WorldWideScience

Sample records for mechanisms explaining transitions

  1. Dark matter "transporting" mechanism explaining positron excesses

    Science.gov (United States)

    Kim, Doojin; Park, Jong-Chul; Shin, Seodong

    2018-04-01

    We propose a novel mechanism to explain the positron excesses, which are observed by satellite-based telescopes including PAMELA and AMS-02, in dark matter (DM) scenarios. The novelty behind the proposal is that it makes direct use of DM around the Galactic Center where DM populates most densely, allowing us to avoid tensions from cosmological and astrophysical measurements. The key ingredients of this mechanism include DM annihilation into unstable states with a very long laboratory-frame life time and their "retarded" decay near the Earth to electron-positron pair(s) possibly with other (in)visible particles. We argue that this sort of explanation is not in conflict with relevant constraints from big bang nucleosynthesis and cosmic microwave background. Regarding the resultant positron spectrum, we provide a generalized source term in the associated diffusion equation, which can be readily applicable to any type of two-"stage" DM scenarios wherein production of Standard Model particles occurs at completely different places from those of DM annihilation. We then conduct a data analysis with the recent AMS-02 data to validate our proposal.

  2. Ethnicity and Transition to Democracy in Nigeria: Explaining the ...

    African Journals Online (AJOL)

    This essay addresses an important variable in Nigerian politics, namely, ethnicity and the ways in which it affects the conduct of national affairs. It represents an effort at theorizing the role and place of ethnicity in the transition from authoritarianism in a multi-ethnic setting such as that represented by Nigeria. Drawing on ...

  3. The transition from regular to irregular motions, explained as travel on Riemann surfaces

    International Nuclear Information System (INIS)

    Calogero, F; Santini, P M; Gomez-Ullate, D; Sommacal, M

    2005-01-01

    We introduce and discuss a simple Hamiltonian dynamical system, interpretable as a three-body problem in the (complex) plane and providing the prototype of a mechanism explaining the transition from regular to irregular motions as travel on Riemann surfaces. The interest of this phenomenology-illustrating the onset in a deterministic context of irregular motions-is underlined by its generality, suggesting its eventual relevance to understand natural phenomena and experimental investigations. Here only some of our main findings are reported, without detailing their proofs: a more complete presentation will be published elsewhere

  4. Anisotropic p-f mixing mechanism explaining anomalous magnetic properties in Ce monopnictides

    International Nuclear Information System (INIS)

    Takahashi, H.; Kasuya, T.

    1985-01-01

    An anomalously small crystal-field splitting in the paramagnetic region in CeSb and CeBi compared with those in CeP and CeAs is explained by the mixing mechanism between the occupied 4f states and the valence band holes. In the paramagnetic regions, the above p-f mixing gives the effective crystal-field splitting, which is estimated to nearly cancel the normal splittings extrapolated from CeP and CeAs in good agreement with experiment. The formula for the second-order transition temperature, at which the population ratio of the 4f GAMMA 8 states begins to be unbalanced, is also derived. In CeBi the second-order transition may occur, while in CeSb the first-order transition should occur in agreement with experiments. (author)

  5. Why Compositional Convection Cannot Explain Substellar Objects’ Sharp Spectral-type Transitions

    Science.gov (United States)

    Leconte, Jérémy

    2018-02-01

    As brown dwarfs and young giant planets cool down, they are known to experience various chemical transitions—for example, from {CO} rich L-dwarfs to methane rich T-dwarfs. Those chemical transitions are accompanied by spectral transitions with sharpness that cannot be explained by chemistry alone. In a series of articles, Tremblin et al. proposed that some of the yet-unexplained features associated with these transitions could be explained by a reduction of the thermal gradient near the photosphere. To explain, in turn, this more isothermal profile, they invoke the presence of an instability analogous to fingering convection—compositional convection—triggered by the change in mean molecular weight of the gas due to the chemical transitions mentioned above. In this Letter, we use existing arguments to demonstrate that any turbulent transport, if present, would in fact increase the thermal gradient. This misinterpretation comes from the fact that turbulence mixes/homogenizes entropy (potential temperature) instead of temperature. So, while increasing transport, turbulence in an initially stratified atmosphere actually carries energy downward, whether it is due to fingering or any other type of compositional convection. These processes therefore cannot explain the features observed along the aforementioned transitions by reducing the thermal gradient in the atmosphere of substellar objects. Understanding the microphysical and dynamical properties of clouds at these transitions thus probably remains our best way forward.

  6. The use of Rich and Suter diagrams to explain the electron configurations of transition elements

    Energy Technology Data Exchange (ETDEWEB)

    Orofino, Hugo; Machado, Sergio P.; Faria, Roberto B., E-mail: faria@iq.ufrj.br [Instituto de Quimica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ (Brazil)

    2013-09-01

    Rich and Suter diagrams are a very useful tool to explain the electron configurations of all transition elements, and in particular, the s{sup 1} and s{sup 0} configurations of the elements Cr, Cu, Nb, Mo, Ru, Rh, Pd, Ag, and Pt. The application of these diagrams to the inner transition elements also explains the electron configurations of lanthanoids and actinoids, except for Ce, Pa, U, Np, and Cm, whose electron configurations are indeed very special because they are a mixture of several configurations. (author)

  7. The use of Rich and Suter diagrams to explain the electron configurations of transition elements

    Directory of Open Access Journals (Sweden)

    Hugo Orofino

    2013-01-01

    Full Text Available Rich and Suter diagrams are a very useful tool to explain the electron configurations of all transition elements, and in particular, the s¹ and s0 configurations of the elements Cr, Cu, Nb, Mo, Ru, Rh, Pd, Ag, and Pt. The application of these diagrams to the inner transition elements also explains the electron configurations of lanthanoids and actinoids, except for Ce, Pa, U, Np, and Cm, whose electron configurations are indeed very special because they are a mixture of several configurations.

  8. Which Mechanisms Explain Monetary Returns to International Student Mobility?

    Science.gov (United States)

    Kratz, Fabian; Netz, Nicolai

    2018-01-01

    The authors develop a conceptual framework explaining monetary returns to international student mobility (ISM). Based on data from two German graduate panel surveys, they test this framework using growth curve models and Oaxaca-Blinder decompositions. The results indicate that ISM-experienced graduates enjoy a steeper wage growth after graduation…

  9. Functional traits explain ecosystem function through opposing mechanisms.

    Science.gov (United States)

    Cadotte, Marc W

    2017-08-01

    The ability to explain why multispecies assemblages produce greater biomass compared to monocultures, has been a central goal in the quest to understand biodiversity effects on ecosystem function. Species contributions to ecosystem function can be driven by two processes: niche complementarity and a selection effect that is influenced by fitness (competitive) differences, and both can be approximated with measures of species' traits. It has been hypothesised that fitness differences are associated with few, singular traits while complementarity requires multidimensional trait measures. Here, using experimental data from plant assemblages, I show that the selection effect was strongest when trait dissimilarity was low, while complementarity was greatest with high trait dissimilarity. Selection effects were best explained by a single trait, plant height. Complementarity was correlated with dissimilarity across multiple traits, representing above and below ground processes. By identifying the relevant traits linked to ecosystem function, we obtain the ability to predict combinations of species that will maximise ecosystem function. © 2017 John Wiley & Sons Ltd/CNRS.

  10. Coulomb Mechanics And Landscape Geometry Explain Landslide Size Distribution

    Science.gov (United States)

    Jeandet, L.; Steer, P.; Lague, D.; Davy, P.

    2017-12-01

    It is generally observed that the dimensions of large bedrock landslides follow power-law scaling relationships. In particular, the non-cumulative frequency distribution (PDF) of bedrock landslide area is well characterized by a negative power-law above a critical size, with an exponent 2.4. However, the respective role of bedrock mechanical properties, landscape shape and triggering mechanisms on the scaling properties of landslide dimensions are still poorly understood. Yet, unravelling the factors that control this distribution is required to better estimate the total volume of landslides triggered by large earthquakes or storms. To tackle this issue, we develop a simple probabilistic 1D approach to compute the PDF of rupture depths in a given landscape. The model is applied to randomly sampled points along hillslopes of studied digital elevation models. At each point location, the model determines the range of depth and angle leading to unstable rupture planes, by applying a simple Mohr-Coulomb rupture criterion only to the rupture planes that intersect downhill surface topography. This model therefore accounts for both rock mechanical properties, friction and cohesion, and landscape shape. We show that this model leads to realistic landslide depth distribution, with a power-law arising when the number of samples is high enough. The modeled PDF of landslide size obtained for several landscapes match the ones from earthquakes-driven landslides catalogues for the same landscape. In turn, this allows us to invert landslide effective mechanical parameters, friction and cohesion, associated to those specific events, including Chi-Chi, Wenchuan, Niigata and Gorkha earthquakes. The cohesion and friction ranges (25-35 degrees and 5-20 kPa) are in good agreement with previously inverted values. Our results demonstrate that reduced complexity mechanics is efficient to model the distribution of unstable depths, and show the role of landscape variability in landslide size

  11. Cognitive mechanisms for explaining dynamics of aesthetic appreciation

    Science.gov (United States)

    Carbon, Claus-Christian

    2011-01-01

    For many domains aesthetic appreciation has proven to be highly reliable. Evaluations of facial attractiveness, for instance, show high internal consistencies and impressively high inter-rater reliabilities, even across cultures. This indicates general mechanisms underlying such evaluations. It is, however, also obvious that our taste for specific objects is not always stable—in some realms such stability is hardly conceivable at all since aesthetic domains such as fashion, design, or art are inherently very dynamic. Gaining insights into the cognitive mechanisms that trigger and enable corresponding changes of aesthetic appreciation is of particular interest for psychologists as this will probably reveal essential mechanisms of aesthetic evaluations per se. The present paper develops a two-step model, dynamically adapting itself, which accounts for typical dynamics of aesthetic appreciation found in different research areas such as art history, philosophy, and psychology. The first step assumes singular creative sources creating and establishing innovative material towards which, in a second step, people adapt by integrating it into their visual habits. This inherently leads to dynamic changes of the beholders— aesthetic appreciation. PMID:23145254

  12. Mechanisms of radionuclide transition in natural environment

    International Nuclear Information System (INIS)

    Pacyna, J.

    1974-01-01

    Mechanisms of radionuclide transition in various elements of the environment have been dealt with in an ecological aspect. The knowledge of the radionuclide propagation tracks will make possible to ascertain precisely causes and effects of the radiation and to reduce the contamination value. Particular attention has been paid to test methods. (author)

  13. Interlinked bistable mechanisms generate robust mitotic transitions.

    Science.gov (United States)

    Hutter, Lukas H; Rata, Scott; Hochegger, Helfrid; Novák, Béla

    2017-10-18

    The transitions between phases of the cell cycle have evolved to be robust and switch-like, which ensures temporal separation of DNA replication, sister chromatid separation, and cell division. Mathematical models describing the biochemical interaction networks of cell cycle regulators attribute these properties to underlying bistable switches, which inherently generate robust, switch-like, and irreversible transitions between states. We have recently presented new mathematical models for two control systems that regulate crucial transitions in the cell cycle: mitotic entry and exit, 1 and the mitotic checkpoint. 2 Each of the two control systems is characterized by two interlinked bistable switches. In the case of mitotic checkpoint control, these switches are mutually activating, whereas in the case of the mitotic entry/exit network, the switches are mutually inhibiting. In this Perspective we describe the qualitative features of these regulatory motifs and show that having two interlinked bistable mechanisms further enhances robustness and irreversibility. We speculate that these network motifs also underlie other cell cycle transitions and cellular transitions between distinct biochemical states.

  14. The QCD phase transition. From the microscopic mechanism to signals

    International Nuclear Information System (INIS)

    Shuryak, E.V.

    1997-01-01

    This talk consists of two very different parts: the first one deals with non-perturbative QCD and physics of the chiral restoration, the second with rather low-key (and still unfinished) work aiming at obtaining EOS and other properties of hot/dense hadronic matter from data on heavy ion collisions. The microscopic mechanism for chiral restoration phase transition is a transition from randomly placed tunneling events (instantons) at low T to a set of strongly correlated tunneling-anti-tunneling events (known as instanton-anti-instanton molecules) at high T. Many features of the transition can be explained in this simple picture, especially the critical line and its dependence on quark masses. This scenario predicts qualitative change of the basic quark-quark interactions around the phase transition line, with some states (such as pion-sigma ones) probably surviving event at T > T c . In the second half of the talk experimental data on collective flow in heavy ion collision are discussed its hydro-based description and relation to equation of state (EOS). A distinct feature of the QCD phase transition region is high degree of 'softness', (small ratio pressure/energy density). (author)

  15. Amorphous ices explained in terms of nonequilibrium phase transitions in supercooled water

    Science.gov (United States)

    Limmer, David; Chandler, David

    2013-03-01

    We analyze the phase diagram of supercooled water out-of-equilibrium using concepts from space-time thermodynamics and the dynamic facilitation theory of the glass transition, together with molecular dynamics simulations. We find that when water is driven out-of-equilibrium, it can exist in multiple amorphous states. In contrast, we find that when water is at equilibrium, it can exist in only one liquid state. The amorphous non-equilibrium states are solids, distinguished from the liquid by their lack of mobility, and distinguished from each other by their different densities and local structure. This finding explains the experimentally observed polyamorphism of water as a class of nonequilibrium phenomena involving glasses of different densities. While the amorphous solids can be long lived, they are thermodynamically unstable. When allowed to relax to equilibrium, they crystallize with pathways that pass first through liquid state configurations and then to ordered ice.

  16. Dynamical phase transitions in quantum mechanics

    International Nuclear Information System (INIS)

    Rotter, Ingrid

    2012-01-01

    1936 Niels Bohr: In the atom and in the nucleus we have indeed to do with two extreme cases of mechanical many-body problems for which a procedure of approximation resting on a combination of one-body problems, so effective in the former case, loses any validity in the latter where we, from the very beginning, have to do with essential collective aspects of the interplay between the constituent particles. 1963: Maria Goeppert-Mayer and J. Hans D. Jensen received the Nobel Prize in Physics for their discoveries concerning nuclear shell structure. State of the art 2011: - The nucleus is an open quantum system described by a non-Hermitian Hamilton operator with complex eigenvalues. The eigenvalues may cross in the complex plane ('exceptional points'), the phases of the eigenfunctions are not rigid in approaching the crossing points and the widths bifurcate. By this, a dynamical phase transition occurs in the many-level system. The dynamical phase transition starts at a critical value of the level density. Hence the properties of he low-lying nuclear states (described well by the shell model) and those of highly excited nuclear states (described by random ensembles) differ fundamentally from one another. The statement of Niels Bohr for compound nucleus states at high level density is not in contradiction to the shell-model description of nuclear (and atomic) states at low level density. Dynamical phase transitions are observed experimentally in different systems, including PT-symmetric ones, by varying one or more parameters

  17. LAMPF transition-region mechanical fabrication

    International Nuclear Information System (INIS)

    Bush, E.D. Jr.; Gallegos, J.D.F.; Harrison, R.; Hart, V.E.; Hunter, W.T.; Rislove, S.E.; Sims, J.R.; Van Dyke, W.J.

    1984-07-01

    The primary purpose of the new Transition Region (TR-II) is to optimize the phase matching of the H + and H - beams during simultaneous transport. TR-II incorporates several design improvements that include larger aperture, a straight beam track, greater beam-path length adjustments, and utility lines integrated with the support system. The close pack density of magnets and beam-line hardware required innovative solutions to magnet design and mounting, vacuum manifolding, and utility routing. Critical magnet placement was accomplished using a new three-dimensional alignment system that does real-time vector calculations on a computer with input from two digital theodolites. All assembly and a large fraction of the mechanical fabrication were done by LAMPF personnel. The TR-II has been operational since September 1983 and routinely transports production beams up to 900-μA current with no major problems

  18. A Model of How Different Biology Experts Explain Molecular and Cellular Mechanisms

    Science.gov (United States)

    Trujillo, Caleb M.; Anderson, Trevor R.; Pelaez, Nancy J.

    2015-01-01

    Constructing explanations is an essential skill for all science learners. The goal of this project was to model the key components of expert explanation of molecular and cellular mechanisms. As such, we asked: What is an appropriate model of the components of explanation used by biology experts to explain molecular and cellular mechanisms? Do…

  19. Explaining Well-Being over the Life Cycle: A Look at Life Transitions during Young Adulthood

    OpenAIRE

    Switek, Malgorzata

    2013-01-01

    Early adulthood is a time of important transitions that shape the future of young adults. How do these transitions affect well-being, and to what degree can they account for the life satisfaction path followed during young adulthood? To answer these questions, longitudinal data from the Swedish Young Adult Panel Study are used for three cohorts interviewed in 1999, 2003, and 2009. Four age intervals covering ages 22 through 40 are constructed. The well-being changes and the main transitions u...

  20. Social Community: A Mechanism to Explain the Success of STEM Minority Mentoring Programs

    Science.gov (United States)

    Mondisa, Joi-Lynn; McComb, Sara A.

    2015-01-01

    Social community may be a mechanism that explains the success of minority mentoring programs. We define a social community as an environment where like-minded individuals engage in dynamic, multidirectional interactions that facilitate social support. In this conceptual article, we propose a social community model for science, technology,…

  1. What explains violated expectations of parent-child relationship in transition to parenthood?

    Science.gov (United States)

    Flykt, Marjo; Palosaari, Esa; Lindblom, Jallu; Vänskä, Mervi; Poikkeus, Piia; Repokari, Leena; Tiitinen, Aila; Tulppala, Maija; Punamäki, Raija-Leena

    2014-04-01

    Parent-child relationship is created already in prenatal fantasies and expectations of the child-to-be. Negative violation of these expectations after the child is born is known to be harmful for the parent-child relationship. Yet, research is scarce about the medical and psychological factors contributing to violated expectations (VE). This study models the role of parent-, delivery- and infant-related underlying mechanisms for VE. It further compares parents with assisted reproductive treatment (ART) and spontaneous conception (SC), and primi- and multiparous couples. The couples (n = 743) separately filled in questionnaires concerning their prenatal expectations (T1) and 2 months postnatal representations (T2) of intimacy and autonomy in the relationship with their child, measured with Subjective Family Picture Test. A negative or positive discrepancy indicated violated expectations. The parent-related (mental health and marital quality), delivery-related (maternal and paternal birth experience, unplanned Caesarean, and amount of analgesia) and infant-related (infant health problems, difficult infant characteristics, and parental worry) factors were assessed at T2. Results show that among mothers, the associations were mostly indirect and mediated via mental health problems. Among fathers, the associations were direct, marital problems most crucially predicting VE. ART fathers were less susceptible to VE resulting from infant-related problems than SC fathers, but more susceptible to VE resulting from delivery problems. Delivery- and infant-related factors also predicted VE differently among primi- and multiparous mothers. Considering factors that contribute to VE is important when working with couples in transition to parenthood. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  2. Advection of Potential Temperature in the Atmosphere of Irradiated Exoplanets: A Robust Mechanism to Explain Radius Inflation

    Science.gov (United States)

    Tremblin, P.; Chabrier, G.; Mayne, N. J.; Amundsen, D. S.; Baraffe, I.; Debras, F.; Drummond, B.; Manners, J.; Fromang, S.

    2017-01-01

    The anomalously large radii of strongly irradiated exoplanets have remained a major puzzle in astronomy. Based on a two-dimensional steady-state atmospheric circulation model, the validity of which is assessed by comparison to three-dimensional calculations, we reveal a new mechanism, namely the advection of the potential temperature due to mass and longitudinal momentum conservation, a process occurring in the Earth's atmosphere or oceans. In the deep atmosphere, the vanishing heating flux forces the atmospheric structure to converge to a hotter adiabat than the one obtained with 1D calculations, implying a larger radius for the planet. Not only do the calculations reproduce the observed radius of HD 209458b, but also reproduce the observed correlation between radius inflation and irradiation for transiting planets. Vertical advection of potential temperature induced by non-uniform atmospheric heating thus provides a robust mechanism to explain the inflated radii of irradiated hot Jupiters.

  3. Advection of Potential Temperature in the Atmosphere of Irradiated Exoplanets: A Robust Mechanism to Explain Radius Inflation

    International Nuclear Information System (INIS)

    Tremblin, P.; Chabrier, G.; Mayne, N. J.; Baraffe, I.; Debras, F.; Drummond, B.; Manners, J.; Amundsen, D. S.; Fromang, S.

    2017-01-01

    The anomalously large radii of strongly irradiated exoplanets have remained a major puzzle in astronomy. Based on a two-dimensional steady-state atmospheric circulation model, the validity of which is assessed by comparison to three-dimensional calculations, we reveal a new mechanism, namely the advection of the potential temperature due to mass and longitudinal momentum conservation, a process occurring in the Earth’s atmosphere or oceans. In the deep atmosphere, the vanishing heating flux forces the atmospheric structure to converge to a hotter adiabat than the one obtained with 1D calculations, implying a larger radius for the planet. Not only do the calculations reproduce the observed radius of HD 209458b, but also reproduce the observed correlation between radius inflation and irradiation for transiting planets. Vertical advection of potential temperature induced by non-uniform atmospheric heating thus provides a robust mechanism to explain the inflated radii of irradiated hot Jupiters.

  4. Advection of Potential Temperature in the Atmosphere of Irradiated Exoplanets: A Robust Mechanism to Explain Radius Inflation

    Energy Technology Data Exchange (ETDEWEB)

    Tremblin, P. [Maison de la Simulation, CEA-CNRS-INRIA-UPS-UVSQ, USR 3441, CEA Paris-Saclay, F-91191 Gif-Sur-Yvette (France); Chabrier, G.; Mayne, N. J.; Baraffe, I.; Debras, F.; Drummond, B.; Manners, J. [Astrophysics Group, University of Exeter, EX4 4QL Exeter (United Kingdom); Amundsen, D. S. [Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10025 (United States); Fromang, S., E-mail: pascal.tremblin@cea.fr [Laboratoire AIM, CEA/DSM-CNRS-Université Paris 7, Irfu/Service d’Astrophysique, CEA Paris-Saclay, F-91191 Gif-sur-Yvette (France)

    2017-05-20

    The anomalously large radii of strongly irradiated exoplanets have remained a major puzzle in astronomy. Based on a two-dimensional steady-state atmospheric circulation model, the validity of which is assessed by comparison to three-dimensional calculations, we reveal a new mechanism, namely the advection of the potential temperature due to mass and longitudinal momentum conservation, a process occurring in the Earth’s atmosphere or oceans. In the deep atmosphere, the vanishing heating flux forces the atmospheric structure to converge to a hotter adiabat than the one obtained with 1D calculations, implying a larger radius for the planet. Not only do the calculations reproduce the observed radius of HD 209458b, but also reproduce the observed correlation between radius inflation and irradiation for transiting planets. Vertical advection of potential temperature induced by non-uniform atmospheric heating thus provides a robust mechanism to explain the inflated radii of irradiated hot Jupiters.

  5. A Model of How Different Biology Experts Explain Molecular and Cellular Mechanisms

    Science.gov (United States)

    Trujillo, Caleb M.; Anderson, Trevor R.; Pelaez, Nancy J.

    2015-01-01

    Constructing explanations is an essential skill for all science learners. The goal of this project was to model the key components of expert explanation of molecular and cellular mechanisms. As such, we asked: What is an appropriate model of the components of explanation used by biology experts to explain molecular and cellular mechanisms? Do explanations made by experts from different biology subdisciplines at a university support the validity of this model? Guided by the modeling framework of R. S. Justi and J. K. Gilbert, the validity of an initial model was tested by asking seven biologists to explain a molecular mechanism of their choice. Data were collected from interviews, artifacts, and drawings, and then subjected to thematic analysis. We found that biologists explained the specific activities and organization of entities of the mechanism. In addition, they contextualized explanations according to their biological and social significance; integrated explanations with methods, instruments, and measurements; and used analogies and narrated stories. The derived methods, analogies, context, and how themes informed the development of our final MACH model of mechanistic explanations. Future research will test the potential of the MACH model as a guiding framework for instruction to enhance the quality of student explanations. PMID:25999313

  6. International trade, and land use intensification and spatial reorganization explain Costa Rica’s forest transition

    Science.gov (United States)

    Jadin, I.; Meyfroidt, P.; Lambin, E. F.

    2016-03-01

    While tropical deforestation remains widespread, some countries experienced a forest transition—a shift from net deforestation to net reforestation. Costa Rica had one of the highest deforestation rates in the 1980s and is now considered as a model of environmental sustainability, despite being a major producer of bananas and pineapples. We tested three land use processes that are thought to facilitate forest transitions. First, forest transitions may be accompanied by land use displacement through international trade of land-based products, which may undermine the global-scale environmental benefits of national forest protection. Second, reforestation is often associated with land use intensification in agriculture and forestry, allowing for land sparing. Third, this intensification may partly result from a geographical redistribution of land use at the sub-national scale to better match land use with land suitability. These hypotheses were verified for Costa Rica’s forest transition. We also tested whether forest increased mainly in regions with a low ecological value and agriculture expanded in regions with a high ecological value. Intensification and land use redistribution accounted for 76% of land spared during the forest transition, with 32% of this spared area corresponding to net reforestation. Decreasing meat exports led to a contraction of pastures, freeing an area equivalent to 80% of the reforested area. The forest transition in Costa Rica was environmentally beneficial at the global scale, with the reforested area over 1989-2013 corresponding to 130% of the land use displaced abroad through imports of agricultural products. However, expansion of export-oriented cropland caused deforestation in the most ecologically valuable regions of Costa Rica. Moreover, wood extraction from forest plantations increased to produce the pallets needed to export fruits. This highlights the importance of a multi-scale analysis when evaluating causes and impacts of

  7. Explaining the "Pulse of Protoplasm": the search for molecular mechanisms of protoplasmic streaming.

    Science.gov (United States)

    Dietrich, Michael R

    2015-01-01

    Explanations for protoplasmic streaming began with appeals to contraction in the eighteenth century and ended with appeals to contraction in the twentieth. During the intervening years, biologists proposed a diverse array of mechanisms for streaming motions. This paper focuses on the re-emergence of contraction among the molecular mechanisms proposed for protoplasmic streaming during the twentieth century. The revival of contraction is a result of a broader transition from colloidal chemistry to a macromolecular approach to the chemistry of proteins, the recognition of the phenomena of shuttle streaming and the pulse of protoplasm, and the influential analogy between protoplasmic streaming and muscle contraction. © 2014 Institute of Botany, Chinese Academy of Sciences.

  8. Theory for Explaining and Comparing the Dynamics of Education in Transitional Processes

    Science.gov (United States)

    van der Walt, Johannes L.

    2016-01-01

    Countries all over the world find themselves in the throes of revolution, change, transition or transformation. Because of the complexities of these momentous events, it is no simple matter to describe and evaluate them. This paper suggests that comparative educationists apply a combination of three theories as a lens through which such national…

  9. Anisotropic p-f mixing mechanism explaining anomalous magnetic properties in Ce monopnictides

    International Nuclear Information System (INIS)

    Takahashi, H.; Kasuya, T.

    1985-01-01

    The indirect f-f-interaction derived from fourth-order perturbation theory with respect to the p-f mixing is calculated using the valence bands obtained by the APW band calculations. The type of the f-f-interactions is described as the coupling through the symmetry exchange under the cubic crystal field, which cannot be written as a simple bilinear type of 4f spin operator. It is necessary to consider the short-range-ordering effect as well as the non-linear effect of the p-f mixing to explain the fact that a type-I antiferromagnetic ordering is established by the second-order transition in CeBi. (author)

  10. On the move: explaining migration patterns in Estonia during the transition period.

    Science.gov (United States)

    Tammaru, T; Sjoberg, O

    1999-01-01

    This paper attempts to explore the migration patterns during the transition period in Estonia. A structuration approach was used to analyze data from the Estonian Statistical Office collected in 1997. Findings show that for migration between urban and rural areas, work-related reasons have been the most important motivating factor in urban growth during the transition period. Also considered are the family and education. In relation to sociodemographic structure of the population, men cite work, while women count family-related reasons, as the main motive for migrating. As to nonregistration, the most significant reason relates to issues of ownership. Because migrants are living in rented housing, it is not possible for them to register even if they desire to do so. Other reasons include "temporary", associated with study and work; "juridical", bureaucratic matters; and "multiple places of residence". This analysis, however, is incomplete because the attitudes and patterns of behavior have only partially or perfunctorily been related to the dramatic changes that have occurred in Estonian society. Proper statistical data are needed to help examine trends at a more disaggregated spatial level.

  11. Mechanisms explaining Coulomb's electric force & Lorentz's magnetic force from a classical perspective

    Science.gov (United States)

    Correnti, Dan S.

    2018-06-01

    The underlying mechanisms of the fundamental electric and magnetic forces are not clear in current models; they are mainly mathematical constructs. This study examines the underlying physics from a classical viewpoint to explain Coulomb's electric force and Lorentz's magnetic force. This is accomplished by building upon already established physics. Although no new physics is introduced, extension of existing models is made by close examination. We all know that an electron carries a bound cylindrical B-field (CBF) as it translates. Here, we show how the electron CBF plays an intrinsic role in the generation of the electric and magnetic forces.

  12. Explaining the differential distribution of Clean Development Mechanism projects across host countries

    International Nuclear Information System (INIS)

    Winkelman, Andrew G.; Moore, Michael R.

    2011-01-01

    The Clean Development Mechanism (CDM) of the Kyoto Protocol represents an opportunity to involve all developing countries in the effort to reduce greenhouse gas emissions while also promoting sustainable development. To date, however, the majority of CDM projects have gone to emerging markets such as China, India, Brazil, and Mexico, while very few least developed countries have hosted projects. This paper investigates the differential distribution of CDM activities across countries. We develop a conceptual model for project profitability, which helps to identify potential country-level determinants of CDM activity. These potential determinants are employed as explanatory variables in regression analysis to explain the actual distribution of projects. Human capital and greenhouse gas emission levels influenced which countries have hosted projects and the amount of certified emission reductions (CER) created. Countries that offered growing markets for CDM co-products, such as electricity, were more likely to be CDM hosts, while economies with higher carbon intensity levels had greater CER production. These findings work against the least developed countries and help to explain their lack of CDM activity. - Research Highlights: → Regression models are used to explain the inter-country distribution of CDM projects. → Emissions and human capital are significant for hosting projects and CER creation. → An economy's emissions intensity is significant in determining CERs created. → Capacity building and electricity sector growth are significant in hosting projects. → The experience level for host countries in the CDM is significant for CER creation.

  13. New mechanism for bubble nucleation: Classical transitions

    International Nuclear Information System (INIS)

    Easther, Richard; Giblin, John T. Jr; Hui Lam; Lim, Eugene A.

    2009-01-01

    Given a scalar field with metastable minima, bubbles nucleate quantum mechanically. When bubbles collide, energy stored in the bubble walls is converted into kinetic energy of the field. This kinetic energy can facilitate the classical nucleation of new bubbles in minima that lie below those of the 'parent' bubbles. This process is efficient and classical, and changes the dynamics and statistics of bubble formation in models with multiple vacua, relative to that derived from quantum tunneling.

  14. A Bystander Mechanism Explains the Specific Phenotype of a Broadly Expressed Misfolded Protein.

    Directory of Open Access Journals (Sweden)

    Lauren Klabonski

    2016-12-01

    Full Text Available Misfolded proteins in transgenic models of conformational diseases interfere with proteostasis machinery and compromise the function of many structurally and functionally unrelated metastable proteins. This collateral damage to cellular proteins has been termed 'bystander' mechanism. How a single misfolded protein overwhelms the proteostasis, and how broadly-expressed mutant proteins cause cell type-selective phenotypes in disease are open questions. We tested the gain-of-function mechanism of a R37C folding mutation in an endogenous IGF-like C.elegans protein DAF-28. DAF-28(R37C is broadly expressed, but only causes dysfunction in one specific neuron, ASI, leading to a distinct developmental phenotype. We find that this phenotype is caused by selective disruption of normal biogenesis of an unrelated endogenous protein, DAF-7/TGF-β. The combined deficiency of DAF-28 and DAF-7 biogenesis, but not of DAF-28 alone, explains the gain-of-function phenotype-deficient pro-growth signaling by the ASI neuron. Using functional, fluorescently-tagged protein, we find that, in animals with mutant DAF-28/IGF, the wild-type DAF-7/TGF-β is mislocalized to and accumulates in the proximal axon of the ASI neuron. Activation of two different branches of the unfolded protein response can modulate both the developmental phenotype and DAF-7 mislocalization in DAF-28(R37C animals, but appear to act through divergent mechanisms. Our finding that bystander targeting of TGF-β explains the phenotype caused by a folding mutation in an IGF-like protein suggests that, in conformational diseases, bystander misfolding may specify the distinct phenotypes caused by different folding mutations.

  15. The Fluid Mechanics of the Bible: Miracles Explainable by Christian Science?

    Science.gov (United States)

    Lang, Amy

    2015-11-01

    The Bible is full of accounts clearly in violation of our scientific understanding of fluid mechanics. Examples include the floating axe head, Jesus walking on the water and immediately calming a storm. ``Jesus of Nazareth was the most scientific man that ever trod the globe. He plunged beneath the material surface of things, and found the spiritual cause,'' wrote Mary Baker Eddy (1821-1910), the founder of a now well-established religion known as Christian Science, in her seminal work Science & Health with Key to the Scriptures. She asserted that Jesus' miracles were in accord with the, ``Science of God's unchangeable law.'' She also proclaimed that matter is a derivative of consciousness. Independently with the discovery of quantum mechanics, physicists such as Max Planck and Sir James Jeans began to make similar statements (``The Mental Universe'', Nature, 2005). More recently, Max Tegmark (MIT) theorized that consciousness is a state of matter (New Scientist, April 2014). Using a paradigm shift from matter to consciousness as the primary substance, one can scientifically explain how a mental activity (i.e. prayer) could influence the physical. Since this conference is next door to the original church of Christian Science (Const. 1894), this talk will discuss various fluid-mechanic miracles in the Bible and provide an explanation based on divine metaphysics while providing an overview of scientific Christianity and its unifying influence to the fields of science, theology and medicine.

  16. Mechanical failure and glass transition in metallic glasses

    International Nuclear Information System (INIS)

    Egami, T.

    2011-01-01

    Research highlights: → We review the recent results of molecular dynamics simulations on metallic glasses. → They show the equivalence of mechanical failure and glass transition. → We discuss the microscopic mechanism behind this equivalence. → We show that the density of defects in metallic glasses is as high as a quarter. → Our concepts about the defect state in glasses need to be changed. - Abstract: The current majority view on the phenomenon of mechanical failure in metallic glasses appears to be that it is caused by the activity of some structural defects, such as free-volumes or shear transformation zones, and the concentration of such defects is small, only of the order of 1%. However, the recent results compel us to revise this view. Through molecular dynamics simulation it has been shown that mechanical failure is the stress-induced glass transition. According to our theory the concentration of the liquid-like sites (defects) is well over 20% at the glass transition. We suggest that the defect concentration in metallic glasses is actually very high, and percolation of such defects causes atomic avalanche and mechanical failure. In this article we discuss the glass transition, mechanical failure and viscosity from such a point of view.

  17. Edge-melting: nanoscale key-mechanism to explain nanoparticle formation from heated TEM grids

    Energy Technology Data Exchange (ETDEWEB)

    Cesaria, Maura, E-mail: maura.cesaria@le.infn.it [Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Arnesano, 73100 Lecce (Italy); Taurino, Antonietta; Catalano, Massimo [Institute for Microelectronics and Microsystems, IMM-CNR, Via Monteroni, 73100 Lecce (Italy); Caricato, Anna Paola; Martino, Maurizio [Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via Arnesano, 73100 Lecce (Italy)

    2016-03-01

    Graphical abstract: - Highlights: • Nanoparticle formation from metal grids explained by edge melting as key mechanism. • The inconsistency of bulk phenomenology invoking the vapor pressure is discussed. • Surface-melting and size-dependent evaporation are questioned as unsatisfactory. • Edge-melting: edges, corners, facets invoked as highly thermally unstable surfaces. • The polycrystalline nature of the really occurring metal grids is accounted for. - Abstract: In this study, we examine at both experimental and fundamental levels, the experimental evidence of nanoparticle formation in transmission electron microscopy (TEM) metal grids annealed at temperatures lower than the melting point of the corresponding metal bulk material. Our experimental investigation considers the most thermally unstable TEM grids (i.e. Cu-grids) and inspects the possible sources and mechanisms of contamination of thin films, conventionally deposited on carbon-coated Cu-grids. The investigations are supported by morphological–compositional analyses performed in different regions of the TEM sample. Then, a general model is formulated and discussed in order to explain the grid thermal instability, based on the critical role of edge-melting (i.e. melting initiated at edges and corners of the grid bars), the enhanced rate of evaporation from a liquid surface and the polycristallinity of the grid bars. Hence, we totally disregard conventional arguments such as bulk evaporation and metal vapor pressure and, in order to emphasize and clarify the alternative point of view of our model, we also overview the nano-scale melting phenomenology relevant to our discussion and survey the discrepancies reported in the literature.

  18. Explaining the morphology of supernova remnant (SNR) 1987A with the jittering jets explosion mechanism

    Science.gov (United States)

    Bear, Ealeal; Soker, Noam

    2018-04-01

    We find that the remnant of supernova (SN) 1987A shares some morphological features with four supernova remnants (SNRs) that have signatures of shaping by jets, and from that we strengthen the claim that jets played a crucial role in the explosion of SN 1987A. Some of the morphological features appear also in planetary nebulae (PNe) where jets are observed. The clumpy ejecta bring us to support the claim that the jittering jets explosion mechanism can account for the structure of the remnant of SN 1987A, i.e., SNR 1987A. We conduct a preliminary attempt to quantify the fluctuations in the angular momentum of the mass that is accreted on to the newly born neutron star via an accretion disk or belt. The accretion disk/belt launches the jets that explode core collapse supernovae (CCSNe). The relaxation time of the accretion disk/belt is comparable to the duration of a typical jet-launching episode in the jittering jets explosion mechanism, and hence the disk/belt has no time to relax. We suggest that this might explain two unequal opposite jets that later lead to unequal sides of the elongated structures in some SNRs of CCSNe. We reiterate our earlier call for a paradigm shift from neutrino-driven explosion to a jet-driven explosion of CCSNe.

  19. Explaining recurring maser flares in the ISM through large-scale entangled quantum mechanical states.

    Science.gov (United States)

    Rajabi, Fereshteh; Houde, Martin

    2017-03-01

    We apply Dicke's theory of superradiance (introduced in 1954) to the 6.7-GHz methanol and 22-GHz water spectral lines, often detected in molecular clouds as signposts for the early stages of the star formation process. We suggest that superradiance, characterized by burst-like features taking place over a wide range of time scales, may provide a natural explanation for the recent observations of periodic and seemingly alternating methanol and water maser flares in G107.298+5.639. Although these observations would be very difficult to explain within the context of maser theory, we show that these flares may result from simultaneously initiated 6.7-GHz methanol and 22-GHz water superradiant bursts operating on different time scales, thus providing a natural mechanism for their observed durations and time ordering. The evidence of superradiance in this source further suggests the existence of entangled quantum mechanical states, involving a very large number of molecules, over distances of up to a few kilometers in the interstellar medium.

  20. Formation mechanisms and characteristics of transition patterns in oblique detonations

    Science.gov (United States)

    Miao, Shikun; Zhou, Jin; Liu, Shijie; Cai, Xiaodong

    2018-01-01

    The transition structures of wedge-induced oblique detonation waves (ODWs) in high-enthalpy supersonic combustible mixtures are studied with two-dimensional reactive Euler simulations based on the open-source program AMROC (Adaptive Mesh Refinement in Object-oriented C++). The formation mechanisms of different transition patterns are investigated through theoretical analysis and numerical simulations. Results show that transition patterns of ODWs depend on the pressure ratio Pd/Ps, (Pd, Ps are the pressure behind the ODW and the pressure behind the induced shock, respectively). When Pd/Ps > 1.3, an abrupt transition occurs, while when Pd/Ps 1.02Φ∗ (Φ∗ is the critical velocity ratio calculated with an empirical formula).

  1. Conceptual model and economic experiments to explain nonpersistence and enable mechanism designs fostering behavioral change.

    Science.gov (United States)

    Djawadi, Behnud Mir; Fahr, René; Turk, Florian

    2014-12-01

    Medical nonpersistence is a worldwide problem of striking magnitude. Although many fields of studies including epidemiology, sociology, and psychology try to identify determinants for medical nonpersistence, comprehensive research to explain medical nonpersistence from an economics perspective is rather scarce. The aim of the study was to develop a conceptual framework that augments standard economic choice theory with psychological concepts of behavioral economics to understand how patients' preferences for discontinuing with therapy arise over the course of the medical treatment. The availability of such a framework allows the targeted design of mechanisms for intervention strategies. Our conceptual framework models the patient as an active economic agent who evaluates the benefits and costs for continuing with therapy. We argue that a combination of loss aversion and mental accounting operations explains why patients discontinue with therapy at a specific point in time. We designed a randomized laboratory economic experiment with a student subject pool to investigate the behavioral predictions. Subjects continue with therapy as long as experienced utility losses have to be compensated. As soon as previous losses are evened out, subjects perceive the marginal benefit of persistence lower than in the beginning of the treatment. Consequently, subjects start to discontinue with therapy. Our results highlight that concepts of behavioral economics capture the dynamic structure of medical nonpersistence better than does standard economic choice theory. We recommend that behavioral economics should be a mandatory part of the development of possible intervention strategies aimed at improving patients' compliance and persistence behavior. Copyright © 2014 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  2. Nucleation mechanism for the direct graphite-to-diamond phase transition

    Science.gov (United States)

    Khaliullin, Rustam Z.; Eshet, Hagai; Kühne, Thomas D.; Behler, Jörg; Parrinello, Michele

    2011-09-01

    Graphite and diamond have comparable free energies, yet forming diamond from graphite in the absence of a catalyst requires pressures that are significantly higher than those at equilibrium coexistence. At lower temperatures, the formation of the metastable hexagonal polymorph of diamond is favoured instead of the more stable cubic diamond. These phenomena cannot be explained by the concerted mechanism suggested in previous theoretical studies. Using an ab initio quality neural-network potential, we carried out a large-scale study of the graphite-to-diamond transition assuming that it occurs through nucleation. The nucleation mechanism accounts for the observed phenomenology and reveals its microscopic origins. We demonstrate that the large lattice distortions that accompany the formation of diamond nuclei inhibit the phase transition at low pressure, and direct it towards the hexagonal diamond phase at higher pressure. The proposed nucleation mechanism should improve our understanding of structural transformations in a wide range of carbon-based materials.

  3. Computer simulations of neural mechanisms explaining upper and lower limb excitatory neural coupling

    Directory of Open Access Journals (Sweden)

    Ferris Daniel P

    2010-12-01

    Full Text Available Abstract Background When humans perform rhythmic upper and lower limb locomotor-like movements, there is an excitatory effect of upper limb exertion on lower limb muscle recruitment. To investigate potential neural mechanisms for this behavioral observation, we developed computer simulations modeling interlimb neural pathways among central pattern generators. We hypothesized that enhancement of muscle recruitment from interlimb spinal mechanisms was not sufficient to explain muscle enhancement levels observed in experimental data. Methods We used Matsuoka oscillators for the central pattern generators (CPG and determined parameters that enhanced amplitudes of rhythmic steady state bursts. Potential mechanisms for output enhancement were excitatory and inhibitory sensory feedback gains, excitatory and inhibitory interlimb coupling gains, and coupling geometry. We first simulated the simplest case, a single CPG, and then expanded the model to have two CPGs and lastly four CPGs. In the two and four CPG models, the lower limb CPGs did not receive supraspinal input such that the only mechanisms available for enhancing output were interlimb coupling gains and sensory feedback gains. Results In a two-CPG model with inhibitory sensory feedback gains, only excitatory gains of ipsilateral flexor-extensor/extensor-flexor coupling produced reciprocal upper-lower limb bursts and enhanced output up to 26%. In a two-CPG model with excitatory sensory feedback gains, excitatory gains of contralateral flexor-flexor/extensor-extensor coupling produced reciprocal upper-lower limb bursts and enhanced output up to 100%. However, within a given excitatory sensory feedback gain, enhancement due to excitatory interlimb gains could only reach levels up to 20%. Interconnecting four CPGs to have ipsilateral flexor-extensor/extensor-flexor coupling, contralateral flexor-flexor/extensor-extensor coupling, and bilateral flexor-extensor/extensor-flexor coupling could enhance

  4. Geckos as Springs: Mechanics Explain Across-Species Scaling of Adhesion.

    Science.gov (United States)

    Gilman, Casey A; Imburgia, Michael J; Bartlett, Michael D; King, Daniel R; Crosby, Alfred J; Irschick, Duncan J

    2015-01-01

    One of the central controversies regarding the evolution of adhesion concerns how adhesive force scales as animals change in size, either among or within species. A widely held view is that as animals become larger, the primary mechanism that enables them to climb is increasing pad area. However, prior studies show that much of the variation in maximum adhesive force remains unexplained, even when area is accounted for. We tested the hypothesis that maximum adhesive force among pad-bearing gecko species is not solely dictated by toepad area, but also depends on the ratio of toepad area to gecko adhesive system compliance in the loading direction, where compliance (C) is the change in extension (Δ) relative to a change in force (F) while loading a gecko's adhesive system (C = dΔ/dF). Geckos are well-known for their ability to climb on a range of vertical and overhanging surfaces, and range in mass from several grams to over 300 grams, yet little is understood of the factors that enable adhesion to scale with body size. We examined the maximum adhesive force of six gecko species that vary in body size (~2-100 g). We also examined changes between juveniles and adults within a single species (Phelsuma grandis). We found that maximum adhesive force and toepad area increased with increasing gecko size, and that as gecko species become larger, their adhesive systems become significantly less compliant. Additionally, our hypothesis was supported, as the best predictor of maximum adhesive force was not toepad area or compliance alone, but the ratio of toepad area to compliance. We verified this result using a synthetic "model gecko" system comprised of synthetic adhesive pads attached to a glass substrate and a synthetic tendon (mechanical spring) of finite stiffness. Our data indicate that increases in toepad area as geckos become larger cannot fully account for increased adhesive abilities, and decreased compliance must be included to explain the scaling of adhesion in

  5. Reconsideration of atmospheric CO2 lifetime: potential mechanism for explaining CO2 missing sink

    Science.gov (United States)

    Kikuchi, R.; Gorbacheva, T.; Gerardo, R.

    2009-04-01

    Carbon cycle data (Intergovernmental Panel on Climate Change 1996) indicate that fossil fuel use accounts for emissions to the atmosphere of 5.5±0.5 GtC (Gigatons of carbon) annually. Other important processes in the global CO2 budget are tropical deforestation, estimated to generate about 1.6±1.0 GtC/yr; absorption by the oceans, removing about 2.0±0.8 GtC/yr; and regrowth of northern forests, taking up about 0.5±0.5 GtC/yr. However, accurate measurements of CO2 show that the atmosphere is accumulating only about 3.3±0.2 GtC/yr. The imbalance of about 1.3±1.5 GtC/yr, termed the "missing sink", represents the difference between the estimated sources and the estimated sinks of CO2; that is, we do not know where all of the anthropogenic CO2 is going. Several potential mechanisms have been proposed to explain this missing carbon, such as CO2 fertilization, climate change, nitrogen deposition, land use change, forest regrowth et al. Considering the complexity of ecosystem, most of ecosystem model cannot handle all the potential mechanisms to reproduce the real world. It has been believed that the dominant sink mechanism is the fertilizing effects of increased CO2 concentrations in the atmosphere and the addition to soils of fixed nitrogen from fossil-fuel burning and agricultural fertilizers. However, a recent analysis of long-term observations of the change in biomass and growth rates suggests that such fertilization effects are much too small to explain more than a small fraction of the observed sink. In addition, long-term experiments in which small forest patches and other land ecosystems have been exposed to elevated CO2 levels for extended periods show a rapid decrease of the fertilization effect after an initial enhancement. We will explore this question of the missing sink in atmospheric CO2 residence time. Radioactive and stable carbon isotopes (13-C/12-C) show the real CO2 lifetime is about 5 years; i.e. CO2 is quickly taken out of the atmospheric

  6. Mechanical and electronic properties of Janus monolayer transition metal dichalcogenides

    Science.gov (United States)

    Shi, Wenwu; Wang, Zhiguo

    2018-05-01

    The mechanical and electronic properties of Janus monolayer transition metal dichalcogenides MXY (M  =  Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W; X/Y  =  S, Se, Te) were investigated using density functional theory. Results show that breaking the out-of-plane structural symmetry can be used to tune the electronic and mechanical behavior of monolayer transition metal dichalcogenides. The band gaps of monolayer WXY and MoXY are in the ranges of 0.16–1.91 and 0.94–1.69 eV, respectively. A semiconductor to metallic phase transition occurred in Janus monolayer MXY (M  =  Ti, Zr and Hf). The monolayers MXY (M  =  V, Nb, Ta and Cr) show metallic characteristics, which show no dependence on the structural symmetry breaking. The mechanical properties of MXY depended on the composition. Monolayer MXY (M  =  Mo, Ti, Zr, Hf and W) showed brittle characteristic, whereas monolayer CrXY and VXY are with ductile characteristic. The in-plane stiffness of pristine and Janus monolayer MXY are in the range between 22 and 158 N m‑1. The tunable electronic and mechanical properties of these 2D materials would advance the development of ultra-sensitive detectors, nanogenerators, low-power electronics, and energy harvesting and electromechanical systems.

  7. Geckos as Springs: Mechanics Explain Across-Species Scaling of Adhesion.

    Directory of Open Access Journals (Sweden)

    Casey A Gilman

    Full Text Available One of the central controversies regarding the evolution of adhesion concerns how adhesive force scales as animals change in size, either among or within species. A widely held view is that as animals become larger, the primary mechanism that enables them to climb is increasing pad area. However, prior studies show that much of the variation in maximum adhesive force remains unexplained, even when area is accounted for. We tested the hypothesis that maximum adhesive force among pad-bearing gecko species is not solely dictated by toepad area, but also depends on the ratio of toepad area to gecko adhesive system compliance in the loading direction, where compliance (C is the change in extension (Δ relative to a change in force (F while loading a gecko's adhesive system (C = dΔ/dF. Geckos are well-known for their ability to climb on a range of vertical and overhanging surfaces, and range in mass from several grams to over 300 grams, yet little is understood of the factors that enable adhesion to scale with body size. We examined the maximum adhesive force of six gecko species that vary in body size (~2-100 g. We also examined changes between juveniles and adults within a single species (Phelsuma grandis. We found that maximum adhesive force and toepad area increased with increasing gecko size, and that as gecko species become larger, their adhesive systems become significantly less compliant. Additionally, our hypothesis was supported, as the best predictor of maximum adhesive force was not toepad area or compliance alone, but the ratio of toepad area to compliance. We verified this result using a synthetic "model gecko" system comprised of synthetic adhesive pads attached to a glass substrate and a synthetic tendon (mechanical spring of finite stiffness. Our data indicate that increases in toepad area as geckos become larger cannot fully account for increased adhesive abilities, and decreased compliance must be included to explain the scaling of

  8. Mott mechanism and the hadronic to quark matter phase transition

    International Nuclear Information System (INIS)

    Blaschke, D.; Reinholz, F.

    1984-01-01

    A unified description of both the hadronic and quark matter can be found using the technique of thermodynamic Green functions. The destruction of bound states (quark deconfinement) is related microscopically to the Mott mechanism which leads to a different behaviour of free particle energies and bound state energies if the particle density is increasing. A simple model calculation is performed to obtain a rough estimate for the critical temperature of the hadronic-quark matter phase transition

  9. Methanol ice co-desorption as a mechanism to explain cold methanol in the gas-phase

    Science.gov (United States)

    Ligterink, N. F. W.; Walsh, C.; Bhuin, R. G.; Vissapragada, S.; van Scheltinga, J. Terwisscha; Linnartz, H.

    2018-05-01

    Context. Methanol is formed via surface reactions on icy dust grains. Methanol is also detected in the gas-phase at temperatures below its thermal desorption temperature and at levels higher than can be explained by pure gas-phase chemistry. The process that controls the transition from solid state to gas-phase methanol in cold environments is not understood. Aims: The goal of this work is to investigate whether thermal CO desorption provides an indirect pathway for methanol to co-desorb at low temperatures. Methods: Mixed CH3OH:CO/CH4 ices were heated under ultra-high vacuum conditions and ice contents are traced using RAIRS (reflection absorption IR spectroscopy), while desorbing species were detected mass spectrometrically. An updated gas-grain chemical network was used to test the impact of the results of these experiments. The physical model used is applicable for TW Hya, a protoplanetary disk in which cold gas-phase methanol has recently been detected. Results: Methanol release together with thermal CO desorption is found to be an ineffective process in the experiments, resulting in an upper limit of ≤ 7.3 × 10-7 CH3OH molecules per CO molecule over all ice mixtures considered. Chemical modelling based on the upper limits shows that co-desorption rates as low as 10-6 CH3OH molecules per CO molecule are high enough to release substantial amounts of methanol to the gas-phase at and around the location of the CO thermal desorption front in a protoplanetary disk. The impact of thermal co-desorption of CH3OH with CO as a grain-gas bridge mechanism is compared with that of UV induced photodesorption and chemisorption.

  10. An MJO-Mediated Mechanism to Explain ENSO and IOD Impacts on East African Short Rains

    Science.gov (United States)

    Zaitchik, B. F.; Berhane, F.; Gnanadesikan, A.

    2015-12-01

    Previous studies have found that the El Nino Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) have significant impacts on rainfall over East Africa (EA) during the short rains (Oct-Dec). However, not all ENSO and IOD events are associated with significant precipitation anomalies over EA. Our analysis shows that the IOD and ENSO influence EA rainfall by modifying the MJO. Composite analysis of rainfall and outgoing longwave radiation data show that the MJO over the Indian Ocean (phases 2 and 3 of the Wheeler and Hendon index) is associated with significant increase in precipitation over EA during El Niño. In La Niña and non-ENSO years, the MJO over the Indian Ocean has very weak impacts on EA convection and precipitation. Although previous studies have found that El Niño / La Niña events are associated with anomalous wetness/dryness over EA, the associations are not evident in the absence of the MJO. Similarly, the IOD exhibits strong associations with EA precipitation when there is MJO activity over the Indian Ocean. During the positive phase of the IOD, the MJO over the Indian Ocean has impacts that extend to EA. In the absence of the MJO, however, the IOD shows weak associations with EA precipitation. Furthermore, there are more MJO days in the Indian Ocean during El Niño and positive IOD events, which implies stronger impacts on EA. During La Niña events more MJO days are observed in the Pacific Ocean, favoring subsidence over the western Indian Ocean and dry anomalies over EA. These observations suggest two critical MJO-related questions that must be addressed in order to explain EA short rain variability typically attributed to ENSO or IOD: first, how do ENSO and IOD modify background conditions in a way that causes Indian Ocean MJO activity to be more strongly connected to EA under El Niño and IOD positive conditions, and second, why is it that El Niño and IOD positive states slow MJO propagation over the Indian Ocean and speed it over

  11. Does Judicial Independence explain Post-transitional Justice? ¿Puede la independencia judicial explicar la justicia postransicional?

    Directory of Open Access Journals (Sweden)

    Elin SKAAR

    2012-10-01

    Full Text Available Post-transitional justice in Latin America started in the Southern Cone in the mid-1990s and gradually spread to a number of countries which are seeking to address the human rights violations committed during the authoritarian regimes that dominated the continent from 1970s to the early 1990s. To distinguish trials at the time of transition from trials that take place years into the consolidation phase, this article develops a theoretical framework that explains variations in the propensity to prosecute the military for gross human rights violations (i.e., the number of trials across time and across countries. The main argument presented here is that constitutional reforms have made Latin American judges more prone to prosecute the military for past human right violations because judges now enjoy more independence from powerful Executives and the hierarchy of the judicial system has loosened, making lower court judges less dependent on their superiors. As a result, judges, especially those sympathetic to a human rights agenda, can push prosecutions more forcefully than they could before.La justicia postransicional se inició en el Cono Sur de América Latina a mediados de la década de 1990 y gradualmente se ha expandido a otros países que buscan afrontar violaciones de derechos humanos cometidas durante los regímenes autoritarios que dominaron el continente desde la década de 1970 hasta inicios de la década de 1990. Para diferenciar los juicios de la transición de los juicios que se llevaron a cabo años después durante la fase de consolidación democrática, este artículo desarrolla un marco teórico que explica las variaciones en la tendencia a juzgar a los militares por graves violaciones de derechos humanos (por ejemplo, el número de juicios a lo largo del tiempo y entre países. El argumento principal que aquí se presenta es que las reformas constitucionales han hecho que los jueces latinoamericanos sean más propensos a perseguir

  12. Dose-dependent transitions in mechanisms of toxicity: case studies

    International Nuclear Information System (INIS)

    Slikker, William; Andersen, Melvin E.; Bogdanffy, Matthew S.; Bus, James S.; Cohen, Steven D.; Conolly, Rory B.; David, Raymond M.; Doerrer, Nancy G.; Dorman, David C.; Gaylor, David W.; Hattis, Dale; Rogers, John M.; Setzer, R. Woodrow; Swenberg, James A.; Wallace, Kendall

    2004-01-01

    Experience with dose response and mechanisms of toxicity has shown that multiple mechanisms may exist for a single agent along the continuum of the full dose-response curve. It is highly likely that critical, limiting steps in any given mechanistic pathway may become overwhelmed with increasing exposures, signaling the emergence of new modalities of toxic tissue injury at these higher doses. Therefore, dose-dependent transitions in principal mechanisms of toxicity may occur, and could have significant impact on the interpretation of reference data sets for risk assessment. To illustrate the existence of dose-dependent transitions in mechanisms of toxicity, a group of academic, government, and industry scientists, formed under the leadership of the ILSI Health and Environmental Sciences Institute (HESI), developed a series of case studies. These case studies included acetaminophen, butadiene, ethylene glycol, formaldehyde, manganese, methylene chloride, peroxisome proliferator-activated receptor (PPAR), progesterone/hydroxyflutamide, propylene oxide, vinyl acetate, vinyl chloride, vinylidene chloride, and zinc. The case studies formed the basis for technical discourse at two scientific workshops in 2003

  13. Dose-dependent transitions in mechanisms of toxicity

    International Nuclear Information System (INIS)

    Slikker, William; Andersen, Melvin E.; Bogdanffy, Matthew S.; Bus, James S.; Cohen, Steven D.; Conolly, Rory B.; David, Raymond M.; Doerrer, Nancy G.; Dorman, David C.; Gaylor, David W.; Hattis, Dale; Rogers, John M.; Woodrow Setzer, R.; Swenberg, James A.; Wallace, Kendall

    2004-01-01

    Scientists and decision makers from all sectors agree that risk assessments should be based on the best available science. Several years ago, the Health and Environmental Sciences Institute (HESI), a global branch of the International Life Sciences Institute (ILSI), identified the need for better scientific understanding of dose-dependent transitions in mechanisms of toxicity as one avenue by which the best and latest science can be integrated into the decision making process. In July 2001, the HESI Project Committee on Dose-Dependent Transitions in Mechanisms of Toxicity established a group of academic, government, and industry scientists to engage in active technical discourse on the issue of dose-dependent transitions in mechanisms of toxicity. Over the next 18 months, case studies were examined. These case studies included acetaminophen, butadiene, ethylene glycol, formaldehyde, manganese, methylene chloride, the peroxisome proliferator-activated receptor, progesterone/hydroxyflutamide, propylene oxide, vinyl acetate, vinyl chloride, vinylidene chloride, and zinc (Slikker, W., Jr., Andersen, M.E., Bogdanffy, M.S., Bus, J.S., Cohen, S.D., Conolly, R.B., David, R.M., Doerrer, N.G., Dorman, D.C., Gaylor, D.W., Hattis, D., Rogers, J.M., Setzer, R.W., Swenberg, J.A., Wallace, K., 2004. Dose-dependent transitions in mechanisms of toxicity: case studies. Toxicol. Appl. Pharmacol. 201(3), 226-294 (this issue)). The HESI Project Committee sponsored two technical workshops in 2003. The first of these workshops took place on February 12-13, 2003, and was co-sponsored by the Agency for Toxic Substances and Disease Registry, the American Chemistry Council, the National Institute of Environmental Health Sciences, the Society of Toxicology, and the U.S. Environmental Protection Agency. Additional support was provided by Health Canada. Invited experts from government, academia, and industry provided scientific perspectives and recommendations at the workshop. The purpose of

  14. Mechanism behind phase transitions in airplane boarding process

    Science.gov (United States)

    Qiang, Shengjie; Jia, Bin; Huang, Qingxia; Gao, Ziyou

    2016-02-01

    A simple airplane boarding model is built much like an asymmetric exclusion process (ASEP). The dynamics of the model is constrained by local interference between passengers and global seat assignments for individuals. We perform extensive Monte Carlo simulations by using a parallel update rule to determine quantities like boarding time and sequence correlation. Our results clarify the scaling behavior in boarding process and identify a critical value of arrival time interval for boarding time threshold. Three different phases (steady, intermediate and linear) with respect to the boarding time are distinguished and the mechanism behind phase transition is further discussed.

  15. Charge states of ions, and mechanisms of charge ordering transitions

    Science.gov (United States)

    Pickett, Warren E.; Quan, Yundi; Pardo, Victor

    2014-07-01

    To gain insight into the mechanism of charge ordering transitions, which conventionally are pictured as a disproportionation of an ion M as 2Mn+→M(n+1)+ + M(n-1)+, we (1) review and reconsider the charge state (or oxidation number) picture itself, (2) introduce new results for the putative charge ordering compound AgNiO2 and the dual charge state insulator AgO, and (3) analyze the cationic occupations of the actual (not formal) charge, and work to reconcile the conundrums that arise. We establish that several of the clearest cases of charge ordering transitions involve no disproportion (no charge transfer between the cations, and hence no charge ordering), and that the experimental data used to support charge ordering can be accounted for within density functional-based calculations that contain no charge transfer between cations. We propose that the charge state picture retains meaning and importance, at least in many cases, if one focuses on Wannier functions rather than atomic orbitals. The challenge of modeling charge ordering transitions with model Hamiltonians isdiscussed.

  16. Different mechanisms to explain the reversed effects of mental health on work characteristics

    NARCIS (Netherlands)

    Lange, A.H. de; Taris, T.W.; Kompier, M.A.J.; Houtman, I.L.D.; Bongers, P.M.

    2005-01-01

    Objectives: The number of longitudinal studies reporting evidence for reversed effects of strain on work is growing, but evidence regarding the mechanisms underlying such effects is scarce. In this study, earlier longitudinal findings were reviewed, and the following four mechanisms for reversed

  17. Phase transition in the rich-get-richer mechanism due to finite-size effects

    International Nuclear Information System (INIS)

    Bagrow, James P; Ben-Avraham, Daniel; Sun Jie

    2008-01-01

    The rich-get-richer mechanism (agents increase their 'wealth' randomly at a rate proportional to their holdings) is often invoked to explain the Pareto power-law distribution observed in many physical situations, such as the degree distribution of growing scale-free nets. We use two different analytical approaches, as well as numerical simulations, to study the case where the number of agents is fixed and finite (but large), and the rich-get-richer mechanism is invoked a fraction r of the time (the remainder of the time wealth is disbursed by a homogeneous process). At short times, we recover the Pareto law observed for an unbounded number of agents. In later times, the (moving) distribution can be scaled to reveal a phase transition with a Gaussian asymptotic form for r<1/2, and a Pareto-like tail (on the positive side) and a novel stretched exponential decay (on the negative side) for r<1/2

  18. Investigation of the mechanism of soft tissue conduction explains several perplexing auditory phenomena.

    Science.gov (United States)

    Adelman, Cahtia; Chordekar, Shai; Perez, Ronen; Sohmer, Haim

    2014-09-01

    Soft tissue conduction (STC) is a recently expounded mode of auditory stimulation in which the clinical bone vibrator delivers auditory frequency vibratory stimuli to skin sites on the head, neck, and thorax. Investigation of the mechanism of STC stimulation has served as a platform for the elucidation of the mechanics of cochlear activation, in general, and to a better understanding of several perplexing auditory phenomena. This review demonstrates that it is likely that the cochlear hair cells can be directly activated at low sound intensities by the fluid pressures initiated in the cochlea; that the fetus in utero, completely enveloped in amniotic fluid, hears by STC; that a speaker hears his/her own voice by air conduction and by STC; and that pulsatile tinnitus is likely due to pulsatile turbulent blood flow producing fluid pressures that reach the cochlea through the soft tissues.

  19. Damping forces-a friend or a foe in explaining mechanical motion?

    International Nuclear Information System (INIS)

    Bartos, JirI; Musilova, Jana

    2006-01-01

    This paper presents simple, cheap, easily accessible and, for students, impressive demonstration experiments for three typical examples of physical systems for which damping forces ought to be involved in the equations of motion: a body falling in air, a damped mechanical oscillator, and Foucault currents. The various models of such forces are studied using an elementary physical and mathematical approach. It appears, maybe as a slightly surprising result, that a commonly used model of damping forces in mechanics-air drag force linearly depending on velocity-is not realistic in many typical situations. Equations of motion are solved numerically with standard software packages, even in cases where an analytical solution exists. Thus, the explanation of solved problems is on a level corresponding to an undergraduate university course in general physics. The results of these demonstration experiments are compared with the graphical outputs of numerical solutions

  20. Maternal anxiety and physiological reactivity as mechanisms to explain overprotective primiparous parenting behaviors.

    Science.gov (United States)

    Kalomiris, Anne E; Kiel, Elizabeth J

    2016-10-01

    In this study, we sought to determine whether the affective and physiological experience of primiparous, or first-time, motherhood is distinct from multiparous motherhood, how the child's level of inhibited temperament impacts it, and if such a temperament results in overprotective parenting behaviors. A total of 117 mothers and their 24-month-old toddlers participated in novelty tasks designed to elicit parenting behaviors and toddler's typical fear reactions. Mothers also completed a battery of questionnaires. Results suggest that primiparous mothers experienced more worry, which was associated with increased overprotective parenting behaviors. Primiparous mothers also demonstrated greater physiological (i.e., cortisol) reactivity while watching their first-born children interact with novel stimuli, but how this related to overprotective parenting was dependent on the child's level of inhibition. Specifically, primiparous mothers displayed more cortisol reactivity with their uninhibited toddlers, which indirectly linked parity to less overprotective parenting behaviors. Primiparous mothers of highly inhibited toddlers displayed greater overprotective parenting behaviors, independent of maternal cortisol reactivity. The results indicate that the transition to motherhood is a unique experience associated with greater worry and physiological reactivity and is meaningfully influenced by the toddler's temperament. Distinctions in both observed and self-reported overprotective parenting are evident through considering the dynamic interaction of these various aspects. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  1. Muscle-tendon mechanics explain unexpected effects of exoskeleton assistance on metabolic rate during walking.

    Science.gov (United States)

    Jackson, Rachel W; Dembia, Christopher L; Delp, Scott L; Collins, Steven H

    2017-06-01

    The goal of this study was to gain insight into how ankle exoskeletons affect the behavior of the plantarflexor muscles during walking. Using data from previous experiments, we performed electromyography-driven simulations of musculoskeletal dynamics to explore how changes in exoskeleton assistance affected plantarflexor muscle-tendon mechanics, particularly for the soleus. We used a model of muscle energy consumption to estimate individual muscle metabolic rate. As average exoskeleton torque was increased, while no net exoskeleton work was provided, a reduction in tendon recoil led to an increase in positive mechanical work performed by the soleus muscle fibers. As net exoskeleton work was increased, both soleus muscle fiber force and positive mechanical work decreased. Trends in the sum of the metabolic rates of the simulated muscles correlated well with trends in experimentally observed whole-body metabolic rate ( R 2 =0.9), providing confidence in our model estimates. Our simulation results suggest that different exoskeleton behaviors can alter the functioning of the muscles and tendons acting at the assisted joint. Furthermore, our results support the idea that the series tendon helps reduce positive work done by the muscle fibers by storing and returning energy elastically. We expect the results from this study to promote the use of electromyography-driven simulations to gain insight into the operation of muscle-tendon units and to guide the design and control of assistive devices. © 2017. Published by The Company of Biologists Ltd.

  2. Boric acid inhibits embryonic histone deacetylases: A suggested mechanism to explain boric acid-related teratogenicity

    International Nuclear Information System (INIS)

    Di Renzo, Francesca; Cappelletti, Graziella; Broccia, Maria L.; Giavini, Erminio; Menegola, Elena

    2007-01-01

    Histone deacetylases (HDAC) control gene expression by changing histonic as well as non histonic protein conformation. HDAC inhibitors (HDACi) are considered to be among the most promising drugs for epigenetic treatment for cancer. Recently a strict relationship between histone hyperacetylation in specific tissues of mouse embryos exposed to two HDACi (valproic acid and trichostatin A) and specific axial skeleton malformations has been demonstrated. The aim of this study is to verify if boric acid (BA), that induces in rodents malformations similar to those valproic acid and trichostatin A-related, acts through similar mechanisms: HDAC inhibition and histone hyperacetylation. Pregnant mice were treated intraperitoneally with a teratogenic dose of BA (1000 mg/kg, day 8 of gestation). Western blot analysis and immunostaining were performed with anti hyperacetylated histone 4 (H4) antibody on embryos explanted 1, 3 or 4 h after treatment and revealed H4 hyperacetylation at the level of somites. HDAC enzyme assay was performed on embryonic nuclear extracts. A significant HDAC inhibition activity (compatible with a mixed type partial inhibition mechanism) was evident with BA. Kinetic analyses indicate that BA modifies substrate affinity by a factor α = 0.51 and maximum velocity by a factor β = 0.70. This work provides the first evidence for HDAC inhibition by BA and suggests such a molecular mechanism for the induction of BA-related malformations

  3. Classical to quantum mechanical tunneling mechanism crossover in thermal transitions between magnetic states.

    Science.gov (United States)

    Vlasov, Sergei; Bessarab, Pavel F; Uzdin, Valery M; Jónsson, Hannes

    2016-12-22

    Transitions between states of a magnetic system can occur by jumps over an energy barrier or by quantum mechanical tunneling through the energy barrier. The rate of such transitions is an important consideration when the stability of magnetic states is assessed for example for nanoscale candidates for data storage devices. The shift in transition mechanism from jumps to tunneling as the temperature is lowered is analyzed and a general expression derived for the crossover temperature. The jump rate is evaluated using a harmonic approximation to transition state theory. First, the minimum energy path for the transition is found with the geodesic nudged elastic band method. The activation energy for the jumps is obtained from the maximum along the path, a saddle point on the energy surface, and the eigenvalues of the Hessian matrix at that point as well as at the initial state minimum used to estimate the entropic pre-exponential factor. The crossover temperature for quantum mechanical tunneling is evaluated from the second derivatives of the energy with respect to orientation of the spin vector at the saddle point. The resulting expression is applied to test problems where analytical results have previously been derived, namely uniaxial and biaxial spin systems with two-fold anisotropy. The effect of adding four-fold anisotropy on the crossover temperature is demonstrated. Calculations of the jump rate and crossover temperature for tunneling are also made for a molecular magnet containing an Mn 4 group. The results are in excellent agreement with previously reported experimental measurements on this system.

  4. Sexual conflict explains the extraordinary diversity of mechanisms regulating mitochondrial inheritance.

    Science.gov (United States)

    Radzvilavicius, Arunas L; Lane, Nick; Pomiankowski, Andrew

    2017-10-26

    Mitochondria are predominantly inherited from the maternal gamete, even in unicellular organisms. Yet an extraordinary array of mechanisms enforce uniparental inheritance, which implies shifting selection pressures and multiple origins. We consider how this high turnover in mechanisms controlling uniparental inheritance arises using a novel evolutionary model in which control of mitochondrial transmission occurs either during spermatogenesis (by paternal nuclear genes) or at/after fertilization (by maternal nuclear genes). The model treats paternal leakage as an evolvable trait. Our evolutionary analysis shows that maternal control consistently favours strict uniparental inheritance with complete exclusion of sperm mitochondria, whereas some degree of paternal leakage of mitochondria is an expected outcome under paternal control. This difference arises because mito-nuclear linkage builds up with maternal control, allowing the greater variance created by asymmetric inheritance to boost the efficiency of purifying selection and bring benefits in the long term. In contrast, under paternal control, mito-nuclear linkage tends to be much weaker, giving greater advantage to the mixing of cytotypes, which improves mean fitness in the short term, even though it imposes a fitness cost to both mating types in the long term. Sexual conflict is an inevitable outcome when there is competition between maternal and paternal control of mitochondrial inheritance. If evolution has led to complete uniparental inheritance through maternal control, it creates selective pressure on the paternal nucleus in favour of subversion through paternal leakage, and vice versa. This selective divergence provides a reason for the repeated evolution of novel mechanisms that regulate the transmission of paternal mitochondria, both in the fertilized egg and spermatogenesis. Our analysis suggests that the widespread occurrence of paternal leakage and prevalence of heteroplasmy are natural outcomes of

  5. Distinct Neuropsychological Mechanisms May Explain Delayed- Versus Rapid-Onset Antidepressant Efficacy

    Science.gov (United States)

    Stuart, Sarah A; Butler, Paul; Munafò, Marcus R; Nutt, David J; Robinson, Emma SJ

    2015-01-01

    The biochemical targets for antidepressants are relatively well established, but we lack a clear understanding of how actions at these proteins translate to clinical benefits. This study used a novel rodent assay to investigate how different antidepressant drugs act to modify affective biases that have been implicated in depression. In this bowl-digging task, rats encounter two equal value learning experiences on separate days (one during an affective manipulation and the other during control conditions). This induces an affective bias that is quantified using a preference test in which both digging substrates are presented together and the individual rats’ choices recorded. The assay can be used to measure affective biases associated with learning (when the treatment is given at the time of the experience) or examine the modification of previously acquired biases (when the treatment is administered before the preference test). The rapid-onset antidepressant ketamine, but not the delayed-onset antidepressant, venlafaxine, attenuated the previously acquired FG7142-induced negative bias following systemic administration. Venlafaxine but not ketamine induced a positive bias when administered before learning. We then used local drug infusions and excitotoxic lesions to localize the effects of ketamine to the medial prefrontal cortex and venlafaxine to the amygdala. Using a modified protocol we also showed that positive and negative biases amplified further when the numbers of substrate–reinforcer associations are increased. We propose that this pattern of results could explain the delayed onset of action of venlafaxine and the rapid onset of action but lack of long-term efficacy seen with ketamine. PMID:25740288

  6. Damping forces—a friend or a foe in explaining mechanical motion?

    Science.gov (United States)

    Bartos, Jirí; Musilová, Jana

    2006-03-01

    This paper presents simple, cheap, easily accessible and, for students, impressive demonstration experiments for three typical examples of physical systems for which damping forces ought to be involved in the equations of motion: a body falling in air, a damped mechanical oscillator, and Foucault currents. The various models of such forces are studied using an elementary physical and mathematical approach. It appears, maybe as a slightly surprising result, that a commonly used model of damping forces in mechanics—air drag force linearly depending on velocity—is not realistic in many typical situations. Equations of motion are solved numerically with standard software packages, even in cases where an analytical solution exists. Thus, the explanation of solved problems is on a level corresponding to an undergraduate university course in general physics. The results of these demonstration experiments are compared with the graphical outputs of numerical solutions.

  7. Anisotropic p-f mixing mechanism explaining anomalous magnetic properties in Ce monopnictides

    International Nuclear Information System (INIS)

    Takahashi, H.; Kasuya, T.

    1985-01-01

    The crystal-field splittings in CeP, PrP and NdP are calculated by considering the point-charge Coulomb interaction, the intra-atomic d-f Coulomb interaction, and the p-f and d-f mixings. The p-f mixing mechanisms, not only between the occupied 4f states and the conduction bands, but also between the unoccupied 4f states and the valence bands make an important contribution to the crystal-field splitting. The fact that the crystal-field potential in CeP is smaller than those in PrP and NdP is due to the occupied 4f level in CeP being shallower. The values of the Slater-Koster integrals, (pfσ) and (pfπ), are determined uniquely from the crystal-field fitting for PrP and NdP. (author)

  8. Mosquitoes drink with a burst in reserve: explaining pumping behavior with a fluid mechanics model

    Science.gov (United States)

    Chatterjee, Souvick; Socha, Jake; Stremler, Mark

    2014-11-01

    Mosquitoes drink using a pair of in-line pumps in the head that draw liquid food through the proboscis. Experimental observations with synchrotron x-ray imaging indicate two modes of drinking: a predominantly occurring continuous mode, in which the cibarial and pharyngeal pumps expand cyclically at a constant phase difference, and an occasional, isolated burst mode, in which the pharyngeal pump expansion is 10 to 30 times larger than in the continuous mode. We have used a reduced order model of the fluid mechanics to hypothesize an explanation of this variation in drinking behavior. Our model results show that the continuous mode is more energetically efficient, whereas the burst mode creates a large pressure drop across the proboscis, which could potentially be used to clear blockages. Comparisons with pump knock-out configurations demonstrate different functional roles of the pumps in mosquito feeding. This material is based upon work supported by the NSF under Grant No. #0938047.

  9. Mechanical analog for a quantum-chromodynamic phase transition

    International Nuclear Information System (INIS)

    Salomone, A.; Schechter, J.

    1982-01-01

    A simple mechanical model involving a pendulum and a spring is shown to give the same phase-transition behavior as that of either the effective chiral Lagrangian for one-flavor QCD or the massive Schwinger model. This model, which also has been studied in catastrophe theory, permits us to get a nice understanding of what at first appears to be a complicated system. We also construct and analyze a mechanical analog model for the two-flavor case. The latter has a similar behavior, in general, but does present some interesting new features. With this experience under our belts we are able to straightforwardly analyze the situation with an arbitrary number of flavors. We also discuss what the zero-flavor (i.e., pure QCD) limit of the effective Lagrangian should look like and give a formula for the ground-state energy as a function of the instanton angle theta. A number of other questions related to the QCD effective Lagrangian are investigated

  10. Mosquito drinking with a burst in reserve: explaining behavior with a fluid mechanics model

    Science.gov (United States)

    Chatterjee, Souvick; Socha, Jake; Stremler, Mark

    2014-03-01

    Mosquitoes drink using a pair of in-line pumps in the head that draw liquid food through a long drinking channel, or proboscis. Experimental observations indicate two modes of drinking: a predominantly occurring continuous mode, in which the cibarial and pharyngeal pumps expand cyclically at a constant phase difference, and an isolated burst mode, in which the pharyngeal pump expansion is several orders of magnitude larger than in the continuous mode. We use a reduced order model of the fluid mechanics to hypothesize an explanation of this naturally occurring drinking behavior. Our model results show that the continuous mode is the more efficient mode in terms of energy expenditure, and the burst mode creates a large pressure difference across the proboscis. We speculate that the mosquito uses this pressure drop to clear blockages in the proboscis. We compared the two-pump system with one-pump configurations, as found in some other insects like butterflies, and show that the two pumps have unique roles in mosquito feeding.

  11. Pathogen dynamics during invasion and establishment of white-nose syndrome explain mechanisms of host persistence.

    Science.gov (United States)

    Frick, Winifred F; Cheng, Tina L; Langwig, Kate E; Hoyt, Joseph R; Janicki, Amanda F; Parise, Katy L; Foster, Jeffrey T; Kilpatrick, A Marm

    2017-03-01

    Disease dynamics during pathogen invasion and establishment determine the impacts of disease on host populations and determine the mechanisms of host persistence. Temporal progression of prevalence and infection intensity illustrate whether tolerance, resistance, reduced transmission, or demographic compensation allow initially declining populations to persist. We measured infection dynamics of the fungal pathogen Pseudogymnoascus destructans that causes white-nose syndrome in bats by estimating pathogen prevalence and load in seven bat species at 167 hibernacula over a decade as the pathogen invaded, became established, and some host populations stabilized. Fungal loads increased rapidly and prevalence rose to nearly 100% at most sites within 2 yr of invasion in six of seven species. Prevalence and loads did not decline over time despite huge reductions in colony sizes, likely due to an extensive environmental reservoir. However, there was substantial variation in fungal load among sites with persisting colonies, suggesting that both tolerance and resistance developed at different sites in the same species. In contrast, one species disappeared from hibernacula within 3 yr of pathogen invasion. Variable host responses to pathogen invasion require different management strategies to prevent disease-induced extinction and to facilitate evolution of tolerance or resistance in persisting populations. © 2016 by the Ecological Society of America.

  12. Book review: Francesco Pastore, The Youth Experience Gap. Explaining National Differences in the School-to-work Transition

    Directory of Open Access Journals (Sweden)

    Daniela PAŞNICU

    2016-04-01

    Full Text Available Francesco Pastore is qualified as full professor of Economic Policy.  Currently, he is Assistant Professor of Economics at Seconda Universita di Napoli. He is also secretary of the Italian Association of Labor Economics (AIEL and a member of the executive board of the Italian Association of Comparative Economic Studies (AISSEC. His main research interests are in labor and education economics. He is also interested in development and transition economics. He has contributed extensively in several such fields as regional unemployment differentials, school-to-work transitions, labor market dynamics, gender discrimination, human capital investment, public employment services and passive as well as active labor market policy, labor market consequences of international trade and nonprofit organization.

  13. Two Mechanisms: The Role of Social Capital and Industrial Pollution Exposure in Explaining Racial Disparities in Self-Rated Health.

    Science.gov (United States)

    Ard, Kerry; Colen, Cynthia; Becerra, Marisol; Velez, Thelma

    2016-10-19

    This study provides an empirical test of two mechanisms (social capital and exposure to air pollution) that are theorized to mediate the effect of neighborhood on health and contribute to racial disparities in health outcomes. To this end, we utilize the Social Capital Benchmark Study, a national survey of individuals nested within communities in the United States, to estimate how multiple dimensions of social capital and exposure to air pollution, explain racial disparities in self-rated health. Our main findings show that when controlling for individual-confounders, and nesting within communities, our indicator of cognitive bridging, generalized trust, decreases the gap in self-rated health between African Americans and Whites by 84%, and the gap between Hispanics and Whites by 54%. Our other indicator of cognitive social capital, cognitive linking as represented by engagement in politics, decreases the gap in health between Hispanics and Whites by 32%, but has little impact on African Americans. We also assessed whether the gap in health was explained by respondents' estimated exposure to toxicity-weighted air pollutants from large industrial facilities over the previous year. Our results show that accounting for exposure to these toxins has no effect on the racial gap in self-rated health in these data. This paper contributes to the neighborhood effects literature by examining the impact that estimated annual industrial air pollution, and multiple measures of social capital, have on explaining the racial gap in health in a sample of individuals nested within communities across the United States.

  14. Coadsorbed species explain the mechanism of methanol temperature-desorption on CeO2(111)

    Energy Technology Data Exchange (ETDEWEB)

    Sutton, Jonathan E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Overbury, Steven H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Beste, Ariana [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-03-24

    Here, we have used density functional theory calculations to investigate the temperature-programmed desorption (TPD) of methanol from CeO2(111). For the first time, low-temperature water formation and high-temperature methanol desorption are explained by our calculations. High coverages of methanol, which correspond to experimental conditions, are required to properly describe these features of the TPD spectrum. We identify a mechanism for the low-temperature formation of water involving the dissociation of two methanol molecules on the same surface O atom and filling of the resulting surface vacancy with one of the methoxy products. After water desorption, methoxy groups are stabilized on the surface and react at higher temperatures to form methanol and formaldehyde by a disproportionation mechanism. Alternatively, the stabilized methoxy groups undergo sequential C–H scission reactions to produce formaldehyde. Calculated energy requirements and methanol/formaldehyde selectivity agree with the experimental data.

  15. Explaining through causal mechanisms

    NARCIS (Netherlands)

    Biesbroek, Robbert; Dupuis, Johann; Wellstead, Adam

    2017-01-01

    This paper synthesizes and builds on recent critiques of the resilience literature; namely that the field has largely been unsuccessful in capturing the complexity of governance processes, in particular cause–effects relationships. We demonstrate that absence of a causal model is reflected in the

  16. The QCD phase transitions: From mechanism to observables

    Energy Technology Data Exchange (ETDEWEB)

    Shuryak, E.V.

    1997-09-22

    This paper contains viewgraphs on quantum chromodynamic phase transformations during heavy ion collisions. Some topics briefly described are: finite T transitions of I molecule pairs; finite density transitions of diquarks polymers; and the softtest point of the equation of state as a source of discontinuous behavior as a function of collision energy or centrality.

  17. Explaining the unexpected success of the smoking ban in Italy: political strategy and transition to practice, 2000–2005.

    Science.gov (United States)

    Mele, Valentina; Compagni, Amelia

    2010-01-01

    The approval (2003) and enforcement (2005) of a smoking ban in Italy have been viewed by many as an unexpectedly successful example of policy change. The present paper, by applying a processualist approach, concentrates on two policy cycles between 2000 and 2005. These had opposing outcomes: an incomplete decisional stage and an authoritative decision, enforced two years later. Through the analysis of the different phases of agenda setting, alternative specification and decision making, we have compared the quality of participation of policy entrepreneurs in the two cycles, their political strategies and, in these, the relevance of issue image. The case allows us to direct the attention of scholars and practitioners to an early phase of the policy implementation process – which we have named "transition to practice". This, managed with political strategy, might have strongly contributed to the final successful policy outcome.

  18. Fluid Mechanics and Heat Transfer in Transitional Boundary Layers

    Science.gov (United States)

    Wang, Ting

    2007-01-01

    Experiments have been performed to investigate the effects of elevated free-stream turbulence and streamwise acceleration on flow and thermal structures in transitional boundary layers. The free-stream turbulence ranges from 0.5 to 6.4% and the streamwise acceleration ranges from K = 0 to 0.8 x 10(exp -6). The onset of transition, transition length and the turbulent spot formation rate are determined. The statistical results and conditionally sampled results of th streamwise and cross-stream velocity fluctuations, temperature fluctuations, Reynolds stress and Reynolds heat fluxes are presented.

  19. Mechanisms of social avoidance learning can explain the emergence of adaptive and arbitrary behavioral traditions in humans.

    Science.gov (United States)

    Lindström, Björn; Olsson, Andreas

    2015-06-01

    Many nonhuman animals preferentially copy the actions of others when the environment contains predation risk or other types of danger. In humans, the role of social learning in avoidance of danger is still unknown, despite the fundamental importance of social learning for complex social behaviors. Critically, many social behaviors, such as cooperation and adherence to religious taboos, are maintained by threat of punishment. However, the psychological mechanisms allowing threat of punishment to generate such behaviors, even when actual punishment is rare or absent, are largely unknown. To address this, we used both computer simulations and behavioral experiments. First, we constructed a model where simulated agents interacted under threat of punishment and showed that mechanisms' (a) tendency to copy the actions of others through social learning, together with (b) the rewarding properties of avoiding a threatening punishment, could explain the emergence, maintenance, and transmission of large-scale behavioral traditions, both when punishment is common and when it is rare or nonexistent. To provide empirical support for our model, including the 2 mechanisms, we conducted 4 experiments, showing that humans, if threatened with punishment, are exceptionally prone to copy and transmit the behavior observed in others. Our results show that humans, similar to many nonhuman animals, use social learning if the environment is perceived as dangerous. We provide a novel psychological and computational basis for a range of human behaviors characterized by the threat of punishment, such as the adherence to cultural norms and religious taboos. (c) 2015 APA, all rights reserved).

  20. The mechanism of heat transfer in transition boiling

    International Nuclear Information System (INIS)

    Chin Pan; Hwang, J.Y.; Lin, T.L.

    1989-01-01

    Liquid-solid contact in transition boiling is modelled by involving transient conduction, boiling incipience, macrolayer evaporation and vapour film boiling. The prediction of liquid contact duration and time fraction agrees reasonably well with experimental data, and the model is able to predict both of the boiling curve transitions - the critical and minimum heat fluxes. The study concludes that the liquid turbulence due to buoyancy forces and bubble agitation is an important parameter for transition boiling. It is found that surface coating (oxidation or deposition) tends to improve the transition boiling heat transfer and elevate the wall superheats at both the critical heat flux and the minimum film boiling points, which agrees with the experimental observations. (author)

  1. New Mechanisms to Explain the Effects of Added Lactose Fines on the Dispersion Performance of Adhesive Mixtures for Inhalation

    Science.gov (United States)

    Grasmeijer, Floris; Lexmond, Anne J.; van den Noort, Maarten; Hagedoorn, Paul; Hickey, Anthony J.; Frijlink, Henderik W.; de Boer, Anne H.

    2014-01-01

    Fine excipient particles or ‘fines’ have been shown to improve the dispersion performance of carrier-based formulations for dry powder inhalation. Mechanistic formulation studies have focussed mainly on explaining this positive effect. Previous studies have shown that higher drug contents may cause a decrease in dispersion performance, and there is no reason why this should not be true for fines with a similar shape, size and cohesiveness as drug particles. Therefore, the effects on drug detachment of ‘fine lactose fines’ (FLF, X50 = 1.95 µm) with a similar size and shape as micronised budesonide were studied and compared to those of ‘coarse lactose fines’ (CLF, X50 = 3.94 µm). Furthermore, interactions with the inhalation flow rate, the drug content and the mixing order were taken into account. The observed effects of FLF are comparable to drug content effects in that the detached drug fraction was decreased at low drug content and low flow rates but increased at higher flow rates. At high drug content the effects of added FLF were negligible. In contrast, CLF resulted in higher detached drug fractions at all flow rates and drug contents. The results from this study suggest that the effects of fines may be explained by two new mechanisms in addition to those previously proposed. Firstly, fines below a certain size may increase the effectiveness of press-on forces or cause the formation of strongly coherent fine particle networks on the carrier surface containing the drug particles. Secondly, when coarse enough, fines may prevent the formation of, or disrupt such fine particle networks, possibly through a lowering of their tensile strength. It is recommended that future mechanistic studies are based on the recognition that added fines may have any effect on dispersion performance, which is determined by the formulation and dispersion conditions. PMID:24489969

  2. Vascular Steal Explains Early Paradoxical Blood Oxygen Level-Dependent Cerebrovascular Response in Brain Regions with Delayed Arterial Transit Times

    Directory of Open Access Journals (Sweden)

    Julien Poublanc

    2013-04-01

    Full Text Available Introduction: Blood oxygen level-dependent (BOLD magnetic resonance imaging (MRI during manipulation of inhaled carbon dioxide (CO2 can be used to measure cerebrovascular reactivity (CVR and map regions of exhausted cerebrovascular reserve. These regions exhibit a reduced or negative BOLD response to inhaled CO2. In this study, we sought to clarify the mechanism behind the negative BOLD response by investigating its time delay (TD. Dynamic susceptibility contrast (DSC MRI with the injection of a contrast agent was used as the gold standard in order to provide measurement of the blood arrival time to which CVR TD could be compared. We hypothesize that if negative BOLD responses are the result of a steal phenomenon, they should be synchronized with positive BOLD responses from healthy brain tissue, even though the blood arrival time would be delayed. Methods: On a 3-tesla MRI system, BOLD CVR and DSC images were collected in a group of 19 patients with steno-occlusive cerebrovascular disease. For each patient, we generated a CVR magnitude map by regressing the BOLD signal with the end-tidal partial pressure of CO2 (PETCO2, and a CVR TD map by extracting the time of maximum cross-correlation between the BOLD signal and PETCO2. In addition, a blood arrival time map was generated by fitting the DSC signal with a gamma variate function. ROI masks corresponding to varying degrees of reactivity were constructed. Within these masks, the mean CVR magnitude, CVR TD and DSC blood arrival time were extracted and averaged over the 19 patients. CVR magnitude and CVR TD were then plotted against DSC blood arrival time. Results: The results show that CVR magnitude is highly correlated to DSC blood arrival time. As expected, the most compromised tissues with the longest blood arrival time have the lowest (most negative CVR magnitude. However, CVR TD shows a noncontinuous relationship with DSC blood arrival time. CVR TD is well correlated to DSC blood arrival time

  3. The problem of phase transitions in statistical mechanics

    International Nuclear Information System (INIS)

    Martynov, Georgii A

    1999-01-01

    The first part of this review deals with the single-phase approach to the statistical theory of phase transitions. This approach is based on the assumption that a first-order phase transition is due to the loss of stability of the parent phase. We demonstrate that it is practically impossible to find the coordinates of the transition points using this criterion in the framework of the global Gibbs theory which describes the state of the entire macroscopic system. On the basis of the Ornstein-Zernike equation we formulate a local approach that analyzes the state of matter inside the correlation sphere of radius R c ∼ 10 A. This approach is proved to be as rigorous as the Gibbs theory. In the context of the local approach we formulate a criterion that allows finding the transition points without calculating the chemical potential and the pressure of the second conjugate phase. In the second part of the review we consider second-order phase transitions (critical phenomena). The Kadanoff-Wilson theory of critical phenomena is analyzed, based on the global Gibbs approach. Again we use the Ornstein-Zernike equation to formulate a local theory of critical phenomena. With regard to experimentally established quantities this theory yields precisely the same results as the Kadanoff-Wilson theory; secondly, the local approach allows the prediction of many previously unknown details of critical phenomena, and thirdly, the local approach paves the way for constructing a unified theory of liquids that will describe the behavior of matter not only in the regular domain of the phase diagram, but also at the critical point and in its vicinity. (reviews of topical problems)

  4. Control Mechanism and Security Region for Intentional Islanding Transition

    DEFF Research Database (Denmark)

    Chen, Yu; Xu, Zhao; Østergaard, Jacob

    2009-01-01

    in the grid. The concept of Islanding Security Region (ISR) has been proposed as an organic composition of the developed control mechanism. The purpose of this control mechanism is to maintain the frequency stability and eventually the security of power supply to the customers, by utilizing resources from...... generation and demand sides. The control mechanism can be extended to consider the distributed generations like wind power and other innovative technologies such as the Demand as Frequency controlled Reserve (DFR) technique in the future....

  5. “Triple M” Effect: A Proposed Mechanism to Explain Increased Dental Amalgam Microleakage after Exposure to Radiofrequency Electromagnetic Radiation

    Science.gov (United States)

    Mortazavi, Gh.; Mortazavi, S.A.R.; Mehdizadeh, A.R.

    2018-01-01

    A large body of evidence now indicates that the amount of mercury released from dental amalgam fillings can be significantly accelerated by exposure to radiofrequency electromagnetic fields (RF-EMFs) such as common mobile phones and magnetic resonance imaging (MRI). Studies performed on the increased microleakage of dental amalgam restorations after exposure to RF-EMFs have further supported these findings. Although the accelerated microleakage induced by RF-EMFs is clinically significant, the entire mechanisms of this phenomenon are not clearly understood. In this paper, we introduce “Triple M” effect, a new evidence-based theory which can explain the accelerated microleakage of dental amalgam fillings after exposure to different sources of electromagnetic radiation. Based on this theory, there are saliva-filled tiny spaces between amalgam and the tooth. Exposure of the oral cavity to RF-EMFs increases the energy of these small amounts of saliva. Due to the small mass of saliva in these tiny spaces, a small amount of energy will be required for heating. Moreover, reflection of the radiofrequency radiation on the inner walls of the tiny spaces causes interference which in turn produces some “hot spots” in these spaces. Finally, formation of gas bubbles in response to increased temperature and very rapid expansion of these bubbles will accelerate the microleakage of amalgam. Experiments that confirm the validity of this theory are discussed. PMID:29732349

  6. "Triple M" Effect: A Proposed Mechanism to Explain Increased Dental Amalgam Microleakage after Exposure to Radiofrequency Electromagnetic Radiation.

    Science.gov (United States)

    Mortazavi, Gh; Mortazavi, S A R; Mehdizadeh, A R

    2018-03-01

    A large body of evidence now indicates that the amount of mercury released from dental amalgam fillings can be significantly accelerated by exposure to radiofrequency electromagnetic fields (RF-EMFs) such as common mobile phones and magnetic resonance imaging (MRI). Studies performed on the increased microleakage of dental amalgam restorations after exposure to RF-EMFs have further supported these findings. Although the accelerated microleakage induced by RF-EMFs is clinically significant, the entire mechanisms of this phenomenon are not clearly understood. In this paper, we introduce "Triple M" effect, a new evidence-based theory which can explain the accelerated microleakage of dental amalgam fillings after exposure to different sources of electromagnetic radiation. Based on this theory, there are saliva-filled tiny spaces between amalgam and the tooth. Exposure of the oral cavity to RF-EMFs increases the energy of these small amounts of saliva. Due to the small mass of saliva in these tiny spaces, a small amount of energy will be required for heating. Moreover, reflection of the radiofrequency radiation on the inner walls of the tiny spaces causes interference which in turn produces some "hot spots" in these spaces. Finally, formation of gas bubbles in response to increased temperature and very rapid expansion of these bubbles will accelerate the microleakage of amalgam. Experiments that confirm the validity of this theory are discussed.

  7. The glass transition in nanoscaled confinement probed by dynamic mechanical spectroscopy

    International Nuclear Information System (INIS)

    Koppensteiner, J.

    2009-01-01

    A glass transition in a liquid is characterized by a massive change in some of its physical properties as viscosity η and molecular relaxation time τ, whereas no change in structure or long range order can be detected. Up to now an overall theory explaining the very nature of the glass transition and therewith all experimental findings is not available. Today's common approach, reaching back to Adams and Gibbs in 1963, is based on a cooperative rearrangement of molecules in groups whose size increases, when the glass transition is approached. In this picture a typical number of correlated molecules N corr,T form a compact cluster of a typical size ξ, predicted to be in the nm-range at T g . If this is true, nanoscaled confinement of a glass forming liquid should considerably influence this transition. In a pioneer work of 1991 Jackson and McKenna found a downshift ΔT g α 1/d in nm-sized pores of diameter d. This paper started a new eld of physics, the glass transition in confinement being investigated in experiment, simulation and theory. 20 years of research created partly contradictory results pointing to a large influence of side effects in confinement, opponent in their impact on T g . Both T g upshifts and downshifts were found in 2D and 3D conning geometries showing that spatially hindered molecular rearrangement is blurred by surface interactions and a negative pressure effect. An accurate investigation of side effects therefore is essential. The present thesis contributes to this rich eld and aims to help bridging the often cited gap between theory and experiments. For the rst time a mechanical approach is chosen and the dynamic elastic response of a mesoporous host matrix filled with a glass forming liquid is used to model the liquids behaviour across the glass transition. Low frequency dynamic mechanical measurements are proven to be very sensitive of the vitrification of the filling liquid. DMA turned out as a highly efficient and versatile tool

  8. The mechanism of suppression of quantum transitions (quantum whirligig)

    International Nuclear Information System (INIS)

    Buts, V.A.

    2010-01-01

    The mechanism allowing to stabilize of a state of quantum systems is considered. And, the initial condition can correspond both for excited state and for not excited, stationary state. The considered mechanism for the first time was offered for the excited states, and has received the name as quantum whirligig (QWE). In this work the close connection of the considered mechanism with Zeno effect is shown. The considerations are stated, that many experimental results, which are interpreted as observation of Zeno effect, apparently, correspond to QWE.

  9. Transition absorption as a mechanism of surface photoelectron emission from metals

    DEFF Research Database (Denmark)

    Zhukovsky, Sergei; Protsenko, Igor E.; Ikhsanov, Renat Sh

    2015-01-01

    Transition absorption of a photon by an electron passingthrough a boundary between two media with different permit-tivities is described both classically and quantum mechani-cally. Transition absorption is shown to make a substantialcontribution to photoelectron emission at a metal....../semicon-ductor interface in nanoplasmonic systems, and is put forth asa possible microscopic mechanism of the surface photoelec-tric effect in photodetectors and solar cells containing plas-monic nanoparticles....

  10. Modeling how shark and dolphin skin patterns control transitional wall-turbulence vorticity patterns using spatiotemporal phase reset mechanisms.

    Science.gov (United States)

    Bandyopadhyay, Promode R; Hellum, Aren M

    2014-10-23

    Many slow-moving biological systems like seashells and zebrafish that do not contend with wall turbulence have somewhat organized pigmentation patterns flush with their outer surfaces that are formed by underlying autonomous reaction-diffusion (RD) mechanisms. In contrast, sharks and dolphins contend with wall turbulence, are fast swimmers, and have more organized skin patterns that are proud and sometimes vibrate. A nonlinear spatiotemporal analytical model is not available that explains the mechanism underlying control of flow with such proud patterns, despite the fact that shark and dolphin skins are major targets of reverse engineering mechanisms of drag and noise reduction. Comparable to RD, a minimal self-regulation model is given for wall turbulence regeneration in the transitional regime--laterally coupled, diffusively--which, although restricted to pre-breakdown durations and to a plane close and parallel to the wall, correctly reproduces many experimentally observed spatiotemporal organizations of vorticity in both laminar-to-turbulence transitioning and very low Reynolds number but turbulent regions. We further show that the onset of vorticity disorganization is delayed if the skin organization is treated as a spatiotemporal template of olivo-cerebellar phase reset mechanism. The model shows that the adaptation mechanisms of sharks and dolphins to their fluid environment have much in common.

  11. A MECHANISM FOR HYSTERESIS IN BLACK HOLE BINARY STATE TRANSITIONS

    International Nuclear Information System (INIS)

    Begelman, Mitchell C.; Armitage, Philip J.

    2014-01-01

    We suggest that the hysteretic cycle of black hole state transitions arises from two established properties of accretion disks: the increase in turbulent stress in disks threaded by a net magnetic field and the ability of thick (but not thin) disks to advect such a field radially. During quiescence, magnetic field loops are generated by the magnetorotational instability at the interface between the inner hot flow and outer thin disk. Vertical flux is advected into and accumulates stochastically within the inner flow, where it stimulates the turbulence so that α ∼ 1. The transition to a geometrically thin inner disk occurs when L ∼ α 2 L Edd ∼ L Edd , and the first ''thin'' disk to form is itself moderately thick, strongly magnetized, and able to advect field inward. These properties favor episodic jet production. As the accretion rate declines magnetic flux escapes, α decreases to α ∼ 0.01-0.1, and a hot inner flow is not re-established until L << L Edd . We discuss possible observational consequences of our scenario

  12. Mechanism and regulation of epithelial–mesenchymal transition in cancer

    Directory of Open Access Journals (Sweden)

    Guttilla Reed IK

    2015-08-01

    Full Text Available Irene K Guttilla ReedDepartment of Biology, University of Saint Joseph, West Hartford, CT, USAAbstract: During development and the pathogenesis of certain diseases, including cancer, the epithelial–mesenchymal transition (EMT program is activated. It is hypothesized that EMT plays a major role in tumor invasion and the establishment of distant metastases. Metastatic disease is responsible for the vast majority of cancer-related deaths, which provides a precedent for elucidating pathways that regulate EMT. EMT is defined as the transition of cells with an epithelial phenotype into cells with a mesenchymal phenotype through a series of genetic and environmental events. This leads to the repression of epithelial-associated markers, upregulation of mesenchymal-associated markers, a loss of cell polarity and adhesion, and increased cell motility and invasiveness. EMT is a reversible and dynamic process, and can be regulated by signals from the microenvironment such as inflammation, hypoxia, and growth factors or epigenetically via microRNAs. These signals modulate key EMT-associated transcription factors and effector proteins that control cellular phenotype and regulate tumor plasticity in response to changing conditions in the microenvironment and the progressive nature of cancer. Understanding the complex regulatory networks controlling EMT can provide insight into tumor progression and metastasis.Keywords: EMT, metastasis, microRNA, transcription factor, growth factor, tumor progression

  13. Routes to chaos in continuous mechanical systems: Part 2. Modelling transitions from regular to chaotic dynamics

    International Nuclear Information System (INIS)

    Krysko, A.V.; Awrejcewicz, J.; Papkova, I.V.; Krysko, V.A.

    2012-01-01

    In second part of the paper both classical and novel scenarios of transition from regular to chaotic dynamics of dissipative continuous mechanical systems are studied. A detailed analysis allowed us to detect the already known classical scenarios of transition from periodic to chaotic dynamics, and in particular the Feigenbaum scenario. The Feigenbaum constant was computed for all continuous mechanical objects studied in the first part of the paper. In addition, we illustrate and discuss different and novel scenarios of transition of the analysed systems from regular to chaotic dynamics, and we show that the type of scenario depends essentially on excitation parameters.

  14. Molecular modeling of polycarbonate materials: Glass transition and mechanical properties

    Science.gov (United States)

    Palczynski, Karol; Wilke, Andreas; Paeschke, Manfred; Dzubiella, Joachim

    2017-09-01

    Linking the experimentally accessible macroscopic properties of thermoplastic polymers to their microscopic static and dynamic properties is a key requirement for targeted material design. Classical molecular dynamics simulations enable us to study the structural and dynamic behavior of molecules on microscopic scales, and statistical physics provides a framework for relating these properties to the macroscopic properties. We take a first step toward creating an automated workflow for the theoretical prediction of thermoplastic material properties by developing an expeditious method for parameterizing a simple yet surprisingly powerful coarse-grained bisphenol-A polycarbonate model which goes beyond previous coarse-grained models and successfully reproduces the thermal expansion behavior, the glass transition temperature as a function of the molecular weight, and several elastic properties.

  15. Broken dynamical symmetries in quantum mechanics and phase transition phenomena

    International Nuclear Information System (INIS)

    Guenther, N.J.

    1979-12-01

    This thesis describes applications of dynamical symmetries to problems in quantum mechanics and many-body physics where the latter is formulated as a Euclidean scalar field theory in d-space dimensions. By invoking the concept of a dynamical symmetry group a unified understanding of apparently disparate results is achieved. (author)

  16. WAP explained

    International Nuclear Information System (INIS)

    Kaiser, M.J.; Pulsipher, A.G.

    2004-01-01

    The Weatherization Assistance Program (WAP) is a federal block grant program administered by all 50 states and the District of Columbia through community action agencies, state energy offices, local government, and other nonprofit organizations to provide weatherization services to eligible households. The WAP was established in 1976 to increase the energy efficiency, reduce the energy expenditures, and improve the health and safety of low-income households, especially those households that are particularly vulnerable such as families with children, persons with disabilities, and the elderly. The manner in which WAP funds have been allocated to states, however, has been a contentious issue since the inception of the program. Southern states have argued that too much of the federal funding goes to cold-climate and rural states. Northern states disagree. In 1990, Congress amended the Energy Conservation and Production Act and required the Department of Energy to develop a new funding formula. The Department of Energy currently uses a three-factor formula developed in 1995 in conjunction with a two-factor formula developed in 1977 and a hold-harmless provision to allocate WAP funding. The purpose of this paper is to explain the WAP allocation mechanism and the assumptions associated with the 1977 and the 1995 funding formula. The factors that compose each funding formula are critically assessed and various implementation issues are reviewed, including the selection of the trigger point and program capacity levels. It is not possible to define the need for weatherization assistance objectively and in a unique manner, and this ambiguity is the main reason why the WAP allocation mechanism is expected to remain a lively topic of debate and contention

  17. Can changes in psychosocial factors and residency explain the decrease in physical activity during the transition from high school to college or university?

    Science.gov (United States)

    Van Dyck, Delfien; De Bourdeaudhuij, Ilse; Deliens, Tom; Deforche, Benedicte

    2015-04-01

    When students make the transition from high school to college or university, their physical activity (PA) levels decrease strongly. Consequently, it is of crucial importance to identify the determinants of this decline in PA. The study aims were to (1) examine changes in psychosocial factors in students during the transition from high school to college/university, (2) examine if changes in psychosocial factors and residency can predict changes in PA, and (3) investigate the moderating effects of residency on the relationship between changes in psychosocial factors and changes in PA. Between March 2008 and October 2010, 291 Flemish students participated in a longitudinal study, with baseline measurements during the final year of high school and follow-up measurements at the start of second year of college/university. At both time points, participants completed a questionnaire assessing demographics, active transportation, leisure-time sports, psychosocial variables, and residency. Repeated measures MANOVA analyses and multiple moderated hierarchic regression analyses were conducted. Modeling, self-efficacy, competition-related benefits, and health-related, external and social barriers decreased, while health-related benefits and time-related barriers increased from baseline to follow-up. Decreases in modeling and time-related barriers were associated with a decrease in active transportation (adjusted R(2) = 3.2%); residency, decreases in self-efficacy, competition-related benefits, and increases in health- and time-related barriers predicted a decrease in leisure-time sports (adjusted R(2) = 29.3%). Residency only moderated two associations between psychosocial factors and changes in PA. Residency and changes in psychosocial factors were mainly important to explain the decrease in leisure-time sports. Other factors such as distance to college/university are likely more important to explain the decrease in active transportation; these are worth exploring in

  18. Relationship between transit time and mechanical properties of a cell through a stenosed microchannel.

    Science.gov (United States)

    Ye, Ting; Shi, Huixin; Phan-Thien, Nhan; Lim, Chwee Teck; Li, Yu

    2018-01-24

    The changes in the mechanical properties of a cell are not only the cause of some diseases, but can also be a biomarker for some disease states. In recent times, microfluidic devices with built-in constrictions have been widely used to measure these changes. The transit time in such devices, defined as the time that a cell takes to pass through a constriction, has been found to be a crucial factor associated with the cell mechanical properties. Here, we use smoothed dissipative particle dynamics (SDPD), a particle-based numerical method, to explore the relationship between the transit time and mechanical properties of a cell. Three expressions of the transit time are developed from our simulation data, with respect to the stenosed size of constrictions, the shear modulus and bending modulus of cells, respectively. We show that a convergent constriction (the inlet is wider than the outlet), and a sharp-corner constriction (the constriction outlet is narrow) are better in identifying the differences in the transit time of cells. Moreover, the transit time increases and gradually approaches a constant as the shear modulus of cells increases, but increases first and then decreases as the bending modulus increases. These results suggest that the mechanical properties of cells can indeed be measured by analyzing their transit time, based on the recommended microfluidic device.

  19. Nonphonon mechanism of superconductivity in compounds of transition metals

    International Nuclear Information System (INIS)

    Ivanov, V.A.; Zaitsev, R.O.

    1989-01-01

    The kinematical mechanism of superconductivity is applied to the Emery-Hirsch model for the CuO 2 and BiO 3 layers. A superconducting region due to strong kinematic interaction of p- and s, d-electrons are determined as a function of n p and n s,d -degrees of non-filling of 2p 6 ,6s 2 ,3d 10 shells of O 2 - ,Bi 3 + ,Cu + . The T c is calculated taking into account the spin flip relaxation time. Magnetostatic properties of a superconducting state in a weak magnetic field are investigated. Coefficients of the Ginzburg-Landau equation are calculated. The ground state energy of the Emery-Hirsch model is also calculated

  20. Phase transition and mechanical properties of tungsten nanomaterials from molecular dynamic simulation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, L.; Fan, J. L.; Gong, H. R., E-mail: gonghr@csu.edu.cn [Central South University, State Key Laboratory of Powder Metallurgy (China)

    2017-03-15

    Molecular dynamic simulation is used to systematically find out the effects of the size and shape of nanoparticles on phase transition and mechanical properties of W nanomaterials. It is revealed that the body-centered cubic (BCC) to face-centered cubic (FCC) phase transition could only happen in cubic nanoparticles of W, instead of the shapes of sphere, octahedron, and rhombic dodecahedron, and that the critical number to trigger the phase transition is 5374 atoms. Simulation also shows that the FCC nanocrystalline W should be prevented due to its much lower tensile strength than its BCC counterpart and that the octahedral and rhombic dodecahedral nanoparticles of W, rather than the cubic nanoparticles, should be preferred in terms of phase transition and mechanical properties. The derived results are discussed extensively through comparing with available observations in the literature to provide a deep understanding of W nanomaterials.

  1. Adaptive Spontaneous Transitions between Two Mechanisms of Numerical Averaging.

    Science.gov (United States)

    Brezis, Noam; Bronfman, Zohar Z; Usher, Marius

    2015-06-04

    We investigated the mechanism with which humans estimate numerical averages. Participants were presented with 4, 8 or 16 (two-digit) numbers, serially and rapidly (2 numerals/second) and were instructed to convey the sequence average. As predicted by a dual, but not a single-component account, we found a non-monotonic influence of set-size on accuracy. Moreover, we observed a marked decrease in RT as set-size increases and RT-accuracy tradeoff in the 4-, but not in the 16-number condition. These results indicate that in accordance with the normative directive, participants spontaneously employ analytic/sequential thinking in the 4-number condition and intuitive/holistic thinking in the 16-number condition. When the presentation rate is extreme (10 items/sec) we find that, while performance still remains high, the estimations are now based on intuitive processing. The results are accounted for by a computational model postulating population-coding underlying intuitive-averaging and working-memory-mediated symbolic procedures underlying analytical-averaging, with flexible allocation between the two.

  2. An investigation of transition boiling mechanisms of subcooled water under forced convective conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kwang-Won, Lee; Sang-Yong, Lee

    1995-09-01

    A mechanistic model for forced convective transition boiling has been developed to investigate transition boiling mechanisms and to predict transition boiling heat flux realistically. This model is based on a postulated multi-stage boiling process occurring during the passage time of the elongated vapor blanket specified at a critical heat flux (CHF) condition. Between the departure from nucleate boiling (DNB) and the departure from film boiling (DFB) points, the boiling heat transfer is established through three boiling stages, namely, the macrolayer evaporation and dryout governed by nucleate boiling in a thin liquid film and the unstable film boiling characterized by the frequent touches of the interface and the heated wall. The total heat transfer rates after the DNB is weighted by the time fractions of each stage, which are defined as the ratio of each stage duration to the vapor blanket passage time. The model predictions are compared with some available experimental transition boiling data. The parametric effects of pressure, mass flux, inlet subcooling on the transition boiling heat transfer are also investigated. From these comparisons, it can be seen that this model can identify the crucial mechanisms of forced convective transition boiling, and that the transition boiling heat fluxes including the maximum heat flux and the minimum film boiling heat flux are well predicted at low qualities/high pressures near 10 bar. In future, this model will be improved in the unstable film boiling stage and generalized for high quality and low pressure situations.

  3. Membrane fouling mechanism transition in relation to feed water composition

    KAUST Repository

    Myat, Darli Theint

    2014-12-01

    . Extended laboratory filtration is required to understand fouling of low pressure membranes as it relates to commercial applications, as the initial rate of fouling for new membranes can include pore constriction mechanisms from humic substances which diminish in significance as filtration continues. Filtration for >24h was required before the HIFI values became constant.

  4. Transition from the mechanics of material points to the mechanics of structured particles

    Science.gov (United States)

    Somsikov, V. M.

    2016-01-01

    In this paper, necessity of creation of mechanics of structured particles is discussed. The way to create this mechanics within the laws of classical mechanics with the use of energy equation is shown. The occurrence of breaking of time symmetry within the mechanics of structured particles is shown, as well as the introduction of concept of entropy in the framework of classical mechanics. The way to create the mechanics of non-equilibrium systems in the thermodynamic approach is shown. It is also shown that the use of hypothesis of holonomic constraints while deriving the canonical Lagrange equation made it impossible to describe irreversible dynamics. The difference between the mechanics of structured particles and the mechanics of material points is discussed. It is also shown that the matter is infinitely divisible according to the laws of classical mechanics.

  5. Gambling-Related Distortions and Problem Gambling in Adolescents: A Model to Explain Mechanisms and Develop Interventions

    OpenAIRE

    Donati, Maria Anna; Chiesi, Francesca; Iozzi, Adriana; Manfredi, Antonella; Fagni, Fabrizio; Primi, Caterina

    2018-01-01

    Although a number of gambling preventive initiatives have been realized with adolescents, many of them have been developed in absence of a clear and explicitly described theoretical model. The present work was aimed to analyze the adequacy of a model to explain gambling behavior referring to gambling-related cognitive distortions (Study 1), and to verify the effectiveness of a preventive intervention developed on the basis of this model (Study 2). Following dual-process theories on cognitive ...

  6. A new mechanism for the electromagnetic transition γ*N → N* (1535)

    International Nuclear Information System (INIS)

    An Chunsheng; Zou Bingsong

    2010-01-01

    The helicity amplitude A p 1/2 for the electromagnetic transition γ * N → N * (1535) is investigated. It is found that a new mechanism γ * →q(q-bar) plays an important role in order to improve the description of this transition. On one hand,the A p 1/2 is decreased to fall in the data range at the photon point Q 2 = 0, while on the other hand, the new mechanism makes the function A 1/2 p (Q 2 ) to decrease more slowly vs increasing Q 2 , as required by the data. (authors)

  7. Complexity explained

    CERN Document Server

    Erdi, Peter

    2008-01-01

    This book explains why complex systems research is important in understanding the structure, function and dynamics of complex natural and social phenomena. Readers will learn the basic concepts and methods of complex system research.

  8. The Kibble-Zurek mechanism in phase transitions of non-equilibrium systems

    Science.gov (United States)

    Cheung, Hil F. H.; Patil, Yogesh S.; Date, Aditya G.; Vengalattore, Mukund

    2017-04-01

    We experimentally realize a driven-dissipative phase transition using a mechanical parametric amplifier to demonstrate key signatures of a second order phase transition, including a point where the susceptibilities and relaxation time scales diverge, and where the system exhibits a spontaneous breaking of symmetry. Though reminiscent of conventional equilibrium phase transitions, it is unclear if such driven-dissipative phase transitions are amenable to the conventional Landau-Ginsburg-Wilson paradigm, which relies on concepts of scale invariance and universality, and recent work has shown that such phase transitions can indeed lie beyond such conventional universality classes. By quenching the system past the critical point, we investigate the dynamics of the emergent ordered phase and find that our measurements are in excellent agreement with the Kibble-Zurek mechanism. In addition to verifying the Kibble-Zurek hypothesis in driven-dissipative phase transitions for the first time, we also demonstrate that the measured critical exponents accurately reflect the interplay between intrinsic coherent dynamics and environmental correlations, showing a clear departure from mean field exponents in the case of non-Markovian system-bath interactions. We further discuss how reservoir engineering and the imposition of artificial environmental correlations can result in the stabilization of novel many-body quantum phases and aid in the creation of exotic non-equilibrium states of matter.

  9. Numerical investigation of hypersonic flat-plate boundary layer transition mechanism induced by different roughness shapes

    Science.gov (United States)

    Zhou, Yunlong; Zhao, Yunfei; Xu, Dan; Chai, Zhenxia; Liu, Wei

    2016-10-01

    The roughness-induced laminar-turbulent boundary layer transition is significant for high-speed aerospace applications. The transition mechanism is closely related to the roughness shape. In this paper, high-order numerical method is used to investigate the effect of roughness shape on the flat-plate laminar-to-turbulent boundary layer transition. Computations are performed in both the supersonic and hypersonic regimes (free-stream Mach number from 3.37 up to 6.63) for the square, cylinder, diamond and hemisphere roughness elements. It is observed that the square and diamond roughness elements are more effective in inducing transition compared with the cylinder and hemisphere ones. The square roughness element has the longest separated region in which strong unsteadiness exists and the absolute instability is formed, thus resulting in the earliest transition. The diamond roughness element has a maximum width of the separated region leading to the widest turbulent wake region far downstream. Furthermore, transition location moves backward as the Mach number increases, which indicates that the compressibility significantly suppresses the roughness-induced boundary layer transition.

  10. A comparison of two IPv4/IPv6 transition mechanisms - OpenVPN and IVI

    Science.gov (United States)

    Vu, Cong Tuan; Tran, Quang Anh; Jiang, Frank

    2012-09-01

    This document presents a comparison of two IPv4/IPv6 transition mechanisms. They are OpenVPN and IVI. Meanwhile OpenVPN is based on tunneling technology, IVI is a stateless IPv4/IPv6 translation technique which is developed by China Education and Research Network (CERNET). This research focus on the quantitative and qualitative comparison of these two main mechanisms; how they are applied in practical situation by the Internet Service Providers, as well as their advantages and drawbacks.

  11. Mechanisms which help explain implementation of evidence-based practice in residential aged care facilities: a grounded theory study.

    Science.gov (United States)

    Masso, Malcolm; McCarthy, Grace; Kitson, Alison

    2014-07-01

    The context for the study was a nation-wide programme in Australia to implement evidence-based practice in residential aged care, in nine areas of practice, using a wide range of implementation strategies and involving 108 facilities. The study drew on the experiences of those involved in the programme to answer the question: what mechanisms influence the implementation of evidence-based practice in residential aged care and how do those mechanisms interact? The methodology used grounded theory from a critical realist perspective, informed by a conceptual framework that differentiates between the context, process and content of change. People were purposively sampled and invited to participate in semi-structured interviews, resulting in 44 interviews involving 51 people during 2009 and 2010. Participants had direct experience of implementation in 87 facilities, across nine areas of practice, in diverse locations. Sampling continued until data saturation was reached. The quality of the research was assessed using four criteria for judging trustworthiness: credibility, transferability, dependability and confirmability. Data analysis resulted in the identification of four mechanisms that accounted for what took place and participants' experiences. The core category that provided the greatest understanding of the data was the mechanism On Common Ground, comprising several constructs that formed a 'common ground' for change to occur. The mechanism Learning by Connecting recognised the ability to connect new knowledge with existing practice and knowledge, and make connections between actions and outcomes. Reconciling Competing Priorities was an ongoing mechanism whereby new practices had to compete with an existing set of constantly shifting priorities. Strategies for reconciling priorities ranged from structured approaches such as care planning to more informal arrangements such as conversations during daily work. The mechanism Exercising Agency bridged the gap between

  12. Cultural Diffusion Was the Main Driving Mechanism of the Neolithic Transition in Southern Africa

    Science.gov (United States)

    Jerardino, Antonieta; Fort, Joaquim; Isern, Neus; Rondelli, Bernardo

    2014-01-01

    It is well known that the Neolithic transition spread across Europe at a speed of about 1 km/yr. This result has been previously interpreted as a range expansion of the Neolithic driven mainly by demic diffusion (whereas cultural diffusion played a secondary role). However, a long-standing problem is whether this value (1 km/yr) and its interpretation (mainly demic diffusion) are characteristic only of Europe or universal (i.e. intrinsic features of Neolithic transitions all over the world). So far Neolithic spread rates outside Europe have been barely measured, and Neolithic spread rates substantially faster than 1 km/yr have not been previously reported. Here we show that the transition from hunting and gathering into herding in southern Africa spread at a rate of about 2.4 km/yr, i.e. about twice faster than the European Neolithic transition. Thus the value 1 km/yr is not a universal feature of Neolithic transitions in the world. Resorting to a recent demic-cultural wave-of-advance model, we also find that the main mechanism at work in the southern African Neolithic spread was cultural diffusion (whereas demic diffusion played a secondary role). This is in sharp contrast to the European Neolithic. Our results further suggest that Neolithic spread rates could be mainly driven by cultural diffusion in cases where the final state of this transition is herding/pastoralism (such as in southern Africa) rather than farming and stockbreeding (as in Europe). PMID:25517968

  13. Signature gene expression reveals novel clues to the molecular mechanisms of dimorphic transition in Penicillium marneffei.

    Directory of Open Access Journals (Sweden)

    Ence Yang

    2014-10-01

    Full Text Available Systemic dimorphic fungi cause more than one million new infections each year, ranking them among the significant public health challenges currently encountered. Penicillium marneffei is a systemic dimorphic fungus endemic to Southeast Asia. The temperature-dependent dimorphic phase transition between mycelium and yeast is considered crucial for the pathogenicity and transmission of P. marneffei, but the underlying mechanisms are still poorly understood. Here, we re-sequenced P. marneffei strain PM1 using multiple sequencing platforms and assembled the genome using hybrid genome assembly. We determined gene expression levels using RNA sequencing at the mycelial and yeast phases of P. marneffei, as well as during phase transition. We classified 2,718 genes with variable expression across conditions into 14 distinct groups, each marked by a signature expression pattern implicated at a certain stage in the dimorphic life cycle. Genes with the same expression patterns tend to be clustered together on the genome, suggesting orchestrated regulations of the transcriptional activities of neighboring genes. Using qRT-PCR, we validated expression levels of all genes in one of clusters highly expressed during the yeast-to-mycelium transition. These included madsA, a gene encoding MADS-box transcription factor whose gene family is exclusively expanded in P. marneffei. Over-expression of madsA drove P. marneffei to undergo mycelial growth at 37°C, a condition that restricts the wild-type in the yeast phase. Furthermore, analyses of signature expression patterns suggested diverse roles of secreted proteins at different developmental stages and the potential importance of non-coding RNAs in mycelium-to-yeast transition. We also showed that RNA structural transition in response to temperature changes may be related to the control of thermal dimorphism. Together, our findings have revealed multiple molecular mechanisms that may underlie the dimorphic transition

  14. TRANSIT

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. TRANSIT. SYSTEM: DETERMINE 2D-POSITION GLOBALLY BUT INTERMITTENT (POST-FACTO). IMPROVED ACCURACY. PRINCIPLE: POLAR SATELLITES WITH INNOVATIONS OF: GRAVITY-GRADIENT ATTITUDE CONTROL; DRAG COMPENSATION. WORKS ...

  15. Bypassing the 'rapid-clearance-in-males-buffer': A fourth mechanism to explain how concurrency enhances STI spread.

    Science.gov (United States)

    Kenyon, Chris R

    2017-12-01

    A number of sexually transmitted infections (STIs) persist for a considerably shorter period in the male urethra than the vagina. If the gap between sequential partnerships is longer than the duration of STI colonization in males, then this would protect future female partners from this STI in a setting of serial monogamy. If, however, males have more than one partner at a time (concurrency), then this would enable the STI to bypass this gap/buffer. We therefore propose bypassing the rapid-clearance-in-males-buffer as a fourth mechanism, whereby concurrency could enhance the spread of STIs.

  16. Gambling-Related Distortions and Problem Gambling in Adolescents: A Model to Explain Mechanisms and Develop Interventions

    Directory of Open Access Journals (Sweden)

    Maria Anna Donati

    2018-01-01

    Full Text Available Although a number of gambling preventive initiatives have been realized with adolescents, many of them have been developed in absence of a clear and explicitly described theoretical model. The present work was aimed to analyze the adequacy of a model to explain gambling behavior referring to gambling-related cognitive distortions (Study 1, and to verify the effectiveness of a preventive intervention developed on the basis of this model (Study 2. Following dual-process theories on cognitive functioning, in Study 1 we tested a model in which mindware gap, i.e., susceptibility to the gambler’s fallacy, and contaminated mindware, i.e., superstitious thinking, were the antecedents of gambling-related cognitive distortions that, in turn, affect gambling frequency and problem gambling. Participants were 306 male adolescents (Mage = 17.2 years. A path analysis indicated that cognitive distortions have a mediating role in the relationship that links probabilistic reasoning fallacy and superstitious thinking with problem gambling. Following these findings, in Study 2 we developed a school-based intervention aimed to reduce gambling-related cognitive distortions acting on the above cited mindware problems. A pre- and post-test design – with a 6 months follow-up – was performed with 34 male adolescents (Mage = 16.8, randomly assigned to two groups (Training and No Training, and their baseline equivalence was verified. A Mixed 2 × 2 ANOVA attested a significant Time X Group interaction, indicating a significant reduction of the cognitive distortions from pre-test to post-test only in the Training group. The follow-up attested to the stability of the training effects and the reduction of gambling frequency over time. These findings suggest that prevention strategies should address mindware problems, which can be considered as predictors of gambling-related cognitive distortions.

  17. Gambling-Related Distortions and Problem Gambling in Adolescents: A Model to Explain Mechanisms and Develop Interventions

    Science.gov (United States)

    Donati, Maria Anna; Chiesi, Francesca; Iozzi, Adriana; Manfredi, Antonella; Fagni, Fabrizio; Primi, Caterina

    2018-01-01

    Although a number of gambling preventive initiatives have been realized with adolescents, many of them have been developed in absence of a clear and explicitly described theoretical model. The present work was aimed to analyze the adequacy of a model to explain gambling behavior referring to gambling-related cognitive distortions (Study 1), and to verify the effectiveness of a preventive intervention developed on the basis of this model (Study 2). Following dual-process theories on cognitive functioning, in Study 1 we tested a model in which mindware gap, i.e., susceptibility to the gambler’s fallacy, and contaminated mindware, i.e., superstitious thinking, were the antecedents of gambling-related cognitive distortions that, in turn, affect gambling frequency and problem gambling. Participants were 306 male adolescents (Mage = 17.2 years). A path analysis indicated that cognitive distortions have a mediating role in the relationship that links probabilistic reasoning fallacy and superstitious thinking with problem gambling. Following these findings, in Study 2 we developed a school-based intervention aimed to reduce gambling-related cognitive distortions acting on the above cited mindware problems. A pre- and post-test design – with a 6 months follow-up – was performed with 34 male adolescents (Mage = 16.8), randomly assigned to two groups (Training and No Training), and their baseline equivalence was verified. A Mixed 2 × 2 ANOVA attested a significant Time X Group interaction, indicating a significant reduction of the cognitive distortions from pre-test to post-test only in the Training group. The follow-up attested to the stability of the training effects and the reduction of gambling frequency over time. These findings suggest that prevention strategies should address mindware problems, which can be considered as predictors of gambling-related cognitive distortions. PMID:29354081

  18. Scanning patterns of faces do not explain impaired emotion recognition in Huntington Disease: Evidence for a high level mechanism

    Directory of Open Access Journals (Sweden)

    Marieke evan Asselen

    2012-02-01

    Full Text Available Previous studies in patients with amygdala lesions suggested that deficits in emotion recognition might be mediated by impaired scanning patterns of faces. Here we investigated whether scanning patterns also contribute to the selective impairment in recognition of disgust in Huntington disease (HD. To achieve this goal, we recorded eye movements during a two-alternative forced choice emotion recognition task. HD patients in presymptomatic (n=16 and symptomatic (n=9 disease stages were tested and their performance was compared to a control group (n=22. In our emotion recognition task, participants had to indicate whether a face reflected one of six basic emotions. In addition, and in order to define whether emotion recognition was altered when the participants were forced to look at a specific component of the face, we used a second task where only limited facial information was provided (eyes/mouth in partially masked faces. Behavioural results showed no differences in the ability to recognize emotions between presymptomatic gene carriers and controls. However, an emotion recognition deficit was found for all 6 basic emotion categories in early stage HD. Analysis of eye movement patterns showed that patient and controls used similar scanning strategies. Patterns of deficits were similar regardless of whether parts of the faces were masked or not, thereby confirming that selective attention to particular face parts is not underlying the deficits. These results suggest that the emotion recognition deficits in symptomatic HD patients cannot be explained by impaired scanning patterns of faces. Furthermore, no selective deficit for recognition of disgust was found in presymptomatic HD patients.

  19. On temperature dependence of deformation mechanism and the brittle - ductile transition in semiconductors

    International Nuclear Information System (INIS)

    Pirouz, P.; Samant, A.V.; Hong, M.H.; Moulin, A.; Kubin, L.P.

    1999-01-01

    Recent deformation experiments on semiconductors have shown the occurrence of a break in the variation of the critical resolved shear stress of the crystal as a function of temperature. These and many other examples in the literature evidence a critical temperature at which a transition occurs in the deformation mechanism of the crystal. In this paper, the occurrence of a similar transition in two polytypes of SiC is reported and correlated to the microstructure of the deformed crystals investigated by transmission electron microscopy, which shows evidence for partial dislocations carrying the deformation at high stresses and low temperatures. Based on these results and data in the literature, the explanation is generalized to other semiconductors and a possible relationship to their brittle-ductile transition is proposed. copyright 1999 Materials Research Society

  20. Mechanism and microstructures in Ga2O3 pseudomartensitic solid phase transition.

    Science.gov (United States)

    Zhu, Sheng-Cai; Guan, Shu-Hui; Liu, Zhi-Pan

    2016-07-21

    Solid-to-solid phase transition, although widely exploited in making new materials, challenges persistently our current theory for predicting its complex kinetics and rich microstructures in transition. The Ga2O3α-β phase transformation represents such a common but complex reaction with marked change in cation coordination and crystal density, which was known to yield either amorphous or crystalline products under different synthetic conditions. Here we, via recently developed stochastic surface walking (SSW) method, resolve for the first time the atomistic mechanism of Ga2O3α-β phase transformation, the pathway of which turns out to be the first reaction pathway ever determined for a new type of diffusionless solid phase transition, namely, pseudomartensitic phase transition. We demonstrate that the sensitivity of product crystallinity is caused by its multi-step, multi-type reaction pathway, which bypasses seven intermediate phases and involves all types of elementary solid phase transition steps, i.e. the shearing of O layers (martensitic type), the local diffusion of Ga atoms (reconstructive type) and the significant lattice dilation (dilation type). While the migration of Ga atoms across the close-packed O layers is the rate-determining step and yields "amorphous-like" high energy intermediates, the shearing of O layers contributes to the formation of coherent biphase junctions and the presence of a crystallographic orientation relation, (001)α//(201[combining macron])β + [120]α//[13[combining macron]2]β. Our experiment using high-resolution transmission electron microscopy further confirms the theoretical predictions on the atomic structure of biphase junction and the formation of (201[combining macron])β twin, and also discovers the late occurrence of lattice expansion in the nascent β phase that grows out from the parent α phase. By distinguishing pseudomartensitic transition from other types of mechanisms, we propose general rules to predict the

  1. SPSS explained

    CERN Document Server

    Hinton, Perry R; Brownlow, Charlotte

    2014-01-01

    SPSS Explained provides the student with all that they need to undertake statistical analysis using SPSS. It combines a step-by-step approach to each procedure with easy to follow screenshots at each stage of the process. A number of other helpful features are provided: regular advice boxes with tips specific to each test explanations divided into 'essential' and 'advanced' sections to suit readers at different levels frequently asked questions at the end of each chapter. The first edition of this popular book has been fully updated for IBM SPSS version 21 and also includes: chapters that expl

  2. Transitional grain boundary structures and the influence on thermal, mechanical and energy properties from molecular dynamics simulations

    International Nuclear Information System (INIS)

    Burbery, N.J.; Das, R.; Ferguson, W.G.

    2016-01-01

    The thermo-kinetic characteristics that dictate the activation of atomistic crystal defects significantly influence the mechanical properties of crystalline materials. Grain boundaries (GBs) primarily influence the plastic deformation of FCC metals through their interaction with mobile dislocation defects. The activation thresholds and atomic mechanisms that dictate the thermo-kinetic properties of grain boundaries have been difficult to study due to complex and highly variable GB structure. This paper presents a new approach for modelling GBs which is based on a systematic structural analysis of metastable and stable GBs. GB structural transformation accommodates defect interactions at the interface. The activation energy for such structural transformations was evaluated with nudged elastic band analysis of bi-crystals with several metastable 0 K grain boundary structures in pure FCC Aluminium (Al). The resultant activation energy was used to evaluate the thermal stability of the metastable grain boundary structures, with predictions of transition time based on transition state theory. The predictions are in very good agreement with the minimum time for irreversible structure transformation at 300 K obtained with molecular dynamics simulations. Analytical methods were used to evaluate the activation volume, which in turn was used to predict and explain the influence of stress and strain rate on the thermal and mechanical properties. Results of molecular dynamics simulations show that the GB structure is more closely related to the elastic strength at 0 K than the GB energy. Furthermore, the thermal instability of the GB structure directly influences the relationship between bi-crystal strength, temperature and strain rate. Hence, theoretically consistent models are established on the basis of activation criteria, and used to make predictions of temperature-dependent yield stress at a low strain rate, in agreement with experimental results.

  3. Crystallization Mechanism and Phase Transition Properties of W-doped VO2 Synthesized by Hydrothermal Method

    Directory of Open Access Journals (Sweden)

    LI Yao

    2017-11-01

    Full Text Available VO2 sol was firstly prepared using vanadyl sulfate as a vanadium source by precipitation-peptization method. Then tungsten(W doping vanadium dioxide(W-VO2 was prepared by hydrothermal crystallization of prepared sol with the presence of ammonium metatungstate. The morphologies, crystal structure of the as-prepared samples and phase transition properties were studied by X-ray diffraction(XRD, field emission scanning electron microscope(FESEMand differential scanning calorimetry(DSC analysis. The results indicate that rod-like W-VO2(B crystal with length of 1-2μm and radius of 100-200nm is firstly formed during hydrothermal treatment for 4-48h at 280℃, then the rod-like crystal dissolves gradually and sheet-like or snowflake-like crystal is formed with the phase transition from W-VO2(B to W-VO2(M and eventually, the W-VO2(M crystals can further grow up while the W-VO2(B gradually dissolves; the phase transition temperature of VO2 decreases with the increase in W doping content, and the phase transition temperature of W-VO2(M reduces to about 28℃ when the nominal dopant concentration is 6.0%(atom fraction.The "nucleation-growth-transformation-ripening" mechanism is proposed as the formation mechanism based on the hydrothermal crystallization and morphological evolution process of W-VO2(M.

  4. Filtering fens: mechanisms explaining phosphorus-limited hotspots of biodiversity in wetlands adjacent to heavily fertilized areas.

    Science.gov (United States)

    Cusell, Casper; Kooijman, Annemieke; Fernandez, Filippo; van Wirdum, Geert; Geurts, Jeroen J M; van Loon, E Emiel; Kalbitz, Karsten; Lamers, Leon P M

    2014-05-15

    The conservation of biodiverse wetland vegetation, including that of rich fens, has a high priority at a global scale. Although P-eutrophication may strongly decrease biodiversity in rich fens, some well-developed habitats do still survive in highly fertilized regions due to nutrient filtering services of large wetlands. The occurrence of such nutrient gradients is well-known, but the biogeochemical mechanisms that determine these patterns are often unclear. We therefore analyzed chemical speciation and binding of relevant nutrients and minerals in surface waters, soils and plants along such gradients in the large Ramsar nature reserve Weerribben-Wieden in the Netherlands. P-availability was lowest in relatively isolated floating rich fens, where plant N:P ratios indicated P-limitation. P-limitation can persist here despite high P-concentrations in surface waters near the peripheral entry locations, because only a small part of the P-input reaches the more isolated waters and fens. This pattern in P-availability appears to be primarily due to precipitation of Fe-phosphates, which mainly occurs close to entry locations as indicated by decreasing concentrations of Fe- and Al-bound P in the sub-aquatic sediments along this gradient. A further decrease of P-availability is caused by biological sequestration, which occurs throughout the wetland as indicated by equal concentrations of organic P in all sub-aquatic sediments. Our results clearly show that the periphery of large wetlands does indeed act as an efficient P-filter, sustaining the necessary P-limitation in more isolated parts. However, this filtering function does harm the ecological quality of the peripheral parts of the reserve. The filtering mechanisms, such as precipitation of Fe-phosphates and biological uptake of P, are crucial for the conservation and restoration of biodiverse rich fens in wetlands that receive eutrophic water from their surroundings. This seems to implicate that biodiverse wetland

  5. Evidence of vanillin binding to CAMKIV explains the anti-cancer mechanism in human hepatic carcinoma and neuroblastoma cells.

    Science.gov (United States)

    Naz, Huma; Tarique, Mohd; Khan, Parvez; Luqman, Suaib; Ahamad, Shahzaib; Islam, Asimul; Ahmad, Faizan; Hassan, Md Imtaiyaz

    2018-01-01

    Human calcium/calmodulin-dependent protein kinase IV (CAMKIV) is a member of Ser/Thr kinase family, and is associated with different types of cancer and neurodegenerative diseases. Vanillin is a natural compound, a primary component of the extract of the vanilla bean which possesses varieties of pharmacological features including anti-oxidant, anti-inflammatory, anti-bacterial and anti-tumor. Here, we have investigated the binding mechanism and affinity of vanillin to the CAMKIV which is being considered as a potential drug target for cancer and neurodegenerative diseases. We found that vanillin binds strongly to the active site cavity of CAMKIV and stabilized by a large number of non-covalent interactions. We explored the utility of vanillin as anti-cancer agent and found that it inhibits the proliferation of human hepatocyte carcinoma (HepG2) and neuroblastoma (SH-SY5Y) cells in a dose-dependent manner. Furthermore, vanillin treatment resulted into the significant reduction in the mitochondrial membrane depolarization and ROS production that eventually leads to apoptosis in HepG2 and SH-SY5Y cancer cells. These findings may offer a novel therapeutic approach by targeting the CAMKIV using natural product and its derivative with a minimal side effect.

  6. Elastoviscous Transitions of Articular Cartilage Reveal a Mechanism of Synergy between Lubricin and Hyaluronic Acid.

    Directory of Open Access Journals (Sweden)

    Edward D Bonnevie

    Full Text Available When lubricated by synovial fluid, articular cartilage provides some of the lowest friction coefficients found in nature. While it is known that macromolecular constituents of synovial fluid provide it with its lubricating ability, it is not fully understood how two of the main molecules, lubricin and hyaluronic acid, lubricate and interact with one another. Here, we develop a novel framework for cartilage lubrication based on the elastoviscous transition to show that lubricin and hyaluronic acid lubricate by distinct mechanisms. Such analysis revealed nonspecific interactions between these molecules in which lubricin acts to concentrate hyaluronic acid near the tissue surface and promotes a transition to a low friction regime consistent with the theory of viscous boundary lubrication. Understanding the mechanics of synovial fluid not only provides insight into the progression of diseases such as arthritis, but also may be applicable to the development of new biomimetic lubricants.

  7. Probabilistic fracture mechanics of nuclear structural components. Consideration of transition from embedded crack to surface crack

    International Nuclear Information System (INIS)

    Yagawa, Genki; Yoshimura, Shinobu; Kanto, Yasuhiro

    1998-01-01

    This paper describes a probabilistic fracture mechanics (PFM) analysis of aged nuclear reactor pressure vessel (RPV) material. New interpolation formulas are first derived for both embedded elliptical surface cracks and semi-elliptical surface cracks. To investigate effects of transition from embedded crack to surface crack in PFM analyses, one of PFM round-robin problems set by JSME-RC111 committee, i.e. 'aged RPV under normal and upset operating conditions' is solved, employing the interpolation formulas. (author)

  8. Abnormal sympathetic nerve activity in women exposed to cigarette smoke: a potential mechanism to explain increased cardiac risk.

    Science.gov (United States)

    Middlekauff, Holly R; Park, Jeanie; Agrawal, Harsh; Gornbein, Jeffrey A

    2013-11-15

    In women, cardiac deaths attributable to tobacco exposure have reached the same high levels as men. Normally, sympathetic nerve activity (SNA) fluctuates according to the menstrual phase, but in habitual smokers, SNA levels remain constant. Our purpose is to extend these observations to other groups of women exposed to tobacco smoke and to explore potential mechanisms. We hypothesize that women exposed to secondhand smoke, but not former smokers, have nonfluctuating SNA compared with never smokers, and that impaired baroreflex suppression of SNA, and/or heightened central SNA responses, underlie this nonfluctuating SNA. We also hypothesize that female smokers have impaired nocturnal blood pressure dipping, normally mediated by modulation of SNA. In 49 females (19 never, 12 current, 9 former, 9 passive smokers), SNA was recorded (microneurography) during high- and low-hormone ovarian phases at rest, during pharmacological baroreflex testing, and during the cold pressor test (CPT). Twenty-four hour blood pressure (BP) monitoring was performed. Current and passive smokers, but not former smokers, had a nonfluctuating pattern of SNA, unlike never smokers in whom SNA varied with the menstrual phase. Baroreflex control of SNA was significantly blunted in current smokers, independent of menstrual phase. In passive smokers, SNA response to CPT was markedly increased. Nondipping was unexpectedly high in all groups. SNA does not vary during the menstrual cycle in active and passive smokers, unlike never and former smokers. Baroreflex control of SNA is blunted in current smokers, whereas SNA response to CPT is heightened in passive smokers. Smoking cessation is associated with return of the altered SNA pattern to normal.

  9. Production of bioactive substances by intestinal bacteria as a basis for explaining probiotic mechanisms: bacteriocins and conjugated linoleic acid.

    Science.gov (United States)

    O'Shea, Eileen F; Cotter, Paul D; Stanton, Catherine; Ross, R Paul; Hill, Colin

    2012-01-16

    The mechanisms by which intestinal bacteria achieve their associated health benefits can be complex and multifaceted. In this respect, the diverse microbial composition of the human gastrointestinal tract (GIT) provides an almost unlimited potential source of bioactive substances (pharmabiotics) which can directly or indirectly affect human health. Bacteriocins and fatty acids are just two examples of pharmabiotic substances which may contribute to probiotic functionality within the mammalian GIT. Bacteriocin production is believed to confer producing strains with a competitive advantage within complex microbial environments as a consequence of their associated antimicrobial activity. This has the potential to enable the establishment and prevalence of producing strains as well as directly inhibiting pathogens within the GIT. Consequently, these antimicrobial peptides and the associated intestinal producing strains may be exploited to beneficially influence microbial populations. Intestinal bacteria are also known to produce a diverse array of health-promoting fatty acids. Indeed, certain strains of intestinal bifidobacteria have been shown to produce conjugated linoleic acid (CLA), a fatty acid which has been associated with a variety of systemic health-promoting effects. Recently, the ability to modulate the fatty acid composition of the liver and adipose tissue of the host upon oral administration of CLA-producing bifidobacteria and lactobacilli was demonstrated in a murine model. Importantly, this implies a potential therapeutic role for probiotics in the treatment of certain metabolic and immunoinflammatory disorders. Such examples serve to highlight the potential contribution of pharmabiotic production to probiotic functionality in relation to human health maintenance. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Low-field mobility and carrier transport mechanism transition in nanoscale MOSFETs

    International Nuclear Information System (INIS)

    Liu Hongwei; Wang Runsheng; Huang Ru; Zhang Xing

    2010-01-01

    This paper extends the flux scattering method to study the carrier transport property in nanoscale MOSFETs with special emphasis on the low-field mobility and the transport mechanism transition. A unified analytical expression for the low-field mobility is proposed, which covers the entire regime from drift-diffusion transport to quasi-ballistic transport in 1-D, 2-D and 3-D MOSFETs. Two key parameters, namely the long-channel low-field mobility (μ 0 ) and the low-field mean free path (λ 0 ), are obtained from the experimental data, and the transport mechanism transition in MOSFETs is further discussed both experimentally and theoretically. Our work shows that λ 0 is available to characterize the inherent transition of the carrier transport mechanism rather than the low-field mobility. The mobility reduces in the MOSFET with the shrinking of the channel length; however, λ 0 is nearly a constant, and λ 0 can be used as the 'entry criterion' to determine whether the device begins to operate under quasi-ballistic transport to some extent. (semiconductor devices)

  11. General Mechanism of Morphology Transition and Spreading Area-dependent Phase Diagram of Block Copolymer Self-assembly at the Air/Water Interface

    Science.gov (United States)

    Kim, Dong Hyup; Kim, So Youn

    Block copolymers (BCPs) can be self-assembled forming periodic nanostructures, which have been employed in many applications. While general agreements exist for the phase diagrams of BCP self-assembly in bulk or thin films, a fundamental understanding of BCP structures at the air/water interface still remain elusive. The current study explains morphology transition of BCPs with relative fraction of each block at the air/water interface: block fraction is the only parameter to control the morphology. In this study, we show morphology transitions from spherical to cylindrical and planar structures with neat polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) via reducing the spreading area of BCP solution at the air/water interface. For example, PS-b-P2VP in a fixed block fraction known to form only spheres can experience sphere to cylinder or lamellar transitions depending on the spreading area at the air/water interface. Suggesting a new parameter to control the interfacial assembly of BCPs, a complete phase diagram is drawn with two paramters: relative block fraction and spreading area. We also explain the morphology transition with the combinational description of dewetting mechanism and spring effect of hydrophilic block.

  12. Astronomy Explained

    Science.gov (United States)

    North, Gerald

    Every year large numbers of people take up the study of astronomy, mostly at amateur level. There are plenty of elementary books on the market, full of colourful photographs, but lacking in proper explanations of how and why things are as they are. Many people eventually wish to go beyond the 'coffee-table book' stage and study this fascinating subject in greater depth. This book is written for them. In addition, many people sit for public examinations in this subject each year and this book is also intended to be of use to them. All the topics from the GCSE syllabus are covered here, with sample questions at the end of each chapter. Astronomy Explained provides a comprehensive treatment of the subject in more depth than is usually found in elementary works, and will be of interest to both amateur astronomers and students of astronomy.

  13. Evaluation of glass transition temperature and dynamic mechanical properties of autopolymerized hard direct denture reline resins.

    Science.gov (United States)

    Takase, Kazuma; Watanabe, Ikuya; Kurogi, Tadafumi; Murata, Hiroshi

    2015-01-01

    This study assessed methods for evaluation of glass transition temperature (Tg) of autopolymerized hard direct denture reline resins using dynamic mechanical analysis and differential scanning calorimetry in addition to the dynamic mechanical properties. The Tg values of 3 different reline resins were determined using a dynamic viscoelastometer and differential scanning calorimeter, and rheological parameters were also determined. Although all materials exhibited higher storage modulus and loss modulus values, and a lower loss tangent at 37˚C with a higher frequency, the frequency dependence was not large. Tg values obtained by dynamic mechanical analysis were higher than those by differential scanning calorimetry and higher frequency led to higher Tg, while more stable Tg values were also obtained by that method. These results suggest that dynamic mechanical analysis is more advantageous for characterization of autopolymerized hard direct denture reline resins than differential scanning calorimetry.

  14. The mechanism of abrupt transition between theta and hyper-excitable spiking activity in medial entorhinal cortex layer II stellate cells.

    Directory of Open Access Journals (Sweden)

    Tilman Kispersky

    2010-11-01

    Full Text Available Recent studies have shown that stellate cells (SCs of the medial entorhinal cortex become hyper-excitable in animal models of temporal lobe epilepsy. These studies have also demonstrated the existence of recurrent connections among SCs, reduced levels of recurrent inhibition in epileptic networks as compared to control ones, and comparable levels of recurrent excitation among SCs in both network types. In this work, we investigate the biophysical and dynamic mechanism of generation of the fast time scale corresponding to hyper-excitable firing and the transition between theta and fast firing frequency activity in SCs. We show that recurrently connected minimal networks of SCs exhibit abrupt, threshold-like transition between theta and hyper-excitable firing frequencies as the result of small changes in the maximal synaptic (AMPAergic conductance. The threshold required for this transition is modulated by synaptic inhibition. Similar abrupt transition between firing frequency regimes can be observed in single, self-coupled SCs, which represent a network of recurrently coupled neurons synchronized in phase, but not in synaptically isolated SCs as the result of changes in the levels of the tonic drive. Using dynamical systems tools (phase-space analysis, we explain the dynamic mechanism underlying the genesis of the fast time scale and the abrupt transition between firing frequency regimes, their dependence on the intrinsic SC's currents and synaptic excitation. This abrupt transition is mechanistically different from others observed in similar networks with different cell types. Most notably, there is no bistability involved. 'In vitro' experiments using single SCs self-coupled with dynamic clamp show the abrupt transition between firing frequency regimes, and demonstrate that our theoretical predictions are not an artifact of the model. In addition, these experiments show that high-frequency firing is burst-like with a duration modulated by an M-current.

  15. Coordination of push-off and collision determine the mechanical work of step-to-step transitions when isolated from human walking.

    Science.gov (United States)

    Soo, Caroline H; Donelan, J Maxwell

    2012-02-01

    In human walking, each transition to a new stance limb requires redirection of the center of mass (COM) velocity from one inverted pendulum arc to the next. While this can be accomplished with either negative collision work by the leading limb, positive push-off work by the trailing limb, or some combination of the two, physics-based models of step-to-step transitions predict that total positive work is minimized when the push-off and collision work are equal in magnitude. Here, we tested the importance of the coordination of push-off and collision work in determining transition work using ankle and knee joint braces to limit the ability of a leg to perform positive work on the body. To isolate transitions from other contributors to walking mechanics, participants were instructed to rock back and forth from one leg to the other, restricting motion to the sagittal plane and eliminating the need to swing the legs. We found that reduced push-off work increased the collision work required to complete the redirection of the COM velocity during each transition. A greater amount of total mechanical work was required when rocking departed from the predicted optimal coordination of step-to-step transitions, in which push-off and collision work are equal in magnitude. Our finding that transition work increases if one or both legs do not push-off with the optimal coordination may help explain the elevated metabolic cost of pathological gait irrespective of etiology. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Conformational transition paths harbor structures useful for aiding drug discovery and understanding enzymatic mechanisms in protein kinases.

    Science.gov (United States)

    Wong, Chung F

    2016-01-01

    This short article examines the usefulness of fast simulations of conformational transition paths in elucidating enzymatic mechanisms and guiding drug discovery for protein kinases. It applies the transition path method in the MOIL software package to simulate the paths of conformational transitions between six pairs of structures from the Protein Data Bank. The structures along the transition paths were found to resemble experimental structures that mimic transient structures believed to form during enzymatic catalysis or conformational transitions, or structures that have drug candidates bound. These findings suggest that such simulations could provide quick initial insights into the enzymatic mechanisms or pathways of conformational transitions of proteins kinases, or could provide structures useful for aiding structure-based drug design. © 2015 The Protein Society.

  17. Review of thermodinamic and mechanical properties of hydrogen-transition metal systems

    International Nuclear Information System (INIS)

    Mathias, H.; Katz, Y.

    1978-04-01

    A large body of fundamental and empirical knowledge has been acquired during many years of research concerning the interactions between hydrogen and metals, the location of hydrogen in metal structures, its mobility in metals and its influence on mechanical properties of metals. Much progress has been made in the understanding of related phenomena, and various theories have been proposed, but considerable disagreement still exist about basic mechanisms involved. The growing interest in these subjects and their important role in science and technology are well documented by many reviews and symposia. A general survey of these topics with reference to experimental results and theories related to thermodynamic and mechanical properties of hydrogen-transition metal systems, such as H-Pd, H-Ti, H-Fe etc. is given in the present review. Special emphasis is given to hydrogen embrittlement of metals

  18. Dynamic recrystallization mechanisms and their transition in the Daling Thrust (DT) zone, Darjeeling-Sikkim Himalaya

    Science.gov (United States)

    Ghosh, Subhajit; Bose, Santanu; Mandal, Nibir; Dasgupta, Sujoy

    2016-04-01

    The Daling Thrust (DT) delineates a zone of intense shear localization in the Lesser Himalayan Sequence (LHS) of the Darjeeling-Sikkim Himalaya. From microstructural studies of deformed quartzite samples, we show a transition in the dynamic recrystallization mechanism with increasing distance from the DT, dominated by grain boundary bulging (BLG) recrystallization closest to the DT, and progressively replaced by sub-grain rotation (SGR) recrystallization away from the thrust. The transition is marked by a characteristic variation in the fractal dimension (D) of grain boundaries, estimated from the area-perimeter method. For the BLG regime, D ≈ 1.046, which decreases significantly to a value as low as 1.025 for the SGR regime. Using the available thermal data for BLG and SGR recrystallization, we infer increasing deformation temperatures away from the DT in the hanging wall. Based on the quartz piezometer our estimates reveal strong variations in the flow stress (59.00 MPa to 16.00 MPa) over a distance of 1.2 km from the DT. Deformation mechanism maps constructed for different temperatures indicate that the strain rates (10- 12 S- 1 to 10- 14 S- 1) comply with the geologically possible range. Finally, we present a mechanical model to provide a possible explanation for the cause of stress intensification along the DT.

  19. Probabilistic fracture mechanics of nuclear structural components: consideration of transition from embedded crack to surface crack

    International Nuclear Information System (INIS)

    Yagawa, G.; Yoshimura, S.

    1999-01-01

    This paper describes a probabilistic fracture mechanics (PFM) analysis of aged nuclear reactor pressure vessel (RPV) material. New interpolation formulas of three-dimensional stress intensity factors are presented for both embedded elliptical surface cracks and semi-elliptical surface cracks. To investigate effects of transition from embedded crack to surface crack in PFM analyses, one of the PFM round-robin problems set by JSME-RC111 committee (i.e. aged RPV under normal and upset operating conditions) is solved, employing the interpolation formulas. (orig.)

  20. On the Mechanism(s of Membrane Permeability Transition in Liver Mitochondria of Lamprey, Lampetra fluviatilis L.: Insights from Cadmium

    Directory of Open Access Journals (Sweden)

    Elena A. Belyaeva

    2014-01-01

    Full Text Available Previously we have shown that opening of the mitochondrial permeability transition pore in its low conductance state is the case in hepatocytes of the Baltic lamprey (Lampetra fluviatilis L. during reversible metabolic depression taking place in the period of its prespawning migration when the exogenous feeding is switched off. The depression is observed in the last year of the lamprey life cycle and is conditioned by reversible mitochondrial dysfunction (mitochondrial uncoupling in winter and coupling in spring. To further elucidate the mechanism(s of induction of the mitochondrial permeability transition pore in the lamprey liver, we used Cd2+ and Ca2+ plus Pi as the pore inducers. We found that Ca2+ plus Pi induced the high-amplitude swelling of the isolated “winter” mitochondria both in isotonic sucrose and ammonium nitrate medium while both low and high Cd2+ did not produce the mitochondrial swelling in these media. Low Cd2+ enhanced the inhibition of basal respiration rate of the “winter” mitochondria energized by NAD-dependent substrates whereas the same concentrations of the heavy metal evoked its partial stimulation on FAD-dependent substrates. The above changes produced by Cd2+ or Ca2+ plus Pi in the “winter” mitochondria were only weakly (if so sensitive to cyclosporine A (a potent pharmacological desensitizer of the nonselective pore added alone and they were not sensitive to dithiothreitol (a dithiol reducing agent. Under monitoring of the transmembrane potential of the “spring” lamprey liver mitochondria, we revealed that Cd2+ produced its decrease on both types of the respiratory substrates used that was strongly hampered by cyclosporine A, and the membrane potential was partially restored by dithiothreitol. The effects of different membrane permeability modulators on the lamprey liver mitochondria function and the seasonal changes in their action are discussed.

  1. Intrinsic Mechanisms of Ductile-brittle Transition for F460 Steel Welding Coarse Grained Heat Affected Zones with Different Heat Inputs

    Directory of Open Access Journals (Sweden)

    LI Jing

    2016-08-01

    Full Text Available Coarse grain heat affected zone (HAZ of F460 steel was simulated by a Gleeble 3800 thermo-mechanical simulator. The microstructure, critical event of the HAZ formed at various heat inputs (E were characterized and determined by optical microscopy (OM and scanning electronic microscopy (SEM, and cleavage fracture stress σf was also calculated by ABAQUS software. Based on above systematic analysis, the intrinsic mechanism of ductile-brittle transition for F460 steel heat affected zones with different heat inputs were revealed. The results indicate that:with the improvement of heat input, the microstructures in sequence are a minority of lath martensite and massive fine lath bainite, more lath bainite with less granular bainite, more granular bainite with less lath bainite, bulky of granular bainite; and the maximum size of the original austenite grain and bainite packet becomes bigger with the improvement of heat input. The size of bainite packet is critical event of the cleavage fracture for coarse grain heat affected zone specimens with various heat inputs by comparing the relationships among residual crack length, original austenite grain size and bainite packet size. With the decreasing of the bainitic packet, the ductile to brittle transition temperature decreases. In addition, cleavage fracture stress σf is also calculated by ABAQUS software, σf gradually decreases with the increase of the heat input, which can explain the intrinsic mechanism of ductile to brittle transition temperature Tk with the change of the heat input.

  2. Anxiety and Depression during Transition from Hospital to Community in Older Adults: Concepts of a Study to Explain Late Age Onset Depression

    Directory of Open Access Journals (Sweden)

    Aislinn F. Lalor

    2015-06-01

    Full Text Available The transition between extended hospitalization and discharge home to community-living contexts for older adults is a critical time period. This transition can have an impact on the health outcomes of older adults such as increasing the risk for health outcomes like falls, functional decline and depression and anxiety. The aim of this work is to identify and understand why older adults experience symptoms of depression and anxiety post-discharge and what factors are associated with this. This is a mixed methods study of adults aged 65 years and over who experienced a period of hospitalization longer than two weeks and return to community-living post-discharge. Participants will complete a questionnaire at baseline and additional monthly follow-up questionnaires for six months. Anxiety and depression and their resulting behaviors are major public health concerns and are significant determinants of health and wellbeing among the ageing population. There is a critical need for research into the impact of an extended period of hospitalization on the health status of older adults post-discharge from hospital. This research will provide evidence that will inform interventions and services provided for older adults after they have been discharged home from hospital care.

  3. Bcc and Fcc transition metals and alloys: a central role for the Jahn-Teller effect in explaining their ideal and distorted structures.

    Science.gov (United States)

    Lee, Stephen; Hoffmann, Roald

    2002-05-01

    Transition metal elements, alloys, and intermetallic compounds often adopt the body centered cubic (bcc) and face centered cubic (fcc) structures. By comparing quantitative density functional with qualitative tight-binding calculations, we analyze the electronic factors which make the bcc and fcc structures energetically favorable. To do so, we develop a tight-binding function, DeltaE(star), a function that measures the energetic effects of transferring electrons within wave vector stars. This function allows one to connect distortions in solids to the Jahn-Teller effect in molecules and to provide an orbital perspective on structure determining deformations in alloys. We illustrate its use by considering first a two-dimensional square net. We then turn to three-dimensional fcc and bcc structures, and distortions of these. Using DeltaE(star), we rationalize the differences in energy of these structures. We are able to deduce which orbitals are responsible for instabilities in seven to nine valence electron per atom (e(-)/a) bcc systems and five and six e(-)/a fcc structures. Finally we demonstrate that these results account for the bcc and fcc type structures found in both the elements and binary intermetallic compounds of group 4 through 9 transition metal atoms. The outline of a theory of metal structure deformations based on loss of point group operation rather than translational symmetry is presented.

  4. Development of a Mechanical Analysis System Considering Chemical Transitions of Barrier Materials

    International Nuclear Information System (INIS)

    Sahara, F.; Murakami, T.; Ito, H.; Kobayashi, I.; Yokozeki, K.

    2006-01-01

    An analysis system for the long-term mechanical behavior of barrier materials (MACBECE: Mechanical Analysis system considering Chemical transitions of Bentonite-based and Cement-based materials) was developed in order to improve the reliability of the evaluation of the hydraulic field that is one of the important environmental conditions in the safety assessment of the TRU waste disposal in Japan. The MACBECE is a system that calculates the deformation of barrier materials using their chemical property changes as inputs, and subsequently their hydraulic conductivity taking both their chemical property changes and deformation into consideration. This paper provides a general description of MACBECE and the results of experimental analysis carried out using MACBECE. (authors)

  5. Effect of thermal history on mechanical properties of polyetheretherketone below the glass transition temperature

    Science.gov (United States)

    Cebe, Peggy; Chung, Shirley Y.; Hong, Su-Don

    1987-01-01

    The effect of thermal history on the tensile properties of polyetheretherketone neat resin films was investigated at different test temperatures (125, 25, and -100) using four samples: fast-quenched amorphous (Q); quenched, then crystallized at 180 C (C180); slowly cooled (for about 16 h) from the melt (SC); and air-cooled (2-3 h) from the melt (AC). It was found that thermal history significantly affects the tensile properties of the material below the glass transition. Fast quenched amorphous films were most tough, could be drawn to greatest strain before rupture, and undergo densification during necking; at the test temperature of -100 C, these films had the best ultimate mechanical properties. At higher temperatures, the semicrystalline films AC and C180 had properties that compared favorably with the Q films. The SC films exhibited poor mechanical properties at all test temperatures.

  6. Demonstration of the Kibble-Zurek mechanism in a non-equilibrium phase transition

    Science.gov (United States)

    Patil, Yogesh S.; Cheung, Hil F. H.; Date, Aditya G.; Vengalattore, Mukund

    2017-04-01

    We describe the experimental realization of a driven-dissipative phase transition (DPT) in a mechanical parametric amplifier and demonstrate key signatures of a critical point in the system, where the susceptibilities and relaxation time scales diverge and coincide with the spontaneous breaking of symmetry and the emergence of macroscopic order. While these observations are reminiscent of equilibrium phase transitions, it is presently an open question whether such DPTs are amenable to the conventional Landau-Ginsburg-Wilson paradigm that relies on concepts of scale invariance and universality - Indeed, recent theoretical work has predicted that DPTs can exhibit phenomenology that departs from these conventional paradigms. By quenching the system past the critical point, we measure the dynamics of the emergent ordered phase and its departure from adiabaticity, and find that our measurements are in excellent agreement with the Kibble-Zurek hypothesis. In addition to validating the KZ mechanism in a DPT for the first time, we also uniquely show that the measured critical exponents accurately reflect the interplay between the intrinsic coherent dynamics and the environmental correlations, with a clear departure from mean field exponents in the case of non-Markovian system-bath interactions. We also discuss how the techniques of reservoir engineering and the imposition of artificial environmental correlations can result in the stabilization of novel many-body quantum phases and exotic non-equilibrium states of matter.

  7. Explaining the slow transition of child-appropriate dosage formulations from the global to national level in the context of Uganda

    DEFF Research Database (Denmark)

    Nsabagasani, Xavier; Hansen, Ebba; Mbonye, Anthony

    2015-01-01

    validation meeting where preliminary findings were shared with stakeholders. Policy analysis and policy transfer theories were used to guide a deductive analysis for manifest and latent content. RESULTS: According to stakeholders, the transition to the globally recommended child-appropriate dosage...... formulations has been slow in Uganda due to a number of factors. These factors include resource constraints at the global and national levels, lack of Ministry of Health (MOH) formal commitment to the adoption of the child-appropriate dosage formulations policy and a lack of consensus between those who...... formulations still remains to be implemented in Uganda and other low income countries. This has been due to lack of resources that hindered formal transfer of the policy from the global to the local level. To achieve this transfer there is a need for resource mobilisation at both the international and local...

  8. Capacity adequacy in power markets facing energy transition: A comparison of scarcity pricing and capacity mechanism

    International Nuclear Information System (INIS)

    Petitet, Marie; Finon, Dominique; Janssen, Tanguy

    2017-01-01

    This article analyses how a capacity mechanism can address security of supply objectives in a power market undergoing an energy transition that combines energy efficiency efforts to stabilise demand and a rapid increase in the proportion of renewables. To analyse this situation, power markets are simulated over the long term with a System Dynamics model integrating new investment and closure decisions. This last trait is relevant to studying investment in power generation in mature markets undergoing policy shocks. The energy-only market design with a price cap, with and without a capacity mechanism, is compared to scarcity pricing in two investment behaviour scenarios with and without risk aversion. The results show that the three market designs lead to different levels of risk for peaking unit investment and results thus differ according to which risk aversion hypothesis is adopted. Assuming a risk-neutral investor, the results indicate that compared to an energy-only market with a price cap at 3 000 €/MWh, an energy-only market with scarcity pricing and the market design with a capacity mechanism are two efficient options to reach similar levels of load loss. But under the hypothesis of risk aversion, the results highlight the advantage of the capacity mechanism over scarcity pricing. - Highlights: • Investment decisions in electricity markets are simulated by a System Dynamics model. • Capacity mechanism enhances capacity adequacy compared to the energy-only market. • With no risk aversion, capacity mechanism or scarcity pricing provide similar results. • With risk aversion, capacity mechanism appears to be the preferable market design.

  9. Gravitationally self-induced phase transition

    International Nuclear Information System (INIS)

    Novello, M.; Duque, S.L.S.

    1990-01-01

    We propose a new mechanism by means of which a phase transition can be stimulated by self-gravitating matter. We suggest that this model could be used to explain the observed isotropy of the Universe. (orig.)

  10. Mechanism of the transition from orthorhombic to tetragonal YBa 2Cu 3O 7- x. Investigation of a reversible topotactic reaction in the electron microscope

    Science.gov (United States)

    Müller, J.-H.; Gruehn, R.

    The phase transition from orthorhombic to tetragonal could be observed (in situ) with High-Resolution Transmission Electron Microscopy (HRTEM). In superconducting samples of YBa 2Cu 3O 7- x ( x=0.09) twinned areas were found which changed from orthorhombic to tetragonal symmetry upon electron irradiation parallel to the long c axis. In opposition to annealing experiments the length of the c-axis remained unchanged. The transition was reversible in the high vacuum of the electron microscope. Therefore we surmise that this reaction has no reductive character (no perceptible loss of oxygen). Within the tetragonal structure one can assume a statistical sharing (“disorder”) of oxygen by the metal atoms. The transition could also be explained by a migration of oxygen to the surface. After finishing the irradiation experiment and waiting for several minutes, the oxygen seems to occupy partially ordered positions resulting again in an orthorhombic symmetry. In some cases we could observed transition states of the structural transformation. A schematic model of the mechanism is depicted.

  11. Electroforming and Switching in Oxides of Transition Metals: The Role of Metal Insulator Transition in the Switching Mechanism

    Science.gov (United States)

    Chudnovskii, F. A.; Odynets, L. L.; Pergament, A. L.; Stefanovich, G. B.

    1996-02-01

    Electroforming and switching effects in sandwich structures based on anodic films of transition metal oxides (V, Nb, Ti, Fe, Ta, W, Zr, Hf, Mo) have been studied. After being electroformed, some materials exhibited current-controlled negative resistance with S-shapedV-Icharacteristics. For V, Fe, Ti, and Nb oxides, the temperature dependences of the threshold voltage have been measured. As the temperature increased,Vthdecreased to zero at a critical temperatureT0, which depended on the film material. Comparison of theT0values with the temperatures of metal-insulator phase transition for some compounds (Tt= 120 K for Fe3O4, 340 K for VO2, ∼500 K for Ti2O3, and 1070 K for NbO2) showed that switching was related to the transition in the applied electric field. Channels consisting of the above-mentioned lower oxides were formed in the initial anodic films during the electroforming. The possibility of formation of these oxides with a metal-insulator transition was confirmed by thermodynamic calculations.

  12. Molecular water oxidation mechanisms followed by transition metals: state of the art.

    Science.gov (United States)

    Sala, Xavier; Maji, Somnath; Bofill, Roger; García-Antón, Jordi; Escriche, Lluís; Llobet, Antoni

    2014-02-18

    One clean alternative to fossil fuels would be to split water using sunlight. However, to achieve this goal, researchers still need to fully understand and control several key chemical reactions. One of them is the catalytic oxidation of water to molecular oxygen, which also occurs at the oxygen evolving center of photosystem II in green plants and algae. Despite its importance for biology and renewable energy, the mechanism of this reaction is not fully understood. Transition metal water oxidation catalysts in homogeneous media offer a superb platform for researchers to investigate and extract the crucial information to describe the different steps involved in this complex reaction accurately. The mechanistic information extracted at a molecular level allows researchers to understand both the factors that govern this reaction and the ones that derail the system to cause decomposition. As a result, rugged and efficient water oxidation catalysts with potential technological applications can be developed. In this Account, we discuss the current mechanistic understanding of the water oxidation reaction catalyzed by transition metals in the homogeneous phase, based on work developed in our laboratories and complemented by research from other groups. Rather than reviewing all of the catalysts described to date, we focus systematically on the several key elements and their rationale from molecules studied in homogeneous media. We organize these catalysts based on how the crucial oxygen-oxygen bond step takes place, whether via a water nucleophilic attack or via the interaction of two M-O units, rather than based on the nuclearity of the water oxidation catalysts. Furthermore we have used DFT methodology to characterize key intermediates and transition states. The combination of both theory and experiments has allowed us to get a complete view of the water oxidation cycle for the different catalysts studied. Finally, we also describe the various deactivation pathways for

  13. Crack growth threshold under hold time conditions in DA Inconel 718 – A transition in the crack growth mechanism

    Directory of Open Access Journals (Sweden)

    E. Fessler

    2016-01-01

    Full Text Available Aeroengine manufacturers have to demonstrate that critical components such as turbine disks, made of DA Inconel 718, meet the certification requirements in term of fatigue crack growth. In order to be more representative of the in service loading conditions, crack growth under hold time conditions is studied. Modelling crack growth under these conditions is challenging due to the combined effect of fatigue, creep and environment. Under these conditions, established models are often conservative but the degree of conservatism can be reduced by introducing the crack growth threshold in models. Here, the emphasis is laid on the characterization of crack growth rates in the low ΔK regime under hold time conditions and in particular, on the involved crack growth mechanism. Crack growth tests were carried out at high temperature (550 °C to 650 °C under hold time conditions (up to 1200 s in the low ΔK regime using a K-decreasing procedure. Scanning electron microscopy was used to identify the fracture mode involved in the low ΔK regime. EBSD analyses and BSE imaging were also carried out along the crack path for a more accurate identification of the fracture mode. A transition from intergranular to transgranular fracture was evidenced in the low ΔK regime and slip bands have also been observed at the tip of an arrested crack at low ΔK. Transgranular fracture and slip bands are usually observed under pure fatigue loading conditions. At low ΔK, hold time cycles are believed to act as equivalent pure fatigue cycles. This change in the crack growth mechanism under hold time conditions at low ΔK is discussed regarding results related to intergranular crack tip oxidation and its effect on the crack growth behaviour of Inconel 718 alloy. A concept based on an “effective oxygen partial pressure” at the crack tip is proposed to explain the transition from transgranular to intergranular fracture in the low ΔK regime.

  14. Transitions to Home Mechanical Ventilation: The Experiences of Canadian Ventilator-Assisted Adults and Their Family Caregivers.

    Science.gov (United States)

    Dale, Craig M; King, Judy; Nonoyama, Mika; Carbone, Sarah; McKim, Douglas; Road, Jeremy; Rose, Louise

    2017-12-28

    Several studies have explored the experience of ventilator-assisted individual (VAIs) living at home with family caregivers. However, few explore the experiences of these individuals as they transition from a hospital setting to living at home with a view to identifying modifiable processes that could optimize transition. This descriptive, qualitative study sought to elucidate barriers to, and facilitators of, transition to home mechanical ventilation (HMV) from the perspective of Canadian VAIs and their family caregivers. Participant recruitment occurred through hospital and community respiratory clinicians based in the four Canadian provinces of Alberta, British Columbia, Ontario, and Saskatchewan. Semi-structured telephone or face-to-face interviews at home were undertaken with 33 individuals including 19 VAIs and 14 family caregivers between 3 to 24 months of transitioning to HMV. Interview data was analyzed using content analysis. Formal teaching of knowledge and skills relevant to HMV within the hospital setting prior to transition was perceived as having an immediate and enduring positive impact on transition. However, family-clinician conflict, information gaps, and persistent lack of trained personal support workers (PSWs) to provide care in the home contributed to maladjustment relating to transition. Participants strongly recommended improved transitional care in the form of respiratory health professional telephone support, home outreach, in addition to training of PSWs. Transition to HMV is a complex and demanding process. Extended HMV training and support may be helpful in mediating adjustment challenges thus reducing stress, caregiver burden and improving health related quality of life for VAIs and family caregivers.

  15. Phase Transitions in Mechanically Milled Mn-Al-C Permanent Magnets

    Directory of Open Access Journals (Sweden)

    Michael J. Lucis

    2014-04-01

    Full Text Available Mn-Al powders were prepared by rapid solidification followed by high-energy mechanical milling. The rapid solidification resulted in single-phase ε. The milling was performed in both the ε phase and the τ phase, with the τ-phase formation accomplished through a heat treatment at 500 °C for 10 min. For the ε-milled samples, the conversion of the ε to the τ phase was accomplished after milling via the same heat treatment. Mechanical milling induced a significant increase in coercivity in both cases, reaching 4.5 kOe and 4.1 kOe, respectively, followed by a decrease upon further milling. The increase in coercivity was the result of grain refinement induced by the high-energy mechanical milling. Additionally, in both cases a loss in magnetization was observed. Milling in the ε phase showed a smaller decrease in the magnetization due to a higher content of the τ phase. The loss in magnetization was attributed to a stress-induced transition to the equilibrium phases, as no site disorder or oxidation was observed. Surfactant-assisted milling in oleic acid also improved coercivity, but in this case values reached >4 kOe and remained stable at least through 32 h of milling.

  16. Another Look at the Mechanisms of Hydride Transfer Enzymes with Quantum and Classical Transition Path Sampling.

    Science.gov (United States)

    Dzierlenga, Michael W; Antoniou, Dimitri; Schwartz, Steven D

    2015-04-02

    The mechanisms involved in enzymatic hydride transfer have been studied for years, but questions remain due, in part, to the difficulty of probing the effects of protein motion and hydrogen tunneling. In this study, we use transition path sampling (TPS) with normal mode centroid molecular dynamics (CMD) to calculate the barrier to hydride transfer in yeast alcohol dehydrogenase (YADH) and human heart lactate dehydrogenase (LDH). Calculation of the work applied to the hydride allowed for observation of the change in barrier height upon inclusion of quantum dynamics. Similar calculations were performed using deuterium as the transferring particle in order to approximate kinetic isotope effects (KIEs). The change in barrier height in YADH is indicative of a zero-point energy (ZPE) contribution and is evidence that catalysis occurs via a protein compression that mediates a near-barrierless hydride transfer. Calculation of the KIE using the difference in barrier height between the hydride and deuteride agreed well with experimental results.

  17. Transparent wide band gap crystals follow indirect allowed transition and bipolaron hopping mechanism

    Directory of Open Access Journals (Sweden)

    Feroz A. Mir

    2014-01-01

    Full Text Available Recently, we carried out structural, optical and dielectric studies on micro-crystals of Oxypeucedanin (C16H14O5, isolated from the roots of plant Prangos pabularia (Mir et al. (2014 [3,4]. The obtained trend in frequency exponent (s with frequency (ω indicates that the universal dynamic response is followed by this compound. From optical absorption spectroscopy, the optical band gap (Eg was estimated around 3.76 eV and system is showing indirect allowed transition. Using Eg in certain relation of s, a close value of s (as much close obtained by fitting ac conductivity was obtained. This method was further used for other similar systems and again same trend was obtained. So a general conclusion was made that the high transmitting wide band insulators or semiconductors may follow bipolaron hopping transport mechanism.

  18. Mechanisms Explaining Muscle Fatigue and Muscle Pain in Patients with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS): a Review of Recent Findings.

    Science.gov (United States)

    Gerwyn, Morris; Maes, Michael

    2017-01-01

    Here, we review potential causes of muscle dysfunction seen in many patients with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) such as the effects of oxidative and nitrosative stress (O&NS) and mitochondrial impairments together with reduced heat shock protein production and a range of metabolic abnormalities. Several studies published in the last few years have highlighted the existence of chronic O&NS, inflammation, impaired mitochondrial function and reduced heat shock protein production in many patients with ME/CFS. These studies have also highlighted the detrimental effects of chronically elevated O&NS on muscle functions such as reducing the time to muscle fatigue during exercise and impairing muscle contractility. Mechanisms have also been revealed by which chronic O&NS and or impaired heat shock production may impair muscle repair following exercise and indeed the adaptive responses in the striated muscle to acute and chronic increases in physical activity. The presence of chronic O&NS, low-grade inflammation and impaired heat shock protein production may well explain the objective findings of increased muscle fatigue, impaired contractility and multiple dimensions of exercise intolerance in many patients with ME/CFS.

  19. Nanoscale thermal-mechanical probe determination of 'softening transitions' in thin polymer films

    International Nuclear Information System (INIS)

    Zhou Jing; Berry, Brian; Douglas, Jack F; Karim, Alamgir; Snyder, Chad R; Soles, Christopher

    2008-01-01

    We report a quantitative study of the softening behavior of glassy polystyrene (PS) films at length scales on the order of 100 nm using nano-thermomechanometry (nano-TM), an emerging scanning probe technique in which a highly doped silicon atomic force microscopy (AFM) tip is resistively heated on the surface of a polymer film. The apparent 'softening temperature' T s of the film is found to depend on the logarithm of the square root of the thermal ramping rate R. This relation allows us to estimate a quasi-equilibrium (or zero rate) softening transition temperature T s0 by extrapolation. We observe marked shifts of T s0 with decreasing film thickness, but the nature of these shifts, and even their sign, depend strongly on both the thermal and mechanical properties of the supporting substrate. Finite element simulations suggest that thin PS films on rigid substrates with large thermal conductivities lead to increasing T s0 with decreasing film thickness, whereas softer, less thermally conductive substrates promote reductions in T s0 . Experimental observations on a range of substrates confirm this behavior and indicate a complicated interplay between the thermal and mechanical properties of the thin PS film and the substrate. This study directly points to relevant factors for quantitative measurements of thermophysical properties of materials at the nanoscale using this nano-TM based method.

  20. Intra-pulse transition between ion acceleration mechanisms in intense laser-foil interactions

    Energy Technology Data Exchange (ETDEWEB)

    Padda, H.; King, M.; Gray, R. J.; Powell, H. W.; Gonzalez-Izquierdo, B.; Wilson, R.; Dance, R. J.; MacLellan, D. A.; Butler, N. M. H.; Capdessus, R.; McKenna, P., E-mail: paul.mckenna@strath.ac.uk [SUPA Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Stockhausen, L. C. [Centro de Laseres Pulsados (CLPU), Parque Cientifico, Calle del Adaja s/n. 37185 Villamayor, Salamanca (Spain); Carroll, D. C. [Central Laser Facility, STFC Rutherford Appleton Laboratory, Oxfordshire OX11 0QX (United Kingdom); Yuan, X. H. [Key Laboratory for Laser Plasmas (Ministry of Education) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240 (China); Borghesi, M. [Centre for Plasma Physics, Queens University Belfast, Belfast BT7 1NN (United Kingdom); Neely, D. [SUPA Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Central Laser Facility, STFC Rutherford Appleton Laboratory, Oxfordshire OX11 0QX (United Kingdom)

    2016-06-15

    Multiple ion acceleration mechanisms can occur when an ultrathin foil is irradiated with an intense laser pulse, with the dominant mechanism changing over the course of the interaction. Measurement of the spatial-intensity distribution of the beam of energetic protons is used to investigate the transition from radiation pressure acceleration to transparency-driven processes. It is shown numerically that radiation pressure drives an increased expansion of the target ions within the spatial extent of the laser focal spot, which induces a radial deflection of relatively low energy sheath-accelerated protons to form an annular distribution. Through variation of the target foil thickness, the opening angle of the ring is shown to be correlated to the point in time transparency occurs during the interaction and is maximized when it occurs at the peak of the laser intensity profile. Corresponding experimental measurements of the ring size variation with target thickness exhibit the same trends and provide insight into the intra-pulse laser-plasma evolution.

  1. Mechanism of the monoclinic-to-tetragonal phase transition induced in zirconia and hafnia by swift heavy ions

    International Nuclear Information System (INIS)

    Benyagoub, Abdenacer

    2005-01-01

    Recent results demonstrated that defect formation or amorphization are not the only structural changes induced by swift heavy ions in crystalline materials and that under certain circumstances crystalline-to-crystalline phase transitions can also occur. For instance, it was found that both zirconia and hafnia transform from the monoclinic to the tetragonal phase with a kinetics involving a double ion impact process. In order to understand the origin of this ion-beam induced phase transition, the behavior of these twin oxides was analyzed and compared. In fact, the likeness of these materials offered the unique opportunity to impose drastic constraints on the possible models proposed to explain the creation of atomic displacements in the wake of swift heavy ions. This comparison clearly suggests that the thermal spike is the most appropriate process which governs the transition from the monoclinic to the tetragonal phase in zirconia and hafnia

  2. Structural phase transition in La2/3Ba1/3MnO3 perovskite: Elastic, magnetic, and lattice anomalies and microscopic mechanism

    Directory of Open Access Journals (Sweden)

    E. Fertman

    2015-07-01

    Full Text Available The temperature dependences of the elastic and magnetic properties of polycrystalline perovskite manganite La2/3Ba1/3MnO3 were studied using ultrasonic and SQUID magnetometer techniques. The minimum of the temperature-dependent sound velocity v(T and corresponding maximum of the decrement δ(T were found in the vicinity of the structural phase transition R 3 ̄ c ↔ I m m a at Ts ∼ 200 K. Large alterations of v and δ indicate a structural phase transition of the soft mode type. A high sensitivity of dc magnetization to a low uniaxial pressure caused by the softening was found in the Ts region. A negative value of the linear thermal expansion coefficient along one of the crystallographic axis was found in the Imma phase near Ts. The proposed microscopic mechanism explains the appearance of the soft mode in the vicinity of the structural phase transition temperature associated with the displacement of the manganese atom from the center of the oxygen octahedron.

  3. A Micromechanics-Based Elastoplastic Damage Model for Rocks with a Brittle-Ductile Transition in Mechanical Response

    Science.gov (United States)

    Hu, Kun; Zhu, Qi-zhi; Chen, Liang; Shao, Jian-fu; Liu, Jian

    2018-06-01

    As confining pressure increases, crystalline rocks of moderate porosity usually undergo a transition in failure mode from localized brittle fracture to diffused damage and ductile failure. This transition has been widely reported experimentally for several decades; however, satisfactory modeling is still lacking. The present paper aims at modeling the brittle-ductile transition process of rocks under conventional triaxial compression. Based on quantitative analyses of experimental results, it is found that there is a quite satisfactory linearity between the axial inelastic strain at failure and the confining pressure prescribed. A micromechanics-based frictional damage model is then formulated using an associated plastic flow rule and a strain energy release rate-based damage criterion. The analytical solution to the strong plasticity-damage coupling problem is provided and applied to simulate the nonlinear mechanical behaviors of Tennessee marble, Indiana limestone and Jinping marble, each presenting a brittle-ductile transition in stress-strain curves.

  4. Evolution and transition mechanisms of internal swirling flows with tangential entry

    Science.gov (United States)

    Wang, Yanxing; Wang, Xingjian; Yang, Vigor

    2018-01-01

    The characteristics and transition mechanisms of different states of swirling flow in a cylindrical chamber have been numerically investigated using the Galerkin finite element method. The effects of the Reynolds number and swirl level were examined, and a unified theory connecting different flow states was established. The development of each flow state is considered as a result of the interaction and competition between basic mechanisms: (1) the centrifugal effect, which drives an axisymmetric central recirculation zone (CRZ); (2) flow instabilities, which develop at the free shear layer and the central solid-body rotating flow; (3) the bouncing and restoring effects of the injected flow, which facilitate the convergence of flow on the centerline and the formation of bubble-type vortex breakdown; and (4) the damping effect of the end-induced flow, which suppresses the development of the instability waves. The results show that the CRZ, together with the free shear layer on its surface, composes the basic structure of swirling flow. The development of instability waves produces a number of discrete vortex cores enclosing the CRZ. The azimuthal wave number is primarily determined by the injection angle. Generally, the wave number is smaller at a higher injection angle, due to the reduction of the perimeter of the free shear layer. At the same time, the increase in the Reynolds number facilitates the growth of the wave number. The end-induced flow tends to reduce the wave number near the head end and causes a change in wave number from the head end to the downstream region. Spiral-type vortex breakdown can be considered as a limiting case at a high injection angle, with a wave number equal to 0 near the head end and equal to 1 downstream. At lower Reynolds numbers, the bouncing and restoring effect of the injected flow generates bubble-type vortex breakdown.

  5. A spin transition mechanism for cooperative adsorption in metal-organic frameworks

    Science.gov (United States)

    Reed, Douglas A.; Keitz, Benjamin K.; Oktawiec, Julia; Mason, Jarad A.; Runčevski, Tomče; Xiao, Dianne J.; Darago, Lucy E.; Crocellà, Valentina; Bordiga, Silvia; Long, Jeffrey R.

    2017-10-01

    Cooperative binding, whereby an initial binding event facilitates the uptake of additional substrate molecules, is common in biological systems such as haemoglobin. It was recently shown that porous solids that exhibit cooperative binding have substantial energetic benefits over traditional adsorbents, but few guidelines currently exist for the design of such materials. In principle, metal-organic frameworks that contain coordinatively unsaturated metal centres could act as both selective and cooperative adsorbents if guest binding at one site were to trigger an electronic transformation that subsequently altered the binding properties at neighbouring metal sites. Here we illustrate this concept through the selective adsorption of carbon monoxide (CO) in a series of metal-organic frameworks featuring coordinatively unsaturated iron(II) sites. Functioning via a mechanism by which neighbouring iron(II) sites undergo a spin-state transition above a threshold CO pressure, these materials exhibit large CO separation capacities with only small changes in temperature. The very low regeneration energies that result may enable more efficient Fischer-Tropsch conversions and extraction of CO from industrial waste feeds, which currently underutilize this versatile carbon synthon. The electronic basis for the cooperative adsorption demonstrated here could provide a general strategy for designing efficient and selective adsorbents suitable for various separations.

  6. Epitaxial Growth of Two-Dimensional Layered Transition-Metal Dichalcogenides: Growth Mechanism, Controllability, and Scalability

    KAUST Repository

    Li, Henan

    2017-07-06

    Recently there have been many research breakthroughs in two-dimensional (2D) materials including graphene, boron nitride (h-BN), black phosphors (BPs), and transition-metal dichalcogenides (TMDCs). The unique electrical, optical, and thermal properties in 2D materials are associated with their strictly defined low dimensionalities. These materials provide a wide range of basic building blocks for next-generation electronics. The chemical vapor deposition (CVD) technique has shown great promise to generate high-quality TMDC layers with scalable size, controllable thickness, and excellent electronic properties suitable for both technological applications and fundamental sciences. The capability to precisely engineer 2D materials by chemical approaches has also given rise to fascinating new physics, which could lead to exciting new applications. In this Review, we introduce the latest development of TMDC synthesis by CVD approaches and provide further insight for the controllable and reliable synthesis of atomically thin TMDCs. Understanding of the vapor-phase growth mechanism of 2D TMDCs could benefit the formation of complicated heterostructures and novel artificial 2D lattices.

  7. Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides

    KAUST Repository

    Moody, Galan

    2015-09-18

    The band-edge optical response of transition metal dichalcogenides, an emerging class of atomically thin semiconductors, is dominated by tightly bound excitons localized at the corners of the Brillouin zone (valley excitons). A fundamental yet unknown property of valley excitons in these materials is the intrinsic homogeneous linewidth, which reflects irreversible quantum dissipation arising from system (exciton) and bath (vacuum and other quasiparticles) interactions and determines the timescale during which excitons can be coherently manipulated. Here we use optical two-dimensional Fourier transform spectroscopy to measure the exciton homogeneous linewidth in monolayer tungsten diselenide (WSe2). The homogeneous linewidth is found to be nearly two orders of magnitude narrower than the inhomogeneous width at low temperatures. We evaluate quantitatively the role of exciton–exciton and exciton–phonon interactions and population relaxation as linewidth broadening mechanisms. The key insights reported here—strong many-body effects and intrinsically rapid radiative recombination—are expected to be ubiquitous in atomically thin semiconductors.

  8. Associative learning mechanisms underpinning the transition from recreational drug use to addiction.

    Science.gov (United States)

    Hogarth, Lee; Balleine, Bernard W; Corbit, Laura H; Killcross, Simon

    2013-04-01

    Learning theory proposes that drug seeking is a synthesis of multiple controllers. Whereas goal-directed drug seeking is determined by the anticipated incentive value of the drug, habitual drug seeking is elicited by stimuli that have formed a direct association with the response. Moreover, drug-paired stimuli can transfer control over separately trained drug seeking responses by retrieving an expectation of the drug's identity (specific transfer) or incentive value (general transfer). This review covers outcome devaluation and transfer of stimulus-control procedures in humans and animals, which isolate the differential governance of drug seeking by these four controllers following various degrees of contingent and noncontingent drug exposure. The neural mechanisms underpinning these four controllers are also reviewed. These studies suggest that although initial drug seeking is goal-directed, chronic drug exposure confers a progressive loss of control over action selection by specific outcome representations (impaired outcome devaluation and specific transfer), and a concomitant increase in control over action selection by antecedent stimuli (enhanced habit and general transfer). The prefrontal cortex and mediodorsal thalamus may play a role in this drug-induced transition to behavioral autonomy. © 2012 New York Academy of Sciences.

  9. Quantitative analysis of the network structure that underlines the transitioning in mechanical responses of pea protein gels

    NARCIS (Netherlands)

    Munialo, C.D.; Linden, van der E.; Ako, K.; Jongh, de H.H.J.

    2015-01-01

    The objective of this study was to analyze quantitatively the network structure that underlines the transitioning in the mechanical responses of heat-induced pea protein gels. To achieve this, gels were prepared from pea proteins at varying pHs from 3.0 to 4.2 at a fixed 100 mg/mL protein

  10. Measuring mechanisms for quality assurance in primary care systems in transition: test of a new instrument in Slovenia and Uzbekistan.

    NARCIS (Netherlands)

    Kringos, D.S.; Boerma, W.G.W.; Pellny, M.

    2009-01-01

    Aim: This WHO study, carried out by the authors, aimed to develop and field test an instrument to assess the availability of structures and mechanisms for managing quality in primary care in countries in transition. Methods: The instrument is based on a literature study, consensus meetings with

  11. Energy barriers and mechanisms in solid-solid polymorphic transitions exhibiting cooperative motion

    NARCIS (Netherlands)

    van den Ende, J.A.; Ensing, B.; Cuppen, H.M.

    2016-01-01

    Understanding solid–solid polymorphic transitions within molecular crystals on the molecular scale is a challenging task. It is, however, crucial for the understanding of transitions that are thought to occur through cooperative motion, which offer an interesting perspective for future applications.

  12. The role of lock-in mechanisms in transition processes: The case of energy for road transport

    DEFF Research Database (Denmark)

    Klitkou, Antje; Bolwig, Simon; Hansen, Teis

    2015-01-01

    This paper revisits the theoretical concepts of lock-in mechanisms to analyse transition processes in energy production and road transportation in the Nordic countries, focussing on three technology platforms: advanced biofuels, e-mobility and hydrogen and fuel cell electrical vehicles. The paper...... is based on a comparative analysis of case studies. The main lock-in mechanisms analysed are learning effects, economies of scale, economies of scope, network externalities, informational increasing returns, technological interrelatedness, collective action, institutional learning effects...... and the differentiation of power. We show that very different path dependencies have been reinforced by the lock-in mechanisms. Hence, the characteristics of existing regimes set the preconditions for the development of new transition pathways. The incumbent socio-technical regime is not just fossil-based, but may also...

  13. Mechanisms of RhoGDI2 Mediated Lung Cancer Epithelial-Mesenchymal Transition Suppression

    Directory of Open Access Journals (Sweden)

    Huiyan Niu

    2014-11-01

    Full Text Available Background: The aim of this study was to evaluate the function of RhoGDI2 in lung cancer epithelial-mesenchymal transition (EMT process and to illustrate the underlying mechanisms that will lead to improvement of lung cancer treatment. Methods: The RhoGDI2 knock-down and overexpressing A549 cell lines were first constructed. The influence of RhoGDI2 on cytoskeleton in A549 cells was studied using two approaches: G-LISA-based Rac1 activity measurement and immunostaining-based F-actin distribution. The expression levels of key EMT genes were analyzed using real time quantitative polymerase chain reaction (RT-qPCR, western blot and immunostaining in untreated and RhoGDI2 knock-down or overexpressing A549 cells in both in vivo and in vitro experimental settings. Results: Our study showed that the activity of Rac1, a key gene that is crucial for the initiation and metastasis of human lung adenocarcinoma, causing the redistribution of F-actin with partial loss of cell-cell adhesions and stress fibers, was significantly suppressed by RhoGDI2. RhoGDI2 promoted the expression of EMT marker gene E-cadherin and repressed EMT promoting genes Slug, Snail, α-SMA in both A549 cells and lung and liver organs derived from the mouse models. Knocking-down RhoGDI2 induced abnormal morphology for lung organs. Conclusion: These findings indicate that RhoGDI2 repressed the activity of Rac1 and may be involved in the rearrangement of cytoskeleton in lung cancer cells. RhoGDI2 suppresses the metastasis of lung cancer mediated through EMT by regulating the expression of key genes such as E-cadherin, Slug, Snail and α-SMA in both in vivo and in vitro models.

  14. The rate-limiting mechanism of transition metal gettering in multicrystalline silicon

    International Nuclear Information System (INIS)

    McHugo, S.A.; Thompson, A.C.; Imaizumi, M.

    1997-01-01

    Multicrystalline silicon is a very interesting material for terrestrial solar cells. Its low cost and respectable energy conversion efficiency (12-15%) makes it arguably the most cost competitive material for large-volume solar power generation. However, the solar cell efficiency of this material is severely degraded by regions of high minority carrier recombination which have been shown to possess both dislocations and microdefects. These structural defects are known to increase in recombination activity with transition metal decoration. Therefore, gettering of metal impurities from the material would be expected to greatly enhance solar cell performance. Contrary to this rationale, experiments using frontside phosphorus and/or backside aluminum treatments have been found to improve regions with low recombination activity while having little or no effect on the high recombination regions and in turn only slightly improving the overall cell performance. The goal of this research is to determine the mechanism by which gettering is ineffectual on these high recombination regions. The authors have performed studies on integrated circuit (IC) quality single crystal and multicrystalline solar cell silicon (mc-silicon) in the as-grown state and after a variety of processing/gettering steps. With Surface Photovoltage measurements of the minority carrier diffusion length which is inversely proportional to carrier recombination, they have seen that aluminum gettering is effective for improving IC quality material but ineffective for improving the regions of initially low diffusion lengths (high recombination rates) in mc-silicon. Of particular interest is the great increase in diffusion length for IC material as compared to the mc-silicon. Clearly the IC material has benefited to a greater extent from the gettering procedure than the mc-silicon

  15. Explaining the enjoyment of negative emotions evoked by the arts: The need to consider empathy and other underlying mechanisms of emotion induction.

    Science.gov (United States)

    Vuoskoski, Jonna K; Eerola, Tuomas

    2017-01-01

    Any model aiming to explain the enjoyment of negative emotions in the context of the arts should consider how works of art are able to induce emotional responses in the first place. For instance, research on empathy and the arts suggests that the psychological processes that mediate the enjoyment of sadness and horror may be fundamentally different.

  16. Novel Shape-Memory Polymer with Two Transition Temperature Based on Two Different Memory Mechanism

    Institute of Scientific and Technical Information of China (English)

    Liu Guoqin; Ding Xiaobing; Cao Yiping; Zheng Zhaohui; Peng Yuxing

    2004-01-01

    As an important kind of intelligent materials, shape-memory materials have been received increasing attention on account of their interesting properties and potential applications in recent years. Particularly, the rise of shape-memory polymers by far surpasses well-known metallic shape-memory alloys in their shape-memory properties. The advantages of polymers compared to other materials are their easier availability and their wide range of mechanical and physical properties. The polymers designed to exhibit a shape-memory effect require two components on the molecular level: crosslinks to determine the permanent shape and switching segments with Ttrans to fix the temporary shape. Up to now almost all papers on shape-memory polymers introduce switching segments with the covalent linking method. On the other hand, only several cases concern non-covalent interaction. However, the research works mentioned above is based on a single Ttrans (i.e., Tm or Tg).Following our previous work, here, we first report a novel kind of polymer consisted of PMMA-PEG semi-interpenetrating polymer networks (semi-IPN), which exhibiting independently two shape memory effects based on Tm and Tg, respectively. This result can also extend the shape memory polymer categories from one Ttrans to two Ttrans, and the combination of Tm and Tg give rise to an extremely excellent shape-memory effect.Two different shape memory behaviors of this material based on two transition temperatures were evaluated by bending test as follows: a straight strip of the specimen was folded at a temperature above Ttrans and kept in this shape. The so-deformed sample was cooled down to a temperature Tlow< Ttrans and the deforming stress were released. When the sample was heated up to the measuring temperature Thigh > Ttrans, it recovered its initial shape. The deformation angle θ f varied as a function of time and the ratio of the recovery was defined as θ f /180. The PMMA-PEG polymer behaved as a hard plastic

  17. Dynamical heterogeneities and mechanical non-linearities: Modeling the onset of plasticity in polymer in the glass transition.

    Science.gov (United States)

    Masurel, R J; Gelineau, P; Lequeux, F; Cantournet, S; Montes, H

    2017-12-27

    In this paper we focus on the role of dynamical heterogeneities on the non-linear response of polymers in the glass transition domain. We start from a simple coarse-grained model that assumes a random distribution of the initial local relaxation times and that quantitatively describes the linear viscoelasticity of a polymer in the glass transition regime. We extend this model to non-linear mechanics assuming a local Eyring stress dependence of the relaxation times. Implementing the model in a finite element mechanics code, we derive the mechanical properties and the local mechanical fields at the beginning of the non-linear regime. The model predicts a narrowing of distribution of relaxation times and the storage of a part of the mechanical energy --internal stress-- transferred to the material during stretching in this temperature range. We show that the stress field is not spatially correlated under and after loading and follows a Gaussian distribution. In addition the strain field exhibits shear bands, but the strain distribution is narrow. Hence, most of the mechanical quantities can be calculated analytically, in a very good approximation, with the simple assumption that the strain rate is constant.

  18. Inverse spinel transition metal oxides for lithium-ion storage with different discharge/charge conversion mechanisms

    International Nuclear Information System (INIS)

    Wang, Jiawei; Ren, Yurong; Huang, Xiaobing; Ding, Jianning

    2016-01-01

    Highlights: • Inverse spinel structure relieves the irreversible phase transition of electrodes. • Anodes with the same structure show different discharge/charge conversion mechanisms. • High reversible capacity confirms the potential feasibility of composites. - Abstract: Inverse spinel transition metal oxides (Fe 3 O 4 , MnFe 2 O 4 , Fe 3 O 4 /reduced graphene oxide and MnFe 2 O 4 /reduced graphene oxide) are prepared by a facile ethylene-glycol-assisted hydrothermal method. The stability of inverse spinel structure and the high specific surface area of nanoscale provide transition metal oxides with high specific capacity. And the surface modification with reduced graphene oxide improves the poor conductivity of pristine transition metal oxides. Pristine Fe 3 O 4 and MnFe 2 O 4 deliver the high initial discharge capacity of 1137.1 and 1088.9 mAh g −1 , respectively. Fe 3 O 4 /reduced graphene oxide and MnFe 2 O 4 /reduced graphene oxide get the reversible capacity of 645.8 and 720 mAh g −1 , respectively, even after 55 cycles. The different discharge/charge conversion mechanisms make them different capacity stability. The great electrochemical performances of composites offer electrodes with suitable characteristics for high-performance energy storage application.

  19. Eruptive mechanism at Volcán de Colima: Interpreting transitions between styles

    Science.gov (United States)

    Varley, N.; James, M. R.; Hutchison, W.; Arámbula, R.; Reyes, G.

    2013-05-01

    explosion, the region of greatest volume loss was observed to be not coincident with the assumed location of the conduit, suggesting and that heterogeneity within the dome was important during the June explosion. Analysis of thermal images taken during flights has permitted the detailed modelling of the dome emplacement processes. The onset of rockfalls on the W side once it reached the crater rim provoked a change in emplacement style from endogenic to exogenic. Monitoring the activity during the recent eruption has produced a wealth of data making it an excellent case study for modelling transitions between different regimes and the generating mechanism for Vulcanian explosions.

  20. Structural and Mechanical Hysteresis at the Order-Order Transition of Block Copolymer Micellar Crystals

    Directory of Open Access Journals (Sweden)

    Theresa A. LaFollette

    2011-01-01

    Full Text Available Concentrated solutions of a water-soluble block copolymer (PEO20-(PPO70-(PEO20 show a thermoreversible transition from a liquid to a gel. Over a range of concentration there also exists an order-order transition (OOT between cubically-packed spherical micelles and hexagonally-packed cylindrical micelles. This OOT displays a hysteresis between the heating and cooling transitions that is observed at both the macroscale through rheology and nanoscale through small angle neutron scattering (SANS. The hysteresis is caused by the persistence of the cubically-packed spherical micelle phase into the hexagonally-packed cylindrical micelle phase likely due to the hindered realignment of the spherical micelles into cylindrical micelles and then packing of the cylindrical micelles into a hexagonally-packed cylindrical micelle phase. This type of hysteresis must be fully characterized, and possibly avoided, for these block copolymer systems to be used as templates in nanocomposites.

  1. Theory of collisional excitation transition between Rydberg states of atoms. Non-inertial mechanism

    International Nuclear Information System (INIS)

    Kaulakys, B.P.

    1982-01-01

    The transitions between highly states of an atom due to the collision of its core with another atom are considered. The cross sections of the change of highly excited electron angular momentum, in the case of the transitions when the main quantum number is constant, are expressed in terms of transport cross sections of the perturbing atom scattering on the ion of Rydberg atom. It is shown that the cross sections of the momentum mixing at thermal rapidities are lower than the cross sections of the atom-ion elastic scattering

  2. ELM as a trigger mechanism for the transition between two Edge regimes

    International Nuclear Information System (INIS)

    Pshenov, A.A.; Morozov, D.Kh.

    2012-01-01

    The possibility of edge regime transitions under the influence of edge-localized modes (ELMs) is investigated. A theoretical model of the process is presented and examined numerically. ELMs appear able to trigger irreversible transitions from one equilibrium to another with different edge temperatures. The results correspond to the recent experimental studies on both DIII-D and JET tokamaks showing type-I and type-II ELMs causing a prolonged collapse of the edge plasma temperature (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Molecular Motion in Polymers: Mechanical Behavior of Polymers Near the Glass-Rubber Transition Temperature.

    Science.gov (United States)

    Sperling, L. H.

    1982-01-01

    The temperature at which the onset of coordinated segmental motion begins is called the glass-rubber transition temperature (Tg). Natural rubber at room temperature is a good example of a material above its Tg. Describes an experiment examining the response of a typical polymer to temperature variations above and below Tg. (Author/JN)

  4. Beckmann rearrangement of aldoximes catalyzed by transition metal salts: mechanical aspects

    NARCIS (Netherlands)

    Leusink, A.J.; Meerbeek, T.G.; Noltes, J.G.

    1977-01-01

    The Beckmann rearrangement of aldoximes catalyzed by transition metal salts like palladium and nickel acetylacetonates is shown to be a dehydration‐hydration reaction in which the anti‐oxime is converted into nitrile and the nitrile is converted into amide.

  5. Final Technical Report: Application of in situ Neutron Diffraction to Understand the Mechanism of Phase Transitions

    Energy Technology Data Exchange (ETDEWEB)

    Chandran, Ravi [Univ. of Utah, Salt Lake City, UT (United States). Dept. of Metallurgical Engineering

    2018-02-09

    In this research, phase transitions in the bulk electrodes for Li-ion batteries were investigated using neutron diffraction (ND) as well as neutron imaging techniques. The objectives of this research is to design of a novel in situ electrochemical cell to obtain Rietveld refinable neutron diffraction experiments using small volume electrodes of various laboratory/research-scale electrodes intended for Li-ion batteries. This cell is also to be used to investigate the complexity of phase transitions in Li(Mg) alloy electrodes, either by diffraction or by neutron imaging, which occur under electrochemical lithiation and delithiation, and to determine aspects of phase transition that enable/limit energy storage capacity. Additional objective is to investigate the phase transitions in electrodes made of etched micro-columns of silicon and investigate the effect of particle/column size on phase transitions and nonequilibrium structures. An in situ electrochemical cell was designed successfully and was used to study the phase transitions under in-situ neutron diffraction in both the electrodes (anode/cathode) simultaneously in graphite/LiCoO2 and in graphite/LiMn2O4 cells each with two cells. The diffraction patterns fully validated the working of the in situ cell. Additional experimental were performed using the Si micro-columnar electrodes. The results revealed new lithiation phenomena, as evidenced by mosaicity formation in silicon electrode. These experiments were performed in Vulcan diffractometer at SNS, Oak Ridge National Laboratory. In parallel, the spatial distribution of Li during lithiation and delithiation processes in Li-battery electrodes were investigated. For this purpose, neutron tomographic imaging technique has been used for 3D mapping of Li distribution in bulk Li(Mg) alloy electrodes. It was possible to observe the phase boundary of Li(Mg) alloy indicating phase transition from Li-rich BCC β-phase to Li-lean

  6. Microstructural evolution and mechanical characterization for the A508-3 steel before and after phase transition

    Science.gov (United States)

    Lu, Chuanyang; He, Yanming; Gao, Zengliang; Yang, Jianguo; Jin, Weiya; Xie, Zhigang

    2017-11-01

    Nuclear power, as a reliable clean and economical energy source, has gained great attention from all over the world. The A508-3 steel will be introduced as the structural materials for Chinese nuclear reactor pressure vessels (RPVs). This work investigated the temperature-dependence microstructural evolution during high-temperature heat treatments, and built the relationship between the microstructure and mechanical properties for the steel before and after phase transition. The results show that the original steel consists of the bainite, allotriomorphic ferrite, retained austenite and few Mo-rich M2C carbides. The phase-transition temperature of the steel is determined to be 750 °C. The tensile tests performed at 20-1000 °C indicate that both of the yield strength and ultimate tensile strength decrease monotonously with increasing the temperature. Before phase transition, precipitation of cementite from the retained austenite and coarsening of cementite at the austenite-ferrite interphases should be responsible for their sharp decrease. After phase transition, the growth of austenite grain reduces the strength moderately. As for the elongation, however, it increases dramatically when the testing temperature is over 750 °C, due to the dissolution of cementite and formation of austenite. The obtained results will provide some fundamental data to understand and implement the In-Vessel Retention strategy.

  7. Transitions in creep mechanisms and creep anisotropy in Zr-1Nb-1Sn-0.2Fe sheet

    International Nuclear Information System (INIS)

    Murty, K.L.; Ravi, J.; Wiratmo

    1995-01-01

    The creep characteristics of a Zr-1Nb-1Sn-0.2Fe alloy sheet were investigated at temperatures from 773 to 923K and at stresses ranging from 9 to 150MPa along both the rolling and transverse directions. Transitions in creep mechansims are noted, with diffusional viscous creep at low stresses, viscous-glide-controlled microcreep in the intermediate stress regime and the climb of edge dislocations at high stresses. The creep anisotropy decreases with a decrease in the stress exponent and the creep rates differ by only 30% in the viscous creep regime, while an order-of-magnitude difference is noted at high stresses. The solute-strengthening effect of Nb addition is evident in the stress regime where appropriate data are available. These transitions in creep mechansims clearly reveal the dangers in blind extrapolation of short-term high stress data to low stresses and long times relevant to in-reactor conditions. The creep behavior of these materials is similar to that noted in Class I alloys, while the transitions in deformation mechanisms in Zircaloy-4 resemble those found in pure metals or Class II alloys with no viscous glide mechanism. ((orig.))

  8. Explaining Away Intuitions

    Directory of Open Access Journals (Sweden)

    Jonathan Ichikawa

    2009-12-01

    Full Text Available What is it to explain away an intuition? Philosophers regularly attempt to explain intuitions away, but it is often unclear what the success conditions for their project consist in. I attempt to articulate some of these conditions, taking philosophical case studies as guides, and arguing that many attempts to explain away intuitions underestimate the challenge the project of explaining away involves. I will conclude, therefore, that explaining away intuitions is a more difficult task than has sometimes been appreciated; I also suggest, however, that the importance of explaining away intuitions has often been exaggerated.

  9. Nonequilibrium phase transitions and bifurcations of limit cycles and tori- a new research topic for statistical mechanics mechanics

    International Nuclear Information System (INIS)

    Haken, H.

    1980-01-01

    In the development of statistical mechanics we can more or less distinguish between two steps. First of all the main objective of statistical mechanics had been to give thermodynamics a solid theoretical basis starting from the microscopic world. The next step has then been performed in parallel with the development of irreversible thermodynamics dealing with processes close to thermal equilibrium. The problems dealt with here are mainly transport and relaxation processes. Over the past years it has become apparent that there is a third field, namely processes far away from thermal equilibrium. The particular interest in those processes stems from the fact that in such situations order can be generated on a macroscopic scale. The ordered states can be maintained by a flux of energy or matter through, these systems. In the realm of synergetjcs we have studied numerous examples and we now know that the occurrence of many of the ordered structures is governed by the same basic principles. (author)

  10. The Reaction Mechanism of Claisen Rearrangement Obtained by Transition State Spectroscopy and Single Direct-Dynamics Trajectory

    Directory of Open Access Journals (Sweden)

    Takayoshi Kobayashi

    2013-02-01

    Full Text Available Chemical bond breaking and formation during chemical reactions can be observed using “transition state spectroscopy”. Comparing the measurement result of the transition state spectroscopy with the simulation result of single direct-dynamics trajectory, we have elucidated the reaction dynamics of Claisen rearrangement of allyl vinyl ether. Observed the reaction of the neat sample liquid, we have estimated the time constants of transformation from straight-chain structure to aromatic-like six-membered ring structure forming the C1-C6 bond. The result clarifies that the reaction proceeds via three steps taking longer time than expected from the gas phase calculation. This finding provides new hypothesis and discussions, helping the development of the field of reaction mechanism analysis.

  11. Theory of the multiphoton cascade transitions with two photon links: comparison of quantum electrodynamical and quantum mechanical approaches

    International Nuclear Information System (INIS)

    Zalialiutdinov, T; Baukina, Yu; Solovyev, D; Labzowsky, L

    2014-01-01

    The theory of multiphoton cascade transitions with two-photon links is considered within two different approaches: quantum electrodynamical (QED) and phenomenological quantum mechanical (QM). A problem of regularization of the cascade contributions is investigated in detail. It is argued that the correct regularization should include both initial and intermediate level widths in the singular energy denominators. This result follows both from the QED and from the QM approach. Particular transitions nl → 1s + 2γ with nl = 3s, 4s, 3d, 4d and nl → 1s + 3γ with nl = 3p, 4p are considered as examples. The importance of the proper cascade regularization is also demonstrated. (paper)

  12. Plant physiological responses to hydrologically mediated changes in nitrogen supply on a boreal forest floodplain: a mechanism explaining the discrepancy in nitrogen demand and supply

    Science.gov (United States)

    Lina Koyama; Knut. Kielland

    2011-01-01

    A discrepancy between plant demand and soil supply of nitrogen (N) has been observed in early successional stages of riparian vegetation in interior Alaska. We hypothesized that a hydrologically mediated N supply serves as a mechanism to balance this apparent deficiency of plant N supply. To test this hypothesis, we conducted a tracer experiment and measured the...

  13. Possible Mechanisms Explaining the Association Between Physical Activity and Mental Health. Findings From the 2001 Dutch Health Behaviour in School-Aged Children Survey

    NARCIS (Netherlands)

    Monshouwer, K.; ten Have, M.; van Poppel, M.N.M.; Kemper, H.C.G.; Vollebergh, W.A.M.

    2013-01-01

    More physical activity is associated with fewer mental health problems among adolescents, but the underlying mechanisms are not clear. The aim of this article is to investigate whether the association between physical activity and mental health is mediated by body-weight perception (self-image) or

  14. Mechanism of transition to turbulence in a circular cylinder wake in a channel

    Directory of Open Access Journals (Sweden)

    Molochnikov Valery

    2017-01-01

    Full Text Available Transition to turbulence in the circular cylinder wake has been studied experimentally and numerically at growing Reynolds number. Good agreement of calculation results with the flow visualization and measurements of instantaneous vector fields of velocity and vorticity has been demonstrated. The growing Reynolds number is shown to make large-scale vortex generation onset move upstream. It also triggers the transition to 3D flow pattern in the cylinder wake. This process is accompanied by non-monotonous behavior of the profiles of velocity and its turbulent fluctuations at equal distances from the cylinder. Non-monotonous behavior of the cylinder drag has been revealed for the Reynolds numbers ranging from 120 to 300.

  15. Stress corrosion of Zircaloy-4. Fracture mechanics study of the intergranular - transgranular transition

    International Nuclear Information System (INIS)

    Farina, Silvia B.; Duffo, Gustavo S.

    2003-01-01

    Stress corrosion cracking susceptibility of Zircaloy-4 wires was studied in 1M NaCl, 1M KBr and 1M KI aqueous solutions, and in iodine alcoholic solutions. In all cases, intergranular attack preceded transgranular propagation. It is generally accepted that the intergranular-transgranular transition occurs when a critical value of the stress intensity factor is reached. In the present work it was confirmed that the transition from intergranular to transgranular propagation cracking in Zircaloy-4 wires also occurs when a critical value of the stress intensity factor is reached. This critical stress intensity factor in wire samples is independent of the solution tested and close to 10 MPa.m-1/2. This value is in good agreement with those reported in the literature measured by different techniques. (author)

  16. Modeling mechanical properties of a shear thickening fluid damper based on phase transition theory

    Science.gov (United States)

    Wei, Minghai; Lin, Kun; Guo, Qian

    2018-03-01

    Shear thickening fluids (STFs) are highly concentrated colloidal suspensions consisting of monodisperse nano-particles suspended in a carrying fluid, and have the capacity to display both flowable and rigid behaviors, when subjected to sudden stimuli. In that process, the external energy that acts on an STF can be dissipated quickly. The aim of this study is to present a dynamic model of a damper filled with STF that can be directly used in control engineering fields. To this end, shear stress during phase transition of the STF material is chosen as an internal variable. A non-convex function with bifurcation behavior is used to describe the phase transitioning of STF by determining the relationship between the behavioral characteristics of the microscopic phase and macroscopic damping force. This model is able to predict force-velocity and force-displacement relationships as functions of the loading frequency. Efficacy of the model is demonstrated via comparison with experimental results from previous studies. In addition, the results confirm the hypothesis regarding the occurrence of STF phase transitioning when subject to shear stress.

  17. Lifeguard inhibition of Fas-mediated apoptosis: A possible mechanism for explaining the cisplatin resistance of triple-negative breast cancer cells.

    Science.gov (United States)

    Radin, Daniel; Lippa, Arnold; Patel, Parth; Leonardi, Donna

    2016-02-01

    Triple-negative breast cancer does not express estrogen receptor-α, progesterone or the HER2 receptor making hormone or antibody therapy ineffective. Cisplatin may initiate p73-dependent apoptosis in p53 mutant cell lines through Fas trimerization and Caspase-8 activation and Bax up regulation and subsequent Caspase-9 activation. The triple-negative breast cancer, MDA-MB-231, overexpresses the protein Lifeguard, which inhibits Fas-mediated apoptosis by inhibiting Caspase-8 activation after Fas trimerization. The relationship between Fas, Lifeguard and cisplatin is investigated by down regulating Lifeguard via shRNA. Results demonstrate that cisplatin's efficacy increases when Lifeguard is down regulated. Lifeguard Knockdown MDA-MB-231 continue to decrease in cell viability from 24 to 48h after cisplatin treatment while no additional decrease in viability is observed in the Wild-Type MDA over the same period. Higher Caspase-8 activity in the Lifeguard knockdown MDA after cisplatin administration could explain the significant decrease in cell viability from 24 to 48h. This cell type is also more sensitive to Fas ligand-mediated reductions in cell viability, confirming Lifeguard's anti-apoptotic function through the Fas receptor. This research suggests that the efficacy of chemotherapy acting through the Fas pathway would increase if Lifeguard were not overexpressed to inhibit Fas-mediated apoptosis. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  18. B1-B2 phase transition mechanism and pathway of PbS under pressure

    Science.gov (United States)

    Adeleke, Adebayo A.; Yao, Yansun

    2018-03-01

    Experimental studies at finite Pressure-Temperature (P-T) conditions and a theoretical study at 0 K of the phase transition in lead sulphide (PbS) have been inconclusive. Many studies that have been done to understand structural transformation in PbS can broadly be classified into two main ideological streams—one with Pnma and another with Cmcm orthorhombic intermediate phase. To foster better understanding of this phenomenon, we present the result of the first-principles study of phase transition in PbS at finite temperature. We employed the particle swarm-intelligence optimization algorithm for the 0 K structure search and first-principles metadynamics simulations to study the phase transition pathway of PbS from the ambient pressure, 0 K Fm-3m structure to the high-pressure Pm-3m phase under experimentally achievable P-T conditions. Significantly, our calculation shows that both streams are achievable under specific P-T conditions. We further uncover new tetragonal and monoclinic structures of PbS with space group P21/c and I41/amd, respectively. We propose the P21/c and I41/amd as a precursor phase to the Pnma and Cmcm phases, respectively. We investigated the stability of the new structures and found them to be dynamically stable at their stability pressure range. Electronic structure calculations reveal that both P21/c and I41/amd phases are semiconducting with direct and indirect bandgap energies of 0.69(5) eV and 0.97(3) eV, respectively. In general, both P21/c and I41/amd phases were found to be energetically competitive with their respective orthorhombic successors.

  19. Extensibility of the hamstrings is best explained by mechanical components of muscle contraction, not behavioral measures in individuals with chronic low back pain.

    Science.gov (United States)

    Marshall, Paul W M; Mannion, Jamie; Murphy, Bernadette A

    2009-08-01

    To examine the relationship between hamstring extensibility by use of the instrumented straight leg raise; mechanical components of muscle contraction, including muscle recruitment, passive torque measures of tissue stiffness, and eccentric strength; and self-reported measures of pain and disability. Cross-sectional study. University laboratory. Twenty-one individuals with chronic nonspecific axial lower back pain and 15 healthy control subjects. Instrumented straight leg raise, concentric and eccentric hamstring strength, self-reported measures of pain, disability, fear avoidance, general health and well-being Objective measures included hamstring extensibility, hamstring muscle stiffness, absolute and relative concentric/eccentric strength, concentric/eccentric strength ratios. Self-reported measures included Oswestry disability index, visual analog pain scale, fear avoidance beliefs, and general health and well being. Patients with lower back pain had lower range of motion, greater changes in muscle stiffness, and impaired concentric-to-eccentric strength levels. Stepwise regression identified measures of stiffness as significantly predicting hamstring extensibility (adjusted r(2) = 0.58, F = 23.76, P hamstrings also was associated with greater hamstring extensibility. Decreased extensibility of the hamstrings was associated with increased passive stiffness during the common range of motion (20 to 50 degrees ). Impaired stretch tolerance is associated with actual mechanical restriction, not behavioral measures indicating increased pain or fear-avoidant behavior. With no relationship to actual disability and contradictory findings in the literature for the relationship of the hamstrings to the mechanics of the low back, it is unclear whether decreased hamstring extensibility should be targeted in rehabilitation programs for axial lower back pain.

  20. Quantum statistical mechanics of nonrelativistic membranes: crumpling transition at finite temperature

    Science.gov (United States)

    Borelli, M. E. S.; Kleinert, H.; Schakel, Adriaan M. J.

    2000-03-01

    The effect of quantum fluctuations on a nearly flat, nonrelativistic two-dimensional membrane with extrinsic curvature stiffness and tension is investigated. The renormalization group analysis is carried out in first-order perturbative theory. In contrast to thermal fluctuations, which soften the membrane at large scales and turn it into a crumpled surface, quantum fluctuations are found to stiffen the membrane, so that it exhibits a Hausdorff dimension equal to two. The large-scale behavior of the membrane is further studied at finite temperature, where a nontrivial fixed point is found, signaling a crumpling transition.

  1. Disrupted integration of sensory stimuli with information about the movement of the body as a mechanism explaining LSD-induced experience.

    Science.gov (United States)

    Juszczak, Grzegorz R

    2017-03-01

    LSD (lysergic acid diethylamide) is a model psychedelic drug used to study mechanism underlying the effects induced by hallucinogens. However, despite advanced knowledge about molecular mechanism responsible for the effects induced by LSD and other related substances acting at serotonergic 5-HT 2a receptors, we still do not understand how these drugs trigger specific sensory experiences. LSD-induced experience is characterised by perception of movement in the environment and by presence of various bodily sensations such as floating in space, merging into surroundings and movement out of the physical body (the out-of-body experience). It means that a large part of the experience induced by the LSD can be simplified to the illusory movement that can be attributed to the self or to external objects. The phenomenology of the LSD-induced experience has been combined with the fact that serotonergic neurons provide all major parts of the brain with information about the level of tonic motor activity, occurrence of external stimuli and the execution of orienting responses. Therefore, it has been proposed that LSD-induced stimulation of 5-HT 2a receptors disrupts the integration of the sensory stimuli with information about the movement of the body leading to perception of illusory movement. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Oxidation feature and diffusion mechanism of Zr-based metallic glasses near the glass transition point

    Science.gov (United States)

    Hu, Zheng; Lei, Xianqi; Wang, Yang; Zhang, Kun

    2018-03-01

    The oxidation behaviors of as-cast, pre-deformed, and crystallized Zr47.9Ti0.3Ni3.1Cu39.3Al9.4 metallic glasses (MGs) were studied near the glass transition point. The oxidation kinetics of the crystallized MGs followed a parabolic-rate law, and the as-cast and pre-deformed MGs exerted a typical two-stage behavior above the glass transition temperature (T g). Most interesting, pre-deformed treatment can significantly improve the oxidation rate of MGs, as the initial oxidation appeared earlier than for the as-cast MGs, and was accompanied by much thicker oxide scale. The EDS and XPS results showed that the metal Al acted as the preferred scavenger that absorbed intrinsic oxygen in the near-surface region of as-cast MGs. However, a homogeneous mixed layer without Al was observed in the pre-deformed MGs. We speculated the accelerated diffusion of other elements in the MGs was due to the local increase in the free volume and significant shear-induced dilation of the local structure. The results from this study demonstrate that MGs exhibit controllable atomic diffusion during the oxidation process, which can facilitate use in super-cooled liquid region applications.

  3. Electronic, ductile, phase transition and mechanical properties of Lu-monopnictides under high pressures.

    Science.gov (United States)

    Gupta, Dinesh C; Bhat, Idris Hamid

    2013-12-01

    The structural, elastic and electronic properties of lutatium-pnictides (LuN, LuP, LuAs, LuSb, and LuBi) were analyzed by using full-potential linearized augmented plane wave within generalized gradient approximation in the stable rock-salt structure (B1 phase) with space group Fm-3m and high-pressure CsCl structure (B2 phase) with space group Pm-3m. Hubbard-U and spin-orbit coupling were included to predict correctly the semiconducting band gap of LuN. Under compression, these materials undergo first-order structural transitions from B1 to B2 phases at 241, 98, 56.82, 25.2 and 32.3 GPa, respectively. The computed elastic properties show that LuBi is ductile by nature. The electronic structure calculations show that LuN is semiconductor at ambient conditions with an indirect band gap of 1.55 eV while other Lu-pnictides are metallic. It was observed that LuN shows metallization at high pressures. The structural properties, viz, equilibrium lattice constant, bulk modulus and its pressure derivative, transition pressure, equation of state, volume collapse, band gap and elastic moduli, show good agreement with available data.

  4. Synchrotron X-ray diffraction studies of phase transitions and mechanical properties of nanocrystalline materials at high pressure

    International Nuclear Information System (INIS)

    Prilliman, Gerald Stephen

    2003-01-01

    . The anomalous intensities in the x-ray diffraction patterns were interpreted as being the result of stacking faults, indicating that the mechanism of transition proceeds by the sliding of γ(111) planes to form α(001) planes. The increasing transition pressure for more aggregated samples may be due to a positive activation volume, retarding the transition for nanocrystals with less excess (organic) volume available to them. The lack of a reverse transition upon decompression makes this interpretation more difficult because of the lack of an observable hysteresis, and it is therefore difficult to ascertain kinetic effects for certain. In the case TiN/BN nanocomposite systems, it was found that the bulk modulus (B 0 ) of the TiN nanoparticles was not correlated to the observed hardness or Young's modulus of the macroscopic thin film. This indicates that the origin of the observed super-hard nature of these materials is not due to any change in the Ti-N interatomic potential. Rather, the enhanced hardness must be due to nano-structural effects. It was also found that during pressurization the TiN nanoparticles developed a great deal of strain. This strain can be related to defects induced in individual nanoparticles which generates strain in adjacent particles due to the highly coupled nature of the system

  5. Synchrotron X-ray diffraction studies of phase transitions and mechanical properties of nanocrystalline materials at high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Prilliman, Stephen Gerald [Univ. of California, Berkeley, CA (United States)

    2003-01-01

    that must be overridden with pressure. The anomalous intensities in the x-ray diffraction patterns were interpreted as being the result of stacking faults, indicating that the mechanism of transition proceeds by the sliding of γ(111) planes to form α(001) planes. The increasing transition pressure for more aggregated samples may be due to a positive activation volume, retarding the transition for nanocrystals with less excess (organic) volume available to them. The lack of a reverse transition upon decompression makes this interpretation more difficult because of the lack of an observable hysteresis, and it is therefore difficult to ascertain kinetic effects for certain. In the case TiN/BN nanocomposite systems, it was found that the bulk modulus (B0) of the TiN nanoparticles was not correlated to the observed hardness or Young's modulus of the macroscopic thin film. This indicates that the origin of the observed super-hard nature of these materials is not due to any change in the Ti-N interatomic potential. Rather, the enhanced hardness must be due to nano-structural effects. It was also found that during pressurization the TiN nanoparticles developed a great deal of strain. This strain can be related to defects induced in individual nanoparticles which generates strain in adjacent particles due to the highly coupled nature of the system.

  6. Cis-to- Trans Isomerization of Azobenzene Derivatives Studied with Transition Path Sampling and Quantum Mechanical/Molecular Mechanical Molecular Dynamics.

    Science.gov (United States)

    Muždalo, Anja; Saalfrank, Peter; Vreede, Jocelyne; Santer, Mark

    2018-04-10

    Azobenzene-based molecular photoswitches are becoming increasingly important for the development of photoresponsive, functional soft-matter material systems. Upon illumination with light, fast interconversion between a more stable trans and a metastable cis configuration can be established resulting in pronounced changes in conformation, dipole moment or hydrophobicity. A rational design of functional photosensitive molecules with embedded azo moieties requires a thorough understanding of isomerization mechanisms and rates, especially the thermally activated relaxation. For small azo derivatives considered in the gas phase or simple solvents, Eyring's classical transition state theory (TST) approach yields useful predictions for trends in activation energies or corresponding half-life times of the cis isomer. However, TST or improved theories cannot easily be applied when the azo moiety is part of a larger molecular complex or embedded into a heterogeneous environment, where a multitude of possible reaction pathways may exist. In these cases, only the sampling of an ensemble of dynamic reactive trajectories (transition path sampling, TPS) with explicit models of the environment may reveal the nature of the processes involved. In the present work we show how a TPS approach can conveniently be implemented for the phenomenon of relaxation-isomerization of azobenzenes starting with the simple examples of pure azobenzene and a push-pull derivative immersed in a polar (DMSO) and apolar (toluene) solvent. The latter are represented explicitly at a molecular mechanical (MM) and the azo moiety at a quantum mechanical (QM) level. We demonstrate for the push-pull azobenzene that path sampling in combination with the chosen QM/MM scheme produces the expected change in isomerization pathway from inversion to rotation in going from a low to a high permittivity (explicit) solvent model. We discuss the potential of the simulation procedure presented for comparative calculation of

  7. Human equilibrative nucleoside transporter-1 knockdown tunes cellular mechanics through epithelial-mesenchymal transition in pancreatic cancer cells.

    Directory of Open Access Journals (Sweden)

    Yeonju Lee

    Full Text Available We report cell mechanical changes in response to alteration of expression of the human equilibrative nucleoside transporter-1 (hENT1, a most abundant and widely distributed plasma membrane nucleoside transporter in human cells and/or tissues. Modulation of hENT1 expression level altered the stiffness of pancreatic cancer Capan-1 and Panc 03.27 cells, which was analyzed by atomic force microscopy (AFM and correlated to microfluidic platform. The hENT1 knockdown induced reduction of cellular stiffness in both of cells up to 70%. In addition, cellular phenotypic changes such as cell morphology, migration, and expression level of epithelial-mesenchymal transition (EMT markers were observed after hENT1 knockdown. Cells with suppressed hENT1 became elongated, migrated faster, and had reduced E-cadherin and elevated N-cadherin compared to parental cells which are consistent with epithelial-mesenchymal transition (EMT. Those cellular phenotypic changes closely correlated with changes in cellular stiffness. This study suggests that hENT1 expression level affects cellular phenotype and cell elastic behavior can be a physical biomarker for quantify hENT1 expression and detect phenotypic shift. Furthermore, cell mechanics can be a critical tool in detecting disease progression and response to therapy.

  8. Isostructural solid-solid phase transition in monolayers of soft core-shell particles at fluid interfaces: structure and mechanics.

    Science.gov (United States)

    Rey, Marcel; Fernández-Rodríguez, Miguel Ángel; Steinacher, Mathias; Scheidegger, Laura; Geisel, Karen; Richtering, Walter; Squires, Todd M; Isa, Lucio

    2016-04-21

    We have studied the complete two-dimensional phase diagram of a core-shell microgel-laden fluid interface by synchronizing its compression with the deposition of the interfacial monolayer. Applying a new protocol, different positions on the substrate correspond to different values of the monolayer surface pressure and specific area. Analyzing the microstructure of the deposited monolayers, we discovered an isostructural solid-solid phase transition between two crystalline phases with the same hexagonal symmetry, but with two different lattice constants. The two phases corresponded to shell-shell and core-core inter-particle contacts, respectively; with increasing surface pressure the former mechanically failed enabling the particle cores to come into contact. In the phase-transition region, clusters of particles in core-core contacts nucleate, melting the surrounding shell-shell crystal, until the whole monolayer moves into the second phase. We furthermore measured the interfacial rheology of the monolayers as a function of the surface pressure using an interfacial microdisk rheometer. The interfaces always showed a strong elastic response, with a dip in the shear elastic modulus in correspondence with the melting of the shell-shell phase, followed by a steep increase upon the formation of a percolating network of the core-core contacts. These results demonstrate that the core-shell nature of the particles leads to a rich mechanical and structural behavior that can be externally tuned by compressing the interface, indicating new routes for applications, e.g. in surface patterning or emulsion stabilization.

  9. Explaining the mechanisms through which regional atmospheric circulation variability drives summer temperatures and glacial melt in western High Mountain Asia (HMA)

    Science.gov (United States)

    Forsythe, Nathan; Fowler, Hayley; Blenkinsop, Stephen; Li, Xiaofeng; Pritchard, David

    2017-04-01

    Comprehension of mechanisms by which atmospheric circulation influences sub-regional temperature and water resources variability in high-elevation mountainous catchments is of great scientific urgency due to the dependency of large downstream populations on the river flows these basins provide. In this work we quantify a regional atmospheric pattern, the Karakoram Zonal Shear (KZS), with a very pronounced annual cycle which we standardise into a dimensionless (seasonal) circulation metric the Karakoram Zonal Index (KZI). Going beyond previous regional circulation metrics such as the "middle-upper tropospheric temperature index" (MUTTI) or the Webster and Yang Monsoonal Index (WYMI) which have focused solely on the South Asian Summer Monsoon (June to September) season, the KZS/KZI provides an indicator which captures the influence and interactions of the westerly jet throughout the entire annual cycle. Use of the KZS and KZI have led us to identify a further regional atmospheric system, the Karakoram Vortex, which propagates "warm high" (anticyclonic postitive temperature anomaly) and "cold low" (cyclonic negative temperature anomaly) patterns across a very broad swath of Central and South Asia in winter but over a much more constrained area of western HMA in summer. The KV exerts this temperature influence through a combination of adiabatic effects and large-scale advection. Quantify KV influence, the KZI shows strong and statistically significantly near surface (2m) air temperatures both across western HMA both as observed through local meteorological stations and as estimated by an ensemble of global meteorological reanalyses. We show that this strong influence on temperature translates to important consequences for meltwater generation from highly glaciated Indus river tributaries which is logical given that previous studies have established the role of air temperature in modulating glacially-derived river flows in western HMA. By improving the understanding of

  10. Mechanism of selective ion flotation. 1. Selective flotation of transition metal cations

    International Nuclear Information System (INIS)

    Walkowiak, W.

    1991-01-01

    An experimental investigation is presented of the batch ion flotation of the transition metal cations Cr 3+ , Fe 3+ , Mn 2+ , Co 2+ , Zn 2+ , Ag + , Cd 2+ , and In 3+ from acidic aqueous solutions with sodium dodecylsulfonate and sodium dodecylbenzenesulfonate as anionic surfactants. The selectivity sequences Mn 2+ 2+ 2+ 3+ 3+ and Ag + 2+ 3+ are established, both from data for single and multi-ion metal cations solutions, where sublate was not formed in the bulk solution. Good agreement between the selectivity sequences and the values of ionic potential of metal cations was found. An experimental investigation was also performed on the solubility of sublates. The sublates solubility values are discussed in terms of ionic potentials of metal cations as well as of the surfactant size

  11. Mechanisms of disease: epithelial-mesenchymal transition and back again: does cellular plasticity fuel neoplastic progression?

    Energy Technology Data Exchange (ETDEWEB)

    Bissell, Mina J; Turley, Eva A.; Veiseh, Mandana; Radisky, Derek C.; Bissell, Mina J.

    2008-02-13

    Epithelial-mesenchymal transition (EMT) is a conversion that facilitates organ morphogenesis and tissue remodeling in physiological processes such as embryonic development and wound healing. A similar phenotypic conversion is also detected in fibrotic diseases and neoplasia, which is associated with disease progression. EMT in cancer epithelial cells often seems to be an incomplete and bi-directional process. In this Review, we discuss the phenomenon of EMT as it pertains to tumor development, focusing on exceptions to the commonly held rule that EMT promotes invasion and metastasis. We also highlight the role of the RAS-controlled signaling mediators, ERK1, ERK2 and PI3-kinase, as microenvironmental responsive regulators of EMT.

  12. Mechanism-based model of a mass rapid transit system: A perspective

    Science.gov (United States)

    Legara, Erika Fille; Khoon, Lee Kee; Guang, Hung Gih; Monterola, Christopher

    2015-01-01

    In this paper, we discuss our findings on the spatiotemporal dynamics within the mass rapid transit (MRT) system of Singapore. We show that the trip distribution of Origin-Destination (OD) station pairs follows a power-law, implying the existence of critical OD pairs. We then present and discuss the empirically validated agent-based model (ABM) we have developed. The model allows recreation of the observed statistics and the setting up of various scenarios and their effects on the system, such as increasing the commuter population and the propagation of travel delays within the transportation network. The proposed model further enables identification of bottlenecks that can cause the MRT to break down, and consequently provide foresight on how such disruptions can possibly be managed. This can potentially provide a versatile approach for transport planners and government regulators to make quantifiable policies that optimally balance cost and convenience as a function of the number of the commuting public.

  13. Modulation of Signal Proteins: A Plausible Mechanism to Explain How a Potentized Drug Secale Cor 30C Diluted beyond Avogadro's Limit Combats Skin Papilloma in Mice.

    Science.gov (United States)

    Khuda-Bukhsh, Anisur Rahman; Bhattacharyya, Soumya Sundar; Paul, Saili; Dutta, Suman; Boujedaini, Naoual; Belon, Philippe

    2011-01-01

    In homeopathy, ability of ultra-high diluted drugs at or above potency 12C (diluted beyond Avogadro's limit) in ameliorating/curing various diseases is often questioned, particularly because the mechanism of action is not precisely known. We tested the hypothesis if suitable modulations of signal proteins could be one of the possible pathways of action of a highly diluted homeopathic drug, Secale cornutum 30C (diluted 10(60) times; Sec cor 30). It could successfully combat DMBA + croton oil-induced skin papilloma in mice as evidenced by histological, cytogenetical, immunofluorescence, ELISA and immunoblot findings. Critical analysis of several signal proteins like AhR, PCNA, Akt, Bcl-2, Bcl-xL, NF-κB and IL-6 and of pro-apoptotic proteins like cytochrome c, Bax, Bad, Apaf, caspase-3 and -9 revealed that Sec cor 30 suitably modulated their expression levels along with amelioration of skin papilloma. FACS data also suggested an increase of cell population at S and G2 phases and decrease in sub-G1 and G1 phages in carcinogen-treated drug-unfed mice, but these were found to be near normal in the Sec cor 30-fed mice. There was reduction in genotoxic and DNA damages in bone marrow cells of Sec Cor 30-fed mice, as revealed from cytogenetic and Comet assays. Changes in histological features of skin papilloma were noted. Immunofluorescence studies of AhR and PCNA also suggested reduced expression of these proteins in Sec cor 30-fed mice, thereby showing its anti-cancer potentials against skin papilloma. Furthermore, this study also supports the hypothesis that potentized homeopathic drugs act at gene regulatory level.

  14. Modulation of Signal Proteins: A Plausible Mechanism to Explain How a Potentized Drug Secale Cor 30C Diluted beyond Avogadro's Limit Combats Skin Papilloma in Mice

    Directory of Open Access Journals (Sweden)

    Anisur Rahman Khuda-Bukhsh

    2011-01-01

    Full Text Available In homeopathy, ability of ultra-high diluted drugs at or above potency 12C (diluted beyond Avogadro's limit in ameliorating/curing various diseases is often questioned, particularly because the mechanism of action is not precisely known. We tested the hypothesis if suitable modulations of signal proteins could be one of the possible pathways of action of a highly diluted homeopathic drug, Secale cornutum 30C (diluted 1060 times; Sec cor 30. It could successfully combat DMBA + croton oil-induced skin papilloma in mice as evidenced by histological, cytogenetical, immunofluorescence, ELISA and immunoblot findings. Critical analysis of several signal proteins like AhR, PCNA, Akt, Bcl-2, Bcl-xL, NF-κB and IL-6 and of pro-apoptotic proteins like cytochrome c, Bax, Bad, Apaf, caspase-3 and -9 revealed that Sec cor 30 suitably modulated their expression levels along with amelioration of skin papilloma. FACS data also suggested an increase of cell population at S and G2 phases and decrease in sub-G1 and G1 phages in carcinogen-treated drug-unfed mice, but these were found to be near normal in the Sec cor 30-fed mice. There was reduction in genotoxic and DNA damages in bone marrow cells of Sec Cor 30-fed mice, as revealed from cytogenetic and Comet assays. Changes in histological features of skin papilloma were noted. Immunofluorescence studies of AhR and PCNA also suggested reduced expression of these proteins in Sec cor 30-fed mice, thereby showing its anti-cancer potentials against skin papilloma. Furthermore, this study also supports the hypothesis that potentized homeopathic drugs act at gene regulatory level.

  15. A general theorem on the transition probabilities of a quantum mechanical system with spatial degeneracy

    NARCIS (Netherlands)

    Tolhoek, H.A.; Groot, S.R. de

    1949-01-01

    In the general case of a quantum mechanical system with a Hamiltonian that is invariant for rotations spatial degeneracy will exist. So the initial state must be characterized except by the energy also by e.g. the magnetic quantum number. Both for emission of light and electrons plus neutrinos

  16. A vascular mechanism to explain thermally mediated variations in deep-body cooling rates during the immersion of profoundly hyperthermic individuals.

    Science.gov (United States)

    Caldwell, Joanne N; van den Heuvel, Anne M J; Kerry, Pete; Clark, Mitchell J; Peoples, Gregory E; Taylor, Nigel A S

    2018-04-01

    What is the central question of this study? Does the cold-water immersion (14°C) of profoundly hyperthermic individuals induce reductions in cutaneous and limb blood flow of sufficient magnitude to impair heat loss relative to the size of the thermal gradient? What is the main finding and its importance? The temperate-water cooling (26°C) of profoundly hyperthermic individuals was found to be rapid and reproducible. A vascular mechanism accounted for that outcome, with temperature-dependent differences in cutaneous and limb blood flows observed during cooling. Decisions relating to cooling strategies must be based upon deep-body temperature measurements that have response dynamics consistent with the urgency for cooling. Physiologically trivial time differences for cooling the intrathoracic viscera of hyperthermic individuals have been reported between cold- and temperate-water immersion treatments. One explanation for that observation is reduced convective heat delivery to the skin during cold immersion, and this study was designed to test both the validity of that observation, and its underlying hypothesis. Eight healthy men participated in four head-out water immersions: two when normothermic, and two after exercise-induced, moderate-to-profound hyperthermia. Two water temperatures were used within each thermal state: temperate (26°C) and cold (14°C). Tissue temperatures were measured at three deep-body sites (oesophagus, auditory canal and rectum) and eight skin surfaces, with cutaneous vascular responses simultaneously evaluated from both forearms (laser-Doppler flowmetry and venous-occlusion plethysmography). During the cold immersion of normothermic individuals, oesophageal temperature decreased relative to baseline (-0.31°C over 20 min; P immersed in cold rather than in temperate water (P immersion, whereas pronounced constriction was evident during both immersions when subjects were hyperthermic, with the colder water eliciting a greater vascular

  17. Plagiarism explainer for students

    OpenAIRE

    Barba, Lorena A.

    2016-01-01

    A slide deck to serve as an explainer of plagiarism in academic settings, with a personal viewpoint. For my students.Also on SpeakerDeck:https://speakerdeck.com/labarba/plagiarism-explainer-for-students(The slide viewer on SpeakerDeck is much nicer.)

  18. Mechanisms of the epithelial-to-mesenchymal transition in sea urchin embryos

    Science.gov (United States)

    Katow, Hideki

    2015-01-01

    Sea urchin mesenchyme is composed of the large micromere-derived spiculogenetic primary mesenchyme cells (PMC), veg2-tier macromere-derived non-spiculogenetic mesenchyme cells, the small micromere-derived germ cells, and the macro- and mesomere-derived neuronal mesenchyme cells. They are formed through the epithelial-to-mesenchymal transition (EMT) and possess multipotency, except PMCs that solely differentiate larval spicules. The process of EMT is associated with modification of epithelial cell surface property that includes loss of affinity to the apical and basal extracellular matrices, inter-epithelial cell adherens junctions and epithelial cell surface-specific proteins. These cell surface structures and molecules are endocytosed during EMT and utilized as initiators of cytoplasmic signaling pathways that often initiate protein phosphorylation to activate the gene regulatory networks. Acquisition of cell motility after EMT in these mesenchyme cells is associated with the expression of proteins such as Lefty, Snail and Seawi. Structural simplicity and genomic database of this model will further promote detailed EMT research. PMID:26716069

  19. Transition mechanism of Stone-Wales defect in armchair edge (5,5) carbon nanotube

    Science.gov (United States)

    Setiadi, Agung; Suprijadi

    2015-04-01

    We performed first principles calculations of Stone-Wales (SW) defects in armchair edge (5,5) carbon nanotube (CNT) by the density functional theory (DFT). Stone Wales (SW) defect is one kind of topological defect on the CNT. There are two kind of SW defect on the armchair edge (5,5) CNT, such as longitudinal and circumference SW defect. Barrier energy in the formation of SW defects is a good consideration to become one of parameter in controlling SW defects on the CNT. Our calculation results that a longitudinal SW defect is more stable than circumference SW defect. However, the barrier energy of circumference SW defect is lower than another one. We applied Climbing Image Nudge Elastic Band (CI-NEB) method to find minimum energy path (MEP) and barrier energy for SW defect transitions. We also found that in the case of circumference SW defect, armchair edge (5,5) CNT become semiconductor with the band gap of 0.0544 eV.

  20. CORPORATE MIGRATION FROM IPv4 TO IPv6 USING DIFFERENT TRANSITION MECHANISMS

    OpenAIRE

    Nellore Karthikeyan*, K.Chandra Mouli

    2016-01-01

    Currently, the Internet world is confronting the huge issue that is exhaustion of IP addresses with the IPv4 protocol. This paper contains the imperative hypothetical ideas of new era Internet Protocol IPv6 which tackles the issue of IP tending to furthermore concentrate on IPv6 address design, directing and three mechanisms of migration from IPv4 to IPv6 system: Dual Stack, Translation and Tunneling utilizing Network Simulator as Packet tracer. This paper more accentuation on network migrati...

  1. Understanding the Catalytic Mechanism and the Nature of the Transition State of an Attractive Drug-Target Enzyme (Shikimate Kinase) by Quantum Mechanical/Molecular Mechanical (QM/MM) Studies.

    Science.gov (United States)

    Yao, Jianzhuang; Wang, Xia; Luo, Haixia; Gu, Pengfei

    2017-11-16

    Shikimate kinase (SK) is the fifth bacterial enzyme involved in the shikimate pathway for biosynthesis of life-indispensable components, such as aromatic amino acids. The absence of the shikimate pathway in humans makes SK an attractive target for the rational design of drugs aimed at pathogenesis bacteria, such as Mycobacterium tuberculosis and Helicobacter pylori. However, an effective inhibitor of SK (e.g., a transition-state analogue) is still not available on the market due, at least in part, to a lack of knowledge on the catalytic mechanism and the nature of the rate-limiting transition state. Herein, quantum mechanical/molecular mechanical (QM/MM) reaction coordinate, molecular dynamics (MD), and free-energy simulations have been performed to answer these questions. The results presented herein demonstrate that the phosphoryl-transfer process, which is the rate-limiting step of SK-catalyzed phosphorylation of shikimic acid (SKM), is a concerted one-step reaction proceeding through a loose transition state. The computational results agree well with those of experimental studies, specifically NMR results, X-ray crystal structure observation, and activation free-energy barrier. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Ablation threshold and ablation mechanism transition of polyoxymethylene irradiated by CO2 laser.

    Science.gov (United States)

    Li, Gan; Cheng, Mousen; Li, Xiaokang

    2016-09-01

    Polyoxymethylene (POM) decomposes gradually as it is heated up by the irradiation of CO2 laser; the long-chain molecules of POM are broken into short chains, which leads to the lowering of the melting point and the critical temperature of the ablation products. When the product temperature is above the melting point, ablation comes up in the way of vaporization; when the product temperature is higher than the critical temperature, all liquid products are transformed into gas instantly and the ablation mechanism is changed. The laser fluence at which significant ablation is observed is defined as the ablation threshold, and the fluence corresponding to the ablation mechanism changing is denoted as the flyover threshold. In this paper, random pyrolysis is adopted to describe the pyrolytic decomposition of POM, and consequently, the components of the pyrolysis products under different pyrolysis rates are acquired. The Group Contribution method is used to count the thermodynamic properties of the pyrolysis products, and the melting point and the critical temperature of the product mixture are obtained by the Mixing Law. The Knudsen layer relationship is employed to evaluate the ablation mass removal when the product temperature is below the critical temperature. The gas dynamics conservation laws associated with the Jouguet condition are used to calculate the mass removal when the product temperature is higher than the critical temperature. Based on the model, a set of simulations for various laser intensities and lengths are carried out to generalize the relationships between the thresholds and the laser parameters. Besides the ablated mass areal density, which fits the experimental data quite well, the ablation temperature, pyrolysis rate, and product components are also discussed for a better understanding of the ablation mechanism of POM.

  3. Preparative conditions and vibrational study of HUP : phase transition and conductivity mechanisms

    International Nuclear Information System (INIS)

    Thi, M.P.; Novak, A.; Colomban, Ph.

    1985-01-01

    Among solid protonic conductors HUP (H 3 OUO 2 PO 4 .3 H 2 O) exhibits very high conducting properties. Uranyl/phosphate hydrates belonging to the HUP family (HUP ; UO 2 (H 2 PO 4 ) 2 .3 H 2 O ; (U= 2 ) 3 (PO 4 ) 2 .4 H 2 O ; (UO O 2 )sub(1.43)PO 4 Hsub(0.14) 2-3.5 H 2 O) have been synthesized in different forms (crystals, powders, films, ...) and characterized by various methods: chemical analysis, DTA, TGA, SEM, X-Ray diffraction, IR and Raman spectroscopy. Morphological studies reveal the presence of various particulat es, from ultrafine powders ( 2 O washing of HUP. Infrared and Raman spectra of polycrystalline H 3 OUO 2 PO 4 .3 H 2 O (HUP) have been investigated at various temperatures between 50 K and 300 K. The most temperature-sensitive bands correspond to PO 4 and H 2 O librations; U-OPO 3 stretching and OH stretching vibrations indicate four different phases of HUP and allow to propose a phasetransition mechanism from a bidimensionnal, quasi-liquid state of a protonated species in the room-temperature phase to a fully ordered crystal below 130 K. The protonic conductivity mechanism of room- and low-temperature phases is discussed. (author)

  4. Introduction to the generalized theory of non-equilibrium Cahn-Hilliard phase transitions (Thermodynamic problems in continuum mechanics

    Directory of Open Access Journals (Sweden)

    Eugeniy A. Lukashev

    2017-11-01

    Full Text Available The occurrence of convective currents and their development from regular forms with the subsequent transition to irregular turbulent currents draw attention to the fact that they are responsible for the efficiency of many technological processes of heat and mass transfer. Such technological processes are basic in the chemical, petrochemical, power, metallurgical and other industries. Convective flows arise in liquids and gases in the gravitational field in the presence of spatial inhomogeneity of the density created by the inhomogeneity of the temperature and the concentration of components arising during, for example, chemical reactions or other causes. With increasing temperature difference, the resting liquid loses its stability, which then leads to the appearance of a convective flow (Rayleigh–Bénard instability. A further increase in the temperature difference leads to an instability of the primary convective flow, and the hydrodynamic crisis leads to a heat transfer crisis. The paper reconstructs the early stage of the Rayleigh–Bénard convective instability considered as a nonequilibrium phase transition with the spinodal decomposition (diffusion separation mechanism.

  5. Micro-Raman spectroscopy studies of the phase separation mechanisms of transition-metal phosphate glasses

    International Nuclear Information System (INIS)

    Mazali, Italo Odone; Alves, Oswaldo Luiz; Gimenez, Iara de Fatima

    2009-01-01

    Glass-ceramics are prepared by controlled separation of crystal phases in glasses, leading to uniform and dense grain structures. On the other hand, chemical leaching of soluble crystal phases yields porous glass-ceramics with important applications. Here, glass/ceramic interfaces of niobo-, vanado- and titano-phosphate glasses were studied by micro-Raman spectroscopy, whose spatial resolution revealed the multiphase structures. Phase-separation mechanisms were also determined by this technique, revealing that interface composition remained unchanged as the crystallization front advanced for niobo- and vanadophosphate glasses (interface-controlled crystallization). For titanophosphate glasses, phase composition changed continuously with time up to the equilibrium composition, indicating a spinodal-type phase separation. (author)

  6. Size modulated transition in the fluid–structure interaction losses in nano mechanical beam resonators

    Energy Technology Data Exchange (ETDEWEB)

    Vishwakarma, S. D.; Pratap, R., E-mail: pratap@mecheng.iisc.ernet.in [Center for Nano Science and Engineering, Indian Institute of Science, Bengaluru 560012 (India); Pandey, A. K., E-mail: ashok@iith.ac.in [Department of Mechanical and Aerospace Engineering, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy - 502285 (India); Parpia, J. M.; Craighead, H. G. [Center for Materials Research, Cornell University, Ithaca, New York 14853 (United States); Verbridge, S. S. [Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia 24061 (United States)

    2016-05-21

    An understanding of the dominant dissipative mechanisms is crucial for the design of a high-Q doubly clamped nanobeam resonator to be operated in air. We focus on quantifying analytically the viscous losses—the squeeze film damping and drag force damping—that limit the net quality factor of a beam resonator, vibrating in its flexural fundamental mode with the surrounding fluid as air at atmospheric pressure. Specifically, drag force damping dominates at smaller beam widths and squeeze film losses dominate at larger beam widths, with no significant contribution from structural losses and acoustic radiation losses. The combined viscous losses agree well with the experimentally measured Q of the resonator over a large range of beam widths, within the limits of thin beam theory. We propose an empirical relation between the maximum quality factor and the ratio of maximum beam width to the squeeze film air gap thickness.

  7. Molecular markers in transitional cell carcinoma of the bladder: New insights into mechanisms and prognosis

    Directory of Open Access Journals (Sweden)

    Behfar Ehdaie

    2008-01-01

    Full Text Available Urothelial carcinoma is potentially life-threatening and expensive to treat since for many patients, the diagnosis entails a lifetime of surveillance to detect recurrent disease. Advancements in technology have provided an understanding of the molecular mechanisms of carcinogenesis and defined distinct pathways in tumorigenesis and progression. At the molecular level, urothelial carcinoma is being seen as a disease with distinct pathways of carcinogenesis and progression and thus markers of these processes should be used as both diagnostics and predictors of progression and patient outcome. Herein we present a selective overview of the molecular underpinning of urothelial carcinogenesis and progression and discuss the potential for proteins involved in these processes to serve as biomarkers. The discovery of biomarkers has enabled the elucidation of targets for novel therapeutic agents to disrupt the deregulation underlying the development and progression of urothelial carcinogenesis.

  8. Ab initio study on mechanical-bending-induced ferroelectric phase transition in ultrathin perovskite nanobelts

    International Nuclear Information System (INIS)

    Li, H.F.; Zhang, G.H.; Zheng, Yue; Wang, Biao; Chen, W.J.

    2014-01-01

    Based on first-principles calculations, we systematically investigated the structural, ferroelectric (FE), energetic and electronic properties of bended ultrathin PbTiO 3 and BaTiO 3 nanobelts in between flat sheet and nanotube configurations. It is found that both PbTiO 3 and BaTiO 3 ultrathin nanobelts can possess axial antiferrodistortive structural distortion (AFD distortion), and the magnitude of the AFD rotation angle is obviously determined by the bending curvature of the nanobelts. Meanwhile, spontaneous polarization can be retained in these single-unit-cell-thick nanobelts with contributions from the axial improper ferroelectricity and the radial flexoelectricity, which indicates that ultrathin perovskite nanobelts do not have a critical thickness. On the other hand, we found that the AFD distortion is stable and significant in PbTiO 3 nanobelts while it is metastable in BaTiO 3 nanobelts in comparison with the stable non-AFD structure without AFD distortion. This is due to the competition between AFD distortion and circumferential lattice extension in releasing the elastic energy in BaTiO 3 material. Moreover, we found that the electronic structure and bandgap of the nanobelts can be tuned by the bending curvature, indicating potential control of transport properties by mechanical bending. Our results gave more insight into the inherence of improper ferroelectricity in low-dimensional perovskite ferroelectrics

  9. Structural transitions in the titanium alloy β-CEZ studied by precipitation mechanisms after solution treatment

    International Nuclear Information System (INIS)

    Angelier, C.; Bechet, J.

    1994-01-01

    The β-CEZ, a high strength titanium alloy developed for aerospace engine applications, is a α/β near β alloy. A wide variety of phase transformations and attendant nodular, lamellar and mixed microstructures are possible according to thermomechanical treatment conditions. The aim of this present paper is to illustrate the influence of solution treat-ment temperature on equilibrium microstructures and continuous cooling transformations. Solution treatment temperature controls the volume fraction of primary α particles and composition of the β-matrix. Therefore the transformation during continuous cooling from α/β or β field depends on β-matrix stability and potential sites amount of α precipitation. After a β solution treatment, the α particles are disappeared and the β phase contains all alloying elements; the continuous cooling transformation produces a Widmanstaetten structure. If the cooling rate or/and the solution treatment temperature in the α/β field are sufficiently low, the microstructure consists only of nodular morphology. During α particles growth the α volume fraction increases as equilibrium and the decreasing of growth kinetic leads to supersaturated β matrix and Widmanstaetten α precipitation. The final microstructures are mixed. The influence of solution trat-ment temperature and cooling rate on nucleation and growth mechanisms is specially developed. (orig.)

  10. Phase transitions

    CERN Document Server

    Sole, Ricard V; Solé, Ricard V; Solé, Ricard V; Sol, Ricard V; Solé, Ricard V

    2011-01-01

    Phase transitions--changes between different states of organization in a complex system--have long helped to explain physics concepts, such as why water freezes into a solid or boils to become a gas. How might phase transitions shed light on important problems in biological and ecological complex systems? Exploring the origins and implications of sudden changes in nature and society, Phase Transitions examines different dynamical behaviors in a broad range of complex systems. Using a compelling set of examples, from gene networks and ant colonies to human language and the degradation of diverse ecosystems, the book illustrates the power of simple models to reveal how phase transitions occur. Introductory chapters provide the critical concepts and the simplest mathematical techniques required to study phase transitions. In a series of example-driven chapters, Ricard Solé shows how such concepts and techniques can be applied to the analysis and prediction of complex system behavior, including the origins of ...

  11. The infinite limit as an eliminable approximation for phase transitions

    Science.gov (United States)

    Ardourel, Vincent

    2018-05-01

    It is generally claimed that infinite idealizations are required for explaining phase transitions within statistical mechanics (e.g. Batterman 2011). Nevertheless, Menon and Callender (2013) have outlined theoretical approaches that describe phase transitions without using the infinite limit. This paper closely investigates one of these approaches, which consists of studying the complex zeros of the partition function (Borrmann et al., 2000). Based on this theory, I argue for the plausibility for eliminating the infinite limit for studying phase transitions. I offer a new account for phase transitions in finite systems, and I argue for the use of the infinite limit as an approximation for studying phase transitions in large systems.

  12. Transitions from nanoscale to microscale dynamic friction mechanisms on polyethylene and silicon surfaces

    International Nuclear Information System (INIS)

    Niederberger, S.; Gracias, D. H.; Komvopoulos, K.; Somorjai, G. A.

    2000-01-01

    The dynamic friction mechanisms of polyethylene and silicon were investigated for apparent contact pressures and contact areas in the ranges of 8 MPa-18 GPa and 17 nm2-9500 μm2, respectively. Friction force measurements were obtained with a friction force microscope, scanning force microscope, and pin-on-disk tribometer. Silicon and diamond tips with a nominal radius of curvature between 100 nm and 1.2 mm were slid against low- and high-density polyethylene and Si(100) substrates under contact loads in the range of 5 nN-0.27 N. The low friction coefficients obtained with all material systems at low contact pressures indicated that deformation at the sliding interface was primarily elastic. Alternatively, the significantly higher friction coefficients at higher contact pressures suggested that plastic deformation was the principal mode of deformation. The high friction coefficients of polyethylene observed with large apparent contact areas are interpreted in terms of the microstructure evolution involving the rearrangement of crystalline regions (lamellae) nearly parallel to the sliding direction, which reduces the surface resistance to plastic shearing. Such differences in the friction behavior of polyethylene resulting from stress-induced microstructural changes were found to occur over a relatively large range of the apparent contact area. The friction behavior of silicon was strongly affected by the presence of a native oxide film. Results are presented to demonstrate the effect of the scale of deformation at the contact interface on the dynamic friction behavior and the significance of contact parameters on the friction measurements obtained with different instruments. (c) 2000 American Institute of Physics

  13. Structural Transitions and Energy Landscape for Cowpea Chlorotic Mottle Virus Capsid Mechanics from Nanomanipulation in Vitro and in Silico

    Science.gov (United States)

    Kononova, Olga; Snijder, Joost; Brasch, Melanie; Cornelissen, Jeroen; Dima, Ruxandra I.; Marx, Kenneth A.; Wuite, Gijs J. L.; Roos, Wouter H.; Barsegov, Valeri

    2013-10-01

    Physical properties of capsids of plant and animal viruses are important factors in capsid self-assembly, survival of viruses in the extracellular environment, and their cell infectivity. Virus shells can have applications as nanocontainers and delivery vehicles in biotechnology and medicine. Combined AFM experiments and computational modeling on sub-second timescales of the indentation nanomechanics of Cowpea Chlorotic Mottle Virus (CCMV) capsid show that the capsid's physical properties are dynamic and local characteristics of the structure, which depend on the magnitude and geometry of mechanical input. Surprisingly, under large deformations the CCMV capsid transitions to the collapsed state without substantial local structural alterations. The enthalpy change in this deformation state dH = 11.5 - 12.8 MJ/mol is mostly due to large-amplitude out-of-plane excitations, which contribute to the capsid bending, and the entropy change TdS = 5.1 - 5.8 MJ/mol is mostly due to coherent in-plane rearrangements of protein chains, which result in the capsid stiffening. Dynamic coupling of these modes defines the extent of elasticity and reversibility of capsid mechanical deformation. This emerging picture illuminates how unique physico-chemical properties of protein nanoshells help define their structure and morphology, and determine their viruses' biological function.

  14. An APC:WNT counter-current-like mechanism regulates cell division along the colonic crypt axis: a mechanism that explains how APC mutations induce proliferative abnormalities that drive colon cancer development.

    Directory of Open Access Journals (Sweden)

    Bruce M Boman

    2013-11-01

    Full Text Available APC normally down-regulates WNT signaling in human colon, and APC mutations cause proliferative abnormalities in premalignant crypts leading to colon cancer, but the mechanisms are unclear at the level of spatial and functional organization of the crypt. Accordingly, we postulated a counter-current-like mechanism based on gradients of factors (APC;WNT that regulate colonocyte proliferation along the crypt axis. During crypt renewal, stem cells (SCs at the crypt bottom generate non-SC daughter cells that proliferate and differentiate while migrating upwards. The APC concentration is low at the crypt bottom and high at the top (where differentiated cells reside. WNT signaling, in contrast, is high at the bottom (where SCs reside and low at the top. Given that WNT and APC gradients are counter to one another, we hypothesized that a counter-current-like mechanism exists. Since both APC and WNT signaling components (e.g. survivin are required for mitosis, this mechanism establishes a zone in the lower crypt where conditions are optimal for maximal cell division and mitosis orientation (symmetric versus asymmetric. APC haploinsufficiency diminishes the APC gradient, shifts the proliferative zone upwards, and increases symmetric division, which causes SC overpopulation. In homozygote mutant crypts, these changes are exacerbated. Thus, APC-mutation-induced changes in the counter-current-like mechanism cause expansion of proliferative populations (SCs, rapidly-proliferating cells during tumorigenesis. We propose this mechanism also drives crypt fission, functions in the crypt cycle, and underlies adenoma development. Novel chemoprevention approaches designed to normalize the two gradients and readjust the proliferative zone downwards, might thwart progression of these premalignant changes.

  15. An APC:WNT Counter-Current-Like Mechanism Regulates Cell Division Along the Human Colonic Crypt Axis: A Mechanism That Explains How APC Mutations Induce Proliferative Abnormalities That Drive Colon Cancer Development

    Science.gov (United States)

    Boman, Bruce M.; Fields, Jeremy Z.

    2013-01-01

    APC normally down-regulates WNT signaling in human colon, and APC mutations cause proliferative abnormalities in premalignant crypts leading to colon cancer, but the mechanisms are unclear at the level of spatial and functional organization of the crypt. Accordingly, we postulated a counter-current-like mechanism based on gradients of factors (APC;WNT) that regulate colonocyte proliferation along the crypt axis. During crypt renewal, stem cells (SCs) at the crypt bottom generate non-SC daughter cells that proliferate and differentiate while migrating upwards. The APC concentration is low at the crypt bottom and high at the top (where differentiated cells reside). WNT signaling, in contrast, is high at the bottom (where SCs reside) and low at the top. Given that WNT and APC gradients are counter to one another, we hypothesized that a counter-current-like mechanism exists. Since both APC and WNT signaling components (e.g., survivin) are required for mitosis, this mechanism establishes a zone in the lower crypt where conditions are optimal for maximal cell division and mitosis orientation (symmetric versus asymmetric). APC haploinsufficiency diminishes the APC gradient, shifts the proliferative zone upwards, and increases symmetric division, which causes SC overpopulation. In homozygote mutant crypts, these changes are exacerbated. Thus, APC-mutation-induced changes in the counter-current-like mechanism cause expansion of proliferative populations (SCs, rapidly proliferating cells) during tumorigenesis. We propose this mechanism also drives crypt fission, functions in the crypt cycle, and underlies adenoma development. Novel chemoprevention approaches designed to normalize the two gradients and readjust the proliferative zone downwards, might thwart progression of these premalignant changes. PMID:24224156

  16. Enhancing transit service in rural areas and native american tribal communities : potential mechanisms to improve funding and service.

    Science.gov (United States)

    2014-08-01

    Primary funding for rural transit comes from federal and state Departments of Transportation (DOTs). However, through numerous : surveys, rural transit providers have cited financial constraints as a major limitation to providing adequate desired tra...

  17. Computer jargon explained

    CERN Document Server

    Enticknap, Nicholas

    2014-01-01

    Computer Jargon Explained is a feature in Computer Weekly publications that discusses 68 of the most commonly used technical computing terms. The book explains what the terms mean and why the terms are important to computer professionals. The text also discusses how the terms relate to the trends and developments that are driving the information technology industry. Computer jargon irritates non-computer people and in turn causes problems for computer people. The technology and the industry are changing so rapidly; it is very hard even for professionals to keep updated. Computer people do not

  18. Ensuring capacity adequacy during energy transition in mature power markets: a social efficiency comparison of scarcity pricing and capacity mechanism

    International Nuclear Information System (INIS)

    Petitet, Marie; Finon, Dominique; Janssen, Tanguy

    2016-01-01

    This paper analyses how a capacity market mechanism can address security of supply objectives in the case of an energy transition scenario which combines both high energy efficiency efforts which stabilise demand in a context of mature markets and rapid increase of renewables share. The exogenous entry of variable renewables introduces a new challenge in matter of security of supply during peak hours. To analyse this situation, power markets are simulated on the long term with a model based on System Dynamics modelling which integrates both new investment and closure decisions. This last trait is an originality of the model which is very relevant to study market maturity. The addition of a capacity mechanism in a market architecture with price cap is compared to scarcity pricing in different situations. Simulations are performed for two different cases: a case without any exogenous closure of existing power plants and a case with exogenous retirements which create a need of new investments. Under the assumption of a risk-neutral investor, the results indicate that compared to an energy-only market with price cap set at euro 3,000/MWh, energy-only with scarcity pricing and capacity mechanism are two efficient market designs to reach an acceptable level of loss of load. Besides, the results highlight that the advantage of one design on the other in terms of social efficiency depends on the future scenarios which are simulated. Moreover, the results illustrates that the three market designs lead to different level of risk for peaking units, suggesting that including risk aversion is a relevant further step in the modelling. (authors)

  19. A novel approach to determine the thermal transition of gum powder/hydro-gels using dynamic mechanical analysis

    Science.gov (United States)

    Nagamadhu, M.; Jeyaraj, P.; Kumar, G. C. Mohan

    2018-04-01

    The dynamic characterization of materials plays a major role in the present area. The many researchers are worked on solid materials and its characterization, it can be tested using dynamic mechanical analyzer (DMA), however, no such work on powder a semiliquid samples. The powder and liquid samples can also easily characterization as like solid samples using DMA. These powder samples are analyzed with a material pocket method which can be used to accurately determine very low levels of variation in powder properties, due to the high sensitivity of DMA to glass transitions. No such DMA studies on hydrogel and Gum powders. The gum powders are used in various applications start from food industries, pharmacy, natural gums paste, biomedical applications etc. among all this applications gum Ghatti is one of the powders using for varies applications. Around 50 milligrams of Ghatti powders are placed inside material pocket and analyzed storage modulus (G'), loss modulus (G″) and tan delta (δ). Also, understand the curing and glass transition effect using water, glycerin and superplastic from room temperature to 200°C. The result shows that storage modulus decreases with increase in temperature in pure Ghatti powder. The surprising improvement in storage modulus was found with an increase in temperature with addition of water, glycerin, and superplastic. However, loss modulus and tan delta are also having very significant influence and also shows a clear peak of the tan delta. The loss modulus results were found to be improved by adding solidifying agents, along with this water and superplastic better influence. But glycerine found to be hydrogel in nature and thermodynamic properties are much influenced by frequency.

  20. Performance measurements of a dual-rotor arm mechanism for efficient flight transition of fixed-wing unmanned aerial vehicles

    Science.gov (United States)

    McGill, Karen Ashley Jean

    Reconfigurable systems are a class of systems that can be transformed into different configurations, generally to perform unique functions or to maintain operational efficiency under distinct conditions. A UAV can be considered a reconfigurable system when coupled with various useful features such as vertical take-off and landing (VTOL), hover capability, long-range, and relatively large payload. Currently, a UAV having these capabilities is being designed by the UTSA Mechanical Engineering department. UAVs such as this one have the following potential uses: emergency response/disaster relief, hazard-critical missions, offshore oil rig/wind farm delivery, surveillance, etc. The goal of this thesis is to perform experimental thrust and power measurements for the propulsion system of this fixed-wing UAV. Focus was placed on a rotating truss arm supporting two brushless motors and rotors that will later be integrated to the ends of the UAV wing. These truss arms will rotate via a supporting shaft from 0° to 90° to transition the UAV between a vertical take-off, hover, and forward flight. To make this hover/transition possible, a relationship between thrust, arm angle, and power drawn was established by testing the performance of the arm/motor assembly at arm angles of 0°, 15°, 30°, 45°, 60°, 75°, and 90°. Universal equations for this system of thrust as a function of the arm angle were created by correlating data collected by a load cell. A Solidworks model was created and used to conduct fluid dynamics simulations of the streamlines over the arm/motor assembly.

  1. Large scale simulations of the mechanical properties of layered transition metal ternary compounds for fossil energy power system applications

    Energy Technology Data Exchange (ETDEWEB)

    Ching, Wai-Yim [Univ. of Missouri, Kansas City, MO (United States)

    2014-12-31

    Advanced materials with applications in extreme conditions such as high temperature, high pressure, and corrosive environments play a critical role in the development of new technologies to significantly improve the performance of different types of power plants. Materials that are currently employed in fossil energy conversion systems are typically the Ni-based alloys and stainless steels that have already reached their ultimate performance limits. Incremental improvements are unlikely to meet the more stringent requirements aimed at increased efficiency and reduce risks while addressing environmental concerns and keeping costs low. Computational studies can lead the way in the search for novel materials or for significant improvements in existing materials that can meet such requirements. Detailed computational studies with sufficient predictive power can provide an atomistic level understanding of the key characteristics that lead to desirable properties. This project focuses on the comprehensive study of a new class of materials called MAX phases, or Mn+1AXn (M = a transition metal, A = Al or other group III, IV, and V elements, X = C or N). The MAX phases are layered transition metal carbides or nitrides with a rare combination of metallic and ceramic properties. Due to their unique structural arrangements and special types of bonding, these thermodynamically stable alloys possess some of the most outstanding properties. We used a genomic approach in screening a large number of potential MAX phases and established a database for 665 viable MAX compounds on the structure, mechanical and electronic properties and investigated the correlations between them. This database if then used as a tool for materials informatics for further exploration of this class of intermetallic compounds.

  2. Mechanisms of spin-flipping and metal-insulator transition in nano-Fe3O4

    Science.gov (United States)

    Dito Fauzi, Angga; Aziz Majidi, Muhammad; Rusydi, Andrivo

    2017-04-01

    Fe3O4 is a half-metallic ferrimagnet with {{T}\\text{C}}˜ 860 K exhibiting metal-insulator transition (MIT) at  ˜120 K. In bulk form, the saturation magnetization is 0.6 Tesla (˜471 emu cm-3). A recent experimental study has shown that the saturation magnetization of nano-Fe3O4 thin films can achieve up to  ˜760 emu cm-3, attributed to spin-flipping of Fe ions at tetrahedral sites assisted by oxygen vacancies (V O). Such a system has shown to have higher MIT temperature (˜150 K). The spin-flipping is a new phenomenon in Fe3O4, while the MIT is a long-standing one. Here, we propose a model and calculations to investigate the mechanisms of both phenomena. Our results show that, for the system without V O, the ferrimagnetic configuration is energetically favorable. Remakably, upon inclusion of V O, the ground-state configuration switches into ferromagnetic. As for the MIT, by proposing temperature dependences of some hopping integrals in the model, we demonstrate that the system without and with V O undergo the MIT in slightly different ways, leading to higher MIT temperature for the system with V O, in agreement with the experimental data. Our results also show that the MIT in both systems occur concomitantly with the redistribution of electrons among the three Fe ions in each Fe3O4 formula unit. As such temperature dependences of hopping integrals may arise due to dynamic Jahn-Teller effects, our phenomenological theory may provide a way to reconcile existing theories relating the MIT to the structural transition and the charge ordering.

  3. Experimental study on incident wave speed and the mechanisms of deflagration-to-detonation transition in a bent geometry

    Science.gov (United States)

    Li, L.; Li, J.; Teo, C. J.; Chang, P. H.; Khoo, B. C.

    2018-03-01

    The study of deflagration-to-detonation transition (DDT) in bent tubes is important with many potential applications including fuel pipeline and mine tunnel designs for explosion prevention and detonation engines for propulsion. The aim of this study is to exploit low-speed incident shock waves for DDT using an S-shaped geometry and investigate its effectiveness as a DDT enhancement device. Experiments were conducted in a valveless detonation chamber using ethylene-air mixture at room temperature and pressure (303 K, 1 bar). High-speed Schlieren photography was employed to keep track of the wave dynamic evolution. Results showed that waves with velocity as low as 500 m/s can experience a successful DDT process through this S-shaped geometry. To better understand the mechanism, clear images of local explosion processes were captured in either the first curved section or the second curved section depending on the inlet wave velocity, thus proving that this S-shaped tube can act as a two-stage device for DDT. Owing to the curved wall structure, the passing wave was observed to undergo a continuous compression phase which could ignite the local unburnt mixture and finally lead to a local explosion and a detonation transition. Additionally, the phenomenon of shock-vortex interaction near the wave diffraction region was also found to play an important role in the whole process. It was recorded that this interaction could not only result in local head-on reflection of the reflected wave on the wall that could ignite the local mixture, and it could also contribute to the recoupling of the shock-flame complex when a detonation wave is successfully formed in the first curved section.

  4. The wireless internet explained

    CERN Document Server

    Rhoton, John

    2001-01-01

    The Wireless Internet Explained covers the full spectrum of wireless technologies from a wide range of vendors, including initiatives by Microsoft and Compaq. The Wireless Internet Explained takes a practical look at wireless technology. Rhoton explains the concepts behind the physics, and provides an overview that clarifies the convoluted set of standards heaped together under the umbrella of wireless. It then expands on these technical foundations to give a panorama of the increasingly crowded landscape of wireless product offerings. When it comes to actual implementation the book gives abundant down-to-earth advice on topics ranging from the selection and deployment of mobile devices to the extremely sensitive subject of security.Written by an expert on Internet messaging, the author of Digital Press''s successful Programmer''s Guide to Internet Mail and X.400 and SMTP: Battle of the E-mail Protocols, The Wireless Internet Explained describes and evaluates the current state of the fast-growing and crucial...

  5. Self-explaining roads

    NARCIS (Netherlands)

    Horst, A.R.A. van der; Kaptein, N.

    1999-01-01

    As a means to a sustainable safe traffic environment the concept of Self-Explaining Roads (SER) has been developed. The SER concept advocates a traffic environment that elicits safe driving behaviour simply by its design. In order to support safe driving behaviour and appropriate speed choice,

  6. The semi-brittle to ductile transition in peridotite on oceanic faults: mechanisms and P-T condition

    Science.gov (United States)

    Prigent, C.; Warren, J. M.; Kohli, A. H.; Teyssier, C. P.

    2017-12-01

    Experimental and geological-petrological studies suggest that the transition from brittle faulting to ductile flow of olivine, i.e. from seismic to aseismic behavior of mantle rocks (peridotites), occurs close to 600°C. However, recent seismological studies on oceanic transform faults (TFs) and ridges have documented earthquakes to temperatures (T) up to 700-800°C. In this study, we carried out a petrological, microstructural and geochemical analysis of natural samples of peridotites dredged at 3 different oceanic TFs of the Southwest Indian Ridge: Shaka, Prince Edward and Atlantis II. We selected samples displaying variable amounts of ductile deformation (from porphyroclastic tectonites to ultramylonites) prior to serpentinization in order to characterize their relatively high-T mechanical behavior. We find that the most deformed samples record cycles of ductile and brittle deformation. Peridotite ductile flow is characterized by drastic grain size reduction and the development of (ultra)mylonitic shear zones. In these zones, a switch in olivine deformation mechanism from dislocation creep to grain-size sensitive creep is associated with dissolution/precipitation processes. Brittle deformation of these samples is evidenced by the presence of (at least centimetric) transgranular and intragranular fractures that fragment coarser grained minerals. Both kinds of fractures are filled with the same phase assemblage as in the ultramylonitic bands: olivine + amphibole ± orthopyroxene ± Al-phase (plagioclase and/or spinel) ± sulfides. The presence of amphibole indicates that this semi-brittle deformation was assisted by hydrous fluids and its composition (e.g. high concentration of chlorine) suggests that the fluids have most likely a hydrothermal origin. We interpret these fractures to have formed under fluid-assisted conditions, recording paleo-seismic activity that alternated with periods of relatively slow interseismic ductile flow. The presence of Mg

  7. Chlamydia trachomatis In Vivo to In Vitro Transition Reveals Mechanisms of Phase Variation and Down-Regulation of Virulence Factors.

    Directory of Open Access Journals (Sweden)

    Vítor Borges

    Full Text Available Research on the obligate intracellular bacterium Chlamydia trachomatis demands culture in cell-lines, but the adaptive process behind the in vivo to in vitro transition is not understood. We assessed the genomic and transcriptomic dynamics underlying C. trachomatis in vitro adaptation of strains representing the three disease groups (ocular, epithelial-genital and lymphogranuloma venereum propagated in epithelial cells over multiple passages. We found genetic features potentially underlying phase variation mechanisms mediating the regulation of a lipid A biosynthesis enzyme (CT533/LpxC, and the functionality of the cytotoxin (CT166 through an ON/OFF mechanism. We detected inactivating mutations in CT713/porB, a scenario suggesting metabolic adaptation to the available carbon source. CT135 was inactivated in a tropism-specific manner, with CT135-negative clones emerging for all epithelial-genital populations (but not for LGV and ocular populations and rapidly increasing in frequency (~23% mutants per 10 passages. RNA-sequencing analyses revealed that a deletion event involving CT135 impacted the expression of multiple virulence factors, namely effectors known to play a role in the C. trachomatis host-cell invasion or subversion (e.g., CT456/Tarp, CT694, CT875/TepP and CT868/ChlaDub1. This reflects a scenario of attenuation of C. trachomatis virulence in vitro, which may take place independently or in a cumulative fashion with the also observed down-regulation of plasmid-related virulence factors. This issue may be relevant on behalf of the recent advances in Chlamydia mutagenesis and transformation where culture propagation for selecting mutants/transformants is mandatory. Finally, there was an increase in the growth rate for all strains, reflecting gradual fitness enhancement over time. In general, these data shed light on the adaptive process underlying the C. trachomatis in vivo to in vitro transition, and indicates that it would be prudent to

  8. Magnetic transition induced by mechanical deformation in Fe{sub 60}Al{sub 40−x}Si{sub x} ternary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Legarra, E., E-mail: estibaliz.legarra@ehu.es [Dpto. Electricidad y Electronica, Universidad del Pais Vasco (UPV/EHU), CP. 644, 48080 Bilbao (Spain); Apiñaniz, E. [Dpto. Fisica Aplicada I, Universidad del Pais Vasco, Alameda de Urquijo s/n, 48013 Bilbao (Spain); Plazaola, F. [Dpto. Electricidad y Electronica, Universidad del Pais Vasco (UPV/EHU), CP. 644, 48080 Bilbao (Spain); Jimenez, J.A. [Centro Nacional de Investigaciones Metalurgicas (CENIM), Avda. Gregorio del amo 8, 28040 Madrid (Spain)

    2014-02-15

    Highlights: • Fe{sub 60}Al{sub 40−x}Si{sub x} alloys were disordered by means of planetary ball milling technique. • Paramagnetic to ferromagnetic transition is observed with disordering. • Si addition hinders the disordering process and the increase of the lattice parameter. • Si addition promotes the paramagnetic to ferromagnetic transition. -- Abstract: We have used Mössbauer spectroscopy and X-ray diffraction to study the influence of different Al/Si ratios on the structural and magnetic properties of the mechanically deformed Fe{sub 60}Al{sub 40−x}Si{sub x} alloys. The results indicate that ternary alloys also present the magnetic transition with disordering observed in binary Fe{sub 60}Al{sub 40} alloys. Besides, Si introduction has two opposite contributions. From a structural point of view, hinders the disordering process, but, from a magnetic point of view promotes the magnetic transition.

  9. The quantum phase-transitions of water

    Science.gov (United States)

    Fillaux, François

    2017-08-01

    It is shown that hexagonal ices and steam are macroscopically quantum condensates, with continuous spacetime-translation symmetry, whereas liquid water is a quantum fluid with broken time-translation symmetry. Fusion and vaporization are quantum phase-transitions. The heat capacities, the latent heats, the phase-transition temperatures, the critical temperature, the molar volume expansion of ice relative to water, as well as neutron scattering data and dielectric measurements are explained. The phase-transition mechanisms along with the key role of quantum interferences and that of Hartley-Shannon's entropy are enlightened. The notions of chemical bond and force-field are questioned.

  10. Phase transition of KCl under shock compression

    CERN Document Server

    Mashimo, T; Tsumoto, K; Zhang, Y; Ando, S; Tonda, H

    2002-01-01

    It had been reported that for potassium chloride (KCl) the B1-B2 phase transition (PT) occurs under shock and static compressions, but the measured transition points showed large scatter. In this study, Hugoniot measurement experiments were performed on KCl single crystals by the inclined-mirror method combined with use of a powder gun. The anisotropic Hugoniot elastic limits and PT points were observed. The PT points along the (100), (110) and (111) axis directions were determined as 2.5, 2.2 and 2.1 GPa, respectively. The anisotropic transition was reasonably explained in terms of the displacement mechanism along the (111) axis direction.

  11. Toward a Multi-scale Phase Transition Kinetics Methodology: From Non-Equilibrium Statistical Mechanics to Hydrodynamics

    Science.gov (United States)

    Belof, Jonathan; Orlikowski, Daniel; Wu, Christine; McLaughlin, Keith

    2013-06-01

    Shock and ramp compression experiments are allowing us to probe condensed matter under extreme conditions where phase transitions and other non-equilibrium aspects can now be directly observed, but first principles simulation of kinetics remains a challenge. A multi-scale approach is presented here, with non-equilibrium statistical mechanical quantities calculated by molecular dynamics (MD) and then leveraged to inform a classical nucleation and growth kinetics model at the hydrodynamic scale. Of central interest is the free energy barrier for the formation of a critical nucleus, with direct NEMD presenting the challenge of relatively long timescales necessary to resolve nucleation. Rather than attempt to resolve the time-dependent nucleation sequence directly, the methodology derived here is built upon the non-equilibrium work theorem in order to bias the formation of a critical nucleus and thus construct the nucleation and growth rates. Having determined these kinetic terms from MD, a hydrodynamics implementation of Kolmogorov-Johnson-Mehl-Avrami (KJMA) kinetics and metastabilty is applied to the dynamic compressive freezing of water and compared with recent ramp compression experiments [Dolan et al., Nature (2007)] Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the U.S. Department of Energy, National Nuclear Security Administration under Contract DE-AC52-07NA27344.

  12. High-throughput exploration of thermoelectric and mechanical properties of amorphous NbO{sub 2} with transition metal additions

    Energy Technology Data Exchange (ETDEWEB)

    Music, Denis, E-mail: music@mch.rwth-aachen.de; Geyer, Richard W.; Hans, Marcus [Materials Chemistry, RWTH Aachen University, Kopernikusstr. 10, 52074 Aachen (Germany)

    2016-07-28

    To increase the thermoelectric efficiency and reduce the thermal fatigue upon cyclic heat loading, alloying of amorphous NbO{sub 2} with all 3d and 5d transition metals has systematically been investigated using density functional theory. It was found that Ta fulfills the key design criteria, namely, enhancement of the Seebeck coefficient and positive Cauchy pressure (ductility gauge). These quantum mechanical predictions were validated by assessing the thermoelectric and elastic properties on combinatorial thin films, which is a high-throughput approach. The maximum power factor is 2813 μW m{sup −1} K{sup −2} for the Ta/Nb ratio of 0.25, which is a hundredfold increment compared to pure NbO{sub 2} and exceeds many oxide thermoelectrics. Based on the elasticity measurements, the consistency between theory and experiment for the Cauchy pressure was attained within 2%. On the basis of the electronic structure analysis, these configurations can be perceived as metallic, which is consistent with low electrical resistivity and ductile behavior. Furthermore, a pronounced quantum confinement effect occurs, which is identified as the physical origin for the Seebeck coefficient enhancement.

  13. High-throughput exploration of thermoelectric and mechanical properties of amorphous NbO_2 with transition metal additions

    International Nuclear Information System (INIS)

    Music, Denis; Geyer, Richard W.; Hans, Marcus

    2016-01-01

    To increase the thermoelectric efficiency and reduce the thermal fatigue upon cyclic heat loading, alloying of amorphous NbO_2 with all 3d and 5d transition metals has systematically been investigated using density functional theory. It was found that Ta fulfills the key design criteria, namely, enhancement of the Seebeck coefficient and positive Cauchy pressure (ductility gauge). These quantum mechanical predictions were validated by assessing the thermoelectric and elastic properties on combinatorial thin films, which is a high-throughput approach. The maximum power factor is 2813 μW m"−"1 K"−"2 for the Ta/Nb ratio of 0.25, which is a hundredfold increment compared to pure NbO_2 and exceeds many oxide thermoelectrics. Based on the elasticity measurements, the consistency between theory and experiment for the Cauchy pressure was attained within 2%. On the basis of the electronic structure analysis, these configurations can be perceived as metallic, which is consistent with low electrical resistivity and ductile behavior. Furthermore, a pronounced quantum confinement effect occurs, which is identified as the physical origin for the Seebeck coefficient enhancement.

  14. Atomic-scale study of the amorphous-to-crystalline phase transition mechanism in GeTe thin films

    CERN Document Server

    Mantovan, R.; Mokhles Gerami, A.; Mølholt, T. E.; Wiemer, C.; Longo, M.; Gunnlaugsson, H. P.; Johnston, K.; Masenda, H.; Naidoo, D.; Ncube, M.; Bharuth-Ram, K.; Fanciulli, M.; Gislason, H. P.; Langouche, G.; Ólafsson, S.; Weyer, G.

    The underlying mechanism driving the structural amorphous-to-crystalline transition in Group VI chalcogenides is still a matter of debate even in the simplest GeTe system. We exploit the extreme sensitivity of 57Fe emission Mössbauer spectroscopy, following dilute implantation of 57Mn (T½ = 1.5 min) at ISOLDE/CERN, to study the electronic charge distribution in the immediate vicinity  of the 57Fe probe substituting Ge (FeGe), and to interrogate the local environment of FeGe over the amorphous-crystalline phase transition in GeTe thin films. Our results show that the local structure  of as-sputtered amorphous GeTe is a combination of tetrahedral and defect-octahedral sites. The main effect of the crystallization is the conversion from tetrahedral to defect-free octahedral sites.  We discover that only the tetrahedral fraction in amorphous GeTe participates to the change of the FeGe-Te chemical bond...

  15. Wobble↔Watson-Crick tautomeric transitions in the homo-purine DNA mismatches: a key to the intimate mechanisms of the spontaneous transversions.

    Science.gov (United States)

    Brovarets', Ol'ha O; Hovorun, Dmytro M

    2015-01-01

    The intrinsic capability of the homo-purine DNA base mispairs to perform wobble↔Watson-Crick/Topal-Fresco tautomeric transitions via the sequential intrapair double proton transfer was discovered for the first time using QM (MP2/DFT) and QTAIM methodologies that are crucial for understanding the microstructural mechanisms of the spontaneous transversions.

  16. The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective

    International Nuclear Information System (INIS)

    Damski, Bogdan

    2005-01-01

    It can be shown that the dynamics of the Landau-Zener model can be accurately described in terms of the Kibble-Zurek theory of the topological defect production in nonequilibrium phase transitions. The simplest quantum model exhibiting the Kibble-Zurek mechanism is presented. A new intuitive description of Landau-Zener dynamics is found

  17. Effect of humic acid and transition metal ions on the debromination of decabromodiphenyl by nano zero-valent iron: kinetics and mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Lei; Liang, Bin; Fang, Zhanqiang, E-mail: sunmoon124@163.com; Xie, Yingying [South China Normal University, School of Chemistry and Environment (China); Tsang, Eric Pokeung [Guangdong Technology Research Centre for Ecological Management and Remediation of Water System (China)

    2014-12-15

    E-waste sites are one of the main sources of the pollutant decabromodiphenyl ether (BDE209); contaminated farmland and water bodies urgently need to be remediated. As a potential in situ remediation technology, nano zero-valent iron (nZVI) technology effectively removes PBDEs. However, the humic acid (HA) and heavy metals in the contaminated sites affect the remediation effects. In this study, we explored the influence of HA and transition metals on the removal of PBDEs by nZVI. The specific surface area and average size of the nZVI particles we prepared were 35 m{sup 2}/g and 50–80 nm, respectively. The results showed that HA inhibited the removal of PBDEs; as the concentration of HA increased, its inhibitory effect intensified and the k{sub obs} decreased. However, the three metal ions (Cu{sup 2+}, Co{sup 2+}, and Ni{sup 2+}) enhanced the removal of PBDEs. The enhancement effect was followed the order Ni{sup 2+} > Cu{sup 2+} > Co{sup 2+}. As the concentration of metal ions increased, the promotion effect improved. The synergistic effect of HA and the metal ions was manifested in the combination of the inhibitory effect and the enhancement effect. The values of the first-order kinetic constants (k{sub obs}) under the combined effect were between the values of the rate constants under the individual components. The inhibitory mechanism was the chemisorption of HA, i.e., the benzene carboxylic and phenolic hydroxyl groups in HA occupied the surfactant reactive sites of nZVI, thus inhibiting the removal of BDE209. The promotion mechanism of Cu{sup 2+}, Co{sup 2+}, and Ni{sup 2+} can be explained by their reduction to zero valence on the nZVI surface; furthermore, Ni{sup 2+} strongly affects the debromination and dehydrogenation of BDE209, leading to a stronger promotability than Cu{sup 2+}or Co{sup 2+}.

  18. MAGMADIM: Young Explainers Program

    International Nuclear Information System (INIS)

    Paltiel, Z.

    2005-01-01

    Full Text:Physics teachers and educators constantly face the problem of inspiring their students to major in physics. On the other hand, science museums are designed to provide a pleasant environment which will stimulate and encourage a science associated experience to the general public. Typically, there is no intention to teach science as such in science museums. One may, however, use the science museum to teach and inspire certain groups of students in a much deeper sense. In fact they may actually enthusiastically learn much of the school physics curriculum at the museum. This report discusses the Magmadim program through which 10th graders are trained to be young explainers at the Weizmann Institutes Clore Garden of Science. To this end they study the physics underlying its exhibits in an after-school course. The ultimate goal is for the 'magmadim' to become the best possible explainers and be able to face all sorts of museum visitors. Along with learning how to instruct visitors, they must learn the physics behind the exhibits to give a full explanation of the exhibit and be able to answer any question that may arise. Our 5 year experience with the program shows that its self-selected participants not only study a lot of science, but also like it and learn how to explain the content to other people. This program, along with similar programs at the Bloomfield Science Museum and the Madatzim (young physics tutors) program of Ort, help in promoting the interest in science in general and physics in particular among school students. Various ways to expand the programs will also be discussed

  19. A novel approach using metabolomics coupled with hematological and biochemical parameters to explain the enriching-blood effect and mechanism of unprocessed Angelica sinensis and its 4 kinds of processed products.

    Science.gov (United States)

    Ji, Peng; Wei, Yanming; Hua, Yongli; Zhang, Xiaosong; Yao, Wanling; Ma, Qi; Yuan, Ziwen; Wen, Yanqiao; Yang, Chaoxue

    2018-01-30

    Angelica sinensis (AS), root of Angelica sinensis (Oliv.) Diels, an important kind of Chinese traditional herbal medicine, has been used for women to enrich the blood for thousands of years. It is mainly distributed in Gansu province of China. According to Traditional Chinese medicine usage, unprocessed AS (UAS) and its 4 kinds of processed products (ASs) are all used to treat different diseases or syndromes. The difference among the enriching-blood effects of ASs is unclear. And their exact mechanisms of enriching the blood are not fully understood. In this study, our aim is to compare the enriching-blood effect and explain the related mechanism of ASs, to lay the foundation for the blood deficiency diagnosis and the rational use of ASs in the clinic. ASs were used to intervene the blood deficiency syndrome model mice induced by acetyl phenylhydrazine (APH) and cyclophosphamide (CTX). A novel approach using metabolomics coupled with hematological and biochemical parameters to explain the enriching-blood effect and mechanism of ASs was established. The blood routine examination, ATPase, glucose-6-phosphate dehydrogenase, methemoglobin, glutathion peroxidase, glutathione reductase, and erythropoietin were measured. Two biofluids (plasma and urine) obtained from mice were analyzed with GC-MS. Distinct changes in metabolite patterns of the two biofluids after mice were induced by APH and CTX, and mice were intervened with ASs were analyzed using partial least squares-discriminant analysis. Potential biomarkers were found using a novel method including variable importance in the projection (VIP) >1.0, volcano plot analysis, and significance analysis of microarray. The results of hematological, biochemical parameters and the integrated metabolomics all showed the blood deficiency syndrome model was built successfully, ASs exhibited different degree of enriching-blood effect, and AS pached with alcohol (AAS) exhibited the best enriching-blood effect. 16 metabolites in

  20. Linear Algebra Thoroughly Explained

    CERN Document Server

    Vujičić, Milan

    2008-01-01

    Linear Algebra Thoroughly Explained provides a comprehensive introduction to the subject suitable for adoption as a self-contained text for courses at undergraduate and postgraduate level. The clear and comprehensive presentation of the basic theory is illustrated throughout with an abundance of worked examples. The book is written for teachers and students of linear algebra at all levels and across mathematics and the applied sciences, particularly physics and engineering. It will also be an invaluable addition to research libraries as a comprehensive resource book for the subject.

  1. The behavior of exciplex decay processes and interplay of radiationless transition and preliminary reorganization mechanisms of electron transfer in loose and tight pairs of reactants.

    Science.gov (United States)

    Kuzmin, Michael G; Soboleva, Irina V; Dolotova, Elena V

    2007-01-18

    Exciplex emission spectra and rate constants of their decay via internal conversion and intersystem crossing are studied and discussed in terms of conventional radiationless transition approach. Exciplexes of 9-cyanophenanthrene with 1,2,3-trimethoxybenzene and 1,3,5-trimethoxybenzene were studied in heptane, toluene, butyl acetate, dichloromethane, butyronitrile, and acetonitrile. A better description of spectra and rate constants is obtained using 0-0 transition energy and Gauss broadening of vibrational bands rather than the free energy of electron transfer and reorganization energy. The coincidence of parameters describing exciplex emission spectra and dependence of exciplex decay rate constants on energy gap gives the evidence of radiationless quantum transition mechanism rather than thermally activated medium reorganization mechanism of charge recombination in exciplexes and excited charge transfer complexes (contact radical ion pairs) as well as in solvent separated radical ion pairs. Radiationless quantum transition mechanism is shown to provide an appropriate description also for the main features of exergonic excited-state charge separation reactions if fast mutual transformations of loose and tight pairs of reactants are considered. In particular, very fast electron transfer (ET) in tight pairs of reactants with strong electronic coupling of locally excited and charge transfer states can prevent the observation of an inverted region in bimolecular excited-state charge separation even for highly exergonic reactions.

  2. Measurements and modeling for examination of magnitudes and thresholds and transitions of cellular radio-protective mechanisms

    International Nuclear Information System (INIS)

    Leonard, B.

    2007-01-01

    factor of 10 excess dose to connective tissue and organs. Finally, a method for measuring the changes in endogenic cell capabilities to carry-out increased radio-protective processes i.e. separate decreased direct damage (greater ROS scavenging) and the increased repair rates (increased damage recognition, increased damage site location, increased repair mobilization and finally increased repair of the actual damage). This method shows for low LET IDRE no decreased direct damage occurs and significant increased repair occurs. After the 'triggered' threshold and transition of IDRE protection against cell killing, a larger fraction of cell damage produces viable mutations. This suggests that the cells bio-chemically conclude it is senseless to provide protection against potentially mutations in the low dose rate region if all the cells are being killed. Conclusions: The BE does not cause the underground miners high Radon IDRE. Single Specific Energy nucleus hits at very low dose rates activate adaptive response protection of spontaneous neoplastic transformations from mammography X-rays. A dose and dose-rate coupling is modeled. A correlation between the 'triggering' of the transition of the radio-protection for the Hyper-radiosensitivity and dose induced radio-resistance effect (HRS/IRR) and the low LET 'inverse' dose-rate effect (IDRE) as if they are from same radioprotective mechanisms. Possible excess connective tissue and organs damage occurs from low LET IDRE in LDR Brachytherapy treatments with permanent implants.

  3. The durability of mortar: consideration of interfacial transition zones to characterize and to model the physicals and chemicals mechanisms involved in mortar corrosion

    International Nuclear Information System (INIS)

    Bourdette, B.

    1994-01-01

    In the framework of a study program aiming at anticipating the lifetime of concrete containers used for radioactive waste surface storage, the aim of this work is to model the physical and chemical processes of leaching of the mortars (cement paste + sand) by low ionized water at pH=8.5. This step is indispensable before the predicting of concrete durability (cement paste + sand + gravels) in which it can exist an initial microcrack. The mortar can be described as a three-phase system: the aggregates, the transition aureoles (aggregates-cement paste interfaces) and the cement matrix. The evolution of the very particular characteristics of the transition aureoles in terms of the degradation have been studied. The study has shown that the thickness of the degraded zone in the transition aureole is identical to those of the cement matrix. It has been shown too that the diffusion coefficient in the degraded transition aureole is similar to the diffusion coefficient in the degraded cement matrix. These observations can eventually be explained by a recombination of the texture and of the structure of the transition aureole during the degradation. This reorganization could lead to a decrease of the textural and structural differences which exist between the transition aureole and the cement matrix. As it has been supposed that the characteristics of the degraded zone govern the degradation kinetics, the thickness degraded in the transition aureole is then similar to those of the cement matrix. Mortar can then be considered as a two-phase system towards the degradation: the cement paste is assimilated to a pure paste but with different characteristics due to the presence of transition aureoles. In order to model the degradation of the mortar, the model used has been developed and validated by Adenot for pure cement pastes. At 300 years, the model anticipates that the thickness of the degraded zone in the mortar is of 2.9 cm, which is lightly higher than for the pure paste

  4. Ly α Absorption at Transits of HD 209458b: A Comparative Study of Various Mechanisms Under Different Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Khodachenko, M. L.; Lammer, H.; Kislyakova, K. G.; Fossati, L.; Arkhypov, O. V. [Space Research Institute, Austrian Academy of Sciences, Graz (Austria); Shaikhislamov, I. F.; Berezutsky, A. G.; Miroshnichenko, I. B.; Posukh, V. G. [Institute of Laser Physics SB RAS, Novosibirsk (Russian Federation); Johnstone, C. P., E-mail: maxim.khodachenko@oeaw.ac.at [Department of Astrophysics, University of Vienna (Austria)

    2017-10-01

    To shed more light on the nature of the observed Ly α absorption during transits of HD 209458b and to quantify the major mechanisms responsible for the production of fast hydrogen atoms (the so-called energetic neutral atoms, ENAs) around the planet, 2D hydrodynamic multifluid modeling of the expanding planetary upper atmosphere, which is driven by stellar XUV, and its interaction with the stellar wind has been performed. The model self-consistently describes the escaping planetary wind, taking into account the generation of ENAs due to particle acceleration by the radiation pressure and by the charge exchange between the stellar wind protons and planetary atoms. The calculations in a wide range of stellar wind parameters and XUV flux values showed that under typical Sun-like star conditions, the amount of generated ENAs is too small, and the observed absorption at the level of 6%–8% can be attributed only to the non-resonant natural line broadening. For lower XUV fluxes, e.g., during the activity minima, the number of planetary atoms that survive photoionization and give rise to ENAs increases, resulting in up to 10%–15% absorption at the blue wing of the Ly α line, caused by resonant thermal line broadening. A similar asymmetric absorption can be seen under the conditions realized during coronal mass ejections, when sufficiently high stellar wind pressure confines the escaping planetary material within a kind of bowshock around the planet. It was found that the radiation pressure in all considered cases has a negligible contribution to the production of ENAs and the corresponding absorption.

  5. Matlab for engineers explained

    CERN Document Server

    Gustafsson, Fredrik

    2003-01-01

    This book is written for students at bachelor and master programs and has four different purposes, which split the book into four parts: 1. To teach first or early year undergraduate engineering students basic knowledge in technical computations and programming using MATLAB. The first part starts from first principles and is therefore well suited both for readers with prior exposure to MATLAB but lacking a solid foundational knowledge of the capabilities of the system and readers not having any previous experience with MATLAB. The foundational knowledge gained from these interactive guided tours of the system will hopefully be sufficient for an effective utilization of MATLAB in the engineering profession, in education and in research. 2. To explain the foundations of more advanced use of MATLAB using the facilities added the last couple of years, such as extended data structures, object orientation and advanced graphics. 3. To give an introduction to the use of MATLAB in typical undergraduate courses in elec...

  6. France-Germany Study. Energy transition and capacity mechanisms. A contribution to the European debate with a view to 2030

    International Nuclear Information System (INIS)

    2015-01-01

    In most countries of the world, the electricity sector is undergoing a structural transition, driven by requirements of efficiency and sustainability: renewable capacity is witnessing a continuous growth, making the need of flexibility increase, while electricity market prices tend to decrease. In the medium-term, the power system will have to deal with increasing levels of risk, which will take different forms in France and Germany, which are the two countries this study focuses on. In France, the risk is related to the thermo-sensitive power demand, whereas in Germany the risks are related to the high penetration of intermittent renewable power generation. Both of these facets of risk lead to a high volatility of the residual demand from one hour to the next, and therefore require the power system to be more flexible. In this context, the question of whether the current market design will be able to ensure a satisfactory level of security of supply through an adequate remuneration of it actors is open. Market design is therefore a crucial point whose appropriate treatment could ensure the sustainability of the current and future power systems. An inadequate market design could in contrast lead to a massive decommissioning of power plants, including the most flexible ones, which will directly impact the security of supply in both France and Germany. The security of supply at the European level could also be at risk since France and Germany host the two largest power systems in Europe. To face these new challenges, several solutions are being planned or implemented in different countries. These solutions all involve combinations of the following ingredients: - improvements of the energy-only markets, without price caps and with higher demand-response capacities, to let the system send more accurate price signals during times of scarcity, - capacity reliability mechanisms, among them capacity mechanisms based on a targeted level of security of supply at a national

  7. Modulating state transition and mechanical properties of viscoelastic resins from maize zein through interactions with plasticizers and co-proteins

    NARCIS (Netherlands)

    Erickson, D.P.; Renzetti, S.; Jurgens, A.; Campanella, O.H.; Hamaker, B.R.

    2014-01-01

    Viscoelastic properties have been observed in maize zein above its glass transition temperature; however, current understanding of how these viscoelastic polymers can be further manipulated for optimal performance is limited. Using resins formed via precipitation from aqueous ethanolic environments,

  8. Kinetics and mechanism of transitions involving the lamellar, cubic, inverted hexagonal, and fluid isotropic phases of hydrated monoacylglycerides monitored by time-resolved X-ray diffraction

    International Nuclear Information System (INIS)

    Caffrey, M.

    1987-01-01

    A study of the dynamics and mechanism of the various thermotropic phase transitions undergone by the hydrated monoacylglycerides monoolein and monoelaidin, in the temperature range of 20-120 0 C and from 0 to 5 M NaCl, has been undertaken. Measurements were made by using time-resolved X-ray diffraction at the Cornell High-Energy Synchrotron Source. The lamellar chain order/disorder, lamellar/cubic (body centered, space group No.8), cubic (body centered, No.8)/cubic (primitive No.4), cubic (body centered, No.12)/cubic (primitive, No.4), cubic (primitive, No.4)/fluid isotropic, cubic (body centered, No.12)/inverted hexagonal, cubic (primitive, No.4)/inverted hexagonal, and hexagonal/fluid isotropic transitions were examined under active heating and passive cooling by using a jump in temperature to effect phase transformation. All of the transitions with the exception of the cubic (body centered, No.8)/cubic (primitive, No.4) and the cubic (body centered, No.12)/cubic (primitive, No.4) cooling transitions were found (1) to be repeatable, (2) to be reversible, and (3) to have an upper bound on the transit time (time required to complete the transition) of ≤ 3s. In addition to the time-resolved measurements, data were obtained on the stability of the various phases in the temperature range of 20-120 0 C and from 0 to 5 M NaCl. In the case of fully hydrated monoolein, high salt strongly favors the hexagonal over the cubic (body centered, No.8) phase and slightly elevates the hexagonal/fluid isotropic transition temperature. With fully hydrated monoelaidin, the hexagonal phase which is not observed in the absence of salt becomes the dominant phase at high salt concentration

  9. The mechanisms of transitions from natural convection and nucleate boiling to nucleate boiling or film boiling caused by rapid depressurization in highly subcooled water

    International Nuclear Information System (INIS)

    Sakurai, Akira; Shiotsu, Masahiro; Hata, Koichi; Fukuda, Katsuya

    1999-01-01

    The mechanisms of transient boiling process including the transitions to nucleate boiling or film boiling from initial heat fluxes, q in , in natural convection and nucleate boiling regimes caused by exponentially decreasing system pressure with various decreasing periods, τ p on a horizontal cylinder in a pool of highly subcooled water were clarified. The transient boiling processes with different characteristics were divided into three groups for low and intermediate q in in natural convection regime, and for high q in in nucleate boiling regime. The transitions at maximum heat fluxes from low q in in natural convection regime to stable nucleate boiling regime occurred independently of the τ p values. The transitions from intermediate and high q in values in natural convection and nucleate boiling to stable film boiling occurred for short τ p values, although those to stable nucleate boiling occurred for tong τ p values. The CHF and corresponding surface superheat values at which the transition to film boiling occurred were considerably lower and higher than the steady-state values at the corresponding pressure during the depressurization respectively. It was suggested that the transitions to stable film boiling at transient critical heat fluxes from intermediate q in in natural convection and from high q in in nucleate boiling for short τ p occur due to explosive-like heterogeneous spontaneous nucleation (HSN). The photographs of typical vapor behavior due to the HSN during depressurization from natural convection regime for short τ p were shown. (author)

  10. "Explaining the Gender Wage Gap in Georgia"

    OpenAIRE

    Tamar Khitarishvili

    2009-01-01

    This paper evaluates gender wage differentials in Georgia between 2000 and 2004. Using ordinary least squares, we find that the gender wage gap in Georgia is substantially higher than in other transition countries. Correcting for sample selection bias using the Heckman approach further increases the gender wage gap. The Blinder Oaxaca decomposition results suggest that most of the wage gap remains unexplained. The explained portion of the gap is almost entirely attributed to industrial variab...

  11. A kinetic model that explains the dependence of magnetic susceptibility of sediment on grain size and organic matter content in transitional marine environments. Testing case studies in estuarine-like environments of NW Iberia

    Science.gov (United States)

    Rey, D.; Mohamed, K. J.; Andrade, A.; Rubio, B.; Bernabeu, A. M.

    2017-12-01

    The wide use of magnetic proxies to study pollution, sedimentological processes, and environmental and paleoclimatic changes is currently limited by the lack of transference functions that closely correlate with the unmeasurable variables. Among them, magnetic susceptibility (MS) is the oldest and most popular, but have yet to live up to its expectations. This paper explores and quantifies how MS values of surficial sediments in transitional environments depends on grain size and on what can be said about the spatial distribution of hydrodynamic forces and the potential modulation of MS by sediment and organic matter provenances. The concentration of (oxyhydr)oxides in sands (d50 > 63 microns) is primarily controlled by their degree of dilution in the diamagnetic framework, which is larger for coarser grainsizes. In contrast, the concentration of (oxyhydr)oxides in muddy sediments is controlled by their dissolution rate during very early diagenesis, which is controlled by their content in organic matter (TOC), inversely dependent of grainsize. The balance between both components results in the study area in sands of d50 = 68 microns displaying the maximum MS values. The influence of organic matter on the dissolution of magnetite in surficial sediments can be quantified using a simple kinetic model. The model reveals the existence of a negative exponential relationship between magnetic susceptibility and grain size, that depends on the TOC of the fine-grained fraction. The model accurately predicts that a TOC increase of 0.35% results in a 50% reduction in the concentration of magnetite in the sediments of the Ría the Muros. We have also encountered this relationship not universal in this form, as its quantification is strongly modulated by coarse sediment mineralogy, TOC lability and by other factors such as wave climate, depth, and sediment oxygenation. Better understanding and quantification of the role that TOC, hydrodynamics, and changes in the geochemical

  12. Liquid-solid phase transition of physical hydrogels subject to an externally applied electro-chemo-mechanical coupled field with mobile ionic species.

    Science.gov (United States)

    Wu, Tao; Li, Hua

    2017-08-09

    In this study, a model was multiphysically developed for the simulation of the phase transition of physical hydrogels between liquid solution and solid gel states, subject to an electro-chemo-mechanically coupled field, with the effect of the mobile ionic species in the solution. The present model consists of the governing equations for the equilibrium of forces and the conservation of mass, Maxwell's equations, and an evolution equation for the interface. Based on the second law of thermodynamics, the constitutive equations are formulated from the energy viewpoint, including a novel formulation of free energy with the effect of crosslink density. The present model may be reduced to Suo's non-equilibrium thermodynamic theory if the interface is ignored when only a single phase exists. It may also be reduced to Dolbow's model for gel-gel phase transition when the electric field is ignored. Therefore, the present model becomes more generalized since it is able to represent both the bulk phase and the interface behaviors, and the mechanical field is simultaneously coupled with both the electric and chemical fields. In the first case study, the system at equilibrium state was numerically investigated for analysis of the influences of the electrical and chemical potentials as well as the mechanical pressure externally imposed on the boundary of the system domain. The second case study presents a spherically symmetrical solution-gel phase transition at non-equilibrium states, with the emphasis on the evolution of both the interface and electrochemical potentials.

  13. Transition pattern and mechanism of B-lymphocyte precursors in regenerated mouse bone marrow after subtotal body irradiation.

    Directory of Open Access Journals (Sweden)

    Deping Han

    Full Text Available Little is known about the effects of ionizing radiation on the transition and the related signal transduction of progenitor B cells in the bone marrow. Thus, using an NIH Swiss mouse model, we explored the impact of ionizing radiation on the early stage of B-cell development via an examination of the transition of CLP to pro-B to pre-B cells within bone marrow as a function of radiation doses and times. Our results showed that while the total number of bone marrow lymphoid cells at different stages were greatly reduced by subtotal body irradiation (sub-TBI, the surviving cells continued to transition from common lymphoid progenitors to pro-B and then to pre-B in a reproducible temporal pattern. The rearrangement of the immunoglobulin heavy chain increased significantly 1-2 weeks after irradiation, but no change occurred after 3-4 weeks. The rearrangement of the immunoglobulin light chain decreased significantly 1-2 weeks after sub-TBI but increased dramatically after 3-4 weeks. In addition, several key transcription factors and signaling pathways were involved in B-precursor transitions after sub-TBI. The data indicate that week 2 after irradiation is a critical time for the transition from pro-B cells to pre-B cells, reflecting that the functional processes for different B-cell stages are well preserved even after high-dose irradiation.

  14. Hydration layer dynamics and association mechanisms of food and antifreeze proteins : A Molecular Dynamics and Transition Path Sampling study

    NARCIS (Netherlands)

    Brotzakis, Z.F.

    2017-01-01

    By the time the reader reads this line, billions of protein association events just occurred in our body, such as the ones regulating cell communication, signaling pathways, or in initiating a self-assembly processes, such as tissue fabrication, etc. The timescale of such transitions is slow,

  15. New enhancement mechanism of the transitions in the Earth of the solar and atmospheric neutrinos crossing the Earth core

    International Nuclear Information System (INIS)

    Petcov, S.T.

    1999-01-01

    It is shown that the ν 2 → ν e and ν μ → ν e (ν e → ν μ(τ) ) transitions respectively of the solar and atmospheric neutrinos in the Earth in the case of ν e - ν μ(τ) mixing in vacuum, are strongly enhanced by a new type of resonance when the neutrinos cross the Earth core. The resonance is operative at small mixing angles but differs from the MSW one. It is in many respects similar to the electron paramagnetic resonance taking place in a specific configuration of two magnetic fields. The conditions for existence of the new resonance include, in particular, specific constraints on the neutrino oscillation lengths in the Earth mantle and in the Earth core, thus the resonance is a 'neutrino oscillation length resonance'. It leads also to enhancement of the ν 2 → ν e and ν e → ν s transitions in the case of ν e - ν s mixing and of the ν-bar s (or ν μ → ν s ) transitions at small mixing angles. The presence of the neutrino oscillation length resonance in the transitions of solar and atmospheric neutrinos traversing the Earth core has important implications for current and future solar and atmospheric neutrino experiments, and more specifically, for the interpretation of the results of the Super-Kamiokande experiment

  16. Statistical mechanics

    CERN Document Server

    Jana, Madhusudan

    2015-01-01

    Statistical mechanics is self sufficient, written in a lucid manner, keeping in mind the exam system of the universities. Need of study this subject and its relation to Thermodynamics is discussed in detail. Starting from Liouville theorem gradually, the Statistical Mechanics is developed thoroughly. All three types of Statistical distribution functions are derived separately with their periphery of applications and limitations. Non-interacting ideal Bose gas and Fermi gas are discussed thoroughly. Properties of Liquid He-II and the corresponding models have been depicted. White dwarfs and condensed matter physics, transport phenomenon - thermal and electrical conductivity, Hall effect, Magneto resistance, viscosity, diffusion, etc. are discussed. Basic understanding of Ising model is given to explain the phase transition. The book ends with a detailed coverage to the method of ensembles (namely Microcanonical, canonical and grand canonical) and their applications. Various numerical and conceptual problems ar...

  17. Wetting and Dewetting Transitions on Submerged Superhydrophobic Surfaces with Hierarchical Structures.

    Science.gov (United States)

    Wu, Huaping; Yang, Zhe; Cao, Binbin; Zhang, Zheng; Zhu, Kai; Wu, Bingbing; Jiang, Shaofei; Chai, Guozhong

    2017-01-10

    The wetting transition on submersed superhydrophobic surfaces with hierarchical structures and the influence of trapped air on superhydrophobic stability are predicted based on the thermodynamics and mechanical analyses. The dewetting transition on the hierarchically structured surfaces is investigated, and two necessary thermodynamic conditions and a mechanical balance condition for dewetting transition are proposed. The corresponding thermodynamic phase diagram of reversible transition and the critical reversed pressure well explain the experimental results reported previously. Our theory provides a useful guideline for precise controlling of breaking down and recovering of superhydrophobicity by designing superhydrophobic surfaces with hierarchical structures under water.

  18. Effects of chronic Akt/mTOR inhibition by rapamycin on mechanical overload-induced hypertrophy and myosin heavy chain transition in masseter muscle.

    Science.gov (United States)

    Umeki, Daisuke; Ohnuki, Yoshiki; Mototani, Yasumasa; Shiozawa, Kouichi; Fujita, Takayuki; Nakamura, Yoshiki; Saeki, Yasutake; Okumura, Satoshi

    2013-01-01

    To examine the effects of the Akt/mammalian target of rapamycin (mTOR) pathway on masseter muscle hypertrophy and myosin heavy chain (MHC) transition in response to mechanical overload, we analyzed the effects of bite-opening (BO) on the hypertrophy and MHC composition of masseter muscle of BO-rats treated or not treated with rapamycin (RAPA), a selective mTOR inhibitor. The masseter muscle weight in BO-rats was significantly greater than that in controls, and this increase was attenuated by RAPA treatment. Expression of slow-twitch MHC isoforms was significantly increased in BO-rats with/without RAPA treatment, compared with controls, but the magnitude of the increase was much smaller in RAPA-treated BO-rats. Phosphorylation of p44/42 MAPK (ERK1/2), which preserves fast-twitch MHC isoforms in skeletal muscle, was significantly decreased in BO-rats, but the decrease was abrogated by RAPA treatment. Calcineurin signaling is known to be important for masseter muscle hypertrophy and fast-to-slow MHC isoform transition, but expression of known calcineurin activity modulators was unaffected by RAPA treatment. Taken together, these results indicate that the Akt/mTOR pathway is involved in both development of masseter muscle hypertrophy and fast-to-slow MHC isoform transition in response to mechanical overload with inhibition of the ERK1/2 pathway and operates independently of the calcineurin pathway.

  19. Kinetics and mechanism of the pressure-induced lamellar order/disorder transition in phosphatidylethanolamine: a time-resolved X-ray diffraction study.

    Science.gov (United States)

    Mencke, A P; Caffrey, M

    1991-03-05

    By using synchrotron radiation, a movie was made of the X-ray scattering pattern from a biological liquid crystal undergoing a phase transition induced by a pressure jump. The system studied includes the fully hydrated phospholipid dihexadecylphosphatidylethanolamine in the lamellar gel (L beta') phase at a temperature of 68 degrees C and a pressure of 9.7 MPa (1400 psig). Following the rapid release of pressure to atmospheric the L beta' phase transforms slowly into the lamellar liquid crystal (L alpha) phase. The pressure perturbation is applied with the intention of producing a sudden phase disequilibrium followed by monitoring the system as it relaxes to its new equilibrium condition. Remarkably, the proportion of sample in the L alpha phase grows linearly with time, taking 37 s to totally consume the L beta' phase. The time dependencies of radius, peak intensity, and width of the powder diffraction ring of the low-angle (001) lamellar reflections were obtained from the movie by image processing. The concept of an "effective pressure" is introduced to account for the temperature variations that accompany the phase transition and to establish that the observed large transit time is indeed intrinsic to the sample and not due to heat exchange with the environment. The reverse transformation, L alpha to L beta', induced by a sudden jump from atmospheric pressure to 9.7 MPa, is complete in less than 13 s. These measurements represent a new approach for studying the kinetics of lipid phase transitions and for gaining insights into the mechanism of the lamellar order/disorder transition.

  20. Integrating Social-Contextual and Intrapersonal Mechanisms of "Maturing Out": Joint Influences of Familial-Role Transitions and Personality Maturation on Problem-Drinking Reductions.

    Science.gov (United States)

    Lee, Matthew R; Ellingson, Jarrod M; Sher, Kenneth J

    2015-09-01

    "Maturing out" of problem drinking is associated with both role transitions (e.g., getting married) and personality development. However, little is known concerning how these 2 mechanisms jointly influence problem-drinking desistance. This study investigated whether salutary effects of role transitions and personality occur at different points in young-adult development and whether they mediate one another's effects. Participants were initially recruited as first-year undergraduates, with family history of alcoholism overrepresented by design (N = 489). Using 4 waves of data at roughly ages 21, 25, 29, and 34, cross-lagged panel models estimated prospective relations among familial-role transitions (marriage or parenthood), personality (disinhibition, conscientiousness, and neuroticism), and problem drinking. Mixed support was found for the prediction of roles being more strongly associated with earlier maturing out of problem drinking and personality being more strongly associated with later maturing out. Regarding mediation, no evidence was found for the expectation that role effects would be mediated by personality. However, results did support mediation of personality effects by role transitions. Specifically, lower disinhibition and higher conscientiousness in emerging adulthood predicted role adoption, which, in turn, predicted later problem-drinking reductions. Family history of alcoholism also distally influenced these mediation processes. The differential timing of role and personality effects is consistent with the notion of decreasing contextual influences and increasing intrapersonal influences across development. In light of role incompatibility theory, results suggest that, over the course of development, the association of familial roles with problem drinking may increasingly reflect problem-drinking effects on role entry (i.e., role selection) and decreasingly reflect role entry effects on problem drinking (i.e., role socialization). As emerging

  1. Explaining Teachers' Use of Textbooks

    Science.gov (United States)

    Reichenberg, Monica

    2016-01-01

    In educational systems without comprehensive systems for regulating textbooks, teachers can exert considerable influence on the use of textbooks. However, existing research has not yet identified the mechanisms of this use. Accordingly, the aim of this article is to examine and explain teachers' strategic use of textbooks. I administered a…

  2. A first-principle study on the phase transition, electronic structure, and mechanical properties of three-phase ZrTi2 alloy under high pressure*

    Science.gov (United States)

    Yuan, Xiao-Li; Xue, Mi-An; Chen, Wen; An, Tian-Qing

    2016-11-01

    We employed density-functional theory (DFT) within the generalized gradient approximation (GGA) to investigate the ZrTi2 alloy, and obtained its structural phase transition, mechanical behavior, Gibbs free energy as a function of pressure, P-V equation of state, electronic and Mulliken population analysis results. The lattice parameters and P-V EOS for α, β and ω phases revealed by our calculations are consistent with other experimental and computational values. The elastic constants obtained suggest that ω-ZrTi2 and α-ZrTi2 are mechanically stable, and that β-ZrTi2 is mechanically unstable at 0 GPa, but becomes more stable with increasing pressure. Our calculated results indicate a phase transition sequence of α → ω → β for ZrTi2. Both the bulk modulus B and shear modulus G increase linearly with increasing pressure for three phases. The G/B values illustrated good ductility of ZrTi2 alloy for three phases, with ωJournal web page at http://dx.doi.org/10.1140/epjb/e2016-70218-0

  3. Explaining transitions into self-employment after (early) retirement

    NARCIS (Netherlands)

    van Solinge, H.

    2012-01-01

    Governments that attempt to extend the working lives of their citizens may consider promoting bridge employment. Self-employment in particular, may be an instrument in postponing the age at which workers finally leave the labour market. A NIDI panel study among older workers in the Netherlands

  4. Effects of temperature changes and stress loading on the mechanical and shape memory properties of thermoplastic materials with different glass transition behaviours and crystal structures.

    Science.gov (United States)

    Iijima, Masahiro; Kohda, Naohisa; Kawaguchi, Kyotaro; Muguruma, Takeshi; Ohta, Mitsuru; Naganishi, Atsuko; Murakami, Takashi; Mizoguchi, Itaru

    2015-12-01

    To investigate the effects of temperature changes and stress loading on the mechanical and shape memory properties of thermoplastic materials with different glass transition behaviours and crystal structures. Five thermoplastic materials, polyethylene terephthalate glycol (Duran®, Scheu Dental), polypropylene (Hardcast®, Scheu Dental), and polyurethane (SMP MM®, SMP Technologies) with three different glass transition temperatures (T g) were selected. The T g and crystal structure were assessed using differential scanning calorimetry and X-ray diffraction. The deterioration of mechanical properties by thermal cycling and the orthodontic forces during stepwise temperature changes were investigated using nanoindentation testing and custom-made force-measuring system. The mechanical properties were also evaluated by three-point bending tests; shape recovery with heating was then investigated. The mechanical properties for each material were decreased significantly by 2500 cycles and great decrease was observed for Hardcast (crystal plastic) with higher T g (155.5°C) and PU 1 (crystalline or semi-crystalline plastic) with lower T g (29.6°C). The Duran, PU 2, and PU 3 with intermediate T g (75.3°C for Duran, 56.5°C for PU 2, and 80.7°C for PU 3) showed relatively stable mechanical properties with thermal cycling. The polyurethane polymers showed perfect shape memory effect within the range of intraoral temperature changes. The orthodontic force produced by thermoplastic appliances decreased with the stepwise temperature change for all materials. Orthodontic forces delivered by thermoplastic appliances may influence by the T g of the materials, but not the crystal structure. Polyurethane is attractive thermoplastic materials due to their unique shape memory phenomenon, but stress relaxation with temperature changes is expected. © The Author 2015. Published by Oxford University Press on behalf of the European Orthodontic Society. All rights reserved. For

  5. Mechanism and the origins of stereospecificity in copper-catalyzed ring expansion of vinyl oxiranes: a traceless dual transition-metal-mediated process.

    Science.gov (United States)

    Mustard, Thomas J L; Mack, Daniel J; Njardarson, Jon T; Cheong, Paul Ha-Yeon

    2013-01-30

    Density functional theory computations of the Cu-catalyzed ring expansion of vinyloxiranes is mediated by a traceless dual Cu(I)-catalyst mechanism. Overall, the reaction involves a monomeric Cu(I)-catalyst, but a single key step, the Cu migration, requires two Cu(I)-catalysts for the transformation. This dual-Cu step is found to be a true double Cu(I) transition state rather than a single Cu(I) transition state in the presence of an adventitious, spectator Cu(I). Both Cu(I) catalysts are involved in the bond forming and breaking process. The single Cu(I) transition state is not a stationary point on the potential energy surface. Interestingly, the reductive elimination is rate-determining for the major diastereomeric product, while the Cu(I) migration step is rate-determining for the minor. Thus, while the reaction requires dual Cu(I) activation to proceed, kinetically, the presence of the dual-Cu(I) step is untraceable. The diastereospecificity of this reaction is controlled by the Cu migration step. Suprafacial migration is favored over antarafacial migration due to the distorted Cu π-allyl in the latter.

  6. MODELING OF ALKYL SALICYLATE COMPOUNDS AS UV ABSORBER BASED ON ELECTRONIC TRANSITION BY USING SEMIEMPIRICAL QUANTUM MECHANICS ZINDO/s CALCULATION

    Directory of Open Access Journals (Sweden)

    Iqmal Tahir

    2010-06-01

    Full Text Available Modeling of several alkyl salicylates based on electronic transition by using semiempriical mechanical quantum ZINDO/s calculation has been done. Object of these research were assumed only alkyl salicylates of C4 (butyl until C8 (octyl homologue with 4-7 example structures of each homologue. All of the computation have been performed using quantum chemistry - package software Hyperchem 6.0. The research covered about drawing each of the structure, geometry optimization using semiempirical AM1 algorithm and followed with single point calculation using semiempirical ZINDO/s technique. ZINDO/s calculations used a defined criteria that is singly excited - Configuration Interaction (CI, gap of HOMO-LUMO energy transition was 2 and degeneracy level was 3. Analysis of the theoretical spectra was focused in the UV-B (290-320 nm and UV-C (200-290 nm area. The result showed that modeling of the compound can be used for predicting the type of UV protection activity depending with the electronic transition in the UV area. Modification of the alkyl homologue relatively did not change the value of wavelength absorbtion to indicate the UV protection activity. Alkyl salicylate compounds were predicted as UV-C sunscreen or relatively the compounds have protection effect for UV-C.   Keywords: alkyl salicylate, sunscreen, semiempirical methods

  7. Modeling Alkyl p-Methoxy Cinnamate (APMC) as UV absorber based on electronic transition using semiempirical quantum mechanics ZINDO/s calculation

    Science.gov (United States)

    Salmahaminati; Azis, Muhlas Abdul; Purwiandono, Gani; Arsyik Kurniawan, Muhammad; Rubiyanto, Dwiarso; Darmawan, Arif

    2017-11-01

    In this research, modeling several alkyl p-methoxy cinnamate (APMC) based on electronic transition by using semiempirical mechanical quantum ZINDO/s calculation is performed. Alkyl cinnamates of C1 (methyl) up to C7 (heptyl) homolog with 1-5 example structures of each homolog are used as materials. Quantum chemistry-package software Hyperchem 8.0 is used to simulate the drawing of the structure, geometry optimization by a semiempirical Austin Model 1 algorithm and single point calculation employing a semiempirical ZINDO/s technique. ZINDO/s calculations use a defined criteria that singly excited -Configuration Interaction (CI) where a gap of HOMO-LUMO energy transition and maximum degeneracy level are 7 and 2, respectively. Moreover, analysis of the theoretical spectra is focused on the UV-B (290-320 nm) and UV-C (200-290 nm) area. The results show that modeling of the compound can be used to predict the type of UV protection activity depends on the electronic transition in the UV area. Modification of the alkyl homolog relatively does not change the value of wavelength absorption to indicate the UV protection activity. Alkyl cinnamate compounds are predicted as UV-B and UV-C sunscreen.

  8. Current research activities: Applied and numerical mathematics, fluid mechanics, experiments in transition and turbulence and aerodynamics, and computer science

    Science.gov (United States)

    1992-01-01

    Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis, fluid mechanics including fluid dynamics, acoustics, and combustion, aerodynamics, and computer science during the period 1 Apr. 1992 - 30 Sep. 1992 is summarized.

  9. Explaining Physics – What Skills does a good Explainer Need?

    CERN Multimedia

    CERN. Geneva; Bartels, Hauke

    2018-01-01

    Explaining physics in a way that it is both scientifically correct and comprehensible is a highly demanding practice. But are explanations an effective way to teach physics? Under which circumstances should a physics teacher explain – and is there such a thing as a guideline for effective instructional explanations? Of course, explaining is more than just presenting content knowledge in clear language – but what more? In our talk, we want to discuss empirical studies on instructional explanations from science education and psychology to address these questions. Among other things, we will refer to results from a large study aiming to research whether teacher education contributes to the development of explaining skills. Besides, we will give insights into a project that seeks to measure explaining skills with an interactive online test instrument.

  10. Explaining the diversity of motivations behind community renewable energy

    International Nuclear Information System (INIS)

    Bauwens, Thomas

    2016-01-01

    Community-based renewable energy initiatives may be important actors in the transition toward low-carbon energy systems. In turn, stimulating investments in renewable energy production at the community level requires a better understanding of investors' motives. This paper aims to study the heterogeneity of motivations that drive individuals to participate in community renewable energy projects and the underlying explanatory factors behind this, as well as the implications for their level of engagement in initiatives. Based on quantitative data from an original survey conducted with two renewable energy cooperatives in Flanders, the statistical analysis shows that cooperative members should not be considered as one homogeneous group. Several categories of members with different motives and levels of engagement can be distinguished. This heterogeneity is explained by contrasts in terms of institutional settings, spatial patterns and attitudes to the diffusion of institutional innovations. Regarding policy implications, the findings suggest that this heterogeneity should be taken into account in designing more effective supporting policies to stimulate investments at the community level. The activation of social norms is also shown to be a promising mechanism for triggering investment decisions, although the implications of its interplay with economic incentives should be further explored. - Highlights: •Community-based energy projects are important actors in the low-carbon transition. •The diversity of motivations and level of engagement among members is analysed. •Several segments of members with different characteristics are distinguished. •Institutional, spatial and innovation diffusion dimensions explain this diversity. •This heterogeneity among investors should be taken into account in policy-making.

  11. Mechanical properties and electronic structure of anti-ReO3 structured cubic nitrides, M3N, of d block transition metals M: An ab initio study

    International Nuclear Information System (INIS)

    Zhou, Xiuquan; Gall, Daniel; Khare, Sanjay V.

    2014-01-01

    Highlights: • We use DFT to model the anti-ReO 3 structured transition metal nitrides M 3 N. • We predict their lattice constants, electronic structures and mechanical properties. • We correlate the metal d and nitrogen 2p orbitals with stability and hardness. • We established a high-throughput database for materials design. - Abstract: We report a systematic study of the anti-ReO 3 structured transition metal nitrides, M 3 N, using ab initio density functional theory computations in the local density approximation. Here M denotes all the 3d, 4d and 5d transition metals. Our calculations indicate that all M 3 N compounds except V 3 N of group 5 and Zn 3 N and Hg 3 N of group 12 are mechanically stable. For the stable M 3 N compounds, we report a database of predictions for their lattice constants, electronic properties and mechanical properties including bulk modulus, Young’s modulus, shear modulus, ductility, hardness and Debye temperature. It is found that most M 3 N compounds exhibit ductility with Vickers hardness between 0.4 GPa and 11.2 GPa. Our computed lattice constant for Cu 3 N, the only M 3 N compound where experiments exist, agrees well with the experimentally reported values. We report ratios of the melting points of all M 3 N compounds to that of Cu 3 N. The local density of states for all M 3 N compounds are obtained, and electronic band gaps are observed only for M of group 11 (Cu, Ag and Au) while the remaining M 3 N compounds are metallic without band gaps. Valence electron density along with the hybridization of the metal d and nitrogen 2p orbitals play an important role in determining the stability and hardness of different compounds. Our high-throughput databases for the cubic anti-ReO 3 structured transition metal nitrides should motivate future experimental work and shorten the time to their discovery

  12. Efficient degradation of H2S over transition metal modified TiO2 under VUV irradiation: Performance and mechanism

    Science.gov (United States)

    Liu, Gaoyuan; Ji, Jian; Hu, Peng; Lin, Sixin; Huang, Haibao

    2018-03-01

    Odor pollution causes great harm to the atmospheric environment and human health. H2S, as an odor gas, is highly toxic and corrosive and thus requires removal efficiently. In this study, TiO2 catalysts modified by transition metals including Mn, Cu, Ni and Co, were prepared using a modified sol-gelatin method and tested under UV-PCO or VUV-PCO process. H2S degradation was great enhanced in VUV-PCO compared with conventional UV-PCO. Among the catalysts, 1 wt% Mn-TiO2 showed the highest removal efficiency of 89.9%, which is 30 times higher than that under 254 nm UV irradiation. Residual ozone in the outlet can be completely eliminated by Mn-TiO2. Photocatalytic oxidation, photolysis and ozone-assisted catalytic oxidation all involved in the VUV-PCO process and their contribution were determined by H2S removal efficiency.

  13. Raman scattering study of the a-GeTe structure and possible mechanism for the amorphous to crystal transition

    International Nuclear Information System (INIS)

    Andrikopoulos, K S; Yannopoulos, S N; Voyiatzis, G A; Kolobov, A V; Ribes, M; Tominaga, J

    2006-01-01

    We report on an inelastic (Raman) light scattering study of the local structure of amorphous GeTe (a-GeTe) films. A detailed analysis of the temperature-reduced Raman spectra has shown that appreciable structural changes occur as a function of temperature. These changes involve modifications of atomic arrangements such as to facilitate the rapid amorphous to crystal transformation, which is the major advantage of phase-change materials used in optical data storage media. A particular structural model, supported by polarization analysis, is proposed which is compatible with the experimental data as regards both the structure of a-GeTe and the crystallization transition. The remarkable difference between the Raman spectrum of the crystal and the glass can thus naturally be accounted for

  14. Crack blunting, cleavage fracture in transition area and stable crack growth - investigated using the nonlinear fracture mechanics method

    International Nuclear Information System (INIS)

    Heerens, J.

    1990-01-01

    A procedure is developed which allows to estimate crack tip blunting using the stress-strain curve of the material and the J-integral. The second part deals with cleavage fracture in a quenched and tempered pressure vessel steel. It was found that within the ductile to brittle transition regime the fracture toughness is controlled by cleavage initiated at 'weak spots of the material' and by the normal stresses at the weak spots. In the last part of the paper the influence of specimen size on J-, Jm- and δ 5 -R-curves for side grooved CT-specimens under fully plastic condition is investigated. In order to characterize constraint-effects the necking of the specimens was measured. For specimens having similar constraint the parameters Jm and δ 5 yielded size independent R-curves over substantial larger amounts of crack extension than the J-integral. (orig.) With 114 figs., 10 tabs [de

  15. Extratropical Transition and Re-Intensification of Typhoon Toraji (2001): Large-Scale Circulations, Structural Characteristics, and Mechanism Analysis

    Science.gov (United States)

    Zhu, Xiande; Wu, Lixin; Wang, Qi

    2018-06-01

    With the use of data from the National Centers for Environmental Prediction Climate Forecast System Reanalysis, the environment and structure of typhoon Toraji (2001) are investigated during the re-intensification (RI) stage of its extratropical transition (ET), a process in which a tropical cyclone transforms into an extratropical or mid-latitude cyclone. The results provide detailed insight into the ET system and identify the specific features of the system, including wind field, a cold and dry intrusion, and a frontal structure in the RI stage. The irrotational wind provides the values of upper-and lower-level jets within the transitioning tropical cyclone and the cyclone over Shandong Peninsula, accompanied with the reduced radius of maximum surface winds around the cyclone center in the lower troposphere. Simultaneously, dry air intrusion enhances the formation of fronts and leads to strong potential instability in the southwest and northeast quadrants. The distribution of frontogenesis shows that the tilting term associated with vertical motion dominates the positive frontogenesis surrounding the cyclone center, especially in the RI stage. The diagnostics of the kinetic energy budget suggest that the divergent kinetic energy generation whose time evolution corresponds well to that of cyclone center pressure is the primary factor for the development of Toraji in the lower troposphere. The ET of Toraji is a compound pattern that contains a development similar to that of a B-type extratropical cyclone within the maintaining phase and an A-type extratropical cyclone within the strengthening period, which corresponds to the distribution of the E-P fluxes with vertically downward propagation in the maintaining stage and upwards momentum in the strengthening phase.

  16. Influence of natural fibers on the phase transitions in high-density polyethylene composites using dynamic mechanical analysis

    Science.gov (United States)

    Mehdi Tajvidi; Robert H. Falk; John C. Hermanson; Colin Felton

    2003-01-01

    Dynamic mechanical analysis was employed to evaluate the performance of various natural fibers in high-density polyethylene composites. Kenaf, newsprint, rice hulls, and wood flour were sources of fiber. Composites were made at 25 percent and 50 percent by weight fiber contents. Maleic anhydride modified polyethylene was also added at 1:25 ratio to the fiber....

  17. Kinetics and mechanisms of the oxide film growth on the surface of α-Fe in transitional domains

    International Nuclear Information System (INIS)

    Mukhambetov, D.G.; Berber, N.N.; Kargin, D.B.; Chalaya, O.V.

    2003-01-01

    The object of this work was to study the kinetics of the α-Fe surface oxidation with prevailing cubic texture at temperatures of 450-500 deg. C. The basic conformity to natural laws and mechanisms of the two-phase thin oxide films grows are determined. (author)

  18. Correlations of norbornenyl crosslinked polyimide resin structures with resin thermo-oxidative stability, resin glass transition temperature and composite initial mechanical properties

    Science.gov (United States)

    Alston, William B.

    1988-01-01

    PMR (polymerization of monomeric reactants) methodology was used to prepare 70 different polyimide oligomeric resins and 30 different unidirectional graphite fiber/polyimide composites. Monomeric composition as well as chain length between sites of crosslinks were varied to examine their effects on resin thermo-oxidative stability and glass transition temperature (Tg) of the cured/postcured resins. A linear correlation of decreasing 316 C resin weight loss/surface area versus (1) decreasing aliphatic content, or (2) increasing benzylic/aliphatic content stoichiometry ratio over a wide range of resin compositions was observed. An almost linear correlation of Tg versus molecular distance between the crosslinks was also observed. An attempt was made to correlate Tg with initial composite mechanical properties (flexural strength and interlaminar shear strength). However, the scatter in mechanical strength data prevented obtaining a clear correlation. Instead, only a range of composite mechanical properties was obtained at 25, 288, and 316 C. Perhaps more importantly, what did become apparent during the correlation study was (1) the PMR methodology could be used to prepare composites from resins containing a wide variety of monomer modifications, (2) that these composites almost invariably provided satisfactory initial mechanical properties as long as the resins formulated exhibited satisfactory processing flow, and (3) that PMR resins exhibited predictable rates of 316 C weight loss/surface area based on their benzylic/aliphatic stoichiometery ratio.

  19. Mental models accurately predict emotion transitions.

    Science.gov (United States)

    Thornton, Mark A; Tamir, Diana I

    2017-06-06

    Successful social interactions depend on people's ability to predict others' future actions and emotions. People possess many mechanisms for perceiving others' current emotional states, but how might they use this information to predict others' future states? We hypothesized that people might capitalize on an overlooked aspect of affective experience: current emotions predict future emotions. By attending to regularities in emotion transitions, perceivers might develop accurate mental models of others' emotional dynamics. People could then use these mental models of emotion transitions to predict others' future emotions from currently observable emotions. To test this hypothesis, studies 1-3 used data from three extant experience-sampling datasets to establish the actual rates of emotional transitions. We then collected three parallel datasets in which participants rated the transition likelihoods between the same set of emotions. Participants' ratings of emotion transitions predicted others' experienced transitional likelihoods with high accuracy. Study 4 demonstrated that four conceptual dimensions of mental state representation-valence, social impact, rationality, and human mind-inform participants' mental models. Study 5 used 2 million emotion reports on the Experience Project to replicate both of these findings: again people reported accurate models of emotion transitions, and these models were informed by the same four conceptual dimensions. Importantly, neither these conceptual dimensions nor holistic similarity could fully explain participants' accuracy, suggesting that their mental models contain accurate information about emotion dynamics above and beyond what might be predicted by static emotion knowledge alone.

  20. Mental models accurately predict emotion transitions

    Science.gov (United States)

    Thornton, Mark A.; Tamir, Diana I.

    2017-01-01

    Successful social interactions depend on people’s ability to predict others’ future actions and emotions. People possess many mechanisms for perceiving others’ current emotional states, but how might they use this information to predict others’ future states? We hypothesized that people might capitalize on an overlooked aspect of affective experience: current emotions predict future emotions. By attending to regularities in emotion transitions, perceivers might develop accurate mental models of others’ emotional dynamics. People could then use these mental models of emotion transitions to predict others’ future emotions from currently observable emotions. To test this hypothesis, studies 1–3 used data from three extant experience-sampling datasets to establish the actual rates of emotional transitions. We then collected three parallel datasets in which participants rated the transition likelihoods between the same set of emotions. Participants’ ratings of emotion transitions predicted others’ experienced transitional likelihoods with high accuracy. Study 4 demonstrated that four conceptual dimensions of mental state representation—valence, social impact, rationality, and human mind—inform participants’ mental models. Study 5 used 2 million emotion reports on the Experience Project to replicate both of these findings: again people reported accurate models of emotion transitions, and these models were informed by the same four conceptual dimensions. Importantly, neither these conceptual dimensions nor holistic similarity could fully explain participants’ accuracy, suggesting that their mental models contain accurate information about emotion dynamics above and beyond what might be predicted by static emotion knowledge alone. PMID:28533373

  1. Mechanics

    CERN Document Server

    Hartog, J P Den

    1961-01-01

    First published over 40 years ago, this work has achieved the status of a classic among introductory texts on mechanics. Den Hartog is known for his lively, discursive and often witty presentations of all the fundamental material of both statics and dynamics (and considerable more advanced material) in new, original ways that provide students with insights into mechanical relationships that other books do not always succeed in conveying. On the other hand, the work is so replete with engineering applications and actual design problems that it is as valuable as a reference to the practicing e

  2. Epithelial–mesenchymal transition during oncogenic transformation induced by hexavalent chromium involves reactive oxygen species-dependent mechanism in lung epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Song-Ze, E-mail: dingsongze@hotmail.com [Department of Internal Medicine, Henan Provincial People’s Hospital, Zhengzhou University, Wei-Wu Road, Zhengzhou, Henan 450000 (China); Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Yang, Yu-Xiu; Li, Xiu-Ling [Department of Internal Medicine, Henan Provincial People’s Hospital, Zhengzhou University, Wei-Wu Road, Zhengzhou, Henan 450000 (China); Michelli-Rivera, Audrey [Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Han, Shuang-Yin [Department of Internal Medicine, Henan Provincial People’s Hospital, Zhengzhou University, Wei-Wu Road, Zhengzhou, Henan 450000 (China); Wang, Lei; Pratheeshkumar, Poyil; Wang, Xin; Lu, Jian; Yin, Yuan-Qin; Budhraja, Amit; Hitron, Andrew J. [Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States)

    2013-05-15

    Hexavalent chromium [Cr(VI)] is an important human carcinogen associated with pulmonary diseases and lung cancer. Exposure to Cr(VI) induces DNA damage, cell morphological change and malignant transformation in human lung epithelial cells. Despite extensive studies, the molecular mechanisms remain elusive, it is also not known if Cr(VI)-induced transformation might accompany with invasive properties to facilitate metastasis. We aimed to study Cr(VI)-induced epithelial–mesenchymal transition (EMT) and invasion during oncogenic transformation in lung epithelial cells. The results showed that Cr(VI) at low doses represses E-cadherin mRNA and protein expression, enhances mesenchymal marker vimentin expression and transforms the epithelial cell into fibroblastoid morphology. Cr(VI) also increases cell invasion and promotes colony formation. Further studies indicated that Cr(VI) uses multiple mechanisms to repress E-cadherin expression, including activation of E-cadherin repressors such as Slug, ZEB1, KLF8 and enhancement the binding of HDAC1 in E-cadherin gene promoter, but DNA methylation is not responsible for the loss of E-cadherin. Catalase reduces Cr(VI)-induced E-cadherin and vimentin protein expression, attenuates cell invasion in matrigel and colony formation on soft agar. These results demonstrate that exposure to a common human carcinogen, Cr(VI), induces EMT and invasion during oncogenic transformation in lung epithelial cells and implicate in cancer metastasis and prevention. - Graphical abstract: Epithelial–mesenchymal transition during oncogenic transformation induced by hexavalent chromium involves reactive oxygen species-dependent mechanisms in lung epithelial cells. - Highlights: • We study if Cr(VI) might induce EMT and invasion in epithelial cells. • Cr(VI) induces EMT by altering E-cadherin and vimentin expression. • It also increases cell invasion and promotes oncogenic transformation. • Catalase reduces Cr(VI)-induced EMT, invasion and

  3. Volcanology: Volcanic bipolar disorder explained

    Science.gov (United States)

    Jellinek, Mark

    2014-02-01

    Eruptions come in a range of magnitudes. Numerical simulations and laboratory experiments show that rare, giant super-eruptions and smaller, more frequent events reflect a transition in the essential driving forces for volcanism.

  4. Dynamics of a quantum phase transition in the Bose-Hubbard model: Kibble-Zurek mechanism and beyond

    Science.gov (United States)

    Shimizu, Keita; Kuno, Yoshihito; Hirano, Takahiro; Ichinose, Ikuo

    2018-03-01

    In this paper, we study the dynamics of the Bose-Hubbard model by using time-dependent Gutzwiller methods. In particular, we vary the parameters in the Hamiltonian as a function of time, and investigate the temporal behavior of the system from the Mott insulator to the superfluid (SF) crossing a second-order phase transition. We first solve a time-dependent Schrödinger equation for the experimental setup recently done by Braun et al. [Proc. Natl. Acad. Sci. USA 112, 3641 (2015)] and show that the numerical and experimental results are in fairly good agreement. However, these results disagree with the Kibble-Zurek scaling. From our numerical study, we reveal a possible source of the discrepancy. Next, we calculate the critical exponents of the correlation length and vortex density in addition to the SF order parameter for a Kibble-Zurek protocol. We show that beside the "freeze" time t ̂, there exists another important time, teq, at which an oscillating behavior of the SF amplitude starts. From calculations of the exponents of the correlation length and vortex density with respect to a quench time τQ, we obtain a physical picture of a coarsening process. Finally, we study how the system evolves after the quench. We give a global picture of dynamics of the Bose-Hubbard model.

  5. Elucidating mechanical transition effects of invading cancer cells with a subnucleus-scaled microfluidic serial dimensional modulation device†

    OpenAIRE

    Mak, Michael; Reinhart-King, Cynthia A.; Erickson, David

    2013-01-01

    Mechanical boundaries that define and regulate biological processes, such as cell-cell junctions and dense extracellular matrix networks, exist throughout the physiological landscape. During metastasis, cancer cells are able to invade across these barriers and spread to distant tissues. While transgressing boundaries is a necessary step for distal colonies to form, little is known about interface effects on cell behavior during invasion. Here we introduce a device and metric to assess cell tr...

  6. Mechanical and magneto-opto-electronic investigation of transition metal based fluoro-perovskites: An ab-initio DFT study

    Science.gov (United States)

    Erum, Nazia; Azhar Iqbal, Muhammad

    2017-09-01

    Detailed ab-initio calculations are performed to investigate structural, elastic, mechanical, magneto-electronic and optical properties of the KXF3 (X = V, Fe, Co, Ni) fluoro-perovskites using Full Potential Linearized Augmented Plane Wave (FP-LAPW) method within the framework of density functional theory (DFT). The calculated structural parameters by DFT and analytical methods are found consistent with the experimental results. From the elastic and mechanical properties, it can be inferred that these compounds are elastically stable and anisotropic while KCoF3 is harder than rest of the compounds. Furthermore, thermal behavior of these compounds is analyzed by calculating Debye temperature (θD). The calculated spin dependent magneto-electronic properties in these compounds reveal that exchange splitting is dominated by N-3d orbital. The stable magnetic phase optimizations verify the experimental observations at low temperature. Type of chemical bonding is analyzed with the help of variations in electron density difference distribution that is induced due to changes of the second cation. The linear optical properties are also discussed in terms of optical spectra. The present methodology represents an influential approach to calculate the whole set of mechanical and magneto-opto-electronic parameters, which would support to understand various physical phenomena and empower device engineers for implementing these materials in spintronic applications.

  7. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available ... Disorders Video: The Basketball Game: An MRI Story Radiology and You Sponsored by Image/Video Gallery Your Radiologist Explains Nuclear Medicine Transcript Welcome to Radiology Info dot org Hello! I’m Dr. Ramji ...

  8. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available ... by Image/Video Gallery Your Radiologist Explains Nuclear Medicine Transcript Welcome to Radiology Info dot org Hello! ... d like to talk to you about nuclear medicine. Nuclear medicine offers the potential to identify disease ...

  9. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available ... An MRI Story Radiology and You Sponsored by Image/Video Gallery Your Radiologist Explains Nuclear Medicine Transcript ... by a special camera and computer to create images of the inside of your body. If you’ ...

  10. Your Radiologist Explains Nuclear Medicine

    Medline Plus

    Full Text Available ... Sponsored by Image/Video Gallery Your Radiologist Explains Nuclear Medicine Transcript Welcome to Radiology Info dot org ... I’d like to talk to you about nuclear medicine. Nuclear medicine offers the potential to identify ...

  11. Explaining variation in nascent entrepreneurship

    NARCIS (Netherlands)

    A.J. van Stel (André); A.R.M. Wennekers (Sander); P. Reynolds (Paul); A.R. Thurik (Roy)

    2004-01-01

    textabstractThis paper aims at explaining cross-country variation in nascent entrepreneurship. Regression analysis is applied using various explanatory variables derived from three different approaches. We make use of the Global Entrepreneurship Monitor database, including nascent entrepreneurship

  12. Explaining nascent entrepreneurship across countries

    NARCIS (Netherlands)

    A.R. Thurik (Roy); A.J. van Stel (André); A.R.M. Wennekers (Sander); P. Reynolds (Paul)

    2003-01-01

    textabstractThis paper aims at explaining cross-country variation in nascent entrepreneurship. Regression analysis is applied using various explanatory variables derived from three different approaches. We make use of the Global Entrepreneurship Monitor database, including nascent entrepreneurship

  13. IEE wiring regulations explained and illustrated

    CERN Document Server

    Scaddan, Brian

    2013-01-01

    The IEE Wiring Regulations Explained and Illustrated, Second Edition discusses the recommendations of the IEE Regulations for the Electrical Equipment of Buildings for the safe selection or erection of wiring installations. The book emphasizes earthing, bonding, protection, and circuit design of electrical wirings. The text reviews the fundamental requirements for safety, earthing systems, the earth fault loop impedance, and supplementary bonding. The book also describes the different types of protection, such as protection against mechanical damage, overcurrent, under voltage (which prevents

  14. The Transition between Telomerase and ALT Mechanisms in Hodgkin Lymphoma and Its Predictive Value in Clinical Outcomes

    Directory of Open Access Journals (Sweden)

    Radhia M’kacher

    2018-05-01

    Full Text Available Background: We analyzed telomere maintenance mechanisms (TMMs in lymph node samples from HL patients treated with standard therapy. The TMMs correlated with clinical outcomes of patients. Materials and Methods: Lymph node biopsies obtained from 38 HL patients and 24 patients with lymphadenitis were included in this study. Seven HL cell lines were used as in vitro models. Telomerase activity (TA was assessed by TRAP assay and verified through hTERT immunofluorescence expression; alternative telomere lengthening (ALT was also assessed, along with EBV status. Results: Both TA and ALT mechanisms were present in HL lymph nodes. Our findings were reproduced in HL cell lines. The highest levels of TA were expressed in CD30−/CD15− cells. Small cells were identified with ALT and TA. Hodgkin and Reed Sternberg cells contained high levels of PML bodies, but had very low hTERT expression. There was a significant correlation between overall survival (p < 10−3, event-free survival (p < 10−4, and freedom from progression (p < 10−3 and the presence of an ALT profile in lymph nodes of EBV+ patients. Conclusion: The presence of both types of TMMs in HL lymph nodes and in HL cell lines has not previously been reported. TMMs correlate with the treatment outcome of EBV+ HL patients.

  15. The transition mechanism from a symmetric single period discharge to a period-doubling discharge in atmospheric helium dielectric-barrier discharge

    International Nuclear Information System (INIS)

    Zhang, Dingzong; Wang, Yanhui; Wang, Dezhen

    2013-01-01

    Period-doubling and chaos phenomenon have been frequently observed in atmospheric-pressure dielectric-barrier discharges. However, how a normal single period discharge bifurcates into period-doubling state is still unclear. In this paper, by changing the driving frequency, we study numerically the transition mechanisms from a normal single period discharge to a period-doubling state using a one-dimensional self-consistent fluid model. The results show that before a discharge bifurcates into a period-doubling state, it first deviates from its normal operation and transforms into an asymmetric single period discharge mode. Then the weaker discharge in this asymmetric discharge will be enhanced gradually with increasing of the frequency until it makes the subsequent discharge weaken and results in the discharge entering a period-doubling state. In the whole transition process, the spatial distribution of the charged particle density and the electric field plays a definitive role. The conclusions are further confirmed by changing the gap width and the amplitude of the applied voltage

  16. The transition mechanism from a symmetric single period discharge to a period-doubling discharge in atmospheric helium dielectric-barrier discharge

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Dingzong; Wang, Yanhui; Wang, Dezhen [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)

    2013-06-15

    Period-doubling and chaos phenomenon have been frequently observed in atmospheric-pressure dielectric-barrier discharges. However, how a normal single period discharge bifurcates into period-doubling state is still unclear. In this paper, by changing the driving frequency, we study numerically the transition mechanisms from a normal single period discharge to a period-doubling state using a one-dimensional self-consistent fluid model. The results show that before a discharge bifurcates into a period-doubling state, it first deviates from its normal operation and transforms into an asymmetric single period discharge mode. Then the weaker discharge in this asymmetric discharge will be enhanced gradually with increasing of the frequency until it makes the subsequent discharge weaken and results in the discharge entering a period-doubling state. In the whole transition process, the spatial distribution of the charged particle density and the electric field plays a definitive role. The conclusions are further confirmed by changing the gap width and the amplitude of the applied voltage.

  17. Mechanisms affecting the transition from shallow to deep convection over land: Inferences from observations collected at the ARM Southern Great Plains site

    Science.gov (United States)

    Zhang, Y.; Klein, S. A.

    2009-12-01

    11 years of summertime observations at the Atmospheric Radiation Measurement (ARM) Climate Research Facility Southern Great Plains (SGP) site are used to investigate mechanisms controlling the transition from shallow to deep convection over land. A more humid environment above the boundary layer favors the occurrence of late-afternoon heavy precipitation events. The higher moisture content is brought by wind from south. Greater boundary layer inhomogeneity in moist static energy (MSE) is correlated to larger rain rates at the initial stage of precipitation. MSE inhomogeneity is attributed to both moisture and temperature fields, and is correlated with westerly winds. In an examination of afternoon rain statistics, higher relative humidity above the boundary layer is correlated to an earlier onset and longer duration of precipitation, while greater boundary layer inhomogeneity and atmospheric instability are positively correlated to the total rain amount and the maximum rain rate. On balance, these observations favor theories for the transition that involve a moist free troposphere and boundary layer heterogeneity in preference to those that involve convective available potential energy or convective inhibition. Thus the evidence presented here supports the current emphasis in the modeling community on the entraining nature of convection and the role of boundary layer cold pools in triggering new convection.

  18. Thermal Analysis and Flame-Retarded Mechanism of Composites Composed of Ethylene Vinyl Acetate and Layered Double Hydroxides Containing Transition Metals (Mn, Co, Cu, Zn

    Directory of Open Access Journals (Sweden)

    Lili Wang

    2016-05-01

    Full Text Available The effects of transition metals on the hydrophobicity of nano–structured layered double hydroxides (LDHs and the compatibility of LDHs/ethylene vinyl acetate (EVA composites have seldom been reported. NiMgAl–LDHs slightly surface–modified with stearate and doped with transition metal cations (Mn2+, Co2+, Cu2+, Zn2+ are investigated. Compared to the pure EVA, not only were the maximal degradation–rate temperatures (Tmax of the ethylene–based chains enhanced, but also the smoke production rate (SPR and the production rate of CO (COP were sharply decreased for all the composites. Most importantly, a new flame retardant mechanism was found, namely the peak heat release rate (pk-HRR time, which directly depends on the peak production rate of CO2 (pk-CO2 time for EVA and all composites by cone calorimeter test. Moreover, the Mn–doped LDH S–NiMgAl–Mn shows more uniform dispersion and better interfacial compatibility in the EVA matrix. The cone calorimetric residue of S–NiMgAl–Mn/EVA has the intumescent char layer and the compact metal oxide layer. Therefore, S–NiMgAl–Mn/EVA shows the lowest pk-HRR and the longest pk-HRR time among all the composites.

  19. Electronic transport and conduction mechanism transition in La1∕3Sr2∕3FeO3 thin films

    International Nuclear Information System (INIS)

    Devlin, R. C.; Krick, A. L.; Sichel-Tissot, R. J.; Xie, Y. J.; May, S. J.

    2014-01-01

    We report on the electronic transport properties of epitaxial La 1∕3 Sr 2∕3 FeO 3 films using temperature dependent resistivity, Hall effect, and magnetoresistance measurements. We show that the electronic phase transition, which occurs near 190 K, results in a change in conduction mechanism from nonadiabatic polaron transport at high temperatures to resistivity behavior following a power law temperature dependence at low temperatures. The phase transition is also accompanied by an abrupt increase in apparent mobility and Hall coefficient below the critical temperature (T*). We argue that the exotic low temperature transport properties are a consequence of the unusually long-range periodicity of the antiferromagnetic ordering, which also couples to the electronic transport in the form of a negative magnetoresistance below T* and a sign reversal of the Hall coefficient at T*. By comparing films of differing thicknesses, stoichiometry, and strain states, we demonstrate that the observed conduction behavior is a robust feature of La 1∕3 Sr 2∕3 FeO 3 .

  20. Electronic transport and conduction mechanism transition in La{sub 1∕3}Sr{sub 2∕3}FeO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Devlin, R. C.; Krick, A. L.; Sichel-Tissot, R. J.; Xie, Y. J.; May, S. J., E-mail: smay@coe.drexel.edu [Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104 (United States)

    2014-06-21

    We report on the electronic transport properties of epitaxial La{sub 1∕3}Sr{sub 2∕3}FeO{sub 3} films using temperature dependent resistivity, Hall effect, and magnetoresistance measurements. We show that the electronic phase transition, which occurs near 190 K, results in a change in conduction mechanism from nonadiabatic polaron transport at high temperatures to resistivity behavior following a power law temperature dependence at low temperatures. The phase transition is also accompanied by an abrupt increase in apparent mobility and Hall coefficient below the critical temperature (T*). We argue that the exotic low temperature transport properties are a consequence of the unusually long-range periodicity of the antiferromagnetic ordering, which also couples to the electronic transport in the form of a negative magnetoresistance below T* and a sign reversal of the Hall coefficient at T*. By comparing films of differing thicknesses, stoichiometry, and strain states, we demonstrate that the observed conduction behavior is a robust feature of La{sub 1∕3}Sr{sub 2∕3}FeO{sub 3}.

  1. Restored symmetries, quark puzzle, and the Pomeron as a Josephson current. [Clustering effects, quantum supercurrents, cross sections, phase transitions, narrowing gap mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, R V [Instituto de Fisica e Matematica, Lisbon (Portugal)

    1976-07-01

    A special type of symmetry is studied, wherein manifest invariance is restored by direct integration over a set of spontaneously broken ground states. In addition to invariant states and multiplets these symmetry realizations are shown to lead, in general, to clustering effects and quantum supercurrents. A systematic exploration of these symmetry realizations is proposed, mostly in physical situations where it has so far been believed that the only consequences of the symmetry are invariant states and multiplets. An application of these ideas to the quark system yields a possible explanation for the unobservability of free quarks and an interpretation of the Pomeron as a generalized Josephson current. Furthermore, the 'narrowing gap mechanism' suggests an explanation for the behavior of the e/sup +/ e/sup -/ ..-->.. hadrons cross section and a speculation on an approaching phase transition in hadronic production and the observation of free quarks.

  2. Strength and rupture-life transitions caused by secondary carbide precipitation in HT-9 during high-temperature low-rate mechanical testing

    International Nuclear Information System (INIS)

    DiMelfi, R.J.; Gruber, E.E.; Kramer, J.M.; Hughes, T.H.

    1992-01-01

    The martensitic-ferritic alloy HT-9 is slated for long-term use as a fuel-cladding material in the Integral Fast Reactor. Analysis of published high-temperature mechanical property data suggests that secondary carbide precipitation would occur during service life causing substantial strengthening of the as-heat-treated material. Aspects of the kinetics of this precipitation process are extracted from calculations of the back stress necessary to produce the observed strengthening effect under various creep loading conditions. The resulting Arrhenius factor is shown to agree quantitatively with shifts to higher strength of crept material in reference to the intrinsic strength of HT-9. The results of very low constant strain-rate high-temperature tensile tests on as-heat-treated HT-9 that focus on the transition in strength with precipitation will be presented and related to rupture-life

  3. Potential of acute phase proteins as predictor of postpartum uterine infections during transition period and its regulatory mechanism in dairy cattle

    Directory of Open Access Journals (Sweden)

    A. Manimaran

    2016-01-01

    Full Text Available Among the various systemic reactions against infection or injury, the acute phase response is the cascade of reaction and mostly coordinated by cytokines-mediated acute phase proteins (APPs production. Since APPs are sensitive innate immune molecules, they are useful for early detection of inflammation in bovines and believed to be better discriminators than routine hematological parameters. Therefore, the possibility of using APPs as a diagnostic and prognostic marker of inflammation in major bovine health disorders including postpartum uterine infection has been explored by many workers. In this review, we discussed specifically importance of postpartum uterine infection, the role of energy balance in uterine infections and potential of APPs as a predictor of postpartum uterine infections during the transition period and its regulatory mechanism in dairy cattle.

  4. Interacting Turing-Hopf Instabilities Drive Symmetry-Breaking Transitions in a Mean-Field Model of the Cortex: A Mechanism for the Slow Oscillation

    Science.gov (United States)

    Steyn-Ross, Moira L.; Steyn-Ross, D. A.; Sleigh, J. W.

    2013-04-01

    Electrical recordings of brain activity during the transition from wake to anesthetic coma show temporal and spectral alterations that are correlated with gross changes in the underlying brain state. Entry into anesthetic unconsciousness is signposted by the emergence of large, slow oscillations of electrical activity (≲1Hz) similar to the slow waves observed in natural sleep. Here we present a two-dimensional mean-field model of the cortex in which slow spatiotemporal oscillations arise spontaneously through a Turing (spatial) symmetry-breaking bifurcation that is modulated by a Hopf (temporal) instability. In our model, populations of neurons are densely interlinked by chemical synapses, and by interneuronal gap junctions represented as an inhibitory diffusive coupling. To demonstrate cortical behavior over a wide range of distinct brain states, we explore model dynamics in the vicinity of a general-anesthetic-induced transition from “wake” to “coma.” In this region, the system is poised at a codimension-2 point where competing Turing and Hopf instabilities coexist. We model anesthesia as a moderate reduction in inhibitory diffusion, paired with an increase in inhibitory postsynaptic response, producing a coma state that is characterized by emergent low-frequency oscillations whose dynamics is chaotic in time and space. The effect of long-range axonal white-matter connectivity is probed with the inclusion of a single idealized point-to-point connection. We find that the additional excitation from the long-range connection can provoke seizurelike bursts of cortical activity when inhibitory diffusion is weak, but has little impact on an active cortex. Our proposed dynamic mechanism for the origin of anesthetic slow waves complements—and contrasts with—conventional explanations that require cyclic modulation of ion-channel conductances. We postulate that a similar bifurcation mechanism might underpin the slow waves of natural sleep and comment on the

  5. Interacting Turing-Hopf Instabilities Drive Symmetry-Breaking Transitions in a Mean-Field Model of the Cortex: A Mechanism for the Slow Oscillation

    Directory of Open Access Journals (Sweden)

    Moira L. Steyn-Ross

    2013-05-01

    Full Text Available Electrical recordings of brain activity during the transition from wake to anesthetic coma show temporal and spectral alterations that are correlated with gross changes in the underlying brain state. Entry into anesthetic unconsciousness is signposted by the emergence of large, slow oscillations of electrical activity (≲1  Hz similar to the slow waves observed in natural sleep. Here we present a two-dimensional mean-field model of the cortex in which slow spatiotemporal oscillations arise spontaneously through a Turing (spatial symmetry-breaking bifurcation that is modulated by a Hopf (temporal instability. In our model, populations of neurons are densely interlinked by chemical synapses, and by interneuronal gap junctions represented as an inhibitory diffusive coupling. To demonstrate cortical behavior over a wide range of distinct brain states, we explore model dynamics in the vicinity of a general-anesthetic-induced transition from “wake” to “coma.” In this region, the system is poised at a codimension-2 point where competing Turing and Hopf instabilities coexist. We model anesthesia as a moderate reduction in inhibitory diffusion, paired with an increase in inhibitory postsynaptic response, producing a coma state that is characterized by emergent low-frequency oscillations whose dynamics is chaotic in time and space. The effect of long-range axonal white-matter connectivity is probed with the inclusion of a single idealized point-to-point connection. We find that the additional excitation from the long-range connection can provoke seizurelike bursts of cortical activity when inhibitory diffusion is weak, but has little impact on an active cortex. Our proposed dynamic mechanism for the origin of anesthetic slow waves complements—and contrasts with—conventional explanations that require cyclic modulation of ion-channel conductances. We postulate that a similar bifurcation mechanism might underpin the slow waves of natural

  6. Rapid Deceleration-Driven Wetting Transition during Pendant Drop Deposition on Superhydrophobic Surfaces

    Science.gov (United States)

    Kwon, Hyuk-Min; Paxson, Adam T.; Varanasi, Kripa K.; Patankar, Neelesh A.

    2011-01-01

    A hitherto unknown mechanism for wetting transition is reported. When a pendant drop settles upon deposition, there is a virtual “collision” where its center of gravity undergoes rapid deceleration. This induces a high water hammer-type pressure that causes wetting transition. A new phase diagram shows that both large and small droplets can transition to wetted states due to the new deceleration driven and the previously known Laplace mechanisms, respectively. It is explained how the attainment of a nonwetted Cassie-Baxter state is more restrictive than previously known.

  7. Dependence of stress-induced omega transition and mechanical twinning on phase stability in metastable β Ti–V alloys

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.L.; Li, L.; Mei, W.; Wang, W.L.; Sun, J., E-mail: jsun@sjtu.edu.cn

    2015-09-15

    Tensile properties and deformation microstructures of a series of binary β Ti–16–22V alloys have been investigated. The results show that the plastic deformation mode changes from the plate-like stress-induced ω phase transformation with a special habit plane of (− 5052){sub ω}//(3 − 3 − 2){sub β} to (332)<113> type deformation twinning with increasing the content of vanadium in the β Ti–16–22 wt.% V alloys. The plate-like stress-induced ω phase has a special orientation relationship with the β phase matrix, i.e., [110]{sub β}//[− 12 − 10]{sub ω}, (3 − 3 − 2){sub β}//(− 5052){sub ω} and (− 55 − 4){sub β}//(30 − 31){sub ω}. The alloys plastically deformed by stress-induced ω phase transformation exhibit relatively higher yield strength than those deformed via (332)<113> type deformation twinning. It can be concluded that the stability of β phase plays a significant role in plastic deformation mode, i.e., stress-induced ω phase transformation or (332)<113> type deformation twinning, which governs the mechanical property of the β Ti–16–22 wt.% V alloys. - Highlights: • Tensile properties and deformed microstructures of β Ti–16–22V alloys were studied. • Stress-induced ω phase transformation and (332)<113> twinning occur in the alloys. • Stability of β phase plays a significant role in plastic deformation mode. • Plastic deformation mode governs the mechanical property of the alloys.

  8. Transition from collective to participant-spectator mechanisms in the reaction Kr + Au at 43 MeV/u

    International Nuclear Information System (INIS)

    Rudolf, G.; Adloff, J.C.; Bilwes, B.; Bilwes, R.; Glaser, M.; Scheibling, F.; Stuttge, L.; Ferrero, J.L.

    1989-01-01

    This talk presents some of the most significant results already obtained from two complementary experiments on the reaction Kr + Au at 43 MeV/u. These experiments were performed with the help of the four charged-particle multidetectors operating at Ganil. The analysis concentrates on double and higher order coincidences between intermediate mass fragments among which at least one can be considered as a fragment of the projectile. The results presented here are the following: i) for the most peripheral collisions, the mechanism is very similar to that of partly damped deep-inelastic reactions known from low bombarding energy studies; ii) for intermediate impact parameters, when several hundreds of MeV are dissipated, the target emits intermediate mass fragments; iii) this emission is not an equilibrated evaporation, but is localized between the target and the projectile and occurs on a time-scale comparable to the interaction time; and iiii) for the most central collisions, up to 1.5 GeV may be dissipated and a separate participant zone is created

  9. The mechanism of transition-metal (Cu or Pd)-catalyzed synthesis of benzimidazoles from amidines: theoretical investigation.

    Science.gov (United States)

    Li, Juan; Gu, Honghong; Wu, Caihong; Du, Lijuan

    2014-11-28

    In this study, the Cu(OAc)2- and [PdCl2(PhCN)2]-catalyzed syntheses of benzimidazoles from amidines were theoretically investigated using density functional theory calculations. For the Cu-catalyzed system, our calculations supported a four-step-pathway involving C-H activation of an arene with Cu(II) via concerted metalation-deprotonation (CMD), followed by oxidation of the Cu(II) intermediate and deprotonation of the imino group by Cu(III), and finally reductive elimination from Cu(III). In our calculations, the barriers for the CMD step and the oxidation step are the same. The results are different from the ones reported by Fu et al. in which the whole reaction mechanism includes three steps and the CMD step is rate determining. On the basis of the calculation results for the [PdCl2(PhCN)2]-catalyzed system, C-H bond breaking by CMD occurs first, followed by the rate-determining C-N bond formation and N-H deprotonation. Pd(III) species is not involved in the [PdCl2(PhCN)2]-catalyzed syntheses of benzimidazoles from amidines.

  10. A ‘frozen volume’ transition model and working mechanism for the shape memory effect in amorphous polymers

    Science.gov (United States)

    Lu, Haibao; Wang, Xiaodong; Yao, Yongtao; Qing Fu, Yong

    2018-06-01

    Phenomenological models based on frozen volume parameters could well predict shape recovery behavior of shape memory polymers (SMPs), but the physical meaning of using the frozen volume parameters to describe thermomechanical properties has not been well-established. In this study, the fundamental working mechanisms of the shape memory effect (SME) in amorphous SMPs, whose temperature-dependent viscoelastic behavior follows the Eyring equation, have been established with the considerations of both internal stress and its resulted frozen volume. The stress-strain constitutive relation was initially modeled to quantitatively describe effects of internal stresses at the macromolecular scale based on the transient network theory. A phenomenological ‘frozen volume’ model was then established to characterize the macromolecule structure and SME of amorphous SMPs based on a two-site stress-relaxation model. Effects of the internal stress, frozen volume and strain rate on shape memory behavior and thermomechanical properties of the SMP were investigated. Finally, the simulation results were compared with the experimental results reported in the literature, and good agreements between the theoretical and experimental results were achieved. The novelty and key differences of our newly proposed model with respect to the previous reports are (1). The ‘frozen volume’ in our study is caused by the internal stress and governed by the two-site model theory, thus has a good physical meaning. (2). The model can be applied to characterize and predict both the thermal and thermomechanical behaviors of SMPs based on the constitutive relationship with internal stress parameters. It is expected to provide a power tool to investigate the thermomechanical behavior of the SMPs, of which both the macromolecular structure characteristics and SME could be predicted using this ‘frozen volume’ model.

  11. Journalism and Explaining News Content

    NARCIS (Netherlands)

    Albæk, E.; Skovsgaard, M.; de Vreese, C.H.; Nussbaum, J.F.

    Three models are presented to explain variation in news content. In the first model the explanation is based on the individual journalist, in the second model on the professional journalist, and in the third model on the organized journalist. The individual journalist model focuses on how the

  12. Can Marxism Explain America's Racism?

    Science.gov (United States)

    Willhelm, Sidney M.

    1980-01-01

    The Marxist interpretation of the Black experience in America has always had difficulty explaining various noneconomic aspects of racism. A perspective is needed that can blend racism as a variable in relationship with economic variables. To reach this perspective, the labor process within capitalism must be more fully understood. (Author/GC)

  13. Does market competition explain fairness?

    Science.gov (United States)

    Descioli, Peter

    2013-02-01

    The target article by Baumard et al. uses their previous model of bargaining with outside options to explain fairness and other features of human sociality. This theory implies that fairness judgments are determined by supply and demand but humans often perceive prices (divisions of surplus) in competitive markets to be unfair.

  14. Influence of the micro- and nanoscale local mechanical properties of the interfacial transition zone on impact behavior of concrete made with different aggregates

    International Nuclear Information System (INIS)

    Erdem, Savaş; Dawson, Andrew Robert; Thom, Nicholas Howard

    2012-01-01

    The influence of the microscale local mechanical properties of the interfacial transition zone (ITZ) on macro-level mechanical response and impact behavior is studied for concretes made with copper slag and gravel aggregates. 3D nanotech vertical scanning interferometry, scanning electron microscopy coupled with energy dispersive X-ray micro-analysis, digital image analysis, and 3D X-ray computed tomography were used to characterize the microstructures and the ITZs. It was deduced that a stronger and denser ITZ in the copper slag specimen would reduce its vulnerability to stiffness loss and contribute to its elastic and more ductile response under impact loading. The analysis also indicated that a significant degeneration in the pore structure of the gravel specimen associated with a relatively weaker and non-homogeneous ITZ occurred under impact. Finally, it was also concluded that increased roughness of ITZ may contribute to the load-carrying capacity of concrete under impact by improving contact point interactions and energy dissipation.

  15. Labour market transitions and job satisfaction

    NARCIS (Netherlands)

    G.E. Bijwaard (Govert); A. van Dijk (Bram); J. de Koning (Jaap)

    2003-01-01

    textabstractThe paper investigates the relationship between job satisfaction and labour market transitions. Using a multinomial logit model, a model is estimated on the basis of individual data in which transitions are explained from individual characteristics, job characteristics, dissatisfaction

  16. Hydrostatic-pressure induced phase transition of phonons in single-walled nanotubes

    International Nuclear Information System (INIS)

    Feng Peng; Meng Qingchao

    2009-01-01

    We study the effect of the hydrostatic pressure on the phonons in single-walled carbon nanotubes (SWNTs) in a magnetic field. We calculate the magnetic moments of the phonons using a functional integral technique, and find that the phonons in SWNTs undergo a pressure-induced phase transition from the paramagnetic phase to the diamagnetic phase under hydrostatic pressure 2 GPa. We explain the mechanism of generating this phase transition.

  17. Mechanics

    CERN Document Server

    Chester, W

    1979-01-01

    When I began to write this book, I originally had in mind the needs of university students in their first year. May aim was to keep the mathematics simple. No advanced techniques are used and there are no complicated applications. The emphasis is on an understanding of the basic ideas and problems which require expertise but do not contribute to this understanding are not discussed. How­ ever, the presentation is more sophisticated than might be considered appropri­ ate for someone with no previous knowledge of the subject so that, although it is developed from the beginning, some previous acquaintance with the elements of the subject would be an advantage. In addition, some familiarity with element­ ary calculus is assumed but not with the elementary theory of differential equations, although knowledge of the latter would again be an advantage. It is my opinion that mechanics is best introduced through the motion of a particle, with rigid body problems left until the subject is more fully developed. Howev...

  18. HIV As Trojan Exosome: Immunological Paradox Explained?

    Science.gov (United States)

    Hildreth, James E K

    2017-01-01

    The HIV pandemic is still a major global challenge, despite the widespread availability of antiretroviral drugs. An effective vaccine would be the ideal approach to bringing the pandemic to an end. However, developing an effective HIV vaccine has proven to be an elusive goal. Three major human HIV vaccine trials revealed a strong trend toward greater risk of infection among vaccine recipients versus controls. A similar observation was made in a macaque SIV vaccine study. The mechanism explaining this phenomenon is not known. Here, a model is presented that may explain the troubling results of vaccine studies and an immunological paradox of HIV pathogenesis: preferential infection of HIV-specific T cells. The central hypothesis of this perspective is that as "Trojan exosomes" HIV particles can directly activate HIV-specific T cells enhancing their susceptibility to infection. Understanding the biology of HIV as an exosome may provide insights that enable novel approaches to vaccine development.

  19. Comprehensive mechanism and structure-sensitivity of ethanol oxidation on platinum: new transition-state searching method for resolving the complex reaction network.

    Science.gov (United States)

    Wang, Hui-Fang; Liu, Zhi-Pan

    2008-08-20

    Ethanol oxidation on Pt is a typical multistep and multiselectivity heterogeneous catalytic process. A comprehensive understanding of this fundamental reaction would greatly benefit design of catalysts for use in direct ethanol fuel cells and the degradation of biomass-derived oxygenates. In this work, the reaction network of ethanol oxidation on different Pt surfaces, including close-packed Pt{111}, stepped Pt{211}, and open Pt{100}, is explored thoroughly with an efficient reaction path searching method, which integrates our new transition-state searching technique with periodic density functional theory calculations. Our new technique enables the location of the transition state and saddle points for most surface reactions simply and efficiently by optimization of local minima. We show that the selectivity of ethanol oxidation on Pt depends markedly on the surface structure, which can be attributed to the structure-sensitivity of two key reaction steps: (i) the initial dehydrogenation of ethanol and (ii) the oxidation of acetyl (CH3CO). On open surface sites, ethanol prefers C-C bond cleavage via strongly adsorbed intermediates (CH2CO or CHCO), which leads to complete oxidation to CO2. However, only partial oxidizations to CH3CHO and CH3COOH occur on Pt{111}. Our mechanism points out that the open surface Pt{100} is the best facet to fully oxidize ethanol at low coverages, which sheds light on the origin of the remarkable catalytic performance of Pt tetrahexahedra nanocrystals found recently. The physical origin of the structure-selectivity is rationalized in terms of both thermodynamics and kinetics. Two fundamental quantities that dictate the selectivity of ethanol oxidation are identified: (i) the ability of surface metal atoms to bond with unsaturated C-containing fragments and (ii) the relative stability of hydroxyl at surface atop sites with respect to other sites.

  20. Deformation processes and weakening mechanisms within the frictional viscous transition zone of major crustal-scale faults: insights from the Great Glen Fault Zone, Scotland

    Science.gov (United States)

    Stewart, M.; Holdsworth, R. E.; Strachan, R. A.

    2000-05-01

    The Great Glen Fault Zone (GGFZ), Scotland, is a typical example of a crustal-scale, reactivated strike-slip fault within the continental crust. Analysis of intensely strained fault rocks from the core of the GGFZ near Fort William provides a unique insight into the nature of deformation associated with the main phase of (sinistral) movements along the fault zone. In this region, an exhumed sequence of complex mid-crustal deformation textures that developed in the region of the frictional-viscous transition (ca. 8-15 km depth) is preserved. Fault rock fabrics vary from mylonitic in quartzites to cataclastic in micaceous shear zones and feldspathic psammites. Protolith mineralogy exerted a strong control on the initial textural development and distribution of the fault rocks. At lower strains, crystal-plastic deformation occurred in quartz-dominated lithologies to produce mylonites simultaneously with widespread fracturing and cataclasis in feldspar- and mica-dominated rocks. At higher strains, shearing appears to increasingly localise into interconnected networks of cataclastic shear zones, many of which are strongly foliated. Textures indicative of fluid-assisted diffusive mass transfer mechanisms are widespread in such regions and suggest that a hydrous fluid-assisted, grainsize-controlled switch in deformation behaviour followed the brittle comminution of grains. The fault zone textural evolution implies that a strain-induced, fluid-assisted shallowing and narrowing of the frictional-viscous transition occurred with increasing strain. It is proposed that this led to an overall weakening of the fault zone and that equivalent processes may occur along many other long-lived, crustal-scale dislocations.

  1. Persistent villi hypoperfusion explains intramucosal acidosis in sheep endotoxemia

    NARCIS (Netherlands)

    Dubin, Arnaldo; Edul, Vanina Siham Kanoore; Pozo, Mario Omar; Murias, Gastón; Canullán, Carlos Manuel; Martins, Enrique Francisco; Ferrara, Gonzalo; Canales, Héctor Saul; Laporte, Mercedes; Estenssoro, Elisa; Ince, Can

    2008-01-01

    OBJECTIVE: To test the hypothesis that persistent villi hypoperfusion explains intramucosal acidosis after endotoxemic shock resuscitation. DESIGN: Controlled experimental study. SETTING: University-based research laboratory. SUBJECTS: A total of 14 anesthetized, mechanically ventilated sheep.

  2. Explaining Disparities in Unemployment Dynamics

    OpenAIRE

    Karanassou, Marika; Snower, Dennis J.

    1993-01-01

    This paper attempts to explain disparities among the unemployment experiences of different OECD countries in terms of the `fragility' of the short-run unemployment equilibrium (the impact of labour market shocks on the short-run unemployment rate) and the lag structure of the employment determination, wage setting, and labour force participation decisions. The effects of this lag structure on unemployment dynamics are captured through two general measures of `unemployment persistence' (occurr...

  3. Explaining the Gender Wealth Gap

    Science.gov (United States)

    Ruel, Erin; Hauser, Robert M.

    2013-01-01

    To assess and explain the United States’ gender wealth gap, we use the Wisconsin Longitudinal Study to examine wealth accumulated by a single cohort over 50 years by gender, by marital status, and limited to the respondents who are their family’s best financial reporters. We find large gender wealth gaps between currently married men and women, and never-married men and women. The never-married accumulate less wealth than the currently married, and there is a marital disruption cost to wealth accumulation. The status-attainment model shows the most power in explaining gender wealth gaps between these groups explaining about one-third to one-half of the gap, followed by the human-capital explanation. In other words, a lifetime of lower earnings for women translates into greatly reduced wealth accumulation. A gender wealth gap remains between married men and women after controlling for the full model that we speculate may be related to gender differences in investment strategies and selection effects. PMID:23264038

  4. Weaker dental enamel explains dental decay.

    Science.gov (United States)

    Vieira, Alexandre R; Gibson, Carolyn W; Deeley, Kathleen; Xue, Hui; Li, Yong

    2015-01-01

    Dental caries continues to be the most prevalent bacteria-mediated non-contagious disease of humankind. Dental professionals assert the disease can be explained by poor oral hygiene and a diet rich in sugars but this does not account for caries free individuals exposed to the same risk factors. In order to test the hypothesis that amount of amelogenin during enamel development can influence caries susceptibility, we generated multiple strains of mice with varying levels of available amelogenin during dental development. Mechanical tests showed that dental enamel developed with less amelogenin is "weaker" while the dental enamel of animals over-expressing amelogenin appears to be more resistant to acid dissolution.

  5. Transition mechanism of nuclear phase

    International Nuclear Information System (INIS)

    Kubo, T.; Sakata, F.; Marumori, T.; Iwasawa, K.; Hashimoto, Y.

    1993-01-01

    A general theory capable of exploring the microscopic structure of the time-dependent Hartree-Fock (TDHF) manifold is summarized. It is discussed that each stable fixed point in the TDHF-manifold represents a dynamical stable mean-field which is not reached by means of the conventional static Hartree-Fock (HF) or constrained Hartree-Fock (CHF) theories. A feasibility of the theory is shown by applying it to a simple model Hamiltonian. (orig.)

  6. Mechanism transition of cell-impedance-controlled lithium transport through Li1-δMn2O4 composite electrode caused by surface-modification and temperature variation

    International Nuclear Information System (INIS)

    Jung, Kyu-Nam; Pyun, Su-Il

    2007-01-01

    The mechanism transition of lithium transport through a Li 1-δ Mn 2 O 4 composite electrode caused by the surface-modification and temperature variation was investigated using the galvanostatic intermittent titration technique (GITT), electrochemical impedance spectroscopy (EIS) and the potentiostatic current transient technique. From the analyses of the ac-impedance spectra, experimentally measured from unmodified Li 1-δ Mn 2 O 4 and surface-modified Li 1-δ Mn 2 O 4 with MgO composite electrodes, the internal cell resistance of the MgO-modified Li 1-δ Mn 2 O 4 electrode was determined to be much smaller in value than that of the unmodified electrode over the whole potential range. Moreover, from the analysis of the anodic current transients measured on the MgO-modified Li 1-δ Mn 2 O 4 electrode, it was found that the cell-impedance-controlled constraint at the electrode surface is changed to a diffusion-controlled constraint, which is characterised by a large potential step and simultaneously by a small amount of lithium transferred during lithium transport. This strongly suggests that the internal cell resistance plays a significant role in determining the cell-impedance-controlled lithium transport through the MgO-modified Li 1-δ Mn 2 O 4 electrode. Furthermore, from the temperature dependence of the internal cell resistance and diffusion resistance in the unmodified Li 1-δ Mn 2 O 4 composite electrode measured by GITT and EIS, it was concluded that which mechanism of lithium transport will be operative strongly depends on the diffusion resistance as well as on the internal cell resistance

  7. Structural, mechanical and electronic properties of 3d transition metal nitrides in cubic zincblende, rocksalt and cesium chloride structures: a first-principles investigation

    International Nuclear Information System (INIS)

    Liu, Z T Y; Khare, S V; Zhou, X; Gall, D

    2014-01-01

    We report systematic results from ab initio calculations with density functional theory on three cubic structures, zincblende (zb), rocksalt (rs) and cesium chloride (cc), of the ten 3d transition metal nitrides. We computed lattice constants, elastic constants, their derived moduli and ratios that characterize mechanical properties. Experimental measurements exist in the literature of lattice constants for rs-ScN, rs-TiN and rs-VN and of elastic constants for rs-TiN and rs-VN, all of which are in good agreement with our computational results. Similarly, computed Vickers hardness (H V ) values for rs-TiN and rs-VN are consistent with earlier experimental results. Several trends were observed in our rich data set of 30 compounds. All nitrides, except for zb-CrN, rs-MnN, rs-FeN, cc-ScN, cc-CrN, cc-NiN and cc-ZnN, were found to be mechanically stable. A clear correlation in the atomic density with the bulk modulus (B) was observed with maximum values of B around FeN, MnN and CrN. The shear modulus, Young’s modulus, H V and indicators of brittleness showed similar trends and all showed maxima for cc-VN. The calculated value of H V for cc-VN was about 30 GPa, while the next highest values were for rs-ScN and rs-TiN, about 24 GPa. A relation (H V ∝θ D 2 ) between H V and Debye temperature (θ D ) was investigated and verified for each structure type. A tendency for anti-correlation of the elastic constant C 44 , which strongly influences stability and hardness, with the number of electronic states around the Fermi energy was observed. (paper)

  8. Explaining mutualism variation: a new evolutionary paradox?

    Science.gov (United States)

    Heath, Katy D; Stinchcombe, John R

    2014-02-01

    The paradox of mutualism is typically framed as the persistence of interspecific cooperation, despite the potential advantages of cheating. Thus, mutualism research has tended to focus on stabilizing mechanisms that prevent the invasion of low-quality partners. These mechanisms alone cannot explain the persistence of variation for partner quality observed in nature, leaving a large gap in our understanding of how mutualisms evolve. Studying partner quality variation is necessary for applying genetically explicit models to predict evolution in natural populations, a necessary step for understanding the origins of mutualisms as well as their ongoing dynamics. An evolutionary genetic approach, which is focused on naturally occurring mutualist variation, can potentially synthesize the currently disconnected fields of mutualism evolution and coevolutionary genetics. We outline explanations for the maintenance of genetic variation for mutualism and suggest approaches necessary to address them. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  9. Combined Monte Carlo and quantum mechanics study of the solvatochromism of phenol in water. The origin of the blue shift of the lowest pi-pi* transition.

    Science.gov (United States)

    Barreto, Rafael C; Coutinho, Kaline; Georg, Herbert C; Canuto, Sylvio

    2009-03-07

    A combined and sequential use of Monte Carlo simulations and quantum mechanical calculations is made to analyze the spectral shift of the lowest pi-pi* transition of phenol in water. The solute polarization is included using electrostatic embedded calculations at the MP2/aug-cc-pVDZ level giving a dipole moment of 2.25 D, corresponding to an increase of 76% compared to the calculated gas-phase value. Using statistically uncorrelated configurations sampled from the MC simulation, first-principle size-extensive calculations are performed to obtain the solvatochromic shift. Analysis is then made of the origin of the blue shift. Results both at the optimized geometry and in room-temperature liquid water show that hydrogen bonds of water with phenol promote a red shift when phenol is the proton-donor and a blue shift when phenol is the proton-acceptor. In the case of the optimized clusters the calculated shifts are in very good agreement with results obtained from mass-selected free jet expansion experiments. In the liquid case the contribution of the solute-solvent hydrogen bonds partially cancels and the total shift obtained is dominated by the contribution of the outer solvent water molecules. Our best result, including both inner and outer water molecules, is 570 +/- 35 cm(-1), in very good agreement with the small experimental shift of 460 cm(-1) for the absorption maximum.

  10. A Ring Polymer Molecular Dynamics Approach to Study the Transition between Statistical and Direct Mechanisms in the H2 + H3+ → H3+ + H2 Reaction.

    Science.gov (United States)

    Suleimanov, Yury V; Aguado, Alfredo; Gómez-Carrasco, Susana; Roncero, Octavio

    2018-05-03

    Because of its fundamental importance in astrochemistry, the H 2 + H 3 + → H 3 + + H 2 reaction has been studied experimentally in a wide temperature range. Theoretical studies of the title reaction significantly lag primarily because of the challenges associated with the proper treatment of the zero-point energy (ZPE). As a result, all previous theoretical estimates for the ratio between a direct proton-hop and indirect exchange (via the H 5 + complex) channels deviate from the experiment, in particular, at lower temperatures where the quantum effects dominate. In this work, the ring polymer molecular dynamics (RPMD) method is applied to study this reaction, providing very good agreement with the experiment. RPMD is immune to the shortcomings associated with the ZPE leakage and is able to describe the transition from direct to indirect mechanisms below room temperature. We argue that RPMD represents a useful tool for further studies of numerous ZPE-sensitive chemical reactions that are of high interest in astrochemistry.

  11. Explaining the Evolution of Poverty

    DEFF Research Database (Denmark)

    Arndt, Channing; Hussain, Azhar; Jones, Edward Samuel

    2012-01-01

    We provide a comprehensive approach for analyzing the evolution of poverty using Mozambique as a case study. Bringing together data from disparate sources, we develop a novel “back-casting” framework that links a dynamic computable general equilibrium model to a micro-simulation poverty module....... This framework provides a new approach to explaining and decomposing the evolution of poverty, as well as to examining rigorously the coherence between poverty, economic growth, and inequality outcomes. Finally, various simple but useful and rarely-applied approaches to considering regional changes in poverty...

  12. Avalanche criticality in thermal-driven martensitic transitions: the asymmetry of the forward and reverse transitions in shape-memory materials

    Science.gov (United States)

    Planes, Antoni; Vives, Eduard

    2017-08-01

    Martensitic transitions take place intermittently as a sequence of avalanches which are accompanied by the emission of acoustic waves. The study of this acoustic emission (AE) reveals the scale-free nature of the avalanches. In a number of shape memory materials undergoing a martensitic transition it has been found that, in spite of relatively low hysteresis, the dynamics of forward and reverse transitions are different, which may explain the fact that the AE activity is different in both forward and reverse transitions. The asymmetry could be a consequence of the fact that, while nucleation is required for the transition from the parent to martensitic phase to take place, reverse transition occurs by fast shrinkage of martensitic domains. We have analysed in detail the distribution of avalanches in cooling and heating runs in Fe-Pd and Cu-Zn-Al shape-memory alloys. In the former, the martensitic transition is weakly first order while it shows a significant first order character in the latter. We have found that in Fe-Pd the distributions are power law for the forward and reverse transitions characterized by the same critical exponents. For Cu-Zn-Al the distribution of avalanches is critical in forward transitions but exponentially damped in the reverse transition. It is suggested that this different behaviour could originate from the different dynamic mechanisms in forward and reverse transitions. This paper is dedicated to our friend Ekhard Salje in the occasion of his 70th birthday.

  13. Mechanical relaxation in glasses

    International Nuclear Information System (INIS)

    Hiki, Y.

    2004-01-01

    The basic properties of glasses and the characteristics of mechanical relaxation in glasses were briefly reviewed, and then our studies concerned were presented. Experimental methods adopted were viscosity, internal friction, ultrasonic attenuation, and Brillouin scattering measurements. The specimens used were several kinds of inorganic, organic, and metallic glasses. The measurements were mainly carried out from the room temperature up to the glass transition temperature, and the relaxation time was determined as a function of temperature. The 'double relaxation' composed of two Arrhenius-type relaxations was observed in many materials. In both relaxations, the 'compensation effect' showing a correlation of the pre-exponential factor and the activation energy was observed. These results were explained by considering the 'complex relaxation' due to cooperative motions of atoms or group of atoms. Values of activation energy near the glass transition determined by the various experimental methods were compared with each other

  14. Molecular mechanisms of 3,3′4,4′,5-pentachlorobiphenyl-induced epithelial-mesenchymal transition in human hepatocellular carcinoma cells

    International Nuclear Information System (INIS)

    Song, Li; Guo, Linlin; Li, Zhuoyu

    2017-01-01

    Polychlorinated biphenyls (PCBs) are classic persistent organic pollutants (POPs). Many studies have found a positive association between the progression of hepatocellular carcinoma (HCC) and PCBs exposure. However, the influence of PCBs on epithelial-mesenchymal transition (EMT) of HCC remains to be unclear. In this study, we explored the effect of PCB126 on EMT in HCC cells and its underlying mechanisms. The data showed that PCB126, exposing both Bel-7402 and SMMC-7721 cells for 48 h, promoted EMT that was demonstrated by E-cadherin repression, up-regulation of N-cadherin and vimentin, and morphological alteration. We found that signal transducer and activator of transcription 3 (STAT3)/Snail1 signaling was activated after PCB126 exposure, and the addition of STAT3 inhibitor WP1066 blocked PCB126-induced down-regulation of E-cadherin as well as up-regulation of N-cadherin and vimentin. Moreover, PCB126 exposure increased pyruvate kinase M2 (PKM2) expression and its nuclear translocation, whereas treatment with PKM2 shRNA suppressed the activation of STAT3/Snail1 signaling and the alternation of EMT-related molecules (E-cadherin, N-cadherin and vimentin). Furthermore, this study indicated estrogen receptor (ER) and aryl hydrocarbon receptor (AhR) were involved in PCB126-induced effects on PKM2, STAT3/Snail1 signaling and EMT by according treatment using ER inhibitor ICI and AhR shRNA. Notably, PCB126-increased reactive oxygen species (ROS) production via AhR is associated with activation of PKM2/STAT3/Snail1 cascades and contributes to EMT. Taken together, these results indicated that PCB126 promotes EMT process of HCC cells via PKM2/STAT3/Snail1 signaling which is mediated by ER and AhR. - Highlights: • PCB126 promotes epithelial-mesenchymal transition of HCC cells. • PCB126 regulates EMT through the activation of STAT3/Snail1 signaling. • PKM2 is responsible for PCB126-induced activation of STAT3/Snail1 signaling. • AhR-induced ROS generation regulates

  15. Molecular mechanisms of 3,3′4,4′,5-pentachlorobiphenyl-induced epithelial-mesenchymal transition in human hepatocellular carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Song, Li; Guo, Linlin [Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006 (China); Li, Zhuoyu, E-mail: lzy@sxu.edu.cn [Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006 (China); College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053 (China)

    2017-05-01

    Polychlorinated biphenyls (PCBs) are classic persistent organic pollutants (POPs). Many studies have found a positive association between the progression of hepatocellular carcinoma (HCC) and PCBs exposure. However, the influence of PCBs on epithelial-mesenchymal transition (EMT) of HCC remains to be unclear. In this study, we explored the effect of PCB126 on EMT in HCC cells and its underlying mechanisms. The data showed that PCB126, exposing both Bel-7402 and SMMC-7721 cells for 48 h, promoted EMT that was demonstrated by E-cadherin repression, up-regulation of N-cadherin and vimentin, and morphological alteration. We found that signal transducer and activator of transcription 3 (STAT3)/Snail1 signaling was activated after PCB126 exposure, and the addition of STAT3 inhibitor WP1066 blocked PCB126-induced down-regulation of E-cadherin as well as up-regulation of N-cadherin and vimentin. Moreover, PCB126 exposure increased pyruvate kinase M2 (PKM2) expression and its nuclear translocation, whereas treatment with PKM2 shRNA suppressed the activation of STAT3/Snail1 signaling and the alternation of EMT-related molecules (E-cadherin, N-cadherin and vimentin). Furthermore, this study indicated estrogen receptor (ER) and aryl hydrocarbon receptor (AhR) were involved in PCB126-induced effects on PKM2, STAT3/Snail1 signaling and EMT by according treatment using ER inhibitor ICI and AhR shRNA. Notably, PCB126-increased reactive oxygen species (ROS) production via AhR is associated with activation of PKM2/STAT3/Snail1 cascades and contributes to EMT. Taken together, these results indicated that PCB126 promotes EMT process of HCC cells via PKM2/STAT3/Snail1 signaling which is mediated by ER and AhR. - Highlights: • PCB126 promotes epithelial-mesenchymal transition of HCC cells. • PCB126 regulates EMT through the activation of STAT3/Snail1 signaling. • PKM2 is responsible for PCB126-induced activation of STAT3/Snail1 signaling. • AhR-induced ROS generation regulates

  16. Explaining the harmonic sequence paradox.

    Science.gov (United States)

    Schmidt, Ulrich; Zimper, Alexander

    2012-05-01

    According to the harmonic sequence paradox, an expected utility decision maker's willingness to pay for a gamble whose expected payoffs evolve according to the harmonic series is finite if and only if his marginal utility of additional income becomes zero for rather low payoff levels. Since the assumption of zero marginal utility is implausible for finite payoff levels, expected utility theory - as well as its standard generalizations such as cumulative prospect theory - are apparently unable to explain a finite willingness to pay. This paper presents first an experimental study of the harmonic sequence paradox. Additionally, it demonstrates that the theoretical argument of the harmonic sequence paradox only applies to time-patient decision makers, whereas the paradox is easily avoided if time-impatience is introduced. ©2011 The British Psychological Society.

  17. Transitional Justice

    DEFF Research Database (Denmark)

    Gissel, Line Engbo

    This presentation builds on an earlier published article, 'Contemporary Transitional Justice: Normalising a Politics of Exception'. It argues that the field of transitional justice has undergone a shift in conceptualisation and hence practice. Transitional justice is presently understood to be th...... to be the provision of ordinary criminal justice in contexts of exceptional political transition.......This presentation builds on an earlier published article, 'Contemporary Transitional Justice: Normalising a Politics of Exception'. It argues that the field of transitional justice has undergone a shift in conceptualisation and hence practice. Transitional justice is presently understood...

  18. Quantum mechanics and the second law of thermodynamics: an insight gleaned from magnetic hysteresis in the first order phase transition of an isolated mesoscopic-size type I superconductor

    International Nuclear Information System (INIS)

    Keefe, Peter D

    2012-01-01

    J Bardeen proposed that the adiabatic phase transition of mesoscopic-size type I superconductors must be accompanied by magnetic hysteresis in the critical magnetic field of sufficient magnitude to satisfy the second law of thermodynamics, herein referred to as ‘Bardeen Hysteresis’. Bardeen Hysteresis remains speculative in that it has not been reported in the literature. This paper investigates Bardeen Hysteresis as a possible accompaniment to the adiabatic phase transition of isolated mesoscopic-size type I superconductors and its implications with respect to the second law of thermodynamics. A causal mechanism for Bardeen Hysteresis is discussed which contrasts with the long accepted causal mechanism of magnetic hysteresis, as first summarized by Pippard, herein referred to as ‘Pippard Hysteresis’. The paper offers guidance for an experimental verification and comments on how the existence of Bardeen Hysteresis has relation to a quantum mechanical basis for the second law of thermodynamics.

  19. Quantum mechanics and the second law of thermodynamics: an insight gleaned from magnetic hysteresis in the first order phase transition of an isolated mesoscopic-size type I superconductor

    Science.gov (United States)

    Keefe, Peter D.

    2012-11-01

    J Bardeen proposed that the adiabatic phase transition of mesoscopic-size type I superconductors must be accompanied by magnetic hysteresis in the critical magnetic field of sufficient magnitude to satisfy the second law of thermodynamics, herein referred to as ‘Bardeen Hysteresis’. Bardeen Hysteresis remains speculative in that it has not been reported in the literature. This paper investigates Bardeen Hysteresis as a possible accompaniment to the adiabatic phase transition of isolated mesoscopic-size type I superconductors and its implications with respect to the second law of thermodynamics. A causal mechanism for Bardeen Hysteresis is discussed which contrasts with the long accepted causal mechanism of magnetic hysteresis, as first summarized by Pippard, herein referred to as ‘Pippard Hysteresis’. The paper offers guidance for an experimental verification and comments on how the existence of Bardeen Hysteresis has relation to a quantum mechanical basis for the second law of thermodynamics.

  20. Deflagration to detonation transition in thermonuclear supernovae

    International Nuclear Information System (INIS)

    Charignon, Camille

    2013-01-01

    Type Ia supernovae are an important tool to determine the expansion history of our Universe. Thus, considerable attention has been given to both observations and models of these events. The most popular explosion model is the central ignition of a deflagration in the dense C+O interior of a Chandrasekhar mass white dwarf, followed by a transition to a detonation (TDD). We study in this thesis a new mechanism for this transition. The most robust and studied progenitor model and the postulated mechanism for the TDD, the so called 'Zel'dovich gradient mechanism', are presented. State of the art 3D simulations of such a delayed detonation, at the price of some adjustments, can indeed reproduce observables. But due to largely unresolved physical scales, such simulations cannot explain the TDD by themselves, and especially, the physical mechanism which triggers this transition - which is not yet understood, even on Earth, for unconfined media. It is then discussed why the current Zel'dovich mechanism might be too constraining for a SN Ia model, pointing to a new approach, which is the core result of this thesis.In the final part, our alternative model for DDT in supernovae, the acoustic heating of the pre-supernova envelope, is presented. A planar model first proves that small amplitude acoustic perturbations (generated by a turbulent flame) are actually amplified in a steep density gradient, up to a point where they turn into shocks able to trigger a detonation. Then, this mechanism is applied to more realistic models, taking into account, in spherical geometry, the expanding envelope. A parametric study demonstrates the validity of the model for a reasonable range of acoustic wave amplitudes and frequencies.To conclude, some exploratory 2D and 3D MHD simulations, seeking for realistic acoustic source compatible with our mechanism, are presented. (author) [fr

  1. Erythropoietin suppresses epithelial to mesenchymal transition and intercepts Smad signal transduction through a MEK-dependent mechanism in pig kidney (LLC-PK1) cell lines

    International Nuclear Information System (INIS)

    Chen, Chien-Liang; Chou, Kang-Ju; Lee, Po-Tsang; Chen, Ying-Shou; Chang, Tsu-Yuan; Hsu, Chih-Yang; Huang, Wei-Chieh; Chung, Hsiao-Min; Fang, Hua-Chang

    2010-01-01

    Purpose: Tumor growth factor-β1 (TGF-β1) plays a pivotal role in processes like kidney epithelial-mesenchymal transition (EMT) and interstitial fibrosis, which correlate well with progression of renal disease. Little is known about underlying mechanisms that regulate EMT. Based on the anatomical relationship between erythropoietin (EPO)-producing interstitial fibroblasts and adjacent tubular cells, we investigated the role of EPO in TGF-β1-mediated EMT and fibrosis in kidney injury. Methods: We examined apoptosis and EMT in TGF-β1-treated LLC-PK1 cells in the presence or absence of EPO. We examined the effect of EPO on TGF-β1-mediated Smad signaling. Apoptosis and cell proliferation were assessed with flow cytometry and hemocytometry. We used Western blotting and indirect immunofluorescence to evaluate expression levels of TGF-β1 signal pathway proteins and EMT markers. Results: We demonstrated that ZVAD-FMK (a caspase inhibitor) inhibited TGF-β1-induced apoptosis but did not inhibit EMT. In contrast, EPO reversed TGF-β1-mediated apoptosis and also partially inhibited TGF-β1-mediated EMT. We showed that EPO treatment suppressed TGF-β1-mediated signaling by inhibiting the phosphorylation and nuclear translocation of Smad 3. Inhibition of mitogen-activated protein kinase kinase 1 (MEK 1) either directly with PD98059 or with MEK 1 siRNA resulted in inhibition of EPO-mediated suppression of EMT and Smad signal transduction in TGF-β1-treated cells. Conclusions: EPO inhibited apoptosis and EMT in TGF-β1-treated LLC-PK1 cells. This effect of EPO was partially mediated by a mitogen-activated protein kinase-dependent inhibition of Smad signal transduction.

  2. What Can Catchment Transit Time Distributions Tell Us About Runoff Mechanisms? Exploring "Age Equifinality" with an Integrated Surface-Groundwater Model.

    Science.gov (United States)

    Wilusz, D. C.; Harman, C. J.; Ball, W. P.; Maxwell, R. M.; Buda, A. R.

    2017-12-01

    The backward transit-time distribution (bTTD) is the time-varying, probabilistic distribution of water travel times or, equivalently, water ages in catchment outflow. The bTTD is increasingly seen as a master variable of catchment hydrology that links flow and transport processes, in part because it is believed to embed information about runoff generation mechanisms (RGMs) that are difficult to directly observe. The ability to use water age to make inferences about RGMs depends on the degree of "age equifinality" in a watershed, defined here as the phenomenon where significant volumes of similarly-aged water are delivered to the outlet by different RGMs at the same time. When age equifinality is low (e.g., all discharge is old groundwater), the mapping of water age to the RGM may be simple; when age equifinality is high (e.g., discharge is a mix of old groundwater and old interflow), this mapping may be impossible. In this study we conduct experiments in a virtual watershed to (1) understand the hydrologic conditions that lead to age equifinality, (2) identify relationships between water age and RGMs that are particularly obscured/unobscured by age equifinality, and (3) test the generalizability of these relationships in other watersheds. Our experiments used the fully-distributed surface-groundwater model ParFlow, which simulates a suite of RGMs, plus SLIM-FAST particle tracking. To improve realism, the watershed model was parameterized and forced using extensive field data from the USDA's Mahantango Creek experimental catchment in PA, USA. The model output is being interrogated to understand the time-varying relationships between the composition of RGMs and the bTTD at the outlet. We are also testing the robustness of these relationships by re-running our model with controlled differences in climate, topography, and scale. Initial results suggest high age equifinality at peak flows due to overlapping young water contributions from infiltration- and saturation

  3. Evolutionary modelling of transitions to sustainable development

    International Nuclear Information System (INIS)

    Safarzynska, K.

    2010-01-01

    This thesis has examined how evolutionary economics can contribute to modelling the micromechanisms that underlie transitions towards sustainable development. In general, transitions are fundamental or structural system changes. They involve, or even require, escaping lock-in of dominant, environmentally unsustainable technologies, introducing major technical or social innovations, and changing prevailing social practices and structures. Due to the complexity of socioeconomic interactions, it is not always possible to identify, and thus target with appropriate policy instruments, causes of specific unsustainable patterns of behaviour. Formal modelling exercises can help improve our understanding of the interaction of various transition mechanisms which are otherwise difficult to grasp intuitively. They allow exploring effects of policy interventions in complex systems. However, existing models of transitions focus on social phenomena and seldom address economic problems. As opposed, mainstream (neoclassical) economic models of technological change do not account for social interactions, and changing heterogeneity of users and their perspectives - even though all of these can influence the direction of innovations and patterns of socio-technological development. Evolutionary economics offers an approach that goes beyond neoclassical economics - in the sense of employing more realistic assumptions regarding the behaviour and heterogeneity of consumers, firms and investors. It can complement current transition models by providing them with a better understanding of associated economic dynamics. In this thesis, formal models were proposed to illustrate the usefulness of a range of evolutionary-economic techniques for modelling transitions. Modelling exercises aimed to explain the core properties of socio-economic systems, such as lock-in, path-dependence, coevolution, group selection and recombinant innovation. The studies collected in this dissertation illustrate that

  4. Plausible mechanisms explaining the association of periodontitis with cardiovascular diseases

    NARCIS (Netherlands)

    Loos, B.G.; Teeuw, W.J.; Nicu, E.A.; Lynge Petersen, A.M.

    2016-01-01

    The association between periodontitis and cardiovascular diseases is now well established. Cardiovascular diseases include atherosclerosis, coronary heart (artery) disease, cerebrovascular disease, and peripheral artery disease. Atherosclerosis is the underlying pathology of cardiovascular diseases.

  5. Explaining Polarization Reversals in STEREO Wave Data

    Science.gov (United States)

    Breneman, A.; Cattell, C.; Wygant, J.; Kersten, K.; Wilson, L, B., III; Dai, L.; Colpitts, C.; Kellogg, P. J.; Goetz, K.; Paradise, A.

    2012-01-01

    Recently Breneman et al. reported observations of large amplitude lightning and transmitter whistler mode waves from two STEREO passes through the inner radiation belt (Lpaper. We show, with a combination of observations and simulated wave superposition, that these polarization reversals are due to the beating of an incident electromagnetic whistler mode wave at 21.4 kHz and linearly polarized, symmetric lower hybrid sidebands Doppler-shifted from the incident wave by +/-200 Hz. The existence of the lower hybrid waves is consistent with the parametric decay mechanism of Lee and Kuo whereby an incident whistler mode wave decays into symmetric, short wavelength lower hybrid waves and a purely growing (zero-frequency) mode. Like the lower hybrid waves, the purely growing mode is Doppler-shifted by 200 Hz as observed on STEREO. This decay mechanism in the upper ionosphere has been previously reported at equatorial latitudes and is thought to have a direct connection with explosive spread F enhancements. As such it may represent another dissipation mechanism of VLF wave energy in the ionosphere and may help to explain a deficit of observed lightning and transmitter energy in the inner radiation belts as reported by Starks et al.

  6. EXPLAINING THE ASSOCIATION BETWEEN INCARCERATION AND DIVORCE*

    Science.gov (United States)

    Siennick, Sonja E.; Stewart, Eric A.; Staff, Jeremy

    2014-01-01

    Recent studies have suggested that incarceration dramatically increases the odds of divorce, but we know little about the mechanisms that explain the association. This study uses prospective longitudinal data from a subset of married young adults in the National Longitudinal Study of Adolescent Health (N = 1,919) to examine whether incarceration is associated with divorce indirectly via low marital love, economic strain, relationship violence, and extramarital sex. The findings confirmed that incarcerations occurring during, but not before, a marriage were associated with an increased hazard of divorce. Incarcerations occurring during marriage also were associated with less marital love, more relationship violence, more economic strain, and greater odds of extramarital sex. Above-average levels of economic strain were visible among respondents observed preincarceration, but only respondents observed postincarceration showed less marital love, more relationship violence, and higher odds of extramarital sex than did respondents who were not incarcerated during marriage. These relationship problems explained approximately 40 percent of the association between incarceration and marital dissolution. These findings are consistent with theoretical predictions that a spouse’s incarceration alters the rewards and costs of the marriage and the relative attractiveness of alternative partners. PMID:25598544

  7. Can molecular cell biology explain chromosome motions?

    Directory of Open Access Journals (Sweden)

    Gagliardi L

    2011-05-01

    Full Text Available Abstract Background Mitotic chromosome motions have recently been correlated with electrostatic forces, but a lingering "molecular cell biology" paradigm persists, proposing binding and release proteins or molecular geometries for force generation. Results Pole-facing kinetochore plates manifest positive charges and interact with negatively charged microtubule ends providing the motive force for poleward chromosome motions by classical electrostatics. This conceptual scheme explains dynamic tracking/coupling of kinetochores to microtubules and the simultaneous depolymerization of kinetochore microtubules as poleward force is generated. Conclusion We question here why cells would prefer complex molecular mechanisms to move chromosomes when direct electrostatic interactions between known bound charge distributions can accomplish the same task much more simply.

  8. Explaining fast radio bursts through Dicke's superradiance

    Science.gov (United States)

    Houde, Martin; Mathews, Abhilash; Rajabi, Fereshteh

    2018-03-01

    Fast radio bursts (FRBs), characterized by strong bursts of radiation intensity at radio wavelengths lasting on the order of a millisecond, have yet to be firmly associated with a family, or families, of astronomical sources. It follows that despite the large number of proposed models, no well-defined physical process has been identified to explain this phenomenon. In this paper, we demonstrate how Dicke's superradiance, for which evidence has recently been found in the interstellar medium, can account for the characteristics associated with FRBs. Our analysis and modelling of previously detected FRBs suggest they could originate from regions in many ways similar to those known to harbour masers or megamasers, and result from the coherent radiation emanating from populations of molecules associated with large-scale entangled quantum mechanical states. We estimate this entanglement to involve as many as ˜1030 to ˜1032 molecules over distances spanning 100-1000 au.

  9. Transport mechanisms and wetting dynamics in molecularly thin films of long-chain alkanes at solid/vapour interface : relation to the solid-liquid phase transition

    OpenAIRE

    Lazar, Paul

    2005-01-01

    Wetting and phase transitions play a very important role our daily life. Molecularly thin films of long-chain alkanes at solid/vapour interfaces (e.g. C30H62 on silicon wafers) are very good model systems for studying the relation between wetting behaviour and (bulk) phase transitions. Immediately above the bulk melting temperature the alkanes wet partially the surface (drops). In this temperature range the substrate surface is covered with a molecularly thin ordered, solid-like alkane film (...

  10. Pinocchio: Geppetto's transitional object

    Directory of Open Access Journals (Sweden)

    Gabriele Zeloni

    2015-01-01

    Full Text Available The literature has been considered by Freud and others after him, a form of unaware exploration of mind that can leads to discoveries similar to psychoanalysis’s discoveries. From this perspective, the author puts forward the following hypothesis: Pinocchio is a puppet who comes to life and is therefore, from a child's perception, a transitional object according to Winnicott. Consequently Geppetto is nothing more than the involuntary representation of any child interacting with the transitional object. The author explains the results of the analysis of the text in support of the hypothesis and reflects on the impact of The adventure of Pinocchio on the reader.

  11. TRANSITIONAL DISKS AS SIGNPOSTS OF YOUNG, MULTIPLANET SYSTEMS

    International Nuclear Information System (INIS)

    Dodson-Robinson, Sarah E.; Salyk, Colette

    2011-01-01

    Although there has yet been no undisputed discovery of a still-forming planet embedded in a gaseous protoplanetary disk, the cleared inner holes of transitional disks may be signposts of young planets. Here, we show that the subset of accreting transitional disks with wide, optically thin inner holes of 15 AU or more can only be sculpted by multiple planets orbiting inside each hole. Multiplanet systems provide two key ingredients for explaining the origins of transitional disks. First, multiple planets can clear wide inner holes where single planets open only narrow gaps. Second, the confined, non-axisymmetric accretion flows produced by multiple planets provide a way for an arbitrary amount of mass transfer to occur through an apparently optically thin hole without overproducing infrared excess flux. Rather than assuming that the gas and dust in the hole are evenly and axisymmetrically distributed, one can construct an inner hole with apparently optically thin infrared fluxes by covering a macroscopic fraction of the hole's surface area with locally optically thick tidal tails. We also establish that other clearing mechanisms, such as photoevaporation, cannot explain our subset of accreting transitional disks with wide holes. Transitional disks are therefore high-value targets for observational searches for young planetary systems.

  12. Bone volume fraction and structural parameters for estimation of mechanical stiffness and failure load of human cancellous bone samples; in-vitro comparison of ultrasound transit time spectroscopy and X-ray μCT.

    Science.gov (United States)

    Alomari, Ali Hamed; Wille, Marie-Luise; Langton, Christian M

    2018-02-01

    Conventional mechanical testing is the 'gold standard' for assessing the stiffness (N mm -1 ) and strength (MPa) of bone, although it is not applicable in-vivo since it is inherently invasive and destructive. The mechanical integrity of a bone is determined by its quantity and quality; being related primarily to bone density and structure respectively. Several non-destructive, non-invasive, in-vivo techniques have been developed and clinically implemented to estimate bone density, both areal (dual-energy X-ray absorptiometry (DXA)) and volumetric (quantitative computed tomography (QCT)). Quantitative ultrasound (QUS) parameters of velocity and attenuation are dependent upon both bone quantity and bone quality, although it has not been possible to date to transpose one particular QUS parameter into separate estimates of quantity and quality. It has recently been shown that ultrasound transit time spectroscopy (UTTS) may provide an accurate estimate of bone density and hence quantity. We hypothesised that UTTS also has the potential to provide an estimate of bone structure and hence quality. In this in-vitro study, 16 human femoral bone samples were tested utilising three techniques; UTTS, micro computed tomography (μCT), and mechanical testing. UTTS was utilised to estimate bone volume fraction (BV/TV) and two novel structural parameters, inter-quartile range of the derived transit time (UTTS-IQR) and the transit time of maximum proportion of sonic-rays (TTMP). μCT was utilised to derive BV/TV along with several bone structure parameters. A destructive mechanical test was utilised to measure the stiffness and strength (failure load) of the bone samples. BV/TV was calculated from the derived transit time spectrum (TTS); the correlation coefficient (R 2 ) with μCT-BV/TV was 0.885. For predicting mechanical stiffness and strength, BV/TV derived by both μCT and UTTS provided the strongest correlation with mechanical stiffness (R 2 =0.567 and 0.618 respectively) and

  13. Supporting Transition

    Science.gov (United States)

    Qureshi, Asima; Petrucco, James

    2018-01-01

    Meadowbrook Primary School has explored the use of The Teacher Assessment in Primary Science (TAPS) to support transition, initially for transfer to secondary school and now for transition from Early Years Foundation Stage (EYFS) into Key Stage 1 (ages 5-7). This article will consider an example of a secondary transition project and discuss the…

  14. Continuum mechanical and computational aspects of phase field elasticity as applied to phase transitions and fracture. Final report: DE-FG02-97ER25318, June 1, 1997 - May 31, 2000

    Energy Technology Data Exchange (ETDEWEB)

    Fried, Eliot; Gurtin, Morton E.

    2001-04-20

    The central focus of the research carried out under this grant is the application of continuum mechanics to materials science, specifically to the macroscopic characterization of material behavior at small length scales. Specifically, research was carried out in the following general areas: dislocations in solids; point defects in liquid crystals; dynamic fracture; diffusional phase transitions in deformable solids; incoherent phase interfaces; phase field simulations of twinning and coarsening in solids; crystal plasticity; microforce theories for diffusion and recrystallization; granular flow.

  15. Energy Exchange Dynamics across L-H transitions in NSTX

    Science.gov (United States)

    Diallo, Ahmed

    2017-10-01

    H-mode is planned for future devices such as ITER, and is preceded by a low (L) to high (H) transition. A key question remains. What is the mechanism behind the L-H transition? Most theoretical descriptions of the L-H transition are based on the shear of the radial electric field and coincident ExB poloidal flow shear, which is thought to be responsible for the onset of the anomalous transport suppression that leads to the L-H transition. This talk will focus on the analysis of the flow dynamics across the L-H transition in NSTX. We analyze the L-H transition dynamics using the velocimetry of 2D edge turbulence data from gas-puff imaging (GPI). We determine the velocity components at the edge across the L-H transition for 17 discharges with three types of heating power (NBI, ohmic, and RF). Using a reduced model equation of edge flows and turbulence, the energy transfer dynamics is compared with the turbulence depletion hypothesis of the predator-prey model. In order for Reynolds work to suppress the turbulence, it must deplete the total turbulent free energy, including the thermal free-energy term. For this to occur, the increase in kinetic energy in the mean flow over the L-H transition must be comparable to the pre-transition thermal free energy. However, this ratio was found to be of order 10-2. Although there are significant simplifications in the theoretical model, they are unlikely to cause inaccuracy by two orders of magnitude, suggesting that direct turbulence depletion by the Reynolds work may not be large enough to explain the L-H transition on NSTX, contrary to the predator-prey model. This work is supported by the US DOE Contract No. DE-AC02-09CH11466.

  16. Mapping the transition from catalyst-pool to bamboo-like growth-mechanism in vertically-aligned free-standing films of carbon nanotubes filled with Fe3C: The key role of water

    Directory of Open Access Journals (Sweden)

    Filippo S. Boi

    2016-08-01

    Full Text Available The control of carbon nanotube growth has challenged researchers for more than a decade due to the complex parameters-control necessary in the commonly used CVD approaches. Here we show that a direct transition from the catalyst-pool growth mechanism characterized by graphene-caps in the direction of growth to a bamboo-shaped mechanism characterized by the repetition of periodic elongated graphitic compartments is present when controlled quantities of water are added to ferrocene/dichlorobenzene. Our results suggest that water-addition allows enhancing the level of stress accumulated under the graphitic nanotubes-cap.

  17. Mapping the transition from catalyst-pool to bamboo-like growth-mechanism in vertically-aligned free-standing films of carbon nanotubes filled with Fe3C: The key role of water

    Science.gov (United States)

    Boi, Filippo S.; Wang, Shanling; He, Yi

    2016-08-01

    The control of carbon nanotube growth has challenged researchers for more than a decade due to the complex parameters-control necessary in the commonly used CVD approaches. Here we show that a direct transition from the catalyst-pool growth mechanism characterized by graphene-caps in the direction of growth to a bamboo-shaped mechanism characterized by the repetition of periodic elongated graphitic compartments is present when controlled quantities of water are added to ferrocene/dichlorobenzene. Our results suggest that water-addition allows enhancing the level of stress accumulated under the graphitic nanotubes-cap.

  18. Underlying mechanisms leading to El Niño-to-La Niña transition are unchanged under global warming

    Science.gov (United States)

    Yun, Kyung-Sook; Yeh, Sang-Wook; Ha, Kyung-Ja

    2018-05-01

    El Niño's transitions play critical roles in modulating severe weather and climate events. Therefore, understanding the dynamic factors leading to El Niño's transitions and its future projection is a great challenge in predicting the diverse socioeconomic influences of El Niño over the globe. This study focuses on two dynamic factors controlling the El Niño-to-La Niña transition from the present climate and to future climate, using the observation, the historical and the RCP8.5 simulations of Coupled Model Intercomparison phase 5 climate models. The first is the inter-basin coupling between the Indian Ocean and the western North Pacific through the subtropical high variability. The second is the enhanced sensitivity between sea surface temperature and a deep tropical convection in the central tropical Pacific during the El Niño's developing phase. We show that the dynamic factors leading to El Niño-to-La Niña transition in the present climate are unchanged in spite of the increase of greenhouse gas concentrations. We argue that the two dynamic factors are strongly constrained by the climatological precipitation distribution over the central tropical Pacific and western North Pacific as little changed from the present climate to future climate. This implies that two dynamical processes leading to El Niño-to-La Niña transitions in the present climate will also play a robust role in global warming.

  19. HIDING IN THE SHADOWS: SEARCHING FOR PLANETS IN PRE-TRANSITIONAL AND TRANSITIONAL DISKS

    International Nuclear Information System (INIS)

    Dobinson, Jack; Leinhardt, Zoë M.; Dodson-Robinson, Sarah E.; Teanby, Nick A.

    2013-01-01

    Transitional and pre-transitional disks can be explained by a number of mechanisms. This work aims to find a single observationally detectable marker that would imply a planetary origin for the gap and, therefore, indirectly indicate the presence of a young planet. N-body simulations were conducted to investigate the effect of an embedded planet of one Jupiter mass on the production of instantaneous collisional dust derived from a background planetesimal disk. Our new model allows us to predict the dust distribution and resulting observable markers with greater accuracy than previous works. Dynamical influences from a planet on a circular orbit are shown to enhance dust production in the disk interior and exterior to the planet orbit, while removing planetesimals from the orbit itself, creating a clearly defined gap. In the case of an eccentric planet, the gap opened by the planet is not as clear as the circular case, but there is a detectable asymmetry in the dust disk

  20. Transition radiation and transition scattering

    International Nuclear Information System (INIS)

    Ginzburg, V.L.

    1982-01-01

    Transition radiation is a process of a rather general character. It occurs when some source, which does not have a proper frequency (for example, a charge) moves at a constant velocity in an inhomogeneous and (or) nonstationary medium or near such a medium. The simplest type of transition radiation takes place when a charge crosses a boundary between two media (the role of one of the media may be played by vacuum). In the case of periodic variation of the medium, transition radiation possesses some specific features (resonance transition radiation or transition scattering). Transition scattering occurs, in particular, when a permittivity wave falls onto an nonmoving (fixed) charge. Transition scattering is closely connected with transition bremsstrahlung radiation. All these transition processes are essential for plasma physics. Transition radiation and transition scattering have analogues outside the framework of electrodynamics (like in the case of Vavilov-Cherenkov radiation). In the present report the corresponding range of phenomena is elucidated, as far as possible, in a generally physical aspect. (Auth.)

  1. How Much of Language Acquisition Does Operant Conditioning Explain?

    Directory of Open Access Journals (Sweden)

    Christopher B. Sturdy

    2017-10-01

    Full Text Available Since the 1950s, when Chomsky argued that Skinner’s arguments could not explain syntactic acquisition, psychologists have generally avoided explicitly invoking operant or instrumental conditioning as a learning mechanism for language among human children. In this article, we argue that this is a mistake. We focus on research that has been done on language learning in human infants and toddlers in order to illustrate our points. Researchers have ended up inventing learning mechanisms that, in actual practice, not only resemble but also in fact are examples of operant conditioning (OC by any other name they select. We argue that language acquisition researchers should proceed by first ruling out OC before invoking alternative learning mechanisms. While it is possible that OC cannot explain all of the language acquisition, simple learning mechanisms that work across species may have some explanatory power in children’s language learning.

  2. How Much of Language Acquisition Does Operant Conditioning Explain?

    Science.gov (United States)

    Sturdy, Christopher B.; Nicoladis, Elena

    2017-01-01

    Since the 1950s, when Chomsky argued that Skinner’s arguments could not explain syntactic acquisition, psychologists have generally avoided explicitly invoking operant or instrumental conditioning as a learning mechanism for language among human children. In this article, we argue that this is a mistake. We focus on research that has been done on language learning in human infants and toddlers in order to illustrate our points. Researchers have ended up inventing learning mechanisms that, in actual practice, not only resemble but also in fact are examples of operant conditioning (OC) by any other name they select. We argue that language acquisition researchers should proceed by first ruling out OC before invoking alternative learning mechanisms. While it is possible that OC cannot explain all of the language acquisition, simple learning mechanisms that work across species may have some explanatory power in children’s language learning. PMID:29163295

  3. How Much of Language Acquisition Does Operant Conditioning Explain?

    Science.gov (United States)

    Sturdy, Christopher B; Nicoladis, Elena

    2017-01-01

    Since the 1950s, when Chomsky argued that Skinner's arguments could not explain syntactic acquisition, psychologists have generally avoided explicitly invoking operant or instrumental conditioning as a learning mechanism for language among human children. In this article, we argue that this is a mistake. We focus on research that has been done on language learning in human infants and toddlers in order to illustrate our points. Researchers have ended up inventing learning mechanisms that, in actual practice, not only resemble but also in fact are examples of operant conditioning (OC) by any other name they select. We argue that language acquisition researchers should proceed by first ruling out OC before invoking alternative learning mechanisms. While it is possible that OC cannot explain all of the language acquisition, simple learning mechanisms that work across species may have some explanatory power in children's language learning.

  4. Energy exchange dynamics across L-H transitions in NSTX

    Science.gov (United States)

    Diallo, A.; Banerjee, S.; Zweben, S. J.; Stoltzfus-Dueck, T.

    2017-06-01

    We studied the energy exchange dynamics across the low-to-high-confinement (L-H) transition in NSTX discharges using the gas-puff imaging (GPI) diagnostic. The investigation focused on the energy exchange between flows and turbulence to help clarify the mechanism of the L-H transition. We applied this study to three types of heating schemes, including a total of 17 shots from the NSTX 2010 campaign run. Results show that the edge fluctuation characteristics (fluctuation levels, radial and poloidal correlation lengths) measured using GPI do not vary just prior to the H-mode transition, but change after the transition. Using a velocimetry approach (orthogonal-dynamics programming), velocity fields of a 24× 30 cm GPI view during the L-H transition were obtained with good spatial (˜1 cm) and temporal (˜2.5 μs) resolutions. Analysis using these velocity fields shows that the production term is systematically negative just prior to the L-H transition, indicating a transfer from mean flows to turbulence, which is inconsistent with the predator-prey paradigm. Moreover, the inferred absolute value of the production term is two orders of magnitude too small to explain the observed rapid L-H transition. These discrepancies are further reinforced by consideration of the ratio between the kinetic energy in the mean flow to the thermal free energy, which is estimated to be much less than 1, suggesting again that the turbulence depletion mechanism may not play an important role in the transition to the H-mode. Although the Reynolds work therefore appears to be too small to directly deplete the turbulent free energy reservoir, order-of-magnitude analysis shows that the Reynolds stress may still make a non-negligible contribution to the observed poloidal flows.

  5. Having Students Create Short Video Clips to Help Transition from Naïve Conceptions about Mechanics to True Newtonian Physics

    Science.gov (United States)

    Corten-Gualtieri, Pascale; Ritter, Christian; Plumat, Jim; Keunings, Roland; Lebrun, Marcel; Raucent, Benoit

    2016-01-01

    Most students enter their first university physics course with a system of beliefs and intuitions which are often inconsistent with the Newtonian frame of reference. This article presents an experiment of collaborative learning aiming at helping first-year students in an engineering programme to transition from their naïve intuition about dynamics…

  6. How Much of Language Acquisition Does Operant Conditioning Explain?

    OpenAIRE

    Sturdy, Christopher B.; Nicoladis, Elena

    2017-01-01

    Since the 1950s, when Chomsky argued that Skinner’s arguments could not explain syntactic acquisition, psychologists have generally avoided explicitly invoking operant or instrumental conditioning as a learning mechanism for language among human children. In this article, we argue that this is a mistake. We focus on research that has been done on language learning in human infants and toddlers in order to illustrate our points. Researchers have ended up inventing learning mechanisms that, in ...

  7. Do sector-specific shocks explain aggregate fluctuations?

    DEFF Research Database (Denmark)

    Busato, Francesco; Girardi, Alessandro; Argentiero, Amedeo

    -sector productivity fluctuations.(ii) Cross-sector technology shocks have very little explanatory power on productivity andemployment, while cross-sector non-technology shocks explain more than 60 percent of employmentthat is reallocated across sector; this suggests that the shocks’ transmission mechanism....... Thenon-durable sector may follow a standard RBC model, while the durable sector should incorporateconsumption habit formation....

  8. Do plant traits explain tree seedling survival in bogs?

    NARCIS (Netherlands)

    Limpens, J.; Egmond, van E.; Li, B.; Holmgren, M.

    2013-01-01

    Moss-dominated peat bogs store approximately 30% of global soil carbon. A climate induced shift from current moss-dominated conditions to tree-dominated states is expected to strongly affect their functioning and carbon sequestration capacity. Consequently, unraveling the mechanisms that may explain

  9. Negative plant soil feedback explaining ring formation in clonal plants

    NARCIS (Netherlands)

    Carteni, F.; Marasco, A.; Bonanomi, G.; Mazzoleni, S.; Rietkerk, M.G.; Giannino, F.

    2012-01-01

    Ring shaped patches of clonal plants have been reported in different environments, but the mechanisms underlying such pattern formation are still poorly explained. Water depletion in the inner tussocks zone has been proposed as a possible cause, although ring patterns have been also observed in

  10. The pseudo-binary mercury chalcogenide alloy HgSe sub 0 sub . sub 7 S sub 0 sub . sub 3 at high pressure: a mechanism for the zinc blende to cinnabar reconstructive phase transition

    CERN Document Server

    Kozlenko, D P; Ehm, L; Hull, S; Savenko, B N; Shchennikov, V V; Voronin, V I

    2003-01-01

    The structure of the pseudo-binary mercury chalcogenide alloy HgSe sub 0 sub . sub 7 S sub 0 sub . sub 3 has been studied by x-ray and neutron powder diffraction at pressures up to 8.5 GPa. A phase transition from the cubic zinc blende structure to the hexagonal cinnabar structure was observed at P approx 1 GPa. A phenomenological model of this reconstructive phase transition based on a displacement mechanism is proposed. Analysis of the geometrical relationship between the zinc blende and the cinnabar phases has shown that the possible order parameter for the zinc blende-cinnabar structural transformation is the spontaneous strain e sub 4. This assignment agrees with the previously observed high pressure behaviour of the elastic constants of some mercury chalcogenides.

  11. Excitation mechanisms of 2s1/2-2p3/2 and 2p1/2-2p3/2 transitions in U82+ through U89+

    International Nuclear Information System (INIS)

    Decaux, V.; Beiersdorfer, P.; Osterheld, A.

    1994-01-01

    A model based on detailed calculations of the electron-impact excitation of n = 2 electrons in the Li- to Ne-like uranium ions was developed to interpret and explain measurements on EBIT (Electron Beam Ion Trap). While only considering the direct excitation process provided a good model for the electric dipole (El) transitions, it was necessary for the magnetic dipole (Ml) spectrum to include various additional excitation processes in the model. In particular, the model was expanded to include electron-impact excitation of n = 3 levels followed by radiative cascades. Moreover, excitation by the ionization of 2s 1/2 , 2p 1/2 , and 2p 3/2 electrons and by radiative capture of beam electrons into excited levels was added. The new model demonstrates that the dipole-forbidden lines are almost exclusively produced by indirect excitation processes

  12. Classifying and explaining democracy in the Muslim world

    Directory of Open Access Journals (Sweden)

    Rohaizan Baharuddin

    2012-12-01

    Full Text Available The purpose of this study is to classify and explain democracies in the 47 Muslim countries between the years 1998 and 2008 by using liberties and elections as independent variables. Specifically focusing on the context of the Muslim world, this study examines the performance of civil liberties and elections, variation of democracy practised the most, the elections, civil liberties and democratic transitions and patterns that followed. Based on the quantitative data primarily collected from Freedom House, this study demonstrates the following aggregate findings: first, the “not free not fair” elections, the “limited” civil liberties and the “Illiberal Partial Democracy” were the dominant feature of elections, civil liberties and democracy practised in the Muslim world; second, a total of 413 Muslim regimes out of 470 (47 regimes x 10 years remained the same as their democratic origin points, without any transitions to a better or worse level of democracy, throughout these 10 years; and third, a slow, yet steady positive transition of both elections and civil liberties occurred in the Muslim world with changes in the nature of elections becoming much more progressive compared to the civil liberties’ transitions.

  13. Gauge theory of glass transition

    International Nuclear Information System (INIS)

    Vasin, Mikhail

    2011-01-01

    A new analytical approach for the description of the glass transition in a frustrated system is suggested. The theory is based on the non-equilibrium dynamics technique, and takes into account the interaction of the local order field with the massive gauge field, which describes frustration-induced plastic deformation. The glass transition is regarded as a phase transition interrupted because of the premature critical slowing-down of one of the degrees of freedom caused by the frustrations. It is shown that freezing of the system appears when the correlation length and relaxation time of the gauge field diverge. The Vogel–Fulcher–Tammann relation for the transition kinetics and the critical exponent for the nonlinear susceptibility, 2.5∼ t correlation function dependence on time, and explains the boson peak appearance on this curve. In addition, the function of the glass transition temperature value with cooling rate is derived; this dependence fully conforms with known experimental data

  14. Interactions between coherent twin boundaries and phase transition of iron under dynamic loading and unloading

    Science.gov (United States)

    Wang, Kun; Chen, Jun; Zhang, Xueyang; Zhu, Wenjun

    2017-09-01

    Phase transitions and deformation twins are constantly reported in many BCC metals under high pressure, whose interactions are of fundamental importance to understand the strengthening mechanism of these metals under extreme conditions. However, the interactions between twins and phase transition in BCC metals remain largely unexplored. In this work, interactions between coherent twin boundaries and α ↔ ɛ phase transition of iron are investigated using both non-equilibrium molecular dynamics simulations and the nudged elastic band method. Mechanisms of both twin-assisted phase transition and reverse phase transition are studied, and orientation relationships between BCC and HCP phases are found to be ⟨"separators="|11 1 ¯ ⟩ B C C||⟨"separators="|1 ¯2 1 ¯ 0 ⟩ H C P and ⟨"separators="|1 1 ¯ 0 ⟩ B C C||⟨"separators="|0001 ⟩ H C P for both cases. The twin boundary corresponds to {"separators="|10 1 ¯ 0 } H C P after the phase transition. It is amazing that the reverse transition seems to be able to "memorize" and recover the initial BCC twins. The memory would be partly lost when plastic slips take place in the HCP phase before the reverse transition. In the recovered initial BCC twins, three major twin spacings are observed, which are well explained in terms of energy barriers of transition from the HCP phase to the BCC twin. Besides, the variant selection rule of the twin assisted phase transition is also discussed. The results of present work could be expected to give some clues for producing ultra-fine grain structures in materials exhibiting martensitic phase transition.

  15. Majorana neutrino transition magnetic moment in a variant of Zee model with horizontal symmetry

    International Nuclear Information System (INIS)

    Dhar, Jyoti; Dev, S.

    1992-01-01

    A SU(2) H symmetric variant of Zee model of lepton flavour violation is presented and is shown to lead to neutrino transition magnetic moment of the order required to explain the solar neutrino deficit and the possible anticorrelation of solar neutrino flux with sunspot activity via VVO mechanism. The use of horizontal symmetry leads to totally degenerate neutrino states which may be combined to form a ZKM Dirac neutrino with naturally small mass. (author). 22 refs., 1 fig

  16. Transit transparency.

    Science.gov (United States)

    2012-07-01

    Public transit agencies have employed intelligent systems for determining : schedules and routes and for monitoring the real-time location and status of their : vehicle fleets for nearly two decades. But until recently, the data generated by : daily ...

  17. Tautomeric transition between wobble A·C DNA base mispair and Watson-Crick-like A·C* mismatch: microstructural mechanism and biological significance.

    Science.gov (United States)

    Brovarets', Ol'ha O; Hovorun, Dmytro M

    2015-06-21

    Here, we use MP2/DFT quantum-chemical methods combined with Quantum Theory of Atoms in Molecules to study the tautomeric transition between wobble A·C(w) mismatch and Watson-Crick-like A·C*(WC) base mispair, proceeding non-dissociatively via sequential proton transfer between bases through the planar, highly stable and zwitterionic TS(A∙C-)(A∙C(W)A∙C&(WC)) transition state joined by the participation of (A)N6(+)H∙∙∙N4(-)(C), (A)N1(+)H∙∙∙N4(-)(C) and (A)C2(+)H∙∙∙N3(-)(C) H-bonds. Notably, the A·C(w) ↔ A·C*(WC) tautomerization reaction is accompanied by 10 unique patterns of the specific intermolecular interactions that consistently replace each other. Our data suggest that biologically significant A·C(w) → A·C*(WC) tautomerization is a kinetically controlled pathway for formation of the enzymatically competent Watson-Crick-like A·C*(WC) DNA base mispair in the essentially hydrophobic recognition pocket of the high-fidelity DNA-polymerase, responsible for the occurrence of spontaneous point AC/CA incorporation errors during DNA biosynthesis.

  18. Explaining G20 and BRICS Compliance

    Directory of Open Access Journals (Sweden)

    Marina Larionova

    2016-11-01

    Full Text Available This article explores the internal and external factors influencing the compliance performance of the Group of 20 (G20 and the BRICS. The authors start with an overview of the G20 and BRICS compliance patterns using comparative data onthe number of commitments made by the two institutions, the level of institutional compliance, and distribution of commitments and compliance across issue areas. G20 compliance is traced since the leaders’ first 2008 summit in Washington. The BRICS compliance performance record includes data since the third stand alone summit in Sanya in 2011.The study then takes stock of compliance catalysts embedded in the summits’ discourse: priority placements, numerical targets, timelines, self-accountability pledges and mandates to implement and/or monitor implementation. The authors review trends in the use of catalysts in different years and issue areas and identify commonalities and differences.The analysis then turns to external causes of compliance and focuses on demand for collective actions and members’ collective power to respond and deliver on their pledges. Here the study explores whether the self-accountability mechanisms created by the institutions in response to the demand for effectiveness and legitimacy facilitate compliance.The article concludes by highlighting catalysts, causes of compliance and their combinations with the greatest power to encourage implementation, explaining trends in G20 and BRICS compliance performance. The data sets on G20 and BRICS differ in terms of scale. The G20 data set contains 1,511 commitments of which 114 have been monitored, and the BRICS data set contains 231 commitments of which 23 have been monitored.

  19. Introduction to analytical mechanics

    CERN Document Server

    Gamalath, KAILW

    2011-01-01

    INTRODUCTION TO ANALYTICAL MECHANICS is an attempt to introduce the modern treatment of classical mechanics so that transition to many fields in physics can be made with the least difficulty. This book deal with the formulation of Newtonian mechanics, Lagrangian dynamics, conservation laws relating to symmetries, Hamiltonian dynamics Hamilton's principle, Poisson brackets, canonical transformations which are invaluable in formulating the quantum mechanics and Hamilton-Jacobi equation which provides the transition to wave mechanics.

  20. Water and Ethanol Droplet Wetting Transition during Evaporation on Omniphobic Surfaces

    Science.gov (United States)

    Chen, Xuemei; Weibel, Justin A.; Garimella, Suresh V.

    2015-01-01

    Omniphobic surfaces with reentrant microstructures have been investigated for a range of applications, but the evaporation of high- and low-surface-tension liquid droplets placed on such surfaces has not been rigorously studied. In this work, we develop a technique to fabricate omniphobic surfaces on copper substrates to allow for a systematic examination of the effects of surface topography on the evaporation dynamics of water and ethanol droplets. Compared to a water droplet, the ethanol droplet not only evaporates faster, but also inhibits Cassie-to-Wenzel wetting transitions on surfaces with certain geometries. We use an interfacial energy-based description of the system, including the transition energy barrier and triple line energy, to explain the underlying transition mechanism and behaviour observed. Suppression of the wetting transition during evaporation of droplets provides an important metric for evaluating the robustness of omniphobic surfaces requiring such functionality. PMID:26603940

  1. Rural poverty in transition countries

    OpenAIRE

    Macours, K; Swinnen, Jo

    2006-01-01

    This paper uses new poverty data based on household level surveys to analyze changes in rural poverty and rural-urban poverty differences in 23 transition countries of Central and Eastern Europe and the firmer Soviet Union. The paper presents a series of hypotheses to explain differences across countries and changes over time.

  2. Students' Development and Use of Models to Explain Electrostatic Interactions

    Science.gov (United States)

    Mayer, Kristin Elizabeth

    their understanding through applying their ideas to new context. During this transition, students struggled, and in particular, had a hard time using evidence from experiments to justify the changes they made to their models of atomic structure. While the changes students made looked unproductive at times, by the end of the semester, students had developed models of atomic structure that incorporated relationships among charged components that they could apply to explain complex phenomena. Asking students to explore and evaluate their own ideas supported their development of models that they could apply to explain new context they experience in their future.

  3. Electronic phase transitions

    CERN Document Server

    Kopaev, YuV

    1992-01-01

    Electronic Phase Transitions deals with topics, which are presently at the forefront of scientific research in modern solid-state theory. Anderson localization, which has fundamental implications in many areas of solid-state physics as well as spin glasses, with its influence on quite different research activities such as neural networks, are two examples that are reviewed in this book. The ab initio statistical mechanics of structural phase transitions is another prime example, where the interplay and connection of two unrelated disciplines of solid-state theory - first principle ele

  4. A thalamacortical feedback model to explain EEG during anesthesia

    OpenAIRE

    Hashemi , Meysam; Hutt , Axel

    2014-01-01

    General anaesthesia (GA) is a medical procedure which aims to achieve analgesia, amnesia, immobility and skeletal muscle relaxation. Although GA is commonly used in medical care for patients undergoing surgery, its precise underlying mechanisms and the molecular action of anaesthetic agents (AA) remain to be elucidated. A wide variety of drugs are used in modern anaesthetic practice and it has been observed that for many AAs, during the transition from consciousness to unconscious- ness, the ...

  5. Electromagnetic transitions in the atom

    International Nuclear Information System (INIS)

    Ulehla, I.; Suk, M.; Trka, Z.

    1990-01-01

    Methods to achieve excitation of atoms are outlined and conditions necessary for the occurrence of electromagnetic transitions in the atomic shell are given. Radiative transitions between the energy states of the atom include stimulated absorption, spontaneous emission, and stimulated emission. Selection rules applying to the majority of observed transitions are given. The parity concept is explained. It is shown how the electromagnetic field and its interaction with the magnetic moment of the atom lead to a disturbance of the energy states of the atom and the occurrence of various electro-optical and magneto-optical phenomena. The Stark effect and electron spin resonance are described. X-rays and X-ray spectra, the Auger effect and the internal photoeffect are also dealt with. The principle of the laser is explained. (M.D.). 22 figs., 1 tab

  6. Late time phase transition as dark energy

    Indian Academy of Sciences (India)

    Abstract. We show that the dark energy field can naturally be described by the scalar condensates of a non-abelian gauge group. This gauge group is unified with the standard model gauge groups and it has a late time phase transition. The small phase transition explains why the positive acceleration of the universe is ...

  7. Topology Explains Why Automobile Sunshades Fold Oddly

    Science.gov (United States)

    Feist, Curtis; Naimi, Ramin

    2009-01-01

    Automobile sunshades always fold into an "odd" number of loops. The explanation why involves elementary topology (braid theory and linking number, both explained in detail here with definitions and examples), and an elementary fact from algebra about symmetric group.

  8. Your Radiologist Explains Magnetic Resonance Angiography (MRA)

    Medline Plus

    Full Text Available ... Disorders Video: The Basketball Game: An MRI Story Radiology and You Sponsored by Image/Video Gallery Your ... Explains Magnetic Resonance Angiography (MRA) Transcript Welcome to Radiology Info dot org Hello, I’m Dr. Elliot ...

  9. Explorers Presentation: Explaining the Tides to Children

    OpenAIRE

    Institute, Marine

    2015-01-01

    Explaining the tides to children Presentation includes information about: Orbits of the Earth, Moon and Sun; Moon phases and the lunar cycle; Gravity; Gravity and the tide; Types of tides; The tides and me!; Tide tables; Extra insight

  10. Your Radiologist Explains Magnetic Resonance Angiography (MRA)

    Medline Plus

    Full Text Available ... An MRI Story Radiology and You Sponsored by Image/Video Gallery Your Radiologist Explains Magnetic Resonance Angiography ( ... posted: How to Obtain and Share Your Medical Images Movement Disorders Video: The Basketball Game: An MRI ...

  11. A model to explain human voice production

    Science.gov (United States)

    Vilas Bôas, C. S. N.; Gobara, S. T.

    2018-05-01

    This article presents a device constructed with low-cost material to demonstrate and explain voice production. It also provides a contextualized, interdisciplinary approach to introduce the study of sound waves.

  12. Using Expectancy Theory to Explain Performance Appraisal ...

    African Journals Online (AJOL)

    pc

    2018-03-05

    Mar 5, 2018 ... appraisal conducting style, the relation between the performance appraisal system and task ... the article first explains the theory model which is based expectancy theory. II. ... which in return lead to rewards. According to [12],.

  13. A third alternative to explain recent observations: Future deceleration

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Subenoy, E-mail: schakraborty@math.jdvu.ac.in; Pan, Supriya, E-mail: span@research.jdvu.ac.in; Saha, Subhajit, E-mail: subhajit1729@gmail.com

    2014-11-10

    In the present work we discuss a third alternative to explain the latest observational data concerning the accelerating Universe and its different stages. The particle creation mechanism in the framework of non-equilibrium thermodynamics is considered as a basic cosmic mechanism acting on the flat FRW geometry. By assuming that the gravitationally induced particle production occurs under “adiabatic” conditions, the deceleration parameter is expressed in terms of the particle creation rate which is chosen as a truncated power series of the Hubble parameter. The model shows the evolution of the Universe starting from inflation to the present late time acceleration and it also predicts future decelerating stage.

  14. A third alternative to explain recent observations: Future deceleration

    Science.gov (United States)

    Chakraborty, Subenoy; Pan, Supriya; Saha, Subhajit

    2014-11-01

    In the present work we discuss a third alternative to explain the latest observational data concerning the accelerating Universe and its different stages. The particle creation mechanism in the framework of non-equilibrium thermodynamics is considered as a basic cosmic mechanism acting on the flat FRW geometry. By assuming that the gravitationally induced particle production occurs under "adiabatic" conditions, the deceleration parameter is expressed in terms of the particle creation rate which is chosen as a truncated power series of the Hubble parameter. The model shows the evolution of the Universe starting from inflation to the present late time acceleration and it also predicts future decelerating stage.

  15. Decoding size distribution patterns in marine and transitional water phytoplankton: from community to species level.

    Directory of Open Access Journals (Sweden)

    Leonilde Roselli

    Full Text Available Understanding the mechanisms of phytoplankton community assembly is a fundamental issue of aquatic ecology. Here, we use field data from transitional (e.g. coastal lagoons and coastal water environments to decode patterns of phytoplankton size distribution into organization and adaptive mechanisms. Transitional waters are characterized by higher resource availability and shallower well-mixed water column than coastal marine environments. Differences in physico-chemical regime between the two environments have been hypothesized to exert contrasting selective pressures on phytoplankton cell morphology (size and shape. We tested the hypothesis focusing on resource availability (nutrients and light and mixed layer depth as ecological axes that define ecological niches of phytoplankton. We report fundamental differences in size distributions of marine and freshwater diatoms, with transitional water phytoplankton significantly smaller and with higher surface to volume ratio than marine species. Here, we hypothesize that mixing condition affecting size-dependent sinking may drive phytoplankton size and shape distributions. The interplay between shallow mixed layer depth and frequent and complete mixing of transitional waters may likely increase the competitive advantage of small phytoplankton limiting large cell fitness. The nutrient regime appears to explain the size distribution within both marine and transitional water environments, while it seem does not explain the pattern observed across the two environments. In addition, difference in light availability across the two environments appear do not explain the occurrence of asymmetric size distribution at each hierarchical level. We hypothesize that such competitive equilibria and adaptive strategies in resource exploitation may drive by organism's behavior which exploring patch resources in transitional and marine phytoplankton communities.

  16. ME31B globally represses maternal mRNAs by two distinct mechanisms during the Drosophila maternal-to-zygotic transition.

    Science.gov (United States)

    Wang, Miranda; Ly, Michael; Lugowski, Andrew; Laver, John D; Lipshitz, Howard D; Smibert, Craig A; Rissland, Olivia S

    2017-09-06

    In animal embryos, control of development is passed from exclusively maternal gene products to those encoded by the embryonic genome in a process referred to as the maternal-to-zygotic transition (MZT). We show that the RNA-binding protein, ME31B, binds to and represses the expression of thousands of maternal mRNAs during the Drosophila MZT. However, ME31B carries out repression in different ways during different phases of the MZT. Early, it represses translation while, later, its binding leads to mRNA destruction, most likely as a consequence of translational repression in the context of robust mRNA decay. In a process dependent on the PNG kinase, levels of ME31B and its partners, Cup and Trailer Hitch (TRAL), decrease by over 10-fold during the MZT, leading to a change in the composition of mRNA-protein complexes. We propose that ME31B is a global repressor whose regulatory impact changes based on its biological context.

  17. Hibiscus sabdariffa polyphenols alleviate insulin resistance and renal epithelial to mesenchymal transition: a novel action mechanism mediated by type 4 dipeptidyl peptidase.

    Science.gov (United States)

    Peng, Chiung-Huei; Yang, Yi-Sun; Chan, Kuei-Chuan; Wang, Chau-Jong; Chen, Mu-Lin; Huang, Chien-Ning

    2014-10-08

    The epithelial to mesenchymal transition (EMT) is important in renal fibrosis. Ser307 phosphorylation of insulin receptor substrate-1 (IRS-1 (S307)) is a hallmark of insulin resistance. We report that polyphenol extracts of Hibiscus sabdariffa (HPE) ameliorate diabetic nephropathy and EMT. Recently it has been observed that type 4 dipeptidyl peptidase (DPP-4) inhibitor linagliptin is effective for treating type 2 diabetes and albuminuria. We investigated if DPP-4 and insulin resistance are involved in renal EMT and explored the role of HPE. In high glucose-stimulated tubular cells, HPE, like linagliptin, inhibited DPP-4 activation, thereby regulating vimentin (EMT marker) and IRS-1 (S307). IRS-1 knockdown revealed its essential role in mediating downstream EMT. In type 2 diabetic rats, pIRS-1 (S307) abundantly surrounds the tubular region, with increased vimentin in kidney. Both the expressions were reduced by HPE. In conclusion, HPE exerts effects similar to those of linagliptin, which improves insulin resistance and EMT, and could be an adjuvant to prevent diabetic nephropathy.

  18. Phase transition in swollen gels XXVII. Swelling and mechanical behavior of poly(1-vinyl-2-pyrrolidone-co-N-vinylcaprolactam) gels in water/acetone mixtures

    Czech Academy of Sciences Publication Activity Database

    Ilavský, Michal; Mamytbekov, G.; Sedláková, Zdeňka; Bekturov, E. A.

    2001-01-01

    Roč. 33, č. 3 (2001), s. 214-220 ISSN 0032-3896 R&D Projects: GA AV ČR KSK2050602 Grant - others:XE(XC) Copernicus IC15-CT96-0756 Institutional research plan: CEZ:AV0Z4050913 Keywords : swelling equilibria * mechanical behaviour * collapse phenomena Subject RIV: CC - Organic Chemistry Impact factor: 0.941, year: 2001

  19. A molecular mechanism for the origin of a key evolutionary innovation, the bird beak and palate, revealed by an integrative approach to major transitions in vertebrate history.

    Science.gov (United States)

    Bhullar, Bhart-Anjan S; Morris, Zachary S; Sefton, Elizabeth M; Tok, Atalay; Tokita, Masayoshi; Namkoong, Bumjin; Camacho, Jasmin; Burnham, David A; Abzhanov, Arhat

    2015-07-01

    The avian beak is a key evolutionary innovation whose flexibility has permitted birds to diversify into a range of disparate ecological niches. We approached the problem of the mechanism behind this innovation using an approach bridging paleontology, comparative anatomy, and experimental developmental biology. First, we used fossil and extant data to show the beak is distinctive in consisting of fused premaxillae that are geometrically distinct from those of ancestral archosaurs. To elucidate underlying developmental mechanisms, we examined candidate gene expression domains in the embryonic face: the earlier frontonasal ectodermal zone (FEZ) and the later midfacial WNT-responsive region, in birds and several reptiles. This permitted the identification of an autapomorphic median gene expression region in Aves. To test the mechanism, we used inhibitors of both pathways to replicate in chicken the ancestral amniote expression. Altering the FEZ altered later WNT responsiveness to the ancestral pattern. Skeletal phenotypes from both types of experiments had premaxillae that clustered geometrically with ancestral fossil forms instead of beaked birds. The palatal region was also altered to a more ancestral phenotype. This is consistent with the fossil record and with the tight functional association of avian premaxillae and palate in forming a kinetic beak. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  20. Radiative transition, local field enhancement and energy transfer microcosmic mechanism of tellurite glasses containing Er3+, Yb3+ ions and Ag nanoparticles

    International Nuclear Information System (INIS)

    Zhang, Wenjun; Lin, Jian; Cheng, Mingzhao; Zhang, Shuo; Jia, Yujie; Zhao, Junhong

    2015-01-01

    Er 3+ -doped, Er 3+ /Yb 3+ co-doped tellurite glass with and without Ag NPs were synthesized by melt-quenching method. The high resolution transmission electron microscopy (HR-TEM) and selected area electron diffractions (SAED) manifest growth of Ag NPs. The UV–vis–NIR absorption spectroscopy and fluorescence spectroscopy were measured. The optical band gap and multiphonon relaxation rate constants were calculated. The electronic band structure and local density of state (DOS) of Ag NPs are calculated. The fluorescence emission and enhancement mechanism including localized surface plasmon resonance (LSPR) and energy transfer (ET) microcosmic mechanism were discussed. The electric field distributions of Ag NPs are emulated by FDTD solutions software. Local field enhancement (LFE) induced by LSPR and lightning rod effect was found to be responsible for the fluorescence enhancement while energy transfer from Ag NPs to rare-earth was considered ignorable in the samples without photoluminescent emission. - Highlights: • Tellurite glasses containing Er 3+ , Yb 3+ and Ag NPs are prepared. • Judd–Ofelt and multiphonon relaxation are calculated. • The electronic band structures of Ag NPs are calculated. • The energy transfer mechanism is discussed. • The plasmon resonance effect of Ag NPs is discussed

  1. Nanoscale size effects on the mechanical properties of platinum thin films and cross-sectional grain morphology

    KAUST Repository

    Abbas, K; Alaie, S; Ghasemi Baboly, M; Elahi, M M M; Anjum, Dalaver H.; Chaieb, Saharoui; Leseman, Z C

    2015-01-01

    -1700 MPa) are recorded and explained by the variable morphology. This work suggests that in addition to the in-plane grain size of thin films, the transitions in cross-sectional morphologies of the Pt films significantly affect their mechanical behavior.

  2. Modern theories of phase transitions

    International Nuclear Information System (INIS)

    Rajaraman, R.

    1979-01-01

    Modern applications of the ideas of phase transitions to nuclear systems and the modern techniques as applied to familiar phase transitions in solid-state physics are discussed with illustrations. The phenomenon of pion condensation in nuclei and neutron stars, is presented as an example of phase transitions in nuclear systems. The central physical ideas behind this subject as well as techniques used to tackle it are broadly summarised. It is pointed out that unlike familiar examples of ferromagnetism or superconductivity, the order parameter here has spatial variation even in the ground state. Possible experimental consequences are discussed. As an example of the second category, the use of renormalisation group techniques in solid state physics is reviewed. The basic idea behind the renormalisation group in the infra-red (thermodynamic) limit is presented. The observed universality and scaling of critical exponents in second order phase transitions is explained in a model-independent way. (auth.)

  3. The peripheral and central mechanisms of transition of acute to chronic pain and the possible role of cyclooxygenase-2 inhibition in the prevention of pain syndrome chronization

    Directory of Open Access Journals (Sweden)

    O. S. Davydov

    2016-01-01

    Full Text Available Chronic pain syndromes as a cause of suffering, short-term or persistent disability, and social losses greatly worsen quality of life. The mechanisms leading to the occurrence and maintenance of chronic pain are traditionally of interest for in-depth study since each of them is potentially a target for pharmacotherapy. Peripheral and central sensitizations, as well as disinhibition make different contributions to the development of chronic pain. The fact that cyclooxygenase-2 (COX-2 inhibitors may affect at both the peripheral and central, spinal levels, by modulating such a phenomenon as central sensitization, has been recently discussed. There are theoretical prerequisites for a discussion of this action of COX-2 inhibitors; however, clinical findings supporting this hypothesis have been scarce so far. In this connection, of interest is the clinical trial published in 2016, which may suggest to a high degree of accuracy that some analgesic effect of the selective COX-2 inhibitor etoricoxib is realized through the central mechanisms of pain modulation. 

  4. Ion-exchange mechanism of layered transition-metal oxides: case study of LiNi(0.5)Mn(0.5)O₂.

    Science.gov (United States)

    Gwon, Hyeokjo; Kim, Sung-Wook; Park, Young-Uk; Hong, Jihyun; Ceder, Gerbrand; Jeon, Seokwoo; Kang, Kisuk

    2014-08-04

    An ion-exchange process can be an effective route to synthesize new quasi-equilibrium phases with a desired crystal structure. Important layered-type battery materials, such as LiMnO2 and LiNi(0.5)Mn(0.5)O2, can be obtained through this method from a sodium-containing parent structure, and they often show electrochemical properties remarkably distinct from those of their solid-state synthesized equivalents. However, while ion exchange is generally believed to occur via a simple topotactic reaction, the detailed phase transformation mechanism during the process is not yet fully understood. For the case of layered LiNi(0.5)Mn(0.5)O2, we show through ex situ X-ray diffraction (XRD) that the ion-exchange process consists of several sequential phase transformations. By a study of the intermediate phase, it is shown that the residual sodium ions in the final structure may greatly affect the electrochemical (de)lithiation mechanism.

  5. Mechanism of the high transition temperature for the 1111-type iron-based superconductors R FeAsO (R =rare earth ): Synergistic effects of local structures and 4 f electrons

    Science.gov (United States)

    Zhang, Lifang; Meng, Junling; Liu, Xiaojuan; Yao, Fen; Meng, Jian; Zhang, Hongjie

    2017-07-01

    Among the iron-based superconductors, the 1111-type Fe-As-based superconductors REFeAs O1 -xFx (RE = rare earth) exhibit high transition temperatures (Tc) above 40 K. We perform first-principles calculations based on density functional theory with the consideration of both electronic correlations and spin-orbit couplings on rare earths and Fe ions to study the underlying mechanism as the microscopic structural distortions in REFeAsO tuned by both lanthanide contraction and external strain. The electronic structures evolve similarly in both cases. It is found that there exist an optimal structural regime that will not only initialize but also optimize the orbital fluctuations due to the competing Fe-As and Fe-Fe crystal fields. We also find that the key structural features in REFeAsO, such as As-Fe-As bond angle, intrinsically induce the modification of the Fermi surface and dynamic spin fluctuation. These results suggest that the superconductivity is mediated by antiferromagnetic spin fluctuations. Simultaneously, we show that the rare-earth 4 f electrons play important roles on the high transition temperature whose behavior might be analogous to that of the heavy-fermion superconductors. The superconductivity of these 1111-type iron-based superconductors with high-Tc is considered to originate from the synergistic effects of local structures and 4 f electrons.

  6. Mechanism of c-Met and EGFR tyrosine kinase inhibitor resistance through epithelial mesenchymal transition in non-small cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Rastogi, Ichwaku; Rajanna, Supriya; Webb, Andrew; Chhabra, Gagan; Foster, Brad [Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Illinois (United States); Webb, Brian [Thermo Fisher Scientific, Rockford, Illinois (United States); Puri, Neelu, E-mail: neelupur@uic.edu [Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Illinois (United States)

    2016-09-02

    According to currently available estimates from Cancer Research UK, 14.1 million new lung cancer cases were diagnosed and a staggering 8.2 million people worldwide died from lung cancer in 2012. EGFR and c-Met are two tyrosine kinase receptors most commonly overexpressed or mutated in Non-small Cell Lung Cancer (NSCLC) resulting in increased proliferation and survival of lung cancer cells. Tyrosine kinase inhibitors (TKIs), such as erlotinib, approved by the FDA as first/second line therapy for NSCLC patients have limited clinical efficacy due to acquired resistance. In this manuscript, we investigate and discuss the role of epithelial mesenchymal transition (EMT) in the development of resistance against EGFR and c-Met TKIs in NSCLC. Our findings show that Zeb-1, a transcriptional repressor of E-Cadherin, is upregulated in TKI-resistant cells causing EMT. We observed that TKI-resistant cells have increased gene and protein expression of EMT related proteins such as Vimentin, N-Cadherin, β-Catenin and Zeb-1, while expression of E-Cadherin, an important cell adhesion molecule, was suppressed. We also confirmed that TKI-resistant cells display mesenchymal cell type morphology, and have upregulation of β-Catenin which may regulate expression of Zeb-1, a transcriptional repressor of E-Cadherin in TKI-resistant NSCLC cells. Finally, we show that down-regulating Zeb-1 by inducing miR-200a or β-Catenin siRNA can increase drug sensitivity of TKI-resistant cells. - Highlights: • Resistance to TKIs in NSCLC cells is mediated via modulation in EMT related proteins. • EMT may induce c-Met mediated TKI resistance, similar to EGFR TKI resistance. • Role of β-catenin and cadherins in TKI resistance was validated by FACS and qPCR. • Knockdown of β-catenin or Zeb-1 can increase TKI sensitivity in TKI-resistant cells. • Targeting key EMT related proteins may overcome TKI resistance in NSCLC.

  7. Explaining variance in national electric vehicle policies

    NARCIS (Netherlands)

    Wesseling, Joeri

    2016-01-01

    Abstract Transition studies’ understanding of differences in public policy is limited due to its tendency to focus on single-country cases. This paper assesses differences in plug-in electric vehicle (PEV) policies, comprising RD&D subsidies, infrastructure investments and sales incentives, across

  8. Explaining ecological clusters of maternal depression in South Western Sydney.

    Science.gov (United States)

    Eastwood ED, John; Kemp, Lynn; Jalaludin, Bin

    2014-01-24

    The aim of the qualitative study reported here was to: 1) explain the observed clustering of postnatal depressive symptoms in South Western Sydney; and 2) identify group-level mechanisms that would add to our understanding of the social determinants of maternal depression. Critical realism provided the methodological underpinning for the study. The setting was four local government areas in South Western Sydney, Australia. Child and Family practitioners and mothers in naturally occurring mothers groups were interviewed. Using an open coding approach to maximise emergence of patterns and relationships we have identified seven theoretical concepts that might explain the observed spatial clustering of maternal depression. The theoretical concepts identified were: Community-level social networks; Social Capital and Social Cohesion; "Depressed community"; Access to services at the group level; Ethnic segregation and diversity; Supportive social policy; and Big business. We postulate that these regional structural, economic, social and cultural mechanisms partially explain the pattern of maternal depression observed in families and communities within South Western Sydney. We further observe that powerful global economic and political forces are having an impact on the local situation. The challenge for policy and practice is to support mothers and their families within this adverse regional and global-economic context.

  9. Explaining ecological clusters of maternal depression in South Western Sydney

    Science.gov (United States)

    2014-01-01

    Background The aim of the qualitative study reported here was to: 1) explain the observed clustering of postnatal depressive symptoms in South Western Sydney; and 2) identify group-level mechanisms that would add to our understanding of the social determinants of maternal depression. Methods Critical realism provided the methodological underpinning for the study. The setting was four local government areas in South Western Sydney, Australia. Child and Family practitioners and mothers in naturally occurring mothers groups were interviewed. Results Using an open coding approach to maximise emergence of patterns and relationships we have identified seven theoretical concepts that might explain the observed spatial clustering of maternal depression. The theoretical concepts identified were: Community-level social networks; Social Capital and Social Cohesion; "Depressed community"; Access to services at the group level; Ethnic segregation and diversity; Supportive social policy; and Big business. Conclusions We postulate that these regional structural, economic, social and cultural mechanisms partially explain the pattern of maternal depression observed in families and communities within South Western Sydney. We further observe that powerful global economic and political forces are having an impact on the local situation. The challenge for policy and practice is to support mothers and their families within this adverse regional and global-economic context. PMID:24460690

  10. Large impact of reorganization energy on photovoltaic conversion due to interfacial charge-transfer transitions.

    Science.gov (United States)

    Fujisawa, Jun-ichi

    2015-05-14

    Interfacial charge-transfer (ICT) transitions are expected to be a novel charge-separation mechanism for efficient photovoltaic conversion featuring one-step charge separation without energy loss. Photovoltaic conversion due to ICT transitions has been investigated using several TiO2-organic hybrid materials that show organic-to-inorganic ICT transitions in the visible region. In applications of ICT transitions to photovoltaic conversion, there is a significant problem that rapid carrier recombination is caused by organic-inorganic electronic coupling that is necessary for the ICT transitions. In order to solve this problem, in this work, I have theoretically studied light-to-current conversions due to the ICT transitions on the basis of the Marcus theory with density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations. An apparent correlation between the reported incident photon-to-current conversion efficiencies (IPCE) and calculated reorganization energies was clearly found, in which the IPCE increases with decreasing the reorganization energy consistent with the Marcus theory in the inverted region. This activation-energy dependence was systematically explained by the equation formulated by the Marcus theory based on a simple excited-state kinetic scheme. This result indicates that the reduction of the reorganization energy can suppress the carrier recombination and enhance the IPCE. The reorganization energy is predominantly governed by the structural change in the chemical-adsorption moiety between the ground and ICT excited states. This work provides crucial knowledge for efficient photovoltaic conversion due to ICT transitions.

  11. OT1_ipascucc_1: Understanding the Origin of Transition Disks via Disk Mass Measurements

    Science.gov (United States)

    Pascucci, I.

    2010-07-01

    Transition disks are a distinguished group of few Myr-old systems caught in the phase of dispersing their inner dust disk. Three different processes have been proposed to explain this inside-out clearing: grain growth, photoevaporation driven by the central star, and dynamical clearing by a forming giant planet. Which of these processes lead to a transition disk? Distinguishing between them requires the combined knowledge of stellar accretion rates and disk masses. We propose here to use 43.8 hours of PACS spectroscopy to detect the [OI] 63 micron emission line from a sample of 21 well-known transition disks with measured mass accretion rates. We will use this line, in combination with ancillary CO millimeter lines, to measure their gas disk mass. Because gas dominates the mass of protoplanetary disks our approach and choice of lines will enable us to trace the bulk of the disk mass that resides beyond tens of AU from young stars. Our program will quadruple the number of transition disks currently observed with Herschel in this setting and for which disk masses can be measured. We will then place the transition and the ~100 classical/non-transition disks of similar age (from the Herschel KP "Gas in Protoplanetary Systems") in the mass accretion rate-disk mass diagram with two main goals: 1) reveal which gaps have been created by grain growth, photoevaporation, or giant planet formation and 2) from the statistics, determine the main disk dispersal mechanism leading to a transition disk.

  12. Vectorlike chiral fourth family to explain muon anomalies

    Science.gov (United States)

    Raby, Stuart; Trautner, Andreas

    2018-05-01

    The Standard Model (SM) is amended by one generation of quarks and leptons which are vectorlike (VL) under the SM gauge group but chiral with respect to a new U(1 ) 3 -4 gauge symmetry. We show that this model can simultaneously explain the deviation of the muon g -2 as well as the observed anomalies in b →s μ+μ- transitions without conflicting with the data on Higgs decays, lepton flavor violation, or Bs-B¯s mixing. The model is string theory motivated and Grand Unified Theory compatible, i.e. UV complete, and fits the data predicting VL quarks, leptons, and a massive Z' at the TeV scale, as well as τ →3 μ and τ →μ γ within reach of future experiments. The Higgs couplings to SM generations are automatically aligned in flavor space.

  13. Explaining international co-authorship in global environmental change research

    Energy Technology Data Exchange (ETDEWEB)

    Jappe, A.

    2006-04-15

    This paper maps the domain of earth and environmental sciences (EES) and investigates the relationship between cognitive problem structures and internationalisation patterns, drawing on the concepts of systemic versus cumulative global environmental change (GEC) and mutual task dependence in scientific fields. We find that scientific output concentration and internationalisation are significantly higher in the systemic GEC fields of Meteorology and Atmospheric Sciences and Oceanography than in the cumulative GEC fields Ecology and Water Resources. The relationship is explained by stronger mutual task dependence in systemic GEC fields. In contrast, the portion of co-authorships with developing, emerging and transition countries among all international publications is larger for Water Resources than for the three other fields, consistent with the most pressing needs for STI capacity development in these countries. (orig.)

  14. Do changes in connectivity explain desertification?

    Science.gov (United States)

    Desertification, broad-scale land degradation in drylands, is a major environmental hazard facing inhabitants of the world’s deserts as well as an important component of global change. There is no unifying framework that simply and effectively explains different forms of desertification. Here we arg...

  15. Can the inherence heuristic explain vitalistic reasoning?

    Science.gov (United States)

    Bastian, Brock

    2014-10-01

    Inherence is an important component of psychological essentialism. By drawing on vitalism as a way in which to explain this link, however, the authors appear to conflate causal explanations based on fixed features with those based on general causal forces. The disjuncture between these two types of explanatory principles highlights potential new avenues for the inherence heuristic.

  16. Explaining probalistic risk assessment in common language

    International Nuclear Information System (INIS)

    Wong, J.W.

    1994-01-01

    Probabilistic human health risk assessment is explained in ordinary language using a hypothetical example and the ingestion equation from EPA's Risk Assessment Guidance for Superfund. A section on understanding probabilities and probability distributions used in a Monte Carlo simulation is included as well as an appendix showing the computer run and the technical assumptions behind it

  17. Explaining Violence in Sierra Leone's Civil War

    African Journals Online (AJOL)

    Explaining the violence of civil war is never a simple task for the scholar. In the case of the Sierra Leone, paradoxically, the task has in some ways been rendered more difficult by the sheer variety of compelling scholarship on the question. This paper seeks to identify the most useful of the explanations offered thus far, and ...

  18. Measuring and explaining house price developments

    NARCIS (Netherlands)

    De Vries, P.

    2010-01-01

    This study discusses ways of measuring and explaining the development of house prices. The goal of the research underpinning this dissertation was to develop a methodological framework for studying these developments. This framework relates, first, to correcting for changes in the composition of

  19. Adaptive hatching hypotheses do not explain asynchronous ...

    African Journals Online (AJOL)

    At the core of the suite of adaptive hatching hypotheses advanced to explain asynchronous hatching in birds is the assumption that if food is not limited then all the hatchlings will develop normally to adulthood. In this study Brown-headed Parrot Poicephalus cryptoxanthus chicks were hand fed and weighed on a daily basis.

  20. Explaining convergence of oecd welfare states

    DEFF Research Database (Denmark)

    Schmitt, C.; Starke, Peter

    2011-01-01

    of conditional convergence helps to both better describe and explain the phenomenon. By applying error correction models, we examine conditional convergence of various types of social expenditure in 21 OECD countries between 1980 and 2005. Our empirical findings go beyond the existing literature in two respects...

  1. Explaining the VET Applied Research Developmental Framework

    Science.gov (United States)

    Simon, Linda; Beddie, Francesca M.

    2017-01-01

    This document explains the VET Applied Research Developmental Framework, created as part of a project that explored how the vocational education and training (VET) sector could broaden its engagement in Australia's research and development (R&D) and innovation systems. Achieving this engagement will rely significantly on building the…

  2. Your Radiologist Explains Magnetic Resonance Angiography (MRA)

    Medline Plus

    Full Text Available ... Sponsored by Image/Video Gallery Your Radiologist Explains Magnetic Resonance Angiography (MRA) Transcript Welcome to Radiology Info dot ... I’d like to talk with you about magnetic resonance angiography, or as it’s commonly known, MRA. MRA ...

  3. Imitation explains the propagation, not the stability of animal culture.

    Science.gov (United States)

    Claidière, Nicolas; Sperber, Dan

    2010-02-22

    For acquired behaviour to count as cultural, two conditions must be met: it must propagate in a social group, and it must remain stable across generations in the process of propagation. It is commonly assumed that imitation is the mechanism that explains both the spread of animal culture and its stability. We review the literature on transmission chain studies in chimpanzees (Pan troglodytes) and other animals, and we use a formal model to argue that imitation, which may well play a major role in the propagation of animal culture, cannot be considered faithful enough to explain its stability. We consider the contribution that other psychological and ecological factors might make to the stability of animal culture observed in the wild.

  4. Defense styles explain psychiatric symptoms: an empirical study.

    Science.gov (United States)

    Holi, M M; Sammallahti, P R; Aalberg, V A

    1999-11-01

    To examine the relation between psychiatric symptoms and defense mechanisms, we administered two questionnaires, the Symptom Check-list 90 (SCL-90) and the Defense Style Questionnaire (DSQ) to 122 psychiatric out-patients and to a community sample of 337 subjects. Using regression analysis, we found that 51.8% of the variation in subject's Global Severity Index value could be explained by his defense style. Of the three defense styles, the immature style explained most of the variation in the symptoms. We found little overall evidence for specific connections between particular defenses and symptoms. Projection and dissociation were central in most of the symptom dimensions. We compared patients and controls with the same level of general symptom severity and found that patients used significantly more devaluation and splitting, and controls used significantly more altruism and idealization. Whether defenses predispose to certain symptomatology or are one of its aspects is discussed.

  5. Phase transitions of doped carbon in CrCN coatings with modified mechanical and tribological properties via filtered cathodic vacuum arc deposition

    Energy Technology Data Exchange (ETDEWEB)

    Guan, J.J. [Faculty of Materials and Energy, Southwest University, Chongqing 400715 (China); Wang, H.Q. [College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Qin, L.Z., E-mail: qin8394@163.com [Faculty of Materials and Energy, Southwest University, Chongqing 400715 (China); Liao, B.; Liang, H. [College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Li, B. [Faculty of Materials and Energy, Southwest University, Chongqing 400715 (China)

    2017-04-15

    The CrCN coatings were fabricated onto Si (1 1 1) wafers and SUS304 stainless steel plates using filtered cathodic vacuum arc deposition (FCVAD) technique under different flow ratios of N{sub 2}/C{sub 2}H{sub 2} gas mixture. The morphology, crystalline structure and chemical composition of the coatings were characterized. It was found that the grain size reduce with increasing carbon content, which makes the CrCN coatings refined and smooth. The quasi-one-dimensional carbolite phase was also found in CrN host lattice with C{sub 2}H{sub 2} content ranging from 5% to 20%, and it will be evolved into amorphous carbon and amorphous CN{sub x} phases as C{sub 2}H{sub 2} content exceeds 20%. Moreover, we examined the mechanical and tribological properties of the CrCN coatings, and the experimental results confirmed that the friction coefficient of the coatings descend to the lowest value as 0.39 with 30% C{sub 2}H{sub 2} content, due to the graphite (sp{sup 2} C−C) phase embed in CrN host lattice; while the chromium carbon (Cr{sub 3}C{sub 2}) and diamond (sp{sup 3} C−C) phases may give rise to the increase of the coating hardness with the highest value at 23.97 GPa under 20% C{sub 2}H{sub 2} content.

  6. Phase transitions of doped carbon in CrCN coatings with modified mechanical and tribological properties via filtered cathodic vacuum arc deposition

    International Nuclear Information System (INIS)

    Guan, J.J.; Wang, H.Q.; Qin, L.Z.; Liao, B.; Liang, H.; Li, B.

    2017-01-01

    The CrCN coatings were fabricated onto Si (1 1 1) wafers and SUS304 stainless steel plates using filtered cathodic vacuum arc deposition (FCVAD) technique under different flow ratios of N_2/C_2H_2 gas mixture. The morphology, crystalline structure and chemical composition of the coatings were characterized. It was found that the grain size reduce with increasing carbon content, which makes the CrCN coatings refined and smooth. The quasi-one-dimensional carbolite phase was also found in CrN host lattice with C_2H_2 content ranging from 5% to 20%, and it will be evolved into amorphous carbon and amorphous CN_x phases as C_2H_2 content exceeds 20%. Moreover, we examined the mechanical and tribological properties of the CrCN coatings, and the experimental results confirmed that the friction coefficient of the coatings descend to the lowest value as 0.39 with 30% C_2H_2 content, due to the graphite (sp"2 C−C) phase embed in CrN host lattice; while the chromium carbon (Cr_3C_2) and diamond (sp"3 C−C) phases may give rise to the increase of the coating hardness with the highest value at 23.97 GPa under 20% C_2H_2 content.

  7. Phase transitions of doped carbon in CrCN coatings with modified mechanical and tribological properties via filtered cathodic vacuum arc deposition

    Science.gov (United States)

    Guan, J. J.; Wang, H. Q.; Qin, L. Z.; Liao, B.; Liang, H.; Li, B.

    2017-04-01

    The CrCN coatings were fabricated onto Si (1 1 1) wafers and SUS304 stainless steel plates using filtered cathodic vacuum arc deposition (FCVAD) technique under different flow ratios of N2/C2H2 gas mixture. The morphology, crystalline structure and chemical composition of the coatings were characterized. It was found that the grain size reduce with increasing carbon content, which makes the CrCN coatings refined and smooth. The quasi-one-dimensional carbolite phase was also found in CrN host lattice with C2H2 content ranging from 5% to 20%, and it will be evolved into amorphous carbon and amorphous CNx phases as C2H2 content exceeds 20%. Moreover, we examined the mechanical and tribological properties of the CrCN coatings, and the experimental results confirmed that the friction coefficient of the coatings descend to the lowest value as 0.39 with 30% C2H2 content, due to the graphite (sp2 Csbnd C) phase embed in CrN host lattice; while the chromium carbon (Cr3C2) and diamond (sp3 Csbnd C) phases may give rise to the increase of the coating hardness with the highest value at 23.97 GPa under 20% C2H2 content.

  8. Vacuum transitions in dual models

    International Nuclear Information System (INIS)

    Pashnev, A.I.; Volkov, D.V.; Zheltukhin, A.A.

    1976-01-01

    The investigation is continued of the spontaneous vacuum transition problem in the Neview-Schwartz dual model (NSDM). It is shown that vacuum transitions allow disclosing of supplementary degeneration in the resonance state spectrum. The dual amplitudes possess an internal structure corresponding to the presence of an infinite number of quarks with increasing masses and retained charges. The Adler principle holds. Analytic continuation on the constant of induced vacuum transitions makes it possible to establish the existence of spontaneous vacuum transitions in the NSDM. The consequence of this fact is the exact SU(2) symmetry of π, rho meson trajectories and the Higgs mechanism in the model. In this case the ratios of masses of particles leading trajectories are analogous to those obtained in the current algebra. It is shown that in the NSDM there arises chiral SU(2) x SU(2) x U(1) x U(1) x ... symmetry resulting from spontaneous vacuum transitions

  9. A New Approach for Determining Onset of Transition

    Science.gov (United States)

    Hassan, H. A.; Warren, E. S.

    1997-01-01

    The final report consists of three papers which outline and demonstrate the new method for determining transition onset. The procedure developed under this grant requires specification of the instability mechanism, i.e., Tollmien-Schlichting or crossflow, that leads to transition. The attached papers are entitled: 'An Alternative to the e(sup n) Method for Determining Onset of Transition', 'Transition Model for Swept Wing Flows', and 'A Transition Closure Model for Predicting Transition Onset'.

  10. Explaining money creation by commercial banks

    DEFF Research Database (Denmark)

    Ravn, Ib

    2015-01-01

    Educators and economists concerned with monetary reform face the extraordinary challenge of explaining to the public and its elected representatives not only what a reformed system would look like, but also how the current system works. Centrally, the point that in a modern economy money is largely...... created by commercial banks, as explained by the Bank of England recently (McLeay, Radia & Thomas, 2014b), is often met with incredulity: “What do you mean, created?” This paper introduces five easy-to-grasp analogies that educators and reformers may use to convey key money-creation concepts to a lay...... audience. The analogies offered include (1) money as patches in an expandable patchwork quilt that covers a nation’s real assets, (2) the money supply as water in a bathtub with a faucet and a drain, (3) money understood as debt in a model economy run by schoolchildren, (4) the misleading concept of a bank...

  11. Children's Theories and the Drive to Explain

    Science.gov (United States)

    Schwitzgebel, Eric

    Debate has been growing in developmental psychology over how much the cognitive development of children is like theory change in science. Useful debate on this topic requires a clear understanding of what it would be for a child to have a theory. I argue that existing accounts of theories within philosophy of science and developmental psychology either are less precise than is ideal for the task or cannot capture everyday theorizing of the sort that children, if they theorize, must do. I then propose an account of theories that ties theories and explanation very closely together, treating theories primarily as products of a drive to explain. I clarify some of the positions people have taken regarding the theory theory of development, and I conclude by proposing that psychologists interested in the ''theory theory'' look for patterns of affect and arousal in development that would accompany the existence of a drive to explain.

  12. Explaining the Allocation of Regional Structural Funds

    DEFF Research Database (Denmark)

    Charron, Nicholas

    2016-01-01

    What regional factors can explain the heterogeneity in Structural Funds distribution to European Union regions? Past studies have shown that aside from the level of economic development and rates of unemployment, other political, and economic factors systematically explain why certain European...... Union regions receive greater funding than others, in particular where there is room for bargaining. In this article, a novel theory is posited which argues that the determination of Structural Funds is based on an interaction between a region’s formal institutions (the level of a regional autonomy......) and informal institutions (its level of quality of government). In cases of low regional autonomy, member states and European Union level actors prefer to allocate greater levels of Funds to regions with lower quality of government in order to increase cohesion. Yet in cases of high regional autonomy, risks...

  13. Transit space

    DEFF Research Database (Denmark)

    Raahauge, Kirsten Marie

    2008-01-01

    This article deals with representations of one specific city, Århus, Denmark, especially its central district. The analysis is based on anthropological fieldwork conducted in Skåde Bakker and Fedet, two well-off neighborhoods. The overall purpose of the project is to study perceptions of space...... and the interaction of cultural, social, and spatial organizations, as seen from the point of view of people living in Skåde Bakker and Fedet. The focus is on the city dwellers’ representations of the central district of Århus with specific reference to the concept of transit space. When applied to various Århusian...

  14. Transition region

    International Nuclear Information System (INIS)

    Jordan, C.

    1977-01-01

    The Glossary is designed to be a technical dictionary that will provide solar workers of various specialties, students, other astronomers and theoreticians with concise information on the nature and the properties of phenomena of solar and solar-terrestrial physics. Each term, or group of related terms, is given a concise phenomenological and quantitative description, including the relationship to other phenomena and an interpretation in terms of physical processes. The references are intended to lead the non-specialist reader into the literature. This section deals with: transition region; di-electronic recombination; intersystem or intercombination lines; satellite lines; grazing-incidence optics; and crystal spectrometers. (B.R.H.)

  15. A More Practical Method for Explaining Equilibrium

    OpenAIRE

    Yi-Jang Yu

    2014-01-01

    The aim of this study is to suggest a more practical method for explaining market equilibrium in a two-dimensional risk-return world. Its main difference from textbook contents is to define, in both qualitative and quantitative ways, the environment or the system factor and treat it as an endogenous variable. Once the two-dimensional framework that is capable of managing uncertainty and environmental relationship can be reasonably established, a greater number of economic issues can be effect...

  16. Explaining seeing? Disentangling qualia from perceptual organization.

    Science.gov (United States)

    Ibáñez, Agustin; Bekinschtein, Tristan

    2010-09-01

    Abstract Visual perception and integration seem to play an essential role in our conscious phenomenology. Relatively local neural processing of reentrant nature may explain several visual integration processes (feature binding or figure-ground segregation, object recognition, inference, competition), even without attention or cognitive control. Based on the above statements, should the neural signatures of visual integration (via reentrant process) be non-reportable phenomenological qualia? We argue that qualia are not required to understand this perceptual organization.

  17. Environmental niche conservatism explains the accumulation of species richness in Mediterranean-hotspot plant genera.

    Science.gov (United States)

    Skeels, Alexander; Cardillo, Marcel

    2017-03-01

    The causes of exceptionally high plant diversity in Mediterranean-climate biodiversity hotspots are not fully understood. We asked whether a mechanism similar to the tropical niche conservatism hypothesis could explain the diversity of four large genera (Protea, Moraea, Banksia, and Hakea) with distributions within and adjacent to the Greater Cape Floristic Region (South Africa) or the Southwest Floristic Region (Australia). Using phylogenetic and spatial data we estimated the environmental niche of each species, and reconstructed the mode and dynamics of niche evolution, and the geographic history, of each genus. For three genera, there were strong positive relationships between the diversity of clades within a region and their inferred length of occupation of that region. Within genera, there was evidence for strong evolutionary constraint on niche axes associated with climatic seasonality and aridity, with different niche optima for hotspot and nonhotspot clades. Evolutionary transitions away from hotspots were associated with increases in niche breadth and elevated rates of niche evolution. Our results point to a process of "hotspot niche conservatism" whereby the accumulation of plant diversity in Mediterranean-type ecosystems results from longer time for speciation, with dispersal away from hotspots limited by narrow and phylogenetically conserved environmental niches. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  18. Sonoluminescence Explained by the Standpoint of Coherent Quantum Vacuum Dynamics and its Prospects for Energy Production

    Science.gov (United States)

    Maxmilian Caligiuri, Luigi; Musha, Takaaki

    Sonoluminescence, or its more frequently studied version known as Single Bubble Sonoluminescence, consisting in the emission of light by a collapsing bubble in water under ultrasounds, represents one of the most challenging and interesting phenomenon in theoretical physics. In fact, despite its relatively easy reproducibility in a simple laboratory, its understanding within the commonly accepted picture of condensed matter remained so far unsatisfactory. On the other hand, the possibility to control the physical process involved in sonoluminescence, representing a sort of nuclear fusion on small scale, could open unthinkable prospects of free energy production from water. Different explanations has been proposed during the past years considering, in various way, the photoemission to be related to electromagnetic Zero Point Field energy dynamics, by considering the bubble surface as a Casimir force boundary. More recently a model invoking Cherenkov radiation emission from superluminal photons generated in quantum vacuum has been successfully proposed. In this paper it will be shown that the same results can be more generally explained and quantitative obtained within a QED coherent dynamics of quantum vacuum, according to which the electromagnetic energy of the emitted photons would be related to the latent heat involved in the phase transition from water's vapor to liquid phase during the bubble collapse. The proposed approach could also suggest an explanation of a possible mechanism of generation of faster than light (FTL) photons required to start Cherenkov radiation as well as possible applications to energy production from quantum vacuum.

  19. A theory with consolidation: Linking everything to explain everything

    Science.gov (United States)

    Biraris, Gaurav Shantaram

    The paper reports a theory which gives explicit (ontic) understanding of the abstract (epistemic) mechanisms spanning many branches of physics. It results to most modern physics starting from Newtonian physics by abandoning progress in twentieth century. The theory assumes consolidation of points in 4-balls of specific radius in the universe. Thus the 4-balls are fundamental elements of the universe. Analogue of momentum defined as soul vector is assumed to be induced on the 4-balls at the beginning of the universe. Then with progression of local time, collisions happen leading to different rotations of CNs. For such rotations, the consolidation provides centripetal binding. By using general terminologies of force and work, the mass energy mechanism gets revealed. The theory provides explicit interpretation of intrinsic properties of mass, electric charge, color charge, weak charge, spin etc. It also provides explicit understanding of the wave-particle duality & quantum mechanics. Epistemic study of the universe with the consolidation results to conventional quantum theories. Elementary mechanism of the field interactions is evident due to conservation of the soul vectors, and its epistemic expectation results to the gauge theories. The theory predicts that four types of interaction would exist in the universe along with the acceptable relative strengths; it provides fundamental interpretation of the physical forces. Further, it explains the basic mechanisms which can be identified with dark energy & dark matter. It also results to (or explains) entanglement, chirality, excess of matter, 4-component spinor, real-abstract (ontic-epistemic) correspondence etc. The theory is beyond standard model and results to the standard model, relativity, dark energy & dark matter, starting by simple assumptions.

  20. A theory with consolidation: Linking everything to explain everything

    Directory of Open Access Journals (Sweden)

    Gaurav Shantaram Biraris

    Full Text Available The paper reports a theory which gives explicit (ontic understanding of the abstract (epistemic mechanisms spanning many branches of physics. It results to most modern physics starting from Newtonian physics by abandoning progress in twentieth century. The theory assumes consolidation of points in 4-balls of specific radius in the universe. Thus the 4-balls are fundamental elements of the universe. Analogue of momentum defined as soul vector is assumed to be induced on the 4-balls at the beginning of the universe. Then with progression of local time, collisions happen leading to different rotations of CNs. For such rotations, the consolidation provides centripetal binding. By using general terminologies of force and work, the mass energy mechanism gets revealed. The theory provides explicit interpretation of intrinsic properties of mass, electric charge, color charge, weak charge, spin etc. It also provides explicit understanding of the wave-particle duality & quantum mechanics. Epistemic study of the universe with the consolidation results to conventional quantum theories. Elementary mechanism of the field interactions is evident due to conservation of the soul vectors, and its epistemic expectation results to the gauge theories. The theory predicts that four types of interaction would exist in the universe along with the acceptable relative strengths; it provides fundamental interpretation of the physical forces. Further, it explains the basic mechanisms which can be identified with dark energy & dark matter. It also results to (or explains entanglement, chirality, excess of matter, 4-component spinor, real-abstract (ontic-epistemic correspondence etc. The theory is beyond standard model and results to the standard model, relativity, dark energy & dark matter, starting by simple assumptions. Keywords: Beyond standard model, Phenomenology, Relativity, Dark matter, Realist theory

  1. Children’s exposure to sustainability practices during the transition from preschool into school and their learning and socioemotional development

    Science.gov (United States)

    Benner, Aprile D.; Thornton, Anna; Crosnoe, Robert

    2017-01-01

    Evidence that the learning gains of preschool fade as children transition into elementary school has led to increased efforts to sustain preschool advantages during this key transitional period. This study explores whether the observed benefits of sustainability practices for a range of child outcomes are explained and/or moderated by family and school mechanisms selecting children into experiencing these practices. Analyses of the Early Childhood Longitudinal Study-Birth Cohort revealed that both family and school factors predicted children’s exposure to several PK-3 sustainability practices. PK-3 sustainability practices were associated with reading (but not math) gains and better interpersonal skills (but not fewer externalizing behaviors) following the transition into kindergarten. These links were not conditioned by the selection mechanisms. The findings highlight who is more likely to seek out (at the family level) or offer (at the school level) sustainability practices and how relevant they are to fighting preschool fadeout. PMID:28794610

  2. Children's exposure to sustainability practices during the transition from preschool into school and their learning and socioemotional development.

    Science.gov (United States)

    Benner, Aprile D; Thornton, Anna; Crosnoe, Robert

    2017-01-01

    Evidence that the learning gains of preschool fade as children transition into elementary school has led to increased efforts to sustain preschool advantages during this key transitional period. This study explores whether the observed benefits of sustainability practices for a range of child outcomes are explained and/or moderated by family and school mechanisms selecting children into experiencing these practices. Analyses of the Early Childhood Longitudinal Study-Birth Cohort revealed that both family and school factors predicted children's exposure to several PK-3 sustainability practices. PK-3 sustainability practices were associated with reading (but not math) gains and better interpersonal skills (but not fewer externalizing behaviors) following the transition into kindergarten. These links were not conditioned by the selection mechanisms. The findings highlight who is more likely to seek out (at the family level) or offer (at the school level) sustainability practices and how relevant they are to fighting preschool fadeout.

  3. Khalid Alshibli explains MGM to Sean O'Keefe

    Science.gov (United States)

    2002-01-01

    Khalid Alshibli of Louisiana State University, project scientist for the Mechanics of Granular Materials (MGM-III) experiment, uses a jar of sand as he explains MGM to NASA Administrator Sean O'Keefe. A training model of an MGM test cell is in the foreground. The activity was part of the Space Research and You education event held by NASA's Office of Biological and Physical Research on June 25, 2002, in Arlington, VA, to highlight the research that will be conducted on STS-107.

  4. Transitional issues

    International Nuclear Information System (INIS)

    1998-01-01

    This discussion paper, the fifth in the series developed at the IPPSO Market Design Conference, addressed the issue of the need to prevent Ontario Hydro from taking unfair advantage of independent producers and other stakeholders through activities and investments in new power generating capacity in the transitional period leading up to deregulation. The need for controls is predicated on the assumption that the short-term actions and investments of Ontario Hydro could seriously compromise the position of independent generators, and that without such controls the level playing field essential to the operation of a competitive market, does not exist. Various actual and potential actions of Ontario Hydro were discussed, all of which point to the need for strict controls over Ontario Hydro exercising its dominant market power in an unfair way. It was recommended that as a minimum, the provincial government should no longer provide guarantees for Ontario Hydro capital projects, and that Ontario Hydro be instructed to defer any investment on new or returning generating capacity until the new market is in place. Limits could also be placed on Ontario Hydro's marketing efforts to enter into contracts during the transition period, and Ontario Hydro and municipal utilities should be required to keep separate accounts of their commercial preparation, and to settle such accounts separate from ratepayer revenue

  5. Quantum mechanics

    CERN Document Server

    Rae, Alastair I M

    2016-01-01

    A Thorough Update of One of the Most Highly Regarded Textbooks on Quantum Mechanics Continuing to offer an exceptionally clear, up-to-date treatment of the subject, Quantum Mechanics, Sixth Edition explains the concepts of quantum mechanics for undergraduate students in physics and related disciplines and provides the foundation necessary for other specialized courses. This sixth edition builds on its highly praised predecessors to make the text even more accessible to a wider audience. It is now divided into five parts that separately cover broad topics suitable for any general course on quantum mechanics. New to the Sixth Edition * Three chapters that review prerequisite physics and mathematics, laying out the notation, formalism, and physical basis necessary for the rest of the book * Short descriptions of numerous applications relevant to the physics discussed, giving students a brief look at what quantum mechanics has made possible industrially and scientifically * Additional end-of-chapter problems with...

  6. Decoherence and the quantum-to-classical transition

    CERN Document Server

    Schlosshauer, Maximilian

    2007-01-01

    The ultimate introduction, textbook, and reference on decoherence and the quantum-to-classical transition. This detailed but accessible text describes the concepts, formalism, interpretation, and experimental observation of decoherence and explains how decoherence is responsible for the emergence, from the realm of quantum mechanics, of the classical world of our experience. Topics include: • Foundational problems at the quantum–classical border; • The role of the environment and entanglement; • Environment-induced loss of coherence and superselection; • Scattering-induced decoherence and spatial localization; • Master equations; • Decoherence models; • Experimental realization of "Schrödinger kittens" and their decoherence; • Quantum computing, quantum error correction, and decoherence-free subspaces; • Implications of decoherence for interpretations of quantum mechanics and for the "measurement problem"; • Decoherence in the brain. Written in a lucid and concise style that is accessib...

  7. Bax-mediated mitochondrial outer membrane permeabilization (MOMP), distinct from the mitochondrial permeability transition, is a key mechanism in diclofenac-induced hepatocyte injury: Multiple protective roles of cyclosporin A.

    Science.gov (United States)

    Siu, Woen Ping; Pun, Pamela Boon Li; Latchoumycandane, Calivarathan; Boelsterli, Urs A

    2008-03-15

    Diclofenac, a widely used nonsteroidal anti-inflammatory drug, has been associated with rare but severe cases of clinical hepatotoxicity. Diclofenac causes concentration-dependent cell death in human hepatocytes (after 24-48 h) by mitochondrial permeabilization via poorly defined mechanisms. To explore whether the cyclophilin D (CyD)-dependent mitochondrial permeability transition (mPT) and/or the mitochondrial outer membrane permeabilization (MOMP) was primarily involved in mediating cell death, we exposed immortalized human hepatocytes (HC-04) to apoptogenic concentrations of diclofenac (>500 microM) in the presence or absence of inhibitors of upstream mediators. The CyD inhibitor, cyclosporin A (CsA, 2 microM) fully inhibited diclofenac-induced cell injury, suggesting that mPT was involved. However, CyD gene silencing using siRNA left the cells susceptible to diclofenac toxicity, and CsA still protected the CyD-negative cells from lethal injury. Diclofenac induced early (9 h) activation of Bax and Bak and caused mitochondrial translocation of Bax, indicating that MOMP was involved in cell death. Inhibition of Bax protein expression by using siRNA significantly protected HC-04 from diclofenac-induced cell injury. Diclofenac also induced early Bid activation (tBid formation, 6 h), which is an upstream mechanism that initiates Bax activation and mitochondrial translocation. Bid activation was sensitive to the Ca2+ chelator, BAPTA. In conclusion, we found that Bax/Bak-mediated MOMP is a key mechanism of diclofenac-induced lethal cell injury in human hepatocytes, and that CsA can prevent MOMP through inhibition of Bax activation. These data support our concept that the Ca2+-Bid-Bax-MOMP axis is a critical pathway in diclofenac (metabolite)-induced hepatocyte injury.

  8. Bax-mediated mitochondrial outer membrane permeabilization (MOMP), distinct from the mitochondrial permeability transition, is a key mechanism in diclofenac-induced hepatocyte injury: Multiple protective roles of cyclosporin A

    International Nuclear Information System (INIS)

    Siu, W.P.; Pun, Pamela Boon Li; Latchoumycandane, Calivarathan; Boelsterli, Urs A.

    2008-01-01

    Diclofenac, a widely used nonsteroidal anti-inflammatory drug, has been associated with rare but severe cases of clinical hepatotoxicity. Diclofenac causes concentration-dependent cell death in human hepatocytes (after 24-48 h) by mitochondrial permeabilization via poorly defined mechanisms. To explore whether the cyclophilin D (CyD)-dependent mitochondrial permeability transition (mPT) and/or the mitochondrial outer membrane permeabilization (MOMP) was primarily involved in mediating cell death, we exposed immortalized human hepatocytes (HC-04) to apoptogenic concentrations of diclofenac (> 500 μM) in the presence or absence of inhibitors of upstream mediators. The CyD inhibitor, cyclosporin A (CsA, 2 μM) fully inhibited diclofenac-induced cell injury, suggesting that mPT was involved. However, CyD gene silencing using siRNA left the cells susceptible to diclofenac toxicity, and CsA still protected the CyD-negative cells from lethal injury. Diclofenac induced early (9 h) activation of Bax and Bak and caused mitochondrial translocation of Bax, indicating that MOMP was involved in cell death. Inhibition of Bax protein expression by using siRNA significantly protected HC-04 from diclofenac-induced cell injury. Diclofenac also induced early Bid activation (tBid formation, 6 h), which is an upstream mechanism that initiates Bax activation and mitochondrial translocation. Bid activation was sensitive to the Ca 2+ chelator, BAPTA. In conclusion, we found that Bax/Bak-mediated MOMP is a key mechanism of diclofenac-induced lethal cell injury in human hepatocytes, and that CsA can prevent MOMP through inhibition of Bax activation. These data support our concept that the Ca 2+ -Bid-Bax-MOMP axis is a critical pathway in diclofenac (metabolite)-induced hepatocyte injury

  9. Political symbols and political transitions

    Directory of Open Access Journals (Sweden)

    Herrero de Miñón, Miguel

    2006-11-01

    Full Text Available Politics, Law and Psychology are fields that come together in the symbolic. This text takes evidence from those three areas to develop an analysis of political symbols and political transitions. The development of the analysis goes through three stages. The first succinctly describes the concept of transition and its meaning. The second closely examines the notion of the symbol, in terms of its definition, to explain aspects that allow us to understand it, characterise it and make its functions clear. Finally, from the author's experience as a witness and as an actor, I suggest three ways of understanding symbols in the processes of political transition: as symbols of change, as symbols of acknowledgment, and as symbols of support.

  10. Transitions in Secondary Education

    DEFF Research Database (Denmark)

    Larsen, Britt Østergaard; Jensen, Leif; Pilegaard Jensen, Torben

    2014-01-01

    statistical model of educational progression. By using this method, we parcel educational attainment into a series of transitions and the model is able to control for educational selection and unobserved heterogeneity. We apply counterfactual analyses to allow a formal decomposition of the effects of social......The purpose of this article is to investigate educational choices and attainment of children who experience social problems during their upbringing. The study explores the extent to which social problems can help explain the gaps in entry and dropout rates in upper secondary education in Denmark...... between students from different socioeconomic backgrounds. Population-based registers are used to include information on family upbringing, e.g. alcohol abuse, criminality, use of psychopharmaca and out-of-home placement. We estimate a parsimonious version of Cameron and Heckman's (2001) dynamic...

  11. Spatially tuned normalization explains attention modulation variance within neurons.

    Science.gov (United States)

    Ni, Amy M; Maunsell, John H R

    2017-09-01

    Spatial attention improves perception of attended parts of a scene, a behavioral enhancement accompanied by modulations of neuronal firing rates. These modulations vary in size across neurons in the same brain area. Models of normalization explain much of this variance in attention modulation with differences in tuned normalization across neurons (Lee J, Maunsell JHR. PLoS One 4: e4651, 2009; Ni AM, Ray S, Maunsell JHR. Neuron 73: 803-813, 2012). However, recent studies suggest that normalization tuning varies with spatial location both across and within neurons (Ruff DA, Alberts JJ, Cohen MR. J Neurophysiol 116: 1375-1386, 2016; Verhoef BE, Maunsell JHR. eLife 5: e17256, 2016). Here we show directly that attention modulation and normalization tuning do in fact covary within individual neurons, in addition to across neurons as previously demonstrated. We recorded the activity of isolated neurons in the middle temporal area of two rhesus monkeys as they performed a change-detection task that controlled the focus of spatial attention. Using the same two drifting Gabor stimuli and the same two receptive field locations for each neuron, we found that switching which stimulus was presented at which location affected both attention modulation and normalization in a correlated way within neurons. We present an equal-maximum-suppression spatially tuned normalization model that explains this covariance both across and within neurons: each stimulus generates equally strong suppression of its own excitatory drive, but its suppression of distant stimuli is typically less. This new model specifies how the tuned normalization associated with each stimulus location varies across space both within and across neurons, changing our understanding of the normalization mechanism and how attention modulations depend on this mechanism. NEW & NOTEWORTHY Tuned normalization studies have demonstrated that the variance in attention modulation size seen across neurons from the same cortical

  12. Can sustained arousal explain the Chronic Fatigue Syndrome?

    Directory of Open Access Journals (Sweden)

    Eriksen Hege R

    2009-02-01

    Full Text Available Abstract We present an integrative model of disease mechanisms in the Chronic Fatigue Syndrome (CFS, unifying empirical findings from different research traditions. Based upon the Cognitive activation theory of stress (CATS, we argue that new data on cardiovascular and thermoregulatory regulation indicate a state of permanent arousal responses – sustained arousal – in this condition. We suggest that sustained arousal can originate from different precipitating factors (infections, psychosocial challenges interacting with predisposing factors (genetic traits, personality and learned expectancies (classical and operant conditioning. Furthermore, sustained arousal may explain documented alterations by establishing vicious circles within immunology (Th2 (humoral vs Th1 (cellular predominance, endocrinology (attenuated HPA axis, skeletal muscle function (attenuated cortical activation, increased oxidative stress and cognition (impaired memory and information processing. Finally, we propose a causal link between sustained arousal and the experience of fatigue. The model of sustained arousal embraces all main findings concerning CFS disease mechanisms within one theoretical framework.

  13. Explaining variation in Down's syndrome screening uptake

    DEFF Research Database (Denmark)

    Crombag, Neeltje M T H; Vellinga, Ynke E; Kluijfhout, Sandra A

    2014-01-01

    ), in an attempt to explain the observed variation in national uptake rates. METHODS: We used a mixed methods approach with an embedded design: a) documentary analysis and b) expert stakeholder analysis. National central statistical offices and legal documents were studied first to gain insight in demographic....... RESULTS: There were many similarities in the demographics, healthcare systems, government abortion legislation and Down's syndrome screening policy across the studied countries. However, the additional cost for Down's syndrome screening over and above standard antenatal care in the Netherlands...

  14. SOME THEORETICAL MODELS EXPLAINING ADVERTISING EFFECTS

    Directory of Open Access Journals (Sweden)

    Vasilica Magdalena SOMEŞFĂLEAN

    2014-06-01

    Full Text Available Persuade clients is still the main focus of the companies, using a set of methods and techniques designed to influence their behavior, in order to obtain better results (profits over a longer period of time. Since the late nineteenth - early twentieth century, the american E.St.Elmo Lewis, considered a pioneer in advertising and sales, developed the first theory, AIDA model, later used by marketers and advertisers to develop a marketing communications strategy. Later studies have developed other models that are the main subject of this research, which explains how and why persuasive communication works, to understand why some approaches are effective and others are not.

  15. Energy transition

    International Nuclear Information System (INIS)

    Anon.

    2013-01-01

    The yearly environmental conference will hold on September 2013 to evaluate the negotiations led at the national and local levels for december 2012. The government will have then to decide of an energy programming bill which will be submitted to the Parliament at the beginning of the year 2014. 30 main propositions have emerged of the decentralised debates. One of them is the ecological taxation which raise the question of the gas oil and petrol taxation. The current environmental taxes are for almost three quarters of them taxes on energy consumptions and mainly on fossil energies. The Economic, Social and Environmental Council, gives his opinion on the way to find resources to ensure the ecological and energy transition while reducing the public deficit of the State. (O.M.)

  16. Reinforcement Learning Explains Conditional Cooperation and Its Moody Cousin.

    Directory of Open Access Journals (Sweden)

    Takahiro Ezaki

    2016-07-01

    Full Text Available Direct reciprocity, or repeated interaction, is a main mechanism to sustain cooperation under social dilemmas involving two individuals. For larger groups and networks, which are probably more relevant to understanding and engineering our society, experiments employing repeated multiplayer social dilemma games have suggested that humans often show conditional cooperation behavior and its moody variant. Mechanisms underlying these behaviors largely remain unclear. Here we provide a proximate account for this behavior by showing that individuals adopting a type of reinforcement learning, called aspiration learning, phenomenologically behave as conditional cooperator. By definition, individuals are satisfied if and only if the obtained payoff is larger than a fixed aspiration level. They reinforce actions that have resulted in satisfactory outcomes and anti-reinforce those yielding unsatisfactory outcomes. The results obtained in the present study are general in that they explain extant experimental results obtained for both so-called moody and non-moody conditional cooperation, prisoner's dilemma and public goods games, and well-mixed groups and networks. Different from the previous theory, individuals are assumed to have no access to information about what other individuals are doing such that they cannot explicitly use conditional cooperation rules. In this sense, myopic aspiration learning in which the unconditional propensity of cooperation is modulated in every discrete time step explains conditional behavior of humans. Aspiration learners showing (moody conditional cooperation obeyed a noisy GRIM-like strategy. This is different from the Pavlov, a reinforcement learning strategy promoting mutual cooperation in two-player situations.

  17. Third-order gas-liquid phase transition and the nature of Andrews critical point

    Directory of Open Access Journals (Sweden)

    Tian Ma

    2011-12-01

    Full Text Available The main objective of this article is to study the nature of the Andrews critical point in the gas-liquid transition in a physical-vapor transport (PVT system. A dynamical model, consistent with the van der Waals equation near the Andrews critical point, is derived. With this model, we deduce two physical parameters, which interact exactly at the Andrews critical point, and which dictate the dynamic transition behavior near the Andrews critical point. In particular, it is shown that 1 the gas-liquid co-existence curve can be extended beyond the Andrews critical point, and 2 the transition is first order before the critical point, second-order at the critical point, and third order beyond the Andrews critical point. This clearly explains why it is hard to observe the gas-liquid phase transition beyond the Andrews critical point. Furthermore, the analysis leads naturally the introduction of a general asymmetry principle of fluctuations and the preferred transition mechanism for a thermodynamic system. The theoretical results derived in this article are in agreement with the experimental results obtained in (K. Nishikawa and T. Morita, Fluid behavior at supercritical states studied by small-angle X-ray scattering, Journal of Supercritical Fluid, 13 (1998, pp. 143-148. Also, the derived second-order transition at the critical point is consistent with the result obtained in (M. Fisher, Specific heat of a gas near the critical point, Physical Review, 136:6A (1964, pp. A1599-A1604.

  18. Mechanical engineering

    CERN Document Server

    Darbyshire, Alan

    2010-01-01

    Alan Darbyshire's best-selling text book provides five-star high quality content to a potential audience of 13,000 engineering students. It explains the most popular specialist units of the Mechanical Engineering, Manufacturing Engineering and Operations & Maintenance Engineering pathways of the new 2010 BTEC National Engineering syllabus. This challenging textbook also features contributions from specialist lecturers, ensuring that no stone is left unturned.

  19. Magnetic-field control of quantum critical points of valence transition.

    Science.gov (United States)

    Watanabe, Shinji; Tsuruta, Atsushi; Miyake, Kazumasa; Flouquet, Jacques

    2008-06-13

    We study the mechanism of how critical end points of first-order valence transitions are controlled by a magnetic field. We show that the critical temperature is suppressed to be a quantum critical point (QCP) by a magnetic field, and unexpectedly, the QCP exhibits nonmonotonic field dependence in the ground-state phase diagram, giving rise to the emergence of metamagnetism even in the intermediate valence-crossover regime. The driving force of the field-induced QCP is clarified to be cooperative phenomena of the Zeeman and Kondo effects, which create a distinct energy scale from the Kondo temperature. This mechanism explains the peculiar magnetic response in CeIrIn(5) and the metamagnetic transition in YbXCu(4) for X=In as well as the sharp contrast between X=Ag and Cd.

  20. Geometrically controlled snapping transitions in shells with curved creases.

    Science.gov (United States)

    Bende, Nakul Prabhakar; Evans, Arthur A; Innes-Gold, Sarah; Marin, Luis A; Cohen, Itai; Hayward, Ryan C; Santangelo, Christian D

    2015-09-08

    Curvature and mechanics are intimately connected for thin materials, and this coupling between geometry and physical properties is readily seen in folded structures from intestinal villi and pollen grains to wrinkled membranes and programmable metamaterials. While the well-known rules and mechanisms behind folding a flat surface have been used to create deployable structures and shape transformable materials, folding of curved shells is still not fundamentally understood. Shells naturally deform by simultaneously bending and stretching, and while this coupling gives them great stability for engineering applications, it makes folding a surface of arbitrary curvature a nontrivial task. Here we discuss the geometry of folding a creased shell, and demonstrate theoretically the conditions under which it may fold smoothly. When these conditions are violated we show, using experiments and simulations, that shells undergo rapid snapping motion to fold from one stable configuration to another. Although material asymmetry is a proven mechanism for creating this bifurcation of stability, for the case of a creased shell, the inherent geometry itself serves as a barrier to folding. We discuss here how two fundamental geometric concepts, creases and curvature, combine to allow rapid transitions from one stable state to another. Independent of material system and length scale, the design rule that we introduce here explains how to generate snapping transitions in arbitrary surfaces, thus facilitating the creation of programmable multistable materials with fast actuation capabilities.

  1. Do institutions, ownership, exporting and competition explain firm performance? Evidence from 26 transition countries

    Czech Academy of Sciences Publication Activity Database

    Commander, S.; Švejnar, Jan

    -, č. 344 (2007), s. 1-32 [Winds of Change: The Impact of Globalization on Europe and Asia. Kiev, 23.03.2007-24.03.2007] Institutional research plan: CEZ:AV0Z70850503 Keywords : firm performance * productivity * competition Subject RIV: AH - Economics http://www.case.com.pl/upload/publikacja_plik/15038980_sa344.pdf

  2. Age Differences Explain Social Class Differences in Students' Friendship at University: Implications for Transition and Retention

    Science.gov (United States)

    Rubin, Mark; Wright, Chrysalis L.

    2015-01-01

    The present research tested the hypotheses that (a) working-class students have fewer friends at university than middle-class students and (b) this social class difference occurs because working-class students tend to be older than middle-class students. A sample of 376 first-year undergraduate students from an Australian university completed an…

  3. Fracture mechanics

    CERN Document Server

    Perez, Nestor

    2017-01-01

    The second edition of this textbook includes a refined presentation of concepts in each chapter, additional examples; new problems and sections, such as conformal mapping and mechanical behavior of wood; while retaining all the features of the original book. The material included in this book is based upon the development of analytical and numerical procedures pertinent to particular fields of linear elastic fracture mechanics (LEFM) and plastic fracture mechanics (PFM), including mixed-mode-loading interaction. The mathematical approach undertaken herein is coupled with a brief review of several fracture theories available in cited references, along with many color images and figures. Dynamic fracture mechanics is included through the field of fatigue and Charpy impact testing. Explains computational and engineering approaches for solving crack-related problems using straightforward mathematics that facilitate comprehension of the physical meaning of crack growth processes; Expands computational understandin...

  4. Induction of epithelial to mesenchymal transition (EMT) and inhibition on adipogenesis: Two different sides of the same coin? Feasible roles and mechanisms of transforming growth factor β1 (TGF-β1) in age-related thymic involution.

    Science.gov (United States)

    Tan, Jianxin; Wang, Yajun; Zhang, Nannan; Zhu, Xike

    2016-08-01

    Age-related thymic involution is characterized by a loss of thymic epithelial cells (TECs) and a concomitant increase in adipocytes, but the mechanisms involved in thymic adipogenesis are still not clear. Transforming growth factor β1 (TGF-β1) is a pleiotropic cytokine that has been reported to be up-regulated with age in thymic stromal cells in both human and mouse. However, the exact role of TGF-β1 in age-related thymic involution remains to be further elucidated. On the basis of previous findings, we propose a novel hypothesis that TGF-β1 functions a dual role in age-related thymic involution. On one hand, up-regulation of TGF-β1 promotes epithelial to mesenchymal transition (EMT) process in TECs via activating forkhead box protein C2 (FoxC2). On the other hand, TGF-β1 inhibits the transdifferentiation of EMT-derived mesenchymal cells to adipocytes in the thymus. If confirmed, our hypothesis will not only provide further evidence supporting that the transdifferentiation of TECs into pre-adipocytes represents a source of thymic adiposity during age-related thymic involution, but also uncover a unique role of TGF-β1 in the transdifferentiation of TECs into pre-adipocytes. Collectively, the inhibition of TGF-β1 may serve as a strategy to hinder age-related thymic involution or even to restore thymic function in the elderly. © 2016 International Federation for Cell Biology.

  5. Explaining environmental Kuznets curves. How pollution induces policy and new technology

    International Nuclear Information System (INIS)

    Smulders, S.; Bretschger, L.

    2000-01-01

    Production often causes pollution as a by-product. Once pollution problems become too severe, regulation is introduced by political authorities which forces the economy to make a transition to cleaner production processes. We model this transition as a change in 'general purpose technology' (GPT) and investigate how it interferes with economic growth driven by quality-improvements. The model gives an explanation for the inverted U-shaped relationship found in empirical research for many pollutants, often referred to as the Environmental Kuznets Curve (EKC). We provide an analytical foundation for the claim that the rise and decline of pollution can be explained by policy-induced technology shifts. 19 refs

  6. A double-integration hypothesis to explain ocean ecosystem response to climate forcing

    Science.gov (United States)

    Di Lorenzo, Emanuele; Ohman, Mark D.

    2013-01-01

    Long-term time series of marine ecological indicators often are characterized by large-amplitude state transitions that can persist for decades. Understanding the significance of these variations depends critically on the underlying hypotheses characterizing expected natural variability. Using a linear autoregressive model in combination with long-term zooplankton observations off the California coast, we show that cumulative integrations of white-noise atmospheric forcing can generate marine population responses that are characterized by strong transitions and prolonged apparent state changes. This model provides a baseline hypothesis for explaining ecosystem variability and for interpreting the significance of abrupt responses and climate change signatures in marine ecosystems. PMID:23341628

  7. Explaining the democratic anchorage of governance networks

    DEFF Research Database (Denmark)

    Skelcher, Chris; Klijn, Erik-Hans; Kübler, Daniel

    2011-01-01

    Advances in understanding the democratic anchorage of governance networks require carefully designed and contextually grounded empirical analysis that take into account contextual factors. The article uses a conjectural framework to study the impact of the national democratic milieu...... on the relationship between network governance and representative institutions in four European countries: the United Kingdom, Switzerland, the Netherlands, and Denmark. The article shows that the distinction between majoritarian and consensus democracy as well as the varying strength of voluntary associations...... are important contextual factors that help explain cross-national differences in the relationship between governance networks and representative institutions. We conclude that a context of weak associationalism in majoritarian democracies facilitates the instrumentalization of networks by government actors...

  8. Explaining CMS lepton excesses with supersymmetry

    CERN Multimedia

    CERN. Geneva; Prof. Allanach, Benjamin

    2014-01-01

    1) Kostas Theofilatos will give an introduction to CMS result 2) Ben Allanach: Several CMS analyses involving di-leptons have recently reported small 2.4-2.8 sigma local excesses: nothing to get too excited about, but worth keeping an eye on nonetheless. In particular, a search in the $lljj p_T$(miss) channel, a search for $W_R$ in the $lljj$ channel and a di-leptoquark search in the $lljj$ channel and $ljj p_T$(miss) channel have all yielded small excesses. We interpret the first excess in the MSSM, showing that the interpretation is viable in terms of other constraints, despite only having squark masses of around 1 TeV. We can explain the last three excesses with a single R-parity violating coupling that predicts a non-zero contribution to the neutrinoless double beta decay rate.

  9. Explaining the moral of the story.

    Science.gov (United States)

    Walker, Caren M; Lombrozo, Tania

    2017-10-01

    Although storybooks are often used as pedagogical tools for conveying moral lessons to children, the ability to spontaneously extract "the moral" of a story develops relatively late. Instead, children tend to represent stories at a concrete level - one that highlights surface features and understates more abstract themes. Here we examine the role of explanation in 5- and 6-year-old children's developing ability to learn the moral of a story. Two experiments demonstrate that, relative to a control condition, prompts to explain aspects of a story facilitate children's ability to override salient surface features, abstract the underlying moral, and generalize that moral to novel contexts. In some cases, generating an explanation is more effective than being explicitly told the moral of the story, as in a more traditional pedagogical exchange. These findings have implications for moral comprehension, the role of explanation in learning, and the development of abstract reasoning in early childhood. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Explaining NDVI trends in northern Burkina Faso

    DEFF Research Database (Denmark)

    Rasmussen, Kjeld; Fensholt, Rasmus; Fog, Bjarne

    2014-01-01

    by a distinct spatial pattern and strongly dominated by negative trends in Normalized Difference Vegetation Index (NDVI). The aim of the paper is to explain this distinct pattern. When studied over the period 2000–2012, using NDVI data from the MODIS sensor the spatial pattern of NDVI trends indicates that non......-climatic factors are involved. By relating NDVI trends to landscape elements and land use change we demonstrate that NDVI trends in the north-western parts of the study area are mostly related to landscape elements, while this is not the case in the south-eastern parts, where rapidly changing land use, including....... expansion of irrigation, plays a major role. It is inferred that a process of increased redistribution of fine soil material, water and vegetation from plateaus and slopes to valleys, possibly related to higher grazing pressure, may provide an explanation of the observed pattern of NDVI trends. Further work...

  11. Explaining excess morbidity amongst homeless shelter users

    DEFF Research Database (Denmark)

    Benjaminsen, Lars; Birkelund, Jesper Fels

    2018-01-01

    AIMS: This article analyses excess morbidity amongst homeless shelter users compared to the general Danish population. The study provides an extensive control for confounding and investigates to what extent excess morbidity is explained by homelessness or other risk factors. METHODS: Data set...... includes administrative micro-data for 4,068,926 Danes who were 23 years or older on 1 January 2007. Nationwide data on shelter use identified 14,730 individuals as shelter users from 2002 to 2006. Somatic diseases were measured from 2007 to 2011 through diagnosis data from hospital discharges. The risk...... of somatic diseases amongst shelter users was analysed through a multivariate model that decomposed the total effect into a direct effect and indirect effects mediated by other risk factors. RESULTS: The excess morbidity associated with shelter use is substantially lower than in studies that did not include...

  12. Second-order quadrupolar line shapes under molecular dynamics: An additional transition in the extremely fast regime.

    Science.gov (United States)

    Hung, Ivan; Wu, Gang; Gan, Zhehong

    NMR spectroscopy is a powerful tool for probing molecular dynamics. For the classic case of two-site exchange, NMR spectra go through the transition from exchange broadening through coalescence and then motional narrowing as the exchange rate increases passing through the difference between the resonance frequencies of the two sites. For central-transition spectra of half-integer quadrupolar nuclei in solids, line shape change due to molecular dynamics occurs in two stages. The first stage occurs when the exchange rate is comparable to the second-order quadrupolar interaction. The second spectral transition comes at a faster exchange rate which approaches the Larmor frequency and generally reduces the isotropic quadrupolar shift. Such a two-stage transition phenomenon is unique to half-integer quadrupolar nuclei. A quantum mechanical formalism in full Liouville space is presented to explain the physical origin of the two-stage phenomenon and for use in spectral simulations. Variable-temperature 17 O NMR of solid NaNO 3 in which the NO 3 - ion undergoes 3-fold jumps confirms the two-stage transition process. The spectra of NaNO 3 acquired in the temperature range of 173-413K agree well with simulations using the quantum mechanical formalism. The rate constants for the 3-fold NO 3 - ion jumps span eight orders of magnitude (10 2 -10 10 s -1 ) covering both transitions of the dynamic 17 O line shape. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. A father effect explains sex-ratio bias.

    Science.gov (United States)

    Malo, Aurelio F; Martinez-Pastor, Felipe; Garcia-Gonzalez, Francisco; Garde, Julián; Ballou, Jonathan D; Lacy, Robert C

    2017-08-30

    Sex ratio allocation has important fitness consequences, and theory predicts that parents should adjust offspring sex ratio in cases where the fitness returns of producing male and female offspring vary. The ability of fathers to bias offspring sex ratios has traditionally been dismissed given the expectation of an equal proportion of X- and Y-chromosome-bearing sperm (CBS) in ejaculates due to segregation of sex chromosomes at meiosis. This expectation has been recently refuted. Here we used Peromyscus leucopus to demonstrate that sex ratio is explained by an exclusive effect of the father, and suggest a likely mechanism by which male-driven sex-ratio bias is attained. We identified a male sperm morphological marker that is associated with the mechanism leading to sex ratio bias; differences among males in the sperm nucleus area (a proxy for the sex chromosome that the sperm contains) explain 22% variation in litter sex ratio. We further show the role played by the sperm nucleus area as a mediator in the relationship between individual genetic variation and sex-ratio bias. Fathers with high levels of genetic variation had ejaculates with a higher proportion of sperm with small nuclei area. This, in turn, led to siring a higher proportion of sons (25% increase in sons per 0.1 decrease in the inbreeding coefficient). Our results reveal a plausible mechanism underlying unexplored male-driven sex-ratio biases. We also discuss why this pattern of paternal bias can be adaptive. This research puts to rest the idea that father contribution to sex ratio variation should be disregarded in vertebrates, and will stimulate research on evolutionary constraints to sex ratios-for example, whether fathers and mothers have divergent, coinciding, or neutral sex allocation interests. Finally, these results offer a potential explanation for those intriguing cases in which there are sex ratio biases, such as in humans. © 2017 The Author(s).

  14. Toward broadband mechanical spectroscopy

    DEFF Research Database (Denmark)

    Hecksher, Tina; Torchinsky, Darius; Klieber, Christoph

    2017-01-01

    Diverse material classes exhibit qualitatively similar behavior when made viscous upon cooling toward the glass transition, suggesting a common theoretical basis. We used seven different measurement methods to determine the mechanical relaxation kinetics of a prototype molecular glass former over...

  15. Explaining evolution via constrained persistent perfect phylogeny

    Science.gov (United States)

    2014-01-01

    Background The perfect phylogeny is an often used model in phylogenetics since it provides an efficient basic procedure for representing the evolution of genomic binary characters in several frameworks, such as for example in haplotype inference. The model, which is conceptually the simplest, is based on the infinite sites assumption, that is no character can mutate more than once in the whole tree. A main open problem regarding the model is finding generalizations that retain the computational tractability of the original model but are more flexible in modeling biological data when the infinite site assumption is violated because of e.g. back mutations. A special case of back mutations that has been considered in the study of the evolution of protein domains (where a domain is acquired and then lost) is persistency, that is the fact that a character is allowed to return back to the ancestral state. In this model characters can be gained and lost at most once. In this paper we consider the computational problem of explaining binary data by the Persistent Perfect Phylogeny model (referred as PPP) and for this purpose we investigate the problem of reconstructing an evolution where some constraints are imposed on the paths of the tree. Results We define a natural generalization of the PPP problem obtained by requiring that for some pairs (character, species), neither the species nor any of its ancestors can have the character. In other words, some characters cannot be persistent for some species. This new problem is called Constrained PPP (CPPP). Based on a graph formulation of the CPPP problem, we are able to provide a polynomial time solution for the CPPP problem for matrices whose conflict graph has no edges. Using this result, we develop a parameterized algorithm for solving the CPPP problem where the parameter is the number of characters. Conclusions A preliminary experimental analysis shows that the constrained persistent perfect phylogeny model allows to

  16. Selection Bias in Educational Transition Models: Theory and Empirical Evidence

    DEFF Research Database (Denmark)

    Holm, Anders; Jæger, Mads

    variables. This paper, first, explains theoretically how selection on unobserved variables leads to waning coefficients and, second, illustrates empirically how selection leads to biased estimates of the effect of family background on educational transitions. Our empirical analysis using data from...

  17. Continuous and discontinuous transitions to synchronization.

    Science.gov (United States)

    Wang, Chaoqing; Garnier, Nicolas B

    2016-11-01

    We describe how the transition to synchronization in a system of globally coupled Stuart-Landau oscillators changes from continuous to discontinuous when the nature of the coupling is moved from diffusive to reactive. We explain this drastic qualitative change as resulting from the co-existence of a particular synchronized macrostate together with the trivial incoherent macrostate, in a range of parameter values for which the latter is linearly stable. In contrast to the paradigmatic Kuramoto model, this particular state observed at the synchronization transition contains a finite, non-vanishing number of synchronized oscillators, which results in a discontinuous transition. We consider successively two situations where either a fully synchronized state or a partially synchronized state exists at the transition. Thermodynamic limit and finite size effects are briefly discussed, as well as connections with recently observed discontinuous transitions.

  18. The conscious access hypothesis: Explaining the consciousness

    OpenAIRE

    Prakash, Ravi

    2008-01-01

    The phenomenon of conscious awareness or consciousness is complicated but fascinating. Although this concept has intrigued the mankind since antiquity, exploration of consciousness from scientific perspectives is not very old. Among myriad of theories regarding nature, functions and mechanism of consciousness, off late, cognitive theories have received wider acceptance. One of the most exciting hypotheses in recent times has been the ?conscious access hypotheses? based on the ?global workspac...

  19. Effect of free-stream turbulence on boundary layer transition.

    Science.gov (United States)

    Goldstein, M E

    2014-07-28

    This paper is concerned with the transition to turbulence in flat plate boundary layers due to moderately high levels of free-stream turbulence. The turbulence is assumed to be generated by an (idealized) grid and matched asymptotic expansions are used to analyse the resulting flow over a finite thickness flat plate located in the downstream region. The characteristic Reynolds number Rλ based on the mesh size λ and free-stream velocity is assumed to be large, and the turbulence intensity ε is assumed to be small. The asymptotic flow structure is discussed for the generic case where the turbulence Reynolds number εRλ and the plate thickness and are held fixed (at O(1) and O(λ), respectively) in the limit as [Formula: see text] and ε→0. But various limiting cases are considered in order to explain the relevant transition mechanisms. It is argued that there are two types of streak-like structures that can play a role in the transition process: (i) those that appear in the downstream region and are generated by streamwise vorticity in upstream flow and (ii) those that are concentrated near the leading edge and are generated by plate normal vorticity in upstream flow. The former are relatively unaffected by leading edge geometry and are usually referred to as Klebanoff modes while the latter are strongly affected by leading edge geometry and are more streamwise vortex-like in appearance. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  20. Analytical mechanics

    CERN Document Server

    Helrich, Carl S

    2017-01-01

    This advanced undergraduate textbook begins with the Lagrangian formulation of Analytical Mechanics and then passes directly to the Hamiltonian formulation and the canonical equations, with constraints incorporated through Lagrange multipliers. Hamilton's Principle and the canonical equations remain the basis of the remainder of the text. Topics considered for applications include small oscillations, motion in electric and magnetic fields, and rigid body dynamics. The Hamilton-Jacobi approach is developed with special attention to the canonical transformation in order to provide a smooth and logical transition into the study of complex and chaotic systems. Finally the text has a careful treatment of relativistic mechanics and the requirement of Lorentz invariance. The text is enriched with an outline of the history of mechanics, which particularly outlines the importance of the work of Euler, Lagrange, Hamilton and Jacobi. Numerous exercises with solutions support the exceptionally clear and concise treatment...