polymerase into genomic and antigenomic transcripts, and is capable of base pairing with either UMP (uridine monophosphate) or CMP (cytidine monophosphate). This results in ribavirin-mediated mutagenesis of the viral genome and has the potential to push the virus beyond tolerable set points in its mutation rate, leading to an overall reduced fitness of the viral population. Of the many mechanisms of action demonstrated for ribavirin, the current clinical trials of selective inosine 5'-monophosphate dehydrogenase (IMPDH) inhibitors and immunomodulating agents in hepatitis may facilitate our understanding of what activity (if any) predominates when ribavirin is used in combination with IFN alpha.

  17. Measures of phylogenetic differentiation provide robust and complementary insights into microbial communities.

    Science.gov (United States)

    Parks, Donovan H; Beiko, Robert G

    2013-01-01

    High-throughput sequencing techniques have made large-scale spatial and temporal surveys of microbial communities routine. Gaining insight into microbial diversity requires methods for effectively analyzing and visualizing these extensive data sets. Phylogenetic β-diversity measures address this challenge by allowing the relationship between large numbers of environmental samples to be explored using standard multivariate analysis techniques. Despite the success and widespread use of phylogenetic β-diversity measures, an extensive comparative analysis of these measures has not been performed. Here, we compare 39 measures of phylogenetic β diversity in order to establish the relative similarity of these measures along with key properties and performance characteristics. While many measures are highly correlated, those commonly used within microbial ecology were found to be distinct from those popular within classical ecology, and from the recently recommended Gower and Canberra measures. Many of the measures are surprisingly robust to different rootings of the gene tree, the choice of similarity threshold used to define operational taxonomic units, and the presence of outlying basal lineages. Measures differ considerably in their sensitivity to rare organisms, and the effectiveness of measures can vary substantially under alternative models of differentiation. Consequently, the depth of sequencing required to reveal underlying patterns of relationships between environmental samples depends on the selected measure. Our results demonstrate that using complementary measures of phylogenetic β diversity can further our understanding of how communities are phylogenetically differentiated. Open-source software implementing the phylogenetic β-diversity measures evaluated in this manuscript is available at http://kiwi.cs.dal.ca/Software/ExpressBetaDiversity.

  18. A macaque's-eye view of human insertions and deletions: differences in mechanisms.

    Directory of Open Access Journals (Sweden)

    Erika M Kvikstad

    2007-09-01

    Full Text Available Insertions and deletions (indels cause numerous genetic diseases and lead to pronounced evolutionary differences among genomes. The macaque sequences provide an opportunity to gain insights into the mechanisms generating these mutations on a genome-wide scale by establishing the polarity of indels occurring in the human lineage since its divergence from the chimpanzee. Here we apply novel regression techniques and multiscale analyses to demonstrate an extensive regional indel rate variation stemming from local fluctuations in divergence, GC content, male and female recombination rates, proximity to telomeres, and other genomic factors. We find that both replication and, surprisingly, recombination are significantly associated with the occurrence of small indels. Intriguingly, the relative inputs of replication versus recombination differ between insertions and deletions, thus the two types of mutations are likely guided in part by distinct mechanisms. Namely, insertions are more strongly associated with factors linked to recombination, while deletions are mostly associated with replication-related features. Indel as a term misleadingly groups the two types of mutations together by their effect on a sequence alignment. However, here we establish that the correct identification of a small gap as an insertion or a deletion (by use of an outgroup is crucial to determining its mechanism of origin. In addition to providing novel insights into insertion and deletion mutagenesis, these results will assist in gap penalty modeling and eventually lead to more reliable genomic alignments.

  19. High Resolution Transmission Electron Microscope Observation of Zero-Strain Deformation Twinning Mechanisms in Ag

    Science.gov (United States)

    Liu, L.; Wang, J.; Gong, S. K.; Mao, S. X.

    2011-04-01

    We have observed a new deformation-twinning mechanism using the high resolution transmission electron microscope in polycrystalline Ag films, zero-strain twinning via nucleation, and the migration of a Σ3{112} incoherent twin boundary (ITB). This twinning mechanism produces a near zero macroscopic strain because the net Burgers vectors either equal zero or are equivalent to a Shockley partial dislocation. This observation provides new insight into the understanding of deformation twinning and confirms a previous hypothesis: detwinning could be accomplished via the nucleation and migration of Σ3{112} ITBs. The zero-strain twinning mechanism may be unique to low staking fault energy metals with implications for their deformation behavior.

  20. Insights into the Thiamine Diphosphate Enzyme Activation Mechanism: Computational Model for Transketolase Using a Quantum Mechanical/Molecular Mechanical Method.

    Science.gov (United States)

    Nauton, Lionel; Hélaine, Virgil; Théry, Vincent; Hecquet, Laurence

    2016-04-12

    We propose the first computational model for transketolase (TK), a thiamine diphosphate (ThDP)-dependent enzyme, using a quantum mechanical/molecular mechanical method on the basis of crystallographic TK structures from yeast and Escherichia coli, together with experimental kinetic data reported in the literature with wild-type and mutant TK. This model allowed us to define a new route for ThDP activation in the enzyme environment. We evidenced a strong interaction between ThDP and Glu418B of the TK active site, itself stabilized by Glu162A. The crucial point highlighted here is that deprotonation of ThDP C2 is not performed by ThDP N4' as reported in the literature, but by His481B, involving a HOH688A molecule bridge. Thus, ThDP N4' is converted from an amino form to an iminium form, ensuring the stabilization of the C2 carbanion or carbene. Finally, ThDP activation proceeds via an intermolecular process and not by an intramolecular one as reported in the literature. More generally, this proposed ThDP activation mechanism can be applied to some other ThDP-dependent enzymes and used to define the entire TK mechanism with donor and acceptor substrates more accurately.

  1. Structure and mechanisms of Escherichia coli aspartate transcarbamoylase.

    Science.gov (United States)

    Lipscomb, William N; Kantrowitz, Evan R

    2012-03-20

    Enzymes catalyze a particular reaction in cells, but only a few control the rate of this reaction and the metabolic pathway that follows. One specific mechanism for such enzymatic control of a metabolic pathway involves molecular feedback, whereby a metabolite further down the pathway acts at a unique site on the control enzyme to alter its activity allosterically. This regulation may be positive or negative (or both), depending upon the particular system. Another method of enzymatic control involves the cooperative binding of the substrate, which allows a large change in enzyme activity to emanate from only a small change in substrate concentration. Allosteric regulation and homotropic cooperativity are often known to involve significant conformational changes in the structure of the protein. Escherichia coli aspartate transcarbamoylase (ATCase) is the textbook example of an enzyme that regulates a metabolic pathway, namely, pyrimidine nucleotide biosynthesis, by feedback control and by the cooperative binding of the substrate, L-aspartate. The catalytic and regulatory mechanisms of this enzyme have been extensively studied. A series of X-ray crystal structures of the enzyme in the presence and absence of substrates, products, and analogues have provided details, at the molecular level, of the conformational changes that the enzyme undergoes as it shifts between its low-activity, low-affinity form (T state) to its high-activity, high-affinity form (R state). These structural data provide insights into not only how this enzyme catalyzes the reaction between l-aspartate and carbamoyl phosphate to form N-carbamoyl-L-aspartate and inorganic phosphate, but also how the allosteric effectors modulate this activity. In this Account, we summarize studies on the structure of the enzyme and describe how these structural data provide insights into the catalytic and regulatory mechanisms of the enzyme. The ATCase-catalyzed reaction is regulated by nucleotide binding some 60

  2. Controlling Hydrogel Mechanics via Bio-Inspired Polymer-Nanoparticle Bond Dynamics.

    Science.gov (United States)

    Li, Qiaochu; Barrett, Devin G; Messersmith, Phillip B; Holten-Andersen, Niels

    2016-01-26

    Interactions between polymer molecules and inorganic nanoparticles can play a dominant role in nanocomposite material mechanics, yet control of such interfacial interaction dynamics remains a significant challenge particularly in water. This study presents insights on how to engineer hydrogel material mechanics via nanoparticle interface-controlled cross-link dynamics. Inspired by the adhesive chemistry in mussel threads, we have incorporated iron oxide nanoparticles (Fe3O4 NPs) into a catechol-modified polymer network to obtain hydrogels cross-linked via reversible metal-coordination bonds at Fe3O4 NP surfaces. Unique material mechanics result from the supra-molecular cross-link structure dynamics in the gels; in contrast to the previously reported fluid-like dynamics of transient catechol-Fe(3+) cross-links, the catechol-Fe3O4 NP structures provide solid-like yet reversible hydrogel mechanics. The structurally controlled hierarchical mechanics presented here suggest how to develop hydrogels with remote-controlled self-healing dynamics.

  3. Process assessment associated to microbial community response provides insight on possible mechanism of waste activated sludge digestion under typical chemical pretreatments

    DEFF Research Database (Denmark)

    Zhou, Aijuan; Zhang, Jiaguang; Varrone, Cristiano

    2017-01-01

    was dominated by microorganisms that anaerobically hydrolyze organics to acids, while that in NaOH and SDS was mainly associated to biogas production. This study proved that the overall performance of WAS digestion was substantially depended on the initial chemical pretreatments, which in turn influenced...... and was related to the microbial community structures. Although the economic advantage might not be clear yet, the findings obtained in this work may provide a scientific basis for the potential implementation of chemicals for WAS treatment....

  4. Insight into Resolution Enhancement in Generalized Two-Dimensional Correlation Spectroscopy

    OpenAIRE

    Ma, Lu; Sikirzhytski, Vitali; Hong, Zhenmin; Lednev, Igor K.; Asher, Sanford A.

    2013-01-01

    Generalized two-dimensional correlation spectroscopy (2D COS) can be used to enhance spectral resolution in order to help differentiate highly overlapped spectral bands. Despite the numerous extensive 2D COS investigations, the origin of the 2D spectral resolution enhancement mechanism(s) are not completely understood. In the work here we studied the 2D COS of simulated spectra in order to develop new insights into the dependence of the 2D COS spectral features on the overlapping band separat...

  5. Lung injury and respiratory mechanics in rugby union.

    Science.gov (United States)

    Lindsay, Angus; Bernard, Angelique; Davidson, Shaun M; Redmond, Daniel P; Chiew, Yeong S; Pretty, Christopher; Chase, J Geoffrey; Shaw, Geoffrey M; Gieseg, Steven P; Draper, Nick

    2016-04-01

    Rugby is a highly popular team contact sport associated with high injury rates. Specifically, there is a chance of inducing internal lung injuries as a result of the physical nature of the game. Such injuries are only identified with the use of specific invasive protocols or equipment. This study presents a model-based method to assess respiratory mechanics of N=11 rugby players that underwent a low intensity experimental Mechanical Ventilation (MV) Test before and after a rugby game. Participants were connected to a ventilator via a facemask and their respiratory mechanics estimated using a time-varying elastance model. All participants had a respiratory elastance respiratory mechanics (P>0.05). Model-based respiratory mechanics estimation has been used widely in the treatment of the critically ill in intensive care. However, the application of a ventilator to assess the respiratory mechanics of healthy human beings is limited. This method adapted from ICU mechanical ventilation can be used to provide insight to respiratory mechanics of healthy participants that can be used as a more precise measure of lung inflammation/injury that avoids invasive procedures. This is the first study to conceptualize the assessment of respiratory mechanics in healthy athletes as a means to monitor postexercise stress and therefore manage recovery.

  6. Advance of Mechanically Controllable Break Junction for Molecular Electronics.

    Science.gov (United States)

    Wang, Lu; Wang, Ling; Zhang, Lei; Xiang, Dong

    2017-06-01

    Molecular electronics stands for the ultimate size of functional elements, keeping up with an unstoppable trend over the past few decades. As a vital component of molecular electronics, single molecular junctions have attracted significant attention from research groups all over the world. Due to its pronounced superiority, the mechanically controllable break junctions (MCBJ) technique has been widely applied to characterize the dynamic performance of single molecular junctions. This review presents a system analysis for single-molecule junctions and offers an overview of four test-beds for single-molecule junctions, thus offering more insight into the mechanisms of electron transport. We mainly focus on the development of state-of-the-art mechanically controlled break junctions. The three-terminal gated MCBJ approaches are introduced to manipulate the electron transport of molecules, and MCBJs are combined with characterization techniques. Additionally, applications of MCBJs and remarkable properties of single molecules are addressed. Finally, the challenges and perspective for the mechanically controllable break junctions technique are provided.

  7. Generalized statistical mechanics approaches to earthquakes and tectonics

    Science.gov (United States)

    Papadakis, Giorgos; Michas, Georgios

    2016-01-01

    Despite the extreme complexity that characterizes the mechanism of the earthquake generation process, simple empirical scaling relations apply to the collective properties of earthquakes and faults in a variety of tectonic environments and scales. The physical characterization of those properties and the scaling relations that describe them attract a wide scientific interest and are incorporated in the probabilistic forecasting of seismicity in local, regional and planetary scales. Considerable progress has been made in the analysis of the statistical mechanics of earthquakes, which, based on the principle of entropy, can provide a physical rationale to the macroscopic properties frequently observed. The scale-invariant properties, the (multi) fractal structures and the long-range interactions that have been found to characterize fault and earthquake populations have recently led to the consideration of non-extensive statistical mechanics (NESM) as a consistent statistical mechanics framework for the description of seismicity. The consistency between NESM and observations has been demonstrated in a series of publications on seismicity, faulting, rock physics and other fields of geosciences. The aim of this review is to present in a concise manner the fundamental macroscopic properties of earthquakes and faulting and how these can be derived by using the notions of statistical mechanics and NESM, providing further insights into earthquake physics and fault growth processes. PMID:28119548

  8. Shooting mechanisms in Nature : A systematic review

    NARCIS (Netherlands)

    Sakes, A.; van der Wiel, M.; Henselmans, P.W.J.; van Leeuwen, J.L.; Dodou, D.; Breedveld, P.

    2016-01-01

    Background
    In nature, shooting mechanisms are used for a variety of purposes, including prey capture, defense, and reproduction. This review offers insight into the working principles of shooting mechanisms in fungi, plants, and animals in the light of the specific functional demands that these

  9. Biochemical and Structural Insights into the Mechanism of DNA Recognition by Arabidopsis ETHYLENE INSENSITIVE3.

    Directory of Open Access Journals (Sweden)

    Jinghui Song

    Full Text Available Gaseous hormone ethylene regulates numerous stress responses and developmental adaptations in plants by controlling gene expression via transcription factors ETHYLENE INSENSITIVE3 (EIN3 and EIN3-Like1 (EIL1. However, our knowledge regarding to the accurate definition of DNA-binding domains (DBDs within EIN3 and also the mechanism of specific DNA recognition by EIN3 is limited. Here, we identify EIN3 82-352 and 174-306 as the optimal and core DBDs, respectively. Results from systematic biochemical analyses reveal that both the number of EIN3-binding sites (EBSs and the spacing length between two EBSs affect the binding affinity of EIN3; accordingly, a new DNA probe which has higher affinity with EIN3 than ERF1 is also designed. Furthermore, we show that palindromic repeat sequences in ERF1 promoter are not necessary for EIN3 binding. Finally, we provide, to our knowledge, the first crystal structure of EIN3 core DBD, which contains amino acid residues essential for DNA binding and signaling. Collectively, these data suggest the detailed mechanism of DNA recognition by EIN3 and provide an in-depth view at molecular level for the transcriptional regulation mediated by EIN3.

  10. Solid recovered fuel production through the mechanical-biological treatment of wastes

    OpenAIRE

    Velis, C. A.

    2010-01-01

    This thesis is concerned with the production of solid recovered fuel (SRF) from municipal solid waste using mechanical biological treatment (MBT) plants. It describes the first in-depth analysis of a UK MBT plant and addresses the fundamental research question: are MBT plants and their unit operations optimised to produce high quality SRF in the UK? A critical review of the process science and engineering of MBT provides timely insights into the quality management and standa...

  11. Binding of Myomesin to Obscurin-Like-1 at the Muscle M-Band Provides a Strategy for Isoform-Specific Mechanical Protection.

    Science.gov (United States)

    Pernigo, Stefano; Fukuzawa, Atsushi; Beedle, Amy E M; Holt, Mark; Round, Adam; Pandini, Alessandro; Garcia-Manyes, Sergi; Gautel, Mathias; Steiner, Roberto A

    2017-01-03

    The sarcomeric cytoskeleton is a network of modular proteins that integrate mechanical and signaling roles. Obscurin, or its homolog obscurin-like-1, bridges the giant ruler titin and the myosin crosslinker myomesin at the M-band. Yet, the molecular mechanisms underlying the physical obscurin(-like-1):myomesin connection, important for mechanical integrity of the M-band, remained elusive. Here, using a combination of structural, cellular, and single-molecule force spectroscopy techniques, we decode the architectural and functional determinants defining the obscurin(-like-1):myomesin complex. The crystal structure reveals a trans-complementation mechanism whereby an incomplete immunoglobulin-like domain assimilates an isoform-specific myomesin interdomain sequence. Crucially, this unconventional architecture provides mechanical stability up to forces of ∼135 pN. A cellular competition assay in neonatal rat cardiomyocytes validates the complex and provides the rationale for the isoform specificity of the interaction. Altogether, our results reveal a novel binding strategy in sarcomere assembly, which might have implications on muscle nanomechanics and overall M-band organization. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  12. Electron-beam-induced current measurements with applied bias provide insight to locally resolved acceptor concentrations at p-n junctions

    Directory of Open Access Journals (Sweden)

    D. Abou-Ras

    2015-07-01

    Full Text Available Electron-beam-induced current (EBIC measurements have been employed for the investigation of the local electrical properties existing at various types of electrical junctions during the past decades. In the standard configuration, the device under investigation is analyzed under short-circuit conditions. Further insight into the function of the electrical junction can be obtained when applying a bias voltage. The present work gives insight into how EBIC measurements at applied bias can be conducted at the submicrometer level, at the example of CuInSe2 solar cells. From the EBIC profiles acquired across ZnO/CdS/CuInSe2/Mo stacks exhibiting p-n junctions with different net doping densities in the CuInSe2 layers, values for the width of the space-charge region, w, were extracted. For all net doping densities, these values decreased with increasing applied voltage. Assuming a linear relationship between w2 and the applied voltage, the resulting net doping densities agreed well with the ones obtained by means of capacitance-voltage measurements.

  13. A further insight into the biosorption mechanism of Pt(IV by infrared spectrometry

    Directory of Open Access Journals (Sweden)

    Xu Zhenling

    2009-07-01

    Full Text Available Abstract Background Platinum nanomaterial is one of the significant noble metal catalysts, and the interaction of platinum with microbe is one of the key factors in influencing the size and the distribution of the platinum nanoparticles on the microbial biomass. Some properties of Pt(IV adsorption and reduction by resting cells of Bacillus megatherium D01 biomass have once been investigated, still the mechanism active in the platinum biosorption remains to be seen and requires further elucidating. Result A further insight into the biosorption mechanism of Pt(IV onto resting cells of Bacillus megatherium D02 biomass on a molecular level has been obtained. The image of scanning electron microscopy (SEM of the D02 biomass challenged with Pt(IV displayed a clear distribution of bioreduced platinum particles with sizes of nanometer scale on the biomass. The state of Pt(IV bioreduced to elemental Pt(0 examined via X-ray photoelectron spectroscopy (XPS suggested that the biomass reduces the Pt(IV to Pt(II followed by a slower reduction to Pt(0. The analysis of glucose content in the hydrolysates of D02 biomass for different time intervals using ultraviolet-visible (UV-vis spectrophotometry indicated that certain reducing sugars occur in the hydrolyzed biomass and that the hydrolysis of polysaccharides of the biomass is a rapid process. The infrared (IR spectrometry on D02 biomass and that challenged with Pt(IV, and on glucose and that reacted with Pt(IV demonstrated that the interaction of the biomass with Pt(IV seems to be through oxygenous or nitrogenous chemical functional groups on the cell wall biopolymers; that the potential binding sites for Pt species include hydroxyl of saccharides, carboxylate anion and carboxyl of amino acid residues, peptide bond, etc.; and that the free monosaccharic group bearing hemiacetalic hydroxyl from the hydrolyzed biomass behaving as an electron donor, in situ reduces the Pt(IV to Pt(0. And moreover, the binding of

  14. On the dynamic mechanical property and deformation mechanism of as-extruded Mg-Sn-Ca alloys under tension

    International Nuclear Information System (INIS)

    Huang, Qiuyan; Pan, Hucheng; Tang, Aitao; Ren, Yuping; Song, Bo; Qin, Gaowu; Zhang, Mingxing; Pan, Fusheng

    2016-01-01

    To further understand the deformation mechanism of magnesium alloys and expand their applications under dynamic conditions, the newly developed Mg-2Sn-1Ca alloy (TX21) is selected as the representative sample and tested under wide loading rate ranging from quasi-static to dynamic level (10"−"3–500/s). Both ultimate tensile strength and elongation of the as-extruded TX21 alloys increase with strain rate. Although twinning is accompanied due to the enhanced activity at higher strain rate, the preferential activation of dislocations is readily clarified and confirmed as the dominant deformation modes. Active interactions of pyramidal dislocations result in the higher strain hardening ability and could be correlated to the obviously positive strain-rate sensitivity for mechanical properties. Moreover, it is observed that the larger grain size and higher content of solute atoms dissolved in matrix would lead to the more active dislocations and twinning formations. The present results would provide insight into further understanding the deformation mechanism under dynamic rate loading and designing Mg alloy suitable for impact conditions.

  15. On the dynamic mechanical property and deformation mechanism of as-extruded Mg-Sn-Ca alloys under tension

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Qiuyan [National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China); Pan, Hucheng [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110819 (China); Tang, Aitao, E-mail: tat@cqu.edu.cn [National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China); Ren, Yuping [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110819 (China); Song, Bo [Faculty of Materials and Energy, Southwest University, Chongqing 400715 (China); Qin, Gaowu, E-mail: qingw@smm.neu.edu.cn [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110819 (China); Zhang, Mingxing [School of Mechanical and Mining Engineering, University of Queensland, St Lucia, QLD 4072 (Australia); Pan, Fusheng [National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China)

    2016-05-10

    To further understand the deformation mechanism of magnesium alloys and expand their applications under dynamic conditions, the newly developed Mg-2Sn-1Ca alloy (TX21) is selected as the representative sample and tested under wide loading rate ranging from quasi-static to dynamic level (10{sup −3}–500/s). Both ultimate tensile strength and elongation of the as-extruded TX21 alloys increase with strain rate. Although twinning is accompanied due to the enhanced activity at higher strain rate, the preferential activation of dislocations is readily clarified and confirmed as the dominant deformation modes. Active interactions of pyramidal dislocations result in the higher strain hardening ability and could be correlated to the obviously positive strain-rate sensitivity for mechanical properties. Moreover, it is observed that the larger grain size and higher content of solute atoms dissolved in matrix would lead to the more active dislocations and twinning formations. The present results would provide insight into further understanding the deformation mechanism under dynamic rate loading and designing Mg alloy suitable for impact conditions.

  16. Insight Is Not in the Problem: Investigating Insight in Problem Solving across Task Types.

    Science.gov (United States)

    Webb, Margaret E; Little, Daniel R; Cropper, Simon J

    2016-01-01

    The feeling of insight in problem solving is typically associated with the sudden realization of a solution that appears obviously correct (Kounios et al., 2006). Salvi et al. (2016) found that a solution accompanied with sudden insight is more likely to be correct than a problem solved through conscious and incremental steps. However, Metcalfe (1986) indicated that participants would often present an inelegant but plausible (wrong) answer as correct with a high feeling of warmth (a subjective measure of closeness to solution). This discrepancy may be due to the use of different tasks or due to different methods in the measurement of insight (i.e., using a binary vs. continuous scale). In three experiments, we investigated both findings, using many different problem tasks (e.g., Compound Remote Associates, so-called classic insight problems, and non-insight problems). Participants rated insight-related affect (feelings of Aha-experience, confidence, surprise, impasse, and pleasure) on continuous scales. As expected we found that, for problems designed to elicit insight, correct solutions elicited higher proportions of reported insight in the solution compared to non-insight solutions; further, correct solutions elicited stronger feelings of insight compared to incorrect solutions.

  17. Local immunological mechanisms of sublingual immunotherapy.

    Science.gov (United States)

    Allam, Jean-Pierre; Novak, Natalija

    2011-12-01

    To summarize novel insights into the immunological mechanisms of sublingual immunotherapy (SLIT). Within the recent decades, several alternative noninvasive allergen application strategies have been investigated in allergen-specific immunotherapy (AIT), of which intra-oral allergen application to sublingual mucosa has been proven to be well tolerated and effective. To date, SLIT is widely accepted by most allergists as an alternative option to conventional subcutaneous immunotherapy (SCIT). Although detailed immunological mechanisms remain to be elucidated, much scientific effort has been made to shed some light on local and systemic immunological responses to SLIT in mice as well as humans. Only a few studies focused on the detailed mechanisms following allergen application to the oral mucosa as part of the sophisticated mucosal immunological network. Within this network, the pro-tolerogenic properties of local antigen-presenting cells (APCs) such as dendritic cells - which are able to enforce tolerogenic mechanisms and to induce T-cell immune responses - play a central role. Further on, basic research focused not only on the immune response in nasal and bronchial mucosa but also on the systemic T-cell immune response. Thus, much exiting data have been published providing a better understanding of immunological features of SLIT but far more investigations are necessary to uncover further exciting details on the key mechanisms of SLIT.

  18. Sex Change in Clownfish: Molecular Insights from Transcriptome Analysis

    KAUST Repository

    Casas, Laura

    2016-10-17

    Sequential hermaphroditism is a unique reproductive strategy among teleosts that is displayed mainly in fish species living in the coral reef environment. The reproductive biology of hermaphrodites has long been intriguing; however, very little is known about the molecular pathways underlying their sex change. Here, we provide the first de novo transcriptome analyses of a hermaphrodite teleost´s undergoing sex change in its natural environment. Our study has examined relative gene expression across multiple groups—rather than just two contrasting conditions— and has allowed us to explore the differential expression patterns throughout the whole process. Our analysis has highlighted the rapid and complex genomic response of the brain associated with sex change, which is subsequently transmitted to the gonads, identifying a large number of candidate genes, some well-known and some novel, involved in the process. The present study provides strong evidence of the importance of the sex steroidogenic machinery during sex change in clownfish, with the aromatase gene playing a central role, both in the brain and the gonad. This work constitutes the first genome-wide study in a social sex-changing species and provides insights into the genetic mechanism governing social sex change and gonadal restructuring in protandrous hermaphrodites.

  19. The Complete Genome Sequence of the Fish Pathogen Tenacibaculum maritimum Provides Insights into Virulence Mechanisms

    Directory of Open Access Journals (Sweden)

    David Pérez-Pascual

    2017-08-01

    Full Text Available Tenacibaculum maritimum is a devastating bacterial pathogen of wild and farmed marine fish with a broad host range and a worldwide distribution. We report here the complete genome sequence of the T. maritimum type strain NCIMB 2154T. The genome consists of a 3,435,971-base pair circular chromosome with 2,866 predicted protein-coding genes. Genes encoding the biosynthesis of exopolysaccharides, the type IX secretion system, iron uptake systems, adhesins, hemolysins, proteases, and glycoside hydrolases were identified. They are likely involved in the virulence process including immune escape, invasion, colonization, destruction of host tissues, and nutrient scavenging. Among the predicted virulence factors, type IX secretion-mediated and cell-surface exposed proteins were identified including an atypical sialidase, a sphingomyelinase and a chondroitin AC lyase which activities were demonstrated in vitro.

  20. Risk insights from seismic margin reviews

    International Nuclear Information System (INIS)

    Budnitz, R.J.

    1990-01-01

    This paper discusses the information that has been derived from the three seismic-margin reviews conducted so far, and the information that is potentially available from using the seismic-margin method more generally. There are two different methodologies for conducting seismic margin reviews of nuclear power plants, one developed under NRC sponsorship and one developed under sponsorship of the Electric Power Research Institute. Both methodologies will be covered in this paper. The paper begins with a summary of the steps necessary to complete a margin review, and will then outline the key technical difficulties that need to be addressed. After this introduction, the paper covers the safety and operational insights derived from the three seismic-margin reviews already completed: the NRC-sponsored review at Maine Yankee; the EPRI-sponsored review at Catawba; and the joint EPRI/NRC/utility effort at Hatch. The emphasis is on engineering insights, with attention to the aspects of the reviews that are easiest to perform and that provide the most readily available insights

  1. 4p16.3 microdeletions and microduplications detected by chromosomal microarray analysis: New insights into mechanisms and critical regions.

    Science.gov (United States)

    Bi, Weimin; Cheung, Sau-Wai; Breman, Amy M; Bacino, Carlos A

    2016-10-01

    Deletions in the 4p16.3 region cause Wolf-Hirschhorn syndrome, a well known contiguous microdeletion syndrome with the critical region for common phenotype mapped in WHSCR2. Recently, duplications in 4p16.3 were reported in three patients with developmental delay and dysmorphic features. Through chromosomal microarray analysis, we identified 156 patients with a deletion (n = 109) or duplication (n = 47) in 4p16.3 out of approximately 60,000 patients analyzed by Baylor Miraca Genetics Laboratories. Seventy-five of the postnatally detected deletions encompassed the entire critical region, 32 (43%) of which were associated with other chromosome rearrangements, including six patients (8%) that had a duplication adjacent to the terminal deletion. Our data indicate that Wolf-Hirschhorn syndrome deletions with an adjacent duplication occur at a higher frequency than previously appreciated. Pure deletions (n = 14) or duplications (n = 15) without other copy number changes distal to or inside the WHSCR2 were identified for mapping of critical regions. Our data suggest that deletion of the segment from 0.6 to 0.9 Mb from the terminus of 4p causes a seizure phenotype and duplications of a region distal to the previously defined smallest region of overlap for 4p16.3 microduplication syndrome are associated with neurodevelopmental problems. We detected seven Wolf-Hirschhorn syndrome deletions and one 4p16.3 duplication prenatally; all of the seven are either >8 Mb in size and/or associated with large duplications. In conclusion, our study provides deeper insight into the molecular mechanisms, the critical regions and effective prenatal diagnosis for 4p16.3 deletions/ duplications. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Molecular details of secretory phospholipase A2 from flax (Linum usitatissimum L.) provide insight into its structure and function.

    Science.gov (United States)

    Gupta, Payal; Dash, Prasanta K

    2017-09-11

    Secretory phospholipase A 2 (sPLA 2 ) are low molecular weight proteins (12-18 kDa) involved in a suite of plant cellular processes imparting growth and development. With myriad roles in physiological and biochemical processes in plants, detailed analysis of sPLA 2 in flax/linseed is meagre. The present work, first in flax, embodies cloning, expression, purification and molecular characterisation of two distinct sPLA 2 s (I and II) from flax. PLA 2 activity of the cloned sPLA 2 s were biochemically assayed authenticating them as bona fide phospholipase A 2 . Physiochemical properties of both the sPLA 2 s revealed they are thermostable proteins requiring di-valent cations for optimum activity.While, structural analysis of both the proteins revealed deviations in the amino acid sequence at C- & N-terminal regions; hydropathic study revealed LusPLA 2 I as a hydrophobic protein and LusPLA 2 II as a hydrophilic protein. Structural analysis of flax sPLA 2 s revealed that secondary structure of both the proteins are dominated by α-helix followed by random coils. Modular superimposition of LusPLA 2 isoforms with rice sPLA 2 confirmed monomeric structural preservation among plant phospholipase A 2 and provided insight into structure of folded flax sPLA 2 s.

  3. The Early Stages of Heart Development: Insights from Chicken Embryos

    Directory of Open Access Journals (Sweden)

    Johannes G. Wittig

    2016-04-01

    Full Text Available The heart is the first functioning organ in the developing embryo and a detailed understanding of the molecular and cellular mechanisms involved in its formation provides insights into congenital malformations affecting its function and therefore the survival of the organism. Because many developmental mechanisms are highly conserved, it is possible to extrapolate from observations made in invertebrate and vertebrate model organisms to humans. This review will highlight the contributions made through studying heart development in avian embryos, particularly the chicken. The major advantage of chick embryos is their accessibility for surgical manipulation and functional interference approaches, both gain- and loss-of-function. In addition to experiments performed in ovo, the dissection of tissues for ex vivo culture, genomic, or biochemical approaches is straightforward. Furthermore, embryos can be cultured for time-lapse imaging, which enables tracking of fluorescently labeled cells and detailed analysis of tissue morphogenesis. Owing to these features, investigations in chick embryos have led to important discoveries, often complementing genetic studies in mice and zebrafish. As well as including some historical aspects, we cover here some of the crucial advances made in understanding early heart development using the chicken model.

  4. Search and Coherence-Building in Intuition and Insight Problem Solving

    Directory of Open Access Journals (Sweden)

    Michael Öllinger

    2017-05-01

    Full Text Available Coherence-building is a key concept for a better understanding of the underlying mechanisms of intuition and insight problem solving. There are several accounts that address certain aspects of coherence-building. However, there is still no proper framework defining the general principles of coherence-building. We propose a four-stage model of coherence-building. The first stage starts with spreading activation restricted by constraints. This dynamic is a well-defined rule based process. The second stage is characterized by detecting a coherent state. We adopted a fluency account assuming that the ease of information processing indicates the realization of a coherent state. The third stage is designated to evaluate the result of the coherence-building process and assess whether the given problem is solved or not. If the coherent state does not fit the requirements of the task, the process re-enters at stage 1. These three stages characterize intuition. For insight problem solving a fourth stage is necessary, which restructures the given representation after repeated failure, so that a new search space results. The new search space enables new coherent states. We provide a review of the most important findings, outline our model, present a large number of examples, deduce potential new paradigms and measures that might help to decipher the underlying cognitive processes.

  5. Insights into teaching quantum mechanics in secondary and lower undergraduate education

    NARCIS (Netherlands)

    Krijtenburg-Lewerissa, Kim; Pol, Hendrik Jan; Brinkman, Alexander; van Joolingen, Wouter

    2017-01-01

    This study presents a review of the current state of research on teaching quantum mechanics in secondary and lower undergraduate education. A conceptual approach to quantum mechanics is being implemented in more and more introductory physics courses around the world. Because of the differences

  6. New Insights on plant salt tolerance mechanisms and their potential use for breeding

    Directory of Open Access Journals (Sweden)

    Moez HANIN

    2016-11-01

    Full Text Available Soil salinization is a major threat to agriculture in arid and semi-arid regions, where water scarcity and inadequate drainage of irrigated lands severely reduce crop yield. Salt accumulation inhibits plant growth and reduces the ability to uptake water and nutrients, leading to osmotic or water-deficit stress. Salt is also causing injury of the young photosynthetic leaves and acceleration of their senescence, as the Na+ cation is toxic when accumulating in cell cytosol resulting in ionic imbalance and toxicity of transpiring leaves. To cope with salt stress, plants have evolved mainly two types of tolerance mechanisms based on either limiting the entry of salt by the roots, or controlling its concentration and distribution. Understanding the overall control of Na+ accumulation and functional studies of genes involved in transport processes, will provide a new opportunity to improve the salinity tolerance of plants relevant to food security in arid regions. A better understanding of these tolerance mechanisms can be used to breed crops with improved yield performance under salinity stress. Moreover, associations of cultures with nitrogen-fixing bactéria and arbuscular mycorrhizal fungi could serve as an alternative and sustainable strategy to increase crop yields in salt affected fields.

  7. Mitochondrial Ca2+ overload underlies Abeta oligomers neurotoxicity providing an unexpected mechanism of neuroprotection by NSAIDs.

    Directory of Open Access Journals (Sweden)

    Sara Sanz-Blasco

    Full Text Available Dysregulation of intracellular Ca(2+ homeostasis may underlie amyloid beta peptide (Abeta toxicity in Alzheimer's Disease (AD but the mechanism is unknown. In search for this mechanism we found that Abeta(1-42 oligomers, the assembly state correlating best with cognitive decline in AD, but not Abeta fibrils, induce a massive entry of Ca(2+ in neurons and promote mitochondrial Ca(2+ overload as shown by bioluminescence imaging of targeted aequorin in individual neurons. Abeta oligomers induce also mitochondrial permeability transition, cytochrome c release, apoptosis and cell death. Mitochondrial depolarization prevents mitochondrial Ca(2+ overload, cytochrome c release and cell death. In addition, we found that a series of non-steroidal anti-inflammatory drugs (NSAIDs including salicylate, sulindac sulfide, indomethacin, ibuprofen and R-flurbiprofen depolarize mitochondria and inhibit mitochondrial Ca(2+ overload, cytochrome c release and cell death induced by Abeta oligomers. Our results indicate that i mitochondrial Ca(2+ overload underlies the neurotoxicity induced by Abeta oligomers and ii inhibition of mitochondrial Ca(2+ overload provides a novel mechanism of neuroprotection by NSAIDs against Abeta oligomers and AD.

  8. Mitochondrial Ca2+ overload underlies Abeta oligomers neurotoxicity providing an unexpected mechanism of neuroprotection by NSAIDs.

    Science.gov (United States)

    Sanz-Blasco, Sara; Valero, Ruth A; Rodríguez-Crespo, Ignacio; Villalobos, Carlos; Núñez, Lucía

    2008-07-23

    Dysregulation of intracellular Ca(2+) homeostasis may underlie amyloid beta peptide (Abeta) toxicity in Alzheimer's Disease (AD) but the mechanism is unknown. In search for this mechanism we found that Abeta(1-42) oligomers, the assembly state correlating best with cognitive decline in AD, but not Abeta fibrils, induce a massive entry of Ca(2+) in neurons and promote mitochondrial Ca(2+) overload as shown by bioluminescence imaging of targeted aequorin in individual neurons. Abeta oligomers induce also mitochondrial permeability transition, cytochrome c release, apoptosis and cell death. Mitochondrial depolarization prevents mitochondrial Ca(2+) overload, cytochrome c release and cell death. In addition, we found that a series of non-steroidal anti-inflammatory drugs (NSAIDs) including salicylate, sulindac sulfide, indomethacin, ibuprofen and R-flurbiprofen depolarize mitochondria and inhibit mitochondrial Ca(2+) overload, cytochrome c release and cell death induced by Abeta oligomers. Our results indicate that i) mitochondrial Ca(2+) overload underlies the neurotoxicity induced by Abeta oligomers and ii) inhibition of mitochondrial Ca(2+) overload provides a novel mechanism of neuroprotection by NSAIDs against Abeta oligomers and AD.

  9. Insulin Signaling, Resistance, and the Metabolic Syndrome: Insights from Mouse Models to Disease Mechanisms

    Science.gov (United States)

    Guo, Shaodong

    2014-01-01

    Insulin resistance is a major underlying mechanism for the “metabolic syndrome”, which is also known as insulin resistance syndrome. Metabolic syndrome is increasing at an alarming rate, becoming a major public and clinical problem worldwide. Metabolic syndrome is represented by a group of interrelated disorders, including obesity, hyperglycemia, hyperlipidemia, and hypertension. It is also a significant risk factor for cardiovascular disease and increased morbidity and mortality. Animal studies demonstrate that insulin and its signaling cascade normally control cell growth, metabolism and survival through activation of mitogen-activated protein kinases (MAPKs) and phosphotidylinositide-3-kinase (PI3K), of which activation of PI-3K-associated with insulin receptor substrate-1 and -2 (IRS1, 2) and subsequent Akt→Foxo1 phosphorylation cascade has a central role in control of nutrient homeostasis and organ survival. Inactivation of Akt and activation of Foxo1, through suppression IRS1 and IRS2 in different organs following hyperinsulinemia, metabolic inflammation, and over nutrition may provide the underlying mechanisms for metabolic syndrome in humans. Targeting the IRS→Akt→Foxo1 signaling cascade will likely provide a strategy for therapeutic intervention in the treatment of type 2 diabetes and its complications. This review discusses the basis of insulin signaling, insulin resistance in different mouse models, and how a deficiency of insulin signaling components in different organs contributes to the feature of the metabolic syndrome. Emphasis will be placed on the role of IRS1, IRS2, and associated signaling pathways that couple to Akt and the forkhead/winged helix transcription factor Foxo1. PMID:24281010

  10. Insights into the Mechanism of Action of Bactericidal Lipophosphonoxins.

    Directory of Open Access Journals (Sweden)

    Natalya Panova

    Full Text Available The advantages offered by established antibiotics in the treatment of infectious diseases are endangered due to the increase in the number of antibiotic-resistant bacterial strains. This leads to a need for new antibacterial compounds. Recently, we discovered a series of compounds termed lipophosphonoxins (LPPOs that exhibit selective cytotoxicity towards Gram-positive bacteria that include pathogens and resistant strains. For further development of these compounds, it was necessary to identify the mechanism of their action and characterize their interaction with eukaryotic cells/organisms in more detail. Here, we show that at their bactericidal concentrations LPPOs localize to the plasmatic membrane in bacteria but not in eukaryotes. In an in vitro system we demonstrate that LPPOs create pores in the membrane. This provides an explanation of their action in vivo where they cause serious damage of the cellular membrane, efflux of the cytosol, and cell disintegration. Further, we show that (i LPPOs are not genotoxic as determined by the Ames test, (ii do not cross a monolayer of Caco-2 cells, suggesting they are unable of transepithelial transport, (iii are well tolerated by living mice when administered orally but not peritoneally, and (iv are stable at low pH, indicating they could survive the acidic environment in the stomach. Finally, using one of the most potent LPPOs, we attempted and failed to select resistant strains against this compound while we were able to readily select resistant strains against a known antibiotic, rifampicin. In summary, LPPOs represent a new class of compounds with a potential for development as antibacterial agents for topical applications and perhaps also for treatment of gastrointestinal infections.

  11. Insights into the Mechanism of Action of Bactericidal Lipophosphonoxins.

    Science.gov (United States)

    Panova, Natalya; Zborníková, Eva; Šimák, Ondřej; Pohl, Radek; Kolář, Milan; Bogdanová, Kateřina; Večeřová, Renata; Seydlová, Gabriela; Fišer, Radovan; Hadravová, Romana; Šanderová, Hana; Vítovská, Dragana; Šiková, Michaela; Látal, Tomáš; Lovecká, Petra; Barvík, Ivan; Krásný, Libor; Rejman, Dominik

    2015-01-01

    The advantages offered by established antibiotics in the treatment of infectious diseases are endangered due to the increase in the number of antibiotic-resistant bacterial strains. This leads to a need for new antibacterial compounds. Recently, we discovered a series of compounds termed lipophosphonoxins (LPPOs) that exhibit selective cytotoxicity towards Gram-positive bacteria that include pathogens and resistant strains. For further development of these compounds, it was necessary to identify the mechanism of their action and characterize their interaction with eukaryotic cells/organisms in more detail. Here, we show that at their bactericidal concentrations LPPOs localize to the plasmatic membrane in bacteria but not in eukaryotes. In an in vitro system we demonstrate that LPPOs create pores in the membrane. This provides an explanation of their action in vivo where they cause serious damage of the cellular membrane, efflux of the cytosol, and cell disintegration. Further, we show that (i) LPPOs are not genotoxic as determined by the Ames test, (ii) do not cross a monolayer of Caco-2 cells, suggesting they are unable of transepithelial transport, (iii) are well tolerated by living mice when administered orally but not peritoneally, and (iv) are stable at low pH, indicating they could survive the acidic environment in the stomach. Finally, using one of the most potent LPPOs, we attempted and failed to select resistant strains against this compound while we were able to readily select resistant strains against a known antibiotic, rifampicin. In summary, LPPOs represent a new class of compounds with a potential for development as antibacterial agents for topical applications and perhaps also for treatment of gastrointestinal infections.

  12. On the radiation mechanism of repeating fast radio bursts

    Science.gov (United States)

    Lu, Wenbin; Kumar, Pawan

    2018-06-01

    Recent observations show that fast radio bursts (FRBs) are energetic but probably non-catastrophic events occurring at cosmological distances. The properties of their progenitors are largely unknown in spite of many attempts to determine them using the event rate, duration, and energetics. Understanding the radiation mechanism for FRBs should provide the missing insights regarding their progenitors, which is investigated in this paper. The high brightness temperatures (≳1035 K) of FRBs mean that the emission process must be coherent. Two general classes of coherent radiation mechanisms are considered - maser and the antenna mechanism. We use the observed properties of the repeater FRB 121102 to constrain the plasma conditions needed for these two mechanisms. We have looked into a wide variety of maser mechanisms operating in either vacuum or plasma and find that none of them can explain the high luminosity of FRBs without invoking unrealistic or fine-tuned plasma conditions. The most favourable mechanism is antenna curvature emission by coherent charge bunches where the burst is powered by magnetic reconnection near the surface of a magnetar (B ≳ 1014 G). We show that the plasma in the twisted magnetosphere of a magnetar may be clumpy due to two-stream instability. When magnetic reconnection occurs, the pre-existing density clumps may provide charge bunches for the antenna mechanism to operate. This model should be applicable to all FRBs that have multiple outbursts like FRB 121102.

  13. Insight and illness perception in Mexican patients with psychosis.

    Science.gov (United States)

    Gómez-de-Regil, Lizzette

    2015-03-01

    Insight and illness perception are two concepts of interest in the study of factors related to clinical outcome in patients with psychosis. Insight implies a risk of emotional distress for the patient. Illness perceptions, regardless of their accuracy, might be favorable or not to illness. Literature provides evidence of significant correlates of these factors with clinical outcome, but they are rarely included in a single study. 1) assessing insight and illness perception in a sample of Mexican patients who have experienced psychosis and, 2) analyzing how insight and illness perception relate to each other and how they relate to clinical status (i.e., positive, negative, and general psychopathology, depression, and anxiety). Sixty-one participants (55.7% females) were recruited from a public psychiatric hospital; insight and illness perceptions were assessed with the SUMD and the Brief-IPQ, respectively. Clinical status was assessed with the PANSS, CDS and BAI scales. Participants showed good insight, favorable illness perceptions for the cognitive and comprehension dimensions, but unfavorable for the emotional dimension. Clinical status of sample was characterized by mild symptoms. Poor insight related to positive symptoms and general psychopathology. Cognitive and emotional perceptions of illness were significantly associated to most clinical status parameters, whereas comprehension showed no significant results. The study not only replicates the significant association on insight and illness perception with clinical outcome, but shows how their patterns of interactions are different, reinforcing the idea that they are two distinct factors worthy of being habitually acknowledged in research and clinical practice.

  14. Biology and therapy of inherited retinal degenerative disease: insights from mouse models

    Science.gov (United States)

    Veleri, Shobi; Lazar, Csilla H.; Chang, Bo; Sieving, Paul A.; Banin, Eyal; Swaroop, Anand

    2015-01-01

    Retinal neurodegeneration associated with the dysfunction or death of photoreceptors is a major cause of incurable vision loss. Tremendous progress has been made over the last two decades in discovering genes and genetic defects that lead to retinal diseases. The primary focus has now shifted to uncovering disease mechanisms and designing treatment strategies, especially inspired by the successful application of gene therapy in some forms of congenital blindness in humans. Both spontaneous and laboratory-generated mouse mutants have been valuable for providing fundamental insights into normal retinal development and for deciphering disease pathology. Here, we provide a review of mouse models of human retinal degeneration, with a primary focus on diseases affecting photoreceptor function. We also describe models associated with retinal pigment epithelium dysfunction or synaptic abnormalities. Furthermore, we highlight the crucial role of mouse models in elucidating retinal and photoreceptor biology in health and disease, and in the assessment of novel therapeutic modalities, including gene- and stem-cell-based therapies, for retinal degenerative diseases. PMID:25650393

  15. Water inSight : An exploration into landscape architectonic transformations of polder water

    NARCIS (Netherlands)

    Bobbink, I.; Loen, S.

    2013-01-01

    Water inSight provides insight into the ‘water machine’ that forms the basis of the Dutch polder landscape. Authors Inge Bobbink and Suzanne Loen approach the polder landscape from a landscape-architectonic point of view, using technical and spatial analysis drawings, images, plans and experiments

  16. Coupled Thermo-Mechanical and Photo-Chemical Degradation Mechanisms that determine the Reliability and Operational Lifetimes for CPV Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Dauskardt, Reinhold H. [Stanford Univ., CA (United States)

    2017-04-30

    This project sought to identify and characterize the coupled intrinsic photo-chemo-mechanical degradation mechanisms that determine the reliability and operational lifetimes for CPV technologies. Over a three year period, we have completed a highly successful program which has developed quantitative metrologies and detailed physics-based degradation models, providing new insight into the fundamental reliability physics necessary for improving materials, creating accelerated testing protocols, and producing more accurate lifetime predictions. The tasks for the program were separated into two focus areas shown in the figure below. Focus Area 1, led by Reinhold Dauskardt and Warren Cai with a primary collaboration with David Miller of NREL, studied the degradation mechanisms present in encapsulant materials. Focus Area 2, led by Reinhold Dauskardt and Ryan Brock with a primary collaboration with James Ermer and Peter Hebert of Spectrolab, studied stress development and degradation within internal CPV device interfaces. Each focus area was productive, leading to several publications, including findings on the degradation of silicone encapsulant under terrestrial UV, a model for photodegradation of silicone encapsulant adhesion, quantification and process tuning of antireflective layers on CPV, and discovery of a thermal cycling degradation mechanism present in metal gridline structures.

  17. Insight into the intermolecular recognition mechanism between Keap1 and IKKβ combining homology modelling, protein-protein docking, molecular dynamics simulations and virtual alanine mutation.

    Directory of Open Access Journals (Sweden)

    Zheng-Yu Jiang

    Full Text Available Degradation of certain proteins through the ubiquitin-proteasome pathway is a common strategy taken by the key modulators responsible for stress responses. Kelch-like ECH-associated protein-1(Keap1, a substrate adaptor component of the Cullin3 (Cul3-based ubiquitin E3 ligase complex, mediates the ubiquitination of two key modulators, NF-E2-related factor 2 (Nrf2 and IκB kinase β (IKKβ, which are involved in the redox control of gene transcription. However, compared to the Keap1-Nrf2 protein-protein interaction (PPI, the intermolecular recognition mechanism of Keap1 and IKKβ has been poorly investigated. In order to explore the binding pattern between Keap1 and IKKβ, the PPI model of Keap1 and IKKβ was investigated. The structure of human IKKβ was constructed by means of the homology modeling method and using reported crystal structure of Xenopus laevis IKKβ as the template. A protein-protein docking method was applied to develop the Keap1-IKKβ complex model. After the refinement and visual analysis of docked proteins, the chosen pose was further optimized through molecular dynamics simulations. The resulting structure was utilized to conduct the virtual alanine mutation for the exploration of hot-spots significant for the intermolecular interaction. Overall, our results provided structural insights into the PPI model of Keap1-IKKβ and suggest that the substrate specificity of Keap1 depend on the interaction with the key tyrosines, namely Tyr525, Tyr574 and Tyr334. The study presented in the current project may be useful to design molecules that selectively modulate Keap1. The selective recognition mechanism of Keap1 with IKKβ or Nrf2 will be helpful to further know the crosstalk between NF-κB and Nrf2 signaling.

  18. Genomic and proteomic analyses of the fungus Arthrobotrys oligospora provide insights into nematode-trap formation.

    Science.gov (United States)

    Yang, Jinkui; Wang, Lei; Ji, Xinglai; Feng, Yun; Li, Xiaomin; Zou, Chenggang; Xu, Jianping; Ren, Yan; Mi, Qili; Wu, Junli; Liu, Shuqun; Liu, Yu; Huang, Xiaowei; Wang, Haiyan; Niu, Xuemei; Li, Juan; Liang, Lianming; Luo, Yanlu; Ji, Kaifang; Zhou, Wei; Yu, Zefen; Li, Guohong; Liu, Yajun; Li, Lei; Qiao, Min; Feng, Lu; Zhang, Ke-Qin

    2011-09-01

    Nematode-trapping fungi are "carnivorous" and attack their hosts using specialized trapping devices. The morphological development of these traps is the key indicator of their switch from saprophytic to predacious lifestyles. Here, the genome of the nematode-trapping fungus Arthrobotrys oligospora Fres. (ATCC24927) was reported. The genome contains 40.07 Mb assembled sequence with 11,479 predicted genes. Comparative analysis showed that A. oligospora shared many more genes with pathogenic fungi than with non-pathogenic fungi. Specifically, compared to several sequenced ascomycete fungi, the A. oligospora genome has a larger number of pathogenicity-related genes in the subtilisin, cellulase, cellobiohydrolase, and pectinesterase gene families. Searching against the pathogen-host interaction gene database identified 398 homologous genes involved in pathogenicity in other fungi. The analysis of repetitive sequences provided evidence for repeat-induced point mutations in A. oligospora. Proteomic and quantitative PCR (qPCR) analyses revealed that 90 genes were significantly up-regulated at the early stage of trap-formation by nematode extracts and most of these genes were involved in translation, amino acid metabolism, carbohydrate metabolism, cell wall and membrane biogenesis. Based on the combined genomic, proteomic and qPCR data, a model for the formation of nematode trapping device in this fungus was proposed. In this model, multiple fungal signal transduction pathways are activated by its nematode prey to further regulate downstream genes associated with diverse cellular processes such as energy metabolism, biosynthesis of the cell wall and adhesive proteins, cell division, glycerol accumulation and peroxisome biogenesis. This study will facilitate the identification of pathogenicity-related genes and provide a broad foundation for understanding the molecular and evolutionary mechanisms underlying fungi-nematodes interactions.

  19. Advances in mechanisms of asthma, allergy, and immunology in 2011.

    Science.gov (United States)

    Boyce, Joshua A; Bochner, Bruce; Finkelman, Fred D; Rothenberg, Marc E

    2012-02-01

    2011 was marked by rapid progress in the identification of basic mechanisms of allergic disease and the translation of these mechanisms into human cell systems. Studies published in the Journal of Allergy and Clinical Immunology this year provided new insights into the molecular determinants of allergenicity, as well as the environmental, cellular, and genetic factors involved in sensitization to allergens. Several articles focused on mechanisms of allergen immunotherapy and the development of novel strategies to achieve tolerance to allergens. Additional studies identified substantial contributions from T(H)17-type cells and cytokines to human disease pathogenesis. Finally, new therapeutic applications of anti-IgE were identified. The highlights of these studies and their potential clinical implications are summarized in this review. Copyright © 2012 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  20. Insights on Structural Characteristics and Ligand Binding Mechanisms of CDK2

    Directory of Open Access Journals (Sweden)

    Yan Li

    2015-04-01

    Full Text Available Cyclin-dependent kinase 2 (CDK2 is a crucial regulator of the eukaryotic cell cycle. However it is well established that monomeric CDK2 lacks regulatory activity, which needs to be aroused by its positive regulators, cyclins E and A, or be phosphorylated on the catalytic segment. Interestingly, these activation steps bring some dynamic changes on the 3D-structure of the kinase, especially the activation segment. Until now, in the monomeric CDK2 structure, three binding sites have been reported, including the adenosine triphosphate (ATP binding site (Site I and two non-competitive binding sites (Site II and III. In addition, when the kinase is subjected to the cyclin binding process, the resulting structural changes give rise to a variation of the ATP binding site, thus generating an allosteric binding site (Site IV. All the four sites are demonstrated as being targeted by corresponding inhibitors, as is illustrated by the allosteric binding one which is targeted by inhibitor ANS (fluorophore 8-anilino-1-naphthalene sulfonate. In the present work, the binding mechanisms and their fluctuations during the activation process attract our attention. Therefore, we carry out corresponding studies on the structural characterization of CDK2, which are expected to facilitate the understanding of the molecular mechanisms of kinase proteins. Besides, the binding mechanisms of CDK2 with its relevant inhibitors, as well as the changes of binding mechanisms following conformational variations of CDK2, are summarized and compared. The summary of the conformational characteristics and ligand binding mechanisms of CDK2 in the present work will improve our understanding of the molecular mechanisms regulating the bioactivities of CDK2.

  1. Nuclear Mechanics in Cancer

    Science.gov (United States)

    Denais, Celine; Lammerding, Jan

    2015-01-01

    Despite decades of research, cancer metastasis remains an incompletely understood process that is as complex as it is devastating. In recent years, there has been an increasing push to investigate the biomechanical aspects of tumorigenesis, complementing the research on genetic and biochemical changes. In contrast to the high genetic variability encountered in cancer cells, almost all metastatic cells are subject to the same physical constraints as they leave the primary tumor, invade surrounding tissues, transit through the circulatory system, and finally infiltrate new tissues. Advances in live cell imaging and other biophysical techniques, including measurements of subcellular mechanics, have yielded stunning new insights into the physics of cancer cells. While much of this research has been focused on the mechanics of the cytoskeleton and the cellular microenvironment, it is now emerging that the mechanical properties of the cell nucleus and its connection to the cytoskeleton may play a major role in cancer metastasis, as deformation of the large and stiff nucleus presents a substantial obstacle during the passage through the dense interstitial space and narrow capillaries. Here, we present an overview of the molecular components that govern the mechanical properties of the nucleus and we discuss how changes in nuclear structure and composition observed in many cancers can modulate nuclear mechanics and promote metastatic processes. Improved insights into this interplay between nuclear mechanics and metastatic progression may have powerful implications in cancer diagnostics and therapy and may reveal novel therapeutic targets for pharmacological inhibition of cancer cell invasion. PMID:24563360

  2. The Structure of a Sugar Transporter of the Glucose EIIC Superfamily Provides Insight into the Elevator Mechanism of Membrane Transport.

    Science.gov (United States)

    McCoy, Jason G; Ren, Zhenning; Stanevich, Vitali; Lee, Jumin; Mitra, Sharmistha; Levin, Elena J; Poget, Sebastien; Quick, Matthias; Im, Wonpil; Zhou, Ming

    2016-06-07

    The phosphoenolpyruvate:carbohydrate phosphotransferase systems are found in bacteria, where they play central roles in sugar uptake and regulation of cellular uptake processes. Little is known about how the membrane-embedded components (EIICs) selectively mediate the passage of carbohydrates across the membrane. Here we report the functional characterization and 2.55-Å resolution structure of a maltose transporter, bcMalT, belonging to the glucose superfamily of EIIC transporters. bcMalT crystallized in an outward-facing occluded conformation, in contrast to the structure of another glucose superfamily EIIC, bcChbC, which crystallized in an inward-facing occluded conformation. The structures differ in the position of a structurally conserved substrate-binding domain that is suggested to play a central role in sugar transport. In addition, molecular dynamics simulations suggest a potential pathway for substrate entry from the periplasm into the bcMalT substrate-binding site. These results provide a mechanistic framework for understanding substrate recognition and translocation for the glucose superfamily EIIC transporters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. New insights into the mechanism of interaction between CO2 and polymers from thermodynamic parameters obtained by in situ ATR-FTIR spectroscopy.

    Science.gov (United States)

    Gabrienko, Anton A; Ewing, Andrew V; Chibiryaev, Andrey M; Agafontsev, Alexander M; Dubkov, Konstantin A; Kazarian, Sergei G

    2016-03-07

    This work reports new physical insights of the thermodynamic parameters and mechanisms of possible interactions occurring in polymers subjected to high-pressure CO2. ATR-FTIR spectroscopy has been used in situ to determine the thermodynamic parameters of the intermolecular interactions between CO2 and different functional groups of the polymers capable of specific interactions with sorbed CO2 molecules. Based on the measured ATR-FTIR spectra of the polymer samples subjected to high-pressure CO2 (30 bar) at different temperatures (300-340 K), it was possible to characterize polymer-polymer and CO2-polymer interactions. Particularly, the enthalpy and entropy of the formation of the specific non-covalent complexes between CO2 and the hydroxy (-OH), carbonyl (C[double bond, length as m-dash]O) and hydroxyimino ([double bond, length as m-dash]N-OH) functional groups of the polymer samples have been measured. Furthermore, the obtained spectroscopic results have provided an opportunity for the structure of these complexes to be proposed. An interesting phenomenon regarding the behavior of CO2/polymer systems has also been observed. It has been found that only for the polyketone, the value of enthalpy was negative indicating an exothermic process during the formation of the CO2-polymer non-covalent complexes. Conversely, for the polyoxime and polyalcohol samples there is a positive enthalpy determined. This is a result of the initial polymer-polymer interactions requiring more energy to break than is released during the formation of the CO2-polymer complex. The effect of increasing temperature to facilitate the breaking of the polymer-polymer interactions has also been observed. Hence, a mechanism for the formation of CO2-polymer complexes was suggested based on these results, which occurs via a two-step process: (1) the breaking of the existing polymer-polymer interactions followed by (2) the formation of new CO2-polymer non-covalent interactions.

  4. Hospital physician payment mechanisms in Austria: do they provide gateways to institutional corruption?

    Science.gov (United States)

    Sommersguter-Reichmann, Margit; Stepan, Adolf

    2017-12-01

    Institutional corruption in the health care sector has gained considerable attention during recent years, as it acknowledges the fact that service providers who are acting in accordance with the institutional and environmental settings can nevertheless undermine a health care system's purposes as a result of the (financial) conflicts of interest to which the service providers are exposed. The present analysis aims to contribute to the examination of institutional corruption in the health sector by analyzing whether the current payment mechanism of separately remunerating salaried hospital physicians for treating supplementary insured patients in public hospitals, in combination with the public hospital physician's possibility of taking up dual practice as a self-employed physician with a private practice and/or as an attending physician in private hospitals, has the potential to undermine the primary purposes of the Austrian public health care system. Based on the analysis of the institutional design of the Austrian public hospital sector, legal provisions and directives have been identified, which have the potential to promote conduct on the part of the public hospital physician that systematically undermines the achievement of the Austrian public health system's primary purposes.

  5. Developmental Social Cognitive Neuroscience: Insights from Deafness

    Science.gov (United States)

    Corina, David; Singleton, Jenny

    2009-01-01

    The condition of deafness presents a developmental context that provides insight into the biological, cultural, and linguistic factors underlying the development of neural systems that impact social cognition. Studies of visual attention, behavioral regulation, language development, and face and human action perception are discussed. Visually…

  6. Insights on STEM Careers

    Energy Technology Data Exchange (ETDEWEB)

    Wendelberger, Joanne Roth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-11-05

    This presentation will provide career advice for individuals seeking to go beyond just having a job to building a successful career in the areas of Science, Technology, Engineering, and Mathematics. Careful planning can be used to turn a job into a springboard for professional advancement and personal satisfaction. Topics to be addressed include setting priorities, understanding career ladders, making tough choices, overcoming stereotypes and assumptions by others, networking, developing a professional identify, and balancing a career with family and other personal responsibilities. Insights on the transition from individual technical work to leadership will also be provided. The author will draw upon experiences gained in academic, industrial, and government laboratory settings, as well as extensive professional service and community involvement.

  7. Comparative proteomic analysis of soybean leaves and roots by iTRAQ provides insights into response mechanisms to short-term salt stress

    Directory of Open Access Journals (Sweden)

    Wei eJi

    2016-04-01

    Full Text Available Salinity severely threatens land use capability and crop yields worldwide. Understanding the mechanisms that protect soybean from salt stress will help in the development of salt-stress tolerant leguminous plants. Here we firstly analyzed the changes in malondialdehyde levels, the activities of superoxide dismutase and peroxidases, cholorophyll contents, and Na+/K+ ratios in leaves and roots from soybean seedlings treated with 200 mM NaCl for different time points, and suggested that 200 mM NaCl treated for 12 h was enough for exploring proteomic analysis to soybean seedlings. iTRAQ-based proteomic approach was used to investigate the proteomes of soybean leaves and roots under salt treatment. Data are available via ProteomeXchange with identifier PXD002851. In total, 278 and 440 proteins with significantly altered abundance were identified in leaves and roots of soybean, respectively, with only 50 mutual unique proteins in the both tissues. These identified differentially expressed proteins (DEPs were mainly involved in 13 biological processes. Moreover, protein-protein interaction analysis revealed that the proteins involved in metabolism, carbohydrate and energy metabolism, protein synthesis and redox homeostasis constructed four types of response networks to high salt stress. Besides, semi-quantitative RT-PCR analysis revealed that some of the proteins, such as 14-3-3, MMK2, PP1, TRX-h, were also regulated by salt stress at the level of transcription. These results indicated that effective regulatory protein expression related to signalling, membrane and transport, stress defense and metabolism played important roles in the short-term salt response of soybean seedlings.

  8. Insight in seasonal affective disorder.

    Science.gov (United States)

    Ghaemi, S N; Sachs, G S; Baldassano, C F; Truman, C J

    1997-01-01

    Lack of insight complicates the evaluation and treatment of patients with psychotic and affective disorders. No studies of insight in seasonal affective disorder (SAD) have been reported. Thirty patients with SAD diagnosed by the Structured Clinical Interview for DSM-III-R but no other axis I conditions were treated short-term with light-therapy. Insight was measured with the Scale to Assess Unawareness of Mental Disorder (SUMD) as modified by the authors to assess the self-report of insight into depressive symptoms. Increasing scores (1 to 5) indicated increasing unawareness of illness (i.e., less insight). SAD patients displayed a moderate amount of insight when depressed (mean SUMD score, 2.5). When recovered, they showed no significant change in insight into past depressive symptoms (mean SUMD score, 2.8). Greater insight into current depressive symptoms correlated with more depressive symptoms on the Hamilton Rating Scale for Depression score ([HRSD] r = .35, P depressive symptoms that does not change after recovery, a result in agreement with studies of insight in psychosis and mania. Further, in SAD, increased severity of illness may be associated with increased insight into depressive symptoms, consistent with the hypothesis of depressive realism.

  9. Voltage-Dependent Gating: Novel Insights from KCNQ1 Channels

    Science.gov (United States)

    Cui, Jianmin

    2016-01-01

    Gating of voltage-dependent cation channels involves three general molecular processes: voltage sensor activation, sensor-pore coupling, and pore opening. KCNQ1 is a voltage-gated potassium (Kv) channel whose distinctive properties have provided novel insights on fundamental principles of voltage-dependent gating. 1) Similar to other Kv channels, KCNQ1 voltage sensor activation undergoes two resolvable steps; but, unique to KCNQ1, the pore opens at both the intermediate and activated state of voltage sensor activation. The voltage sensor-pore coupling differs in the intermediate-open and the activated-open states, resulting in changes of open pore properties during voltage sensor activation. 2) The voltage sensor-pore coupling and pore opening require the membrane lipid PIP2 and intracellular ATP, respectively, as cofactors, thus voltage-dependent gating is dependent on multiple stimuli, including the binding of intracellular signaling molecules. These mechanisms underlie the extraordinary KCNE1 subunit modification of the KCNQ1 channel and have significant physiological implications. PMID:26745405

  10. Molecular mechanisms of Cys-loop ion channel receptor modulation by ivermectin

    DEFF Research Database (Denmark)

    Lynagh, Timothy; Lynch, Joseph W.

    2012-01-01

    Ivermectin is an anthelmintic drug that works by inhibiting neuronal activity and muscular contractility in arthropods and nematodes. It works by activating glutamate-gated chloride channels (GluClRs) at nanomolar concentrations. These receptors, found exclusively in invertebrates, belong to the ...... to the neurotransmitter binding site, thus suggesting a mechanism by which ivermectin potentiates neurotransmitter-gated currents. Together, this information provides new insights into the mechanisms of action of this important drug.......) to its site. Several lines of evidence suggest that ivermectin opens the channel pore via a structural change distinct from that induced by the neurotransmitter agonist. Conformational changes occurring at locations distant from the pore can be probed using voltage-clamp fluorometry (VCF), a technique...

  11. Insights into the working mechanism of water filtered infrared A (wIRA) irradiation on Chlamydia trachomatis serovar E

    Science.gov (United States)

    Kuratli, Jasmin; Pesch, Theresa; Marti, Hanna; Blenn, Christian; Borel, Nicole

    2018-02-01

    Infections with Chlamydia trachomatis are the major cause for infectious blindness and still represent the most common bacterial sexually transmitted disease worldwide. Considering the possible side effects of antibiotic therapy and the increasing threat of antibiotic resistance, alternative therapeutic strategies are needed. Previous studies showed a reduction of C. trachomatis infectivity after irradiation with water filtered infrared A alone (wIRA) or in combination with visible light (wIRA/VIS). In this study, we aimed to gain further insight into the working mechanism of wIRA/VIS by analyzing cytokine and chemokine levels of infected and non-infected HeLa cells following triple dose irradiation at 24, 36 and 40 hours post infection. Subsequently, we examined the influence of cytokines on irradiation and chlamydial infection using a cytokine/chemokine inhibitor (Azelastine) and by IL-6 and IL-8 gene silencing. A triple dose irradiation significantly reduced chlamydial infectivity in HeLa cells without inducing the chlamydial stress response. The reducing effect was present regardless of the addition of cycloheximide (CHX), a host protein synthesis inhibitor. Chlamydial infection, wIRA/VIS treatment and the combination of both revealed a similar release pattern of a subset of pro-inflammatory cytokines (IL-6, IL-8, RANTES, Serpin E1). The addition of Azelastine induced the chlamydial stress response in non-irradiated samples. This effect was even more pronounced in wIRA/VIS-treated conditions. Silencing of IL-6 and IL-8 resulted in a lower chlamydial infectivity. However, wIRA/VIS treatment of infected and silenced cells reduced the chlamydial infectivity similar to wIRA/VIS treated control cells. Further studies are needed to elucidate the working mechanism of wIRA/VIS.

  12. Physiological, Molecular and Genetic Mechanisms of Long-Term Habituation

    Energy Technology Data Exchange (ETDEWEB)

    Calin-Jageman, Robert J

    2009-09-12

    Work funded on this grant has explored the mechanisms of long-term habituation, a ubiquitous form of learning that plays a key role in basic cognitive functioning. Specifically, behavioral, physiological, and molecular mechanisms of habituation have been explored using a simple model system, the tail-elicited siphon-withdrawal reflex (T-SWR) in the marine mollusk Aplysia californica. Substantial progress has been made on the first and third aims, providing some fundamental insights into the mechanisms by which memories are stored. We have characterized the physiological correlates of short- and long-term habituation. We found that short-term habituation is accompanied by a robust sensory adaptation, whereas long-term habituation is accompanied by alterations in sensory and interneuron synaptic efficacy. Thus, our data indicates memories can be shifted between different sites in a neural network as they are consolidated from short to long term. At the molecular level, we have accomplished microarray analysis comparing gene expression in both habituated and control ganglia. We have identified a network of putatively regulated transcripts that seems particularly targeted towards synaptic changes (e.g. SNAP25, calmodulin) . We are now beginning additional work to confirm regulation of these transcripts and build a more detailed understanding of the cascade of molecular events leading to the permanent storage of long-term memories. On the third aim, we have fostered a nascent neuroscience program via a variety of successful initiatives. We have funded over 11 undergraduate neuroscience scholars, several of whom have been recognized at national and regional levels for their research. We have also conducted a pioneering summer research program for community college students which is helping enhance access of underrepresented groups to life science careers. Despite minimal progress on the second aim, this project has provided a) novel insight into the network mechanisms by

  13. New insights on molecular mechanisms of renal aging.

    Science.gov (United States)

    Schmitt, R; Melk, A

    2012-11-01

    Long-term transplant outcome is importantly influenced by the age of the organ donor. The mechanisms how age carries out its pathophysiological impact on graft survival are still not understood. One major contributing factor for the observed poor performance of old donor kidneys seems in particular the age-related loss in renal regenerative capacity. In this review, we will summarize recent findings about the molecular basis of renal aging with specific focus on the potential role of somatic cellular senescence and mitochondrial aging in renal transplant outcome. © Copyright 2012 The American Society of Transplantation and the American Society of Transplant Surgeons.

  14. Reappraising entrapment neuropathies--mechanisms, diagnosis and management.

    Science.gov (United States)

    Schmid, Annina B; Nee, Robert J; Coppieters, Michel W

    2013-12-01

    The diagnosis of entrapment neuropathies can be difficult because symptoms and signs often do not follow textbook descriptions and vary significantly between patients with the same diagnosis. Signs and symptoms which spread outside of the innervation territory of the affected nerve or nerve root are common. This Masterclass provides insight into relevant mechanisms that may account for this extraterritorial spread in patients with entrapment neuropathies, with an emphasis on neuroinflammation at the level of the dorsal root ganglia and spinal cord, as well as changes in subcortical and cortical regions. Furthermore, we describe how clinical tests and technical investigations may identify these mechanisms if interpreted in the context of gain or loss of function. The management of neuropathies also remains challenging. Common treatment strategies such as joint mobilisation, neurodynamic exercises, education, and medications are discussed in terms of their potential to influence certain mechanisms at the site of nerve injury or in the central nervous system. The mechanism-oriented approach for this Masterclass seems warranted given the limitations in the current evidence for the diagnosis and management of entrapment neuropathies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Mechanistic insights into dioxygen activation, oxygen atom exchange and substrate epoxidation by AsqJ dioxygenase from quantum mechanical/molecular mechanical calculations.

    Science.gov (United States)

    Song, Xudan; Lu, Jiarui; Lai, Wenzhen

    2017-08-02

    Herein, we use in-protein quantum mechanical/molecular mechanical (QM/MM) calculations to elucidate the mechanism of dioxygen activation, oxygen atom exchange and substrate epoxidation processes by AsqJ, an Fe II /α-ketoglutarate-dependent dioxygenase (α-KGD) using a 2-His-1-Asp facial triad. Our results demonstrated that the whole reaction proceeds through a quintet surface. The dioxygen activation by AsqJ leads to a quintet penta-coordinated Fe IV -oxo species, which has a square pyramidal geometry with the oxo group trans to His134. This penta-coordinated Fe IV -oxo species is not the reactive one in the substrate epoxidation reaction since its oxo group is pointing away from the target C[double bond, length as m-dash]C bond. Instead, it can undergo the oxo group isomerization followed by water binding or the water binding followed by oxygen atom exchange to form the reactive hexa-coordinated Fe IV -oxo species with the oxo group trans to His211. The calculated parameters of Mössbauer spectra for this hexa-coordinated Fe IV -oxo intermediate are in excellent agreement with the experimental values, suggesting that it is most likely the experimentally trapped species. The calculated energetics indicated that the rate-limiting step is the substrate C[double bond, length as m-dash]C bond activation. This work improves our understanding of the dioxygen activation by α-KGD and provides important structural information about the reactive Fe IV -oxo species.

  16. Regulating Critical Period Plasticity: Insight from the Visual System to Fear Circuitry for Therapeutic Interventions

    Directory of Open Access Journals (Sweden)

    Elisa M. Nabel

    2013-11-01

    Full Text Available Early temporary windows of heightened brain plasticity called critical periods developmentally sculpt neural circuits and contribute to adult behavior. Regulatory mechanisms of visual cortex development –the preeminent model of experience-dependent critical period plasticity- actively limit adult plasticity and have proved fruitful therapeutic targets to reopen plasticity and rewire faulty visual system connections later in life. Interestingly, these molecular mechanisms have been implicated in the regulation of plasticity in other functions beyond vision. Applying mechanistic understandings of critical period plasticity in the visual cortex to fear circuitry may provide a conceptual framework for developing novel therapeutic tools to mitigate aberrant fear responses in post traumatic stress disorder. In this review, we turn to the model of experience-dependent visual plasticity to provide novel insights for the mechanisms regulating plasticity in the fear system. Fear circuitry, particularly fear memory erasure, also undergoes age-related changes in experience-dependent plasticity. We consider the contributions of molecular brakes that halt visual critical period plasticity to circuitry underlying fear memory erasure. A major molecular brake in the visual cortex, perineuronal net formation, recently has been identified in the development of fear systems that are resilient to fear memory erasure. The roles of other molecular brakes, myelin-related Nogo receptor signaling and Lynx family proteins– endogenous inhibitors for nicotinic acetylcholine receptor, are explored in the context of fear memory plasticity. Such fear plasticity regulators, including epigenetic effects, provide promising targets for therapeutic interventions.

  17. Quantum mechanics/molecular mechanics studies on the mechanism of action of cofactor pyridoxal 5'-phosphate in ornithine 4,5-aminomutase.

    Science.gov (United States)

    Pang, Jiayun; Scrutton, Nigel S; Sutcliffe, Michael J

    2014-09-01

    A computational study was performed on the experimentally elusive cyclisation step in the cofactor pyridoxal 5'-phosphate (PLP)-dependent D-ornithine 4,5-aminomutase (OAM)-catalysed reaction. Calculations using both model systems and a combined quantum mechanics/molecular mechanics approach suggest that regulation of the cyclic radical intermediate is achieved through the synergy of the intrinsic catalytic power of cofactor PLP and the active site of the enzyme. The captodative effect of PLP is balanced by an enzyme active site that controls the deprotonation of both the pyridine nitrogen atom (N1) and the Schiff-base nitrogen atom (N2). Furthermore, electrostatic interactions between the terminal carboxylate and amino groups of the substrate and Arg297 and Glu81 impose substantial "strain" energy on the orientation of the cyclic intermediate to control its trajectory. In addition the "strain" energy, which appears to be sensitive to both the number of carbon atoms in the substrate/analogue and the position of the radical intermediates, may play a key role in controlling the transition of the enzyme from the closed to the open state. Our results provide new insights into several aspects of the radical mechanism in aminomutase catalysis and broaden our understanding of cofactor PLP-dependent reactions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Insight into nucleon structure from generalized parton distributions

    International Nuclear Information System (INIS)

    J.W. Negele; R.C. Brower; P. Dreher; R. Edwards; G. Fleming; Ph. Hagler; Th. Lippert; A.V.Pochinsky; D.B. Renner; D. Richards; K. Schilling; W. Schroers

    2004-01-01

    The lowest three moments of generalized parton distributions are calculated in full QCD and provide new insight into the behavior of nucleon electromagnetic form factors, the origin of the nucleon spin, and the transverse structure of the nucleon

  19. The effects of gender and self-insight on early semantic processing.

    Directory of Open Access Journals (Sweden)

    Xu Xu

    Full Text Available This event-related potential (ERP study explored individual differences associated with gender and level of self-insight in early semantic processing. Forty-eight Chinese native speakers completed a semantic judgment task with three different categories of words: abstract neutral words (e.g., logic, effect, concrete neutral words (e.g., teapot, table, and emotion words (e.g., despair, guilt. They then assessed their levels of self-insight. Results showed that women engaged in greater processing than did men. Gender differences also manifested in the relationship between level of self-insight and word processing. For women, level of self-insight was associated with level of semantic activation for emotion words and abstract neutral words, but not for concrete neutral words. For men, level of self-insight was related to processing speed, particularly in response to abstract and concrete neutral words. These findings provide electrophysiological evidence for the effects of gender and self-insight on semantic processing and highlight the need to take into consideration subject variables in related research.

  20. RNA sequencing provides exquisite insight into the manipulation of the alveolar macrophage by tubercle bacilli.

    Science.gov (United States)

    Nalpas, Nicolas C; Magee, David A; Conlon, Kevin M; Browne, John A; Healy, Claire; McLoughlin, Kirsten E; Rue-Albrecht, Kévin; McGettigan, Paul A; Killick, Kate E; Gormley, Eamonn; Gordon, Stephen V; MacHugh, David E

    2015-09-08

    Mycobacterium bovis, the agent of bovine tuberculosis, causes an estimated $3 billion annual losses to global agriculture due, in part, to the limitations of current diagnostics. Development of next-generation diagnostics requires a greater understanding of the interaction between the pathogen and the bovine host. Therefore, to explore the early response of the alveolar macrophage to infection, we report the first application of RNA-sequencing to define, in exquisite detail, the transcriptomes of M. bovis-infected and non-infected alveolar macrophages from ten calves at 2, 6, 24 and 48 hours post-infection. Differentially expressed sense genes were detected at these time points that revealed enrichment of innate immune signalling functions, and transcriptional suppression of host defence mechanisms (e.g., lysosome maturation). We also detected differentially expressed natural antisense transcripts, which may play a role in subverting innate immune mechanisms following infection. Furthermore, we report differential expression of novel bovine genes, some of which have immune-related functions based on orthology with human proteins. This is the first in-depth transcriptomics investigation of the alveolar macrophage response to the early stages of M. bovis infection and reveals complex patterns of gene expression and regulation that underlie the immunomodulatory mechanisms used by M. bovis to evade host defence mechanisms.

  1. Muscle-tendon mechanics explain unexpected effects of exoskeleton assistance on metabolic rate during walking.

    Science.gov (United States)

    Jackson, Rachel W; Dembia, Christopher L; Delp, Scott L; Collins, Steven H

    2017-06-01

    The goal of this study was to gain insight into how ankle exoskeletons affect the behavior of the plantarflexor muscles during walking. Using data from previous experiments, we performed electromyography-driven simulations of musculoskeletal dynamics to explore how changes in exoskeleton assistance affected plantarflexor muscle-tendon mechanics, particularly for the soleus. We used a model of muscle energy consumption to estimate individual muscle metabolic rate. As average exoskeleton torque was increased, while no net exoskeleton work was provided, a reduction in tendon recoil led to an increase in positive mechanical work performed by the soleus muscle fibers. As net exoskeleton work was increased, both soleus muscle fiber force and positive mechanical work decreased. Trends in the sum of the metabolic rates of the simulated muscles correlated well with trends in experimentally observed whole-body metabolic rate ( R 2 =0.9), providing confidence in our model estimates. Our simulation results suggest that different exoskeleton behaviors can alter the functioning of the muscles and tendons acting at the assisted joint. Furthermore, our results support the idea that the series tendon helps reduce positive work done by the muscle fibers by storing and returning energy elastically. We expect the results from this study to promote the use of electromyography-driven simulations to gain insight into the operation of muscle-tendon units and to guide the design and control of assistive devices. © 2017. Published by The Company of Biologists Ltd.

  2. Multiple mechanisms enable invasive species to suppress native species.

    Science.gov (United States)

    Bennett, Alison E; Thomsen, Meredith; Strauss, Sharon Y

    2011-07-01

    Invasive plants represent a significant threat to ecosystem biodiversity. To decrease the impacts of invasive species, a major scientific undertaking of the last few decades has been aimed at understanding the mechanisms that drive invasive plant success. Most studies and theories have focused on a single mechanism for predicting the success of invasive plants and therefore cannot provide insight as to the relative importance of multiple interactions in predicting invasive species' success. We examine four mechanisms that potentially contribute to the success of invasive velvetgrass Holcus lanatus: direct competition, indirect competition mediated by mammalian herbivores, interference competition via allelopathy, and indirect competition mediated by changes in the soil community. Using a combination of field and greenhouse approaches, we focus on the effects of H. lanatus on a common species in California coastal prairies, Erigeron glaucus, where the invasion is most intense. We found that H. lanatus had the strongest effects on E. glaucus via direct competition, but it also influenced the soil community in ways that feed back to negatively influence E. glaucus and other native species after H. lanatus removal. This approach provided evidence for multiple mechanisms contributing to negative effects of invasive species, and it identified when particular strategies were most likely to be important. These mechanisms can be applied to eradication of H. lanatus and conservation of California coastal prairie systems, and they illustrate the utility of an integrated set of experiments for determining the potential mechanisms of invasive species' success.

  3. Impaired insight into illness and cognitive insight in schizophrenia spectrum disorders: Resting state functional connectivity

    Science.gov (United States)

    Gerretsen, Philip; Menon, Mahesh; Mamo, David C.; Fervaha, Gagan; Remington, Gary; Pollock, Bruce G.; Graff-Guerrero, Ariel

    2015-01-01

    Background Impaired insight into illness (clinical insight) in schizophrenia has negative effects on treatment adherence and clinical outcomes. Schizophrenia is described as a disorder of disrupted brain connectivity. In line with this concept, resting state networks (RSNs) appear differentially affected in persons with schizophrenia. Therefore, impaired clinical, or the related construct of cognitive insight (which posits that impaired clinical insight is a function of metacognitive deficits), may reflect alterations in RSN functional connectivity (fc). Based on our previous research, which showed that impaired insight into illness was associated with increased left hemisphere volume relative to right, we hypothesized that impaired clinical insight would be associated with increased connectivity in the DMN with specific left hemisphere brain regions. Methods Resting state MRI scans were acquired for participants with schizophrenia or schizoaffective disorder (n = 20). Seed-to-voxel and ROI-to-ROI fc analyses were performed using the CONN-fMRI fc toolbox v13 for established RSNs. Clinical and cognitive insight were measured with the Schedule for the Assessment of Insight—Expanded Version and Beck Cognitive Insight Scale, respectively, and included as the regressors in fc analyses. Results As hypothesized, impaired clinical insight was associated with increased connectivity in the default mode network (DMN) with the left angular gyrus, and also in the self-referential network (SRN) with the left insula. Cognitive insight was associated with increased connectivity in the dorsal attention network (DAN) with the right inferior frontal cortex (IFC) and left anterior cingulate cortex (ACC). Conclusion Increased connectivity in DMN and SRN with the left angular gyrus and insula, respectively, may represent neural correlates of impaired clinical insight in schizophrenia spectrum disorders, and is consistent with the literature attributing impaired insight to left

  4. Insights into location dependent loss-of-coolant-accident (LOCA) frequency assessment for GSI-191 risk-informed applications

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, K.N., E-mail: KarlFleming@comcast.net [KNF Consulting LLC, Spokane, WA (United States); Lydell, B.O.Y. [SIGMA-PHASE INC., Vail, AZ (United States)

    2016-08-15

    Highlights: • Role of operating experience in loss-of-coolant-accident (LOCA) frequency assessment. • Plant-to-plant variability in calculated LOCA frequency. • Frequency of double-ended-guillotine-break (DEGB). • Uncertainties in LOCA frequencies. • Risk management insights. - Abstract: As a tribute to the published work by S.H. Bush, S. Beliczey and H. Schulz, this paper assesses the progress with methods and techniques for quantifying the reliability of piping systems in commercial nuclear power plants on the basis of failure rate estimates derived from field experience data in combination with insights and results from probabilistic fracture mechanics analyses and expert elicitation exercises. This status assessment is made from a technical perspective obtained through development of location-specific loss-of-coolant-accident (LOCA) frequencies for input to risk-informed resolution of the generic safety issue (GSI) 191. The methods and techniques on which these GSI-191 applications are based build on a body of work developed by the authors during a period spanning more than two decades. The insights that are presented and discussed in this paper cover today’s knowledge base concerning how to utilize a risk-informed approach to the assessment of piping reliability in the context of probabilistic risk assessment (PRA) in general and the resolution of GSI-191 in particular. Specifically the paper addresses the extent to which LOCA frequencies vary from location to location within a reactor coolant system pressure boundary (RCPB) for a given plant as well as vary from plant to plant, and the reasons for these variabilities. Furthermore, the paper provides the authors’ perspectives on interpretations and applications of information extracted from an expert elicitation process to obtain LOCA frequencies as documented in NUREG-1829 and how to apply this information to GSI-191. Finally, this paper documents technical insights relative to mitigation of

  5. Insights into location dependent loss-of-coolant-accident (LOCA) frequency assessment for GSI-191 risk-informed applications

    International Nuclear Information System (INIS)

    Fleming, K.N.; Lydell, B.O.Y.

    2016-01-01

    Highlights: • Role of operating experience in loss-of-coolant-accident (LOCA) frequency assessment. • Plant-to-plant variability in calculated LOCA frequency. • Frequency of double-ended-guillotine-break (DEGB). • Uncertainties in LOCA frequencies. • Risk management insights. - Abstract: As a tribute to the published work by S.H. Bush, S. Beliczey and H. Schulz, this paper assesses the progress with methods and techniques for quantifying the reliability of piping systems in commercial nuclear power plants on the basis of failure rate estimates derived from field experience data in combination with insights and results from probabilistic fracture mechanics analyses and expert elicitation exercises. This status assessment is made from a technical perspective obtained through development of location-specific loss-of-coolant-accident (LOCA) frequencies for input to risk-informed resolution of the generic safety issue (GSI) 191. The methods and techniques on which these GSI-191 applications are based build on a body of work developed by the authors during a period spanning more than two decades. The insights that are presented and discussed in this paper cover today’s knowledge base concerning how to utilize a risk-informed approach to the assessment of piping reliability in the context of probabilistic risk assessment (PRA) in general and the resolution of GSI-191 in particular. Specifically the paper addresses the extent to which LOCA frequencies vary from location to location within a reactor coolant system pressure boundary (RCPB) for a given plant as well as vary from plant to plant, and the reasons for these variabilities. Furthermore, the paper provides the authors’ perspectives on interpretations and applications of information extracted from an expert elicitation process to obtain LOCA frequencies as documented in NUREG-1829 and how to apply this information to GSI-191. Finally, this paper documents technical insights relative to mitigation of

  6. Fundamental Processes of Coupled Radiation Damage and Mechanical Behavior in Nuclear Fuel Materials for High Temperature Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Phillpot, Simon; Tulenko, James

    2011-09-08

    The objective of this work has been to elucidate the relationship among microstructure, radiation damage and mechanical properties for nuclear fuel materials. As representative nuclear materials, we have taken an hcp metal (Mg as a generic metal, and Ti alloys for fast reactors) and UO2 (representing fuel). The degradation of the thermo-mechanical behavior of nuclear fuels under irradiation, both the fissionable material itself and its cladding, is a longstanding issue of critical importance to the nuclear industry. There are experimental indications that nanocrystalline metals and ceramics may be more resistant to radiation damage than their coarse-grained counterparts. The objective of this project look at the effect of microstructure on radiation damage and mechanical behavior in these materials. The approach to be taken was state-of-the-art, large-scale atomic-level simulation. This systematic simulation program of the effects of irradiation on the structure and mechanical properties of polycrystalline Ti and UO2 identified radiation damage mechanisms. Moreover, it will provided important insights into behavior that can be expected in nanocrystalline microstructures and, by extension, nanocomposites. The fundamental insights from this work can be expected to help in the design microstructures that are less susceptible to radiation damage and thermomechanical degradation.

  7. Fundamental Processes of Coupled Radiation Damage and Mechanical Behavior in Nuclear Fuel Materials for High Temperature Reactors

    International Nuclear Information System (INIS)

    Phillpot, Simon; Tulenko, James

    2011-01-01

    The objective of this work has been to elucidate the relationship among microstructure, radiation damage and mechanical properties for nuclear fuel materials. As representative nuclear materials, we have taken an hcp metal (Mg as a generic metal, and Ti alloys for fast reactors) and UO2 (representing fuel). The degradation of the thermo-mechanical behavior of nuclear fuels under irradiation, both the fissionable material itself and its cladding, is a longstanding issue of critical importance to the nuclear industry. There are experimental indications that nanocrystalline metals and ceramics may be more resistant to radiation damage than their coarse-grained counterparts. The objective of this project look at the effect of microstructure on radiation damage and mechanical behavior in these materials. The approach to be taken was state-of-the-art, large-scale atomic-level simulation. This systematic simulation program of the effects of irradiation on the structure and mechanical properties of polycrystalline Ti and UO2 identified radiation damage mechanisms. Moreover, it will provided important insights into behavior that can be expected in nanocrystalline microstructures and, by extension, nanocomposites. The fundamental insights from this work can be expected to help in the design microstructures that are less susceptible to radiation damage and thermomechanical degradation.

  8. Mechanics of non-holonomic systems a new class of control systems

    CERN Document Server

    Soltakhanov, Sh Kh; Zegzhda, S A

    2009-01-01

    Mechanics of non-holonomic systems gives a deep insight into the theory and applications of Analytical Mechanics. The theory suggested is illustrated by the examples of a spacecraft motion. The book is primarily addressed to specialists in analytic mechanics.

  9. Proofs that Develop Insight

    Science.gov (United States)

    Weber, Keith

    2010-01-01

    Many mathematics educators have noted that mathematicians do not only read proofs to gain conviction but also to obtain insight. The goal of this article is to discuss what this insight is from mathematicians' perspective. Based on interviews with nine research-active mathematicians, two sources of insight are discussed. The first is reading a…

  10. Planar articulated mechanism design by graph theoretical enumeration

    DEFF Research Database (Denmark)

    Kawamoto, A; Bendsøe, Martin P.; Sigmund, Ole

    2004-01-01

    This paper deals with design of articulated mechanisms using a truss-based ground-structure representation. By applying a graph theoretical enumeration approach we can perform an exhaustive analysis of all possible topologies for a test example for which we seek a symmetric mechanism. This guaran....... This guarantees that one can identify the global optimum solution. The result underlines the importance of mechanism topology and gives insight into the issues specific to articulated mechanism designs compared to compliant mechanism designs....

  11. The Morphological Characteristics and Mechanical Formation of Giant Radial Dike Swarms on Venus: An Overview Emphasizing Recent Numerical Modeling Insights

    Science.gov (United States)

    McGovern, P. J., Jr.; Grosfils, E. B.; Le Corvec, N.; Ernst, R. E.; Galgana, G. A.

    2017-12-01

    Over 200 giant radial dike swarms have been identified on Venus using Magellan data, yielding insight into morphological characteristics long since erased by erosion and other processes on Earth. Since such radial dike systems are typically associated with magma reservoirs, large volcanoes and/or larger-scale plume activity—and because dike geometry reflects stress conditions at the time of intrusion—assessing giant radial dike formation in the context of swarm morphology can place important constraints upon this fundamental volcanotectonic process. Recent numerical models reveal that, contrary to what is reported in much of the published literature, it is not easy, mechanically, to produce either large or small radial dike systems. After extensive numerical examination of reservoir inflation, however, under conditions ranging from a simple halfspace to complex flexural loading, we have thus far identified four scenarios that produce radial dike systems. Two of these scenarios yield dike systems akin to those often associated with shield and stratocone volcanoes on Earth, while the other two, our focus here, are more consistent with the giant radial dike system geometries catalogued on Venus. In this presentation we will (a) review key morphological characteristics of the giant radial systems identified on Venus, (b) briefly illustrate why it is not easy, mechanically, to produce a radial dike system, (c) present the two volcanological circumstances we have identified that do allow a giant radial dike system to form, and (d) discuss current model limitations and potentially fruitful directions for future research.

  12. Probing multi-scale mechanical damage in connective tissues using X-ray diffraction.

    Science.gov (United States)

    Bianchi, Fabio; Hofmann, Felix; Smith, Andrew J; Thompson, Mark S

    2016-11-01

    The accumulation of microstructural collagen damage following repetitive loading is linked to painful and debilitating tendon injuries. As a hierarchical, semi-crystalline material, collagen mechanics can be studied using X-ray diffraction. The aim of the study was to describe multi-structural changes in tendon collagen following controlled plastic damage (5% permanent strain). We used small angle X-ray scattering (SAXS) to interrogate the spacing of collagen molecules within a fibril, and wide angle X-ray scattering (WAXS) to measure molecular strains under macroscopic loading. Simultaneous recordings of SAXS and WAXS patterns, together with whole-tissue strain in physiologically hydrated rat-tail tendons were made during increments of in situ tensile loading. Results showed that while tissue level modulus was unchanged, fibril modulus decreased significantly, and molecular modulus significantly increased. Further, analysis of higher order SAXS peaks suggested structural changes in the gap and overlap regions, possibly localising the damage to molecular cross-links. Our results provide new insight into the fundamental damage processes at work in collagenous tissues and point to new directions for their mitigation and repair. This article reports the first in situ loading synchrotron studies on mechanical damage in collagenous tissues. We provide new insight into the nano- and micro-structural mechanisms of damage processes. Pre-damaged tendons showed differential alteration of moduli at macro, micro and nano-scales as measured using X-ray scattering techniques. Detailed analysis of higher order diffraction peaks suggested damage is localised to molecular cross-links. The results are consistent with previous X-ray scattering studies of tendons and also with recent thermal stability studies on damaged material. Detailed understanding of damage mechanisms is essential in the development of new therapies promoting tissue repair. Copyright © 2016 Acta Materialia Inc

  13. Nonlinear mechanical response of the extracellular matrix: learning from articular cartilage

    Science.gov (United States)

    Kearns, Sarah; Das, Moumita

    2015-03-01

    We study the mechanical structure-function relations in the extracellular matrix (ECM) with focus on nonlinear shear and compression response. As a model system, our study focuses on the ECM in articular cartilage tissue which has two major mechanobiological components: a network of the biopolymer collagen that acts as a stiff, reinforcing matrix, and a flexible aggrecan network that facilitates deformability. We model this system as a double network hydrogel made of interpenetrating networks of stiff and flexible biopolymers respectively. We study the linear and nonlinear