WorldWideScience

Sample records for mechanisms including decreased

  1. Estrogen inhibits lysyl oxidase and decreases mechanical function in engineered ligaments.

    Science.gov (United States)

    Lee, Cassandra A; Lee-Barthel, Ann; Marquino, Louise; Sandoval, Natalie; Marcotte, George R; Baar, Keith

    2015-05-15

    Women are more likely to suffer an anterior cruciate ligament (ACL) rupture than men, and the incidence of ACL rupture in women rises with increasing estrogen levels. We used an engineered ligament model to determine how an acute rise in estrogen decreases the mechanical properties of ligaments. Using fibroblasts isolated from human ACLs from male or female donors, we engineered ligaments and determined that ligaments made from female ACL cells had more collagen and were equal in strength to those made from male ACL cells. We then treated engineered ligaments for 14 days with low (5 pg/ml), medium (50 pg/ml), or high (500 pg/ml) estrogen, corresponding to the range of in vivo serum estrogen concentrations and found that collagen within the grafts increased without a commensurate increase in mechanical strength. Mimicking the menstrual cycle, with 12 days of low estrogen followed by 2 days of physiologically high estrogen, resulted in a decrease in engineered ligament mechanical function with no change in the amount of collagen in the graft. The decrease in mechanical stiffness corresponded with a 61.7 and 76.9% decrease in the activity of collagen cross-linker lysyl oxidase with 24 and 48 h of high estrogen, respectively. Similarly, grafts treated with the lysyl oxidase inhibitor β-aminoproprionitrile (BAPN) for 24 h showed a significant decrease in ligament mechanical strength [control (CON) = 1.58 ± 0.06 N; BAPN = 1.06 ± 0.13 N] and stiffness (CON = 7.7 ± 0.46 MPa; BAPN = 6.1 ± 0.71 MPa) without changing overall collagen levels (CON = 396 ± 11.5 μg; BAPN = 382 ± 11.6 μg). Together, these data suggest that the rise in estrogen during the follicular phase decreases lysyl oxidase activity in our engineered ligament model and if this occurs in vivo may decrease the stiffness of ligaments and contribute to the elevated rate of ACL rupture in women. Copyright © 2015 the American Physiological Society.

  2. Classical mechanics including an introduction to the theory of elasticity

    CERN Document Server

    Hentschke, Reinhard

    2017-01-01

    This textbook teaches classical mechanics as one of the foundations of physics. It describes the mechanical stability and motion in physical systems ranging from the molecular to the galactic scale. Aside from the standard topics of mechanics in the physics curriculum, this book includes an introduction to the theory of elasticity and its use in selected modern engineering applications, e.g. dynamic mechanical analysis of viscoelastic materials. The text also covers many aspects of numerical mechanics, ranging from the solution of ordinary differential equations, including molecular dynamics simulation of many particle systems, to the finite element method. Attendant Mathematica programs or parts thereof are provided in conjunction with selected examples. Numerous links allow the reader to connect to related subjects and research topics. Among others this includes statistical mechanics (separate chapter), quantum mechanics, space flight, galactic dynamics, friction, and vibration spectroscopy. An introductory...

  3. Cascade Controller Including Back-stepping for Hydraulic-Mechanical Systems

    DEFF Research Database (Denmark)

    Choux, Martin; Hovland, Geir; Blanke, Mogens

    2012-01-01

    Development of a cascade controller structure including adaptive backstepping for a nonlinear hydraulic-mechanical system is considered in this paper where a dynamic friction (LuGre) model is included to obtain the necessary accuracy. The paper compares the performance of two variants of an adapt......Development of a cascade controller structure including adaptive backstepping for a nonlinear hydraulic-mechanical system is considered in this paper where a dynamic friction (LuGre) model is included to obtain the necessary accuracy. The paper compares the performance of two variants...... of an adaptive backstepping tracking controller with earlier results. The new control architecture is analysed and enhanced tracking performance is demonstrated when including the extended friction model. The complexity of the backstepping procedure is significantly reduced due to the cascade structure. Hence...

  4. Combination oral and mechanical bowel preparations decreases complications in both right and left colectomy.

    Science.gov (United States)

    Midura, Emily F; Jung, Andrew D; Hanseman, Dennis J; Dhar, Vikrom; Shah, Shimul A; Rafferty, Janice F; Davis, Bradley R; Paquette, Ian M

    2018-03-01

    Before elective colectomy, many advocate mechanical bowel preparation with oral antibiotics, whereas enhanced recovery pathways avoid mechanical bowel preparations. The optimal preparation for right versus left colectomy is also unclear. We sought to determine which strategy for bowel preparation decreases surgical site infection (SSI) and anastomotic leak (AL). Elective colectomies from the National Surgical Quality Improvement Program colectomy database (2012-2015) were divided by (1) type of bowel preparation: no preparation (NP), mechanical preparation (MP), oral antibiotics (PO), or mechanical and oral antibiotics (PO/MP); and (2) type of colonic resection: right, left, or segmental colectomy. Univariate and multivariate analyses identified predictors of SSI and AL, and their risk-adjusted incidence was determined by logistic regression. When analyzed as the odds ratio compared with NP, the PO and PO/MP groups were associated with a decrease in SSI (PO = 0.70 [0.55-0.88] and PO/MP = 0.47 [0.42-0.53]; P < .01). Use of PO/MP was associated with a decrease in SSI across all types of resections (right colectomy = 0.40 [0.33-0.50], left colectomy = 0.57 [0.47-0.68], and segmental colectomy = 0.43 (0.34-0.54); P < .01). Similarly, use of PO/MP was associated with a decrease in AL in left colectomy = 0.50 ([0.37-0.69]; P < .01) and segmental colectomy = 0.53 ([0.36-0.80]; P < .01). Mechanical bowel preparation with oral antibiotics is the preferred preoperative preparation strategy in elective colectomy because of decreased incidence of SSI and AL. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Shading Contributes to the Reduction of Stem Mechanical Strength by Decreasing Cell Wall Synthesis in Japonica Rice (Oryza sativa L.

    Directory of Open Access Journals (Sweden)

    Longmei Wu

    2017-05-01

    Full Text Available Low solar radiation caused by industrial development and solar dimming has become a limitation in crop production in China. It is widely accepted that low solar radiation influences many aspects of plant development, including slender, weak stems and susceptibility to lodging. However, the underlying mechanisms are not well understood. To clarify how low solar radiation affects stem mechanical strength formation and lodging resistance, the japonica rice cultivars Wuyunjing23 (lodging-resistant and W3668 (lodging-susceptible were grown under field conditions with normal light (Control and shading (the incident light was reduced by 60% with a black nylon net. The yield and yield components, plant morphological characteristics, the stem mechanical strength, cell wall components, culm microstructure, gene expression correlated with cellulose and lignin biosynthesis were measured. The results showed that shading significantly reduced grain yield attributed to reduction of spikelets per panicles and grain weight. The stem-breaking strength decreased significantly under shading treatment; consequently, resulting in higher lodging index in rice plant in both varieties, as revealed by decreased by culm diameter, culm wall thickness and increased plant height, gravity center height. Compared with control, cell wall components including non-structural carbohydrate, sucrose, cellulose, and lignin reduced quite higher. With histochemical straining, shading largely reduced lignin deposition in the sclerenchyma cells and vascular bundle cells compared with control, and decreased cellulose deposition in the parenchyma cells of culm tissue in both Wuyunjing23 and W3668. And under shading condition, gene expression involved in secondary cell wall synthesis, OsPAL, OsCOMT, OsCCoAOMT, OsCCR, and OsCAD2, and primary cell wall synthesis, OsCesA1, OsCesA3, and OsCesA8 were decreased significantly. These results suggest that gene expression involved in the reduction of

  6. Shading Contributes to the Reduction of Stem Mechanical Strength by Decreasing Cell Wall Synthesis in Japonica Rice (Oryza sativa L.).

    Science.gov (United States)

    Wu, Longmei; Zhang, Wujun; Ding, Yanfeng; Zhang, Jianwei; Cambula, Elidio D; Weng, Fei; Liu, Zhenghui; Ding, Chengqiang; Tang, She; Chen, Lin; Wang, Shaohua; Li, Ganghua

    2017-01-01

    Low solar radiation caused by industrial development and solar dimming has become a limitation in crop production in China. It is widely accepted that low solar radiation influences many aspects of plant development, including slender, weak stems and susceptibility to lodging. However, the underlying mechanisms are not well understood. To clarify how low solar radiation affects stem mechanical strength formation and lodging resistance, the japonica rice cultivars Wuyunjing23 (lodging-resistant) and W3668 (lodging-susceptible) were grown under field conditions with normal light (Control) and shading (the incident light was reduced by 60%) with a black nylon net. The yield and yield components, plant morphological characteristics, the stem mechanical strength, cell wall components, culm microstructure, gene expression correlated with cellulose and lignin biosynthesis were measured. The results showed that shading significantly reduced grain yield attributed to reduction of spikelets per panicles and grain weight. The stem-breaking strength decreased significantly under shading treatment; consequently, resulting in higher lodging index in rice plant in both varieties, as revealed by decreased by culm diameter, culm wall thickness and increased plant height, gravity center height. Compared with control, cell wall components including non-structural carbohydrate, sucrose, cellulose, and lignin reduced quite higher. With histochemical straining, shading largely reduced lignin deposition in the sclerenchyma cells and vascular bundle cells compared with control, and decreased cellulose deposition in the parenchyma cells of culm tissue in both Wuyunjing23 and W3668. And under shading condition, gene expression involved in secondary cell wall synthesis, OsPAL, OsCOMT, OsCCoAOMT, OsCCR , and OsCAD2 , and primary cell wall synthesis, OsCesA1, OsCesA3 , and OsCesA8 were decreased significantly. These results suggest that gene expression involved in the reduction of lignin and

  7. Decrease of intracellular pH as possible mechanism of embryotoxicity of glycol ether alkoxyacetic acid metabolites

    International Nuclear Information System (INIS)

    Louisse, Jochem; Bai Yanqing; Verwei, Miriam; Sandt, Johannes J.M. van de; Blaauboer, Bas J.; Rietjens, Ivonne M.C.M.

    2010-01-01

    Embryotoxicity of glycol ethers is caused by their alkoxyacetic acid metabolites, but the mechanism underlying the embryotoxicity of these acid metabolites is so far not known. The present study investigates a possible mechanism underlying the embryotoxicity of glycol ether alkoxyacetic acid metabolites using the methoxyacetic acid (MAA) metabolite of ethylene glycol monomethyl ether as the model compound. The results obtained demonstrate an MAA-induced decrease of the intracellular pH (pH i ) of embryonic BALB/c-3T3 cells as well as of embryonic stem (ES)-D3 cells, at concentrations that affect ES-D3 cell differentiation. These results suggest a mechanism for MAA-mediated embryotoxicity similar to the mechanism of embryotoxicity of the drugs valproic acid and acetazolamide (ACZ), known to decrease the pH i in vivo, and therefore used as positive controls. The embryotoxic alkoxyacetic acid metabolites ethoxyacetic acid, butoxyacetic acid and phenoxyacetic acid also caused an intracellular acidification of BALB/c-3T3 cells at concentrations that are known to inhibit ES-D3 cell differentiation. Two other embryotoxic compounds, all-trans-retinoic acid and 5-fluorouracil, did not decrease the pH i of embryonic cells at concentrations that affect ES-D3 cell differentiation, pointing at a different mechanism of embryotoxicity of these compounds. MAA and ACZ induced a concentration-dependent inhibition of ES-D3 cell differentiation, which was enhanced by amiloride, an inhibitor of the Na + /H + -antiporter, corroborating an important role of the pH i in the embryotoxic mechanism of both compounds. Together, the results presented indicate that a decrease of the pH i may be the mechanism of embryotoxicity of the alkoxyacetic acid metabolites of the glycol ethers.

  8. Study on mechanism of decreased lipid peroxide by low dose radiation

    International Nuclear Information System (INIS)

    Yamaoka, Kiyonori; Okazoe, Yoko; Akimaru, Kunihiro; Sato, E.F.; Utsumi, Kozo.

    1991-01-01

    We examined the effect of SOD on lipid peroxidation in biomembrane from V.E-deficient rats, in order to study the mechanism of increased SOD activities and decreased lipid peroxide by low dose irradiation. The following results were obtained. i. Active oxygen (O 2 - ) strongly enhances lipid peroxidations in biomembrane with the Fe 3+ as catalyst. ii. SOD evidently inhibits lipid peroxidations under above conditions. iii. We suggested that the effect of SOD enhanced by low dose irradiation results in inhibition of lipid peroxidation. (author)

  9. Mechanisms of resistance to quinolones: target alterations, decreased accumulation and DNA gyrase protection.

    Science.gov (United States)

    Ruiz, Joaquim

    2003-05-01

    Quinolones are broad-spectrum antibacterial agents, commonly used in both clinical and veterinary medicine. Their extensive use has resulted in bacteria rapidly developing resistance to these agents. Two mechanisms of quinolone resistance have been established to date: alterations in the targets of quinolones, and decreased accumulation due to impermeability of the membrane and/or an overexpression of efflux pump systems. Recently, mobile elements have also been described, carrying the qnr gene, which confers resistance to quinolones.

  10. Implementing a benchmarking and feedback concept decreases postoperative pain after total knee arthroplasty: A prospective study including 256 patients.

    Science.gov (United States)

    Benditz, A; Drescher, J; Greimel, F; Zeman, F; Grifka, J; Meißner, W; Völlner, F

    2016-12-05

    Perioperative pain reduction, particularly during the first two days, is highly important for patients after total knee arthroplasty (TKA). Problems are not only caused by medical issues but by organization and hospital structure. The present study shows how the quality of pain management can be increased by implementing a standardized pain concept and simple, consistent benchmarking. All patients included into the study had undergone total knee arthroplasty. Outcome parameters were analyzed by means of a questionnaire on the first postoperative day. A multidisciplinary team implemented a regular procedure of data analyzes and external benchmarking by participating in a nationwide quality improvement project. At the beginning of the study, our hospital ranked 16 th in terms of activity-related pain and 9 th in patient satisfaction among 47 anonymized hospitals participating in the benchmarking project. At the end of the study, we had improved to 1 st activity-related pain and to 2 nd in patient satisfaction. Although benchmarking started and finished with the same standardized pain management concept, results were initially pure. Beside pharmacological treatment, interdisciplinary teamwork and benchmarking with direct feedback mechanisms are also very important for decreasing postoperative pain and for increasing patient satisfaction after TKA.

  11. Mechanisms for decreased exercise capacity after bed rest in normal middle-aged men

    International Nuclear Information System (INIS)

    Hung, J.; Goldwater, D.; Convertino, V.A.; McKillop, J.H.; Goris, M.L.; DeBusk, R.F.

    1983-01-01

    The mechanisms responsible for the decrease in exercise capacity after bed rest were assessed in 12 apparently healthy men aged 50 +/- 4 years who underwent equilibrium gated blood pool scintigraphy during supine and upright multistage bicycle ergometry before and after 10 days of bed rest. After bed rest, echocardiographically measured supine resting left ventricular end-diastolic volume decreased by 16% (p less than 0.05). Peak oxygen uptake during supine effort after bed rest was diminished by 6% (p . not significant [NS]), whereas peak oxygen uptake during upright effort declined by 15% (p less than 0.05). After bed rest, increases in heart rate were also greater during exercise in the upright than in the supine position (p less than 0.05). Values of left ventricular ejection fraction increased normally during both supine and upright effort after bed rest and were higher than corresponding values before bed rest (p less than 0.05). After bed rest, increased left ventricular ejection fraction and heart rate largely compensated for the reduced cardiac volume during supine effort, but these mechanisms were insufficient to maintain oxygen transport capacity at levels during upright effort before bed rest. These results indicate that orthostatically induced cardiac underfilling, not physical deconditioning or left ventricular dysfunction, is the major cause of reduced effort tolerance after 10 days of bed rest in normal middle-aged men

  12. DeltaFosB induces osteosclerosis and decreases adipogenesis by two independent cell-autonomous mechanisms

    DEFF Research Database (Denmark)

    Kveiborg, Marie; Sabatakos, George; Chiusaroli, Riccardo

    2004-01-01

    establishes that the skeletal phenotype is cell autonomous to the osteoblast lineage and independent of adipocyte formation. It also strongly suggests that the decreased fat phenotype of NSE-DeltaFosB mice is independent of the changes in the osteoblast lineage. In vitro, overexpression of Delta......Osteoblasts and adipocytes may develop from common bone marrow mesenchymal precursors. Transgenic mice overexpressing DeltaFosB, an AP-1 transcription factor, under the control of the neuron-specific enolase (NSE) promoter show both markedly increased bone formation and decreased adipogenesis...... of DeltaFosB on adipocyte differentiation appears to occur at early stages of stem cell commitment, affecting C/EBPbeta functions. It is concluded that the changes in osteoblast and adipocyte differentiation in DeltaFosB transgenic mice result from independent cell-autonomous mechanisms....

  13. The mechanisms behind decreased internalization of angiotensin II type 1 receptor.

    Science.gov (United States)

    Bian, Jingwei; Zhang, Suli; Yi, Ming; Yue, Mingming; Liu, Huirong

    2018-04-01

    The internalization of angiotensin II type 1 receptor (AT 1 R) plays an important role in maintaining cardiovascular homeostasis. Decreased receptor internalization is closely related to cardiovascular diseases induced by the abnormal activation of AT 1 R, such as hypertension. However, the mechanism behind reduced AT 1 R internalization is not fully understood. This review focuses on four parts of the receptor internalization process (the combination of agonists and receptors, receptor phosphorylation, endocytosis, and recycling) and summarizes the possible mechanisms by which AT 1 R internalization is reduced based on these four parts of the process. (1) The agonist has a large molecular weight or a stronger ability to hydrolyze phosphatidylinositol 4,5-bisphosphate (PtdIns (4,5) P 2 ), which can increase the consumption of PtdIns (4,5) P 2 . (2) AT 1 R phosphorylation is weakened because of an abnormal function of phosphorylated kinase or changes in phospho-barcoding and GPCR-β-arrestin complex conformation. (3) The abnormal formation of vesicles or AT 1 R heterodimers with fewer endocytic receptors results in less AT 1 R endocytosis. (4) The enhanced activity and upregulated expression of small GTP-binding protein 4 (Rab4) and 11 (Rab11), which regulate receptor recycling, and phosphatidylinositol 3-kinase increase AT 1 R recycling. In addition, lower expression of AT 1 R-associated protein (ATRAP) or higher expression of AT 1 R-associated protein 1 (ARAP1) can reduce receptor internalization. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Mechanisms of decreased intestinal epithelial proliferation and increased apoptosis in murine acute lung injury.

    Science.gov (United States)

    Husain, Kareem D; Stromberg, Paul E; Woolsey, Cheryl A; Turnbull, Isaiah R; Dunne, W Michael; Javadi, Pardis; Buchman, Timothy G; Karl, Irene E; Hotchkiss, Richard S; Coopersmith, Craig M

    2005-10-01

    The aim of this study was to determine the effects of acute lung injury on the gut epithelium and examine mechanisms underlying changes in crypt proliferation and apoptosis. The relationship between severity and timing of lung injury to intestinal pathology was also examined. Randomized, controlled study. University research laboratory. Genetically inbred mice. Following induction of acute lung injury, gut epithelial proliferation and apoptosis were assessed in a) C3H/HeN wild-type and C3H/HeJ mice, which lack functional Toll-like receptor 4 (n = 17); b) C57Bl/6 mice that received monoclonal anti-tumor necrosis factor-alpha or control antibody (n = 22); and c) C57Bl/6 wild-type and transgenic mice that overexpress Bcl-2 in their gut epithelium (n = 21). Intestinal epithelial proliferation and death were also examined in animals with differing degrees of lung inflammation (n = 24) as well as in a time course analysis following a fixed injury (n = 18). Acute lung injury caused decreased proliferation and increased apoptosis in crypt epithelial cells in all animals studied. C3H/HeJ mice had higher levels of proliferation than C3H/HeN animals without additional changes in apoptosis. Anti-tumor necrosis factor-alpha antibody had no effect on gut epithelial proliferation or death. Overexpression of Bcl-2 did not change proliferation despite decreasing gut apoptosis. Proliferation and apoptosis were not correlated to severity of lung injury, as gut alterations were lost in mice with more severe acute lung injury. Changes in both gut epithelial proliferation and death were apparent within 12 hrs, but proliferation was decreased 36 hrs following acute lung injury while apoptosis returned to normal. Acute lung injury causes disparate effects on crypt proliferation and apoptosis, which occur, at least in part, through differing mechanisms involving Toll-like receptor 4 and Bcl-2. Severity of lung injury does not correlate with perturbations in proliferation or death in the

  15. Acute Responses of Strength and Running Mechanics to Increasing and Decreasing Pain in Patients With Patellofemoral Pain

    Science.gov (United States)

    Bazett-Jones, David M.; Huddleston, Wendy; Cobb, Stephen; O'Connor, Kristian; Earl-Boehm, Jennifer E.

    2017-01-01

    Context:  Patellofemoral pain (PFP) is typically exacerbated by repetitive activities that load the patellofemoral joint, such as running. Understanding the mediating effects of changes in pain in individuals with PFP might inform injury progression, rehabilitation, or both. Objective:  To investigate the effects of changing pain on muscular strength and running biomechanics in those with PFP. Design:  Crossover study. Setting:  University research laboratory. Patients or Other Participants:  Seventeen participants (10 men, 7 women) with PFP. Intervention(s):  Each participant completed knee pain-reducing and pain-inducing protocols in random order. The pain-reducing protocol consisted of 15 minutes of transcutaneous electric nerve stimulation (TENS) around the patella. The pain-inducing protocol was sets of 20 repeated single-legged squats (RSLS). Participants completed RSLS sets until either their pain was within at least 1 cm of their pain during an exhaustive run or they reached 10 sets. Main Outcome Measure(s):  Pain, isometric hip and trunk strength, and running mechanics were assessed before and after the protocols. Dependent variables were pain, normalized strength (abduction, extension, external rotation, lateral trunk flexion), and peak lower extremity kinematics and kinetics in all planes. Pain scores were analyzed using a Friedman test. Strength and mechanical variables were analyzed using repeated-measures analyses of variance. The α level was set at P < .05. Results:  Pain was decreased after the TENS (pretest: 3.10 ± 1.95, posttest: 1.89 ± 2.33) and increased after the RSLS (baseline: 3.10 ± 1.95, posttest: 4.38 ± 2.40) protocols (each P < .05). The RSLS protocol resulted in a decrease in hip-extension strength (baseline: 0.355 ± 0.08 kg/kg, posttest: 0.309 ± 0.09 kg/kg; P < .001). Peak plantar-flexion angle was decreased after RSLS (baseline: −13.97° ± 6.41°, posttest: −12.84° ± 6.45°; P = .003). Peak hip

  16. Decreased respiratory system compliance on the sixth day of mechanical ventilation is a predictor of death in patients with established acute lung injury

    Directory of Open Access Journals (Sweden)

    Matthay Michael A

    2011-04-01

    Full Text Available Abstract Background Multiple studies have identified single variables or composite scores that help risk stratify patients at the time of acute lung injury (ALI diagnosis. However, few studies have addressed the important question of how changes in pulmonary physiologic variables might predict mortality in patients during the subacute or chronic phases of ALI. We studied pulmonary physiologic variables, including respiratory system compliance, P/F ratio and oxygenation index, in a cohort of patients with ALI who survived more than 6 days of mechanical ventilation to see if changes in these variables were predictive of death and whether they are informative about the pathophysiology of subacute ALI. Methods Ninety-three patients with ALI who were mechanically ventilated for more than 6 days were enrolled in this prospective cohort study. Patients were enrolled at two medical centers in the US, a county hospital and a large academic center. Bivariate analyses were used to identify pulmonary physiologic predictors of death during the first 6 days of mechanical ventilation. Predictors on day 1, day 6 and the changes between day 1 and day 6 were compared in a multivariate logistic regression model. Results The overall mortality was 35%. In multivariate analysis, the PaO2/FiO2 (OR 2.09, p th day of acute lung injury. In addition, a decrease in respiratory system compliance between days 1 and days 6 (OR 2.14, p Conclusions A low respiratory system compliance on day 6 or a decrease in the respiratory system compliance between the 1st and 6th day of mechanical ventilation were associated with increased mortality in multivariate analysis of this cohort of patients with ALI. We suggest that decreased respiratory system compliance may identify a subset of patients who have persistent pulmonary edema, atelectasis or the fibroproliferative sequelae of ALI and thus are less likely to survive their hospitalization.

  17. Mechanical Vibration Mitigates the Decrease of Bone Quantity and Bone Quality of Leptin Receptor-Deficient Db/Db Mice by Promoting Bone Formation and Inhibiting Bone Resorption.

    Science.gov (United States)

    Jing, Da; Luo, Erping; Cai, Jing; Tong, Shichao; Zhai, Mingming; Shen, Guanghao; Wang, Xin; Luo, Zhuojing

    2016-09-01

    Leptin, a major hormonal product of adipocytes, is involved in regulating appetite and energy metabolism. Substantial studies have revealed the anabolic actions of leptin on skeletons and bone cells both in vivo and in vitro. Growing evidence has substantiated that leptin receptor-deficient db/db mice exhibit decreased bone mass and impaired bone microstructure despite several conflicting results previously reported. We herein systematically investigated bone microarchitecture, mechanical strength, bone turnover and its potential molecular mechanisms in db/db mice. More importantly, we also explored an effective approach for increasing bone mass in leptin receptor-deficient animals in an easy and noninvasive manner. Our results show that deterioration of trabecular and cortical bone microarchitecture and decreases of skeletal mechanical strength-including maximum load, yield load, stiffness, energy, tissue-level modulus and hardness-in db/db mice were significantly ameliorated by 12-week, whole-body vibration (WBV) with 0.5 g, 45 Hz via micro-computed tomography (μCT), three-point bending, and nanoindentation examinations. Serum biochemical analysis shows that WBV significantly decreased serum tartrate-resistant acid phosphatase 5b (TRACP5b) and CTx-1 levels and also mitigated the reduction of serum osteocalcin (OCN) in db/db mice. Bone histomorphometric analysis confirmed that decreased bone formation-lower mineral apposition rate, bone formation rate, and osteoblast numbers in cancellous bone-in db/db mice were suppressed by WBV. Real-time PCR assays show that WBV mitigated the reductions of tibial alkaline phosphatase (ALP), OCN, Runt-related transcription factor 2 (RUNX2), type I collagen (COL1), BMP2, Wnt3a, Lrp6, and β-catenin mRNA expression, and prevented the increases of tibial sclerostin (SOST), RANK, RANKL, RANL/osteoprotegerin (OPG) gene levels in db/db mice. Our results show that WBV promoted bone quantity and quality in db/db mice with obvious

  18. Decreased glucose uptake by hyperglycemia is regulated by different mechanisms in human cancer cells and monocytes

    International Nuclear Information System (INIS)

    Kim, Chae Kyun; Chung, June Key; Lee, Yong Jin; Hong, Mee Kyoung; Jeong, Jae Min; Lee, Dong Soo; Lee, Myung Chul

    2002-01-01

    To clarify the difference in glucose uptake between human cancer cells and monocytes, we studied ( 18 F) fluorodeoxyglucose (FDG) uptake in three human colon cancer cell lines (SNU-C2A, SNU-C4, SNU-C5), one human lung cancer cell line (NCI-H522), and human peripheral blood monocytes. The FDG uptake of both cancer cells and monocytes was increased in glucose-free medium, but decreased in the medium containing 16.7 mM glucose (hyperglycemic). The level of Glut1 mRNA decreased in human colon cancer cells and NCI-H522 under hyperglycemic condition. Glut1 protein expression was also decreased in the four human cancer cell lines under hyperglycemic condition, whereas it was consistently undetectable in monocytes. SNU-C2A, SNU-C4 and NCI-H522 showed a similar level of hexokinase activity (7.5-10.8 mU/mg), while SNU-C5 and moncytes showed lower range of hexokinase activity (4.3-6.5 mU/mg). These data suggest that glucose uptake is regulated by different mechanisms in human cancer cells and monocytes

  19. A Reformed CDM - including new mechanisms for sustainable development

    Energy Technology Data Exchange (ETDEWEB)

    Holm Olsen, K; Fenhann, J

    2009-07-01

    The annual CD4CDM Perspectives Series features a topic of pivotal importance to the global carbon market. The series seeks to communicate the diverse insights and visions of leading actors in the carbon market to better inform the decisions of professionals and policymakers in developing countries. The second theme of the series focuses on how the CDM can be reformed in a post-2012 climate regime, including new mechanism for sustainable development. Seventeen contributors from the private sector, Designated National Authorities, the Executive Board, research, and development agencies present their perspective on meeting challenges such as the unequal regional distribution of CDM projects, concerns about environmental integrity and technology transfer, complex governance procedures, and questions about the CDM's contribution to sustainable development. The new ideas and solutions to these challenges proposed by the authors in this edition of Perspectives have been solicited to help professionals and policy makers make the best decisions in the lead-up to COP 15 in Copenhagen and beyond. (au)

  20. A Reformed CDM - including new mechanisms for sustainable development

    Energy Technology Data Exchange (ETDEWEB)

    Holm Olsen, K.; Fenhann, J.

    2009-07-01

    The annual CD4CDM Perspectives Series features a topic of pivotal importance to the global carbon market. The series seeks to communicate the diverse insights and visions of leading actors in the carbon market to better inform the decisions of professionals and policymakers in developing countries. The second theme of the series focuses on how the CDM can be reformed in a post-2012 climate regime, including new mechanism for sustainable development. Seventeen contributors from the private sector, Designated National Authorities, the Executive Board, research, and development agencies present their perspective on meeting challenges such as the unequal regional distribution of CDM projects, concerns about environmental integrity and technology transfer, complex governance procedures, and questions about the CDM's contribution to sustainable development. The new ideas and solutions to these challenges proposed by the authors in this edition of Perspectives have been solicited to help professionals and policy makers make the best decisions in the lead-up to COP 15 in Copenhagen and beyond. (au)

  1. Mechanical behaviour of cracked welded structures including mismatch effect

    International Nuclear Information System (INIS)

    Hornet, P.

    2002-01-01

    The most important parameters for predicting more precisely the fracture behaviour of welded structures have been identified. In particular, the plasticity development at the crack tip in the ligament appeared as a major parameter to evaluate the yield load of such a complex structure. In this way defect assessments procedures have been developed or modified to take into account the mismatch effect that is to say the mechanical properties of the different material constituting the weld joint. This paper is a synthesis of the work done in the past at Electricite de France on this topic in regards with other work done in France or around the World. The most important parameters which control the plasticity development at the crack tip and so mainly influence the fracture behaviour of welded structures are underlined: the mismatch ratio (weld to base metal yield strength ratio), the mismatch ratio (weld to base metal yield strength ratio), the ligament size and the weld width. Moreover, commonly used fracture toughness testing procedures developed in case of homogeneous specimens cannot be used in a straight forward manner and so has to be modified to take into account the mismatch effect. Number or defect assessment procedures taking into account the mismatch effect by considering the yield load of the welded structure are shortly described. Then, the 'Equivalent Material Method' developed at EDF which allows a good prediction of the applied J-Integral at the crack tip is more detailed. This procedure includes not only both weld and base metal yield strength, the structure geometry, the crack size and the weld dimension using the yield load of the real structures but also includes the effect of both weld and base metal strain hardening exponents. Some validations of this method are proposed. Finally, the ability of finite element modelling to predict the behaviour of such welded structures is demonstrated by modelling real experiments: crack located in the middle of

  2. Decreased glucose uptake by hyperglycemia is regulated by different mechanisms in human cancer cells and monocytes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chae Kyun; Chung, June Key; Lee, Yong Jin; Hong, Mee Kyoung; Jeong, Jae Min; Lee, Dong Soo; Lee, Myung Chul [College of Medicine, Seoul National Univ., Seoul (Korea, Republic of)

    2002-04-01

    To clarify the difference in glucose uptake between human cancer cells and monocytes, we studied ({sup 18}F) fluorodeoxyglucose (FDG) uptake in three human colon cancer cell lines (SNU-C2A, SNU-C4, SNU-C5), one human lung cancer cell line (NCI-H522), and human peripheral blood monocytes. The FDG uptake of both cancer cells and monocytes was increased in glucose-free medium, but decreased in the medium containing 16.7 mM glucose (hyperglycemic). The level of Glut1 mRNA decreased in human colon cancer cells and NCI-H522 under hyperglycemic condition. Glut1 protein expression was also decreased in the four human cancer cell lines under hyperglycemic condition, whereas it was consistently undetectable in monocytes. SNU-C2A, SNU-C4 and NCI-H522 showed a similar level of hexokinase activity (7.5-10.8 mU/mg), while SNU-C5 and moncytes showed lower range of hexokinase activity (4.3-6.5 mU/mg). These data suggest that glucose uptake is regulated by different mechanisms in human cancer cells and monocytes.

  3. Variable lung protective mechanical ventilation decreases incidence of postoperative delirium and cognitive dysfunction during open abdominal surgery.

    Science.gov (United States)

    Wang, Ruichun; Chen, Junping; Wu, Guorong

    2015-01-01

    Postoperative cognitive dysfunction (POCD) is a subtle impairment of cognitive abilities and can manifest on different neuropsychological features in the early postoperative period. It has been proved that the use of mechanical ventilation (MV) increased the development of delirium and POCD. However, the impact of variable and conventional lung protective mechanical ventilation on the incidence of POCD still remains unknown, which was the aim of this study. 162 patients scheduled to undergo elective gastrointestinal tumor resection via laparotomy in Ningbo No. 2 hospital with expected duration >2 h from June, 2013 to June, 2015 were enrolled in this study. Patients included were divided into two groups according to the scheme of lung protective MV, variable ventilation group (VV group, n=79) and conventional ventilation group (CV group, n=83) by randomization performed by random block randomization. The plasma levels of inflammatory cytokines, characteristics of the surgical procedure, incidence of delirium and POCD were collected and compared. Postoperative delirium was detected in 36 of 162 patients (22.2%) and 12 patients of these (16.5%) belonged to the VV group while 24 patients (28.9%) were in the CV group (P=0.036). POCD on the seventh postoperative day in CV group (26/83, 31.3%) was increased in comparison with the VV group (14/79, 17.7%) with significant statistical difference (P=0.045). The levels of inflammatory cytokines were all significantly higher in CV group than those in VV group on the 1st postoperative day (Pprotective MV decreased the incidence of postoperative delirium and POCD by reducing the systemic proinflammatory response.

  4. DECREASING OF MECHANISMS DYNAMIC LOADING AT THE TRANSIENT STATE

    Directory of Open Access Journals (Sweden)

    V. S. Loveikin

    2015-11-01

    Full Text Available Purpose. It is necessary to select modes of motion to reduce the dynamic loads in the mechanisms. This choice should be made on optimization basis. The purpose of research is to study methods of synthesis regimes of mechanisms and machines motion that provide optimal modes of movement for terminal and integral criteria. Methodology. For research the one-mass dynamic model of the mechanism has been used. As optimization criteria the terminal and comprehensive integral criteria were used. The stated optimization problem has been solved using dynamic programming and variational calculation. The direct variation method, which allowed finding only approximate solution of the original problem of optimal control, has been used as well. Findings. The ways of ensuring the absolute minimum of terminal criterion have been set for each method of problem solving. The stated characteristics show softness changes of kinematic functions during braking of mechanism. They point to the absolute minimum of adopted terminal criterion in the calculation. Originality. It is necessary to introduce new variables in the system equations during the solving of optimal control problems using dynamic programming to achieve an absolute minimum of terminal criteria. In general, to achieve a minimum of n-order terminal criterion an optimization problem should find relatively (n+1-th order function. When optimization problems is solving by variational calculation in order to ensure a minimization of n-th order terminal criterion by selecting the appropriate boundary conditions, it is necessary to solve the Euler-Poisson 2(n+1-th order equation (subject to symmetric setting boundary conditions. It is a necessary condition for an extremum of the functional with the (n+1-th order integrant. Practical value. Minimizing of adopted terminal criterion in the calculation allows eliminate the brunt in kinematic gearing of mechanisms, which increases their operational life. In addition

  5. Transcriptomic Analysis Reveals the Molecular Mechanisms of Drought-Stress-Induced Decreases in Camellia sinensis Leaf Quality

    Science.gov (United States)

    Wang, Weidong; Xin, Huahong; Wang, Mingle; Ma, Qingping; Wang, Le; Kaleri, Najeeb A.; Wang, Yuhua; Li, Xinghui

    2016-01-01

    The tea plant [Camellia sinensis (L.) O. Kuntze] is an important commercial crop rich in bioactive ingredients, especially catechins, caffeine, theanine and other free amino acids, which the quality of tea leaves depends on. Drought is the most important environmental stress affecting the yield and quality of this plant. In this study, the effects of drought stress on the phenotype, physiological characteristics and major bioactive ingredients accumulation of C. sinensis leaves were examined, and the results indicated that drought stress resulted in dehydration and wilt of the leaves, and significant decrease in the total polyphenols and free amino acids and increase in the total flavonoids. In addition, HPLC analysis showed that the catechins, caffeine, theanine and some free amino acids in C. sinensis leaves were significantly reduced in response to drought stress, implying that drought stress severely decreased the quality of C. sinensis leaves. Furthermore, differentially expressed genes (DEGs) related to amino acid metabolism and secondary metabolism were identified and quantified in C. sinensis leaves under drought stress using high-throughput Illumina RNA-Seq technology, especially the key regulatory genes of the catechins, caffeine, and theanine biosynthesis pathways. The expression levels of key regulatory genes were consistent with the results from the HPLC analysis, which indicate a potential molecular mechanism for the above results. Taken together, these data provide further insights into the mechanisms underlying the change in the quality of C. sinensis leaves under environmental stress, which involve changes in the accumulation of major bioactive ingredients, especially catechins, caffeine, theanine and other free amino acids. PMID:27066035

  6. Can consistent benchmarking within a standardized pain management concept decrease postoperative pain after total hip arthroplasty? A prospective cohort study including 367 patients.

    Science.gov (United States)

    Benditz, Achim; Greimel, Felix; Auer, Patrick; Zeman, Florian; Göttermann, Antje; Grifka, Joachim; Meissner, Winfried; von Kunow, Frederik

    2016-01-01

    The number of total hip replacement surgeries has steadily increased over recent years. Reduction in postoperative pain increases patient satisfaction and enables better mobilization. Thus, pain management needs to be continuously improved. Problems are often caused not only by medical issues but also by organization and hospital structure. The present study shows how the quality of pain management can be increased by implementing a standardized pain concept and simple, consistent, benchmarking. All patients included in the study had undergone total hip arthroplasty (THA). Outcome parameters were analyzed 24 hours after surgery by means of the questionnaires from the German-wide project "Quality Improvement in Postoperative Pain Management" (QUIPS). A pain nurse interviewed patients and continuously assessed outcome quality parameters. A multidisciplinary team of anesthetists, orthopedic surgeons, and nurses implemented a regular procedure of data analysis and internal benchmarking. The health care team was informed of any results, and suggested improvements. Every staff member involved in pain management participated in educational lessons, and a special pain nurse was trained in each ward. From 2014 to 2015, 367 patients were included. The mean maximal pain score 24 hours after surgery was 4.0 (±3.0) on an 11-point numeric rating scale, and patient satisfaction was 9.0 (±1.2). Over time, the maximum pain score decreased (mean 3.0, ±2.0), whereas patient satisfaction significantly increased (mean 9.8, ±0.4; p benchmarking a standardized pain management concept. But regular benchmarking, implementation of feedback mechanisms, and staff education made the pain management concept even more successful. Multidisciplinary teamwork and flexibility in adapting processes seem to be highly important for successful pain management.

  7. Simulation of Weld Mechanical Behavior to Include Welding-Induced Residual Stress and Distortion: Coupling of SYSWELD and Abaqus Codes

    Science.gov (United States)

    2015-11-01

    Memorandum Simulation of Weld Mechanical Behavior to Include Welding-Induced Residual Stress and Distortion: Coupling of SYSWELD and Abaqus Codes...Weld Mechanical Behavior to Include Welding-Induced Residual Stress and Distortion: Coupling of SYSWELD and Abaqus Codes by Charles R. Fisher...Welding- Induced Residual Stress and Distortion: Coupling of SYSWELD and Abaqus Codes 5a. CONTRACT NUMBER N/A 5b. GRANT NUMBER N/A 5c

  8. Relationship between sleep duration and childhood obesity: Systematic review including the potential underlying mechanisms.

    Science.gov (United States)

    Felső, R; Lohner, S; Hollódy, K; Erhardt, É; Molnár, D

    2017-09-01

    The prevalence of obesity is continually increasing worldwide. Determining risk factors for obesity may facilitate effective preventive programs. The present review focuses on sleep duration as a potential risk factor for childhood obesity. The aim is to summarize the evidence on the association of sleep duration and obesity and to discuss the underlying potential physiological and/or pathophysiological mechanisms. The Ovid MEDLINE, Scopus and Cochrane Central Register of Controlled Trials (CENTRAL) databases were searched for papers using text words with appropriate truncation and relevant indexing terms. All studies objectively measuring sleep duration and investigating the association between sleep duration and obesity or factors (lifestyle and hormonal) possibly associated with obesity were included, without making restrictions based on study design or language. Data from eligible studies were extracted in tabular form and summarized narratively. After removing duplicates, 3540 articles were obtained. Finally, 33 studies (including 3 randomized controlled trials and 30 observational studies) were included in the review. Sleep duration seems to influence weight gain in children, however, the underlying explanatory mechanisms are still uncertain. In our review only the link between short sleep duration and the development of insulin resistance, sedentarism and unhealthy dietary patterns could be verified, while the role of other mediators, such as physical activity, screen time, change in ghrelin and leptin levels, remained uncertain. There are numerous evidence gaps. To answer the remaining questions, there is a need for studies meeting high methodological standards and including a large number of children. Copyright © 2017 The Italian Society of Diabetology, the Italian Society for the Study of Atherosclerosis, the Italian Society of Human Nutrition, and the Department of Clinical Medicine and Surgery, Federico II University. Published by Elsevier B.V. All

  9. Fluid-structure interaction including volumetric coupling with homogenised subdomains for modeling respiratory mechanics.

    Science.gov (United States)

    Yoshihara, Lena; Roth, Christian J; Wall, Wolfgang A

    2017-04-01

    In this article, a novel approach is presented for combining standard fluid-structure interaction with additional volumetric constraints to model fluid flow into and from homogenised solid domains. The proposed algorithm is particularly interesting for investigations in the field of respiratory mechanics as it enables the mutual coupling of airflow in the conducting part and local tissue deformation in the respiratory part of the lung by means of a volume constraint. In combination with a classical monolithic fluid-structure interaction approach, a comprehensive model of the human lung can be established that will be useful to gain new insights into respiratory mechanics in health and disease. To illustrate the validity and versatility of the novel approach, three numerical examples including a patient-specific lung model are presented. The proposed algorithm proves its capability of computing clinically relevant airflow distribution and tissue strain data at a level of detail that is not yet achievable, neither with current imaging techniques nor with existing computational models. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  10. Decrease of Fisher information and the information geometry of evolution equations for quantum mechanical probability amplitudes.

    Science.gov (United States)

    Cafaro, Carlo; Alsing, Paul M

    2018-04-01

    The relevance of the concept of Fisher information is increasing in both statistical physics and quantum computing. From a statistical mechanical standpoint, the application of Fisher information in the kinetic theory of gases is characterized by its decrease along the solutions of the Boltzmann equation for Maxwellian molecules in the two-dimensional case. From a quantum mechanical standpoint, the output state in Grover's quantum search algorithm follows a geodesic path obtained from the Fubini-Study metric on the manifold of Hilbert-space rays. Additionally, Grover's algorithm is specified by constant Fisher information. In this paper, we present an information geometric characterization of the oscillatory or monotonic behavior of statistically parametrized squared probability amplitudes originating from special functional forms of the Fisher information function: constant, exponential decay, and power-law decay. Furthermore, for each case, we compute both the computational speed and the availability loss of the corresponding physical processes by exploiting a convenient Riemannian geometrization of useful thermodynamical concepts. Finally, we briefly comment on the possibility of using the proposed methods of information geometry to help identify a suitable trade-off between speed and thermodynamic efficiency in quantum search algorithms.

  11. Decrease of Fisher information and the information geometry of evolution equations for quantum mechanical probability amplitudes

    Science.gov (United States)

    Cafaro, Carlo; Alsing, Paul M.

    2018-04-01

    The relevance of the concept of Fisher information is increasing in both statistical physics and quantum computing. From a statistical mechanical standpoint, the application of Fisher information in the kinetic theory of gases is characterized by its decrease along the solutions of the Boltzmann equation for Maxwellian molecules in the two-dimensional case. From a quantum mechanical standpoint, the output state in Grover's quantum search algorithm follows a geodesic path obtained from the Fubini-Study metric on the manifold of Hilbert-space rays. Additionally, Grover's algorithm is specified by constant Fisher information. In this paper, we present an information geometric characterization of the oscillatory or monotonic behavior of statistically parametrized squared probability amplitudes originating from special functional forms of the Fisher information function: constant, exponential decay, and power-law decay. Furthermore, for each case, we compute both the computational speed and the availability loss of the corresponding physical processes by exploiting a convenient Riemannian geometrization of useful thermodynamical concepts. Finally, we briefly comment on the possibility of using the proposed methods of information geometry to help identify a suitable trade-off between speed and thermodynamic efficiency in quantum search algorithms.

  12. Statins Decrease Oxidative Stress and ICD Therapies

    Directory of Open Access Journals (Sweden)

    Heather L. Bloom

    2010-01-01

    Full Text Available Recent studies demonstrate that statins decrease ventricular arrhythmias in internal cardioverter defibrillator (ICD patients. The mechanism is unknown, but evidence links increased inflammatory and oxidative states with increased arrhythmias. We hypothesized that statin use decreases oxidation. Methods. 304 subjects with ICDs were surveyed for ventricular arrhythmia. Blood was analyzed for derivatives of reactive oxygen species (DROMs and interleukin-6 (IL-6. Results. Subjects included 252 (83% men, 58% on statins, 20% had ventricular arrhythmias. Average age was 63 years and ejection fraction (EF 20%. ICD implant duration was 29 ± 27 months. Use of statins correlated with lower ICD events (r=0.12, P=.02. Subjects on statins had lower hsCRP (5.2 versus 6.3; P=.05 and DROM levels (373 versus 397; P=.03. Other factors, including IL-6 and EF did not differ between statin and nonstatin use, nor did beta-blocker or antiarrhythmic use. Multivariate cross-correlation analysis demonstrated that DROMs, statins, IL-6 and EF were strongly associated with ICD events. Multivariate regression shows DROMs to be the dominant predictor. Conclusion. ICD event rate correlates with DROMs, a measure of lipid peroxides. Use of statins is associated with reduced DROMs and fewer ICD events, suggesting that statins exert their effect through reducing oxidation.

  13. Closed-form solutions for linear regulator design of mechanical systems including optimal weighting matrix selection

    Science.gov (United States)

    Hanks, Brantley R.; Skelton, Robert E.

    1991-01-01

    Vibration in modern structural and mechanical systems can be reduced in amplitude by increasing stiffness, redistributing stiffness and mass, and/or adding damping if design techniques are available to do so. Linear Quadratic Regulator (LQR) theory in modern multivariable control design, attacks the general dissipative elastic system design problem in a global formulation. The optimal design, however, allows electronic connections and phase relations which are not physically practical or possible in passive structural-mechanical devices. The restriction of LQR solutions (to the Algebraic Riccati Equation) to design spaces which can be implemented as passive structural members and/or dampers is addressed. A general closed-form solution to the optimal free-decay control problem is presented which is tailored for structural-mechanical system. The solution includes, as subsets, special cases such as the Rayleigh Dissipation Function and total energy. Weighting matrix selection is a constrained choice among several parameters to obtain desired physical relationships. The closed-form solution is also applicable to active control design for systems where perfect, collocated actuator-sensor pairs exist.

  14. In the Absence of a Mechanical Bowel Prep, Does the Addition of Pre-Operative Oral Antibiotics to Parental Antibiotics Decrease the Incidence of Surgical Site Infection after Elective Segmental Colectomy?

    Science.gov (United States)

    Atkinson, Sarah J; Swenson, Brian R; Hanseman, Dennis J; Midura, Emily F; Davis, Bradley R; Rafferty, Janice F; Abbott, Daniel E; Shah, Shimul A; Paquette, Ian M

    2015-12-01

    Pre-operative oral antibiotics administered the day prior to elective colectomy have been shown to decrease the incidence of surgical site infections (SSI) if a mechanical bowel prep (MBP) is used. Recently, the role for mechanical bowel prep has been challenged as being unnecessary and potentially harmful. We hypothesize that if MBP is omitted, oral antibiotics do not alter the incidence of SSI following colectomy. We selected patients who underwent an elective segmental colectomy from the 2012 and 2013 National Surgical Quality Improvement Program colectomy procedure targeted database. Indications for surgery included colon cancer, diverticulitis, inflammatory bowel disease, or benign polyp. Patients who received mechanical bowel prep were excluded. The primary outcome measured was surgical site infection, defined as the presence of superficial, deep or, organ space infection within 30 d from surgery. A total of 6,399 patients underwent elective segmental colectomy without MBP. The incidence of SSI differed substantially between patients who received oral antibiotics, versus those who did not (9.7% vs. 13.7%, p=0.01). Multivariate analysis indicated that age, smoking status, operative time, perioperative transfusions, oral antibiotics, and surgical approach were associated with post-operative SSI. When controlling for confounding factors, the use of pre-operative oral antibiotics decreased the incidence of surgical site infection (odds ratio=0.66, 95% confidence interval=0.48-0.90, p=0.01). Even in the absence of mechanical bowel prep, pre-operative oral antibiotics appear to reduce the incidence of surgical site infection following elective colectomy.

  15. Decreased heart rate variability responses during early postoperative mobilization

    DEFF Research Database (Denmark)

    Jans, Øivind; Brinth, Louise; Kehlet, Henrik

    2015-01-01

    in relation to postural change. METHODS: A standardized mobilization protocol before, 6 and 24 h after surgery was performed in 23 patients scheduled for elective THA. Beat-to-beat arterial blood pressure was measured by photoplethysmography and HRV was derived from pulse wave interbeat intervals and analysed......BACKGROUND: Intact orthostatic blood pressure regulation is essential for early mobilization after surgery. However, postoperative orthostatic hypotension and intolerance (OI) may delay early ambulation. The mechanisms of postoperative OI include impaired vasopressor responses relating...... and postural responses in arterial pressures decreased compared to preoperative conditions. During standing HF variation increased by 16.7 (95 % CI 8.0-25.0) normalized units (nu) at 6 h and 10.7 (2.0-19.4) nu at 24 h compared to the preoperative evaluation. At 24 h the LF/HF ratio decreased from 1.8 (1...

  16. Mechanical Constraints on Flight at High Elevation Decrease Maneuvering Performance of Hummingbirds.

    Science.gov (United States)

    Segre, Paolo S; Dakin, Roslyn; Read, Tyson J G; Straw, Andrew D; Altshuler, Douglas L

    2016-12-19

    High-elevation habitats offer ecological advantages including reduced competition, predation, and parasitism [1]. However, flying organisms at high elevation also face physiological challenges due to lower air density and oxygen availability [2]. These constraints are expected to affect the flight maneuvers that are required to compete with rivals, capture prey, and evade threats [3-5]. To test how individual maneuvering performance is affected by elevation, we measured the free-flight maneuvers of male Anna's hummingbirds in a large chamber translocated to a high-elevation site and then measured their performance at low elevation. We used a multi-camera tracking system to identify thousands of maneuvers based on body position and orientation [6]. At high elevation, the birds' translational velocities, accelerations, and rotational velocities were reduced, and they used less demanding turns. To determine how mechanical and metabolic constraints independently affect performance, we performed a second experiment to evaluate flight maneuvers in an airtight chamber infused with either normoxic heliox, to lower air density, or nitrogen, to lower oxygen availability. The hypodense treatment caused the birds to reduce their accelerations and rotational velocities, whereas the hypoxic treatment had no significant effect on maneuvering performance. Collectively, these experiments reveal how aerial maneuvering performance changes with elevation, demonstrating that as birds move up in elevation, air density constrains their maneuverability prior to any influence of oxygen availability. Our results support the hypothesis that changes in competitive ability at high elevations are the result of mechanical limits to flight performance [7]. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Stop signals decrease choices for palatable foods through decreased food evaluation

    Science.gov (United States)

    Veling, Harm; Aarts, Henk; Stroebe, Wolfgang

    2013-01-01

    The present study explores whether presenting specific palatable foods in close temporal proximity of stop signals in a go/no-go task decreases subsequent evaluations of such foods among participants with a relatively high appetite. Furthermore, we tested whether any decreased evaluations could mediate subsequent food choice. Participants first received a go/no-go task in which palatable foods were consistently linked to go cues or no-go cues within participants. Next, evaluation of the palatable foods was measured as well as food choice. Replicating previous work, results show that among participants with a relatively high appetite palatable foods associated with no-go cues are less often chosen as snacks compared to when these foods are associated with go cues, whereas this manipulation did not affect participants with a relatively low appetite. Moreover, this effect was completely mediated by decreased evaluation of the palatable foods that had been associated with the no-go cues, whereas evaluation of the foods associated with go cues did not mediate this effect. Results further showed that the devaluation effect of foods associated with no-go cues was independent of the amount of pairings (4 vs. 12 vs. 24) with the no-go cues. The current findings suggest that decreased food evaluation is a mechanism that explains effects of stop signals on food choice. PMID:24324451

  18. A detailed kinetic mechanism including methanol and nitrogen pollutants relevant to the gas-phase combustion and pyrolysis of biomass-derived fuels

    Energy Technology Data Exchange (ETDEWEB)

    Coda Zabetta, Edgardo; Hupa, Mikko [Aabo Akademi Process Chemistry Centre, Piispankatu 8, FI-20500 Turku (Finland)

    2008-01-15

    A detailed chemical kinetic mechanism for the simulation of the gas-phase combustion and pyrolysis of biomass-derived fuels was compiled by assembling selected reaction subsets from existing mechanisms (parents). The mechanism, here referred to as ''AaA,'' includes reaction subsets for the oxidation of hydrogen (H{sub 2}), carbon monoxide (CO), light hydrocarbons (C{sub 1} and C{sub 2}), and methanol (CH{sub 3}OH). The mechanism also takes into account reaction subsets of nitrogen pollutants, including the reactions relevant to staged combustion, reburning, and selective noncatalytic reduction (SNCR). The AaA mechanism was validated against suitable experimental data from the literature. Overall, the AaA mechanism gave more accurate predictions than three other mechanisms of reference, although the reference mechanisms performed better occasionally. The predictions from AaA were also found to be consistent with the predictions of its parent mechanisms within most of their range of validity, thus transferring the validity of the parents to the inheriting mechanism (AaA). In parametric studies the AaA mechanism predicted that the effect of methanol on combustion and pollutants is often similar to that of light hydrocarbons, but it also showed that there are important exceptions, thus suggesting that methanol should be taken into account when simulating biomass combustion. To our knowledge, the AaA mechanism is currently the only mechanism that accounts for the chemistry of methanol and nitrogen relevant to the gas-phase combustion and pyrolysis of biomass-derived fuels. (author)

  19. Organophosphorus pesticides decrease M2 muscarinic receptor function in guinea pig airway nerves via indirect mechanisms.

    Directory of Open Access Journals (Sweden)

    Becky J Proskocil

    Full Text Available BACKGROUND: Epidemiological studies link organophosphorus pesticide (OP exposures to asthma, and we have shown that the OPs chlorpyrifos, diazinon and parathion cause airway hyperreactivity in guinea pigs 24 hr after a single subcutaneous injection. OP-induced airway hyperreactivity involves M2 muscarinic receptor dysfunction on airway nerves independent of acetylcholinesterase (AChE inhibition, but how OPs inhibit neuronal M2 receptors in airways is not known. In the central nervous system, OPs interact directly with neurons to alter muscarinic receptor function or expression; therefore, in this study we tested whether the OP parathion or its oxon metabolite, paraoxon, might decrease M2 receptor function on peripheral neurons via similar direct mechanisms. METHODOLOGY/PRINCIPAL FINDINGS: Intravenous administration of paraoxon, but not parathion, caused acute frequency-dependent potentiation of vagally-induced bronchoconstriction and increased electrical field stimulation (EFS-induced contractions in isolated trachea independent of AChE inhibition. However, paraoxon had no effect on vagally-induced bradycardia in intact guinea pigs or EFS-induced contractions in isolated ileum, suggesting mechanisms other than pharmacologic antagonism of M2 receptors. Paraoxon did not alter M2 receptor expression in cultured cells at the mRNA or protein level as determined by quantitative RT-PCR and radio-ligand binding assays, respectively. Additionally, a biotin-labeled fluorophosphonate, which was used as a probe to identify molecular targets phosphorylated by OPs, did not phosphorylate proteins in guinea pig cardiac membranes that were recognized by M2 receptor antibodies. CONCLUSIONS/SIGNIFICANCE: These data indicate that neither direct pharmacologic antagonism nor downregulated expression of M2 receptors contributes to OP inhibition of M2 function in airway nerves, adding to the growing evidence of non-cholinergic mechanisms of OP neurotoxicity.

  20. Alcoholic Hepatitis Markedly Decreases the Capacity for Urea Synthesis.

    Directory of Open Access Journals (Sweden)

    Emilie Glavind

    Full Text Available Data on quantitative metabolic liver functions in the life-threatening disease alcoholic hepatitis are scarce. Urea synthesis is an essential metabolic liver function that plays a key regulatory role in nitrogen homeostasis. The urea synthesis capacity decreases in patients with compromised liver function, whereas it increases in patients with inflammation. Alcoholic hepatitis involves both mechanisms, but how these opposite effects are balanced remains unclear. Our aim was to investigate how alcoholic hepatitis affects the capacity for urea synthesis. We related these findings to another measure of metabolic liver function, the galactose elimination capacity (GEC, as well as to clinical disease severity.We included 20 patients with alcoholic hepatitis and 7 healthy controls. The urea synthesis capacity was quantified by the functional hepatic nitrogen clearance (FHNC, i.e., the slope of the linear relationship between the blood α-amino nitrogen concentration and urea nitrogen synthesis rate during alanine infusion. The GEC was determined using blood concentration decay curves after intravenous bolus injection of galactose. Clinical disease severity was assessed by the Glasgow Alcoholic Hepatitis Score and Model for End-Stage Liver Disease (MELD score.The FHNC was markedly decreased in the alcoholic hepatitis patients compared with the healthy controls (7.2±4.9 L/h vs. 37.4±6.8 L/h, P<0.01, and the largest decrease was observed in those with severe alcoholic hepatitis (4.9±3.6 L/h vs. 9.9±4.9 L/h, P<0.05. The GEC was less markedly reduced than the FHNC. A negative correlation was detected between the FHNC and MELD score (rho = -0.49, P<0.05.Alcoholic hepatitis markedly decreases the urea synthesis capacity. This decrease is associated with an increase in clinical disease severity. Thus, the metabolic failure in alcoholic hepatitis prevails such that the liver cannot adequately perform the metabolic up-regulation observed in other stressful

  1. Improvement of the mechanical properties of spark plasma sintered hap bioceramics by decreasing the grain size and by adding multi-walled carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Veljović Đ.

    2013-01-01

    Full Text Available Composites based on HAP and oxidized multi-walled carbon nanotubes (o-MWCNT and monophase HAP materials were processed by spark plasma sintering. Starting from stoichiometric nano-sized HAP powder, monophase bioceramics were obtained with a density close to the theoretical one and with an average grain size of several hundred nanometers to micron dimensions. It was shown that decreasing the sintering temperature resulted in a decrease of the grain size, which affected an increase in the fracture toughness and hardness. The fracture toughness of an HAP/ o-MWCNT bioceramic processed at 900°C for only 5 min was 30 % higher than that of monophase HAP materials obtained under the same conditions. The addition of MWCNT during SPS processing of HAP materials caused a decrease in the grain size to the nano-dimension, which was one of the reasons for the improved mechanical properties. [Projekat Ministarstva nauke Republike Srbije, br. III45019 i FP7-REGPOT-2009-1 NANOTECH FTM, Grant Agreement Number: 245916

  2. Why did soft drink consumption decrease but screen time not? Mediating mechanisms in a school-based obesity prevention program

    Directory of Open Access Journals (Sweden)

    Brug Johannes

    2008-08-01

    Full Text Available Abstract Objectives This paper aims to identify the mediating mechanisms of a school-based obesity prevention program (DOiT. Methods The DOiT-program was implemented in Dutch prevocational secondary schools and evaluated using a controlled, cluster-randomised trial (September 2003 to May 2004. We examined mediators of effects regarding (1 consumption of sugar containing beverages (SCB; (2 consumption of high caloric snacks; (3 screen-viewing behaviour; and (4 active commuting to school. To improve these behaviours the DOiT-program tried to influence the following potentially mediating variables: attitude, subjective norm, perceived behavioural control, and habit-strength. Results Both in boys (n = 418 and girls (n = 436 the DOiT-intervention reduced SCB consumption (between group difference in boys = -303.5 ml/day, 95% CI: -502.4;-104.5, between group difference in girls = -222.3 ml/day, 95% CI: -371.3;-73.2. The intervention did not affect the other examined behaviours. In girls, no intervention effect on hypothetical mediators was found nor evidence of any mediating mechanisms. Boys in intervention schools improved their attitude towards decreasing SCB consumption, while this behaviour became less of a habit. Indeed, attitude and habit strength were significant mediators of the DOiT-intervention's effect (4.5 and 3.8%, respectively on SCB consumption among boys. Conclusion Our findings imply that interventions aimed at EBRB-change should be gender-specific. Future studies aimed at reducing SCB consumption among boys should target attitude and habit strength as mediating mechanisms. Our study did not resolve the mediating mechanisms in girls. Trial registration International Standard Randomised Controlled Trial Number Register ISRCTN87127361

  3. High concentration of vitamin E decreases thermosensation and thermotaxis learning and the underlying mechanisms in the nematode Caenorhabditis elegans.

    Science.gov (United States)

    Li, Yiping; Li, Yinxia; Wu, Qiuli; Ye, Huayue; Sun, Lingmei; Ye, Boping; Wang, Dayong

    2013-01-01

    α-tocopherol is a powerful liposoluble antioxidant and the most abundant isoform of vitamin E in the body. Under normal physiological conditions, adverse effects of relatively high concentration of vitamin E on organisms and the underlying mechanisms are still largely unclear. In the present study, we used the nematode Caenorhabditis elegans as an in vivo assay system to investigate the possible adverse effects of high concentration of vitamin E on thermosensation and thermotaxis learning and the underlying mechanisms. Our data show that treatment with 100-200 µg/mL of vitamin E did not noticeably influence both thermosensation and thermotaxis learning; however, treatment with 400 µg/mL of vitamin E altered both thermosensation and thermotaxis learning. The observed decrease in thermotaxis learning in 400 µg/mL of vitamin E treated nematodes might be partially due to the moderate but significant deficits in thermosensation, but not due to deficits in locomotion behavior or perception to food and starvation. Treatment with 400 µg/mL of vitamin E did not noticeably influence the morphology of GABAergic neurons, but significantly decreased fluorescent intensities of the cell bodies in AFD sensory neurons and AIY interneurons, required for thermosensation and thermotaxis learning control. Treatment with 400 µg/mL of vitamin E affected presynaptic function of neurons, but had no remarkable effects on postsynaptic function. Moreover, promotion of synaptic transmission by activating PKC-1 effectively retrieved deficits in both thermosensation and thermotaxis learning induced by 400 µg/mL of vitamin E. Therefore, relatively high concentrations of vitamin E administration may cause adverse effects on thermosensation and thermotaxis learning by inducing damage on the development of specific neurons and presynaptic function under normal physiological conditions in C. elegans.

  4. Radioprotection: mechanism and radioprotective agents including honeybee venom

    Energy Technology Data Exchange (ETDEWEB)

    Varanda, E.A.; Tavares, D.C. [UNESP, Araraquara, SP (Brazil). Escola de Ciencias Farmaceuticas. Dept. de Ciencias Biologicas

    1998-07-01

    Since 1949, a great deal of research has been carried on the radioprotective action of chemical substances. These substances have shown to reduce mortality when administered to animals prior to exposure to a lethal dose of radiation. This fact is of considerable importance since it permits reduction of radiation-induced damage and provides prophylactic treatment for the damaging effects produced by radiotherapy. The following radioprotection mechanisms were proposed: free radical scavenger, repair by hydrogen donation to target molecules formation of mixed disulfides, delay of cellular division and induction of hypoxia in the tissues. Radioprotective agents have been divided into four major groups: the thiol compounds, other sulfur compounds, pharmacological agents (anesthetic drugs, analgesics, tranquilizers, etc.) and other radioprotective agents (WR-1065, WR-2721, vitamins C and E, glutathione, etc.). Several studies revealed the radioprotective action of Apis mellifera honeybee venom as well as that of its components mellitin and histamine. Radioprotective activity of bee venom involves mainly the stimulation of the hematopoietic system. In addition, release of histamine and reduction in oxygen tension also contribute to the radioprotective action of bee venom. (author)

  5. Radioprotection: mechanism and radioprotective agents including honeybee venom

    International Nuclear Information System (INIS)

    Varanda, E.A.; Tavares, D.C.

    1998-01-01

    Since 1949, a great deal of research has been carried on the radioprotective action of chemical substances. These substances have shown to reduce mortality when administered to animals prior to exposure to a lethal dose of radiation. This fact is of considerable importance since it permits reduction of radiation-induced damage and provides prophylactic treatment for the damaging effects produced by radiotherapy. The following radioprotection mechanisms were proposed: free radical scavenger, repair by hydrogen donation to target molecules formation of mixed disulfides, delay of cellular division and induction of hypoxia in the tissues. Radioprotective agents have been divided into four major groups: the thiol compounds, other sulfur compounds, pharmacological agents (anesthetic drugs, analgesics, tranquilizers, etc.) and other radioprotective agents (WR-1065, WR-2721, vitamins C and E, glutathione, etc.). Several studies revealed the radioprotective action of Apis mellifera honeybee venom as well as that of its components mellitin and histamine. Radioprotective activity of bee venom involves mainly the stimulation of the hematopoietic system. In addition, release of histamine and reduction in oxygen tension also contribute to the radioprotective action of bee venom. (author)

  6. Bacterial mediated alleviation of heavy metal stress and decreased accumulation of metals in plant tissues: Mechanisms and future prospects.

    Science.gov (United States)

    Etesami, Hassan

    2018-01-01

    Heavy metal pollution of agricultural soils is one of main concerns causing some of the different ecological and environmental problems. Excess accumulation of these metals in soil has changed microbial community (e.g., structure, function, and diversity), deteriorated soil, decreased the growth and yield of plant, and entered into the food chain. Plants' tolerance to heavy metal stress needs to be improved in order to allow growth of crops with minimum or no accumulation of heavy metals in edible parts of plant that satisfy safe food demands for the world's rapidly increasing population. It is well known that PGPRs (plant growth-promoting rhizobacteria) enhance crop productivity and plant resistance to heavy metal stress. Many recent reports describe the application of heavy metal resistant-PGPRs to enhance agricultural yields without accumulation of metal in plant tissues. This review provides information about the mechanisms possessed by heavy metal resistant-PGPRs that ameliorate heavy metal stress to plants and decrease the accumulation of these metals in plant, and finally gives some perspectives for research on these bacteria in agriculture in the future. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Suppressed histamine release from rat peritoneal mast cells by ultraviolet B irradiation: decreased diacylglycerol formation as a possible mechanism

    International Nuclear Information System (INIS)

    Danno, K.; Fujii, K.; Tachibana, T.; Toda, K.; Horio, T.

    1988-01-01

    This study was designed to investigate the effect of ultraviolet B (UVB) irradiation on mast cell functions. Purified mast cells obtained from rat peritoneal cavity were irradiated with UVB and subsequently exposed to a degranulator, compound 48/80, or the calcium ionophore A-23187. The amount of histamine released from mast cells measured by the enzyme isotopic assay was significantly decreased by UVB irradiation (100-400 mJ/cm2). Within this dose range, UVB alone was not cytotoxic to the cells because it did not induce histamine release. The suppression was observed when mast cells were subjected to degranulation without intervals after UVB irradiation, and even after 5 h postirradiation. The wavelength of 300 nm from a monochromatic light source showed the maximum effect. When mast cells prelabeled with [ 3 H]arachidonate were irradiated and challenged by compound 48/80, label accumulation in diacylglycerol produced by the phosphatidylinositol cycle was considerably decreased by UVB irradiation. From these results, we hypothesize that, within an adequate irradiation dose, UVB irradiation suppresses histamine release from mast cells, probably by causing noncytotoxic damage to the membrane phospholipid metabolism, which is tied to the degranulation mechanisms

  8. Decreased triple network connectivity in patients with post-traumatic stress disorder

    Science.gov (United States)

    Liu, Yang; Li, Liang; Li, Baojuan; Zhang, Xi; Lu, Hongbing

    2017-03-01

    The triple network model provides a common framework for understanding affective and neurocognitive dysfunctions across multiple disorders, including central executive network (CEN), default mode network (DMN), and salience network (SN). Considering the effect of traumatic experience on post-traumatic stress disorder (PTSD), this study aims to explore the alteration of triple network connectivity in a specific PTSD induced by a single prolonged trauma exposure. With arterial spin labeling sequence, three networks were identified using independent component analysis in 10 PTSD patients and 10 healthy survivors, who experienced the same coal mining flood disaster. In PTSD patients, decreased connectivity was identified in left middle frontal gyrus of CEN, left precuneus and bilateral superior frontal gyrus of DMN, and right anterior insula of SN. The decreased connectivity in left middle frontal gyrus was identified to associate with clinical severity. These results indicated the decreased triple network connectivity, which not only supported the proposal of the triple network model, but also prompted possible neurobiology mechanism of cognitive dysfunction for this kind of PTSD.

  9. [Why is bread consumption decreasing?].

    Science.gov (United States)

    Rolland, M F; Chabert, C; Serville, Y

    1977-01-01

    In France bread plays a very special and ambivalent role among our foodstuffs because of the considerable drop in its consumption, its alleged harmful effects on our health and the respect in which it is traditionally held. More than half the 1 089 adults interviewed in this study say they have decreased their consumption of bread in the last 10 years. The reasons given vary according to age, body weight and urbanization level. The main reasons given for this restriction are the desire to prevent or reduce obesity, the decrease in physical activity, the general reduction in food consumption and the possibility of diversifying foods even further. Moreover, the decreasing appeal of bread in relation to other foods, as well as a modification in the structure of meals, in which bread becomes less useful to accompany other food, accentuate this loss of attraction. However, the respect for bread as part of the staple diet remains very acute as 95 p. 100 of those interviewed express a reluctance to throw bread away, more for cultural than economic reasons. Mechanization and urbanization having brought about a decrease in energy needs, the most common alimentary adaptation is general caloric restriction by which glucids, and especially bread, are curtailed.

  10. Iron supplementation decreases severity of allergic inflammation in murine lung.

    Directory of Open Access Journals (Sweden)

    Laura P Hale

    Full Text Available The incidence and severity of allergic asthma have increased over the last century, particularly in the United States and other developed countries. This time frame was characterized by marked environmental changes, including enhanced hygiene, decreased pathogen exposure, increased exposure to inhaled pollutants, and changes in diet. Although iron is well-known to participate in critical biologic processes such as oxygen transport, energy generation, and host defense, iron deficiency remains common in the United States and world-wide. The purpose of these studies was to determine how dietary iron supplementation affected the severity of allergic inflammation in the lungs, using a classic model of IgE-mediated allergy in mice. Results showed that mice fed an iron-supplemented diet had markedly decreased allergen-induced airway hyperreactivity, eosinophil infiltration, and production of pro-inflammatory cytokines, compared with control mice on an unsupplemented diet that generated mild iron deficiency but not anemia. In vitro, iron supplementation decreased mast cell granule content, IgE-triggered degranulation, and production of pro-inflammatory cytokines post-degranulation. Taken together, these studies show that iron supplementation can decrease the severity of allergic inflammation in the lung, potentially via multiple mechanisms that affect mast cell activity. Further studies are indicated to determine the potential of iron supplementation to modulate the clinical severity of allergic diseases in humans.

  11. Early decrease in dietary protein:energy ratio by fat addition and ontogenetic changes in muscle growth mechanisms of rainbow trout: short- and long-term effects.

    Science.gov (United States)

    Alami-Durante, Hélène; Cluzeaud, Marianne; Duval, Carine; Maunas, Patrick; Girod-David, Virginia; Médale, Françoise

    2014-09-14

    As the understanding of the nutritional regulation of muscle growth mechanisms in fish is fragmentary, the present study aimed to (1) characterise ontogenetic changes in muscle growth-related genes in parallel to changes in muscle cellularity; (2) determine whether an early decrease in dietary protein:energy ratio by fat addition affects the muscle growth mechanisms of rainbow trout (Oncorhynchus mykiss) alevins; and (3) determine whether this early feeding of a high-fat (HF) diet to alevins had a long-term effect on muscle growth processes in juveniles fed a commercial diet. Developmental regulation of hyperplasia and hypertrophy was evidenced at the molecular (expression of myogenic regulatory factors, proliferating cell nuclear antigen and myosin heavy chains (MHC)) and cellular (number and diameter of white muscle fibres) levels. An early decrease in dietary protein:energy ratio by fat addition stimulated the body growth of alevins but led to a fatty phenotype, with accumulation of lipids in the anterior part, and less caudal muscle when compared at similar body weights, due to a decrease in both the white muscle hyperplasia and maximum hypertrophy of white muscle fibres. These HF diet-induced cellular changes were preceded by a very rapid down-regulation of the expression of fast-MHC. The present study also demonstrated that early dietary composition had a long-term effect on the subsequent muscle growth processes of juveniles fed a commercial diet for 3 months. When compared at similar body weights, initially HF diet-fed juveniles indeed had a lower mean diameter of white muscle fibres, a smaller number of large white muscle fibres, and lower expression levels of MyoD1 and myogenin. These findings demonstrated the strong effect of early feed composition on the muscle growth mechanisms of trout alevins and juveniles.

  12. Can consistent benchmarking within a standardized pain management concept decrease postoperative pain after total hip arthroplasty? A prospective cohort study including 367 patients

    Directory of Open Access Journals (Sweden)

    Benditz A

    2016-12-01

    Full Text Available Achim Benditz,1 Felix Greimel,1 Patrick Auer,2 Florian Zeman,3 Antje Göttermann,4 Joachim Grifka,1 Winfried Meissner,4 Frederik von Kunow1 1Department of Orthopedics, University Medical Center Regensburg, 2Clinic for anesthesia, Asklepios Klinikum Bad Abbach, Bad Abbach, 3Centre for Clinical Studies, University Medical Center Regensburg, Regensburg, 4Department of Anesthesiology and Intensive Care, Jena University Hospital, Jena, Germany Background: The number of total hip replacement surgeries has steadily increased over recent years. Reduction in postoperative pain increases patient satisfaction and enables better mobilization. Thus, pain management needs to be continuously improved. Problems are often caused not only by medical issues but also by organization and hospital structure. The present study shows how the quality of pain management can be increased by implementing a standardized pain concept and simple, consistent, benchmarking.Methods: All patients included in the study had undergone total hip arthroplasty (THA. Outcome parameters were analyzed 24 hours after surgery by means of the questionnaires from the German-wide project “Quality Improvement in Postoperative Pain Management” (QUIPS. A pain nurse interviewed patients and continuously assessed outcome quality parameters. A multidisciplinary team of anesthetists, orthopedic surgeons, and nurses implemented a regular procedure of data analysis and internal benchmarking. The health care team was informed of any results, and suggested improvements. Every staff member involved in pain management participated in educational lessons, and a special pain nurse was trained in each ward.Results: From 2014 to 2015, 367 patients were included. The mean maximal pain score 24 hours after surgery was 4.0 (±3.0 on an 11-point numeric rating scale, and patient satisfaction was 9.0 (±1.2. Over time, the maximum pain score decreased (mean 3.0, ±2.0, whereas patient satisfaction

  13. Mechanisms of Decreased Moisture Uptake in ortho- Methylated Di(Cyanate Esters)

    Science.gov (United States)

    2014-10-01

    the lower dry TG of the ortho- methylated networks. The measured “knock down” depends on plasticization of the networks by any moisture remaining...The addition of catalyst results in a higher degree of conversion, but generally decreases the dry TG at full conversion due to plasticization of...of DBTDL, however, results in severe damage to the samples on exposure to hot water, with networks 3 and 4 undergoing disintegration during the 96

  14. [The mechanism of phenoptosis: I. Age-dependent decrease of the overall rate of protein synthesis is caused by the programmed attenuation of bio-energetics].

    Science.gov (United States)

    Trubitsyn, A G

    2009-01-01

    The age-dependent degradation of all vital processes of an organism can be result of influences of destructive factors (the stochastic mechanism of aging), or effect of realizations of the genetic program (phenoptosis). The stochastic free-radical theory of aging dominating now contradicts the set of empirical data, and the semicentenial attempts to create the means to slow down aging did not give any practical results. It makes obvious that the stochastic mechanism of aging is incorrect. At the same time, the alternative mechanism of the programmed aging is not developed yet but preconditions for it development have already been created. It is shown that the genes controlling process of aging exist (contrary to the customary opinion) and the increase in the level of damaged macromolecules (basic postulate of the free-radical theory) can be explained by programmed attenuation of bio-energetics. As the bio-energetics is a driving force of all vital processes, decrease of its level is capable to cause degradation of all functions of an organism. However to transform this postulate into a basis of the theory of phenoptosis it is necessary to show, that attenuation of bio-energetics predetermines such fundamental processes accompanying aging as decrease of the overall rate of protein biosynthesis, restriction of cellular proliferations (Hayflick limit), loss of telomeres etc. This article is the first step in this direction: the natural mechanism of interaction of overall rate of protein synthesis with a level of cellular bio-energetics is shown. This is built-in into the translation machine and based on dependence of recirculation rate of eukaryotic initiation factor 2 (elF2) from ATP/ADP value that is created by mitochondrial bio-energetic machine.

  15. Closed-form solutions for linear regulator-design of mechanical systems including optimal weighting matrix selection

    Science.gov (United States)

    Hanks, Brantley R.; Skelton, Robert E.

    1991-01-01

    This paper addresses the restriction of Linear Quadratic Regulator (LQR) solutions to the algebraic Riccati Equation to design spaces which can be implemented as passive structural members and/or dampers. A general closed-form solution to the optimal free-decay control problem is presented which is tailored for structural-mechanical systems. The solution includes, as subsets, special cases such as the Rayleigh Dissipation Function and total energy. Weighting matrix selection is a constrained choice among several parameters to obtain desired physical relationships. The closed-form solution is also applicable to active control design for systems where perfect, collocated actuator-sensor pairs exist. Some examples of simple spring mass systems are shown to illustrate key points.

  16. Transient thermal-mechanical coupling behavior analysis of mechanical seals during start-up operation

    Science.gov (United States)

    Gao, B. C.; Meng, X. K.; Shen, M. X.; Peng, X. D.

    2016-05-01

    A transient thermal-mechanical coupling model for a contacting mechanical seal during start-up has been developed. It takes into consideration the coupling relationship among thermal-mechanical deformation, film thickness, temperature and heat generation. The finite element method and multi-iteration technology are applied to solve the temperature distribution and thermal-mechanical deformation as well as their evolution behavior. Results show that the seal gap transforms from negative coning to positive coning and the contact area of the mechanical seal gradually decreases during start-up. The location of the maximum temperature and maximum contact pressure move from the outer diameter to inside diameter. The heat generation and the friction torque increase sharply at first and then decrease. Meanwhile, the contact force decreases and the fluid film force and leakage rate increase.

  17. Investigation of Mechanical Properties and Interfacial Mechanics of Crystalline Nanomaterials

    Science.gov (United States)

    Qin, Qingquan

    Nanowires (NWs) and nanotubes (NTs) are critical building blocks of nanotechnologies. The operation and reliability of these nanomaterials based devices depend on their mechanical properties of the nanomaterials, which is therefore important to accurately measure the mechanical properties. Besides, the NW--substrate interfaces also play a critical role in both mechanical reliability and electrical performance of these nanodevices, especially when the size of the NW is small. In this thesis, we focus on the mechanical properties and interface mechanics of three important one dimensional (1D) nanomaterials: ZnO NWs, Ag NWs and Si NWs. For the size effect study, this thesis presents a systematic experimental investigation on the elastic and failure properties of ZnO NWs under different loading modes: tension and buckling. Both tensile modulus (from tension) and bending modulus (from buckling) were found to increase as the NW diameter decreased from 80 to 20 nm. The elastic modulus also shows loading mode dependent; the bending modulus increases more rapidly than the tensile modulus. The tension experiments showed that fracture strain and strength of ZnO NWs increase as the NW diameter decrease. A resonance testing setup was developed to measure elastic modulus of ZnO NWs to confirm the loading mode dependent effect. A systematic study was conducted on the effect of clamping on resonance frequency and thus measured Young's modulus of NWs via a combined experiment and simulation approach. A simple scaling law was provided as guidelines for future designs to accurate measure elastic modulus of a cantilevered NW using the resonance method. This thesis reports the first quantitative measurement of a full spectrum of mechanical properties of five-fold twinned Ag NWs including Young's modulus, yield strength and ultimate tensile strength. In situ tensile testing of Ag NWs with diameters between 34 and 130 nm was carried out inside a SEM. Young's modulus, yield strength and

  18. Effects of cosmic ray decreases on cloud microphysics

    DEFF Research Database (Denmark)

    Svensmark, J.; Enghoff, M. B.; Svensmark, H.

    2012-01-01

    Using cloud data from MODIS we investigate the response of cloud microphysics to sudden decreases in galactic cosmic radiation – Forbush decreases – and find responses in effective emissivity, cloud fraction, liquid water content, and optical thickness above the 2–3 sigma level 6–9 days after...... the minimum in atmospheric ionization and less significant responses for effective radius and cloud condensation nuclei (... of the signal of 3.1 sigma. We also see a correlation between total solar irradiance and strong Forbush decreases but a clear mechanism connecting this to cloud properties is lacking. There is no signal in the UV radiation. The responses of the parameters correlate linearly with the reduction in the cosmic ray...

  19. Mechanical efficiency of two commercial lever-propulsion mechanisms for manual wheelchair locomotion.

    Science.gov (United States)

    Lui, Jordon; MacGillivray, Megan K; Sheel, A William; Jeyasurya, Jeswin; Sadeghi, Mahsa; Sawatzky, Bonita Jean

    2013-01-01

    The purpose of this study was to (1) evaluate the mechanical efficiency (ME) of two commercially available lever-propulsion mechanisms for wheelchairs and (2) compare the ME of lever propulsion with hand rim propulsion within the same wheelchair. Of the two mechanisms, one contained a torsion spring while the other used a roller clutch design. We hypothesized that the torsion spring mechanism would increase the ME of propulsion due to a passive recovery stroke enabled by the mechanism. Ten nondisabled male participants with no prior manual wheeling experience performed submaximal exercise tests using both lever-propulsion mechanisms and hand rim propulsion on two different wheelchairs. Cardiopulmonary parameters including oxygen uptake (VO2), heart rate (HR), and energy expenditure (En) were determined. Total external power (Pext) was measured using a drag test protocol. ME was determined by the ratio of Pext to En. Results indicated no significant effect of lever-propulsion mechanism for all physiological measures tested. This suggests that the torsion spring did not result in a physiological benefit compared with the roller clutch mechanism. However, both lever-propulsion mechanisms showed decreased VO2 and HR and increased ME (as a function of slope) compared with hand rim propulsion (p propulsion mechanisms tested are more mechanically efficient than conventional hand rim propulsion, especially when slopes are encountered.

  20. Decreased thermal sweating of central sudomotor mechanism in African and Korean men.

    Science.gov (United States)

    Lee, Jeong Beom; Kim, Jeong Ho

    2018-05-01

    Tropical natives sweat less and preserve more body fluid than temperate natives, tolerating heat stress. However, the mechanisms involved in such sweating reduction have not been fully elucidated. We examined the sudomotor responses of men of African (n = 36) and Korean (n = 41) ancestry during hot water (43 °C) leg immersion (central sudomotor response). Correlations between mean body temperature, basal metabolic rate (BMR), and sweat rate were also examined. All procedures were done in an automated climate chamber. Local skin temperatures and BMR were measured and mean body temperature was calculated. Sweating activities which include evaporative loss rate, sweat onset time, sweat rate, sweat volume, and whole-body sweat loss volume were examined. In the heat load test, Africans showed lower mean body and local skin temperatures than Koreans before and after heating. Before and after heating, BMR declined significantly in Africans, while that of Koreans declined less. Local sweat onset time increased more in Africans than in Koreans. Local evaporative loss rate, local sweat volume, local sweat rate, and whole body sweat loss volume were reduced in Africans compared with Koreans. There were positive associations of mean body temperature and resting BMR with mean sweat rate. In conclusion, we observed a larger reduction of sudomotor activity in tropical Africans than in temperate Koreans, which was associated with their lower mean body temperature and lower resting BMR. © 2017 Wiley Periodicals, Inc.

  1. Adipose Tissue Inflammation Induces B Cell Inflammation and Decreases B Cell Function in Aging

    Directory of Open Access Journals (Sweden)

    Daniela Frasca

    2017-08-01

    Full Text Available Aging is the greatest risk factor for developing chronic diseases. Inflamm-aging, the age-related increase in low-grade chronic inflammation, may be a common link in age-related diseases. This review summarizes recent published data on potential cellular and molecular mechanisms of the age-related increase in inflammation, and how these contribute to decreased humoral immune responses in aged mice and humans. Briefly, we cover how aging and related inflammation decrease antibody responses in mice and humans, and how obesity contributes to the mechanisms for aging through increased inflammation. We also report data in the literature showing adipose tissue infiltration with immune cells and how these cells are recruited and contribute to local and systemic inflammation. We show that several types of immune cells infiltrate the adipose tissue and these include macrophages, neutrophils, NK cells, innate lymphoid cells, eosinophils, T cells, B1, and B2 cells. Our main focus is how the adipose tissue affects immune responses, in particular B cell responses and antibody production. The role of leptin in generating inflammation and decreased B cell responses is also discussed. We report data published by us and by other groups showing that the adipose tissue generates pro-inflammatory B cell subsets which induce pro-inflammatory T cells, promote insulin resistance, and secrete pathogenic autoimmune antibodies.

  2. Mechanism for the decrease in the FIP1L1-PDGFRalpha protein level in EoL-1 cells by histone deacetylase inhibitors.

    Science.gov (United States)

    Ishihara, Kenji; Kaneko, Motoko; Kitamura, Hajime; Takahashi, Aki; Hong, Jang Ja; Seyama, Toshio; Iida, Koji; Wada, Hiroshi; Hirasawa, Noriyasu; Ohuchi, Kazuo

    2008-01-01

    Acetylation and deacetylation of proteins occur in cells in response to various stimuli, and are reversibly catalyzed by histone acetyltransferase and histone deacetylase (HDAC), respectively. EoL-1 cells have an FIP1L1-PDGFRA fusion gene that causes transformation of eosinophilic precursor cells into leukemia cells. The HDAC inhibitors apicidin and n-butyrate suppress the proliferation of EoL-1 cells and induce differentiation into eosinophils by a decrease in the protein level of FIP1L1-PDGFRalpha without affecting the mRNA level for FIP1L1-PDGFRA. In this study, we analyzed the mechanism by which the protein level of FIP1L1-PDGFRalpha is decreased by apicidin and n-butyrate. EoL-1 cells were incubated in the presence of the HDAC inhibitors apicidin, trichostatin A or n-butyrate. The protein levels of FIP1L1-PDGFRalpha and phosphorylated eIF-2alpha were determined by Western blotting. Actinomycin D and cycloheximide were used to block RNA synthesis and protein synthesis, respectively, in the chasing experiment of the amount of FIP1L1-PDGFRalpha protein. When apicidin- and n-butyrate-treated EoL-1 cells were incubated in the presence of actinomycin D, the decrease in the protein level of FIP1L1-PDGFRalpha was significantly enhanced when compared with controls. In contrast, the protein levels were not changed by cycloheximide among these groups. Apicidin and n-butyrate induced the continuous phosphorylation of eIF-2alpha for up to 8 days. The decrease in the level of FIP1L1-PDGFRalpha protein by continuous inhibition of HDAC may be due to the decrease in the translation rate of FIP1L1-PDGFRA. Copyright 2008 S. Karger AG, Basel.

  3. Sea ice-albedo climate feedback mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, J.L.; Curry, J.A. [Univ. of Colorado, Boulder, CO (United States); Ebert, E.E. [Bureau of Meterology Research Center, Melbourne (Australia)

    1995-02-01

    The sea ice-albedo feedback mechanism over the Arctic Ocean multiyear sea ice is investigated by conducting a series of experiments using several one-dimensional models of the coupled sea ice-atmosphere system. In its simplest form, ice-albedo feedback is thought to be associated with a decrease in the areal cover of snow and ice and a corresponding increase in the surface temperature, further decreasing the area cover of snow and ice. It is shown that the sea ice-albedo feedback can operate even in multiyear pack ice, without the disappearance of this ice, associated with internal processes occurring within the multiyear ice pack (e.g., duration of the snow cover, ice thickness, ice distribution, lead fraction, and melt pond characteristics). The strength of the ice-albedo feedback mechanism is compared for several different thermodynamic sea ice models: a new model that includes ice thickness distribution., the Ebert and Curry model, the Mayjut and Untersteiner model, and the Semtner level-3 and level-0 models. The climate forcing is chosen to be a perturbation of the surface heat flux, and cloud and water vapor feedbacks are inoperative so that the effects of the sea ice-albedo feedback mechanism can be isolated. The inclusion of melt ponds significantly strengthens the ice-albedo feedback, while the ice thickness distribution decreases the strength of the modeled sea ice-albedo feedback. It is emphasized that accurately modeling present-day sea ice thickness is not adequate for a sea ice parameterization; the correct physical processes must be included so that the sea ice parameterization yields correct sensitivities to external forcing. 22 refs., 6 figs., 1 tab.

  4. Mechanical and Physical Performance of Concrete Including Waste Electrical Cable Rubber

    Science.gov (United States)

    Taner Yildirim, Salih; Pelin Duygun, Nur

    2017-10-01

    Solid wastes are important environmental problem all over the World. Consumption of the plastic solid waste covers big portion within the total solid waste. Although a numerous plastic material is subjected to the recycling process, it is not easy to be destroyed by nature. One of the recommended way to prevent is to utilize as an aggregate in cement-based material. There are many researches on use of recycling rubber in concrete. However, studies on recycling of waste electrical cable rubber (WECR) in concrete is insufficient although there are many research on waste tyre rubbers in concrete. In this study, fine aggregate was replaced with WECR which were 5%, 10%, and 15 % of the total aggregate volume in the concrete and researched workability, unit weight, water absorption, compressive strength, flexural strength, ultrasonic pulse velocity, modulus of elasticity, and abrasion resistance of concrete. As a result of experimental studies, increase of WECR amount in concrete increases workability due to lack of adherence between cement paste and WECR, and hydrophobic structure of WECR while it influences negatively mechanical properties of concrete. It is possible to use WECR in concrete taking into account the reduction in mechanical properties.

  5. A review of mechanisms underlying anticarcinogenicity by brassica vegetables

    NARCIS (Netherlands)

    Verhoeven, D.T.H.; Verhagen, H.; Goldbohm, R.A.; Brandt, P.A. van den; Poppel, G. van

    1997-01-01

    The mechanisms by which brassica vegetables might decrease the risk of cancer are reviewed in this paper. Brassicas, including all types of cabbages, broccoli, cauliflower and Brussels sprouts, may be protective against cancer due to their relatively high glucosinolate content. Glucosinolates are

  6. Effects of cosmic ray decreases on cloud microphysics

    DEFF Research Database (Denmark)

    Svensmark, J.; Enghoff, M. B.; Svensmark, H.

    2012-01-01

    the minimum in atmospheric ionization and less significant responses for effective radius and cloud condensation nuclei (total significance...... of the signal of 3.1 sigma. We also see a correlation between total solar irradiance and strong Forbush decreases but a clear mechanism connecting this to cloud properties is lacking. There is no signal in the UV radiation. The responses of the parameters correlate linearly with the reduction in the cosmic ray......Using cloud data from MODIS we investigate the response of cloud microphysics to sudden decreases in galactic cosmic radiation – Forbush decreases – and find responses in effective emissivity, cloud fraction, liquid water content, and optical thickness above the 2–3 sigma level 6–9 days after...

  7. Skeletal muscle fatigue and decreased efficiency: two sides of the same coin?

    Science.gov (United States)

    Grassi, Bruno; Rossiter, Harry B; Zoladz, Jerzy A

    2015-04-01

    During high-intensity submaximal exercise, muscle fatigue and decreased efficiency are intertwined closely, and each contributes to exercise intolerance. Fatigue and muscle inefficiency share common mechanisms, for example, decreased "metabolic stability," muscle metabolite accumulation, decreased free energy of adenosine triphosphate breakdown, limited O2 or substrate availability, increased glycolysis, pH disturbance, increased muscle temperature, reactive oxygen species production, and altered motor unit recruitment patterns.

  8. Decreased sound tolerance: hyperacusis, misophonia, diplacousis, and polyacousis.

    Science.gov (United States)

    Jastreboff, Pawel J; Jastreboff, Margaret M

    2015-01-01

    Definitions, potential mechanisms, and treatments for decreased sound tolerance, hyperacusis, misophonia, and diplacousis are presented with an emphasis on the associated physiologic and neurophysiological processes and principles. A distinction is made between subjects who experience these conditions versus patients who suffer from them. The role of the limbic and autonomic nervous systems and other brain systems involved in cases of bothersome decreased sound tolerance is stressed. The neurophysiological model of tinnitus is outlined with respect to how it may contribute to our understanding of these phenomena and their treatment. © 2015 Elsevier B.V. All rights reserved.

  9. Mechanical ventilation with high tidal volumes attenuates myocardial dysfunction by decreasing cardiac edema in a rat model of LPS-induced peritonitis

    Directory of Open Access Journals (Sweden)

    Smeding Lonneke

    2012-03-01

    Full Text Available Abstract Background Injurious mechanical ventilation (MV may augment organ injury remote from the lungs. During sepsis, myocardial dysfunction is common and increased endothelial activation and permeability can cause myocardial edema, which may, among other factors, hamper myocardial function. We investigated the effects of MV with injuriously high tidal volumes on the myocardium in an animal model of sepsis. Methods Normal rats and intraperitoneal (i.p. lipopolysaccharide (LPS-treated rats were ventilated with low (6 ml/kg and high (19 ml/kg tidal volumes (Vt under general anesthesia. Non-ventilated animals served as controls. Mean arterial pressure (MAP, central venous pressure (CVP, cardiac output (CO and pulmonary plateau pressure (Pplat were measured. Ex vivo myocardial function was measured in isolated Langendorff-perfused hearts. Cardiac expression of endothelial vascular cell adhesion molecule (VCAM-1 and edema were measured to evaluate endothelial inflammation and leakage. Results MAP decreased after LPS-treatment and Vt-dependently, both independent of each other and with interaction. MV Vt-dependently increased CVP and Pplat and decreased CO. LPS-induced peritonitis decreased myocardial function ex vivo but MV attenuated systolic dysfunction Vt-dependently. Cardiac endothelial VCAM-1 expression was increased by LPS treatment independent of MV. Cardiac edema was lowered Vt-dependently by MV, particularly after LPS, and correlated inversely with systolic myocardial function parameters ex vivo. Conclusion MV attenuated LPS-induced systolic myocardial dysfunction in a Vt-dependent manner. This was associated with a reduction in cardiac edema following a lower transmural coronary venous outflow pressure during LPS-induced coronary inflammation.

  10. Prenatal hypoxia induces increased cardiac contractility on a background of decreased capillary density

    Directory of Open Access Journals (Sweden)

    Ousley Victoria

    2009-01-01

    Full Text Available Abstract Background Chronic hypoxia in utero (CHU is one of the most common insults to fetal development and may be associated with poor cardiac recovery from ischaemia-reperfusion injury, yet the effects on normal cardiac mechanical performance are poorly understood. Methods Pregnant female wistar rats were exposed to hypoxia (12% oxygen, balance nitrogen for days 10–20 of pregnancy. Pups were born into normal room air and weaned normally. At 10 weeks of age, hearts were excised under anaesthesia and underwent retrograde 'Langendorff' perfusion. Mechanical performance was measured at constant filling pressure (100 cm H2O with intraventricular balloon. Left ventricular free wall was dissected away and capillary density estimated following alkaline phosphatase staining. Expression of SERCA2a and Nitric Oxide Synthases (NOS proteins were estimated by immunoblotting. Results CHU significantly increased body mass (P in utero. Conclusion These data offer potential mechanisms for poor recovery following ischaemia, including decreased coronary flow reserve and impaired angiogenesis with subsequent detrimental effects of post-natal cardiac performance.

  11. Mechanism of diarrhea in microscopic colitis.

    Science.gov (United States)

    Protic, Marijana; Jojic, Njegica; Bojic, Daniela; Milutinovic, Svetlana; Necic, Dusanka; Bojic, Bozidar; Svorcan, Petar; Krstic, Miodrag; Popovic, Obren

    2005-09-21

    To search the pathophysiological mechanism of diarrhea based on daily stool weights, fecal electrolytes, osmotic gap and pH. Seventy-six patients were included: 51 with microscopic colitis (MC) (40 with lymphocytic colitis (LC); 11 with collagenous colitis (CC)); 7 with MC without diarrhea and 18 as a control group (CG). They collected stool for 3 d. Sodium and potassium concentration were determined by flame photometry and chloride concentration by titration method of Schales. Fecal osmotic gap was calculated from the difference of osmolarity of fecal fluid and double sum of sodium and potassium concentration. Fecal fluid sodium concentration was significantly increased in LC 58.11+/-5.38 mmol/L (Pdiarrhea compared to fecal osmotic gap. Seven (13.3%) patients had osmotic diarrhea. Diarrhea in MC mostly belongs to the secretory type. The major pathophysiological mechanism in LC could be explained by a decrease of active sodium absorption. In CC, decreased Cl/HCO3 exchange rate and increased chloride secretion are coexistent pathways.

  12. Selective decreases of nicotinic acetylcholine receptors in PC12 cells exposed to fluoride

    International Nuclear Information System (INIS)

    Chen Jia; Shan, K.-R.; Long, Y.-G.; Wang, Y.-N.; Nordberg, Agneta; Guan, Z.-Z.

    2003-01-01

    In an attempt to elucidate the mechanism by which excessive fluoride damages the central nervous system, the effects of exposure of PC12 cells to different concentrations of fluoride for 48 h on nicotinic acetylcholine receptors (nAChRs) were characterized here. Significant reductions in the number of binding sites for both [ 3 H]epibatidine and [ 125 I]α-bungarotoxin, as well as a significant decrease in the B max value for the high-affinity of epibatidine binding site were observed in PC12 cells subjected to high levels of fluoride. On the protein level, the α3 and α7 subunits of nAChRs were also significantly decreased in the cells exposed to high concentrations of fluoride. In contrast, such exposure had no significant effect on the level of the β2 subunit. These findings suggest that selective decreases in the number of nAChRs may play an important role in the mechanism(s) by which fluoride causes dysfunction of the central nervous system

  13. Deep tissue injury in development of pressure ulcers: a decrease of inflammasome activation and changes in human skin morphology in response to aging and mechanical load.

    Directory of Open Access Journals (Sweden)

    Olivera Stojadinovic

    Full Text Available Molecular mechanisms leading to pressure ulcer development are scarce in spite of high mortality of patients. Development of pressure ulcers that is initially observed as deep tissue injury is multifactorial. We postulate that biomechanical forces and inflammasome activation, together with ischemia and aging, may play a role in pressure ulcer development. To test this we used a newly-developed bio-mechanical model in which ischemic young and aged human skin was subjected to a constant physiological compressive stress (load of 300 kPa (determined by pressure plate analyses of a person in a reclining position for 0.5-4 hours. Collagen orientation was assessed using polarized light, whereas inflammasome proteins were quantified by immunoblotting. Loaded skin showed marked changes in morphology and NLRP3 inflammasome protein expression. Sub-epidermal separations and altered orientation of collagen fibers were observed in aged skin at earlier time points. Aged skin showed significant decreases in the levels of NLRP3 inflammasome proteins. Loading did not alter NLRP3 inflammasome proteins expression in aged skin, whereas it significantly increased their levels in young skin. We conclude that aging contributes to rapid morphological changes and decrease in inflammasome proteins in response to tissue damage, suggesting that a decline in the innate inflammatory response in elderly skin could contribute to pressure ulcer pathogenesis. Observed morphological changes suggest that tissue damage upon loading may not be entirely preventable. Furthermore, newly developed model described here may be very useful in understanding the mechanisms of deep tissue injury that may lead towards development of pressure ulcers.

  14. Management of Mechanical Ventilation in Decompensated Heart Failure

    Directory of Open Access Journals (Sweden)

    Brooks T. Kuhn

    2016-12-01

    Full Text Available Mechanical ventilation (MV is a life-saving intervention for respiratory failure, including decompensated congestive heart failure. MV can reduce ventricular preload and afterload, decrease extra-vascular lung water, and decrease the work of breathing in heart failure. The advantages of positive pressure ventilation must be balanced with potential harm from MV: volutrauma, hyperoxia-induced injury, and difficulty assessing readiness for liberation. In this review, we will focus on cardiac, pulmonary, and broader effects of MV on patients with decompensated HF, focusing on practical considerations for management and supporting evidence.

  15. Decreased nuclear stiffness via FAK-ERK1/2 signaling is necessary for osteopontin-promoted migration of bone marrow-derived mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Lingling, E-mail: liulingling2012@163.com [Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); Luo, Qing, E-mail: qing.luo@cqu.edu.cn [Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); Sun, Jinghui, E-mail: sunjhemail@163.com [Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); Wang, Aoli, E-mail: leaf13332@163.com [Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); Shi, Yisong, E-mail: shiyis@cqu.edu.cn [Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); Ju, Yang, E-mail: ju@mech.nagoya-u.ac.jp [Department of Mechanical Science and Engineering, Nagoya University, Nagoya 464-8603 (Japan); Morita, Yasuyuki, E-mail: morita@mech.nagoya-u.ac.jp [Department of Mechanical Science and Engineering, Nagoya University, Nagoya 464-8603 (Japan); Song, Guanbin, E-mail: song@cqu.edu.cn [Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China)

    2017-06-15

    Migration of bone marrow-derived mesenchymal stem cells (BMSCs) plays an important role in many physiological and pathological settings, including wound healing. During the migration of BMSCs through interstitial tissues, the movement of the nucleus must be coordinated with the cytoskeletal dynamics, which in turn affects the cell migration efficiency. Our previous study indicated that osteopontin (OPN) significantly promotes the migration of rat BMSCs. However, the nuclear behaviors and involved molecular mechanisms in OPN-mediated BMSC migration are largely unclear. In the present study, using an atomic force microscope (AFM), we found that OPN could decrease the nuclear stiffness of BMSCs and reduce the expression of lamin A/C, which is the main determinant of nuclear stiffness. Increased lamin A/C expression attenuates BMSC migration by increasing nuclear stiffness. Decreased lamin A/C expression promotes BMSC migration by decreasing nuclear stiffness. Furthermore, OPN promotes BMSC migration by diminishing lamin A/C expression and decreasing nuclear stiffness via the FAK-ERK1/2 signaling pathway. This study provides strong evidence for the role of nuclear mechanics in BMSC migration as well as new insight into the molecular mechanisms of OPN-promoted BMSC migration. - Highlights: • OPN promotes BMSC migration by decreasing nuclear stiffness. • Lamin A/C knockdown decreases, while its overexpression enhances, the nuclear stiffness of BMSCs. • Lamin A/C overexpression and downregulation affect the migration of BMSCs. • OPN diminishes lamin A/C expression and decreases nuclear stiffness through the activation of the FAK-ERK1/2 signaling pathway. • OPN promotes BMSC migration via the FAK-ERK1/2 signaling pathway.

  16. Decreased nuclear stiffness via FAK-ERK1/2 signaling is necessary for osteopontin-promoted migration of bone marrow-derived mesenchymal stem cells

    International Nuclear Information System (INIS)

    Liu, Lingling; Luo, Qing; Sun, Jinghui; Wang, Aoli; Shi, Yisong; Ju, Yang; Morita, Yasuyuki; Song, Guanbin

    2017-01-01

    Migration of bone marrow-derived mesenchymal stem cells (BMSCs) plays an important role in many physiological and pathological settings, including wound healing. During the migration of BMSCs through interstitial tissues, the movement of the nucleus must be coordinated with the cytoskeletal dynamics, which in turn affects the cell migration efficiency. Our previous study indicated that osteopontin (OPN) significantly promotes the migration of rat BMSCs. However, the nuclear behaviors and involved molecular mechanisms in OPN-mediated BMSC migration are largely unclear. In the present study, using an atomic force microscope (AFM), we found that OPN could decrease the nuclear stiffness of BMSCs and reduce the expression of lamin A/C, which is the main determinant of nuclear stiffness. Increased lamin A/C expression attenuates BMSC migration by increasing nuclear stiffness. Decreased lamin A/C expression promotes BMSC migration by decreasing nuclear stiffness. Furthermore, OPN promotes BMSC migration by diminishing lamin A/C expression and decreasing nuclear stiffness via the FAK-ERK1/2 signaling pathway. This study provides strong evidence for the role of nuclear mechanics in BMSC migration as well as new insight into the molecular mechanisms of OPN-promoted BMSC migration. - Highlights: • OPN promotes BMSC migration by decreasing nuclear stiffness. • Lamin A/C knockdown decreases, while its overexpression enhances, the nuclear stiffness of BMSCs. • Lamin A/C overexpression and downregulation affect the migration of BMSCs. • OPN diminishes lamin A/C expression and decreases nuclear stiffness through the activation of the FAK-ERK1/2 signaling pathway. • OPN promotes BMSC migration via the FAK-ERK1/2 signaling pathway.

  17. Exposure to buffer solution alters tendon hydration and mechanics.

    Science.gov (United States)

    Safa, Babak N; Meadows, Kyle D; Szczesny, Spencer E; Elliott, Dawn M

    2017-08-16

    A buffer solution is often used to maintain tissue hydration during mechanical testing. The most commonly used buffer solution is a physiological concentration of phosphate buffered saline (PBS); however, PBS increases the tissue's water content and decreases its tensile stiffness. In addition, solutes from the buffer can diffuse into the tissue and interact with its structure and mechanics. These bathing solution effects can confound the outcome and interpretation of mechanical tests. Potential bathing solution artifacts, including solute diffusion, and their effect on mechanical properties, are not well understood. The objective of this study was to measure the effects of long-term exposure of rat tail tendon fascicles to several concentrations (0.9-25%) of NaCl, sucrose, polyethylene glycol (PEG), and SPEG (NaCl+PEG) solutions on water content, solute diffusion, and mechanical properties. We found that with an increase in solute concentration the apparent water content decreased for all solution types. Solutes diffused into the tissue for NaCl and sucrose, however, no solute diffusion was observed for PEG or SPEG. The mechanical properties changed for both NaCl solutions, in particular after long-term (8h) incubation the modulus and equilibrium stress decreased compared to short-term (15min) for 25% NaCl, and the cross sectional area increased for 0.9% NaCl. However, the mechanical properties were unchanged for both PEG and SPEG except for minor alterations in stress relaxation parameters. This study shows that NaCl and sucrose buffer solutions are not suitable for long-term mechanical tests. We therefore propose using PEG or SPEG as alternative buffer solutions that after long-term incubation can maintain tissue hydration without solute diffusion and produce a consistent mechanical response. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Mechanical and chemical properties of polyvinyl alcohol modified cement mortar with silica fume used as matrix including radioactive waste

    International Nuclear Information System (INIS)

    Dakroury, A. M.

    2007-01-01

    This paper discussed the mechanical and chemical properties of polyvinyl alcohol - modified cement mortar with silica fume to assess the safety for disposal of radioactive waste. The modified cement mortars containing polyvinyl alcohol (PVA) in the presence of 10 % silica fume (SF) .The chemical reaction between polymer and cement - hydrated product were investigated by the Infrared Spectral Technology, Differential Thermal Analysis and X-ray diffraction. The leaching of 137Cs from a waste composite into a surrounding fluid has been studied .The results shown that PVA increases the strength and decreases the porosity. The increase in strength duo to the interaction of PVA with cement , may be forming some new compound that fill the pores or improve the bond between the cement . The pozzolanic reaction of the SF increases the calcium silicate hydrates in the hardening matrix composites. There is distinct change in the refinement of the pore structure in cement composites giving fewer capillary pores and more of the finer gel pores

  19. Mechanical behavior of silicon carbide nanoparticles under uniaxial compression

    Energy Technology Data Exchange (ETDEWEB)

    He, Qiuxiang; Fei, Jing; Tang, Chao; Zhong, Jianxin; Meng, Lijun, E-mail: ljmeng@xtu.edu.cn [Xiangtan University, Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, Faculty of School of Physics and Optoelectronics (China)

    2016-03-15

    The mechanical behavior of SiC nanoparticles under uniaxial compression was investigated using an atomic-level compression simulation technique. The results revealed that the mechanical deformation of SiC nanocrystals is highly dependent on compression orientation, particle size, and temperature. A structural transformation from the original zinc-blende to a rock-salt phase is identified for SiC nanoparticles compressed along the [001] direction at low temperature. However, the rock-salt phase is not observed for SiC nanoparticles compressed along the [110] and [111] directions irrespective of size and temperature. The high-pressure-generated rock-salt phase strongly affects the mechanical behavior of the nanoparticles, including their hardness and deformation process. The hardness of [001]-compressed nanoparticles decreases monotonically as their size increases, different from that of [110] and [111]-compressed nanoparticles, which reaches a maximal value at a critical size and then decreases. Additionally, a temperature-dependent mechanical response was observed for all simulated SiC nanoparticles regardless of compression orientation and size. Interestingly, the hardness of SiC nanocrystals with a diameter of 8 nm compressed in [001]-orientation undergoes a steep decrease at 0.1–200 K and then a gradual decline from 250 to 1500 K. This trend can be attributed to different deformation mechanisms related to phase transformation and dislocations. Our results will be useful for practical applications of SiC nanoparticles under high pressure.

  20. Global Lightning Response to Forbush Decreases in Short-term

    Science.gov (United States)

    Li, H.; Wu, Q.; Wang, C.

    2017-12-01

    During the past three decades, particular scientific attention has been drawn to the potential link between solar activities and global climate change. How the sun modulates the climate has always been controversial. There are three relatively widely accepted mechanisms illustrating this process: the total solar irradiance (TSI), the solar ultraviolet radiation (SUR), and the space weather mechanisms. As for space weather mechanism, the sun influences the microphysical process in cloud by modulating the cosmic ray flux and thus changes the cloud cover, which finally affects the earth's radiation balance. Unfortunately, the lack of related observations and some opposite research results make this mechanism rather debatable. In order to provide possible evidence for space weather mechanism, we study the influence of Forbush decreases (FDs) of galactic cosmic ray on global lightning activities, which to some extent represents the basic process of cosmic ray-atmospheric coupling. We use the daily lightning counts from 1998 to 2014 observed by LIS sensor aboard the TRMM satellite. Considering the "diurnal distribution" (occurring more in the afternoon than in the morning) and the "seasonal distribution" (occurring more in summer than in winter) of lightning activities as well as the 49-day precession of TRMM satellite, the daily lightning counts show an intricate periodic fluctuation. We propose a 3-step approach - latitude zone limitation, orbit branch selection and local time normalization - to eliminate it. As for FDs, we select them by checking the hourly neutron counts variation of each month of 17 years obtained from the Oulu Cosmic Ray Station. During the selection, we choose the FDs which are "strong" (decrease more than 6%) and "standard" (strongly decrease in a few hours to one day and gradually recover in about one week) to diminish the meteorological influence and other possible disturbance. For both case study and temporal superposition of several cases

  1. Mechanical experiments on the superplastic material ALNOVI-1, including leak information

    International Nuclear Information System (INIS)

    Snippe, Q.H.C.; Meinders, T.

    2011-01-01

    Research highlights: → Mechanical testing of superplastic materials, in particular ALNOVI-1. → Uniaxial tests to show the one-dimensional stress-strain behaviour and the high amount of strain rate sensitivity. → Void volume fractions have been observed. → Free bulge experiments to show the dependence on the backpressure during the forming stage. → Measuring leak tightness of superplastically formed sheets. → Experiments are used in order to develop a constitutive model in a later stage. - Abstract: In subatomic particle physics, unstable particles can be detected with a so-called vertex detector, placed inside a particle accelerator. A detecting unit close to the accelerator bunch of charged particles must be separated from the accelerator vacuum. A thin sheet with a complex 3D shape prevents the detector vacuum from polluting the accelerator vacuum. Therefore, this sheet has to be completely leak tight. However, this can conflict with restrictions concerning maximum sheet thickness of the product. To produce such a complex thin sheet, superplastic forming can be very attractive in cases where a small number of products is needed. In order to predict gas permeability of these formed sheets, many mechanical experiments are necessary, where the gas leak has to be measured. To obtain insight in the mechanical behaviour of the used material, ALNOVI-1, tensile experiments were performed to describe the uniaxial stress-strain behaviour. From these experiments, a high strain rate sensitivity was measured. The flow stress of this material under superplastic conditions was low and the material behaved in an isotropic manner upon large plastic strains. The results of these experiments were used to predict the forming pressure as a function of time in a free bulge experiment, such that a predefined target strain rate will not be exceeded in the material. An extra parameter within these bulging experiments is the application of a hydrostatic pressure during the

  2. Calorimetric investigation on mechanically activated storage energy mechanism of sphalerite and pyrite

    International Nuclear Information System (INIS)

    Xiao Zhongliang; Chen Qiyuan; Yin Zhoulan; Hu Huiping; Wu Daoxin

    2005-01-01

    The structural changes of mechanically activated sphalerite and pyrite under different grinding conditions were determined by X-ray powder diffraction (XRD), laser particle size analyzer and elemental analysis. The storage energy of mechanically activated sphalerite and pyrite was measured by a calorimetric method. A thermochemical cycle was designed so that mechanically activated and non-activated minerals reached the same final state when dissolved in the same oxidizing solvent. The results show that the storage energy of mechanically activated sphalerite and pyrite rises with increased in grinding time, and reaches a maximum after a certain grinding period. The storage energy of mechanically activated pyrite decreases when heated under inert atmosphere. The storage energy of mechanically activated sphalerite and pyrite remains constant when treated below 573 K under inert atmosphere. The percentage of the storage energy caused by surface area increase during mechanical activation decreases with increasing grinding time. These results support our opinion that the mechanically activated storage energy of sphalerite is closely related to lattice distortions, and the mechanically activated storage energy of pyrite is mainly caused by the formation of reactive sites on the surface

  3. Neck ligament strength is decreased following whiplash trauma

    Directory of Open Access Journals (Sweden)

    Rubin Wolfgang

    2006-12-01

    Full Text Available Abstract Background Previous clinical studies have documented successful neck pain relief in whiplash patients using nerve block and radiofrequency ablation of facet joint afferents, including capsular ligament nerves. No previous study has documented injuries to the neck ligaments as determined by altered dynamic mechanical properties due to whiplash. The goal of the present study was to determine the dynamic mechanical properties of whiplash-exposed human cervical spine ligaments. Additionally, the present data were compared to previously reported control data. The ligaments included the anterior and posterior longitudinal, capsular, and interspinous and supraspinous ligaments, middle-third disc, and ligamentum flavum. Methods A total of 98 bone-ligament-bone specimens (C2–C3 to C7-T1 were prepared from six cervical spines following 3.5, 5, 6.5, and 8 g rear impacts and pre- and post-impact flexibility testing. The specimens were elongated to failure at a peak rate of 725 (SD 95 mm/s. Failure force, elongation, and energy absorbed, as well as stiffness were determined. The mechanical properties were statistically compared among ligaments, and to the control data (significance level: P Results For all whiplash-exposed ligaments, the average failure elongation exceeded the average physiological elongation. The highest average failure force of 204.6 N was observed in the ligamentum flavum, significantly greater than in middle-third disc and interspinous and supraspinous ligaments. The highest average failure elongation of 4.9 mm was observed in the interspinous and supraspinous ligaments, significantly greater than in the anterior longitudinal ligament, middle-third disc, and ligamentum flavum. The average energy absorbed ranged from 0.04 J by the middle-third disc to 0.44 J by the capsular ligament. The ligamentum flavum was the stiffest ligament, while the interspinous and supraspinous ligaments were most flexible. The whiplash

  4. Size dependence of elastic mechanical properties of nanocrystalline aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Wenwu; Dávila, Lilian P., E-mail: ldavila@ucmerced.edu

    2017-04-24

    The effect of grain size on the elastic mechanical properties of nanocrystalline pure metal Al is quantified by molecular dynamics simulation method. In this work, the largest nanocrystalline Al sample has a mean grain size of 29.6 nm and contains over 100 millions atoms in the modeling system. The simulation results show that the elastic properties including elastic modulus and ultimate tensile strength of nanocrystalline Al are relatively insensitive to the variation of mean grain size above 13 nm yet they become distinctly grain size dependent below 13 nm. Moreover, at a grain size <13 nm, the elastic modulus decreases monotonically with decreasing grain size while the ultimate tensile strength of nanocrystalline Al initially decreases with the decrease of the grain size down to 9 nm and then increases with further reduction of grain size. The increase of ultimate tensile strength below 9 nm is believed to be a result of an extended elasticity in the ultrafine grain size nanocrystalline Al. This study can facilitate the prediction of varied mechanical properties for similar nanocrystalline materials and even guide testing and fabrication schemes of such materials.

  5. Effects of pleural effusion drainage on oxygenation, respiratory mechanics, and hemodynamics in mechanically ventilated patients.

    Science.gov (United States)

    Razazi, Keyvan; Thille, Arnaud W; Carteaux, Guillaume; Beji, Olfa; Brun-Buisson, Christian; Brochard, Laurent; Mekontso Dessap, Armand

    2014-09-01

    In mechanically ventilated patients, the effect of draining pleural effusion on oxygenation is controversial. We investigated the effect of large pleural effusion drainage on oxygenation, respiratory function (including lung volumes), and hemodynamics in mechanically ventilated patients after ultrasound-guided drainage. Arterial blood gases, respiratory mechanics (airway, pleural and transpulmonary pressures, end-expiratory lung volume, respiratory system compliance and resistance), and hemodynamics (blood pressure, heart rate, and cardiac output) were recorded before and at 3 and 24 hours (H24) after pleural drainage. The respiratory settings were kept identical during the study period. The mean volume of effusion drained was 1,579 ± 684 ml at H24. Uncomplicated pneumothorax occurred in two patients. Respiratory mechanics significantly improved after drainage, with a decrease in plateau pressure and a large increase in end-expiratory transpulmonary pressure. Respiratory system compliance, end-expiratory lung volume, and PaO2/FiO2 ratio all improved. Hemodynamics were not influenced by drainage. Improvement in the PaO2/FiO2 ratio from baseline to H24 was positively correlated with the increase in end-expiratory lung volume during the same time frame (r = 0.52, P = 0.033), but not with drained volume. A high value of pleural pressure or a highly negative transpulmonary pressure at baseline predicted limited lung expansion following effusion drainage. A lesser improvement in oxygenation occurred in patients with ARDS. Drainage of large (≥500 ml) pleural effusion in mechanically ventilated patients improves oxygenation and end-expiratory lung volume. Oxygenation improvement correlated with an increase in lung volume and a decrease in transpulmonary pressure, but was less so in patients with ARDS.

  6. Effect of Moisture Content on Mechanical Properties and Terminal Velocity of Berberis

    Directory of Open Access Journals (Sweden)

    E Velayati

    2011-09-01

    Full Text Available The study of mechanical properties of Berberis not only is useful for design and optimization of transportation, processing and packaging equipment but also can prevent mechanical injuries and losses. In this study force, deformation, energy and toughness were measured at different moisture content levels including 70-76, 45-50, 25-30 and 7-10 percent (w.b.. The decrease of moisture content caused increasing rupture force from 1.387 to 2.679 N, decreasing shape deformation from 3.387 to 2.413mm, increasing toughness from 4.297 to 8.220 J/cm3 and decreasing rupture energy from 0.921 to 0.661mJ. Effects of loading speed, force orientation and their interaction were investigated on just fresh Berberis fruit. It was indicated that only force orientation was effective on all investigated properties except toughness. The moisture content was identified as an effective parameter on terminal velocity. It decreased from 9 to 4.5 m/s with decrease of moisture content from 76 to 7 percent (w.b..

  7. Indomethacin decreases optic nerve oxygen tension by a mechanism other than cyclo-oxygenase inhibition

    DEFF Research Database (Denmark)

    Noergaard, M Hove; Pedersen, D Bach; Bang, K

    2008-01-01

    We investigated the effect of several Non-Steroidal Anti-Inflammatory Drugs (NSAIDs), on the preoptic nerve oxygen tension (ONPO2), as indomethacin previously has demonstrated a strong decreasing effect on ONPO2. We tested whether these NSAIDs, like indomethacin, also reduce the increasing effect...

  8. Respiratory mechanics and plasma levels of tumor necrosis factor alpha and interleukin 6 are affected by gas humidification during mechanical ventilation in dogs.

    Science.gov (United States)

    Hernández-Jiménez, Claudia; García-Torrentera, Rogelio; Olmos-Zúñiga, J Raúl; Jasso-Victoria, Rogelio; Gaxiola-Gaxiola, Miguel O; Baltazares-Lipp, Matilde; Gutiérrez-González, Luis H

    2014-01-01

    The use of dry gases during mechanical ventilation has been associated with the risk of serious airway complications. The goal of the present study was to quantify the plasma levels of TNF-alpha and IL-6 and to determine the radiological, hemodynamic, gasometric, and microscopic changes in lung mechanics in dogs subjected to short-term mechanical ventilation with and without humidification of the inhaled gas. The experiment was conducted for 24 hours in 10 dogs divided into two groups: Group I (n = 5), mechanical ventilation with dry oxygen dispensation, and Group II (n = 5), mechanical ventilation with oxygen dispensation using a moisture chamber. Variance analysis was used. No changes in physiological, hemodynamic, or gasometric, and radiographic constants were observed. Plasma TNF-alpha levels increased in group I, reaching a maximum 24 hours after mechanical ventilation was initiated (ANOVA p = 0.77). This increase was correlated to changes in mechanical ventilation. Plasma IL-6 levels decreased at 12 hours and increased again towards the end of the study (ANOVA p>0.05). Both groups exhibited a decrease in lung compliance and functional residual capacity values, but this was more pronounced in group I. Pplat increased in group I (ANOVA p = 0.02). Inhalation of dry gas caused histological lesions in the entire respiratory tract, including pulmonary parenchyma, to a greater extent than humidified gas. Humidification of inspired gases can attenuate damage associated with mechanical ventilation.

  9. Respiratory mechanics and plasma levels of tumor necrosis factor alpha and interleukin 6 are affected by gas humidification during mechanical ventilation in dogs.

    Directory of Open Access Journals (Sweden)

    Claudia Hernández-Jiménez

    Full Text Available The use of dry gases during mechanical ventilation has been associated with the risk of serious airway complications. The goal of the present study was to quantify the plasma levels of TNF-alpha and IL-6 and to determine the radiological, hemodynamic, gasometric, and microscopic changes in lung mechanics in dogs subjected to short-term mechanical ventilation with and without humidification of the inhaled gas. The experiment was conducted for 24 hours in 10 dogs divided into two groups: Group I (n = 5, mechanical ventilation with dry oxygen dispensation, and Group II (n = 5, mechanical ventilation with oxygen dispensation using a moisture chamber. Variance analysis was used. No changes in physiological, hemodynamic, or gasometric, and radiographic constants were observed. Plasma TNF-alpha levels increased in group I, reaching a maximum 24 hours after mechanical ventilation was initiated (ANOVA p = 0.77. This increase was correlated to changes in mechanical ventilation. Plasma IL-6 levels decreased at 12 hours and increased again towards the end of the study (ANOVA p>0.05. Both groups exhibited a decrease in lung compliance and functional residual capacity values, but this was more pronounced in group I. Pplat increased in group I (ANOVA p = 0.02. Inhalation of dry gas caused histological lesions in the entire respiratory tract, including pulmonary parenchyma, to a greater extent than humidified gas. Humidification of inspired gases can attenuate damage associated with mechanical ventilation.

  10. Decreasing Physical Inactivity in the Veterans Health Administration Employee Population.

    Science.gov (United States)

    Schult, Tamara M; Schmunk, Sandra K; Awosika, Ebi R

    2016-12-01

    The aim of this study was to describe a comprehensive approach to decrease physical inactivity in the Veterans Health Administration (VHA) employee population. The approach included (1) initiatives to decrease physical inactivity in the workplace; (2) two operational surveys to assess system-wide service provision; and (3) two national employee surveys. From 2010 to 2012, 86 employee fitness centers were completed in VA medical centers. A grants program (2010 to 2015) funded smaller projects designed to decrease physical inactivity in the workplace. Projects involved the provision of equipment to decrease sedentary behaviors, including stability balls, treadmill and sit-to-stand desks, stairwell projects, and funding for on-site fitness classes, bicycle racks, and outdoor par courses and walking paths among others. A comprehensive approach to decrease physical inactivity in VHA employees was successful. Overall, self-reported, age-adjusted physical inactivity in VHA employees decreased from 25.3% in 2010 to 16.1% in 2015.

  11. Decreased NAA in gray matter is correlated with decreased availability of acetate in white matter in postmortem multiple sclerosis cortex.

    Science.gov (United States)

    Li, S; Clements, R; Sulak, M; Gregory, R; Freeman, E; McDonough, J

    2013-11-01

    Multiple sclerosis (MS) is an inflammatory neurodegenerative disease of the central nervous system (CNS) which leads to progressive neurological disability. Our previous studies have demonstrated mitochondrial involvement in MS cortical pathology and others have documented decreased levels of the neuronal mitochondrial metabolite N-acetyl aspartate (NAA) in the MS brain. While NAA is synthesized in neurons, it is broken down in oligodendrocytes into aspartate and acetate. The resulting acetate is incorporated into myelin lipids, linking neuronal mitochondrial function to oligodendrocyte-mediated elaboration of myelin lipids in the CNS. In the present study we show that treating human SH-SY5Y neuroblastoma cells with the electron transport chain inhibitor antimycin A decreased levels of NAA as measured by HPLC. To better understand the significance of the relationship between mitochondrial function and levels of NAA and its breakdown product acetate on MS pathology we then quantitated the levels of NAA and acetate in MS and control postmortem tissue blocks. Regardless of lesion status, we observed that levels of NAA were decreased 25 and 32 % in gray matter from parietal and motor cortex in MS, respectively, compared to controls. Acetate levels in adjacent white matter mirrored these decreases as evidenced by the 36 and 45 % reduction in acetate obtained from parietal and motor cortices. These data suggest a novel mechanism whereby mitochondrial dysfunction and reduced NAA levels in neurons may result in compromised myelination by oligodendrocytes due to decreased availability of acetate necessary for the synthesis of myelin lipids.

  12. Effects of Zoledronate and Mechanical Loading during Simulated Weightlessness on Bone Structure and Mechanical Properties

    Science.gov (United States)

    Scott, R. T.; Nalavadi, M. O.; Shirazi-Fard, Y.; Castillo, A. B.; Alwood, J. S.

    2016-01-01

    Space flight modulates bone remodeling to favor bone resorption. Current countermeasures include an anti-resorptive drug class, bisphosphonates (BP), and high-force loading regimens. Does the combination of anti-resorptives and high-force exercise during weightlessness have negative effects on the mechanical and structural properties of bone? In this study, we implemented an integrated model to mimic mechanical strain of exercise via cyclical loading (CL) in mice treated with the BP Zoledronate (ZOL) combined with hindlimb unloading (HU). Our working hypothesis is that CL combined with ZOL in the HU model induces additive structural and mechanical changes. Thirty-two C57BL6 mice (male,16 weeks old, n8group) were exposed to 3 weeks of either HU or normal ambulation (NA). Cohorts of mice received one subcutaneous injection of ZOL (45gkg), or saline vehicle, prior to experiment. The right tibia was axially loaded in vivo, 60xday to 9N in compression, repeated 3xweek during HU. During the application of compression, secant stiffness (SEC), a linear estimate of slope of the force displacement curve from rest (0.5N) to max load (9.0N), was calculated for each cycle once per week. Ex vivo CT was conducted on all subjects. For ex vivo mechanical properties, non-CL left femurs underwent 3-point bending. In the proximal tibial metaphysis, HU decreased, CL increased, and ZOL increased the cancellous bone volume to total volume ratio by -26, +21, and +33, respectively. Similar trends held for trabecular thickness and number. Ex vivo left femur mechanical properties revealed HU decreased stiffness (-37),and ZOL mitigated the HU stiffness losses (+78). Data on the ex vivo Ultimate Force followed similar trends. After 3 weeks, HU decreased in vivo SEC (-16). The combination of CL+HU appeared additive in bone structure and mechanical properties. However, when HU + CL + ZOL were combined, ZOL had no additional effect (p0.05) on in vivo SEC. Structural data followed this trend with

  13. A new human NHERF1 mutation decreases renal phosphate transporter NPT2a expression by a PTH-independent mechanism.

    Directory of Open Access Journals (Sweden)

    Marie Courbebaisse

    Full Text Available BACKGROUND: The sodium-hydrogen exchanger regulatory factor 1 (NHERF1 binds to the main renal phosphate transporter NPT2a and to the parathyroid hormone (PTH receptor. We have recently identified mutations in NHERF1 that decrease renal phosphate reabsorption by increasing PTH-induced cAMP production in the renal proximal tubule. METHODS: We compared relevant parameters of phosphate homeostasis in a patient with a previously undescribed mutation in NHERF1 and in control subjects. We expressed the mutant NHERF1 protein in Xenopus Oocytes and in cultured cells to study its effects on phosphate transport and PTH-induced cAMP production. RESULTS: We identified in a patient with inappropriate renal phosphate reabsorption a previously unidentified mutation (E68A located in the PDZ1 domain of NHERF1.We report the consequences of this mutation on NHERF1 function. E68A mutation did not modify cAMP production in the patient. PTH-induced cAMP synthesis and PKC activity were not altered by E68A mutation in renal cells in culture. In contrast to wild-type NHERF1, expression of the E68A mutant in Xenopus oocytes and in human cells failed to increase phosphate transport. Pull down experiments showed that E68A mutant did not interact with NPT2a, which robustly interacted with wild type NHERF1 and previously identified mutants. Biotinylation studies revealed that E68A mutant was unable to increase cell surface expression of NPT2a. CONCLUSIONS: Our results indicate that the PDZ1 domain is critical for NHERF1-NPT2a interaction in humans and for the control of NPT2a expression at the plasma membrane. Thus we have identified a new mechanism of renal phosphate loss and shown that different mutations in NHERF1 can alter renal phosphate reabsorption via distinct mechanisms.

  14. Mechanism of melphalan crosslink enhancement by misonidazole pretreatment

    International Nuclear Information System (INIS)

    Taylor, Y.C.; Sawyer, J.M.; Hsu, B.; Brown, J.M.

    1984-01-01

    Sensitization of Chinese hamster ovary cells to melphalan (L-PAM) toxicity by prior treatment with misonidazole is associated with increased levels of DNA crosslinks believed to be the critical lesion for bifunctional alkylating agent toxicity. Enhanced L-PAM crosslinking of DNA could occur by a variety of mechanisms in MISO-pretreated cells including: (1) increased transport or binding of L-PAM, (2) decreased repair of L-PAM monoadducts which would allow more time for their conversion to crosslinks, (3) decreased crosslink repair (unhooking of one arm), or (4) chemical modification of the DNA structure, presumably by bound MISO derivatives, such that crosslink formation is facilitated. Previous studies have eliminated mechanisms (1) and (3). Mechanism (4) was investigated by following MISO-pretreatments of whole cells with L-PAM treatments of the isolated DNA from these cells. Treatment of bare DNA with L-PAM modeled very well the crosslinking behavior in whole cells although it was somewhat more efficient. In the presence of double stranded DNA and absence of repair systems during and after the L-PAM exposure, it was determined that MISO-pretreatments did not increase the crosslinking efficiency of L-PAM

  15. Obstructive sleep apnea decreases central nervous system-derived proteins in the cerebrospinal fluid.

    Science.gov (United States)

    Ju, Yo-El S; Finn, Mary Beth; Sutphen, Courtney L; Herries, Elizabeth M; Jerome, Gina M; Ladenson, Jack H; Crimmins, Daniel L; Fagan, Anne M; Holtzman, David M

    2016-07-01

    We hypothesized that one mechanism underlying the association between obstructive sleep apnea (OSA) and Alzheimer's disease is OSA leading to decreased slow wave activity (SWA), increased synaptic activity, decreased glymphatic clearance, and increased amyloid-β. Polysomnography and lumbar puncture were performed in OSA and control groups. SWA negatively correlated with cerebrospinal fluid (CSF) amyloid-β-40 among controls and was decreased in the OSA group. Unexpectedly, amyloid-β-40 was decreased in the OSA group. Other neuronally derived proteins, but not total protein, were also decreased in the OSA group, suggesting that OSA may affect the interaction between interstitial and cerebrospinal fluid. Ann Neurol 2016;80:154-159. © 2016 American Neurological Association.

  16. Mechanisms of drug resistance in cancer cells

    International Nuclear Information System (INIS)

    Iqbal, M.P.

    2003-01-01

    Development of drug resist chemotherapy. For the past several years, investigators have been striving hard to unravel mechanisms of drug resistance in cancer cells. Using different experimental models of cancer, some of the major mechanisms of drug resistance identified in mammalian cells include: (a) Altered transport of the drug (decreased influx of the drug; increased efflux of the drug (role of P-glycoprotein; role of polyglutamation; role of multiple drug resistance associated protein)), (b) Increase in total amount of target enzyme/protein (gene amplification), (c) alteration in the target enzyme/protein (low affinity enzyme), (d) Elevation of cellular glutathione, (e) Inhibition of drug-induced apoptosis (mutation in p53 tumor suppressor gene; increased expression of bcl-xl gene). (author)

  17. Aging causes decreased resistance to multiple stresses and a failure to activate specific stress response pathways

    Science.gov (United States)

    Bergsma, Alexis L.; Senchuk, Megan M.; Van Raamsdonk, Jeremy M.

    2016-01-01

    In this work, we examine the relationship between stress resistance and aging. We find that resistance to multiple types of stress peaks during early adulthood and then declines with age. To dissect the underlying mechanisms, we use C. elegans transcriptional reporter strains that measure the activation of different stress responses including: the heat shock response, mitochondrial unfolded protein response, endoplasmic reticulum unfolded protein response, hypoxia response, SKN-1-mediated oxidative stress response, and the DAF-16-mediated stress response. We find that the decline in stress resistance with age is at least partially due to a decreased ability to activate protective mechanisms in response to stress. In contrast, we find that any baseline increase in stress caused by the advancing age is too mild to detectably upregulate any of the stress response pathways. Further exploration of how worms respond to stress with increasing age revealed that the ability to mount a hormetic response to heat stress is also lost with increasing age. Overall, this work demonstrates that resistance to all types of stress declines with age. Based on our data, we speculate that the decrease in stress resistance with advancing age results from a genetically-programmed inactivation of stress response pathways, not accumulation of damage. PMID:27053445

  18. Aging causes decreased resistance to multiple stresses and a failure to activate specific stress response pathways.

    Science.gov (United States)

    Dues, Dylan J; Andrews, Emily K; Schaar, Claire E; Bergsma, Alexis L; Senchuk, Megan M; Van Raamsdonk, Jeremy M

    2016-04-01

    In this work, we examine the relationship between stress resistance and aging. We find that resistance to multiple types of stress peaks during early adulthood and then declines with age. To dissect the underlying mechanisms, we use C. elegans transcriptional reporter strains that measure the activation of different stress responses including: the heat shock response, mitochondrial unfolded protein response, endoplasmic reticulum unfolded protein response, hypoxia response, SKN-1-mediated oxidative stress response, and the DAF-16-mediated stress response. We find that the decline in stress resistance with age is at least partially due to a decreased ability to activate protective mechanisms in response to stress. In contrast, we find that any baseline increase in stress caused by the advancing age is too mild to detectably upregulate any of the stress response pathways. Further exploration of how worms respond to stress with increasing age revealed that the ability to mount a hormetic response to heat stress is also lost with increasing age. Overall, this work demonstrates that resistance to all types of stress declines with age. Based on our data, we speculate that the decrease in stress resistance with advancing age results from a genetically-programmed inactivation of stress response pathways, not accumulation of damage.

  19. Molecular Mechanisms for Age-Associated Mitochondrial Deficiency in Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Akira Wagatsuma

    2012-01-01

    Full Text Available The abundance, morphology, and functional properties of mitochondria decay in skeletal muscle during the process of ageing. Although the precise mechanisms remain to be elucidated, these mechanisms include decreased mitochondrial DNA (mtDNA repair and mitochondrial biogenesis. Mitochondria possess their own protection system to repair mtDNA damage, which leads to defects of mtDNA-encoded gene expression and respiratory chain complex enzymes. However, mtDNA mutations have shown to be accumulated with age in skeletal muscle. When damaged mitochondria are eliminated by autophagy, mitochondrial biogenesis plays an important role in sustaining energy production and physiological homeostasis. The capacity for mitochondrial biogenesis has shown to decrease with age in skeletal muscle, contributing to progressive mitochondrial deficiency. Understanding how these endogenous systems adapt to altered physiological conditions during the process of ageing will provide a valuable insight into the underlying mechanisms that regulate cellular homeostasis. Here we will summarize the current knowledge about the molecular mechanisms responsible for age-associated mitochondrial deficiency in skeletal muscle. In particular, recent findings on the role of mtDNA repair and mitochondrial biogenesis in maintaining mitochondrial functionality in aged skeletal muscle will be highlighted.

  20. Childhood exposure to green space - A novel risk-decreasing mechanism for schizophrenia?

    Science.gov (United States)

    Engemann, Kristine; Pedersen, Carsten Bøcker; Arge, Lars; Tsirogiannis, Constantinos; Mortensen, Preben Bo; Svenning, Jens-Christian

    2018-03-21

    Schizophrenia risk has been linked to urbanization, but the underlying mechanism remains unknown. Green space is hypothesized to positively influence mental health and might mediate risk of schizophrenia by mitigating noise and particle pollution exposure, stress relief, or other unknown mechanisms. The objectives for this study were to determine if green space are associated with schizophrenia risk, and if different measures of green space associate differently with risk. We used satellite data from the Landsat program to quantify green space in a new data set for Denmark at 30×30m resolution for the years 1985-2013. The effect of green space at different ages and within different distances from each person's place of residence on schizophrenia risk was estimated using Cox regression on a very large longitudinal population-based sample of the Danish population (943,027 persons). Living at the lowest amount of green space was associated with a 1.52-fold increased risk of developing schizophrenia compared to persons living at the highest level of green space. This association remained after adjusting for known risk factors for schizophrenia: urbanization, age, sex, and socioeconomic status. The strongest protective association was observed during the earliest childhood years and closest to place of residence. This is the first nationwide population-based study to demonstrate a protective association between green space during childhood and schizophrenia risk; suggesting limited green space as a novel environmental risk factor for schizophrenia. This study supports findings from other studies highlighting positive effects of exposure to natural environments for human health. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Kyphoplasty increases vertebral height, decreases both pain score and opiate requirements while improving functional status.

    Science.gov (United States)

    Tolba, Reda; Bolash, Robert B; Shroll, Joshua; Costandi, Shrif; Dalton, Jarrod E; Sanghvi, Chirag; Mekhail, Nagy

    2014-03-01

    Vertebral compression fractures can result from advanced osteoporosis, or less commonly from metastatic or traumatic insults to the vertebral column, and result in disabling pain and decreased functional capacity. Various vertebral augmentation options including kyphoplasty aim at preventing the sequelae of pain and immobility that can develop as the result of the vertebral fractures. The mechanism for pain relief following kyphoplasty is not entirely understood, and the restoration of a portion of the lost vertebral height is a subject of debate. We retrospectively reviewed radiographic imaging, pain relief, analgesic intake and functional outcomes in 67 consecutive patients who underwent single- or multilevel kyphoplasty with the primary goal of quantifying the restoration of lost vertebral height. We observed a mean of 45% of the lost vertebral height restored postprocedurally. Secondarily, kyphoplasty was associated with significant decreases in pain scores, daily morphine consumption and improvement in patient-reported functional measures. © 2013 World Institute of Pain.

  2. Influence of temperature on patch residence time in parasitoids: physiological and behavioural mechanisms

    Science.gov (United States)

    Moiroux, Joffrey; Abram, Paul K.; Louâpre, Philippe; Barrette, Maryse; Brodeur, Jacques; Boivin, Guy

    2016-04-01

    Patch time allocation has received much attention in the context of optimal foraging theory, including the effect of environmental variables. We investigated the direct role of temperature on patch time allocation by parasitoids through physiological and behavioural mechanisms and its indirect role via changes in sex allocation and behavioural defences of the hosts. We compared the influence of foraging temperature on patch residence time between an egg parasitoid, Trichogramma euproctidis, and an aphid parasitoid, Aphidius ervi. The latter attacks hosts that are able to actively defend themselves, and may thus indirectly influence patch time allocation of the parasitoid. Patch residence time decreased with an increase in temperature in both species. The increased activity levels with warming, as evidenced by the increase in walking speed, partially explained these variations, but other mechanisms were involved. In T. euproctidis, the ability to externally discriminate parasitised hosts decreased at low temperature, resulting in a longer patch residence time. Changes in sex allocation with temperature did not explain changes in patch time allocation in this species. For A. ervi, we observed that aphids frequently escaped at intermediate temperature and defended themselves aggressively at high temperature, but displayed few defence mechanisms at low temperature. These defensive behaviours resulted in a decreased patch residence time for the parasitoid and partly explained the fact that A. ervi remained for a shorter time at the intermediate and high temperatures than at the lowest temperature. Our results suggest that global warming may affect host-parasitoid interactions through complex mechanisms including both direct and indirect effects on parasitoid patch time allocation.

  3. Wet-cupping removes oxidants and decreases oxidative stress.

    Science.gov (United States)

    Tagil, Suleyman Murat; Celik, Huseyin Tugrul; Ciftci, Sefa; Kazanci, Fatmanur Hacievliyagil; Arslan, Muzeyyen; Erdamar, Nazan; Kesik, Yunus; Erdamar, Husamettin; Dane, Senol

    2014-12-01

    Wet-cupping therapy is one of the oldest known medical techniques. Although it is widely used in various conditions such as acute\\chronic inflammation, infectious diseases, and immune system disorders, its mechanism of action is not fully known. In this study, we investigated the oxidative status as the first step to elucidate possible mechanisms of action of wet cupping. Wet cupping therapy is implemented to 31 healthy volunteers. Venous blood samples and Wet cupping blood samples were taken concurrently. Serum nitricoxide, malondialdehyde levels and activity of superoxide dismutase and myeloperoxidase were measured spectrophotometrically. Wet cupping blood had higher activity of myeloperoxidase, lower activity of superoxide dismutase, higher levels of malondialdehyde and nitricoxide compared to the venous blood. Wet cupping removes oxidants and decreases oxidative stress. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Decreasing incidence rates of bacteremia

    DEFF Research Database (Denmark)

    Nielsen, Stig Lønberg; Pedersen, C; Jensen, T G

    2014-01-01

    BACKGROUND: Numerous studies have shown that the incidence rate of bacteremia has been increasing over time. However, few studies have distinguished between community-acquired, healthcare-associated and nosocomial bacteremia. METHODS: We conducted a population-based study among adults with first......-time bacteremia in Funen County, Denmark, during 2000-2008 (N = 7786). We reported mean and annual incidence rates (per 100,000 person-years), overall and by place of acquisition. Trends were estimated using a Poisson regression model. RESULTS: The overall incidence rate was 215.7, including 99.0 for community......-acquired, 50.0 for healthcare-associated and 66.7 for nosocomial bacteremia. During 2000-2008, the overall incidence rate decreased by 23.3% from 254.1 to 198.8 (3.3% annually, p incidence rate of community-acquired bacteremia decreased by 25.6% from 119.0 to 93.8 (3.7% annually, p

  5. Enhancing medicine price transparency through price information mechanisms.

    Science.gov (United States)

    Hinsch, Michael; Kaddar, Miloud; Schmitt, Sarah

    2014-05-08

    Medicine price information mechanisms provide an essential tool to countries that seek a better understanding of product availability, market prices and price compositions of individual medicines. To be effective and contribute to cost savings, these mechanisms need to consider prices in their particular contexts when comparing between countries. This article discusses in what ways medicine price information mechanisms can contribute to increased price transparency and how this may affect access to medicines for developing countries. We used data collected during the course of a WHO project focusing on the development of a vaccine price and procurement information mechanism. The project collected information from six medicine price information mechanisms and interviewed data managers and technical experts on key aspects as well as observed market effects of these mechanisms.The reviewed mechanisms were broken down into categories including objective and target audience, as well as the sources, types and volumes of data included. Information provided by the mechanisms was reviewed according to data available on medicine prices, product characteristics, and procurement modalities. We found indications of positive effects on access to medicines resulting from the utilization of the reviewed mechanisms. These include the uptake of higher quality medicines, more favorable results from contract negotiations, changes in national pricing policies, and the decrease of prices in certain segments for countries participating in or deriving data from the various mechanisms. The reviewed mechanisms avoid the methodological challenges observed for medicine price comparisons that only use national price databases. They work with high quality data and display prices in the appropriate context of procurement modalities as well as the peculiarities of purchasing countries. Medicine price information mechanisms respond to the need for increased medicine price transparency and have the

  6. Role of the decreased nitric oxide bioavailability in the vascular complications of diabetes mellitus.

    Science.gov (United States)

    Masha, Andi; Dinatale, Stefano; Allasia, Stefano; Martina, Valentino

    2011-09-01

    This mini-review takes into consideration the physiology, synthesis and mechanisms of action of the nitric oxide (NO) and, subsequently, the causes and effects of the NO bioavailability impairment. In diabetes mellitus the reduced NO bioavailability is caused by the increased free radicals production, secondary to hyperglycemia. The reactive oxygen species oxidize the cofactors of the nitric oxide synthase, diminishing their active forms and consequently leading to a decreased NO production. Furthermore the decreased concentration of reduced glutathione results in a diminished production of nitrosoglutathione. These molecules are important intermediates of the NO pathway and physiologically activate the soluble guanylate cyclase. Their decrease in oxidative states of the cell, therefore, leads to a reduced cGMP production which represents the principal molecule that carries out NO's major effects. Finally we considered the eventual therapeutic strategies to improve NO bioavailability by acting on the causes of its decrease. Therefore the treatments proposed are based on the possibility to counteract the oxidation and, in this context, the physiopathological mechanisms strongly support the treatment with thiols.

  7. Improved glycaemic control decreases inner mitochondrial membrane leak in type 2 diabetes

    DEFF Research Database (Denmark)

    Rabøl, R; Højberg, P M V; Almdal, T

    2009-01-01

    AIM: Several mechanisms have been targeted as culprits of weight gain during antihyperglycaemic treatment in type 2 diabetes (T2DM). These include reductions in glucosuria, increased food intake from fear of hypoglycaemia, the anabolic effect of insulin, decreased metabolic rate and increased eff...... to reductions in inner mitochondrial membrane leak and increased efficiency of mitochondria. This change in mitochondrial physiology could contribute to the weight gain seen with antihyperglycaemic treatment....... efficiency in fuel usage. The purpose of the study was to test the hypothesis that mitochondrial efficiency increases as a result of insulin treatment in patients with type 2 diabetes. METHODS: We included ten patients with T2DM (eight males) on oral antidiabetic treatment, median age: 51.5 years (range: 39......-67) and body mass index (BMI): 30.1 +/- 1.2 kg/m2 (mean +/- s.e.). Muscle biopsies from m. vastus lateralis and m. deltoideus were obtained before and after seven weeks of intensive insulin treatment, and mitochondrial respiration was measured using high-resolution respirometry. State 3 respiration...

  8. Mechanisms of Contrast-Induced Nephropathy Reduction for Saline (NaCl and Sodium Bicarbonate (NaHCO3

    Directory of Open Access Journals (Sweden)

    W. Patrick Burgess

    2014-01-01

    Full Text Available Nephropathy following contrast media (CM exposure is reduced by administration before, during, and after the contrast procedure of either isotonic sodium chloride solution (Saline or isotonic sodium bicarbonate solution (IsoBicarb. The reasons for this reduction are not well established for either sodium salt; probable mechanisms are discussed in this paper. For Saline, the mechanism for the decrease in CIN is likely related primarily to the increased tubular flow rates produced by volume expansion and therefore a decreased concentration of the filtered CM during transit through the kidney tubules. Furthermore, increased tubular flow rates produce a slight increase in tubular pH resulting from a fixed acid excretion in an increased tubular volume. The mechanism for the decreased CIN associated with sodium bicarbonate includes the same mechanisms listed for Saline in addition to a renal pH effect. Increased filtered bicarbonate anion raises both tubular pH and tubular bicarbonate anion levels toward blood physiologic levels, thus providing increased buffer for reactive oxygen species (ROS formed in the tubules as a result of exposure to CM in renal tubular fluid.

  9. Bubble nasal CPAP, early surfactant treatment, and rapid extubation are associated with decreased incidence of bronchopulmonary dysplasia in very-low-birth-weight newborns: efficacy and safety considerations.

    Science.gov (United States)

    Friedman, Charles A; Menchaca, Robert C; Baker, Mary C; Rivas, Clarissa K; Laberge, Raymond N; Rios, Enrique H; Haider, Syed H; Romero, Edgar J; Eason, Elizabeth B; Fraley, J Kennard; Woldesenbet, Mesfin

    2013-07-01

    Current literature has been inconsistent in demonstrating that minimizing the duration of mechanical ventilation in very-low-birth-weight (VLBW) newborns reduces lung damage. To determine if introduction of bubble nasal CPAP (bnCPAP), early surfactant treatment, and rapid extubation (combined bnCPAP strategy) in our community-based neonatal ICU reduced bronchopulmonary dysplasia (BPD). This was a 7-year retrospective,single-institution review of respiratory outcomes in 633 VLBW babies before and after introduction of the combined bnCPAP strategy. Coincident changes in newborn care were taken into account with a logistic regression model. The average percentage of VLBW newborns with BPD decreased to 25.8% from 35.4% (P = .02), reaching a minimum in the last post-bnCPAP year of22.1% (P = .02). When other coincident changes in newborn care during the study years were taken into account, VLBW babies in the post-bnCPAP years had a 43% lower chance of developing BPD(P = .003, odds ratio 0.43, 95% CI 0.25– 0.75). Decreases occurred in mechanical ventilation and the percentage of infants discharged on diuretics and on supplemental oxygen. Among the subset of extremely-low-birth-weight newborns, improved respiratory outcomes in the post-bnCPAP years,as compared to outcomes in the pre-bnCPAP years, included an increase in the percentage alive and off mechanical ventilation at 1 week postnatal age (P < .001), a more rapid extubation rate(P < .03), a decrease in the median days on mechanical ventilation (P = .002), and a decrease in the percentage with BPD plus died (P = .01). Post-bnCPAP extremely-low-birth-weight babies had a statistically significant decrease in retinopathy of prematurity, an increase in low-grade intraventricular hemorrhage, and a decrease in ductal ligations. A combined BnCPAP strategy may contribute to a reduction of BPD, after adjusting for concurrent treatments.

  10. The Kyoto mechanisms and technological innovation

    International Nuclear Information System (INIS)

    Lund, Henrik

    2006-01-01

    Climate change response, including the implementation of the Kyoto targets as the first step, calls for technological innovation of future sustainable energy systems. Based on the Danish case, this paper evaluates the type of technological change necessary. During a period of 30 years, Denmark managed to stabilize primary energy supply, and CO 2 emissions decreased by 10%, during a period of 20 years. However, after the introduction of the Kyoto Mechanisms, Denmark has changed its strategy. Instead of continuing the domestic CO 2 emission controls, Denmark plans to buy CO 2 reductions in other countries. Consequently, the innovative technological development has changed. This paper evaluates the character of such change and makes preliminary recommendations for policies to encourage the use of the Kyoto Mechanisms as an acceleration of the necessary technological innovation. (author)

  11. Mechanisms limiting glycogen storage in muscle during prolonged insulin stimulation

    DEFF Research Database (Denmark)

    Richter, Erik; Hansen, S A; Hansen, B F

    1988-01-01

    increased muscle glycogen concentrations to maximal values 2, 3, and 3.5 times above normal fed levels in fast-twitch white, slow-twitch red, and fast-twitch red fibers, respectively. Glucose uptake decreased (mean +/- SE) from 34.9 +/- 1.2 mumol.g-1.h-1 at 0 h to 7.5 +/- 0.7 after 7 h of perfusion. During...... compared with initial values. Total muscle water concentration decreased during glycogen loading of the muscles. Mechanisms limiting glycogen storage under maximal insulin stimulation include impaired insulin-stimulated membrane transport of glucose as well as impaired intracellular glucose disposal....

  12. Insulin decreases atherosclerosis by inducing endothelin receptor B expression

    DEFF Research Database (Denmark)

    Park, Kyoungmin; Mima, Akira; Li, Qian

    2016-01-01

    Endothelial cell (EC) insulin resistance and dysfunction, caused by diabetes, accelerates atherosclerosis. It is unknown whether specifically enhancing EC-targeted insulin action can decrease atherosclerosis in diabetes. Accordingly, overexpressing insulin receptor substrate-1 (IRS1...... induction of NO action, which increases endothelin receptor B (EDNRB) expression and intracellular [Ca(2+)]. Using the mice with knockin mutation of eNOS, which had Ser1176 mutated to alanine (AKI), deleting the only known mechanism for insulin to activate eNOS/NO pathway, we observed that IRS1...... overexpression in the endothelia of Aki/ApoE(-/-) mice significantly decreased atherosclerosis. Interestingly, endothelial EDNRB expression was selectively reduced in intima of arteries from diabetic patients and rodents. However, endothelial EDNRB expression was upregulated by insulin via P13K/Akt pathway...

  13. Mechanisms of antibiotic resistance in Staphylococcus aureus.

    Science.gov (United States)

    Pantosti, Annalisa; Sanchini, Andrea; Monaco, Monica

    2007-06-01

    Staphylococcus aureus can exemplify better than any other human pathogen the adaptive evolution of bacteria in the antibiotic era, as it has demonstrated a unique ability to quickly respond to each new antibiotic with the development of a resistance mechanism, starting with penicillin and methicillin, until the most recent, linezolid and daptomycin. Resistance mechanisms include enzymatic inactivation of the antibiotic (penicillinase and aminoglycoside-modification enzymes), alteration of the target with decreased affinity for the antibiotic (notable examples being penicillin-binding protein 2a of methicillin-resistant S. aureus and D-Ala-D-Lac of peptidoglycan precursors of vancomycin-resistant strains), trapping of the antibiotic (for vancomycin and possibly daptomycin) and efflux pumps (fluoroquinolones and tetracycline). Complex genetic arrays (staphylococcal chromosomal cassette mec elements or the vanA operon) have been acquired by S. aureus through horizontal gene transfer, while resistance to other antibiotics, including some of the most recent ones (e.g., fluoroquinolones, linezolid and daptomycin) have developed through spontaneous mutations and positive selection. Detection of the resistance mechanisms and their genetic basis is an important support to antibiotic susceptibility surveillance in S. aureus.

  14. Fructose 1,6-Bisphosphate: A Summary of Its Cytoprotective Mechanism.

    Science.gov (United States)

    Alva, Norma; Alva, Ronald; Carbonell, Teresa

    2016-01-01

    In clinical and experimental settings, a great deal of effort is being made to protect cells and tissues against harmful conditions and to facilitate metabolic recovery following these insults. Much of the recent attention has focused on the protective role of a natural form of sugar, fructose 1,6-bisphosphate (F16bP). F16bP is a high-energy glycolytic intermediate that has been shown to exert a protective action in different cell types and tissues (including the brain, kidney, intestine, liver and heart) against various harmful conditions. For example, there is much evidence that it prevents neuronal damage due to hypoxia and ischemia. Furthermore, the cytoprotective effects of F16bP have been documented in lesions caused by chemicals or cold storage, in a decrease in mortality during sepsis shock and even in the prevention of bone loss in experimental osteoporosis. Intriguingly, protection in such a variety of targets and animal models suggests that the mechanisms induced by F16bP are complex and involve different pathways. In this review we will discuss the most recent theories concerning the molecular model of action of F16bP inside cells. These include its incorporation as an energy substrate, the mechanism for the improvement of ATP availability, and for preservation of organelle membrane stability and functionality. In addition we will present new evidences regarding the capacity of F16bP to decrease oxidative stress by limiting free radical production and improving antioxidant systems, including the role of nitric oxide in the protective mechanism induced by F16bP. Finally we will review the proposed mechanisms for explaining its anti-inflammatory, immunomodulatory and neuroprotective properties.

  15. Perspectives of ukrainian mechanical engineering development

    OpenAIRE

    Dyrda, E.; Schepetkova, A.; Galushko, O.

    2013-01-01

    Theses are devoted to problems and perspectives of Ukrainian mechanical engineering development. Role of mechanical engineering in national economy is described. Problems of mechanical engineering, such as losing the cometetive advantages, production decreasing, debts growing, ineffective assets structure, are investigated. Influence of European integration process on mechanical engineering enterprises is discussed.

  16. Balancing mechanism status: November 2009

    International Nuclear Information System (INIS)

    2009-01-01

    RTE ensures the real-time balance between production and consumption and deals with congestion on the French electricity system. The Balancing Mechanism assists in the accomplishment of this task. As in many countries, and after extensive dialogue with representatives from the market's various players, RTE proposes a Balancing Mechanism in the form of a permanent and transparent system of calls for tender. The system is open to everyone and provides a real-time reserve of power that can be used for balancing either upward or downward. RTE takes advantage of these offers according to economic precedence, taking into account the system's operating conditions. It pays for them at the offer price. There are two types of offer: - Upward offer: increase in production, decrease in consumption, imports, - Downward offer: decrease in production, increase in consumption, exports. For a Balancing Entity, an offer systematically consists of: a balancing direction (upward/downward), a time period, a price that may vary according to six time slots. RTE publishes each month a Balancing Mechanism Report. which includes the following information: - energy volumes activated to ensure the balance of the system and to resolve congestion; - minimum and maximum prices of offers activated to balance the system; - daily trends calculated according to the predominant value of the overall upward or downward trend; - balancing shares by technology (nuclear, thermal, hydraulic); - characteristics of the five most activated balancing entities; - balances/imbalances accounts and production/consumption overcharge; - congestion curbing costs on the French electricity system; - energy volumes activated to ensure the balance of the system according to contracts between RTE and other Balance Responsible entities (UK, Belgium, Italy, Germany, Switzerland); - reliability of the provisional data supplied by RTE about the balancing trend; - availability of RTE's information services (planning, balancing

  17. Balancing mechanism status: May 2009

    International Nuclear Information System (INIS)

    2009-01-01

    RTE ensures the real-time balance between production and consumption and deals with congestion on the French electricity system. The Balancing Mechanism assists in the accomplishment of this task. As in many countries, and after extensive dialogue with representatives from the market's various players, RTE proposes a Balancing Mechanism in the form of a permanent and transparent system of calls for tender. The system is open to everyone and provides a real-time reserve of power that can be used for balancing either upward or downward. RTE takes advantage of these offers according to economic precedence, taking into account the system's operating conditions. It pays for them at the offer price. There are two types of offer: - Upward offer: increase in production, decrease in consumption, imports, - Downward offer: decrease in production, increase in consumption, exports. For a Balancing Entity, an offer systematically consists of: a balancing direction (upward/downward), a time period, a price that may vary according to six time slots. RTE publishes each month a Balancing Mechanism Report. which includes the following information: - energy volumes activated to ensure the balance of the system and to resolve congestion; - minimum and maximum prices of offers activated to balance the system; - daily trends calculated according to the predominant value of the overall upward or downward trend; - balancing shares by technology (nuclear, thermal, hydraulic); - characteristics of the five most activated balancing entities; - balances/imbalances accounts and production/consumption overcharge; - congestion curbing costs on the French electricity system; - energy volumes activated to ensure the balance of the system according to contracts between RTE and other Balance Responsible entities (UK, Belgium, Italy, Germany, Switzerland); - reliability of the provisional data supplied by RTE about the balancing trend; - availability of RTE's information services (planning, balancing

  18. Characterization and corrosion behaviour of CoNi alloys obtained by mechanical alloying

    International Nuclear Information System (INIS)

    Olvera, S.; Sánchez-Marcos, J.; Palomares, F.J.; Salas, E.; Arce, E.M.; Herrasti, P.

    2014-01-01

    CoNi alloys including Co 30 Ni 70 , Co 50 Ni 50 and Co 70 Ni 30 were prepared via mechanical alloying using Co and Ni powders. The crystallinity and short-range order were studied using X-ray diffraction and X-ray absorption spectroscopy. The results show that the milling process increases the number of vacancies, especially around the Co atoms, while the milling time decreases the crystalline size and enhances the crystallinity. X-ray photoelectron spectroscopy was used to characterise the chemical composition of the samples surface. The magnetic properties were analysed using zero-field cooling, field cooling and a magnetic hysteresis loops. The magnetic saturation moment is approximately 1.05 μ B /atom; this value decreases with the mechanical alloying time, and it is proportional to the cobalt concentration. The polarization and impedance curves in different media (NaCl, H 2 SO 4 and NaOH) showed similar corrosion resistance values. The corrosion resistance increased in the order NaCl, H 2 SO 4 and NaOH. A good passivation layer was formed in NaOH due to the cobalt and nickel oxides on the particle surfaces. - Highlights: • Ni x Co 100-x alloys were synthesized by mechanical alloying • Milling time decrease size and enhances crystallinity. • Oxygen is not present in a significant percentage in bulk but is detected on the surface. • Magnetic saturation moment is 1.05 mB/atom and decrease with mechanical allowing time • Corrosion resistance is higher in NaOH than in NaCl or HCl solutions

  19. Heliox Improves Carbon Dioxide Removal during Lung Protective Mechanical Ventilation.

    Science.gov (United States)

    Beurskens, Charlotte J; Brevoord, Daniel; Lagrand, Wim K; van den Bergh, Walter M; Vroom, Margreeth B; Preckel, Benedikt; Horn, Janneke; Juffermans, Nicole P

    2014-01-01

    Introduction. Helium is a noble gas with low density and increased carbon dioxide (CO2) diffusion capacity. This allows lower driving pressures in mechanical ventilation and increased CO2 diffusion. We hypothesized that heliox facilitates ventilation in patients during lung-protective mechanical ventilation using low tidal volumes. Methods. This is an observational cohort substudy of a single arm intervention study. Twenty-four ICU patients were included, who were admitted after a cardiac arrest and mechanically ventilated for 3 hours with heliox (50% helium; 50% oxygen). A fixed protective ventilation protocol (6 mL/kg) was used, with prospective observation for changes in lung mechanics and gas exchange. Statistics was by Bonferroni post-hoc correction with statistical significance set at P ventilation, respiratory rate decreased (25 ± 4 versus 23 ± 5 breaths min(-1), P = 0.010). Minute volume ventilation showed a trend to decrease compared to baseline (11.1 ± 1.9 versus 9.9 ± 2.1 L min(-1), P = 0.026), while reducing PaCO2 levels (5.0 ± 0.6 versus 4.5 ± 0.6 kPa, P = 0.011) and peak pressures (21.1 ± 3.3 versus 19.8 ± 3.2 cm H2O, P = 0.024). Conclusions. Heliox improved CO2 elimination while allowing reduced minute volume ventilation in adult patients during protective mechanical ventilation.

  20. Voluntary wheel running increases bile acid as well as cholesterol excretion and decreases atherosclerosis in hypercholesterolemic mice

    NARCIS (Netherlands)

    Meissner, Maxi; Lombardo, Elisa; Havinga, Rick; Tietge, Uwe J. F.; Kuipers, Folkert; Groen, Albert K.

    2011-01-01

    Objective: Regular physical activity decreases the risk for atherosclerosis but underlying mechanisms are not fully understood. We questioned whether voluntary wheel running provokes specific modulations in cholesterol turnover that translate into a decreased atherosclerotic burden in

  1. Heterotopic cardiac transplantation decreases the capacity for rat myocardial protein synthesis

    International Nuclear Information System (INIS)

    Klein, I.; Samarel, A.M.; Welikson, R.; Hong, C.

    1991-01-01

    Heterotopic cardiac isografts are vascularly perfused hearts that maintain structural and functional integrity for prolonged periods of time. When placed in an infrarenal location, the heart is hemodynamically unloaded and undergoes negative growth, leading to cardiac atrophy. At 7 and 14 days after transplantation, the transplanted heart was decreased in size compared with the in situ heart (p less than 0.001). To assess the possible mechanism(s) to account for this reduction in size we studied in vivo rates of total left ventricular (LV) protein synthesis, total LV RNA content, and 18S ribosomal RNA content by nucleic acid hybridization. The LV protein synthetic rate was 4.7 and 5.3 mg/day in the in situ heart and was significantly decreased to 2.9 and 2.7 mg/day in the transplanted hearts at 7 and 14 days, respectively. LV RNA content of the transplant declined to 53% and 48% of the in situ value at 7 and 14 days, respectively. Hybridization studies revealed that LV 18S ribosomal subunit content was reduced proportionately to total RNA in the heterotopic hearts. As a result of these changes, there was no significant difference in the efficiency of total LV protein synthesis between the in situ and transplanted hearts. The present studies demonstrate that the hemodynamic unloading and cardiac atrophy that is characteristic of heterotopic cardiac transplantation is accompanied by a decrease in LV total RNA content and 18S RNA, resulting in a decreased capacity for myocardial protein synthesis

  2. Effect of mechanization level on manpower needs in forestry

    Directory of Open Access Journals (Sweden)

    Błuszkowska Urszula

    2014-12-01

    Full Text Available High work consumption in forest operations is above all the result of the character and task realization mode in works undertaken in forestry. Development of mechanization in forest management activities allows to considerably decrease manpower needs. In the present study, there were analyzed the possibilities of reduction of work consumption by improving the mechanization level of forest works. The method was developed to consider the following assessments: 1 variant W1 - basic option comprising factual work consumption values in works carried out on the area administered by the Regional Directorate of State Forests (RDLP; 2 W2 - showing the effect of 25% upgrade of works to a higher level of mechanization; 3 W3 - showing the effect of 50% upgrade of works to a higher level of mechanization; 4 W4 - comprising analogous calculations to those in variant W1 , but work consumption upgrading was 75%. Simulation calculations revealed considerable differences in needs for labor of different categories of forest workers. On the other hand, with increasing mechanization level, there increase the demands concerning worker qualifications, e.g. a harvester operator must be trained for about 2 years, and the training has to include both simulator exercises (first using software and next - harvester simulator and field work under supervision to gain sufficient experience. The introduction of higher levels of mechanization into forest operations, and hence considerable reduction of jobs for unqualified workers who are replaced by qualified employees, can help decreasing work consumption in forest operations.

  3. Analysis of a Pediatric Home Mechanical Ventilator Population.

    Science.gov (United States)

    Amirnovin, Rambod; Aghamohammadi, Sara; Riley, Carley; Woo, Marlyn S; Del Castillo, Sylvia

    2018-05-01

    The population of children requiring home mechanical ventilation has evolved over the years and has grown to include a variety of diagnoses and needs that have led to changes in the care of this unique population. The purpose of this study was to provide a descriptive analysis of pediatric patients requiring home mechanical ventilation after hospitalization and how the evolution of this technology has impacted their care. A retrospective, observational, longitudinal analysis of 164 children enrolled in a university-affiliated home mechanical ventilation program over 26 years was performed. Data included each child's primary diagnosis, date of tracheostomy placement, duration of mechanical ventilation during hospitalization that consisted of home mechanical ventilator initiation, total length of pediatric ICU stay, ventilator settings at time of discharge from pediatric ICU, and disposition (home, facility, or died). Univariate, bivariate, and regression analysis was used as appropriate. The most common diagnosis requiring the use of home mechanical ventilation was neuromuscular disease (53%), followed by chronic pulmonary disease (29%). The median length of stay in the pediatric ICU decreased significantly after the implementation of a ventilator ward (70 d [30-142] vs 36 d [18-67], P = .02). The distribution of subjects upon discharge was home (71%), skilled nursing facility (24%), and died (4%), with an increase in the proportion of subjects discharged on PEEP and those going to nursing facilities over time ( P = 0.02). The evolution of home mechanical ventilation has allowed earlier transition out of the pediatric ICU and with increasing disposition to skilled nursing facilities over time. There has also been a change in ventilator management, including increased use of PEEP upon discharge, possibly driven by changes in ventilators and in-patient practice patterns. Copyright © 2018 by Daedalus Enterprises.

  4. Mechanical stimulation of cyclic tensile strain induces reduction of pluripotent related gene expressions via activation of Rho/ROCK and subsequent decreasing of AKT phosphorylation in human induced pluripotent stem cells

    International Nuclear Information System (INIS)

    Teramura, Takeshi; Takehara, Toshiyuki; Onodera, Yuta; Nakagawa, Koichi; Hamanishi, Chiaki; Fukuda, Kanji

    2012-01-01

    Highlights: ► Mechanical stimulation is an important factor for regulation of stem cell fate. ► Cyclic stretch to human induced pluripotent stem cells activated small GTPase Rho. ► Rho-kinase activation attenuated pluripotency via inhibition of AKT activation. ► This reaction could be reproduced only by transfection of dominant active Rho. ► Rho/ROCK are important molecules in mechanotransduction and control of stemness. -- Abstract: Mechanical stimulation has been shown to regulate the proliferation and differentiation of stem cells. However, the effects of the mechanical stress on the stemness or related molecular mechanisms have not been well determined. Pluripotent stem cells such as embryonic stem (ES) cells and induced pluripotent stem (iPS) cells are used as good materials for cell transplantation therapy and research of mammalian development, since they can self-renew infinitely and differentiate into various cell lineages. Here we demonstrated that the mechanical stimulation to human iPS cells altered alignment of actin fibers and expressions of the pluripotent related genes Nanog, POU5f1 and Sox2. In the mechanically stimulated iPS cells, small GTPase Rho was activated and interestingly, AKT phosphorylation was decreased. Inhibition of Rho-associated kinase ROCK recovered the AKT phosphorylation and the gene expressions. These results clearly suggested that the Rho/ROCK is a potent primary effector of mechanical stress in the pluripotent stem cells and it participates to pluripotency-related signaling cascades as an upper stream regulator.

  5. Butyrate decreases its own oxidation in colorectal cancer cells through inhibition of histone deacetylases.

    Science.gov (United States)

    Han, Anna; Bennett, Natalie; Ahmed, Bettaieb; Whelan, Jay; Donohoe, Dallas R

    2018-06-05

    Colorectal cancer is characterized by an increase in the utilization of glucose and a diminishment in the oxidation of butyrate, which is a short chain fatty acid. In colorectal cancer cells, butyrate inhibits histone deacetylases to increase the expression of genes that slow the cell cycle and induce apoptosis. Understanding the mechanisms that contribute to the metabolic shift away from butyrate oxidation in cancer cells is important in in understanding the beneficial effects of the molecule toward colorectal cancer. Here, we demonstrate that butyrate decreased its own oxidation in cancerous colonocytes. Butyrate lowered the expression of short chain acyl-CoA dehydrogenase, an enzyme that mediates the oxidation of short-chain fatty acids. Butyrate does not alter short chain acyl-CoA dehydrogenase levels in non-cancerous colonocytes. Trichostatin A, a structurally unrelated inhibitor of histone deacetylases, and propionate also decreased the level of short chain acyl-CoA dehydrogenase, which alluded to inhibition of histone deacetylases as a part of the mechanism. Knockdown of histone deacetylase isoform 1, but not isoform 2 or 3, inhibited the ability of butyrate to decrease short chain acyl-CoA dehydrogenase expression. This work identifies a mechanism by which butyrate selective targets colorectal cancer cells to reduce its own metabolism.

  6. Early life vincristine exposure evokes mechanical pain hypersensitivity in the developing rat.

    Science.gov (United States)

    Schappacher, Katie A; Styczynski, Lauren; Baccei, Mark L

    2017-09-01

    Vincristine (VNC) is commonly used to treat pediatric cancers, including the most prevalent childhood malignancy, acute lymphoblastic leukemia. Although clinical evidence suggests that VNC causes peripheral neuropathy in children, the degree to which pediatric chemotherapeutic regimens influence pain sensitivity throughout life remains unclear, in part because of the lack of an established animal model of chemotherapy-induced neuropathic pain during early life. Therefore, this study investigated the effects of VNC exposure between postnatal days (P) 11 and 21 on mechanical and thermal pain sensitivity in the developing rat. Low doses of VNC (15 or 30 μg/kg) failed to alter nociceptive withdrawal reflexes at any age examined compared with vehicle-injected littermate controls. Meanwhile, high dose VNC (60 μg/kg) evoked mechanical hypersensitivity in both sexes beginning at P26 that persisted until adulthood and included both static and dynamic mechanical allodynia. Hind paw withdrawal latencies to noxious heat and cold were unaffected by high doses of VNC, suggesting a selective effect of neonatal VNC on mechanical pain sensitivity. Gross and fine motor function appeared normal after VNC treatment, although a small decrease in weight gain was observed. The VNC regimen also produced a significant decrease in intraepidermal nerve fiber density in the hind paw skin by P33. Overall, the present results demonstrate that high-dose administration of VNC during the early postnatal period selectively evokes a mechanical hypersensitivity that is slow to emerge during adolescence, providing further evidence that aberrant sensory input during early life can have prolonged consequences for pain processing.

  7. Thermal behaviors of mechanically activated pyrites by thermogravimetry (TG)

    International Nuclear Information System (INIS)

    Hu Huiping; Chen Qiyuan; Yin Zhoulan; Zhang Pingmin

    2003-01-01

    The thermal decompositions of mechanically activated and non-activated pyrites were studied by thermogravimetry (TG) at the heating rate of 10 K min -1 in argon. Results indicate that the initial temperature of thermal decomposition (T di ) in TG curves for mechanically activated pyrites decreases gradually with increasing the grinding time. The specific granulometric surface area (S G ), the structural disorder of mechanically activated pyrites were analyzed by X-ray diffraction laser particle size analyzer, and X-ray powder diffraction analysis (XRD), respectively. The results show that the S G of mechanically activated pyrites remains almost constant after a certain grinding time, and lattice distortions (ε) rise but the crystallite sizes (D) decrease with increasing the grinding time. All these results imply that the decrease of T di in TG curves of mechanically activated pyrites is mainly caused by the increase of lattice distortions ε and the decrease of the crystallite sizes D of mechanically activated pyrite with increasing the grinding time. The differences in the reactivity between non-activated and mechanically activated pyrites were observed using characterization of the products obtained from 1 h treatment of non-activated and mechanically activated pyrites at 713 K under inert atmosphere and characterization of non-activated and mechanically activated pyrites exposed to ambient air for a certain period

  8. Projected 21st century decrease in marine productivity: a multi-model analysis

    Directory of Open Access Journals (Sweden)

    M. Steinacher

    2010-03-01

    Full Text Available Changes in marine net primary productivity (PP and export of particulate organic carbon (EP are projected over the 21st century with four global coupled carbon cycle-climate models. These include representations of marine ecosystems and the carbon cycle of different structure and complexity. All four models show a decrease in global mean PP and EP between 2 and 20% by 2100 relative to preindustrial conditions, for the SRES A2 emission scenario. Two different regimes for productivity changes are consistently identified in all models. The first chain of mechanisms is dominant in the low- and mid-latitude ocean and in the North Atlantic: reduced input of macro-nutrients into the euphotic zone related to enhanced stratification, reduced mixed layer depth, and slowed circulation causes a decrease in macro-nutrient concentrations and in PP and EP. The second regime is projected for parts of the Southern Ocean: an alleviation of light and/or temperature limitation leads to an increase in PP and EP as productivity is fueled by a sustained nutrient input. A region of disagreement among the models is the Arctic, where three models project an increase in PP while one model projects a decrease. Projected changes in seasonal and interannual variability are modest in most regions. Regional model skill metrics are proposed to generate multi-model mean fields that show an improved skill in representing observation-based estimates compared to a simple multi-model average. Model results are compared to recent productivity projections with three different algorithms, usually applied to infer net primary production from satellite observations.

  9. Decreasing particle number concentrations in a warming atmosphere and implications

    Directory of Open Access Journals (Sweden)

    F. Yu

    2012-03-01

    Full Text Available New particle formation contributes significantly to the number concentration of condensation nuclei (CN as well as cloud CN (CCN, a key factor determining aerosol indirect radiative forcing of the climate system. Using a physics-based nucleation mechanism that is consistent with a range of field observations of aerosol formation, it is shown that projected increases in global temperatures could significantly inhibit new particle, and CCN, formation rates worldwide. An analysis of CN concentrations observed at four NOAA ESRL/GMD baseline stations since the 1970s and two other sites since 1990s reveals long-term decreasing trends that are consistent in sign with, but are larger in magnitude than, the predicted temperature effects. The possible reasons for larger observed long-term CN reductions at remote sites are discussed. The combined effects of rising temperatures on aerosol nucleation rates and other chemical and microphysical processes may imply substantial decreases in future tropospheric particle abundances associated with global warming, delineating a potentially significant feedback mechanism that increases Earth's climate sensitivity to greenhouse gas emissions. Further research is needed to quantify the magnitude of such a feedback process.

  10. IκK-16 decreases miRNA-155 expression and attenuates the human monocyte inflammatory response.

    Directory of Open Access Journals (Sweden)

    Norman James Galbraith

    Full Text Available Excessive inflammatory responses in the surgical patient may result in cellular hypo-responsiveness, which is associated with an increased risk of secondary infection and death. microRNAs (miRNAs, such as miR-155, are powerful regulators of inflammatory signalling pathways including nuclear factor κB (NFκB. Our objective was to determine the effect of IκK-16, a selective blocker of inhibitor of kappa-B kinase (IκK, on miRNA expression and the monocyte inflammatory response. In a model of endotoxin tolerance using primary human monocytes, impaired monocytes had decreased p65 expression with suppressed TNF-α and IL-10 production (P < 0.05. miR-155 and miR-138 levels were significantly upregulated at 17 h in the impaired monocyte (P < 0.05. Notably, IκK-16 decreased miR-155 expression with a corresponding dose-dependent decrease in TNF-α and IL-10 production (P < 0.05, and impaired monocyte function was associated with increased miR-155 and miR-138 expression. In the context of IκK-16 inhibition, miR-155 mimics increased TNF-α production, while miR-155 antagomirs decreased both TNF-α and IL-10 production. These data demonstrate that IκK-16 treatment attenuates the monocyte inflammatory response, which may occur through a miR-155-mediated mechanism, and that IκK-16 is a promising approach to limit the magnitude of an excessive innate inflammatory response to LPS.

  11. Molecular mechanisms of renal aging.

    Science.gov (United States)

    Schmitt, Roland; Melk, Anette

    2017-09-01

    Epidemiologic, clinical, and molecular evidence suggest that aging is a major contributor to the increasing incidence of acute kidney injury and chronic kidney disease. The aging kidney undergoes complex changes that predispose to renal pathology. The underlying molecular mechanisms could be the target of therapeutic strategies in the future. Here, we summarize recent insight into cellular and molecular processes that have been shown to contribute to the renal aging phenotype.The main clinical finding of renal aging is the decrease in glomerular filtration rate, and its structural correlate is the loss of functioning nephrons. Mechanistically, this has been linked to different processes, such as podocyte hypertrophy, glomerulosclerosis, tubular atrophy, and gradual microvascular rarefaction. Renal functional recovery after an episode of acute kidney injury is significantly worse in elderly patients. This decreased regenerative potential, which is a hallmark of the aging process, may be caused by cellular senescence. Accumulation of senescent cells could explain insufficient repair and functional loss, a view that has been strengthened by recent studies showing that removal of senescent cells results in attenuation of renal aging. Other potential mechanisms are alterations in autophagy as an important component of a disturbed renal stress response and functional differences in the inflammatory system. Promising therapeutic measures to counteract these age-related problems include mimetics of caloric restriction, pharmacologic renin-angiotensin-aldosterone system inhibition, and novel strategies of senotherapy with the goal of reducing the number of senescent cells to decrease aging-related disease in the kidney. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  12. Mechanisms of diabetes mellitus-induced bone fragility.

    Science.gov (United States)

    Napoli, Nicola; Chandran, Manju; Pierroz, Dominique D; Abrahamsen, Bo; Schwartz, Ann V; Ferrari, Serge L

    2017-04-01

    The risk of fragility fractures is increased in patients with either type 1 diabetes mellitus (T1DM) or type 2 diabetes mellitus (T2DM). Although BMD is decreased in T1DM, BMD in T2DM is often normal or even slightly elevated compared with an age-matched control population. However, in both T1DM and T2DM, bone turnover is decreased and the bone material properties and microstructure of bone are altered; the latter particularly so when microvascular complications are present. The pathophysiological mechanisms underlying bone fragility in diabetes mellitus are complex, and include hyperglycaemia, oxidative stress and the accumulation of advanced glycation endproducts that compromise collagen properties, increase marrow adiposity, release inflammatory factors and adipokines from visceral fat, and potentially alter the function of osteocytes. Additional factors including treatment-induced hypoglycaemia, certain antidiabetic medications with a direct effect on bone and mineral metabolism (such as thiazolidinediones), as well as an increased propensity for falls, all contribute to the increased fracture risk in patients with diabetes mellitus.

  13. Characterization and corrosion behaviour of CoNi alloys obtained by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Olvera, S. [Instituto Politécnico Nacional, ESIQIE, Departamento de Ingeniería en Metalurgia y Materiales, México, D. F. (Mexico); Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Química-Física Aplicada, 28049 Madrid (Spain); Sánchez-Marcos, J. [Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Química-Física Aplicada, 28049 Madrid (Spain); Palomares, F.J. [Instituto de Ciencia de Materiales de Madrid, ICMM-CSIC, Cantoblanco, 28049 Madrid (Spain); Salas, E. [Spline Spanish CRG Beamline at the European Synchrotron Radiation Facilities, ESRF, BP 220-38043, Grenoble Cedex (France); Arce, E.M. [Instituto Politécnico Nacional, ESIQIE, Departamento de Ingeniería en Metalurgia y Materiales, México, D. F. (Mexico); Herrasti, P., E-mail: pilar.herrasti@uam.es [Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Química-Física Aplicada, 28049 Madrid (Spain)

    2014-07-01

    CoNi alloys including Co{sub 30}Ni{sub 70}, Co{sub 50}Ni{sub 50} and Co{sub 70}Ni{sub 30} were prepared via mechanical alloying using Co and Ni powders. The crystallinity and short-range order were studied using X-ray diffraction and X-ray absorption spectroscopy. The results show that the milling process increases the number of vacancies, especially around the Co atoms, while the milling time decreases the crystalline size and enhances the crystallinity. X-ray photoelectron spectroscopy was used to characterise the chemical composition of the samples surface. The magnetic properties were analysed using zero-field cooling, field cooling and a magnetic hysteresis loops. The magnetic saturation moment is approximately 1.05 μ{sub B}/atom; this value decreases with the mechanical alloying time, and it is proportional to the cobalt concentration. The polarization and impedance curves in different media (NaCl, H{sub 2}SO{sub 4} and NaOH) showed similar corrosion resistance values. The corrosion resistance increased in the order NaCl, H{sub 2}SO{sub 4} and NaOH. A good passivation layer was formed in NaOH due to the cobalt and nickel oxides on the particle surfaces. - Highlights: • Ni{sub x}Co{sub 100-x} alloys were synthesized by mechanical alloying • Milling time decrease size and enhances crystallinity. • Oxygen is not present in a significant percentage in bulk but is detected on the surface. • Magnetic saturation moment is 1.05 mB/atom and decrease with mechanical allowing time • Corrosion resistance is higher in NaOH than in NaCl or HCl solutions.

  14. Mechanical stimulation of cyclic tensile strain induces reduction of pluripotent related gene expressions via activation of Rho/ROCK and subsequent decreasing of AKT phosphorylation in human induced pluripotent stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Teramura, Takeshi, E-mail: teramura@med.kindai.ac.jp [Institute of Advanced Clinical Medicine, Kinki University, Faculty of Medicine, Osaka (Japan); Takehara, Toshiyuki; Onodera, Yuta [Institute of Advanced Clinical Medicine, Kinki University, Faculty of Medicine, Osaka (Japan); Nakagawa, Koichi; Hamanishi, Chiaki [Department of Orthopaedic Surgery, Kinki University, Faculty of Medicine, Osaka (Japan); Fukuda, Kanji [Institute of Advanced Clinical Medicine, Kinki University, Faculty of Medicine, Osaka (Japan); Department of Orthopaedic Surgery, Kinki University, Faculty of Medicine, Osaka (Japan)

    2012-01-13

    Highlights: Black-Right-Pointing-Pointer Mechanical stimulation is an important factor for regulation of stem cell fate. Black-Right-Pointing-Pointer Cyclic stretch to human induced pluripotent stem cells activated small GTPase Rho. Black-Right-Pointing-Pointer Rho-kinase activation attenuated pluripotency via inhibition of AKT activation. Black-Right-Pointing-Pointer This reaction could be reproduced only by transfection of dominant active Rho. Black-Right-Pointing-Pointer Rho/ROCK are important molecules in mechanotransduction and control of stemness. -- Abstract: Mechanical stimulation has been shown to regulate the proliferation and differentiation of stem cells. However, the effects of the mechanical stress on the stemness or related molecular mechanisms have not been well determined. Pluripotent stem cells such as embryonic stem (ES) cells and induced pluripotent stem (iPS) cells are used as good materials for cell transplantation therapy and research of mammalian development, since they can self-renew infinitely and differentiate into various cell lineages. Here we demonstrated that the mechanical stimulation to human iPS cells altered alignment of actin fibers and expressions of the pluripotent related genes Nanog, POU5f1 and Sox2. In the mechanically stimulated iPS cells, small GTPase Rho was activated and interestingly, AKT phosphorylation was decreased. Inhibition of Rho-associated kinase ROCK recovered the AKT phosphorylation and the gene expressions. These results clearly suggested that the Rho/ROCK is a potent primary effector of mechanical stress in the pluripotent stem cells and it participates to pluripotency-related signaling cascades as an upper stream regulator.

  15. Fracture mechanics

    CERN Document Server

    Perez, Nestor

    2017-01-01

    The second edition of this textbook includes a refined presentation of concepts in each chapter, additional examples; new problems and sections, such as conformal mapping and mechanical behavior of wood; while retaining all the features of the original book. The material included in this book is based upon the development of analytical and numerical procedures pertinent to particular fields of linear elastic fracture mechanics (LEFM) and plastic fracture mechanics (PFM), including mixed-mode-loading interaction. The mathematical approach undertaken herein is coupled with a brief review of several fracture theories available in cited references, along with many color images and figures. Dynamic fracture mechanics is included through the field of fatigue and Charpy impact testing. Explains computational and engineering approaches for solving crack-related problems using straightforward mathematics that facilitate comprehension of the physical meaning of crack growth processes; Expands computational understandin...

  16. Central administration of insulin-like growth factor-I decreases depressive-like behavior and brain cytokine expression in mice

    Directory of Open Access Journals (Sweden)

    Dantzer Robert

    2011-02-01

    Full Text Available Abstract Exogenous administration of insulin-like growth factor (IGF-I has anti-depressant properties in rodent models of depression. However, nothing is known about the anti-depressant properties of IGF-I during inflammation, nor have mechanisms by which IGF-I alters behavior following activation of the innate immune system been clarified. We hypothesized that central IGF-I would diminish depressive-like behavior on a background of an inflammatory response and that it would do so by inducing expression of the brain-derived neurotrophic factor (BDNF while decreasing pro-inflammatory cytokine expression in the brain. IGF-I (1,000 ng was administered intracerebroventricularly (i.c.v. to CD-1 mice. Mice were subsequently given lipopolysaccharide i.c.v. (LPS, 10 ng. Sickness and depressive-like behaviors were assessed followed by analysis of brain steady state mRNA expression. Central LPS elicited typical transient signs of sickness of mice, including body weight loss, reduced feed intake and decreased social exploration toward a novel juvenile. Similarly, LPS increased time of immobility in the tail suspension test (TST. Pretreatment with IGF-I or antidepressants significantly decreased duration of immobility in the TST in both the absence and presence of LPS. To elucidate the mechanisms underlying the anti-depressant action of IGF-I, we quantified steady-state mRNA expression of inflammatory mediators in whole brain using real-time RT-PCR. LPS increased, whereas IGF-I decreased, expression of inflammatory markers interleukin-1ß (IL-1ß, tumor necrosis factor-(TNFα, inducible nitric oxide synthase (iNOS and glial fibrillary acidic protein (GFAP. Moreover, IGF-I increased expression of BDNF. These results indicate that IGF-I down regulates glial activation and induces expression of an endogenous growth factor that shares anti-depressant activity. These actions of IGF-I parallel its ability to diminish depressive-like behavior.

  17. Central administration of insulin-like growth factor-I decreases depressive-like behavior and brain cytokine expression in mice

    Science.gov (United States)

    2011-01-01

    Exogenous administration of insulin-like growth factor (IGF)-I has anti-depressant properties in rodent models of depression. However, nothing is known about the anti-depressant properties of IGF-I during inflammation, nor have mechanisms by which IGF-I alters behavior following activation of the innate immune system been clarified. We hypothesized that central IGF-I would diminish depressive-like behavior on a background of an inflammatory response and that it would do so by inducing expression of the brain-derived neurotrophic factor (BDNF) while decreasing pro-inflammatory cytokine expression in the brain. IGF-I (1,000 ng) was administered intracerebroventricularly (i.c.v.) to CD-1 mice. Mice were subsequently given lipopolysaccharide i.c.v. (LPS, 10 ng). Sickness and depressive-like behaviors were assessed followed by analysis of brain steady state mRNA expression. Central LPS elicited typical transient signs of sickness of mice, including body weight loss, reduced feed intake and decreased social exploration toward a novel juvenile. Similarly, LPS increased time of immobility in the tail suspension test (TST). Pretreatment with IGF-I or antidepressants significantly decreased duration of immobility in the TST in both the absence and presence of LPS. To elucidate the mechanisms underlying the anti-depressant action of IGF-I, we quantified steady-state mRNA expression of inflammatory mediators in whole brain using real-time RT-PCR. LPS increased, whereas IGF-I decreased, expression of inflammatory markers interleukin-1ß (IL-1ß), tumor necrosis factor-(TNF)α, inducible nitric oxide synthase (iNOS) and glial fibrillary acidic protein (GFAP). Moreover, IGF-I increased expression of BDNF. These results indicate that IGF-I down regulates glial activation and induces expression of an endogenous growth factor that shares anti-depressant activity. These actions of IGF-I parallel its ability to diminish depressive-like behavior. PMID:21306618

  18. Psilocybin for treatment-resistant depression: fMRI-measured brain mechanisms.

    Science.gov (United States)

    Carhart-Harris, Robin L; Roseman, Leor; Bolstridge, Mark; Demetriou, Lysia; Pannekoek, J Nienke; Wall, Matthew B; Tanner, Mark; Kaelen, Mendel; McGonigle, John; Murphy, Kevin; Leech, Robert; Curran, H Valerie; Nutt, David J

    2017-10-13

    Psilocybin with psychological support is showing promise as a treatment model in psychiatry but its therapeutic mechanisms are poorly understood. Here, cerebral blood flow (CBF) and blood oxygen-level dependent (BOLD) resting-state functional connectivity (RSFC) were measured with functional magnetic resonance imaging (fMRI) before and after treatment with psilocybin (serotonin agonist) for treatment-resistant depression (TRD). Quality pre and post treatment fMRI data were collected from 16 of 19 patients. Decreased depressive symptoms were observed in all 19 patients at 1-week post-treatment and 47% met criteria for response at 5 weeks. Whole-brain analyses revealed post-treatment decreases in CBF in the temporal cortex, including the amygdala. Decreased amygdala CBF correlated with reduced depressive symptoms. Focusing on a priori selected circuitry for RSFC analyses, increased RSFC was observed within the default-mode network (DMN) post-treatment. Increased ventromedial prefrontal cortex-bilateral inferior lateral parietal cortex RSFC was predictive of treatment response at 5-weeks, as was decreased parahippocampal-prefrontal cortex RSFC. These data fill an important knowledge gap regarding the post-treatment brain effects of psilocybin, and are the first in depressed patients. The post-treatment brain changes are different to previously observed acute effects of psilocybin and other 'psychedelics' yet were related to clinical outcomes. A 'reset' therapeutic mechanism is proposed.

  19. Heliox Improves Carbon Dioxide Removal during Lung Protective Mechanical Ventilation

    Directory of Open Access Journals (Sweden)

    Charlotte J. Beurskens

    2014-01-01

    Full Text Available Introduction. Helium is a noble gas with low density and increased carbon dioxide (CO2 diffusion capacity. This allows lower driving pressures in mechanical ventilation and increased CO2 diffusion. We hypothesized that heliox facilitates ventilation in patients during lung-protective mechanical ventilation using low tidal volumes. Methods. This is an observational cohort substudy of a single arm intervention study. Twenty-four ICU patients were included, who were admitted after a cardiac arrest and mechanically ventilated for 3 hours with heliox (50% helium; 50% oxygen. A fixed protective ventilation protocol (6 mL/kg was used, with prospective observation for changes in lung mechanics and gas exchange. Statistics was by Bonferroni post-hoc correction with statistical significance set at P<0.017. Results. During heliox ventilation, respiratory rate decreased (25±4 versus 23±5 breaths min−1, P=0.010. Minute volume ventilation showed a trend to decrease compared to baseline (11.1±1.9 versus 9.9±2.1 L min−1, P=0.026, while reducing PaCO2 levels (5.0±0.6 versus 4.5±0.6 kPa, P=0.011 and peak pressures (21.1±3.3 versus 19.8±3.2 cm H2O, P=0.024. Conclusions. Heliox improved CO2 elimination while allowing reduced minute volume ventilation in adult patients during protective mechanical ventilation.

  20. Vitamin D and Its Analogues Decrease Amyloid-β (Aβ) Formation and Increase Aβ-Degradation.

    Science.gov (United States)

    Grimm, Marcus O W; Thiel, Andrea; Lauer, Anna A; Winkler, Jakob; Lehmann, Johannes; Regner, Liesa; Nelke, Christopher; Janitschke, Daniel; Benoist, Céline; Streidenberger, Olga; Stötzel, Hannah; Endres, Kristina; Herr, Christian; Beisswenger, Christoph; Grimm, Heike S; Bals, Robert; Lammert, Frank; Hartmann, Tobias

    2017-12-19

    Alzheimer's disease (AD) is characterized by extracellular plaques in the brain, mainly consisting of amyloid-β (Aβ), as derived from sequential cleavage of the amyloid precursor protein. Epidemiological studies suggest a tight link between hypovitaminosis of the secosteroid vitamin D and AD. Besides decreased vitamin D level in AD patients, an effect of vitamin D on Aβ-homeostasis is discussed. However, the exact underlying mechanisms remain to be elucidated and nothing is known about the potential effect of vitamin D analogues. Here we systematically investigate the effect of vitamin D and therapeutically used analogues (maxacalcitol, calcipotriol, alfacalcidol, paricalcitol, doxercalciferol) on AD-relevant mechanisms. D₂ and D₃ analogues decreased Aβ-production and increased Aβ-degradation in neuroblastoma cells or vitamin D deficient mouse brains. Effects were mediated by affecting the Aβ-producing enzymes BACE1 and γ-secretase. A reduced secretase activity was accompanied by a decreased BACE1 protein level and nicastrin expression, an essential component of the γ-secretase. Vitamin D and analogues decreased β-secretase activity, not only in mouse brains with mild vitamin D hypovitaminosis, but also in non-deficient mouse brains. Our results further strengthen the link between AD and vitamin D, suggesting that supplementation of vitamin D or vitamin D analogues might have beneficial effects in AD prevention.

  1. Mechanisms of diabetes mellitus-induced bone fragility

    DEFF Research Database (Denmark)

    Napoli, Nicola; Chandran, Manju; Pierroz, Dominique D

    2017-01-01

    The risk of fragility fractures is increased in patients with either type 1 diabetes mellitus (T1DM) or type 2 diabetes mellitus (T2DM). Although BMD is decreased in T1DM, BMD in T2DM is often normal or even slightly elevated compared with an age-matched control population. However, in both T1DM...... and T2DM, bone turnover is decreased and the bone material properties and microstructure of bone are altered; the latter particularly so when microvascular complications are present. The pathophysiological mechanisms underlying bone fragility in diabetes mellitus are complex, and include hyperglycaemia......-induced hypoglycaemia, certain antidiabetic medications with a direct effect on bone and mineral metabolism (such as thiazolidinediones), as well as an increased propensity for falls, all contribute to the increased fracture risk in patients with diabetes mellitus....

  2. The influence of included minerals on the intrinsic reactivity of chars prepared under N{sub 2} and CO{sub 2} environment

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hong; Li, Huan; Chen, Jiabao; Zhao, Bo; Hu, Guangzhou [China Univ. of Mining and Technology, Jiangsu (China). School of Chemical Engineering

    2013-07-01

    Oxy-fuel technology could be successfully used to retrofit existing coal-fired power plants or alternatively be used to design and build new coal-fired power plants with almost zero emissions. Char reactivity under oxy-fuel conditions will have a significant impact on the coal burnout. In this paper, two fractions, representing organic-rich particles and organic particles with included minerals, were separated from each of three Chinese coals of different rank. They were then devolatilized at 1,450 C in a drop tube furnace (DTF) under N{sub 2} and CO{sub 2} environment, respectively. The chars were subjected to nitrogen adsorption study, thermogravimetric analysis and XRD analysis. It was found that char reactivity of all three pairs of chars were increased under CO{sub 2} environment as compared with that under N{sub 2} environment, but with differing trend. For the organic-rich samples the reactivity difference is increased with decreasing rank. On the contrary, for the samples of organic particles with included minerals, the reactivity difference is decreased with decreasing rank. Mechanism analysis showed that they are resulted not from gasification, but from a combination of changes in surface area and in the orderness of carbon structure in the chars, both of which, in turn, are resulted from the higher heat capacity of CO{sub 2} and the interaction between metastable liquid phase and the included minerals.

  3. Quantum mechanics

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    The book is on quantum mechanics. The emphasis is on the basic concepts and the methodology. The chapters include: Breakdown of classical concepts; Quantum mechanical concepts; Basic postulates of quantum mechanics; solution of problems in quantum mechanics; Simple harmonic oscillator; and Angular Momentum

  4. Developmental changes in GABAergic mechanisms in human visual cortex across the lifespan

    Directory of Open Access Journals (Sweden)

    Joshua G A Pinto

    2010-06-01

    Full Text Available Functional maturation of visual cortex is linked with dynamic changes in synaptic expression of GABAergic mechanisms. These include setting the excitation-inhibition balance required for experience-dependent plasticity, as well as, intracortical inhibition underlying development and aging of receptive field properties. Animal studies have shown developmental regulation of GABAergic mechanisms in visual cortex. In this study, we show for the first time how these mechanisms develop in the human visual cortex across the lifespan. We used Western blot analysis of postmortem tissue from human primary visual cortex (n=30, range: 20 days to 80 years to quantify expression of 8 pre- and post-synaptic GABAergic markers. We quantified the inhibitory modulating cannabinoid receptor (CB1, GABA vesicular transporter (VGAT, GABA synthesizing enzymes (GAD65/GAD67, GABAA receptor anchoring protein (Gephyrin, and GABAA receptor subunits (GABAA∝1, GABAA∝2, GABAA∝3. We found a complex pattern of changes, many of which were prolonged and continued well into into the teen, young adult, and even older adult years. These included a monotonic increase or decrease (GABAA∝1, GABAA∝2, a biphasic increase then decrease (GAD65, Gephyrin, or multiple increases and decreases (VGAT, CB1 across the lifespan. Comparing the balances between the pre- and post-synaptic markers we found 3 main transitions (early childhood, early teen years, aging when there were rapid switches in the composition of the GABAergic signaling system, indicating that functioning of the GABAergic system must change as the visual cortex develops and ages. Furthermore, these results provide key information for translating therapies developed in animal models into effective treatments for amblyopia in humans.

  5. Dendrobium chrysotoxum Lindl. Alleviates Diabetic Retinopathy by Preventing Retinal Inflammation and Tight Junction Protein Decrease

    Science.gov (United States)

    Yu, Zengyang; Gong, Chenyuan; Lu, Bin; Yang, Li; Sheng, Yuchen; Ji, Lili; Wang, Zhengtao

    2015-01-01

    Diabetic retinopathy (DR) is a serious complication of diabetes mellitus. This study aimed to observe the alleviation of the ethanol extract of Dendrobium chrysotoxum Lindl. (DC), a traditional Chinese herbal medicine, on DR and its engaged mechanism. After DC (30 or 300 mg/kg) was orally administrated, the breakdown of blood retinal barrier (BRB) in streptozotocin- (STZ-) induced diabetic rats was attenuated by DC. Decreased retinal mRNA expression of tight junction proteins (including occludin and claudin-1) in diabetic rats was also reversed by DC. Western blot analysis and retinal immunofluorescence staining results further confirmed that DC reversed the decreased expression of occludin and claudin-1 proteins in diabetic rats. DC reduced the increased retinal mRNA expressions of intercellular adhesion molecule-1 (ICAM-1), tumor necrosis factor α (TNFα), interleukin- (IL-) 6, and IL-1β in diabetic rats. In addition, DC alleviated the increased 1 and phosphorylated p65, IκB, and IκB kinase (IKK) in diabetic rats. DC also reduced the increased serum levels of TNFα, interferon-γ (IFN-γ), IL-6, IL-1β, IL-8, IL-12, IL-2, IL-3, and IL-10 in diabetic rats. Therefore, DC can alleviate DR by inhibiting retinal inflammation and preventing the decrease of tight junction proteins, such as occludin and claudin-1. PMID:25685822

  6. Mechanical impedance of the human body in vertical direction.

    Science.gov (United States)

    Holmlund, P; Lundström, R; Lindberg, L

    2000-08-01

    The mechanical impedance of the human body in sitting posture and vertical direction was measured during different experimental conditions, such as vibration level (0.5-1.4 m/s2), frequency (2-100 Hz), body weight (57-92 kg), relaxed and erect upper body posture. The outcome shows that impedance increases with frequency up to a peak at about 5 Hz after which it decreases in a complex manner which includes two additional peaks. The frequency at which the first and second impedance peak occurs decreases with higher vibration level. Erect, compared with relaxed body posture resulted in higher impedance magnitudes and with peaks located at somewhat higher frequencies. Heavy persons show higher impedance magnitudes and peaks at lower frequencies.

  7. Mechanisms of Acupuncture-Electroacupuncture on Persistent Pain

    Science.gov (United States)

    Zhang, Ruixin; Lao, Lixing; Ren, Ke; Berman, Brian M.

    2014-01-01

    In the last decade, preclinical investigations of electroacupuncture mechanisms on persistent tissue-injury (inflammatory), nerve-injury (neuropathic), cancer, and visceral pain have increased. These studies show that electroacupuncture activates the nervous system differently in health than in pain conditions, alleviates both sensory and affective inflammatory pain, and inhibits inflammatory and neuropathic pain more effectively at 2–10 Hz than at 100 Hz. Electroacupuncture blocks pain by activating a variety of bioactive chemicals through peripheral, spinal, and supraspinal mechanisms. These include opioids, which desensitize peripheral nociceptors and reduce pro-inflammatory cytokines peripherally and in the spinal cord, and serotonin and norepinephrine, which decrease spinal n-methyl-d-aspartate receptor subunit GluN1 phosphorylation. Additional studies suggest that electroacupuncture, when combined with low dosages of conventional analgesics, provides effective pain management that can forestall the side effects of often-debilitating pharmaceuticals. PMID:24322588

  8. Radiation-curing of acrylate composites including carbon fibres: A customized surface modification for improving mechanical performances

    International Nuclear Information System (INIS)

    Martin, Arnaud; Pietras-Ozga, Dorota; Ponsaud, Philippe; Kowandy, Christelle; Barczak, Mariusz; Defoort, Brigitte; Coqueret, Xavier

    2014-01-01

    The lower transverse mechanical properties of radiation-cured acrylate-based composites reinforced with carbon-fibre with respect to the thermosettable analogues was investigated from the viewpoint of chemical interactions at the interface between the matrix and the carbon material. XPS analysis of representative commercial carbon fibres revealed the presence of a significant amount of chemical functions potentially exerting an adverse effect on the initiation and propagation of the free radical polymerization initiated under high energy radiation. The EB-induced polymerization of n-butyl acrylate as a simple model monomer was conducted in the presence of various aromatic additives exhibiting a strong inhibiting effect, whereas thiols efficiently sensitize the initiation mechanism and undergo transfer reactions. A method based on the surface modification of sized fibres by thiomalic acid is proposed for overcoming the localized inhibition phenomenon and for improving the mechanical properties of the resulting acrylate-based composites. - Highlights: • Surface functions of C-fibres are analyzed for their effect on radical reaction. • Irradiation of nBu-acrylate in presence of aromatic additives reveals inhibition. • Thiol groups sensitize the radiation-initiated polymerization of nBu-acrylate. • Modification of C-fibres with thiomalic acid enhances composite properties

  9. Neonatal morphine enhances nociception and decreases analgesia in young rats.

    Science.gov (United States)

    Zhang, Guo Hua; Sweitzer, Sarah M

    2008-03-14

    The recognition of the impact of neonatal pain experience on subsequent sensory processing has led to the increased advocacy for the use of opioids for pain relief in infants. However, following long-term opioid exposure in intensive care units more than 48% of infants exhibited behaviors indicative of opioid abstinence syndrome, a developmentally equivalent set of behaviors to opioid withdrawal as seen in adults. Little is known about the long-term influence of repeated neonatal morphine exposure on nociception and analgesia. To investigate this, we examined mechanical and thermal nociception on postnatal days 11, 13, 15, 19, 24, 29, 39 and 48 following subcutaneous administration of morphine (3 mg/kg) once daily on postnatal days 1-9. The cumulative morphine dose-response was assessed on postnatal days 20 and 49, and stress-induced analgesia was assessed on postnatal days 29 and 49. Both basal mechanical and thermal nociception in neonatal, morphine-exposed rats were significantly lower than those in saline-exposed, handled-control rats and naive rats until P29. A rightward-shift of cumulative dose-response curves for morphine analgesia upon chronic neonatal morphine was observed both on P20 and P49. The swim stress-induced analgesia was significantly decreased in neonatal morphine-exposed rats on P29, but not on P49. These data indicate that morphine exposure equivalent to the third trimester of gestation produced prolonged pain hypersensitivity, decreased morphine antinociception, and decreased stress-induced analgesia. The present study illustrates the need to examine the long-term influence of prenatal morphine exposure on pain and analgesia in the human pediatric population.

  10. Do socioeconomic mortality differences decrease with rising age?

    Directory of Open Access Journals (Sweden)

    Rasmus Hoffmann

    2005-08-01

    Full Text Available The impact of SES on mortality is an established finding in mortality research. I examine, whether this impact decreases with age. Most research finds evidence for this decrease but it is unknown whether the decline is due to mortality selection. My data come from the US-HRS Study and includes 9376 persons aged 59+, which are followed over 8 years. The variables allow a time varying measurement of SES, health and behavior. Event-history-analysis is applied to analyze mortality differentials. My results show that socioeconomic mortality differences are stable across ages whereas they decline clearly with decreasing health. The first finding that health rather than age is the equalizer combined with the second finding of unequally distributed health leads to the conclusion that in old age, the impact of SES is transferred to health and is stable across ages.

  11. Photoacoustic cavitation for theranostics: mechanism, current progress and applications

    International Nuclear Information System (INIS)

    Feng, Y; Qin, D; Wan, M

    2015-01-01

    As an emerging cavitation technology, photoacoustic cavitation (PAC) means the formation of bubbles in liquids using focused laser and pre-established ultrasound synchronously. Its significant advantages include the decreased threshold of each modality and the precise location of cavitation determined by the focused laser. In this paper, a brief review of PAC is presented, including the physical mechanism description, the classic experimental technology, the representative results in variety of media, and its applications in biomedical imaging and therapy. Moreover, some preliminary results of PAC in perfluoropentane (PFP) liquid and PFP droplets investigated by passive cavitation detection (PCD) in our group are also presented. (paper)

  12. Glutamate transporter type 3 knockout leads to decreased heart rate possibly via parasympathetic mechanism

    OpenAIRE

    Deng, Jiao; Li, Jiejie; Li, Liaoliao; Feng, Chenzhuo; Xiong, Lize; Zuo, Zhiyi

    2013-01-01

    Parasympathetic tone is a dominant neural regulator for basal heart rate. Glutamate transporters (EAAT) via their glutamate uptake functions regulate glutamate neurotransmission in the central nervous system. We showed that EAAT type 3 (EAAT3) knockout mice had a slower heart rate than wild-type mice when they were anesthetized. We design this study to determine whether non-anesthetized EAAT3 knockout mice have a slower heart rate and, if so, what may be the mechanism for this effect. Young a...

  13. Decrease in early right alpha band phase synchronization and late gamma band oscillations in processing syntax in music.

    Science.gov (United States)

    Ruiz, María Herrojo; Koelsch, Stefan; Bhattacharya, Joydeep

    2009-04-01

    The present study investigated the neural correlates associated with the processing of music-syntactical irregularities as compared with regular syntactic structures in music. Previous studies reported an early ( approximately 200 ms) right anterior negative component (ERAN) by traditional event-related-potential analysis during music-syntactical irregularities, yet little is known about the underlying oscillatory and synchronization properties of brain responses which are supposed to play a crucial role in general cognition including music perception. First we showed that the ERAN was primarily represented by low frequency (music-syntactical irregularities as compared with music-syntactical regularities, were associated with (i) an early decrease in the alpha band (9-10 Hz) phase synchronization between right fronto-central and left temporal brain regions, and (ii) a late ( approximately 500 ms) decrease in gamma band (38-50 Hz) oscillations over fronto-central brain regions. These results indicate a weaker degree of long-range integration when the musical expectancy is violated. In summary, our results reveal neural mechanisms of music-syntactic processing that operate at different levels of cortical integration, ranging from early decrease in long-range alpha phase synchronization to late local gamma oscillations. 2008 Wiley-Liss, Inc.

  14. Mechanical science

    CERN Document Server

    Bolton, W C

    2013-01-01

    This book gives comprehensive coverage of mechanical science for HNC/HND students taking mechanical engineering courses, including all topics likely to be covered in both years of such courses, as well as for first year undergraduate courses in mechanical engineering. It features 500 problems with answers and 200 worked examples. The third edition includes a new section on power transmission and an appendix on mathematics to help students with the basic notation of calculus and solution of differential equations.

  15. Effect of annealing temperature on the mechanical properties of Zircaloy-4 cladding

    International Nuclear Information System (INIS)

    Beauregard, R.J.; Clevinger, G.S.; Murty, K.L.

    1977-01-01

    The mechanical properties of Zircaloy cladding materials are sensitive to those fabrication variables which have an effect on the preferred crystallographic orientation or texture of the finished tube. The effect of one such variable, the final annealing temperature, on various mechanical properties is examined using tube reduced Zircaloy-4 fuel rod cladding annealed at temperatures from 905F to 1060F. This temperature range provides cladding with varying degrees of recrystallization including full recrystallization. The burst strength of the cladding at 650F decreased with the annealing temperature reaching a saturation value at approximately 1000F. The total circumferential elongation increased with the annealing temperature reaching a maximum at approximately 1000F and decreasing at higher temperatures. Hoop creep characteristics of Zircaloy cladding were studied as a function of the annealing temperature using closed-end internal pressurization tests at 750F and hoop stresses of 10, 15, 20 and 25 ksi. The effect of annealing temperature on the room temperature mechanical anisotropy parameters, R and P, was studied. The R-parameter was essentially independent of the annealing temperature while the P-parameter increased with annealing temperature. The mechanical anisotropy parameters were also studied as a function of the test temperature from ambient to approximately 800F using continuously monitored high precision extensometry. (Auth.)

  16. Current Solid Mechanics Research

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    2016-01-01

    About thirty years ago James Lighthill wrote an essay on “What is Mechanics?” With that he also included some examples of the applications of mechanics. While his emphasis was on fluid mechanics, his own research area, he also included examples from research activities in solid mechanics....

  17. Mechanical Deformation Behavior of Lean Duplex 329LA Steel

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Byung-Jun [Research Institute of Industrial Science and Technology, Pohang (Korea, Republic of); Choi, Jeom-Yong [POSCO Technical Research Lab., Pohang (Korea, Republic of); Park, Kyung-Tae [Hanvat National University, Daejeon (Korea, Republic of); Lee, Ho Seong [Kyungpook National University, Daegu (Korea, Republic of)

    2015-09-15

    The tensile response of Lean Duplex 329LA stainless steel was investigated over various strain rates. It was observed that the mechanical response, including in particular the total elongation of the tested alloy, was strongly affected by the strain rate. As the strain rate decreased from 10-1 s-1 to 10-4 s-1, the elongation increased. As the strain rate increased, the deformation mode in an austenite phase was dominated by dislocation glide, resulting in deterioration of the elongation. The substructure of the ferritic phase showed a dislocation cell structure, independent of the applied strain rate. The optimum mechanical properties of lean duplex stainless steel thus can be obtained by controlling the deformation mode in the austenitic phase.

  18. Mechanical Deformation Behavior of Lean Duplex 329LA Steel

    International Nuclear Information System (INIS)

    Yoon, Byung-Jun; Choi, Jeom-Yong; Park, Kyung-Tae; Lee, Ho Seong

    2015-01-01

    The tensile response of Lean Duplex 329LA stainless steel was investigated over various strain rates. It was observed that the mechanical response, including in particular the total elongation of the tested alloy, was strongly affected by the strain rate. As the strain rate decreased from 10-1 s-1 to 10-4 s-1, the elongation increased. As the strain rate increased, the deformation mode in an austenite phase was dominated by dislocation glide, resulting in deterioration of the elongation. The substructure of the ferritic phase showed a dislocation cell structure, independent of the applied strain rate. The optimum mechanical properties of lean duplex stainless steel thus can be obtained by controlling the deformation mode in the austenitic phase.

  19. Analytical mechanics

    CERN Document Server

    Lemos, Nivaldo A

    2018-01-01

    Analytical mechanics is the foundation of many areas of theoretical physics including quantum theory and statistical mechanics, and has wide-ranging applications in engineering and celestial mechanics. This introduction to the basic principles and methods of analytical mechanics covers Lagrangian and Hamiltonian dynamics, rigid bodies, small oscillations, canonical transformations and Hamilton–Jacobi theory. This fully up-to-date textbook includes detailed mathematical appendices and addresses a number of advanced topics, some of them of a geometric or topological character. These include Bertrand's theorem, proof that action is least, spontaneous symmetry breakdown, constrained Hamiltonian systems, non-integrability criteria, KAM theory, classical field theory, Lyapunov functions, geometric phases and Poisson manifolds. Providing worked examples, end-of-chapter problems, and discussion of ongoing research in the field, it is suitable for advanced undergraduate students and graduate students studying analyt...

  20. Vitamin D and Its Analogues Decrease Amyloid-β (Aβ Formation and Increase Aβ-Degradation

    Directory of Open Access Journals (Sweden)

    Marcus O. W. Grimm

    2017-12-01

    Full Text Available Alzheimer’s disease (AD is characterized by extracellular plaques in the brain, mainly consisting of amyloid-β (Aβ, as derived from sequential cleavage of the amyloid precursor protein. Epidemiological studies suggest a tight link between hypovitaminosis of the secosteroid vitamin D and AD. Besides decreased vitamin D level in AD patients, an effect of vitamin D on Aβ-homeostasis is discussed. However, the exact underlying mechanisms remain to be elucidated and nothing is known about the potential effect of vitamin D analogues. Here we systematically investigate the effect of vitamin D and therapeutically used analogues (maxacalcitol, calcipotriol, alfacalcidol, paricalcitol, doxercalciferol on AD-relevant mechanisms. D2 and D3 analogues decreased Aβ-production and increased Aβ-degradation in neuroblastoma cells or vitamin D deficient mouse brains. Effects were mediated by affecting the Aβ-producing enzymes BACE1 and γ-secretase. A reduced secretase activity was accompanied by a decreased BACE1 protein level and nicastrin expression, an essential component of the γ-secretase. Vitamin D and analogues decreased β-secretase activity, not only in mouse brains with mild vitamin D hypovitaminosis, but also in non-deficient mouse brains. Our results further strengthen the link between AD and vitamin D, suggesting that supplementation of vitamin D or vitamin D analogues might have beneficial effects in AD prevention.

  1. Prostatic relaxation induced by agmatine is decreased in spontaneously hypertensive rats.

    Science.gov (United States)

    Lee, Liang-Ming; Tsai, Tsung-Chin; Chung, Hsien-Hui; Tong, Yat-Ching; Cheng, Juei-Tang

    2012-09-01

    What's known on the subject? and What does the study add? Neurotransmitters are known to control prostate contractility. Agmatine is one of them and induces relaxation through imidazoline receptors. The paper shows that the action of agmatine is reduced in hypertensive rats, and that this change is related to the decrease of ATP-sensitive potassium channels in the prostate. The findings can increase our understanding of the possible underlying mechanism for the development of clinical benign prostatic hyperplasia. To compare agmatine-induced prostatic relaxation in hypertensive and control rats. To investigate the responsible mechanism(s) and the role of the ATP-sensitive potassium channel. Prostate strips were isolated from male spontaneously hypertensive (SH) rats and normal Wistar-Kyoto (WKY) rats for measurement of isometric tension. The strips were precontracted with 1 µmol/L phenylephrine or 50 mmol/L KCl. Dose-dependent relaxation of the prostatic strips was studied by cumulative administration of agmatine, 1 to 100 µmol/L, into the organ bath. Effects of specific antagonists on agmatine-induced relaxation were studied. Western blotting analysis was used to measure the gene expression of the ATP-sensitive potassium channel in the rat prostate. Prostatic relaxation induced by agmatine was markedly reduced in SH rats compared with WKY rats. The relaxation caused by agmatine was abolished by BU224, a selective imidazoline I(2)-receptor antagonist, but was not modified by efaroxan at a dose sufficient to block imidazoline I(1)-receptors. The relaxation induced by diazoxide at a concentration sufficient to activate ATP-sensitive potassium channels was markedly reduced in the SH rat prostate. Expressions of ATP-sensitive potassium channel sulphonylurea receptor and inwardly rectifying potassium channel (Kir) 6.2 subunits were both decreased in the prostate of SH rats. The decrease of agmatine-induced prostatic relaxation in SH rats is related to the change in

  2. Use of ventilator associated pneumonia bundle and statistical process control chart to decrease VAP rate in Syria.

    Science.gov (United States)

    Alsadat, Reem; Al-Bardan, Hussam; Mazloum, Mona N; Shamah, Asem A; Eltayeb, Mohamed F E; Marie, Ali; Dakkak, Abdulrahman; Naes, Ola; Esber, Faten; Betelmal, Ibrahim; Kherallah, Mazen

    2012-10-01

    Implementation of ventilator associated pneumonia (VAP) bundle as a performance improvement project in the critical care units for all mechanically ventilated patients aiming to decrease the VAP rates. VAP bundle was implemented in 4 teaching hospitals after educational sessions and compliance rates along with VAP rates were monitored using statistical process control charts. VAP bundle compliance rates were steadily increasing from 33 to 80% in hospital 1, from 33 to 86% in hospital 2 and from 83 to 100% in hospital 3 during the study period. The VAP bundle was not applied in hospital 4 therefore no data was available. A target level of 95% was reached only in hospital 3. This correlated with a decrease in VAP rates from 30 to 6.4 per 1000 ventilator days in hospital 1, from 12 to 4.9 per 1000 ventilator days in hospital 3, whereas VAP rate failed to decrease in hospital 2 (despite better compliance) and it remained high around 33 per 1000 ventilator days in hospital 4 where VAP bundle was not implemented. VAP bundle has performed differently in different hospitals in our study. Prevention of VAP requires a multidimensional strategy that includes strict infection control interventions, VAP bundle implementation, process and outcome surveillance and education.

  3. Photochemical reactions between mercury (Hg) and dissolved organic matter decrease Hg bioavailability and methylation.

    Science.gov (United States)

    Luo, Hong-Wei; Yin, Xiangping; Jubb, Aaron M; Chen, Hongmei; Lu, Xia; Zhang, Weihua; Lin, Hui; Yu, Han-Qing; Liang, Liyuan; Sheng, Guo-Ping; Gu, Baohua

    2017-01-01

    Atmospheric deposition of mercury (Hg) to surface water is one of the dominant sources of Hg in aquatic environments and ultimately drives methylmercury (MeHg) toxin accumulation in fish. It is known that freshly deposited Hg is more readily methylated by microorganisms than aged or preexisting Hg; however the underlying mechanism of this process is unclear. We report that Hg bioavailability is decreased by photochemical reactions between Hg and dissolved organic matter (DOM) in water. Photo-irradiation of Hg-DOM complexes results in loss of Sn(II)-reducible (i.e. reactive) Hg and up to an 80% decrease in MeHg production by the methylating bacterium Geobacter sulfurreducens PCA. Loss of reactive Hg proceeded at a faster rate with a decrease in the Hg to DOM ratio and is attributed to the possible formation of mercury sulfide (HgS). These results suggest a new pathway of abiotic photochemical formation of HgS in surface water and provide a mechanism whereby freshly deposited Hg is readily methylated but, over time, progressively becomes less available for microbial uptake and methylation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Mechanical properties and deformation behavior of Al/Al7075, two-phase material

    International Nuclear Information System (INIS)

    Sherafat, Z.; Paydar, M.H.; Ebrahimi, R.; Sohrabi, S.

    2010-01-01

    In the present study, mechanical properties and deformation behavior of Al/Al7075, two-phase material were investigated. The two-phase materials were fabricated by mixing commercially pure Al powder with Al7075 chips and consolidating the mixture through hot extrusion process at 500 o C. Mechanical properties and deformation behavior of the fabricated samples were evaluated using tensile and compression tests. A scanning electron microscope was used to study the fracture surface of the samples including different amount of Al powder, after they were fractured in tensile test. The results of the tensile and compression tests showed that with decreasing the amount of Al powder, the strength increases and ductility decreases. Calculation of work hardening exponent (n) indicated that deformation behavior does not follow a regular trend. In a way that the n value was approved to be variable and a strong function of strain and Al powder wt% of the sample. The results of the fractography studies indicate that the type of fracture happened changes from completely ductile to nearly brittle by decreasing the wt% of Al powder from 90% to 40%.

  5. Platelet rich plasma (PRP) induces chondroprotection via increasing autophagy, anti-inflammatory markers, and decreasing apoptosis in human osteoarthritic cartilage

    Energy Technology Data Exchange (ETDEWEB)

    Moussa, Mayssam, E-mail: Moussa-mayssam@hotmail.com [Regenerative medicine and inflammation Laboratory, Faculty of Medicine, Saint-Joseph University, Beirut (Lebanon); Lajeunesse, Daniel, E-mail: daniel.lajeunesse@umontreal.ca [Research Centre in Osteoarthritis, Research Centre in Monteral University (Canada); Hilal, George, E-mail: George2266@gmail.com [Cancer and metabolism Laboratory, Faculty of Medicine, Saint-Joseph University, Beirut (Lebanon); El Atat, Oula, E-mail: oulaatat@hotmail.com [Regenerative medicine and inflammation Laboratory, Faculty of Medicine, Saint-Joseph University, Beirut (Lebanon); Haykal, Gaby, E-mail: Gaby.haykal@hdf.usj.edu.lb [Hotel Dieu de France, Faculty of Medicine, Saint-Joseph University, Beirut (Lebanon); Serhal, Rim, E-mail: rim.basbous@gmail.com [Regenerative medicine and inflammation Laboratory, Faculty of Medicine, Saint-Joseph University, Beirut (Lebanon); Chalhoub, Antonio, E-mail: Mava.o@hotmail.com [Carantina Hospital, Beirut (Lebanon); Khalil, Charbel, E-mail: charbelk3@hotmail.com [Regenerative medicine and inflammation Laboratory, Faculty of Medicine, Saint-Joseph University, Beirut (Lebanon); Alaaeddine, Nada, E-mail: Nada.aladdin@gmail.com [Regenerative medicine and inflammation Laboratory, Faculty of Medicine, Saint-Joseph University, Beirut (Lebanon)

    2017-03-01

    Objectives: Autophagy constitutes a defense mechanism to overcome aging and apoptosis in osteoarthritic cartilage. Several cytokines and transcription factors are linked to autophagy and play an important role in the degradative cascade in osteoarthritis (OA). Cell therapy such as platelet rich plasma (PRP) has recently emerged as a promising therapeutic tool for many diseases including OA. However, its mechanism of action on improving cartilage repair remains to be determined. The purpose of this study is to investigate the effect of PRP on osteoarthritic chondrocytes and to elucidate the mechanism by which PRP contributes to cartilage regeneration. Methods: Osteoarthritic chondrocytes were co-cultured with an increasing concentration of PRP obtained from healthy donors. The effect of PRP on the proliferation of chondrocytes was performed using cell counting and WST8 proliferation assays. Autophagy, apoptosis and intracellular level of IL-4, IL-10, and IL-13 were determined using flow cytometry analyses. Autophagy markers BECLIN and LC3II were also determined using quantitative polymerase chain reaction (qPCR). qPCR and ELISA were used to measure the expression of ADAMDTS-5, MMP3, MMP13, TIMP-1–2–3, aggregan, Collagen type 2, TGF-β, Cox-2, Il-6, FOXO1, FOXO3, and HIF-1 in tissues and co-cultured media. Results: PRP increased significantly the proliferation of chondrocytes, decreased apoptosis and increased autophagy and its markers along with its regulators FOXO1, FOXO3 and HIF-1 in osteoarthritic chondrocytes. Furthermore, PRP caused a dose-dependent significant decrease in MMP3, MMP13, and ADAMTS-5, IL-6 and COX-2 while increasing TGF-β, aggregan, and collagen type 2, TIMPs and intracellular IL-4, IL-10, IL-13. Conclusion: These results suggest that PRP could be a potential therapeutic tool for the treatment of OA. - Highlights: • Platelet Rich Plasma is suggested as a new treatment for osteoarthritis. • The proposed therapeutic effect is

  6. Platelet rich plasma (PRP) induces chondroprotection via increasing autophagy, anti-inflammatory markers, and decreasing apoptosis in human osteoarthritic cartilage

    International Nuclear Information System (INIS)

    Moussa, Mayssam; Lajeunesse, Daniel; Hilal, George; El Atat, Oula; Haykal, Gaby; Serhal, Rim; Chalhoub, Antonio; Khalil, Charbel; Alaaeddine, Nada

    2017-01-01

    Objectives: Autophagy constitutes a defense mechanism to overcome aging and apoptosis in osteoarthritic cartilage. Several cytokines and transcription factors are linked to autophagy and play an important role in the degradative cascade in osteoarthritis (OA). Cell therapy such as platelet rich plasma (PRP) has recently emerged as a promising therapeutic tool for many diseases including OA. However, its mechanism of action on improving cartilage repair remains to be determined. The purpose of this study is to investigate the effect of PRP on osteoarthritic chondrocytes and to elucidate the mechanism by which PRP contributes to cartilage regeneration. Methods: Osteoarthritic chondrocytes were co-cultured with an increasing concentration of PRP obtained from healthy donors. The effect of PRP on the proliferation of chondrocytes was performed using cell counting and WST8 proliferation assays. Autophagy, apoptosis and intracellular level of IL-4, IL-10, and IL-13 were determined using flow cytometry analyses. Autophagy markers BECLIN and LC3II were also determined using quantitative polymerase chain reaction (qPCR). qPCR and ELISA were used to measure the expression of ADAMDTS-5, MMP3, MMP13, TIMP-1–2–3, aggregan, Collagen type 2, TGF-β, Cox-2, Il-6, FOXO1, FOXO3, and HIF-1 in tissues and co-cultured media. Results: PRP increased significantly the proliferation of chondrocytes, decreased apoptosis and increased autophagy and its markers along with its regulators FOXO1, FOXO3 and HIF-1 in osteoarthritic chondrocytes. Furthermore, PRP caused a dose-dependent significant decrease in MMP3, MMP13, and ADAMTS-5, IL-6 and COX-2 while increasing TGF-β, aggregan, and collagen type 2, TIMPs and intracellular IL-4, IL-10, IL-13. Conclusion: These results suggest that PRP could be a potential therapeutic tool for the treatment of OA. - Highlights: • Platelet Rich Plasma is suggested as a new treatment for osteoarthritis. • The proposed therapeutic effect is

  7. Pathophysiological mechanisms linking obesity and esophageal adenocarcinoma

    Science.gov (United States)

    Alexandre, Leo; Long, Elizabeth; Beales, Ian LP

    2014-01-01

    In recent decades there has been a dramatic rise in the incidence of esophageal adenocarcinoma (EAC) in the developed world. Over approximately the same period there has also been an increase in the prevalence of obesity. Obesity, especially visceral obesity, is an important independent risk factor for the development of gastro-esophageal reflux disease, Barrett’s esophagus and EAC. Although the simplest explanation is that this mediated by the mechanical effects of abdominal obesity promoting gastro-esophageal reflux, the epidemiological data suggest that the EAC-promoting effects are independent of reflux. Several, not mutually exclusive, mechanisms have been implicated, which may have different effects at various points along the reflux-Barrett’s-cancer pathway. These mechanisms include a reduction in the prevalence of Helicobacter pylori infection enhancing gastric acidity and possibly appetite by increasing gastric ghrelin secretion, induction of both low-grade systemic inflammation by factors secreted by adipose tissue and the metabolic syndrome with insulin-resistance. Obesity is associated with enhanced secretion of leptin and decreased secretion of adiponectin from adipose tissue and both increased leptin and decreased adiponectin have been shown to be independent risk factors for progression to EAC. Leptin and adiponectin have a set of mutually antagonistic actions on Barrett’s cells which appear to influence the progression of malignant behaviour. At present no drugs are of proven benefit to prevent obesity associated EAC. Roux-en-Y reconstruction is the preferred bariatric surgical option for weight loss in patients with reflux. Statins and aspirin may have chemopreventative effects and are indicated for their circulatory benefits. PMID:25400997

  8. Modulation of neuronal dynamic range using two different adaptation mechanisms

    Directory of Open Access Journals (Sweden)

    Lei Wang

    2017-01-01

    Full Text Available The capability of neurons to discriminate between intensity of external stimulus is measured by its dynamic range. A larger dynamic range indicates a greater probability of neuronal survival. In this study, the potential roles of adaptation mechanisms (ion currents in modulating neuronal dynamic range were numerically investigated. Based on the adaptive exponential integrate-and-fire model, which includes two different adaptation mechanisms, i.e. subthreshold and suprathreshold (spike-triggered adaptation, our results reveal that the two adaptation mechanisms exhibit rather different roles in regulating neuronal dynamic range. Specifically, subthreshold adaptation acts as a negative factor that observably decreases the neuronal dynamic range, while suprathreshold adaptation has little influence on the neuronal dynamic range. Moreover, when stochastic noise was introduced into the adaptation mechanisms, the dynamic range was apparently enhanced, regardless of what state the neuron was in, e.g. adaptive or non-adaptive. Our model results suggested that the neuronal dynamic range can be differentially modulated by different adaptation mechanisms. Additionally, noise was a non-ignorable factor, which could effectively modulate the neuronal dynamic range.

  9. Use of Ventilator Bundle and Staff Education to Decrease Ventilator-Associated Pneumonia in Intensive Care Patients.

    Science.gov (United States)

    Parisi, Maria; Gerovasili, Vasiliki; Dimopoulos, Stavros; Kampisiouli, Efstathia; Goga, Christina; Perivolioti, Efstathia; Argyropoulou, Athina; Routsi, Christina; Tsiodras, Sotirios; Nanas, Serafeim

    2016-10-01

    Ventilator-associated pneumonia (VAP), one of the most common hospital-acquired infections, has a high mortality rate. To evaluate the incidence of VAP in a multidisciplinary intensive care unit and to examine the effects of the implementation of ventilator bundles and staff education on its incidence. A 24-month-long before/after study was conducted, divided into baseline, intervention, and postintervention periods. VAP incidence and rate, the microbiological profile, duration of mechanical ventilation, and length of stay in the intensive care unit were recorded and compared between the periods. Of 1097 patients evaluated, 362 met the inclusion criteria. The baseline VAP rate was 21.6 per 1000 ventilator days. During the postintervention period, it decreased to 11.6 per 1000 ventilator days (P = .01). Length of stay in the intensive care unit decreased from 36 to 27 days (P = .04), and duration of mechanical ventilation decreased from 26 to 21 days (P = .06). VAP incidence was high in a general intensive care unit in a Greek hospital. However, implementation of a ventilator bundle and staff education has decreased both VAP incidence and length of stay in the unit. ©2016 American Association of Critical-Care Nurses.

  10. Effect of mechanical activation on structure and thermal decomposition of aluminum sulfate

    International Nuclear Information System (INIS)

    Ghasri-Khouzani, M.; Meratian, M.; Panjepour, M.

    2009-01-01

    The thermal decompositions of both non-activated and mechanically activated aluminum sulfates were studied by thermogravimetry (TG). The structural disorder, the specific surface area (SSA) and the morphology of mechanically activated aluminum sulfates were analyzed by X-ray diffraction (XRD), laser particle-size analyzer, and scanning electron microscopy (SEM), respectively. Thermal analyses results indicated that the initial temperature of thermal decomposition (T i ) in TG curves for mechanically activated aluminum sulfates decreased gradually with increasing the milling time. It was also found that the SSA of mechanically activated aluminum sulfates remained almost constant after a certain milling time, and lattice strains (ε) rose but the crystallite sizes (D) decreased with increasing the milling time. These results showed that the decrease of T i in TG curves of mechanically activated aluminum sulfates was mainly caused by the increase of lattice distortions and decrease of the crystallite sizes with increasing the milling time

  11. Environmental toxin acrolein alters levels of endogenous lipids, including TRP agonists: A potential mechanism for headache driven by TRPA1 activation

    Directory of Open Access Journals (Sweden)

    Emma Leishman

    2017-01-01

    Full Text Available Exposure to airborne toxins can trigger headaches, but the mechanisms are not well understood. Some environmental toxins, such as acrolein, activate transient receptor potential ankyrin 1 (TRPA1, a receptor involved in pain sensation that is highly expressed in the trigeminovascular system. It has been shown in rat models that repeated exposure to acrolein induces trigeminovascular sensitization to both TRPA1 and TRP vanilloid 1 (TRPV1 agonists, a phenomenon linked to headache. In this study, we test the hypothesis that the sensitization of trigeminovascular responses in rats after acrolein exposure via inhalation is associated with changes in levels of endogenous lipids, including TRPV1 agonists, in the trigeminal ganglia, trigeminal nucleus, and cerebellum. Lipidomics analysis of 80 lipids was performed on each tissue after acute acrolein, chronic acrolein, or room air control. Both acute and chronic acrolein exposure drove widespread alterations in lipid levels. After chronic acrolein exposure, levels of all 6 N-acyl ethanolamines in the screening library, including the endogenous cannabinoid and TRPV1 agonist, N-arachidonoyl ethanolamine, were elevated in trigeminal tissue and in the cerebellum. This increase in TRPV1 ligands by acrolein exposure may indicate further downstream signaling, in that we also show here that a combination of these TRPV1 endogenous agonists increases the potency of the individual ligands in TRPV1-HEK cells. In addition to these TRPV1 agonists, 3 TRPV3 antagonists, 4 TRPV4 agonists, and 25 orphan lipids were up and down regulated after acrolein exposure. These data support the hypothesis that lipid signaling may represent a mechanism by which repeated exposure to the TRPA1 agonist and environmental toxin, acrolein, drives trigeminovascular sensitization. Keywords: Lipidomics, Endogenous cannabinoid, TRPA1, TRPV1, Lipoamine, Acrolein, Migraine

  12. Bee Venom Decreases LPS-Induced Inflammatory Responses in Bovine Mammary Epithelial Cells.

    Science.gov (United States)

    Jeong, Chang Hee; Cheng, Wei Nee; Bae, Hyojin; Lee, Kyung Woo; Han, Sang Mi; Petriello, Michael C; Lee, Hong Gu; Seo, Han Geuk; Han, Sung Gu

    2017-10-28

    The world dairy industry has long been challenged by bovine mastitis, an inflammatory disease, which causes economic loss due to decreased milk production and quality. Attempts have been made to prevent or treat this disease with multiple approaches, primarily through increased abuse of antibiotics, but effective natural solutions remain elusive. Bee venom (BV) contains a variety of peptides ( e.g. , melittin) and shows multiple bioactivities, including prevention of inflammation. Thus, in the current study, it was hypothesized that BV can reduce inflammation in bovine mammary epithelial cells (MAC-T). To examine the hypothesis, cells were treated with LPS (1 μg/ml) to induce an inflammatory response and the anti-inflammatory effects of BV (2.5 and 5 μg/ml) were investigated. The cellular mechanisms of BV against LPS-induced inflammation were also investigated. Results showed that BV can attenuate expression of an inflammatory protein, COX2, and pro-inflammatory cytokines such as IL-6 and TNF-α. Activation of NF-κB, an inflammatory transcription factor, was significantly downregulated by BV in cells treated with LPS, through dephosphorylation of ERK1/2. Moreover, pretreatment of cells with BV attenuated LPS-induced production of intracellular reactive oxygen species ( e.g. , superoxide anion). These results support our hypothesis that BV can decrease LPS-induced inflammatory responses in bovine mammary epithelial cells through inhibition of oxidative stress, NF-κB, ERK1/2, and COX-2 signaling.

  13. Quantum mechanics

    International Nuclear Information System (INIS)

    Rae, A.I.M.

    1981-01-01

    This book, based on a thirty lecture course given to students at the beginning of their second year, covers the quantum mechanics required by physics undergraduates. Early chapters deal with wave mechanics, including a discussion of the energy states of the hydrogen atom. These are followed by a more formal development of the theory, leading to a discussion of some advanced applications and an introduction to the conceptual problems associated with quantum measurement theory. Emphasis is placed on the fundamentals of quantum mechanics. Problems are included at the end of each chapter. (U.K.)

  14. The N54-αs Mutant Has Decreased Affinity for βγ and Suggests a Mechanism for Coupling Heterotrimeric G Protein Nucleotide Exchange with Subunit Dissociation.

    Science.gov (United States)

    Cleator, John H; Wells, Christopher A; Dingus, Jane; Kurtz, David T; Hildebrandt, John D

    2018-05-01

    Ser54 of G s α binds guanine nucleotide and Mg 2+ as part of a conserved sequence motif in GTP binding proteins. Mutating the homologous residue in small and heterotrimeric G proteins generates dominant-negative proteins, but by protein-specific mechanisms. For α i/o , this results from persistent binding of α to βγ , whereas for small GTP binding proteins and α s this results from persistent binding to guanine nucleotide exchange factor or receptor. This work examined the role of βγ interactions in mediating the properties of the Ser54-like mutants of G α subunits. Unexpectedly, WT- α s or N54- α s coexpressed with α 1B -adrenergic receptor in human embryonic kidney 293 cells decreased receptor stimulation of IP3 production by a cAMP-independent mechanism, but WT- α s was more effective than the mutant. One explanation for this result would be that α s , like Ser47 α i/o , blocks receptor activation by sequestering βγ ; implying that N54- α S has reduced affinity for βγ since it was less effective at blocking IP3 production. This possibility was more directly supported by the observation that WT- α s was more effective than the mutant in inhibiting βγ activation of phospholipase C β 2. Further, in vitro synthesized N54- α s bound biotinylated- βγ with lower apparent affinity than did WT- α s The Cys54 mutation also decreased βγ binding but less effectively than N54- α s Substitution of the conserved Ser in α o with Cys or Asn increased βγ binding, with the Cys mutant being more effective. This suggests that Ser54 of α s is involved in coupling changes in nucleotide binding with altered subunit interactions, and has important implications for how receptors activate G proteins. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.

  15. Short- and long-term behavioural, physiological and stoichiometric responses to predation risk indicate chronic stress and compensatory mechanisms.

    Science.gov (United States)

    Van Dievel, Marie; Janssens, Lizanne; Stoks, Robby

    2016-06-01

    Prey organisms are expected to use different short- and long-term responses to predation risk to avoid excessive costs. Contrasting both types of responses is important to identify chronic stress responses and possible compensatory mechanisms in order to better understand the full impact of predators on prey life history and population dynamics. Using larvae of the damselfly Enallagma cyathigerum, we contrasted the effects of short- and long-term predation risk, with special focus on consequences for body stoichiometry. Under short-term predation risk, larvae reduced growth rate, which was associated with a reduced food intake, increased metabolic rate and reduced glucose content. Under long-term predation risk, larvae showed chronic predator stress as indicated by persistent increases in metabolic rate and reduced food intake. Despite this, larvae were able to compensate for the short-term growth reduction under long-term predation risk by relying on physiological compensatory mechanisms, including reduced energy storage. Only under long-term predation risk did we observe an increase in body C:N ratio, as predicted under the general stress paradigm (GSP). Although this was caused by a predator-induced decrease in N content, there was no associated increase in C content. These stoichiometric changes could not be explained by GSP responses because, under chronic predation risk, there was no decrease in N-rich proteins or increase in C-rich fat and sugars; instead glycogen decreased. Our results highlight the importance of compensatory mechanisms and the value of explicitly integrating physiological mechanisms to obtain insights into the temporal dynamics of non-consumptive effects, including effects on body stoichiometry.

  16. [Five steps to decreasing nosocomial infections in large immature premature infants: A quasi-experimental study].

    Science.gov (United States)

    García González, Ana; Leante Castellanos, José Luis; Fuentes Gutiérrez, Carmen; Lloreda García, José María; Fernández Fructuoso, José Ramón; Gómez Santos, Elisabet; García González, Verónica

    2017-07-01

    An evaluation is made of the impact of a series of five interventions on the incidence of hospital-related infections in a level iii neonatal unit. Quasi-experimental, pre-post intervention study, which included preterm infants weighing 1,500g at birth or delivered at <32 weeks gestation, admitted in the 12 months before and after the measures were implemented (January 2014). The measures consisted of: optimising hand washing, following a protocol for insertion and handling of central intravenous catheters, encouraging breastfeeding; applying a protocol for rational antibiotic use, and establishing a surveillance system for multi-resistant bacteria. The primary endpoint was to assess the incidence of hospital-acquired infections before and after implementing the interventions. Thirty-three matched patients were included in each period. There was an incidence of 8.7 and 2.7 hospital-related infections/1,000 hospital stay days in the pre- and post-intervention periods, respectively (P<.05). Additionally, patients in the treatment group showed a statistically-significant decrease in days on mechanical ventilation, use of blood products, and vasoactive drugs. The strategy, based on implementing five specific measures in a unit with a high rate of hospital-related infections, proved effective in reducing their incidence. This reduction could contribute to lowering the use of mechanical ventilation, blood products, and vasoactive drugs. Copyright © 2016 Asociación Española de Pediatría. Publicado por Elsevier España, S.L.U. All rights reserved.

  17. Market-based mechanisms for biodiversity conservation: a review of existing schemes and an outline for a global mechanism

    NARCIS (Netherlands)

    Alvarado Quesada, I.; Hein, L.G.; Weikard, H.P.

    2014-01-01

    Continuous decline of biodiversity over the past decades suggests that efforts to decrease biodiversity loss have been insufficient. One option to deal with this problem is the use of market-based mechanisms for biodiversity conservation. Several studies have analysed such mechanisms individually,

  18. Tokamak engineering mechanics

    International Nuclear Information System (INIS)

    Song, Yuntao; Wu, Weiyue; Du, Shijun

    2014-01-01

    Provides a systematic introduction to tokamaks in engineering mechanics. Includes design guides based on full mechanical analysis, which makes it possible to accurately predict load capacity and temperature increases. Presents comprehensive information on important design factors involving materials. Covers the latest advances in and up-to-date references on tokamak devices. Numerous examples reinforce the understanding of concepts and provide procedures for design. Tokamak Engineering Mechanics offers concise and thorough coverage of engineering mechanics theory and application for tokamaks, and the material is reinforced by numerous examples. Chapter topics include general principles, static mechanics, dynamic mechanics, thermal fluid mechanics and multiphysics structural mechanics of tokamak structure analysis. The theoretical principle of the design and the methods of the analysis for various components and load conditions are presented, while the latest engineering technologies are also introduced. The book will provide readers involved in the study of mechanical/fusion engineering with a general understanding of tokamak engineering mechanics.

  19. The Alpha value decrease when the annual individual effective dose decreases?

    International Nuclear Information System (INIS)

    Sordi, Gian M.; Marchiusi, Thiago; Sousa, Jefferson de J.

    2008-01-01

    A recent IAEA publication tells that a few entities took different alpha values for maxima individual doses. Beyond to disregard the international agencies, that recommend only one alpha value for each country, the alpha values decreases when the individual doses decreases and the practice happens exactly the conversely as we will show in this paper. We will prove that the alpha value increase when the maximum individual doses decreases in a four different manner. The first one we call the theoretical conception and it is linked to the emergent of the ALARA policy and to the purpose that led to the 3/10 of the annual limits, for to decrease the individual doses as a first resort and a 1/10 as a last resort. The second prove will be based in a small mine example used in the ICRP publication number 55 concerning to the optimization and the quantitative decision-aiding techniques in radiological protection where we will determine the alpha value ranges in which each radiological protection options becomes the analytical solution. The third prove will be based in the determination of the optimized thickness example of a plane shielding for a radiation source exposed in the ICRP publication number 37. We will use, also, the numerical example provided there. Eventually, as four prove we will show that the alpha value dos not only increases with the maximum individual dose decrease, but also, with the shielding geometry. (author)

  20. Quercetin Decreases Insulin Resistance in a Polycystic Ovary Syndrome Rat Model by Improving Inflammatory Microenvironment.

    Science.gov (United States)

    Wang, Zhenzhi; Zhai, Dongxia; Zhang, Danying; Bai, Lingling; Yao, Ruipin; Yu, Jin; Cheng, Wen; Yu, Chaoqin

    2017-05-01

    Insulin resistance (IR) is a clinical feature of polycystic ovary syndrome (PCOS). Quercetin, derived from Chinese medicinal herbs such as hawthorn, has been proven practical in the management of IR in diabetes. However, whether quercetin could decrease IR in PCOS is unknown. This study aims to observe the therapeutic effect of quercetin on IR in a PCOS rat model and explore the underlying mechanism. An IR PCOS rat model was established by subcutaneous injection with dehydroepiandrosterone. The body weight, estrous cycle, and ovary morphology of the quercetin-treated rats were observed. Serum inflammatory cytokines were analyzed using enzyme-linked immunosorbent assay. In ovarian tissues, the expression of key genes involved in the inflammatory signaling pathway was detected through Western blot, real-time polymerase chain reaction, or immunohistochemistry. The nuclear translocation of nuclear factor κB (NF-κB) was also observed by immunofluorescence. The estrous cycle recovery rate of the insulin-resistant PCOS model after quercetin treatment was 58.33%. Quercetin significantly reduced the levels of blood insulin, interleukin 1β, IL-6, and tumor necrosis factor α. Quercetin also significantly decreased the granulosa cell nuclear translocation of NF-κB in the insulin-resistant PCOS rat model. The treatment inhibited the expression of inflammation-related genes, including the nicotinamide adenine dinucleotide phosphate oxidase subunit p22phox, oxidized low-density lipoprotein, and Toll-like receptor 4, in ovarian tissue. Quercetin improved IR and demonstrated a favorable therapeutic effect on the PCOS rats. The underlying mechanism of quercetin potentially involves the inhibition of the Toll-like receptor/NF-κB signaling pathway and the improvement in the inflammatory microenvironment of the ovarian tissue of the PCOS rat model.

  1. Impact of Carbon Quota Allocation Mechanism on Emissions Trading: An Agent-Based Simulation

    Directory of Open Access Journals (Sweden)

    Wei Jiang

    2016-08-01

    Full Text Available This paper establishes an agent-based simulation system of the carbon emissions trading in accordance with the complex feature of the trading process. This system analyzes the impact of the carbon quota allocation mechanism on emissions trading for three different aspects including the amount of emissions reduction, the economic effect on the emitters, and the emissions reduction cost. Based on the data of the carbon emissions of different industries in China, several simulations were made. The results indicate that the emissions trading policy can effectively reduce carbon emissions in a perfectly competitive market. Moreover, by comparing separate quota allocation mechanisms, we obtain the result that the scheme with a small extent quota decrease in a comprehensive allocation mechanism can minimize the unit carbon emission cost. Implementing this scheme can also achieve minimal effects of carbon emissions limitation on the economy on the basis that the environment is not destroyed. However, excessive quota decrease cannot promote the emitters to reduce emission. Taking into account that several developing countries have the dual task of limiting carbon emissions and developing the economy, it is necessary to adopt a comprehensive allocation mechanism of the carbon quota and increase the initial proportion of free allocation.

  2. Appetite - decreased

    Science.gov (United States)

    Loss of appetite; Decreased appetite; Anorexia ... Any illness can reduce appetite. If the illness is treatable, the appetite should return when the condition is cured. Loss of appetite can cause weight ...

  3. The effects of ozone exposure and associated injury mechanisms on the central nervous system.

    Science.gov (United States)

    Martínez-Lazcano, Juan Carlos; González-Guevara, Edith; del Carmen Rubio, María; Franco-Pérez, Javier; Custodio, Verónica; Hernández-Cerón, Miguel; Livera, Carlos; Paz, Carlos

    2013-01-01

    Ozone (O3) is a component of photochemical smog, which is a major air pollutant and demonstrates properties that are harmful to health because of the toxic properties that are inherent to its powerful oxidizing capabilities. Environmental O3 exposure is associated with many symptoms related to respiratory disorders, which include loss of lung function, exacerbation of asthma, airway damage, and lung inflammation. The effects of O3 are not restricted to the respiratory system or function - adverse effects within the central nervous system (CNS) such as decreased cognitive response, decrease in motor activity, headaches, disturbances in the sleep-wake cycle, neuronal dysfunctions, cell degeneration, and neurochemical alterations have also been described; furthermore, it has also been proposed that O3 could have epigenetic effects. O3 exposure induces the reactive chemical species in the lungs, but the short half-life of these chemical species has led some authors to attribute the injurious mechanisms observed within the lungs to inflammatory processes. However, the damage to the CNS induced by O3 exposure is not well understood. In this review, the basic mechanisms of inflammation and activation of the immune system by O3 exposure are described and the potential mechanisms of damage, which include neuroinflammation and oxidative stress, and the signs and symptoms of disturbances within the CNS caused by environmental O3 exposure are discussed.

  4. Mechanisms of change in interpersonal therapy (IPT).

    Science.gov (United States)

    Lipsitz, Joshua D; Markowitz, John C

    2013-12-01

    Although interpersonal therapy (IPT) has demonstrated efficacy for mood and other disorders, little is known about how IPT works. We present interpersonal change mechanisms that we hypothesize account for symptom change in IPT. Integrating relational theory and insights based on research findings regarding stress, social support, and illness, IPT highlights contextual factors thought to precipitate and maintain psychiatric disorders. It frames therapy around a central interpersonal problem in the patient's life, a current crisis or relational predicament that is disrupting social support and increasing interpersonal stress. By mobilizing and working collaboratively with the patient to resolve this problem, IPT seeks to activate several interpersonal change mechanisms. These include: 1) enhancing social support, 2) decreasing interpersonal stress, 3) facilitating emotional processing, and 4) improving interpersonal skills. We hope that articulating these mechanisms will help therapists to formulate cases and better maintain focus within an IPT framework. Here we propose interpersonal mechanisms that might explain how IPT's interpersonal focus leads to symptom change. Future work needs to specify and test candidate mediators in clinical trials. We anticipate that pursuing this more systematic strategy will lead to important refinements and improvements in IPT and enhance its application in a range of clinical populations. © 2013.

  5. The Immunomodulatory Effects of Macrolides—A Systematic Review of the Underlying Mechanisms

    Directory of Open Access Journals (Sweden)

    Petra Zimmermann

    2018-03-01

    Full Text Available BackgroundThe mechanisms underlying the non-antimicrobial immunomodulatory properties of macrolides are not well understood.ObjectivesTo systematically review the evidence for the immunomodulatory properties of macrolides in humans and to describe the underlying mechanism and extent of their influence on the innate and adaptive immune system.MethodsA systematic literature search was done in MEDLINE using the OVID interface from 1946 to December 2016 according to the preferred reporting items for systematic reviews and meta-analysis (PRISMA. Original articles investigating the influence of four macrolides (azithromycin, clarithromycin, erythromycin, and roxithromycin on immunological markers in humans were included.ResultsWe identified 22 randomized, controlled trials, 16 prospective cohort studies, and 8 case–control studies investigating 47 different immunological markers (186 measurements in 1,834 participants. The most frequently reported outcomes were a decrease in the number of neutrophils, and the concentrations of neutrophil elastase, interleukin (IL-8, IL-6, IL-1beta, tumor necrosis factor (TNF-alpha, eosinophilic cationic protein, and matrix metalloproteinase 9. Inhibition of neutrophil function was reported more frequently than eosinophil function. A decrease in T helper (Th 2 cells cytokines (IL-4, IL-5, IL-6 was reported more frequently than a decrease in Th1 cytokines (IL-2, INF-gamma.ConclusionMacrolides influence a broad range of immunological mechanisms resulting in immunomodulatory effects. To optimize the treatment of chronic inflammatory diseases by macrolides, further studies are necessary, particularly comparing different macrolides and dose effect relationships.

  6. Breastfeeding Is Associated with Decreased Childhood Maltreatment.

    Science.gov (United States)

    Kremer, Kristen P; Kremer, Theodore R

    Child maltreatment has serious implications for youth outcomes, yet its associations with early parenting practices are not fully understood. This study investigated whether breastfeeding practices are correlated with childhood maltreatment. Data were utilized from the National Longitudinal Study of Adolescent to Adult Health, a nationally representative and longitudinal study of adolescents. The analytic sample comprised 4,159 adolescents. The outcome variables included four subtypes of childhood maltreatment (neglect, inadequate supervision, physical abuse, and sexual abuse). The primary independent variable was breastfeeding duration. Covariates of the child, mother, and household were included in analyses. Logistic regression models were employed to predict odds of maltreatment subtypes from breastfeeding duration and covariates. Compared with adolescents never breastfed, adolescents breastfed 9 months or longer had a reduced odds of having experienced neglect (odds ratio [OR] = 0.54; 95% confidence interval [CI] = 0.35-0.83) and sexual abuse (OR = 0.47; 95% CI = 0.24-0.93) after controlling for covariates. Breastfeeding duration is significantly associated with decreased childhood neglect and sexual abuse. Breastfeeding practices should be explored as a consideration among clinicians when assessing maltreatment risk. Further research should examine whether a causal relationship exists between breastfeeding and decreased maltreatment.

  7. Atomistic modeling of mechanical properties of polycrystalline graphene.

    Science.gov (United States)

    Mortazavi, Bohayra; Cuniberti, Gianaurelio

    2014-05-30

    We performed molecular dynamics (MD) simulations to investigate the mechanical properties of polycrystalline graphene. By constructing molecular models of ultra-fine-grained graphene structures, we studied the effect of different grain sizes of 1-10 nm on the mechanical response of graphene. We found that the elastic modulus and tensile strength of polycrystalline graphene decrease with decreasing grain size. The calculated mechanical proprieties for pristine and polycrystalline graphene sheets are found to be in agreement with experimental results in the literature. Our MD results suggest that the ultra-fine-grained graphene structures can show ultrahigh tensile strength and elastic modulus values that are very close to those of pristine graphene sheets.

  8. Mechanical seal assembly

    Science.gov (United States)

    Kotlyar, Oleg M.

    2001-01-01

    An improved mechanical seal assembly is provided for sealing rotating shafts with respect to their shaft housings, wherein the rotating shafts are subject to substantial axial vibrations. The mechanical seal assembly generally includes a rotating sealing ring fixed to the shaft, a non-rotating sealing ring adjacent to and in close contact with the rotating sealing ring for forming an annular seal about the shaft, and a mechanical diode element that applies a biasing force to the non-rotating sealing ring by means of hemispherical joint. The alignment of the mechanical diode with respect to the sealing rings is maintained by a series of linear bearings positioned axially along a desired length of the mechanical diode. Alternative embodiments include mechanical or hydraulic amplification components for amplifying axial displacement of the non-rotating sealing ring and transferring it to the mechanical diode.

  9. Mechanical Seal Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Kotlyar, Oleg M.

    1999-06-18

    An improved mechanical seal assembly is provided for sealing rotating shafts with respect to their shaft housings, wherein the rotating shafts are subject to substantial axial vibrations. The mechanical seal assembly generally includes a rotating sealing ring fixed to the shaft, a non-rotating sealing ring adjacent to and in close contact with the rotating sealing ring for forming an annular seal about the shaft, and a mechanical diode element that applies a biasing force to the non-rotating sealing ring by means of hemispherical joint. The alignment of the mechanical diode with respect to the sealing rings is maintained by a series of linear bearings positioned axially along a desired length of the mechanical diode. Alternative embodiments include mechanical or hydraulic amplification components for amplifying axial displacement of the non-rotating sealing ring and transferring it to the mechanical diode.

  10. Mechanism of SOA Formation Determines Magnitude of Radiative Effects

    Science.gov (United States)

    Zhu, J.; Penner, J.; Lin, G.; Zhou, C.

    2017-12-01

    Secondary organic aerosol (SOA) nearly always exists as an internal mixture and the distribution of this mixture depends on the formation mechanism of SOA. A model is developed to examine the influence of using an internal mixing states based on the mechanism of formation and to estimate the radiative forcing of SOA in the future. For the present day, 66 % of SOA is internally mixed with sulfate, while 34 % is internally mixed with primary soot. When compared with using an external mixture, the direct effect of SOA is decreased, due to the decrease of total aerosol surface area and the increase of absorption efficiency. Aerosol number concentrations are sharply reduced and this is responsible for a large decrease in the cloud albedo effect. In total, internal mixing suppresses the radiative effect of SOA by a factor of >4 compared to treating SOA as an external mixture. The future SOA burden increases by 24% due to CO2 increases and climate change, leading to a total (direct plus cloud albedo) radiative forcing of -0.05 W m-2. When the combined effects of changes in climate, anthropogenic emissions and land use are included, the SOA forcing is -0.07 W m-2, even though the SOA burden only increases by 6.8%. This is caused by the substantial increase of SOA associated with sulfate in the Aitken mode. The Aitken mode increase contributes to the enhancement of first indirect radiative forcing, which dominates the total radiative forcing.

  11. Respiratory mechanics to understand ARDS and guide mechanical ventilation.

    Science.gov (United States)

    Mauri, Tommaso; Lazzeri, Marta; Bellani, Giacomo; Zanella, Alberto; Grasselli, Giacomo

    2017-11-30

    As precision medicine is becoming a standard of care in selecting tailored rather than average treatments, physiological measurements might represent the first step in applying personalized therapy in the intensive care unit (ICU). A systematic assessment of respiratory mechanics in patients with the acute respiratory distress syndrome (ARDS) could represent a step in this direction, for two main reasons. Approach and Main results: On the one hand, respiratory mechanics are a powerful physiological method to understand the severity of this syndrome in each single patient. Decreased respiratory system compliance, for example, is associated with low end expiratory lung volume and more severe lung injury. On the other hand, respiratory mechanics might guide protective mechanical ventilation settings. Improved gravitationally dependent regional lung compliance could support the selection of positive end-expiratory pressure and maximize alveolar recruitment. Moreover, the association between driving airway pressure and mortality in ARDS patients potentially underlines the importance of sizing tidal volume on respiratory system compliance rather than on predicted body weight. The present review article aims to describe the main alterations of respiratory mechanics in ARDS as a potent bedside tool to understand severity and guide mechanical ventilation settings, thus representing a readily available clinical resource for ICU physicians.

  12. Microstructure, Mechanical Properties, and Toughening Mechanisms of a New Hot Stamping-Bake Toughening Steel

    Science.gov (United States)

    Lin, Tao; Song, Hong-Wu; Zhang, Shi-Hong; Cheng, Ming; Liu, Wei-Jie; Chen, Yun

    2015-09-01

    In this article, the hot stamping-bake toughening process has been proposed following the well-known concept of bake hardening. The influences of the bake time on the microstructure and the mechanical properties of the hot stamped-baked part were studied by means of scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and mechanical tests at room temperature. The results show that the amount of the retained austenite was nearly not changed by the bake process. Also observed were spherical Cu-rich precipitates of about 15 nm in martensite laths. According to the Orowan mechanism, their contribution of the Cu-rich precipitates to the strength is approximately 245 MPa. With the increase of the bake time, the tensile strength of the part was decreased, whereas both the ductility and the product of the tensile strength and ductility were increased then decreased. The tensile strength and ductility product and the tensile strength are as high as 21.9 GPa pct, 2086 MPa, respectively. The excellent combined properties are due to the transformation-induced plasticity effect caused by retained austenite.

  13. Mechanical properties of 238PuO2

    International Nuclear Information System (INIS)

    Petrovic, J.J.; Hecker, S.S.; Land, C.C.; Rohr, D.L.

    1977-04-01

    The mechanical properties of 238 PuO 2 have been examined in the Los Alamos Scientific Laboratory mechanical test facility built to handle α-radioactive materials. Compression tests were conducted as a function of temperature, strain rate, grain size, density, and storage time. At temperatures less than or equal to 1400 0 C, test specimens of 238 PuO 2 exhibit pseudobrittle behavior due to internal cracks. Plastic deformation is ''localized'' at the crack tips. Generalized plastic deformation is observed at 1500 0 C. Ultimate stress values decrease markedly with increasing temperature and decreasing strain rate, and decrease less with decreasing density, increasing storage time, and increasing grain size. Room temperature fracture is transgranular, whereas intergranular fracture predominates at elevated temperatures. Crack-free specimens of 239 PuO 2 exhibit extensive plastic deformation at 1000 0 C and above. The relationship of these test results to the impact properties of 238 PuO 2 fuel in radioisotope thermoelectric generators is discussed

  14. Long-term nitrogen addition decreases carbon leaching in a nitrogen-rich forest ecosystem

    Directory of Open Access Journals (Sweden)

    X. Lu

    2013-06-01

    Full Text Available Dissolved organic carbon (DOC plays a critical role in the carbon (C cycle of forest soils, and has been recently connected with global increases in nitrogen (N deposition. Most studies on effects of elevated N deposition on DOC have been carried out in N-limited temperate regions, with far fewer data available from N-rich ecosystems, especially in the context of chronically elevated N deposition. Furthermore, mechanisms for excess N-induced changes of DOC dynamics have been suggested to be different between the two kinds of ecosystems, because of the different ecosystem N status. The purpose of this study was to experimentally examine how long-term N addition affects DOC dynamics below the primary rooting zones (the upper 20 cm soils in typically N-rich lowland tropical forests. We have a primary assumption that long-term continuous N addition minimally affects DOC concentrations and effluxes in N-rich tropical forests. Experimental N addition was administered at the following levels: 0, 50, 100 and 150 kg N ha−1 yr−1, respectively. Results showed that seven years of N addition significantly decreased DOC concentrations in soil solution, and chemo-physical controls (solution acidity change and soil sorption rather than biological controls may mainly account for the decreases, in contrast to other forests. We further found that N addition greatly decreased annual DOC effluxes from the primary rooting zone and increased water-extractable DOC in soils. Our results suggest that long-term N deposition could increase soil C sequestration in the upper soils by decreasing DOC efflux from that layer in N-rich ecosystems, a novel mechanism for continued accumulation of soil C in old-growth forests.

  15. Dramatically decreased magnetoresistance in non-stoichiometric WTe2 crystals.

    Science.gov (United States)

    Lv, Yang-Yang; Zhang, Bin-Bin; Li, Xiao; Pang, Bin; Zhang, Fan; Lin, Da-Jun; Zhou, Jian; Yao, Shu-Hua; Chen, Y B; Zhang, Shan-Tao; Lu, Minghui; Liu, Zhongkai; Chen, Yulin; Chen, Yan-Feng

    2016-05-27

    Recently, the layered semimetal WTe2 has attracted renewed interest owing to the observation of a non-saturating and giant positive magnetoresistance (~10(5)%), which can be useful for magnetic memory and spintronic devices. However, the underlying mechanisms of the giant magnetoresistance are still under hot debate. Herein, we grew the stoichiometric and non-stoichiometric WTe2 crystals to test the robustness of giant magnetoresistance. The stoichiometric WTe2 crystals have magnetoresistance as large as 3100% at 2 K and 9-Tesla magnetic field. However, only 71% and 13% magnetoresistance in the most non-stoichiometry (WTe1.80) and the highest Mo isovalent substitution samples (W0.7Mo0.3Te2) are observed, respectively. Analysis of the magnetic-field dependent magnetoresistance of non-stoichiometric WTe2 crystals substantiates that both the large electron-hole concentration asymmetry and decreased carrier mobility, induced by non-stoichiometry, synergistically lead to the decreased magnetoresistance. This work sheds more light on the origin of giant magnetoresistance observed in WTe2.

  16. Research concerning the balancing of a plane mechanism

    Science.gov (United States)

    Bădoiu, D.; Petrescu, M. G.; Antonescu, N. N.; Toma, G.

    2018-01-01

    By statically balancing of the plane mechanisms and especially those functioning at high speeds is being pursued the decrease of the value of the resultant force of all inertia forces that work on the component elements, thus obtaining a significant decrease in vibrations and shocks during the functioning. On the other hand, the existence of balancing masses which ensure the balancing of the mechanism leads to increased gauge and its mass. In this paper are presented some possibilities of statically balancing a plane mechanism which is composed of three independent contours. First is analyzed the case when the mechanism is totally balanced. Then a solution is proposed for a partial balancing of the mechanism based on the balancing of the first harmonic of the inertia force developed in a piston of the mechanism. Finally, are presented some simulation results concerning the variation of the value of the resultant inertia force during a cinematic cycle when the mechanism is unbalanced and when it is partially balanced. Also, it is analyzed the variation of the motor moment when the mechanism is unbalanced and when is totally and partially balanced.

  17. Hypomethylation mediated by decreased DNMTs involves in the activation of proto-oncogene MPL in TK6 cells treated with hydroquinone.

    Science.gov (United States)

    Liu, Linhua; Ling, Xiaoxuan; Liang, Hairong; Gao, Yuting; Yang, Hui; Shao, Junli; Tang, Huanwen

    2012-03-25

    Hydroquinone (HQ), one of the most important metabolites derived from benzene, is known to be associated with acute myelogenous leukemia (AML) risk, however, its carcinogenic mechanism remains unclear. In this study, the epigenetic mechanism of HQ exposure was investigated. We characterized the epigenomic response of TK6 cells to HQ exposure, and examined the mRNA expression of DNA methyltransferases (DNMTs) including DNMT1, DNMT3a and DNMT3b, methyl-CpG-binding domain protein 2 (MBD2) and six proto-oncogenes (MPL, RAF1, MYB, MYC, ERBB2 and BRAF). Compared to the control cells, HQ exposure (2.5, 5.0, 10.0 and 20.0 μM for 48 h) resulted in the decrease of DNMTs and MBD2 expression, the global hypomethylation and increase of MPL at mRNA level. Meanwhile, most of these changes were in dose-dependent manner. Moreover, inhibition of DNMTs induced by 5-aza-2'-deoxycytidine (5-AZA), an identified DNMT inhibitor, caused more induction of MPL expression at mRNA level compared to the HQ (10.0 μM) pre-treated group. Furthermore, treatment of HQ potentially led to MPL itself hypomethylation (10.0 and 20.0 μM reduced by 47% and 44%, respectively), further revealing that the activation of proto-oncogene MPL was related to hypomethylation in its DNA sequences. In conclusion, hypomethylation, including global and specific hypomethylation, might be involved in the activation of MPL, and the hypomethylation could be induced by decreased DNMTs in TK6 cells exposed to HQ. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  18. Fundamentals of quantum mechanics

    CERN Document Server

    House, J E

    2017-01-01

    Fundamentals of Quantum Mechanics, Third Edition is a clear and detailed introduction to quantum mechanics and its applications in chemistry and physics. All required math is clearly explained, including intermediate steps in derivations, and concise review of the math is included in the text at appropriate points. Most of the elementary quantum mechanical models-including particles in boxes, rigid rotor, harmonic oscillator, barrier penetration, hydrogen atom-are clearly and completely presented. Applications of these models to selected “real world” topics are also included. This new edition includes many new topics such as band theory and heat capacity of solids, spectroscopy of molecules and complexes (including applications to ligand field theory), and small molecules of astrophysical interest.

  19. Being Included and Excluded

    DEFF Research Database (Denmark)

    Korzenevica, Marina

    2016-01-01

    Following the civil war of 1996–2006, there was a dramatic increase in the labor mobility of young men and the inclusion of young women in formal education, which led to the transformation of the political landscape of rural Nepal. Mobility and schooling represent a level of prestige that rural...... politics. It analyzes how formal education and mobility either challenge or reinforce traditional gendered norms which dictate a lowly position for young married women in the household and their absence from community politics. The article concludes that women are simultaneously excluded and included from...... community politics. On the one hand, their mobility and decision-making powers decrease with the increase in the labor mobility of men and their newly gained education is politically devalued when compared to the informal education that men gain through mobility, but on the other hand, schooling strengthens...

  20. Inhibition of prolyl 4-hydroxylase decreases muscle fibrosis following chronic rotator cuff tear.

    Science.gov (United States)

    Gumucio, J P; Flood, M D; Bedi, A; Kramer, H F; Russell, A J; Mendias, C L

    2017-01-01

    Rotator cuff tears are among the most frequent upper extremity injuries. Current treatment strategies do not address the poor quality of the muscle and tendon following chronic rotator cuff tears. Hypoxia-inducible factor-1 alpha (HIF-1α) is a transcription factor that activates many genes that are important in skeletal muscle regeneration. HIF-1α is inhibited under normal physiological conditions by the HIF prolyl 4-hydroxylases (PHDs). In this study, we used a pharmacological PHD inhibitor, GSK1120360A, to enhance the activity of HIF-1α following the repair of a chronic cuff tear, and measured muscle fibre contractility, fibrosis, gene expression, and enthesis mechanics. Chronic supraspinatus tears were induced in adult rats, and repaired 28 days later. Rats received 0 mg/kg, 3 mg/kg, or 10 mg/kg GSK1120360A daily. Collagen content, contractility, fibre type distribution and size, the expression of genes involved in fibrosis, lipid accumulation, atrophy and inflammation, and the mechanical properties of the enthesis were then assessed two weeks following surgical repair. At two weeks following repair, treatment groups showed increased muscle mass but there was a 15% decrease in force production in the 10 mg/kg group from controls, and no difference between the 0 mg/kg and the 3 mg/kg groups. There was a decrease in the expression of several gene transcripts related to matrix accumulation and fibrosis, and a 50% decrease in collagen content in both treated groups compared with controls. Additionally, the expression of inflammatory genes was reduced in the treated groups compared with controls. Finally, PHD inhibition improved the maximum stress and displacement to failure in repaired tendons. GSK1120360A resulted in improved enthesis mechanics with variable effects on muscle function. PHD inhibition may be beneficial for connective tissue injuries in which muscle atrophy has not occurred.Cite this article: J. P. Gumucio, M. D. Flood, A. Bedi, H. F. Kramer, A. J

  1. Respiratory mechanics

    CERN Document Server

    Wilson, Theodore A

    2016-01-01

    This book thoroughly covers each subfield of respiratory mechanics: pulmonary mechanics, the respiratory pump, and flow. It presents the current understanding of the field and serves as a guide to the scientific literature from the golden age of respiratory mechanics, 1960 - 2010. Specific topics covered include the contributions of surface tension and tissue forces to lung recoil, the gravitational deformation of the lung, and the interdependence forces that act on pulmonary airways and blood vessels. The geometry and kinematics of the ribs is also covered in detail, as well as the respiratory action of the external and internal intercostal muscles, the mechanics of the diaphragm, and the quantitative compartmental models of the chest wall is also described. Additionally, flow in the airways is covered thoroughly, including the wave-speed and viscous expiratory flow-limiting mechanisms; convection, diffusion and the stationary front; and the distribution of ventilation. This is an ideal book for respiratory ...

  2. Fracture Mechanics

    CERN Document Server

    Zehnder, Alan T

    2012-01-01

    Fracture mechanics is a vast and growing field. This book develops the basic elements needed for both fracture research and engineering practice. The emphasis is on continuum mechanics models for energy flows and crack-tip stress- and deformation fields in elastic and elastic-plastic materials. In addition to a brief discussion of computational fracture methods, the text includes practical sections on fracture criteria, fracture toughness testing, and methods for measuring stress intensity factors and energy release rates. Class-tested at Cornell, this book is designed for students, researchers and practitioners interested in understanding and contributing to a diverse and vital field of knowledge. Alan Zehnder joined the faculty at Cornell University in 1988. Since then he has served in a number of leadership roles including Chair of the Department of Theoretical and Applied Mechanics, and Director of the Sibley School of Mechanical and Aerospace Engineering.  He teaches applied mechanics and his research t...

  3. Decreased "ineffective erythropoiesis" preserves polycythemia in mice under long-term hypoxia.

    Science.gov (United States)

    Harada, Tomonori; Tsuboi, Isao; Hirabayashi, Yukio; Kosaku, Kazuhiro; Naito, Michiko; Hara, Hiroyuki; Inoue, Tohru; Aizawa, Shin

    2015-05-01

    Hypoxia induces innumerable changes in humans and other animals, including an increase in peripheral red blood cells (polycythemia) caused by the activation of erythropoiesis mediated by increased erythropoietin (EPO) production. However, the elevation of EPO is limited and levels return to normal ranges under normoxia within 5-7 days of exposure to hypoxia, whereas polycythemia continues for as long as hypoxia persists. We investigated erythropoiesis in bone marrow and spleens from mouse models of long-term normobaric hypoxia (10 % O2) to clarify the mechanism of prolonged polycythemia in chronic hypoxia. The numbers of erythroid colony-forming units (CFU-E) in the spleen remarkably increased along with elevated serum EPO levels indicating the activation of erythropoiesis during the first 7 days of hypoxia. After 14 days of hypoxia, the numbers of CFU-E returned to normoxic levels, whereas polycythemia persisted for >140 days. Flow cytometry revealed a prolonged increase in the numbers of TER119-positive cells (erythroid cells derived from pro-erythroblasts through mature erythrocyte stages), especially the TER119 (high) CD71 (high) population, in bone marrow. The numbers of annexin-V-positive cells among the TER119-positive cells particularly declined under chronic hypoxia, suggesting that the numbers of apoptotic cells decrease during erythroid cell maturation. Furthermore, RT-PCR analysis showed that the RNA expression of BMP-4 and stem cell factor that reduces apoptotic changes during erythroid cell proliferation and maturation was increased in bone marrow under hypoxia. These findings indicated that decreased apoptosis of erythroid cells during erythropoiesis contributes to polycythemia in mice during chronic exposure to long-term hypoxia.

  4. Atomistic modeling of mechanical properties of polycrystalline graphene

    International Nuclear Information System (INIS)

    Mortazavi, Bohayra; Cuniberti, Gianaurelio

    2014-01-01

    We performed molecular dynamics (MD) simulations to investigate the mechanical properties of polycrystalline graphene. By constructing molecular models of ultra-fine-grained graphene structures, we studied the effect of different grain sizes of 1–10 nm on the mechanical response of graphene. We found that the elastic modulus and tensile strength of polycrystalline graphene decrease with decreasing grain size. The calculated mechanical proprieties for pristine and polycrystalline graphene sheets are found to be in agreement with experimental results in the literature. Our MD results suggest that the ultra-fine-grained graphene structures can show ultrahigh tensile strength and elastic modulus values that are very close to those of pristine graphene sheets. (papers)

  5. P53 Is Involved in a Three-Dimensional Architecture-Mediated Decrease in Chemosensitivity in Colon Cancer.

    Science.gov (United States)

    He, Jianming; Liang, Xi; Luo, Fen; Chen, Xuedan; Xu, Xueqing; Wang, Fengchao; Zhang, Zhenping

    2016-01-01

    Three-dimensional (3D) culture models represent a better approximation of solid tumor tissue architecture, especially cell adhesion, in vivo than two-dimensional (2D) cultures do. Here, we explored the role of architecture in chemosensitivity to platinum in colon cancer. Under the 3D culture condition, colon cancer cells formed multicellular spheroids, consisting of layers of cells. 3D cultures displayed significantly decreased sensitivity to platinum compared with 2D cultures. Platinum increased p53 in a dose-dependent and time-dependent manner. There was no detectable difference in basal p53 levels between 3D cultures and 2D cultures but cisplatin induced less p53 in both HCT116 3D cultures and LoVo 3D cultures. It was not due to cisplatin concentration because cisplatin induced similar γ-H2AX in 3D vs 2D. Knockdown of p53 significantly decreased sensitivity to platinum in 3D cultures. Knockdown of p53 decreased cleaved caspase 3 and apoptosis induced by cisplatin. These findings indicate that 3D architecture confers decreased chemosensitivity to platinum and p53 is involved in the mechanism. Knockdown of p53 decreased cisplatin's induction of c-Jun N-terminal kinase 1/2 (JNK1/2) activation, whereas inhibition of JNK1/2 activation increased chemosensitivity. Inhibition of p38 activation decreased cisplatin's induction of p53, but no difference in p38 activation by cisplatin was observed between 2D cultures and 3D cultures. Taken together, our results suggest that p53 is involved in a 3D architecture-mediated decrease in chemosensitivity to platinum in colon cancer. Mitogen-activated protein kinases (JNK1/2 and p38) do not play a dominant role in the mechanism.

  6. Solar-flare-induced Forbush decreases - Dependence on shock wave geometry

    Science.gov (United States)

    Thomas, B. T.; Gall, R.

    1984-01-01

    It is argued that the principal mechanism for the association of Forbush decreases with the passage of a solar flare shock wave is prolonged containment of cosmic ray particles behind the flare compression region, which acts as a semipermeable obstacle to particle motion along the field lines, leading to additional adiabatic cooling of the particles. Liouville's theorem is used to calculate the instantaneous distribution function at 1 AU for each particle arriving at the earth. By averaging over a large number of individual estimates, a representative estimate of the omnidirectional phase space density and the corresponding particle intensity is obtained. The energy change of individual particles at the shocks is found to be small in comparison to the energy lost by adiabatic cooling of the cosmic rays between the shock wave and the sun. The effects of particle rigidity, diffusion coefficient, and flare longitude on the magnitude of the Forbush decrease are quantitatively investigated.

  7. Chest physiotherapy in mechanically ventilated children: a review.

    Science.gov (United States)

    Krause, M F; Hoehn, T

    2000-05-01

    Many physicians, nurses, and respiratory care practitioners consider chest physiotherapy (CP) a standard therapy in mechanically ventilated children beyond the newborn period. CP includes percussion, vibration, postural drainage, assisted coughing, and suctioning via the endotracheal tube. We searched the medical literature by using the key words "chest physiotherapy" and "chest physical therapy" (among others) by means of the MEDLINE and Current Contents databases. Because of the paucity of objective data, we examined all reports dealing with this topic, including studies on adult patients. For data extraction, not enough material existed to perform a meta-analysis. Despite its widespread use, almost no literature dealing with this treatment modality in pediatric patients exists. Studies with mechanically ventilated pediatric and adult patients have shown that CP is the most irritating routine intensive care procedure to patients. An increase in oxygen consumption often occurs when a patient receives CP accompanied by an elevation in heart rate, blood pressure, and intracranial pressure. CP leads to short-term decreases in oxygen, partial pressure in the blood, and major fluctuations in cardiac output. Changes in these vital signs and other variables may be even more pronounced in pediatric patients because the lung of a child is characterized by a higher closing capacity and the chest walls are characterized by a much higher compliance, thus predisposing the child to the development of atelectasis secondary to percussion and vibration. CP in mechanically ventilated children may not be considered a standard therapy. Controlled studies examining the impact of CP on the duration of mechanical ventilatory support, critical illness, and hospital stay are needed.

  8. Explanation of enhanced mechanical degradation rate for radiation- aged polyolefins as the aging temperature is decreased

    International Nuclear Information System (INIS)

    Gillen, K.T.; Clough, R.L.; Wise, J.; Malone, M.G.

    1994-01-01

    Degradation rates are normally increased by increasing the responsible environmental stresses. We describe results for a semi-crystalline, crosslinked polyolefin material that contradicts this assumption. In particular, under combined radiation plus thermal environments, this material mechanically degrades much faster at room temperature than it does at elevated temperatures. The probable explanation for this phenomenon relates to the importance on mechanical properties of the tie molecules connecting crystalline and amorphous regions. Partial melting and reforming/ reorganization of crystallites occurs throughout the crystalline melting region (at least room temperature up to 126 C), with the rate of such processes increasing with an increase in temperature. At low temperatures, this process is sufficiently slow such that a large percentage of the radiation-damaged tie molecules will still connect the amorphous and crystalline regions at the end of aging, leading to rapid reductions in tensile properties. At higher temperatures, the enhanced annealing rate will lead, during the aging, to the establishment of new, undamaged tie molecules connecting crystalline and amorphous regions. This healing process will reduce the degradation rate. Evidence in support of this model is presented

  9. Decreasing Compensatory Ability of Concentric Ventricular Hypertrophy in Aortic-Banded Rat Hearts

    Directory of Open Access Journals (Sweden)

    Alexandre Lewalle

    2018-02-01

    Full Text Available The cardiac system compensates for variations in physiological and pathophysiological conditions through a dynamic remodeling at the organ, tissue, and intracellular levels in order to maintain function. However, on longer time scales following the onset of ventricular pressure overload, such remodeling may begin to inhibit physiological function and ultimately lead to heart failure. This progression from compensatory to decompensatory behavior is poorly understood, in particular owing to the absence of a unified perspective of the concomitantly remodeling subsystems. To address this issue, the present study investigates the evolution of compensatory mechanisms, in response to overload, by integrating diffusion-tensor MRI, echocardiography, and intracellular and hemodynamic measurements within consistent computational simulations of aortic-banded rat hearts. This approach allows a comparison of the relative leverage of different cardiac properties (geometry, passive mechanical stiffness, fiber configuration, diastolic and peak calcium concentrations, calcium-binding affinity, and aortic impedance to affect cardiac contraction. Measurements indicate that, following aortic banding, an ejection fraction (EF of 75% was maintained, relative to control rats, despite significant remodeling of the left-ventricular wall thickness (increasing by ~90% over 4 weeks. Applying our framework, we identified the left-ventricular wall thickness (concentric hypertrophy and the intracellular calcium dynamics as playing the dominant roles in preserving EF acutely, whereas the significance of hypertrophy decreased subsequently. This trend suggests an increasing reliance on intracellular mechanisms (average increase ~50%, rather than on anatomical features (average decrease ~60%, to achieve compensation of pump function in the early phase of heart failure.

  10. Cisplatin in cancer therapy: molecular mechanisms of action

    Science.gov (United States)

    Dasari, Shaloam; Tchounwou, Paul Bernard

    2014-01-01

    Cisplatin, cisplatinum, or cis-diamminedichloroplatinum (II), is a well-known chemotherapeutic drug. It has been used for treatment of numerous human cancers including bladder, head and neck, lung, ovarian, and testicular cancers. It is effective against various types of cancers, including carcinomas, germ cell tumors, lymphomas, and sarcomas. Its mode of action has been linked to its ability to crosslink with the purine bases on the DNA; interfering with DNA repair mechanisms, causing DNA damage, and subsequently inducing apoptosis in cancer cells. However, because of drug resistance and numerous undesirable side effects such as severe kidney problems, allergic reactions, decrease immunity to infections, gastrointestinal disorders, hemorrhage, and hearing loss especially in younger patients, other platinum-containing anti-cancer drugs such as carboplatin, oxaliplatin and others, have also been used. Furthermore, combination therapies of cisplatin with other drugs have been highly considered to overcome drug-resistance and reduce toxicity. This comprehensive review highlights the physicochemical properties of cisplatin and related platinum-based drugs, and discusses its uses (either alone or in combination with other drugs) for the treatment of various human cancers. A special attention is given to its molecular mechanisms of action, and its undesirable side effects. PMID:25058905

  11. Decreased cisplatin uptake by resistant L1210 leukemia cells

    International Nuclear Information System (INIS)

    Hromas, R.A.; North, J.A.; Burns, C.P.

    1987-01-01

    Cisplatin resistance remains poorly understood compared to other forms of anti-neoplastic drug resistance. In this report radiolabelled cisplatin and rapid separation techniques were used to compare drug uptake by L1210 leukemia cells that are sensitive (K25) or resistant (SCR9) to cisplatin. Uptake of cisplatin by both cell lines was linear without saturation kinetics up to 100 μM. The resistant ZCR9 cells had 36-60% reduced drug uptake as compared to its sensitive parent line, K25. In contrast, there was no difference in the rate of efflux. We conclude that a decreased rate of uptake is one possible mechanism of cellular cisplatin resistance. (Author)

  12. ACh-induced hyperpolarization and decreased resistance in mammalian type II vestibular hair cells.

    Science.gov (United States)

    Poppi, Lauren A; Tabatabaee, Hessam; Drury, Hannah R; Jobling, Phillip; Callister, Robert J; Migliaccio, Americo A; Jordan, Paivi M; Holt, Joseph C; Rabbitt, Richard D; Lim, Rebecca; Brichta, Alan M

    2018-01-01

    In the mammalian vestibular periphery, electrical activation of the efferent vestibular system (EVS) has two effects on afferent activity: 1) it increases background afferent discharge and 2) decreases afferent sensitivity to rotational stimuli. Although the cellular mechanisms underlying these two contrasting afferent responses remain obscure, we postulated that the reduction in afferent sensitivity was attributed, in part, to the activation of α9- containing nicotinic acetylcholine (ACh) receptors (α9*nAChRs) and small-conductance potassium channels (SK) in vestibular type II hair cells, as demonstrated in the peripheral vestibular system of other vertebrates. To test this hypothesis, we examined the effects of the predominant EVS neurotransmitter ACh on vestibular type II hair cells from wild-type (wt) and α9-subunit nAChR knockout (α9 -/- ) mice. Immunostaining for choline acetyltransferase revealed there were no obvious gross morphological differences in the peripheral EVS innervation among any of these strains. ACh application onto wt type II hair cells, at resting potentials, produced a fast inward current followed by a slower outward current, resulting in membrane hyperpolarization and decreased membrane resistance. Hyperpolarization and decreased resistance were due to gating of SK channels. Consistent with activation of α9*nAChRs and SK channels, these ACh-sensitive currents were antagonized by the α9*nAChR blocker strychnine and SK blockers apamin and tamapin. Type II hair cells from α9 -/- mice, however, failed to respond to ACh at all. These results confirm the critical importance of α9nAChRs in efferent modulation of mammalian type II vestibular hair cells. Application of exogenous ACh reduces electrical impedance, thereby decreasing type II hair cell sensitivity. NEW & NOTEWORTHY Expression of α9 nicotinic subunit was crucial for fast cholinergic modulation of mammalian vestibular type II hair cells. These findings show a multifaceted

  13. Isolators Including Main Spring Linear Guide Systems

    Science.gov (United States)

    Goold, Ryan (Inventor); Buchele, Paul (Inventor); Hindle, Timothy (Inventor); Ruebsamen, Dale Thomas (Inventor)

    2017-01-01

    Embodiments of isolators, such as three parameter isolators, including a main spring linear guide system are provided. In one embodiment, the isolator includes first and second opposing end portions, a main spring mechanically coupled between the first and second end portions, and a linear guide system extending from the first end portion, across the main spring, and toward the second end portion. The linear guide system expands and contracts in conjunction with deflection of the main spring along the working axis, while restricting displacement and rotation of the main spring along first and second axes orthogonal to the working axis.

  14. Cancer cachexia, mechanism and treatment

    Science.gov (United States)

    Aoyagi, Tomoyoshi; Terracina, Krista P; Raza, Ali; Matsubara, Hisahiro; Takabe, Kazuaki

    2015-01-01

    It is estimated that half of all patients with cancer eventually develop a syndrome of cachexia, with anorexia and a progressive loss of adipose tissue and skeletal muscle mass. Cancer cachexia is characterized by systemic inflammation, negative protein and energy balance, and an involuntary loss of lean body mass. It is an insidious syndrome that not only has a dramatic impact on patient quality of life, but also is associated with poor responses to chemotherapy and decreased survival. Cachexia is still largely an underestimated and untreated condition, despite the fact that multiple mechanisms are reported to be involved in its development, with a number of cytokines postulated to play a role in the etiology of the persistent catabolic state. Existing therapies for cachexia, including orexigenic appetite stimulants, focus on palliation of symptoms and reduction of the distress of patients and families rather than prolongation of life. Recent therapies for the cachectic syndrome involve a multidisciplinary approach. Combination therapy with diet modification and/or exercise has been added to novel pharmaceutical agents, such as Megestrol acetate, medroxyprogesterone, ghrelin, omega-3-fatty acid among others. These agents are reported to have improved survival rates as well as quality of life. In this review, we will discuss the emerging understanding of the mechanisms of cancer cachexia, the current treatment options including multidisciplinary combination therapies, as well an update on new and ongoing clinical trials. PMID:25897346

  15. Professional killer cell deficiencies and decreased survival in pulmonary arterial hypertension.

    Science.gov (United States)

    Edwards, Adrienne L; Gunningham, Sarah P; Clare, Geoffrey C; Hayman, Matthew W; Smith, Mark; Frampton, Christopher M A; Robinson, Bridget A; Troughton, Richard W; Beckert, Lutz E L

    2013-11-01

    Increasing evidence implicates lymphocytes in pulmonary arterial hypertension (PAH) pathogenesis. Rats deficient in T-lymphocytes show increased propensity to develop PAH but when injected with endothelial progenitor cells are protected from PAH (a mechanism dependent on natural killer (NK) cells). A decreased quantity of circulating cytotoxic CD8+ T-lymphocytes and NK cells are now reported in PAH patients; however, the effect of lymphocyte depletion on disease outcome is unknown. This prospective study analysed the lymphocyte profile and plasma brain natriuretic peptide (BNP) levels of patients with idiopathic PAH (IPAH), connective tissue disease-associated PAH (CTD-APAH) and matched healthy controls. Lymphocyte surface markers studied include: CD4+ (helper T-cell marker), CD8+ (cytotoxic T-cell marker), CD56/CD16 (NK cell marker) and CD19+ (mature B-cell marker). Lymphocyte deficiencies and plasma BNP levels were then correlated with clinical outcome. Fourteen patients with PAH (9 IPAH, 5CTD) were recruited. Three patients were deceased at 1-year follow-up; all had elevated CD4 : CD8 ratios and deficiencies of NK cells and cytotoxic CD8+ T-lymphocytes at recruitment. Patients with normal lymphocyte profiles at recruitment were all alive a year later, and none were on the active transplant list. As univariate markers, cytotoxic CD8+ T-cell and NK cell counts were linked to short-term survival. Deficiencies in NK cells and cytotoxic CD8+ T-cells may be associated with an increased risk of death in PAH patients. Further research is required in larger numbers of patients and to elucidate the mechanism of these findings. © 2013 The Authors. Respirology © 2013 Asian Pacific Society of Respirology.

  16. Decreased bone turnover with balanced resorption and formation prevent cortical bone loss during disuse (hibernation) in grizzly bears (Ursus arctos horribilis).

    Science.gov (United States)

    McGee, Meghan E; Maki, Aaron J; Johnson, Steven E; Nelson, O Lynne; Robbins, Charles T; Donahue, Seth W

    2008-02-01

    Disuse uncouples bone formation from resorption, leading to increased porosity, decreased bone geometrical properties, and decreased bone mineral content which compromises bone mechanical properties and increases fracture risk. However, black bear bone properties are not adversely affected by aging despite annual periods of disuse (i.e., hibernation), which suggests that bears either prevent bone loss during disuse or lose bone and subsequently recover it at a faster rate than other animals. Here we show decreased cortical bone turnover during hibernation with balanced formation and resorption in grizzly bear femurs. Hibernating grizzly bear femurs were less porous and more mineralized, and did not demonstrate any changes in cortical bone geometry or whole bone mechanical properties compared to active grizzly bear femurs. The activation frequency of intracortical remodeling was 75% lower during hibernation than during periods of physical activity, but the normalized mineral apposition rate was unchanged. These data indicate that bone turnover decreases during hibernation, but osteons continue to refill at normal rates. There were no changes in regional variation of porosity, geometry, or remodeling indices in femurs from hibernating bears, indicating that hibernation did not preferentially affect one region of the cortex. Thus, grizzly bears prevent bone loss during disuse by decreasing bone turnover and maintaining balanced formation and resorption, which preserves bone structure and strength. These results support the idea that bears possess a biological mechanism to prevent disuse osteoporosis.

  17. Decreasing Relative Risk Premium

    DEFF Research Database (Denmark)

    Hansen, Frank

    relative risk premium in the small implies decreasing relative risk premium in the large, and decreasing relative risk premium everywhere implies risk aversion. We finally show that preferences with decreasing relative risk premium may be equivalently expressed in terms of certain preferences on risky......We consider the risk premium demanded by a decision maker with wealth x in order to be indifferent between obtaining a new level of wealth y1 with certainty, or to participate in a lottery which either results in unchanged present wealth or a level of wealth y2 > y1. We define the relative risk...... premium as the quotient between the risk premium and the increase in wealth y1–x which the decision maker puts on the line by choosing the lottery in place of receiving y1 with certainty. We study preferences such that the relative risk premium is a decreasing function of present wealth, and we determine...

  18. Role and mechanism of arsenic in regulating angiogenesis.

    Directory of Open Access Journals (Sweden)

    Ling-Zhi Liu

    Full Text Available Arsenic is a wide spread carcinogen associated with several kinds of cancers including skin, lung, bladder, and liver cancers. Lung is one of the major targets of arsenic exposure. Angiogenesis is the pivotal process during carcinogenesis and chronic pulmonary diseases, but the role and mechanism of arsenic in regulating angiogenesis remain to be elucidated. In this study we show that short time exposure of arsenic induces angiogenesis in both human immortalized lung epithelial cells BEAS-2B and adenocarcinoma cells A549. To study the molecular mechanism of arsenic-inducing angiogenesis, we find that arsenic induces reactive oxygen species (ROS generation, which activates AKT and ERK1/2 signaling pathways and increases the expression of hypoxia-inducible factor 1 (HIF-1 and vascular endothelial growth factor (VEGF. Inhibition of ROS production suppresses angiogenesis by decreasing AKT and ERK activation and HIF-1 expression. Inhibition of ROS, AKT and ERK1/2 signaling pathways is sufficient to attenuate arsenic-inducing angiogenesis. HIF-1 and VEGF are downstream effectors of AKT and ERK1/2 that are required for arsenic-inducing angiogenesis. These results shed light on the mechanism of arsenic in regulating angiogenesis, and are helpful to develop mechanism-based intervention to prevent arsenic-induced carcinogenesis and angiogenesis in the future.

  19. Mechanisms limiting glycogen storage in muscle during prolonged insulin stimulation

    International Nuclear Information System (INIS)

    Richter, E.A.; Hansen, S.A.; Hansen, B.F.

    1988-01-01

    The extent to which muscle glycogen concentrations can be increased during exposure to maximal insulin concentrations and abundant glucose was investigated in the isolated perfused rat hindquarter preparation. Perfusion for 7 h in the presence of 20,000 μU/ml insulin and 11-13 mM glucose increased muscle glycogen concentrations to maximal values 2, 3, and 3.5 times above normal fed levels in fast-twitch white, slow-twitch red, and fast-twitch red fibers, respectively. Glucose uptake decreased from 34.9 μmol·g -1 ·h -1 at 0 h to 7.5 after 7 h of perfusion. During the perfusion muscle glycogen synthase activity decreased and free intracellular glucose and glucose 6-phosphate increased indicating that glucose disposal was impaired. However, glucose transport as measured by the uptake of 3-O-[ 14 C]methyl-D-glucose was also markedly decreased after 5 and 7 h of perfusion compared with initial values. Total muscle water concentration decreased during glycogen loading of the muscles. Mechanisms limiting glycogen storage under maximal insulin stimulation include impaired insulin-stimulated membrane transport of glucose as well as impaired intracellular glucose disposal

  20. Quantum mechanics

    CERN Document Server

    Fitzpatrick, Richard

    2015-01-01

    Quantum mechanics was developed during the first few decades of the twentieth century via a series of inspired guesses made by various physicists, including Planck, Einstein, Bohr, Schroedinger, Heisenberg, Pauli, and Dirac. All these scientists were trying to construct a self-consistent theory of microscopic dynamics that was compatible with experimental observations. The purpose of this book is to present quantum mechanics in a clear, concise, and systematic fashion, starting from the fundamental postulates, and developing the theory in as logical manner as possible. Topics covered in the book include the fundamental postulates of quantum mechanics, angular momentum, time-dependent and time-dependent perturbation theory, scattering theory, identical particles, and relativistic electron theory.

  1. Diet-induced obesity, gut microbiota and bone, including alveolar bone loss.

    Science.gov (United States)

    Eaimworawuthikul, Sathima; Thiennimitr, Parameth; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2017-06-01

    Obesity is a major risk factor for several pathologies, including jaw bone resorption. The underlying mechanisms involved in pathological conditions resulting from obesity include chronic systemic inflammation and the development of insulin resistance. Although numerous studies have indicated the importance of the role of gut microbiota in the pathogenesis of inflammation and insulin resistance in obesity, only a few studies have established a relationship between obesity, gut microbiota and status of the jaw bone. This review aims to summarize current findings relating to these issues, focusing on the role of obesity and gut microbiota on jaw bone health, including possible mechanisms which can explain this link. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Mechanisms of Change in Interpersonal Therapy (IPT)

    Science.gov (United States)

    Lipsitz, Joshua D.; Markowitz, John C.

    2014-01-01

    Although interpersonal therapy (IPT) has demonstrated efficacy for mood and other disorders, little is known about how IPT works. We present interpersonal change mechanisms that we hypothesize account for symptom change in IPT. IPT’s interpersonal model integrates both relational theory, building on work by Sullivan, Bowlby, and others, and insights based on research findings regarding stress, social support, and illness to highlight contextual factors thought to precipitate and maintain psychiatric disorders. IPT frames therapy around a central interpersonal problem in the patient’s life, a current crisis or relational predicament that is disrupting social support and increasing interpersonal stress. By mobilizing and working collaboratively with the patient to resolve (better manage or negotiate) this problem, IPT seeks to activate several interpersonal change mechanisms. These include: 1) enhancing social support, 2) decreasing interpersonal stress, 3) facilitating emotional processing, and 4) improving interpersonal skills. We hope that articulating these mechanisms will help therapists to formulate cases and better maintain focus within an IPT framework. We propose interpersonal mechanisms that might explain how IPT’s interpersonal focus leads to symptom change. Future work needs to specify and test candidate mediators in clinical trials of IPT. We anticipate that pursuing this more systematic strategy will lead to important refinements and improvements in IPT and enhance its application in a range of clinical populations. PMID:24100081

  3. Odors generated from the Maillard reaction affect autonomic nervous activity and decrease blood pressure through the olfactory system.

    Science.gov (United States)

    Zhou, Lanxi; Ohata, Motoko; Owashi, Chisato; Nagai, Katsuya; Yokoyama, Issei; Arihara, Keizo

    2018-02-01

    Systolic blood pressure (SBP) of rats decreases significantly following exposure to the odor generated from the Maillard reaction of protein digests with xylose. This study identified active odorants that affect blood pressure and demonstrated the mechanism of action. Among the four potent odorants that contribute most to the odor of the Maillard reaction sample, 2,5-dimethyl-4-hydroxy-3(2H)-furanone (DMHF) and 5-methyl-2-pyrazinemethanol (MPM) decreased SBP significantly. The earliest decrease in blood pressure was observed 5 min after exposure to DMHF. Application of zinc sulfate to the nasal cavity eliminated the effect. Furthermore, gastric vagal (parasympathetic) nerve activity was elevated and renal sympathetic nerve activity was lowered after exposure to DMHF. It is indicated that DMHF affects blood pressure through the olfactory system, and the mechanism for the effect of DMHF on blood pressure involves the autonomic nervous system. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  4. Recurrent Forbush decreases and relationship between active regions and M-regions

    International Nuclear Information System (INIS)

    Shah, G.N.; Kaul, C.L.; Razdan, H.; Bemalkhedkar, M.M.

    1977-01-01

    Recurrent Forbush decreases and recurrent geomagnetic disturbances have been attributed to the solar M-regions, which are sources of high velocity solar plasma streams. A study of recurrent Forbush decreases for the period 1966-75 has been made to examine any possible relationship of M-regions with solar active regions. It is shown that at the onset of the recurrent Forbush decrease at earth, there is a high probability of encountering a class of active regions at central meridian of the sun which give rise to flares of importance >= 28/3N. These active regions are found to be long-lasting and to have large areas as well as high Hsub(α)-intensities. Other active regions, producing flares of only lower importance, are distributed randomly on the sun with respect to the onset of a recurrent Forbush decrease. Using the quasiradial hypervelocity approximation, the base of the leading edge of the high velocity stream, at the onset of a recurrent Forbush decrease at earth, is traced to the solar longitude about 40 deg West of the central meridian. From these results, it is deduced that M-regions are located preferentially to the West of long-lasting, magnetically complex active regions. Earlier studies of the identification of the M-regions on the sun have been re-examined and shown to conform to this positional relationship. A possible mechanism of the development of an M-region to the West of the long-lasting magnetically complex active region is also discussed. (author)

  5. [Effects of copper on biodegradation mechanism of trichloroethylene by mixed microorganisms].

    Science.gov (United States)

    Gao, Yanhui; Zhao, Tiantao; Xing, Zhilin; He, Zhi; Zhang, Lijie; Peng, Xuya

    2016-05-25

    We isolated and enriched mixed microorganisms SWA1 from landfill cover soils supplemented with trichloroethylene (TCE). The microbial mixture could degrade TCE effectively under aerobic conditions. Then, we investigated the effect of copper ion (0 to 15 μmol/L) on TCE biodegradation. Results show that the maximum TCE degradation speed was 29.60 nmol/min with 95.75% degradation when copper ion was at 0.03 μmol/L. In addition, genes encoding key enzymes during biodegradation were analyzed by Real-time quantitative reverse transcription PCR (RT-qPCR). The relative expression abundance of pmoA gene (4.22E-03) and mmoX gene (9.30E-06) was the highest when copper ion was at 0.03 μmol/L. Finally, we also used MiSeq pyrosequencing to investigate the diversity of microbial community. Methylocystaceae that can co-metabolic degrade TCE were the dominant microorganisms; other microorganisms with the function of direct oxidation of TCE were also included in SWA1 and the microbial diversity decreased significantly along with increasing of copper ion concentration. Based on the above results, variation of copper ion concentration affected the composition of SWA1 and degradation mechanism of TCE. The degradation mechanism of TCE included co-metabolism degradation of methanotrophs and oxidation metabolism directly at copper ion of 0.03 μmol/L. When copper ion at 5 μmol/L (biodegradation was 84.75%), the degradation mechanism of TCE included direct-degradation and co-metabolism degradation of methanotrophs and microorganisms containing phenol hydroxylase. Therefore, biodegradation of TCE by microorganisms was a complicated process, the degradation mechanism included co-metabolism degradation of methanotrophs and bio-oxidation of non-methanotrophs.

  6. Protease-resistant prions selectively decrease Shadoo protein.

    Directory of Open Access Journals (Sweden)

    Joel C Watts

    2011-11-01

    Full Text Available The central event in prion diseases is the conformational conversion of the cellular prion protein (PrP(C into PrP(Sc, a partially protease-resistant and infectious conformer. However, the mechanism by which PrP(Sc causes neuronal dysfunction remains poorly understood. Levels of Shadoo (Sho, a protein that resembles the flexibly disordered N-terminal domain of PrP(C, were found to be reduced in the brains of mice infected with the RML strain of prions [1], implying that Sho levels may reflect the presence of PrP(Sc in the brain. To test this hypothesis, we examined levels of Sho during prion infection using a variety of experimental systems. Sho protein levels were decreased in the brains of mice, hamsters, voles, and sheep infected with different natural and experimental prion strains. Furthermore, Sho levels were decreased in the brains of prion-infected, transgenic mice overexpressing Sho and in infected neuroblastoma cells. Time-course experiments revealed that Sho levels were inversely proportional to levels of protease-resistant PrP(Sc. Membrane anchoring and the N-terminal domain of PrP both influenced the inverse relationship between Sho and PrP(Sc. Although increased Sho levels had no discernible effect on prion replication in mice, we conclude that Sho is the first non-PrP marker specific for prion disease. Additional studies using this paradigm may provide insight into the cellular pathways and systems subverted by PrP(Sc during prion disease.

  7. Airplane radiation dose decrease during a strong Forbush decrease

    Czech Academy of Sciences Publication Activity Database

    Spurný, František; Kudela, K.; Dachev, T.

    2004-01-01

    Roč. 2, S05001 (2004), s. 1-4 ISSN 1542-7390 Grant - others:EC project(XE) FIGM-CT2000-00068 Institutional research plan: CEZ:AV0Z1048901 Keywords : airplane dose * Forbush decrease * cosmic rays Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders

  8. Platelet rich plasma (PRP) induces chondroprotection via increasing autophagy, anti-inflammatory markers, and decreasing apoptosis in human osteoarthritic cartilage.

    Science.gov (United States)

    Moussa, Mayssam; Lajeunesse, Daniel; Hilal, George; El Atat, Oula; Haykal, Gaby; Serhal, Rim; Chalhoub, Antonio; Khalil, Charbel; Alaaeddine, Nada

    2017-03-01

    Autophagy constitutes a defense mechanism to overcome aging and apoptosis in osteoarthritic cartilage. Several cytokines and transcription factors are linked to autophagy and play an important role in the degradative cascade in osteoarthritis (OA). Cell therapy such as platelet rich plasma (PRP) has recently emerged as a promising therapeutic tool for many diseases including OA. However, its mechanism of action on improving cartilage repair remains to be determined. The purpose of this study is to investigate the effect of PRP on osteoarthritic chondrocytes and to elucidate the mechanism by which PRP contributes to cartilage regeneration. Osteoarthritic chondrocytes were co-cultured with an increasing concentration of PRP obtained from healthy donors. The effect of PRP on the proliferation of chondrocytes was performed using cell counting and WST8 proliferation assays. Autophagy, apoptosis and intracellular level of IL-4, IL-10, and IL-13 were determined using flow cytometry analyses. Autophagy markers BECLIN and LC3II were also determined using quantitative polymerase chain reaction (qPCR). qPCR and ELISA were used to measure the expression of ADAMDTS-5, MMP3, MMP13, TIMP-1-2-3, aggregan, Collagen type 2, TGF-β, Cox-2, Il-6, FOXO1, FOXO3, and HIF-1 in tissues and co-cultured media. PRP increased significantly the proliferation of chondrocytes, decreased apoptosis and increased autophagy and its markers along with its regulators FOXO1, FOXO3 and HIF-1 in osteoarthritic chondrocytes. Furthermore, PRP caused a dose-dependent significant decrease in MMP3, MMP13, and ADAMTS-5, IL-6 and COX-2 while increasing TGF-β, aggregan, and collagen type 2, TIMPs and intracellular IL-4, IL-10, IL-13. These results suggest that PRP could be a potential therapeutic tool for the treatment of OA. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Dexmedetomidine decreases inhibitory but not excitatory neurotransmission to cardiac vagal neurons in the nucleus ambiguus.

    Science.gov (United States)

    Sharp, Douglas B; Wang, Xin; Mendelowitz, David

    2014-07-29

    Dexmedetomidine, an α2 adrenergic agonist, is a useful sedative but can also cause significant bradycardia. This decrease in heart rate may be due to decreased central sympathetic output as well as increased parasympathetic output from brainstem cardiac vagal neurons. In this study, using whole cell voltage clamp methodology, the actions of dexmedetomidine on excitatory glutamatergic and inhibitory GABAergic and glycinergic neurotransmission to parasympathetic cardiac vagal neurons in the rat nucleus ambiguus was determined. The results indicate that dexmedetomidine decreases both GABAergic and glycinergic inhibitory input to cardiac vagal neurons, with no significant effect on excitatory input. These results provide a mechanism for dexmedetomidine induced bradycardia and has implications for the management of this potentially harmful side effect. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Predictable 'meta-mechanisms' emerge from feedbacks between transpiration and plant growth and cannot be simply deduced from short-term mechanisms.

    Science.gov (United States)

    Tardieu, François; Parent, Boris

    2017-06-01

    Growth under water deficit is controlled by short-term mechanisms but, because of numerous feedbacks, the combination of these mechanisms over time often results in outputs that cannot be deduced from the simple inspection of individual mechanisms. It can be analysed with dynamic models in which causal relationships between variables are considered at each time-step, allowing calculation of outputs that are routed back to inputs for the next time-step and that can change the system itself. We first review physiological mechanisms involved in seven feedbacks of transpiration on plant growth, involving changes in tissue hydraulic conductance, stomatal conductance, plant architecture and underlying factors such as hormones or aquaporins. The combination of these mechanisms over time can result in non-straightforward conclusions as shown by examples of simulation outputs: 'over production of abscisic acid (ABA) can cause a lower concentration of ABA in the xylem sap ', 'decreasing root hydraulic conductance when evaporative demand is maximum can improve plant performance' and 'rapid root growth can decrease yield'. Systems of equations simulating feedbacks over numerous time-steps result in logical and reproducible emergent properties that can be viewed as 'meta-mechanisms' at plant level, which have similar roles as mechanisms at cell level. © 2016 John Wiley & Sons Ltd.

  11. Effects of delaying transplanting on agronomic traits and grain yield of rice under mechanical transplantation pattern.

    Directory of Open Access Journals (Sweden)

    Qihua Liu

    Full Text Available A delay in the mechanical transplantation (MT of rice seedlings frequently occurs in Huanghuai wheat-rice rotation cropping districts of China, due to the late harvest of wheat, the poor weather conditions and the insufficiency of transplanters, missing the optimum transplanting time and causing seedlings to age. To identify how delaying transplanting rice affects the agronomic characteristics including the growth duration, photosynthetic productivity and dry matter remobilization efficiency and the grain yield under mechanical transplanting pattern, an experiment with a split-plot design was conducted over two consecutive years. The main plot includes two types of cultivation: mechanical transplanting and artificial transplanting (AT. The subplot comprises four japonica rice cultivars. The results indicate that the rice jointing, booting, heading and maturity stages were postponed under MT when using AT as a control. The tiller occurrence number, dry matter weight per tiller, accumulative dry matter for the population, leaf area index, crop growth rate, photosynthetic potential, and dry matter remobilization efficiency of the leaf under MT significantly decreased compared to those under AT. In contrast, the reduction rate of the leaf area during the heading-maturity stage was markedly enhanced under MT. The numbers of effective panicles and filled grains per panicle and the grain yield significantly decreased under MT. A significant correlation was observed between the dry matter production, remobilization and distribution characteristics and the grain yield. We infer that, as with rice from old seedlings, the decrease in the tiller occurrence, the photosynthetic productivity and the assimilate remobilization efficiency may be important agronomic traits that are responsible for the reduced grain yield under MT.

  12. Tokamak engineering mechanics

    CERN Document Server

    Song, Yuntao; Du, Shijun

    2013-01-01

    Tokamak Engineering Mechanics offers concise and thorough coverage of engineering mechanics theory and application for tokamaks, and the material is reinforced by numerous examples. Chapter topics include general principles, static mechanics, dynamic mechanics, thermal fluid mechanics and multiphysics structural mechanics of tokamak structure analysis. The theoretical principle of the design and the methods of the analysis for various components and load conditions are presented, while the latest engineering technologies are also introduced. The book will provide readers involved in the study

  13. Azolla filiculoides Nitrogenase Activity Decrease Induced by Inoculation with Chlamydomonas sp. †

    Science.gov (United States)

    Habte, Mitiku

    1986-01-01

    Experiments were conducted to determine the influence of Chlamydomonas sp. on nitrogen fixation (C2H2 → C2H4) in Azolla filiculoides and on the nitrogen fixation and growth of free-living Anabaena azollae 2B organisms. Inoculation of azolla medium with Chlamydomonas sp. was associated with decreased nitrogenase activity in A. filiculoides and with increases in the density of a fungal population identified as Acremonium sp. Subsequent inoculation of azolla medium with this fungus was also accompanied by a significant decrease in nitrogenase activity of A. filiculoides. However, the extent of depression of nitrogenase activity was significantly higher when azolla medium was inoculated with Chlamydomonas sp. than when it was inoculated with Acremonium sp. Inoculation of nitrogen-free Stanier medium with either Acremonium sp. or Chlamydomonas sp. did not adversely affect the growth or nitrogenase activity of free-living A. azollae. Decreased nitrogenase activity in A. filiculoides is apparently related to the adverse influence of the green alga and the fungus on the macrosymbiont. The mechanisms that might be involved are discussed. PMID:16347211

  14. Standard recommended practice for examination of fuel element cladding including the determination of the mechanical properties

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    Guidelines are provided for the post-irradiation examination of fuel cladding and to achieve better correlation and interpretation of the data in the field of radiation effects. The recommended practice is applicable to metal cladding of all types of fuel elements. The tests cited are suitable for determining mechanical properties of the fuel elements cladding. Various ASTM standards and test methods are cited

  15. Exhaled Nitric Oxide is Decreased by Exposure to the Hyperbaric Oxygen Therapy Environment

    Directory of Open Access Journals (Sweden)

    Zudin A. Puthucheary

    2006-01-01

    or 40% oxygen, 1 ATA. In an in vitro study, nitrate/nitrite release decreased after 90 minutes HBOT in airway epithelial (A549 cells. Conclusion. HBO exposure causes a fall in eNO. Inducible nitric oxide synthase (iNOS may cause elevated eNO in patients secondary to inflammation, and inhibition of iNOS may be the mechanism of the reduction of eNO seen with HBOT.

  16. The effect of grinding on the mechanical behavior of Y-TZP ceramics: A systematic review and meta-analyses.

    Science.gov (United States)

    Pereira, G K R; Fraga, S; Montagner, A F; Soares, F Z M; Kleverlaan, C J; Valandro, L F

    2016-10-01

    The aim of this study was to systematically review the literature to assess the effect of grinding on the mechanical properties, structural stability and superficial characteristics of Y-TZP ceramics. The MEDLINE via PubMed and Web of Science (ISI - Web of Knowledge) electronic databases were searched with included peer-reviewed publications in English language and with no publication year limit. From 342 potentially eligible studies, 73 were selected for full-text analysis, 30 were included in the systematic review with 20 considered in the meta-analysis. Two reviewers independently selected the studies, extracted the data, and assessed the risk of bias. Statistical analyses were performed using RevMan 5.1, with random effects model, at a significance level of 0.05. A descriptive analysis considering phase transformation, Y-TZP grain size, Vickers hardness, residual stress and aging of all included studies were executed. Four outcomes were considered in the meta-analyses (factor: grinding x as-sintered) in global and subgroups analyses (grinding tool, grit-size and cooling) for flexural strength and roughness (Ra) data. A significant difference (pgrinding; subgroup analyses revealed that different parameters also lead to different effects on roughness. High heterogeneity was found in some comparisons. Generally grinding promotes decrease in strength and increase in roughness of Y-TZP ceramics. However, the use of a grinding tool that allows greater accuracy of the movement (i.e. contra angle hand-pieces coupled to slowspeed turbines), small grit size (<50μm) and the use of plenty coolant seem to be the main factors to decrease the defect introduction and allow the occurrence of the toughening transformation mechanism, decreasing the risk of deleterious impact on Y-TZP mechanical properties. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Mechanical drawing

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Ho Seon; Lee, Geun Hui

    2004-04-15

    This book deals with how to read and draw the mechanical drawing, which includes the basic of drawing like purpose, kinds, and criterion, projection, special projection drawing, omission of the figure, section, and types of section, dimensioning method, writing way of allowable limit size, tolerance of regular size, parts list and assembling drawing, fitting, mechanical elements like screw, key, pin, rivet, spring, bearing, pipe, valve, welding, geometric tolerance and mechanical materials.

  18. Cardiac output estimation using pulmonary mechanics in mechanically ventilated patients

    Directory of Open Access Journals (Sweden)

    Hann Christopher E

    2010-11-01

    Full Text Available Abstract The application of positive end expiratory pressure (PEEP in mechanically ventilated (MV patients with acute respiratory distress syndrome (ARDS decreases cardiac output (CO. Accurate measurement of CO is highly invasive and is not ideal for all MV critically ill patients. However, the link between the PEEP used in MV, and CO provides an opportunity to assess CO via MV therapy and other existing measurements, creating a CO measure without further invasiveness. This paper examines combining models of diffusion resistance and lung mechanics, to help predict CO changes due to PEEP. The CO estimator uses an initial measurement of pulmonary shunt, and estimations of shunt changes due to PEEP to predict CO at different levels of PEEP. Inputs to the cardiac model are the PV loops from the ventilator, as well as the oxygen saturation values using known respiratory inspired oxygen content. The outputs are estimates of pulmonary shunt and CO changes due to changes in applied PEEP. Data from two published studies are used to assess and initially validate this model. The model shows the effect on oxygenation due to decreased CO and decreased shunt, resulting from increased PEEP. It concludes that there is a trade off on oxygenation parameters. More clinically importantly, the model also examines how the rate of CO drop with increased PEEP can be used as a method to determine optimal PEEP, which may be used to optimise MV therapy with respect to the gas exchange achieved, as well as accounting for the impact on the cardiovascular system and its management.

  19. Atomic and vibrational origins of mechanical toughness in bioactive cement during setting

    DEFF Research Database (Denmark)

    Tian, Kun V.; Yang, Bin; Yue, Yuanzheng

    2015-01-01

    Bioactive glass ionomer cements (GICs) have been in widespread use for B40 years in dentistry and medicine. However, these composites fall short of the toughness needed for permanent implants. Significant impediment to improvement has been the requisite use of conventional destructive mechanical...... interfacial configurations. Contrary to convention, we find setting is non-monotonic, characterized by abrupt features not previously detected, including a glass–polymer coupling point, an early setting point, where decreasing toughness unexpectedly recovers, followed by stress-induced weakening of interfaces...

  20. Spot testing on mechanical characteristics of surrounding rock in gates of fully mechanized top-coal caving face

    Energy Technology Data Exchange (ETDEWEB)

    Xie Guang-xiang; Yang Ke; Chang Ju-cai [Anhui University of Science and Technology, Anhui (China). Department of Resource Exploration and Management Engineering

    2006-07-01

    The distribution patterns of mechanical characteristics for surrounding rock in the gateways of fully mechanized top-coal caving (FMTC) face were put forward by analyzing deep displacement, surface displacement, stress distribution and supports loading. The results show that the surrounding rock of the gateways lies in abutment pressure decrease zone near the working face, so that the support load decreases. But the deformations of supports and surrounding rock are very acute. The deformation of surrounding rock appears mainly in abutment pressure influence zone. Reasonable roadway supporting should control the deformation of surrounding rock in intense stage of mining influence. Supporting design ideas of tailentry and head entry should be changed from loading control to deformation control. 8 refs., 10 figs., 1 tab.

  1. Scutellaria barbata attenuates diabetic retinopathy by preventing retinal inflammation and the decreased expression of tight junction protein

    Directory of Open Access Journals (Sweden)

    Xi-Yu Mei

    2017-06-01

    Full Text Available AIM: To observe the attenuation of ethanol extract of Herba Scutellaria barbata (SE against diabetic retinopathy (DR and its engaged mechanism. METHODS: C57BL/6J mice were intraperitoneally injected with streptozotocin (STZ, 55 mg/kg for 5 consecutive days to induce diabetes. The diabetic mice were orally given with SE (100, 200 mg/kg for 1mo at 1mo after STZ injection. Blood-retinal barrier (BRB breakdown was detected by using Evans blue permeation assay. Real-time polymerase chain reaction (RT-PCR, Western blot and immunofluorescence staining were used to detect mRNA and protein expression. Enzyme-linked immunosorbent assay (ELISA was used to detect serum contents of tumor necrosis factor-α (TNF-α and interleukin (IL-1β. RESULTS: SE (100, 200 mg/kg reversed the breakdown of BRB in STZ-induced diabetic mice. The decreased expression of retinal claudin-1 and claudin-19, which are both tight junction (TJ proteins, was reversed by SE. SE decreased the increased serum contents and retinal mRNA expression of TNF-α and IL-1β. SE also decreased the increased retinal expression of intercellular cell adhesion molecule-1 (ICAM-1. SE reduced the increased phosphorylation of nuclear factor kappa B (NFκB p65 and its subsequent nuclear translocation in retinas from STZ-induced diabetic mice. Results of Western blot and retinal immunofluorescence staining of ionized calcium-binding adapter molecule 1 (Iba1 demonstrated that SE abrogated the activation of microglia cells in STZ-induced diabetic mice. CONCLUSION: SE attenuates the development of DR by inhibiting retinal inflammation and restoring the decreased expression of TJ proteins including claudin-1 and claudin-19.

  2. Decreasing patient identification band errors by standardizing processes.

    Science.gov (United States)

    Walley, Susan Chu; Berger, Stephanie; Harris, Yolanda; Gallizzi, Gina; Hayes, Leslie

    2013-04-01

    Patient identification (ID) bands are an essential component in patient ID. Quality improvement methodology has been applied as a model to reduce ID band errors although previous studies have not addressed standardization of ID bands. Our specific aim was to decrease ID band errors by 50% in a 12-month period. The Six Sigma DMAIC (define, measure, analyze, improve, and control) quality improvement model was the framework for this study. ID bands at a tertiary care pediatric hospital were audited from January 2011 to January 2012 with continued audits to June 2012 to confirm the new process was in control. After analysis, the major improvement strategy implemented was standardization of styles of ID bands and labels. Additional interventions included educational initiatives regarding the new ID band processes and disseminating institutional and nursing unit data. A total of 4556 ID bands were audited with a preimprovement ID band error average rate of 9.2%. Significant variation in the ID band process was observed, including styles of ID bands. Interventions were focused on standardization of the ID band and labels. The ID band error rate improved to 5.2% in 9 months (95% confidence interval: 2.5-5.5; P error rates. This decrease in ID band error rates was maintained over the subsequent 8 months.

  3. Comparison of INSURE method with conventional mechanical ventilation after surfactant administration in preterm infants with respiratory distress syndrome: therapeutic challenge.

    Directory of Open Access Journals (Sweden)

    Fatemeh Sadat Nayeri

    2014-08-01

    Full Text Available Administration of endotracheal surfactant is potentially the main treatment for neonates suffering from RDS (Respiratory Distress Syndrome, which is followed by mechanical ventilation. Late and severe complications may develop as a consequence of using mechanical ventilation. In this study, conventional methods for treatment of RDS are compared with surfactant administration, use of mechanical ventilation for a brief period and NCPAP (Nasal Continuous Positive Airway Pressure, (INSURE method ((Intubation, Surfactant administration and extubation. A randomized clinical trial study was performed, including all newborn infants with diagnosed RDS and a gestational age of 35 weeks or less, who were admitted in NICU of Valiasr hospital. The patients were then divided randomly into two CMV (Conventional Mechanical Ventilation and INSURE groups. Surfactant administration and consequent long-term mechanical ventilation were done in the first group (CMV group. In the second group (INSURE group, surfactant was administered followed by a short-term period of mechanical ventilation. The infants were then extubated, and NCPAP was embedded. The comparison included crucial duration of mechanical ventilation and oxygen therapy, IVH (Intraventricular Hemorrhage, PDA (Patent Ductus Arteriosus, air-leak syndromes, BPD (Broncho-Pulmonary Dysplasia and mortality rate. The need for mechanical ventilation in 5th day of admission was 43% decreased (P=0.005 in INSURE group in comparison to CMV group. A decline (P=0.01 in the incidence of IVH and PDA was also achieved. Pneumothorax, chronic pulmonary disease and mortality rates, were not significantly different among two groups. (P=0.25, P=0.14, P=0.25, respectively. This study indicated that INSURE method in the treatment of RDS decreases the need for mechanical ventilation and oxygen-therapy in preterm neonates. Moreover, relevant complications as IVH and PDA were observed to be reduced. Thus, it seems rationale to

  4. Continuum Mechanics

    CERN Document Server

    Romano, Antonio

    2010-01-01

    This book offers a broad overview of the potential of continuum mechanics to describe a wide range of macroscopic phenomena in real-world problems. Building on the fundamentals presented in the authors' previous book, Continuum Mechanics using Mathematica(R), this new work explores interesting models of continuum mechanics, with an emphasis on exploring the flexibility of their applications in a wide variety of fields.Specific topics, which have been chosen to show the power of continuum mechanics to characterize the experimental behavior of real phenomena, include: * various aspects of nonlin

  5. Nonlinear Thermo-mechanical Finite Element Analysis of Polymer Foam Cored Sandwich Structures including Geometrical and Material Nonlinearity

    DEFF Research Database (Denmark)

    Palleti, Hara Naga Krishna Teja; Thomsen, Ole Thybo; Taher, Siavash Talebi

    In this paper, polymer foam cored sandwich structures with fibre reinforced composite face sheets subjected to combined mechanical and thermal loads will be analysed using the commercial FE code ABAQUS® incorporating both material and geometrical nonlinearity. Large displacements and rotations...

  6. Acute respiratory failure requiring mechanical ventilation in severe chronic obstructive pulmonary disease (COPD).

    Science.gov (United States)

    Gadre, Shruti K; Duggal, Abhijit; Mireles-Cabodevila, Eduardo; Krishnan, Sudhir; Wang, Xiao-Feng; Zell, Katrina; Guzman, Jorge

    2018-04-01

    There are limited data on the epidemiology of acute respiratory failure necessitating mechanical ventilation in patients with severe chronic obstructive pulmonary disease (COPD). The prognosis of acute respiratory failure requiring invasive mechanical ventilation is believed to be grim in this population. The purpose of this study was to illustrate the epidemiologic characteristics and outcomes of patients with underlying severe COPD requiring mechanical ventilation.A retrospective study of patients admitted to a quaternary referral medical intensive care unit (ICU) between January 2008 and December 2012 with a diagnosis of severe COPD and requiring invasive mechanical ventilation for acute respiratory failure.We evaluated 670 patients with an established diagnosis of severe COPD requiring mechanical ventilation for acute respiratory failure of whom 47% were male with a mean age of 63.7 ± 12.4 years and Acute physiology and chronic health evaluation (APACHE) III score of 76.3 ± 27.2. Only seventy-nine (12%) were admitted with a COPD exacerbation, 27(4%) had acute respiratory distress syndrome (ARDS), 78 (12%) had pneumonia, 78 (12%) had sepsis, and 312 (47%) had other causes of respiratory failure, including pulmonary embolism, pneumothorax, etc. Eighteen percent of the patients received a trial of noninvasive positive pressure ventilation. The median duration of mechanical ventilation was 3 days (interquartile range IQR 2-7); the median duration for ICU length of stay (LOS) was 5 (IQR 2-9) days and the median duration of hospital LOS was 12 (IQR 7-22) days. The overall ICU mortality was 25%. Patients with COPD exacerbation had a shorter median duration of mechanical ventilation (2 vs 4 days; P = .04), ICU (3 vs 5 days; P = .01), and hospital stay (10 vs 13 days; P = .01). The ICU mortality (9% vs 27%; P respiratory failure. A 1-unit increase in the APACHE III score was associated with a 1% decrease and having an active cancer was associated

  7. Optimized use of cooling holes to decrease the amount of thermal damage on a plastic gear tooth

    OpenAIRE

    Demagna Koffi; Alencar Bravo; Lotfi Toubal; Fouad Erchiqui

    2016-01-01

    The full potential of plastic gear usage is limited by not only poor mechanical properties but also equally poor temperature limits and poor heat conduction properties. Cooling holes were developed to decrease the amount of thermal damage on the contact surface. These cooling holes promote increased stress and tooth deflection, thus exerting a negative effect. This article compares various cooling holes for plastic gear configurations and proposes novel cooling holes. Thermal and mechanical s...

  8. Effect of precipitates on mechanical properties of AA2195

    International Nuclear Information System (INIS)

    Kim, Jae-Hee; Jeun, Jeong-Hoon; Chun, Hyun-Jin; Lee, Ye Rim; Yoo, Joon-Tae; Yoon, Jong-Hoon; Lee, Ho-Sung

    2016-01-01

    Addition of 1–4 wt.% lithium into a conventional Al–Cu–Mg alloy allows lower density and higher mechanical properties, which are attractive for aerospace applications. In this study, fundamental investigations including phase and microstructure evolution, resulting in strengthening, of the AA2195 are conducted to observe a possibility of production with commercial level. Precipitation sequence and kinetics during post-annealing were evaluated with variations of temperature and holding time. Microstructures revealed formation and evolution in representative precipitates including θ (Al_2Cu), ß′ (Al_3Zr), and T (Al_xLi_yCu) series. Aluminum alloys have low hardness, modulus, and strength before aging, but precipitates such as θ′ (Al_2Cu), ß′ (Al_3Zr), and T_1 (Al_2LiCu) show enhanced mechanical properties of AA2195 tempered because of their interaction with dislocation. However, longer holding time and higher annealing temperature result in significant decreases in mechanical properties due to the presence of incoherent precipitates (θ phase) and coarsening of the precipitates via grain-boundary diffusion. In the current study, the tensile strength of 560 MPa was obtained with post-heat treatment without work hardening. This value has never been achieved in other studies. The maximum strength was reported as 500 MPa without a work hardening process. - Highlights: • A relationship between microstructure and mechanical properties to post annealing AA2195. • A formation and dissolution of the precipitates were observed for various treatment. • An optimum post-annealing condition was obtained.

  9. Effect of precipitates on mechanical properties of AA2195

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae-Hee [Launcher Structure and Materials Team, Korea Aerospace Research Institute, Daejeon (Korea, Republic of); Jeun, Jeong-Hoon [Department of Materials Science and Engineering, Seoul National University, Seoul (Korea, Republic of); Chun, Hyun-Jin [Southeast University, Nanjing (China); Lee, Ye Rim [Department of Aerospace System Engineering, University of Science & Technology, Daejeon (Korea, Republic of); Yoo, Joon-Tae [Launcher Structure and Materials Team, Korea Aerospace Research Institute, Daejeon (Korea, Republic of); Yoon, Jong-Hoon [Launcher Structure and Materials Team, Korea Aerospace Research Institute, Daejeon (Korea, Republic of); Department of Aerospace System Engineering, University of Science & Technology, Daejeon (Korea, Republic of); Lee, Ho-Sung, E-mail: hslee@kari.re.kr [Launcher Structure and Materials Team, Korea Aerospace Research Institute, Daejeon (Korea, Republic of); Department of Aerospace System Engineering, University of Science & Technology, Daejeon (Korea, Republic of)

    2016-06-05

    Addition of 1–4 wt.% lithium into a conventional Al–Cu–Mg alloy allows lower density and higher mechanical properties, which are attractive for aerospace applications. In this study, fundamental investigations including phase and microstructure evolution, resulting in strengthening, of the AA2195 are conducted to observe a possibility of production with commercial level. Precipitation sequence and kinetics during post-annealing were evaluated with variations of temperature and holding time. Microstructures revealed formation and evolution in representative precipitates including θ (Al{sub 2}Cu), ß′ (Al{sub 3}Zr), and T (Al{sub x}Li{sub y}Cu) series. Aluminum alloys have low hardness, modulus, and strength before aging, but precipitates such as θ′ (Al{sub 2}Cu), ß′ (Al{sub 3}Zr), and T{sub 1} (Al{sub 2}LiCu) show enhanced mechanical properties of AA2195 tempered because of their interaction with dislocation. However, longer holding time and higher annealing temperature result in significant decreases in mechanical properties due to the presence of incoherent precipitates (θ phase) and coarsening of the precipitates via grain-boundary diffusion. In the current study, the tensile strength of 560 MPa was obtained with post-heat treatment without work hardening. This value has never been achieved in other studies. The maximum strength was reported as 500 MPa without a work hardening process. - Highlights: • A relationship between microstructure and mechanical properties to post annealing AA2195. • A formation and dissolution of the precipitates were observed for various treatment. • An optimum post-annealing condition was obtained.

  10. Mechanical engineering science in SI units

    CERN Document Server

    Gwyther, J L; Williams, G

    1970-01-01

    0.1 Mechanical Engineering Science covers various fundamental concepts that are essential in the practice of mechanical engineering. The title is comprised of 19 chapters that detail various topics, including chemical and physical laws. The coverage of the book includes Newtonian laws, mechanical energy, friction, stress, and gravity. The text also discusses the chemical aspects of mechanical engineering, which include gas laws, states of matter, and fuel combustion. The last chapter tackles concerns in laboratory experiments. The book will be of great use to students of mechanical eng

  11. Effects of vacuum thermal cycling on mechanical and physical properties of high performance carbon/bismaleimide composite

    International Nuclear Information System (INIS)

    Yu Qi; Chen Ping; Gao Yu; Mu Jujie; Chen Yongwu; Lu Chun; Liu Dong

    2011-01-01

    Highlights: → The level of cross-links was improved to a certain extent. → The thermal stability was firstly improved and then decreased. → The transverse and longitudinal CTE were both determined by the degree of interfacial debonding. → The mass loss ratio increases firstly and then reaches a plateau value. → The surface morphology was altered and the surface roughness increased firstly and then decreased. → The transverse tensile strength was reduced. → The flexural strength increased firstly and then decreased to a plateau value. → The ILSS increased firstly and then decreased to a plateau value. - Abstract: The aim of this article was to investigate the effects of vacuum thermal cycling on mechanical and physical properties of high performance carbon/bismaleimide (BMI) composites used in aerospace. The changes in dynamic mechanical properties and thermal stability were characterized by dynamic mechanical analysis (DMA) and thermogravimetric analysis (TGA), respectively. The changes in linear coefficient of thermal expansion (CTE) were measured in directions perpendicular and parallel to the fiber direction, respectively. The outgassing behavior of the composites were examined. The evolution of surface morphology and surface roughness were observed by atomic force microscopy (AFM). Changes in mechanical properties including transverse tensile strength, flexural strength and interlaminar shear strength (ILSS) were measured. The results indicated that the vacuum thermal cycling could improve the crosslinking degree and the thermal stability of resin matrix to a certain extent, and induce matrix outgassing and thermal stress, thereby leading to the mass loss and the interfacial debonding of the composite. The degradation in transverse tensile strength was caused by joint effects of the matrix outgassing and the interfacial debonding, while the changes in flexural strength and ILSS were affected by a competing effect between the crosslinking degree

  12. The Degradation of Mechanical Properties in Halloysite Nanoclay-Polyester Nanocomposites Exposed in Seawater Environment

    Directory of Open Access Journals (Sweden)

    Mohd Shahneel Saharudin

    2016-01-01

    Full Text Available Polyester based polymers are extensively used in aggressive marine environments; however, inadequate data is available on the effects of the seawater on the polyester based nanocomposites mechanical properties. This paper reports the effect of seawater absorption on the mechanical properties degradation of halloysite nanoclay-polyester nanocomposites. Results confirmed that the addition of halloysite nanoclay into polyester matrix was found to increase seawater uptake and reduce mechanical properties compared to monolithic polyester. The maximum decreases in microhardness, tensile and flexural properties, and impact toughness were observed in case of 1 wt% nanoclay. The microhardness decreased from 107 HV to 41.7 HV (61% decrease. Young’s modulus decreased from 0.6 GPa to 0.4 GPa (33% decrease. The flexural modulus decreased from 0.6 GPa to 0.34 GPa (43% decrease. The impact toughness dropped from 0.71 kJ/m2 to 0.48 kJ/m2 (32% decrease. Interestingly, the fracture toughness KIC increased with the addition of halloysite nanoclay due to the plasticization effect of the resin matrix. SEM images revealed the significant reduction in mechanical properties in case of 1 wt% reinforcement which is attributed to the degradation of the nanoclay-matrix interface influenced by seawater absorption and agglomeration of halloysite nanoclay.

  13. Beneficial mechanisms of aerobic exercise on hepatic lipid metabolism in non-alcoholic fatty liver disease.

    Science.gov (United States)

    Guo, Rui; Liong, Emily C; So, Kwok Fai; Fung, Man-Lung; Tipoe, George L

    2015-04-01

    Non-alcoholic fatty liver disease (NAFLD) refers to any fatty liver disease that is not due to excessive use of alcohol. NAFLD probably results from abnormal hepatic lipid metabolism and insulin resistance. Aerobic exercise is shown to improve NAFLD. This review aimed to evaluate the molecular mechanisms involved in the beneficial effects of aerobic exercise on NAFLD. We searched articles in English on the role of aerobic exercise in NAFLD therapy in PubMed. The mechanisms of chronic aerobic exercise in regulating the outcome of NAFLD include: (i) reducing intrahepatic fat content by down-regulating sterol regulatory element-binding protein-1c and up-regulating peroxisome proliferator-activated receptor gamma expression levels; (ii) decreasing hepatic oxidative stress through modulating the reactive oxygen species, and enhancing antioxidant enzymes such as catalase and glutathione peroxidase; (iii) ameliorating hepatic inflammation via the inhibition of pro-inflammatory mediators such as tumor necrosis factor-alpha and interleukin-1 beta; (iv) attenuating mitochondrial dependent apoptosis by reducing cytochrome C released from the mitochondria to the cytosol; and (v) inducing hepato-protective autophagy. Aerobic exercise, via different mechanisms, significantly decreases the fat content of the liver and improves the outcomes of patients with NAFLD.

  14. Defense Mechanisms: A Bibliography.

    Science.gov (United States)

    Pedrini, D. T.; Pedrini, Bonnie C.

    This bibliography includes studies of defense mechanisms, in general, and studies of multiple mechanisms. Defense mechanisms, briefly and simply defined, are the unconscious ego defendants against unpleasure, threat, or anxiety. Sigmund Freud deserves the clinical credit for studying many mechanisms and introducing them in professional literature.…

  15. Decreased inducibility of TNF expression in lipid-loaded macrophages

    Directory of Open Access Journals (Sweden)

    Kallin Bengt

    2002-10-01

    Full Text Available Abstract Background Inflammation and immune responses are considered to be very important in the pathogenesis of atherosclerosis. Lipid accumulation in macrophages of the arterial intima is a characteristic feature of atherosclerosis which can influence the inflammatory potential of macrophages. We studied the effects of lipid loading on the regulation of TNF expression in human monocyte-derived macrophages. Results In macrophages incubated with acetylated low density lipoprotein (ac-LDL for 2 days, mRNA expression of TNF in cells stimulated with TNF decreased by 75%. In cell cultures stimulated over night with IL-1β, lipid loading decreased secretion of TNF into culture medium by 48%. These results suggest that lipid accumulation in macrophages makes them less responsive to inflammatory stimuli. Decreased basal activity and inducibility of transcription factor AP-1 was observed in lipid-loaded cells, suggesting a mechanism for the suppression of cytokine expression. NF-κB binding activity and inducibility were only marginally affected by ac-LDL. LDL and ac-LDL did not activate PPARγ. In contrast, oxidized LDL stimulated AP-1 and PPARγ but inhibited NF-κB, indicating that the effects of lipid loading with ac-LDL were not due to oxidation of lipids. Conclusions Accumulation of lipid, mainly cholesterol, results in down-regulation of TNF expression in macrophages. Since monocytes are known to be activated by cell adhesion, these results suggest that foam cells in atherosclerotic plaques may contribute less potently to an inflammatory reaction than newly arrived monocytes/macrophages.

  16. Decreasing Magmatic Footprints of Individual Volcanos in a Waning Basaltic Field

    Energy Technology Data Exchange (ETDEWEB)

    G.A> Valentine; F.V. Perry

    2006-06-06

    The distribution and characteristics of individual basaltic volcanoes in the waning Southwestern Nevada Volcanic Field provide insight into the changing physical nature of magmatism and the controls on volcano location. During Pliocene-Pleistocene times the volumes of individual volcanoes have decreased by more than one order of magnitude, as have fissure lengths and inferred lava effusion rates. Eruptions evolved from Hawaiian-style eruptions with extensive lavas to eruptions characterized by small pulses of lava and Strombolian to violent Strombolian mechanisms. These trends indicate progressively decreasing partial melting and length scales, or magmatic footprints, of mantle source zones for individual volcanoes. The location of each volcano is determined by the location of its magmatic footprint at depth, and only by shallow structural and topographic features that are within that footprint. The locations of future volcanoes in a waning system are less likely to be determined by large-scale topography or structures than were older, larger volume volcanoes.

  17. Trypanosoma brucei metabolite indolepyruvate decreases HIF-1α and glycolysis in macrophages as a mechanism of innate immune evasion.

    Science.gov (United States)

    McGettrick, Anne F; Corcoran, Sarah E; Barry, Paul J G; McFarland, Jennifer; Crès, Cécile; Curtis, Anne M; Franklin, Edward; Corr, Sinéad C; Mok, K Hun; Cummins, Eoin P; Taylor, Cormac T; O'Neill, Luke A J; Nolan, Derek P

    2016-11-29

    The parasite Trypanasoma brucei causes African trypanosomiasis, known as sleeping sickness in humans and nagana in domestic animals. These diseases are a major burden in the 36 sub-Saharan African countries where the tsetse fly vector is endemic. Untreated trypanosomiasis is fatal and the current treatments are stage-dependent and can be problematic during the meningoencephalitic stage, where no new therapies have been developed in recent years and the current drugs have a low therapeutic index. There is a need for more effective treatments and a better understanding of how these parasites evade the host immune response will help in this regard. The bloodstream form of T. brucei excretes significant amounts of aromatic ketoacids, including indolepyruvate, a transamination product of tryptophan. This study demonstrates that this process is essential in bloodstream forms, is mediated by a specialized isoform of cytoplasmic aminotransferase and, importantly, reveals an immunomodulatory role for indolepyruvate. Indolepyruvate prevents the LPS-induced glycolytic shift in macrophages. This effect is the result of an increase in the hydroxylation and degradation of the transcription factor hypoxia-inducible factor-1α (HIF-1α). The reduction in HIF-1α levels by indolepyruvate, following LPS or trypanosome activation, results in a decrease in production of the proinflammatory cytokine IL-1β. These data demonstrate an important role for indolepyruvate in immune evasion by T. brucei.

  18. Decreased prefrontal cortical dopamine transmission in alcoholism.

    Science.gov (United States)

    Narendran, Rajesh; Mason, Neale Scott; Paris, Jennifer; Himes, Michael L; Douaihy, Antoine B; Frankle, W Gordon

    2014-08-01

    Basic studies have demonstrated that optimal levels of prefrontal cortical dopamine are critical to various executive functions such as working memory, attention, inhibitory control, and risk/reward decisions, all of which are impaired in addictive disorders such as alcoholism. Based on this and imaging studies of alcoholism that have demonstrated less dopamine in the striatum, the authors hypothesized decreased dopamine transmission in the prefrontal cortex in persons with alcohol dependence. To test this hypothesis, amphetamine and [11C]FLB 457 positron emission tomography were used to measure cortical dopamine transmission in 21 recently abstinent persons with alcohol dependence and 21 matched healthy comparison subjects. [11C]FLB 457 binding potential, specific compared to nondisplaceable uptake (BPND), was measured in subjects with kinetic analysis using the arterial input function both before and after 0.5 mg kg-1 of d-amphetamine. Amphetamine-induced displacement of [11C]FLB 457 binding potential (ΔBPND) was significantly smaller in the cortical regions in the alcohol-dependent group compared with the healthy comparison group. Cortical regions that demonstrated lower dopamine transmission in the alcohol-dependent group included the dorsolateral prefrontal cortex, medial prefrontal cortex, orbital frontal cortex, temporal cortex, and medial temporal lobe. The results of this study, for the first time, unambiguously demonstrate decreased dopamine transmission in the cortex in alcoholism. Further research is necessary to understand the clinical relevance of decreased cortical dopamine as to whether it is related to impaired executive function, relapse, and outcome in alcoholism.

  19. Electro-mechanical characterization of structural supercapacitors

    Science.gov (United States)

    Gallagher, T.; LaMaster, D.; Ciocanel, C.; Browder, C.

    2012-04-01

    The paper presents electrical and mechanical properties of structural supercapacitors and discusses limitations associated with the approach taken for the electrical properties evaluation. The structural supercapacitors characterized in this work had the electrodes made of carbon fiber weave, separator made of several cellulose based products, and the solid electrolyte made as PEGDGE based polymer blend. The reported electrical properties include capacitance and leakage resistance; the former was measured using cyclic voltammetry. Mechanical properties have been evaluated thorough tensile and three point bending tests performed on structural supercapacitor coupons. The results indicate that the separator material plays an important role on the electrical as well as mechanical properties of the structural capacitor, and that Celgard 3501 used as separator leads to most benefits for both mechanical and electrical properties. Specific capacitance and leakage resistance as high as 1.4kF/m3 and 380kΩ, respectively, were achieved. Two types of solid polymer electrolytes were used in fabrication, with one leading to higher and more consistent leakage resistance values at the expense of a slight decrease in specific capacitance when compared to the other SPE formulation. The ultimate tensile strength and modulus of elasticity of the developed power storage composite were evaluated at 466MPa and 18.9MPa, respectively. These values are 58% and 69% of the tensile strength and modulus of elasticity values measured for a single layer composite material made with the same type of carbon fiber and with a West System 105 epoxy instead of solid polymer electrolyte.

  20. The dynamic characteristics of harvesting energy from mechanical vibration via piezoelectric conversion

    International Nuclear Information System (INIS)

    Fan Kang-Qi; Ming Zheng-Feng; Xu Chun-Hui; Chao Feng-Bo

    2013-01-01

    As an alternative power solution for low-power devices, harvesting energy from the ambient mechanical vibration has received increasing research interest in recent years. In this paper we study the transient dynamic characteristics of a piezoelectric energy harvesting system including a piezoelectric energy harvester, a bridge rectifier, and a storage capacitor. To accomplish this, this energy harvesting system is modeled, and the charging process of the storage capacitor is investigated by employing the in-phase assumption. The results indicate that the charging voltage across the storage capacitor and the gathered power increase gradually as the charging process proceeds, whereas the charging rate slows down over time as the charging voltage approaches to the peak value of the piezoelectric voltage across the piezoelectric materials. In addition, due to the added electrical damping and the change of the system natural frequency when the charging process is initiated, a sudden drop in the vibration amplitude is observed, which in turn affects the charging rate. However, the vibration amplitude begins to increase as the charging process continues, which is caused by the decrease in the electrical damping (i.e., the decrease in the energy removed from the mechanical vibration). This electromechanical coupling characteristic is also revealed by the variation of the vibration amplitude with the charging voltage. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  1. Effect of Quenching Media on Mechanical Properties of Medium Carbon Steel 1030

    Directory of Open Access Journals (Sweden)

    Khansaa Dawood Salman

    2018-01-01

    Full Text Available This investigation aims to study the effect of quenching media (water, oil, Poly Vinyl Chloride PVC on mechanical properties of 1030 steel. The applications of this steel include machinery parts where strength and hardness are requisites. The steel is heated to about 950  and soaked for 1hr in electrical furnace and then quenched in different quenching medium such as water, oil and poly vinyl chloride. After heat treatment by quenching, the specimens are tempered at 250  for 1hr and then cooling in air. The mechanical properties of the specimens are determined by using universal tensile testing machine for tensile test, Vickers hardness apparatus for hardness testing, measuring the grain size of the phases and examine the microstructure of the specimens before and after heat-treatment. The results of this work showed that improving the mechanical properties of medium carbon 1030 steel, which is quenching by water gives the preferred results as the following: Quenching by water leads to increase σy, σu.t.s, K and hardness, but at the same time quenching by water leads to decrease E and n. Also the quenching by water and followed by tempering leads to improve the microstructure and decreasing (refining of the grain size of ferrite and pearlite phases of the steel used in this work.

  2. Evaluation of mechanical properties of weldments for reduced activation ferritic/martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Nakata, T. [Muroran Institute of Technology, Dept. of Materials Science and Engineeering, Muroran, Hokkaido (Japan); Tanigawa, H.; Ando, M. [Japan Atomic Energy Agency, Naga-gun, Ibaraki-ken (Japan); Komazaki, S.; Kohno, Y. [Muroran Institute of Technology, Muroran (Japan)

    2007-07-01

    Full text of publication follows: Reduced activation ferritic/martensitic steels are the first candidate material for fusion reactor, and will be used as the structural materials of ITER test blanket modules (TBM). TBM will be assembled by welding various parts, it is important to be clearly mechanical properties of weldments to qualify TBM structure. In this paper, unirradiated mechanical properties of weldments, which is consisted of weld metal, heat affected zone (HAZ) and base metal region, obtained from TIG and EB welded F82H IEA-heat were evaluated by tensile, Charpy impact and creep test. Charpy impact test revealed that impact properties of weld metal does not deteriorate compared with that of base metal. The creep tests were carried out at temperatures of 773-873 K and at stress levels of 130-280 MPa, with the specimens which include weld metal and HAZ region in the gage section. In these conditions, rupture time of weldments yield to about 100-1000 hours. In the high-stress range, creep lives of welded joint decreased about 40% of base metal. However, in the low-stress range, creep lives of welded joint decrease about 60 to 70% of base metal. The failure at fine grain HAZ region (Type IV failure) does not occur in these conditions. The mechanism of these properties deterioration will be discussed based on the detailed analyses on microstructure changes. (authors)

  3. Mechanisms of antimicrobial resistance among hospital-associated pathogens.

    Science.gov (United States)

    Khan, Ayesha; Miller, William R; Arias, Cesar A

    2018-04-01

    The introduction of antibiotics revolutionized medicine in the 20th-century permitting the treatment of once incurable infections. Widespread use of antibiotics, however, has led to the development of resistant organisms, particularly in the healthcare setting. Today, the clinician is often faced with pathogens carrying a cadre of resistance determinants that severely limit therapeutic options. The genetic plasticity of microbes allows them to adapt to stressors via genetic mutations, acquisition or sharing of genetic material and modulation of genetic expression leading to resistance to virtually any antimicrobial used in clinical practice. Areas covered: This is a comprehensive review that outlines major mechanisms of resistance in the most common hospital-associated pathogens including bacteria and fungi. Expert commentary: Understanding the genetic and biochemical mechanisms of such antimicrobial adaptation is crucial to tackling the rapid spread of resistance, can expose unconventional therapeutic targets to combat multidrug resistant pathogens and lead to more accurate prediction of antimicrobial susceptibility using rapid molecular diagnostics. Clinicians making treatment decisions based on the molecular basis of resistance may design therapeutic strategies that include de-escalation of broad spectrum antimicrobial usage, more focused therapies or combination therapies. These strategies are likely to improve patient outcomes and decrease the risk of resistance in hospital settings.

  4. Cisplatin in cancer therapy: molecular mechanisms of action.

    Science.gov (United States)

    Dasari, Shaloam; Tchounwou, Paul Bernard

    2014-10-05

    Cisplatin, cisplatinum, or cis-diamminedichloroplatinum (II), is a well-known chemotherapeutic drug. It has been used for treatment of numerous human cancers including bladder, head and neck, lung, ovarian, and testicular cancers. It is effective against various types of cancers, including carcinomas, germ cell tumors, lymphomas, and sarcomas. Its mode of action has been linked to its ability to crosslink with the purine bases on the DNA; interfering with DNA repair mechanisms, causing DNA damage, and subsequently inducing apoptosis in cancer cells. However, because of drug resistance and numerous undesirable side effects such as severe kidney problems, allergic reactions, decrease immunity to infections, gastrointestinal disorders, hemorrhage, and hearing loss especially in younger patients, other platinum-containing anti-cancer drugs such as carboplatin, oxaliplatin and others, have also been used. Furthermore, combination therapies of cisplatin with other drugs have been highly considered to overcome drug-resistance and reduce toxicity. This comprehensive review highlights the physicochemical properties of cisplatin and related platinum-based drugs, and discusses its uses (either alone or in combination with other drugs) for the treatment of various human cancers. A special attention is paid to its molecular mechanisms of action, and its undesirable side effects. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. A theoretical model investigation of peptide bond formation involving two water molecules in ribosome supports the two-step and eight membered ring mechanism

    International Nuclear Information System (INIS)

    Wang, Qiang; Gao, Jun; Zhang, Dongju; Liu, Chengbu

    2015-01-01

    Highlights: • We theoretical studied peptide bond formation reaction mechanism with two water molecules. • The first water molecule can decrease the reaction barriers by forming hydrogen bonds. • The water molecule mediated three-proton transfer mechanism is the favorable mechanism. • Our calculation supports the two-step and eight membered ring mechanism. - Abstract: The ribosome is the macromolecular machine that catalyzes protein synthesis. The kinetic isotope effect analysis reported by Strobel group supports the two-step mechanism. However, the destination of the proton originating from the nucleophilic amine is uncertain. A computational simulation of different mechanisms including water molecules is carried out using the same reaction model and theoretical level. Formation the tetrahedral intermediate with proton transfer from nucleophilic nitrogen, is the rate-limiting step when two water molecules participate in peptide bond formation. The first water molecule forming hydrogen bonds with O9′ and H15′ in the A site can decrease the reaction barriers. Combined with results of the solvent isotope effects analysis, we conclude that the three-proton transfer mechanism in which water molecule mediate the proton shuttle between amino and carbon oxygen in rate-limiting step is the favorable mechanism. Our results will shield light on a better understand the reaction mechanism of ribosome

  6. Salinity Inhibits Rice Seed Germination by Reducing α-Amylase Activity via Decreased Bioactive Gibberellin Content

    Directory of Open Access Journals (Sweden)

    Li Liu

    2018-03-01

    Full Text Available Seed germination plays important roles in the establishment of seedlings and their subsequent growth; however, seed germination is inhibited by salinity, and the inhibitory mechanism remains elusive. Our results indicate that NaCl treatment inhibits rice seed germination by decreasing the contents of bioactive gibberellins (GAs, such as GA1 and GA4, and that this inhibition can be rescued by exogenous bioactive GA application. To explore the mechanism of bioactive GA deficiency, the effect of NaCl on GA metabolic gene expression was investigated, revealing that expression of both GA biosynthetic genes and GA-inactivated genes was up-regulated by NaCl treatment. These results suggest that NaCl-induced bioactive GA deficiency is caused by up-regulated expression of GA-inactivated genes, and the up-regulated expression of GA biosynthetic genes might be a consequence of negative feedback regulation of the bioactive GA deficiency. Moreover, we provide evidence that NaCl-induced bioactive GA deficiency inhibits rice seed germination by decreasing α-amylase activity via down-regulation of α-amylase gene expression. Additionally, exogenous bioactive GA rescues NaCl-inhibited seed germination by enhancing α-amylase activity. Thus, NaCl treatment reduces bioactive GA content through promotion of bioactive GA inactivation, which in turn inhibits rice seed germination by decreasing α-amylase activity via down-regulation of α-amylase gene expression.

  7. PPARβ/δ modulates ethanol-induced hepatic effects by decreasing pyridoxal kinase activity

    International Nuclear Information System (INIS)

    Goudarzi, Maryam; Koga, Takayuki; Khozoie, Combiz; Mak, Tytus D.; Kang, Boo-Hyon; Jr, Albert J. Fornace; Peters, Jeffrey M.

    2013-01-01

    Because of the significant morbidity and lethality caused by alcoholic liver disease (ALD), there remains a need to elucidate the regulatory mechanisms that can be targeted to prevent and treat ALD. Toward this goal, minimally invasive biomarker discovery represents an outstanding approach for these purposes. The mechanisms underlying ALD include hepatic lipid accumulation. As the peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) has been shown to inhibit steatosis, the present study examined the role of PPARβ/δ in ALD coupling metabolomic, biochemical and molecular biological analyses. Wild-type and Pparβ/δ-null mice were fed either a control or 4% ethanol diet and examined after 4–7 months of treatment. Ethanol fed Pparβ/δ-null mice exhibited steatosis after short-term treatment compared to controls, the latter effect appeared to be due to increased activity of sterol regulatory element binding protein 1c (SREBP1c). The wild-type and Pparβ/δ-null mice fed the control diet showed clear differences in their urinary metabolomic profiles. In particular, metabolites associated with arginine and proline metabolism, and glycerolipid metabolism, were markedly different between genotypes suggesting a constitutive role for PPARβ/δ in the metabolism of these amino acids. Interestingly, urinary excretion of taurine was present in ethanol-fed wild-type mice but markedly lower in similarly treated Pparβ/δ-null mice. Evidence suggests that PPARβ/δ modulates pyridoxal kinase activity by altering K m , consistent with the observed decreased in urinary taurine excretion. These data collectively suggest that PPARβ/δ prevents ethanol-induced hepatic effects by inhibiting hepatic lipogenesis, modulation of amino acid metabolism, and altering pyridoxal kinase activity

  8. Mechanics and Physics of Precise Vacuum Mechanisms

    CERN Document Server

    Deulin, E. A; Panfilov, Yu V; Nevshupa, R. A

    2010-01-01

    In this book the Russian expertise in the field of the design of precise vacuum mechanics is summarized. A wide range of physical applications of mechanism design in electronic, optical-electronic, chemical, and aerospace industries is presented in a comprehensible way. Topics treated include the method of microparticles flow regulation and its determination in vacuum equipment and mechanisms of electronics; precise mechanisms of nanoscale precision based on magnetic and electric rheology; precise harmonic rotary and not-coaxial nut-screw linear motion vacuum feedthroughs with technical parameters considered the best in the world; elastically deformed vacuum motion feedthroughs without friction couples usage; the computer system of vacuum mechanisms failure predicting. This English edition incorporates a number of features which should improve its usefulness as a textbook without changing the basic organization or the general philosophy of presentation of the subject matter of the original Russian work. Exper...

  9. Montmorillonite polyaniline nanocomposites: Preparation, characterization and investigation of mechanical properties

    International Nuclear Information System (INIS)

    Soundararajah, Q.Y.; Karunaratne, B.S.B.; Rajapakse, R.M.G.

    2009-01-01

    The interest in clay polymer nanocomposites (CPN) materials, initially developed by researchers at Toyota, has grown dramatically over the last decade. They have attracted great interest, both in industry and in academia, because they often exhibit remarkable improvement in materials' properties when compared with virgin polymer or conventional micro- and macro-composites. These improvements can include high moduli, increased strength and heat resistance, decreased gas permeability and flammability, optical transparency and increased biodegradability of biodegradable polymers. Such enhancement in the properties of nanocomposites occurs mostly due to their unique phase morphology and improved interfacial properties. Because of these enhanced properties they find applications in the fields of electronics, automobile industry, packaging, and construction. This study aims at investigating the mechanical property enhancement of polyaniline (PANI) intercalated with montmorillonite (MMT) clay. The MMT-PANI nanocomposites displayed improved mechanical properties compared to the neat polymer or clay. The enhancement was achieved at low clay content probably due to its exfoliated structure. The increased interfacial areas and improved bond characteristics may attribute to the mechanical property enhancement

  10. Impact of supersonic and subsonic aircraft on ozone: Including heterogeneous chemical reaction mechanisms

    International Nuclear Information System (INIS)

    Kinnison, D.E.; Wuebbles, D.J.

    1992-01-01

    Preliminary calculations suggest that heterogeneous reactions are important in calculating the impact on ozone from emissions of trace gases from aircraft fleets. In this study, three heterogeneous chemical processes that occur on background sulfuric acid aerosols are included and their effects on O 3 , NO x , Cl x , HCl, N 2 O 5 , ClONO 2 are calculated

  11. Mechanics of Failure Mechanisms in Structures

    CERN Document Server

    Carlson, R L; Craig, J I

    2012-01-01

    This book focuses on the mechanisms and underlying mechanics of failure in various classes of materials such as metallic, ceramic, polymeric, composite and bio-material.  Topics include tensile and compressive fracture, crack initiation and growth, fatigue and creep rupture in metallic materials, matrix cracking and delamination and environmental degradation in polymeric composites, failure of bio-materials such as prosthetic heart valves and prosthetic hip joints, failure of ceramics and ceramic matrix composites, failure of metallic matrix composites, static and dynamic buckling failure, dynamic excitations and creep buckling failure in structural systems. Chapters are devoted to failure mechanisms that are characteristic of each of the materials.  The work also provides the basic elements of fracture mechanics and studies in detail several niche topics such as the effects of toughness gradients, variable amplitude loading effects in fatigue, small fatigue cracks, and creep induced brittleness. Furthe...

  12. Decreasing Serial Cost Sharing

    DEFF Research Database (Denmark)

    Hougaard, Jens Leth; Østerdal, Lars Peter

    The increasing serial cost sharing rule of Moulin and Shenker [Econometrica 60 (1992) 1009] and the decreasing serial rule of de Frutos [Journal of Economic Theory 79 (1998) 245] have attracted attention due to their intuitive appeal and striking incentive properties. An axiomatic characterization...... of the increasing serial rule was provided by Moulin and Shenker [Journal of Economic Theory 64 (1994) 178]. This paper gives an axiomatic characterization of the decreasing serial rule...

  13. Decreasing serial cost sharing

    DEFF Research Database (Denmark)

    Hougaard, Jens Leth; Østerdal, Lars Peter Raahave

    2009-01-01

    The increasing serial cost sharing rule of Moulin and Shenker (Econometrica 60:1009-1037, 1992) and the decreasing serial rule of de Frutos (J Econ Theory 79:245-275, 1998) are known by their intuitive appeal and striking incentive properties. An axiomatic characterization of the increasing serial...... rule was provided by Moulin and Shenker (J Econ Theory 64:178-201, 1994). This paper gives an axiomatic characterization of the decreasing serial rule....

  14. Recurrent forbush decreases and the relationship between active regions and M regions

    International Nuclear Information System (INIS)

    Shah, G.N.; Kaul, C.L.; Razdan, H.; Bemalkhedkar, M.M.

    1978-01-01

    Recurrent Forbush decreases and recurrent geomagnetic disturbances have been attributed to the solar M regions, which are sources of high-velocity solar plasma streams. A study of recurrent Forbush decreases for the period 1966--1975 has been made to examine any possible relationship of M regions with solar active regions. It is shown that at the onset of the recurrent Forbush decrease at the earth there is a high probability of encountering a class of active regions at the central meridian of the sun which give rise to flares of importance > or =2B/3N. These active regions are found to be long lasting and to have large areas as well as high Hα intensities. Other active regions, producing flares of lower importance, are distributed randomly on the sun with respect to the onset of a recurrent Forbush decrease. By using the quasi-radial hypervelocity approximation the base of the leading edge of the high-velocity stream at the onset of a recurrent Forbush decrease at the earth is traced to the solar longitude about 40 0 west of the central meridan. From these results it is deduced that M regions are located preferentially to the west of long-lasting magnetically complex active regions. Earlier studies of the identification of the M regions on the sun have been reexamined and shown to conform to this positional relationship. A possible mechanism of the development of an M region to the west of the long-lasting magnetically complex active region is also discussed

  15. The mechanism of deterioration of the glucosinolate-myrosynase system in radish roots during cold storage after harvest.

    Science.gov (United States)

    Lee, Jeong Gu; Lim, Sooyeon; Kim, Jongkee; Lee, Eun Jin

    2017-10-15

    The hydrolysis of glucosinolates (GSLs) by myrosinase yields varieties of degradation products including isothiocyanates (ITCs). This process is controlled by the glucosinolate-myrosinase (G-M) system. The major ITCs in radish roots are raphasatin and sulforaphene (SFE), and the levels of these compounds decrease during storage after harvest. We investigated the G-M system to understand the mechanism behind the decrease in the ITCs in radish roots. Six varieties of radish roots were stored for 8weeks at 0-1.5°C. The concentrations of GSLs (glucoraphasatin and glucoraphenin) were maintained at harvest levels without significant changes during the storage period. However, SFE concentration and myrosinase activity remarkably decreased for 8weeks. Pearson correlation analysis between ITCs, GSLs, and myrosinase activity showed that a decrease of SFE during storage had a positive correlation with a decrease in myrosinase activity, which resulted from a decrease of ascorbic acid but also a decrease of myrosinase activity-related gene expressions. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  16. Intrathecal huperzine A increases thermal escape latency and decreases flinching behavior in the formalin test in rats.

    Science.gov (United States)

    Park, Paula; Schachter, Steven; Yaksh, Tony

    2010-02-05

    Huperzine A (HupA) is an alkaloid isolated from the Chinese club moss Huperzia serrata and has been used for improving memory, cognitive and behavioral function in patients with Alzheimer's disease in China. It has NMDA antagonist and anticholinesterase activity and has shown anticonvulsant and antinociceptive effects in preliminary studies when administered intraperitoneally to mice. To better characterize the antinociceptive effects of HupA at the spinal level, Holtzman rats were implanted with intrathecal catheters to measure thermal escape latency using Hargreaves thermal escape testing system and flinching behavior using the formalin test. Intrathecal (IT) administration of HupA showed a dose-dependent increase in thermal escape latency with an ED50 of 0.57 microg. Atropine reversed the increase in thermal escape latency produced by 10 microg HupA, indicating an antinociceptive mechanism through muscarinic cholinergic receptors. The formalin test showed that HupA decreased flinching behavior in a dose-dependent manner. Atropine also reversed the decrease in flinching behavior caused by 10 microg HupA. A dose-dependent increase of side effects including scratching, biting, and chewing tails was observed, although antinociceptive effects were observed in doses that did not produce any adverse effects. (c) 2009 Elsevier Ireland Ltd. All rights reserved.

  17. Decreased Expression of DREAM Promotes the Degeneration of Retinal Neurons

    Science.gov (United States)

    Chintala, Shravan; Cheng, Mei; Zhang, Xiao

    2015-01-01

    The intrinsic mechanisms that promote the degeneration of retinal ganglion cells (RGCs) following the activation of N-Methyl-D-aspartic acid-type glutamate receptors (NMDARs) are unclear. In this study, we have investigated the role of downstream regulatory element antagonist modulator (DREAM) in NMDA-mediated degeneration of the retina. NMDA, phosphate-buffered saline (PBS), and MK801 were injected into the vitreous humor of C57BL/6 mice. At 12, 24, and 48 hours after injection, expression of DREAM in the retina was determined by immunohistochemistry, western blot analysis, and electrophoretic mobility-shift assay (EMSA). Apoptotic death of cells in the retina was determined by terminal deoxynucleotidyl transferace dUTP nick end labeling (TUNEL) assays. Degeneration of RGCs in cross sections and in whole mount retinas was determined by using antibodies against Tuj1 and Brn3a respectively. Degeneration of amacrine cells and bipolar cells was determined by using antibodies against calretinin and protein kinase C (PKC)-alpha respectively. DREAM was expressed constitutively in RGCs, amacrine cells, bipolar cells, as well as in the inner plexiform layer (IPL). NMDA promoted a progressive decrease in DREAM levels in all three cell types over time, and at 48 h after NMDA-treatment very low DREAM levels were evident in the IPL only. DREAM expression in retinal nuclear proteins was decreased progressively after NMDA-treatment, and correlated with its decreased binding to the c-fos-DRE oligonucleotides. A decrease in DREAM expression correlated significantly with apoptotic death of RGCs, amacrine cells and bipolar cells. Treatment of eyes with NMDA antagonist MK801, restored DREAM expression to almost normal levels in the retina, and significantly decreased NMDA-mediated apoptotic death of RGCs, amacrine cells, and bipolar cells. Results presented in this study show for the first time that down-regulation of DREAM promotes the degeneration of RGCs, amacrine cells, and

  18. Arecoline decreases interleukin-6 production and induces apoptosis and cell cycle arrest in human basal cell carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Li-Wen [Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Hsieh, Bau-Shan; Cheng, Hsiao-Ling [Department of Biochemistry, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Hu, Yu-Chen [Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Chang, Wen-Tsan [Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Division of Hepatobiliarypancreatic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan (China); Chang, Kee-Lung, E-mail: Chang.KeeLung@msa.hinet.net [Department of Biochemistry, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China)

    2012-01-15

    Arecoline, the most abundant areca alkaloid, has been reported to decrease interleukin-6 (IL-6) levels in epithelial cancer cells. Since IL-6 overexpression contributes to the tumorigenic potency of basal cell carcinoma (BCC), this study was designed to investigate whether arecoline altered IL-6 expression and its downstream regulation of apoptosis and the cell cycle in cultured BCC-1/KMC cells. BCC-1/KMC cells and a human keratinocyte cell line, HaCaT, were treated with arecoline at concentrations ranging from 10 to 100 μg/ml, then IL-6 production and expression of apoptosis- and cell cycle progress-related factors were examined. After 24 h exposure, arecoline inhibited BCC-1/KMC cell growth and decreased IL-6 production in terms of mRNA expression and protein secretion, but had no effect on HaCaT cells. Analysis of DNA fragmentation and chromatin condensation showed that arecoline induced apoptosis of BCC-1/KMC cells in a dose-dependent manner, activated caspase-3, and decreased expression of the anti-apoptotic protein Bcl-2. In addition, arecoline induced progressive and sustained accumulation of BCC-1/KMC cells in G2/M phase as a result of reducing checkpoint Cdc2 activity by decreasing Cdc25C phosphatase levels and increasing p53 levels. Furthermore, subcutaneous injection of arecoline led to decreased BCC-1/KMC tumor growth in BALB/c mice by inducing apoptosis. This study demonstrates that arecoline has potential for preventing BCC tumorigenesis by reducing levels of the tumor cell survival factor IL-6, increasing levels of the tumor suppressor factor p53, and eliciting cell cycle arrest, followed by apoptosis. Highlights: ► Arecoline has potential to prevent against basal cell carcinoma tumorigenesis. ► It has more effectiveness on BCC as compared with a human keratinocyte cell line. ► Mechanisms involved including reducing tumor cells’ survival factor IL-6, ► Decreasing Cdc25C phosphatase, enhancing tumor suppressor factor p53, ► Eliciting G2/M

  19. Vinegar decreases allergenic response in lentil and egg food allergy.

    Science.gov (United States)

    Armentia, A; Dueñas-Laita, A; Pineda, F; Herrero, M; Martín, B

    2010-01-01

    Food allergy results from an atypical response of the mucosal immune system to orally consumed allergens. Antacid medication inhibits the digestion of dietary proteins and causes food allergy. A decrease of the gastric pH might enhance the function of digestion and reduce the risk of food allergy. To test a possible decrease in the allergenicity of powerful food allergens (egg, chicken, lentils) with the addition of vinegar during the cooking process. We included seven patients who suffered from anaphylaxis due to egg, chicken and lentils. We added vinegar to egg, chicken and lentil processed extracts used for skin prick tests (SPT) and compared the wheal areas obtained with the same extracts sources and the same way but without vinegar addition. Immunodetection was performed with the different processed extracts and patients' sera. Only one patient consented food challenge with vinegar-marinated-chicken. Wheal areas were significantly minor with the food extract with vinegar. Immunodetection showed a decrease of the response with vinegar processed extracts. Vinegar addition during the cooking process may decrease lentil and chicken allergenicity. Copyright 2009 SEICAP. Published by Elsevier Espana. All rights reserved.

  20. Effect of cobalt doping on the mechanical properties of ZnO nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Vahtrus, Mikk; Šutka, Andris [Institute of Physics, University of Tartu, W. Ostwaldi 1, 50412 Tartu (Estonia); Polyakov, Boris [Institute of Solid State Physics, University of Latvia, Kengaraga 8, LV-1063 Riga (Latvia); Oras, Sven; Antsov, Mikk [Institute of Physics, University of Tartu, W. Ostwaldi 1, 50412 Tartu (Estonia); Doebelin, Nicola [RMS Foundation, Bischmattstrasse 12, Bettlach 2544 (Switzerland); Institute of Geological Sciences, University of Bern, Baltzerstrasse 1–3, Bern 3012 (Switzerland); Lõhmus, Rünno; Nõmmiste, Ergo [Institute of Physics, University of Tartu, W. Ostwaldi 1, 50412 Tartu (Estonia); Vlassov, Sergei, E-mail: vlassovs@ut.ee [Institute of Physics, University of Tartu, W. Ostwaldi 1, 50412 Tartu (Estonia)

    2016-11-15

    In this work, we investigate the influence of doping on the mechanical properties of ZnO nanowires (NWs) by comparing the mechanical properties of pure and Co-doped ZnO NWs grown in similar conditions and having the same crystallographic orientation [0001]. The mechanical characterization included three-point bending tests made with atomic force microscopy and cantilever beam bending tests performed inside scanning electron microscopy. It was found that the Young's modulus of ZnO NWs containing 5% of Co was approximately a third lower than that of the pure ZnO NWs. Bending strength values were comparable for both materials and in both cases were close to theoretical strength indicating high quality of NWs. Dependence of mechanical properties on NW diameter was found for both doped and undoped ZnO NWs. - Highlights: •Effect of Co doping on the mechanical properties of ZnO nanowires is studied. •Co substitutes Zn atoms in ZnO crystal lattice. •Co addition affects crystal lattice parameters. •Co addition results in significantly decreased Young's modulus of ZnO. •Bending strength for doped and undoped wires is close to the theoretical strength.

  1. Running as Interoceptive Exposure for Decreasing Anxiety Sensitivity: Replication and Extension.

    Science.gov (United States)

    Sabourin, Brigitte C; Stewart, Sherry H; Watt, Margo C; Krigolson, Olav E

    2015-01-01

    A brief, group cognitive behavioural therapy with running as the interoceptive exposure (IE; exposure to physiological sensations) component was effective in decreasing anxiety sensitivity (AS; fear of arousal sensations) levels in female undergraduates (Watt et al., Anxiety and Substance Use Disorders: The Vicious Cycle of Comorbidity, 201-219, 2008). Additionally, repeated exposure to running resulted in decreases in cognitive (i.e., catastrophic thoughts) and affective (i.e., feelings of anxiety) reactions to running over time for high AS, but not low AS, participants (Sabourin et al., "Physical exercise as interoceptive exposure within a brief cognitive-behavioral treatment for anxiety-sensitive women", Journal of Cognitive Psychotherapy, 22:302-320, 2008). A follow-up study including the above-mentioned intervention with an expanded IE component also resulted in decreases in AS levels (Sabourin et al., under review). The goals of the present process study were (1) to replicate the original process study, with the expanded IE component, and (2) to determine whether decreases in cognitive, affective, and/or somatic (physiological sensations) reactions to running would be related to decreases in AS. Eighteen high AS and 10 low AS participants completed 20 IE running trials following the 3-day group intervention. As predicted, high AS participants, but not low AS participants, experienced decreases in cognitive, affective, and somatic reactions to running over time. Furthermore, decreases in cognitive and affective, but not in somatic, reactions to running were related to decreases in AS levels. These results suggest that the therapeutic effects of repeated exposure to running in decreasing sensitivity to anxiety-related sensations are not related to decreasing the experience of somatic sensations themselves. Rather, they are related to altering the cognitive and affective reactions to these sensations.

  2. Ketogenic diet is antiepileptogenic in pentylenetetrazole kindled mice and decrease levels of N-acylethanolamines in hippocampus

    DEFF Research Database (Denmark)

    Hansen, Suzanne L; Nielsen, Ane H; Knudsen, Katrine E

    2009-01-01

    The ketogenic diet (KD) is used for the treatment of refractory epilepsy in children, however, the mechanism(s) remains largely unknown. Also, the antiepileptogenic potential in animal models of epilepsy has been poorly addressed. Activation of cannabinoid type-1 receptor (CB(1)-R) upon seizure...... activity or type of diet. The level of oleoylethanolamide as well as the sum of N-acylethanolamines were significantly decreased by the KD, but were unaffected by seizure activity. The study shows that the KD had clear antiepileptogenic properties in the pentylenetetrazole kindling model and does...

  3. Handbook of compliant mechanisms

    CERN Document Server

    Howell, Larry L; Olsen, Brian M

    2013-01-01

    A fully illustrated reference book giving an easy-to-understand introduction to compliant mechanisms A broad compilation of compliant mechanisms to give inspiration and guidance to those interested in using compliant mechanisms in their designs, the Handbook of Compliant Mechanisms includes graphics and descriptions of many compliant mechanisms. It comprises an extensive categorization of devices that can be used to help readers identify compliant mechanisms related to their application. It also provides chapters on the basic background in compliant mechanisms, the categories o

  4. Trans-10, cis-12 conjugated linoleic acid decreases de novo lipid synthesis in human adipocytes

    DEFF Research Database (Denmark)

    Obsen, Thomas; Faergeman, Nils J; Chung, Soonkyu

    2012-01-01

    7-12 h, respectively. The mRNA levels of liver X receptor (LXR)α and sterol regulatory element binding protein (SREBP)-1c, transcription factors that regulate SCD-1, were decreased by 10,12 CLA within 5 h. These data suggest that the isomer-specific decrease in de novo lipid synthesis by 10,12 CLA......]-oleic or [(14)C]-linoleic acids. When using [(14)C]-acetic acid and [(14)C]-pyruvic acid as substrates, 30 μM 10,12 CLA, but not 9,11 CLA, decreased de novo synthesis of triglyceride, free FA, diacylglycerol, cholesterol esters, cardiolipin, phospholipids and ceramides within 3-24 h. Treatment with 30 μM 10...... is due, in part, to the rapid repression of lipogenic transcription factors that regulate MUFA synthesis, suggesting an anti-obesity mechanism unique to this trans FA....

  5. The Roles of Mechanical Stresses in the Pathogenesis of Osteoarthritis

    Science.gov (United States)

    Anderson, Donald D.; Brown, Thomas D.; Tochigi, Yuki; Martin, James A.

    2013-01-01

    Excessive joint surface loadings, either single (acute impact event) or repetitive (cumulative contact stress), can cause the clinical syndrome of osteoarthritis (OA). Despite advances in treatment of injured joints, the risk of OA following joint injuries has not decreased in the past 50 years. Cumulative excessive articular surface contact stress that leads to OA results from posttraumatic joint incongruity and instability, and joint dysplasia, but may also cause OA in patients without known joint abnormalities. In vitro investigations show that excessive articular cartilage loading triggers release of reactive oxygen species (ROS) from mitochondria, and that these ROS cause chondrocyte death and matrix degradation. Preventing release of ROS or inhibiting their effects preserves chondrocytes and their matrix. Fibronectin fragments released from articular cartilage subjected to excessive loads also stimulate matrix degradation; inhibition of molecular pathways initiated by these fragments prevents this effect. Additionally, injured chondrocytes release alarmins that activate chondroprogentior cells in vitro that propogate and migrate to regions of damaged cartilage. These cells also release chemokines and cytokines that may contribute to inflammation that causes progressive cartilage loss. Distraction and motion of osteoarthritic human ankles can promote joint remodeling, decrease pain, and improve joint function in patients with end-stage posttraumatic OA. These advances in understanding of how altering mechanical stresses can lead to remodeling of osteoarthritic joints and how excessive stress causes loss of articular cartilage, including identification of mechanically induced mediators of cartilage loss, provide the basis for new biologic and mechanical approaches to the prevention and treatment of OA. PMID:25067995

  6. Ammonia causes decreased brain monoamines in fathead minnows (Pimephales promelas)

    Science.gov (United States)

    Ronan, Patrick J.; Gaikowski, Mark P.; Hamilton, Steven J.; Buhl, Kevin J.; Summers, Cliff H.

    2007-01-01

    Hyperammonemia, arising from variety of disorders, leads to severe neurological dysfunction. The mechanisms of ammonia toxicity in brain are not completely understood. This study investigated the effects of ammonia on monoaminergic systems in brains of fathead minnows (Pimephales promelas). Fish serve as a good model system to investigate hyperammonemic effects on brain function since no liver manipulations are necessary to increase endogenous ammonia concentrations. Using high performance liquid chromatography with electrochemical detection, monoamines and some associated metabolites were measured from whole brain homogenate. Adult males were exposed for 48 h to six different concentrations of ammonia (0.01–2.36 mg/l unionized) which bracketed the 96-h LC50 for this species. Ammonia concentration-dependent decreases were found for the catecholamines (norepinephrine and dopamine) and the indoleamine serotonin (5-HT). After an initial increase in the 5-HT precursor 5-hydroxytryptophan it too decreased with increasing ammonia concentrations. There were also significant increases in the 5-HIAA/5-HT and DOPAC/DA ratios, often used as measures of turnover. There were no changes in epinephrine (Epi) or monoamine catabolites (DOPAC, 5-HIAA) at any ammonia concentrations tested. Results suggest that ammonia causes decreased synthesis while also causing increased release and degradation. Increased release may underlie behavioral reactions to ammonia exposure in fish. This study adds weight to a growing body of evidence demonstrating that ammonia leads to dysfunctional monoaminergic systems in brain which may underlie neurological symptoms associated with human disorders such as hepatic encephalopathy.

  7. Cannabidiol Oil for Decreasing Addictive Use of Marijuana: A Case Report.

    Science.gov (United States)

    Shannon, Scott; Opila-Lehman, Janet

    2015-12-01

    This case study illustrates the use of cannabidiol (CBD) oil to decrease the addictive use of marijuana and provide anxiolytic and sleep benefits. Addiction to marijuana is a chronic, relapsing disorder, which is becoming a prevalent condition in the United States. The most abundant compound in the marijuana, which is called tetrahydrocannabinol (THC), has been widely studied and known for its psychoactive properties. The second most abundant component-CBD-has been suggested to have the medicinal effects of decreasing anxiety, improving sleep, and other neuro-protective effects. The mechanism of action for CBD has been suggested to be antagonistic to the psychoactive properties of THC in many locations within the central nervous system. Such action raises the issue of whether it might be beneficial to use CBD in isolation to facilitate withdrawal of marijuana use. The specific use of CBD for marijuana reduction has not been widely studied. The patient was a 27-y-old male who presented with a long-standing diagnosis of bipolar disorder and a daily addiction to marijuana use. In the described intervention, the only change made to the patient's treatment was the addition of CBD oil with the dosage gradually decreasing from 24 to 18 mg. With use of the CBD oil, the patient reported being less anxious, as well as settling into a regular pattern of sleep. He also indicated that he had not used any marijuana since starting the CBD oil. With the decrease in the dosage to 18 mg, the patient was able to maintain his nonuse of marijuana.

  8. Decreasing Intestinal Parasites in Recent Northern California Refugees

    Science.gov (United States)

    Chang, Alicia H.; Perry, Sharon; Du, Jenny N. T.; Agunbiade, Abdulkareem; Polesky, Andrea; Parsonnet, Julie

    2013-01-01

    Beginning in 2005, the Centers for Disease Control and Prevention (CDC) expanded the overseas presumptive treatment of intestinal parasites with albendazole to include refugees from the Middle East. We surveyed the prevalence of helminths and protozoa in recent Middle Eastern refugees (2008–2010) in comparison with refugees from other geographical regions and from a previous survey (2001–2004) in Santa Clara County, California. Based on stool microscopy, helminth infections decreased, particularly in Middle Eastern refugees (0.1% versus 2.3% 2001–2004, P = 0.01). Among all refugees, Giardia intestinalis was the most common protozoan found. Protozoa infections also decreased somewhat in Middle Eastern refugees (7.2%, 2008–2010 versus 12.9%, 2001–2004, P = 0.08). Serology for Strongyloides stercoralis and Schistosoma spp. identified more infected individuals than stool exams. Helminth infections are increasingly rare in refugees to Northern California. Routine screening stool microscopy may be unnecessary in all refugees. PMID:23149583

  9. Finite element computational fluid mechanics

    International Nuclear Information System (INIS)

    Baker, A.J.

    1983-01-01

    This book analyzes finite element theory as applied to computational fluid mechanics. It includes a chapter on using the heat conduction equation to expose the essence of finite element theory, including higher-order accuracy and convergence in a common knowledge framework. Another chapter generalizes the algorithm to extend application to the nonlinearity of the Navier-Stokes equations. Other chapters are concerned with the analysis of a specific fluids mechanics problem class, including theory and applications. Some of the topics covered include finite element theory for linear mechanics; potential flow; weighted residuals/galerkin finite element theory; inviscid and convection dominated flows; boundary layers; parabolic three-dimensional flows; and viscous and rotational flows

  10. Decreased expression of endogenous feline leukemia virus in cat lymphomas: a case control study.

    Science.gov (United States)

    Krunic, Milica; Ertl, Reinhard; Hagen, Benedikt; Sedlazeck, Fritz J; Hofmann-Lehmann, Regina; von Haeseler, Arndt; Klein, Dieter

    2015-04-10

    Cats infected with exogenous feline leukemia virus (exFeLV) have a higher chance of lymphoma development than uninfected cats. Furthermore, an increased exFeLV transcription has been detected in lymphomas compared to non-malignant tissues. The possible mechanisms of lymphoma development by exFeLV are insertional mutagenesis or persistent stimulation of host immune cells by viral antigens, bringing them at risk for malignant transformation. Vaccination of cats against exFeLV has in recent years decreased the overall infection rate in most countries. Nevertheless, an increasing number of lymphomas have been diagnosed among exFeLV-negative cats. Endogenous feline leukemia virus (enFeLV) is another retrovirus for which transcription has been observed in cat lymphomas. EnFeLV provirus elements are present in the germline of various cat species and share a high sequence similarity with exFeLV but, due to mutations, are incapable of producing infectious viral particles. However, recombination between exFeLV and enFeLV could produce infectious particles. We examined the FeLV expression in cats that have developed malignant lymphomas and discussed the possible mechanisms that could have induced malignant transformation. For expression analysis we used next-generation RNA-sequencing (RNA-Seq) and for validation reverse transcription quantitative PCR (RT-qPCR). First, we showed that there was no expression of exFeLV in all samples, which eliminates the possibility of recombination between exFeLV and enFeLV. Next, we analyzed the difference in expression of three enFeLV genes between control and lymphoma samples. Our analysis showed an average of 3.40-fold decreased viral expression for the three genes in lymphoma compared to control samples. The results were confirmed by RT-qPCR. There is a decreased expression of enFeLV genes in lymphomas versus control samples, which contradicts previous observations for the exFeLV. Our results suggest that a persistent stimulation of host

  11. Increased methylation and decreased expression of homeobox genes TLX1, HOXA10 and DLX5 in human placenta are associated with trophoblast differentiation.

    Science.gov (United States)

    Novakovic, Boris; Fournier, Thierry; Harris, Lynda K; James, Joanna; Roberts, Claire T; Yong, Hannah E J; Kalionis, Bill; Evain-Brion, Danièle; Ebeling, Peter R; Wallace, Euan M; Saffery, Richard; Murthi, Padma

    2017-07-03

    Homeobox genes regulate embryonic and placental development, and are widely expressed in the human placenta, but their regulatory control by DNA methylation is unclear. DNA methylation analysis was performed on human placentae from first, second and third trimesters to determine methylation patterns of homeobox gene promoters across gestation. Most homeobox genes were hypo-methylated throughout gestation, suggesting that DNA methylation is not the primary mechanism involved in regulating HOX genes expression in the placenta. Nevertheless, several genes showed variable methylation patterns across gestation, with a general trend towards an increase in methylation over gestation. Three genes (TLX1, HOXA10 and DLX5) showed inverse gains of methylation with decreasing mRNA expression throughout pregnancy, supporting a role for DNA methylation in their regulation. Proteins encoded by these genes were primarily localised to the syncytiotrophoblast layer, and showed decreased expression later in gestation. siRNA mediated downregulation of DLX5, TLX1 and HOXA10 in primary term villous cytotrophoblast resulted in decreased proliferation and increased expression of differentiation markers, including ERVW-1. Our data suggest that loss of DLX5, TLX1 and HOXA10 expression in late gestation is required for proper placental differentiation and function.

  12. Energy Conservation Behaviour Toolkit. Incentive Mechanisms for effective decrease of energy consumption at the workplace

    Energy Technology Data Exchange (ETDEWEB)

    Boerner, D.; Kalz, M.; Ternier, S.; Specht, M. [Centre for Learning Sciences and Technologies CELSTEC, Open Universiteit, Heerlen (Netherlands)

    2013-01-15

    The work in this project is based on a previous project (Energy Awareness Displays - Making the Invisible Visible) in which several measurement and visualization approaches have been developed to make employees more aware about energy consumption and pro-environmental behavior at the workplace. While awareness is a first important step for the decrease of energy consumption and environmental learning it is not sufficient as a means for sustainable behavior change. For this reason we have explored in the follow-up project approaches how pro-environmental behavior at the workplace can be encouraged, rewarded and sustained. For this purpose we have implemented several technological solutions and we have piloted these in form of an energy conservation game called Mindergie at the main campus of the Open University in Heerlen, Netherlands. The project is in line with an earlier identified research gap in terms of energy conservation at the workplace and uses state-of-the-art technologies for mobile gaming and rewarding of non-formal learning activities.

  13. Atorvastatin and fenofibrate increase apolipoprotein AV and decrease triglycerides by up-regulating peroxisome proliferator-activated receptor-α

    Science.gov (United States)

    Huang, Xian-sheng; Zhao, Shui-ping; Bai, Lin; Hu, Min; Zhao, Wang; Zhang, Qian

    2009-01-01

    Background and purpose: Combining statin and fibrate in clinical practice provides a greater reduction of triglycerides than either drug given alone, but the mechanism for this effect is poorly understood. Apolipoprotein AV (apoAV) has been implicated in triglyceride metabolism. This study was designed to investigate the effect of the combination of statin and fibrate on apoAV and the underlying mechanism(s). Experimental approach: Hypertriglyceridaemia was induced in rats by giving them 10% fructose in drinking water for 2 weeks. They were then treated with atorvastatin, fenofibrate or the two agents combined for 4 weeks, and plasma triglyceride and apoAV measured. We also tested the effects of these two agents on triglycerides and apoAV in HepG2 cells in culture. Western blot and reverse transcription polymerase chain reaction was used to measure apoAV and peroxisome proliferator-activated receptor-α (PPARα) expression. Key results: The combination of atorvastatin and fenofibrate resulted in a greater decrease in plasma triglycerides and a greater increase in plasma and hepatic apoAV than either agent given alone. Hepatic expression of the PPARα was also more extensively up-regulated in rats treated with the combination. A similar, greater increase in apoAV and a greater decrease in triglycerides were observed following treatment of HepG2 cells pre-exposed to fructose), with the combination. Adding an inhibitor of PPARα (MK886) abolished the effects of atorvastatin on HepG2 cells. Conclusions and implications: A combination of atorvastatin and fenofibrate increased apoAV and decreased triglycerides through up-regulation of PPARα. PMID:19694729

  14. Non-invasive mechanical ventilation and mortality in elderly immunocompromised patients hospitalized with pneumonia: a retrospective cohort study.

    Science.gov (United States)

    Johnson, Christopher S; Frei, Christopher R; Metersky, Mark L; Anzueto, Antonio R; Mortensen, Eric M

    2014-01-27

    Mortality after pneumonia in immunocompromised patients is higher than for immunocompetent patients. The use of non-invasive mechanical ventilation for patients with severe pneumonia may provide beneficial outcomes while circumventing potential complications associated with invasive mechanical ventilation. The aim of our study was to determine if the use of non-invasive mechanical ventilation in elderly immunocompromised patients with pneumonia is associated with higher all-cause mortality. In this retrospective cohort study, data were obtained from the Department of Veterans Affairs administrative databases. We included veterans age ≥65 years who were immunocompromised and hospitalized due to pneumonia. Multilevel logistic regression analysis was used to determine the relationship between the use of invasive versus non-invasive mechanical ventilation and 30-day and 90-day mortality. Of 1,946 patients in our cohort, 717 received non-invasive mechanical ventilation and 1,229 received invasive mechanical ventilation. There was no significant association between all-cause 30-day mortality and non-invasive versus invasive mechanical ventilation in our adjusted model (odds ratio (OR) 0.85, 95% confidence interval (CI) 0.66-1.10). However, those patients who received non-invasive mechanical ventilation had decreased 90-day mortality (OR 0.66, 95% CI 0.52-0.84). Additionally, receipt of guideline-concordant antibiotics in our immunocompromised cohort was significantly associated with decreased odds of 30-day mortality (OR 0.31, 95% CI 0.24-0.39) and 90-day mortality (OR 0.41, 95% CI 0.31-0.53). Our findings suggest that physicians should consider the use of non-invasive mechanical ventilation, when appropriate, for elderly immunocompromised patients hospitalized with pneumonia.

  15. Robot Mechanisms

    CERN Document Server

    Lenarcic, Jadran; Stanišić, Michael M

    2013-01-01

    This book provides a comprehensive introduction to the area of robot mechanisms, primarily considering industrial manipulators and humanoid arms. The book is intended for both teaching and self-study. Emphasis is given to the fundamentals of kinematic analysis and the design of robot mechanisms. The coverage of topics is untypical. The focus is on robot kinematics. The book creates a balance between theoretical and practical aspects in the development and application of robot mechanisms, and includes the latest achievements and trends in robot science and technology.

  16. Effect of V or Zr addition on the mechanical properties of the mechanically alloyed Al-8wt%Ti alloys

    International Nuclear Information System (INIS)

    Moon, I.H.; Lee, J.H.; Lee, K.M.; Kim, Y.D.

    1995-01-01

    Mechanical alloying (MA) of Al-Ti alloy, being a solid state process, offers the unique advantage of producing homogeneous and fine dispersions of thermally stable Al 3 Ti phase, where the formation of the fine Al 3 Ti phase by the other method is restricted from the thermodynamic viewpoint. The MA Al-Ti alloys show substantially higher strength than the conventional Al alloys at the elevated temperature due to the presence of Al 3 Ti as well as Al 4 C 3 and Al 2 O 3 , of which the last two phases were introduced during MA process. The addition of V or Zr to Al-Ti alloy was known to decrease the lattice mismatch between the intermetallic compound and the aluminum matrix, and such decrease in lattice mismatching can influence positively the high temperature mechanical strength of the MA Al-Ti by increasing the resistance to dispersoid coarsening at the elevated temperature. In the present study, therefore, the mechanical behavior of the MA Al-Ti-V and Al-Ti-Zr alloys were investigated in order to evaluate the effect of V or Zr addition on the mechanical properties of the MA Al-8Ti alloy at high temperature

  17. Steroid hormones in bluegill, a species with male alternative reproductive tactics including female mimicry.

    Science.gov (United States)

    Knapp, Rosemary; Neff, Bryan D

    2007-12-22

    The proximate mechanisms underlying the evolution and maintenance of within-sex variation in mating behaviour are still poorly understood. Species characterized by alternative reproductive tactics provide ideal opportunities to investigate such mechanisms. Bluegill (Lepomis macrochirus) are noteworthy in this regard because they exhibit two distinct cuckolder (parasitic) morphs (called sneaker and satellite) in addition to the parental males that court females. Here we confirm previous findings that spawning cuckolder and parental males have significantly different levels of testosterone and 11-ketotestosterone. We also report, for the first time, that oestradiol and cortisol levels are higher in cuckolders than in parental males. The two cuckolder morphs did not differ in average levels of any of the four hormones. However, among satellite males which mimic females in appearance and behaviour, there was a strong negative relationship between oestradiol levels and body length, a surrogate for age. This finding suggests that for satellite males, oestradiol dependency of mating behaviour decreases with increasing mating experience. Although such decreased hormone dependence of mating behaviour has been reported in other taxa, our data represent the first suggestion of the relationship in fishes.

  18. Localized decrease of β-catenin contributes to the differentiation of human embryonic stem cells

    International Nuclear Information System (INIS)

    Lam, Hayley; Patel, Shyam; Wong, Janelle; Chu, Julia; Li, Adrian; Li, Song

    2008-01-01

    Human embryonic stem cells (hESC) are pluripotent, and can be directed to differentiate into different cell types for therapeutic applications. To expand hESCs, it is desirable to maintain hESC growth without differentiation. As hESC colonies grow, differentiated cells are often found at the periphery of the colonies, but the underlying mechanism is not well understood. Here, we utilized micropatterning techniques to pattern circular islands or strips of matrix proteins, and examined the spatial pattern of hESC renewal and differentiation. We found that micropatterned matrix restricted hESC differentiation at colony periphery but allowed hESC growth into multiple layers in the central region, which decreased hESC proliferation and induced hESC differentiation. In undifferentiated hESCs, β-catenin primarily localized at cell-cell junctions but not in the nucleus. The amount of β-catenin in differentiating hESCs at the periphery of colonies or in multiple layers decreased significantly at cell-cell junctions. Consistently, knocking down β-catenin decreased Oct-4 expression in hESCs. These results indicate that localized decrease of β-catenin contributes to the spatial pattern of differentiation in hESC colonies

  19. Mechanical properties of porous silicon by depth-sensing nanoindentation techniques

    International Nuclear Information System (INIS)

    Fang Zhenqian; Hu Ming; Zhang Wei; Zhang Xurui; Yang Haibo

    2009-01-01

    Porous silicon (PS) was prepared using the electrochemical corrosion method. Thermal oxidation of the as-prepared PS samples was performed at different temperatures for tuning their mechanical properties. The mechanical properties of as-prepared and oxidized PS were thoroughly investigated by depth-sensing nanoindentation techniques with the continuous stiffness measurements option. The morphology of as-prepared and oxidized PS was characterized by field emission scanning electron microscope and the effect of observed microstructure changes on the mechanical properties was discussed. It is shown that the hardness and Young's elastic modulus of as-prepared PS exhibit a strong dependence on the preparing conditions and decrease with increasing current density. In particular, the mechanical properties of oxidized PS are improved greatly compared with that of as-prepared ones and increase with increasing thermal oxidation temperature. The mechanism responsible for the mechanical property enhancement is possibly the formation of SiO 2 cladding layers encapsulating on the inner surface of the incompact sponge PS to decrease the porosity and strengthen the interconnected microstructure

  20. Analysis of an inventory model for both linearly decreasing demand and holding cost

    Science.gov (United States)

    Malik, A. K.; Singh, Parth Raj; Tomar, Ajay; Kumar, Satish; Yadav, S. K.

    2016-03-01

    This study proposes the analysis of an inventory model for linearly decreasing demand and holding cost for non-instantaneous deteriorating items. The inventory model focuses on commodities having linearly decreasing demand without shortages. The holding cost doesn't remain uniform with time due to any form of variation in the time value of money. Here we consider that the holding cost decreases with respect to time. The optimal time interval for the total profit and the optimal order quantity are determined. The developed inventory model is pointed up through a numerical example. It also includes the sensitivity analysis.

  1. Causes of decreased life expectancy over the life span in bipolar disorder.

    Science.gov (United States)

    Kessing, Lars Vedel; Vradi, Eleni; McIntyre, Roger S; Andersen, Per Kragh

    2015-07-15

    Accelerated aging has been proposed as a mechanism explaining the increased prevalence of comorbid general medical illnesses in bipolar disorder. To test the hypothesis that lost life years due to natural causes starts in early and mid-adulthood, supporting the hypothesis of accelerated aging. Using individual data from nationwide registers of patient with a diagnosis of bipolar disorder we calculated remaining life expectancies before age 90 years for values of age 15, 25, 35…75 years among all individuals alive in year 2000. Further, we estimated the reduction in life expectancy due to natural causes (physical illnesses) and unnatural causes (suicide and accidents) in relation to age. A total of 22,635 patients with bipolar disorder were included in the study in addition to data from the entire Danish general population of 5.4 million people. At age 15 years, remaining life expectancy before age 90 years was decreased 12.7 and 8.9 life years, respectively, for men and women with bipolar disorder. For 15-year old boys with bipolar disorder, natural causes accounted for 58% of all lost life years and for 15-year old girls, natural causes accounted for 67% increasing to 74% and 80% for 45-year old men and women, respectively. Data concern patients who get contact to hospital psychiatry only. Natural causes of death is the most prevalent reason for lost life years already from adolescence and increases substantially during early and mid-adulthood, in this way supporting the hypothesis of accelerated aging. Early intervention in bipolar disorder should not only focus on improving outcome of the bipolar disorder but also on decreasing the risk of comorbid general medical illnesses. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Molecular dynamics and experimental studies on deposition mechanisms of ion beam sputtering

    International Nuclear Information System (INIS)

    Fang, T.-H.; Chang, W.-J.; Lin, C.-M.; Lien, W.-C.

    2008-01-01

    Molecular dynamics (MD) simulation and experimental methods are used to study the deposition mechanism of ionic beam sputtering (IBS), including the effects of incident energy, incident angle and deposition temperature on the growth process of nickel nanofilms. According to the simulation, the results showed that increasing the temperature of substrate decreases the surface roughness, average grain size and density. Increasing the incident angle increases the surface roughness and the average grain size of thin film, while decreasing its density. In addition, increasing the incident energy decreases the surface roughness and the average grain size of thin film, while increasing its density. For the cases of simulation, with the substrate temperature of 500 K, normal incident angle and 14.6 x 10 -17 J are appropriate, in order to obtain a smoother surface, a small grain size and a higher density of thin film. From the experimental results, the surface roughness of thin film deposited on the substrates of Si(1 0 0) and indium tin oxide (ITO) decreases with the increasing sputtering power, while the thickness of thin film shows an approximately linear increase with the increase of sputtering power

  3. Quantum mechanics

    CERN Document Server

    Powell, John L

    2015-01-01

    Suitable for advanced undergraduates, this thorough text focuses on the role of symmetry operations and the essentially algebraic structure of quantum-mechanical theory. Based on courses in quantum mechanics taught by the authors, the treatment provides numerous problems that require applications of theory and serve to supplement the textual material.Starting with a historical introduction to the origins of quantum theory, the book advances to discussions of the foundations of wave mechanics, wave packets and the uncertainty principle, and an examination of the Schrödinger equation that includ

  4. Sidestream smoke inhalation decreases respiratory clearance of 99mTc-DTPA acutely

    International Nuclear Information System (INIS)

    Yates, D.H.; Havill, K.; Thompson, M.M.; Rittano, A.B.; Chu, J.; Glanville, A.R.

    1996-01-01

    The permeability of the alveolar-capillary barrier to an inhaled aerosol of technetium 99m labelled diethylenetriamine penta-acetate ( 99m Tc-DTPA is used as an index of alveolar epithelial injury. Permeability is greatly increased in active smokers. The aim of this study was to determine the effect of sidestream smoke inhalation on permeability as this has not been described previously. Lung clearance of inhaled 99m Tc-DTPA aerosol was measured in 20 normal non-smoking subjects before and after exposure to one hours sidestream smoke inhalation. Measured carbon monoxide (CO) levels rose to a maximum of 23.5 ±6.2 ppm from baseline values of 0.6±1.3 (p 99m Tc-DTPA clearance rose from baseline 69.1± 15.6 (mean ± to 77.4 ±17.8) after smoke exposure. No effect of 99m Tc-DTPA scanning of sidestream smoke was demonstrated on lung function. It was concluded that low level sidestream smoke inhalation decreases 99m Tc-DTPA clearance acutely in humans. The mechanism of this unexpected result is not established but may include differences in constituents between sidestream and mainstream smoke, alterations in pulmonary microvascular blood flow, or changes in surfactant due to an acute phase irritant response. 34 refs., 2 figs

  5. Socially sanctioned coercion mechanisms for addiction treatment.

    Science.gov (United States)

    Nace, Edgar P; Birkmayer, Florian; Sullivan, Maria A; Galanter, Marc; Fromson, John A; Frances, Richard J; Levin, Frances R; Lewis, Collins; Suchinsky, Richard T; Tamerin, John S; Westermeyer, Joseph

    2007-01-01

    Coercion as a strategy for treatment of addiction is an effective but often negatively perceived approach. The authors review current policies for involuntary commitments and explore coercive dimensions of treating alcohol and drug dependence in the workplace, sports, and through professional licensure. Gender-specific issues in coercion are considered, including evidence for improved treatment retention among pregnant and parenting women coerced via the criminal justice system. Social security disability benefits represent an area where an opportunity for constructive coercion was missed in the treatment of primary or comorbid substance use disorders. The availability of third-party funding for the voluntary treatment of individuals with substance use disorders has decreased. This unmet need, coupled with the evidence for positive clinical outcomes, highlights the call for implementing socially sanctioned mechanisms of coercion.

  6. Further characterization of porcine Brachyspira hyodysenteriae isolates with decreased susceptibility to tiamulin.

    Science.gov (United States)

    Karlsson, M; Aspán, A; Landén, A; Franklin, A

    2004-04-01

    Brachyspira hyodysenteriae is the causative agent of swine dysentery, a severe diarrhoeal disease in pigs. Few drugs are available to treat the disease, owing to both antimicrobial resistance and withdrawal of drugs authorized for use in pigs. Tiamulin is the drug of choice in many countries, but isolates with decreased susceptibility have recently been reported. The mechanism of tiamulin resistance in B. hyodysenteriae is not known and this facet is essential to understand the dissemination of the trait. To study the resistance epidemiology of B. hyodysenteriae, further characterization of a set of isolates from Germany (n = 16) and the UK (n = 6) with decreased susceptibility to tiamulin was performed. The relatedness between the isolates was studied by comparing PFGE patterns, and the in vitro susceptibility to five other antimicrobials (aivlosin, doxycycline, salinomycin, chloramphenicol and avilamycin) was also determined. For comparison of the antimicrobial-susceptibility pattern, Swedish (n = 20) and British (n = 4) tiamulin-susceptible isolates were tested. The German isolates represented several different PFGE patterns, indicating that tiamulin usage has been sufficient to select clones with decreased tiamulin susceptibility at different farms in Germany. The PFGE pattern for the six British isolates with decreased tiamulin susceptibility was identical to that of the German isolates, and they had a similar antimicrobial-susceptibility pattern, except for resistance to aivlosin, which was only found in a few German isolates. No other co-resistance with tiamulin was found.

  7. Quantum opto-mechanics with micromirrors : combining nano-mechanics with quantum optics

    International Nuclear Information System (INIS)

    Groeblacher, S.

    2010-01-01

    This work describes more than four years of research on the effects of the radiation-pressure force of light on macroscopic mechanical structures. The basic system studied here is a mechanical oscillator that is highly reflective and part of an optical resonator. It interacts with the optical cavity mode via the radiation-pressure force. Both the dynamics of the mechanical oscillation and the properties of the light field are modified through this interaction. In our experiments we use quantum optical tools (such as homodyning and down-conversion) with the goal of ultimately showing quantum behavior of the mechanical center of mass motion. In this thesis we present several experiments that pave the way towards this goal and when combined should allow the demonstration of the envisioned quantum phenomena, including entanglement, teleportation and Schroeodinger cat states. The study of quantum behavior of truly macroscopic systems is a long outstanding goal, which will help to answer some of the most fundamental questions in quantum physics today: Why is the world around us classical and not quantum? Is there a size- or mass-limit to systems for them to behave according to quantum mechanics? Is quantum theory complete or do we have to extend it to include mechanisms such as decoherence? Can we use the quantum nature of macroscopic objects to, for example, improve the measurement precision of classical apparatuses? The experiments discussed in this thesis include the very first passive radiation-pressure cooling of a mechanical oscillator in a cryogenic optical resonator, as well as the experimental demonstration of radiation-pressure cooling close to the mechanical quantum ground state. Cooling of the mechanical motion is an important pre-condition for observing quantum effects of the mechanical oscillator. In another experiment, we have demonstrated that we are able to enter the strong-coupling regime of the optomechanical system a regime where coherent energy

  8. Extended quantum mechanics

    International Nuclear Information System (INIS)

    Pavel Bona

    2000-01-01

    The work can be considered as an essay on mathematical and conceptual structure of nonrelativistic quantum mechanics which is related here to some other (more general, but also to more special and 'approximative') theories. Quantum mechanics is here primarily reformulated in an equivalent form of a Poisson system on the phase space consisting of density matrices, where the 'observables', as well as 'symmetry generators' are represented by a specific type of real valued (densely defined) functions, namely the usual quantum expectations of corresponding selfjoint operators. It is shown in this paper that inclusion of additional ('nonlinear') symmetry generators (i. e. 'Hamiltonians') into this reformulation of (linear) quantum mechanics leads to a considerable extension of the theory: two kinds of quantum 'mixed states' should be distinguished, and operator - valued functions of density matrices should be used in the role of 'nonlinear observables'. A general framework for physical theories is obtained in this way: By different choices of the sets of 'nonlinear observables' we obtain, as special cases, e.g. classical mechanics on homogeneous spaces of kinematical symmetry groups, standard (linear) quantum mechanics, or nonlinear extensions of quantum mechanics; also various 'quasiclassical approximations' to quantum mechanics are all sub theories of the presented extension of quantum mechanics - a version of the extended quantum mechanics. A general interpretation scheme of extended quantum mechanics extending the usual statistical interpretation of quantum mechanics is also proposed. Eventually, extended quantum mechanics is shown to be (included into) a C * -algebraic (hence linear) quantum theory. Mathematical formulation of these theories is presented. The presentation includes an analysis of problems connected with differentiation on infinite-dimensional manifolds, as well as a solution of some problems connected with the work with only densely defined unbounded

  9. Decreased mechanical properties of heart valve tissue constructs cultured in platelet lysate as compared to fetal bovine serum

    NARCIS (Netherlands)

    Geemen, van D.; Riem Vis, P.W.; Soekhradj - Soechit, R.S.; Sluijter, J.P.G.; Liefde - van Beest, de M.; Kluin, J.; Bouten, C.V.C.

    2011-01-01

    In autologous heart valve tissue engineering, there is an ongoing search for alternatives of fetal bovine serum (FBS). Human platelet-lysate (PL) might be a promising substitute. In the present article, we aimed to examine the tissue formation, functionality, and mechanical properties of engineered

  10. Quantum mechanics/coarse-grained molecular mechanics (QM/CG-MM).

    Science.gov (United States)

    Sinitskiy, Anton V; Voth, Gregory A

    2018-01-07

    Numerous molecular systems, including solutions, proteins, and composite materials, can be modeled using mixed-resolution representations, of which the quantum mechanics/molecular mechanics (QM/MM) approach has become the most widely used. However, the QM/MM approach often faces a number of challenges, including the high cost of repetitive QM computations, the slow sampling even for the MM part in those cases where a system under investigation has a complex dynamics, and a difficulty in providing a simple, qualitative interpretation of numerical results in terms of the influence of the molecular environment upon the active QM region. In this paper, we address these issues by combining QM/MM modeling with the methodology of "bottom-up" coarse-graining (CG) to provide the theoretical basis for a systematic quantum-mechanical/coarse-grained molecular mechanics (QM/CG-MM) mixed resolution approach. A derivation of the method is presented based on a combination of statistical mechanics and quantum mechanics, leading to an equation for the effective Hamiltonian of the QM part, a central concept in the QM/CG-MM theory. A detailed analysis of different contributions to the effective Hamiltonian from electrostatic, induction, dispersion, and exchange interactions between the QM part and the surroundings is provided, serving as a foundation for a potential hierarchy of QM/CG-MM methods varying in their accuracy and computational cost. A relationship of the QM/CG-MM methodology to other mixed resolution approaches is also discussed.

  11. Quantum mechanics/coarse-grained molecular mechanics (QM/CG-MM)

    Science.gov (United States)

    Sinitskiy, Anton V.; Voth, Gregory A.

    2018-01-01

    Numerous molecular systems, including solutions, proteins, and composite materials, can be modeled using mixed-resolution representations, of which the quantum mechanics/molecular mechanics (QM/MM) approach has become the most widely used. However, the QM/MM approach often faces a number of challenges, including the high cost of repetitive QM computations, the slow sampling even for the MM part in those cases where a system under investigation has a complex dynamics, and a difficulty in providing a simple, qualitative interpretation of numerical results in terms of the influence of the molecular environment upon the active QM region. In this paper, we address these issues by combining QM/MM modeling with the methodology of "bottom-up" coarse-graining (CG) to provide the theoretical basis for a systematic quantum-mechanical/coarse-grained molecular mechanics (QM/CG-MM) mixed resolution approach. A derivation of the method is presented based on a combination of statistical mechanics and quantum mechanics, leading to an equation for the effective Hamiltonian of the QM part, a central concept in the QM/CG-MM theory. A detailed analysis of different contributions to the effective Hamiltonian from electrostatic, induction, dispersion, and exchange interactions between the QM part and the surroundings is provided, serving as a foundation for a potential hierarchy of QM/CG-MM methods varying in their accuracy and computational cost. A relationship of the QM/CG-MM methodology to other mixed resolution approaches is also discussed.

  12. Increased radial glia quiescence, decreased reactivation upon injury and unaltered neuroblast behavior underlie decreased neurogenesis in the aging zebrafish telencephalon.

    Science.gov (United States)

    Edelmann, Kathrin; Glashauser, Lena; Sprungala, Susanne; Hesl, Birgit; Fritschle, Maike; Ninkovic, Jovica; Godinho, Leanne; Chapouton, Prisca

    2013-09-01

    The zebrafish has recently become a source of new data on the mechanisms of neural stem cell (NSC) maintenance and ongoing neurogenesis in adult brains. In this vertebrate, neurogenesis occurs at high levels in all ventricular regions of the brain, and brain injuries recover successfully, owing to the recruitment of radial glia, which function as NSCs. This new vertebrate model of adult neurogenesis is thus advancing our knowledge of the molecular cues in use for the activation of NSCs and fate of their progeny. Because the regenerative potential of somatic stem cells generally weakens with increasing age, it is important to assess the extent to which zebrafish NSC potential decreases or remains unaltered with age. We found that neurogenesis in the ventricular zone, in the olfactory bulb, and in a newly identified parenchymal zone of the telencephalon indeed declines as the fish ages and that oligodendrogenesis also declines. In the ventricular zone, the radial glial cell population remains largely unaltered morphologically but enters less frequently into the cell cycle and hence produces fewer neuroblasts. The neuroblasts themselves do not change their behavior with age and produce the same number of postmitotic neurons. Thus, decreased neurogenesis in the physiologically aging zebrafish brain is correlated with an increasing quiescence of radial glia. After injuries, radial glia in aged brains are reactivated, and the percentage of cell cycle entry is increased in the radial glia population. However, this reaction is far less pronounced than in younger animals, pointing to irreversible changes in aging zebrafish radial glia. Copyright © 2013 Wiley Periodicals, Inc.

  13. Decreased VEGF-A and sustained PEDF expression in a human retinal pigment epithelium cell line cultured under hypothermia

    Directory of Open Access Journals (Sweden)

    Masayuki Takeyama

    2015-01-01

    Full Text Available BACKGROUND: Previous reports have described a decrease in retinal temperature and clinical improvement of wet age-related macular degeneration (AMD after vitrectomy. We hypothesized that the retinal temperature decrease after vitrectomy plays a part in the suppression of wet AMD development. To test this hypothesis, we evaluated the temperature dependence of the expression of vascular endothelial growth factor-A (VEGF-A and in vitro angiogen-esis in retinal pigment epithelium (RPE. RESULTS: We cultured ARPE-19 cells at 37, 35, 33 and 31°C and measured the expression of VEGF-A, VEGF-A splicing variants, and pigment epithelium-derived factor (PEDF. We performed an in vitro tube formation assay. The dehydrogenase activity was also evaluated at each temperature. Expression of VEGF-A significantly decreased with decreased temperature while PEDF expression did not. VEGF165 expression and in vitro angiogenesis also were temperature dependent. The dehydrogenase activity significantly decreased as the culture temperature decreased. CONCLUSIONS: RPE cultured under hypothermia that decreased cellular metabolism also had decreased VEGF-A and sustained PEDF expression, creating an anti-angiogenic environment. This mechanism may be associated with a beneficial effect after vitrectomy in patients with wet AMD.

  14. Low-Concentration Tributyltin Decreases GluR2 Expression via Nuclear Respiratory Factor-1 Inhibition.

    Science.gov (United States)

    Ishida, Keishi; Aoki, Kaori; Takishita, Tomoko; Miyara, Masatsugu; Sakamoto, Shuichiro; Sanoh, Seigo; Kimura, Tomoki; Kanda, Yasunari; Ohta, Shigeru; Kotake, Yaichiro

    2017-08-11

    Tributyltin (TBT), which has been widely used as an antifouling agent in paints, is a common environmental pollutant. Although the toxicity of high-dose TBT has been extensively reported, the effects of low concentrations of TBT are relatively less well studied. We have previously reported that low-concentration TBT decreases α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)-type glutamate receptor subunit 2 ( GluR2 ) expression in cortical neurons and enhances neuronal vulnerability to glutamate. However, the mechanism of this TBT-induced GluR2 decrease remains unknown. Therefore, we examined the effects of TBT on the activity of transcription factors that control GluR2 expression. Exposure of primary cortical neurons to 20 nM TBT for 3 h to 9 days resulted in a decrease in GluR2 mRNA expression. Moreover, TBT inhibited the DNA binding activity of nuclear respiratory factor-1 (NRF-1), a transcription factor that positively regulates the GluR2 . This result indicates that TBT inhibits the activity of NRF-1 and subsequently decreases GluR2 expression. In addition, 20 nM TBT decreased the expression of genes such as cytochrome c, cytochrome c oxidase (COX) 4, and COX 6c, which are downstream of NRF-1. Our results suggest that NRF-1 inhibition is an important molecular action of the neurotoxicity induced by low-concentration TBT.

  15. Low-Concentration Tributyltin Decreases GluR2 Expression via Nuclear Respiratory Factor-1 Inhibition

    Science.gov (United States)

    Ishida, Keishi; Aoki, Kaori; Takishita, Tomoko; Miyara, Masatsugu; Sakamoto, Shuichiro; Sanoh, Seigo; Kimura, Tomoki; Kanda, Yasunari; Ohta, Shigeru; Kotake, Yaichiro

    2017-01-01

    Tributyltin (TBT), which has been widely used as an antifouling agent in paints, is a common environmental pollutant. Although the toxicity of high-dose TBT has been extensively reported, the effects of low concentrations of TBT are relatively less well studied. We have previously reported that low-concentration TBT decreases α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)-type glutamate receptor subunit 2 (GluR2) expression in cortical neurons and enhances neuronal vulnerability to glutamate. However, the mechanism of this TBT-induced GluR2 decrease remains unknown. Therefore, we examined the effects of TBT on the activity of transcription factors that control GluR2 expression. Exposure of primary cortical neurons to 20 nM TBT for 3 h to 9 days resulted in a decrease in GluR2 mRNA expression. Moreover, TBT inhibited the DNA binding activity of nuclear respiratory factor-1 (NRF-1), a transcription factor that positively regulates the GluR2. This result indicates that TBT inhibits the activity of NRF-1 and subsequently decreases GluR2 expression. In addition, 20 nM TBT decreased the expression of genes such as cytochrome c, cytochrome c oxidase (COX) 4, and COX 6c, which are downstream of NRF-1. Our results suggest that NRF-1 inhibition is an important molecular action of the neurotoxicity induced by low-concentration TBT. PMID:28800112

  16. Low-Intensity Ultrasound-Induced Anti-inflammatory Effects Are Mediated by Several New Mechanisms Including Gene Induction, Immunosuppressor Cell Promotion, and Enhancement of Exosome Biogenesis and Docking

    Directory of Open Access Journals (Sweden)

    Qian Yang

    2017-10-01

    Full Text Available Background: Low-intensity ultrasound (LIUS was shown to be beneficial in mitigating inflammation and facilitating tissue repair in various pathologies. Determination of the molecular mechanisms underlying the anti-inflammatory effects of LIUS allows to optimize this technique as a therapy for the treatment of malignancies and aseptic inflammatory disorders.Methods: We conducted cutting-edge database mining approaches to determine the anti-inflammatory mechanisms exerted by LIUS.Results: Our data revealed following interesting findings: (1 LIUS anti-inflammatory effects are mediated by upregulating anti-inflammatory gene expression; (2 LIUS induces the upregulation of the markers and master regulators of immunosuppressor cells including MDSCs (myeloid-derived suppressor cells, MSCs (mesenchymal stem cells, B1-B cells and Treg (regulatory T cells; (3 LIUS not only can be used as a therapeutic approach to deliver drugs packed in various structures such as nanobeads, nanospheres, polymer microspheres, and lipidosomes, but also can make use of natural membrane vesicles as small as exosomes derived from immunosuppressor cells as a novel mechanism to fulfill its anti-inflammatory effects; (4 LIUS upregulates the expression of extracellular vesicle/exosome biogenesis mediators and docking mediators; (5 Exosome-carried anti-inflammatory cytokines and anti-inflammatory microRNAs inhibit inflammation of target cells via multiple shared and specific pathways, suggesting exosome-mediated anti-inflammatory effect of LIUS feasible; and (6 LIUS-mediated physical effects on tissues may activate specific cellular sensors that activate downstream transcription factors and signaling pathways.Conclusions: Our results have provided novel insights into the mechanisms underlying anti-inflammatory effects of LIUS, and have provided guidance for the development of future novel therapeutic LIUS for cancers, inflammatory disorders, tissue regeneration and tissue repair.

  17. Increased Arousal Levels and Decreased Sleep by Brain Music in Rats

    Institute of Scientific and Technical Information of China (English)

    Guang-Zhan Fang; Chun-Peng Zhang; Dan Wu; Yang Xia; Yong-Xiu Lai; De-Zhong Yao

    2009-01-01

    More and more studies have been reported on whether music and other types of auditory stimulation would improve the quality of sleep.Many of these studies have found significant results,but others argue that music is not significantly better than the tones or control conditions in improving sleep.For further understanding the relationship between music and sleep or music and arousal,the present study therefore examines the effects of brain music on sleep and arousal by means of biofeedback.The music is from the transformation of rapid eye movement (REM) sleep electroencephalogram (EEG) of rats using an algorithm in the Chengdu Brain Music (CBM) system.When the brain music was played back to rats,EEG data were recorded to assess the efficacy of music to induce or improve sleep,or increase arousal levels by sleep staging,etc.Our results demonstrate that exposure to the brain music increases arousal levels and decreases sleep in rats,and the underlying mechanism of decreased non-rapid eye movement (NREM) and REM sleep may be different.

  18. Mechanics of a granular skin

    Science.gov (United States)

    Karmakar, Somnath; Sane, Anit; Bhattacharya, S.; Ghosh, Shankar

    2017-04-01

    Magic sand, a hydrophobic toy granular material, is widely used in popular science instructions because of its nonintuitive mechanical properties. A detailed study of the failure of an underwater column of magic sand shows that these properties can be traced to a single phenomenon: the system self-generates a cohesive skin that encapsulates the material inside. The skin, consisting of pinned air-water-grain interfaces, shows multiscale mechanical properties: they range from contact-line dynamics in the intragrain roughness scale, to plastic flow at the grain scale, all the way to sample-scale mechanical responses. With decreasing rigidity of the skin, the failure mode transforms from brittle to ductile (both of which are collective in nature) to a complete disintegration at the single-grain scale.

  19. Consumption of acidic water alters the gut microbiome and decreases the risk of diabetes in NOD mice.

    Science.gov (United States)

    Wolf, Kyle J; Daft, Joseph G; Tanner, Scott M; Hartmann, Riley; Khafipour, Ehsan; Lorenz, Robin G

    2014-04-01

    Infant formula and breastfeeding are environmental factors that influence the incidence of Type 1 Diabetes (T1D) as well as the acidity of newborn diets. To determine if altering the intestinal microbiome is one mechanism through which an acidic liquid plays a role in T1D, we placed non-obese diabetic (NOD)/ShiLtJt mice on neutral (N) or acidified H2O and monitored the impact on microbial composition and diabetes incidence. NOD-N mice showed an increased development of diabetes, while exhibiting a decrease in Firmicutes and an increase in Bacteroidetes, Actinobacteria, and Proteobacteria from as early as 2 weeks of age. NOD-N mice had a decrease in the levels of Foxp3 expression in CD4(+)Foxp3(+) cells, as well as decreased CD4(+)IL17(+) cells, and a lower ratio of IL17/IFNγ CD4+ T-cells. Our data clearly indicates that a change in the acidity of liquids consumed dramatically alters the intestinal microbiome, the presence of protective Th17 and Treg cells, and the incidence of diabetes. This data suggests that early dietary manipulation of intestinal microbiota may be a novel mechanism to delay T1D onset in genetically pre-disposed individuals.

  20. Increased Protein Stability and Decreased Protein Turnover in the Caenorhabditis elegans Ins/IGF-1 daf-2 Mutant.

    Science.gov (United States)

    Depuydt, Geert; Shanmugam, Nilesh; Rasulova, Madina; Dhondt, Ineke; Braeckman, Bart P

    2016-12-01

    In Caenorhabditis elegans, cellular proteostasis is likely essential for longevity. Autophagy has been shown to be essential for lifespan extension of daf-2 insulin/IGF mutants. Therefore, it can be hypothesized that daf-2 mutants achieve this phenotype by increasing protein turnover. However, such a mechanism would exert a substantial energy cost. By using classical 35 S pulse-chase labeling, we observed that protein synthesis and degradation rates are decreased in young adults of the daf-2 insulin/IGF mutants. Although reduction of protein turnover may be energetically favorable, it may lead to accumulation and aggregation of damaged proteins. As this has been shown not to be the case in daf-2 mutants, another mechanism must exist to maintain proteostasis in this strain. We observed that proteins isolated from daf-2 mutants are more soluble in acidic conditions due to increased levels of trehalose. This suggests that trehalose may decrease the potential for protein aggregation and increases proteostasis in the daf-2 mutants. We postulate that daf-2 mutants save energy by decreasing protein turnover rates and instead stabilize their proteome by trehalose. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America.

  1. Long-Term Sensitization Training in "Aplysia" Decreases the Excitability of a Decision-Making Neuron through a Sodium-Dependent Mechanism

    Science.gov (United States)

    Hernandez, John S.; Wainwright, Marcy L.; Mozzachiodi, Riccardo

    2017-01-01

    In "Aplysia," long-term sensitization (LTS) occurs concurrently with a suppression of feeding. At the cellular level, the suppression of feeding is accompanied by decreased excitability of decision-making neuron B51. We examined the contribution of voltage-gated Na[superscript +] and K[superscript +] channels to B51 decreased…

  2. Brain alterations and clinical symptoms of dementia in diabetes: Abeta/tau-dependent and independent mechanisms

    Directory of Open Access Journals (Sweden)

    Naoyuki eSato

    2014-09-01

    Full Text Available Emerging evidence suggests that diabetes affects cognitive function and increases the incidence of dementia. However, the mechanisms by which diabetes modifies cognitive function still remains unclear. Morphologically, diabetes is associated with neuronal loss in the frontal and temporal lobes including the hippocampus, and aberrant functional connectivity of the posterior cingulate cortex and medial frontal/temporal gyrus. Clinically, diabetic patients show decreased executive function, information processing, planning, visuospatial construction, and visual memory. Therefore, in comparison with the characteristics of AD brain structure and cognition, diabetes seems to affect cognitive function through not only simple AD pathological feature-dependent mechanisms, but also independent mechanisms. As an Abeta/tau-independent mechanism, diabetes compromises cerebrovascular function, increases subcortical infarction and might alter the blood brain barrier (BBB. Diabetes also affects glucose metabolism, insulin signaling and mitochondrial function in the brain. Diabetes also modifies metabolism of Abeta and tau and causes Abeta/tau-dependent pathological changes. Moreover, there is evidence that suggests an interaction between Abeta/tau-dependent and independent mechanisms. Therefore, diabetes modifies cognitive function through Abeta/tau-dependent and independent mechanisms. Interaction between these two mechanisms forms a vicious cycle.

  3. Estrogenic compounds decrease growth hormone receptor abundance and alter osmoregulation in Atlantic salmon

    Science.gov (United States)

    Lerner, Darren T.; Sheridan, Mark A.; McCormick, Stephen D.

    2012-01-01

    Exposure of Atlantic salmon smolts to estrogenic compounds is shown to compromise several aspects of smolt development. We sought to determine the underlying endocrine mechanisms of estrogen impacts on the growth hormone (GH)/insulin-like growth factor I (IGF-I) axis. Smolts in freshwater (FW) were either injected 3 times over 10 days with 2 μg g−1 17β-estradiol (E2) or 150 μg g−1 4-nonylphenol (NP). Seawater (SW)-acclimated fish received intraperitoneal implants of 30 μg g−1 E2 over two weeks. Treatment with these estrogenic compounds increased hepatosomatic index and total plasma calcium. E2 and NP reduced maximum growth hormone binding by 30–60% in hepatic and branchial membranes in FW and SW, but did not alter the dissociation constant. E2 and NP treatment decreased plasma levels of IGF-I levels in both FW and SW. In FW E2 and NP decreased plasma GH whereas in SW plasma GH increased after E2 treatment. Compared to controls, plasma chloride concentrations of E2-treated fish were decreased 5.5 mM in FW and increased 10.5 mM in SW. There was no effect of NP or E2 on gill sodium–potassium adenosine triphosphatase (Na+/K+-ATPase) activity in FW smolts, whereas E2 treatment in SW reduced gill Na+/K+-ATPase activity and altered the number and size of ionocytes. Our data indicate that E2 downregulates the GH/IGF-I-axis and SW tolerance which may be part of its normal function for reproduction and movement into FW. We conclude that the mechanism of endocrine disruption of smolt development by NP is in part through alteration of the GH/IGF-I axis via reduced GH receptor abundance.

  4. Possible mechanisms underlying slow component of V̇O2 on-kinetics in skeletal muscle.

    Science.gov (United States)

    Korzeniewski, Bernard; Zoladz, Jerzy A

    2015-05-15

    A computer model of a skeletal muscle bioenergetic system is used to study the background of the slow component of oxygen consumption V̇O2 on-kinetics in skeletal muscle. Two possible mechanisms are analyzed: inhibition of ATP production by anaerobic glycolysis by progressive cytosol acidification (together with a slow decrease in ATP supply by creatine kinase) and gradual increase of ATP usage during exercise of constant power output. It is demonstrated that the former novel mechanism is potent to generate the slow component. The latter mechanism further increases the size of the slow component; it also moderately decreases metabolite stability and has a small impact on muscle pH. An increase in anaerobic glycolysis intensity increases the slow component, elevates cytosol acidification during exercise, and decreases phosphocreatine and Pi stability, although slightly increases ADP stability. A decrease in the P/O ratio (ATP molecules/O2 molecules) during exercise cannot also be excluded as a relevant mechanism, although this issue requires further study. It is postulated that both the progressive inhibition of anaerobic glycolysis by accumulating protons (together with a slow decrease of the net creatine kinase reaction rate) and gradual increase of ATP usage during exercise, and perhaps a decrease in P/O, contribute to the generation of the slow component of the V̇O2 on-kinetics in skeletal muscle. Copyright © 2015 the American Physiological Society.

  5. The role of confined collagen geometry in decreasing nucleation energy barriers to intrafibrillar mineralization.

    Science.gov (United States)

    Kim, Doyoon; Lee, Byeongdu; Thomopoulos, Stavros; Jun, Young-Shin

    2018-03-06

    Mineralization of collagen is critical for the mechanical functions of bones and teeth. Calcium phosphate nucleation in collagenous structures follows distinctly different patterns in highly confined gap regions (nanoscale confinement) than in less confined extrafibrillar spaces (microscale confinement). Although the mechanism(s) driving these differences are still largely unknown, differences in the free energy for nucleation may explain these two mineralization behaviors. Here, we report on experimentally obtained nucleation energy barriers to intra- and extrafibrillar mineralization, using in situ X-ray scattering observations and classical nucleation theory. Polyaspartic acid, an extrafibrillar nucleation inhibitor, increases interfacial energies between nuclei and mineralization fluids. In contrast, the confined gap spaces inside collagen fibrils lower the energy barrier by reducing the reactive surface area of nuclei, decreasing the surface energy penalty. The confined gap geometry, therefore, guides the two-dimensional morphology and structure of bioapatite and changes the nucleation pathway by reducing the total energy barrier.

  6. Bio-chemo-mechanics of thoracic aortic aneurysms.

    Science.gov (United States)

    Wagenseil, Jessica E

    2018-03-01

    Most thoracic aortic aneurysms (TAAs) occur in the ascending aorta. This review focuses on the unique bio-chemo-mechanical environment that makes the ascending aorta susceptible to TAA. The environment includes solid mechanics, fluid mechanics, cell phenotype, and extracellular matrix composition. Advances in solid mechanics include quantification of biaxial deformation and complex failure behavior of the TAA wall. Advances in fluid mechanics include imaging and modeling of hemodynamics that may lead to TAA formation. For cell phenotype, studies demonstrate changes in cell contractility that may serve to sense mechanical changes and transduce chemical signals. Studies on matrix defects highlight the multi-factorial nature of the disease. We conclude that future work should integrate the effects of bio-chemo-mechanical factors for improved TAA treatment.

  7. The Degradation of Mechanical Properties in Halloysite Nano clay-Polyester Nano composites Exposed in Seawater Environment

    International Nuclear Information System (INIS)

    Saharudin, M.S.; Saharudin, M. Sh.; Wei, J.; Shyha, I.; Inam, F.

    2016-01-01

    Polyester based polymers are extensively used in aggressive marine environments; however, inadequate data is available on the effects of the seawater on the polyester based nano composites mechanical properties. This paper reports the effect of seawater absorption on the mechanical properties degradation of halloysite nano clay-polyester nano composites. Results confirmed that the addition of halloysite nano clay into polyester matrix was found to increase seawater uptake and reduce mechanical properties compared to monolithic polyester. The maximum decreases in microhardness, tensile and flexural properties, and impact toughness were observed in case of 1 wt% nano clay. The microhardness decreased from 107 HV to 41.7 HV (61% decrease). Young s modulus decreased from 0.6 GPa to 0.4 GPa (33% decrease). The flexural modulus decreased from 0.6 GPa to 0.34 GPa (43% decrease). The impact toughness dropped from 0.71 kJ/m"2 to 0.48 kJ/m"2 (32% decrease). Interestingly, the fracture toughnessκ_1C increased with the addition of halloysite nano clay due to the plasticization effect of the resin matrix. SEM images revealed the significant reduction in mechanical properties in case of 1 wt% reinforcement which is attributed to the degradation of the nano clay-matrix interface influenced by seawater absorption and agglomeration of halloysite nano clay.

  8. Nonlinear mechanics a supplement to theoretical mechanics of particles and continua

    CERN Document Server

    Fetter, Alexander L

    2006-01-01

    In their prior Dover book, Theoretical Mechanics of Particles and Continua, Alexander L. Fetter and John Dirk Walecka provided a lucid and self-contained account of classical mechanics, together with appropriate mathematical methods. This supplement-an update of that volume-offers a bridge to contemporary mechanics.The original book's focus on continuum mechanics-with chapters on sound waves in fluids, surface waves on fluids, heat conduction, and viscous fluids-forms the basis for this supplement's discussion of nonlinear continuous systems. Topics include linearized stability analysis; a det

  9. A Study on the quantification of hydration and the strength development mechanism of cementitious materials including amorphous phases by using XRD/Rietveld method

    International Nuclear Information System (INIS)

    Yamada, Kazuo; Hoshino, Seiichi; Hirao, Hiroshi; Yamashita, Hiroki

    2008-01-01

    X-ray diffraction (XRD)/Rietveld method was applied to measure the phase composition of cement. The quantative analysis concerning the progress of hydration was accomplished in an error of about the maximum 2-3% in spite of including amorphous materials such as blast furnace slag, fly ash, silica fume and C-S-H. The influence of the compressive strength on the lime stone fine powder mixture material was studied from the hydration analysis by Rietveld method. The two stages were observed in the strength development mechanism of cement; the hydration promotion of C 3 S in the early stage and the filling of cavities by carbonate hydrate for the longer term. It is useful to use various mixture materials for the formation of the resource recycling society and the durability improvement of concrete. (author)

  10. Interleukin-1 Antagonism Decreases Cortisol Levels in Obese Individuals

    OpenAIRE

    Urwyler, Sandrine Andrea; Schuetz, Philipp; Ebrahimi, Fahim; Donath, Marc Y.; Christ-Crain, Mirjam

    2017-01-01

    Increased cortisol levels in obesity may contribute to the associated metabolic syndrome. In obesity, the activated innate immune system leads to increased interleukin (IL)-1β, which is known to stimulate the release of adrenocorticotropin hormone (ACTH).; We hypothesized that in obesity IL-1 antagonism would result in downregulation of the hypothalamo-pituitary-adrenal axis, leading to decreased cortisol levels.; In this prospective intervention study, we included 73 patients with obesity (b...

  11. Price of forest chips decreasing

    International Nuclear Information System (INIS)

    Hakkila, P.

    2001-01-01

    Use of forest chips was studied in 1999 in the national Puuenergia (Wood Energy) research program. Wood combusting heating plants were questioned about are the main reasons restricting the increment of the use of forest chips. Heating plants, which did not use forest chips at all or which used less than 250 m 3 (625 bulk- m 3 ) in 1999 were excluded. The main restrictions for additional use of forest chips were: too high price of forest chips; lack of suppliers and/or uncertainty of deliveries; technical problems of reception and processing of forest chips; insufficiency of boiler output especially in winter; and unsatisfactory quality of chips. The price of forest chips becomes relatively high because wood biomass used for production of forest chips has to be collected from wide area. Heavy equipment has to be used even though small fragments of wood are processed, which increases the price of chips. It is essential for forest chips that the costs can be pressed down because competition with fossil fuels, peat and industrial wood residues is hard. Low market price leads to the situation in which forest owner gets no price of the raw material, the entrepreneurs operate at the limit of profitability and renovation of machinery is difficult, and forest chips suppliers have to sell the chips at prime costs. Price of forest chips has decreased significantly during the past decade. Nominal price of forest chips is now lower than two decades ago. The real price of chips has decreased even more than the nominal price, 35% during the past decade and 20% during the last five years. Chips, made of small diameter wood, are expensive because the price includes the felling costs and harvesting is carried out at thinning lots. Price is especially high if chips are made of delimbed small diameter wood due to increased the work and reduced amount of chips. The price of logging residue chips is most profitable because cutting does not cause additional costs. Recovery of chips is

  12. Effects of electron irradiation in space environment on thermal and mechanical properties of carbon fiber/bismaleimide composite

    International Nuclear Information System (INIS)

    Yu, Qi; Chen, Ping; Gao, Yu; Ma, Keming; Lu, Chun; Xiong, Xuhai

    2014-01-01

    Highlights: •Electron irradiation decreased the storage modulus finally. •T g decreased first and then increased and finally decreased. •The thermal stability was reduced and then improved and finally decreased. •The changing trend of flexural strength and ILSS are consistent. -- Abstract: The effects of electron irradiation in simulated space environment on thermal and mechanical properties of high performance carbon fiber/bismaleimide composites were investigated. The dynamic mechanical properties of the composites exposed to different fluences of electron irradiation were evaluated by Dynamic mechanical analysis (DMA). Thermogravimetric analysis was applied to investigate the changes in thermal stability of the resin matrix after exposure to electron irradiation. The changes in mechanical properties of the composites were evaluated by flexural strength and interlaminar shear strength (ILSS). The results indicated that electron irradiation in high vacuum had an impact on thermal and mechanical properties of CF/BMI composites, which depends on irradiation fluence. At lower irradiation fluences less than 5 × 10 15 cm −2 , the dynamic storage modulus, cross-linking degree, thermal stability and mechanical properties that were determined by a competing effect between chain scission and cross-linking process, decreased firstly and then increased. While at higher fluences beyond 5 × 10 15 cm −2 , the chain scission process was dominant and thus led to the degradation in thermal and mechanical properties of the composites

  13. A closed-loop analysis of the tubuloglomerular feedback mechanism

    DEFF Research Database (Denmark)

    Holstein-Rathlou, N H

    1991-01-01

    The tubuloglomerular feedback (TGF) mechanism is of importance in the regulation of glomerular filtration rate (GFR). A second mechanism of potential importance is the change in proximal pressure caused by a change, for example, in the rate of proximal fluid reabsorption. The quantitative contrib...... and the late proximal flow rate, with changes in the proximal pressure of lesser importance. Furthermore, under closed-loop conditions the operating point for the TGF mechanism is at or close to the point of maximal sensitivity....... nl/min in steps of 5 nl/min. The open-loop gain (OLG) was 3.1 (range 1.5-9.9, n = 13) at the unperturbed tubular flow rate, and decreased as the tubular flow rate was either increased or decreased. The proximal pressure increased by 0.21 +/- 0.03 mmHg per unit increase in late proximal flow rate (nl...

  14. Assessing mechanical deconstruction of softwood cell wall for cellulosic biofuels production

    Science.gov (United States)

    Jiang, Jinxue

    microscopy analysis detailed the structural alternation of cell wall during mechanical process, including cell fracture and delamination, ultrastructure disintegration, and cell wall fragments amorphization, as coincident with the particle size reduction. It was confirmed with Simons' staining that longer milling time resulted in increased substrate accessibility and porosity. The changes in cellulose molecular structure with respect to degree of polymerization (DP) and crystallinity index (CrI) also benefited to decreasing recalcitrance and facilitating enzymatic hydrolysis of micronized wood.

  15. Neuromuscular compensation mechanisms in vocal fold paralysis and paresis.

    Science.gov (United States)

    Dewan, Karuna; Vahabzadeh-Hagh, Andrew; Soofer, Donna; Chhetri, Dinesh K

    2017-07-01

    Vocal fold paresis and paralysis are common conditions. Treatment options include augmentation laryngoplasty and voice therapy. The optimal management for this condition is unclear. The objective of this study was to assess possible neuromuscular compensation mechanisms that could potentially be used in the treatment of vocal fold paresis and paralysis. In vivo canine model. In an in vivo canine model, we examined three conditions: 1) unilateral right recurrent laryngeal nerve (RLN) paresis and paralysis, 2) unilateral superior laryngeal nerve (SLN) paralysis, and 3) unilateral vagal nerve paresis and paralysis. Phonatory acoustics and aerodynamics were measured in each of these conditions. Effective compensation was defined as improved acoustic and aerodynamic profile. The most effective compensation for all conditions was increasing RLN activation and decreasing glottal gap. Increasing RLN activation increased the percentage of possible phonatory conditions that achieved phonation onset. SLN activation generally led to decreased number of total phonation onset conditions within each category. Differential effects of SLN (cricothyroid [CT] muscle) activation were seen. Ipsilateral SLN activation could compensate for RLN paralysis; normal CT compensated well in unilateral SLN paralysis; and in vagal paresis/paralysis, contralateral SLN and RLN displayed antagonistic relationships. Methods to improve glottal closure should be the primary treatment for large glottal gaps. Neuromuscular compensation is possible for paresis. This study provides insights into possible compensatory mechanisms in vocal fold paresis and paralysis. NA Laryngoscope, 127:1633-1638, 2017. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  16. Metallothionein-I overexpression decreases brain pathology in transgenic mice with astrocyte-targeted expression of interleukin-6

    DEFF Research Database (Denmark)

    Molinero, Amalia; Penkowa, Milena; Hernández, Joaquín

    2003-01-01

    in this report support the idea that the upregulation of MT-I observed in GFAP-IL6 mice is an important mechanism for coping with brain damage. Thus, GFAP-IL6 mice that were crossed with TgMTI transgenic mice (GFAP-IL6xTgMTI) and overexpressed MT-I in the brain showed a decreased upregulation of cytokines...... such as IL-6 and a diminished recruitment and activation of macrophages and T cells throughout the CNS but mainly in the cerebellum. The GFAP-IL6 mice showed clear evidence of increased oxidative stress, which was significantly decreased by MT-I overexpression. Interestingly, MT-I overexpression increased...

  17. Molecular and cellular mechanisms of muscle aging and sarcopenia and effects of electrical stimulation in seniors

    Directory of Open Access Journals (Sweden)

    Laura Barberi

    2015-08-01

    Full Text Available The prolongation of skeletal muscle strength in aging and neuromuscular disease has been the objective of numerous studies employing a variety of approaches. It is generally accepted that cumulative failure to repair damage related to an overall decrease in anabolic processes is a primary cause of functional impairment in muscle. The functional performance of skeletal muscle tissues declines during post- natal life and it is compromised in different diseases, due to an alteration in muscle fiber composition and an overall decrease in muscle integrity as fibrotic invasions replace functional contractile tissue. Characteristics of skeletal muscle aging and diseases include a conspicuous reduction in myofiber plasticity (due to the progressive loss of muscle mass and in particular of the most powerful fast fibers, alteration in muscle-specific transcriptional mechanisms, and muscle atrophy. An early decrease in protein synthetic rates is followed by a later increase in protein degradation, to affect biochemical, physiological, and morphological parameters of muscle fibers during the aging process. Alterations in regenerative pathways also compromise the functionality of muscle tissues. In this review we will give an overview of the work on molecular and cellular mechanisms of aging and sarcopenia and the effects of electrical stimulation in seniors.

  18. Torque decrease during submaximal evoked contractions of the quadriceps muscle is linked not only to muscle fatigue.

    Science.gov (United States)

    Matkowski, Boris; Lepers, Romuald; Martin, Alain

    2015-05-01

    The aim of this study was to analyze the neuromuscular mechanisms involved in the torque decrease induced by submaximal electromyostimulation (EMS) of the quadriceps muscle. It was hypothesized that torque decrease after EMS would reflect the fatigability of the activated motor units (MUs), but also a reduction in the number of MUs recruited as a result of changes in axonal excitability threshold. Two experiments were performed on 20 men to analyze 1) the supramaximal twitch superimposed and evoked at rest during EMS (Experiment 1, n = 9) and 2) the twitch response and torque-frequency relation of the MUs activated by EMS (Experiment 2, n = 11). Torque loss was assessed by 15 EMS-evoked contractions (50 Hz; 6 s on/6 s off), elicited at a constant intensity that evoked 20% of the maximal voluntary contraction (MVC) torque. The same stimulation intensity delivered over the muscles was used to induce the torque-frequency relation and the single electrical pulse evoked after each EMS contraction (Experiment 2). In Experiment 1, supramaximal twitch was induced by femoral nerve stimulation. Torque decreased by ~60% during EMS-evoked contractions and by only ~18% during MVCs. This was accompanied by a rightward shift of the torque-frequency relation of MUs activated and an increase of the ratio between the superimposed and posttetanic maximal twitch evoked during EMS contraction. These findings suggest that the torque decrease observed during submaximal EMS-evoked contractions involved muscular mechanisms but also a reduction in the number of MUs recruited due to changes in axonal excitability. Copyright © 2015 the American Physiological Society.

  19. Decreasing asthma morbidity

    African Journals Online (AJOL)

    1994-12-12

    Dec 12, 1994 ... Apart from the optimal use of drugs, various supplementary methods have been tested to decrease asthma morbidity, usually in patients from reiatively affluent socio-economic backgrounds. A study of additional measures taken in a group of moderate to severe adult asthmatics from very poor socio- ...

  20. Severe geomagnetic storms and Forbush decreases: interplanetary relationships reexamined

    Directory of Open Access Journals (Sweden)

    R. P. Kane

    2010-02-01

    Full Text Available Severe storms (Dst and Forbush decreases (FD during cycle 23 showed that maximum negative Dst magnitudes usually occurred almost simultaneously with the maximum negative values of the Bz component of interplanetary magnetic field B, but the maximum magnitudes of negative Dst and Bz were poorly correlated (+0.28. A parameter Bz(CP was calculated (cumulative partial Bz as sum of the hourly negative values of Bz from the time of start to the maximum negative value. The correlation of negative Dst maximum with Bz(CP was higher (+0.59 as compared to that of Dst with Bz alone (+0.28. When the product of Bz with the solar wind speed V (at the hour of negative Bz maximum was considered, the correlation of negative Dst maximum with VBz was +0.59 and with VBz(CP, 0.71. Thus, including V improved the correlations. However, ground-based Dst values have a considerable contribution from magnetopause currents (several tens of nT, even exceeding 100 nT in very severe storms. When their contribution is subtracted from Dst(nT, the residue Dst* representing true ring current effect is much better correlated with Bz and Bz(CP, but not with VBz or VBz(CP, indicating that these are unimportant parameters and the effect of V is seen only through the solar wind ram pressure causing magnetopause currents. Maximum negative Dst (or Dst* did not occur at the same hour as maximum FD. The time evolutions of Dst and FD were very different. The correlations were almost zero. Basically, negative Dst (or Dst* and FDs are uncorrelated, indicating altogether different mechanism.

  1. Foundations of mechanics

    International Nuclear Information System (INIS)

    Zorski, Henryk; Bazanski, Stanislaw; Gutowski, Roman; Slawianowski, Jan; Wilmanski, Krysztof; Wozniak, Czeslaw

    1992-01-01

    In the last 3 decades the field of mechanics has seen spectacular progress due to the demand for applications in problems of cosmology, thermonuclear fusion, metallurgy, etc. This book provides a broad and thorough overview on the foundations of mechanics. It discusses theoretical mechanics and continuum mechanics, as well as phenomenological thermodynamics, quantum mechanics and relativistic mechanics. Each chapter presents the basic physical facts of interest without going into details and derivations and without using advanced mathematical formalism. The first part constitutes a classical exposition of Lagrange's and Hamiltonian's analytical mechanics on which most of the continuum theory is based. The section on continuum mechanics focuses mainly on the axiomatic foundations, with many pointers for further research in this area. Special attention is given to modern continuum thermodynamics, both for the foundations and applications. A section on quantum mechanics is also included, since the phenomenological description of various quantum phenomena is becoming of increasing importance. refs.; figs.; tabs

  2. Strategies for decreasing nitrous oxide emissions from agricultural sources

    Energy Technology Data Exchange (ETDEWEB)

    Oenema, O. [AB-DLO, Wageningen (Netherlands)

    1999-08-01

    Following the Kyoto Conference of 1997, declaring the urgency of implementing strategies for decreasing greenhouse gas emissions, there are several valid arguments to examine the opportunities for reducing nitrous oxide emissions from agriculture. This paper provides a review of the state-of-the-art of emission reduction, discusses two strategies for decreasing emissions and identifies various gaps in current knowledge in this field and the need for relevant scientific research. The two strategies discussed are (1) increasing the nitrogen use efficiency toward the goal of lowering total nitrogen input, and (2) decreasing the release of nitrous oxide per unit of nitrogen from the processes of nitrification and denitrification. Increasing nitrogen use efficiency is thought to be the most effective strategy. To that end, the paper discusses several practical actions and measures based on decisions at tactical and operational management levels. Knowledge gaps identified include (1) incomplete understanding of nitrogen cycling in farming systems, (2) incomplete quantitative understanding of emission controlling factors, (3) information gap between science and policy, and (4) information gap between science and practice. Appropriate research needs are suggested for each of these areas. It is suggested that the highest priority should be given to improving the understanding of emission controlling factors in the field and on the farm. 23 refs., 2 figs.

  3. Occupational methaemoglobinaemia. Mechanisms of production, features, diagnosis and management including the use of methylene blue.

    Science.gov (United States)

    Bradberry, Sally M

    2003-01-01

    Methaemoglobin is formed by oxidation of ferrous (FeII) haem to the ferric (FeIII) state and the mechanisms by which this occurs are complex. Most cases are due to one of three processes. Firstly, direct oxidation of ferrohaemoglobin, which involves the transfer of electrons from ferrous haem to the oxidising compound. This mechanism proceeds most readily in the absence of oxygen. Secondly, indirect oxidation, a process of co-oxidation which requires haemoglobin-bound oxygen and is involved, for example, in nitrite-induced methaemoglobinaemia. Thirdly, biotransformation of a chemical to an active intermediate that initiates methaemoglobin formation by a variety of mechanisms. This is the means by which most aromatic compounds, such as amino- and nitro-derivatives of benzene, produce methaemoglobin. Methaemoglobinaemia is an uncommon occupational occurrence. Aromatic compounds are responsible for most cases, their lipophilic nature and volatility facilitating absorption during dermal and inhalational exposure, the principal routes implicated in the workplace. Methaemoglobinaemia presents clinically with symptoms and signs of tissue hypoxia. Concentrations around 80% are life-threatening. Features of toxicity may develop over hours or even days when exposure, whether by inhalation or repeated skin contact, is to relatively low concentrations of inducing chemical(s). Not all features observed in patients with methaemoglobinaemia are due to methaemoglobin formation. For example, the intravascular haemolysis caused by oxidising chemicals such as chlorates poses more risk to life than the methaemoglobinaemia that such chemicals induce. If an occupational history is taken, the diagnosis of methaemoglobinaemia should be relatively straightforward. In addition, two clinical observations may help: firstly, the victim is often less unwell than one would expect from the severity of 'cyanosis' and, secondly, the 'cyanosis' is unresponsive to oxygen therapy. Pulse oximetry is

  4. The rate of hypo-osmotic challenge influences regulatory volume decrease (RVD) and mechanical properties of articular chondrocytes.

    Science.gov (United States)

    Wang, Z; Irianto, J; Kazun, S; Wang, W; Knight, M M

    2015-02-01

    Osteoarthritis (OA) is associated with a gradual reduction in the interstitial osmotic pressure within articular cartilage. The aim of this study was to compare the effects of sudden and gradual hypo-osmotic challenge on chondrocyte morphology and biomechanics. Bovine articular chondrocytes were exposed to a reduction in extracellular osmolality from 327 to 153 mOsmol/kg applied either suddenly (osmotic stress, 66% of chondrocytes exhibited an increase in diameter followed by RVD, whilst 25% showed no RVD. By contrast, cells exposed to gradual hypo-osmotic stress exhibited reduced cell swelling without subsequent RVD. There was an increase in the equilibrium modulus for cells exposed to sudden hypo-osmotic stress. However, gradual hypo-osmotic challenge had no effect on cell mechanical properties. This cell stiffening response to sudden hypo-osmotic challenge was abolished when actin organization was disrupted with cytochalasin D or RVD inhibited with REV5901. Both sudden and gradual hypo-osmotic challenge reduced cortical F-actin distribution and caused chromatin decondensation. Sudden hypo-osmotic challenge increases chondrocyte mechanics by activation of RVD and interaction with the actin cytoskeleton. Moreover, the rate of hypo-osmotic challenge is shown to have a profound effect on chondrocyte morphology and biomechanics. This important phenomenon needs to be considered when studying the response of chondrocytes to pathological hypo-osmotic stress. Copyright © 2014 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  5. Fasting Increases Human Skeletal Muscle Net Phenylalanine Release and This Is Associated with Decreased mTOR Signaling

    Science.gov (United States)

    Vendelbo, Mikkel Holm; Møller, Andreas Buch; Christensen, Britt; Nellemann, Birgitte; Clasen, Berthil Frederik Forrest; Nair, K. Sreekumaran; Jørgensen, Jens Otto Lunde; Jessen, Niels; Møller, Niels

    2014-01-01

    Aim Fasting is characterised by profound changes in energy metabolism including progressive loss of body proteins. The underlying mechanisms are however unknown and we therefore determined the effects of a 72-hour-fast on human skeletal muscle protein metabolism and activation of mammalian target of rapamycin (mTOR), a key regulator of cell growth. Methods Eight healthy male volunteers were studied twice: in the postabsorptive state and following 72 hours of fasting. Regional muscle amino acid kinetics was measured in the forearm using amino acid tracers. Signaling to protein synthesis and breakdown were assessed in skeletal muscle biopsies obtained during non-insulin and insulin stimulated conditions on both examination days. Results Fasting significantly increased forearm net phenylalanine release and tended to decrease phenylalanine rate of disappearance. mTOR phosphorylation was decreased by ∼50% following fasting, together with reduced downstream phosphorylation of 4EBP1, ULK1 and rpS6. In addition, the insulin stimulated increase in mTOR and rpS6 phosphorylation was significantly reduced after fasting indicating insulin resistance in this part of the signaling pathway. Autophagy initiation is in part regulated by mTOR through ULK1 and fasting increased expression of the autophagic marker LC3B-II by ∼30%. p62 is degraded during autophagy but was increased by ∼10% during fasting making interpretation of autophagic flux problematic. MAFbx and MURF1 ubiquitin ligases remained unaltered after fasting indicating no change in protesomal protein degradation. Conclusions Our results show that during fasting increased net phenylalanine release in skeletal muscle is associated to reduced mTOR activation and concomitant decreased downstream signaling to cell growth. PMID:25020061

  6. Fasting increases human skeletal muscle net phenylalanine release and this is associated with decreased mTOR signaling.

    Directory of Open Access Journals (Sweden)

    Mikkel Holm Vendelbo

    Full Text Available Fasting is characterised by profound changes in energy metabolism including progressive loss of body proteins. The underlying mechanisms are however unknown and we therefore determined the effects of a 72-hour-fast on human skeletal muscle protein metabolism and activation of mammalian target of rapamycin (mTOR, a key regulator of cell growth.Eight healthy male volunteers were studied twice: in the postabsorptive state and following 72 hours of fasting. Regional muscle amino acid kinetics was measured in the forearm using amino acid tracers. Signaling to protein synthesis and breakdown were assessed in skeletal muscle biopsies obtained during non-insulin and insulin stimulated conditions on both examination days.Fasting significantly increased forearm net phenylalanine release and tended to decrease phenylalanine rate of disappearance. mTOR phosphorylation was decreased by ∼50% following fasting, together with reduced downstream phosphorylation of 4EBP1, ULK1 and rpS6. In addition, the insulin stimulated increase in mTOR and rpS6 phosphorylation was significantly reduced after fasting indicating insulin resistance in this part of the signaling pathway. Autophagy initiation is in part regulated by mTOR through ULK1 and fasting increased expression of the autophagic marker LC3B-II by ∼30%. p62 is degraded during autophagy but was increased by ∼10% during fasting making interpretation of autophagic flux problematic. MAFbx and MURF1 ubiquitin ligases remained unaltered after fasting indicating no change in protesomal protein degradation.Our results show that during fasting increased net phenylalanine release in skeletal muscle is associated to reduced mTOR activation and concomitant decreased downstream signaling to cell growth.

  7. The Mechanical Properties of Recycled Polyethylene-Polyethylene Terephthalate Composites

    Directory of Open Access Journals (Sweden)

    Ehsan Avazverdi

    2015-02-01

    Full Text Available Polyethylene terephthalate (PET, one of the thermoplastic polymers, is encountered with arduous problems in its recycling. After recycling, its mechanical properties drop dramatically and therefore it cannot be used to produce the products as virgin PET does. Polyethylene is a thermoplastic polymer which can be easily recycled using the conventional recycling processes. The decreased mechanical properties of virgin polyethylene due to the environmental factors can be improved by reinforcing fillers. In this paper, we studied the effects of adding recycled polyethylene terephthalate (rPET as a filler, in various amounts with different sizes, on the physical and mechanical properties of recycled polyethylene. Composite samples were prepared using an internal mixer at temperature 185°C, well below rPET melting point (250°C, and characterized by their mechanical properties. To improve the compatibility between different components, PE grafted with maleic anhydride was added as a coupling agent in all the compositions under study. The mechanical properties of the prepared samples were performed using the tensile strength, impact strength, surface hardness and melt flow index (MFI tests. To check the dispersity of the polyethylene terephthalate powder in the polyethylene matrix, light microscopy was used. The results showed that the addition of rPET improved the tensile energy, tensile modulus and surface hardness of the composites while reduced the melt flow index, elongation-at-yield, tensile strength and fracture energy of impact test. We could conclude that with increasing rPET percentage in the recycled polyethylene matrix, the composite became brittle, in other words it decreased the plastic behavior of recycled polyethylene. Decreasing particle size led to higher surface contacts, increased the mechanical properties and made the composite more brittle. The light microscopy micrographs of the samples showed a good distribution of small r

  8. DETERMINATION OF DEFENSE MECHANISM IN Phaseolus ...

    African Journals Online (AJOL)

    Administrator

    Field studies were conducted to determine the role of defense mechanism in various parameters associated with plant protection subjected to UV-B radiation in Phaseolus trilobus Ait. commonly used as green manure and fodder. Spectrophotometric analysis showed that UV-B radiation decreases the chlorophyll content ...

  9. Crack assessment of pipe under combined thermal and mechanical load

    International Nuclear Information System (INIS)

    Song, Tae Kwang; Kim, Yun Jae

    2009-01-01

    In this paper, J-integral and transient C(t)-integral, which were key parameters in low temperature and high temperature fracture mechanics, under combined thermal and mechanical load were estimated via 3-dimensional finite element analyses. Various type of thermal and mechanical load, material hardening were considered to decrease conservatism in existing solutions. As a results, V-factor and redistribution time for combined thermal and mechanical load were proposed to calculate J-integral and C(t)-integral, respectively.

  10. Design of the incentive mechanism in electricity auction market based on the signaling game theory

    International Nuclear Information System (INIS)

    Liu, Zhen; Zhang, Xiliang; Lieu, Jenny

    2010-01-01

    At present, designing a proper bidding mechanism to decrease the generators' market power is considered to be one of the key approaches to deepen the reform of the electricity market. Based on the signaling game theory, the paper analyzes the main electricity bidding mechanisms in the electricity auction markets and considers the degree of information disturbance as an important factor for evaluating bidding mechanisms. Under the above studies, an incentive electricity bidding mechanism defined as the Generator Semi-randomized Matching (GSM) mechanism is proposed. In order to verify the new bidding mechanism, this paper uses the Swarm platform to develop a simulation model based on the multi-agents. In the simulation model, the generators and purchasers use the partly superior study strategy to adjust their price and their electricity quantity. Then, the paper examines a simulation experiment of the GSM bidding mechanism and compares it to a simulation of the High-Low Matching (HLM) bidding mechanism. According to the simulation results, several conclusions can be drawn when comparing the proposed GSM bidding mechanism to the equilibrium state of HLM: the clearing price decreases, the total transaction volume increases, the profits of electricity generators decreases, and the overall benefits of purchasers increases. Index Terms - signaling game; semi-randomized matching; high-low match. (author)

  11. Dynamic microvesicle release and clearance within the cardiovascular system: triggers and mechanisms.

    Science.gov (United States)

    Ayers, Lisa; Nieuwland, Rienk; Kohler, Malcolm; Kraenkel, Nicolle; Ferry, Berne; Leeson, Paul

    2015-12-01

    Interest in cell-derived microvesicles (or microparticles) within cardiovascular diagnostics and therapeutics is rapidly growing. Microvesicles are often measured in the circulation at a single time point. However, it is becoming clear that microvesicle levels both increase and decrease rapidly in response to certain stimuli such as hypoxia, acute cardiac stress, shear stress, hypertriglyceridaemia and inflammation. Consequently, the levels of circulating microvesicles will reflect the balance between dynamic mechanisms for release and clearance. The present review describes the range of triggers currently known to lead to microvesicle release from different cellular origins into the circulation. Specifically, the published data are used to summarize the dynamic impact of these triggers on the degree and rate of microvesicle release. Secondly, a summary of the current understanding of microvesicle clearance via different cellular systems, including the endothelial cell and macrophage, is presented, based on reported studies of clearance in experimental models and clinical scenarios, such as transfusion or cardiac stress. Together, this information can be used to provide insights into potential underlying biological mechanisms that might explain the increases or decreases in circulating microvesicle levels that have been reported and help to design future clinical studies. © 2015 Authors; published by Portland Press Limited.

  12. Equilibrium statistical mechanics

    CERN Document Server

    Jackson, E Atlee

    2000-01-01

    Ideal as an elementary introduction to equilibrium statistical mechanics, this volume covers both classical and quantum methodology for open and closed systems. Introductory chapters familiarize readers with probability and microscopic models of systems, while additional chapters describe the general derivation of the fundamental statistical mechanics relationships. The final chapter contains 16 sections, each dealing with a different application, ordered according to complexity, from classical through degenerate quantum statistical mechanics. Key features include an elementary introduction t

  13. Mindfulness Training Targets Neurocognitive Mechanisms of Addiction at the Attention-Appraisal-Emotion Interface

    Science.gov (United States)

    Garland, Eric L.; Froeliger, Brett; Howard, Matthew O.

    2014-01-01

    Prominent neuroscience models suggest that addictive behavior occurs when environmental stressors and drug-relevant cues activate a cycle of cognitive, affective, and psychophysiological mechanisms, including dysregulated interactions between bottom-up and top-down neural processes, that compel the user to seek out and use drugs. Mindfulness-based interventions (MBIs) target pathogenic mechanisms of the risk chain linking stress and addiction. This review describes how MBIs may target neurocognitive mechanisms of addiction at the attention-appraisal-emotion interface. Empirical evidence is presented suggesting that MBIs ameliorate addiction by enhancing cognitive regulation of a number of key processes, including: clarifying cognitive appraisal and modulating negative emotions to reduce perseverative cognition and emotional arousal; enhancing metacognitive awareness to regulate drug-use action schema and decrease addiction attentional bias; promoting extinction learning to uncouple drug-use triggers from conditioned appetitive responses; reducing cue-reactivity and increasing cognitive control over craving; attenuating physiological stress reactivity through parasympathetic activation; and increasing savoring to restore natural reward processing. Treatment and research implications of our neurocognitive framework are presented. We conclude by offering a temporally sequenced description of neurocognitive processes targeted by MBIs through a hypothetical case study. Our neurocognitive framework has implications for the optimization of addiction treatment with MBIs. PMID:24454293

  14. MECHANISMS IN ENDOCRINOLOGY

    DEFF Research Database (Denmark)

    Allin, Kristine H.; Nielsen, Trine; Pedersen, Oluf.

    2015-01-01

    Perturbations of the composition and function of the gut microbiota have been associated with metabolic disorders including obesity, insulin resistance and type 2 diabetes. Studies on mice have demonstrated several underlying mechanisms including host signalling through bacterial lipopolysacchari...

  15. Mechanics rules cell biology

    Directory of Open Access Journals (Sweden)

    Wang James HC

    2010-07-01

    Full Text Available Abstract Cells in the musculoskeletal system are subjected to various mechanical forces in vivo. Years of research have shown that these mechanical forces, including tension and compression, greatly influence various cellular functions such as gene expression, cell proliferation and differentiation, and secretion of matrix proteins. Cells also use mechanotransduction mechanisms to convert mechanical signals into a cascade of cellular and molecular events. This mini-review provides an overview of cell mechanobiology to highlight the notion that mechanics, mainly in the form of mechanical forces, dictates cell behaviors in terms of both cellular mechanobiological responses and mechanotransduction.

  16. Three-space from quantum mechanics

    International Nuclear Information System (INIS)

    Chew, G.F.; Stapp, H.P.

    1988-01-01

    We formulate a discrete quantum-mechanical precursor to spacetime geometry. The objective is to provide the foundation for a quantum mechanics that is rooted exclusively in quantum-mechanical concepts, with all classical features, including the three-dimensional spatial continuum, emerging dynamically

  17. Home interventions are effective at decreasing indoor nitrogen dioxide concentrations.

    Science.gov (United States)

    Paulin, L M; Diette, G B; Scott, M; McCormack, M C; Matsui, E C; Curtin-Brosnan, J; Williams, D L; Kidd-Taylor, A; Shea, M; Breysse, P N; Hansel, N N

    2014-08-01

    Nitrogen dioxide (NO2 ), a by-product of combustion produced by indoor gas appliances such as cooking stoves, is associated with respiratory symptoms in those with obstructive airways disease. We conducted a three-armed randomized trial to evaluate the efficacy of interventions aimed at reducing indoor NO2 concentrations in homes with unvented gas stoves: (i) replacement of existing gas stove with electric stove; (ii) installation of ventilation hood over existing gas stove; and (iii) placement of air purifiers with high-efficiency particulate air (HEPA) and carbon filters. Home inspection and NO2 monitoring were conducted at 1 week pre-intervention and at 1 week and 3 months post-intervention. Stove replacement resulted in a 51% and 42% decrease in median NO2 concentration at 3 months of follow-up in the kitchen and bedroom, respectively (P = 0.01, P = 0.01); air purifier placement resulted in an immediate decrease in median NO2 concentration in the kitchen (27%, P kitchen (20%, P = 0.05). NO2 concentrations in the kitchen and bedroom did not significantly change following ventilation hood installation. Replacing unvented gas stoves with electric stoves or placement of air purifiers with HEPA and carbon filters can decrease indoor NO2 concentrations in urban homes. Several combustion sources unique to the residential indoor environment, including gas stoves, produce nitrogen dioxide (NO2), and higher NO2 concentrations, are associated with worse respiratory morbidity in people with obstructive lung disease. A handful of studies have modified the indoor environment by replacing unvented gas heaters; this study, to our knowledge, is the first randomized study to target unvented gas stoves. The results of this study show that simple home interventions, including replacement of an unvented gas stove with an electric stove or placement of HEPA air purifiers with carbon filters, can significantly decrease indoor NO2 concentrations. © 2013 John Wiley & Sons A

  18. Micro electro-mechanical heater

    Science.gov (United States)

    Oh, Yunje; Asif, Syed Amanulla Syed; Cyrankowski, Edward; Warren, Oden Lee

    2016-04-19

    A sub-micron scale property testing apparatus including a test subject holder and heating assembly. The assembly includes a holder base configured to couple with a sub-micron mechanical testing instrument and electro-mechanical transducer assembly. The assembly further includes a test subject stage coupled with the holder base. The test subject stage is thermally isolated from the holder base. The test subject stage includes a stage subject surface configured to receive a test subject, and a stage plate bracing the stage subject surface. The stage plate is under the stage subject surface. The test subject stage further includes a heating element adjacent to the stage subject surface, the heating element is configured to generate heat at the stage subject surface.

  19. Elastomer Nanocomposites Based on Butadiene Rubber, Nanoclay and Epoxy-Polyester Hybrid: Microstructure and Mechanical Properties

    OpenAIRE

    Sepideh Zoghi; Ghasem Naderi; Gholam Reza Bakhshandeh; Morteza Ehsani; Shirin Shokoohi

    2013-01-01

    Nanocomposites based on butadiene rubber (BR), (0, 3, 5 and 7 phr) organoclay (Cloisite 15A) and (0, 10, 20, 30, 40 phr) powder coating wastes, i.e., epoxypolyester hybrid (EPH) were prepared using a laboratory-scale internal mixer in order to study the effect of organoclay and EPH content on the mechanical and morphological properties of the nanocomposite samples. Cure characteristics of the prepared compounds including optimum cure time (t90) and scorch time (t5) depicted a decrease in both...

  20. Co-ordinate decrease in the expression of the mitochondrial genome and nuclear genes for mitochondrial proteins in the lactation-induced mitochondrial hypotrophy of rat brown fat.

    Science.gov (United States)

    Martin, I; Giralt, M; Viñas, O; Iglesias, R; Mampel, T; Villarroya, F

    1995-01-01

    The relative abundance of the mitochondrial-encoded mRNAs for cytochrome c oxidase subunit II and NADH dehydrogenase subunit I was lower in brown adipose tissue (BAT) from lactating rats than in virgin controls. This decrease was in parallel with a significant decrease in mitochondrial 16 S rRNA levels and in the relative content of mitochondrial DNA in the tissue. BAT from lactating rats showed lowered mRNA expression of the nuclear-encoded genes for the mitochondrial uncoupling protein, subunit IV of cytochrome c oxidase and the adenine nucleotide translocase isoforms ANT1 and ANT2, whereas mRNA levels for the ATP synthase beta-subunit were unchanged. However, the relative content of this last protein was lower in BAT mitochondria from lactating rats than in virgin controls. It is concluded that lactation-induced mitochondrial hypotrophy in BAT is associated with a co-ordinate decrease in the expression of the mitochondrial genome and nuclear genes for mitochondrial proteins. This decrease is caused by regulatory events acting at different levels, including pre- and post-transcriptional regulation. BAT appears to be a useful model with which to investigate the molecular mechanisms involved in the co-ordination of the expression of the mitochondrial and nuclear genomes during mitochondrial biogenesis. Images Figure 1 Figure 2 PMID:8948428

  1. Mechanical behaviour׳s evolution of a PLA-b-PEG-b-PLA triblock copolymer during hydrolytic degradation.

    Science.gov (United States)

    Breche, Q; Chagnon, G; Machado, G; Girard, E; Nottelet, B; Garric, X; Favier, D

    2016-07-01

    PLA-b-PEG-b-PLA is a biodegradable triblock copolymer that presents both the mechanical properties of PLA and the hydrophilicity of PEG. In this paper, physical and mechanical properties of PLA-b-PEG-b-PLA are studied during in vitro degradation. The degradation process leads to a mass loss, a decrease of number average molecular weight and an increase of dispersity index. Mechanical experiments are made in a specific experimental set-up designed to create an environment close to in vivo conditions. The viscoelastic behaviour of the material is studied during the degradation. Finally, the mechanical behaviour is modelled with a linear viscoelastic model. A degradation variable is defined and included in the model to describe the hydrolytic degradation. This variable is linked to physical parameters of the macromolecular polymer network. The model allows us to describe weak deformations but become less accurate for larger deformations. The abilities and limits of the model are discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Fuel starvation. Irreversible degradation mechanisms in PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Rangel, Carmen M.; Silva, R.A.; Travassos, M.A.; Paiva, T.I.; Fernandes, V.R. [LNEG, National Laboratory for Energy and Geology, Lisboa (Portugal). UPCH Fuel Cells and Hydrogen Unit

    2010-07-01

    PEM fuel cell operates under very aggressive conditions in both anode and cathode. Failure modes and mechanism in PEM fuel cells include those related to thermal, chemical or mechanical issues that may constrain stability, power and lifetime. In this work, the case of fuel starvation is examined. The anode potential may rise to levels compatible with the oxidization of water. If water is not available, oxidation of the carbon support will accelerate catalyst sintering. Diagnostics methods used for in-situ and ex-situ analysis of PEM fuel cells are selected in order to better categorize irreversible changes of the cell. Electrochemical Impedance Spectroscopy (EIS) is found instrumental in the identification of fuel cell flooding conditions and membrane dehydration associated to mass transport limitations / reactant starvation and protonic conductivity decrease, respectively. Furthermore, it indicates that water electrolysis might happen at the anode. Cross sections of the membrane catalyst and gas diffusion layers examined by scanning electron microscopy indicate electrode thickness reduction as a result of reactions taking place during hydrogen starvation. Catalyst particles are found to migrate outwards and located on carbon backings. Membrane degradation in fuel cell environment is analyzed in terms of the mechanism for fluoride release which is considered an early predictor of membrane degradation. (orig.)

  3. Paeoniflorin improves cardiac function and decreases adverse postinfarction left ventricular remodeling in a rat model of acute myocardial infarction

    Directory of Open Access Journals (Sweden)

    Chen H

    2018-04-01

    Full Text Available Hengwen Chen,* Yan Dong,* Xuanhui He, Jun Li, Jie Wang Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China *These authors contributed equally to this work Background: Paeoniflorin (PF is the active component of Paeonia lactiflora Pall. or Paeonia veitchii Lynch. This study was, therefore, aimed to evaluate the improvement and mechanism of the PF on ventricular remodeling in rats with acute myocardial infarction (AMI. Materials and methods: In this study, AMI model was established by ligating the anterior descending coronary artery in Wistar rats. After 4 weeks gavage of PF, the apparent signs and the left ventricle weight index of Wistar rats were observed. The left ventricular ejection fraction (LVEF was evaluated by Doppler ultrasonography. Changes in cardiac morphology were observed by pathologic examination, and apoptosis was observed by the terminal deoxynucleotidyl transferase dUTP nick end labeling assay. In addition, enzyme-linked immunosorbent assay was used to detect the expression of tumor necrosis factor-α (TNF-α, interleukin-6 (IL-6 interleukin-10 (IL-10 and brain natriuretic peptide (BNP. Immunohistochemistry and Western blot method were applied to detect Caspase-3 and Caspase-9. Results: Compared with the model control, the survival conditions of rats in all treatment groups were generally improved after PF treatment. LVEF was significantly increased, and both left ventricular end-diastolic inner diameter and left ventricular end-systolic inner diameter were significantly reduced. Moreover, pathologic examination showed that the myocardium degeneration of the rats treated with PF was decreased, including neater arrangement, more complete myofilament, more uniform gap and less interstitial collagen fibers. Furthermore, the mitochondrial structure of cardiomyocytes was significantly improved. The ultrastructure was clear, and the arrangement of myofilament was more regular. Also, the expression of

  4. Preterm birth research: from disillusion to the search for new mechanisms.

    Science.gov (United States)

    Buekens, P; Klebanoff, M

    2001-07-01

    No intervention has been shown to decrease the rate of preterm birth. There was thus a need for a new research agenda. The new emphasis is on social and biological mechanisms, including the impact on stress of racism and poverty, and gene-environment interactions. New markers are also under study, and pertain mostly to infection and inflammation. The impact on preterm birth of broad contextual factors, such as universal social protection, will need to be explored further. The recent trends toward increased rates of preterm births deserve much attention. New policies and interventions to decrease medically indicated preterm births should be urgently developed and evaluated. The failure to prevent preterm deliveries has been so disappointing that there is a risk that high rates of preterm births will be seen as unavoidable. The research programme launched by March of Dimes is a timely effort to foster new enthusiasm, to test new ideas and to generate new hypotheses.

  5. Decreased Time from 9-1-1 Call to PCI among Patients Experiencing STEMI Results in a Decreased One Year Mortality.

    Science.gov (United States)

    Studnek, Jonathan R; Infinger, Allison; Wilson, Hadley; Niess, Gary; Jackson, Patrick; Swanson, Doug

    2018-03-29

    The impact on mortality due to prompt recognition of ST-segment Elevation Myocardial Infarction (STEMI) patients by EMS has not been well described. The objective of this study was to describe the association between the time interval, 9-1-1 call to percutaneous intervention (PCI), and mortality at one year. This retrospective analysis included patients that were transported by EMS as a "code STEMI" and underwent PCI.  Total time from 9-1-1 call to PCI was calculated for each patient and was the independent variable of interest. Each patient's mortality status at one year was the outcome variable, collected by querying medical records and the national death index. Confounding variables were abstracted from hospital records. Logistic regression was conducted to determine the likelihood of survival given differences in time to PCI. A total of 550 patients were included in the analyses of which 68% were male with an average age 59.8 (SD 12.8). Mean reperfusion time was 81.8 min (SD 20.0) and was significantly lower in patients alive at one year (80.8 min, SD 19.7) vs. deceased at one year (93.9 min, SD 19.6), respectively. Odds of survival at one year decreased by 3% (OR 0.97; 95% CI 0.96-0.99) for every one minute increase in time to PCI. This relationship practically represents a 30% increase in mortality for every 10 minute delay from 9-1-1 call to PCI. The model produced suggests that a linear relationship exists between time to PCI and mortality in the prehospital environment with the probability of survival decreasing significantly as time to PCI increases.

  6. The collective acceleration mechanism of solar cosmic rays

    International Nuclear Information System (INIS)

    Gershtein, S.S.

    1978-01-01

    The collective acceleration mechanism of protons and nuclei in solar flares, which lies in the fact that nuclei are trapped by electron bunches moving along the opened lines of force of the decreasing magnetic field of solar sports, is discussed. The proposed mechanism explains in a natural way the electron and nucleus energy ratio observed during flares. Electron acceleration in the current layers up to energies of the order of a MeV is discussed as a mechanism of electron pulsed injection. The collective acceleration mechanism can be realized at a comparatively small density of accelerated electrons nsub(e) approximately equal to 10 2 10 4 cm -3

  7. Chemotherapy-induced cognitive impairment is associated with decreases in cell proliferation and histone modifications

    Directory of Open Access Journals (Sweden)

    Briones Teresita L

    2011-12-01

    Full Text Available Abstract Background In this study, we examined the effects of cyclophosphamide, methothrexate, and 5-Fluorouracil (CMF drug combination on various aspects of learning and memory. We also examined the effects of CMF on cell proliferation and chromatin remodeling as possible underlying mechanisms to explain chemotherapy-associated cognitive dysfunction. Twenty-four adult female Wistar rats were included in the study and had minimitter implantation for continuous activity monitoring two weeks before the chemotherapy regimen was started. Once baseline activity data were collected, rats were randomly assigned to receive either CMF or saline injections given intraperitoneally. Treatments were given once a week for a total of 4 weeks. Two weeks after the last injection, rats were tested in the water maze for spatial learning and memory ability as well as discrimination learning. Bromodeoxyuridine (BrdU injection was given at 100 mg/Kg intraperitoneally 4 hours prior to euthanasia to determine hippocampal cell proliferation while histone acetylation and histone deacetylase activity was measured to determine CMF effects on chromatin remodeling. Results Our data showed learning and memory impairment following CMF administration independent of the drug effects on physical activity. In addition, CMF-treated rats showed decreased hippocampal cell proliferation, associated with increased histone acetylation and decreased histone deacetylase activity. Conclusions These results suggest the negative consequences of chemotherapy on brain function and that anti-cancer drugs can adversely affect the self-renewal potential of neural progenitor cells and also chromatin remodeling in the hippocampus. The significance of our findings lie on the possible usefulness of animal models in addressing the clinical phenomenon of 'chemobrain.'

  8. Mechanical spectral shift reactor

    International Nuclear Information System (INIS)

    Sherwood, D.G.; Wilson, J.F.; Salton, R.B.; Fensterer, H.F.

    1982-01-01

    A mechanical spectral shift reactor comprises apparatus for inserting and withdrawing water displacer elements from the reactor core for selectively changing the water-moderator volume in the core thereby changing the reactivity of the core. The apparatus includes drive mechanisms for moving the displacer elements relative to the core and guide mechanisms for guiding the displacer rods through the reactor vessel. (author)

  9. Transient Exciplex Formation Electron Transfer Mechanism

    Directory of Open Access Journals (Sweden)

    Michael G. Kuzmin

    2011-01-01

    Full Text Available Transient exciplex formation mechanism of excited-state electron transfer reactions is analyzed in terms of experimental data on thermodynamics and kinetics of exciplex formation and decay. Experimental profiles of free energy, enthalpy, and entropy for transient exciplex formation and decay are considered for several electron transfer reactions in various solvents. Strong electronic coupling in contact pairs of reactants causes substantial decrease of activation energy relative to that for conventional long-range ET mechanism, especially for endergonic reactions, and provides the possibility for medium reorganization concatenated to gradual charge shift in contrast to conventional preliminary medium and reactants reorganization. Experimental criteria for transient exciplex formation (concatenated mechanism of excited-state electron transfer are considered. Available experimental data show that this mechanism dominates for endergonic ET reactions and provides a natural explanation for a lot of known paradoxes of ET reactions.

  10. Eucalyptus tolerance mechanisms to lanthanum and cerium: subcellular distribution, antioxidant system and thiol pools.

    Science.gov (United States)

    Shen, Yichang; Zhang, Shirong; Li, Sen; Xu, Xiaoxun; Jia, Yongxia; Gong, Guoshu

    2014-12-01

    Guanglin 9 (Eucalyptus grandis × Eucalyptus urophlla) and Eucalyptus grandis 5 are two eucalyptus species which have been found to grow normally in soils contaminated with lanthanum and cerium, but the tolerance mechanisms are not clear yet. In this study, a pot experiment was conducted to investigate the tolerance mechanisms of the eucalyptus to lanthanum and cerium. Cell walls stored 45.40-63.44% of the metals under lanthanum or cerium stress. Peroxidase and catalase activities enhanced with increasing soil La or Ce concentrations up to 200 mg kg(-1), while there were no obvious changes in glutathione and ascorbate concentrations. Non-protein thiols concentrations increased with increasing treatment levels up to 200 mg kg(-1), and then decreased. Phytochelatins concentrations continued to increase under La or Ce stress. Therefore, the two eucalyptus species are La and Ce tolerant plants, and the tolerance mechanisms include cell wall deposition, antioxidant system response, and thiol compound synthesis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Decreased Rac1 Cardiac Expression in Nitrofen-Induced Diaphragmatic Hernia.

    Science.gov (United States)

    Nakamura, Hiroki; Zimmer, Julia; Puri, Prem

    2018-02-01

     The high incidence of cardiac malformations in humans and animal models with congenital diaphragmatic hernia (CDH) is well known. The hypoplasia of left heart is common among fetuses with CDH and has been identified as a poor prognostic factor. However, the precise mechanisms underlying cardiac maldevelopment in CDH are not fully understood. Ras-related C3 botulinum toxin substrate 1 (Rac1) plays a key role in cardiomyocyte polarity and embryonic heart development. Deficiency of Rac1 is reported to impair elongation and cytoskeletal organization of cardiomyocytes, resulting in congenital cardiac defects. We designed this study to test the hypothesis that Rac1 expression is downregulated in the developing hearts of rats with nitrofen-induced CDH.  Following ethical approval (REC1103), time-pregnant Sprague Dawley rats received nitrofen or vehicle on gestational day 9 (D9). Fetuses were sacrificed on D18 and D21 and divided into CDH and control (CTRL) ( n  = 6 for each group and time point). Quantitative real-time polymerase chain reaction (qRT-PCR), Western blotting, and confocal-immunofluorescence microscopy were performed to detect cardiac gene and protein expression of Rac1.  qRT-PCR and Western blot analysis revealed that Rac1 expression was significantly decreased in the CDH group compared with controls ( p  Rac1 cardiac expression was markedly decreased in the CDH group compared with controls.  Decreased cardiac Rac1 expression in the nitrofen-induced CDH suggests that Rac1 deficiency during morphogenesis may impair structural cardiac remodeling, resulting in congenital cardiac defects. Georg Thieme Verlag KG Stuttgart · New York.

  12. Microbial Biofertilizer Decreases Nicotine Content by Improving Soil Nitrogen Supply.

    Science.gov (United States)

    Shang, Cui; Chen, Anwei; Chen, Guiqiu; Li, Huanke; Guan, Song; He, Jianmin

    2017-01-01

    Biofertilizers have been widely used in many countries for their benefit to soil biological and physicochemical properties. A new microbial biofertilizer containing Phanerochaete chrysosporium and Bacillus thuringiensis was prepared to decrease nicotine content in tobacco leaves by regulating soil nitrogen supply. Soil NO 3 - -N, NH 4 + -N, nitrogen supply-related enzyme activities, and nitrogen accumulation in plant leaves throughout the growing period were investigated to explore the mechanism of nicotine reduction. The experimental results indicated that biofertilizer can reduce the nicotine content in tobacco leaves, with a maximum decrement of 16-18 % in mature upper leaves. In the meantime, the total nitrogen in mature lower and middle leaves increased with the application of biofertilizer, while an opposite result was observed in upper leaves. Protein concentration in leaves had similar fluctuation to that of total nitrogen in response to biofertilizer. NO 3 - -N content and nitrate reductase activity in biofertilizer-amended soil increased by 92.3 and 42.2 %, respectively, compared to those in the control, whereas the NH 4 + -N and urease activity decreased by 37.8 and 29.3 %, respectively. Nitrogen uptake was improved in the early growing stage, but this phenomenon was not observed during the late growth period. Nicotine decrease is attributing to the adjustment of biofertilizer in soil nitrogen supply and its uptake in tobacco, which result in changes of nitrogen content as well as its distribution in tobacco leaves. The application of biofertilizer containing P. chrysosporium and B. thuringiensis can reduce the nicotine content and improve tobacco quality, which may provide some useful information for tobacco cultivation.

  13. Soil Penetration by Earthworms and Plant Roots--Mechanical Energetics of Bioturbation of Compacted Soils.

    Directory of Open Access Journals (Sweden)

    Siul Ruiz

    Full Text Available We quantify mechanical processes common to soil penetration by earthworms and growing plant roots, including the energetic requirements for soil plastic displacement. The basic mechanical model considers cavity expansion into a plastic wet soil involving wedging by root tips or earthworms via cone-like penetration followed by cavity expansion due to pressurized earthworm hydroskeleton or root radial growth. The mechanical stresses and resulting soil strains determine the mechanical energy required for bioturbation under different soil hydro-mechanical conditions for a realistic range of root/earthworm geometries. Modeling results suggest that higher soil water content and reduced clay content reduce the strain energy required for soil penetration. The critical earthworm or root pressure increases with increased diameter of root or earthworm, however, results are insensitive to the cone apex (shape of the tip. The invested mechanical energy per unit length increase with increasing earthworm and plant root diameters, whereas mechanical energy per unit of displaced soil volume decreases with larger diameters. The study provides a quantitative framework for estimating energy requirements for soil penetration work done by earthworms and plant roots, and delineates intrinsic and external mechanical limits for bioturbation processes. Estimated energy requirements for earthworm biopore networks are linked to consumption of soil organic matter and suggest that earthworm populations are likely to consume a significant fraction of ecosystem net primary production to sustain their subterranean activities.

  14. Age-Related Decrease in Heat Shock 70-kDa Protein 8 in Cerebrospinal Fluid Is Associated with Increased Oxidative Stress.

    Science.gov (United States)

    Loeffler, David A; Klaver, Andrea C; Coffey, Mary P; Aasly, Jan O; LeWitt, Peter A

    2016-01-01

    Age-associated declines in protein homeostasis mechanisms ("proteostasis") are thought to contribute to age-related neurodegenerative disorders. The increased oxidative stress which occurs with aging can activate a key proteostatic process, chaperone-mediated autophagy. This study investigated age-related alteration in cerebrospinal fluid (CSF) concentrations of heat shock 70-kDa protein 8 (HSPA8), a molecular chaperone involved in proteostatic mechanisms including chaperone-mediated autophagy, and its associations with indicators of oxidative stress (8-hydroxy-2'-deoxyguanosine [8-OHdG] and 8-isoprostane) and total anti-oxidant capacity. We examined correlations between age, HSPA8, 8-OHdG, 8-isoprostane, and total antioxidant capacity (TAC) in CSF samples from 34 healthy subjects ranging from 20 to 75 years of age. Age was negatively associated with HSPA8 (ρ = -0.47; p = 0.005). An age-related increase in oxidative stress was indicated by a positive association between age and 8-OHdG (ρ = 0.61; p = 0.0001). HSPA8 was moderately negatively associated with 8-OHdG (ρ = -0.58; p = 0.0004). Age and HSPA8 were weakly associated with 8-isoprostane and TAC (range of ρ values: -0.15 to 0.16). Our findings in this exploratory study suggest that during healthy aging, CSF HSPA8 may decrease, perhaps due in part to an increase in oxidative stress. Our results also suggest that 8-OHdG may be more sensitive than 8-isoprostane for measuring oxidative stress in CSF. Further studies are indicated to determine if our findings can be replicated with a larger cohort, and if the age-related decrease in HSPA8 in CSF is reflected by a similar change in the brain.

  15. The renal nerves in chronic heart failure: efferent and afferent mechanisms

    Science.gov (United States)

    Schiller, Alicia M.; Pellegrino, Peter R.; Zucker, Irving H.

    2015-01-01

    The function of the renal nerves has been an area of scientific and medical interest for many years. The recent advent of a minimally invasive catheter-based method of renal denervation has renewed excitement in understanding the afferent and efferent actions of the renal nerves in multiple diseases. While hypertension has been the focus of much this work, less attention has been given to the role of the renal nerves in the development of chronic heart failure (CHF). Recent studies from our laboratory and those of others implicate an essential role for the renal nerves in the development and progression of CHF. Using a rabbit tachycardia model of CHF and surgical unilateral renal denervation, we provide evidence for both renal efferent and afferent mechanisms in the pathogenesis of CHF. Renal denervation prevented the decrease in renal blood flow observed in CHF while also preventing increases in Angiotensin-II receptor protein in the microvasculature of the renal cortex. Renal denervation in CHF also reduced physiological markers of autonomic dysfunction including an improvement in arterial baroreflex function, heart rate variability, and decreased resting cardiac sympathetic tone. Taken together, the renal sympathetic nerves are necessary in the pathogenesis of CHF via both efferent and afferent mechanisms. Additional investigation is warranted to fully understand the role of these nerves and their role as a therapeutic target in CHF. PMID:26300788

  16. Decreased bone turnover with balanced resorption and formation prevent cortical bone loss during disuse (hibernation) in grizzly bears (Ursus arctos horribilis)

    OpenAIRE

    McGee, Meghan E.; Maki, Aaron J.; Johnson, Steven E.; Lynne Nelson, O.; Robbins, Charles T.; Donahue, Seth W.

    2007-01-01

    Disuse uncouples bone formation from resorption, leading to increased porosity, decreased bone geometrical properties, and decreased bone mineral content which compromises bone mechanical properties and increases fracture risk. However, black bear bone properties are not adversely affected by aging despite annual periods of disuse (i.e., hibernation), which suggests that bears either prevent bone loss during disuse or lose bone and subsequently recover it at a faster rate than other animals. ...

  17. Effects of HfB2 and HfN Additions on the Microstructures and Mechanical Properties of TiB2-Based Ceramic Tool Materials

    Science.gov (United States)

    An, Jing; Song, Jinpeng; Liang, Guoxing; Gao, Jiaojiao; Xie, Juncai; Cao, Lei; Wang, Shiying; Lv, Ming

    2017-01-01

    The effects of HfB2 and HfN additions on the microstructures and mechanical properties of TiB2-based ceramic tool materials were investigated. The results showed that the HfB2 additive not only can inhibit the TiB2 grain growth but can also change the morphology of some TiB2 grains from bigger polygons to smaller polygons or longer ovals that are advantageous for forming a relatively fine microstructure, and that the HfN additive had a tendency toward agglomeration. The improvement of flexural strength and Vickers hardness of the TiB2-HfB2 ceramics was due to the relatively fine microstructure; the decrease of fracture toughness was ascribed to the formation of a weaker grain boundary strength due to the brittle rim phase and the poor wettability between HfB2 and Ni. The decrease of the flexural strength and Vickers hardness of the TiB2-HfN ceramics was due to the increase of defects such as TiB2 coarse grains and HfN agglomeration; the enhancement of fracture toughness was mainly attributed to the decrease of the pore number and the increase of the rim phase and TiB2 coarse grains. The toughening mechanisms of TiB2-HfB2 ceramics mainly included crack bridging and transgranular fracture, while the toughening mechanisms of TiB2-HfN ceramics mainly included crack deflection, crack bridging, transgranular fracture, and the core-rim structure. PMID:28772821

  18. Effects of HfB2 and HfN Additions on the Microstructures and Mechanical Properties of TiB2-Based Ceramic Tool Materials

    Directory of Open Access Journals (Sweden)

    Jing An

    2017-04-01

    Full Text Available The effects of HfB2 and HfN additions on the microstructures and mechanical properties of TiB2-based ceramic tool materials were investigated. The results showed that the HfB2 additive not only can inhibit the TiB2 grain growth but can also change the morphology of some TiB2 grains from bigger polygons to smaller polygons or longer ovals that are advantageous for forming a relatively fine microstructure, and that the HfN additive had a tendency toward agglomeration. The improvement of flexural strength and Vickers hardness of the TiB2-HfB2 ceramics was due to the relatively fine microstructure; the decrease of fracture toughness was ascribed to the formation of a weaker grain boundary strength due to the brittle rim phase and the poor wettability between HfB2 and Ni. The decrease of the flexural strength and Vickers hardness of the TiB2-HfN ceramics was due to the increase of defects such as TiB2 coarse grains and HfN agglomeration; the enhancement of fracture toughness was mainly attributed to the decrease of the pore number and the increase of the rim phase and TiB2 coarse grains. The toughening mechanisms of TiB2-HfB2 ceramics mainly included crack bridging and transgranular fracture, while the toughening mechanisms of TiB2-HfN ceramics mainly included crack deflection, crack bridging, transgranular fracture, and the core-rim structure.

  19. Gastrodin Inhibits Allodynia and Hyperalgesia in Painful Diabetic Neuropathy Rats by Decreasing Excitability of Nociceptive Primary Sensory Neurons

    Science.gov (United States)

    Ye, Xin; Han, Wen-Juan; Wang, Wen-Ting; Luo, Ceng; Hu, San-Jue

    2012-01-01

    Painful diabetic neuropathy (PDN) is a common complication of diabetes mellitus and adversely affects the patients’ quality of life. Evidence has accumulated that PDN is associated with hyperexcitability of peripheral nociceptive primary sensory neurons. However, the precise cellular mechanism underlying PDN remains elusive. This may result in the lacking of effective therapies for the treatment of PDN. The phenolic glucoside, gastrodin, which is a main constituent of the Chinese herbal medicine Gastrodia elata Blume, has been widely used as an anticonvulsant, sedative, and analgesic since ancient times. However, the cellular mechanisms underlying its analgesic actions are not well understood. By utilizing a combination of behavioral surveys and electrophysiological recordings, the present study investigated the role of gastrodin in an experimental rat model of STZ-induced PDN and to further explore the underlying cellular mechanisms. Intraperitoneal administration of gastrodin effectively attenuated both the mechanical allodynia and thermal hyperalgesia induced by STZ injection. Whole-cell patch clamp recordings were obtained from nociceptive, capsaicin-sensitive small diameter neurons of the intact dorsal root ganglion (DRG). Recordings from diabetic rats revealed that the abnormal hyperexcitability of neurons was greatly abolished by application of GAS. To determine which currents were involved in the antinociceptive action of gastrodin, we examined the effects of gastrodin on transient sodium currents (I NaT) and potassium currents in diabetic small DRG neurons. Diabetes caused a prominent enhancement of I NaT and a decrease of potassium currents, especially slowly inactivating potassium currents (I AS); these effects were completely reversed by GAS in a dose-dependent manner. Furthermore, changes in activation and inactivation kinetics of I NaT and total potassium current as well as I AS currents induced by STZ were normalized by GAS. This study provides a

  20. Long-term allopurinol use decreases the risk of prostate cancer in patients with gout: a population-based study.

    Science.gov (United States)

    Shih, H-J; Kao, M-C; Tsai, P-S; Fan, Y-C; Huang, C-J

    2017-09-01

    Clinical observations indicated an increased risk of developing prostate cancer in gout patients. Chronic inflammation is postulated to be one crucial mechanism for prostate carcinogenesis. Allopurinol, a widely used antigout agent, possesses potent anti-inflammation capacity. We elucidated whether allopurinol decreases the risk of prostate cancer in gout patients. We analyzed data retrieved from Taiwan National Health Insurance Database between January 2000 and December 2012. Patients diagnosed with gout during the study period with no history of prostate cancer and who had never used allopurinol were selected. Four allopurinol use cohorts (that is, allopurinol use (>365 days), allopurinol use (181-365 days), allopurinol use (91-180 days) and allopurinol use (31-90 days)) and one cohort without using allopurinol (that is, allopurinol use (No)) were included. The study end point was the diagnosis of new-onset prostate cancer. Multivariable Cox proportional hazards regression and propensity score-adjusted Cox regression models were used to estimate the association between the risk of prostate cancer and allopurinol treatment in gout patients after adjusting for potential confounders. A total of 25 770 gout patients (aged between 40 and 100 years) were included. Multivariable Cox regression analyses revealed that the risk of developing prostate cancer in the allopurinol use (>365 days) cohort was significantly lower than the allopurinol use (No) cohort (adjusted hazard ratio (HR)=0.64, 95% confidence interval (CI)=0.45-0.9, P=0.011). After propensity score adjustment, the trend remained the same (adjusted HR=0.66, 95% CI=0.46-0.93, P=0.019). Long-term (more than 1 year) allopurinol use may associate with a decreased risk of prostate cancer in gout patients.

  1. Recombinant erythropoietin acutely decreases renal perfusion and decouples the renin-angiotensin-aldosterone system.

    Science.gov (United States)

    Aachmann-Andersen, Niels J; Christensen, Soren J; Lisbjerg, Kristian; Oturai, Peter; Johansson, Pär I; Holstein-Rathlou, Niels-Henrik; Olsen, Niels V

    2018-03-01

    The effect of recombinant erythropoietin (rhEPO) on renal and systemic hemodynamics was evaluated in a randomized double-blinded, cross-over study. Sixteen healthy subjects were tested with placebo, or low-dose rhEPO for 2 weeks, or high-dose rhEPO for 3 days. Subjects refrained from excessive salt intake, according to instructions from a dietitian. Renal clearance studies were done for measurements of renal plasma flow, glomerular filtration rate (GFR) and the segmentel tubular handling of sodium and water (lithium clearance). rhEPO increased arterial blood pressure, total peripheral resistance, and renal vascular resistance, and decreased renal plasma flow in the high-dose rhEPO intervention and tended to decrease GFR. In spite of the decrease in renal perfusion, rhEPO tended to decrease reabsorption of sodium and water in the proximal tubule and induced a prompt decrease in circulating levels of renin and aldosterone, independent of changes in red blood cell mass, blood volumes, and blood pressure. We also found changes in biomarkers showing evidence that rhEPO induced a prothrombotic state. Our results suggest that rhEPO causes a direct downregulation in proximal tubular reabsorption that seems to decouple the activity of the renin-angiotensin-aldosterone system from changes in renal hemodynamics. This may serve as a negative feed-back mechanism on endogenous synthesis of EPO when circulating levels of EPO are high. These results demonstrates for the first time in humans a direct effect of rhEPO on renal hemodynamics and a decoupling of the renin-angiotensin-aldosterone system. © 2018 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  2. Climate change and electricity consumption-Witnessing increasing or decreasing use and costs?

    International Nuclear Information System (INIS)

    Pilli-Sihvola, Karoliina; Aatola, Piia; Ollikainen, Markku; Tuomenvirta, Heikki

    2010-01-01

    Climate change affects the need for heating and cooling. This paper examines the impact of gradually warming climate on the need for heating and cooling with an econometric multivariate regression model for five countries in Europe along the south-north line. The predicted changes in electricity demand are then used to analyze how climate change impacts the cost of electricity use, including carbon costs. Our main findings are, that in Central and North Europe, the decrease in heating due to climate warming, dominates and thus costs will decrease for both users of electricity and in carbon markets. In Southern Europe climate warming, and the consequential increase in cooling and electricity demand, overcomes the decreased need for heating. Therefore costs also increase. The main contributors are the role of electricity in heating and cooling, and the climatic zone.

  3. Schrodinger's mechanics interpretation

    CERN Document Server

    Cook, David B

    2018-01-01

    The interpretation of quantum mechanics has been in dispute for nearly a century with no sign of a resolution. Using a careful examination of the relationship between the final form of classical particle mechanics (the Hamilton–Jacobi Equation) and Schrödinger's mechanics, this book presents a coherent way of addressing the problems and paradoxes that emerge through conventional interpretations.Schrödinger's Mechanics critiques the popular way of giving physical interpretation to the various terms in perturbation theory and other technologies and places an emphasis on development of the theory and not on an axiomatic approach. When this interpretation is made, the extension of Schrödinger's mechanics in relation to other areas, including spin, relativity and fields, is investigated and new conclusions are reached.

  4. Decrease of Perivascular Adipose Tissue Browning Is Associated With Vascular Dysfunction in Spontaneous Hypertensive Rats During Aging

    Directory of Open Access Journals (Sweden)

    Ling-Ran Kong

    2018-04-01

    Full Text Available Functional perivascular adipose tissue (PVAT is necessary to maintain vascular physiology through both mechanical support and endocrine or paracrine ways. PVAT shows a brown adipose tissue (BAT-like feature and the browning level of PVAT is dependent on the anatomic location and species. However, it is not clear whether PVAT browning is involved in the vascular tone regulation in spontaneously hypertensive rats (SHRs. In the present study, we aimed to illustrate the effect of aging on PVAT browning and subsequent vasomotor reaction in SHRs. Herein we utilized histological staining and western blot to detect the characteristics of thoracic PVAT (tPVAT in 8-week-old and 16-week-old SHR and Wistar-Kyoto (WKY rats. We also detected vascular reactivity analysis to determine the effect of tPVAT on vasomotor reaction during aging. The results showed that tPVAT had a similar phenotype to BAT, including smaller adipocyte size and positive uncoupling protein-1 (UCP1 staining. Interestingly, the tPVAT of 8-week-old SHR showed increased BAT phenotypic marker expression compared to WKY, whereas the browning level of tPVAT had a more dramatic decrease from 8 to 16 weeks of age in SHR than age-matched WKY rats. The vasodilation effect of tPVAT on aortas had no significant difference in 8-week-old WKY and SHR, whereas this effect is obviously decreased in 16-week-old SHR compared to WKY. In contrast, tPVAT showed a similar vasoconstriction effect in 8- or 16-week-old WKY and SHR rats. Moreover, we identified an important vasodilator adenosine, which regulates adipocyte browning and may be a potential PVAT-derived relaxing factor. Adenosine is dramatically decreased from 8 to 16 weeks of age in the tPVAT of SHR. In summary, aging is associated with a decrease of tPVAT browning and adenosine production in SHR rats. These may result in attenuated vasodilation effect of the tPVAT in SHR during aging.

  5. A molecular dynamic simulation study of mechanical properties of graphene–polythiophene composite with Reax force field

    International Nuclear Information System (INIS)

    Nayebi, Payman; Zaminpayma, Esmaeil

    2016-01-01

    In this paper, we performed molecular dynamic simulations by Reax force field to study the mechanical properties of graphene–polythiophene nanocomposite. By computing elastic constant, breaking stress, breaking strain and Young's modulus from the stress–strain curve for the nanocomposites, we investigated effects of tension orientation, graphene loading to the polymer, temperature of nanocomposite and defect of graphene on these mechanical characters. It is found that mechanical characters of tension along the zigzag orientation are higher than other directions. Also, by increasing the weight concentration of graphene in composite, the Young's modulus and breaking strain increase. Our results showed that the Young's modulus decreased with increasing temperature. Finally by applying defect on graphene structure, we found that one atom missing defect has lower Young's modulus. Also, by increasing the defects concentration, elastic modulus decreases gradually. - Highlights: • We studied mechanical properties of graphene–polythiophene nanocomposite. • Mechanical characters of tension along the zigzag are higher than other directions. • By increasing the weight concentration of graphene in composite, the Young's modulus increases. • Young's modulus decreased with increasing temperature. • By increasing the defects concentration, elastic modulus decreases gradually.

  6. Klotho: a humeral mediator in CSF and plasma that influences longevity and susceptibility to multiple complex disorders, including depression.

    Science.gov (United States)

    Pavlatou, M G; Remaley, A T; Gold, P W

    2016-08-30

    Klotho is a hormone secreted into human cerebrospinal fluid (CSF), plasma and urine that promotes longevity and influences the onset of several premature senescent phenotypes in mice and humans, including atherosclerosis, cardiovascular disease, stroke and osteoporosis. Preliminary studies also suggest that Klotho possesses tumor suppressor properties. Klotho's roles in these phenomena were first suggested by studies demonstrating that a defect in the Klotho gene in mice results in a significant decrease in lifespan. The Klotho-deficient mouse dies prematurely at 8-9 weeks of age. At 4-5 weeks of age, a syndrome resembling human ageing emerges consisting of atherosclerosis, osteoporosis, cognitive disturbances and alterations of hippocampal architecture. Several deficits in Klotho-deficient mice are likely to contribute to these phenomena. These include an inability to defend against oxidative stress in the central nervous system and periphery, decreased capacity to generate nitric oxide to sustain normal endothelial reactivity, defective Klotho-related mediation of glycosylation and ion channel regulation, increased insulin/insulin-like growth factor signaling and a disturbed calcium and phosphate homeostasis accompanied by altered vitamin D levels and ectopic calcification. Identifying the mechanisms by which Klotho influences multiple important pathways is an emerging field in human biology that will contribute significantly to understanding basic physiologic processes and targets for the treatment of complex diseases. Because many of the phenomena seen in Klotho-deficient mice occur in depressive illness, major depression and bipolar disorder represent illnesses potentially associated with Klotho dysregulation. Klotho's presence in CSF, blood and urine should facilitate its study in clinical populations.

  7. Decreased function of survival motor neuron protein impairs endocytic pathways.

    Science.gov (United States)

    Dimitriadi, Maria; Derdowski, Aaron; Kalloo, Geetika; Maginnis, Melissa S; O'Hern, Patrick; Bliska, Bryn; Sorkaç, Altar; Nguyen, Ken C Q; Cook, Steven J; Poulogiannis, George; Atwood, Walter J; Hall, David H; Hart, Anne C

    2016-07-26

    Spinal muscular atrophy (SMA) is caused by depletion of the ubiquitously expressed survival motor neuron (SMN) protein, with 1 in 40 Caucasians being heterozygous for a disease allele. SMN is critical for the assembly of numerous ribonucleoprotein complexes, yet it is still unclear how reduced SMN levels affect motor neuron function. Here, we examined the impact of SMN depletion in Caenorhabditis elegans and found that decreased function of the SMN ortholog SMN-1 perturbed endocytic pathways at motor neuron synapses and in other tissues. Diminished SMN-1 levels caused defects in C. elegans neuromuscular function, and smn-1 genetic interactions were consistent with an endocytic defect. Changes were observed in synaptic endocytic proteins when SMN-1 levels decreased. At the ultrastructural level, defects were observed in endosomal compartments, including significantly fewer docked synaptic vesicles. Finally, endocytosis-dependent infection by JC polyomavirus (JCPyV) was reduced in human cells with decreased SMN levels. Collectively, these results demonstrate for the first time, to our knowledge, that SMN depletion causes defects in endosomal trafficking that impair synaptic function, even in the absence of motor neuron cell death.

  8. Methods of celestial mechanics

    CERN Document Server

    Brouwer, Dirk

    2013-01-01

    Methods of Celestial Mechanics provides a comprehensive background of celestial mechanics for practical applications. Celestial mechanics is the branch of astronomy that is devoted to the motions of celestial bodies. This book is composed of 17 chapters, and begins with the concept of elliptic motion and its expansion. The subsequent chapters are devoted to other aspects of celestial mechanics, including gravity, numerical integration of orbit, stellar aberration, lunar theory, and celestial coordinates. Considerable chapters explore the principles and application of various mathematical metho

  9. Myeloid-derived suppressor cells in murine AIDS inhibit B-cell responses in part via soluble mediators including reactive oxygen and nitrogen species, and TGF-β

    Energy Technology Data Exchange (ETDEWEB)

    Rastad, Jessica L. [Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756 (United States); Green, William R., E-mail: William.R.Green@dartmouth.edu [Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756 (United States); Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756 (United States)

    2016-12-15

    Monocytic myeloid-derived suppressor cells (M-MDSCs) were increased during LP-BM5 retroviral infection, and were capable of suppressing not only T-cell, but also B-cell responses. In addition to previously demonstrating iNOS- and VISTA-dependent M-MDSC mechanisms, in this paper, we detail how M-MDSCs utilized soluble mediators, including the reactive oxygen and nitrogen species superoxide, peroxynitrite, and nitric oxide, and TGF-β, to suppress B cells in a predominantly contact-independent manner. Suppression was independent of cysteine-depletion and hydrogen peroxide production. When two major mechanisms of suppression (iNOS and VISTA) were eliminated in double knockout mice, M-MDSCs from LP-BM5-infected mice were able to compensate using other, soluble mechanisms in order to maintain suppression of B cells. The IL-10 producing regulatory B-cell compartment was among the targets of M-MDSC-mediated suppression. -- Highlights: •LP-BM5-expanded M-MDSCs utilized soluble mediators nitric oxide, superoxide, peroxynitrite, and TGF-β to suppress B cells. •When two major mechanisms of suppression were eliminated through knockouts, M-MDSCs maintained suppression. •M-MDSCs from LP-BM5-infected mice decreased proliferation of IL-10 producing regulatory B cells.

  10. Myeloid-derived suppressor cells in murine AIDS inhibit B-cell responses in part via soluble mediators including reactive oxygen and nitrogen species, and TGF-β

    International Nuclear Information System (INIS)

    Rastad, Jessica L.; Green, William R.

    2016-01-01

    Monocytic myeloid-derived suppressor cells (M-MDSCs) were increased during LP-BM5 retroviral infection, and were capable of suppressing not only T-cell, but also B-cell responses. In addition to previously demonstrating iNOS- and VISTA-dependent M-MDSC mechanisms, in this paper, we detail how M-MDSCs utilized soluble mediators, including the reactive oxygen and nitrogen species superoxide, peroxynitrite, and nitric oxide, and TGF-β, to suppress B cells in a predominantly contact-independent manner. Suppression was independent of cysteine-depletion and hydrogen peroxide production. When two major mechanisms of suppression (iNOS and VISTA) were eliminated in double knockout mice, M-MDSCs from LP-BM5-infected mice were able to compensate using other, soluble mechanisms in order to maintain suppression of B cells. The IL-10 producing regulatory B-cell compartment was among the targets of M-MDSC-mediated suppression. -- Highlights: •LP-BM5-expanded M-MDSCs utilized soluble mediators nitric oxide, superoxide, peroxynitrite, and TGF-β to suppress B cells. •When two major mechanisms of suppression were eliminated through knockouts, M-MDSCs maintained suppression. •M-MDSCs from LP-BM5-infected mice decreased proliferation of IL-10 producing regulatory B cells.

  11. Ovariectomy increases the participation of hyperpolarizing mechanisms in the relaxation of rat aorta.

    Directory of Open Access Journals (Sweden)

    Ana Sagredo

    Full Text Available This study examines the downstream NO release pathway and the contribution of different vasodilator mediators in the acetylcholine-induced response in rat aorta 5-months after the loss of ovarian function. Aortic segments from ovariectomized and control female Sprague-Dawley rats were used to measure: the levels of superoxide anion, the superoxide dismutases (SODs activity, the cGMP formation, the cGMP-dependent protein kinase (PKG activity and the involvement of NO, cGMP, hydrogen peroxide and hyperpolarizing mechanisms in the ACh-induced relaxation. The results showed that ovariectomy did not alter ACh-induced relaxation; incubation with L-NAME, a NO synthase inhibitor, decreased the ACh-induced response to a lesser extent in aorta from ovariectomized than from control rats, while ODQ, a guanylate cyclase inhibitor, decreased that response to a similar extent; the blockade of hyperpolarizing mechanisms, by precontracting arteries with KCl, decreased the ACh-induced response to a greater extent in aortas from ovariectomized than those from control rats; catalase, that decomposes hydrogen peroxide, decreased the ACh-induced response only in aorta from ovariectomized rats. In addition, ovariectomy increased superoxide anion levels and SODs activity, decreased cGMP formation and increased PKG activity. Despite the increased superoxide anion and decreased cGMP in aorta from ovariectomized rats, ACh-induced relaxation is maintained by the existence of hyperpolarizing mechanisms in which hydrogen peroxide participates. The greater contribution of hydrogen peroxide in ACh-induced relaxation is due to increased SOD activity, in an attempt to compensate for increased superoxide anion formation. Increased PKG activity could represent a redundant mechanism to ensure vasodilator function in the aorta of ovariectomized rats.

  12. Reduced expression levels of PTEN are associated with decreased sensitivity of HCC827 cells to icotinib.

    Science.gov (United States)

    Zhai, Yang; Zhang, Yanjun; Nan, Kejun; Liang, Xuan

    2017-05-01

    The clinical resistance of non-small cell lung cancer (NSCLC) to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) has been linked to EGFR T790M resistance mutations or MET amplifications. Additional mechanisms underlying EGFR-TKI drug resistance remain unclear. The present study demonstrated that icotinib significantly inhibited the proliferation and increased the apoptosis rate of HCC827 cells; the cellular mRNA and protein expression levels of phosphatase and tensin homolog (PTEN) were also significantly downregulated. To investigate the effect of PTEN expression levels on the sensitivity of HCC827 cells to icotinib, PTEN expression was silenced using a PTEN-specific small interfering RNA. The current study identified that the downregulation of PTEN expression levels may promote cellular proliferation in addition to decreasing the apoptosis of HCC827 cells, and may reduce the sensitivity of HCC827 cells to icotinib. These results suggested that reduced PTEN expression levels were associated with the decreased sensitivity of HCC827 cells to icotinib. Furthermore, PTEN expression levels may be a useful marker for predicting icotinib resistance and elucidating the resistance mechanisms underlying EGFR-mutated NSCLC.

  13. Mechanical unloading reduces microtubule actin crosslinking factor 1 expression to inhibit β-catenin signaling and osteoblast proliferation.

    Science.gov (United States)

    Yin, Chong; Zhang, Yan; Hu, Lifang; Tian, Ye; Chen, Zhihao; Li, Dijie; Zhao, Fan; Su, Peihong; Ma, Xiaoli; Zhang, Ge; Miao, Zhiping; Wang, Liping; Qian, Airong; Xian, Cory J

    2018-07-01

    Mechanical unloading was considered a major threat to bone homeostasis, and has been shown to decrease osteoblast proliferation although the underlying mechanism is unclear. Microtubule actin crosslinking factor 1 (MACF1) is a cytoskeletal protein that regulates cellular processes and Wnt/β-catenin pathway, an essential signaling pathway for osteoblasts. However, the relationship between MACF1 expression and mechanical unloading, and the function and the associated mechanisms of MACF1 in regulating osteoblast proliferation are unclear. This study investigated effects of mechanical unloading on MACF1 expression levels in cultured MC3T3-E1 osteoblastic cells and in femurs of mice with hind limb unloading; and it also examined the role and potential action mechanisms of MACF1 in osteoblast proliferation in MACF1-knockdown, overexpressed or control MC3T3-E1 cells treated with or without the mechanical unloading condition. Results showed that the mechanical unloading condition inhibited osteoblast proliferation and MACF1 expression in MC3T3-E1 osteoblastic cells and mouse femurs. MACF1 knockdown decreased osteoblast proliferation, while MACF1 overexpression increased it. The inhibitory effect of mechanical unloading on osteoblast proliferation also changed with MACF1 expression levels. Furthermore, MACF1 was found to enhance β-catenin expression and activity, and mechanical unloading decreased β-catenin expression through MACF1. Moreover, β-catenin was found an important regulator of osteoblast proliferation, as its preservation by treatment with its agonist lithium attenuated the inhibitory effects of MACF1-knockdown or mechanical unloading on osteoblast proliferation. Taken together, mechanical unloading decreases MACF1 expression, and MACF1 up-regulates osteoblast proliferation through enhancing β-catenin signaling. This study has thus provided a mechanism for mechanical unloading-induced inhibited osteoblast proliferation. © 2017 Wiley Periodicals, Inc.

  14. A Teacher-Focused Intervention to Decrease PE Students' Amotivation by Increasing Need Satisfaction and Decreasing Need Frustration.

    Science.gov (United States)

    Cheon, Sung Hyeon; Reeve, Johnmarshall; Song, Yong-Gwan

    2016-06-01

    Intervention-induced gains in need satisfaction decrease PE students' amotivation. The present study adopted a dual-process model to test whether an intervention could also decrease need frustration and hence provide a second supplemental source to further decrease students' PE amotivation. Using an experimental, longitudinal research design, 19 experienced PE teachers (9 experimental, 10 control) and their 1,017 students participated in an intervention program to help teachers become both more autonomy supportive and less controlling. Multilevel repeated measures analyses showed that students of teachers in the experimental group reported greater T2, T3, and T4 perceived autonomy support, need satisfaction, and engagement and lesser T2, T3, and T4 perceived teacher control, need frustration, and amotivation than did students of teachers in the control group. Multilevel structural equation modeling analyses confirmed the hypothesized dual-process model in which both intervention-induced increases in need satisfaction and intervention-induced decreases need frustration decreased students' end-of-semester amotivation. We discuss the theoretical and practical implications of this new finding on the dual antecedents of diminished amotivation.

  15. Thermal creep effects on 20% cold worked AISI 316 mechanical properties

    International Nuclear Information System (INIS)

    Duncan, D.R.

    1980-09-01

    The effects of thermal creep on subsequent mechanical properties of 20% cold worked AISI 316 pressurized tubes were investigated. Specimens were subjected to temperatures of 811 to 977 0 K and stresses of 86 MPa to 276 MPa. This resulted in strains up to 1.3%. Subsequent mechanical property tests included load change stress rupture tests (original test pressure increased or decreased), uniaxial tensile tests, and temperature ramp burst tests. Load change stress rupture tests were consistent with predictions from isobaric tests, and thus, consistent with the linear life fraction rule. Tests with large stress increases and tests at 866 0 K displayed a tendency for earlier than predicted failure. Tensile and temperature ramp burst tests had only slight effects on material properties (property changes were attributed to thermal recovery). The test results showed that, under the conditions of investigation, dislocation structure recovery was the most significant effect of creep. 9 figures, 5 tables

  16. Bacterial multidrug efflux pumps: mechanisms, physiology and pharmacological exploitations.

    Science.gov (United States)

    Sun, Jingjing; Deng, Ziqing; Yan, Aixin

    2014-10-17

    Multidrug resistance (MDR) refers to the capability of bacterial pathogens to withstand lethal doses of structurally diverse drugs which are capable of eradicating non-resistant strains. MDR has been identified as a major threat to the public health of human being by the World Health Organization (WHO). Among the four general mechanisms that cause antibiotic resistance including target alteration, drug inactivation, decreased permeability and increased efflux, drug extrusion by the multidrug efflux pumps serves as an important mechanism of MDR. Efflux pumps not only can expel a broad range of antibiotics owing to their poly-substrate specificity, but also drive the acquisition of additional resistance mechanisms by lowering intracellular antibiotic concentration and promoting mutation accumulation. Over-expression of multidrug efflux pumps have been increasingly found to be associated with clinically relevant drug resistance. On the other hand, accumulating evidence has suggested that efflux pumps also have physiological functions in bacteria and their expression is subject tight regulation in response to various of environmental and physiological signals. A comprehensive understanding of the mechanisms of drug extrusion, and regulation and physiological functions of efflux pumps is essential for the development of anti-resistance interventions. In this review, we summarize the development of these research areas in the recent decades and present the pharmacological exploitation of efflux pump inhibitors as a promising anti-drug resistance intervention. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Voluntary running-wheel exercise decreases the threshold for rewarding intracranial self-stimulation.

    Science.gov (United States)

    Morris, Michael J; Na, Elisa S; Johnson, Alan Kim

    2012-08-01

    Physical exercise has mood-enhancing and antidepressant properties although the mechanisms underlying these effects are not known. The present experiment investigated the effects of prolonged access to a running wheel on electrical self-stimulation of the lateral hypothalamus (LHSS), a measure of hedonic state, in rats. Rats with continuous voluntary access to a running wheel for either 2 or 5 weeks exhibited dramatic leftward shifts in the effective current 50 (ECu50; current value that supports half of maximum responding) of their LHSS current-response functions compared to their baselines, indicating a decrease in reward threshold, whereas control rats current-response functions after 2 or 5 weeks were not significantly different from baseline. An inverse correlation existed between the change in ECu50 from baseline and the amount an animal had run in the day prior to LHSS testing, indicating that animals that exhibited higher levels of running showed a more robust decrease in LHSS threshold. We conclude that long-term voluntary exercise increases sensitivity to rewarding stimuli, which may contribute to its antidepressant properties.

  18. Wolbachia-induced cytoplasmic incompatibility is associated with decreased Hira expression in male Drosophila.

    Directory of Open Access Journals (Sweden)

    Ya Zheng

    Full Text Available BACKGROUND: Wolbachia are obligate endosymbiotic bacteria that infect numerous species of arthropods and nematodes. Wolbachia can induce several reproductive phenotypes in their insect hosts including feminization, male-killing, parthenogenesis and cytoplasmic incompatibility (CI. CI is the most common phenotype and occurs when Wolbachia-infected males mate with uninfected females resulting in no or very low numbers of viable offspring. However, matings between males and females infected with the same strain of Wolbachia result in viable progeny. Despite substantial scientific effort, the molecular mechanisms underlying CI are currently unknown. METHODOLOGY/PRINCIPAL FINDINGS: Gene expression studies were undertaken in Drosophila melanogaster and D. simulans which display differential levels of CI using quantitative RT-PCR. We show that Hira expression is correlated with the induction of CI and occurs in a sex-specific manner. Hira expression is significantly lower in males which induce strong CI when compared to males inducing no CI or Wolbachia-uninfected males. A reduction in Hira expression is also observed in 1-day-old males that induce stronger CI compared to 5-day-old males that induce weak or no CI. In addition, Hira mutated D. melanogaster males mated to uninfected females result in significantly decreased hatch rates comparing with uninfected crosses. Interestingly, wMel-infected females may rescue the hatch rates. An obvious CI phenotype with chromatin bridges are observed in the early embryo resulting from Hira mutant fertilization, which strongly mimics the defects associated with CI. CONCLUSIONS/SIGNIFICANCE: Our results suggest Wolbachia-induced CI in Drosophila occurs due to a reduction in Hira expression in Wolbachia-infected males leading to detrimental effects on sperm fertility resulting in embryo lethality. These results may help determine the underlying mechanism of CI and provide further insight in to the important role

  19. Renal Effects and Underlying Molecular Mechanisms of Long-Term Salt Content Diets in Spontaneously Hypertensive Rats

    Science.gov (United States)

    Berger, Rebeca Caldeira Machado; Vassallo, Paula Frizera; Crajoinas, Renato de Oliveira; Oliveira, Marilene Luzia; Martins, Flávia Letícia; Nogueira, Breno Valentim; Motta-Santos, Daisy; Araújo, Isabella Binotti; Forechi, Ludimila; Girardi, Adriana Castello Costa; Santos, Robson Augusto Souza; Mill, José Geraldo

    2015-01-01

    Several evidences have shown that salt excess is an important determinant of cardiovascular and renal derangement in hypertension. The present study aimed to investigate the renal effects of chronic high or low salt intake in the context of hypertension and to elucidate the molecular mechanisms underlying such effects. To this end, newly weaned male SHR were fed with diets only differing in NaCl content: normal salt (NS: 0.3%), low salt (LS: 0.03%), and high salt diet (HS: 3%) until 7 months of age. Analysis of renal function, morphology, and evaluation of the expression of the main molecular components involved in the renal handling of albumin, including podocyte slit-diaphragm proteins and proximal tubule endocytic receptors were performed. The relationship between diets and the balance of the renal angiotensin-converting enzyme (ACE) and ACE2 enzymes was also examined. HS produced glomerular hypertrophy and decreased ACE2 and nephrin expressions, loss of morphological integrity of the podocyte processes, and increased proteinuria, characterized by loss of albumin and high molecular weight proteins. Conversely, severe hypertension was attenuated and renal dysfunction was prevented by LS since proteinuria was much lower than in the NS SHRs. This was associated with a decrease in kidney ACE/ACE2 protein and activity ratio and increased cubilin renal expression. Taken together, these results suggest that LS attenuates hypertension progression in SHRs and preserves renal function. The mechanisms partially explaining these findings include modulation of the intrarenal ACE/ACE2 balance and the increased cubilin expression. Importantly, HS worsens hypertensive kidney injury and decreases the expression nephrin, a key component of the slit diaphragm. PMID:26495970

  20. Renal Effects and Underlying Molecular Mechanisms of Long-Term Salt Content Diets in Spontaneously Hypertensive Rats.

    Directory of Open Access Journals (Sweden)

    Rebeca Caldeira Machado Berger

    Full Text Available Several evidences have shown that salt excess is an important determinant of cardiovascular and renal derangement in hypertension. The present study aimed to investigate the renal effects of chronic high or low salt intake in the context of hypertension and to elucidate the molecular mechanisms underlying such effects. To this end, newly weaned male SHR were fed with diets only differing in NaCl content: normal salt (NS: 0.3%, low salt (LS: 0.03%, and high salt diet (HS: 3% until 7 months of age. Analysis of renal function, morphology, and evaluation of the expression of the main molecular components involved in the renal handling of albumin, including podocyte slit-diaphragm proteins and proximal tubule endocytic receptors were performed. The relationship between diets and the balance of the renal angiotensin-converting enzyme (ACE and ACE2 enzymes was also examined. HS produced glomerular hypertrophy and decreased ACE2 and nephrin expressions, loss of morphological integrity of the podocyte processes, and increased proteinuria, characterized by loss of albumin and high molecular weight proteins. Conversely, severe hypertension was attenuated and renal dysfunction was prevented by LS since proteinuria was much lower than in the NS SHRs. This was associated with a decrease in kidney ACE/ACE2 protein and activity ratio and increased cubilin renal expression. Taken together, these results suggest that LS attenuates hypertension progression in SHRs and preserves renal function. The mechanisms partially explaining these findings include modulation of the intrarenal ACE/ACE2 balance and the increased cubilin expression. Importantly, HS worsens hypertensive kidney injury and decreases the expression nephrin, a key component of the slit diaphragm.

  1. Compatibility between Hydraulic and Mechanical Properties of Ceramic Water Filters

    Directory of Open Access Journals (Sweden)

    Riyadh Z. Al Zubaidy

    2017-05-01

    Full Text Available In this paper, ceramic water filters were produced by using ten mixtures of different ratios of red clay and sawdust under different production conditions. The physical properties of these filters were tested. The production conditions include five press pressures ranged from 10 to 50MPa and a firing schedule having three different final temperatures of 1000, 1070, and 1100˚C. The tests results of the physical properties were used to obtain best compatibility between the hydraulic and the mechanical properties of these filters. Results showed that as the press pressure and the firing temperature are increased, the bulk density and the compressive and bending strengths of the produced filters are increased, while, the porosity and absorption are decreased. As the sawdust content is increased the bulk density and the compressive and bending strengths are decreased, while, the porosity and absorption are increased. High hydraulic conductivity is obtained at a firing temperature of 1070˚C when the sawdust content is less than 10%. Otherwise, it is increased as sawdust content and the firing temperature are increased. Filters made of mixture 92.5% red clay and 7.5% sawdust formed . under a press pressure of 20MPa and a firing temperature of 1070˚C gave the best compatibility between hydraulic and mechanical properties. In this case, the hydraulic conductivity was 50mm/day, the compressive strength was 14MPa, and the bending strength was 10.8MPa.

  2. Analysis of kinetic reaction mechanisms

    CERN Document Server

    Turányi, Tamás

    2014-01-01

    Chemical processes in many fields of science and technology, including combustion, atmospheric chemistry, environmental modelling, process engineering, and systems biology, can be described by detailed reaction mechanisms consisting of numerous reaction steps. This book describes methods for the analysis of reaction mechanisms that are applicable in all these fields. Topics addressed include: how sensitivity and uncertainty analyses allow the calculation of the overall uncertainty of simulation results and the identification of the most important input parameters, the ways in which mechanisms can be reduced without losing important kinetic and dynamic detail, and the application of reduced models for more accurate engineering optimizations. This monograph is invaluable for researchers and engineers dealing with detailed reaction mechanisms, but is also useful for graduate students of related courses in chemistry, mechanical engineering, energy and environmental science and biology.

  3. Co-benefits of including CCS projects in the CDM in India's power sector

    International Nuclear Information System (INIS)

    Eto, R.; Murata, A.; Uchiyama, Y.; Okajima, K.

    2013-01-01

    This study examines the effects of the inclusion of the co-benefits on the potential installed capacity of carbon dioxide capture and storage (CCS) projects with a linear programming model by the clean development mechanism (CDM) in India's power sector. It is investigated how different marginal damage costs of air pollutants affect the potential installed capacity of CCS projects in the CDM with a scenario analysis. Three results are found from this analysis. First, large quantity of IGCC with CCS becomes realizable when the certified emission reduction (CER) prices are above US$56/tCO 2 in the integrated Northern, Eastern, Western, and North-Eastern regional grids (NEWNE) and above US $49/tCO 2 in the Southern grid. Second, including co-benefits contributes to decrease CO 2 emissions and air pollutants with introduction of IGCC with CCS in the CDM at lower CER prices. Third, the effects of the co-benefits are limited in the case of CCS because CCS reduces larger amount of CO 2 emissions than that of air pollutants. Total marginal damage costs of air pollutants of US$250/t and US$200/t lead to CER prices of US$1/tCO 2 reduction in the NEWNE grid and the Southern grid. - Highlights: • We estimate effects of co-benefits on installed capacity of CCS projects in the CDM. • We develop a linear programming (LP) model of two grids of India. • Including co-benefits contributes to introduce IGCC with CCS in the CDM at lower CER prices

  4. Dynamic Mechanical Properties of PMN/CNFs/EP Composites

    International Nuclear Information System (INIS)

    Shi Minxian; Huang Zhixiong; Qin Yan

    2011-01-01

    In this research, piezoelectric ceramic PMN(lead magnesium niobate-lead zirconate-lead titanate)/carbon nano-fibers(CNFs)/epoxy resin(EP) ccomposites were prepared and the dynamic mechanical properties and damping mechanism of PMN/CNFs/EP composites were investigated. The addition of CNFs into PMN/EP composite results in decrease of volume resistivity of the composite. When the concentration of CNFs is 0.6% weight of epoxy resin the volume resistivity of PMN/CNFs/EP composite is about 10 8 Ω·m. Dynamic mechanical analysis indicates that the loss factor, loss area, and damping temperature range of PMN/CNFs/EP composites increase with the CNFs content increasing till to 0.6% of weight of epoxy resin. When the CNFs content is more than 0.6% the damping properties of composites decrease oppositely. In PMN/CNFs/EP composites, the CNFs content 0.6% and the volume resistivity of PMN/CNFs/EP composites about 10 8 Ω·m just satisfy the practicing condition of piezo-damping, so the composites show optimal damping property.

  5. Decrease in gamma-band activity tracks sequence learning

    Science.gov (United States)

    Madhavan, Radhika; Millman, Daniel; Tang, Hanlin; Crone, Nathan E.; Lenz, Fredrick A.; Tierney, Travis S.; Madsen, Joseph R.; Kreiman, Gabriel; Anderson, William S.

    2015-01-01

    Learning novel sequences constitutes an example of declarative memory formation, involving conscious recall of temporal events. Performance in sequence learning tasks improves with repetition and involves forming temporal associations over scales of seconds to minutes. To further understand the neural circuits underlying declarative sequence learning over trials, we tracked changes in intracranial field potentials (IFPs) recorded from 1142 electrodes implanted throughout temporal and frontal cortical areas in 14 human subjects, while they learned the temporal-order of multiple sequences of images over trials through repeated recall. We observed an increase in power in the gamma frequency band (30–100 Hz) in the recall phase, particularly in areas within the temporal lobe including the parahippocampal gyrus. The degree of this gamma power enhancement decreased over trials with improved sequence recall. Modulation of gamma power was directly correlated with the improvement in recall performance. When presenting new sequences, gamma power was reset to high values and decreased again after learning. These observations suggest that signals in the gamma frequency band may play a more prominent role during the early steps of the learning process rather than during the maintenance of memory traces. PMID:25653598

  6. Low-energy mechanical ventilation

    DEFF Research Database (Denmark)

    Andersen, Claus Wessel; Hviid, Christian Anker

    2014-01-01

    and with as little energy consumption as 41.1 kWh/m2/year including heating and all building services with no use of renewable energy such as PVcells or solar heating. One of the key means of reaching the objectives was to implement mechanical ventilation with low pressure loss and therefore low energy consumption....... The project consists of two buildings, building one is 6 stories high, and building two is 4 stories high. The buildings have a gross area of 50,500 m2 including underground parking. The ventilation and indoor climate concept was to use mechanical ventilation together with mechanical cooling and fanassisted......, with an average of 1.1 kJ/m3. The yearly mean SFP based on estimated runtime is approx. 0.8 kJ/m3. The case shows the unlocked potential that lies within mechanical ventilation for nearzero energy consuming buildings....

  7. Introductory Education for Mechanical Engineering by Exercise in Mechanical Disassembly

    Science.gov (United States)

    Matsui, Yoshio; Asakawa, Naoki; Iwamori, Satoru

    An introductory program “Exercise for engineers in mechanical disassembly” is an exercise that ten students of every team disassemble a motor scooter to the components and then assemble again to the initial form in 15 weeks. The purpose of this program is to introduce mechanical engineering by touching the real machine and learning how it is composed from various mechanical parts to the students at the early period after the entrance into the university. Additional short lectures by young teachers and a special lecture by a top engineer in the industry encourage the students to combine the actual machine and the mechanical engineering subjects. Furthermore, various educations such as group leader system, hazard prediction training, parts filing are included in this program. As a result, students recognize the importance of the mechanical engineering study and the way of group working.

  8. Understanding the mechanisms of lung mechanical stress

    Directory of Open Access Journals (Sweden)

    C.S.N.B. Garcia

    2006-06-01

    Full Text Available Physical forces affect both the function and phenotype of cells in the lung. Bronchial, alveolar, and other parenchymal cells, as well as fibroblasts and macrophages, are normally subjected to a variety of passive and active mechanical forces associated with lung inflation and vascular perfusion as a result of the dynamic nature of lung function. These forces include changes in stress (force per unit area or strain (any forced change in length in relation to the initial length and shear stress (the stress component parallel to a given surface. The responses of cells to mechanical forces are the result of the cell's ability to sense and transduce these stimuli into intracellular signaling pathways able to communicate the information to its interior. This review will focus on the modulation of intracellular pathways by lung mechanical forces and the intercellular signaling. A better understanding of the mechanisms by which lung cells transduce physical forces into biochemical and biological signals is of key importance for identifying targets for the treatment and prevention of physical force-related disorders.

  9. Reduction of duration and cost of mechanical ventilation in an intensive care unit by use of a ventilatory management team.

    Science.gov (United States)

    Cohen, I L; Bari, N; Strosberg, M A; Weinberg, P F; Wacksman, R M; Millstein, B H; Fein, I A

    1991-10-01

    To test the hypothesis that a formal interdisciplinary team approach to managing ICU patients requiring mechanical ventilation enhances ICU efficiency. Retrospective review with cost-effectiveness analysis. A 20-bed medical-surgical ICU in a 450-bed community referral teaching hospital with a critical care fellowship training program. All patients requiring mechanical ventilation in the ICU were included, comparing patients admitted 1 yr before the inception of the ventilatory management team (group 1) with those patients admitted for 1 yr after the inception of the team (group 2). Group 1 included 198 patients with 206 episodes of mechanical ventilation and group 2 included 165 patients with 183 episodes of mechanical ventilation. A team consisting of an ICU attending physician, nurse, and respiratory therapist was formed to conduct rounds regularly and supervise the ventilatory management of ICU patients who were referred to the critical care service. The two study groups were demographically comparable. However, there were significant reductions in resource use in group 2. The number of days on mechanical ventilation decreased (3.9 days per episode of mechanical ventilation [95% confidence interval 0.3 to 7.5 days]), as did days in the ICU (3.3 days per episode of mechanical ventilation [90% confidence interval 0.3 to 6.3 days]), numbers of arterial blood gases (23.2 per episode of mechanical ventilation; p less than .001), and number of indwelling arterial catheters (1 per episode of mechanical ventilation; p less than .001). The estimated cost savings from these reductions was $1,303 per episode of mechanical ventilation. We conclude that a ventilatory management team, or some component thereof, can significantly and safely expedite the process of "weaning" patients from mechanical ventilatory support in the ICU.

  10. Fluoxetine Decreases the Proliferation and Adipogenic Differentiation of Human Adipose-Derived Stem Cells

    Directory of Open Access Journals (Sweden)

    Bo Kyung Sun

    2015-07-01

    Full Text Available Fluoxetine was originally developed as an antidepressant, but it has also been used to treat obesity. Although the anti-appetite effect of fluoxetine is well-documented, its potential effects on human adipose-derived stem cells (ASCs or mature adipocytes have not been investigated. Therefore, we investigated the mechanisms underlying the inhibitory effects of fluoxetine on the proliferation of ASCs. We also investigated its inhibitory effect on adipogenic differentiation. Fluoxetine significantly decreased ASC proliferation, and signal transduction PCR array analysis showed that it increased expression of autophagy-related genes. In addition, fluoxetine up-regulated SQSTM1 and LC3B protein expression as detected by western blotting and immunofluorescence. The autophagy inhibitor, 3-methyladenine (3-MA, significantly attenuated fluoxetine-mediated effects on ASC proliferation and SQSTM1/LC3B expression. In addition, 3-MA decreased the mRNA expression of two autophagy-related genes, beclin-1 and Atg7, in ASCs. Fluoxetine also significantly inhibited lipid accumulation and down-regulated the levels of PPAR-γ and C/EBP-α in ASCs. Collectively, these results indicate that fluoxetine decreases ASC proliferation and adipogenic differentiation. This is the first in vitro evidence that fluoxetine can reduce fat accumulation by inhibiting ASC proliferation and differentiation.

  11. Fluoxetine Decreases the Proliferation and Adipogenic Differentiation of Human Adipose-Derived Stem Cells

    Science.gov (United States)

    Sun, Bo Kyung; Kim, Ji Hye; Choi, Joon-Seok; Hwang, Sung-Joo; Sung, Jong-Hyuk

    2015-01-01

    Fluoxetine was originally developed as an antidepressant, but it has also been used to treat obesity. Although the anti-appetite effect of fluoxetine is well-documented, its potential effects on human adipose-derived stem cells (ASCs) or mature adipocytes have not been investigated. Therefore, we investigated the mechanisms underlying the inhibitory effects of fluoxetine on the proliferation of ASCs. We also investigated its inhibitory effect on adipogenic differentiation. Fluoxetine significantly decreased ASC proliferation, and signal transduction PCR array analysis showed that it increased expression of autophagy-related genes. In addition, fluoxetine up-regulated SQSTM1 and LC3B protein expression as detected by western blotting and immunofluorescence. The autophagy inhibitor, 3-methyladenine (3-MA), significantly attenuated fluoxetine-mediated effects on ASC proliferation and SQSTM1/LC3B expression. In addition, 3-MA decreased the mRNA expression of two autophagy-related genes, beclin-1 and Atg7, in ASCs. Fluoxetine also significantly inhibited lipid accumulation and down-regulated the levels of PPAR-γ and C/EBP-α in ASCs. Collectively, these results indicate that fluoxetine decreases ASC proliferation and adipogenic differentiation. This is the first in vitro evidence that fluoxetine can reduce fat accumulation by inhibiting ASC proliferation and differentiation. PMID:26204837

  12. Warm Parenting Associated with Decreasing or Stable Child BMI during Treatment.

    Science.gov (United States)

    Rhee, Kyung E; Jelalian, Elissa; Boutelle, Kerri; Dickstein, Susan; Seifer, Ronald; Wing, Rena

    2016-04-01

    While authoritative parenting, which includes high levels of warmth and behavioral control, has been associated with lower risk of obesity, little is known about how general parenting impacts child weight loss during treatment. Our goal was to examine the relationship between several general parenting dimensions and 'decreasing /stable' child BMI during a 16-week family-based behavioral weight control program. Forty-four overweight parent-child dyads (child age 8 to 12 years) enrolled in the program. Families were videotaped at baseline eating dinner in their home. Using the General Parenting Observational Scale (GPOS), meals were coded for several general parenting dimensions. Primary outcome was percent of children whose BMI 'decreased or stayed the same.' Multivariable logistic regression was used to determine the relationship between general parenting and decreasing/stable child BMI. Forty families (91%) completed the program. Children had a mean BMI change of -0.40 (SD 1.57), which corresponds to a -0.15 (SD 0.20) change in BMI z-score (BMI-Z); 75% of children had decreasing/stable BMI. In the unadjusted models, lower parent BMI, higher parent education, and higher levels of parental warmth were significantly associated with decreasing/stable child BMI. In the multivariable model, only higher level of warmth was associated with increased odds of decreasing/stable child BMI (OR = 1.28; 95% CI, 1.01, 1.62). Baseline parental warmth may influence a child's ability to lower/maintain BMI during a standard family-based behavioral weight control program. Efforts to increase parent displays of warmth and emotional support towards their overweight child may help to increase the likelihood of treatment success.

  13. An overview of potential molecular mechanisms involved in VSMC phenotypic modulation.

    Science.gov (United States)

    Zhang, Ming-Jie; Zhou, Yi; Chen, Lei; Wang, Yan-Qin; Wang, Xu; Pi, Yan; Gao, Chang-Yue; Li, Jing-Cheng; Zhang, Li-Li

    2016-02-01

    The fully differentiated medial vascular smooth muscle cells (VSMCs) of mature vessels keep quiescent and contractile. However, VSMC can exhibit the plasticity in phenotype switching from a differentiated and contractile phenotype to a dedifferentiated state in response to alterations in local environmental cues, which is called phenotypic modulation or switching. Distinguishing from its differentiated state expressing more smooth muscle (SM)-specific/selective proteins, the phenotypic modulation in VSMC is characterized by an increased rate of proliferation, migration, synthesis of extracellular matrix proteins and decreased expression of SM contractile proteins. Although it has been well demonstrated that phenotypic modulation of VSMC contributes to the occurrence and progression of many proliferative vascular diseases, little is known about the details of the molecular mechanisms of VSMC phenotypic modulation. Growing evidence suggests that variety of molecules including microRNAs, cytokines and biochemical factors, membrane receptors, ion channels, cytoskeleton and extracellular matrix play important roles in controlling VSMC phenotype. The focus of the present review is to provide an overview of potential molecular mechanisms involved in VSMC phenotypic modulation in recent years. To clarify VSMC differentiation and phenotypic modulation mechanisms will contribute to producing cell-based therapeutic interventions for aberrant VSMC differentiation-related diseases.

  14. Decreased Bone Formation Explains Osteoporosis in a Genetic Mouse Model of Hemochromatosiss.

    Directory of Open Access Journals (Sweden)

    Mathilde Doyard

    Full Text Available Osteoporosis may complicate iron overload diseases such as genetic hemochromatosis. However, molecular mechanisms involved in the iron-related osteoporosis remains poorly understood. Recent in vitro studies support a role of osteoblast impairment in iron-related osteoporosis. Our aim was to analyse the impact of excess iron in Hfe-/- mice on osteoblast activity and on bone microarchitecture. We studied the bone formation rate, a dynamic parameter reflecting osteoblast activity, and the bone phenotype of Hfe-/- male mice, a mouse model of human hemochromatosis, by using histomorphometry. Hfe-/- animals were sacrificed at 6 months and compared to controls. We found that bone contains excess iron associated with increased hepatic iron concentration in Hfe-/- mice. We have shown that animals with iron overload have decreased bone formation rate, suggesting a direct impact of iron excess on active osteoblasts number. For bone mass parameters, we showed that iron deposition was associated with bone loss by producing microarchitectural impairment with a decreased tendency in bone trabecular volume and trabecular number. A disorganization of trabecular network was found with marrow spaces increased, which was confirmed by enhanced trabecular separation and star volume of marrow spaces. These microarchitectural changes led to a loss of connectivity and complexity in the trabecular network, which was confirmed by decreased interconnectivity index and increased Minkowski's fractal dimension. Our results suggest for the first time in a genetic hemochromatosis mouse model, that iron overload decreases bone formation and leads to alterations in bone mass and microarchitecture. These observations support a negative effect of iron on osteoblast recruitment and/or function, which may contribute to iron-related osteoporosis.

  15. The decreasing of corn root biomembrane penetration for acetochlor with vermicompost amendment

    Science.gov (United States)

    Sytnyk, Svitlana; Wiche, Oliver

    2016-04-01

    One of the topical environmental security issues is management and control of anthropogenic (artificially synthesized) chemical agents usage and utilization. Protection systems development against toxic effects of herbicides should be based on studies of biological indication mechanisms for identification of stressors effect in organisms. Lipid degradation is non-specific reaction to exogenous chemical agents effects. Therefore it is important to study responses of lipid components depending on the stressor type. We studied physiological and biochemical characteristics of lipid metabolism under action of herbicides of chloracetamide group. Corn at different stages of ontogenesis was used as testing object during model laboratory and microfield experiments. Cattle manure treated with earth worms Essenia Foetida was used as compost fertilizer to add to chain: chernozem (black soil) -corn system. It was found several acetochlor actions as following: -decreasing of sterols, phospholipids, phosphatidylcholines and phosphatidylethanolamines content; -increasing pool of available fatty acids and phosphatidic acids associated with intensification of hydrolysis processes; -lypase activity stimulation under effect of stressor in low concentrations; -lypase activity inhibition under effect of high stressor level; -decreasing of polyenoic free fatty acids indicating biomembrane degradation; -accumulation of phospholipids degradation products (phosphatidic acids); -decreasing of high-molecular compounds (phosphatidylcholin and phosphatidylinositol) concentrations; -change in the index of unsaturated and saturated free fatty acids ratio in biomembranes structure; It was established that incorporation of vermicompost in dose 0.4 kg/m2 in black soil lead to corn roots biomembrane restoration. It was fixed the decreasing roots biomembrane penetration for acetochlor in trial with vermicompost. Second compost substances antidote effect is the soil microorganism's activation

  16. Decreased Temporomandibular Joint Range of Motion in a Model of Early Osteoarthritis in the Rabbit

    Science.gov (United States)

    Henderson, Sarah E.; Tudares, Mauro A.; Tashman, Scott; Almarza, Alejandro J.

    2015-01-01

    Purpose Analysis of mandibular biomechanics could help with understanding the mechanisms of temporomandibular joint (TMJ) disorders (TMJDs), such as osteoarthritis (TMJ-OA), by investigating the effects of injury or disease on TMJ movement. The objective of the present study was to determine the functional kinematic implications of mild TMJ-OA degeneration caused by altered occlusion from unilateral splints in the rabbit. Materials and Methods Altered occlusion of the TMJ was mechanically induced in rabbits by way of a unilateral molar dental splint (n = 3). TMJ motion was assessed using 3-dimensional (3D) skeletal kinematics twice, once before and once after 6 weeks of splint placement with the splints removed, after allowing 3 days of recovery. The relative motion of the condyle to the fossa and the distance between the incisors were tracked. Results An overall decrease in the range of joint movement was observed at the incisors and in the joint space between the condyle and fossa. The incisor movement decreased from 7.0 ± 0.5 mm to 6.2 ± 0.5 mm right to left, from 5.5 ± 2.2 mm to 4.6 ± 0.8 mm anterior to posterior, and from 13.3 ± 1.8 mm to 11.6 ± 1.4 mm superior to inferior (P < .05). The total magnitude of the maximum distance between the points on the condyle and fossa decreased from 3.6 ± 0.8 mm to 3.1 ± 0.6 mm for the working condyle and 2.8 ± 0.4 mm to 2.5 ± 0.4 mm for the balancing condyle (P < .05). The largest decreases were seen in the anteroposterior direction for both condyles. Conclusion Determining the changes in condylar movement might lead to a better understanding of the early predictors in the development of TMJ-OA and determining when the symptoms become a chronic, irreversible problem. PMID:25889371

  17. Ginsenoside Rb1 for Myocardial Ischemia/Reperfusion Injury: Preclinical Evidence and Possible Mechanisms

    Directory of Open Access Journals (Sweden)

    Qun Zheng

    2017-01-01

    Full Text Available Ginseng is an important herbal drug that has been used worldwide for many years. Ginsenoside Rb1 (G-Rb1, the major pharmacological extract from ginseng, possesses a variety of biological activities in the cardiovascular systems. Here, we conducted a preclinical systematic review to investigate the efficacy of G-Rb1 for animal models of myocardial ischemia/reperfusion injury and its possible mechanisms. Ten studies involving 211 animals were identified by searching 6 databases from inception to May 2017. The methodological quality was assessed by using the CAMARADES 10-item checklist. All the data were analyzed using RevMan 5.3 software. As a result, the score of study quality ranged from 3 to 7 points. Meta-analyses showed that G-Rb1 can significantly decrease the myocardial infarct size and cardiac enzymes (including lactate dehydrogenase, creatine kinase, and creatine kinase-MB when compared with control group (P<0.01. Significant decrease in cardiac troponin T and improvement in the degree of ST-segment depression were reported in one study (P<0.05. Additionally, the possible mechanisms of G-Rb1 for myocardial infarction are antioxidant, anti-inflammatory, antiapoptosis, promoting angiogenesis and improving the circulation. Thus, G-Rb1 is a potential cardioprotective candidate for further clinical trials of myocardial infarction.

  18. Chronic stress and decreased physical exercise: impact on weight for African American women.

    Science.gov (United States)

    Moore-Greene, Gracie M; Gross, Susan M; Silver, Kristi D; Perrino, Carrol S

    2012-01-01

    African American women continue to have the highest prevalence of obesity in the United States and in the state of Maryland they are disproportionately affected by overweight and obesity. There are many contributing factors including chronic stress and the use of health behaviors such as physical exercise that play a role in increased weight for African American women. We examined the relationship of stress to weight and the role of physical exercise in African American paraprofessional women. Cross-sectional study African American paraprofessionals were asked about their perspectives regarding association with chronic stress and physical exercise. The three most salient stressors for the women were finances (33%), work (28%) and family/friends (19%). Ninety percent of the women were overweight or obese. Significant predictors of increased BMI were lack of physical exercise (P = .004) and health compared to others (P = .006). Ethnic discrimination was a form of chronic stress (r = .319) but was not correlated with BMI (r = .095). Decreased physical exercise (P = .02) mediated the relationship between chronic stress and BMI. Findings regarding finance and work stress suggest the need for employers to consider the impact of job strain when implementing employee health programs to decrease stress and improve health. A focus on decreased physical exercise, unhealthy eating habits and misperceptions regarding increased risk for obesity related diseases with health status may be helpful to include in intervention strategies to decrease obesity for this population.

  19. The price of electric power in EU region decreased in 1998

    International Nuclear Information System (INIS)

    Kolttola, L.

    2000-01-01

    The price of both household and industrial electric power decreased in EU region during 1998. The price of industrial power decreased by more than 3% and that of households by 0.5%. According to the Eurostat the price of industrial power decreased most in Germany and in Lisbon in Portugal. In the statistics Germany has been divided into several sub-areas. In most of these areas the price decrease was more than 10%. The price of the electric power increased e.g. in London and Birmingham in UK. The price of the electric power consumed by households decreased significantly in Athens (Greece), in Finland and Portugal, and they increased most in the Netherlands and in Leipzig in Germany. The price of industrial electric power is cheapest in Sweden being only about 0.21 FIM (0.035) per kWh, and in Finland the price in the beginning of 1999 was 0.26 FIM (0.0431) per kWh. The price of industrial electric power was highest in Germany and Italy. VAT is not included in the prices used in the survey of industrial electric power. The power consumption of the plants used in the comparison is 2.0 million kWh, the maximum power 500 kW and the maximum operation time 4000 h/a. The price of electric power for households in Greece, there it is cheapest, was under 0.4 FIM (0.07) per kWh. The data of Greece is collected from Athens. In Finland the price of domestic power was second lowest, being less than 0.5 FIM/kWh. The prices in Italy and Denmark were highest in the EU region. The households selected to the survey use 3500 kWh of power annually, 1300 kWh of which is consumed in the night. All the taxes, also VAT, have been included in the price. In 1998 half of the power (52%) was generated by traditional thermal power. The share of nuclear power was 34% and that of hydroelectric power and others 14%. The others group include also the wind power. In 1998 the consumption of thermal power increased by 5%, as well as the consumption of hydroelectric power and other, while the generation

  20. Crocin improved locomotor function and mechanical behavior in the rat model of contused spinal cord injury through decreasing calcitonin gene related peptide (CGRP).

    Science.gov (United States)

    Karami, Masoume; Bathaie, S Zahra; Tiraihi, Taqi; Habibi-Rezaei, Mehran; Arabkheradmand, Jalil; Faghihzadeh, Soghrat

    2013-12-15

    Various approaches have been offered to alleviate chronic pain resulting from spinal cord injuries (SCIs). Application of herbs and natural products, with potentially lower adverse effects, to cure diseases has been recommended in both traditional and modern medicines. Here, the effect of crocin on chronic pain induced by spinal cord contusion was investigated in an animal model. Female Wistar rats were randomly divided into five groups (5 rats in each); three groups were contused at the L1 level. One group was treated with crocin (150mg/kg) two weeks after spinal cord injury; the second group, control, was treated with vehicle only; and the third group was treated with ketoprofen. Two normal groups were also considered with or without crocin treatment. The mechanical behavioral test, the locomotor recovery test and the thermal behavioral test were applied weekly to evaluate the injury and recovery of rats. Significant improvements (plocomotor recovery tests were seen in the rats treated with crocin. Thermal behavioral test did not show any significant changes due to crocin treatment. Plasma concentration of calcitonin-gene related peptide (CGRP) changed from 780.2±2.3 to 1140.3±4.5pg/ml due to SCI and reached 789.1±2.7pg/ml after crocin treatment. These changes were significant at the level of p<0.05. The present study shows the beneficial effects of crocin treatment on chronic pain induced by SCI, through decreasing CGRP as an important mediator of inflammation and pain. Copyright © 2013 Elsevier GmbH. All rights reserved.

  1. Nanomolar Caffeic Acid Decreases Glucose Uptake and the Effects of High Glucose in Endothelial Cells.

    Directory of Open Access Journals (Sweden)

    Lucia Natarelli

    Full Text Available Epidemiological studies suggest that moderate and prolonged consumption of coffee is associated with a reduced risk of developing type 2 diabetes but the molecular mechanisms underlying this effect are not known. In this study, we report the effects of physiological concentrations of caffeic acid, easily achievable by normal dietary habits, in endothelial cells cultured in 25 mM of glucose (high glucose, HG. In HG, the presence of 10 nM caffeic acid was associated with a decrease of glucose uptake but not to changes of GLUT-1 membrane localization or mRNA levels. Moreover, caffeic acid countered HG-induced loss of barrier integrity, reducing actin rearrangement and FITC-dextran passage. The decreased flux of glucose associated to caffeic acid affected HG induced apoptosis by down-regulating the expression of initiator (caspase 8 and 9 and effector caspases (caspase 7 and 3 and by increasing the levels of phosphorylated Bcl-2. We also observed that caffeic acid in HG condition was associated to a reduction of p65 subunit nuclear levels with respect to HG alone. NF-κB activation has been shown to lead to apoptosis in HG treated cells and the analysis of the expression of a panel of about 90 genes related to NF-κB signaling pathway revealed that caffeic acid significantly influenced gene expression changes induced by HG. In conclusion, our results suggest that caffeic acid, decreasing the metabolic stress induced by HG, allows the activation of survival mechanisms mediated by a different modulation of NF-κB-related signaling pathways and to the activation of anti-apoptotic proteins.

  2. Decreased retinal capillary flow is not a mediator of the protective myopia-diabetic retinopathy relationship.

    Science.gov (United States)

    Man, Ryan Eyn Kidd; Sasongko, Muhammad Bayu; Xie, Jing; Best, William J; Noonan, Jonathan E; Lo, Tiffany Ching Shen; Wang, Jie Jin; Luu, Chi D; Lamoureux, Ecosse L

    2014-09-30

    The mechanisms supporting the protective relationship between a longer axial length (AL) and a decreased risk of diabetic retinopathy (DR) remain unclear. Previous studies have demonstrated reduced retinal blood flow in axial myopia, and it has been suggested that the compromised retinal capillaries in diabetes are less likely to leak and rupture as a result of this decreased flow. In this study, we therefore investigated if reduced retinal capillary flow (RCF) is a potential mechanism underpinning this protective relationship. Retinal capillary flow was assessed using the Heidelberg Retinal Flowmeter in 150 eyes of 85 patients with diabetes aged 18+ years from the Royal Victorian Eye and Ear Hospital and St. Vincent's Hospital (Melbourne), Australia. Axial length was measured using the Intraocular Lens Master. Diabetic retinopathy was graded from two-field retinal photographs into none, mild, moderate, and severe DR using the modified Airlie House classification system. A total of 74 out of 150 eyes (49.3%) had DR. A longer AL was associated with decreased odds of DR presence (per mm increase in AL, odds ratio [OR] 0.61, 95% confidence interval [CI] 0.41-0.91) and DR severity (OR: 0.65; 95% CI: 0.44-0.95). However, no association was found between AL and RCF (per mm increase in AL, regression coefficient [β] -1.80, 95% CI -13.50 to 9.50) or between RCF and DR (per unit increase in RCF, OR 1.00; 95% CI 0.99-1.00). Our finding suggests that diminished RCF may not be a major factor underlying the protective association between axial elongation and DR. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  3. Shooting mechanisms in nature

    NARCIS (Netherlands)

    Sakes, Aimée; Wiel, van der Marleen; Henselmans, Paul W.J.; Leeuwen, van Johan L.; Dodou, Dimitra; Breedveld, Paul

    2016-01-01

    Background In nature, shooting mechanisms are used for a variety of purposes, including prey capture, defense, and reproduction. This review offers insight into the working principles of shooting mechanisms in fungi, plants, and animals in the light of the specific functional demands that these

  4. Trace of Korean mechanical industry

    International Nuclear Information System (INIS)

    1996-12-01

    This book reports 50 years of Korean mechanical engineers, which includes birth and history, remembrance and future of Korean society of mechanical engineers, current situation and development of mechanical industry such as national industry and 50 years of mechanical industry, track, airline industry, ship and marine engine, a precision instrument, cutting work, casting, welding, plastic working freeze and air handling nuclear power and textile machinery.

  5. Glucocorticoids selectively inhibit the transcription of the interleukin 1β gene and decrease the stability of interleukin 1β mRNA

    International Nuclear Information System (INIS)

    Lee, S.W.; Tsou, A.P.; Chan, H.; Thomas, J.; Petrie, K.; Eugui, E.M.; Allison, A.C.

    1988-01-01

    Transcription of the interleukin 1β (IL-1β) gene was studied by mRNA hybridization with a cDNA probe in the human promonocytic cell line U-937. Phorbol ester and lipopolysaccharide increased the steady-state level of Il-1β mRNA. Glucocorticoids markedly decreased IL-1β mRNA levels by two mechanisms. Transcription of the IL-1 gene was inhibited, as shown by in vitro transcription assays with nuclei isolated from glucocorticoid-treated cells. Moreover, kinetic analyses and pulse-labeling of mRNAs showed that glucocorticoids selectively decrease the stability of IL-1β mRNA, without affecting the stability of β-actin and FOS mRNAs. Inhibition of the formation and effects IL-1 is a mechanism by which glucocorticoids can exert antiinflammatory and immunosuppressive effects

  6. Genomic interrogation of mechanism(s) underlying cellular responses to toxicants

    International Nuclear Information System (INIS)

    Amin, Rupesh P.; Hamadeh, Hisham K.; Bushel, Pierre R.; Bennett, Lee; Afshari, Cynthia A.; Paules, Richard S.

    2002-01-01

    Assessment of the impact of xenobiotic exposure on human health and disease progression is complex. Knowledge of mode(s) of action, including mechanism(s) contributing to toxicity and disease progression, is valuable for evaluating compounds. Toxicogenomics, the subdiscipline which merges genomics with toxicology, holds the promise to contributing significantly toward the goal of elucidating mechanism(s) by studying genome-wide effects of xenobiotics. Global gene expression profiling, revolutionized by microarray technology and a crucial aspect of a toxicogenomic study, allows measuring transcriptional modulation of thousands of genes following exposure to a xenobiotic. We use our results from previous studies on compounds representing two different classes of xenobiotics (barbiturate and peroxisome proliferator) to discuss the application of computational approaches for analyzing microarray data to elucidate mechanism(s) underlying cellular responses to toxicants. In particular, our laboratory demonstrated that chemical-specific patterns of gene expression can be revealed using cDNA microarrays. Transcript profiling provides discrimination between classes of toxicants, as well as, genome-wide insight into mechanism(s) of toxicity and disease progression. Ultimately, the expectation is that novel approaches for predicting xenobiotic toxicity in humans will emerge from such information

  7. Dry sliding tribological behavior and mechanical properties of Al2024–5 wt.%B4C nanocomposite produced by mechanical milling and hot extrusion

    International Nuclear Information System (INIS)

    Abdollahi, Alireza; Alizadeh, Ali; Baharvandi, Hamid Reza

    2014-01-01

    Highlights: • Nanostructured Al2024 and Al2024–B 4 C nanocomposite prepared via mechanical milling. • The milled powders formed by hot pressing and then exposed to hot extrusion. • Tribological behavior and mechanical properties of samples were investigated. • Al2024–B 4 C nanocomposite showed a better wear resistance and mechanical properties. - Abstract: In this paper, tribological behavior and mechanical properties of nanostructured Al2024 alloy produced by mechanical milling and hot extrusion were investigated before and after adding B 4 C particles. Mechanical milling was used to synthesize the nanostructured Al2024 in attrition mill under argon atmosphere up to 50 h. A similar process was used to produce Al2024–5 wt.%B 4 C composite powder. The milled powders were formed by hot pressing and then were exposed to hot extrusion in 750 °C with extrusion ratio of 10:1. To study the microstructure of milled powders and hot extruded samples, optical microscopy, transmission electron microscopy and scanning electron microscopy (SEM) equipped with an energy dispersive X-ray spectrometer (EDS) were used. The mechanical properties of samples were also compared together using tension, compression and hardness tests. The wear properties of samples were studied using pin-on-disk apparatus under a 20 N load. The results show that mechanical milling decreases the size of aluminum matrix grains to less than 100 nm. The results of mechanical and wear tests also indicate that mechanical milling and adding B 4 C particles increase strength, hardness and wear resistance of Al2024 and decrease its ductility remarkably

  8. Fractional quantum mechanics

    CERN Document Server

    Laskin, Nick

    2018-01-01

    Fractional quantum mechanics is a recently emerged and rapidly developing field of quantum physics. This is the first monograph on fundamentals and physical applications of fractional quantum mechanics, written by its founder. The fractional Schrödinger equation and the fractional path integral are new fundamental physical concepts introduced and elaborated in the book. The fractional Schrödinger equation is a manifestation of fractional quantum mechanics. The fractional path integral is a new mathematical tool based on integration over Lévy flights. The fractional path integral method enhances the well-known Feynman path integral framework. Related topics covered in the text include time fractional quantum mechanics, fractional statistical mechanics, fractional classical mechanics and the α-stable Lévy random process. The book is well-suited for theorists, pure and applied mathematicians, solid-state physicists, chemists, and others working with the Schrödinger equation, the path integral technique...

  9. A decrease in cyclin B1 levels leads to polyploidization in DNA damage-induced senescence.

    Science.gov (United States)

    Kikuchi, Ikue; Nakayama, Yuji; Morinaga, Takao; Fukumoto, Yasunori; Yamaguchi, Naoto

    2010-05-04

    Adriamycin, an anthracycline antibiotic, has been used for the treatment of various types of tumours. Adriamycin induces at least two distinct types of growth repression, such as senescence and apoptosis, in a concentration-dependent manner. Cellular senescence is a condition in which cells are unable to proliferate further, and senescent cells frequently show polyploidy. Although abrogation of cell division is thought to correlate with polyploidization, the mechanisms underlying induction of polyploidization in senescent cells are largely unclear. We wished, therefore, to explore the role of cyclin B1 level in polyploidization of Adriamycin-induced senescent cells. A subcytotoxic concentration of Adriamycin induced polyploid cells having the features of senescence, such as flattened and enlarged cell shape and activated beta-galactosidase activity. In DNA damage-induced senescent cells, the levels of cyclin B1 were transiently increased and subsequently decreased. The decrease in cyclin B1 levels occurred in G2 cells during polyploidization upon treatment with a subcytotoxic concentration of Adriamycin. In contrast, neither polyploidy nor a decrease in cyclin B1 levels was induced by treatment with a cytotoxic concentration of Adriamycin. These results suggest that a decrease in cyclin B1 levels is induced by DNA damage, resulting in polyploidization in DNA damage-induced senescence.

  10. Mechanical instability in non-uniform atomic structure: Application to amorphous metal

    International Nuclear Information System (INIS)

    Umeno, Yoshitaka; Kitamura, Takayuki; Tagawa, Motoki

    2007-01-01

    It is important to reveal the deformation of amorphous metal in the atomistic scale level as materials with non-crystal structure have been attracting attention with their prominent functions. In this paper atomistic simulations of tensile deformation of an amorphous model are conducted and local mechanical instability is analyzed to clarify the deformation mechanism of the amorphous structure. Instability causing sharp stress drop is associated with unstable motion of atoms within local region. The size of the region where the unstable atomic motion occurs corresponds to the magnitude of total stress decrease. At instability with large stress decrease the deformation at the onset of the instability propagates to surrounding region, which gives rise to a hysteresis loop in the stress-strain relation. This manifests the microscopic mechanism of the plasticity of amorphous structure

  11. The Role of Dopamine in Inflammation-Associated Depression: Mechanisms and Therapeutic Implications.

    Science.gov (United States)

    Felger, Jennifer C

    Studies investigating the impact of a variety of inflammatory stimuli on the brain and behavior have consistently reported evidence that inflammatory cytokines affect the basal ganglia and dopamine to mediate depressive symptoms related to motivation and motor activity. Findings have included inflammation-associated reductions in ventral striatal responses to hedonic reward, decreased dopamine and dopamine metabolites in cerebrospinal fluid, and decreased availability of striatal dopamine, all of which correlate with symptoms of anhedonia, fatigue, and psychomotor retardation. Similar relationships between alterations in dopamine-relevant corticostriatal reward circuitry and symptoms of anhedonia and psychomotor slowing have also been observed in patients with major depression who exhibit increased peripheral cytokines and other inflammatory markers, such as C-reactive protein. Of note, these inflammation-associated depressive symptoms are often difficult to treat in patients with medical illnesses or major depression. Furthermore, a wealth of literature suggests that inflammation can decrease dopamine synthesis, packaging, and release, thus sabotaging or circumventing the efficacy of standard antidepressant treatments. Herein, the mechanisms by which inflammation and cytokines affect dopamine neurotransmission are discussed, which may provide novel insights into treatment of inflammation-related behavioral symptoms that contribute to an inflammatory malaise.

  12. Influence of tempering temperature on mechanical properties of cast steels

    Directory of Open Access Journals (Sweden)

    G. Golański

    2008-12-01

    Full Text Available The paper presents results of research on the influence of tempering temperature on structure and mechanical properties of bainite hardened cast steel: G21CrMoV4 – 6 (L21HMF and G17CrMoV5 – 10 (L17HMF. Investigated cast steels were taken out from internal frames of steam turbines serviced for long time at elevated temperatures. Tempering of the investigated cast steel was carried out within the temperature range of 690 ÷ 730 C (G21CrMoV4 – 6 and 700 ÷ 740 C (G17CrMoV5 – 10. After tempering the cast steels were characterized by a structure of tempered lower bainite with numerous precipitations of carbides. Performed research of mechanical properties has shown that high temperatures of tempering of bainitic structure do not cause decrease of mechanical properties beneath the required minimum.oo It has also been proved that high-temperature tempering (>720 oC ensures high impact energy at the 20% decrease of mechanical properties.

  13. Contact mechanics of reverse engineered distal humeral hemiarthroplasty implants.

    Science.gov (United States)

    Willing, Ryan; King, Graham J W; Johnson, James A

    2015-11-26

    Erosion of articular cartilage is a concern following distal humeral hemiarthroplasty, because native cartilage surfaces are placed in contact with stiff metallic implant components, which causes decreases in contact area and increases in contact stresses. Recently, reverse engineered implants have been proposed which are intended to promote more natural contact mechanics by reproducing the native bone or cartilage shape. In this study, finite element modeling is used in order to calculate changes in cartilage contact areas and stresses following distal humeral hemiarthroplasty with commercially available and reverse engineered implant designs. At the ulna, decreases in contact area were -34±3% (p=0.002), -27±1% (pengineered and cartilage reverse engineered designs, respectively. Peak contact stresses increased by 461±57% (p=0.008), 387±127% (p=0.229) and 165±16% (p=0.003). At the radius, decreases in contact area were -21±3% (p=0.013), -13±2% (p0.999), 241±32% (p=0.010) and 61±10% (p=0.021). Between the three different implant designs, the cartilage reverse engineered design yielded the largest contact areas and lowest contact stresses, but was still unable to reproduce the contact mechanics of the native joint. These findings align with a growing body of evidence indicating that although reverse engineered hemiarthroplasty implants can provide small improvements in contact mechanics when compared with commercially available designs, further optimization of shape and material properties is required in order reproduce native joint contact mechanics. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. The Welding Effect on Mechanical Strength of Low Level Radioactive Waste Drum Container

    International Nuclear Information System (INIS)

    Aisyah; Herlan Martono

    2007-01-01

    The treatment of compactable low level solid waste was started by compaction of 100 liter drum containing the waste using 600 kN hydraulic press in 200 liters drum. The 200 liter drum of waste container containing of compacted waste then immobilized with cement and stored in interm storage. The 200 liter drum of waste container made of carbon steel material to comply with a good mechanical strength request in order to be able to retain the waste content for long period. Welding is a one step in a waste drum container fabrication process that has an opportunity in decreasing these mechanical strength. The research is carried out by welding the waste drum container material sample by electric arc welding. Mechanical strength test carried out by measuring the tensile strength by using the tensile strength machine, hardness test by using Vickers hardness test and microstructure observation by using the optic microscope. The result shows that the welding cause the microstructure changes, its meaning of forming ferro oxide phase on welding area that leads to the brittle material, so that the mechanical strength has a decreasing slightly. Nevertheless the decreasing of mechanical strength is still in the range of safety limit. (author)

  15. Superconducting state mechanisms and properties

    CERN Document Server

    Kresin, Vladimir Z; Wolf, Stuart A

    2014-01-01

    'Superconducting State' provides a very detailed theoretical treatment of the key mechanisms of superconductivity, including the current state of the art (phonons, magnons, and plasmons). A very complete description is given of the electron-phonon mechanism responsible for superconductivity in the majority of superconducting systems, and the history of its development, as well as a detailed description of the key experimental techniques used to study the superconducting state and determine the mechanisms. In addition, there are chapters describing the discovery and properties of the key superconducting compounds that are of the most interest for science, and applications including a special chapter on the cuprate superconductors. It provides detailed treatments of some very novel aspects of superconductivity, including multiple bands (gaps), the "pseudogap" state, novel isotope effects beyond BCS, and induced superconductivity.

  16. Hydrogen Sulfide Alleviates Aluminum Toxicity via Decreasing Apoplast and Symplast Al Contents in Rice

    Directory of Open Access Journals (Sweden)

    Chun Q. Zhu

    2018-03-01

    Full Text Available Hydrogen sulfide (H2S plays a vital role in Al3+ stress resistance in plants, but the underlying mechanism is unclear. In the present study, pretreatment with 2 μM of the H2S donor NaHS significantly alleviated the inhibition of root elongation caused by Al toxicity in rice roots, which was accompanied by a decrease in Al contents in root tips under 50 μM Al3+ treatment. NaHS pretreatment decreased the negative charge in cell walls by reducing the activity of pectin methylesterase and decreasing the pectin and hemicellulose contents in rice roots. This treatment also masked Al-binding sites in the cell wall by upregulating the expression of OsSATR1 and OsSTAR2 in roots and reduced Al binding in the cell wall by stimulating the expression of the citrate acid exudation gene OsFRDL4 and increasing the secretion of citrate acid. In addition, NaHS pretreatment decreased the symplasmic Al content by downregulating the expression of OsNRAT1, and increasing the translocation of cytoplasmic Al to the vacuole via upregulating the expression of OsALS1. The increment of antioxidant enzyme [superoxide dismutase (SOD, ascorbate peroxidase (APX, catalase (CAT, and peroxidase (POD] activity with NaHS pretreatment significantly decreased the MDA and H2O2 content in rice roots, thereby reducing the damage of Al3+ toxicity on membrane integrity in rice. H2S exhibits crosstalk with nitric oxide (NO in response to Al toxicity, and through reducing NO content in root tips to alleviate Al toxicity. Together, this study establishes that H2S alleviates Al toxicity by decreasing the Al content in the apoplast and symplast of rice roots.

  17. The influence of incline walking on joint mechanics.

    Science.gov (United States)

    Haggerty, Mason; Dickin, D Clark; Popp, Jennifer; Wang, Henry

    2014-04-01

    Walking is a popular form of exercise and is associated with many health benefits; however, frontal-plane knee joint loading brought about by a large internal knee-abduction moment and cyclic loading could lead to cartilage degeneration over time. Therefore, knee joint mechanics during an alternative walking exercise needs to be analyzed. The purpose of this study was to examine the lower-extremity joint mechanics in the frontal and sagittal planes during incline walking. Fifteen healthy males walked on a treadmill at five gradients (0%, 5%, 10%, 15%, and 20%) at 1.34m/s, and lower-extremity joint mechanics in the frontal and sagittal planes were quantified. The peak internal knee-abduction moment significantly decreased from the level walking condition at all gradients except 5%. Also, a negative relationship between the internal knee-abduction moment and the treadmill gradient was found to exist in 10% increments (0-10%, 5-15%, and 10-20%). The decrease in the internal knee-abduction moment during incline walking could have positive effects on knee joint health such as potentially reducing cartilage degeneration of the knee joint, reducing pain, and decreasing the rate of development of medial tibiofemoral osteoarthritis. This would be beneficial for a knee surgery patient, obese persons, and older adults who are using incline walking for rehabilitation and exercise protocols. Findings from the current study can provide guidance for the development of rehabilitation and exercise prescriptions incorporating incline walking. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Mechanism of air-sea momentum flux from low to high winds

    Science.gov (United States)

    Zhao, Dongliang

    2017-04-01

    In the condition of wind speed less than 20 m/s, many studies have shown that drag coefficient roughly increases linearly with wind speed, which is usually extrapolated to high winds in practice. Since the pioneer work of Powell et al. (2003), both field and laboratory studies have indicated that the drag coefficient begins to decrease or saturate when wind speed is greater than a critical value such as 30 m/s. All the reduction mechanisms proposed up to now are related to the effect of sea spray induced by wave breaking in high winds. This study tries to propose another mechanism that is directly related to wave breaking. Based on the wind-wave growth relations, it is found that drag coefficient increases simultaneously with wave age and wave steepness. The reduction of drag coefficient with wave age that has been shown by previous studies mainly reflect the wind effect because the phase speeds of waves vary in a very narrow range, and can be roughly regarded as constant. It is indicated that two parameters including wave age and wave steepness together control the momentum transfer through air-sea interface. The wave age and wave steepness represent the abilities of wind input and wave receiving energy, respectively. In general, the two parameters are well correlated and can be replaced one another in the condition of low and moderate winds, in which the wave steepness decreases with the increasing wave age. In the condition of high winds, the wave steepness reaches to its upper threshold due to wave breaking, in which wave steepness cannot increase with the decreasing of wave age. At the same time, wave ages become very small, thus drag coefficients begin to decrease with wind speed. It is further suggested that there are two different upper thresholds of wave steepness for laboratory and field waves, which can be applied to explain the reduction of drag coefficient either in laboratory or in field

  19. Mating with an allopatric male triggers immune response and decreases longevity of ant queens.

    Science.gov (United States)

    Schrempf, A; von Wyschetzki, K; Klein, A; Schrader, L; Oettler, J; Heinze, J

    2015-07-01

    In species with lifelong pair bonding, the reproductive interests of the mating partners are aligned, and males and females are expected to jointly maximize their reproductive success. Mating increases both longevity and fecundity of female reproductives (queens) of the ant Cardiocondyla obscurior, indicating a tight co-evolution of mating partners. Here, we show that mating with a male from their own population increases lifespan and reproductive success of queens more than mating with a male from a different population, with whom they could not co-evolve. A comparison of transcriptomes revealed an increased expression of genes involved in immunity processes in queens, which mated with males from a different population. Increased immune response might be proximately associated with decreased lifespan. Our study suggests a synergistic co-evolution between the sexes and sheds light on the proximate mechanisms underlying the decreased fitness of allopatrically mated queens. © 2015 John Wiley & Sons Ltd.

  20. Review article: potential mechanisms of action of rifaximin in the management of irritable bowel syndrome with diarrhoea.

    Science.gov (United States)

    Pimentel, M

    2016-01-01

    The role of gut microbiota in the pathophysiology of irritable bowel syndrome (IBS) is supported by various lines of evidence, including differences in mucosal and faecal microbiota between patients with IBS and healthy individuals, development of post-infectious IBS, and the efficacy of some probiotics and nonsystemic antibiotics (e.g. rifaximin). To review the literature regarding the role of rifaximin in IBS and its potential mechanism(s) of action. A literature search was conducted using the terms 'rifaximin', 'irritable bowel syndrome' and 'mechanism of action'. Rifaximin was approved in 2015 for the treatment of IBS with diarrhoea. In contrast to other currently available IBS therapies that require daily administration to maintain efficacy, 2-week rifaximin treatment achieved symptom improvement that persisted ≥12 weeks post-treatment. The mechanisms of action of rifaximin, therefore, may extend beyond direct bactericidal effects. Data suggest that rifaximin may decrease host proinflammatory responses to bacterial products in patients with IBS. In some cases, small intestinal bacterial overgrowth (SIBO) may play a role in the clinical symptoms of IBS. Because of the high level of solubility of rifaximin in the small intestine, rifaximin may reset microbial diversity in this environment. Consistent with this hypothesis, rifaximin has antibiotic efficacy against isolates derived from patients with SIBO. Resetting microbial diversity via rifaximin use may lead to a decrease in bacterial fermentation and a reduction in the clinical symptoms of IBS. © 2015 John Wiley & Sons Ltd.

  1. Methamphetamine decreases dentate gyrus stem cell self-renewal and shifts the differentiation towards neuronal fate

    Directory of Open Access Journals (Sweden)

    Sofia Baptista

    2014-09-01

    Full Text Available Methamphetamine (METH is a highly addictive psychostimulant drug of abuse that negatively interferes with neurogenesis. In fact, we have previously shown that METH triggers stem/progenitor cell death and decreases neuronal differentiation in the dentate gyrus (DG. Still, little is known regarding its effect on DG stem cell properties. Herein, we investigate the impact of METH on mice DG stem/progenitor cell self-renewal functions. METH (10 nM decreased DG stem cell self-renewal, while 1 nM delayed cell cycle in the G0/G1-to-S phase transition and increased the number of quiescent cells (G0 phase, which correlated with a decrease in cyclin E, pEGFR and pERK1/2 protein levels. Importantly, both drug concentrations (1 or 10 nM did not induce cell death. In accordance with the impairment of self-renewal capacity, METH (10 nM decreased Sox2+/Sox2+ while increased Sox2−/Sox2− pairs of daughter cells. This effect relied on N-methyl-d-aspartate (NMDA signaling, which was prevented by the NMDA receptor antagonist, MK-801 (10 μM. Moreover, METH (10 nM increased doublecortin (DCX protein levels consistent with neuronal differentiation. In conclusion, METH alters DG stem cell properties by delaying cell cycle and decreasing self-renewal capacities, mechanisms that may contribute to DG neurogenesis impairment followed by cognitive deficits verified in METH consumers.

  2. Study of mechanical properties of films of nanocomposites LLDPE/bentonite

    International Nuclear Information System (INIS)

    Silva, Eduardo M.; Carvalho, Laura H.; Canedo, Eduardo L.; Coutinho, Maria G.F.; Costa, Raquel B.; Araujo, Arthur R.A.

    2011-01-01

    Mechanical properties of LLDPE/bentonite clay were determined as a function of clay content (1 and 2% w/w), purification and organophilization. Raw materials were characterized by FTIR and XRD. Nanocomposites were obtained as flat films and characterized by XRD and mechanical properties. Results indicate that best overall mechanical properties were displayed by systems containing purified clay and that they tended to decrease with increasing clay content. Organofilization was effective and only intercalated nanocomposites were obtained. (author)

  3. IMPROVING SPECIFIC POWER CONSUMPTION FOR MECHANICAL MIXING OF THE FEEDSTOCK IN A BIOGAS FERMENTER BY MECHANICAL DISINTEGRATION OF LIGNOCELLULOSE BIOMASS

    Directory of Open Access Journals (Sweden)

    Lukas Kratky

    2014-10-01

    Full Text Available Lignocellulosic biomass particles in biogas fermenter batch either sediment towards vessel bottom or rise towards batch surface, where they float and form a compact thick scum. These processes have primarily the negative influence on batch homogeneity, on evenness of batch temperature field, on removal of produced biogas bubbles out of liquid batch and also on mass transfer among microorganisms. These facts result in non-effective usage of biomass energy-potential that entails in low biogas yields. Therefore, good mixing of bioreactor batch is very important in order to stabilize anaerobic digestion process. The aims of the present study were to evaluate the impact of wheat straw disintegration and its hydration on hydrodynamic behaviour and on specific power consumption for mechanical mixing of wheat straw-water suspension. Based on experimental results, it was concluded that both hydration and mechanical disintegration of lignocellulosic biomass significantly improve homogeneity and pump-ability of biomass-water batches. Wheat straw hydration itself decreases specific power consumption for batch mixing by 60 % towards untreated straw. Moreover, mechanical disintegration itself decreases specific power consumption by 50 % at least towards untreated hydrated straw.

  4. Optimized use of cooling holes to decrease the amount of thermal damage on a plastic gear tooth

    Directory of Open Access Journals (Sweden)

    Demagna Koffi

    2016-05-01

    Full Text Available The full potential of plastic gear usage is limited by not only poor mechanical properties but also equally poor temperature limits and poor heat conduction properties. Cooling holes were developed to decrease the amount of thermal damage on the contact surface. These cooling holes promote increased stress and tooth deflection, thus exerting a negative effect. This article compares various cooling holes for plastic gear configurations and proposes novel cooling holes. Thermal and mechanical simulations that consider specific aspects of plastic gear meshing were performed. The main objective of this article was to verify the best methods for reducing thermal damage through cooling holes. The results indicate the best compromise between the temperature reduction and the mechanical properties of the new tooth geometry. The results also indicate that the simple variations in the cooling holes proposed can improve tooth performance.

  5. A study of optical, mechanical and electrical properties of poly(methacrylic acid)/TiO2 nanocomposite

    Science.gov (United States)

    AL-Baradi, Ateyyah M.; Al-Shehri, Samar F.; Badawi, Ali; Merazga, Amar; Atta, A. A.

    2018-06-01

    This work is concerned with the study of the effect of titanium dioxide (TiO2) nanofillers on the optical, mechanical and electrical properties of poly(methacrylic acid) (PMAA) networks as a function of TiO2 concentration and crosslink density. The structure of the prepared samples was investigated by X-ray diffractometry (XRD) and Transmittance Electron Microscope (TEM). XRD results showed a single phase for the nanocomposites indicating that no large TiO2 aggregates in the polymer matrix. The optical properties of the prepared samples including the absorption, transmittance, energy band gap and refractive index were explored using Spectrophotometer. These measurements showed that there is a red-shift in the absorption caused by the increase of TiO2 concentration. However, the crosslink density in the polymer plays no role in changing the absorption. The energy band gap (Eg) decreases with increasing the concentration of TiO2 in the polymer matrix; whereas Eg increases with increasing the crosslink density. Moreover, the mechanical properties of PMAA/TiO2 nanocomposites by Dynamic Mechanical Analysis (DMA) showed that the viscoelasticity of PMAA decreases with adding TiO2 nanoparticles and the glass transition temperature (Tg) was also found to drop from 130 °C to 114 °C. Finally, the DC conductivity of the obtained systems was found to increase with increasing TiO2 nanoparticles in the matrix.

  6. Evaluation of Synthesizing Al2O3 Nano Particles in Copper Matrix by Mechanical Alloying of Cu-1% Al and Copper Oxide

    Directory of Open Access Journals (Sweden)

    S. Safi

    2017-06-01

    Full Text Available Strengthening of copper matrix by dispersion of metallic oxides particles as an efficient way to increase strength without losing thermal and electrical conductivities has been recognized for many years. Such a composite can withstand high temperatures and keep its properties. Such copper alloys have many applications especially in high temperature including resistance welding electrodes, electrical motors and switches. In the present work, at first, the Cu-1%Al solid solution was prepared by the mechanical alloying process via 48 hours of milling. Subsequently, 0.66 gr of copper oxide was added to Cu-1%Al solid solution and mechanically milled for different milling times of 0,16, 32, 48 hours. The milled powder mixtures were investigated by X-Ray Diffraction and scanning electron microscopy techniques. The lattice parameter of Cu increased at first, but then decreased at longer milling times. The internal strain increased and the average Cu crystal size decreased during milling process.The particle size decreased during the whole process. With increasing annealing temprature from 450°C to 750°C, the microhardness values of samples decreased at the beginning but then increased. From these results, it can be concluded that nanosize aluminaparticles are formed in the copper matrix.

  7. Shape memory-based actuators and release mechanisms therefrom

    Science.gov (United States)

    Vaidyanathan, Rajan (Inventor); Snyder, Daniel W. (Inventor); Schoenwald, David K. (Inventor); Lam, Nhin S. (Inventor); Watson, Daniel S. (Inventor); Krishnan, Vinu B. (Inventor); Noebe, Ronald D. (Inventor)

    2012-01-01

    SM-based actuators (110) and release mechanisms (100) therefrom and systems (500) including one or more release mechanisms (100). The actuators (110) comprise a SM member (118) and a deformable member (140) mechanically coupled to the SM member (118) which deforms upon a shape change of the SM member triggered by a phase transition of the SM member. A retaining element (160) is mechanically coupled to the deformable member (140), wherein the retaining element (160) moves upon the shape change. Release mechanism (100) include an actuator, a rotatable mechanism (120) including at least one restraining feature (178) for restraining rotational movement of the retaining element (160) before the shape change, and at least one spring (315) that provides at least one locked spring-loaded position when the retaining element is in the restraining feature and at least one released position that is reached when the retaining element is in a position beyond the restraining feature (178). The rotatable mechanism (120) includes at least one load-bearing protrusion (310). A hitch (400) is for mechanically coupling to the load, wherein the hitch is supported on the load bearing protrusion (310) when the rotatable mechanism is in the locked spring-loaded position.

  8. The effect of mechanical vibration on orthodontically induced root resorption.

    Science.gov (United States)

    Yadav, Sumit; Dobie, Thomas; Assefnia, Amir; Kalajzic, Zana; Nanda, Ravindra

    2016-09-01

    To investigate the effect of low-frequency mechanical vibration (LFMV) on orthodontically induced root resorption. Forty male CD1, 12-week-old mice were used for the study. The mice were randomly divided into five groups: group 1 (baseline)-no spring and no mechanical vibration, group 2-orthodontic spring but no vibration, group 3-orthodontic spring and 5 Hz of vibration applied to the maxillary first molar, group 4-orthodontic spring and 10 Hz of vibration applied to maxillary first molar, and group 5-orthodontic spring and 20 Hz of vibration applied to maxillary first molar. In the different experimental groups, the first molar was moved mesially for 2 weeks using a nickel-titanium coil spring delivering 10 g of force. LFMVs were applied at 5 Hz, 10 Hz, and 20 Hz. Microfocus X-ray computed tomography imaging was used to analyze root resorption. Additionally, to understand the mechanism, we applied LFMV to MC3T3 cells, and gene expression analyses were done for receptor activator of nuclear factor kappa-B ligand (RANKL) and osteoprotegerin (OPG). Orthodontic tooth movement leads to decreased root volume (increased root resorption craters). Our in vivo experiments showed a trend toward increase in root volume with different frequencies of mechanical vibration. In vitro gene expression analyses showed that with 20 Hz of mechanical vibration, there was a significant decrease in RANKL and a significant increase in OPG expression. There was a trend toward decreased root resorption with different LFMVs (5 Hz, 10 Hz, and 20 Hz); however, it was not more statistically significant than the orthodontic-spring-only group.

  9. Decreased expression of LamB and Odp1 complex is crucial for antibiotic resistance in Escherichia coli.

    Science.gov (United States)

    Lin, Xiang-min; Yang, Man-jun; Li, Hui; Wang, Chao; Peng, Xuan-Xian

    2014-02-26

    We previously revealed a negative regulation of LamB in chlortetracycline-resistant Escherichia coli strain. In the present study, we first showed that the negative regulation, which was characterized by decreased abundance of LamB with elevated growth of its gene-deleted mutant in medium with antibiotics, was a general response in resistance to different classes of antibiotics using 2-DE based proteomics or/and genetically gene-deletion mutant of LamB. Then, we revealed the interaction of LamB and Odp1 which catalyzes the overall conversion of pyruvate to acetyl-CoA and CO2, and found the decrease of the complex in antibiotic-resistant strains with a minimum inhibitory concentration dose-dependent manner. Further spectrofluorometry assay indicated that LamB served as a porin to influx an antibiotic. Finally, we showed that the decreased expression of LamB and Odp1 was detected in almost of all 34 multidrug-resistant strains, which suggested that LamB and Odp1 were biomarkers for identification of antibiotic-resistant E. coli. Our results indicated that the interaction of an outer membrane protein with an energy metabolic enzyme constructed an efficient pathway to resist antibiotics. These findings provide novel insights into the mechanisms of antibiotic resistance. Our data indicate that the negative regulation by LamB is widely detected in antibiotic-resistant E. coli. LamB serves as a porin to influx an antibiotic and is interacted with Odp1. The complex decreases in antibiotic-resistant strains with a MIC dose-dependent manner. Our findings indicate that interaction of outer membrane protein with energy metabolic enzyme constructs an efficient pathway to resist antibiotics and provides novel insights into the mechanisms of antibiotic resistance. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Decreased antimony uptake and overexpression of genes of thiol metabolism are associated with drug resistance in a canine isolate of Leishmania infantum

    Directory of Open Access Journals (Sweden)

    Verónica Gómez Pérez

    2016-08-01

    Full Text Available Visceral leishmaniasis (VL caused by the protozoan parasite Leishmania infantum, is one of the most important zoonotic diseases affecting dogs and humans in the Mediterranean area. The presence of infected dogs as the main reservoir host of L. infantum is regarded as the most significant risk for potential human infection. We have studied the susceptibility profile to antimony and other anti-leishmania drugs (amphotericin B, miltefosine, paromomycin in Leishmania infantum isolates extracted from a dog before and after two therapeutic interventions with meglumine antimoniate (subcutaneous Glucantime®, 100 mg/kg/day for 28 days. After the therapeutic intervention, these parasites were significantly less susceptible to antimony than pretreatment isolate, presenting a resistance index of 6-fold to SbIII for promastigotes and >3-fold to SbIII and 3-fold to SbV for intracellular amastigotes. The susceptibility profile of this resistant L. infantum line is related to a decreased antimony uptake due to lower aquaglyceroporin-1 expression levels. Additionally, other mechanisms including an increase in thiols and overexpression of enzymes involved in thiol metabolism, such as ornithine decarboxylase, trypanothione reductase, mitochondrial tryparedoxin and mitochondrial tryparedoxin peroxidase, could contribute to the resistance as antimony detoxification mechanisms. A major contribution of this study in a canine L. infantum isolate is to find an antimony-resistant mechanism similar to that previously described in other human clinical isolates.

  11. Decreases in average bacterial community rRNA operon copy number during succession.

    Science.gov (United States)

    Nemergut, Diana R; Knelman, Joseph E; Ferrenberg, Scott; Bilinski, Teresa; Melbourne, Brett; Jiang, Lin; Violle, Cyrille; Darcy, John L; Prest, Tiffany; Schmidt, Steven K; Townsend, Alan R

    2016-05-01

    Trait-based studies can help clarify the mechanisms driving patterns of microbial community assembly and coexistence. Here, we use a trait-based approach to explore the importance of rRNA operon copy number in microbial succession, building on prior evidence that organisms with higher copy numbers respond more rapidly to nutrient inputs. We set flasks of heterotrophic media into the environment and examined bacterial community assembly at seven time points. Communities were arrayed along a geographic gradient to introduce stochasticity via dispersal processes and were analyzed using 16 S rRNA gene pyrosequencing, and rRNA operon copy number was modeled using ancestral trait reconstruction. We found that taxonomic composition was similar between communities at the beginning of the experiment and then diverged through time; as well, phylogenetic clustering within communities decreased over time. The average rRNA operon copy number decreased over the experiment, and variance in rRNA operon copy number was lowest both early and late in succession. We then analyzed bacterial community data from other soil and sediment primary and secondary successional sequences from three markedly different ecosystem types. Our results demonstrate that decreases in average copy number are a consistent feature of communities across various drivers of ecological succession. Importantly, our work supports the scaling of the copy number trait over multiple levels of biological organization, ranging from cells to populations and communities, with implications for both microbial ecology and evolution.

  12. Vitamin D Supplementation Decreases TGF-β1 Bioavailability in PCOS: A Randomized Placebo-Controlled Trial.

    Science.gov (United States)

    Irani, Mohamad; Seifer, David B; Grazi, Richard V; Julka, Nitasha; Bhatt, Devika; Kalgi, Bharati; Irani, Sara; Tal, Oded; Lambert-Messerlian, Geralyn; Tal, Reshef

    2015-11-01

    There is an abnormal increase in TGF-β1 bioavailability in women with polycystic ovary syndrome (PCOS), which might play a role in the pathophysiology of this syndrome. Vitamin D (VD) supplementation improves various clinical manifestations of PCOS and decreases TGF-β1 levels in several diseases including myelofibrosis. The objective of the study was to determine the effect of VD supplementation on TGF-β1 bioavailability in VD-deficient women with PCOS and assess whether changes in TGF-β1/soluble endoglin (sENG) levels correlate with an improvement in PCOS clinical manifestations. This was a prospective, randomized, placebo-controlled trial. The study was conducted at an academic-affiliated medical center. Sixty-eight VD-deficient women with PCOS who were not pregnant or taking any exogenous hormones were recruited between October 2013 and January 2015. Forty-five women received 50 000 IU of oral vitamin D3 and 23 women received oral placebo once weekly for 8 weeks. Serum TGF-β1, sENG, lipid profile, testosterone, dehydroepiandrosterone sulfate, and insulin resistance were measured. The clinical parameters were evaluated before and 2 months after treatment. The VD level significantly increased and normalized after VD supplementation (16.3 ± 0.9 [SEM] to 43.2 ± 2.4 ng/mL; P PCOS significantly decreases the bioavailability of TGF-β1, which correlates with an improvement in some abnormal clinical parameters associated with PCOS. This is a novel mechanism that could explain the beneficial effects of VD supplementation in women with PCOS. These findings may support new treatment modalities for PCOS, such as the development of anti-TGF-β drugs.

  13. Sustained, Low?Intensity Exercise Achieved by a Dynamic Feeding System Decreases Body Fat in Ponies

    OpenAIRE

    de Laat, M.A.; Hampson, B.A.; Sillence, M.N.; Pollitt, C.C.

    2016-01-01

    Background Obesity in horses is increasing in prevalence and can be associated with insulin insensitivity and laminitis. Current treatment strategies for obesity include dietary restriction and exercise. However, whether exercise alone is effective for decreasing body fat is uncertain. Hypothesis Our hypothesis was that twice daily use of a dynamic feeding system for 3 months would induce sustained, low?intensity exercise thereby decreasing adiposity and improving insulin sensitivity (SI). An...

  14. System dynamics for mechanical engineers

    CERN Document Server

    Davies, Matthew

    2015-01-01

    This textbook is ideal for mechanical engineering students preparing to enter the workforce during a time of rapidly accelerating technology, where they will be challenged to join interdisciplinary teams. It explains system dynamics using analogies familiar to the mechanical engineer while introducing new content in an intuitive fashion. The fundamentals provided in this book prepare the mechanical engineer to adapt to continuous technological advances with topics outside traditional mechanical engineering curricula by preparing them to apply basic principles and established approaches to new problems. This book also: ·         Reinforces the connection between the subject matter and engineering reality ·         Includes an instructor pack with the online publication that describes in-class experiments with minimal preparation requirements ·         Provides content dedicated to the modeling of modern interdisciplinary technological subjects, including opto-mechanical systems, high...

  15. Hyperglycemia decreases mitochondrial function: The regulatory role of mitochondrial biogenesis

    International Nuclear Information System (INIS)

    Palmeira, Carlos M.; Rolo, Anabela P.; Berthiaume, Jessica; Bjork, James A.; Wallace, Kendall B.

    2007-01-01

    Increased generation of reactive oxygen species (ROS) is implicated in 'glucose toxicity' in diabetes. However, little is known about the action of glucose on the expression of transcription factors in hepatocytes, especially those involved in mitochondrial DNA (mtDNA) replication and transcription. Since mitochondrial functional capacity is dynamically regulated, we hypothesized that stressful conditions of hyperglycemia induce adaptations in the transcriptional control of cellular energy metabolism, including inhibition of mitochondrial biogenesis and oxidative metabolism. Cell viability, mitochondrial respiration, ROS generation and oxidized proteins were determined in HepG2 cells cultured in the presence of either 5.5 mM (control) or 30 mM glucose (high glucose) for 48 h, 96 h and 7 days. Additionally, mtDNA abundance, plasminogen activator inhibitor-1 (PAI-1), mitochondrial transcription factor A (TFAM) and nuclear respiratory factor-1 (NRF-1) transcripts were evaluated by real time PCR. High glucose induced a progressive increase in ROS generation and accumulation of oxidized proteins, with no changes in cell viability. Increased expression of PAI-1 was observed as early as 96 h of exposure to high glucose. After 7 days in hyperglycemia, HepG2 cells exhibited inhibited uncoupled respiration and decreased MitoTracker Red fluorescence associated with a 25% decrease in mtDNA and 16% decrease in TFAM transcripts. These results indicate that glucose may regulate mtDNA copy number by modulating the transcriptional activity of TFAM in response to hyperglycemia-induced ROS production. The decrease of mtDNA content and inhibition of mitochondrial function may be pathogenic hallmarks in the altered metabolic status associated with diabetes

  16. Pricing Mechanism in Information Goods

    OpenAIRE

    Li, Xinming; Wang, Huaqing

    2018-01-01

    We study three pricing mechanisms' performance and their effects on the participants in the data industry from the data supply chain perspective. A win-win pricing strategy for the players in the data supply chain is proposed. We obtain analytical solutions in each pricing mechanism, including the decentralized and centralized pricing, Nash Bargaining pricing, and revenue sharing mechanism.

  17. Prognostic Significance of Preterm Isolated Decreased Fetal Movement

    Directory of Open Access Journals (Sweden)

    Ertuğrul Karahanoğlu

    2017-12-01

    Full Text Available Objective: Our aim is to evaluate the prognostic significance of isolated, preterm decreased fetal movement following normal initial full diagnostic workup. Study design: A retrospective observational study was conducted at a tertiary centre. The applied protocol was approved by the Medical Research Ethics Department of the hospital where the research was conducted. Obstetrics outcomes of preterm- and term-decreased fetal movement were compared following an initial, normal diagnostic work up. Evaluated outcomes were birth weight, mode of delivery, stillbirth rate, induction of labour, development of gestational hypertension, small for gestational age and oligohydramnios, polyhydramnios during the follow up period. Result: Obstetric complications related to placental insufficiency develops more frequently for decreased fetal movement in preterm cases with respect to that of in term cases. Following the diagnosis of decreased fetal movement, pregnancy hypertension occurred in 17% of preterm decreased fetal movement cases and in 4.7% of term decreased fetal movement cases. Fetal growth restriction developed in 6.6% of preterm decreased fetal movement and in 2.3% of term decreased fetal movement. Amniotic fluid abnormalities more frequently developed in preterm decreased fetal movement. Conclusion: Following an initial normal diagnostic workup, preterm decreased fetal movement convey a higher risk for the development of pregnancy complications associated with placental insufficiency. The patient should be monitored closely and management protocols must be developed for initial normal diagnostic workups in cases of preterm decreased fetal movement.

  18. Comparative Genomics of Mycoplasma bovis Strains Reveals That Decreased Virulence with Increasing Passages Might Correlate with Potential Virulence-Related Factors

    Directory of Open Access Journals (Sweden)

    Muhammad A. Rasheed

    2017-05-01

    Full Text Available Mycoplasma bovis is an important cause of bovine respiratory disease worldwide. To understand its virulence mechanisms, we sequenced three attenuated M. bovis strains, P115, P150, and P180, which were passaged in vitro 115, 150, and 180 times, respectively, and exhibited progressively decreasing virulence. Comparative genomics was performed among the wild-type M. bovis HB0801 (P1 strain and the P115, P150, and P180 strains, and one 14.2-kb deleted region covering 14 genes was detected in the passaged strains. Additionally, 46 non-sense single-nucleotide polymorphisms and indels were detected, which confirmed that more passages result in more mutations. A subsequent collective bioinformatics analysis of paralogs, metabolic pathways, protein-protein interactions, secretory proteins, functionally conserved domains, and virulence-related factors identified 11 genes that likely contributed to the increased attenuation in the passaged strains. These genes encode ascorbate-specific phosphotransferase system enzyme IIB and IIA components, enolase, L-lactate dehydrogenase, pyruvate kinase, glycerol, and multiple sugar ATP-binding cassette transporters, ATP binding proteins, NADH dehydrogenase, phosphate acetyltransferase, transketolase, and a variable surface protein. Fifteen genes were shown to be enriched in 15 metabolic pathways, and they included the aforementioned genes encoding pyruvate kinase, transketolase, enolase, and L-lactate dehydrogenase. Hydrogen peroxide (H2O2 production in M. bovis strains representing seven passages from P1 to P180 decreased progressively with increasing numbers of passages and increased attenuation. However, eight mutants specific to eight individual genes within the 14.2-kb deleted region did not exhibit altered H2O2 production. These results enrich the M. bovis genomics database, and they increase our understanding of the mechanisms underlying M. bovis virulence.

  19. Quantum mechanics a comprehensive text for chemistry

    CERN Document Server

    Arora, Kishor

    2010-01-01

    This book contains 14 chapters. The text includes the inadequacy of classical mechanics and covers basic and fundamental concepts of quantum mechanics including concepts of transitional, vibration rotation and electronic energies, introduction to concepts of angular momenta, approximatemethods and their application concepts related to electron spin, symmetery concepts and quantum mechanics and ultimately the book features the theories of chemical bonding and use of softwares in quantum mechanics. the text of the book is presented in a lucid manner with ample examples and illustrations wherever

  20. The Coffin-Siris syndrome: five new cases including two siblings.

    Science.gov (United States)

    Carey, J C; Hall, B D

    1978-07-01

    Five new cases and one previously reported case of the Coffin-Siris syndrome are described. These cases plus the remaining four already published bring to ten the number of cases available for scrutiny. Constant features (100% frequency) include variable degrees of mental retardation, nail hypoplasia or absence with predominantly fifth digit involvement, hypotonia, infancy feeding problems, and retarded bone age. Frequent features (75% to 90%) include postnatal growth deficiency, microcephaly, wide nasal tip and mouth, prominent lips, eyebrow/eyelash hypertrichosis, and scalp hair hypotrichosis. Significant but less frequent findings include short philtrum (50%, scoliosis (40%), decreased fetal activity (40%), smallness for gestational age (30%), and congenital heart defects (30%). We found the craniofacial phenotype to be mild in the young infant, but progressively more characteristic with age. Autosomal recessive inheritance is suspected on the basis of our brother-and-sister pair.

  1. High Fat Diet-Induced Skeletal Muscle Wasting Is Decreased by Mesenchymal Stem Cells Administration: Implications on Oxidative Stress, Ubiquitin Proteasome Pathway Activation, and Myonuclear Apoptosis

    Directory of Open Access Journals (Sweden)

    Johanna Abrigo

    2016-01-01

    Full Text Available Obesity can lead to skeletal muscle atrophy, a pathological condition characterized by the loss of strength and muscle mass. A feature of muscle atrophy is a decrease of myofibrillar proteins as a result of ubiquitin proteasome pathway overactivation, as evidenced by increased expression of the muscle-specific ubiquitin ligases atrogin-1 and MuRF-1. Additionally, other mechanisms are related to muscle wasting, including oxidative stress, myonuclear apoptosis, and autophagy. Stem cells are an emerging therapy in the treatment of chronic diseases such as high fat diet-induced obesity. Mesenchymal stem cells (MSCs are a population of self-renewable and undifferentiated cells present in the bone marrow and other mesenchymal tissues of adult individuals. The present study is the first to analyze the effects of systemic MSC administration on high fat diet-induced skeletal muscle atrophy in the tibialis anterior of mice. Treatment with MSCs reduced losses of muscle strength and mass, decreases of fiber diameter and myosin heavy chain protein levels, and fiber type transitions. Underlying these antiatrophic effects, MSC administration also decreased ubiquitin proteasome pathway activation, oxida