WorldWideScience

Sample records for mechanism involving translocation

  1. MYC translocation-negative classical Burkitt lymphoma cases: an alternative pathogenetic mechanism involving miRNA deregulation

    DEFF Research Database (Denmark)

    Leucci, E; Cocco, M; Onnis, A

    2008-01-01

    at the standardization of FISH procedures in lymphoma diagnosis, we found that five cases out of 35 classic endemic BLs were negative for MYC translocations by using a split-signal as well as a dual-fusion probe. Here we investigated the expression pattern of miRNAs predicted to target c-Myc, in BL cases, to clarify...... whether alternative pathogenetic mechanisms may be responsible for lymphomagenesis in cases lacking the MYC translocation. miRNAs are a class of small RNAs that are able to regulate gene expression at the post-transcriptional level. Several studies have reported their involvement in cancer...

  2. Mechanisms underlying stage-1 TRPL channel translocation in Drosophila photoreceptors.

    Directory of Open Access Journals (Sweden)

    Minh-Ha Lieu

    Full Text Available TRP channels function as key mediators of sensory transduction and other cellular signaling pathways. In Drosophila, TRP and TRPL are the light-activated channels in photoreceptors. While TRP is statically localized in the signaling compartment of the cell (the rhabdomere, TRPL localization is regulated by light. TRPL channels translocate out of the rhabdomere in two distinct stages, returning to the rhabdomere with dark-incubation. Translocation of TRPL channels regulates their availability, and thereby the gain of the signal. Little, however, is known about the mechanisms underlying this trafficking of TRPL channels.We first examine the involvement of de novo protein synthesis in TRPL translocation. We feed flies cycloheximide, verify inhibition of protein synthesis, and test for TRPL translocation in photoreceptors. We find that protein synthesis is not involved in either stage of TRPL translocation out of the rhabdomere, but that re-localization to the rhabdomere from stage-1, but not stage-2, depends on protein synthesis. We also characterize an ex vivo eye preparation that is amenable to biochemical and genetic manipulation. We use this preparation to examine mechanisms of stage-1 TRPL translocation. We find that stage-1 translocation is: induced with ATP depletion, unaltered with perturbation of the actin cytoskeleton or inhibition of endocytosis, and slowed with increased membrane sterol content.Our results indicate that translocation of TRPL out of the rhabdomere is likely due to protein transport, and not degradation/re-synthesis. Re-localization from each stage to the rhabdomere likely involves different strategies. Since TRPL channels can translocate to stage-1 in the absence of ATP, with no major requirement of the cytoskeleton, we suggest that stage-1 translocation involves simple diffusion through the apical membrane, which may be regulated by release of a light-dependent anchor in the rhabdomere.

  3. Mechanism for translocation of fluoroquinolones across lipid membranes

    DEFF Research Database (Denmark)

    Cramariuc, O.; Rog, T.; Javanainen, M.

    2012-01-01

    Classical atom-scale molecular dynamics simulations, constrained free energy calculations, and quantum mechanical (QM) calculations are employed to study the diffusive translocation of ciprofloxacin (CPFX) across lipid membranes. CPFX is considered here as a representative of the fluoroquinolone...... antibiotics class. Neutral and zwitterionic CPFX coexist at physiological pH, with the latter being predominant. Simulations reveal that only the neutral form permeates the bilayer, and it does so through a novel mechanism that involves dissolution of concerted stacks of zwitterionic ciprofloxacins....... Subsequent QM analysis of the observed molecular stacking shows the important role of partial charge neutralization in the stacks, highlighting how the zwitterionic form of the drug is neutralized for translocation. The findings propose a translocation mechanism in which zwitterionic CPFX molecules approach...

  4. Mechanical design of translocating motor proteins.

    Science.gov (United States)

    Hwang, Wonmuk; Lang, Matthew J

    2009-01-01

    Translocating motors generate force and move along a biofilament track to achieve diverse functions including gene transcription, translation, intracellular cargo transport, protein degradation, and muscle contraction. Advances in single molecule manipulation experiments, structural biology, and computational analysis are making it possible to consider common mechanical design principles of these diverse families of motors. Here, we propose a mechanical parts list that include track, energy conversion machinery, and moving parts. Energy is supplied not just by burning of a fuel molecule, but there are other sources or sinks of free energy, by binding and release of a fuel or products, or similarly between the motor and the track. Dynamic conformational changes of the motor domain can be regarded as controlling the flow of free energy to and from the surrounding heat reservoir. Multiple motor domains are organized in distinct ways to achieve motility under imposed physical constraints. Transcending amino acid sequence and structure, physically and functionally similar mechanical parts may have evolved as nature's design strategy for these molecular engines.

  5. The Unexplored Mechanisms and Regulatory Functions of Ribosomal Translocation

    Science.gov (United States)

    Alejo, Jose Luis

    In every cell, protein synthesis is carried out by the ribosome, a complex macromolecular RNA-protein assembly. Decades of structural and kinetic studies have increased our understanding of ribosome initiation, decoding, translocation and termination. Yet, the underlying mechanism of these fundamental processes has yet to be fully delineated. Hence, the molecular basis of regulation remains obscure. Here, single-molecule fluorescence methods are applied to decipher the mechanism and regulatory roles of the multi-step process of directional substrate translocation on the ribosome that accompanies every round of protein synthesis. In Chapter 1, single-molecule fluorescence resonance energy transfer (smFRET) is introduced as a tool for studying bacterial ribosome translocation. Chapter 2 details the experimental methods. In Chapter 3, the elongation factor G(EF-G)-catalyzed movement of substrates through the ribosome is examined from several perspectives or signals reporting on various degrees of freedom of ribosome dynamics. Two ribosomal states interconvert in the presence of EF-G(GDP), displaying novel head domain motions, until relocking takes place. In Chapter 4, in order to test if the mentioned fluctuations leading to relocking are correlated to the engagement of the P-site by the peptidyl-tRNA, the translocation of miscoded tRNAs is studied. Severe defects in the relocking stages of translocation reveal the correlation between this new stage of translocation and P-site tRNA engagement.

  6. Biological mechanisms and translocation kinetics of particulate plutonium

    International Nuclear Information System (INIS)

    Bruenger, F.W.; Stevens, W.; Atherton, D.R.; Roswell, R.L.; Smith, J.M.

    1981-01-01

    The dissolution and elimination of particulate 239 Pu from its initial sites of deposition in phagocytic organs (the liver, spleen, and lung), as well as its translocation and redeposition in soft tissue organs and skeleton have been investigated. Beagles were injected intravenously with particulate Pu and sacrificed sequentially at times ranging from 33 to 830 days after injection. Equations that describe the overall retention of Pu in liver, spleen, lung, and bone were calculated. Plutonium mobilized from these organs either re-entered the blood stream and redeposited in the skeleton and liver parenchyma or was excreted. The protracted translocation of Pu to bone surfaces potentially exposes all cells involved in osteogenesis to continuous α-radiation, a situation that could enhance the hazard of developing osteosarcoma. A kinetic model that describes the translocation of Pu from the phagocytic compartments to blood and its subsequent redistribution to bone, liver, and other organs was formulated

  7. Involvement of TR3/Nur77 translocation to the endoplasmic reticulum in ER stress-induced apoptosis

    International Nuclear Information System (INIS)

    Liang Bin; Song Xuhong; Liu Gefei; Li Rui; Xie Jianping; Xiao Lifeng; Du Mudan; Zhang Qiaoxia; Xu Xiaoyuan; Gan Xueqiong; Huang Dongyang

    2007-01-01

    Nuclear orphan receptor TR3/Nur77/NGFI-B is a novel apoptotic effector protein that initiates apoptosis largely by translocating from the nucleus to the mitochondria, causing the release of cytochrome c. However, it is possible that TR3 translocates to other organelles. The present study was designed to determine the intracellular localization of TR3 following CD437-induced nucleocytoplasmic translocation and the mechanisms involved in TR3-induced apoptosis. In human neuroblastoma SK-N-SH cells and human esophageal squamous carcinoma EC109 and EC9706 cells, 5 μM CD437 induced translocation of TR3 to the endoplasmic reticulum (ER). This distribution was confirmed by immunofluorescence analysis, subcellular fractionation analysis and coimmunoprecipitation analysis. The translocated TR3 interacted with ER-targeting Bcl-2; initiated an early release of Ca 2+ from ER; resulted in ER stress and induced apoptosis through ER-specific caspase-4 activation, together with induction of mitochondrial stress and subsequent activation of caspase-9. Our results identified a novel distribution of TR3 in the ER and defined two parallel mitochondrial- and ER-based pathways that ultimately result in apoptotic cell death

  8. Physical insights into the blood-brain barrier translocation mechanisms

    Science.gov (United States)

    Theodorakis, Panagiotis E.; Müller, Erich A.; Craster, Richard V.; Matar, Omar K.

    2017-08-01

    The number of individuals suffering from diseases of the central nervous system (CNS) is growing with an aging population. While candidate drugs for many of these diseases are available, most of these pharmaceutical agents cannot reach the brain rendering most of the drug therapies that target the CNS inefficient. The reason is the blood-brain barrier (BBB), a complex and dynamic interface that controls the influx and efflux of substances through a number of different translocation mechanisms. Here, we present these mechanisms providing, also, the necessary background related to the morphology and various characteristics of the BBB. Moreover, we discuss various numerical and simulation approaches used to study the BBB, and possible future directions based on multi-scale methods. We anticipate that this review will motivate multi-disciplinary research on the BBB aiming at the design of effective drug therapies.

  9. P2Y12R-Dependent Translocation Mechanisms Gate the Changing Microglial Landscape

    Directory of Open Access Journals (Sweden)

    Ukpong B. Eyo

    2018-04-01

    Full Text Available Summary: Microglia are an exquisitely tiled and self-contained population in the CNS that do not receive contributions from circulating monocytes in the periphery. While microglia are long-lived cells, the extent to which their cell bodies are fixed and the molecular mechanisms by which the microglial landscape is regulated have not been determined. Using chronic in vivo two-photon imaging to follow the microglial population in young adult mice, we document a daily rearrangement of the microglial landscape. Furthermore, we show that the microglial landscape can be modulated by severe seizures, acute injury, and sensory deprivation. Finally, we demonstrate a critical role for microglial P2Y12Rs in regulating the microglial landscape through cellular translocation independent of proliferation. These findings suggest that microglial patrol the CNS through both process motility and soma translocation. : Using a chronic in vivo imaging approach, Eyo et al. show that the physical positions of brain microglia change daily and that these changes increase following certain experimental manipulations. The mechanism underlying these changes involves cell translocation controlled by microglial-specific P2Y12 receptors. Keywords: microglia, P2Y12, seizures, epilepsy, whisker trimming, microglial landscape, two photon chronic imaging

  10. Genetic mechanisms leading to primary amenorrhea in balanced X-autosome translocations.

    Science.gov (United States)

    Moysés-Oliveira, Mariana; Guilherme, Roberta Dos Santos; Dantas, Anelisa Gollo; Ueta, Renata; Perez, Ana Beatriz; Haidar, Mauro; Canonaco, Rosane; Meloni, Vera Ayres; Kosyakova, Nadezda; Liehr, Thomas; Carvalheira, Gianna Maria; Melaragno, Maria Isabel

    2015-05-01

    To map the X-chromosome and autosome breakpoints in women with balanced X-autosome translocations and primary amenorrhea, searching candidate genomic loci for female infertility. Retrospective and case-control study. University-based research laboratory. Three women with balanced X-autosome translocation and primary amenorrhea. Conventional cytogenetic methods, genomic array, array painting, fluorescence in situ hybridization, and quantitative reverse transcription-polymerase chain reaction. Karyotype, copy number variation, breakpoint mapping, and gene expression levels. All patients presented with breakpoints in the Xq13q21 region. In two patients, the X-chromosome breakpoint disrupted coding sequences (KIAA2022 and ZDHHC15 genes). Although both gene disruptions caused absence of transcription in peripheral blood, there is no evidence that supports the involvement of these genes with ovarian function. The ZDHHC15 gene belongs to a conserved syntenic region that encompasses the FGF16 gene, which plays a role in female germ line development. The break in the FGF16 syntenic block may have disrupted the interaction between the FGF16 promoter and its cis-regulatory element. In the third patient, although both breakpoints are intergenic, a gene that plays a role in the DAX1 pathway (FHL2 gene) flanks distally the autosome breakpoint. The FHL2 gene may be subject to position effect due to the attachment of an autosome segment in Xq21 region. The etiology of primary amenorrhea in balanced X-autosome translocation patients may underlie more complex mechanisms than interruption of specific X-linked candidate genes, such as position effect. The fine mapping of the rearrangement breakpoints may be a tool for identifying genetic pathogenic mechanisms for primary amenorrhea. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  11. Caspase-independent cell death mediated by apoptosis-inducing factor (AIF) nuclear translocation is involved in ionizing radiation induced HepG2 cell death

    International Nuclear Information System (INIS)

    Sun, Hengwen; Yang, Shana; Li, Jianhua; Zhang, Yajie; Gao, Dongsheng; Zhao, Shenting

    2016-01-01

    Hepatocellular carcinoma (HCC) is the fifth most common cancer in the world. The aim of radiotherapy is to eradicate cancer cells with ionizing radiation. Except for the caspase-dependent mechanism, several lines of evidence demonstrated that caspase-independent mechanism is directly involved in the cell death responding to irradiation. For this reason, defining the contribution of caspase-independent molecular mechanisms represents the main goal in radiotherapy. In this study, we focused on the role of apoptosis-inducing factor (AIF), the caspase-independent molecular, in ionizing radiation induced hepatocellular carcinoma cell line (HepG2) cell death. We found that ionizing radiation has no function on AIF expression in HepG2 cells, but could induce AIF release from the mitochondria and translocate into nuclei. Inhibition of AIF could reduce ionizing radiation induced HepG2 cell death. These studies strongly support a direct relationship between AIF nuclear translocation and radiation induced cell death. What's more, AIF nuclear translocation is caspase-independent manner, but not caspase-dependent manner, in this process. These new findings add a further attractive point of investigation to better define the complex interplay between caspase-independent cell death and radiation therapy. - Highlights: • AIF nuclear translocation is involved in ionizing radiation induced hepatocellular carcinoma cell line HepG2 cell death. • AIF mediated cell death induced by ionizing radiation is caspase-independent. • Caspase-independent pathway is involved in ionzing radiation induced HepG2 cell death.

  12. Experimental and computational studies on the DNA translocation mechanism of the T4 viral packaging motor

    Science.gov (United States)

    Migliori, Amy; Arya, Gaurav; Smith, Douglas E.

    2012-10-01

    Bacteriophage T4 is a double stranded DNA virus that infects E.coli by injecting the viral genome through the cellular wall of a host cell. The T4 genome must be ejected from the viral capsid with sufficient force to ensure infection. To generate high ejection forces, the genome is packaged to high density within the viral capsid. A DNA translocation motor, in which the protein gp17 hydrolyzes ATP and binds to the DNA, is responsible for translocating the genome into the capsid during viral maturation of T4. This motor generates forces in excess of 60 pN and packages DNA at rates exceeding 2000 base pairs/second (bp/s)1. Understanding these small yet powerful motors is important, as they have many potential applications. Though much is known about the activity of these motors from bulk and single molecule biophysical techniques, little is known about their detailed molecular mechanism. Recently, two structures of gp17 have been obtained: a high-resolution X-ray crystallographic structure showing a monomeric compacted form of the enzyme, and a cryo-electron microscopic structure of the extended form of gp17 in complex with actively packaging prohead complexes. Comparison of these two structures indicates several key differences, and a model has been proposed to explain the translocation action of the motor2. Key to this model are a set of residues forming ion pairs across two domains of the gp17 molecule that are proposed to be involved in force generation by causing the collapse of the extended form of gp17. Using a dual optical trap to measure the rates of DNA packaging and the generated forces, we present preliminary mutational data showing that these several of these ion pairs are important to motor function. We have also performed preliminary free energy calculations on the extended and collapsed state of gp17, to confirm that these interdomain ion pairs have large contributions to the change in free energy that occurs upon the collapse of gp17 during the

  13. Viral and cellular SOS-regulated motor proteins: dsDNA translocation mechanisms with divergent functions.

    Science.gov (United States)

    Wolfe, Annie; Phipps, Kara; Weitao, Tao

    2014-01-01

    DNA damage attacks on bacterial cells have been known to activate the SOS response, a transcriptional response affecting chromosome replication, DNA recombination and repair, cell division and prophage induction. All these functions require double-stranded (ds) DNA translocation by ASCE hexameric motors. This review seeks to delineate the structural and functional characteristics of the SOS response and the SOS-regulated DNA translocases FtsK and RuvB with the phi29 bacteriophage packaging motor gp16 ATPase as a prototype to study bacterial motors. While gp16 ATPase, cellular FtsK and RuvB are similarly comprised of hexameric rings encircling dsDNA and functioning as ATP-driven DNA translocases, they utilize different mechanisms to accomplish separate functions, suggesting a convergent evolution of these motors. The gp16 ATPase and FtsK use a novel revolution mechanism, generating a power stroke between subunits through an entropy-DNA affinity switch and pushing dsDNA inward without rotation of DNA and the motor, whereas RuvB seems to employ a rotation mechanism that remains to be further characterized. While FtsK and RuvB perform essential tasks during the SOS response, their roles may be far more significant as SOS response is involved in antibiotic-inducible bacterial vesiculation and biofilm formation as well as the perspective of the bacteria-cancer evolutionary interaction.

  14. A mechanical mechanism for translocation of ring-shaped helicases on DNA and its demonstration in a macroscopic simulation system

    Science.gov (United States)

    Chou, Y. C.

    2018-04-01

    The asymmetry in the two-layered ring structure of helicases and the random thermal fluctuations of the helicase and DNA molecules are considered as the bases for the generation of the force required for translocation of the ring-shaped helicase on DNA. The helicase comprises a channel at its center with two unequal ends, through which strands of DNA can pass. The random collisions between the portion of the DNA strand in the central channel and the wall of the channel generate an impulsive force toward the small end. This impulsive force is the starting point for the helicase to translocate along the DNA with the small end in front. Such a physical mechanism may serve as a complementary for the chemomechanical mechanism of the translocation of helicase on DNA. When the helicase arrives at the junction of ssDNA and dsDNA (a fork), the collision between the helicase and the closest base pair may produce a sufficient impulsive force to break the weak hydrogen bond of the base pair. Thus, the helicase may advance and repeat the process of unwinding the dsDNA strand. This mechanism was tested in a macroscopic simulation system where the helicase was simulated using a truncated-cone structure and DNA was simulated with bead chains. Many features of translocation and unwinding such as translocation on ssDNA and dsDNA, unwinding of dsDNA, rewinding, strand switching, and Holliday junction resolution were reproduced.

  15. Caspase-independent cell death mediated by apoptosis-inducing factor (AIF) nuclear translocation is involved in ionizing radiation induced HepG2 cell death

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Hengwen [Department of Radiation, Cancer Center of Guangdong General Hospital (Guangdong Academy of Medical Science), Guangzhou, 510080, Guangdong (China); Yang, Shana; Li, Jianhua [Department of Physiology, Guangzhou Medical University, Guangzhou, 510182, Guangdong (China); Zhang, Yajie [Department of Pathology, Guangzhou Medical University, Guangzhou, 510182, Guangdong (China); Gao, Dongsheng [Department of Oncology, Guangdong Medical College Affiliated Pengpai Memorial Hospital, Hai Feng, 516400, Gungdong (China); Zhao, Shenting, E-mail: zhaoshenting@126.com [Department of Physiology, Guangzhou Medical University, Guangzhou, 510182, Guangdong (China)

    2016-03-25

    Hepatocellular carcinoma (HCC) is the fifth most common cancer in the world. The aim of radiotherapy is to eradicate cancer cells with ionizing radiation. Except for the caspase-dependent mechanism, several lines of evidence demonstrated that caspase-independent mechanism is directly involved in the cell death responding to irradiation. For this reason, defining the contribution of caspase-independent molecular mechanisms represents the main goal in radiotherapy. In this study, we focused on the role of apoptosis-inducing factor (AIF), the caspase-independent molecular, in ionizing radiation induced hepatocellular carcinoma cell line (HepG2) cell death. We found that ionizing radiation has no function on AIF expression in HepG2 cells, but could induce AIF release from the mitochondria and translocate into nuclei. Inhibition of AIF could reduce ionizing radiation induced HepG2 cell death. These studies strongly support a direct relationship between AIF nuclear translocation and radiation induced cell death. What's more, AIF nuclear translocation is caspase-independent manner, but not caspase-dependent manner, in this process. These new findings add a further attractive point of investigation to better define the complex interplay between caspase-independent cell death and radiation therapy. - Highlights: • AIF nuclear translocation is involved in ionizing radiation induced hepatocellular carcinoma cell line HepG2 cell death. • AIF mediated cell death induced by ionizing radiation is caspase-independent. • Caspase-independent pathway is involved in ionzing radiation induced HepG2 cell death.

  16. Transcriptional expression analysis of genes involved in regulation of calcium translocation and storage in finger millet (Eleusine coracana L. Gartn.).

    Science.gov (United States)

    Mirza, Neelofar; Taj, Gohar; Arora, Sandeep; Kumar, Anil

    2014-10-25

    Finger millet (Eleusine coracana) variably accumulates calcium in different tissues, due to differential expression of genes involved in uptake, translocation and accumulation of calcium. Ca(2+)/H(+) antiporter (CAX1), two pore channel (TPC1), CaM-stimulated type IIB Ca(2+) ATPase and two CaM dependent protein kinase (CaMK1 and 2) homologs were studied in finger millet. Two genotypes GP-45 and GP-1 (high and low calcium accumulating, respectively) were used to understand the role of these genes in differential calcium accumulation. For most of the genes higher expression was found in the high calcium accumulating genotype. CAX1 was strongly expressed in the late stages of spike development and could be responsible for accumulating high concentrations of calcium in seeds. TPC1 and Ca(2+) ATPase homologs recorded strong expression in the root, stem and developing spike and signify their role in calcium uptake and translocation, respectively. Calmodulin showed strong expression and a similar expression pattern to the type IIB ATPase in the developing spike only and indicating developing spike or even seed specific isoform of CaM affecting the activity of downstream target of calcium transportation. Interestingly, CaMK1 and CaMK2 had expression patterns similar to ATPase and TPC1 in various tissues raising a possibility of their respective regulation via CaM kinase. Expression pattern of 14-3-3 gene was observed to be similar to CAX1 gene in leaf and developing spike inferring a surprising possibility of CAX1 regulation through 14-3-3 protein. Our results provide a molecular insight for explaining the mechanism of calcium accumulation in finger millet. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Insulin and leptin induce Glut4 plasma membrane translocation and glucose uptake in a human neuronal cell line by a phosphatidylinositol 3-kinase- dependent mechanism.

    Science.gov (United States)

    Benomar, Yacir; Naour, Nadia; Aubourg, Alain; Bailleux, Virginie; Gertler, Arieh; Djiane, Jean; Guerre-Millo, Michèle; Taouis, Mohammed

    2006-05-01

    The insulin-sensitive glucose transporter Glut4 is expressed in brain areas that regulate energy homeostasis and body adiposity. In contrast with peripheral tissues, however, the impact of insulin on Glut4 plasma membrane (PM) translocation in neurons is not known. In this study, we examined the role of two anorexic hormones (leptin and insulin) on Glut4 translocation in a human neuronal cell line that express endogenous insulin and leptin receptors. We show that insulin and leptin both induce Glut4 translocation to the PM of neuronal cells and activate glucose uptake. Wortmannin, a specific inhibitor of phosphatidylinositol 3-kinase, totally abolished insulin- and leptin-dependent Glut4 translocation and stimulation of glucose uptake. Thus, Glut4 translocation is a phosphatidylinositol 3-kinase-dependent mechanism in neuronal cells. Next, we investigated the impact of chronic insulin and leptin treatments on Glut4 expression and translocation. Chronic exposure of neuronal cells to insulin or leptin down-regulates Glut4 proteins and mRNA levels and abolishes the acute stimulation of glucose uptake in response to acute insulin or leptin. In addition, chronic treatment with either insulin or leptin impaired Glut4 translocation. A cross-desensitization between insulin and leptin was apparent, where exposure to insulin affects leptin-dependent Glut4 translocation and vice versa. This cross-desensitization could be attributed to the increase in suppressor of cytokine signaling-3 expression, which was demonstrated in response to each hormone. These results provide evidence to suggest that Glut4 translocation to neuronal PM is regulated by both insulin and leptin signaling pathways. These pathways might contribute to an in vivo glucoregulatory reflex involving a neuronal network and to the anorectic effect of insulin and leptin.

  18. Chromosome segregation analysis in human embryos obtained from couples involving male carriers of reciprocal or Robertsonian translocation.

    Directory of Open Access Journals (Sweden)

    Ahmet Yilmaz

    Full Text Available The objective of this study was to investigate the frequency and type of chromosome segregation patterns in cleavage stage embryos obtained from male carriers of Robertsonian (ROB and reciprocal (REC translocations undergoing preimplantation genetic diagnosis (PGD at our reproductive center. We used FISH to analyze chromosome segregation in 308 day 3 cleavage stage embryos obtained from 26 patients. The percentage of embryos consistent with normal or balanced segregation (55.1% vs. 27.1% and clinical pregnancy (62.5% vs. 19.2% rates were higher in ROB than the REC translocation carriers. Involvement of non-acrocentric chromosome(s or terminal breakpoint(s in reciprocal translocations was associated with an increase in the percent of embryos consistent with adjacent 1 but with a decrease in 3∶1 segregation. Similar results were obtained in the analysis of nontransferred embryos donated for research. 3∶1 segregation was the most frequent segregation type in both day 3 (31% and spare (35% embryos obtained from carriers of t(11;22(q23;q11, the only non-random REC with the same breakpoint reported in a large number of unrelated families mainly identified by the birth of a child with derivative chromosome 22. These results suggest that chromosome segregation patterns in day 3 and nontransferred embryos obtained from male translocation carriers vary with the type of translocation and involvement of acrocentric chromosome(s or terminal breakpoint(s. These results should be helpful in estimating reproductive success in translocation carriers undergoing PGD.

  19. Sustainable Development Mechanism of Food Culture’s Translocal Production Based on Authenticity

    Directory of Open Access Journals (Sweden)

    Guojun Zeng

    2014-10-01

    Full Text Available Food culture is a kind of non-material culture with authenticity. To achieve sustainable development of translocal heritage and food culture, we must protect its authenticity. By selecting the cases of the Dongbeiren Flavor Dumpling Restaurant and the Daozanjia Northeast Dumpling Restaurant and using the in-depth interview method, this study discusses how northeastern Cuisine in Guangzhou balances the inheritance and innovation of authenticity, how producers and customers negotiate, and how to realize sustainable development. The main conclusions are: first, there are two different paths of translocal food culture production, which are “authentic food culture production” and “differentiated food culture production”. Second, what translocal enterprises produce is not objective authenticity, but constructive authenticity, or even existential authenticity. Third, compared with differentiated food culture production, authentic food culture production is helpful for the sustainable development of local food culture production. It protects the locality while transmitting and developing the local culture. Fourth, translocal food culture production is a process in which the producers and consumers continue to interact to maintain a state of equilibrium, which informs the sustainable development mechanism with a high degree of authenticity.

  20. The mechanism of coupling between oxido-reduction and proton translocation in respiratory chain enzymes.

    Science.gov (United States)

    Papa, Sergio; Capitanio, Giuseppe; Papa, Francesco

    2018-02-01

    The respiratory chain of mitochondria and bacteria is made up of a set of membrane-associated enzyme complexes which catalyse sequential, stepwise transfer of reducing equivalents from substrates to oxygen and convert redox energy into a transmembrane protonmotive force (PMF) by proton translocation from a negative (N) to a positive (P) aqueous phase separated by the coupling membrane. There are three basic mechanisms by which a membrane-associated redox enzyme can generate a PMF. These are membrane anisotropic arrangement of the primary redox catalysis with: (i) vectorial electron transfer by redox metal centres from the P to the N side of the membrane; (ii) hydrogen transfer by movement of quinones across the membrane, from a reduction site at the N side to an oxidation site at the P side; (iii) a different type of mechanism based on co-operative allosteric linkage between electron transfer at the metal redox centres and transmembrane electrogenic proton translocation by apoproteins. The results of advanced experimental and theoretical analyses and in particular X-ray crystallography show that these three mechanisms contribute differently to the protonmotive activity of cytochrome c oxidase, ubiquinone-cytochrome c oxidoreductase and NADH-ubiquinone oxidoreductase of the respiratory chain. This review considers the main features, recent experimental advances and still unresolved problems in the molecular/atomic mechanism of coupling between the transfer of reducing equivalents and proton translocation in these three protonmotive redox complexes. © 2017 Cambridge Philosophical Society.

  1. High-Risk Microgranular Acute Promyelocytic Leukemia with a Five-Way Complex Translocation Involving PML-RARA

    Directory of Open Access Journals (Sweden)

    Benjamin Powers

    2015-01-01

    Full Text Available Acute promyelocytic leukemia (APL is classically characterized by chromosomal translocation (15;17, resulting in the PML-RARA fusion protein leading to disease. Here, we present a case of a 50-year-old man who presented with signs and symptoms of acute leukemia with concern for APL. Therapy was immediately initiated with all-trans retinoic acid. The morphology of his leukemic blasts was consistent with the hypogranular variant of APL. Subsequent FISH and cytogenetic analysis revealed a unique translocation involving five chromosomal regions: 9q34, 17q21, 15q24, 12q13, and 15q26.1. Molecular testing demonstrated PML/RARA fusion transcripts. Treatment with conventional chemotherapy was added and he went into a complete remission. Given his elevated white blood cell count at presentation, intrathecal chemotherapy for central nervous system prophylaxis was also given. The patient remains on maintenance therapy and remains in remission. This is the first such report of a 5-way chromosomal translocation leading to APL. Similar to APL with chromosomal translocations other than classical t(15;17 which result in the typical PML-RARA fusion, our patient responded promptly to an ATRA-containing regimen and remains in complete remission.

  2. The analysis of the defense mechanism against indigenous bacterial translocation in X-irradiated mice

    International Nuclear Information System (INIS)

    Kobayashi, Toshiya; Ohmori, Toshihiro; Yanai, Minoru; Kawanishi, Gosei; Mitsuyama, Masao; Nomoto, Kikuo.

    1991-01-01

    The defense mechanism against indigenous bacterial translocation was studied using a model of endogenous infection in X-irradiated mice. All mice irradiated with 9 Gy died from day 8 to day 15 after irradiation. The death of mice was observed in parallel with the appearance of bacteria from day 7 in various organs, and the causative agent was identified to be Escherichia coli, an indigenous bacterium translocating from the intestine. Decrease in the number of blood leukocytes, peritoneal cells and lymphocytes in Peyer's patches or mesenteric lymph nodes was observed as early as 1 day after irradiation with 6 or 9 Gy. The mitogenic response of lymphocytes from various lymphoid tissues was severely affected as well. The impairment of these parameters for host defense reached the peak 3 days after irradiation and there was no recovery. However, in vivo bacterial activity of Kupffer cells in mice irradiated with 9 Gy was maintained in a normal level for a longer period. It was suggested that Kupffer cells play an important role in the defense against indigenous bacteria translocating from the intenstine in mice. (author)

  3. Optimality of the Münch mechanism for translocation of sugars in plants

    DEFF Research Database (Denmark)

    Jensen, Kåre Hartvig; Lee, J.; Bohr, Tomas

    2011-01-01

    Plants require effective vascular systems for the transport of water and dissolved molecules between distal regions. Their survival depends on the ability to transport sugars from the leaves where they are produced to sites of active growth; a flow driven, according to the Münch hypothesis...... techniques and biomimicking microfluidic devices support this scaling relation and provide the first quantitative support for a unified mechanism of sugar translocation in plants spanning several orders of magnitude in size. The existence of a general scaling law for phloem dimensions provides a new...... framework for investigating the physical principles governing the morphological diversity of plants....

  4. Translocation and gross deletion breakpoints in human inherited disease and cancer II: Potential involvement of repetitive sequence elements in secondary structure formation between DNA ends.

    Science.gov (United States)

    Chuzhanova, Nadia; Abeysinghe, Shaun S; Krawczak, Michael; Cooper, David N

    2003-09-01

    Translocations and gross deletions are responsible for a significant proportion of both cancer and inherited disease. Although such gene rearrangements are nonuniformly distributed in the human genome, the underlying mutational mechanisms remain unclear. We have studied the potential involvement of various types of repetitive sequence elements in the formation of secondary structure intermediates between the single-stranded DNA ends that recombine during rearrangements. Complexity analysis was used to assess the potential of these ends to form secondary structures, the maximum decrease in complexity consequent to a gross rearrangement being used as an indicator of the type of repeat and the specific DNA ends involved. A total of 175 pairs of deletion/translocation breakpoint junction sequences available from the Gross Rearrangement Breakpoint Database [GRaBD; www.uwcm.ac.uk/uwcm/mg/grabd/grabd.html] were analyzed. Potential secondary structure was noted between the 5' flanking sequence of the first breakpoint and the 3' flanking sequence of the second breakpoint in 49% of rearrangements and between the 5' flanking sequence of the second breakpoint and the 3' flanking sequence of the first breakpoint in 36% of rearrangements. Inverted repeats, inversions of inverted repeats, and symmetric elements were found in association with gross rearrangements at approximately the same frequency. However, inverted repeats and inversions of inverted repeats accounted for the vast majority (83%) of deletions plus small insertions, symmetric elements for one-half of all antigen receptor-mediated translocations, while direct repeats appear only to be involved in mediating simple deletions. These findings extend our understanding of illegitimate recombination by highlighting the importance of secondary structure formation between single-stranded DNA ends at breakpoint junctions. Copyright 2003 Wiley-Liss, Inc.

  5. Genome-Wide Identification and Characterization of Four Gene Families Putatively Involved in Cadmium Uptake, Translocation and Sequestration in Mulberry

    Directory of Open Access Journals (Sweden)

    Wei Fan

    2018-06-01

    Full Text Available The zinc-regulated transporters, iron-regulated transporter-like proteins (ZIPs, the natural resistance and macrophage proteins (NRAMP, the heavy metal ATPases (HMAs and the metal tolerance or transporter proteins (MTPs families are involved in cadmium (Cd uptake, translocation and sequestration in plants. Mulberry (Morus L., one of the most ecologically and economically important (as a food plant for silkworm production genera of perennial trees, exhibits excellent potential for remediating Cd-contaminated soils. However, there is no detailed information about the genes involved in Cd2+ transport in mulberry. In this study, we identified 31 genes based on a genome-wide analysis of the Morus notabilis genome database. According to bioinformatics analysis, the four transporter gene families in Morus were distributed in each group of the phylogenetic tree, and the gene exon/intron structure and protein motif structure were similar among members of the same group. Subcellular localization software predicted that these transporters were mainly distributed in the plasma membrane and the vacuolar membrane, with members of the same group exhibiting similar subcellular locations. Most of the gene promoters contained abiotic stress-related cis-elements. The expression patterns of these genes in different organs were determined, and the patterns identified, allowing the categorization of these genes into four groups. Under low or high-Cd2+ concentrations (30 μM or 100 μM, respectively, the transcriptional regulation of the 31 genes in root, stem and leaf tissues of M. alba seedlings differed with regard to tissue and time of peak expression. Heterologous expression of MaNRAMP1, MaHMA3, MaZIP4, and MaIRT1 in Saccharomyces cerevisiae increased the sensitivity of yeast to Cd, suggested that these transporters had Cd transport activity. Subcellular localization experiment showed that the four transporters were localized to the plasma membrane of yeast and

  6. Over half of breakpoints in gene pairs involved in cancer-specific recurrent translocations are mapped to human chromosomal fragile sites

    Directory of Open Access Journals (Sweden)

    Pierce Levi CT

    2009-01-01

    Full Text Available Abstract Background Gene rearrangements such as chromosomal translocations have been shown to contribute to cancer development. Human chromosomal fragile sites are regions of the genome especially prone to breakage, and have been implicated in various chromosome abnormalities found in cancer. However, there has been no comprehensive and quantitative examination of the location of fragile sites in relation to all chromosomal aberrations. Results Using up-to-date databases containing all cancer-specific recurrent translocations, we have examined 444 unique pairs of genes involved in these translocations to determine the correlation of translocation breakpoints and fragile sites in the gene pairs. We found that over half (52% of translocation breakpoints in at least one gene of these gene pairs are mapped to fragile sites. Among these, we examined the DNA sequences within and flanking three randomly selected pairs of translocation-prone genes, and found that they exhibit characteristic features of fragile DNA, with frequent AT-rich flexibility islands and the potential of forming highly stable secondary structures. Conclusion Our study is the first to examine gene pairs involved in all recurrent chromosomal translocations observed in tumor cells, and to correlate the location of more than half of breakpoints to positions of known fragile sites. These results provide strong evidence to support a causative role for fragile sites in the generation of cancer-specific chromosomal rearrangements.

  7. Translocations affecting human immunoglobulin heavy chain locus

    Directory of Open Access Journals (Sweden)

    Sklyar I. V.

    2014-03-01

    Full Text Available Translocations involving human immunoglobulin heavy chain (IGH locus are implicated in different leukaemias and lymphomas, including multiple myeloma, mantle cell lymphoma, Burkitt’s lymphoma and diffuse large B cell lymphoma. We have analysed published data and identified eleven breakpoint cluster regions (bcr related to these cancers within the IgH locus. These ~1 kbp bcrs are specific for one or several types of blood cancer. Our findings could help devise PCR-based assays to detect cancer-related translocations, to identify the mechanisms of translocations and to help in the research of potential translocation partners of the immunoglobulin locus at different stages of B-cell differentiation.

  8. Different regions of the immunoglobulin heavy-chain locus are involved in chromosomal translocations in distinct pathogenic forms of Burkitt lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Neri, A.; Barriga, F.; Knowles, D.M.; Magrath, I.T.; Dalla-Favera, R.

    1988-04-01

    The authors show that endemic (eBL), sporadic (sBL), and acquired immunodeficiency syndrome-associated (AIDS-BL) forms of Burkitt lymphoma (BL) carrying t(8; 14) chromosomal translocations display different breakpoints within the immunoglobulin heavy-chain locus (IGH) on chromosome 14. In sBL (7 out of 11) and AIDS-BL (5 out of 6), the breakpoints occurred within or near the IGH ..mu.. switch (S/sub mu/) region on chromosome 14 and within the c-myc locus (MYC) on chromosome 8. In most eBL (13 out of 16) the breakpoints were mapped within or 5' to the IGH joining J/sub H/ region on chromosome 14 and outside the MYC locus on chromosome 8. Cloning and sequencing of the (8; 14) chromosomal junctions from two eBL cell lines and one eBL biopsy sample show that the recombination do not involve IGH-specific recombination signals on chromosome 14 or homologous sequences on chromosome 8, suggesting that these events are not likely to be mediated by the same mechanisms or enzymes as in IGH rearrangements. In general, these data have implications for the timing of occurrence of chromosomal translocations during B-cell differentiation in different BL types.

  9. Fungal genome and mating system transitions facilitated by chromosomal translocations involving intercentromeric recombination.

    Directory of Open Access Journals (Sweden)

    Sheng Sun

    2017-08-01

    rearrangements mediated by intercentromeric recombination have occurred during descent of the 2 lineages from their common ancestor. Taken together, our findings support a model in which the evolution of the bipolar mating system was initiated by an ectopic recombination event mediated by similar repetitive centromeric DNA elements shared between chromosomes. This translocation brought the P/R and HD loci onto the same chromosome, and further chromosomal rearrangements then resulted in the 2 MAT loci becoming physically linked and eventually fusing to form the single contiguous MAT locus that is now extant in the pathogenic Cryptococcus species.

  10. Childhood pre-B cell acute lymphoblastic leukemia with translocation t(1;19)(q21.1;p13.3) and two additional chromosomal aberrations involving chromosomes 1, 6, and 13: a case report.

    Science.gov (United States)

    Wafa, Abdulsamad; As'sad, Manar; Liehr, Thomas; Aljapawe, Abdulmunim; Al Achkar, Walid

    2017-04-07

    The translocation t(1;19)(q23;p13), which results in the TCF3-PBX1 chimeric gene, is one of the most frequent rearrangements observed in B cell acute lymphoblastic leukemia. It appears in both adult and pediatric patients with B cell acute lymphoblastic leukemia at an overall frequency of 3 to 5%. Most cases of pre-B cell acute lymphoblastic leukemia carrying the translocation t(1;19) have a typical immunophenotype with homogeneous expression of CD19, CD10, CD9, complete absence of CD34, and at least diminished CD20. Moreover, the translocation t(1;19) correlates with known clinical high risk factors, such as elevated white blood cell count, high serum lactate dehydrogenase levels, and central nervous system involvement; early reports indicated that patients with translocation t(1;19) had a poor outcome under standard treatment. We report the case of a 15-year-old Syrian boy with pre-B cell acute lymphoblastic leukemia with abnormal karyotype with a der(19)t(1;19)(q21.1;p13.3) and two yet unreported chromosomal aberrations: an interstitial deletion 6q12 to 6q26 and a der(13)t(1;13)(q21.1;p13). According to the literature, cases who are translocation t(1;19)-positive have a significantly higher incidence of central nervous system relapse than patients with acute lymphoblastic leukemia without the translocation. Of interest, central nervous system involvement was also seen in our patient. To the best of our knowledge, this is the first case of childhood pre-B cell acute lymphoblastic leukemia with an unbalanced translocation t(1;19) with two additional chromosomal aberrations, del(6)(q12q26) and t(1;13)(q21.3;p13), which seem to be recurrent and could influence clinical outcome. Also the present case confirms the impact of the translocation t(1;19) on central nervous system relapse, which should be studied for underlying mechanisms in future.

  11. A Brownian motor mechanism of translocation and strand separation by hepatitis C virus helicase.

    Science.gov (United States)

    Levin, Mikhail K; Gurjar, Madhura; Patel, Smita S

    2005-05-01

    Helicases translocate along their nucleic acid substrates using the energy of ATP hydrolysis and by changing conformations of their nucleic acid-binding sites. Our goal is to characterize the conformational changes of hepatitis C virus (HCV) helicase at different stages of ATPase cycle and to determine how they lead to translocation. We have reported that ATP binding reduces HCV helicase affinity for nucleic acid. Now we identify the stage of the ATPase cycle responsible for translocation and unwinding. We show that a rapid directional movement occurs upon helicase binding to DNA in the absence of ATP, resulting in opening of several base pairs. We propose that HCV helicase translocates as a Brownian motor with a simple two-stroke cycle. The directional movement step is fueled by single-stranded DNA binding energy while ATP binding allows for a brief period of random movement that prepares the helicase for the next cycle.

  12. The mechanisms involved at the cell level

    International Nuclear Information System (INIS)

    Leblanc, G.; Pourcher, Th.; Perron, B.; Guillain, F.; Quemeneur, E.; Fritsch, P.

    2003-01-01

    The mechanisms responsible at the cell level for inducing toxic reactions after contamination are as yet only imperfectly known. Work still needs to be done for both contaminants that have a biological role, such as iodine, and those that do not, such as cadmium, uranium and plutonium. In particular, these mechanisms bring into play, in biological membranes, carriers which are the physiological partners responsible for material exchange with the environment or inside the body. As they lack absolute selectivity, these carriers, which are involved in the assimilation and accumulation of vital mineral elements, also have the ability to transport toxic elements and isotopes. (authors)

  13. In planta mechanism of action of leptospermone: impact of its physico-chemical properties on uptake, translocation, and metabolism.

    Science.gov (United States)

    Owens, Daniel K; Nanayakkara, N P Dhammika; Dayan, Franck E

    2013-02-01

    Leptospermone is a natural β-triketone that specifically inhibits the enzyme p-hydrophyphenylpyruvate dioxygenase, the same molecular target site as that of the commercial herbicide mesotrione. The β-triketone-rich essential oil of Leptospermum scoparium has both preemergence and postemergence herbicidal activity, resulting in bleaching of treated plants and dramatic growth reduction. Radiolabeled leptospermone was synthesized to investigate the in planta mechanism of action of this natural herbicide. Approximately 50 % of the absorbed leptospermone was translocated to the foliage suggesting rapid acropetal movement of the molecule. On the other hand, very little leptospermone was translocated away from the point of application on the foliage, indicating poor phloem mobility. These observations are consistent with the physico-chemical properties of leptospermone, such as its experimentally measured logP and pK a values, and molecular mass, number of hydrogen donors and acceptors, and number of rotatable bonds. Consequently, leptospermone is taken up readily by roots and translocated to reach its molecular target site. This provides additional evidence that the anecdotal observation of allelopathic suppression of plant growth under β-triketone-producing species may be due to the release of these phytotoxins in soils.

  14. Mechanism study of sulfur fertilization mediating copper translocation and biotransformation in rice (Oryza sativa L.) plants.

    Science.gov (United States)

    Sun, Lijuan; Yang, Jianjun; Fang, Huaxiang; Xu, Chen; Peng, Cheng; Huang, Haomin; Lu, Lingli; Duan, Dechao; Zhang, Xiangzhi; Shi, Jiyan

    2017-07-01

    Metabolism of sulfur (S) is suggested to be an important factor for the homeostasis and detoxification of Cu in plants. We investigated the effects of S fertilizers (S 0 , Na 2 SO 4 ) on Cu translocation and biotransformation in rice plants by using multiple synchrotron-based techniques. Fertilization of S increased the biomass and yield of rice plants, as well as the translocation factor of Cu from root to shoot and shoot to grain, resulting in enhanced Cu in grain. Sulfur K-edge X-ray near edge structure (XANES) analysis showed that fertilization of S increased the concentration of glutathione in different rice tissues, especially in rice stem and leaf. Copper K-edge XANES results indicated that a much higher proportion of Cu (I) species existed in rice grain than husk and leaf, which was further confirmed by soft X-ray scanning transmission microscopy results. Sulfur increased the proportion of Cu (I) species in rice grain, husk and leaf, suggesting the inducing of Cu (II) reduction in rice tissues by S fertilization. These results suggested that fertilization of S in paddy soils increased the accumulation of Cu in rice grain, possibly due to the reduction of Cu (II) to Cu (I) by enhancing glutathione synthesis and increasing the translocation of Cu from shoot to grain. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. A leukemic double-hit follicular lymphoma associated with a complex variant translocation, t(8;14;18)(q24;q32;q21), involving BCL2, MYC, and IGH.

    Science.gov (United States)

    Minakata, Daisuke; Sato, Kazuya; Ikeda, Takashi; Toda, Yumiko; Ito, Shoko; Mashima, Kiyomi; Umino, Kento; Nakano, Hirofumi; Yamasaki, Ryoko; Morita, Kaoru; Kawasaki, Yasufumi; Sugimoto, Miyuki; Yamamoto, Chihiro; Ashizawa, Masahiro; Hatano, Kaoru; Oh, Iekuni; Fujiwara, Shin-Ichiro; Ohmine, Ken; Kawata, Hirotoshi; Muroi, Kazuo; Miura, Ikuo; Kanda, Yoshinobu

    2018-01-01

    Double-hit lymphoma (DHL) is defined as lymphoma with concurrent BCL2 and MYC translocations. While the most common histological subtype of DHL is diffuse large B-cell lymphoma, the present patient had leukemic follicular lymphoma (FL). A 52-year-old man was admitted to our hospital due to general fatigue and cervical and inguinal lymph node swelling. The patient was leukemic and the pathological diagnosis of the inguinal lymph node was FL grade 1. Chromosomal analysis revealed a complex karyotype including a rare three-way translocation t(8;14;18)(q24;q32;q21) involving the BCL2, MYC, and IGH genes. Based on a combination of fluorescence in situ hybridization (FISH), using BCL2, MYC and IGH, and spectral karyotyping (SKY), the karyotype was interpreted as being the result of a multistep mechanism in which the precursor B-cell gained t(14;18) in the bone marrow and acquired a translocation between der(14)t(14;18) and chromosome 8 in the germinal center, resulting in t(8;14;18). The pathological diagnosis was consistently FL, not only at presentation but even after a second relapse. The patient responded well to standard chemotherapies but relapsed after a short remission. This patient is a unique case of leukemic DH-FL with t(8;14;18) that remained in FL even at a second relapse. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Neurobiological mechanisms involved in sleep bruxism.

    Science.gov (United States)

    Lavigne, G J; Kato, T; Kolta, A; Sessle, B J

    2003-01-01

    Sleep bruxism (SB) is reported by 8% of the adult population and is mainly associated with rhythmic masticatory muscle activity (RMMA) characterized by repetitive jaw muscle contractions (3 bursts or more at a frequency of 1 Hz). The consequences of SB may include tooth destruction, jaw pain, headaches, or the limitation of mandibular movement, as well as tooth-grinding sounds that disrupt the sleep of bed partners. SB is probably an extreme manifestation of a masticatory muscle activity occurring during the sleep of most normal subjects, since RMMA is observed in 60% of normal sleepers in the absence of grinding sounds. The pathophysiology of SB is becoming clearer, and there is an abundance of evidence outlining the neurophysiology and neurochemistry of rhythmic jaw movements (RJM) in relation to chewing, swallowing, and breathing. The sleep literature provides much evidence describing the mechanisms involved in the reduction of muscle tone, from sleep onset to the atonia that characterizes rapid eye movement (REM) sleep. Several brainstem structures (e.g., reticular pontis oralis, pontis caudalis, parvocellularis) and neurochemicals (e.g., serotonin, dopamine, gamma aminobutyric acid [GABA], noradrenaline) are involved in both the genesis of RJM and the modulation of muscle tone during sleep. It remains unknown why a high percentage of normal subjects present RMMA during sleep and why this activity is three times more frequent and higher in amplitude in SB patients. It is also unclear why RMMA during sleep is characterized by co-activation of both jaw-opening and jaw-closing muscles instead of the alternating jaw-opening and jaw-closing muscle activity pattern typical of chewing. The final section of this review proposes that RMMA during sleep has a role in lubricating the upper alimentary tract and increasing airway patency. The review concludes with an outline of questions for future research.

  17. Two-way communication between SecY and SecA suggests a Brownian ratchet mechanism for protein translocation.

    Science.gov (United States)

    Allen, William John; Corey, Robin Adam; Oatley, Peter; Sessions, Richard Barry; Baldwin, Steve A; Radford, Sheena E; Tuma, Roman; Collinson, Ian

    2016-05-16

    The essential process of protein secretion is achieved by the ubiquitous Sec machinery. In prokaryotes, the drive for translocation comes from ATP hydrolysis by the cytosolic motor-protein SecA, in concert with the proton motive force (PMF). However, the mechanism through which ATP hydrolysis by SecA is coupled to directional movement through SecYEG is unclear. Here, we combine all-atom molecular dynamics (MD) simulations with single molecule FRET and biochemical assays. We show that ATP binding by SecA causes opening of the SecY-channel at long range, while substrates at the SecY-channel entrance feed back to regulate nucleotide exchange by SecA. This two-way communication suggests a new, unifying 'Brownian ratchet' mechanism, whereby ATP binding and hydrolysis bias the direction of polypeptide diffusion. The model represents a solution to the problem of transporting inherently variable substrates such as polypeptides, and may underlie mechanisms of other motors that translocate proteins and nucleic acids.

  18. Translocation of cell-penetrating peptides into Candida fungal pathogens.

    Science.gov (United States)

    Gong, Zifan; Karlsson, Amy J

    2017-09-01

    Cell-penetrating peptides (CPPs) are small peptides capable of crossing cellular membranes while carrying molecular cargo. Although they have been widely studied for their ability to translocate nucleic acids, small molecules, and proteins into mammalian cells, studies of their interaction with fungal cells are limited. In this work, we evaluated the translocation of eleven fluorescently labeled peptides into the important human fungal pathogens Candida albicans and C. glabrata and explored the mechanisms of translocation. Seven of these peptides (cecropin B, penetratin, pVEC, MAP, SynB, (KFF) 3 K, and MPG) exhibited substantial translocation (>80% of cells) into both species in a concentration-dependent manner, and an additional peptide (TP-10) exhibiting strong translocation into only C. glabrata. Vacuoles were involved in translocation and intracellular trafficking of the peptides in the fungal cells and, for some peptides, escape from the vacuoles and localization in the cytosol were correlated to toxicity toward the fungal cells. Endocytosis was involved in the translocation of cecropin B, MAP, SynB, MPG, (KFF) 3 K, and TP-10, and cecropin B, penetratin, pVEC, and MAP caused membrane permeabilization during translocation. These results indicate the involvement of multiple translocation mechanisms for some CPPs. Although high levels of translocation were typically associated with toxicity of the peptides toward the fungal cells, SynB was translocated efficiently into Candida cells at concentrations that led to minimal toxicity. Our work highlights the potential of CPPs in delivering antifungal molecules and other bioactive cargo to Candida pathogens. © 2017 The Protein Society.

  19. Cell Biological Mechanisms of Activity-Dependent Synapse to Nucleus Translocation of CRTC1 in Neurons

    Directory of Open Access Journals (Sweden)

    Toh Hean eCh'ng

    2015-09-01

    Full Text Available Previous studies have revealed a critical role for CREB-regulated transcriptional coactivator (CRTC1 in regulating neuronal gene expression during learning and memory. CRTC1 localizes to synapses but undergoes activity-dependent nuclear translocation to regulate the transcription of CREB target genes. Here we investigate the long-distance retrograde transport of CRTC1 in hippocampal neurons. We show that local elevations in calcium, triggered by activation of synaptic glutamate receptors and L-type voltage-gated calcium channels, initiate active, dynein-mediated retrograde transport of CRTC1 along microtubules. We identify a nuclear localization signal within CRTC1, and characterize three conserved serine residues whose dephosphorylation is required for nuclear import. Domain analysis reveals that the amino-terminal third of CRTC1 contains all of the signals required for regulated nucleocytoplasmic trafficking. We fuse this region to Dendra2 to generate a reporter construct and perform live-cell imaging coupled with local uncaging of glutamate and photoconversion to characterize the dynamics of stimulus-induced retrograde transport and nuclear accumulation.

  20. A rare balanced nonrobertsonian translocation involving acrocentric chromosomes: Chromosome abnormality of t(13;15(p11.2;q22.1

    Directory of Open Access Journals (Sweden)

    Dalvi Rupa

    2016-01-01

    Full Text Available BACKGROUND: Balanced non-robertsonian translocation (RT, involving acrocentric chromosomes, is a rare event and only a few cases are reported. Most of the RTs are balanced involving acrocentric chromosomes with the breakpoints (q10;q10. MATERIALS AND METHODS: Chromosome analysis was performed as per standard procedure – Giemsa-trypsin banding with 500 band resolution was analyzed for chromosome identification. RESULTS: In the present study, we report a rare balanced non-RTs involving chromosomes 13 and 15 with cytogenetic finding of 46, XX, t(13;15(p11.2;q22.1. CONCLUSION: To the best of our knowledge, this is the first such report of an unusual non-RT of t(13:15 with (p11.2;q22.1 break points.

  1. Glucan: mechanisms involved in its radioprotective effect

    International Nuclear Information System (INIS)

    Patchen, M.L.; D'Alesandro, M.M.; Brook, I.; Blakely, W.F.; MacVittie, T.J.

    1987-01-01

    It has generally been accepted that most biologically derived agents that are radioprotective in the hemopoietic-syndrome dose range (eg, endotoxin, Bacillus Calmette Guerin, Corynebacterium parvum, etc) exert their beneficial properties by enhancing hemopoietic recovery and hence, by regenerating the host's ability to resist life-threatening opportunistic infections. However, using glucan as a hemopoietic stimulant/radioprotectant, we have demonstrated that host resistance to opportunistic infection is enhanced in these mice even prior to the detection of significant hemopoietic regeneration. This early enhanced resistance to microbial invasion in glucan-treated irradiated mice could be correlated with enhanced and/or prolonged macrophage (but not granulocyte) function. These results suggest that early after irradiation glucan may mediate its radioprotection by enhancing resistance to microbial invasion via mechanisms not necessarily predicated on hemopoietic recovery. In addition, preliminary evidence suggests that glucan can also function as an effective free-radical scavenger. Because macrophages have been shown to selectively phagocytize and sequester glucan, the possibility that these specific cells may be protected by virtue of glucan's scavenging ability is also suggested

  2. The complex translocation (9;14;14) involving IGH and CEBPE genes suggests a new subgroup in B-lineage acute lymphoblastic leukemia.

    Science.gov (United States)

    Zerrouki, Rachid; Benhassine, Traki; Bensaada, Mustapha; Lauzon, Patricia; Trabzi, Anissa

    2016-03-01

    Many subtypes of acute lymphoblastic leukemia (ALL) are associated with specific chromosomal rearrangements. The complex translocation t(9;14;14), a variant of the translocation (14;14)(q11;q32), is a rare but recurrent chromosomal abnormality involving the immunoglobulin heavy-chain (IGH) and CCAAT enhancer-binding protein (CEBPE) genes in B-lineage ALL (B-ALL) and may represent a new B-ALL subgroup. We report here the case of a 5-year-old girl with B-ALL, positive for CD19, CD38 and HLA-DR. A direct technique and G-banding were used for chromosomal analysis and fluorescentin situ hybridization (FISH) with BAC probes was used to investigate a possible rearrangement of the IGH andCEBPE genes. The karyotype exhibit the chromosomal aberration 46,XX,del(9)(p21),t(14;14)(q11;q32). FISH with dual-color break-apartIGH-specific and CEPBE-specific bacterial artificial chromosome (BAC) probes showed a complex t(9;14;14) associated with a deletion of cyclin-dependent kinase inhibitor 2A (CDKN2A) and paired box gene 5 (PAX5) at 9p21-13 and duplication of the fusion gene IGH-CEBPE.

  3. The complex translocation (9;14;14 involving IGH and CEBPE genes suggests a new subgroup in B-lineage acute lymphoblastic leukemia

    Directory of Open Access Journals (Sweden)

    Rachid Zerrouki

    2016-03-01

    Full Text Available Abstract Many subtypes of acute lymphoblastic leukemia (ALL are associated with specific chromosomal rearrangements. The complex translocation t(9;14;14, a variant of the translocation (14;14(q11;q32, is a rare but recurrent chromosomal abnormality involving the immunoglobulin heavy-chain (IGH and CCAAT enhancer-binding protein (CEBPE genes in B-lineage ALL (B-ALL and may represent a new B-ALL subgroup. We report here the case of a 5-year-old girl with B-ALL, positive for CD19, CD38 and HLA-DR. A direct technique and G-banding were used for chromosomal analysis and fluorescentin situ hybridization (FISH with BAC probes was used to investigate a possible rearrangement of the IGH andCEBPE genes. The karyotype exhibit the chromosomal aberration 46,XX,del(9(p21,t(14;14(q11;q32. FISH with dual-color break-apartIGH-specific and CEPBE-specific bacterial artificial chromosome (BAC probes showed a complex t(9;14;14 associated with a deletion of cyclin-dependent kinase inhibitor 2A (CDKN2A and paired box gene 5 (PAX5 at 9p21-13 and duplication of the fusion gene IGH-CEBPE.

  4. New Metacentric Populations and Phylogenetic Hypotheses Involving Whole-Arm Reciprocal Translocation in Mus musculus domesticus from Sicily, Southern Italy.

    Science.gov (United States)

    Castiglia, Riccardo; Capanna, Ernesto; Bezerra, Alexandra M R; Bizzoco, Domenico; Zambigli, Emanuela; Solano, Emanuela

    2015-01-01

    The house mouse Mus musculus domesticus is characterized by more than 100 metacentric populations, due to the occurrence of Robertsonian (Rb) fusions, together with the standard all-telocentric karyotype (2n = 40). We examined G-banded karyotypes of 18 mice from 10 localities in Sicily and describe 3 new metacentric populations: 'Ragusa Ibla' (IRAG), 2n = 33-36, Rb(2.4), Rb(5.6), Rb(9.16), Rb(13.17); 'Piana degli Albanesi' (IPIA), 2n = 23, Rb(1.18), Rb(2.15), Rb(3.5), Rb(4.12), Rb(6.11), Rb(7.8), Rb(9.16), Rb(10.14), Rb(13.17); 'Trapani' (ITRA), 2n = 22, Rb(1.18), Rb(2.15), Rb(3.7), Rb(4.12), Rb(5.9), Rb(6.11), Rb(8.16), Rb(10.14), Rb(13.17). Three mice belonged to the previously reported 'Castelbuono' race (ICAS), 2n = 24, which is very similar to the nearby 'Palermo' (IPAL) race, 2n = 26. Three Rb fusions not yet observed in wild mouse populations were identified: Rb(3.5), Rb(3.7) and Rb(5.9). Rb fusions shared among 4 races (IPIA, IRAG, ICAS, and IPAL) allowed us to describe their potential phylogenetic relationships. We obtained 2 alternative phylogenetic trees. The differences between them are mainly due to various modes of formation of IPIA and ITRA. In the first hypothesis, the specific Rb fusions occurred independently. In the second, those of IRAG originated from those of IPIA via whole-arm reciprocal translocations. © 2015 S. Karger AG, Basel.

  5. A case of reversible posterior leukoencephalopathy syndrome which developed during chemoradiotherapy for head and neck cancer. The involvement of bacterial translocation was considered

    International Nuclear Information System (INIS)

    Tachibana, Shinya; Terao, Hajime; Sanbe, Takeyuki; Katsuno, Masahiro; Takemura, Hideki

    2007-01-01

    Combination therapy such as chemotherapy and radiotherapy is often chosen, depending on the case, for head and neck cancer in view of the preservation of potency. However, on the other hand, it is necessary to note the onset of therapeutic side effects. The patient was a 35-year-old woman. During chemoradiotherapy for mesopharyngeal carcinoma, she suddenly developed shock and multiple organ failure, requiring intensive treatment. She also developed reversible central nerve symptoms during the course. The involvement of bacterial translocation was thought to be the cause of shock, and the reversible central nerve symptoms were considered to be a pathological condition, known as reversible posterior leukoencephalopathy syndrome. We discuss these conditions on the basis of the clinical features, and the process that led to diagnosis in this case. (author)

  6. A paternally transmitted complex chromosomal rearrangement (CCR) involving chromosomes 2, 6, and 18 includes eight breakpoints and five insertional translocations (ITs) through three generations.

    Science.gov (United States)

    Gruchy, Nicolas; Barreau, Morgane; Kessler, Ketty; Gourdier, Dominique; Leporrier, Nathalie

    2010-01-01

    Complex chromosomal rearrangements (CCRs) are uncommon and mainly occur de novo. We report here on a familial CCR involving chromosomes 2, 6, and 18. The propositus is a boy first referred because of growth delays, hypotonia, and facial anomalies, suggestive of deletion 18q syndrome. However, a cytogenetic family study disclosed a balanced CCR in three generations, which was detailed by FISH using BAC clones, and consisted of eight breakpoints with five insertional translocations (ITs). The propositus had a cryptic 18q deletion and a 6p duplication. Paternal transmission of this CCR was observed through three generations without meiotic recombination. Our investigation allowed us to provide porosities counseling and management of prenatal diagnosis for propositus cousin who carries this particular CCR.

  7. Mechanism involved in enhancement of osteoblast differentiation by hyaluronic acid

    International Nuclear Information System (INIS)

    Kawano, Michinao; Ariyoshi, Wataru; Iwanaga, Kenjiro; Okinaga, Toshinori; Habu, Manabu; Yoshioka, Izumi; Tominaga, Kazuhiro; Nishihara, Tatsuji

    2011-01-01

    Research highlights: → In this study was to investigate the effects of HA on osteoblast differentiation induced by BMP-2. → MG63 cells were incubated with BMP-2 and HA for various time periods. → Phosphorylation of Smad 1/5/8, p38, and ERK proteins was determined by western blot analysis. To elucidate the nuclear translocation of phosphorylated Smad 1/5/8, stimulated cells were subjected to immunofluorescence microscopy. → HA enhanced BMP-2 induces osteoblastic differentiation in MG63 cells via down-regulation of BMP-2 antagonists and ERK phosphorylation. -- Abstract: Objectives: Bone morphogenetic protein-2 (BMP-2) is expected to be utilized to fill bone defects and promote healing of fractures. However, it is unable to generate an adequate clinical response for use in bone regeneration. Recently, it was reported that glycosaminoglycans, including heparin, heparan sulfate, keratan sulfate, dermatan sulfate, chondroitin-4-sulfate, chondroitin-6-sulfate, and hyaluronic acid (HA), regulate BMP-2 activity, though the mechanism by which HA regulates osteogenic activities has not been fully elucidated. The aim of this study was to investigate the effects of HA on osteoblast differentiation induced by BMP-2. Materials and methods: Monolayer cultures of osteoblastic lineage MG63 cells were incubated with BMP-2 and HA for various time periods. To determine osteoblastic differentiation, alkaline phosphatase (ALP) activity in the cell lysates was quantified. Phosphorylation of Smad 1/5/8, p38, and ERK proteins was determined by Western blot analysis. To elucidate the nuclear translocation of phosphorylated Smad 1/5/8, stimulated cells were subjected to immunofluorescence microscopy. To further elucidate the role of HA in enhancement of BMP-2-induced Smad signaling, mRNA expressions of the BMP-2 receptor antagonists noggin and follistatin were detected using real-time RT-PCR. Results: BMP-2-induced ALP activation, Smad 1/5/8 phosphorylation, and nuclear translocation

  8. Mechanism involved in enhancement of osteoblast differentiation by hyaluronic acid

    Energy Technology Data Exchange (ETDEWEB)

    Kawano, Michinao [Division of Maxillofacial Diagnostic and Surgical Science, Department of Oral and Maxillofacial Surgery, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Ariyoshi, Wataru [Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Iwanaga, Kenjiro [Division of Maxillofacial Diagnostic and Surgical Science, Department of Oral and Maxillofacial Surgery, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Okinaga, Toshinori [Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Habu, Manabu [Division of Maxillofacial Diagnostic and Surgical Science, Department of Oral and Maxillofacial Surgery, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Yoshioka, Izumi [Division of Oral and Maxillofacial Surgery, Department of Medicine of Sensory and Motor Organs, University of Miyazaki, Kiyotake, Miyazaki 889-1692 (Japan); Tominaga, Kazuhiro [Division of Maxillofacial Diagnostic and Surgical Science, Department of Oral and Maxillofacial Surgery, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Oral Bioresearch Center, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Nishihara, Tatsuji, E-mail: tatsujin@kyu-dent.ac.jp [Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental College, Kitakyushu 803-8580 (Japan); Oral Bioresearch Center, Kyushu Dental College, Kitakyushu 803-8580 (Japan)

    2011-02-25

    Research highlights: {yields} In this study was to investigate the effects of HA on osteoblast differentiation induced by BMP-2. {yields} MG63 cells were incubated with BMP-2 and HA for various time periods. {yields} Phosphorylation of Smad 1/5/8, p38, and ERK proteins was determined by western blot analysis. To elucidate the nuclear translocation of phosphorylated Smad 1/5/8, stimulated cells were subjected to immunofluorescence microscopy. {yields} HA enhanced BMP-2 induces osteoblastic differentiation in MG63 cells via down-regulation of BMP-2 antagonists and ERK phosphorylation. -- Abstract: Objectives: Bone morphogenetic protein-2 (BMP-2) is expected to be utilized to fill bone defects and promote healing of fractures. However, it is unable to generate an adequate clinical response for use in bone regeneration. Recently, it was reported that glycosaminoglycans, including heparin, heparan sulfate, keratan sulfate, dermatan sulfate, chondroitin-4-sulfate, chondroitin-6-sulfate, and hyaluronic acid (HA), regulate BMP-2 activity, though the mechanism by which HA regulates osteogenic activities has not been fully elucidated. The aim of this study was to investigate the effects of HA on osteoblast differentiation induced by BMP-2. Materials and methods: Monolayer cultures of osteoblastic lineage MG63 cells were incubated with BMP-2 and HA for various time periods. To determine osteoblastic differentiation, alkaline phosphatase (ALP) activity in the cell lysates was quantified. Phosphorylation of Smad 1/5/8, p38, and ERK proteins was determined by Western blot analysis. To elucidate the nuclear translocation of phosphorylated Smad 1/5/8, stimulated cells were subjected to immunofluorescence microscopy. To further elucidate the role of HA in enhancement of BMP-2-induced Smad signaling, mRNA expressions of the BMP-2 receptor antagonists noggin and follistatin were detected using real-time RT-PCR. Results: BMP-2-induced ALP activation, Smad 1/5/8 phosphorylation, and

  9. Hexavalent chromium-induced apoptosis of granulosa cells involves selective sub-cellular translocation of Bcl-2 members, ERK1/2 and p53

    International Nuclear Information System (INIS)

    Banu, Sakhila K.; Stanley, Jone A.; Lee, JeHoon; Stephen, Sam D.; Arosh, Joe A.; Hoyer, Patricia B.; Burghardt, Robert C.

    2011-01-01

    Hexavalent chromium (CrVI) has been widely used in industries throughout the world. Increased usage of CrVI and atmospheric emission of CrVI from catalytic converters of automobiles, and its improper disposal causes various health hazards including female infertility. Recently we have reported that lactational exposure to CrVI induced a delay/arrest in follicular development at the secondary follicular stage. In order to investigate the underlying mechanism, primary cultures of rat granulosa cells were treated with 10 μM potassium dichromate (CrVI) for 12 and 24 h, with or without vitamin C pre-treatment for 24 h. The effects of CrVI on intrinsic apoptotic pathway(s) were investigated. Our data indicated that CrVI: (i) induced DNA fragmentation and increased apoptosis, (ii) increased cytochrome c release from the mitochondria to cytosol, (iii) downregulated anti-apoptotic Bcl-2, Bcl-XL, HSP70 and HSP90; upregulated pro-apoptotic BAX and BAD, (iv) altered translocation of Bcl-2, Bcl-XL, BAX, BAD, HSP70 and HSP90 to the mitochondria, (v) upregulated p-ERK and p-JNK, and selectively translocated p-ERK to the mitochondria and nucleus, (vi) activated caspase-3 and PARP, and (vii) increased phosphorylation of p53 at ser-6, ser-9, ser-15, ser-20, ser-37, ser-46 and ser-392, increased p53 transcriptional activation, and downregulated MDM-2. Vitamin C pre-treatment mitigated CrVI effects on apoptosis and related pathways. Our study, for the first time provides a clear insight into the effect of CrVI on multiple pathways that lead to apoptosis of granulosa cells which could be mitigated by vitamin C.

  10. Simulations of polymer translocation

    NARCIS (Netherlands)

    Vocks, H.

    2008-01-01

    Transport of molecules across membranes is an essential mechanism for life processes. These molecules are often long, and the pores in the membranes are too narrow for the molecules to pass through as a single unit. In such circumstances, the molecules have to squeeze --- i.e., translocate ---

  11. Single-molecule tracking of small GTPase Rac1 uncovers spatial regulation of membrane translocation and mechanism for polarized signaling

    Science.gov (United States)

    Das, Sulagna; Yin, Taofei; Yang, Qingfen; Zhang, Jingqiao; Wu, Yi I.; Yu, Ji

    2015-01-01

    Polarized Rac1 signaling is a hallmark of many cellular functions, including cell adhesion, motility, and cell division. The two steps of Rac1 activation are its translocation to the plasma membrane and the exchange of nucleotide from GDP to GTP. It is, however, unclear whether these two processes are regulated independent of each other and what their respective roles are in polarization of Rac1 signaling. We designed a single-particle tracking (SPT) method to quantitatively analyze the kinetics of Rac1 membrane translocation in living cells. We found that the rate of Rac1 translocation was significantly elevated in protrusions during cell spreading on collagen. Furthermore, combining FRET sensor imaging with SPT measurements in the same cell, the recruitment of Rac1 was found to be polarized to an extent similar to that of the nucleotide exchange process. Statistical analysis of single-molecule trajectories and optogenetic manipulation of membrane lipids revealed that Rac1 membrane translocation precedes nucleotide exchange, and is governed primarily by interactions with phospholipids, particularly PI(3,4,5)P3, instead of protein factors. Overall, the study highlights the significance of membrane translocation in spatial Rac1 signaling, which is in addition to the traditional view focusing primarily on GEF distribution and exchange reaction. PMID:25561548

  12. Two alternative binding mechanisms connect the protein translocation Sec71-Sec72 complex with heat shock proteins

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, Arati; Mandon, Elisabet C.; Gilmore, Reid; Rapoport, Tom A. (UMASS, MED); (Harvard-Med)

    2017-03-12

    The biosynthesis of many eukaryotic proteins requires accurate targeting to and translocation across the endoplasmic reticulum membrane. Post-translational protein translocation in yeast requires both the Sec61 translocation channel, and a complex of four additional proteins: Sec63, Sec62, Sec71, and Sec72. The structure and function of these proteins are largely unknown. This pathway also requires the cytosolic Hsp70 protein Ssa1, but whether Ssa1 associates with the translocation machinery to target protein substrates to the membrane is unclear. Here, we use a combined structural and biochemical approach to explore the role of Sec71-Sec72 subcomplex in post-translational protein translocation. To this end, we report a crystal structure of the Sec71-Sec72 complex, which revealed that Sec72 contains a tetratricopeptide repeat (TPR) domain that is anchored to the endoplasmic reticulum membrane by Sec71. We also determined the crystal structure of this TPR domain with a C-terminal peptide derived from Ssa1, which suggests how Sec72 interacts with full-length Ssa1. Surprisingly, Ssb1, a cytoplasmic Hsp70 that binds ribosome-associated nascent polypeptide chains, also binds to the TPR domain of Sec72, even though it lacks the TPR-binding C-terminal residues of Ssa1. We demonstrate that Ssb1 binds through its ATPase domain to the TPR domain, an interaction that leads to inhibition of nucleotide exchange. Taken together, our results suggest that translocation substrates can be recruited to the Sec71-Sec72 complex either post-translationally through Ssa1 or co-translationally through Ssb1.

  13. MODY-like diabetes associated with an apparently balanced translocation: possible involvement of MPP7 gene and cell polarity in the pathogenesis of diabetes

    Directory of Open Access Journals (Sweden)

    Bartov Guy

    2009-02-01

    Full Text Available Abstract Background Characterization of disease-associated balanced translocations has led to the discovery of genes responsible for many disorders, including syndromes that include various forms of diabetes mellitus. We studied a man with unexplained maturity onset diabetes of the young (MODY-like diabetes and an apparently balanced translocation [46,XY,t(7;10(q22;p12] and sought to identify a novel diabetes locus by characterizing the translocation breakpoints. Results Mutations in coding exons and splice sites of known MODY genes were first ruled out by PCR amplification and DNA sequencing. Fluorescent in situ hybridization (FISH studies demonstrated that the translocation did not disrupt two known diabetes-related genes on 10p12. The translocation breakpoints were further mapped to high resolution using FISH and somatic cell hybrids and the junctions PCR-amplified and sequenced. The translocation did not disrupt any annotated transcription unit. However, the chromosome 10 breakpoint was 220 kilobases 5' to the Membrane Protein, Palmitoylated 7 (MPP7 gene, which encodes a protein required for proper cell polarity. This biological function is shared by HNF4A, a known MODY gene. Databases show MPP7 is highly expressed in mouse pancreas and is expressed in human islets. The translocation did not appear to alter lymphoblastoid expression of MPP7 or other genes near the breakpoints. Conclusion The balanced translocation and MODY-like diabetes in the proband could be coincidental. Alternatively, the translocation may cause islet cell dysfunction by altering MPP7 expression in a subtle or tissue-specific fashion. The potential roles of MPP7 mutations in diabetes and perturbed islet cell polarity in insulin secretion warrant further study.

  14. Complex three-way translocation involving MLL, ELL, RREB1, and CMAHP genes in an infant with acute myeloid leukemia and t(6;19;11)(p22.2;p13.1;q23.3)

    DEFF Research Database (Denmark)

    Tuborgh, A; Meyer, C; Marschalek, R

    2013-01-01

    until progression to acute myeloid leukemia, AML-M5. The leukemic cells harbored a novel apparent 3-way translocation t(6;19;11)(p22.2;p13.1;q23.3). We utilized advanced molecular cytogenetic methods including 24-color karyotyping, high-resolution array comparative genomic hybridization (aCGH) and DNA...... in the initial stages of disease before clear morphological signs of bone marrow involvement. The patient responded well to therapy and remains in remission>6 years from diagnosis. This apparent 3-way translocation is remarkable because of its rarity and presentation with myeloid sarcoma, and may, as more cases...

  15. Altered DNA methylation: a secondary mechanism involved in carcinogenesis.

    Science.gov (United States)

    Goodman, Jay I; Watson, Rebecca E

    2002-01-01

    This review focuses on the role that DNA methylation plays in the regulation of normal and aberrant gene expression and on how, in a hypothesis-driven fashion, altered DNA methylation may be viewed as a secondary mechanism involved in carcinogenesis. Research aimed at discerning the mechanisms by which chemicals can transform normal cells into frank carcinomas has both theoretical and practical implications. Through an increased understanding of the mechanisms by which chemicals affect the carcinogenic process, we learn more about basic biology while, at the same time, providing the type of information required to make more rational safety assessment decisions concerning their actual potential to cause cancer under particular conditions of exposure. One key question is: does the mechanism of action of the chemical in question involve a secondary mechanism and, if so, what dose may be below its threshold?

  16. The ribosome as a molecular machine: the mechanism of tRNA-mRNA movement in translocation.

    Science.gov (United States)

    Rodnina, Marina V; Wintermeyer, Wolfgang

    2011-04-01

    Translocation of tRNA and mRNA through the ribosome is one of the most dynamic events during protein synthesis. In the cell, translocation is catalysed by EF-G (elongation factor G) and driven by GTP hydrolysis. Major unresolved questions are: how the movement is induced and what the moving parts of the ribosome are. Recent progress in time-resolved cryoelectron microscopy revealed trajectories of tRNA movement through the ribosome. Driven by thermal fluctuations, the ribosome spontaneously samples a large number of conformational states. The spontaneous movement of tRNAs through the ribosome is loosely coupled to the motions within the ribosome. EF-G stabilizes conformational states prone to translocation and promotes a conformational rearrangement of the ribosome (unlocking) that accelerates the rate-limiting step of translocation: the movement of the tRNA anticodons on the small ribosomal subunit. EF-G acts as a Brownian ratchet providing directional bias for movement at the cost of GTP hydrolysis.

  17. Protein Machineries Involved in the Attachment of Heme to Cytochrome c: Protein Structures and Molecular Mechanisms

    Directory of Open Access Journals (Sweden)

    Carlo Travaglini-Allocatelli

    2013-01-01

    Full Text Available Cytochromes c (Cyt c are ubiquitous heme-containing proteins, mainly involved in electron transfer processes, whose structure and functions have been and still are intensely studied. Surprisingly, our understanding of the molecular mechanism whereby the heme group is covalently attached to the apoprotein (apoCyt in the cell is still largely unknown. This posttranslational process, known as Cyt c biogenesis or Cyt c maturation, ensures the stereospecific formation of the thioether bonds between the heme vinyl groups and the cysteine thiols of the apoCyt heme binding motif. To accomplish this task, prokaryotic and eukaryotic cells have evolved distinctive protein machineries composed of different proteins. In this review, the structural and functional properties of the main maturation apparatuses found in gram-negative and gram-positive bacteria and in the mitochondria of eukaryotic cells will be presented, dissecting the Cyt c maturation process into three functional steps: (i heme translocation and delivery, (ii apoCyt thioreductive pathway, and (iii apoCyt chaperoning and heme ligation. Moreover, current hypotheses and open questions about the molecular mechanisms of each of the three steps will be discussed, with special attention to System I, the maturation apparatus found in gram-negative bacteria.

  18. Regional assignment of seven genes on chromosome 1 of man by use of man-Chinese hamster somatic cell hybrids. I. Results obtained after hybridization of human cells carrying reciprocal translocations involving chromosome 1.

    Science.gov (United States)

    Jongsma, A P; Burgerhout, W G

    1977-01-01

    Regional localization studies of genes coding for human PGD, PPH1, PGM1, UGPP, GuK1, Pep-C, and FH, which have been assigned to chromosome 1, were performed with man-Chinese hamster somatic cell hybrids, Informative hybrids that retained fragments of the human chromosome 1 were produced by fusion of hamster cells with human cells carrying reciprocal translocations involving chromosome 1. Analysis of the hybrids that retained one of the translocation chromosomes or de novo rearrangements involving the human 1 revealed the following gene positions: PGD and PPH1 in 1pter leads to 1p32, PGM1 in 1p32 leads to 1p22, UGPP and GuK1 in 1q21 leads to 1q42, FH in 1qter leads to 1q42, and Pep-C probably in 1q42.

  19. Arsenite stimulated glucose transport in 3T3-L1 adipocytes involves both Glut4 translocation and p38 MAPK activity

    NARCIS (Netherlands)

    Bazuine, Merlijn; Ouwens, D. Margriet; Gomes de Mesquita, Daan S.; Maassen, J. Antonie

    2003-01-01

    The protein-modifying agent arsenite stimulates glucose uptake in 3T3-L1 adipocytes. In the current study we have analysed the signalling pathways that contribute to this response. By subcellular fractionation we observed that arsenite, like insulin, induces translocation of the GLUT1 and GLUT4

  20. Mechanisms involved in regulation of osteoclastic differentiation by mechanical stress-loaded osteoblasts

    International Nuclear Information System (INIS)

    Kaneuji, Takeshi; Ariyoshi, Wataru; Okinaga, Toshinori; Toshinaga, Akihiro; Takahashi, Tetsu; Nishihara, Tatsuji

    2011-01-01

    Highlights: → Effect of compressive force on osteoblasts were examined. → Compressive force induced OPG expression and suppressed osteoclastogenesis. → This enhancement of OPG is dependent on Wnt/Ca2+ signal pathway. -- Abstract: Mechanical stress is known to be important for regulation of bone turnover, though the detailed mechanisms are not fully understood. In the present study, we examined the effect of mechanical stress on osteoblasts using a novel compression model. Mouse osteoblastic MC3T3-E1 cells were embedded in three-dimensional (3D) gels and cultured with continuous compressive force (0-10.0 g/cm 2 ) for 48 h, and the conditioned medium were collected. RAW264.7 cells were then incubated with the conditioned medium for various times in the presence of receptor activator of nuclear factor-κB ligand (RANKL). Conditioned medium was found to inhibit the differentiation of RAW264.7 cells into osteoclasts induced by RANKL via down-regulation of the expression of tumor necrosis factor receptor-associated factor 6 (TRAF6), phosphorylation of IκBα, and nuclear translocation of p50 and p65. Interestingly, the conditioned medium also had a high level of binding activity to RANKL and blocked the binding of RANK to RANKL. Furthermore, the binding activity of conditioned medium to RANKL was reduced when the 3D gel was supplemented with KN-93, an inhibitor of non-canonical Wnt/Ca 2+ pathway. In addition, expression level of osteoprotegerin (OPG) mRNA was increased in time- and force-dependent manners, and remarkably suppressed by KN-93. These results indicate that osteoblastic cells subjected to mechanical stress produce OPG, which binds to RANKL. Furthermore, this binding activity strongly inhibited osteoclastogenesis through suppression of TRAF6 and the nuclear factor-kappa B (NF-κB) signaling pathway, suggesting that enhancement of OPG expression induced by mechanical stress is dependent on non-canonical Wnt/Ca 2+ pathway.

  1. Mechanisms Involved in Exercise-Induced Cardioprotection: A Systematic Review

    Science.gov (United States)

    Borges, Juliana Pereira; Lessa, Marcos Adriano

    2015-01-01

    Background Acute myocardial infarction is the leading cause of morbidity and mortality worldwide. Furthermore, research has shown that exercise, in addition to reducing cardiovascular risk factors, can also protect the heart against injury due to ischemia and reperfusion through a direct effect on the myocardium. However, the specific mechanism involved in exerciseinduced cardiac preconditioning is still under debate. Objective To perform a systematic review of the studies that have addressed the mechanisms by which aerobic exercise promotes direct cardioprotection against ischemia and reperfusion injury. Methods A search was conducted using MEDLINE, Literatura Latino-Americana e do Caribe de Informação em Ciências da Saúde, and Scientific Electronic Library Online databases. Data were extracted in a standardized manner by two independent researchers, who were responsible for assessing the methodological quality of the studies. Results The search retrieved 78 studies; after evaluating the abstracts, 30 studies were excluded. The manuscripts of the remaining 48 studies were completely read and, of these, 20 were excluded. Finally, 28 studies were included in this systematic review. Conclusion On the basis of the selected studies, the following are potentially involved in the cardioprotective response to exercise: increased heat shock protein production, nitric oxide pathway involvement, increased cardiac antioxidant capacity, improvement in ATP-dependent potassium channel function, and opioid system activation. Despite all the previous investigations, further research is still necessary to obtain more consistent conclusions. PMID:25830711

  2. Artesunate Exerts a Direct Effect on Endothelial Cell Activation and NF-κB Translocation in a Mechanism Independent of Plasmodium Killing

    Directory of Open Access Journals (Sweden)

    Mariana C. Souza

    2012-01-01

    Full Text Available Artemisinin and its derivates are an important class of antimalarial drug and are described to possess immunomodulatory activities. Few studies have addressed the effect of artesunate in the murine malaria model or its effect on host immune response during malaria infection. Herein, we study the effect of artesunate treatment and describe an auxiliary mechanism of artesunate in modulating the inflammatory response during experimental malaria infection in mice. Treatment with artesunate did not reduce significantly the parasitemia within 12 h, however, reduced BBB breakdown and TNF-α mRNA expression in the brain tissue of artesunate-treated mice. Conversely, mefloquine treatment was not able to alter clinical features. Notably, artesunate pretreatment failed to modulate the expression of LFA-1 in splenocytes stimulated with parasitized red blood cells (pRBCs in vitro; however, it abrogated the expression of ICAM-1 in pRBC-stimulated endothelial cells. Accordingly, a cytoadherence in vitro assay demonstrated that pRBCs did not adhere to artesunate-treated vascular endothelial cells. In addition, NF-κB nuclear translocation in endothelial cells stimulated with pRBCs was impaired by artesunate treatment. Our results suggest that artesunate is able to exert a protective effect against the P. berghei-induced inflammatory response by inhibiting NF-κB nuclear translocation and the subsequent expression of ICAM-1.

  3. Na+-stimulated ATPase of alkaliphilic halotolerant cyanobacterium Aphanothece halophytica translocates Na+ into proteoliposomes via Na+ uniport mechanism

    Directory of Open Access Journals (Sweden)

    Soontharapirakkul Kanteera

    2010-08-01

    Full Text Available Abstract Background When cells are exposed to high salinity conditions, they develop a mechanism to extrude excess Na+ from cells to maintain the cytoplasmic Na+ concentration. Until now, the ATPase involved in Na+ transport in cyanobacteria has not been characterized. Here, the characterization of ATPase and its role in Na+ transport of alkaliphilic halotolerant Aphanothece halophytica were investigated to understand the survival mechanism of A. halophytica under high salinity conditions. Results The purified enzyme catalyzed the hydrolysis of ATP in the presence of Na+ but not K+, Li+ and Ca2+. The apparent Km values for Na+ and ATP were 2.0 and 1.2 mM, respectively. The enzyme is likely the F1F0-ATPase based on the usual subunit pattern and the protection against N,N'-dicyclohexylcarbodiimide inhibition of ATPase activity by Na+ in a pH-dependent manner. Proteoliposomes reconstituted with the purified enzyme could take up Na+ upon the addition of ATP. The apparent Km values for this uptake were 3.3 and 0.5 mM for Na+ and ATP, respectively. The mechanism of Na+ transport mediated by Na+-stimulated ATPase in A. halophytica was revealed. Using acridine orange as a probe, alkalization of the lumen of proteoliposomes reconstituted with Na+-stimulated ATPase was observed upon the addition of ATP with Na+ but not with K+, Li+ and Ca2+. The Na+- and ATP-dependent alkalization of the proteoliposome lumen was stimulated by carbonyl cyanide m - chlorophenylhydrazone (CCCP but was inhibited by a permeant anion nitrate. The proteoliposomes showed both ATPase activity and ATP-dependent Na+ uptake activity. The uptake of Na+ was enhanced by CCCP and nitrate. On the other hand, both CCCP and nitrate were shown to dissipate the preformed electric potential generated by Na+-stimulated ATPase of the proteoliposomes. Conclusion The data demonstrate that Na+-stimulated ATPase from A. halophytica, a likely member of F-type ATPase, functions as an electrogenic Na

  4. Numerical and Experimental Study of Mechanisms Involved in Boiling Histotripsy.

    Science.gov (United States)

    Pahk, Ki Joo; Gélat, Pierre; Sinden, David; Dhar, Dipok Kumar; Saffari, Nader

    2017-12-01

    The aim of boiling histotripsy is to mechanically fractionate tissue as an alternative to thermal ablation for therapeutic applications. In general, the shape of a lesion produced by boiling histotripsy is tadpole like, consisting of a head and a tail. Although many studies have demonstrated the efficacy of boiling histotripsy for fractionating solid tumors, the exact mechanisms underpinning this phenomenon are not yet well understood, particularly the interaction of a boiling vapor bubble with incoming incident shockwaves. To investigate the mechanisms involved in boiling histotripsy, a high-speed camera with a passive cavitation detection system was used to observe the dynamics of bubbles produced in optically transparent tissue-mimicking gel phantoms exposed to the field of a 2.0-MHz high-intensity focused ultrasound (HIFU) transducer. We observed that boiling bubbles were generated in a localized heated region and cavitation clouds were subsequently induced ahead of the expanding bubble. This process was repeated with HIFU pulses and eventually resulted in a tadpole-shaped lesion. A simplified numerical model describing the scattering of the incident ultrasound wave by a vapor bubble was developed to help interpret the experimental observations. Together with the numerical results, these observations suggest that the overall size of a lesion induced by boiling histotripsy is dependent on the sizes of (i) the heated region at the HIFU focus and (ii) the backscattered acoustic field by the original vapor bubble. Copyright © 2017 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  5. Involvement of protein kinase C in the mechanism of action of Escherichia coli heat-stable enterotoxin (STa) in a human colonic carcinoma cell line, COLO-205

    International Nuclear Information System (INIS)

    Gupta, Dyuti Datta; Saha, Subhrajit; Chakrabarti, Manoj K.

    2005-01-01

    The present study was undertaken to determine the involvement of calcium-protein kinase C pathway in the mechanism of action of Escherichia coli heat stable enterotoxin (STa) apart from STa-induced activation of guanylate cyclase in human colonic carcinoma cell line COLO-205, which was used as a model cultured cell line to study the mechanism of action of E. coli STa. In response to E. coli STa, protein kinase C (PKC) activity was increased in a time-dependent manner with its physical translocation from cytosol to membrane. Inhibition of the PKC activity in membrane fraction and inhibition of its physical translocation in response to IP 3 -mediated calcium release inhibitor dantrolene suggested the involvement of intracellular store depletion in the regulation of PKC activity. Among different PKC isoforms, predominant involvement of calcium-dependent protein kinase C (PKCα) was specified using isotype-specific pseudosubstrate, which showed pronounce enzyme activity. Inhibition of enzyme activity by PKCα-specific inhibitor Goe6976 and immunoblott study employing isotype-specific antibody further demonstrated the involvement of calcium-dependent isoform of PKC in the mechanism of action of E. coli STa. Moreover, inhibition of guanylate cyclase activity by PKCα-specific inhibitor Goe6976 suggested the involvement of PKCα in the regulation of guanylate cyclase activity

  6. Sequence analysis of the MYC oncogene involved in the t(8;14)(q24;q11) chromosome translocation in a human leukemia T-cell line indicates that putative regulatory regions are not altered

    International Nuclear Information System (INIS)

    Finver, S.N.; Nishikura, K.; Finger, L.R.; Haluska, F.G.; Finan, J.; Nowell, P.C.; Croce, C.M.

    1988-01-01

    The authors cloned the translocation-associated and homologous normal MYC alleles from SKW-3, a leukemia T-cell line with the t(8; 14)(q24; q11) translocation, and determined the sequence of the MYC oncogene first exon and flanking 5' putative regulatory regions. S1 nuclease protection experiments utilizing a MYC first exon probe demonstrated transcriptional deregulation of the MYC gene associated with the T-cell receptor α locus on the 8q + chromosome of SKW-3 cells. Nucleotide sequence analysis of the translocation-associated (8q +) MYC allele identified a single base substitution within the upstream flanking region; the homologous nontranslocated allele contained an additional substitution and a two-base deletion. None of the deletions or substitutions localized to putative 5' regulatory regions. The MYC first exon sequence was germ line in both alleles. These results demonstrate that alterations within the putative 5' MYC regulatory regions are not necessarily involved in MYC deregulation in T-cell leukemias, and they show that juxtaposition of the T-cell receptor α locus to a germ-line MYC oncogene results in MYC deregulation

  7. Cloning of the gene encoding the δ subunit of the human T-cell receptor reveals its physical organization within the α-subunit locus and its involvement in chromosome translocations in T-cell malignancy

    International Nuclear Information System (INIS)

    Isobe, M.; Russo, G.; Haluska, F.G.; Croce, C.M.

    1988-01-01

    By taking advantage of chromosomal walking techniques, the authors have obtained clones that encompass the T-cell receptor (TCR) δ-chain gene. They analyzed clones spanning the entire J α region extending 115 kilobases 5' of the TCR α-chain constant region and have shown that the TCR δ-chain gene is located over 80 kilobases 5' of C α . TCR δ-chain gene is rearranged in the γ/δ-expressing T-cell line Peer and is deleted in α/β-expressing T-cell lines. Sequence analysis of portions of this genomic region demonstrates its identity with previously described cDNA clones corresponding to the C δ and J δ segments. Furthermore, they have analyzed a t(8;14)-(q24;q11) chromosome translocation from a T-cell leukemia and have shown that the J δ segment is rearranged in cells deriving from this tumor and probably directly involved in the translocation. Thus, the newly clones TCR δ chain is implicated in the genesis of chromosome translocations in T-cell malignancies carrying cytogenetic abnormalities of band 14q11

  8. Mechanisms involved in regulation of osteoclastic differentiation by mechanical stress-loaded osteoblasts

    Energy Technology Data Exchange (ETDEWEB)

    Kaneuji, Takeshi [Division of Oral and Maxillofacial Reconstructive Surgery, Department of Oral and Maxillofacial Surgery, Kyushu Dental College, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580 (Japan); Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental College, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580 (Japan); Ariyoshi, Wataru; Okinaga, Toshinori; Toshinaga, Akihiro [Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental College, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580 (Japan); Takahashi, Tetsu [Division of Oral and Maxillofacial Reconstructive Surgery, Department of Oral and Maxillofacial Surgery, Kyushu Dental College, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580 (Japan); Oral Bioresearch Center, Kyushu Dental College, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580 (Japan); Nishihara, Tatsuji, E-mail: tatsujin@kyu-dent.ac.jp [Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental College, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580 (Japan); Oral Bioresearch Center, Kyushu Dental College, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580 (Japan)

    2011-04-29

    Highlights: {yields} Effect of compressive force on osteoblasts were examined. {yields} Compressive force induced OPG expression and suppressed osteoclastogenesis. {yields} This enhancement of OPG is dependent on Wnt/Ca2+ signal pathway. -- Abstract: Mechanical stress is known to be important for regulation of bone turnover, though the detailed mechanisms are not fully understood. In the present study, we examined the effect of mechanical stress on osteoblasts using a novel compression model. Mouse osteoblastic MC3T3-E1 cells were embedded in three-dimensional (3D) gels and cultured with continuous compressive force (0-10.0 g/cm{sup 2}) for 48 h, and the conditioned medium were collected. RAW264.7 cells were then incubated with the conditioned medium for various times in the presence of receptor activator of nuclear factor-{kappa}B ligand (RANKL). Conditioned medium was found to inhibit the differentiation of RAW264.7 cells into osteoclasts induced by RANKL via down-regulation of the expression of tumor necrosis factor receptor-associated factor 6 (TRAF6), phosphorylation of I{kappa}B{alpha}, and nuclear translocation of p50 and p65. Interestingly, the conditioned medium also had a high level of binding activity to RANKL and blocked the binding of RANK to RANKL. Furthermore, the binding activity of conditioned medium to RANKL was reduced when the 3D gel was supplemented with KN-93, an inhibitor of non-canonical Wnt/Ca{sup 2+} pathway. In addition, expression level of osteoprotegerin (OPG) mRNA was increased in time- and force-dependent manners, and remarkably suppressed by KN-93. These results indicate that osteoblastic cells subjected to mechanical stress produce OPG, which binds to RANKL. Furthermore, this binding activity strongly inhibited osteoclastogenesis through suppression of TRAF6 and the nuclear factor-kappa B (NF-{kappa}B) signaling pathway, suggesting that enhancement of OPG expression induced by mechanical stress is dependent on non-canonical Wnt

  9. Quantum-Mechanical Calculations on Molecular Substructures Involved in Nanosystems

    Directory of Open Access Journals (Sweden)

    Beata Szefler

    2014-09-01

    Full Text Available In this review article, four ideas are discussed: (a aromaticity of fullerenes patched with flowers of 6-and 8-membered rings, optimized at the HF and DFT levels of theory, in terms of HOMA and NICS criteria; (b polybenzene networks, from construction to energetic and vibrational spectra computations; (c quantum-mechanical calculations on the repeat units of various P-type crystal networks and (d construction and stability evaluation, at DFTB level of theory, of some exotic allotropes of diamond D5, involved in hyper-graphenes. The overall conclusion was that several of the yet hypothetical molecular nanostructures herein described are serious candidates to the status of real molecules.

  10. Complement Involvement in Periodontitis: Molecular Mechanisms and Rational Therapeutic Approaches.

    Science.gov (United States)

    Hajishengallis, George; Maekawa, Tomoki; Abe, Toshiharu; Hajishengallis, Evlambia; Lambris, John D

    2015-01-01

    The complement system is a network of interacting fluid-phase and cell surface-associated molecules that trigger, amplify, and regulate immune and inflammatory signaling pathways. Dysregulation of this finely balanced network can destabilize host-microbe homeostasis and cause inflammatory tissue damage. Evidence from clinical and animal model-based studies suggests that complement is implicated in the pathogenesis of periodontitis, a polymicrobial community-induced chronic inflammatory disease that destroys the tooth-supporting tissues. This review discusses molecular mechanisms of complement involvement in the dysbiotic transformation of the periodontal microbiome and the resulting destructive inflammation, culminating in loss of periodontal bone support. These mechanistic studies have additionally identified potential therapeutic targets. In this regard, interventional studies in preclinical models have provided proof-of-concept for using complement inhibitors for the treatment of human periodontitis.

  11. Investigations into the involvement of NMDA mechanisms in recognition memory.

    Science.gov (United States)

    Warburton, E Clea; Barker, Gareth R I; Brown, Malcom W

    2013-11-01

    This review will focus on evidence showing that NMDA receptor neurotransmission is critical for synaptic plasticity processes within brain regions known to be necessary for the formation of object recognition memories. The aim will be to provide evidence concerning NMDA mechanisms related to recognition memory processes and show that recognition memory for objects, places or associations between objects and places depends on NMDA neurotransmission within the perirhinal cortex, temporal association cortex medial prefrontal cortex and hippocampus. Administration of the NMDA antagonist AP5, selectively into each of these brain regions has revealed that the extent of the involvement NMDA receptors appears dependent on the type of information required to solve the recognition memory task; thus NMDA receptors in the perirhinal cortex are crucial for the encoding of long-term recognition memory for objects, and object-in-place associations, but not for short-term recognition memory or for retrieval. In contrast the hippocampus and medial prefrontal cortex are required for both long-term and short-term recognition memory for places or associations between objects and places, or for recognition memory tasks that have a temporal component. Such studies have therefore confirmed that the multiple brain regions make distinct contributions to recognition memory but in addition that more than one synaptic plasticity process must be involved. This article is part of the Special Issue entitled 'Glutamate Receptor-Dependent Synaptic Plasticity'. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. FISH studies in a girl with sporadic aniridia and an apparently balanced de novo t(11;13)(p13;q33) translocation detect a microdeletion involving the WAGR region

    OpenAIRE

    J.C. Llerena Jr.; J.C. Cabral de Almeida; E. Bastos; J.A. Crolla

    2000-01-01

    Conventional cytogenetic studies on a female infant with sporadic aniridia revealed what appeared to be a balanced de novo t(11;13) (p13;q33) translocation. Fluorescence in situ hybridization (FISH) investigations, however, detected the presence of a cryptic 11p13p14 deletion which included the WAGR region and involved approximately 7.5 Mb of DNA, including the PAX6 and WT1 genes. These results account for the patient's aniridia, and place her at high risk for developing Wilms' tumour. The ab...

  13. The TIC complex uncovered: The alternative view on the molecular mechanism of protein translocation across the inner envelope membrane of chloroplasts.

    Science.gov (United States)

    Nakai, Masato

    2015-09-01

    Chloroplasts must import thousands of nuclear-encoded preproteins synthesized in the cytosol through two successive protein translocons at the outer and inner envelope membranes, termed TOC and TIC, respectively, to fulfill their complex physiological roles. The molecular identity of the TIC translocon had long remained controversial; two proteins, namely Tic20 and Tic110, had been proposed to be central to protein translocation across the inner envelope membrane. Tic40 also had long been considered to be another central player in this process. However, recently, a novel 1-megadalton complex consisting of Tic20, Tic56, Tic100, and Tic214 was identified at the chloroplast inner membrane of Arabidopsis and was demonstrated to constitute a general TIC translocon which functions in concert with the well-characterized TOC translocon. On the other hand, direct interaction between this novel TIC transport system and Tic110 or Tic40 was hardly observed. Consequently, the molecular model for protein translocation across the inner envelope membrane of chloroplasts might need to be extensively revised. In this review article, I intend to propose such alternative view regarding the TIC transport system in contradistinction to the classical view. I also would emphasize importance of reevaluation of previous works in terms of with what methods these classical Tic proteins such as Tic110 or Tic40 were picked up as TIC constituents at the very beginning as well as what actual evidence there were to support their direct and specific involvement in chloroplast protein import. This article is part of a Special Issue entitled: Chloroplast Biogenesis. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Mechanisms and factors involved in hip injuries during frontal crashes.

    Science.gov (United States)

    Yoganandan, N; Pintar, F A; Gennarelli, T A; Maltese, M R; Eppinger, R H

    2001-11-01

    This study was conducted to collect data and gain insights relative to the mechanisms and factors involved in hip injuries during frontal crashes and to study the tolerance of hip injuries from this type of loading. Unembalmed human cadavers were seated on a standard automotive seat (reinforced) and subjected to knee impact test to each lower extremity. Varying combinations of flexion and adduction/abduction were used for initial alignment conditions and pre-positioning. Accelerometers were fixed to the iliac wings and twelfth thoracic vertebral spinous process. A 23.4-kg padded pendulum impacted the knee at velocities ranging from 4.3 to 7.6 m/s. The impacting direction was along the anteroposterior axis, i.e., the global X-axis, in the body-fixed coordinate system. A load cell on the front of the pendulum recorded the impact force. Peak impact forces ranged from 2,450 to 10,950 N. The rate of loading ranged from 123 to 7,664 N/msec. The impulse values ranged from 12.4 to 31.9 Nsec. Injuries were not apparent in three tests. Eight tests resulted in trauma. Fractures involving the pelvis including the acetabulum and proximal femur occurred in five out of the eight tests, and distal femoral bone fracture occurred in one test. These results underscore the importance of leg pre-positioning and the orientation of the impacting axis to produce specific types of trauma to the pelvic region of the lower extremity.

  15. Functioning and nonfunctioning thyroid adenomas involve different molecular pathogenetic mechanisms.

    Science.gov (United States)

    Tonacchera, M; Vitti, P; Agretti, P; Ceccarini, G; Perri, A; Cavaliere, R; Mazzi, B; Naccarato, A G; Viacava, P; Miccoli, P; Pinchera, A; Chiovato, L

    1999-11-01

    The molecular biology of follicular cell growth in thyroid nodules is still poorly understood. Because gain-of-function (activating) mutations of the thyroid-stimulating hormone receptor (TShR) and/or Gs alpha genes may confer TSh-independent growth advantage to neoplastic thyroid cells, we searched for somatic mutations of these genes in a series of hyperfunctioning and nonfunctioning follicular thyroid adenomas specifically selected for their homogeneous gross anatomy (single nodule in an otherwise normal thyroid gland). TShR gene mutations were identified by direct sequencing of exons 9 and 10 of the TShR gene in genomic DNA obtained from surgical specimens. Codons 201 and 227 of the Gs alpha gene were also analyzed. At histology, all hyperfunctioning nodules and 13 of 15 nonfunctioning nodules were diagnosed as follicular adenomas. Two nonfunctioning thyroid nodules, although showing a prevalent microfollicular pattern of growth, had histological features indicating malignant transformation (a minimally invasive follicular carcinoma and a focal papillary carcinoma). Activating mutations of the TShR gene were found in 12 of 15 hyperfunctioning follicular thyroid adenomas. In one hyperfunctioning adenoma, which was negative for TShR mutations, a mutation in codon 227 of the Gs alpha gene was identified. At variance with hyperfunctioning thyroid adenomas, no mutation of the TShR or Gs alpha genes was detected in nonfunctioning thyroid nodules. In conclusion, our findings clearly define a different molecular pathogenetic mechanism in hyperfunctioning and nonfunctioning follicular thyroid adenomas. Activation of the cAMP cascade, which leads to proliferation but maintains differentiation of follicular thyroid cells, typically occurs in hyperfunctioning thyroid adenomas. Oncogenes other than the TShR and Gs alpha genes are probably involved in nonfunctioning follicular adenomas.

  16. The dynamic right-to-left translocation of Cerl2 is involved in the regulation and termination of Nodal activity in the mouse node.

    Directory of Open Access Journals (Sweden)

    José Manuel Inácio

    Full Text Available The determination of left-right body asymmetry in mouse embryos depends on the interplay of molecules in a highly sensitive structure, the node. Here, we show that the localization of Cerl2 protein does not correlate to its mRNA expression pattern, from 3-somite stage onwards. Instead, Cerl2 protein displays a nodal flow-dependent dynamic behavior that controls the activity of Nodal in the node, and the transmission of the laterality information to the left lateral plate mesoderm (LPM. Our results indicate that Cerl2 initially localizes and prevents the activation of Nodal genetic circuitry on the right side of the embryo, and later its right-to-left translocation shutdowns Nodal activity in the node. The consequent prolonged Nodal activity in the node by the absence of Cerl2 affects local Nodal expression and prolongs its expression in the LPM. Simultaneous genetic removal of both Nodal node inhibitors, Cerl2 and Lefty1, sustains even longer and bilateral this LPM expression.

  17. Bovine Lactoferrampin, Human Lactoferricin, and Lactoferrin 1-11 Inhibit Nuclear Translocation of HIV Integrase.

    Science.gov (United States)

    Wang, Winston Yan; Wong, Jack Ho; Ip, Denis Tsz Ming; Wan, David Chi Cheong; Cheung, Randy Chifai; Ng, Tzi Bun

    2016-08-01

    This study aimed to investigate fragments derived from human and bovine lactoferrins for ability to inhibit nuclear translocation of HIV-1 integrase. It was shown that human lactoferricin, human lactoferrin 1-11, and bovine lactoferrampin reduced nuclear distribution of HIV-1 integrase. Bovine lactoferrampin could inhibit both the activity and nuclear translocation of HIV-1 integrase. Human lactoferrampin, bovine lactoferricin, and bovine lactoferrin 1-11 had no effect on HIV-1 integrase nuclear translocation. Human lactoferrampin which inhibited the activity of integrase did not prevent its nuclear translocation. Human lactoferricin and lactoferrin 1-11 did not inhibit HIV-1 integrase nuclear translocation despite their ability to attenuate the enzyme activity. The discrepancy between the findings on reduction of HIV-1 activity and inhibition of nuclear translocation of HIV-1 integrase was due to the different mechanisms involved. A similar reasoning can also be applied to the different inhibitory potencies of the milk peptides on different HIV enzymes, i.e., nuclear translocation.

  18. Frequency and distribution analysis of chromosomal translocations induced by x-ray in human lymphocytes

    International Nuclear Information System (INIS)

    Lopez Hidalgo, Juana Ines

    2000-01-01

    The characteristic of ionizing radiation suggests that induced chromosomal damage in the form of translocations would appear to be randomly distributed. However, the outcome of tests performed in vitro and in vivo (irradiated individuals) are contradictories. The most translocation-related chromosomes, as far as some studies reveal on one hand, appear to be less involved in accordance with others. These data, together with those related to molecular mechanisms involved in translocations production suggest that in G 0 -irradiated cells, the frequency and distribution of this kind of chromosomal rearrangement, does not take place at random. They seem to be affected by in-nucleus chromosome distribution, by each chromosome's DNA length and functional features, by the efficiency of DNA repair mechanisms, and by inter individual differences. The objective of this study was to establish the frequency pattern of each human chromosome involved in radio-induced translocations, as well as to analyze the importance the chromosome length, the activity of DNA polymerase- dependant repair mechanisms, and inter individual differences within the scope of such distribution. To achieve the goals, peripheral blood lymphocytes from healthy donors were irradiated in presence and absence of 2'-3' dideoxithimidine (ddThd), a Β - DNA polymerase inhibitor, which takes part in the base repair mechanism (B E R). The results showed that: The presence of ddThd during the irradiation increase the basal frequency of radioinduced translocations in 60 %. This result suggests that ddThd repair synthesis inhibition can be in itself a valid methodology for radiation-induced bases damage assessment, damage which if not BER-repaired may result in translocation-leading double strand breaks. A statistically significant correlation between translocation frequency and chromosome length, in terms of percentage of genome, has been noticed both in (basal) irradiation and in irradiation with ddThd inhibitor

  19. RET/PTC1-Driven Neoplastic Transformation and Proinvasive Phenotype of Human Thyrocytes Involve Met Induction and β-Catenin Nuclear Translocation

    Directory of Open Access Journals (Sweden)

    Giuliana Cassinelli

    2009-01-01

    Full Text Available Activation of the RET gene by chromosomal rearrangements generating RET/PTC oncogenes is a frequent, early, and causative event in papillary thyroid carcinoma (PTC. We have previously shown that, in human primary thyrocytes, RET/PTC1 induces a transcriptional program including the MET proto-oncogene. In PTCs, β-catenin is frequently mislocated to the cytoplasm nucleus. We investigated the interplay between Ret/ptc1 signaling and Met in regulating the proinvasive phenotype and β-catenin localization in cellular models of human PTC. Here, we show that Met protein is expressed and is constitutively active in human thyrocytes exogenously expressing RET/PTC1 as well as a mutant (Y451F devoid of the main Ret/ptc1 multidocking site. Both in transformed thyrocytes and in the human PTC cell line TPC-1, Ret/ptc1-Y451-dependent signaling and Met cooperated to promote a proinvasive phenotype. Accordingly, gene/functional silencing of either RET/PTC1 or MET abrogated early branching morphogenesis in TPC-1 cells. The same effect was obtained by blocking the common downstream effector Akt. Y451 of Ret/ptc1 was required to promote proliferation and nuclear translocation of β-catenin, suggesting that these oncogene-driven effects are Met-independent. Pharmacologic inhibition of Ret/ptc1 and Met tyrosine kinases by the multitarget small molecule RPI-1 blocked cell proliferation and invasive ability and dislocated β-catenin from the nucleus. Altogether, these results support that Ret/ptc1 cross talks with Met at transcriptional and signaling levels and promotes β-catenin transcriptional activity to drive thyrocyte neoplastic transformation. Such molecular network, promoting disease initiation and acquisition of a proinvasive phenotype, highlights new options to design multitarget therapeutic strategies for PTCs.

  20. RET/PTC1-Driven Neoplastic Transformation and Proinvasive Phenotype of Human Thyrocytes Involve Met Induction and β-Catenin Nuclear Translocation1

    Science.gov (United States)

    Cassinelli, Giuliana; Favini, Enrica; Degl'Innocenti, Debora; Salvi, Alessandro; De Petro, Giuseppina; Pierotti, Marco A; Zunino, Franco; Borrello, Maria Grazia; Lanzi, Cinzia

    2009-01-01

    Activation of the RET gene by chromosomal rearrangements generating RET/PTC oncogenes is a frequent, early, and causative event in papillary thyroid carcinoma (PTC). We have previously shown that, in human primary thyrocytes, RET/PTC1 induces a transcriptional program including the MET proto-oncogene. In PTCs, β-catenin is frequently mislocated to the cytoplasm nucleus. We investigated the interplay between Ret/ptc1 signaling and Met in regulating the proinvasive phenotype and β-catenin localization in cellular models of human PTC. Here, we show that Met protein is expressed and is constitutively active in human thyrocytes exogenously expressing RET/PTC1 as well as a mutant (Y451F) devoid of the main Ret/ptc1 multidocking site. Both in transformed thyrocytes and in the human PTC cell line TPC-1, Ret/ptc1-Y451-dependent signaling and Met cooperated to promote a proinvasive phenotype. Accordingly, gene/functional silencing of either RET/PTC1 or MET abrogated early branching morphogenesis in TPC-1 cells. The same effect was obtained by blocking the common downstream effector Akt. Y451 of Ret/ptc1 was required to promote proliferation and nuclear translocation of β-catenin, suggesting that these oncogene-driven effects are Met-independent. Pharmacologic inhibition of Ret/ptc1 and Met tyrosine kinases by the multitarget small molecule RPI-1 blocked cell proliferation and invasive ability and dislocated β-catenin from the nucleus. Altogether, these results support that Ret/ptc1 cross talks with Met at transcriptional and signaling levels and promotes β-catenin transcriptional activity to drive thyrocyte neoplastic transformation. Such molecular network, promoting disease initiation and acquisition of a proinvasive phenotype, highlights new options to design multitarget therapeutic strategies for PTCs. PMID:19107227

  1. Genotypic variation and mechanism in uptake and translocation of perfluorooctanoic acid (PFOA) in lettuce (Lactuca sativa L.) cultivars grown in PFOA-polluted soils.

    Science.gov (United States)

    Xiang, Lei; Chen, Lei; Yu, Le-Yi; Yu, Peng-Fei; Zhao, Hai-Ming; Mo, Ce-Hui; Li, Yan-Wen; Li, Hui; Cai, Quan-Ying; Zhou, Dong-Mei; Wong, Ming-Hung

    2018-05-02

    The cultivation of crop cultivars with low pollutant accumulation is an important strategy to reduce the potential health risks of food produced from polluted soils. In this study, we identified three loose-leaf lettuce cultivars with low accumulation of perfluorooctanoic acid (PFOA), a highly toxic and persistent organic pollutant. PFOA concentrations in the shoots of low-PFOA cultivars were 3.7-5.5-fold lower than those of high-PFOA cultivars. The identification of low-PFOA cultivars could contribute to ensuring food safety despite cultivation in highly polluted soils (1 mg/kg) based on the tolerable daily PFOA intake (1.5 μg/kg/d). We detected lower desorbing fractions of PFOA in rhizosphere soil, lower bioconcentration factors, and higher distribution in the cell walls and organelles of roots in low-PFOA cultivars, all of which are key factors in limiting PFOA uptake and translocation from soil to shoots, than in high-PFOA cultivars. This study reveals the mechanism of PFOA uptake from soil to crop and lays a foundation for establishing a cost-effective strategy to plant crops in polluted soil and reduce exposure risk due to persistent organic pollutants in crops. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Translocation mechanism of C{sub 60} and C{sub 60} derivations across a cell membrane

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Lijun, E-mail: michael.lijunl@gmail.com [Hangzhou Dianzi University, College of Life Information Science and Instrument Engineering (China); Kang, Zhengzhong [Zhejiang University, Department of Chemistry (China); Shen, Jia-Wei, E-mail: shen.jiawei@hotmail.com [Hangzhou Normal University, School of Medicine (China)

    2016-11-15

    Carbon-based nanoparticles (NPs) such as fullerenes and nanotubes have been extensively studied for drug delivery in recent years. The permeation process of fullerene and its derivative molecules through membrane is essential to the utilization of fullerene-based drug delivery system, but the mechanism and the dynamics of permeation through cell membrane are still unclear. In this study, coarse-grained molecular dynamics simulations were performed to investigate the permeation process of functionalized fullerene molecules (ca. 0.72 nm) through the membrane. Our results show that single functionalized fullerene molecule in such nanoscale could permeate the lipid membrane in micro-second time scale. Pristine C{sub 60} molecules prefer to aggregate into several small clusters while C{sub 60}OH{sub 15} molecules could aggregate into one big cluster to permeate through the lipid membrane. After permeation of C{sub 60} or its derivatives into membrane, all C{sub 60} and C{sub 60}OH{sub 15} molecules disaggregated and monodispersed in the lipid membrane.

  3. Bacterial translocation: impact of probiotics

    OpenAIRE

    Jeppsson, Bengt; Mangell, Peter; Adawi, Diya; Molin, Göran

    2004-01-01

    There is a considerable amount of data in humans showing that patients who cannot take in nutrients enterally have more organ failure in the intensive care unit, a less favourable prognosis, and a higher frequency of septicaemia, in particular involving bacterial species from the intestinal tract. However, there is little evidence that this is connected with translocation of bacterial species in humans. Animal data more uniformly imply the existence of such a connection. The main focus of thi...

  4. Mechanisms Involved in Nematode Control by Endophytic Fungi.

    Science.gov (United States)

    Schouten, Alexander

    2016-08-04

    Colonization of plants by particular endophytic fungi can provide plants with improved defenses toward nematodes. Evidently, such endophytes can be important in developing more sustainable agricultural practices. The mechanisms playing a role in this quantitative antagonism are poorly understood but most likely multifactorial. This knowledge gap obstructs the progress regarding the development of endophytes or endophyte-derived constituents into biocontrol agents. In part, this may be caused by the fact that endophytic fungi form a rather heterogeneous group. By combining the knowledge of the currently characterized antagonistic endophytic fungi and their effects on nematode behavior and biology with the knowledge of microbial competition and induced plant defenses, the various mechanisms by which this nematode antagonism operates or may operate are discussed. Now that new technologies are becoming available and more accessible, the currently unresolved mechanisms can be studied in greater detail than ever before.

  5. Mechanisms Involved in Nematode Control by Endophytic Fungi

    NARCIS (Netherlands)

    Schouten, Sander

    2016-01-01

    Colonization of plants by particular endophytic fungi can provide plants with improved defenses toward nematodes. Evidently, such endophytes can be important in developing more sustainable agricultural practices. The mechanisms playing a role in this quantitative antagonism are poorly understood

  6. Simultaneous localization of MLL, AF4 and ENL genes in interphase nuclei by 3D-FISH: MLL translocation revisited

    International Nuclear Information System (INIS)

    Gué, Michaël; Sun, Jian-Sheng; Boudier, Thomas

    2006-01-01

    Haematological cancer is characterised by chromosomal translocation (e.g. MLL translocation in acute leukaemia) and two models have been proposed to explain the origins of recurrent reciprocal translocation. The first, established from pairs of translocated genes (such as BCR and ABL), considers the spatial proximity of loci in interphase nuclei (static 'contact first' model). The second model is based on the dynamics of double strand break ends during repair processes (dynamic 'breakage first' model). Since the MLL gene involved in 11q23 translocation has more than 40 partners, the study of the relative positions of the MLL gene with both the most frequent partner gene (AF4) and a less frequent partner gene (ENL), should elucidate the MLL translocation mechanism. Using triple labeling 3D FISH experiments, we have determined the relative positions of MLL, AF4 and ENL genes, in two lymphoblastic and two myeloid human cell lines. In all cell lines, the ENL gene is significantly closer to the MLL gene than the AF4 gene (with P value < 0.0001). According to the static 'contact first' model of the translocation mechanism, a minimal distance between loci would indicate a greater probability of the occurrence of t(11;19)(q23;p13.3) compared to t(4;11)(q21;q23). However this is in contradiction to the epidemiology of 11q23 translocation. The simultaneous multi-probe hybridization in 3D-FISH is a new approach in addressing the correlation between spatial proximity and occurrence of translocation. Our observations are not consistent with the static 'contact first' model of translocation. The recently proposed dynamic 'breakage first' model offers an attractive alternative explanation

  7. Biological pathways and genetic mechanisms involved in social functioning.

    Science.gov (United States)

    Ordoñana, Juan R; Bartels, Meike; Boomsma, Dorret I; Cella, David; Mosing, Miriam; Oliveira, Joao R; Patrick, Donald L; Veenhoven, Ruut; Wagner, Gert G; Sprangers, Mirjam A G

    2013-08-01

    To describe the major findings in the literature regarding associations between biological and genetic factors and social functioning, paying special attention to: (1) heritability studies on social functioning and related concepts; (2) hypothesized biological pathways and genetic variants that could be involved in social functioning, and (3) the implications of these results for quality-of-life research. A search of Web of Science and PubMed databases was conducted using combinations of the following keywords: genetics, twins, heritability, social functioning, social adjustment, social interaction, and social dysfunction. Variability in the definitions and measures of social functioning was extensive. Moderate to high heritability was reported for social functioning and related concepts, including prosocial behavior, loneliness, and extraversion. Disorders characterized by impairments in social functioning also show substantial heritability. Genetic variants hypothesized to be involved in social functioning are related to the network of brain structures and processes that are known to affect social cognition and behavior. Better knowledge and understanding about the impact of genetic factors on social functioning is needed to help us to attain a more comprehensive view of health-related quality-of-life (HRQOL) and will ultimately enhance our ability to identify those patients who are vulnerable to poor social functioning.

  8. Involvement of thiol-based mechanisms in plant development.

    Science.gov (United States)

    Rouhier, Nicolas; Cerveau, Delphine; Couturier, Jérémy; Reichheld, Jean-Philippe; Rey, Pascal

    2015-08-01

    Increasing knowledge has been recently gained regarding the redox regulation of plant developmental stages. The current state of knowledge concerning the involvement of glutathione, glutaredoxins and thioredoxins in plant development is reviewed. The control of the thiol redox status is mainly ensured by glutathione (GSH), a cysteine-containing tripeptide and by reductases sharing redox-active cysteines, glutaredoxins (GRXs) and thioredoxins (TRXs). Indeed, thiol groups present in many regulatory proteins and metabolic enzymes are prone to oxidation, ultimately leading to post-translational modifications such as disulfide bond formation or glutathionylation. This review focuses on the involvement of GSH, GRXs and TRXs in plant development. Recent studies showed that the proper functioning of root and shoot apical meristems depends on glutathione content and redox status, which regulate, among others, cell cycle and hormone-related processes. A critical role of GRXs in the formation of floral organs has been uncovered, likely through the redox regulation of TGA transcription factor activity. TRXs fulfill many functions in plant development via the regulation of embryo formation, the control of cell-to-cell communication, the mobilization of seed reserves, the biogenesis of chloroplastic structures, the metabolism of carbon and the maintenance of cell redox homeostasis. This review also highlights the tight relationships between thiols, hormones and carbon metabolism, allowing a proper development of plants in relation with the varying environment and the energy availability. GSH, GRXs and TRXs play key roles during the whole plant developmental cycle via their antioxidant functions and the redox-regulation of signaling pathways. This article is part of a Special Issue entitled Redox regulation of differentiation and de-differentiation. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Kinetics and mechanisms of reactions involving small aromatic reactive intermediates

    Energy Technology Data Exchange (ETDEWEB)

    Lin, M.C. [Emory Univ., Atlanta, GA (United States)

    1993-12-01

    Small aromatic radicals such as C{sub 6}H{sub 5}, C{sub 6}H{sub 5}O and C{sub 6}H{sub 4} are key prototype species of their homologs. C{sub 6}H{sub 5} and its oxidation product, C{sub 6}H{sub 5}O are believed to be important intermediates which play a pivotal role in hydrocarbon combustion, particularly with regard to soot formation. Despite their fundamental importance, experimental data on the reaction mechanisms and reactivities of these species are very limited. For C{sub 6}H{sub 5}, most kinetic data except its reactions with NO and NO{sub 2}, were obtained by relative rate measurements. For C{sub 6}H{sub 5}O, the authors have earlier measured its fragmentation reaction producing C{sub 5}H{sub 5} + CO in shock waves. For C{sub 6}H{sub 4}, the only rate constant measured in the gas phase is its recombination rate at room temperature. The authors have proposed to investigate systematically the kinetics and mechanisms of this important class of molecules using two parallel laser diagnostic techniques--laser resonance absorption (LRA) and resonance enhanced multiphoton ionization mass spectrometry (REMPI/MS). In the past two years, study has been focused on the development of a new multipass adsorption technique--the {open_quotes}cavity-ring-down{close_quotes} technique for kinetic applications. The preliminary results of this study appear to be quite good and the sensitivity of the technique is at least comparable to that of the laser-induced fluorescence method.

  10. Molecular mechanisms involved in the production of chromosomal aberrations. I

    International Nuclear Information System (INIS)

    Natarajan, A.T.; Obe, G.

    1978-01-01

    Chinese hamster ovary cells (CHO) were X-irradiated in G2 stage of the cell cycle and immediately treated, in the presence of inactivated Sendai virus, with Neurospora endonuclease (E.C. 3.1.4.), an enzyme which is specific for cleaving single-stranded DNA. With this treatment, the frequencies of all types of chromosome aberrations increased when compared to X-irradiated controls. These results are interpreted as due to the conversion of some of the X-ray induced single-stranded DNA breaks into double-strand breaks by this enzyme. Similar enhancement due to this enzyme was found following treatment with methyl methanesulfonate (MMS) and bleomycin, but not following UV and mitomycin C. Addition of Micrococcus endonuclease and Neurospora endonuclease to the cells did not alter the frequencies of aberrations induced by UV. The introduction of enzymes with specific DNA-repair function offers possibilities to probe into the molecular events involved in the formation of structural chromosome aberrations induced by different classes of physical and chemical mutagens. (Auth.)

  11. The Potential Mechanism of ZFX Involvement in the Cell Growth

    Directory of Open Access Journals (Sweden)

    Mahboube Ganji arjenaki

    2016-04-01

    Full Text Available Background:The zinc-finger X linked (ZFX gene encodes a transcription factor that acts as a regulator of self-renewal of stem cells. Due to the role of ZFX in cell growth, understanding ZFX protein-protein interactions helps to clarify its proper biological functions in signaling pathways. The aim of this study is to define ZFX protein-protein interactions and the role of ZFX in cell growth. Materials and Methods: The PIPs output includes three interacting proteins with ZFX: eukaryotic translation initiation factor 3 subunit I(EIF3I, eukaryotic translation initiation factor 3 subunit G(EIF3G and protein nuclear pore and COPII coat complex component homolog isoform 3 (SEC13L1. Results: As a cargo and transmembrane protein interacting with Sec13,eIF3I and eIF3G, ZFX mediates cargo sorting in COPII vesicles at ER exit sites. While traveling to cis-Golgi, eIF3I is phosphorylated by the mechanistic target of rapamycin (mTOR. Proteins transport by COPI vesicles to the nucleusouter site layer containing SEC13 via the contribution of microtubules. EIF3G and eIF3I interact with coatomer protein complex subunit beta 2 (COPB2 that helps to enclose ZFX in COPI vesicle. ZFX and eIF3G enter nucleolus where activation of transcription from pre rDNA genes occurs. Conclusion:We proposed a model in which ZFX is involved in cell growth by promoting the transcription of rDNA genes.

  12. Mechanisms involved in alternariol-induced cell cycle arrest

    Energy Technology Data Exchange (ETDEWEB)

    Solhaug, A., E-mail: Anita.Solhaug@vetinst.no [Norwegian Veterinary Institute, Oslo (Norway); Vines, L.L. [Michigan State University, Department of Food Science and Human Nutrition, East Lansing, MI (United States); Ivanova, L.; Spilsberg, B. [Norwegian Veterinary Institute, Oslo (Norway); Holme, J.A. [Norwegian Institute of Public Health, Division of Environmental Medicine, Oslo (Norway); Pestka, J. [Michigan State University, Department of Food Science and Human Nutrition, East Lansing, MI (United States); Collins, A. [University of Oslo, Department of Nutrition, Faculty of Medicine, Oslo (Norway); Eriksen, G.S. [Norwegian Veterinary Institute, Oslo (Norway)

    2012-10-15

    Alternariol (AOH), a mycotoxin produced by Alternaria sp, is often found as a contaminant in fruit and cereal products. Here we employed the murine macrophage cell line RAW 264.7 to test the hypothesis that AOH causes toxicity as a response to DNA damage. AOH at concentrations of 15-30 {mu}M almost completely blocked cell proliferation. Within 30 min treatment, AOH (30 {mu}M) significantly increased the level of reactive oxygen species (ROS). Furthermore, DNA base oxidations as well as DNA strand breaks and/or alkaline labile sites were detected by the comet assay after 2 h exposure of AOH. Cell death (mostly necrosis) was observed after prolonged exposure to the highest concentration of AOH (60 {mu}M for 24 and 48 h) in our study. The DNA damage response involved phosphorylation (activation) of histone H2AX and check point kinase-1- and 2 (Chk-1/2). Moreover, AOH activated p53 and increased the expression of p21, Cyclin B, MDM2, and Sestrin 2; likewise the level of several miRNA was affected. AOH-induced Sestrin 2 expression was regulated by p53 and could at least partly be inhibited by antioxidants, suggesting a role of ROS in the response. Interestingly, the addition of antioxidants did not inhibit cell cycle arrest. Although the formation of ROS by itself was not directly linked cell proliferation, AOH-induced DNA damage and resulting transcriptional changes in p21, MDM2, and Cyclin B likely contribute to the reduced cell proliferation; while Sestrin 2 would contribute to the oxidant defense.

  13. Mechanisms involved in alternariol-induced cell cycle arrest

    International Nuclear Information System (INIS)

    Solhaug, A.; Vines, L.L.; Ivanova, L.; Spilsberg, B.; Holme, J.A.; Pestka, J.; Collins, A.; Eriksen, G.S.

    2012-01-01

    Alternariol (AOH), a mycotoxin produced by Alternaria sp, is often found as a contaminant in fruit and cereal products. Here we employed the murine macrophage cell line RAW 264.7 to test the hypothesis that AOH causes toxicity as a response to DNA damage. AOH at concentrations of 15–30 μM almost completely blocked cell proliferation. Within 30 min treatment, AOH (30 μM) significantly increased the level of reactive oxygen species (ROS). Furthermore, DNA base oxidations as well as DNA strand breaks and/or alkaline labile sites were detected by the comet assay after 2 h exposure of AOH. Cell death (mostly necrosis) was observed after prolonged exposure to the highest concentration of AOH (60 μM for 24 and 48 h) in our study. The DNA damage response involved phosphorylation (activation) of histone H2AX and check point kinase-1- and 2 (Chk-1/2). Moreover, AOH activated p53 and increased the expression of p21, Cyclin B, MDM2, and Sestrin 2; likewise the level of several miRNA was affected. AOH-induced Sestrin 2 expression was regulated by p53 and could at least partly be inhibited by antioxidants, suggesting a role of ROS in the response. Interestingly, the addition of antioxidants did not inhibit cell cycle arrest. Although the formation of ROS by itself was not directly linked cell proliferation, AOH-induced DNA damage and resulting transcriptional changes in p21, MDM2, and Cyclin B likely contribute to the reduced cell proliferation; while Sestrin 2 would contribute to the oxidant defense.

  14. Recombinase, chromosomal translocations and lymphoid neoplasia: targeting mistakes and repair failures.

    Science.gov (United States)

    Marculescu, Rodrig; Vanura, Katrina; Montpellier, Bertrand; Roulland, Sandrine; Le, Trang; Navarro, Jean-Marc; Jäger, Ulrich; McBlane, Fraser; Nadel, Bertrand

    2006-09-08

    A large number of lymphoid malignancies is characterized by specific chromosomal translocations, which are closely linked to the initial steps of pathogenesis. The hallmark of these translocations is the ectopic activation of a silent proto-oncogene through its relocation at the vicinity of an active regulatory element. Due to the unique feature of lymphoid cells to somatically rearrange and mutate receptor genes, and to the corresponding strong activity of the immune enhancers/promoters at that stage of cell development, B- and T-cell differentiation pathways represent propitious targets for chromosomal translocations and oncogene activation. Recent progress in the understanding of the V(D)J recombination process has allowed a more accurate definition of the translocation mechanisms involved, and has revealed that V(D)J-mediated translocations result both from targeting mistakes of the recombinase, and from illegitimate repair of the V(D)J recombination intermediates. Surprisingly, V(D)J-mediated translocations turn out to be restricted to two specific sub-types of lymphoid malignancies, T-cell acute lymphoblastic leukemias, and a restricted set of mature B-cell Non-Hodgkin's lymphomas.

  15. Radiation induced reciprocal translocations and inversions in anopheles albimanus

    International Nuclear Information System (INIS)

    Kaiser, P.E.; Seawright, J.A.; Benedict, M.Q.; Narang, S.

    1982-01-01

    Reciprocal translocations and inversions were induced in Anopheles albimanus Wiedemann by irradiation of males with X rays. A total of 1669 sperm were assayed, and 175 new aberrations were identified as follows: 102 reciprocal translocations (67 autosomal and 35 sex-linked), 45 pericentric inversions, and 28 paracentric inversions. Eleven of the translocations were nearly whole-arm interchanges, and these were selected for the construction of 'capture systems' for compound chromosomes. Two double-heterozygous translocation strains and four homozygous translocation strains were established. Anopheles albimanus females were irradiated, and a pseudolinkage scheme involving mutant markers was employed to identify reciprocal translocations. The irradiation of females was very inefficient; only one translocation was recovered from 1080 ova tested

  16. Influence of cycloheximide on translocation of 32P in Laminaria digitata (Linne) Lamouroux

    International Nuclear Information System (INIS)

    Floc'h, J.Y.; Penot, M.

    1978-01-01

    Cycloheximide strongly reduced translocation of 32 P when applied to various regions of Laminaria digitata thallus. In addition, the part of the different organs is demonstrated. The results show that CHM action was restricted to the treated zone since 32 P migrations were not reduced in surrounding regions. At the same time, CHM influence on other metabolic processes possibly involved in translocation, was studied. Thus, as concerns 32 P uptake by thallus pieces, CHM inhibition took effect but after a 4 hour action period. Moreover, no effect on O 2 uptake was observed. These results are believed to favour an inhibitory action on protein synthesis more than to affect oxidative phosphorylations. The present data are considered to support the view that in algae as well as in higher plants, the mechanisms of the translocation of inorganic substances depend on the protein metabolism. (orig.) [de

  17. Multi-perspective smFRET reveals rate-determining late intermediates of ribosomal translocation

    Science.gov (United States)

    Wasserman, Michael R.; Alejo, Jose L.; Altman, Roger B.; Blanchard, Scott C.

    2016-01-01

    Directional translocation of the ribosome through the messenger RNA open reading frame is a critical determinant of translational fidelity. This process entails a complex interplay of large-scale conformational changes within the actively translating particle, which together coordinate the movement of transfer and messenger RNA substrates with respect to the large and small ribosomal subunits. Using pre-steady state, single-molecule fluorescence resonance energy transfer imaging, we have tracked the nature and timing of these conformational events within the Escherichia coli ribosome from five structural perspectives. Our investigations reveal direct evidence of structurally and kinetically distinct, late intermediates during substrate movement, whose resolution is rate-determining to the translocation mechanism. These steps involve intra-molecular events within the EFG(GDP)-bound ribosome, including exaggerated, reversible fluctuations of the small subunit head domain, which ultimately facilitate peptidyl-tRNA’s movement into its final post-translocation position. PMID:26926435

  18. Simultaneous localization of MLL, AF4 and ENL genes in interphase nuclei by 3D-FISH: MLL translocation revisited

    Directory of Open Access Journals (Sweden)

    Sun Jian-Sheng

    2006-01-01

    Full Text Available Abstract Background Haematological cancer is characterised by chromosomal translocation (e.g. MLL translocation in acute leukaemia and two models have been proposed to explain the origins of recurrent reciprocal translocation. The first, established from pairs of translocated genes (such as BCR and ABL, considers the spatial proximity of loci in interphase nuclei (static "contact first" model. The second model is based on the dynamics of double strand break ends during repair processes (dynamic "breakage first" model. Since the MLL gene involved in 11q23 translocation has more than 40 partners, the study of the relative positions of the MLL gene with both the most frequent partner gene (AF4 and a less frequent partner gene (ENL, should elucidate the MLL translocation mechanism. Methods Using triple labeling 3D FISH experiments, we have determined the relative positions of MLL, AF4 and ENL genes, in two lymphoblastic and two myeloid human cell lines. Results In all cell lines, the ENL gene is significantly closer to the MLL gene than the AF4 gene (with P value loci would indicate a greater probability of the occurrence of t(11;19(q23;p13.3 compared to t(4;11(q21;q23. However this is in contradiction to the epidemiology of 11q23 translocation. Conclusion The simultaneous multi-probe hybridization in 3D-FISH is a new approach in addressing the correlation between spatial proximity and occurrence of translocation. Our observations are not consistent with the static "contact first" model of translocation. The recently proposed dynamic "breakage first" model offers an attractive alternative explanation.

  19. Induction of apoptosis in renal cell carcinoma by reactive oxygen species: involvement of extracellular signal-regulated kinase 1/2, p38delta/gamma, cyclooxygenase-2 down-regulation, and translocation of apoptosis-inducing factor.

    LENUS (Irish Health Repository)

    Ambrose, Monica

    2012-02-03

    Renal cell carcinoma (RCC) is the most common malignancy of the kidney. Unfortunately, RCCs are highly refractory to conventional chemotherapy, radiation therapy, and even immunotherapy. Thus, novel therapeutic targets need to be sought for the successful treatment of RCCs. We now report that 6-anilino-5,8-quinolinequinone (LY83583), an inhibitor of cyclic GMP production, induced growth arrest and apoptosis of the RCC cell line 786-0. It did not prove deleterious to normal renal epithelial cells, an important aspect of chemotherapy. To address the cellular mechanism(s), we used both genetic and pharmacological approaches. LY83583 induced a time- and dose-dependent increase in RCC apoptosis through dephosphorylation of mitogen-activated protein kinase kinase 1\\/2 and its downstream extracellular signal-regulated kinases (ERK) 1 and -2. In addition, we observed a decrease in Elk-1 phosphorylation and cyclooxygenase-2 (COX-2) down-regulation. We were surprised that we failed to observe an increase in either c-Jun NH(2)-terminal kinase or p38alpha and -beta mitogen-activated protein kinase activation. In contradiction, reintroduction of p38delta by stable transfection or overexpression of p38gamma dominant negative abrogated the apoptotic effect. Cell death was associated with a decrease and increase in Bcl-x(L) and Bax expression, respectively, as well as release of cytochrome c and translocation of apoptosis-inducing factor. These events were associated with an increase in reactive oxygen species formation. The antioxidant N-acetyl l-cysteine, however, opposed LY83583-mediated mitochondrial dysfunction, ERK1\\/2 inactivation, COX-2 down-regulation, and apoptosis. In conclusion, our results suggest that LY83583 may represent a novel therapeutic agent for the treatment of RCC, which remains highly refractory to antineoplastic agents. Our data provide a molecular basis for the anticancer activity of LY83583.

  20. Problem-elephant translocation: translocating the problem and the elephant?

    Directory of Open Access Journals (Sweden)

    Prithiviraj Fernando

    Full Text Available Human-elephant conflict (HEC threatens the survival of endangered Asian elephants (Elephas maximus. Translocating "problem-elephants" is an important HEC mitigation and elephant conservation strategy across elephant range, with hundreds translocated annually. In the first comprehensive assessment of elephant translocation, we monitored 16 translocations in Sri Lanka with GPS collars. All translocated elephants were released into national parks. Two were killed within the parks where they were released, while all the others left those parks. Translocated elephants showed variable responses: "homers" returned to the capture site, "wanderers" ranged widely, and "settlers" established home ranges in new areas soon after release. Translocation caused wider propagation and intensification of HEC, and increased elephant mortality. We conclude that translocation defeats both HEC mitigation and elephant conservation goals.

  1. FISH studies in a girl with sporadic aniridia and an apparently balanced de novo t(11;13(p13;q33 translocation detect a microdeletion involving the WAGR region

    Directory of Open Access Journals (Sweden)

    J.C. Llerena Jr.

    2000-09-01

    Full Text Available Conventional cytogenetic studies on a female infant with sporadic aniridia revealed what appeared to be a balanced de novo t(11;13 (p13;q33 translocation. Fluorescence in situ hybridization (FISH investigations, however, detected the presence of a cryptic 11p13p14 deletion which included the WAGR region and involved approximately 7.5 Mb of DNA, including the PAX6 and WT1 genes. These results account for the patient's aniridia, and place her at high risk for developing Wilms' tumour. The absence of mental retardation in the patient suggests that the position of the distal breakpoint may also help to refine the mental retardation locus in the WAGR contiguous gene syndrome (Wilms', aniridia, genital anomalies and mental retardation.O estudo citogenético convencional em uma menina com aniridia esporádica resultou em uma aparente translocação balanceada t(11;13(p13;q33 de novo. Entretanto, o estudo citogenético pela hibridação in situ fluorescente (FISH detectou a presença de uma deleção críptica 11p13p14, incluindo a região WAGR e envolvendo aproximadamente 7.5 Mb de DNA, deletando os genes PAX6 e WT1. Estes resultados correlacionam-se com o quadro clínico da paciente e a coloca em alto risco de desenvolver tumor de Wilms. A ausência de retardo mental na paciente indica que a posição distal do ponto de quebra poderá refinar o mapeamento do locus retardo mental na síndrome de genes contíguos WAGR (Wilms, aniridia, anomalias genitais e retardo mental.

  2. The impact of conservation-driven translocations on blood parasite prevalence in the Seychelles warbler

    Science.gov (United States)

    Fairfield, Eleanor A.; Hutchings, Kimberly; Gilroy, Danielle L.; Kingma, Sjouke A.; Burke, Terry; Komdeur, Jan; Richardson, David S.

    2016-01-01

    Introduced populations often lose the parasites they carried in their native range, but little is known about which processes may cause parasite loss during host movement. Conservation-driven translocations could provide an opportunity to identify the mechanisms involved. Using 3,888 blood samples collected over 22 years, we investigated parasite prevalence in populations of Seychelles warblers (Acrocephalus sechellensis) after individuals were translocated from Cousin Island to four new islands (Aride, Cousine, Denis and Frégate). Only a single parasite (Haemoproteus nucleocondensus) was detected on Cousin (prevalence = 52%). This parasite persisted on Cousine (prevalence = 41%), but no infection was found in individuals hatched on Aride, Denis or Frégate. It is not known whether the parasite ever arrived on Aride, but it has not been detected there despite 20 years of post-translocation sampling. We confirmed that individuals translocated to Denis and Frégate were infected, with initial prevalence similar to Cousin. Over time, prevalence decreased on Denis and Frégate until the parasite was not found on Denis two years after translocation, and was approaching zero prevalence on Frégate. The loss (Denis) or decline (Frégate) of H. nucleocondensus, despite successful establishment of infected hosts, must be due to factors affecting parasite transmission on these islands. PMID:27405249

  3. Nuclear translocation of glutathione S-transferase {pi} is mediated by a non-classical localization signal

    Energy Technology Data Exchange (ETDEWEB)

    Kawakatsu, Miho [Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523 (Japan); Goto, Shinji, E-mail: sgoto@nagasaki-u.ac.jp [Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523 (Japan); Yoshida, Takako; Urata, Yoshishige; Li, Tao-Sheng [Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523 (Japan)

    2011-08-12

    Highlights: {yields} Nuclear translocation of GST{pi} is abrogated by the deletion of the last 16 amino acid residues in the carboxy-terminal region, indicating that residues 195-208 of GST{pi} are required for nuclear translocation. {yields} The lack of a contiguous stretch of positively charged amino acid residues within the carboxy-terminal region of GST{pi}, suggests that the nuclear translocation of GST{pi} is mediated by a non-classical nuclear localization signal. {yields} An in vitro transport assay shows that the nuclear translocation of GST{pi} is dependent on cytosolic factors and ATP. -- Abstract: Glutathione S-transferase {pi} (GST{pi}), a member of the GST family of multifunctional enzymes, is highly expressed in human placenta and involved in the protection of cellular components against electrophilic compounds or oxidative stress. We have recently found that GST{pi} is expressed in the cytoplasm, mitochondria, and nucleus in some cancer cells, and that the nuclear expression of GST{pi} appears to correlate with resistance to anti-cancer drugs. Although the mitochondrial targeting signal of GST{pi} was previously identified in the amino-terminal region, the mechanism of nuclear translocation remains completely unknown. In this study, we find that the region of GST{pi}195-208 is critical for nuclear translocation, which is mediated by a novel and non-classical nuclear localization signal. In addition, using an in vitro transport assay, we demonstrate that the nuclear translocation of GST{pi} depends on the cytosolic extract and ATP. Although further experiments are needed to understand in depth the precise mechanism of nuclear translocation of GST{pi}, our results may help to establish more efficient anti-cancer therapy, especially with respect to resistance to anti-cancer drugs.

  4. The Legionella pneumophila IcmSW complex interacts with multiple Dot/Icm effectors to facilitate type IV translocation.

    Directory of Open Access Journals (Sweden)

    Eric D Cambronne

    2007-12-01

    Full Text Available Many gram-negative pathogens use a type IV secretion system (T4SS to deliver effector proteins into eukaryotic host cells. The fidelity of protein translocation depends on the efficient recognition of effector proteins by the T4SS. Legionella pneumophila delivers a large number of effector proteins into eukaryotic cells using the Dot/Icm T4SS. How the Dot/Icm system is able to recognize and control the delivery of effectors is poorly understood. Recent studies suggest that the IcmS and IcmW proteins interact to form a stable complex that facilitates translocation of effector proteins by the Dot/Icm system by an unknown mechanism. Here we demonstrate that the IcmSW complex is necessary for the productive translocation of multiple Dot/Icm effector proteins. Effector proteins that were able to bind IcmSW in vitro required icmS and icmW for efficient translocation into eukaryotic cells during L. pneumophila infection. We identified regions in the effector protein SidG involved in icmSW-dependent translocation. Although the full-length SidG protein was translocated by an icmSW-dependent mechanism, deletion of amino terminal regions in the SidG protein resulted in icmSW-independent translocation, indicating that the IcmSW complex is not contributing directly to recognition of effector proteins by the Dot/Icm system. Biochemical and genetic studies showed that the IcmSW complex interacts with a central region of the SidG protein. The IcmSW interaction resulted in a conformational change in the SidG protein as determined by differences in protease sensitivity in vitro. These data suggest that IcmSW binding to effectors could enhance effector protein delivery by mediating a conformational change that facilitates T4SS recognition of a translocation domain located in the carboxyl region of the effector protein.

  5. [Bacterial Translocation from Intestine: Microbiological, Immunological and Pathophysiological Aspects].

    Science.gov (United States)

    Podoprigora, G I; Kafarskaya, L I; Bainov, N A; Shkoporov, A N

    2015-01-01

    Bacterial translocation (BT) is both pathology and physiology phenomenon. In healthy newborns it accompanies the process of establishing the autochthonous intestinal microbiota and the host microbiome. In immunodeficiency it can be an aethio-pathogenetic link and a manifestation of infection or septic complications. The host colonization resistance to exogenous microbic colonizers is provided by gastrointestinal microbiota in concert with complex constitutional and adaptive defense mechanisms. BT may be result of barrier dysfunction and self-purification mechanisms involving the host myeloid cell phagocytic system and opsonins. Dynamic cell humoral response to microbial molecular patterns that occurs on the mucous membranes initiates receptorsignalingpathways and cascade ofreactions. Their vector and results are largely determined by cross-reactivity between microbiome and the host genome. Enterocyte barriers interacting with microbiota play leading role in providing adaptive, homeostatic and stress host reactivity. Microcirculatory ischemic tissue alterations and inflammatory reactions increase the intestinal barrier permeability and BT These processes a well as mechanisms for apoptotic cells and bacteria clearance are justified to be of prospective research interest. The inflammatory and related diseases caused by alteration and dysfunction of the intestinal barrier are reasonably considered as diseases of single origin. Maternal microbiota affects theformation of the innate immune system and the microbiota of the newborn, including intestinal commensal translocation during lactation. Deeper understanding of intestinal barrier mechanisms needs complex microbiological, immunological, pathophysiological, etc. investigations using adequate biomodels, including gnotobiotic animals.

  6. Mechanism(s) involved in opioid drug abuse modulation of HAND.

    Science.gov (United States)

    Dutta, Raini; Roy, Sabita

    2012-07-01

    Drug abuse and HIV infection are interlinked. From the onset of the HIV/AIDS epidemic, the impact of illicit drug use on HIV disease progression has been a focus of many investigations. Both laboratory-based and epidemiological studies strongly indicate that drug abuse may exacerbate HIV disease progression and increase mortality and morbidity in these patients. Increase susceptibility to opportunistic infection has been implicated as one of the major causes for this detriment. Furthermore, opioids are known to elicit prevalence of neurodegenerative disorders in HIV-infected patients. Numerous authors have delineated various molecular as well as cellular mechanisms associated with neurological complications in these patients. This review gives an overview of these findings. Understanding the mechanisms will allow for the development of targeted therapies aimed at reducing the progression of neurocognitive decline in the drug abusing HIV infected individuals.

  7. Meiotic behaviour and spermatogenesis in male mice heterozygous for translocation types also occurring in man

    NARCIS (Netherlands)

    Nijhoff, J.H.

    1981-01-01

    In this thesis a start was made with meiotic observations of mouse translocation types - a Robertsonian translocation and a translocation between a metacentric and an acrocentric chromosome - which also occur in man. It is generally accepted that, when no chromosomal rearrangements are involved, man

  8. Dek-can rearrangement in translocation (6;9)(p23;q34)

    NARCIS (Netherlands)

    Soekarman, D.; von Lindern, M.; van der Plas, D. C.; Selleri, L.; Bartram, C. R.; Martiat, P.; Culligan, D.; Padua, R. A.; Hasper-Voogt, K. P.; Hagemeijer, A.

    1992-01-01

    The translocation (6;9)(p23;q34) is mainly found in specific subtypes of acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). The diagnosis of this translocation is not easy since the cytogenetic change is quite subtle. The two genes involved in this translocation were recently isolated

  9. Berberine activates Nrf2 nuclear translocation and inhibits apoptosis induced by high glucose in renal tubular epithelial cells through a phosphatidylinositol 3-kinase/Akt-dependent mechanism.

    Science.gov (United States)

    Zhang, Xiuli; Liang, Dan; Lian, Xu; Jiang, Yan; He, Hui; Liang, Wei; Zhao, Yue; Chi, Zhi-Hong

    2016-06-01

    Apoptosis of tubular epithelial cells is a major feature of diabetic kidney disease, and hyperglycemia triggers the generation of free radicals and oxidant stress in tubular cells. Berberine (BBR) is identified as a potential anti-diabetic herbal medicine due to its beneficial effects on insulin sensitivity, glucose metabolism and glycolysis. In this study, the underlying mechanisms involved in the protective effects of BBR on high glucose-induced apoptosis were explored using cultured renal tubular epithelial cells (NRK-52E cells) and human kidney proximal tubular cell line (HK-2 cells). We identified the pivotal role of phosphatidylinositol 3-kinase (PI3K)/Akt in BBR cellular defense mechanisms and revealed the novel effect of BBR on nuclear factor (erythroid-derived 2)-related factor-2 (Nrf2) and heme oxygenase (HO)-1 in NRK-52E and HK-2 cells. BBR attenuated reactive oxygen species production, antioxidant defense (GSH and SOD) and oxidant-sensitive proteins (Nrf2 and HO-1), which also were blocked by LY294002 (an inhibitor of PI3K) in HG-treated NRK-52E and HK-2 cells. Furthermore, BBR improved mitochondrial function by increasing mitochondrial membrane potential. BBR-induced anti-apoptotic function was demonstrated by decreasing apoptotic proteins (cytochrome c, Bax, caspase3 and caspase9). All these findings suggest that BBR exerts the anti-apoptosis effects through activation of PI3K/Akt signal pathways and leads to activation of Nrf2 and induction of Nrf2 target genes, and consequently protecting the renal tubular epithelial cells from HG-induced apoptosis.

  10. Familial cryptic translocation in Angelman syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Weyerts, L.K.; Wiley, J.E.; Loud, K.M. [ECU School of Medicine, Greenville, NC (United States)] [and others

    1994-09-01

    The majority of patients with Angelman syndrome have been shown to have a cytogenetic or molecular deletion on the maternally derived chromosome 15. We report on a case of Angelman syndrome in which this deletion occurs as an unbalanced cryptic translocation involving chromosomes 14 and 15. The proband was diagnosed clinically as having Angelman syndrome. Multiple cytogenetic studies were done without detecting any deletion. When DNA probes (Oncor) specific for the Prader Willi/Angelman locus became available, the patient was restudied and found to be deleted for {open_quotes}region A{close_quotes} (D15S11) but not for {open_quotes}region B{close_quotes} (GABRB3). No other abnormality was detected. The proband`s mother was then studied. The chromosome 15 marker probe and D15S11 were detected on different chromosomes. Using alpha-satellite probes, a cryptic 14;15 translocation was uncovered. This balanced translocation was also found to be carried by the sister of the proband. This case, along with a case presented at the 1993 ASHG meeting, illustrates the need for using acrocentric probes when studying Angelman syndrome patients. The proband was studied using additional probes specific for this region and found to be deleted for SNRPN but not for D15S10. The breakpoint of the translocation in this patient delineates the smallest deletion of the Angelman syndrome region reported to date and therefore may represent the specific gene involved.

  11. The metabolic enhancer piracetam attenuates mitochondrion-specific endonuclease G translocation and oxidative DNA fragmentation.

    Science.gov (United States)

    Gupta, Sonam; Verma, Dinesh Kumar; Biswas, Joyshree; Rama Raju, K Siva; Joshi, Neeraj; Wahajuddin; Singh, Sarika

    2014-08-01

    This study was performed to investigate the involvement of mitochondrion-specific endonuclease G in piracetam (P)-induced protective mechanisms. Studies have shown the antiapoptotic effects of piracetam but the mechanism of action of piracetam is still an enigma. To assess the involvement of endonuclease G in piracetam-induced protective effects, astrocyte glial cells were treated with lipopolysaccharide (LPS) and piracetam. LPS treatment caused significantly decreased viability, mitochondrial activity, oxidative stress, chromatin condensation, and DNA fragmentation, which were attenuated by piracetam cotreatment. Cotreatment of astrocytes with piracetam showed its significantly time-dependent absorption as observed with high-performance liquid chromatography. Astrocytes treated with piracetam alone showed enhanced mitochondrial membrane potential (MMP) in comparison to control astrocytes. However, in LPS-treated cells no significant alteration in MMP was observed in comparison to control cells. Protein and mRNA levels of the terminal executor of the caspase-mediated pathway, caspase-3, were not altered significantly in LPS or LPS + piracetam-treated astrocytes, whereas endonuclease G was significantly translocated to the nucleus in LPS-treated astrocytes. Piracetam cotreatment attenuated the LPS-induced endonuclease G translocation. In conclusion this study indicates that LPS treatment of astrocytes caused decreased viability, oxidative stress, mitochondrial dysfunction, chromatin condensation, DNA damage, and translocation of endonuclease G to the nucleus, which was inhibited by piracetam cotreatment, confirming that the mitochondrion-specific endonuclease G is one of the factors involved in piracetam-induced protective mechanisms. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Possible mechanisms involved in the vasorelaxant effect produced by clobenzorex in aortic segments of rats

    OpenAIRE

    Lozano-Cuenca, J.; González-Hernández, A.; López-Canales, O.A.; Villagrana-Zesati, J.R.; Rodríguez-Choreão, J.D.; Morín-Zaragoza, R.; Castillo-Henkel, E.F.; López-Canales, J.S.

    2017-01-01

    Clobenzorex is a metabolic precursor of amphetamine indicated for the treatment of obesity. Amphetamines have been involved with cardiovascular side effects such as hypertension and pulmonary arterial hypertension. The aim of the present study was to investigate whether the direct application of 10?9?10?5 M clobenzorex on isolated phenylephrine-precontracted rat aortic rings produces vascular effects, and if so, what mechanisms may be involved. Clobenzorex produced an immediate concentration-...

  13. Mechanisms involved in the transport of mercuric ions in target tissues

    Science.gov (United States)

    Bridges, Christy C.; Zalups, Rudolfs K.

    2016-01-01

    Mercury exists in the environment in various forms, all of which pose a risk to human health. Despite guidelines regulating the industrial release of mercury into the environment, humans continue to be exposed regularly to various forms of this metal via inhalation or ingestion. Following exposure, mercuric ions are taken up by and accumulate in numerous organs, including brain, intestine, kidney, liver, and placenta. In order to understand the toxicological effects of exposure to mercury, a thorough understanding of the mechanisms that facilitate entry of mercuric ions into target cells must first be obtained. A number of mechanisms for the transport of mercuric ions into target cells and organs have been proposed in recent years. However, the ability of these mechanisms to transport mercuric ions and the regulatory features of these carriers have not been characterized completely. The purpose of this review is to summarize the current findings related to the mechanisms that may be involved in the transport of inorganic and organic forms of mercury in target tissues and organs. This review will describe mechanisms known to be involved in the transport of mercury and will also propose additional mechanisms that may potentially be involved in the transport of mercuric ions into target cells. PMID:27422290

  14. Structure of the hexameric HerA ATPase reveals a mechanism of translocation-coupled DNA-end processing in archaea.

    Science.gov (United States)

    Rzechorzek, Neil J; Blackwood, John K; Bray, Sian M; Maman, Joseph D; Pellegrini, Luca; Robinson, Nicholas P

    2014-11-25

    The HerA ATPase cooperates with the NurA nuclease and the Mre11-Rad50 complex for the repair of double-strand DNA breaks in thermophilic archaea. Here we extend our structural knowledge of this minimal end-resection apparatus by presenting the first crystal structure of hexameric HerA. The full-length structure visualizes at atomic resolution the N-terminal HerA-ATP synthase domain and a conserved C-terminal extension, which acts as a physical brace between adjacent protomers. The brace also interacts in trans with nucleotide-binding residues of the neighbouring subunit. Our observations support a model in which the coaxial interaction of the HerA ring with the toroidal NurA dimer generates a continuous channel traversing the complex. HerA-driven translocation would propel the DNA towards the narrow annulus of NurA, leading to duplex melting and nucleolytic digestion. This system differs substantially from the bacterial end-resection paradigms. Our findings suggest a novel mode of DNA-end processing by this integrated archaeal helicase-nuclease machine.

  15. WARBURG EFFECT AND TRANSLOCATION-INDUCED GENOMIC INSTABILITY: TWO YEAST MODELS FOR CANCER CELLS

    Directory of Open Access Journals (Sweden)

    Valentina eTosato

    2013-01-01

    Full Text Available Yeast has been established as an efficient model system to study biological principles underpinning human health. In this review we focus on yeast models covering two aspects of cancer formation and progression i the activity of pyruvate kinase (PK, which recapitulates metabolic features of cancer cells, including the Warburg effect, and ii Bridge-Induced chromosome Translocation (BIT mimicking genome instability in cancer. Saccharomyces cerevisiae is an excellent model to study cancer cell metabolism, as exponentially growing yeast cells exhibit many metabolic similarities with rapidly proliferating cancer cells. The metabolic reconfiguration includes an increase in glucose uptake and fermentation, at the expense of respiration and oxidative phosphorylation (the Warburg effect, and involves a broad reconfiguration of nucleotide and amino acid metabolism. Both in yeast and humans, the regulation of this process seems to have a central player, pyruvate kinase, which is up-regulated in cancer, and to occur mostly on a post-transcriptional and posttranslational basis. Furthermore, BIT allows to generate selectable translocation-derived recombinants (translocants, between any two desired chromosomal locations, in wild-type yeast strains transformed with a linear DNA cassette carrying a selectable marker flanked by two DNA sequences homologous to different chromosomes. Using the Bridge-Induced Translocation system, targeted non-reciprocal translocations in mitosis are easily inducible. An extensive collection of different yeast translocants exhibiting genome instability and aberrant phenotypes similar to cancer cells has been produced and subjected to analysis. In this review, we hence provide an overview upon two yeast cancer models, and extrapolate general principles for mimicking human disease mechanisms in yeast.

  16. Evidence for the involvement of MC4 receptors in the central mechanisms of opioid antinociception

    NARCIS (Netherlands)

    Starowicz, Katarzyna

    2005-01-01

    The data described in this thesis extend general knowledge of the involvement of the MC4 receptor in mechanisms of analgesia. The following aspects outlined below constitute novel information. Firstly, the MC4R localization in the DRG is demonstrated. The MC4 receptor was assumed to exist

  17. Evaluation of autophagy as a mechanism involved in air pollutant-induced pulmonary injury

    Science.gov (United States)

    Evaluation of autophagy as a mechanism involved in air pollutant-induced pulmonary injuryHenriquez, A.1, Snow, S.2, Miller, D1.,Schladweiler, M.2 and Kodavanti, U2.1 Curriculum in Toxicology, UNC, Chapel Hill, NC. 2 EPHD/NHEERL, US EPA, RTP, Durham, NC. ...

  18. Hierarchy of mechanisms involved in generating Na/K-ATPase polarity in MDCK epithelial cells

    NARCIS (Netherlands)

    Mays, R.W.; Siemers, K.A.; Fritz, B.A.; Lowe, A.W.; van Meer, G.; Nelson, W.J.

    1995-01-01

    We have studied mechanisms involved in generating a polarized distribution of Na/K-ATPase in the basal-lateral membrane of two clones of MDCK II cells. Both clones exhibit polarized distributions of marker proteins of the apical and basal-lateral membranes, including Na/K-ATPase, at steady state.

  19. Education on invasive mechanical ventilation involving intensive care nurses: a systematic review.

    Science.gov (United States)

    Guilhermino, Michelle C; Inder, Kerry J; Sundin, Deborah

    2018-03-26

    Intensive care unit nurses are critical for managing mechanical ventilation. Continuing education is essential in building and maintaining nurses' knowledge and skills, potentially improving patient outcomes. The aim of this study was to determine whether continuing education programmes on invasive mechanical ventilation involving intensive care unit nurses are effective in improving patient outcomes. Five electronic databases were searched from 2001 to 2016 using keywords such as mechanical ventilation, nursing and education. Inclusion criteria were invasive mechanical ventilation continuing education programmes that involved nurses and measured patient outcomes. Primary outcomes were intensive care unit mortality and in-hospital mortality. Secondary outcomes included hospital and intensive care unit length of stay, length of intubation, failed weaning trials, re-intubation incidence, ventilation-associated pneumonia rate and lung-protective ventilator strategies. Studies were excluded if they excluded nurses, patients were ventilated for less than 24 h, the education content focused on protocol implementation or oral care exclusively or the outcomes were participant satisfaction. Quality was assessed by two reviewers using an education intervention critical appraisal worksheet and a risk of bias assessment tool. Data were extracted independently by two reviewers and analysed narratively due to heterogeneity. Twelve studies met the inclusion criteria for full review: 11 pre- and post-intervention observational and 1 quasi-experimental design. Studies reported statistically significant reductions in hospital length of stay, length of intubation, ventilator-associated pneumonia rates, failed weaning trials and improvements in lung-protective ventilation compliance. Non-statistically significant results were reported for in-hospital and intensive care unit mortality, re-intubation and intensive care unit length of stay. Limited evidence of the effectiveness of

  20. The mechanisms involved at the cell level; Les mecanismes mis en jeu au niveau cellulaire

    Energy Technology Data Exchange (ETDEWEB)

    Leblanc, G.; Pourcher, Th.; Perron, B. [Nice Univ., Dir. des Sciences du Vivant, Dept. de Biologie Joliot-Curie, 06 (France); Guillain, F. [CEA Grenoble, Dir. des Sciences du Vivant, 38 (France); Quemeneur, E. [CEA Marcoule, Dir. des Sciences du Vivant, 30 (France); Fritsch, P. [CEA Bruyeres le Chatel, Dir. des Sciences du Vivant, 91 (France)

    2003-07-01

    The mechanisms responsible at the cell level for inducing toxic reactions after contamination are as yet only imperfectly known. Work still needs to be done for both contaminants that have a biological role, such as iodine, and those that do not, such as cadmium, uranium and plutonium. In particular, these mechanisms bring into play, in biological membranes, carriers which are the physiological partners responsible for material exchange with the environment or inside the body. As they lack absolute selectivity, these carriers, which are involved in the assimilation and accumulation of vital mineral elements, also have the ability to transport toxic elements and isotopes. (authors)

  1. Involvement of translation and transcription processes into neurophysiological mechanisms of long-term memory reconsolidation.

    Science.gov (United States)

    Kozyrev, S A; Nikitin, V P

    2013-03-01

    We studied the involvement of translation and transcription processes into behavioral and neuronal mechanisms of reconsolidation of the long-term memory of the conditioned taste aversion in edible snails. Injection of cycloheximide (an inhibitor of protein synthesis) to the snails in 48 h after training combined with subsequent reminder and presentation of the conditional stimulus resulted in the development of persistent amnesia and depression of the responses of the defensive behavior command neurons LPl1 and RPl1 to the conditional stimulus. Injection of mRNA synthesis inhibitors actinomycin D or DRB (5,6-dichloro-1-β-D-ribofuranosylbenzimidasole) in 48 h after conditioning with subsequent reminding procedure produced no effects on memory retention and on the responses of the command neurons to the conditional stimulus. The study suggests that the proteins translated from previously synthesized and stored mRNA were involved in the mechanisms of reconsolidation of the memory responsible for conditioned taste aversion.

  2. Characterization of a t(5;8)(q31;q21) translocation in a patient with mental retardation and congenital heart disease: implications for involvement of RUNX1T1 in human brain and heart development

    DEFF Research Database (Denmark)

    Zhang, Litu; Tümer, Zeynep; Møllgård, Kjeld

    2009-01-01

    The chromosome break points of the t(8;21)(q21.3;q22.12) translocation associated with acute myeloid leukemia disrupt the RUNX1 gene (also known as AML1) and the RUNX1T1 gene (also known as CBFA2T3, MTG8 and ETO) and generate a RUNX1-RUNX1T1 fusion protein. Molecular characterization of the trans...... development and support the notion that disruption of the RUNX1T1 gene is associated with the patient's phenotype.European Journal of Human Genetics advance online publication, 28 January 2009; doi:10.1038/ejhg.2008.269....

  3. Evidence that BDNF regulates heart rate by a mechanism involving increased brainstem parasympathetic neuron excitability

    OpenAIRE

    Wan, Ruiqian; Weigand, Letitia A.; Bateman, Ryan; Griffioen, Kathleen; Mendelowitz, David; Mattson, Mark P.

    2014-01-01

    Autonomic control of heart rate is mediated by cardioinhibitory parasympathetic cholinergic neurons located in the brainstem and stimulatory sympathetic noradrenergic neurons. During embryonic development the survival and cholinergic phenotype of brainstem autonomic neurons is promoted by brain-derived neurotrophic factor (BDNF). We now provide evidence that BDNF regulates heart rate by a mechanism involving increased brainstem cardioinhibitory parasympathetic activity. Mice with a BDNF haplo...

  4. BCR translocation to derivative chromosome 2, a new case of chronic myeloid leukemia with complex variant translocation and Philadelphia chromosome

    International Nuclear Information System (INIS)

    Al-Achkar, W.; Wafa, A.; Al-Medani, S.

    2011-01-01

    The well-known typical fusion gene BCR/ABL can be observed in connection with a complex translocation event in only 5-8% of cases with chronic myeloid leukemia (CML). Herein we report an exceptional CML case with complex chromosomal aberrations not observed before, translocated BCR to the derivative chromosome 2 [der(2)], additional to involving a four chromosomes translocation implying chromosomal regions such as 1p32 and 2q21 besides 9q34 and 22q11.2. Which were characterized by molecular cytogenetics. (author)

  5. Mode of ATM-dependent suppression of chromosome translocation

    Energy Technology Data Exchange (ETDEWEB)

    Yamauchi, Motohiro, E-mail: motoyama@nagasaki-u.ac.jp [Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523 (Japan); Suzuki, Keiji; Oka, Yasuyoshi; Suzuki, Masatoshi; Kondo, Hisayoshi; Yamashita, Shunichi [Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523 (Japan)

    2011-12-09

    Highlights: Black-Right-Pointing-Pointer We addressed how ATM suppresses frequency of chromosome translocation. Black-Right-Pointing-Pointer We found ATM/p53-dependent G1 checkpoint suppresses translocation frequency. Black-Right-Pointing-Pointer We found ATM and DNA-PKcs function in a common pathway to suppress translocation. -- Abstract: It is well documented that deficiency in ataxia telangiectasia mutated (ATM) protein leads to elevated frequency of chromosome translocation, however, it remains poorly understood how ATM suppresses translocation frequency. In the present study, we addressed the mechanism of ATM-dependent suppression of translocation frequency. To know frequency of translocation events in a whole genome at once, we performed centromere/telomere FISH and scored dicentric chromosomes, because dicentric and translocation occur with equal frequency and by identical mechanism. By centromere/telomere FISH analysis, we confirmed that chemical inhibition or RNAi-mediated knockdown of ATM causes 2 to 2.5-fold increase in dicentric frequency at first mitosis after 2 Gy of gamma-irradiation in G0/G1. The FISH analysis revealed that ATM/p53-dependent G1 checkpoint suppresses dicentric frequency, since RNAi-mediated knockdown of p53 elevated dicentric frequency by 1.5-fold. We found ATM also suppresses dicentric occurrence independently of its checkpoint role, as ATM inhibitor showed additional effect on dicentric frequency in the context of p53 depletion and Chk1/2 inactivation. Epistasis analysis using chemical inhibitors revealed that ATM kinase functions in the same pathway that requires kinase activity of DNA-dependent protein kinase catalytic subunit (DNA-PKcs) to suppress dicentric frequency. From the results in the present study, we conclude that ATM minimizes translocation frequency through its commitment to G1 checkpoint and DNA double-strand break repair pathway that requires kinase activity of DNA-PKcs.

  6. [Clinical characteristics and preimplantation genetic diagnosis for male Robertsonian translocations].

    Science.gov (United States)

    Huang, Jin; Lian, Ying; Qiao, Jie; Liu, Ping

    2012-08-18

    To explore the clinical characteristics and the preimplantation genetic diagnosis (PGD) for male Robertsonian translocations. From Jan 2005 to Oct 2011, 96 PGD cycles of 80 male Robertsonian translocations were performed at the Center of Reproductive Medicine of Peking University Third Hospital, Beijing. All the couples were involved in assisted reproductive therapy because of oligozoospermia or repeated abortions. Pregnancy results and clinical characteristics were analyzed in this study. Of all the 80 Robertsonian translocation couples, 62 (77.50%, 62/80) couples suffered from primary infertility due to severe oligoospermia and 8 (10%, 8/80) couples suffered from secondary infertility due to oligoospermia. Moreover, 10 (12.50%, 10/80) couples had recurrent spontaneous abortion. Of all the 80 male Robertsonian translocations, 50 were (13; 14) translocations and 15 (14; 21) translocations. The study showed that 79 PGD cycles had the balanced embryos to transfer and 25 cycles resulted in clinical pregnancies. The clinical pregnancy rate per transfer cycle was 31.65% (25 of 79). Now, 18 couples had 21 viable infants and 3 were ongoing pregnant. Oligozoospermia is the main factor for the infertility of the male Robertsonian translocations. Artificial reproductive techniques can solve their reproductive problems. Moreover, PGD will decrease the risk of recurrent spontaneous abortion and the malformations.

  7. Involvement of midbrain tectum neurokinin-mediated mechanisms in fear and anxiety

    International Nuclear Information System (INIS)

    Brenes, J.C.; Broiz, A.C.; Bassi, G.S.; Schwarting, R.K.W.; Brandão, M.L.

    2012-01-01

    Electrical stimulation of midbrain tectum structures, particularly the dorsal periaqueductal gray (dPAG) and inferior colliculus (IC), produces defensive responses, such as freezing and escape behavior. Freezing also ensues after termination of dPAG stimulation (post-stimulation freezing). These defensive reaction responses are critically mediated by Y -aminobutyric acid and 5-hydroxytryptamine mechanisms in the midbrain tectum. Neurokinins (NKs) also play a role in the mediation of dPAG stimulation-evoked fear, but how NK receptors are involved in the global processing and expression of fear at the level of the midbrain tectum is yet unclear. The present study investigated the role of NK-1 receptors in unconditioned defensive behavior induced by electrical stimulation of the dPAG and IC of male Wistar rats. Spantide (100 pmol/0.2 µL), a selective NK-1 antagonist, injected into these midbrain structures had anti-aversive effects on defensive responses and distress ultrasonic vocalizations induced by stimulation of the dPAG but not of the IC. Moreover, intra-dPAG injections of spantide did not influence post-stimulation freezing or alter exploratory behavior in rats subjected to the elevated plus maze. These results suggest that NK-1 receptors are mainly involved in the mediation of defensive behavior organized in the dPAG. Dorsal periaqueductal gray-evoked post-stimulation freezing was not affected by intra-dPAG injections of spantide, suggesting that NK-1-mediated mechanisms are only involved in the output mechanisms of defensive behavior and not involved in the processing of ascending aversive information from the dPAG

  8. Involvement of midbrain tectum neurokinin-mediated mechanisms in fear and anxiety

    Energy Technology Data Exchange (ETDEWEB)

    Brenes, J.C. [Experimental and Physiological Psychology, Philipps-University of Marburg, Marburg (Germany); Broiz, A.C.; Bassi, G.S. [Instituto de Neurociências e Comportamento, Campus USP, Ribeirão Preto, SP (Brazil); Laboratório de Psicobiologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Schwarting, R.K.W. [Experimental and Physiological Psychology, Philipps-University of Marburg, Marburg (Germany); Brandão, M.L. [Instituto de Neurociências e Comportamento, Campus USP, Ribeirão Preto, SP (Brazil); Laboratório de Psicobiologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil)

    2012-03-09

    Electrical stimulation of midbrain tectum structures, particularly the dorsal periaqueductal gray (dPAG) and inferior colliculus (IC), produces defensive responses, such as freezing and escape behavior. Freezing also ensues after termination of dPAG stimulation (post-stimulation freezing). These defensive reaction responses are critically mediated by {sub Y}-aminobutyric acid and 5-hydroxytryptamine mechanisms in the midbrain tectum. Neurokinins (NKs) also play a role in the mediation of dPAG stimulation-evoked fear, but how NK receptors are involved in the global processing and expression of fear at the level of the midbrain tectum is yet unclear. The present study investigated the role of NK-1 receptors in unconditioned defensive behavior induced by electrical stimulation of the dPAG and IC of male Wistar rats. Spantide (100 pmol/0.2 µL), a selective NK-1 antagonist, injected into these midbrain structures had anti-aversive effects on defensive responses and distress ultrasonic vocalizations induced by stimulation of the dPAG but not of the IC. Moreover, intra-dPAG injections of spantide did not influence post-stimulation freezing or alter exploratory behavior in rats subjected to the elevated plus maze. These results suggest that NK-1 receptors are mainly involved in the mediation of defensive behavior organized in the dPAG. Dorsal periaqueductal gray-evoked post-stimulation freezing was not affected by intra-dPAG injections of spantide, suggesting that NK-1-mediated mechanisms are only involved in the output mechanisms of defensive behavior and not involved in the processing of ascending aversive information from the dPAG.

  9. Pathophysiology of major depressive disorder: mechanisms involved in etiology are not associated with clinical progression.

    Science.gov (United States)

    Verduijn, J; Milaneschi, Y; Schoevers, R A; van Hemert, A M; Beekman, A T F; Penninx, B W J H

    2015-09-29

    Meta-analyses support the involvement of different pathophysiological mechanisms (inflammation, hypothalamic-pituitary (HPA)-axis, neurotrophic growth and vitamin D) in major depressive disorder (MDD). However, it remains unknown whether dysregulations in these mechanisms are more pronounced when MDD progresses toward multiple episodes and/or chronicity. We hypothesized that four central pathophysiological mechanisms of MDD are not only involved in etiology, but also associated with clinical disease progression. Therefore, we expected to find increasingly more dysregulation across consecutive stages of MDD progression. The sample from the Netherlands Study of Depression and Anxiety (18-65 years) consisted of 230 controls and 2333 participants assigned to a clinical staging model categorizing MDD in eight stages (0, 1A, 1B, 2, 3A, 3B, 3C and 4), from familial risk at MDD (stage 0) to chronic MDD (stage 4). Analyses of covariance examined whether pathophysiological mechanism markers (interleukin (IL)-6, C-reactive protein (CRP), cortisol, brain-derived neurotrophic factor and vitamin D) showed a linear trend across controls, those at risk for MDD (stages 0, 1A and 1B), and those with full-threshold MDD (stages 2, 3A, 3B, 3C and 4). Subsequently, pathophysiological differences across separate stages within those at risk and with full-threshold MDD were examined. A linear increase of inflammatory markers (CRP P=0.026; IL-6 P=0.090), cortisol (P=0.025) and decrease of vitamin D (P<0.001) was found across the entire sample (for example, from controls to those at risk and those with full-threshold MDD). Significant trends of dysregulations across stages were present in analyses focusing on at-risk individuals (IL-6 P=0.050; cortisol P=0.008; vitamin D P<0.001); however, no linear trends were found in dysregulations for any of the mechanisms across more progressive stages of full-threshold MDD. Our results support that the examined pathophysiological mechanisms are

  10. Microtubules become more dynamic but not shorter during preprophase band formation: A possible "search-and-capture" mechanism for microtubule translocation

    NARCIS (Netherlands)

    Vos, J.W.; Dogterom, M.; Emons, A.M.C.

    2004-01-01

    The dynamic behavior of the microtubule cytoskeleton plays a crucial role in cellular organization, but the physical mechanisms underlying microtubule (re)organization in plant cells are poorly understood. We investigated microtubule dynamics in tobacco BY-2 suspension cells during interphase and

  11. Phytoremediation potential of the novel atrazine tolerant Lolium multiflorum and studies on the mechanisms involved

    International Nuclear Information System (INIS)

    Merini, Luciano J.; Bobillo, Cecilia; Cuadrado, Virginia; Corach, Daniel; Giulietti, Ana M.

    2009-01-01

    Atrazine impact on human health and the environment have been extensively studied. Phytoremediation emerged as a low cost, environmental friendly biotechnological solution for atrazine pollution in soil and water. In vitro atrazine tolerance assays were performed and Lolium multiflorum was found as a novel tolerant species, able to germinate and grow in the presence of 1 mg kg -1 of the herbicide. L. multiflorum presented 20% higher atrazine removal capacity than the natural attenuation, with high initial degradation rate in microcosms. The mechanisms involved in atrazine tolerance such as mutation in psbA gene, enzymatic detoxification via P 450 or chemical hydrolysis through benzoxazinones were evaluated. It was demonstrated that atrazine tolerance is conferred by enhanced enzymatic detoxification via P 450 . Due to its atrazine degradation capacity in soil and its agronomical properties, L. multiflorum is a candidate for designing phytoremediation strategies for atrazine contaminated agricultural soils, especially those involving run-off avoiding. - Finding of a novel atrazine-tolerant species, as a potential candidate for phytoremediating herbicide-contaminated agriculture soils and elucidation of the mechanisms involved in tolerance.

  12. Phytoremediation potential of the novel atrazine tolerant Lolium multiflorum and studies on the mechanisms involved

    Energy Technology Data Exchange (ETDEWEB)

    Merini, Luciano J. [Catedra de Microbiologia Industrial y Biotecnologia, Universidad de Buenos Aires (Argentina); Bobillo, Cecilia [Servicio de Huellas Digitales Geneticas, Facultad de Farmacia y Bioquimica, Microbiologia Industrial y Biotecnologia, Universidad de Buenos Aires, Junin 956, BS As (Argentina); Cuadrado, Virginia [Catedra de Microbiologia Industrial y Biotecnologia, Universidad de Buenos Aires (Argentina); Corach, Daniel [Servicio de Huellas Digitales Geneticas, Facultad de Farmacia y Bioquimica, Microbiologia Industrial y Biotecnologia, Universidad de Buenos Aires, Junin 956, BS As (Argentina); Giulietti, Ana M., E-mail: agiule@ffyb.uba.a [Catedra de Microbiologia Industrial y Biotecnologia, Universidad de Buenos Aires (Argentina)

    2009-11-15

    Atrazine impact on human health and the environment have been extensively studied. Phytoremediation emerged as a low cost, environmental friendly biotechnological solution for atrazine pollution in soil and water. In vitro atrazine tolerance assays were performed and Lolium multiflorum was found as a novel tolerant species, able to germinate and grow in the presence of 1 mg kg{sup -1} of the herbicide. L. multiflorum presented 20% higher atrazine removal capacity than the natural attenuation, with high initial degradation rate in microcosms. The mechanisms involved in atrazine tolerance such as mutation in psbA gene, enzymatic detoxification via P{sub 450} or chemical hydrolysis through benzoxazinones were evaluated. It was demonstrated that atrazine tolerance is conferred by enhanced enzymatic detoxification via P{sub 450}. Due to its atrazine degradation capacity in soil and its agronomical properties, L. multiflorum is a candidate for designing phytoremediation strategies for atrazine contaminated agricultural soils, especially those involving run-off avoiding. - Finding of a novel atrazine-tolerant species, as a potential candidate for phytoremediating herbicide-contaminated agriculture soils and elucidation of the mechanisms involved in tolerance.

  13. Clustering mechanism of oxocarboxylic acids involving hydration reaction: Implications for the atmospheric models

    Science.gov (United States)

    Liu, Ling; Kupiainen-Määttä, Oona; Zhang, Haijie; Li, Hao; Zhong, Jie; Kurtén, Theo; Vehkamäki, Hanna; Zhang, Shaowen; Zhang, Yunhong; Ge, Maofa; Zhang, Xiuhui; Li, Zesheng

    2018-06-01

    The formation of atmospheric aerosol particles from condensable gases is a dominant source of particulate matter in the boundary layer, but the mechanism is still ambiguous. During the clustering process, precursors with different reactivities can induce various chemical reactions in addition to the formation of hydrogen bonds. However, the clustering mechanism involving chemical reactions is rarely considered in most of the nucleation process models. Oxocarboxylic acids are common compositions of secondary organic aerosol, but the role of oxocarboxylic acids in secondary organic aerosol formation is still not fully understood. In this paper, glyoxylic acid, the simplest and the most abundant atmospheric oxocarboxylic acid, has been selected as a representative example of oxocarboxylic acids in order to study the clustering mechanism involving hydration reactions using density functional theory combined with the Atmospheric Clusters Dynamic Code. The hydration reaction of glyoxylic acid can occur either in the gas phase or during the clustering process. Under atmospheric conditions, the total conversion ratio of glyoxylic acid to its hydration reaction product (2,2-dihydroxyacetic acid) in both gas phase and clusters can be up to 85%, and the product can further participate in the clustering process. The differences in cluster structures and properties induced by the hydration reaction lead to significant differences in cluster formation rates and pathways at relatively low temperatures.

  14. Real-time analysis of nitrogen translocation in plants

    International Nuclear Information System (INIS)

    Hayashi, Hiroaki

    2000-01-01

    Nitrogen absorbed by roots is transported to the leaves through xylem vessels and then retranslocated to the new leaves, such as root and storage organs through sieve tubes. It is very important to know how this nitrogen movement occurs in the plants and what mechanisms are involved in controlling this movement in order to increase the efficiency of fertilizer. In this experiments, 13 N and 15 N was used to detect the nitrogen circulation in plants, in combination with the technique for positron detection in real time and for collection of sap in sieve tubes and analysis of 15 N in it. By using 13 N, nitrogen movement from root to shoot was analyzed within 10 min after 13 N was applied to the roots. On the other hand, nitrogen retranslocation through sieve tubes was detected by the analysis of 15 N in the phloem sap over 6 hrs. All data suggest the dynamic translocation of nitrogen in rice plants. (author)

  15. Translocation of threatened plants as a conservation measure in China.

    Science.gov (United States)

    Liu, Hong; Ren, Hai; Liu, Qiang; Wen, XiangYing; Maunder, Michael; Gao, JiangYun

    2015-12-01

    We assessed the current status of plant conservation translocation efforts in China, a topic poorly reported in recent scientific literature. We identified 222 conservation translocation cases involving 154 species, of these 87 were Chinese endemic species and 101 (78%) were listed as threatened on the Chinese Species Red List. We categorized the life form of each species and, when possible, determined for each case the translocation type, propagule source, propagule type, and survival and reproductive parameters. A surprisingly large proportion (26%) of the conservation translocations in China were conservation introductions, largely implemented in response to large-scale habitat destruction caused by the Three-Gorge Dam and another hydropower project. Documentation and management of the translocations varied greatly. Less than half the cases had plant survival records. Statistical analyses showed that survival percentages were significantly correlated with plant life form and the type of planting materials. Thirty percent of the cases had records on whether or not individuals flowered or fruited. Results of information theoretic model selection indicated that plant life form, translocation type, propagule type, propagule source, and time since planting significantly influenced the likelihood of flowering and fruiting on the project level. We suggest that the scientific-based application of species conservation translocations should be promoted as part of a commitment to species recovery management. In addition, we recommend that the common practice of within and out of range introductions in nature reserves to be regulated more carefully due to its potential ecological risks. We recommend the establishment of a national office and database to coordinate conservation translocations in China. Our review effort is timely considering the need for a comprehensive national guideline for the newly announced nation-wide conservation program on species with extremely

  16. Mechanisms involved in metformin action in the treatment of polycystic ovary syndrome.

    Science.gov (United States)

    Motta, A B

    2009-01-01

    The N, N' dimethyl-biguanide : Metformin is an antidiabetic drug that increases glucose utilization in insulin-sensitive tissues. As Polycystic Ovary Syndrome (PCOS) and diabetes share some altered parameters-such as abnormal glucose: insulin ratio, altered lipidic metabolism and insulin-resistance syndrome- the use of metformin has become increasingly accepted and widespread in the treatment of PCOS. Currently, metformin is used to induce ovulation and during early pregnancy in PCOS patients, however, a complete knowledge of the metformin action has not been achieved yet. This review describes beyond the classical reproductive action of metformin and explores other benefits of the drug. In addition, the present work discusses the molecular mechanisms involved further than the classical pathway that involves the AMP-activated protein kinase.

  17. Absorption of Carotenoids and Mechanisms Involved in Their Health-Related Properties.

    Science.gov (United States)

    Cervantes-Paz, Braulio; Victoria-Campos, Claudia I; Ornelas-Paz, José de Jesús

    Carotenoids participate in the normal metabolism and function of the human body. They are involved in the prevention of several diseases, especially those related to the inflammation syndrome. Their main mechanisms of action are associated to their potent antioxidant activity and capacity to regulate the expression of specific genes and proteins. Recent findings suggest that carotenoid metabolites may explain several processes where the participation of their parent carotenoids was unclear. The health benefits of carotenoids strongly depend on their absorption and transformation during gastrointestinal digestion. The estimation of the 'bioaccessibility' of carotenoids through in vitro models have made possible the evaluation of the effect of a large number of factors on key stages of carotenoid digestion and intestinal absorption. The bioaccessibility of these compounds allows us to have a clear idea of their potential bioavailability, a term that implicitly involves the biological activity of these compounds.

  18. Abdominal radiation causes bacterial translocation

    International Nuclear Information System (INIS)

    Guzman-Stein, G.; Bonsack, M.; Liberty, J.; Delaney, J.P.

    1989-01-01

    The purpose of this study was to determine if a single dose of radiation to the rat abdomen leads to bacterial translocation into the mesenteric lymph nodes (MLN). A second issue addressed was whether translocation correlates with anatomic damage to the mucosa. The radiated group (1100 cGy) which received anesthesia also was compared with a control group and a third group which received anesthesia alone but no abdominal radiation. Abdominal radiation lead to 100% positive cultures of MLN between 12 hr and 4 days postradiation. Bacterial translocation was almost nonexistent in the control and anesthesia group. Signs of inflammation and ulceration of the intestinal mucosa were not seen until Day 3 postradiation. Mucosal damage was maximal by Day 4. Bacterial translocation onto the MLN after a single dose of abdominal radiation was not apparently dependent on anatomical, histologic damage of the mucosa

  19. Electochemical detection of chromosome translocation

    DEFF Research Database (Denmark)

    Kwasny, Dorota; Dimaki, Maria; Silahtaroglu, Asli

    2014-01-01

    Cytogenetics is a study of the cell structure with a main focus on chromosomes content and their structure. Chromosome abnormalities, such as translocations may cause various genetic disorders and heametological malignancies. Chromosome translocations are structural rearrangements of two...... chromosomes that results in formation of derivative chromosomes with a mixed DNA sequence. The method currently used for their detection is Fluorescent In Situ Hybridization, which requires a use of expensive, fluorescently labeled probes that target the derivative chromosomes. We present here a double...... hybridization approach developed for label-free detection of the chromosome translocations. For specific translocation detection it is necessary to determine that the two DNA sequences forming a derivative chromosome are connected, which is achieved by two subsequent hybridization steps. The electrochemical...

  20. Pathogenic Mechanisms Involved in the Hematological Alterations of Arenavirus-induced Hemorrhagic Fevers

    Directory of Open Access Journals (Sweden)

    Roberto G. Pozner

    2013-01-01

    Full Text Available Viral hemorrhagic fevers (VHFs caused by arenaviruses are acute diseases characterized by fever, headache, general malaise, impaired cellular immunity, eventual neurologic involvement, and hemostatic alterations that may ultimately lead to shock and death. The causes of the bleeding are still poorly understood. However, it is generally accepted that these causes are associated to some degree with impaired hemostasis, endothelial cell dysfunction and low platelet counts or function. In this article, we present the current knowledge about the hematological alterations present in VHF induced by arenaviruses, including new aspects on the underlying pathogenic mechanisms.

  1. Epigenetic mechanisms in the development of memory and their involvement in certain neurological diseases.

    Science.gov (United States)

    Rosales-Reynoso, M A; Ochoa-Hernández, A B; Juárez-Vázquez, C I; Barros-Núñez, P

    Today, scientists accept that the central nervous system of an adult possesses considerable morphological and functional flexibility, allowing it to perform structural remodelling processes even after the individual is fully developed and mature. In addition to the vast number of genes participating in the development of memory, different known epigenetic mechanisms are involved in normal and pathological modifications to neurons and therefore also affect the mechanisms of memory development. This study entailed a systematic review of biomedical article databases in search of genetic and epigenetic factors that participate in synaptic function and memory. The activation of gene expression in response to external stimuli also occurs in differentiated nerve cells. Neural activity induces specific forms of synaptic plasticity that permit the creation and storage of long-term memory. Epigenetic mechanisms play a key role in synaptic modification processes and in the creation and development of memory. Changes in these mechanisms result in the cognitive and memory impairment seen in neurodegenerative diseases (Alzheimer disease, Huntington disease) and in neurodevelopmental disorders (Rett syndrome, fragile X, and schizophrenia). Nevertheless, results obtained from different models are promising and point to potential treatments for some of these diseases. Copyright © 2013 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  2. Antinociceptive Activity of Methanol Extract of Muntingia calabura Leaves and the Mechanisms of Action Involved

    Directory of Open Access Journals (Sweden)

    M. H. Mohd. Sani

    2012-01-01

    Full Text Available Muntingia calabura L. (family Elaeocarpaceae has been traditionally used to relieve various pain-related ailments. The present study aimed to determine the antinociceptive activity of methanol extract of M. calabura leaves (MEMC and to elucidate the possible mechanism of antinociception involved. The in vivo chemicals (acetic acid-induced abdominal constriction and formalin-, capsaicin-, glutamate-, serotonin-induced paw licking test and thermal (hot plate test models of nociception were used to evaluate the extract antinociceptive activity. The extract (100, 250, and 500 mg/kg was administered orally 60 min prior to subjection to the respective test. The results obtained demonstrated that MEMC produced significant (P<0.05 antinociceptive response in all the chemical- and thermal-induced nociception models, which was reversed after pretreatment with 5 mg/kg naloxone, a non-selective opioid antagonist. Furthermore, pretreatment with L-arginine (a nitric oxide (NO donor, NG-nitro-L-arginine methyl esters (L-NAME; an inhibitor of NO synthase (NOS, methylene blue (MB; an inhibitor of cyclic-guanosine monophosphate (cGMP pathway, or their combination also caused significant (P<0.05 change in the intensity of the MEMC antinociception. In conclusion, the MEMC antinociceptive activity involves activation of the peripheral and central mechanisms, and modulation via, partly, the opioid receptors and NO/cGMP pathway.

  3. Mechanisms involved in the chemical inhibition of the Eosin-sensitized photooxidation of trypsin

    Energy Technology Data Exchange (ETDEWEB)

    Rizzuto, F.; Spikes, J.D.

    1975-01-01

    A large series of compounds was screened for ability to protect trypsin from eosin-sensitized photodynamic inactivation. Eosin-sensitized photooxidation reactions of this type typically proceed via the triplet state of the dye and often involve singlet state oxygen as the oxidizing entity. In order to determine the mechanisms by which trypsin is protected from photoinactivation, a number of good protective agents (inhibitors) and some non-protective agents were selected for more detailed flash photolysis studies. Good inhibitors such as p-phenylenediamine, n-propyl gallate, serotonin creatinine sulfate and p-toluenediamine competed efficiently with oxygen and with trypsin for reaction with the triplet state of eosin. The inhibitors were shown to quench triplet eosin to the ground state and/or reduce triplet eosin to form the semireduced eosin radical and an oxidized form of the inhibitor. In the latter case, oxidized inhibitor could react by a reverse electron transfer reaction with the semireduced eosin radical to regenerate ground state eosin and the inhibitor. The good inhibitors also competed effectively with trypsin for oxidation by semioxidized eosin, thus giving another possible protective mechanism. Non-inhibitors such as halogen ions and the paramagnetic ions Co/sup + +/, Cu/sup + +/ and Mn/sup + +/ reacted only slowly with triplet and with semioxidized eosin. The primary pathway for the eosin-sensitized photooxidation of trypsin at pH 8.0 involved singlet oxygen, although semioxidized eosin may also participate.

  4. Mechanisms and neuronal networks involved in reactive and proactive cognitive control of interference in working memory.

    Science.gov (United States)

    Irlbacher, Kerstin; Kraft, Antje; Kehrer, Stefanie; Brandt, Stephan A

    2014-10-01

    Cognitive control can be reactive or proactive in nature. Reactive control mechanisms, which support the resolution of interference, start after its onset. Conversely, proactive control involves the anticipation and prevention of interference prior to its occurrence. The interrelation of both types of cognitive control is currently under debate: Are they mediated by different neuronal networks? Or are there neuronal structures that have the potential to act in a proactive as well as in a reactive manner? This review illustrates the way in which integrating knowledge gathered from behavioral studies, functional imaging, and human electroencephalography proves useful in answering these questions. We focus on studies that investigate interference resolution at the level of working memory representations. In summary, different mechanisms are instrumental in supporting reactive and proactive control. Distinct neuronal networks are involved, though some brain regions, especially pre-SMA, possess functions that are relevant to both control modes. Therefore, activation of these brain areas could be observed in reactive, as well as proactive control, but at different times during information processing. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Possible mechanisms involved in the vasorelaxant effect produced by clobenzorex in aortic segments of rats.

    Science.gov (United States)

    Lozano-Cuenca, J; González-Hernández, A; López-Canales, O A; Villagrana-Zesati, J R; Rodríguez-Choreão, J D; Morín-Zaragoza, R; Castillo-Henkel, E F; López-Canales, J S

    2017-08-07

    Clobenzorex is a metabolic precursor of amphetamine indicated for the treatment of obesity. Amphetamines have been involved with cardiovascular side effects such as hypertension and pulmonary arterial hypertension. The aim of the present study was to investigate whether the direct application of 10-9-10-5 M clobenzorex on isolated phenylephrine-precontracted rat aortic rings produces vascular effects, and if so, what mechanisms may be involved. Clobenzorex produced an immediate concentration-dependent vasorelaxant effect at the higher concentrations (10-7.5-10-5 M). The present outcome was not modified by 10-6 M atropine (an antagonist of muscarinic acetylcholine receptors), 3.1×10-7 M glibenclamide (an ATP-sensitive K+ channel blocker), 10-3 M 4-aminopyridine (4-AP; a voltage-activated K+ channel blocker), 10-5 M indomethacin (a prostaglandin synthesis inhibitor), 10-5 M clotrimazole (a cytochrome P450 inhibitor) or 10-5 M cycloheximide (a general protein synthesis inhibitor). Contrarily, the clobenzorex-induced vasorelaxation was significantly attenuated (Pclobenzorex on phenylephrine-precontracted rat aortic rings involved stimulation of the NO/cGMP/PKG/Ca2+-activated K+ channel pathway.

  6. Drug-drug interactions involving lysosomes: mechanisms and potential clinical implications.

    Science.gov (United States)

    Logan, Randall; Funk, Ryan S; Axcell, Erick; Krise, Jeffrey P

    2012-08-01

    Many commercially available, weakly basic drugs have been shown to be lysosomotropic, meaning they are subject to extensive sequestration in lysosomes through an ion trapping-type mechanism. The extent of lysosomal trapping of a drug is an important therapeutic consideration because it can influence both activity and pharmacokinetic disposition. The administration of certain drugs can alter lysosomes such that their accumulation capacity for co-administered and/or secondarily administered drugs is altered. In this review the authors explore what is known regarding the mechanistic basis for drug-drug interactions involving lysosomes. Specifically, the authors address the influence of drugs on lysosomal pH, volume and lipid processing. Many drugs are known to extensively accumulate in lysosomes and significantly alter their structure and function; however, the therapeutic and toxicological implications of this remain controversial. The authors propose that drug-drug interactions involving lysosomes represent an important potential source of variability in drug activity and pharmacokinetics. Most evaluations of drug-drug interactions involving lysosomes have been performed in cultured cells and isolated tissues. More comprehensive in vivo evaluations are needed to fully explore the impact of this drug-drug interaction pathway on therapeutic outcomes.

  7. Novel mechanisms of sildenafil in pulmonary hypertension involving cytokines/chemokines, MAP kinases and Akt.

    Directory of Open Access Journals (Sweden)

    Tamas Kiss

    Full Text Available Pulmonary arterial hypertension (PH is associated with high mortality due to right ventricular failure and hypoxia, therefore to understand the mechanism by which pulmonary vascular remodeling initiates these processes is very important. We used a well-characterized monocrotaline (MCT-induced rat PH model, and analyzed lung morphology, expression of cytokines, mitogen-activated protein kinase (MAPK phosphorylation, and phosphatidylinositol 3-kinase-Akt (PI-3k-Akt pathway and nuclear factor (NF-κB activation in order to elucidate the mechanisms by which sildenafil's protective effect in PH is exerted. Besides its protective effect on lung morphology, sildenafil suppressed multiple cytokines involved in neutrophil and mononuclear cells recruitment including cytokine-induced neutrophil chemoattractant (CINC-1, CINC-2α/β, tissue inhibitor of metalloproteinase (TIMP-1, interleukin (IL-1α, lipopolysaccharide induced CXC chemokine (LIX, monokine induced by gamma interferon (MIG, macrophage inflammatory protein (MIP-1α, and MIP-3α. NF-κB activation and phosphorylation were also attenuated by sildenafil. Furthermore, sildenafil reduced extracellular signal-regulated kinase (ERK1/2 and p38 MAPK activation while enhanced activation of the cytoprotective Akt pathway in PH. These data suggest a beneficial effect of sildenafil on inflammatory and kinase signaling mechanisms that substantially contribute to its protective effects, and may have potential implications in designing future therapeutic strategies in the treatment of pulmonary hypertension.

  8. An overview of potential molecular mechanisms involved in VSMC phenotypic modulation.

    Science.gov (United States)

    Zhang, Ming-Jie; Zhou, Yi; Chen, Lei; Wang, Yan-Qin; Wang, Xu; Pi, Yan; Gao, Chang-Yue; Li, Jing-Cheng; Zhang, Li-Li

    2016-02-01

    The fully differentiated medial vascular smooth muscle cells (VSMCs) of mature vessels keep quiescent and contractile. However, VSMC can exhibit the plasticity in phenotype switching from a differentiated and contractile phenotype to a dedifferentiated state in response to alterations in local environmental cues, which is called phenotypic modulation or switching. Distinguishing from its differentiated state expressing more smooth muscle (SM)-specific/selective proteins, the phenotypic modulation in VSMC is characterized by an increased rate of proliferation, migration, synthesis of extracellular matrix proteins and decreased expression of SM contractile proteins. Although it has been well demonstrated that phenotypic modulation of VSMC contributes to the occurrence and progression of many proliferative vascular diseases, little is known about the details of the molecular mechanisms of VSMC phenotypic modulation. Growing evidence suggests that variety of molecules including microRNAs, cytokines and biochemical factors, membrane receptors, ion channels, cytoskeleton and extracellular matrix play important roles in controlling VSMC phenotype. The focus of the present review is to provide an overview of potential molecular mechanisms involved in VSMC phenotypic modulation in recent years. To clarify VSMC differentiation and phenotypic modulation mechanisms will contribute to producing cell-based therapeutic interventions for aberrant VSMC differentiation-related diseases.

  9. Glutamate-induced apoptosis in neuronal cells is mediated via caspase-dependent and independent mechanisms involving calpain and caspase-3 proteases as well as apoptosis inducing factor (AIF and this process is inhibited by equine estrogens

    Directory of Open Access Journals (Sweden)

    Bhavnani Bhagu R

    2006-06-01

    Full Text Available Abstract Background Glutamate, a major excitatory amino acid neurotransmitter, causes apoptotic neuronal cell death at high concentrations. Our previous studies have shown that depending on the neuronal cell type, glutamate-induced apoptotic cell death was associated with regulation of genes such as Bcl-2, Bax, and/or caspase-3 and mitochondrial cytochrome c. To further delineate the intracellular mechanisms, we have investigated the role of calpain, an important calcium-dependent protease thought to be involved in apoptosis along with mitochondrial apoptosis inducing factor (AIF and caspase-3 in primary cortical cells and a mouse hippocampal cell line HT22. Results Glutamate-induced apoptotic cell death in neuronal cells was associated with characteristic DNA fragmentation, morphological changes, activation of calpain and caspase-3 as well as the upregulation and/or translocation of AIF from mitochondria into cytosol and nuclei. Our results reveal that primary cortical cells and HT22 cells display different patterns of regulation of these genes/proteins. In primary cortical cells, glutamate induces activation of calpain, caspase-3 and translocation of AIF from mitochondria to cytosol and nuclei. In contrast, in HT22 cells, only the activation of calpain and upregulation and translocation of AIF occurred. In both cell types, these processes were inhibited/reversed by 17β-estradiol and Δ8,17β-estradiol with the latter being more potent. Conclusion Depending upon the neuronal cell type, at least two mechanisms are involved in glutamate-induced apoptosis: a caspase-3-dependent pathway and a caspase-independent pathway involving calpain and AIF. Since HT22 cells lack caspase-3, glutamate-induced apoptosis is mediated via the caspase-independent pathway in this cell line. Kinetics of this apoptotic pathway further indicate that calpain rather than caspase-3, plays a critical role in the glutamate-induced apoptosis. Our studies further indicate

  10. Gabapentin Inhibits Protein Kinase C Epsilon Translocation in Cultured Sensory Neurons with Additive Effects When Coapplied with Paracetamol (Acetaminophen).

    Science.gov (United States)

    Vellani, Vittorio; Giacomoni, Chiara

    2017-01-01

    Gabapentin is a well-established anticonvulsant drug which is also effective for the treatment of neuropathic pain. Although the exact mechanism leading to relief of allodynia and hyperalgesia caused by neuropathy is not known, the blocking effect of gabapentin on voltage-dependent calcium channels has been proposed to be involved. In order to further evaluate its analgesic mechanisms, we tested the efficacy of gabapentin on protein kinase C epsilon (PKC ε ) translocation in cultured peripheral neurons isolated from rat dorsal root ganglia (DRGs). We found that gabapentin significantly reduced PKC ε translocation induced by the pronociceptive peptides bradykinin and prokineticin 2, involved in both inflammatory and chronic pain. We recently showed that paracetamol (acetaminophen), a very commonly used analgesic drug, also produces inhibition of PKC ε . We tested the effect of the combined use of paracetamol and gabapentin, and we found that the inhibition of translocation adds up. Our study provides a novel mechanism of action for gabapentin in sensory neurons and suggests a mechanism of action for the combined use of paracetamol and gabapentin, which has recently been shown to be effective, with a cumulative behavior, in the control of postoperative pain in human patients.

  11. Gabapentin Inhibits Protein Kinase C Epsilon Translocation in Cultured Sensory Neurons with Additive Effects When Coapplied with Paracetamol (Acetaminophen

    Directory of Open Access Journals (Sweden)

    Vittorio Vellani

    2017-01-01

    Full Text Available Gabapentin is a well-established anticonvulsant drug which is also effective for the treatment of neuropathic pain. Although the exact mechanism leading to relief of allodynia and hyperalgesia caused by neuropathy is not known, the blocking effect of gabapentin on voltage-dependent calcium channels has been proposed to be involved. In order to further evaluate its analgesic mechanisms, we tested the efficacy of gabapentin on protein kinase C epsilon (PKCε translocation in cultured peripheral neurons isolated from rat dorsal root ganglia (DRGs. We found that gabapentin significantly reduced PKCε translocation induced by the pronociceptive peptides bradykinin and prokineticin 2, involved in both inflammatory and chronic pain. We recently showed that paracetamol (acetaminophen, a very commonly used analgesic drug, also produces inhibition of PKCε. We tested the effect of the combined use of paracetamol and gabapentin, and we found that the inhibition of translocation adds up. Our study provides a novel mechanism of action for gabapentin in sensory neurons and suggests a mechanism of action for the combined use of paracetamol and gabapentin, which has recently been shown to be effective, with a cumulative behavior, in the control of postoperative pain in human patients.

  12. Coral bleaching under thermal stress: putative involvement of host/symbiont recognition mechanisms.

    Science.gov (United States)

    Vidal-Dupiol, Jeremie; Adjeroud, Mehdi; Roger, Emmanuel; Foure, Laurent; Duval, David; Mone, Yves; Ferrier-Pages, Christine; Tambutte, Eric; Tambutte, Sylvie; Zoccola, Didier; Allemand, Denis; Mitta, Guillaume

    2009-08-04

    Coral bleaching can be defined as the loss of symbiotic zooxanthellae and/or their photosynthetic pigments from their cnidarian host. This major disturbance of reef ecosystems is principally induced by increases in water temperature. Since the beginning of the 1980s and the onset of global climate change, this phenomenon has been occurring at increasing rates and scales, and with increasing severity. Several studies have been undertaken in the last few years to better understand the cellular and molecular mechanisms of coral bleaching but the jigsaw puzzle is far from being complete, especially concerning the early events leading to symbiosis breakdown. The aim of the present study was to find molecular actors involved early in the mechanism leading to symbiosis collapse. In our experimental procedure, one set of Pocillopora damicornis nubbins was subjected to a gradual increase of water temperature from 28 degrees C to 32 degrees C over 15 days. A second control set kept at constant temperature (28 degrees C). The differentially expressed mRNA between the stressed states (sampled just before the onset of bleaching) and the non stressed states (control) were isolated by Suppression Subtractive Hybridization. Transcription rates of the most interesting genes (considering their putative function) were quantified by Q-RT-PCR, which revealed a significant decrease in transcription of two candidates six days before bleaching. RACE-PCR experiments showed that one of them (PdC-Lectin) contained a C-Type-Lectin domain specific for mannose. Immunolocalisation demonstrated that this host gene mediates molecular interactions between the host and the symbionts suggesting a putative role in zooxanthellae acquisition and/or sequestration. The second gene corresponds to a gene putatively involved in calcification processes (Pdcyst-rich). Its down-regulation could reflect a trade-off mechanism leading to the arrest of the mineralization process under stress. Under thermal stress

  13. Coral bleaching under thermal stress: putative involvement of host/symbiont recognition mechanisms

    Directory of Open Access Journals (Sweden)

    Tambutte Sylvie

    2009-08-01

    Full Text Available Abstract Background Coral bleaching can be defined as the loss of symbiotic zooxanthellae and/or their photosynthetic pigments from their cnidarian host. This major disturbance of reef ecosystems is principally induced by increases in water temperature. Since the beginning of the 1980s and the onset of global climate change, this phenomenon has been occurring at increasing rates and scales, and with increasing severity. Several studies have been undertaken in the last few years to better understand the cellular and molecular mechanisms of coral bleaching but the jigsaw puzzle is far from being complete, especially concerning the early events leading to symbiosis breakdown. The aim of the present study was to find molecular actors involved early in the mechanism leading to symbiosis collapse. Results In our experimental procedure, one set of Pocillopora damicornis nubbins was subjected to a gradual increase of water temperature from 28°C to 32°C over 15 days. A second control set kept at constant temperature (28°C. The differentially expressed mRNA between the stressed states (sampled just before the onset of bleaching and the non stressed states (control were isolated by Suppression Subtractive Hybridization. Transcription rates of the most interesting genes (considering their putative function were quantified by Q-RT-PCR, which revealed a significant decrease in transcription of two candidates six days before bleaching. RACE-PCR experiments showed that one of them (PdC-Lectin contained a C-Type-Lectin domain specific for mannose. Immunolocalisation demonstrated that this host gene mediates molecular interactions between the host and the symbionts suggesting a putative role in zooxanthellae acquisition and/or sequestration. The second gene corresponds to a gene putatively involved in calcification processes (Pdcyst-rich. Its down-regulation could reflect a trade-off mechanism leading to the arrest of the mineralization process under stress

  14. The role of lipid raft translocation of prohibitin in regulation of Akt and Raf-protected apoptosis of HaCaT cells upon ultraviolet B irradiation.

    Science.gov (United States)

    Wu, Qiong; Wu, Shiyong

    2017-07-01

    Prohibitin (PHB) plays a role in regulation of ultraviolet B light (UVB)-induced apoptosis of human keratinocytes, HaCaT cells. The regulatory function of PHB appears to be associated with its lipid raft translocation. However, the detailed mechanism for PHB-mediated apoptosis of these keratinocytes upon UVB irradiation is not clear. In this report, we determined the role of lipid raft translocation of PHB in regulation of UVB-induced apoptosis. Our data show that upon UVB irradiation PHB is translocated from the non-raft membrane to the lipid rafts, which is correlated with a release of both Akt and Raf from membrane. Overexpression of Akt and/or Raf impedes UVB-induced lipid raft translocation of PHB. Immunoprecipitation analysis indicates that UVB alters the interactions among PHB, Akt, and Raf. Reduced expression of PHB leads to a decreased phosphorylation of Akt and ERK, as well as a decreased activity of Akt, and increased apoptosis of the cells upon UVB irradiation. These results suggest that PHB regulates UVB-induced apoptosis of keratinocytes via a mechanism that involves detachment from Akt and Raf on the plasma membrane, and sequential lipid raft translocation. © 2017 Wiley Periodicals, Inc.

  15. Molecular Mechanisms Involved in the Antitumor Activity of Cannabinoids on Gliomas: Role for Oxidative Stress

    Energy Technology Data Exchange (ETDEWEB)

    Massi, Paola [Department of Pharmacology, Chemotherapy and Toxicology, University of Milan, Via Vanvitelli 32, 20129 Milan (Italy); Valenti, Marta; Solinas, Marta; Parolaro, Daniela [Department of Structural and Functional Biology, Section of Pharmacology, Center of Neuroscience, University of Insubria, Via A. da Giussano 10, 20152 Busto Arsizio, Varese (Italy)

    2010-05-26

    Cannabinoids, the active components of Cannabis sativa, have been shown to exert antiproliferative and proapoptotic effects on a wide spectrum of tumor cells and tissues. Of interest, cannabinoids have displayed great potency in reducing the growth of glioma tumors, one of the most aggressive CNS tumors, either in vitro or in animal experimental models curbing the growth of xenografts generated by subcutaneous or intrathecal injection of glioma cells in immune-deficient mice. Cannabinoids appear to be selective antitumoral agents as they kill glioma cells without affecting the viability of non-transformed cells. This review will summarize the anti-cancer properties that cannabinoids exert on gliomas and discuss their potential action mechanisms that appear complex, involving modulation of multiple key cell signaling pathways and induction of oxidative stress in glioma cells.

  16. Molecular Mechanisms Involved in the Antitumor Activity of Cannabinoids on Gliomas: Role for Oxidative Stress

    International Nuclear Information System (INIS)

    Massi, Paola; Valenti, Marta; Solinas, Marta; Parolaro, Daniela

    2010-01-01

    Cannabinoids, the active components of Cannabis sativa, have been shown to exert antiproliferative and proapoptotic effects on a wide spectrum of tumor cells and tissues. Of interest, cannabinoids have displayed great potency in reducing the growth of glioma tumors, one of the most aggressive CNS tumors, either in vitro or in animal experimental models curbing the growth of xenografts generated by subcutaneous or intrathecal injection of glioma cells in immune-deficient mice. Cannabinoids appear to be selective antitumoral agents as they kill glioma cells without affecting the viability of non-transformed cells. This review will summarize the anti-cancer properties that cannabinoids exert on gliomas and discuss their potential action mechanisms that appear complex, involving modulation of multiple key cell signaling pathways and induction of oxidative stress in glioma cells

  17. Molecular Mechanisms Involved in the Antitumor Activity of Cannabinoids on Gliomas: Role for Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Paola Massi

    2010-05-01

    Full Text Available Cannabinoids, the active components of Cannabis sativa, have been shown to exert antiproliferative and proapoptotic effects on a wide spectrum of tumor cells and tissues. Of interest, cannabinoids have displayed great potency in reducing the growth of glioma tumors, one of the most aggressive CNS tumors, either in vitro or in animal experimental models curbing the growth of xenografts generated by subcutaneous or intrathecal injection of glioma cells in immune-deficient mice. Cannabinoids appear to be selective antitumoral agents as they kill glioma cells without affecting the viability of non-transformed cells. This review will summarize the anti-cancer properties that cannabinoids exert on gliomas and discuss their potential action mechanisms that appear complex, involving modulation of multiple key cell signaling pathways and induction of oxidative stress in glioma cells.

  18. Possible mechanisms involved in the vasorelaxant effect produced by clobenzorex in aortic segments of rats

    Directory of Open Access Journals (Sweden)

    J. Lozano-Cuenca

    Full Text Available Clobenzorex is a metabolic precursor of amphetamine indicated for the treatment of obesity. Amphetamines have been involved with cardiovascular side effects such as hypertension and pulmonary arterial hypertension. The aim of the present study was to investigate whether the direct application of 10–9–10–5 M clobenzorex on isolated phenylephrine-precontracted rat aortic rings produces vascular effects, and if so, what mechanisms may be involved. Clobenzorex produced an immediate concentration-dependent vasorelaxant effect at the higher concentrations (10–7.5–10–5 M. The present outcome was not modified by 10–6 M atropine (an antagonist of muscarinic acetylcholine receptors, 3.1×10–7 M glibenclamide (an ATP-sensitive K+ channel blocker, 10–3 M 4-aminopyridine (4-AP; a voltage-activated K+ channel blocker, 10–5 M indomethacin (a prostaglandin synthesis inhibitor, 10–5 M clotrimazole (a cytochrome P450 inhibitor or 10–5 M cycloheximide (a general protein synthesis inhibitor. Contrarily, the clobenzorex-induced vasorelaxation was significantly attenuated (P<0.05 by 10–5 M L-NAME (a direct inhibitor of nitric oxide synthase, 10–7 M ODQ (an inhibitor of nitric oxide-sensitive guanylyl cyclase, 10–6 M KT 5823 (an inhibitor of protein kinase G, 10–2 M TEA (a Ca2+-activated K+ channel blocker and non-specific voltage-activated K+ channel blocker and 10–7 M apamin plus 10–7 M charybdotoxin (blockers of small- and large-conductance Ca2+-activated K+ channels, respectively, and was blocked by 8×10–2 M potassium (a high concentration and removal of the vascular endothelium. These results suggest that the direct vasorelaxant effect by clobenzorex on phenylephrine-precontracted rat aortic rings involved stimulation of the NO/cGMP/PKG/Ca2+-activated K+ channel pathway.

  19. A host defense mechanism involving CFTR-mediated bicarbonate secretion in bacterial prostatitis.

    Directory of Open Access Journals (Sweden)

    Chen Xie

    Full Text Available BACKGROUND: Prostatitis is associated with a characteristic increase in prostatic fluid pH; however, the underlying mechanism and its physiological significance have not been elucidated. METHODOLOGY/PRINCIPAL FINDINGS: In this study a primary culture of rat prostatic epithelial cells and a rat prostatitis model were used. Here we reported the involvement of CFTR, a cAMP-activated anion channel conducting both Cl(- and HCO(3(-, in mediating prostate HCO(3(- secretion and its possible role in bacterial killing. Upon Escherichia coli (E. coli-LPS challenge, the expression of CFTR and carbonic anhydrase II (CA II, along with several pro-inflammatory cytokines was up-regulated in the primary culture of rat prostate epithelial cells. Inhibiting CFTR function in vitro or in vivo resulted in reduced bacterial killing by prostate epithelial cells or the prostate. High HCO(3(- content (>50 mM, rather than alkaline pH, was found to be responsible for bacterial killing. The direct action of HCO(3(- on bacterial killing was confirmed by its ability to increase cAMP production and suppress bacterial initiation factors in E. coli. The relevance of the CFTR-mediated HCO(3(- secretion in humans was demonstrated by the upregulated expression of CFTR and CAII in human prostatitis tissues. CONCLUSIONS/SIGNIFICANCE: The CFTR and its mediated HCO(3(- secretion may be up-regulated in prostatitis as a host defense mechanism.

  20. A non-cardiomyocyte autonomous mechanism of cardioprotection involving the SLO1 BK channel

    Directory of Open Access Journals (Sweden)

    Andrew P. Wojtovich

    2013-03-01

    Full Text Available Opening of BK-type Ca2+ activated K+ channels protects the heart against ischemia-reperfusion (IR injury. However, the location of BK channels responsible for cardioprotection is debated. Herein we confirmed that openers of the SLO1 BK channel, NS1619 and NS11021, were protective in a mouse perfused heart model of IR injury. As anticipated, deletion of the Slo1 gene blocked this protection. However, in an isolated cardiomyocyte model of IR injury, protection by NS1619 and NS11021 was insensitive to Slo1 deletion. These data suggest that protection in intact hearts occurs by a non-cardiomyocyte autonomous, SLO1-dependent, mechanism. In this regard, an in-situ assay of intrinsic cardiac neuronal function (tachycardic response to nicotine revealed that NS1619 preserved cardiac neurons following IR injury. Furthermore, blockade of synaptic transmission by hexamethonium suppressed cardioprotection by NS1619 in intact hearts. These results suggest that opening SLO1 protects the heart during IR injury, via a mechanism that involves intrinsic cardiac neurons. Cardiac neuronal ion channels may be useful therapeutic targets for eliciting cardioprotection.

  1. Involvement of adrenergic and serotonergic nervous mechanisms in allethrin-induced tremors in mice.

    Science.gov (United States)

    Nishimura, M; Obana, N; Yagasaki, O; Yanagiya, I

    1984-05-01

    Oral or intravenous administration of allethrin, a synthetic derivative of the pirethrin-based insecticides, produces neurotoxic symptoms consisting of mild salivation, hyperexcitability, tremors and convulsions which result in death. Intracerebroventricular injection of allethrin to mouse at about one-nineth the dose of intravenous administration, produced qualitatively identical but less prominent symptoms, indicating that at least some of the symptoms may be originated in the central nervous system. To investigate the mechanism of action of the compound, we studied the ability of agents which alter neurotransmission to prevent or potentiate the effect of convulsive doses of technical grade (15.5% cis, 84.5% trans) allethrin. Intraperitoneal pretreatment with drugs which block noradrenergic receptors or norepinephrine synthesis, such as pentobarbital, chlorpromazine, phentolamine, phenoxybenzamine and reserpine, depressed the tremor induced by allethrin. The inhibitory effect of reserpine was reversed by phenylephrine. Both the serotonergic blocker, methysergide, and the serotonin depletor, rho-chlorphenylalanine, potentiated the effect of allethrin. The potentiating effect of methysergide was antagonized by 5-hydroxytryptamine. However, intracerebroventricular administration of methysergide was ineffective in potentiating the effect of allethrin. alpha 2- and beta-adrenoceptor blockers, muscarinic antagonists, GABA mimenergics and morphine had no effect. These results suggest that allethrin produces its neurotoxic responses in mice by acting on the brain and spinal levels. Furthermore, adrenergic excitatory and serotonergic inhibitory mechanisms may be involved in the neural pathway through which the allethrin-induced tremor is evoked.

  2. Conflict bear translocation: investigating population genetics and fate of bear translocation in Dachigam National Park, Jammu and Kashmir, India.

    Science.gov (United States)

    Mukesh; Sharma, Lalit Kumar; Charoo, Samina Amin; Sathyakumar, Sambandam

    2015-01-01

    The Asiatic black bear population in Dachigam landscape, Jammu and Kashmir is well recognized as one of the highest density bear populations in India. Increasing incidences of bear-human interactions and the resultant retaliatory killings by locals have become a serious threat to the survivorship of black bears in the Dachigam landscape. The Department of Wildlife Protection in Jammu and Kashmir has been translocating bears involved in conflicts, henceforth 'conflict bears' from different sites in Dachigam landscape to Dachigam National Park as a flagship activity to mitigate conflicts. We undertook this study to investigate the population genetics and the fate of bear translocation in Dachigam National Park. We identified 109 unique genotypes in an area of ca. 650 km2 and observed bear population under panmixia that showed sound genetic variability. Molecular tracking of translocated bears revealed that mostly bears (7 out of 11 bears) returned to their capture sites, possibly due to homing instincts or habituation to the high quality food available in agricultural croplands and orchards, while only four bears remained in Dachigam National Park after translocation. Results indicated that translocation success was most likely to be season dependent as bears translocated during spring and late autumn returned to their capture sites, perhaps due to the scarcity of food inside Dachigam National Park while bears translocated in summer remained in Dachigam National Park due to availability of surplus food resources. Thus, the current management practices of translocating conflict bears, without taking into account spatio-temporal variability of food resources in Dachigam landscape seemed to be ineffective in mitigating conflicts on a long-term basis. However, the study highlighted the importance of molecular tracking of bears to understand their movement patterns and socio-biology in tough terrains like Dachigam landscape.

  3. Conflict bear translocation: investigating population genetics and fate of bear translocation in Dachigam National Park, Jammu and Kashmir, India.

    Directory of Open Access Journals (Sweden)

    Mukesh

    Full Text Available The Asiatic black bear population in Dachigam landscape, Jammu and Kashmir is well recognized as one of the highest density bear populations in India. Increasing incidences of bear-human interactions and the resultant retaliatory killings by locals have become a serious threat to the survivorship of black bears in the Dachigam landscape. The Department of Wildlife Protection in Jammu and Kashmir has been translocating bears involved in conflicts, henceforth 'conflict bears' from different sites in Dachigam landscape to Dachigam National Park as a flagship activity to mitigate conflicts. We undertook this study to investigate the population genetics and the fate of bear translocation in Dachigam National Park. We identified 109 unique genotypes in an area of ca. 650 km2 and observed bear population under panmixia that showed sound genetic variability. Molecular tracking of translocated bears revealed that mostly bears (7 out of 11 bears returned to their capture sites, possibly due to homing instincts or habituation to the high quality food available in agricultural croplands and orchards, while only four bears remained in Dachigam National Park after translocation. Results indicated that translocation success was most likely to be season dependent as bears translocated during spring and late autumn returned to their capture sites, perhaps due to the scarcity of food inside Dachigam National Park while bears translocated in summer remained in Dachigam National Park due to availability of surplus food resources. Thus, the current management practices of translocating conflict bears, without taking into account spatio-temporal variability of food resources in Dachigam landscape seemed to be ineffective in mitigating conflicts on a long-term basis. However, the study highlighted the importance of molecular tracking of bears to understand their movement patterns and socio-biology in tough terrains like Dachigam landscape.

  4. An Involvement of PI3-K/Akt Activation and Inhibition of AIF Translocation in Neuroprotective Effects of Undecylenic Acid (UDA) Against Pro-Apoptotic Factors-Induced Cell Death in Human Neuroblastoma SH-SY5Y Cells.

    Science.gov (United States)

    Jantas, Danuta; Piotrowski, Marek; Lason, Wladyslaw

    2015-12-01

    Undecylenic acid (UDA), a naturally occurring 11-carbon unsaturated fatty acid, has been used for several years as an economical antifungal agent and a nutritional supplement. Recently, the potential usefulness of UDA as a neuroprotective drug has been suggested based on the ability of this agent to inhibit μ-calpain activity. In order to verify neuroprotective potential of UDA, we tested protective efficacy of this compound against cell damage evoked by pro-apoptotic factors (staurosporine and doxorubicin) and oxidative stress (hydrogen peroxide) in human neuroblastoma SH-SY5Y cells. We showed that UDA partially protected SH-SY5Y cells against the staurosporine- and doxorubicin-evoked cell death; however, this effect was not connected with its influence on caspase-3 activity. UDA decreased the St-induced changes in mitochondrial and cytosolic AIF level, whereas in Dox-model it affected only the cytosolic AIF content. Moreover, UDA (1-40 μM) decreased the hydrogen peroxide-induced cell damage which was connected with attenuation of hydrogen peroxide-mediated necrotic (PI staining, ADP/ATP ratio) and apoptotic (mitochondrial membrane potential, caspase-3 activation, AIF translocation) changes. Finally, we demonstrated that an inhibitor of PI3-K/Akt (LY294002) but not MAPK/ERK1/2 (U0126) pathway blocked the protection mediated by UDA in all tested models of SH-SY5Y cell injury. These in vitro data point to UDA as potentially effective neuroprotectant the utility of which should be further validated in animal studies. © 2015 Wiley Periodicals, Inc.

  5. Mechanism of oxidative stress involved in the toxicity of ZnO nanoparticles against eukaryotic cells

    Directory of Open Access Journals (Sweden)

    M. Saliani

    2016-01-01

    Full Text Available ZnO NPs (zinc oxide nanoparticles has generated significant scientific interest as a novel antibacterial and anticancer agent. Since oxidative stress is a critical determinant of ZnO NPs-induced damage, it is necessary to characterize their underlying mode of action. Different structural and physicochemical properties of ZnO NPs such as particle surface, size, shape, crystal structure, chemical position, and presence of metals can lead to changes in biological activities including ROS (reactive oxygen species production. However, there are some inconsistencies in the literature on the relation between the physicochemical features of ZnO NPs and their plausible oxidative stress mechanism. Herein, the possible oxidative stress mechanism of ZnO NPs was reviewed. This is worthy of further detailed evaluations in order to improve our understanding of vital NPs characteristics governing their toxicity. Therefore, this study focuses on the different reported oxidative stress paradigms induced by ZnO NPs including ROS generated by NPs, oxidative stress due to the NPs-cell interaction, and role of the particle dissolution in the oxidative damage. Also, this study tries to characterize and understand the multiple pathways involved in oxidative stress induced by ZnO NPs. Knowledge about different cellular signaling cascades stimulated by ZnO NPs lead to the better interpretation of the toxic influences induced by the cellular and acellular parameters. Regarding the potential benefits of toxic effects of ZnO NPs, in-depth evaluation of their toxicity mechanism and various effects of these nanoparticles would facilitate their implementation for biomedical applications.

  6. Mitochondrial translocation of Nur77 induced by ROS contributed to cardiomyocyte apoptosis in metabolic syndrome

    International Nuclear Information System (INIS)

    Xu, Aibin; Liu, Jingyi; Liu, Peilin; Jia, Min; Wang, Han; Tao, Ling

    2014-01-01

    Highlights: • Metabolic syndrome exacerbated MI/R induced injury accompanied by decreased Nur77. • ROS led to Nur77 translocation in metabolic syndrome. • Inhibiting relocation of Nur77 to mitochondria reduced ROS-induced cardiomyocyte injury in metabolic syndrome. - Abstract: Metabolic syndrome is a major risk factor for cardiovascular diseases, and increased cardiomyocyte apoptosis which contributes to cardiac dysfunction after myocardial ischemia/reperfusion (MI/R) injury. Nur77, a nuclear orphan receptor, is involved in such various cellular events as apoptosis, proliferation, and glucose and lipid metabolism in several cell types. Apoptosis is positively correlated with mitochondrial translocation of Nur77 in the cancer cells. However, the roles of Nur77 on cardiac myocytes in patients with metabolic syndrome remain unclear. The objective of this study was to determine whether Nur77 may contribute to cardiac apoptosis in patients with metabolic syndrome after I/R injury, and, if so, to identify the underlying molecular mechanisms responsible. We used leptin-deficient (ob/ob) mice to make metabolic syndrome models. In this report, we observed that, accompanied by the substantial decline in apoptosis inducer Nur77, MI/R induced cardiac dysfunction was manifested as cardiomyopathy and increased ROS. Using the neonatal rat cardiac myocytes cultured in a high-glucose and high-fat medium, we found that excessive H 2 O 2 led to the significant alteration in mitochondrial membrane potential and translocation of Nur77 from the nucleus to the mitochondria. However, inhibition of the relocation of Nur77 to mitochondria via Cyclosporin A reversed the changes in membrane potential mediated by H 2 O 2 and reduced myocardial cell injury. Therefore, these data provide a potential underlying mechanism for cardiac dysfunction in metabolic syndrome and the suppression of Nur77 translocation may provide an effective approach to reduce cardiac injury in the process

  7. Mitochondrial translocation of Nur77 induced by ROS contributed to cardiomyocyte apoptosis in metabolic syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Aibin; Liu, Jingyi [Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an (China); Institute of Cardiovascular Disease, General Hospital of Beijing Command, PLA, Beijing (China); Liu, Peilin; Jia, Min; Wang, Han [Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an (China); Tao, Ling, E-mail: lingtao2006@gmail.com [Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an (China)

    2014-04-18

    Highlights: • Metabolic syndrome exacerbated MI/R induced injury accompanied by decreased Nur77. • ROS led to Nur77 translocation in metabolic syndrome. • Inhibiting relocation of Nur77 to mitochondria reduced ROS-induced cardiomyocyte injury in metabolic syndrome. - Abstract: Metabolic syndrome is a major risk factor for cardiovascular diseases, and increased cardiomyocyte apoptosis which contributes to cardiac dysfunction after myocardial ischemia/reperfusion (MI/R) injury. Nur77, a nuclear orphan receptor, is involved in such various cellular events as apoptosis, proliferation, and glucose and lipid metabolism in several cell types. Apoptosis is positively correlated with mitochondrial translocation of Nur77 in the cancer cells. However, the roles of Nur77 on cardiac myocytes in patients with metabolic syndrome remain unclear. The objective of this study was to determine whether Nur77 may contribute to cardiac apoptosis in patients with metabolic syndrome after I/R injury, and, if so, to identify the underlying molecular mechanisms responsible. We used leptin-deficient (ob/ob) mice to make metabolic syndrome models. In this report, we observed that, accompanied by the substantial decline in apoptosis inducer Nur77, MI/R induced cardiac dysfunction was manifested as cardiomyopathy and increased ROS. Using the neonatal rat cardiac myocytes cultured in a high-glucose and high-fat medium, we found that excessive H{sub 2}O{sub 2} led to the significant alteration in mitochondrial membrane potential and translocation of Nur77 from the nucleus to the mitochondria. However, inhibition of the relocation of Nur77 to mitochondria via Cyclosporin A reversed the changes in membrane potential mediated by H{sub 2}O{sub 2} and reduced myocardial cell injury. Therefore, these data provide a potential underlying mechanism for cardiac dysfunction in metabolic syndrome and the suppression of Nur77 translocation may provide an effective approach to reduce cardiac injury in the

  8. High-speed detection of DNA translocation in nanopipettes

    Science.gov (United States)

    Fraccari, Raquel L.; Ciccarella, Pietro; Bahrami, Azadeh; Carminati, Marco; Ferrari, Giorgio; Albrecht, Tim

    2016-03-01

    We present a high-speed electrical detection scheme based on a custom-designed CMOS amplifier which allows the analysis of DNA translocation in glass nanopipettes on a microsecond timescale. Translocation of different DNA lengths in KCl electrolyte provides a scaling factor of the DNA translocation time equal to p = 1.22, which is different from values observed previously with nanopipettes in LiCl electrolyte or with nanopores. Based on a theoretical model involving electrophoresis, hydrodynamics and surface friction, we show that the experimentally observed range of p-values may be the result of, or at least be affected by DNA adsorption and friction between the DNA and the substrate surface.We present a high-speed electrical detection scheme based on a custom-designed CMOS amplifier which allows the analysis of DNA translocation in glass nanopipettes on a microsecond timescale. Translocation of different DNA lengths in KCl electrolyte provides a scaling factor of the DNA translocation time equal to p = 1.22, which is different from values observed previously with nanopipettes in LiCl electrolyte or with nanopores. Based on a theoretical model involving electrophoresis, hydrodynamics and surface friction, we show that the experimentally observed range of p-values may be the result of, or at least be affected by DNA adsorption and friction between the DNA and the substrate surface. Electronic supplementary information (ESI) available: Gel electrophoresis confirming lengths and purity of DNA samples, comparison between Axopatch 200B and custom-built setup, comprehensive low-noise amplifier characterization, representative I-V curves of nanopipettes used, typical scatter plots of τ vs. peak amplitude for the four LDNA's used, table of most probable τ values, a comparison between different fitting models for the DNA translocation time distribution, further details on the stochastic numerical simulation of the scaling statistics and the derivation of the extended

  9. Epidemiological and genetic clues for molecular mechanisms involved in uterine leiomyoma development and growth.

    Science.gov (United States)

    Commandeur, Arno E; Styer, Aaron K; Teixeira, Jose M

    2015-01-01

    Uterine leiomyomas (fibroids) are highly prevalent benign smooth muscle tumors of the uterus. In the USA, the lifetime risk for women developing uterine leiomyomas is estimated as up to 75%. Except for hysterectomy, most therapies or treatments often provide only partial or temporary relief and are not successful in every patient. There is a clear racial disparity in the disease; African-American women are estimated to be three times more likely to develop uterine leiomyomas and generally develop more severe symptoms. There is also familial clustering between first-degree relatives and twins, and multiple inherited syndromes in which fibroid development occurs. Leiomyomas have been described as clonal and hormonally regulated, but despite the healthcare burden imposed by the disease, the etiology of uterine leiomyomas remains largely unknown. The mechanisms involved in their growth are also essentially unknown, which has contributed to the slow progress in development of effective treatment options. A comprehensive PubMed search for and critical assessment of articles related to the epidemiological, biological and genetic clues for uterine leiomyoma development was performed. The individual functions of some of the best candidate genes are explained to provide more insight into their biological function and to interconnect and organize genes and pathways in one overarching figure that represents the current state of knowledge about uterine leiomyoma development and growth. In this review, the widely recognized roles of estrogen and progesterone in uterine leiomyoma pathobiology on the basis of clinical and experimental data are presented. This is followed by fundamental aspects and concepts including the possible cellular origin of uterine fibroids. The central themes in the subsequent parts are cytogenetic aberrations in leiomyomas and the racial/ethnic disparities in uterine fibroid biology. Then, the attributes of various in vitro and in vivo, human syndrome

  10. A somatic origin of homologous Robertsonian translocations and isochromosomes

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, W.P.; Bernasconi, F.; Schinzel, A.A. (Univ. of Zurich (Switzerland)); Basaran, S.; Yueksel-Apak, M. (Univ. of Istanbul (Turkey)); Neri, G. (Universita Cattolica, Rome (Italy)); Serville, F. (Hopital d' Enfants Pellegrin, Bordeaux (France)); Balicek, P.; Haluza, R. (Univ. Hospital of Hradeck Kralove, Hradec Kralove (Czech Republic)); Farah, L.M.S. (Escuola Paulista de Medicina, Sao Paulo (Brazil)) (and others)

    1994-02-01

    One t(14q 14q), three t(15q 15q), two t(21q21q), and two t(22q22q) nonmosaic, apparently balanced, de novo Robertsonian translocation cases were investigated with polymorphic markers to establish the origin of the translocated chromosomes. Four cases had results indicative of an isochromosome: one t(14q14q) case with mild mental retardation and maternal uniparental disomy (UPD) for chromosome 14, one t(15q15q) case with the Prader-Willi syndrome and UPD(15), a phenotypically normal carrier of t(22q22q) with maternal UPD(22), and a phenotypically normal t(21q21q) case of paternal UPD(21). All UPD cases showed complete homozygosity throughout the involved chromosome, which is supportive of a postmeiotic origin. In the remaining four cases, maternal and paternal inheritance of the involved chromosome was found, which unambiguously implies a somatic origin. One t(15q15q) female had a child with a ring chromosome 15, which was also of probable postmeiotic origin as recombination between grandparental haplotypes had occurred prior to ring formation. UPD might be expected to result from de novo Robertsonian translocations of meiotic origin; however, all de novo homologous translocation cases, so far reported, with UPD of chromosomes 14, 15, 21, or 22 have been isochromosomes. These data provide the first direct evidence that nonmosaic Robertsonian translocations, as well as isochromosomes, are commonly the result of a mitotic exchange. 75 refs., 1 fig., 4 tabs.

  11. QTL analysis of frost damage in pea suggests different mechanisms involved in frost tolerance.

    Science.gov (United States)

    Klein, Anthony; Houtin, Hervé; Rond, Céline; Marget, Pascal; Jacquin, Françoise; Boucherot, Karen; Huart, Myriam; Rivière, Nathalie; Boutet, Gilles; Lejeune-Hénaut, Isabelle; Burstin, Judith

    2014-06-01

    Avoidance mechanisms and intrinsic resistance are complementary strategies to improve winter frost tolerance and yield potential in field pea. The development of the winter pea crop represents a major challenge to expand plant protein production in temperate areas. Breeding winter cultivars requires the combination of freezing tolerance as well as high seed productivity and quality. In this context, we investigated the genetic determinism of winter frost tolerance and assessed its genetic relationship with yield and developmental traits. Using a newly identified source of frost resistance, we developed a population of recombinant inbred lines and evaluated it in six environments in Dijon and Clermont-Ferrand between 2005 and 2010. We developed a genetic map comprising 679 markers distributed over seven linkage groups and covering 947.1 cM. One hundred sixty-one quantitative trait loci (QTL) explaining 9-71 % of the phenotypic variation were detected across the six environments for all traits measured. Two clusters of QTL mapped on the linkage groups III and one cluster on LGVI reveal the genetic links between phenology, morphology, yield-related traits and frost tolerance in winter pea. QTL clusters on LGIII highlighted major developmental gene loci (Hr and Le) and the QTL cluster on LGVI explained up to 71 % of the winter frost damage variation. This suggests that a specific architecture and flowering ideotype defines frost tolerance in winter pea. However, two consistent frost tolerance QTL on LGV were independent of phenology and morphology traits, showing that different protective mechanisms are involved in frost tolerance. Finally, these results suggest that frost tolerance can be bred independently to seed productivity and quality.

  12. Multiple mechanisms involved in diabetes protection by lipopolysaccharide in non-obese diabetic mice

    International Nuclear Information System (INIS)

    Wang, Jun; Cao, Hui; Wang, Hongjie; Yin, Guoxiao; Du, Jiao; Xia, Fei; Lu, Jingli; Xiang, Ming

    2015-01-01

    Toll-like receptor 4 (TLR4) activation has been proposed to be important for islet cell inflammation and eventually β cell loss in the course of type 1 diabetes (T1D) development. However, according to the “hygiene hypothesis”, bacterial endotoxin lipopolysaccharide (LPS), an agonist on TLR4, inhibits T1D progression. Here we investigated possible mechanisms for the protective effect of LPS on T1D development in non-obese diabetic (NOD) mice. We found that LPS administration to NOD mice during the prediabetic state neither prevented nor reversed insulitis, but delayed the onset and decreased the incidence of diabetes, and that a multiple-injection protocol is more effective than a single LPS intervention. Further, LPS administration suppressed spleen T lymphocyte proliferation, increased the generation of CD4 + CD25 + Foxp3 + regulatory T cells (Tregs), reduced the synthesis of strong Th1 proinflammatory cytokines, and downregulated TLR4 and its downstream MyD88-dependent signaling pathway. Most importantly, multiple injections of LPS induced a potential tolerogenic dendritic cell (DC) subset with low TLR4 expression without influencing the DC phenotype. Explanting DCs from repeated LPS-treated NOD mice into NOD/SCID diabetic mice conferred sustained protective effects against the progression of diabetes in the recipients. Overall, these results suggest that multiple mechanisms are involved in the protective effects of LPS against the development of diabetes in NOD diabetic mice. These include Treg induction, down-regulation of TLR4 and its downstream MyD88-dependent signaling pathway, and the emergence of a potential tolerogenic DC subset. - Highlights: • Administration of lipopolysaccharide (LPS) prevented type 1 diabetes in NOD mice. • Downregulating TLR4 level and MyD88-dependent pathway contributed to protection of LPS. • LPS administration also hampered DC maturation and promoted Treg differentiation

  13. Targeting GLI by GANT61 involves mechanisms dependent on inhibition of both transcription and DNA licensing.

    Science.gov (United States)

    Zhang, Ruowen; Wu, Jiahui; Ferrandon, Sylvain; Glowacki, Katie J; Houghton, Janet A

    2016-12-06

    The GLI genes are transcription factors and in cancers are oncogenes, aberrantly and constitutively activated. GANT61, a specific GLI inhibitor, has induced extensive cytotoxicity in human models of colon cancer. The FOXM1 promoter was determined to be a transcriptional target of GLI1. In HT29 cells, inhibition of GLI1 binding at the GLI consensus sequence by GANT61 led to inhibited binding of Pol II, the pause-release factors DSIF, NELF and p-TEFb. The formation of R-loops (RNA:DNA hybrids, ssDNA), were reduced by GANT61 at the FOXM1 promoter. Pretreatment of HT29 cells with α-amanitin reduced GANT61-induced γH2AX foci. Co-localization of GLI1 and BrdU foci, inhibited by GANT61, indicated GLI1 and DNA replication to be linked. By co-immunoprecipitation and confocal microscopy, GLI1 co-localized with the DNA licensing factors ORC4, CDT1, and MCM2. Significant co-localization of GLI1 and ORC4 was inhibited by GANT61, and enrichment of ORC4 occurred at the GLI binding site in the FOXM1 promoter. CDT1 was found to be a transcription target of GLI1. Overexpression of CDT1 in HT29 and SW480 cells reduced GANT61-induced cell death, gH2AX foci, and cleavage of caspase-3. Data demonstrate involvement of transcription and of DNA replication licensing factors by non-transcriptional and transcriptional mechanisms in the GLI-dependent mechanism of action of GANT61.

  14. Multiple mechanisms involved in diabetes protection by lipopolysaccharide in non-obese diabetic mice

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jun [Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Department of Pharmacology, College of Medicine, Wuhan University of Science and Technology, Wuhan (China); Cao, Hui [Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Wang, Hongjie [Section of Neurobiology, Torrey Pines Institute for Molecular Studies, Port Saint Lucie, FL (United States); Yin, Guoxiao; Du, Jiao; Xia, Fei; Lu, Jingli [Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Xiang, Ming, E-mail: xiangming@mails.tjmu.edu.cn [Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China)

    2015-06-15

    Toll-like receptor 4 (TLR4) activation has been proposed to be important for islet cell inflammation and eventually β cell loss in the course of type 1 diabetes (T1D) development. However, according to the “hygiene hypothesis”, bacterial endotoxin lipopolysaccharide (LPS), an agonist on TLR4, inhibits T1D progression. Here we investigated possible mechanisms for the protective effect of LPS on T1D development in non-obese diabetic (NOD) mice. We found that LPS administration to NOD mice during the prediabetic state neither prevented nor reversed insulitis, but delayed the onset and decreased the incidence of diabetes, and that a multiple-injection protocol is more effective than a single LPS intervention. Further, LPS administration suppressed spleen T lymphocyte proliferation, increased the generation of CD4{sup +}CD25{sup +}Foxp3{sup +} regulatory T cells (Tregs), reduced the synthesis of strong Th1 proinflammatory cytokines, and downregulated TLR4 and its downstream MyD88-dependent signaling pathway. Most importantly, multiple injections of LPS induced a potential tolerogenic dendritic cell (DC) subset with low TLR4 expression without influencing the DC phenotype. Explanting DCs from repeated LPS-treated NOD mice into NOD/SCID diabetic mice conferred sustained protective effects against the progression of diabetes in the recipients. Overall, these results suggest that multiple mechanisms are involved in the protective effects of LPS against the development of diabetes in NOD diabetic mice. These include Treg induction, down-regulation of TLR4 and its downstream MyD88-dependent signaling pathway, and the emergence of a potential tolerogenic DC subset. - Highlights: • Administration of lipopolysaccharide (LPS) prevented type 1 diabetes in NOD mice. • Downregulating TLR4 level and MyD88-dependent pathway contributed to protection of LPS. • LPS administration also hampered DC maturation and promoted Treg differentiation.

  15. Involvement of metabolites in early defense mechanism of oil palm (Elaeis guineensis Jacq.) against Ganoderma disease.

    Science.gov (United States)

    Nusaibah, S A; Siti Nor Akmar, A; Idris, A S; Sariah, M; Mohamad Pauzi, Z

    2016-12-01

    Understanding the mechanism of interaction between the oil palm and its key pathogen, Ganoderma spp. is crucial as the disease caused by this fungal pathogen leads to a major loss of revenue in leading palm oil producing countries in Southeast Asia. Here in this study, we assess the morphological and biochemical changes in Ganoderma disease infected oil palm seedling roots in both resistant and susceptible progenies. Rubber woodblocks fully colonized by G. boninense were applied as a source of inoculum to artificially infect the roots of resistant and susceptible oil palm progenies. Gas chromatography-mass spectrometry was used to measure an array of plant metabolites in 100 resistant and susceptible oil palm seedling roots treated with pathogenic Ganoderma boninense fungus. Statistical effects, univariate and multivariate analyses were used to identify key-Ganoderma disease associated metabolic agitations in both resistant and susceptible oil palm root tissues. Ganoderma disease related defense shifts were characterized based on (i) increased antifungal activity in crude extracts, (ii) increased lipid levels, beta- and gamma-sitosterol particularly in the resistant progeny, (iii) detection of heterocyclic aromatic organic compounds, benzo [h] quinoline, pyridine, pyrimidine (iv) elevation in antioxidants, alpha- and beta-tocopherol (iv) degraded cortical cell wall layers, possibly resulting from fungal hydrolytic enzyme activity needed for initial penetration. The present study suggested that plant metabolites mainly lipids and heterocyclic aromatic organic metabolites could be potentially involved in early oil palm defense mechanism against G. boninense infection, which may also highlight biomarkers for disease detection, treatment, development of resistant variety and monitoring. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  16. Cooperation of TOM and TIM23 complexes during translocation of proteins into mitochondria.

    Science.gov (United States)

    Waegemann, Karin; Popov-Čeleketić, Dušan; Neupert, Walter; Azem, Abdussalam; Mokranjac, Dejana

    2015-03-13

    Translocation of the majority of mitochondrial proteins from the cytosol into mitochondria requires the cooperation of TOM and TIM23 complexes in the outer and inner mitochondrial membranes. The molecular mechanisms underlying this cooperation remain largely unknown. Here, we present biochemical and genetic evidence that at least two contacts from the side of the TIM23 complex play an important role in TOM-TIM23 cooperation in vivo. Tim50, likely through its very C-terminal segment, interacts with Tom22. This interaction is stimulated by translocating proteins and is independent of any other TOM-TIM23 contact known so far. Furthermore, the exposure of Tim23 on the mitochondrial surface depends not only on its interaction with Tim50 but also on the dynamics of the TOM complex. Destabilization of the individual contacts reduces the efficiency of import of proteins into mitochondria and destabilization of both contacts simultaneously is not tolerated by yeast cells. We conclude that an intricate and coordinated network of protein-protein interactions involving primarily Tim50 and also Tim23 is required for efficient translocation of proteins across both mitochondrial membranes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. CHROMOSOMAL SUBLOCALIZATION OF THE 2 13 TRANSLOCATION BREAKPOINT IN ALVEOLAR RHABDOMYOSARCOMA

    NARCIS (Netherlands)

    SHAPIRO, DN; VALENTINE, MB; SUBLETT, JE; SINCLAIR, AE; TEREBA, AM; SCHEFFER, H; BUYS, CHCM; LOOK, AT

    A characteristic balanced reciprocal chromosomal translocation [t(2;13)(q35;q14)] has been identified in more than 50% of alveolar rhabdomyosarcomas. As the first step in characterization of the genes involved in this translocation, we constructed somatic cell hybrids that retained either the

  18. Analysis of 1;17 translocation breakpoints in neuroblastoma: implications for mapping of neuroblastoma genes

    NARCIS (Netherlands)

    van Roy, N.; Laureys, G.; van Gele, M.; Opdenakker, G.; Miura, R.; van der Drift, P.; Chan, A.; Versteeg, R.; Speleman, F.

    1997-01-01

    Deletions and translocations resulting in loss of distal 1p-material are known to occur frequently in advanced neuroblastomas. Fluorescence in situ hybridisation (FISH) showed that 17q was most frequently involved in chromosome 1p translocations. A review of the literature shows that 10 of 27 cell

  19. Endoplasmic reticulum quality control is involved in the mechanism of endoglin-mediated hereditary haemorrhagic telangiectasia.

    Directory of Open Access Journals (Sweden)

    Bassam R Ali

    Full Text Available Hereditary haemorrhagic telangiectasia (HHT is an autosomal dominant genetic condition affecting the vascular system and is characterised by epistaxis, arteriovenous malformations and mucocutaneous and gastrointestinal telangiectases. This disorder affects approximately 1 in 8,000 people worldwide. Significant morbidity is associated with this condition in affected individuals, and anaemia can be a consequence of repeated haemorrhages from telangiectasia in the gut and nose. In the majority of the cases reported, the condition is caused by mutations in either ACVRL1 or endoglin genes, which encode components of the TGF-beta signalling pathway. Numerous missense mutations in endoglin have been reported as causative defects for HHT but the exact underlying cellular mechanisms caused by these mutations have not been fully established despite data supporting a role for the endoplasmic reticulum (ER quality control machinery. For this reason, we examined the subcellular trafficking of twenty-five endoglin disease-causing missense mutations. The mutant proteins were expressed in HeLa and HEK293 cell lines, and their subcellular localizations were established by confocal fluorescence microscopy alongside the analysis of their N-glycosylation profiles. ER quality control was found to be responsible in eight (L32R, V49F, C53R, V125D, A160D, P165L, I271N and A308D out of eleven mutants located on the orphan extracellular domain in addition to two (C363Y and C382W out of thirteen mutants in the Zona Pellucida (ZP domain. In addition, a single intracellular domain missense mutant was examined and found to traffic predominantly to the plasma membrane. These findings support the notion of the involvement of the ER's quality control in the mechanism of a significant number, but not all, missense endoglin mutants found in HHT type 1 patients. Other mechanisms including loss of interactions with signalling partners as well as adverse effects on functional

  20. Characterization of Elements Regulating the Nuclear-to-Cytoplasmic Translocation of ICP0 in Late Herpes Simplex Virus 1 Infection.

    Science.gov (United States)

    Samrat, Subodh Kumar; Ha, Binh L; Zheng, Yi; Gu, Haidong

    2018-01-15

    Infected cell protein 0 (ICP0) of herpes simplex virus 1 (HSV-1) is an immediate early protein containing a RING-type E3 ubiquitin ligase. It targets several host factors for proteasomal degradation and subsequently activates viral expression. ICP0 has a nuclear localization sequence and functions in the nucleus early during infection. However, later in infection, ICP0 is found solely in the cytoplasm. The molecular mechanism and biological function of the ICP0 nuclear-to-cytoplasmic translocation are not well understood. In this study, we sought to characterize elements important for this translocation. We found that (i) in human embryonic lung fibroblast (HEL) cells, ICP0 C-terminal residues 741 to 775 were necessary but not sufficient for the nuclear-to-cytoplasmic translocation; (ii) the loss of ICP0 E3 ubiquitin ligase activity, which led to defective viral replication in nonpermissive cells, also caused mutant ICP0 to be retained in the nucleus of HEL cells; (iii) in permissive U2OS cells, however, ICP0 lacking E3 ligase activity was translocated to the cytoplasm at a pace faster than that of wild-type ICP0, suggesting that nuclear retention of ICP0 occurs in an ICP0 E3 ligase-dependent manner; and (iv) the ICP0 C terminus and late viral proteins cooperate in order to overcome nuclear retention and stimulate ICP0 cytoplasmic translocation. Taken together, less ICP0 nuclear retention may contribute to the permissiveness of U2OS cells to HSV-1 in the absence of functional ICP0. IMPORTANCE A distinct characteristic for eukaryotes is the compartmentalization of cell metabolic pathways, which allows greater efficiency and specificity of cellular functions. ICP0 of HSV-1 is a multifunctional viral protein that travels through different compartments as infection progresses. Its main regulatory functions are carried out in the nucleus, but it is translocated to the cytoplasm late during HSV-1 infection. To understand the biological significance of cytoplasmic ICP0 in

  1. Mechanisms and secondary factors involved in the induction of radiation transformation in vitro

    International Nuclear Information System (INIS)

    Little, J.B.

    1983-01-01

    The long term of this research program was to gain information concerning the mechanisms that determine the carcinogenic effects of ionizing radiation, particularly high LET radiation exposure. The experimental approach involves parallel studies of the induction of malignant transformation in BALB/3T3 cells and of specific gene mutations in human lymphoblastoid cells. Emphasis was on the biologic effects of internally incorporated Auger electron emitting radionuclides and the initiation of studies to determine the effects of low dose-rate neutron exposure. Auger electron irradiation sever as a model for high LET-type radiation effects and as an experimental tool for studying the effects of radiation at specific sites within the cell. Auger-emitting radiosotopes are commonly used in clinical nuclear medicine, rendering them a potential hazard to human populations. We examined the influence of cellular localization of Auger-emitting radionuclides and the spectrum of energy distribution in DNA on their mutagenic, cytogenetic, and transformational effects. The effects of 125 I (an energetic beta emitter) were compared. We studied the induction of cytogenetic changes by 125 I exposure of the cell membrane, as well as its potential to promote (enhance) transformation initiated by low dose external x-ray exposure. We will investigate the Relative Biological Effectiveness for mutagenesis and transformation of low doses of fast neutrons delivered continuously at variable low dose-rates. 34 refs., 1 tab

  2. Towards a Better Understanding of the Molecular Mechanisms Involved in Sunlight-Induced Melanoma

    Directory of Open Access Journals (Sweden)

    Williams Mandy

    2005-01-01

    Full Text Available Although much less prevalent than its nonmelanoma skin cancer counterparts, cutaneous malignant melanoma (CMM is the most lethal human skin cancer. Epidemiological and biological studies have established a strong link between lifetime exposure to ultraviolet (UV light, particularly sunburn in childhood, and the development of melanoma. However, the specific molecular targets of this environmental carcinogen are not known. Data obtained from genetic and molecular studies over the last few years have identified the INK4a/ARF locus as the “gatekeeper” melanoma suppressor, encoding two tumour suppressor proteins in human, p16 INK4a and p14 ARF . Recent developments in molecular biotechnology and research using laboratory animals have made a significant gene breakthrough identifying the components of the p16 INK4a /Rb pathway as the principal and rate-limiting targets of UV radiation actions in melanoma formation. This review summarizes the current knowledge of the molecular mechanisms involved in melanoma development and its relationship to sunlight UV radiation.

  3. Mechanisms involved in alleviation of intestinal inflammation by bifidobacterium breve soluble factors.

    Directory of Open Access Journals (Sweden)

    Elise Heuvelin

    Full Text Available OBJECTIVES: Soluble factors released by Bifidobacterium breve C50 (Bb alleviate the secretion of pro-inflammatory cytokines by immune cells, but their effect on intestinal epithelium remains elusive. To decipher the mechanisms accounting for the cross-talk between bacteria/soluble factors and intestinal epithelium, we measured the capacity of the bacteria, its conditioned medium (Bb-CM and other Gram(+ commensal bacteria to dampen inflammatory chemokine secretion. METHODS: TNFalpha-induced chemokine (CXCL8 secretion and alteration of NF-kappaB and AP-1 signalling pathways by Bb were studied by EMSA, confocal microscopy and western blotting. Anti-inflammatory capacity was also tested in vivo in a model of TNBS-induced colitis in mice. RESULTS: Bb and Bb-CM, but not other commensal bacteria, induced a time and dose-dependent inhibition of CXCL8 secretion by epithelial cells driven by both AP-1 and NF-kappaB transcription pathways and implying decreased phosphorylation of p38-MAPK and IkappaB-alpha molecules. In TNBS-induced colitis in mice, Bb-CM decreased the colitis score and inflammatory cytokine expression, an effect reproduced by dendritic cell conditioning with Bb-CM. CONCLUSIONS: Bb and secreted soluble factors contribute positively to intestinal homeostasis by attenuating chemokine production. The results indicate that Bb down regulate inflammation at the epithelial level by inhibiting phosphorylations involved in inflammatory processes and by protective conditioning of dendritic cells.

  4. Interfacial Mechanics Analysis of a Brittle Coating–Ductile Substrate System Involved in Thermoelastic Contact

    Directory of Open Access Journals (Sweden)

    Chi Zhang

    2017-02-01

    Full Text Available In this paper, interfacial stress analysis for a brittle coating/ductile substrate system, which is involved in a sliding contact with a rigid ball, is presented. By combining interface mechanics theory and the image point method, stress and displacement responses within a coated material for normal load, tangential load, and thermal load are obtained; further, the Green’s functions are established. The effects of coating thickness, friction coefficient, and a coating’s thermoelastic properties on the interfacial shear stress, τxz, and transverse stress, σxx, distributions are discussed in detail. A phenomenon, where interfacial shear stress tends to be relieved by frictional heating, is found in the case of a coating material’s thermal expansion coefficient being less than a substrate material’s thermal expansion coefficient. Additionally, numerical results show that distribution of interfacial stress can be altered and, therefore, interfacial damage can be modified by adjusting a coating’s structural parameters and thermoelastic properties.

  5. Involvement of Sodium Nitroprusside (SNP in the Mechanism That Delays Stem Bending of Different Gerbera Cultivars

    Directory of Open Access Journals (Sweden)

    Aung H. Naing

    2017-11-01

    Full Text Available Longevity of cut flowers of many gerbera cultivars (Gerbera jamesonii is typically short because of stem bending; hence, stem bending that occurs during the early vase life period is a major problem in gerbera. Here, we investigated the effects of sodium nitroprusside (SNP on the delay of stem bending in the gerbera cultivars, Alliance, Rosalin, and Bintang, by examining relative fresh weight, bacterial density in the vase solution, transcriptional analysis of a lignin biosynthesis gene, antioxidant activity, and xylem blockage. All three gerbera cultivars responded to SNP by delaying stem bending, compared to the controls; however, the responses were dose- and cultivar-dependent. Among the treatments, SNP at 20 mg L-1 was the best to delay stem bending in Alliance, while dosages of 10 and 5 mg L-1 were the best for Rosalin and Bintang, respectively. However, stem bending in Alliance and Rosalin was faster than in Bintang, indicating a discrepancy influenced by genotype. According to our analysis of the role of SNP in the delay of stem bending, the results revealed that SNP treatment inhibited bacterial growth and xylem blockage, enhanced expression levels of a lignin biosynthesis gene, and maintained antioxidant activities. Therefore, it is suggested that the cause of stem bending is associated with the above-mentioned parameters and SNP is involved in the mechanism that delays stem bending in the different gerbera cultivars.

  6. Mechanisms involved in the development of diabetic retinopathy induced by oxidative stress.

    Science.gov (United States)

    Guzman, David Calderón; Olguín, Hugo Juárez; García, Ernestina Hernández; Peraza, Armando Valenzuela; de la Cruz, Diego Zamora; Soto, Monica Punzo

    2017-01-01

    Diabetic retinopathy (DR) is one of the main complications in patients with diabetes and has been the leading cause of visual loss since 1990. Oxidative stress is a biological process resulting from excessive production of reactive oxygen species (ROS). This process contributes to the development of many diseases and disease complications. ROS interact with various cellular components to induce cell injury. Fortunately, there is an antioxidan t system that protects organisms against ROS. Indeed, when ROS exceed antioxidant capacity, the resulting cell injury can cause diverse physiological and pathological changes that could lead to a disease like DR. This paper reviews the possible mechanisms of common and novel biomarkers involved in the development of DR and explores how these biomarkers could be used to monitor the damage induced by oxidative stress in DR, which is a significant complication in people with diabetes. The poor control of glucemy in pacients with DB has been shown contribute to the development of complications in eyes as DR.

  7. Superoxide anions and hydrogen peroxide induce hepatocyte death by different mechanisms : Involvement of JNK and ERK MAP kinases

    NARCIS (Netherlands)

    Conde de la Rosa, L; Schoemaker, MH; Vrenken, TE; Buist-Homan, M; Havinga, R; Jansen, PLM; Moshage, H

    Background/Aims: In liver diseases, reactive oxygen species (ROS) are involved in cell death and liver injury, but the mechanisms are not completely elucidated. To elucidate the mechanisms of hepatocyte cell death induced by the ROS superoxide anions and hydrogen peroxide, primary cultures of

  8. Superoxide anions and hydrogen peroxide induce hepatocyte death by different mechanisms: involvement of JNK and ERK MAP kinases

    NARCIS (Netherlands)

    Conde de la Rosa, Laura; Schoemaker, Marieke H.; Vrenken, Titia E.; Buist-Homan, Manon; Havinga, Rick; Jansen, Peter L. M.; Moshage, Han

    2006-01-01

    BACKGROUND/AIMS: In liver diseases, reactive oxygen species (ROS) are involved in cell death and liver injury, but the mechanisms are not completely elucidated. To elucidate the mechanisms of hepatocyte cell death induced by the ROS superoxide anions and hydrogen peroxide, primary cultures of

  9. Mechanism involved in trichloroethylene-induced liver cancer: Importance to environmental cleanup. 1998 annual progress report

    International Nuclear Information System (INIS)

    Bull, R.J.; Miller, J.H.; Sasser, L.B.; Schultz, I.R.; Thrall, B.D.

    1998-01-01

    'The objective of this project is to develop critical data for changing risk-based clean-up standards for trichloroethylene (TCE). The project is organized around two interrelated tasks: Task 1 addresses the tumorigenic and dosimetry issues for the metabolites of TCE that produce liver cancer in mice, dichloroacetate (DCA) and trichloroacetate (TCA). Early work had suggested that TCA was primarily responsible for TCE-induced liver tumors, but several, more mechanistic observations suggest that DCA may play a prominent role. This task is aimed at determining the basis for the selection hypothesis and seeks to prove that this mode of action is responsible for TCE-induced tumors. This project will supply the basic dose-response data from which low-dose extrapolations would be made. Task 2 seeks specific evidence that TCA and DCA are capable of promoting the growth of spontaneously initiated cells from mouse liver, in vitro. The data provide the clearest evidence that both metabolites act by a mechanism of selection rather than mutation. These data are necessary to select between a linear (i.e. no threshold) and non-linear low-dose extrapolation model. As of May of 1998, this research has identified two plausible modes of action by which TCE produces liver tumors in mice. These modes of action do not require the compounds to be mutagenic. The bulk of the experimental evidence suggests that neither TCE nor the two hepatocarcinogenic metabolites of TCE are mutagenic. The results from the colony formation assay clearly establish that both of these metabolites cause colony growth from initiated cells that occur spontaneously in the liver of B 6 C 3 F 1 mice, although the phenotypes of the colonies differ in the same manner as tumors differ, in vivo. In the case of DCA, a second mechanism may occur at a lower dose involving the release of insulin. This observation is timely as it was recently reported that occupational exposures to trichloroethylene results in 2 to 4-fold

  10. Lung cancer-derived Dickkopf1 is associated with bone metastasis and the mechanism involves the inhibition of osteoblast differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Tianqing; Teng, Jiajun; Jiang, Liyan; Zhong, Hua; Han, Baohui, E-mail: baohuihan1@163.com

    2014-01-17

    Highlights: •DKK1 level was associated with NSCLC bone metastases. •Lung tumor cells derived DKK1 inhibited osteoblast differentiation. •Lung tumor cells derived DKK1 modulates β-catenin and RUNX2. -- Abstract: Wnt/β-catenin signaling and Dickkopf1 (DKK1) play important roles in the progression of lung cancer, which preferably metastasizes to skeleton. But the role of them in bone dissemination is poorly understood. This study aims to define the role of DKK1 in lung cancer bone metastases and investigate the underlying mechanism. Our results demonstrated that DKK1 over-expression was a frequent event in non-small-cell lung cancer (NSCLC) blood samples, and serous DKK1 level was much higher in bone metastatic NSCLC compared to non-bone metastatic NSCLC. We also found that conditioned medium from DKK1 over-expressing lung cancer cells inhibited the differentiation of osteoblast, determined by alkaline phosphatase activity and osteocalcin secretion, whereas the conditioned medium from DKK1 silencing lung cancer cells exhibited the opposite effects. Mechanistically, DKK1 reduced the level of β-catenin and RUNX2, as well as inhibiting the nuclear translocation of β-catenin. Taken together, these results suggested that lung cancer-produced DKK1 may be an important mechanistic link between NSCLC and bone metastases, and targeting DKK1 may be an effective method to treat bone metastase of NSCLC.

  11. Lung cancer-derived Dickkopf1 is associated with bone metastasis and the mechanism involves the inhibition of osteoblast differentiation

    International Nuclear Information System (INIS)

    Chu, Tianqing; Teng, Jiajun; Jiang, Liyan; Zhong, Hua; Han, Baohui

    2014-01-01

    Highlights: •DKK1 level was associated with NSCLC bone metastases. •Lung tumor cells derived DKK1 inhibited osteoblast differentiation. •Lung tumor cells derived DKK1 modulates β-catenin and RUNX2. -- Abstract: Wnt/β-catenin signaling and Dickkopf1 (DKK1) play important roles in the progression of lung cancer, which preferably metastasizes to skeleton. But the role of them in bone dissemination is poorly understood. This study aims to define the role of DKK1 in lung cancer bone metastases and investigate the underlying mechanism. Our results demonstrated that DKK1 over-expression was a frequent event in non-small-cell lung cancer (NSCLC) blood samples, and serous DKK1 level was much higher in bone metastatic NSCLC compared to non-bone metastatic NSCLC. We also found that conditioned medium from DKK1 over-expressing lung cancer cells inhibited the differentiation of osteoblast, determined by alkaline phosphatase activity and osteocalcin secretion, whereas the conditioned medium from DKK1 silencing lung cancer cells exhibited the opposite effects. Mechanistically, DKK1 reduced the level of β-catenin and RUNX2, as well as inhibiting the nuclear translocation of β-catenin. Taken together, these results suggested that lung cancer-produced DKK1 may be an important mechanistic link between NSCLC and bone metastases, and targeting DKK1 may be an effective method to treat bone metastase of NSCLC

  12. Transcuticular translocation of radionuclides on plant leaf surfaces

    International Nuclear Information System (INIS)

    Matsumoto, Ken-ichi; Watanabe, Tadakazu; Ambe, Shizuko; Yamaguchi, Isamu

    1996-01-01

    The cuticle covering all the outermost surfaces of the aerial parts of plants could play a selective role in uptake and translocation of radionuclides from air into plants. In this study, we investigated the transcuticular uptake and translocation behavior via water droplets of various radionuclides in red clover, orchard grass, Japanese radish and mung bean. Ten μl of an aqueous solution of the multitracer generated from Au was applied to the upper surface of the 2nd leaf of the plants at the 5th leaf stage. The plants were then grown for 14 days at 25degC and 70% RH under illumination of artificial solar lights. The transcuticular uptake and translocation throughout the plant were periodically assayed by determining the radioactivity in the surface residue, the cuticle layer beneath the applied site, the leaf area outside the applied site, the other aerial parts and the root of the plant, using an HPGe detector. The applied radionuclides were absorbed into, in turn, the cuticle layer beneath the applied site and then translocated through the cuticle to the inner tissue and eventually to the other aerial parts and finally to the roots, of the plant. The distribution and accumulation in the plant seems to depend upon the characteristics of each radionuclide and plant species. Ca * and Te * tended to remain on leaf surfaces without being absorbed into the cuticle. On the other hand, Sc * , Co * , Zn * , Se * , Rb * , and Eu * were easily absorbed and translocated to every part of the plant including the root. The other radionuclides such as Be * , Mn * , Sr * , Y * , Ba * , Ce * , Pm * , Gd * , Hf * , Yb * , Lu * , Os * , Ir * , and Pt * remained in the region close to the site of their application. The above results possibly indicate the existence of mechanisms common to these plants for selective transcuticular uptake and translocation of radionuclides within plant tissues, though their translocation was considerably influenced by the plant species. (author)

  13. Study of the Genes and Mechanism Involved in the Radioadaptive Response

    Science.gov (United States)

    Dasgupta, Pushan R.

    2009-01-01

    The radioadaptive response is a phenomenon where exposure to a prior low dose of radiation reduces the level of damage induced by a subsequent high radiation dose. The molecular mechanism behind this is still not well understood. Learning more about the radioadaptive response is critical for long duration spaceflight since astronauts are exposed to low levels of cosmic radiation. The micronucleus assay was used to measure the level of damage caused by radiation. Although cells which were not washed with phosphate buffered saline (PBS) after a low priming dose of 5cGy did not show adaptation to the challenge dose, washing the cells with PBS and giving the cells fresh media after the low dose did allow radioadaptation to occur. This is consistent with the results of a previous publication by another research group. In the present study, genes involved in DNA damage signaling and the oxidative stress response were studied using RT PCR techniques in order to look at changes in expression level after the low dose with or without washing. Our preliminary results indicate that upregulation of oxidative stress response genes ANGPTL7, NCF2, TTN, and SRXN1 may be involved in the radioadaptive response. The low dose of radiation alone was found to activate the oxidative stress response genes GPR156 and MTL5, whereas, washing the cells alone caused relatively robust upregulation of the oxidative stress response genes DUSP1 and PTGS2. Washing after the priming dose showed some changes in the expression level of several DNA damage signaling genes. In addition, we studied whether washing the cells after the priming dose has an effect on the level of nitric oxide in both the media and cells, since nitric oxide levels are known to increase in the media of the cells after a high dose of radiation only if the cells were already exposed to a low priming dose. Based on this preliminary study, we propose that washing the cells after priming exposure actually eliminates some factor

  14. Warburg effect and translocation-induced genomic instability: two yeast models for cancer cells

    International Nuclear Information System (INIS)

    Tosato, Valentina; Grüning, Nana-Maria; Breitenbach, Michael; Arnak, Remigiusz; Ralser, Markus; Bruschi, Carlo V.

    2013-01-01

    Yeast has been established as an efficient model system to study biological principles underpinning human health. In this review we focus on yeast models covering two aspects of cancer formation and progression (i) the activity of pyruvate kinase (PK), which recapitulates metabolic features of cancer cells, including the Warburg effect, and (ii) chromosome bridge-induced translocation (BIT) mimiking genome instability in cancer. Saccharomyces cerevisiae is an excellent model to study cancer cell metabolism, as exponentially growing yeast cells exhibit many metabolic similarities with rapidly proliferating cancer cells. The metabolic reconfiguration includes an increase in glucose uptake and fermentation, at the expense of respiration and oxidative phosphorylation (the Warburg effect), and involves a broad reconfiguration of nucleotide and amino acid metabolism. Both in yeast and humans, the regulation of this process seems to have a central player, PK, which is up-regulated in cancer, and to occur mostly on a post-transcriptional and post-translational basis. Furthermore, BIT allows to generate selectable translocation-derived recombinants (“translocants”), between any two desired chromosomal locations, in wild-type yeast strains transformed with a linear DNA cassette carrying a selectable marker flanked by two DNA sequences homologous to different chromosomes. Using the BIT system, targeted non-reciprocal translocations in mitosis are easily inducible. An extensive collection of different yeast translocants exhibiting genome instability and aberrant phenotypes similar to cancer cells has been produced and subjected to analysis. In this review, we hence provide an overview upon two yeast cancer models, and extrapolate general principles for mimicking human disease mechanisms in yeast.

  15. Warburg effect and translocation-induced genomic instability: two yeast models for cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Tosato, Valentina [International Centre for Genetic Engineering and Biotechnology, Trieste (Italy); Grüning, Nana-Maria [Cambridge System Biology Center, Department of Biochemistry, University of Cambridge, Cambridge (United Kingdom); Breitenbach, Michael [Division of Genetics, Department of Cell Biology, University of Salzburg, Salzburg (Austria); Arnak, Remigiusz [International Centre for Genetic Engineering and Biotechnology, Trieste (Italy); Ralser, Markus [Cambridge System Biology Center, Department of Biochemistry, University of Cambridge, Cambridge (United Kingdom); Bruschi, Carlo V., E-mail: bruschi@icgeb.org [International Centre for Genetic Engineering and Biotechnology, Trieste (Italy)

    2013-01-18

    Yeast has been established as an efficient model system to study biological principles underpinning human health. In this review we focus on yeast models covering two aspects of cancer formation and progression (i) the activity of pyruvate kinase (PK), which recapitulates metabolic features of cancer cells, including the Warburg effect, and (ii) chromosome bridge-induced translocation (BIT) mimiking genome instability in cancer. Saccharomyces cerevisiae is an excellent model to study cancer cell metabolism, as exponentially growing yeast cells exhibit many metabolic similarities with rapidly proliferating cancer cells. The metabolic reconfiguration includes an increase in glucose uptake and fermentation, at the expense of respiration and oxidative phosphorylation (the Warburg effect), and involves a broad reconfiguration of nucleotide and amino acid metabolism. Both in yeast and humans, the regulation of this process seems to have a central player, PK, which is up-regulated in cancer, and to occur mostly on a post-transcriptional and post-translational basis. Furthermore, BIT allows to generate selectable translocation-derived recombinants (“translocants”), between any two desired chromosomal locations, in wild-type yeast strains transformed with a linear DNA cassette carrying a selectable marker flanked by two DNA sequences homologous to different chromosomes. Using the BIT system, targeted non-reciprocal translocations in mitosis are easily inducible. An extensive collection of different yeast translocants exhibiting genome instability and aberrant phenotypes similar to cancer cells has been produced and subjected to analysis. In this review, we hence provide an overview upon two yeast cancer models, and extrapolate general principles for mimicking human disease mechanisms in yeast.

  16. Mechanisms of Action Involved in Ozone Therapy: Is healing induced via a mild oxidative stress?

    Directory of Open Access Journals (Sweden)

    Sagai Masaru

    2011-12-01

    moderate oxidative stress. Recently these concepts have become widely accepted. The versatility of ozone in treating vascular and degenerative diseases as well as skin lesions, hernial disc and primary root carious lesions in children is emphasized. Further researches able to elucidate whether the mechanisms of action of ozone therapy involve nuclear transcription factors, such as Nrf2, NFAT, AP-1, and HIF-1α are warranted.

  17. Microarray Analysis of the Molecular Mechanism Involved in Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Cheng Tan

    2018-01-01

    Full Text Available Purpose. This study aimed to investigate the underlying molecular mechanisms of Parkinson’s disease (PD by bioinformatics. Methods. Using the microarray dataset GSE72267 from the Gene Expression Omnibus database, which included 40 blood samples from PD patients and 19 matched controls, differentially expressed genes (DEGs were identified after data preprocessing, followed by Gene Ontology (GO and Kyoto Encyclopedia of Genes and Genomes (KEGG pathway enrichment analyses. Protein-protein interaction (PPI network, microRNA- (miRNA- target regulatory network, and transcription factor- (TF- target regulatory networks were constructed. Results. Of 819 DEGs obtained, 359 were upregulated and 460 were downregulated. Two GO terms, “rRNA processing” and “cytoplasm,” and two KEGG pathways, “metabolic pathways” and “TNF signaling pathway,” played roles in PD development. Intercellular adhesion molecule 1 (ICAM1 was the hub node in the PPI network; hsa-miR-7-5p, hsa-miR-433-3p, and hsa-miR-133b participated in PD pathogenesis. Six TFs, including zinc finger and BTB domain-containing 7A, ovo-like transcriptional repressor 1, GATA-binding protein 3, transcription factor dp-1, SMAD family member 1, and quiescin sulfhydryl oxidase 1, were related to PD. Conclusions. “rRNA processing,” “cytoplasm,” “metabolic pathways,” and “TNF signaling pathway” were key pathways involved in PD. ICAM1, hsa-miR-7-5p, hsa-miR-433-3p, hsa-miR-133b, and the abovementioned six TFs might play important roles in PD development.

  18. Study of the mechanisms involved in the laser superficial hardening process of metallic alloys

    International Nuclear Information System (INIS)

    Silva, Edmara Marques Rodrigues da

    2001-01-01

    The laser superficial hardening process of a ferrous alloy (gray cast iron) and of an aluminum-silicon alloy was investigated in this work. These metallic alloys are used in the automobile industry for manufacturing cylinders and pistons, respectively. By application of individual pulses and single tracks, the involved mechanisms during the processing were studied. Variables such as energy density, power density, temporal width, beam diameter on the sample surface, atmosphere of the processing region, overlapping and scanning velocity. The hardened surface was characterized by optical and scanning electronic microscopy, dispersive energy microanalysis, X-ray mapping, X-ray diffraction, and measurements of roughness and Vickers microhardness. Depending on the processing parameters, it is possible to obtain different microstructures. The affected area of gray cast iron, can be hardened by remelting or transformation hardening (total or partial) if the reached temperature is higher or not that of melting temperature. Laser treatment originated new structures such as retained austenite, martensite and, occasionally, eutectic of cellular dendritic structure. Aluminum-silicon alloy does not have phase transformation in solid state, it can be hardened only by remelting. The increase of hardness is a function of the precipitation hardening process, which makes the silicon particles smaller and more disperse in the matrix. Maximal values of microhardness (700-1000 HV) were reached with the laser treatment in gray cast iron samples. The initial microhardness is of 242 HV. For aluminum-silicon alloy, the laser remelting increases the initial microhardness of 128 HV to the range of 160-320 HV. The found results give a new perspective for using the CLA/IPEN's laser in the heat treatment area. Besides providing a higher absorptivity to the materials, compared with the CO 2 laser, and optical fiber access, the superficial hardening with Nd:YAG laser, depending on the level of

  19. Electrostatics of polymer translocation events in electrolyte solutions.

    Science.gov (United States)

    Buyukdagli, Sahin; Ala-Nissila, T

    2016-07-07

    We develop an analytical theory that accounts for the image and surface charge interactions between a charged dielectric membrane and a DNA molecule translocating through the membrane. Translocation events through neutral carbon-based membranes are driven by a competition between the repulsive DNA-image-charge interactions and the attractive coupling between the DNA segments on the trans and the cis sides of the membrane. The latter effect is induced by the reduction of the coupling by the dielectric membrane. In strong salt solutions where the repulsive image-charge effects dominate the attractive trans-cis coupling, the DNA molecule encounters a translocation barrier of ≈10 kBT. In dilute electrolytes, the trans-cis coupling takes over image-charge forces and the membrane becomes a metastable attraction point that can trap translocating polymers over long time intervals. This mechanism can be used in translocation experiments in order to control DNA motion by tuning the salt concentration of the solution.

  20. Use of wild–caught individuals as a key factor for success in vertebrate translocations

    Energy Technology Data Exchange (ETDEWEB)

    Rummel, L.; MartInez-AbraIn, A.; Mayol, J.; Ruiz-Olmo, J.; Mañas, F.; Jimenez, J.; Gomez, J.A.; Oro, D.

    2016-07-01

    Success of vertebrate translocations is crucial to improve efficacy and efficiency of conservation actions but it is often difficult to assess because negative results (failed translocations) are seldom published. We developed surveys and sent them to heads of conservation services in three major Spanish Mediterranean regions. The purpose of our surveys was to determine which methodological factor, that could easily be implemented in practice, was more influential for translocation success. These factors included the origin of translocated individuals (captive or wild) and translocation effort (propagule size and program duration). After analyzing 83 programs, corresponding to 34 different vertebrate species, by means of generalized linear mixed modelling, we found that ‘origin’ was more relevant for translocation success than ‘effort’, although we could not rule out some role of translocation effort. Variance in success of translocation programs involving individuals from wild sources was smaller and consequently results more predictable. Origin interacted with taxa so that success was higher when using wild birds and especially wild fish and mammals, but not when releasing reptiles. Hence, we suggest that, for any given effort, translocation results will be better for most vertebrate taxa if individuals from wild sources are used. When this is not feasible, managers should release captive–reared individuals for a long number of years rather than a short number of years. (Author)

  1. Use of wild–caught individuals as a key factor for success in vertebrate translocations

    Directory of Open Access Journals (Sweden)

    Rummel, L.

    2016-06-01

    Full Text Available Success of vertebrate translocations is crucial to improve efficacy and efficiency of conservation actions but it is often difficult to assess because negative results (failed translocations are seldom published. We developed surveys and sent them to heads of conservation services in three major Spanish Mediterranean regions. The purpose of our surveys was to determine which methodological factor, that could easily be implemented in practice, was more influential for translocation success. These factors included the origin of translocated individuals (captive or wild and translocation effort (propagule size and program duration. After analyzing 83 programs, corresponding to 34 different vertebrate species, by means of generalized linear mixed modelling, we found that ‘origin’ was more relevant for translocation success than ‘effort’, although we could not rule out some role of translocation effort. Variance in success of translocation programs involving individuals from wild sources was smaller and consequently results more predictable. Origin interacted with taxa so that success was higher when using wild birds and especially wild fish and mammals, but not when releasing reptiles. Hence, we suggest that, for any given effort, translocation results will be better for most vertebrate taxa if individuals from wild sources are used. When this is not feasible, managers should release captive–reared individuals for a long number of years rather than a short number of years.

  2. Arsenic Uptake and Translocation in Plants.

    Science.gov (United States)

    Li, Nannan; Wang, Jingchao; Song, Won-Yong

    2016-01-01

    Arsenic (As) is a highly toxic metalloid that is classified as a non-threshold class-1 carcinogen. Millions of people worldwide suffer from As toxicity due to the intake of As-contaminated drinking water and food. Reducing the As concentration in drinking water and food is thus of critical importance. Phytoremediation of soil contaminated with As and the reduction of As contamination in food depend on a detailed understanding of As uptake and transport in plants. As transporters play essential roles in As uptake, translocation and accumulation in plant cells. In this review, we summarize the current understanding of As transport in plants, with an emphasis on As uptake, mechanisms of As resistance and the long-distance translocation of As, especially the accumulation of As in grains through phloem-mediated transport. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  3. Suitability of amphibians and reptiles for translocation.

    Science.gov (United States)

    Germano, Jennifer M; Bishop, Phillip J

    2009-02-01

    Translocations are important tools in the field of conservation. Despite increased use over the last few decades, the appropriateness of translocations for amphibians and reptiles has been debated widely over the past 20 years. To provide a comprehensive evaluation of the suitability of amphibians and reptiles for translocation, we reviewed the results of amphibian and reptile translocation projects published between 1991 and 2006. The success rate of amphibian and reptile translocations reported over this period was twice that reported in an earlier review in 1991. Success and failure rates were independent of the taxonomic class (Amphibia or Reptilia) released. Reptile translocations driven by human-wildlife conflict mitigation had a higher failure rate than those motivated by conservation, and more recent projects of reptile translocations had unknown outcomes. The outcomes of amphibian translocations were significantly related to the number of animals released, with projects releasing over 1000 individuals being most successful. The most common reported causes of translocation failure were homing and migration of introduced individuals out of release sites and poor habitat. The increased success of amphibian and reptile translocations reviewed in this study compared with the 1991 review is encouraging for future conservation projects. Nevertheless, more preparation, monitoring, reporting of results, and experimental testing of techniques and reintroduction questions need to occur to improve translocations of amphibians and reptiles as a whole.

  4. Markovian description of unbiased polymer translocation

    International Nuclear Information System (INIS)

    Mondaini, Felipe; Moriconi, L.

    2012-01-01

    We perform, with the help of cloud computing resources, extensive Langevin simulations which provide compelling evidence in favor of a general Markovian framework for unbiased three-dimensional polymer translocation. Our statistical analysis consists of careful evaluations of (i) two-point correlation functions of the translocation coordinate and (ii) the empirical probabilities of complete polymer translocation (taken as a function of the initial number of monomers on a given side of the membrane). We find good agreement with predictions derived from the Markov chain approach recently addressed in the literature by the present authors. -- Highlights: ► We investigate unbiased polymer translocation through membrane pores. ► Large statistical ensembles have been produced with the help of cloud computing resources. ► We evaluate the two-point correlation function of the translocation coordinate. ► We evaluate empirical probabilities for complete polymer translocation. ► Unbiased polymer translocation is described as a Markov stochastic process.

  5. Markovian description of unbiased polymer translocation

    Energy Technology Data Exchange (ETDEWEB)

    Mondaini, Felipe [Instituto de Física, Universidade Federal do Rio de Janeiro, C.P. 68528, 21945-970 Rio de Janeiro, RJ (Brazil); Centro Federal de Educação Tecnológica Celso Suckow da Fonseca, UnED Angra dos Reis, Angra dos Reis, 23953-030, RJ (Brazil); Moriconi, L., E-mail: moriconi@if.ufrj.br [Instituto de Física, Universidade Federal do Rio de Janeiro, C.P. 68528, 21945-970 Rio de Janeiro, RJ (Brazil)

    2012-10-01

    We perform, with the help of cloud computing resources, extensive Langevin simulations which provide compelling evidence in favor of a general Markovian framework for unbiased three-dimensional polymer translocation. Our statistical analysis consists of careful evaluations of (i) two-point correlation functions of the translocation coordinate and (ii) the empirical probabilities of complete polymer translocation (taken as a function of the initial number of monomers on a given side of the membrane). We find good agreement with predictions derived from the Markov chain approach recently addressed in the literature by the present authors. -- Highlights: ► We investigate unbiased polymer translocation through membrane pores. ► Large statistical ensembles have been produced with the help of cloud computing resources. ► We evaluate the two-point correlation function of the translocation coordinate. ► We evaluate empirical probabilities for complete polymer translocation. ► Unbiased polymer translocation is described as a Markov stochastic process.

  6. Efficient secretion of small proteins in mammalian cells relies on Sec62-dependent posttranslational translocation

    Science.gov (United States)

    Lakkaraju, Asvin K. K.; Thankappan, Ratheeshkumar; Mary, Camille; Garrison, Jennifer L.; Taunton, Jack; Strub, Katharina

    2012-01-01

    Mammalian cells secrete a large number of small proteins, but their mode of translocation into the endoplasmic reticulum is not fully understood. Cotranslational translocation was expected to be inefficient due to the small time window for signal sequence recognition by the signal recognition particle (SRP). Impairing the SRP pathway and reducing cellular levels of the translocon component Sec62 by RNA interference, we found an alternate, Sec62-dependent translocation path in mammalian cells required for the efficient translocation of small proteins with N-terminal signal sequences. The Sec62-dependent translocation occurs posttranslationally via the Sec61 translocon and requires ATP. We classified preproteins into three groups: 1) those that comprise ≤100 amino acids are strongly dependent on Sec62 for efficient translocation; 2) those in the size range of 120–160 amino acids use the SRP pathway, albeit inefficiently, and therefore rely on Sec62 for efficient translocation; and 3) those larger than 160 amino acids depend on the SRP pathway to preserve a transient translocation competence independent of Sec62. Thus, unlike in yeast, the Sec62-dependent translocation pathway in mammalian cells serves mainly as a fail-safe mechanism to ensure efficient secretion of small proteins and provides cells with an opportunity to regulate secretion of small proteins independent of the SRP pathway. PMID:22648169

  7. Mechanisms involved in the psychological distress of Black Caribbeans in the United States

    Science.gov (United States)

    Govia, Ishtar O.

    The mental health of ethnic minorities in the United States is of urgent concern. The accelerated growth of groups of ethnic minorities and immigrants in the United States and the stressors to which they are exposed, implores academic researchers to investigate more deeply health disparities and the factors that exacerbate or minimize such inequalities. This dissertation attended to that concern. It used data from the National Survey of American Life (NSAL), the first survey with a national representative sample of Black Caribbeans, to explore mechanisms that involved in the psychological distress of Black Caribbeans in the United States. In a series of three studies, the dissertation investigated the role and consequence of (1) chronic discrimination, immigration factors, and closeness to ethnic and racial groups; (2) personal control and social support; and (3) family relations and social roles in the psychological distress of Black Caribbeans. Study 1 examined how the associations between discrimination and psychological distress were buffered or exacerbated by closeness to ethnic group and closeness to racial group. It also examined how these associations differed depending on immigration factors. Results indicated that the buffering or exacerbating effect of ethnic and racial group closeness varied according to the type of discrimination (subtle or severe) and were more pronounced among those born in the United States. Using the stress process framework, Study 2 tested moderation and mediation models of the effects of social support and personal control in the association between discrimination and distress. Results from a series of analyses on 579 respondents suggested that personal control served as a mediator in this relationship and that emotional support exerted a direct distress deterring function. Study 3 investigated sex differences in the associations between social roles, intergenerational family relationship perceptions and distress. Results

  8. A novel mechanism of hippocampal LTD involving muscarinic receptor-triggered interactions between AMPARs, GRIP and liprin-α

    Directory of Open Access Journals (Sweden)

    Dickinson Bryony A

    2009-06-01

    Full Text Available Abstract Background Long-term depression (LTD in the hippocampus can be induced by activation of different types of G-protein coupled receptors, in particular metabotropic glutamate receptors (mGluRs and muscarinic acethycholine receptors (mAChRs. Since mGluRs and mAChRs activate the same G-proteins and isoforms of phospholipase C (PLC, it would be expected that these two forms of LTD utilise the same molecular mechanisms. However, we find a distinct mechanism of LTD involving GRIP and liprin-α. Results Whilst both forms of LTD require activation of tyrosine phosphatases and involve internalisation of AMPARs, they use different molecular interactions. Specifically, mAChR-LTD, but not mGluR-LTD, is blocked by peptides that inhibit the binding of GRIP to the AMPA receptor subunit GluA2 and the binding of GRIP to liprin-α. Thus, different receptors that utilise the same G-proteins can regulate AMPAR trafficking and synaptic efficacy via distinct molecular mechanisms. Conclusion Our results suggest that mAChR-LTD selectively involves interactions between GRIP and liprin-α. These data indicate a novel mechanism of synaptic plasticity in which activation of M1 receptors results in AMPAR endocytosis, via a mechanism involving interactions between GluA2, GRIP and liprin-α.

  9. Mechanisms involved in the evasion of the host defence by Pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    Kharazmi, A

    1991-01-01

    Pseudomonas aeruginosa, an extracellular opportunistic pathogen, utilizes two major mechanisms to evade the host defence system. One of these mechanisms is the production of a large number of extracellular products, such as proteases, toxins, and lipases. The two proteases, alkaline protease and ...

  10. An Updated View of Translocator Protein (TSPO

    Directory of Open Access Journals (Sweden)

    Nunzio Denora

    2017-12-01

    Full Text Available Decades of study on the role of mitochondria in living cells have evidenced the importance of the 18 kDa mitochondrial translocator protein (TSPO, first discovered in the 1977 as an alternative binding site for the benzodiazepine diazepam in the kidneys. This protein participates in a variety of cellular functions, including cholesterol transport, steroid hormone synthesis, mitochondrial respiration, permeability transition pore opening, apoptosis, and cell proliferation. Thus, TSPO has become an extremely attractive subcellular target for the early detection of disease states that involve the overexpression of this protein and the selective mitochondrial drug delivery. This special issue was programmed with the aim of summarizing the latest findings about the role of TSPO in eukaryotic cells and as a potential subcellular target of diagnostics or therapeutics. A total of 9 papers have been accepted for publication in this issue, in particular, 2 reviews and 7 primary data manuscripts, overall describing the main advances in this field.

  11. Comparative sensitivity of photosynthesis and translocation to sulfur dioxide damage in Phaseolus vulgaris L

    International Nuclear Information System (INIS)

    Noyes, R.D.

    1978-01-01

    The inhibiting effect of sulfur dioxide on photosynthesis in a mature bean leaf and, simultaneously, on the rate of carbohydrate translocation from this same leaf has been examined. The results show a reduction of 0, 13, and 73% in net photosynthesis and 39, 44, and 69% in translocation, at concentrations of 0.1, 1, and 3 ppm sulfur dioxide, respectively. The inhibition of translocation at 0.1 ppm sulfur dioxide without any accompanying inhibition of net photosynthesis indicates that translocation is considerably more sensitive to sulfur dioxide damage. The mechanism of translocation inhibition at 1 ppm sulfur dioxide or less is shown to be independent of photosynthetic inhibition. Whereas, it is suggested that at higher concentrations significant inhibition of photosynthesis causes an additive reduction of translocation due to reduced levels of transport sugars. Autoradiograms of 14 C-labeled source leaves indicate that one possible mechanism of sulfur dioxide damage to translocation is the inhibition of sieve-tube loading. Inhibition of phloem translocation at common ambient levels (0.1 ppm) of sulfur dioxide is important to the overall growth and yield of major agricultural crops sensitive to sulfur dioxide

  12. MiT family translocation renal cell carcinoma.

    Science.gov (United States)

    Argani, Pedram

    2015-03-01

    The MiT subfamily of transcription factors includes TFE3, TFEB, TFC, and MiTF. Gene fusions involving two of these transcription factors have been identified in renal cell carcinoma (RCC). The Xp11 translocation RCCs were first officially recognized in the 2004 WHO renal tumor classification, and harbor gene fusions involving TFE3. The t(6;11) RCCs harbor a specific Alpha-TFEB gene fusion and were first officially recognized in the 2013 International Society of Urologic Pathology (ISUP) Vancouver classification of renal neoplasia. These two subtypes of translocation RCC have many similarities. Both were initially described in and disproportionately involve young patients, though adult translocation RCC may overall outnumber pediatric cases. Both often have unusual and distinctive morphologies; the Xp11 translocation RCCs frequently have clear cells with papillary architecture and abundant psammomatous bodies, while the t(6;11) RCCs frequently have a biphasic appearance with both large and small epithelioid cells and nodules of basement membrane material. However, the morphology of these two neoplasms can overlap, with one mimicking the other. Both of these RCCs underexpress epithelial immunohistochemical markers like cytokeratin and epithelial membrane antigen (EMA) relative to most other RCCs. Unlike other RCCs, both frequently express the cysteine protease cathepsin k and often express melanocytic markers like HMB45 and Melan A. Finally, TFE3 and TFEB have overlapping functional activity as these two transcription factors frequently heterodimerize and bind to the same targets. Therefore, on the basis of clinical, morphologic, immunohistochemical, and genetic similarities, the 2013 ISUP Vancouver classification of renal neoplasia grouped these two neoplasms together under the heading of "MiT family translocation RCC." This review summarizes our current knowledge of these recently described RCCs. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. SIRT1 interacts with and protects glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from nuclear translocation: Implications for cell survival after irradiation

    International Nuclear Information System (INIS)

    Joo, Hyun-Yoo; Woo, Seon Rang; Shen, Yan-Nan; Yun, Mi Yong; Shin, Hyun-Jin; Park, Eun-Ran; Kim, Su-Hyeon; Park, Jeong-Eun; Ju, Yeun-Jin; Hong, Sung Hee; Hwang, Sang-Gu; Cho, Myung-Haing; Kim, Joon; Lee, Kee-Ho

    2012-01-01

    Highlights: ► SIRT1 serves to retain GAPDH in the cytosol, preventing GAPDH nuclear translocation. ► When SIRT1 is depleted, GAPDH translocation occurs even in the absence of stress. ► Upon irradiation, SIRT1 interacts with GAPDH. ► SIRT1 prevents irradiation-induced nuclear translocation of GAPDH. ► SIRT1 presence rather than activity is essential for inhibiting GAPDH translocation. -- Abstract: Upon apoptotic stimulation, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a cytosolic enzyme normally active in glycolysis, translocates into the nucleus and activates an apoptotic cascade therein. In the present work, we show that SIRT1 prevents nuclear translocation of GAPDH via interaction with GAPDH. SIRT1 depletion triggered nuclear translocation of cytosolic GAPDH even in the absence of apoptotic stress. Such translocation was not, however, observed when SIRT1 enzymatic activity was inhibited, indicating that SIRT1 protein per se, rather than the deacetylase activity of the protein, is required to inhibit GAPDH translocation. Upon irradiation, SIRT1 prevented irradiation-induced nuclear translocation of GAPDH, accompanied by interaction of SIRT1 and GAPDH. Thus, SIRT1 functions to retain GAPDH in the cytosol, protecting the enzyme from nuclear translocation via interaction with these two proteins. This serves as a mechanism whereby SIRT1 regulates cell survival upon induction of apoptotic stress by means that include irradiation.

  14. A Mechanism for Land-Atmosphere Feedback Involving Planetary Wave Structures

    Science.gov (United States)

    Koster, Randal D.; Chang, Yehui; Schubert, Siegfried D.

    2014-01-01

    While the ability of land surface conditions to influence the atmosphere has been demonstrated in various modeling and observational studies, the precise mechanisms by which land-atmosphere feedback occurs are still largely unknown particularly the mechanisms that allow land moisture state in one region to affect atmospheric conditions in another. Such remote impacts are examined here in the context of atmospheric general circulation model (AGCM) simulations, leading to the identification of one potential mechanism: the phase-locking and amplification of a planetary wave through the imposition of a spatial pattern of soil moisture at the land surface. This mechanism, shown here to be relevant in the AGCM, apparently also operates in nature, as suggested by supporting evidence found in reanalysis data.

  15. Swarming mechanisms in the yellow fever mosquito: aggregation pheromones involved in the mating behavior of Aedes aegypti

    Science.gov (United States)

    Mosquitoes of various species mate in swarms comprised of tens to thousands flying males. Yet little information is known about mosquito swarming mechanism. Discovering chemical cues involved in mosquito biology leads to better adaptation of disease control interventions. In this study, we aimed ...

  16. Silibinin induces apoptosis via calpain-dependent AIF nuclear translocation in U87MG human glioma cell death

    Directory of Open Access Journals (Sweden)

    Kim Yong K

    2011-04-01

    Full Text Available Abstract Background Silibinin, a natural polyphenolic flavonoid, has been reported to induce cell death in various cancer cell types. However, the molecular mechanism is not clearly defined. Our previous study showed that silibinin induces glioma cell death and its effect was effectively prevented by calpain inhibitor. The present study was therefore undertaken to examine the role of calpain in the silibinin-induced glioma cell death. Methods U87MG cells were grown on well tissue culture plates and cell viability was measured by MTT assay. ROS generation and △ψm were estimated using the fluorescence dyes. PKC activation and Bax expression were measured by Western blot analysis. AIF nuclear translocation was determined by Western blot and immunocytochemistry. Results Silibinin induced activation of calpain, which was blocked by EGTA and the calpain inhibitor Z-Leu-Leu-CHO. Silibinin caused ROS generation and its effect was inhibited by calpain inhibitor, the general PKC inhibitor GF 109203X, the specific PKCδ inhibitor rottlerin, and catalase. Silibinin-induce cell death was blocked by calpain inhibitor and PKC inhibitors. Silibinin-induced PKCδ activation and disruption of △ψm were prevented by the calpain inhibitor. Silibinin induced AIF nuclear translocation and its effect was prevented by calpain inhibitor. Transfection of vector expressing microRNA of AIF prevented the silibinin-induced cell death. Conclusions Silibinin induces apoptotic cell death through a calpain-dependent mechanism involving PKC, ROS, and AIF nuclear translocation in U87MG human glioma cells.

  17. Importance of No. 21 chromosome in translocation t(8:21) in acute myelocytic leukemia (AML) to the genesis of the disease

    Energy Technology Data Exchange (ETDEWEB)

    Ishihara, T; Minamihisamatsu, M

    1986-05-01

    The results are reported of the chromosome analysis of 17 cases of acute myelocytic leukemia (AML), mostly belonging to M2 of the FAB classification, especially on the translocation t(8:21) and its variant translocations. The presence of two cases with simple variant translocation not involving No. 8 chromosome seems to suggest that No. 21 chromosome is more important to the genesis of AML than the No. 8 chromosome. This assumption appears to be supported by findings on cases with complex translocation: In two cases with complex translocation, the portion translocated from No. 21 chromosome onto No. 8 was firmly maintained in the specific site (q21) on No. 8 whereas the portion translocated from No. 8 chromosome onto No. 21 was involved in further translocation with another chromosome, onto which it was re-translocated. The results of the present cytogenetic study indicate that the analysis of variant translocations in various specific chromosome translocations in leukemia and other malignant disorders is very useful to elucidate the problem as to whether the genesis of such disorders lies in either one or both of the pair of chromosomes involved in the specific translocations of the respective diseases.

  18. Molecular mechanism for the involvement of nuclear receptor FXR in HBV-associated hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Yong-dong Niu

    2011-08-01

    Full Text Available Farnesoid X receptor (FXR, also termed nuclear receptor NR1H4 is critically involved in the regulation of nascent bile formation and bile acid enterohepatic circulation. FXR and bile acids have been shown to play roles in liver regeneration and inflammatory responses. There is increasing evidence suggesting that FXR and the FXR signaling pathway are involved in the pathophysiology of a wide range of liver diseases, such as viral hepatitis, cirrhosis, and hepatocellular carcinoma (HCC. Here we discuss the latest discoveries of FXR functions with relevance to bile acid metabolism and HBV-associated HCC. More specifically, the goal of this review is to discuss the roles of FXR and bile acids in regulating HBV replication and how disregulation of the FXR-bile acid signaling pathway is involved in HBV-associated hepatocarcinogenesis.

  19. Experience with FISH-detected translocations as an indicator in retrospective dose reconstructions

    International Nuclear Information System (INIS)

    Pressl, S.; Romm, H.; Ganguly, B.B.; Stephan, G.

    2000-01-01

    The prerequisite for the use of translocations as an indicator in retrospective dose reconstructions, is knowledge of the background level, persistence, and the availability of dose response curves for the conversion of translocation frequencies into doses. The results obtained in these areas are summarised. Cells with complete painted chromosome material are evaluated. Those showing any aberrations which involve painted material are stored in a computerised system, and described in detail. The simultaneous painting of whole chromosomes and centromeres has proved to provide a better level of discrimination between translocations and dicentrics. Following irradiation, direct proportionality was observed between DNA content covered by the painted chromosomes (11-19%) and the translocation frequency. The background level of translocations was determined in 42 healthy subjects, aged between 21 and 73 years of age. The statistical analyses of the data revealed no influence from sex and smoking habits on the translocation frequency. A clear increase in translocation yield was, however, observed for age. For the whole genome the frequency is at a level of 3 to 11 per 1000 cells, for all types of translocations. In a radiation accident victim (Estonia) the frequency of translocations was determined over a post-exposure time of four years. For two-way translocations, the half-time was calculated to be 7.0 years, and that for one-way translocations 5.2 years. On the basis of our control data and our dose response curve, the lowest detectable radiation dose is about 0.3 Gy in subjects under 40 years of age, and about 0.5 Gy for those older than 40 years of age. (author)

  20. Follow-up of translocations and dicentrics by chromosome painting (Fish) after accidental exposure to ionizing radiation

    International Nuclear Information System (INIS)

    Lindhom, C.; Salomaa, S.; Tekkel, M.; Veidebaum, T.

    1997-01-01

    Chromosome painting was applied to follow the frequencies of translocations and dicentrics in blood lymphocytes from eight persons involved in a radiation accident in Estonia, 1994. Complete translocation frequencies remained relatively constant during the first year of study, whereas the rate of complete dicentrics declined rapidly in patients exposed to 1 Gy or more. The high proportion of incomplete translocations observed right after the accident declined during the first year after the exposure, approaching the level of incomplete dicentrics. (authors)

  1. Different mechanisms are involved in the antibody mediated inhibition of ligand binding to the urokinase receptor

    DEFF Research Database (Denmark)

    List, K; Høyer-Hansen, G; Rønne, E

    1999-01-01

    Certain monoclonal antibodies are capable of inhibiting the biological binding reactions of their target proteins. At the molecular level, this type of effect may be brought about by completely different mechanisms, such as competition for common binding determinants, steric hindrance or interfer......Certain monoclonal antibodies are capable of inhibiting the biological binding reactions of their target proteins. At the molecular level, this type of effect may be brought about by completely different mechanisms, such as competition for common binding determinants, steric hindrance......) can be employed as a highly useful tool to characterize the inhibitory mechanism of specific antagonist antibodies. Two inhibitory antibodies against uPAR, mAb R3 and mAb R5, were shown to exhibit competitive and non-competitive inhibition, respectively, of ligand binding to the receptor. The former...

  2. The Role and Mechanisms of Action of Glucocorticoid Involvement in Memory Storage

    Science.gov (United States)

    Sandi, Carmen

    1998-01-01

    Adrenal steroid hormones modulate learning and memory processes by interacting with specific glucocorticoid receptors at different brain areas. In this article, certain components of the physiological response to stress elicited by learning situations are proposed to form an integral aspect of the neurobiological mechanism underlying memory formation. By reviewing the work carried out in different learning models in chicks (passive avoidance learning) and rats (spatial orientation in the Morris water maze and contextual fear conditioning), a role for brain corticosterone action through the glucocorticoid receptor type on the mechanisms of memory consolidation is hypothesized. Evidence is also presented to relate post-training corticosterone levels to the strength of memory storage. Finally, the possible molecular mechanisms that might mediate the influences of glucocorticoids in synaptic plasticity subserving long-term memory formation are considered, mainly by focusing on studies implicating a steroid action through (i) glutamatergic transmission and (ii) cell adhesion molecules. PMID:9920681

  3. Mitochondrial translocation of Nur77 induced by ROS contributed to cardiomyocyte apoptosis in metabolic syndrome.

    Science.gov (United States)

    Xu, Aibin; Liu, Jingyi; Liu, Peilin; Jia, Min; Wang, Han; Tao, Ling

    2014-04-18

    Metabolic syndrome is a major risk factor for cardiovascular diseases, and increased cardiomyocyte apoptosis which contributes to cardiac dysfunction after myocardial ischemia/reperfusion (MI/R) injury. Nur77, a nuclear orphan receptor, is involved in such various cellular events as apoptosis, proliferation, and glucose and lipid metabolism in several cell types. Apoptosis is positively correlated with mitochondrial translocation of Nur77 in the cancer cells. However, the roles of Nur77 on cardiac myocytes in patients with metabolic syndrome remain unclear. The objective of this study was to determine whether Nur77 may contribute to cardiac apoptosis in patients with metabolic syndrome after I/R injury, and, if so, to identify the underlying molecular mechanisms responsible. We used leptin-deficient (ob/ob) mice to make metabolic syndrome models. In this report, we observed that, accompanied by the substantial decline in apoptosis inducer Nur77, MI/R induced cardiac dysfunction was manifested as cardiomyopathy and increased ROS. Using the neonatal rat cardiac myocytes cultured in a high-glucose and high-fat medium, we found that excessive H2O2 led to the significant alteration in mitochondrial membrane potential and translocation of Nur77 from the nucleus to the mitochondria. However, inhibition of the relocation of Nur77 to mitochondria via Cyclosporin A reversed the changes in membrane potential mediated by H2O2 and reduced myocardial cell injury. Therefore, these data provide a potential underlying mechanism for cardiac dysfunction in metabolic syndrome and the suppression of Nur77 translocation may provide an effective approach to reduce cardiac injury in the process. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Most Uv-Induced Reciprocal Translocations in SORDARIA MACROSPORA Occur in or near Centromere Regions.

    Science.gov (United States)

    Leblon, G; Zickler, D; Lebilcot, S

    1986-02-01

    In fungi, translocations can be identified and classified by the patterns of ascospore abortion in asci from crosses of rearrangement x normal sequence. Previous studies of UV-induced rearrangements in Sordaria macrospora revealed that a major class (called type III) appeared to be reciprocal translocations that were anomalous in producing an unexpected class of asci with four aborted ascospores in bbbbaaaa linear sequence (b = black; a = abortive). The present study shows that the anomalous type III rearrangements are, in fact, reciprocal translocations having both breakpoints within or adjacent to centromeres and that bbbbaaaa asci result from 3:1 disjunction from the translocation quadrivalent.-Electron microscopic observations of synaptonemal complexes enable centromeres to be visualized. Lengths of synaptonemal complexes lateral elements in translocation quadrivalents accurately reflect chromosome arm lengths, enabling breakpoints to be located reliably in centromere regions. All genetic data are consistent with the behavior expected of translocations with breakpoints at centromeres.-Two-thirds of the UV-induced reciprocal translocations are of this type. Certain centromere regions are involved preferentially. Among 73 type-III translocations, there were but 13 of the 21 possible chromosome combinations and 20 of the 42 possible combinations of chromosome arms.

  5. Complex Variant t(9;22 Chromosome Translocations in Five Cases of Chronic Myeloid Leukemia

    Directory of Open Access Journals (Sweden)

    Ana Valencia

    2009-01-01

    Full Text Available The Philadelphia (Ph1 chromosome arising from the reciprocal t(9;22 translocation is found in more than 90% of chronic myeloid leukemia (CML patients and results in the formation of the chimeric fusion gene BCR-ABL. However, a small proportion of patients with CML have simple or complex variants of this translocation, involving various breakpoints in addition to 9q34 and 22q11. We report five CML cases carrying variant Ph translocations involving both chromosomes 9 and 22 as well as chromosomes 3, 5, 7, 8, or 10. G-banding showed a reciprocal three-way translocation involving 3q21, 5q31, 7q32, 8q24, and 10q22 bands. BCR-ABL fusion signal on der(22 was found in all of the cases by FISH.

  6. Selenium uptake, translocation, assimilation and metabolic fate in plants.

    Science.gov (United States)

    Sors, T G; Ellis, D R; Salt, D E

    2005-12-01

    The chemical and physical resemblance between selenium (Se) and sulfur (S) establishes that both these elements share common metabolic pathways in plants. The presence of isologous Se and S compounds indicates that these elements compete in biochemical processes that affect uptake, translocation and assimilation throughout plant development. Yet, minor but crucial differences in reactivity and other metabolic interactions infer that some biochemical processes involving Se may be excluded from those relating to S. This review examines the current understanding of physiological and biochemical relationships between S and Se metabolism by highlighting their similarities and differences in relation to uptake, transport and assimilation pathways as observed in Se hyperaccumulator and non-accumulator plant species. The exploitation of genetic resources used in bioengineering strategies of plants is illuminating the function of sulfate transporters and key enzymes of the S assimilatory pathway in relation to Se accumulation and final metabolic fate. These strategies are providing the basic framework by which to resolve questions relating to the essentiality of Se in plants and the mechanisms utilized by Se hyperaccumulators to circumvent toxicity. In addition, such approaches may assist in the future application of genetically engineered Se accumulating plants for environmental renewal and human health objectives.

  7. Up-date on neuro-immune mechanisms involved in allergic and non-allergic rhinitis

    NARCIS (Netherlands)

    van Gerven, L.; Boeckxstaens, G.; Hellings, P.

    2012-01-01

    Non-allergic rhinitis (NAR) is a common disorder, which can be defined as chronic nasal inflammation, independent of systemic IgE-mediated mechanisms. Symptoms of NAR patients mimic those of allergic rhinitis (AR) patients. However, AR patients can easily be diagnosed with skin prick test or

  8. Understanding the molecular mechanisms involved in the interfacial self-healing of supramolecular rubbers

    NARCIS (Netherlands)

    Bose, R.K.; Garcia Espallargas, S.J.; Van der Zwaag, S.

    2013-01-01

    Supramolecular rubbers based on 2-aminoethylimidazolidone and fatty acids with epoxy crosslinks have been shown to self-heal via multiple hydrogen bonding sites. In this work, several tools are used to investigate the molecular mechanisms taking place at the interface to understand cohesive healing

  9. Nitric oxide is involved in the down-regulation of sost expression induced by mechanical loading

    NARCIS (Netherlands)

    Delgado-Calle, J.; Riancho, J.A.; Klein-Nulend, J.

    2014-01-01

    Mechanical stimulation reduces sclerostin expression in rodents. However, few data are available about the effect of physical stimuli in human systems. Recently we observed that the demethylating agent AzadC induces SOST expression in bone cells. This allowed us in this study to explore the effect

  10. Dynamin-Related Protein 1 Translocates from the Cytosol to Mitochondria during UV-Induced Apoptosis

    Science.gov (United States)

    Zhang, Zhenzhen; Wu, Shengnan; Feng, Jie

    2011-01-01

    Mitochondria are dynamic structures that frequently divide and fuse with one another to form interconnecting network. This network disintegrates into punctiform organelles during apoptosis. However, the mechanisms involved in these processes are still not well characterized. In this study, we investigate the role of dynamin-related protein 1 (Drp1), a large GTPase that mediates outer mitochondrial membrane fission, in mitochondrial dynamics in response to UV irradiation in human lung adenocarcinoma cells (ASTC-α-1) and HeLa cells. Using time-lapse fluorescent imaging, we find that Drp1 primarily distributes in cytosol under physiological conditions. After UV treatment, Drp1 translocates from cytosol to mitochondria, indicating the enhancement of Drp1 mitochondrial accumulation. Our results suggest that Drp1 is involved in the regulation of transition from an interconnecting network to a punctiform mitochondrial phenotype during UV-induced apoptosis.

  11. "Coding" and "Decoding": hypothesis for the regulatory mechanism involved in heparan sulfate biosynthesis.

    Science.gov (United States)

    Zhang, Xu; Wang, Fengshan; Sheng, Juzheng

    2016-06-16

    Heparan sulfate (HS) is widely distributed in mammalian tissues in the form of HS proteoglycans, which play essential roles in various physiological and pathological processes. In contrast to the template-guided processes involved in the synthesis of DNA and proteins, HS biosynthesis is not believed to involve a template. However, it appears that the final structure of HS chains was strictly regulated. Herein, we report research based hypothesis that two major steps, namely "coding" and "decoding" steps, are involved in the biosynthesis of HS, which strictly regulate its chemical structure and biological activity. The "coding" process in this context is based on the distribution of sulfate moieties on the amino groups of the glucosamine residues in the HS chains. The sulfation of these amine groups is catalyzed by N-deacetylase/N-sulfotransferase, which has four isozymes. The composition and distribution of sulfate groups and iduronic acid residues on the glycan chains of HS are determined by several other modification enzymes, which can recognize these coding sequences (i.e., the "decoding" process). The degree and pattern of the sulfation and epimerization in the HS chains determines the extent of their interactions with several different protein factors, which further influences their biological activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. ESX-1-mediated translocation to the cytosol controls virulence of mycobacteria

    KAUST Repository

    Houben, Diane; Demangel, Caroline; Van Ingen, Jakko; Perez, Jorge; Baldeó n, Lucy R.; Abdallah, Abdallah; Caleechurn, Laxmee; Bottai, Daria; Van Zon, Maaike; De Punder, Karin; Van Der Laan, Tridia; Kant, Arie; Bossers-De Vries, Ruth; Willemsen, Peter Th J; Bitter, Wilbert M.; Van Soolingen, Dick; Brosch, Roland; Van Der Wel, Nicole N.; Peters, Peter J.

    2012-01-01

    Mycobacterium species, including Mycobacterium tuberculosis and Mycobacterium leprae, are among the most potent human bacterial pathogens. The discovery of cytosolic mycobacteria challenged the paradigm that these pathogens exclusively localize within the phagosome of host cells. As yet the biological relevance of mycobacterial translocation to the cytosol remained unclear. In this current study we used electron microscopy techniques to establish a clear link between translocation and mycobacterial virulence. Pathogenic, patient-derived mycobacteria species were found to translocate to the cytosol, while non-pathogenic species did not. We were further able to link cytosolic translocation with pathogenicity by introducing the ESX-1 (type VII) secretion system into the non-virulent, exclusively phagolysosomal Mycobacterium bovis BCG. Furthermore, we show that translocation is dependent on the C-terminus of the early-secreted antigen ESAT-6. The C-terminal truncation of ESAT-6 was shown to result in attenuation in mice, again linking translocation to virulence. Together, these data demonstrate the molecular mechanism facilitating translocation of mycobacteria. The ability to translocate from the phagolysosome to the cytosol is with this study proven to be biologically significant as it determines mycobacterial virulence. © 2012 Blackwell Publishing Ltd.

  13. ESX-1-mediated translocation to the cytosol controls virulence of mycobacteria

    KAUST Repository

    Houben, Diane

    2012-05-08

    Mycobacterium species, including Mycobacterium tuberculosis and Mycobacterium leprae, are among the most potent human bacterial pathogens. The discovery of cytosolic mycobacteria challenged the paradigm that these pathogens exclusively localize within the phagosome of host cells. As yet the biological relevance of mycobacterial translocation to the cytosol remained unclear. In this current study we used electron microscopy techniques to establish a clear link between translocation and mycobacterial virulence. Pathogenic, patient-derived mycobacteria species were found to translocate to the cytosol, while non-pathogenic species did not. We were further able to link cytosolic translocation with pathogenicity by introducing the ESX-1 (type VII) secretion system into the non-virulent, exclusively phagolysosomal Mycobacterium bovis BCG. Furthermore, we show that translocation is dependent on the C-terminus of the early-secreted antigen ESAT-6. The C-terminal truncation of ESAT-6 was shown to result in attenuation in mice, again linking translocation to virulence. Together, these data demonstrate the molecular mechanism facilitating translocation of mycobacteria. The ability to translocate from the phagolysosome to the cytosol is with this study proven to be biologically significant as it determines mycobacterial virulence. © 2012 Blackwell Publishing Ltd.

  14. On the translocation of botulinum and tetanus neurotoxins across the membrane of acidic intracellular compartments.

    Science.gov (United States)

    Pirazzini, Marco; Azarnia Tehran, Domenico; Leka, Oneda; Zanetti, Giulia; Rossetto, Ornella; Montecucco, Cesare

    2016-03-01

    Tetanus and botulinum neurotoxins are produced by anaerobic bacteria of the genus Clostridium and are the most poisonous toxins known, with 50% mouse lethal dose comprised within the range of 0.1-few nanograms per Kg, depending on the individual toxin. Botulinum neurotoxins are similarly toxic to humans and can therefore be considered for potential use in bioterrorism. At the same time, their neurospecificity and reversibility of action make them excellent therapeutics for a growing and heterogeneous number of human diseases that are characterized by a hyperactivity of peripheral nerve terminals. The complete crystallographic structure is available for some botulinum toxins, and reveals that they consist of four domains functionally related to the four steps of their mechanism of neuron intoxication: 1) binding to specific receptors of the presynaptic membrane; 2) internalization via endocytic vesicles; 3) translocation across the membrane of endocytic vesicles into the neuronal cytosol; 4) catalytic activity of the enzymatic moiety directed towards the SNARE proteins. Despite the many advances in understanding the structure-mechanism relationship of tetanus and botulinum neurotoxins, the molecular events involved in the translocation step have been only partially elucidated. Here we will review recent advances that have provided relevant insights on the process and discuss possible models that can be experimentally tested. This article is part of a Special Issue entitled: Pore-Forming Toxins edited by Mauro Dalla Serra and Franco Gambale. Copyright © 2015. Published by Elsevier B.V.

  15. Study of mechanism involved in synthesis of graphene oxide and reduced graphene oxide from graphene nanoplatelets

    Science.gov (United States)

    Sharma, Bhasha; Shekhar, Shashank; Malik, Parul; Jain, Purnima

    2018-06-01

    Graphene, a wonder material has inspired quest among researchers due to its numerous applications and exceptional properties. This paper highlights the mechanism and chemistry behind the fabrication of graphene oxide by using phosphoric acid. Chemical functionalization is of prime importance which avoids agglomeration of nanoparticles to attain inherent properties. As non-homogeneous dispersion limits its utilization due to interfacial interactions which restrict reactive sites to produce intercalated network. Thus, chemically functionalized graphene leads to stable dispersion and enhances thermal, mechanical and electrical properties of the resultant polymer composite materials. Solubility of graphene in aqueous solution is the major issue because graphene is hydrophobic, to rectify this oxygen containing hydrophilic groups must be introduced to make it compatible and this can be attained by covalent functionalization. Among all nanofiller GO has shown average particle size i.e. 95 nm and highest surface charge density. The characteristic changes were estimated using Raman spectra.

  16. Involvement of epigenetic mechanisms in the development of posttraumatic stress disorder

    Directory of Open Access Journals (Sweden)

    Tomaž Zupanc

    2012-03-01

    victims with no childhood abuse were found. It was suggested that changes in glucocorticoid system are mediated by tissue-specific changes in gene expression. Recent studies suggest that epigenetic mechanisms may play an important role in the interplay between stress exposure and genetic vulnerability. Conclusions: Integrating epigenetics into a model that permits prior experience to have a central role in determining individual differences is also consistent with a developmental perspective of PTSD vulnerability.

  17. Molecular mechanisms involved in the bidirectional relationship between diabetes mellitus and periodontal disease

    Directory of Open Access Journals (Sweden)

    Harpreet Singh Grover

    2013-01-01

    Full Text Available Both diabetes and periodontitis are chronic diseases. Diabetes has many adverse effects on the periodontium, and conversely periodontitis may have deleterious effects further aggravating the condition in diabetics. The potential common pathophysiologic pathways include those associated with inflammation, altered host responses, altered tissue homeostasis, and insulin resistance. This review examines the relationship that exists between periodontal diseases and diabetes mellitus with a focus on potential common pathophysiologic mechanisms.

  18. Phenanthrene causes ocular developmental toxicity in zebrafish embryos and the possible mechanisms involved

    International Nuclear Information System (INIS)

    Huang, Lixing; Wang, Chonggang; Zhang, Youyu; Wu, Meifang; Zuo, Zhenghong

    2013-01-01

    Highlights: • Phe exposure caused obvious morphological changes in the retina. • Phe exposure caused apoptosis and reduction of cell proliferation in the retina. • Phe causes ocular toxicity might be via the AhR/Zeb1/Mitf/Pax6 signaling pathway. • AhR is a repressor of Zeb1. -- Abstract: Recent studies show that polycyclic aromatic hydrocarbons (PAHs) may be a candidate cause of developmental defects of the retina, but the mechanism is still unclear. We evaluated the mechanism(s) underlying PAH-induced retinal development defects due to exposure to environmental concentrations of Phenanthrene (Phe) in zebrafish. We found that exposure to environmental concentrations of Phe caused obvious morphological changes, developmental retardation, apoptosis, and reduction of cell proliferation in the retina. Our results indicated that Phe could cause visual system developmental defects. Phe exposure up-regulated aryl hydrocarbon receptor (AhR) and microphthalmia-associated transcription factor (Mtif) expression, and down-regulated zinc finger E-box binding homeobox 1 (Zeb1) and paired box 6 (Pax6). Moreover, we demonstrated that AhR was a repressor of Zeb1. We propose that Phe's ocular toxicity is mediated by up-regulating AhR, which then down-regulates Zeb1, in turn inducing Mitf expression while inhibiting Pax6 expression

  19. Selective bowel decontamination results in gram-positive translocation.

    Science.gov (United States)

    Jackson, R J; Smith, S D; Rowe, M I

    1990-05-01

    Colonization by enteric gram-negative bacteria with subsequent translocation is believed to be a major mechanism for infection in the critically ill patient. Selective bowel decontamination (SBD) has been used to control gram-negative infections by eliminating these potentially pathogenic bacteria while preserving anaerobic and other less pathogenic organisms. Infection with gram-positive organisms and anaerobes in two multivisceral transplant patients during SBD led us to investigate the effect of SBD on gut colonization and translocation. Twenty-four rats received enteral polymixin E, tobramycin, amphotericin B, and parenteral cefotaxime for 7 days (PTA + CEF); 23 received parenteral cefotaxime alone (CEF), 19 received the enteral antibiotics alone (PTA), 21 controls received no antibiotics. Cecal homogenates, mesenteric lymph node (MLN), liver, and spleen were cultured. Only 8% of the PTA + CEF group had gram-negative bacteria in cecal culture vs 52% CEF, 84% PTA, and 100% in controls. Log Enterococcal colony counts were higher in the PTA + CEF group (8.0 + 0.9) vs controls (5.4 + 0.4) P less than 0.01. Translocation of Enterococcus to the MLN was significantly increased in the PTA + CEF group (67%) vs controls (0%) P less than 0.01. SBD effectively eliminates gram-negative organisms from the gut in the rat model. Overgrowth and translocation of Enterococcus suggests that infection with gram-positive organisms may be a limitation of SBD.

  20. Constitutional chromothripsis rearrangements involve clustered double-stranded DNA breaks and nonhomologous repair mechanisms.

    Science.gov (United States)

    Kloosterman, Wigard P; Tavakoli-Yaraki, Masoumeh; van Roosmalen, Markus J; van Binsbergen, Ellen; Renkens, Ivo; Duran, Karen; Ballarati, Lucia; Vergult, Sarah; Giardino, Daniela; Hansson, Kerstin; Ruivenkamp, Claudia A L; Jager, Myrthe; van Haeringen, Arie; Ippel, Elly F; Haaf, Thomas; Passarge, Eberhard; Hochstenbach, Ron; Menten, Björn; Larizza, Lidia; Guryev, Victor; Poot, Martin; Cuppen, Edwin

    2012-06-28

    Chromothripsis represents a novel phenomenon in the structural variation landscape of cancer genomes. Here, we analyze the genomes of ten patients with congenital disease who were preselected to carry complex chromosomal rearrangements with more than two breakpoints. The rearrangements displayed unanticipated complexity resembling chromothripsis. We find that eight of them contain hallmarks of multiple clustered double-stranded DNA breaks (DSBs) on one or more chromosomes. In addition, nucleotide resolution analysis of 98 breakpoint junctions indicates that break repair involves nonhomologous or microhomology-mediated end joining. We observed that these eight rearrangements are balanced or contain sporadic deletions ranging in size between a few hundred base pairs and several megabases. The two remaining complex rearrangements did not display signs of DSBs and contain duplications, indicative of rearrangement processes involving template switching. Our work provides detailed insight into the characteristics of chromothripsis and supports a role for clustered DSBs driving some constitutional chromothripsis rearrangements. Copyright © 2012 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Mechanisms involved in the intestinal digestion and absorption of dietary vitamin A.

    Science.gov (United States)

    Harrison, E H; Hussain, M M

    2001-05-01

    Dietary retinyl esters are hydrolyzed in the intestine by the pancreatic enzyme, pancreatic triglyceride lipase (PTL), and intestinal brush border enzyme, phospholipase B. Recent work on the carboxylester lipase (CEL) knockout mouse suggests that CEL may not be involved in dietary retinyl ester digestion. The possible roles of the pancreatic lipase-related proteins (PLRP) 1 and 2 and other enzymes require further investigation. Unesterified retinol is taken up by the enterocytes, perhaps involving both diffusion and protein-mediated facilitated transport. Once in the cell, retinol is complexed with cellular retinol-binding protein type 2 (CRBP2) and the complex serves as a substrate for reesterification of the retinol by the enzyme lecithin:retinol acyltransferase (LRAT). Retinol not bound to CRBP2 is esterified by acyl-CoA acyltransferase (ARAT). The retinyl esters are incorporated into chylomicrons, intestinal lipoproteins that transport other dietary lipids such as triglycerides, phospholipids, and cholesterol. Chylomicrons containing newly absorbed retinyl esters are then secreted into the lymph.

  2. Neurobiological mechanisms involved in nicotine dependence and reward: participation of the endogenous opioid system

    Science.gov (United States)

    Berrendero, Fernando; Robledo, Patricia; Trigo, José Manuel; Martín-García, Elena; Maldonado, Rafael

    2010-01-01

    Nicotine is the primary component of tobacco that maintains the smoking habit and develops addiction. The adaptive changes of nicotinic acetylcholine receptors produced by repeated exposure to nicotine play a crucial role in the establishment of dependence. However, other neurochemical systems also participate in the addictive effects of nicotine including glutamate, cannabinoids, GABA and opioids. This review will cover the involvement of these neurotransmitters in nicotine addictive properties, with a special emphasis on the endogenous opioid system. Thus, endogenous enkephalins and beta-endorphins acting on mu-opioid receptors are involved in nicotine rewarding effects, whereas opioid peptides derived from prodynorphin participate in nicotine aversive responses. An upregulation of mu-opioid receptors has been reported after chronic nicotine treatment that could counteract the development of nicotine tolerance, whereas the downregulation induced on kappa-opioid receptors seems to facilitate nicotine tolerance. Endogenous enkephalins acting on mu-opioid receptors also play a role in the development of physical dependence to nicotine. In agreement with these actions of the endogenous opioid system, the opioid antagonist naltrexone has shown to be effective for smoking cessation in certain subpopulations of smokers. PMID:20170672

  3. Involvement of three mechanisms in the alteration of cytokine responses by sodium methyldithiocarbamate

    International Nuclear Information System (INIS)

    Pruett, Stephen B.; Fan, Ruping; Zheng, Qiang

    2006-01-01

    Sodium methyldithiocarbamate (SMD) is the third most abundantly used conventional pesticide in the U.S. We recently reported that it alters the induction of cytokine production mediated though Toll-like receptor (TLR) 4 at relevant dosages in mice. Its chemical properties and evidence from the literature suggest thee potential mechanisms of action for this compound. It could either act as a free radical scavenger (by means of its free S - group) or promote oxidation by breaking down to form methylisothiocyanate, which can deplete glutathione. It is a potent copper chelator and may affect the availability of copper to a number of copper-dependent enzymes (including some signaling molecules). SMD induces a classical neuroendocrine stress response characterized by elevated serum corticosterone concentrations, which could affect cytokine production. Although each of these mechanisms could potentially contribute to altered cytokine responses, direct evidence is lacking. The present study was conducted to obtain such evidence. The role of redox balance was investigated by pretreating mice with N-acetyl cysteine (NAC), which increases cellular glutathione concentrations, before administration of SMD. NAC exacerbated the SMD-induced suppression of IL-12 and the SMD-induced enhancement of IL-10 in the serum. The role of copper chelation was investigated by comparing the effects of SMD with an equimolar dose to SMD that was administered in the form of a copper chelation complex. Addition of copper significantly decreased the action of SMD on IL-12 production but not on IL-10 production. The role of the stress response was investigated by pretreating mice with antagonists of corticosterone and catecholamines. This treatment partially prevented the action of SMD on IL-10 and IL-12 in the peritoneal fluid. The results suggest that all of the proposed mechanisms have some role in the alteration of cytokine production by SMD

  4. A novel mechanism of P-type ATPase autoinhibition involving both termini of the protein

    DEFF Research Database (Denmark)

    Ekberg, Kira; Palmgren, Michael; Veierskov, Bjarke

    2010-01-01

    The activity of many P-type ATPases is found to be regulated by interacting proteins or autoinhibitory elements located in N- or C-terminal extensions. An extended C terminus of fungal and plant P-type plasma membrane H+-ATPases has long been recognized to be part of a regulatory apparatus....... This identifies the first group of P-type ATPases for which both ends of the polypeptide chain constitute regulatory domains, which together contribute to the autoinhibitory apparatus. This suggests an intricate mechanism of cis-regulation with both termini of the protein communicating to obtain the necessary...

  5. A novel mechanism involved in the coupling of mitochondrial biogenesis to oxidative phosphorylation

    Directory of Open Access Journals (Sweden)

    Jelena Ostojić

    2014-01-01

    Full Text Available Mitochondria are essential organelles that are central to a multitude of cellular processes, including oxidative phosphorylation (OXPHOS, which produces most of the ATP in animal cells. Thus it is important to understand not only the mechanisms and biogenesis of this energy production machinery but also how it is regulated in both physiological and pathological contexts. A recent study by Ostojić et al. [Cell Metabolism (2013 18, 567-577] has uncovered a regulatory loop by which the biogenesis of a major enzyme of the OXPHOS pathway, the respiratory complex III, is coupled to the energy producing activity of the mitochondria.

  6. Translocality in Global Software Development

    DEFF Research Database (Denmark)

    Bjørn, Pernille; Søderberg, Anne-Marie; Krishna, S.

    2017-01-01

    . We explored how agile processes in global outsourcing impacts work conditions of the Indian IT developers, and were surprised to find that agile methodologies, even after 3 years of implementation, created a stressful and inflexible work environment negatively impacting their personal lives. Many......What happens when agile methods are introduced in global outsourcing set-ups? Agile methods are designed to empower IT developers in decision-making through self-managing collocated teams. We studied how agile methods were introduced into global outsourcing from the Indian IT vendor’s perspective...... of the negative aspects of work, which agile methodologies were developed to reduce, were evident in the global agile outsourcing set-up. We propose translocality to repudiate the dichotomy of global/local reminding us that methodologies and technologies must be understood as immediately localized and situated...

  7. Mechanism of Anti-glioblastoma Effect of Temzolomide Involved in ROS-Mediated SIRT 1 Pathway

    Directory of Open Access Journals (Sweden)

    Yuan Jiang

    2014-03-01

    Full Text Available Objective: To explore the new molecular mechanism of anti-tumor effect of temzolomide (TMZon glioblastoma cell strain. Methods: MTT methods and Hoechst 33342 staining method were applied to determine the effect of TMZ on the proliferation and apoptosis of glioblastoma cell strains U251 and SHG44, while flow cytometry was used to detect the impact of TMZ on cellular cycles. Additionally, DCFH-DA probe was adopted to test intracellular reactive oxygen species (ROS level while Real-time PCR and Western blot tests were applied to determine the influence of TMZ on SIRT1 expression. Results: TMZ in different concentrations added into glioblastoma cell strain for 72 h could concentration-dependently inhibit the proliferation of glioblastoma cells, 100 μmol/L of which could also block cells in phase G2/M and improve cellular apoptosis. In addition, TMZ could evidently increase intracellular ROS level so as to activate SIRT1. Conclusion: The mechanism of anti-tumor effect of TMZ on glioblastoma may be associated with ROS-induced SIRT1 pathway, providing theoretical basis for the clinical efficacy of TMZ.

  8. Mechanisms Involved in Secondary Cardiac Dysfunction in Animal Models of Trauma and Hemorrhagic Shock.

    Science.gov (United States)

    Wilson, Nick M; Wall, Johanna; Naganathar, Veena; Brohi, Karim; De'Ath, Henry D

    2017-10-01

    Clinical evidence reveals the existence of a trauma-induced secondary cardiac injury (TISCI) that is associated with poor patient outcomes. The mechanisms leading to TISCI in injured patients are uncertain. Conversely, animal models of trauma hemorrhage have repeatedly demonstrated significant cardiac dysfunction following injury, and highlighted mechanisms through which this might occur. The aim of this review was to provide an overview of the animal studies describing TISCI and its pathophysiology.Basic science models of trauma show evidence of innate immune system activation via Toll-like receptors, the exact protagonists of which remain unclear. Shortly following trauma and hemorrhage, cardiomyocytes upregulate gene regulatory protein and inflammatory molecule expression including nuclear factor kappa beta, tumor necrosis factor alpha, and interleukin-6. This is associated with expression of membrane bound adhesion molecules and chemokines leading to marked myocardial leukocyte infiltration. This cell activation and infiltration is linked to a rise in enzymes that cause oxidative and nitrative stress and subsequent protein misfolding within cardiomyocytes. Such protein damage may lead to reduced contractility and myocyte apoptosis. Other molecules have been identified as cardioprotective following injury. These include p38 mitogen-activated protein kinases and heat shock proteins.The balance between increasing damaging mediators and a reduction in cardio-protective molecules appears to define myocardial function following trauma. Exogenous therapeutics have been trialled in rodents with promising abilities to favorably alter this balance, and subsequently lead to improved cardiac function.

  9. Intersections of pathways involving biotin and iron relative to therapeutic mechanisms for progressive multiple sclerosis.

    Science.gov (United States)

    Heidker, Rebecca M; Emerson, Mitchell R; LeVine, Steven M

    2016-12-01

    While there are a variety of therapies for relapsing remitting multiple sclerosis (MS), there is a lack of treatments for progressive MS. An early study indicated that high dose biotin therapy has beneficial effects in approximately 12-15% of patients with progressive MS. The mechanisms behind the putative improvements seen with biotin therapy are not well understood, but have been postulated to include: 1) improving mitochondrial function which is impaired in MS, 2) increasing synthesis of lipids and cholesterol to facilitate remyelination, and 3) affecting gene expression. We suggest one reason that a greater percentage of patients with MS didn't respond to biotin therapy is the inaccessibility or lack of other nutrients, such as iron. In addition to biotin, iron (or heme) is necessary for energy production, biosynthesis of cholesterol and lipids, and for some protective mechanisms. Both biotin and iron are required for myelination during development, and by inference, remyelination. However, iron can also play a role in the pathology of MS. Increased deposition of iron can occur in some CNS structures possibly promoting oxidative damage while low iron levels can occur in other areas. Thus, the potential, detrimental effects of iron need to be considered together with the need for iron to support metabolic demands associated with repair and/or protective processes. We propose the optimal utilization of iron may be necessary to maximize the beneficial effects of biotin. This review will examine the interactions between biotin and iron in pathways that may have therapeutic or pathogenic implications for MS.

  10. Possible Mechanisms Involved in Attenuation of Lipopolysaccharide-Induced Memory Deficits by Methyl Jasmonate in Mice.

    Science.gov (United States)

    Eduviere, Anthony Taghogho; Umukoro, Solomon; Adeoluwa, Olusegun A; Omogbiya, Itivere Adrian; Aluko, Oritoke Modupe

    2016-12-01

    This present study was carried out to investigate the likely mechanisms by which methyl jasmonate (MJ), 'an agent widely used in aromatherapy for neurological disorders, attenuates lipopolysaccharide (LPS)-induced memory deficits in mice. Mice were given intraperitoneal administration of LPS (250 µg/kg) alone or in combination with MJ (10-40 mg/kg), donepezil, DP (1 mg/kg), or vehicle for 7 successive days. Thereafter, memory was assessed using object recognition test (ORT). Acetylcholinesterase and myeloperoxidase activities were estimated in brain tissue homogenates. Brain levels of nitric oxide and markers of oxidative stress as well as histopathologic changes of the prefrontal cortex and cornu ammonis 1 (CA1) of the hippocampal region were also assessed. MJ (10-40 mg/kg) attenuated LPS-induced memory impairment in ORT. Moreover, the increased brain activities of acetylcholinesterase and myeloperoxidase enzymes were suppressed by MJ when compared with control (p memory deficits via mechanisms related to inhibition of acetylcholinesterase, myeloperoxidase, oxidative stress and neuronal degeneration.

  11. Application of microscopy methods to the understanding of mechanisms involved in ilmenite reduction by hydrogen

    International Nuclear Information System (INIS)

    De Vries, M.; Grey, I.; Fitzgerald, J.

    2003-01-01

    Full text: Titania pigment is one of the major drivers of the mineral sands industry with production of over 4 million tpa in 2002 for paints, plastics, paper and ceramics applications. The main feedstock for titania pigment production is ilmenite, FeTiO 3 . It is used either directly or after it has been upgraded to a higher titania content. The major commercial upgrading processes are electro smelting (titania slag) or high temperature char reduction followed by iron removal (synthetic rutile SR). Future ilmenite upgrading processes are likely to use low temperature hydrogen reduction according to reaction, followed by aeration of the metallic iron and acid leaching to produce a high grade SR (Nicholson et al, 2000). The commercial application of such a process requires a detailed knowledge of the kinetics of reaction. FeTiO 3 + H 2 = Fe(m) + TiO 2 + H 2 O. The kinetics of ilmenite reduction has been studied at CSIRO Minerals using a specially designed thermogravimetric apparatus built around a Cahn pressurised symmetrical beam balance. The kinetics have been measured as a function of different operating parameters such as temperature, gas velocity and pressure. The parameters were set so as to minimise mass transport effects and increase chemical reaction control and to ensure the reduction kinetics are outside the gas starvation region. Small samples were used that had been sintered at close to melting point to form large grains with low unconnected porosity. High flow rates of reactant gas were also used. The application of a range of microscopy techniques to the reduced samples at various stages of reaction conversion has been critical to the development of an understanding of the reaction mechanisms. From analysis of TEM, IFESEM and optical microscopy results it appears that initially, chemical reaction is rate controlling at the surface and as the reaction proceeds topochemically inwards then diffusion mechanisms increase their control. Reaction proceeds

  12. Some mechanisms involved in the radiosensitization of E. coli B/r by paracetamol

    Energy Technology Data Exchange (ETDEWEB)

    Shenoy, M A; Gopalakrishna, K [Bhabha Atomic Research Centre, Bombay (India). Biology and Agriculture Div.

    1977-06-01

    Paracetamol, a widely-used analgesic and antipyretic drug, sensitized E.coli B/r to /sup 60/Co gamma rays under hypoxic conditions. Part of the sensitizing effect has been shown to be due to an electron adduct of the drug. Paracetamol inhibited both post-irradiation DNA and protein syntheses. The targets involved in the inhibition of post-irradiation DNA synthesis have been shown to be different in the presence of the sensitizer. Increased DNA degradation after irradiation was also observed when E.coli B/r were irradiated in the presence of the drug. The presence of paracetamol during hypoxic irradiation of E.coli B/r resulted in the enhancement of DNA single-strand scissions with no apparent effect on their rejoining.

  13. Some mechanisms involved in the radiosensitization of E.coli B/r by paracetamol

    International Nuclear Information System (INIS)

    Shenoy, M.A.; Gopalakrishna, K.

    1977-01-01

    Paracetamol, a widely-used analgesic and antipyretic drug, sensitized E.coli B/r to 60 Co gamma-rays under hypoxic conditions. Part of the sensitizing effect has been shown to be due to an electron adduct of the drug. Paracetamol inhibited both post-irradiation DNA and protein syntheses. The targets involved in the inhibition of post-irradiation DNA synthesis have been shown to be different in the presence of the sensitizer. Increased DNA degradation after irradiation was also observed when E.coli B/r were irradiated in the presence of the drug. The presence of paracetamol during hypoxic irradiation of E.coli B/r resulted in the enhancement of DNA single-strand scissions with no apparent effect on their rejoining. (author)

  14. Modeling of glycerol-3-phosphate transporter suggests a potential 'tilt' mechanism involved in its function.

    Science.gov (United States)

    Tsigelny, Igor F; Greenberg, Jerry; Kouznetsova, Valentina; Nigam, Sanjay K

    2008-10-01

    Many major facilitator superfamily (MFS) transporters have similar 12-transmembrane alpha-helical topologies with two six-helix halves connected by a long loop. In humans, these transporters participate in key physiological processes and are also, as in the case of members of the organic anion transporter (OAT) family, of pharmaceutical interest. Recently, crystal structures of two bacterial representatives of the MFS family--the glycerol-3-phosphate transporter (GlpT) and lac-permease (LacY)--have been solved and, because of assumptions regarding the high structural conservation of this family, there is hope that the results can be applied to mammalian transporters as well. Based on crystallography, it has been suggested that a major conformational "switching" mechanism accounts for ligand transport by MFS proteins. This conformational switch would then allow periodic changes in the overall transporter configuration, resulting in its cyclic opening to the periplasm or cytoplasm. Following this lead, we have modeled a possible "switch" mechanism in GlpT, using the concept of rotation of protein domains as in the DynDom program17 and membranephilic constraints predicted by the MAPAS program.(23) We found that the minima of energies of intersubunit interactions support two alternate positions consistent with their transport properties. Thus, for GlpT, a "tilt" of 9 degrees -10 degrees rotation had the most favorable energetics of electrostatic interaction between the two halves of the transporter; moreover, this confirmation was sufficient to suggest transport of the ligand across the membrane. We conducted steered molecular dynamics simulations of the GlpT-ligand system to explore how glycerol-3-phosphate would be handled by the "tilted" structure, and obtained results generally consistent with experimental mutagenesis data. While biochemical data remain most consistent with a single-site alternating access model, our results raise the possibility that, while the

  15. Potassium channel and NKCC cotransporter involvement in ocular refractive control mechanisms.

    Directory of Open Access Journals (Sweden)

    Sheila G Crewther

    Full Text Available Myopia affects well over 30% of adult humans globally. However, the underlying physiological mechanism is little understood. This study tested the hypothesis that ocular growth and refractive compensation to optical defocus can be controlled by manipulation of potassium and chloride ion-driven transretinal fluid movements to the choroid. Chicks were raised with +/-10D or zero power optical defocus rendering the focal plane of the eye in front of, behind, or at the level of the retinal photoreceptors respectively. Intravitreal injections of barium chloride, a non-specific inhibitor of potassium channels in the retina and RPE or bumetanide, a selective inhibitor of the sodium-potassium-chloride cotransporter were made, targeting fluid control mechanisms. Comparison of refractive compensation to 5 mM Ba(2+ and 10(-5 M bumetanide compared with control saline injected eyes shows significant change for both positive and negative lens defocus for Ba(2+ but significant change only for negative lens defocus with bumetanide (Rx(SAL(-10D = -8.6 +/- .9 D; Rx(Ba2+(-10D = -2.9 +/- .9 D; Rx(Bum(-10D = -2.9 +/- .9 D; Rx(SAL(+10D = +8.2 +/- .9 D; Rx(Ba2+(+10D = +2.8 +/- 1.3 D; Rx(Bum(+10D = +8.0 +/- .7 D. Vitreous chamber depths showed a main effect for drug conditions with less depth change in response to defocus shown for Ba(2+ relative to Saline, while bumetanide injected eyes showed a trend to increased depth without a significant interaction with applied defocus. The results indicate that both K channels and the NKCC cotransporter play a role in refractive compensation with NKCC blockade showing far more specificity for negative, compared with positive, lens defocus. Probable sites of action relevant to refractive control include the apical retinal pigment epithelium membrane and the photoreceptor/ON bipolar synapse. The similarities between the biometric effects of NKCC inhibition and biometric reports of the blockade of the retinal ON response, suggest a

  16. Opioidergic mechanisms are not involved in the antihyperalgesic effects of carbamazepine and oxcarbazepine.

    Science.gov (United States)

    Stepanovic-Petrovic, Radica M; Tomic, M A; Vuckovic, S M; Ugresic, N D; Prostran, M S; Boskovic, B

    2007-04-01

    The mechanisms of the analgesic action of carbamazepine and oxcarbazepine, in particular the role of opioid receptors, have not been established precisely. The systemic effects of naloxone, an opioid receptor antagonist, on the antihyperalgesic effects of carbamazepine and oxcarbazepine were examined in the model of inflammatory hyperalgesia induced by the intraplantar (i.pl.) administration of concanavaline A (Con A, 0.8 mg/paw) into the rat hind paw. Naloxone (3 mg/kg; i.p.) did not alter the antihyperalgesic effects of either carbamazepine or oxcarbazepine. These results indicate that the opioid system of pain modulation does not play a significant role in the antihyperalgesic effects of carbamazepine and oxcarbazepine.

  17. Cancer multidrug resistance: mechanisms involved and strategies for circumvention using a drug delivery system.

    Science.gov (United States)

    Kibria, Golam; Hatakeyama, Hiroto; Harashima, Hideyoshi

    2014-01-01

    Multidrug resistance (MDR), the principal mechanism by which many cancers develop resistance to chemotherapy, is one of the major obstacles to the successful clinical treatment of various types of cancer. Several key regulators are responsible for mediating MDR, a process that renders chemotherapeutic drugs ineffective in the internal organelles of target cells. A nanoparticulate drug delivery system (DDS) is a potentially promising tool for circumventing such MDR, which can be achieved by targeting tumor cells themselves or tumor endothelial cells that support the survival of MDR cancer cells. The present article discusses key factors that are responsible for MDR in cancer cells, with a specific focus on the application of DDS to overcome MDR via the use of chemotherapy or macromolecules.

  18. Anticonvulsants Teratogenic Mechanism Involves Alteration of Bioelectrically-controlled Processes in the Embryo. A hypothesis

    Science.gov (United States)

    Hernández-Díaz, Sonia; Levin, Michael

    2014-01-01

    Maternal use of anticonvulsants during the first trimester of pregnancy has been associated with an elevated risk of major congenital malformations in the offspring. Whether the increased risk is caused by the specific pharmacological mechanisms of certain anticonvulsants, the underlying epilepsy, or common genetic or environmental risk factors shared by epilepsy and malformations is controversial. We hypothesize that anticonvulsant therapies during pregnancy that attain more successful inhibition of neurotransmission might lead to both better seizure control in the mother and stronger alteration of bioelectrically-controlled processes in the embryo that result in structural malformations. If our theory were correct, development of pharmaceuticals that do not alter cell resting transmembrane voltage levels could result in safer drugs. PMID:24815983

  19. Intrauterine infection/inflammation during pregnancy and offspring brain damages: Possible mechanisms involved

    Directory of Open Access Journals (Sweden)

    Golan Hava

    2004-04-01

    Full Text Available Abstract Intrauterine infection is considered as one of the major maternal insults during pregnancy. Intrauterine infection during pregnancy could lead to brain damage of the developmental fetus and offspring. Effects on the fetal, newborn, and adult central nervous system (CNS may include signs of neurological problems, developmental abnormalities and delays, and intellectual deficits. However, the mechanisms or pathophysiology that leads to permanent brain damage during development are complex and not fully understood. This damage may affect morphogenic and behavioral phenotypes of the developed offspring, and that mice brain damage could be mediated through a final common pathway, which includes over-stimulation of excitatory amino acid receptor, over-production of vascularization/angiogenesis, pro-inflammatory cytokines, neurotrophic factors and apoptotic-inducing factors.

  20. Mechanisms involved in growth inhibition induced by clofibrate in hepatoma cells

    International Nuclear Information System (INIS)

    Muzio, Giuliana; Maggiora, Marina; Trombetta, Antonella; Martinasso, Germana; Reffo, Patrizia; Colombatto, Sebastiano; Canuto, Rosa Angela

    2003-01-01

    Low concentrations of some peroxisome proliferators have been found to decrease apoptosis in rat liver cells, whereas higher but pharmacological concentrations have been found to inhibit cell proliferation or to induce apoptosis in human and rat hepatoma cells. The highly deviated JM2 rat hepatoma cell line was used to examine the mechanisms underlying the inhibitory effect on cell proliferation. Clofibrate chiefly inhibited cell proliferation in these cells. Parallel to the decrease in cell proliferation there was an increase of peroxisome proliferator activated receptor (PPAR) gamma and of protein phosphatase 2A, whose importance was confirmed, respectively, by using antisense oliginucleotides (AS-ODN) or okadaic acid. The increase of protein phosphatase 2A induced by PPARgamma caused a decrease of MAPK, an intracellular signaling transduction pathway, as shown by evaluation of Erk1,2 and c-myc. In light of these results, clofibrate, like conventional synthetic ligands of PPARgamma, may be regarded as a possible prototype anti-tumour drug

  1. Mechanisms Involved in Thromboxane A2-induced Vasoconstriction of Rat Intracavernous Small Penile Arteries

    DEFF Research Database (Denmark)

    Grann, Martin; Comerma Steffensen, Simon Gabriel; Arcanjo, Daniel Dias Rufino

    2015-01-01

    relaxation in rat mesenteric arteries. Our findings suggest that U46619 contraction depends on Ca2+ influx through L-type and TRP channels, and ROCKdependent mechanisms in penile arteries. Inhibition of the ROCK pathway is a potential approach for the treatment of erectile dysfunction associated......Diabetes is associated with erectile dysfunction and with hypercontractility in erectile tissue and this is in part ascribed to increased formation of thromboxane. Rho kinase (ROCK) is a key regulator of calcium sensitization and contraction in vascular smooth muscle. This study investigated...... the role of calcium and ROCK in contraction evoked by activation of the thromboxane receptors. Rat intracavernous penile arteries were mounted for isometric tension and intracellular calcium ([Ca2+]i) recording and corpus cavernosum for measurements of MYPT1 phosphorylation. In penile arteries, U46619...

  2. Critical review on the physical and mechanical factors involved in tissue engineering of cartilage.

    Science.gov (United States)

    Gaut, Carrie; Sugaya, Kiminobu

    2015-01-01

    Articular cartilage defects often progress to osteoarthritis, which negatively impacts quality of life for millions of people worldwide and leads to high healthcare expenditures. Tissue engineering approaches to osteoarthritis have concentrated on proliferation and differentiation of stem cells by activation and suppression of signaling pathways, and by using a variety of scaffolding techniques. Recent studies indicate a key role of environmental factors in the differentiation of mesenchymal stem cells to mature cartilage-producing chondrocytes. Therapeutic approaches that consider environmental regulation could optimize chondrogenesis protocols for regeneration of articular cartilage. This review focuses on the effect of scaffold structure and composition, mechanical stress and hypoxia in modulating mesenchymal stem cell fate and the current use of these environmental factors in tissue engineering research.

  3. Plastic and Neuroprotective Mechanisms Involved in the Therapeutic Effects of Cannabidiol in Psychiatric Disorders

    Directory of Open Access Journals (Sweden)

    Alline C. Campos

    2017-05-01

    Full Text Available Beneficial effects of cannabidiol (CBD have been described for a wide range of psychiatric disorders, including anxiety, psychosis, and depression. The mechanisms responsible for these effects, however, are still poorly understood. Similar to clinical antidepressant or atypical antipsychotic drugs, recent findings clearly indicate that CBD, either acutely or repeatedly administered, induces plastic changes. For example, CBD attenuates the decrease in hippocampal neurogenesis and dendrite spines density induced by chronic stress and prevents microglia activation and the decrease in the number of parvalbumin-positive GABA neurons in a pharmacological model of schizophrenia. More recently, it was found that CBD modulates cell fate regulatory pathways such as autophagy and others critical pathways for neuronal survival in neurodegenerative experimental models, suggesting the potential benefit of CBD treatment for psychiatric/cognitive symptoms associated with neurodegeneration. These changes and their possible association with CBD beneficial effects in psychiatric disorders are reviewed here.

  4. Molecular mechanisms involved in adaptive responses to radiation, UV light, and heat

    International Nuclear Information System (INIS)

    Takahashi, Akihisa; Ohnishi, Takeo

    2009-01-01

    Viable organisms recognize and respond to environmental changes or stresses. When these environmental changes and their responses by organisms are extreme, they can limit viability. However, organisms can adapt to these different stresses by utilizing different possible responses via signal transduction pathways when the stress is not lethal. In particular, prior mild stresses can provide some aid to prepare organisms for subsequent more severe stresses. These adjustments or adaptations for future stresses have been called adaptive responses. These responses are present in bacteria, plants and animals. The following review covers recent research which can help describe or postulate possible mechanisms which may be active in producing adaptive responses to radiation, ultraviolet light, and heat. (author)

  5. Effects of high fluoride intake on child mental work capacity: preliminary investigation into the mechanisms involved

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.; Li, X.J.; Wei, S.Q. [Child & Adolescent Hygiene Teaching Research Station, Chengdu (China)

    2008-10-15

    A study was carried out on 157 children, age 12-13, from a coal-burning fluorosis endemic area together with an experiment looking into the effect of high fluoride intake in animals. The results showed that early, prolonged high fluoride intake causes a decrease in a child's mental work capacity and that prolonged high uptake of fluoride causes a child's levels of hair zinc to drop. A multifactoral correlative analysis demonstrated a direct correlation between hair zinc and mental work capacity. The decrease of 5-hydroxyindoleacetic acid and the increase of norepinephrine in animal brains exposed to high levels of fluoride suggest a possible mechanism for mental work capacity deficits in children. However, further research is necessary.

  6. Cold-inhibited phloem translocation in sugar beet

    International Nuclear Information System (INIS)

    Grusak, M.A.

    1985-01-01

    Experimental studies were undertaken on a simplified single source leaf-single sink leaf, or single source leaf-double sink leaf sugar beet system to investigate the responsive nature of the long-distance phloem translocation system to localized cooling perturbations on the source leaf petiole. Experiments were performed by using a steady state [ 14 C]-labelling system for the source leaf, and translocation into the sink leaf (leaves) was monitored with a Geiger-Mueller system. A specially designed Peltier apparatus enabled cooling of the source petiole to 1 0 C (or other desired temperatures) at various positions on the petiole, over different lengths, and at different rates of cooling. Initial experiment were designed to test the predictions of a mathematical recovery model of translocation inhibited by cold. The results did not support the mathematical model, but did suggest that vascular anastomoses may be involved in the recovery response. Selective petiolar incision/excision experiments showed that anastomoses were capable of re-establishing translocation following a disruption of flow. Studies with two monitored sink levels suggested that the inhibition to slow-coolings was not due to reduced translocation through the cooled source petiole region, but rather, was due to a repartitioning of flow among the terminal sinks (sink leaves and hypocotyl/crown region above the heat-girdled root). This repartitioning occurred via a redirection of flow through the vascular connections in the crown region of the plant, and appeared to be promoted by rapid, physical signals originating from the cooled region of the petiole

  7. Attentional Biases toward Attractive Alternatives and Rivals: Mechanisms Involved in Relationship Maintenance among Chinese Women.

    Directory of Open Access Journals (Sweden)

    Yidan Ma

    Full Text Available A long-term romantic relationship can offer many benefits to committed individuals. Thus, humans possess relationship maintenance mechanisms to protect against threats from those who serve as attractive alternatives or intrasexual rivals. Many studies have indicated that romantic love can act as a commitment device to activate these mechanisms. To examine the attentional bias associated with relationship maintenance among 108 college students (49 single and 59 committed females in China, we used a semantic priming procedure to activate mental representations associated with romantic love and then asked participants to complete a dot-probe task for the purpose of making a distinction between the engage and disengage components of attention. No significant engaging effects toward attractive faces were observed among committed females, but the following significant disengaging effects were found: when primed with romantic love, single females showed increased attention toward and difficulty in disengaging from attractive male faces, whereas females already in a committed relationship did not alter their attention, remaining as inattentive to attractive alternatives as they were in the baseline condition. In addition, committed females responded to love priming by exhibiting difficulty in disengaging from attractive rivals. The present findings provide evidence in the Chinese cultural context for the existence of early-stage attentional processes in the domain of relationship maintenance that committed Chinese females protected an ongoing relationship by not only being inattentive to attractive males who could serve as attractive alternatives, but also being more attentive to attractive females who could be potential rivals when mental representations associated with romantic love were primed.

  8. Antioxidant mechanism of black garlic extract involving nuclear factor erythroid 2-like factor 2 pathway.

    Science.gov (United States)

    Ha, Ae Wha; Kim, Woo Kyoung

    2017-06-01

    Although studies have revealed that black garlic is a potent antioxidant, its antioxidant mechanism remains unclear. The objective of this study was to determine black garlic's antioxidant activities and possible antioxidant mechanisms related to nuclear factor erythroid 2-like factor 2 (Nrf2)-Keap1 complex. After four weeks of feeding rats with a normal fat diet (NF), a high-fat diet (HF), a high-fat diet with 0.5% black garlic extract (HF+BGE 0.5), a high-fat diet with 1.0% black garlic extract (HF+BGE 1.0), or a high-fat diet with 1.5% black garlic extract (HF+BGE 1.5), plasma concentrations of glucose, insulin,homeostatic model assessment of insulin resistance (HOMA-IR) were determined. As oxidative stress indices, plasma concentrations of thiobarbituric acid reactive substances (TBARS) and 8-isoprostaglandin F2α (8-iso-PGF) were determined. To measure antioxidant capacities, plasma total antioxidant capacity (TAC) and activities of antioxidant enzymes in plasma and liver were determined. The mRNA expression levels of antioxidant related proteins such as Nrf2, NAD(P)H: quinone-oxidoreductase-1 (NQO1), heme oxygenase-1 (HO-1), glutathione reductase (GR), and glutathione S-transferase alpha 2 (GSTA2) were examined. Plasma glucose level, plasma insulin level, and HOMA-IR in black garlic supplemented groups were significantly ( P concentration and TAC in the HF+BGE 1.5 group were significantly decreased compared to those of the HF group. The activities of catalase and glutathione peroxidase were significantly ( P antioxidant systems in rats fed with black garlic extract were related to mRNA expression levels of Nrf2 related genes.

  9. Attentional Biases toward Attractive Alternatives and Rivals: Mechanisms Involved in Relationship Maintenance among Chinese Women.

    Science.gov (United States)

    Ma, Yidan; Zhao, Guang; Tu, Shen; Zheng, Yong

    2015-01-01

    A long-term romantic relationship can offer many benefits to committed individuals. Thus, humans possess relationship maintenance mechanisms to protect against threats from those who serve as attractive alternatives or intrasexual rivals. Many studies have indicated that romantic love can act as a commitment device to activate these mechanisms. To examine the attentional bias associated with relationship maintenance among 108 college students (49 single and 59 committed females) in China, we used a semantic priming procedure to activate mental representations associated with romantic love and then asked participants to complete a dot-probe task for the purpose of making a distinction between the engage and disengage components of attention. No significant engaging effects toward attractive faces were observed among committed females, but the following significant disengaging effects were found: when primed with romantic love, single females showed increased attention toward and difficulty in disengaging from attractive male faces, whereas females already in a committed relationship did not alter their attention, remaining as inattentive to attractive alternatives as they were in the baseline condition. In addition, committed females responded to love priming by exhibiting difficulty in disengaging from attractive rivals. The present findings provide evidence in the Chinese cultural context for the existence of early-stage attentional processes in the domain of relationship maintenance that committed Chinese females protected an ongoing relationship by not only being inattentive to attractive males who could serve as attractive alternatives, but also being more attentive to attractive females who could be potential rivals when mental representations associated with romantic love were primed.

  10. Attentional Biases toward Attractive Alternatives and Rivals: Mechanisms Involved in Relationship Maintenance among Chinese Women

    Science.gov (United States)

    Ma, Yidan; Zhao, Guang; Tu, Shen; Zheng, Yong

    2015-01-01

    A long-term romantic relationship can offer many benefits to committed individuals. Thus, humans possess relationship maintenance mechanisms to protect against threats from those who serve as attractive alternatives or intrasexual rivals. Many studies have indicated that romantic love can act as a commitment device to activate these mechanisms. To examine the attentional bias associated with relationship maintenance among 108 college students (49 single and 59 committed females) in China, we used a semantic priming procedure to activate mental representations associated with romantic love and then asked participants to complete a dot-probe task for the purpose of making a distinction between the engage and disengage components of attention. No significant engaging effects toward attractive faces were observed among committed females, but the following significant disengaging effects were found: when primed with romantic love, single females showed increased attention toward and difficulty in disengaging from attractive male faces, whereas females already in a committed relationship did not alter their attention, remaining as inattentive to attractive alternatives as they were in the baseline condition. In addition, committed females responded to love priming by exhibiting difficulty in disengaging from attractive rivals. The present findings provide evidence in the Chinese cultural context for the existence of early-stage attentional processes in the domain of relationship maintenance that committed Chinese females protected an ongoing relationship by not only being inattentive to attractive males who could serve as attractive alternatives, but also being more attentive to attractive females who could be potential rivals when mental representations associated with romantic love were primed. PMID:26309232

  11. Pembrolizumab-Induced Thyroiditis: Comprehensive Clinical Review and Insights Into Underlying Involved Mechanisms.

    Science.gov (United States)

    Delivanis, Danae A; Gustafson, Michael P; Bornschlegl, Svetlana; Merten, Michele M; Kottschade, Lisa; Withers, Sarah; Dietz, Allan B; Ryder, Mabel

    2017-08-01

    Thyroid immune-related adverse events (irAEs) in patients treated with programmed death receptor-1 (PD-1) blockade are increasingly recognized as one of the most common adverse effects. Our aim was to determine the incidence and examine the potential mechanisms of anti-PD-1-induced thyroid irAEs. Single-center, retrospective cohort study. We studied 93 patients with advanced cancer (ages 24 to 82 years; 60% males) who received at least one infusion of pembrolizumab. Thyroid test results and thyroid imaging modalities were reviewed. Comprehensive 10-color flow cytometry of peripheral blood was performed. Thirteen (14%) thyroid irAEs were observed. Thyroiditis occurred in seven patients (54%), from which four recovered. New onset of hypothyroidism overt/subclinical developed in three patients. Levothyroxine dosing required doubling in three patients with a known history of hypothyroidism. Thyroperoxidase antibodies were positive in the minority of the patients [4/13 (31%)] and diffuse increased 18fludeoxyglucose uptake of the thyroid gland was observed in the majority [7/11 (64%)] of patients. We observed more circulating CD56+CD16+ natural killer (NK) cells and an elevated HLA-DR surface expression in the inflammatory intermediate CD14+CD16+ monocytes in anti-PD-1-treated patients. Thyroid dysfunction is common in cancer patients treated with pembrolizumab. Reversible destructive thyroiditis and overt hypothyroidism are the most common clinical presentations. The mechanism of thyroid destruction appears independent of thyroid autoantibodies and may include T cell, NK cell, and/or monocyte-mediated pathways. Because the thyroid is a frequent target of anti-PD-1 therapies, patients with therapeutically refractory thyroid cancer may be ideal candidates for this treatment. Copyright © 2017 Endocrine Society

  12. Compression of the DNA substrate by a viral packaging motor is supported by removal of intercalating dye during translocation.

    Science.gov (United States)

    Dixit, Aparna Banerjee; Ray, Krishanu; Black, Lindsay W

    2012-12-11

    Viral genome packaging into capsids is powered by high-force-generating motor proteins. In the presence of all packaging components, ATP-powered translocation in vitro expels all detectable tightly bound YOYO-1 dye from packaged short dsDNA substrates and removes all aminoacridine dye from packaged genomic DNA in vivo. In contrast, in the absence of packaging, the purified T4 packaging ATPase alone can only remove up to ∼1/3 of DNA-bound intercalating YOYO-1 dye molecules in the presence of ATP or ATP-γ-S. In sufficient concentration, intercalating dyes arrest packaging, but rare terminase mutations confer resistance. These distant mutations are highly interdependent in acquiring function and resistance and likely mark motor contact points with the translocating DNA. In stalled Y-DNAs, FRET has shown a decrease in distance from the phage T4 terminase C terminus to portal consistent with a linear motor, and in the Y-stem DNA compression between closely positioned dye pairs. Taken together with prior FRET studies of conformational changes in stalled Y-DNAs, removal of intercalating compounds by the packaging motor demonstrates conformational change in DNA during normal translocation at low packaging resistance and supports a proposed linear "DNA crunching" or torsional compression motor mechanism involving a transient grip-and-release structural change in B form DNA.

  13. An intermolecular binding mechanism involving multiple LysM domains mediates carbohydrate recognition by an endopeptidase

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Jaslyn E. M. M. [Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus (Denmark); Midtgaard, Søren Roi [University of Copenhagen, Universitetsparken 5, 2100 Copenhagen (Denmark); Gysel, Kira [Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus (Denmark); Thygesen, Mikkel B.; Sørensen, Kasper K.; Jensen, Knud J. [University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C (Denmark); Stougaard, Jens; Thirup, Søren; Blaise, Mickaël, E-mail: mickael.blaise@cpbs.cnrs.fr [Aarhus University, Gustav Wieds Vej 10C, 8000 Aarhus (Denmark)

    2015-03-01

    The crystal and solution structures of the T. thermophilus NlpC/P60 d, l-endopeptidase as well as the co-crystal structure of its N-terminal LysM domains bound to chitohexaose allow a proposal to be made regarding how the enzyme recognizes peptidoglycan. LysM domains, which are frequently present as repetitive entities in both bacterial and plant proteins, are known to interact with carbohydrates containing N-acetylglucosamine (GlcNAc) moieties, such as chitin and peptidoglycan. In bacteria, the functional significance of the involvement of multiple LysM domains in substrate binding has so far lacked support from high-resolution structures of ligand-bound complexes. Here, a structural study of the Thermus thermophilus NlpC/P60 endopeptidase containing two LysM domains is presented. The crystal structure and small-angle X-ray scattering solution studies of this endopeptidase revealed the presence of a homodimer. The structure of the two LysM domains co-crystallized with N-acetyl-chitohexaose revealed a new intermolecular binding mode that may explain the differential interaction between LysM domains and short or long chitin oligomers. By combining the structural information with the three-dimensional model of peptidoglycan, a model suggesting how protein dimerization enhances the recognition of peptidoglycan is proposed.

  14. Oxidative stress in the pathophysiology of metabolic syndrome: which mechanisms are involved?

    Directory of Open Access Journals (Sweden)

    Thalia M. T. Avelar

    2015-08-01

    Full Text Available ABSTRACTMetabolic syndrome (MS is a combination of cardiometabolic risk factors, including obesity, hyperglycemia, hypertriglyceridemia, dyslipidemia and hypertension. Several studies report that oxidative condition caused by overproduction of reactive oxygen species (ROS plays an important role in the development of MS. Our body has natural antioxidant system to reduce oxidative stress, which consists of numerous endogenous and exogenous components and antioxidants enzymes that are able to inactivate ROS. The main antioxidant defense enzymes that contribute to reduce oxidative stress are superoxide dismutase (SOD, catalase (CAT and gluthatione peroxidase (GPx. The high-density lipoprotein cholesterol (HDL-c is also associated with oxidative stress because it presents antioxidant and anti-inflammatory properties. HDL-c antioxidant activity may be attributed at least in part, to serum paraoxonase 1 (PON1 activity. Furthermore, derivatives of reactive oxygen metabolites (d-ROMs also stand out as acting in cardiovascular disease and diabetes, by the imbalance in ROS production, and close relationship with inflammation. Recent reports have indicated the gamma-glutamyl transferase (GGT as a promising biomarker for diagnosis of MS, because it is related to oxidative stress, since it plays an important role in the metabolism of extracellular glutathione. Based on this, several studies have searched for better markers for oxidative stress involved in development of MS.

  15. Evolutionary mechanisms involved in the virulence of infectious salmon anaemia virus (ISAV), a piscine orthomyxovirus

    International Nuclear Information System (INIS)

    Markussen, Turhan; Jonassen, Christine Monceyron; Numanovic, Sanela; Braaen, Stine; Hjortaas, Monika; Nilsen, Hanne; Mjaaland, Siri

    2008-01-01

    Infectious salmon anaemia virus (ISAV) is an orthomyxovirus causing a multisystemic, emerging disease in Atlantic salmon. Here we present, for the first time, detailed sequence analyses of the full-genome sequence of a presumed avirulent isolate displaying a full-length hemagglutinin-esterase (HE) gene (HPR0), and compare this with full-genome sequences of 11 Norwegian ISAV isolates from clinically diseased fish. These analyses revealed the presence of a virulence marker right upstream of the putative cleavage site R 267 in the fusion (F) protein, suggesting a Q 266 → L 266 substitution to be a prerequisite for virulence. To gain virulence in isolates lacking this substitution, a sequence insertion near the cleavage site seems to be required. This strongly suggests the involvement of a protease recognition pattern at the cleavage site of the fusion protein as a determinant of virulence, as seen in highly pathogenic influenza A virus H5 or H7 and the paramyxovirus Newcastle disease virus

  16. Study of the physical mechanisms involved in the femtosecond laser optical breakdown of dielectric materials

    International Nuclear Information System (INIS)

    Mouskeftaras, Alexandros

    2013-01-01

    We have carried out detailed time resolved experimental studies of the mechanism of electron excitation-relaxation, when an ultrashort (60 fs -1 ps) laser (UV and IR) pulse interacts with a wide band gap dielectric material. The studies cover a range of different dielectric materials and the investigated regimes span from nondestructive ionization of the material at the low power end (∼TW/cm 2 ) to ablative domain at a higher laser power (∼10 TW/cm 2 ). This gives fundamental insight into the understanding of the laser damaging process taking place under our irradiation conditions. The usage of time-resolved spectral interferometry technique allows to directly measure the electron density of the irradiated material under different excitation conditions and hence leads to quantification of the process. The measurements, carried out at the optical breakdown threshold utilizing different pulse durations, raise questions regarding the usage of critical excitation density as a universal ablation criterion. A new criterion related to the exchanged energy is proposed. Additionally, the use of an experimental setup implementing a double pump pulse allows the identification of different excitation mechanisms taking place at time scales of the order of the pulse duration used. Electronic avalanche is observed in some materials (SiO 2 , NaCl) while this is not the case for others (Al 2 O 3 , MgO). These differences are discussed in detail. Next, we measure the energy spectrum of excited electrons with a complementary technique: the photoemission spectroscopy. These results allow us on one hand to show a crossed effect between the two 'pump' pulses and on the other hand to measure electron relaxation characteristic times, as a function of their kinetic energy. Finally, a morphological study of craters resulting from ablation in the case of a single pulse has been carried out for different irradiation parameters: number of shots, energy and pulse duration. This work has

  17. Transcuticular translocation of radionuclides on plant leaf surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Ken-ichi; Watanabe, Tadakazu; Ambe, Shizuko; Yamaguchi, Isamu [Institute of Physical and Chemical Research, Wako, Saitama (Japan)

    1996-12-31

    The cuticle covering all the outermost surfaces of the aerial parts of plants could play a selective role in uptake and translocation of radionuclides from air into plants. In this study, we investigated the transcuticular uptake and translocation behavior via water droplets of various radionuclides in red clover, orchard grass, Japanese radish and mung bean. Ten {mu}l of an aqueous solution of the multitracer generated from Au was applied to the upper surface of the 2nd leaf of the plants at the 5th leaf stage. The plants were then grown for 14 days at 25degC and 70% RH under illumination of artificial solar lights. The transcuticular uptake and translocation throughout the plant were periodically assayed by determining the radioactivity in the surface residue, the cuticle layer beneath the applied site, the leaf area outside the applied site, the other aerial parts and the root of the plant, using an HPGe detector. The applied radionuclides were absorbed into, in turn, the cuticle layer beneath the applied site and then translocated through the cuticle to the inner tissue and eventually to the other aerial parts and finally to the roots, of the plant. The distribution and accumulation in the plant seems to depend upon the characteristics of each radionuclide and plant species. Ca{sup *} and Te{sup *} tended to remain on leaf surfaces without being absorbed into the cuticle. On the other hand, Sc{sup *}, Co{sup *}, Zn{sup *}, Se{sup *}, Rb{sup *}, and Eu{sup *} were easily absorbed and translocated to every part of the plant including the root. The other radionuclides such as Be{sup *}, Mn{sup *}, Sr{sup *}, Y{sup *}, Ba{sup *}, Ce{sup *}, Pm{sup *}, Gd{sup *}, Hf{sup *}, Yb{sup *}, Lu{sup *}, Os{sup *}, Ir{sup *}, and Pt{sup *} remained in the region close to the site of their application. The above results possibly indicate the existence of mechanisms common to these plants for selective transcuticular uptake and translocation of radionuclides within plant

  18. Flavonoids Active Against Osteosarcoma: A Review of the Molecular Mechanisms Involved.

    Science.gov (United States)

    Liu, Hui; Gao, Yutong; Dong, Yonghui; Cheng, Peng; Chen, Anmin; Huang, Hui

    2017-01-01

    Osteosarcoma is the most frequent primitive malignant bone tumor affecting adolescents and young adults worldwide. The tumor exhibits aggressive growth in the primary site and readily metastasizes to other organs. There has been no significant improvement in the 5-year survival rate since the 1970s and the figure remains at 60-70%. In addition, the side effects of chemotherapeutic drugs and resistance to chemotherapy compromise the effects of treatment for osteosarcoma. In recent years, the development of flavonoids drugs inhibiting carcinogenesis is attracting great interest in the scientific community. Flavonoids are one kind of polyphenolic compounds widely found in vegetables and fruits. Moreover, flavonoids have become popular compounds, exhibiting comprehensive antitumor activities, while being safe and inexpensive. Here, the literature on the benefits afforded by flavonoids in terms of osteosarcoma treatment is reviewed and certain flavonoids and their effects on osteosarcoma are discussed. These compounds can perturb the cell cycle, induce apoptosis, inhibit tumor cell invasion and metastasis, potentiate the actions of chemotherapeutic agents, trigger autophagy, and stimulate antitumor activity in vivo. In summary, we highlight the currently well-accepted flavonoid compounds and detail the molecular mechanisms by which flavonoids may treat osteosarcoma, and thus the flavonoids exhibit great promise as anti-osteosarcoma agents. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Chemical compounds and mechanisms involved in the formation and stabilization of foam in sparkling wines.

    Science.gov (United States)

    Kemp, Belinda; Condé, Bruna; Jégou, Sandrine; Howell, Kate; Vasserot, Yann; Marchal, Richard

    2018-02-08

    The visual properties of sparkling wine including foam and bubbles are an indicator of sparkling wine quality. Foam properties, particularly foam height (FH) and foam stability (TS), are significantly influenced by the chemical composition of the wine. This review investigates our current knowledge of specific chemical compounds and, the mechanisms by which they influence the foam properties of sparkling wines. Grape and yeast proteins, amino acids, polysaccharides, phenolic compounds, organic acids, fatty acids, ethanol and sugar are examined with respect to their contribution to foam characteristics in sparkling wines made with the Traditional, Transfer, and Charmat and carbonation methods. Contradictory results have been identified that appear to be due to the analytical methods used to measure and quantify compounds and foam. Biopolymer complexes are discussed and absent knowledge with regards to thaumatin-like proteins (TLPs), polysaccharides, amino acids, oak-derived phenolic compounds and organic acids are identified. Future research is also likely to concentrate on visual analysis of sparkling wines by in-depth imaging analysis and specific sensory analysis techniques.

  20. Studies of the mechanisms involved in the laser surface hardening process of aluminum base alloys

    International Nuclear Information System (INIS)

    Silva, Luciana Ventavele da

    2011-01-01

    The Al-Si alloys are widely used in industry to replace the steel and gray cast iron in high-tech sectors. The commercial importance of these alloys is mainly due to its low weight, excellent wear (abrasion) and corrosion resistance, high resistance at elevated temperatures, low coefficient of thermal expansion and lesser fuel consumption that provide considerable reduction of emission of pollutants. In this work, Al-Si alloy used in the automotive industry to manufacture pistons of internal combustion engines, was undergone to surface treatments using LASER remelting (Nd:YAG, λ = 1.06 μm, pulsed mode). The LASER enables various energy concentrations with accurate transfer to the material without physical contact. The intense energy transfer causes the occurrence of structural changes in the superficial layer of the material. Experiments with single pulses and trails were conducted under various conditions of LASER processing in order to analyze microstructural changes resulting from treatments and their effects on the hardness. For the characterization of hardened layer was utilized the following techniques: optical microscopy, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), x-ray mapping, Vickers microhardness and maximum roughness tests. The high cooling rate caused a change in the alloy structure due to the refinement of the primary eutectic silicon particles, resulting in increase of the mechanical properties (hardness) of the Al-Si alloy. (author)

  1. Innate immunity and effector and regulatory mechanisms involved in allergic contact dermatitis.

    Science.gov (United States)

    Silvestre, Marilene Chaves; Sato, Maria Notomi; Reis, Vitor Manoel Silva Dos

    2018-03-01

    Skin's innate immunity is the initial activator of immune response mechanisms, influencing the development of adaptive immunity. Some contact allergens are detected by Toll-like receptors (TLRs) and inflammasome NLR3. Keratinocytes participate in innate immunity and, in addition to functioning as an anatomical barrier, secrete cytokines, such as TNF, IL-1β, and IL-18, contributing to the development of Allergic Contact Dermatitis. Dendritic cells recognize and process antigenic peptides into T cells. Neutrophils cause pro-inflammatory reactions, mast cells induce migration/maturation of skin DCs, the natural killer cells have natural cytotoxic capacity, the γδ T cells favor contact with hapten during the sensitization phase, and the innate lymphoid cells act in the early stages by secreting cytokines, as well as act in inflammation and tissue homeostasis. The antigen-specific inflammation is mediated by T cells, and each subtype of T cells (Th1/Tc1, Th2/Tc2, and Th17/Tc17) activates resident skin cells, thus contributing to inflammation. Skin's regulatory T cells have a strong ability to inhibit the proliferation of hapten-specific T cells, acting at the end of the Allergic Contact Dermatitis response and in the control of systemic immune responses. In this review, we report how cutaneous innate immunity is the first line of defense and focus its role in the activation of the adaptive immune response, with effector response induction and its regulation.

  2. Innate immunity and effector and regulatory mechanisms involved in allergic contact dermatitis*

    Science.gov (United States)

    Silvestre, Marilene Chaves; Sato, Maria Notomi; dos Reis, Vitor Manoel Silva

    2018-01-01

    Skin's innate immunity is the initial activator of immune response mechanisms, influencing the development of adaptive immunity. Some contact allergens are detected by Toll-like receptors (TLRs) and inflammasome NLR3. Keratinocytes participate in innate immunity and, in addition to functioning as an anatomical barrier, secrete cytokines, such as TNF, IL-1β, and IL-18, contributing to the development of Allergic Contact Dermatitis. Dendritic cells recognize and process antigenic peptides into T cells. Neutrophils cause pro-inflammatory reactions, mast cells induce migration/maturation of skin DCs, the natural killer cells have natural cytotoxic capacity, the γδ T cells favor contact with hapten during the sensitization phase, and the innate lymphoid cells act in the early stages by secreting cytokines, as well as act in inflammation and tissue homeostasis. The antigen-specific inflammation is mediated by T cells, and each subtype of T cells (Th1/Tc1, Th2/Tc2, and Th17/Tc17) activates resident skin cells, thus contributing to inflammation. Skin's regulatory T cells have a strong ability to inhibit the proliferation of hapten-specific T cells, acting at the end of the Allergic Contact Dermatitis response and in the control of systemic immune responses. In this review, we report how cutaneous innate immunity is the first line of defense and focus its role in the activation of the adaptive immune response, with effector response induction and its regulation. PMID:29723367

  3. Effects of nitric oxide on magnocellular neurons of the supraoptic nucleus involve multiple mechanisms

    Directory of Open Access Journals (Sweden)

    M.P. da Silva

    2014-02-01

    Full Text Available Physiological evidence indicates that the supraoptic nucleus (SON is an important region for integrating information related to homeostasis of body fluids. Located bilaterally to the optic chiasm, this nucleus is composed of magnocellular neurosecretory cells (MNCs responsible for the synthesis and release of vasopressin and oxytocin to the neurohypophysis. At the cellular level, the control of vasopressin and oxytocin release is directly linked to the firing frequency of MNCs. In general, we can say that the excitability of these cells can be controlled via two distinct mechanisms: 1 the intrinsic membrane properties of the MNCs themselves and 2 synaptic input from circumventricular organs that contain osmosensitive neurons. It has also been demonstrated that MNCs are sensitive to osmotic stimuli in the physiological range. Therefore, the study of their intrinsic membrane properties became imperative to explain the osmosensitivity of MNCs. In addition to this, the discovery that several neurotransmitters and neuropeptides can modulate their electrical activity greatly increased our knowledge about the role played by the MNCs in fluid homeostasis. In particular, nitric oxide (NO may be an important player in fluid balance homeostasis, because it has been demonstrated that the enzyme responsible for its production has an increased activity following a hypertonic stimulation of the system. At the cellular level, NO has been shown to change the electrical excitability of MNCs. Therefore, in this review, we focus on some important points concerning nitrergic modulation of the neuroendocrine system, particularly the effects of NO on the SON.

  4. Mechanisms Involved in Guiding the Preference for Fat Emulsion Differ Depending on the Concentration.

    Science.gov (United States)

    Sakamoto, Kazuhiro; Matsumura, Shigenobu; Okafuji, Yoko; Eguchi, Ai; Lee, Shinhye; Adachi, Shin-ichi; Fujitani, Mina; Tsuzuki, Satoshi; Inoue, Kazuo; Fushiki, Tohru

    2015-01-01

    High-fat foods tend to be palatable and can cause addiction in mice via a reinforcing effect. However, mice showed preference for low fat concentrations that do not elicit a reinforcing effect in a two-bottle choice test with water as the alternative. This behavior indicates the possibility that the mechanism underlying fat palatability may differ depending on the dietary fat content. To address this issue, we examined the influences of the opioid system and olfactory and gustatory transductions on the intake and reinforcing effects of various concentrations of a dietary fat emulsion (Intralipid). We found that the intake and reinforcing effects of fat emulsion were reduced by the administration of an opioid receptor antagonist (naltrexone). Furthermore, the action of naltrexone was only observed at higher concentrations of fat emulsion. The intake and the reinforcing effects of fat emulsion were also reduced by olfactory and glossopharyngeal nerve transections (designated ONX and GLX, respectively). In contrast to naltrexone, the effects of ONX and GLX were mainly observed at lower concentrations of fat emulsion. These results imply that the opioid system seems to have a greater role in determining the palatability of high-fat foods unlike the contribution of olfactory and glossopharyngeal nerves.

  5. Translocation and potential neurological effects of fine and ultrafine particles a critical update.

    Science.gov (United States)

    Peters, Annette; Veronesi, Bellina; Calderón-Garcidueñas, Lilian; Gehr, Peter; Chen, Lung Chi; Geiser, Marianne; Reed, William; Rothen-Rutishauser, Barbara; Schürch, Samuel; Schulz, Holger

    2006-09-08

    Particulate air pollution has been associated with respiratory and cardiovascular disease. Evidence for cardiovascular and neurodegenerative effects of ambient particles was reviewed as part of a workshop. The purpose of this critical update is to summarize the evidence presented for the mechanisms involved in the translocation of particles from the lung to other organs and to highlight the potential of particles to cause neurodegenerative effects. Fine and ultrafine particles, after deposition on the surfactant film at the air-liquid interface, are displaced by surface forces exerted on them by surfactant film and may then interact with primary target cells upon this displacement. Ultrafine and fine particles can then penetrate through the different tissue compartments of the lungs and eventually reach the capillaries and circulating cells or constituents, e.g. erythrocytes. These particles are then translocated by the circulation to other organs including the liver, the spleen, the kidneys, the heart and the brain, where they may be deposited. It remains to be shown by which mechanisms ultrafine particles penetrate through pulmonary tissue and enter capillaries. In addition to translocation of ultrafine particles through the tissue, fine and coarse particles may be phagocytized by macrophages and dendritic cells which may carry the particles to lymph nodes in the lung or to those closely associated with the lungs. There is the potential for neurodegenerative consequence of particle entry to the brain. Histological evidence of neurodegeneration has been reported in both canine and human brains exposed to high ambient PM levels, suggesting the potential for neurotoxic consequences of PM-CNS entry. PM mediated damage may be caused by the oxidative stress pathway. Thus, oxidative stress due to nutrition, age, genetics among others may increase the susceptibility for neurodegenerative diseases. The relationship between PM exposure and CNS degeneration can also be

  6. Mechanism of phytohormone involvement in feedback regulation of cotton leaf senescence induced by potassium deficiency.

    Science.gov (United States)

    Wang, Ye; Li, Bo; Du, Mingwei; Eneji, A Egrinya; Wang, Baomin; Duan, Liusheng; Li, Zhaohu; Tian, Xiaoli

    2012-10-01

    To elucidate the phytohormonal basis of the feedback regulation of leaf senescence induced by potassium (K) deficiency in cotton (Gossypium hirsutum L.), two cultivars contrasting in sensitivity to K deficiency were self- and reciprocally grafted hypocotyl-to-hypocotyl, using standard grafting (one scion grafted onto one rootstock), Y grafting (two scions grafted onto one rootstock), and inverted Y grafting (one scion grafted onto two rootstocks) at the seedling stage. K deficiency (0.03mM for standard and Y grafting, and 0.01mM for inverted Y grafting) increased the root abscisic acid (ABA) concentration by 1.6- to 3.1-fold and xylem ABA delivery rates by 1.8- to 4.6-fold. The K deficiency also decreased the delivery rates of xylem cytokinins [CKs; including the zeatin riboside (ZR) and isopentenyl adenosine (iPA) type] by 29-65% and leaf CK concentration by 16-57%. The leaf ABA concentration and xylem ABA deliveries were consistently greater in CCRI41 (more sensitive to K deficiency) than in SCRC22 (less sensitive to K deficiency) scions under K deficiency, and ZR- and iPA-type levels were consistently lower in the former than in the latter, irrespective of rootstock cultivar or grafting type, indicating that cotton shoot influences the levels of ABA and CKs in leaves and xylem sap. Because the scions had little influence on phytohormone levels in the roots (rootstocks) of all three types of grafts and rootstock xylem sap (collected below the graft union) of Y and inverted Y grafts, it appears that the site for basipetal feedback signal(s) involved in the regulation of xylem phytohormones is the hypocotyl of cotton seedlings. Also, the target of this feedback signal(s) is more likely to be the changes in xylem phytohormones within tissues of the hypocotyl rather than the export of phytohormones from the roots.

  7. Predictive Mechanisms Are Not Involved the Same Way during Human-Human vs. Human-Machine Interactions: A Review

    Directory of Open Access Journals (Sweden)

    Aïsha Sahaï

    2017-10-01

    Full Text Available Nowadays, interactions with others do not only involve human peers but also automated systems. Many studies suggest that the motor predictive systems that are engaged during action execution are also involved during joint actions with peers and during other human generated action observation. Indeed, the comparator model hypothesis suggests that the comparison between a predicted state and an estimated real state enables motor control, and by a similar functioning, understanding and anticipating observed actions. Such a mechanism allows making predictions about an ongoing action, and is essential to action regulation, especially during joint actions with peers. Interestingly, the same comparison process has been shown to be involved in the construction of an individual's sense of agency, both for self-generated and observed other human generated actions. However, the implication of such predictive mechanisms during interactions with machines is not consensual, probably due to the high heterogeneousness of the automata used in the experimentations, from very simplistic devices to full humanoid robots. The discrepancies that are observed during human/machine interactions could arise from the absence of action/observation matching abilities when interacting with traditional low-level automata. Consistently, the difficulties to build a joint agency with this kind of machines could stem from the same problem. In this context, we aim to review the studies investigating predictive mechanisms during social interactions with humans and with automated artificial systems. We will start by presenting human data that show the involvement of predictions in action control and in the sense of agency during social interactions. Thereafter, we will confront this literature with data from the robotic field. Finally, we will address the upcoming issues in the field of robotics related to automated systems aimed at acting as collaborative agents.

  8. Survival in amyotrophic lateral sclerosis with home mechanical ventilation: the impact of systematic respiratory assessment and bulbar involvement.

    Science.gov (United States)

    Farrero, Eva; Prats, Enric; Povedano, Mónica; Martinez-Matos, J Antonio; Manresa, Frederic; Escarrabill, Joan

    2005-06-01

    To analyze (1) the impact of a protocol of early respiratory evaluation of the indications for home mechanical ventilation (HMV) in patients with amyotrophic lateral sclerosis (ALS), and (2) the effects of the protocol and of bulbar involvement on the survival of patients receiving noninvasive ventilation (NIV). Retrospective study in a tertiary care referral center. HMV was indicated in 86 patients with ALS, with 22 patients (25%) presenting with intolerance to treatment associated with bulbar involvement. Treatment with HMV had been initiated in 15 of 64 patients prior to initiating the protocol (group A) and in the remaining 49 patients after protocol initiation (group B). In group A, the majority of patients began treatment with HMV during an acute episode requiring ICU admission (p = 0.001) and tracheal ventilation (p = 0.025), with a lower percentage of patients beginning HMV treatment without respiratory insufficiency (p = 0.013). No significant differences in survival rates were found between groups A and B among patients treated with NIV. Greater survival was observed in group B (p = 0.03) when patients with bulbar involvement were excluded (96%). Patients without bulbar involvement at the start of therapy with NIV presented a significantly better survival rate (p = 0.03). Multivariate analysis showed bulbar involvement to be an independent prognostic factor for survival (relative risk, 1.6; 95% confidence interval, 1.01 to 2.54; p = 0.04). No significant differences in survival were observed between patients with bulbar involvement following treatment with NIV and those with intolerance, except for the subgroup of patients who began NIV treatment with hypercapnia (p = 0.0002). Early systematic respiratory evaluation in patients with ALS is necessary to improve the results of HMV. Further studies are required to confirm the benefits of NIV treatment in patients with bulbar involvement, especially in the early stages.

  9. Involvement of spinal NR2B-containing NMDA receptors in oxaliplatin-induced mechanical allodynia in rats

    Directory of Open Access Journals (Sweden)

    Yano Takahisa

    2011-01-01

    Full Text Available Abstract Background Oxaliplatin is a platinum-based chemotherapy drug characterized by the development of acute and chronic peripheral neuropathies. The chronic neuropathy is a dose-limiting toxicity. We previously reported that repeated administration of oxaliplatin induced cold hyperalgesia in the early phase and mechanical allodynia in the late phase in rats. In the present study, we investigated the involvement of NR2B-containing N-methyl-D-aspartate (NMDA receptors in oxaliplatin-induced mechanical allodynia in rats. Results Repeated administration of oxaliplatin (4 mg/kg, i.p., twice a week caused mechanical allodynia in the fourth week, which was reversed by intrathecal injection of MK-801 (10 nmol and memantine (1 μmol, NMDA receptor antagonists. Similarly, selective NR2B antagonists Ro25-6981 (300 nmol, i.t. and ifenprodil (50 mg/kg, p.o. significantly attenuated the oxaliplatin-induced pain behavior. In addition, the expression of NR2B protein and mRNA in the rat spinal cord was increased by oxaliplatin on Day 25 (late phase but not on Day 5 (early phase. Moreover, we examined the involvement of nitric oxide synthase (NOS as a downstream target of NMDA receptor. L-NAME, a non-selective NOS inhibitor, and 7-nitroindazole, a neuronal NOS (nNOS inhibitor, significantly suppressed the oxaliplatin-induced pain behavior. The intensity of NADPH diaphorase staining, a histochemical marker for NOS, in the superficial layer of spinal dorsal horn was obviously increased by oxaliplatin, and this increased intensity was reversed by intrathecal injection of Ro25-6981. Conclusion These results indicated that spinal NR2B-containing NMDA receptors are involved in the oxaliplatin-induced mechanical allodynia.

  10. Molecular mechanisms of drug resistance and tumor promotion involving mammalian ribonucleotide reductase

    Energy Technology Data Exchange (ETDEWEB)

    Choy, B.B.K.

    1991-01-01

    Mammalian ribonucleotide reductase is a highly regulated, rate-limiting activity responsible for converting ribonucleoside diphosphates to the deoxyribonucleotide precursors of DNA. The enzyme consists of two nonidentical proteins called M1 and M2, both of which are required for activity. Hydroxyurea is an antitumor agent which inhibits ribonucleotide reductase by interacting with the M2 component specifically at a unique tyrosyl free radical. Studies were conducted on a series of drug resistant mouse cell lines, selected by a step-wise procedure for increasing levels of resistance to the cytotoxic effects of hydroxyurea. Each successive drug selection step leading to the isolation of highly resistant cells was accompanied by stable elevations in cellular resistance and ribonucleotide reductase activity. The drug resistant cell lines exhibited gene amplification of the M2 gene, elevated M2 mRNA, and M2 protein. In addition to M2 gene amplification, posttranscriptional modulation also occurred during the drug selection. Studies of the biosynthesis rates with exogenously added iron suggest a role for iron in regulating the level of M2 protein when cells are cultured in the presence of hydroxyurea. The hydroxyurea-inactivated ribonucleotide reductase protein M2 has a destabilized iron centre, which readily releases iron. Altered expression of ferritin appears to be required for the development of hydroxyurea resistance in nammalian cells. The results show an interesting relationship between the expressions of ribonucleotide reductase and ferritin. The phorbol ester tumor promoter, TPA, is also able to alter the expression of M2. TPA was able to induce M2 mRNA levels transiently up to 18-fold within 1/2 hour. This rapid and large elevation of ribonucleotide reductase suggests that the enzyme may play a role in tumor promotion. Studies of the M2 promoter region were undertaken to better understand the mechanism of TPA induction of M2.

  11. Physiological and Molecular Mechanism of Nitric Oxide (NO Involved in Bermudagrass Response to Cold Stress.

    Directory of Open Access Journals (Sweden)

    Jibiao Fan

    Full Text Available Bermudagrass is widely utilized in parks, lawns, and golf courses. However, cold is a key factor limiting resource use in bermudagrass. Therefore, it is meaningful to study the mechanism of bermudagrass response to cold. Nitric oxide (NO is a crucial signal molecule with multiple biological functions. Thus, the objective of this study was to investigate whether NO play roles in bermudagrass response to cold. Sodium nitroprusside (SNP was used as NO donor, while 2-phenyl-4,4,5,5-tetramentylimidazoline-l-oxyl-3-xide (PTIO plus NG-nitro-L-arginine methyl ester (L-NAME were applied as NO inhibitor. Wild bermudagrass was subjected to 4 °C in a growth chamber under different treatments (Control, SNP, PTIO + L-NAME. The results indicated lower levels of malondialdehyde (MDA content and electrolyte leakage (EL, higher value for chlorophyll content, superoxide dismutase (SOD and peroxidase (POD activities after SNP treatment than that of PTIO plus L-NAME treatments under cold stress. Analysis of Chlorophyll (Chl a fluorescence transient displayed that the OJIP transient curve was higher after treatment with SNP than that of treated with PTIO plus L-NAME under cold stress. The values of photosynthetic fluorescence parameters were higher after treatment with SNP than that of treated with PTIO plus L-NAME under cold stress. Expression of cold-responsive genes was altered under cold stress after treated with SNP or PTIO plus L-NAME. In summary, our findings indicated that, as an important strategy to protect bermudagrass against cold stress, NO could maintain the stability of cell membrane, up-regulate the antioxidant enzymes activities, recover process of photosystem II (PSII and induce the expression of cold-responsive genes.

  12. Mechanisms involved in reproductive damage caused by gossypol in rats and protective effects of vitamin E

    Directory of Open Access Journals (Sweden)

    Andréia T Santana

    2015-01-01

    Full Text Available BACKGROUND: Gossypol is a chemical present in the seeds of cotton plants (Gossypium sp. that reduces fertility in farm animals. Vitamin E is an antioxidant and may help to protect cells and tissues against the deleterious effects of free radicals. The aim of this study was to evaluate the mechanisms of reproductive toxicity of gossypol in rats and the protective effects of vitamin E. Forty Wistar rats were used, divided into four experimental groups (n = 10: DMSO/ saline + corn oil; DMSO/saline + vitamin E; gossypol + corn oil; and gossypol + vitamin E. RESULTS: Fertility was significantly reduced in male rats treated with gossypol in that a significant decrease in epididy-mal sperm count was observed (P 0.05. The levels of reduced glutathione and pyridine nucleotides in testis homogen-ate were significantly reduced by gossypol (P < 0.05 and P < 0.01, respectively and this reduction was accompanied by increased levels of oxidized glutathione (P < 0.05. Vitamin E showed a preventive effect on the changes in the levels of these substances. Gossypol significantly increased the levels of malondialdehyde (P < 0.01, a lipid peroxida-tion indicator, whereas treatment with vitamin E inhibited the action of the gossypol. Vitamin E prevented a decrease in mitochondrial ATP induced by gossypol (P < 0.05. CONCLUSIONS: This study suggests that the reproductive dysfunction caused by gossypol may be related to oxidative stress and mitochondrial bioenergetic damage and that treatment with vitamin E can prevent the infertility caused by the toxin.

  13. Mechanisms involved in the association between periodontitis and complications in pregnancy.

    Directory of Open Access Journals (Sweden)

    Marcela eYang

    2015-01-01

    Full Text Available The association between periodontitis and gestation complications such as premature delivery, low weight at birth and preeclampsia has been suggested. Nevertheless, epidemiological data have shown contradictory data, mainly due to differences in clinical parameters of periodontitis assessment. Furthermore, differences in microbial composition and immune response between aggressive and chronic periodontitis are not addressed by these epidemiological studies. We aimed to review the current data on the association between gestation complications and periodontitis, and the mechanisms underlying this association. Shifts in the microbial composition of the subgingival biofilm may occur during pregnancy, leading to a potentially more hazardous microbial community. Pregnancy is characterized by physiological immune tolerance. However, the infection leads to a shift in maternal immune response to a pathogenic pro-inflammatory response, with production of inflammatory cytokines and toxic products. In women with periodontitis, the infected periodontal tissues may act as reservoirs of bacteria and their products which can disseminate to the fetus-placenta unit. In severe periodontitis patients, the infection agents and their products are able to activate inflammatory signaling pathways locally and in extra-oral sites, including the placenta-fetal unit, which may not only induce preterm labor, but also lead to preeclampsia and restrict intrauterine growth. Despite these evidences, the effectiveness of periodontal treatment in preventing gestational complications was still not established since it may be influenced by several factors such as severity of disease, composition of microbial community, treatment strategy, and period of treatment throughout pregnancy. This lack of scientific evidence does not exclude the need to control infection and inflammation in periodontitis patients during pregnancy, and treatment protocols should be validated.

  14. Mechanisms Involved in the Association between Periodontitis and Complications in Pregnancy

    Science.gov (United States)

    Zi, Marcela Yang Hui; Longo, Priscila Larcher; Bueno-Silva, Bruno; Mayer, Marcia Pinto Alves

    2015-01-01

    The association between periodontitis and some of the problems with pregnancy such as premature delivery, low weight at birth, and preeclampsia (PE) has been suggested. Nevertheless, epidemiological data have shown contradictory data, mainly due to differences in clinical parameters of periodontitis assessment. Furthermore, differences in microbial composition and immune response between aggressive and chronic periodontitis are not addressed by these epidemiological studies. We aimed to review the current data on the association between some of these problems with pregnancy and periodontitis, and the mechanisms underlying this association. Shifts in the microbial composition of the subgingival biofilm may occur during pregnancy, leading to a potentially more hazardous microbial community. Pregnancy is characterized by physiological immune tolerance. However, the infection leads to a shift in maternal immune response to a pathogenic pro-inflammatory response, with production of inflammatory cytokines and toxic products. In women with periodontitis, the infected periodontal tissues may act as reservoirs of bacteria and their products that can disseminate to the fetus-placenta unit. In severe periodontitis patients, the infection agents and their products are able to activate inflammatory signaling pathways locally and in extra-oral sites, including the placenta-fetal unit, which may not only induce preterm labor but also lead to PE and restrict intrauterine growth. Despite these evidences, the effectiveness of periodontal treatment in preventing gestational complications was still not established since it may be influenced by several factors such as severity of disease, composition of microbial community, treatment strategy, and period of treatment throughout pregnancy. This lack of scientific evidence does not exclude the need to control infection and inflammation in periodontitis patients during pregnancy, and treatment protocols should be validated. PMID:25688342

  15. Pomegranate-mediated chemoprevention of experimental hepatocarcinogenesis involves Nrf2-regulated antioxidant mechanisms

    Science.gov (United States)

    Bishayee, Anupam; Bhatia, Deepak; Thoppil, Roslin J.; Darvesh, Altaf S.; Nevo, Eviatar; Lansky, Ephraim P.

    2011-01-01

    Hepatocellular carcinoma (HCC), one of the most prevalent and lethal cancers, has shown an alarming rise in the USA. Without effective therapy for HCC, novel chemopreventive strategies may effectively circumvent the current morbidity and mortality. Oxidative stress predisposes to hepatocarcinogenesis and is the major driving force of HCC. Pomegranate, an ancient fruit, is gaining tremendous attention due to its powerful antioxidant properties. Here, we examined mechanism-based chemopreventive potential of a pomegranate emulsion (PE) against dietary carcinogen diethylnitrosamine (DENA)-induced rat hepatocarcinogenesis that mimics human HCC. PE treatment (1 or 10 g/kg), started 4 weeks prior to the DENA challenge and continued for 18 weeks thereafter, showed striking chemopreventive activity demonstrated by reduced incidence, number, multiplicity, size and volume of hepatic nodules, precursors of HCC. Both doses of PE significantly attenuated the number and area of γ-glutamyl transpeptidase-positive hepatic foci compared with the DENA control. PE also attenuated DENA-induced hepatic lipid peroxidation and protein oxidation. Mechanistic studies revealed that PE elevated gene expression of an array of hepatic antioxidant and carcinogen detoxifying enzymes in DENA-exposed animals. PE elevated protein and messenger RNA expression of the hepatic nuclear factor E2-related factor 2 (Nrf2). Our results provide substantial evidence, for the first time, that pomegranate constituents afford chemoprevention of hepatocarcinogenesis possibly through potent antioxidant activity achieved by upregulation of several housekeeping genes under the control of Nrf2 without toxicity. The outcome of this study strongly supports the development of pomegranate-derived products in the prevention and treatment of human HCC, which remains a devastating disease. PMID:21389260

  16. Chromic-P32 phosphate treatment of implanted pancreatic carcinoma: mechanism involved.

    Science.gov (United States)

    Liu, Lu; Feng, Guo-Sheng; Gao, Hong; Tong, Guan-Sheng; Wang, Yu; Gao, Wen; Huang, Ying; Li, Cheng

    2005-04-14

    To study the effects of chromic-P32 phosphate (32P colloids) interstitial administration in Pc-3 implanted pancreatic carcinoma, and investigate its anticancer mechanism. Ninety-eight tumor bearing nude mice were killed at different time points after the injection of 32P colloids to the tumor core with observed radioactivity. The light microscopy, transmission electron microscopy (TEM) and immuno-histochemistry and flow cytometry were used to study the rates of tumor cell necrosis, proliferating cell nuclear antigen index, the micro vessel density (MVD). The changes of the biological response to the lymphatic transported 32P colloids in the inguinal lymph node (ILN) were dynamically observed, and the percentage of tumor cell apoptosis, and Apo2.7, caspase-3, Bcl-2, Bax-related gene expression were observed too. The half-life of effective medication is 13 d after injection of 32P colloids to the tumor stroma, in 1-6 groups, the tumor cell necrosis rates were 20%, 45%, 65%, 70%, 95% and 4%, respectively (F = 4.14-105.36, Pscabs detached, and those in control group increased in size prominently with plenty of hypodermic blood vessels. In all animals the ILN were enlarged but in medicated animals they appeared later and smaller than those in control group. The extent of irradiative injury in ILN was positively correlated to the dosage of medication. Typical tumor cell apoptosis could be found under TEM in animals with intra-tumoral injection of low dosed 32P colloids. The peak of apoptosis occurred in 2.96 MBq group and 24 h after irradiation. In the course of irradiation-induced apoptosis, the value of Bcl-2/Bax was down regulated; Apo2.7 and caspase-3 protein expression were prominently increased dose dependently. 32P colloids intra-tumor injection having prominent anticancer effectiveness may reveal the ability of promoting cell differentiation. The low dose 32P colloids may induce human pancreatic carcinoma Pc-3 implanted tumor cell apoptosis; Apo2.7, caspase-3

  17. The Vulnerability of Vessels Involved in the Role of Embolism and Hypoperfusion in the Mechanisms of Ischemic Cerebrovascular Diseases

    Directory of Open Access Journals (Sweden)

    Yong Peng Yu

    2016-01-01

    Full Text Available Accurate definition and better understanding of the mechanisms of stroke are crucial as this will guide the effective care and therapy. In this paper, we review the previous basic and clinical researches on the causes or mechanisms of ischemic cerebrovascular diseases (ICVD and interpret the correlation between embolism and hypoperfusion based on vascular stenosis and arterial intimal lesions. It was suggested that if there is no embolus (dynamic or in situ emboli, there might be no cerebral infarction. Three kinds of different clinical outcomes of TIA were theoretically interpreted based on its mechanisms. We suppose that there is a correlation between embolism and hypoperfusion, and which mechanisms (hypoperfusion or hypoperfusion induced microemboli playing the dominant role in each type of ICVD depends on the unique background of arterial intimal lesions (the vulnerability of vessels. That is to say, the vulnerability of vessels is involved in the role of embolism and hypoperfusion in the mechanisms of ischemic cerebrovascular diseases. This inference might enrich and provide better understandings for the underlying etiologies of ischemic cerebrovascular events.

  18. β‑catenin nuclear translocation induced by HIF‑1α overexpression leads to the radioresistance of prostate cancer.

    Science.gov (United States)

    Luo, Yong; Li, Mingchuan; Zuo, Xuemei; Basourakos, Spyridon P; Zhang, Jiao; Zhao, Jiahui; Han, Yili; Lin, Yunhua; Wang, Yongxing; Jiang, Yongguang; Lan, Ling

    2018-04-12

    Hypoxia-inducible factor‑1α (HIF‑1α) is known to play crucial roles in tumor radioresistance; however, the molecular mechanisms responsible for the promotion of tumor radioresistance by HIF‑1α remain unclear. β‑catenin is known to be involved in the metastatic potential of prostate cancer (PCa). In this study, to investigate the role of HIF‑1α and β‑catenin in the radioresistance of PCa, two PCa cell lines, LNCaP and C4‑2B, were grouped as follows: Negative control (no treatment), HIF‑1α overexpression group (transfected with HIF‑1α overexpression plasmid) and β‑catenin silenced group (transfected with HIF‑1α plasmids and β‑catenin-shRNA). Cell proliferation, cell cycle, cell invasion and radiosensitivity were examined under normal or hypoxic conditions. In addition, radiosensitivity was examined in two mouse PCa models (the LNCaP orthotopic BALB/c-nu mice model and the C4‑2B subcutaneous SCID mice model). Our results revealed that in both the LNCaP and C4‑2B cells, transfection with HIF‑1α overexpression plasmid led to an enhanced β‑catenin nuclear translocation, while β‑catenin silencing inhibited β‑catenin nuclear translocation. The enhanced β‑catenin nuclear translocation induced by HIF‑1α overexpression resulted in an enhanced cell proliferation and cell invasion, an altered cell cycle distribution, decreased apoptosis, and improved non‑homologous end joining (NHEJ) repair under normal and irradiation conditions. Similar results were observed in the animal models. HIF‑1α overexpression enhanced β‑catenin nuclear translocation, which led to the activation of the β‑catenin/NHEJ signaling pathway and increased cell proliferation, cell invasion and DNA repair. These results thus suggest that HIF‑1α overexpression promotes the radioresistance of PCa cells.

  19. Effects of a Balanced Translocation between Chromosomes 1 and 11 Disrupting the DISC1 Locus on White Matter Integrity.

    Directory of Open Access Journals (Sweden)

    Heather C Whalley

    Full Text Available Individuals carrying rare, but biologically informative genetic variants provide a unique opportunity to model major mental illness and inform understanding of disease mechanisms. The rarity of such variations means that their study involves small group numbers, however they are amongst the strongest known genetic risk factors for major mental illness and are likely to have large neural effects. DISC1 (Disrupted in Schizophrenia 1 is a gene containing one such risk variant, identified in a single Scottish family through its disruption by a balanced translocation of chromosomes 1 and 11; t(1;11 (q42.1;q14.3.Within the original pedigree, we examined the effects of the t(1;11 translocation on white matter integrity, measured by fractional anisotropy (FA. This included family members with (n = 7 and without (n = 13 the translocation, along with a clinical control sample of patients with psychosis (n = 34, and a group of healthy controls (n = 33.We report decreased white matter integrity in five clusters in the genu of the corpus callosum, the right inferior fronto-occipital fasciculus, acoustic radiation and fornix. Analysis of the mixed psychosis group also demonstrated decreased white matter integrity in the above regions. FA values within the corpus callosum correlated significantly with positive psychotic symptom severity.We demonstrate that the t(1;11 translocation is associated with reduced white matter integrity in frontal commissural and association fibre tracts. These findings overlap with those shown in affected patients with psychosis and in DISC1 animal models and highlight the value of rare but biologically informative mutations in modeling psychosis.

  20. Leading tip drives soma translocation via forward F-actin flow during neuronal migration.

    Science.gov (United States)

    He, Min; Zhang, Zheng-hong; Guan, Chen-bing; Xia, Di; Yuan, Xiao-bing

    2010-08-11

    Neuronal migration involves coordinated extension of the leading process and translocation of the soma, but the relative contribution of different subcellular regions, including the leading process and cell rear, in driving soma translocation remains unclear. By local manipulation of cytoskeletal components in restricted regions of cultured neurons, we examined the molecular machinery underlying the generation of traction force for soma translocation during neuronal migration. In actively migrating cerebellar granule cells in culture, a growth cone (GC)-like structure at the leading tip exhibits high dynamics, and severing the tip or disrupting its dynamics suppressed soma translocation within minutes. Soma translocation was also suppressed by local disruption of F-actin along the leading process but not at the soma, whereas disrupting microtubules along the leading process or at the soma accelerated soma translocation. Fluorescent speckle microscopy using GFP-alpha-actinin showed that a forward F-actin flow along the leading process correlated with and was required for soma translocation, and such F-actin flow depended on myosin II activity. In migrating neurons, myosin II activity was high at the leading tip but low at the soma, and increasing or decreasing this front-to-rear difference accelerated or impeded soma advance. Thus, the tip of the leading process actively pulls the soma forward during neuronal migration through a myosin II-dependent forward F-actin flow along the leading process.

  1. Involvement of endothelin and ET(A) endothelin receptor in mechanical allodynia in mice given orthotopic melanoma inoculation.

    Science.gov (United States)

    Fujita, Masahide; Andoh, Tsugunobu; Saiki, Ikuo; Kuraishi, Yasushi

    2008-02-01

    We investigated whether endothelin (ET) would be involved in skin cancer pain in mice. Orthotopic inoculation of B16-BL6 melanoma cells into the plantar region of the hind paw produced marked mechanical allodynia in C57BL/6 mice. Intraplantar injections of the ET(A)-receptor antagonist BQ-123 (0.3 - 3 nmol/site), but not the ET(B)-receptor antagonist BQ-788 (1 and 3 nmol/site), inhibited mechanical allodynia in mice with grown melanoma. In naive mice, an intraplantar injection of tumor extract (1 and 3 mg/site), which was prepared from the grown melanoma in the paw, produced mechanical allodynia, which was inhibited by BQ-123 and BQ-788 at doses of 3 and 10 nmol/site. An intraplantar injection of ET-1 (1 and 10 pmol/site) elicited licking behavior, which was increased in the melanoma-bearing hind paw. BQ-123 (3 and 10 nmol/site) inhibited licking induced by ET-1 (10 pmol/site). The level of mRNA of ET(A), but not ET(B), receptor, was significantly increased in the dorsal root ganglia on the inoculated side. Cultured B16-BL6 cells contained ET, and the melanoma mass increased the concentration of ET as it grew bigger. These results suggest that ET-1 and ET(A) receptor are at least partly involved in the induction of pain induced by melanoma cell inoculation.

  2. Regulation of Neuronal Protein Trafficking and Translocation by SUMOylation

    Directory of Open Access Journals (Sweden)

    Jeremy M. Henley

    2012-05-01

    Full Text Available Post-translational modifications of proteins are essential for cell function. Covalent modification by SUMO (small ubiquitin-like modifier plays a role in multiple cell processes, including transcriptional regulation, DNA damage repair, protein localization and trafficking. Factors affecting protein localization and trafficking are particularly crucial in neurons because of their polarization, morphological complexity and functional specialization. SUMOylation has emerged as a major mediator of intranuclear and nucleo-cytoplasmic translocations of proteins involved in critical pathways such as circadian rhythm, apoptosis and protein degradation. In addition, SUMO-regulated re-localization of extranuclear proteins is required to sustain neuronal excitability and synaptic transmission. Thus, SUMOylation is a key arbiter of neuronal viability and function. Here, we provide an overview of recent advances in our understanding of regulation of neuronal protein localization and translocation by SUMO and highlight exciting areas of ongoing research.

  3. Translocation of a polymer through a nanopore across a viscosity gradient.

    Science.gov (United States)

    de Haan, Hendrick W; Slater, Gary W

    2013-04-01

    The translocation of a polymer through a pore in a membrane separating fluids of different viscosities is studied via several computational approaches. Starting with the polymer halfway, we find that as a viscosity difference across the pore is introduced, translocation will predominately occur towards one side of the membrane. These results suggest an intrinsic pumping mechanism for translocation across cell walls which could arise whenever the fluid across the membrane is inhomogeneous. Somewhat surprisingly, the sign of the preferred direction of translocation is found to be strongly dependent on the simulation algorithm: for Langevin dynamics (LD) simulations, a bias towards the low viscosity side is found while for Brownian dynamics (BD), a bias towards the high viscosity is found. Examining the translocation dynamics in detail across a wide range of viscosity gradients and developing a simple force model to estimate the magnitude of the bias, the LD results are demonstrated to be more physically realistic. The LD results are also compared to those generated from a simple, one-dimensional random walk model of translocation to investigate the role of the internal degrees of freedom of the polymer and the entropic barrier. To conclude, the scaling of the results across different polymer lengths demonstrates the saturation of the directional preference with polymer length and the nontrivial location of the maximum in the exponent corresponding to the scaling of the translocation time with polymer length.

  4. Variant Philadelphia translocations with different breakpoints in six chronic myeloid leukemia patients

    Directory of Open Access Journals (Sweden)

    Dilhan Kuru

    2011-09-01

    Full Text Available Objective: The Philadelphia (Ph chromosome, consisting of the t(9;22(q34;q11 translocation, is observed in ~90% of patients with chronic myeloid leukemia (CML. Variant Ph translocations are observed in 5%-10% of CML patients. In variant translocations 3 and possibly more chromosomes are involved. Herein we report 6 CML patients with variant Ph translocations.Materials and Methods: Bone marrow samples were examined using conventional cytogenetic meth ods. Fluorescence in situ hybridization (FISH with whole-chromosome paints and BCR-ABL 1D probes were used to confirm and/or complement the findings, and identify rearrangements beyond the resolution of conventional cytogenetic methods. Results: Variant Ph translocations in the 6 patients were as follows: t(7;22(p22;q11, t(9;22;15(q34;q11;q22, t(15;22(p11;q11, t(1;9;22;3(q24;q34;q11;q21, t(12;22(p13;q11, and t(4;8;9;22(q11;q13;q34;q11.Conclusion: Among the patients, 3 had simple and 3 had complex variant Ph translocations. Two of the presented cases had variant Ph chromosomes not previously described, 1 of which had a new complex Ph translocation involving chromosomes 1, 3, 9, 22, and t(1;9;22;3(q24;q34;q11;q21 apart from a clone with a classical Ph, and the other case had variant Ph translocation with chromosomes 4, 8, 9, and 22, and t(4;8;9;22(q11;q13;q34;q11 full complex translocation. Number of studies reported that some patients with variant Ph translocation were poor responders to imatinib. All of our patients with variant Ph translocations had suboptimal responses to imatinib, denoting a poor prognosis also. Variant Ph translocations may be important as they are associated with prognosis and therapy for CML patients.

  5. Study of the Chemical Mechanism Involved in the Formation of Tungstite in Benzyl Alcohol by the Advanced QEXAFS Technique

    DEFF Research Database (Denmark)

    Olliges‐Stadler, Inga; Stötzel, Jan; Koziej, Dorota

    2012-01-01

    Insight into the complex chemical mechanism for the formation of tungstite nanoparticles obtained by the reaction of tungsten hexachloride with benzyl alcohol is presented herein. The organic and inorganic species involved in the formation of the nanoparticles were studied by time‐dependent gas......‐scanning extended X‐ray absorption fine structure spectroscopy enabled the time‐dependent evolution of the starting compound, the intermediates and the product to be monitored over the full reaction period. The reaction starts with fast chlorine substitution and partial reduction during the dissolution...

  6. The progestin etonogestrel enhances the respiratory response to metabolic acidosis in newborn rats. Evidence for a mechanism involving supramedullary structures.

    Science.gov (United States)

    Loiseau, Camille; Osinski, Diane; Joubert, Fanny; Straus, Christian; Similowski, Thomas; Bodineau, Laurence

    2014-05-01

    Central congenital hypoventilation syndrome is a neuro-respiratory disease characterized by the dysfunction of the CO2/H(+) chemosensitive neurons of the retrotrapezoid nucleus/parafacial respiratory group. A recovery of CO2/H(+) chemosensitivity has been observed in some central congenital hypoventilation syndrome patients coincidental with contraceptive treatment by a potent progestin, desogestrel (Straus et al., 2010). The mechanisms of this progestin effect remain unknown, although structures of medulla oblongata, midbrain or diencephalon are known to be targets for progesterone. In the present study, on ex vivo preparations of central nervous system of newborn rats, we show that acute exposure to etonogestrel (active metabolite of desogestrel) enhanced the increased respiratory frequency induced by metabolic acidosis via a mechanism involving supramedullary structures located in pontine, mesencephalic or diencephalic regions. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. General mechanism involved in subwavelength optics of conducting microstructures: charge-oscillation-induced light emission and interference.

    Science.gov (United States)

    Huang, Xian-Rong; Peng, Ru-Wen

    2010-04-01

    Interactions between light and conducting microstructures or nanostructures can result in a variety of novel phenomena, but their underlying mechanisms have not been completely understood. From calculations of surface charge density waves on conducting gratings and by comparing them with classical surface plasmons, we revealed a general yet concrete picture regarding the coupling of light to free electron oscillation on structured conducting surfaces that can lead to oscillating subwavelength charge patterns (i.e., structured surface plasmons). New wavelets emitted from these light sources then destructively interfere to form evanescent waves. This principle, usually combined with other mechanisms, is mainly a geometrical effect that can be universally involved in light scattering from all periodic and non-periodic structures containing free electrons. This picture may provide clear guidelines for developing conductor-based nano-optical devices.

  8. Meiotic restitution mechanisms involved in the formation of 2n pollen in Agave tequilana Weber and Agave angustifolia Haw.

    Science.gov (United States)

    Gómez-Rodríguez, Víctor Manuel; Rodríguez-Garay, Benjamín; Barba-Gonzalez, Rodrigo

    2012-01-01

    A cytological analysis of the microsporogenesis was carried out in the Agave tequilana and A. angustifolia species. Several abnormalities such as chromosomal bridges, lagging chromosomes, micronuclei, monads, dyads and triads were found. The morphological analysis of the pollen, together with the above-mentioned 2n microspores, allowed us to confirm the presence of 2n pollen as well as its frequency. In both A. tequilana and A. angustifolia two different mechanisms were observed: the first mechanism, a failure in the cytokinesis in meiosis II caused the formation of dyads with two 2n cells and triads containing two n cells and one 2n cell; the second mechanism, involves an abnormal spindle, which caused the formation of triads with two n cells and one 2n cell. Likewise, the presence of monads was detected in both species, these, might be caused by a failure of the cytokinesis in both meiotic divisions. This is the first report about the presence of a Second Division Restitution mechanism (SDR) which causes the formation of 2n pollen in the genus Agave. The genetic implications of the presence of 2n pollen in the genus Agave are discussed.

  9. Arbuscular mycorrhizal fungi for the biocontrol of plant-parasitic nematodes: a review of the mechanisms involved

    Directory of Open Access Journals (Sweden)

    Nele eSchouteden

    2015-11-01

    Full Text Available Arbuscular mycorrhizal fungi (AMF are obligate root symbionts that can protect their host plant against biotic stress factors such as plant parasitic nematode (PPN infection. PPN consist of a wide range of species with different life styles that can cause major damage in many important crops worldwide. Various mechanisms have been proposed to play a role in the biocontrol effect of AMF against PPN. This review presents an overview of the different mechanisms that have been proposed, and discusses into more detail the plausibility of their involvement in the biocontrol against PPN specifically. The proposed mechanisms include enhanced plant tolerance, direct competition for nutrients and space, induced systemic resistance (ISR and altered rhizosphere interactions. Recent studies have emphasized the importance of ISR in biocontrol and are increasingly placing rhizosphere effects on the foreground as well, both of which will be the focal point of this review. Though AMF are not yet widely used in conventional agriculture, recent data help to develop a better insight into the modes of action, which will eventually lead towards future field applications of AMF against PPN. The scientific community has entered an exciting era that provide the tools to actually unravel the underlying molecular mechanisms, making this a timely opportunity for a review of our current knowledge and the challenges ahead.

  10. Arbuscular Mycorrhizal Fungi for the Biocontrol of Plant-Parasitic Nematodes: A Review of the Mechanisms Involved.

    Science.gov (United States)

    Schouteden, Nele; De Waele, Dirk; Panis, Bart; Vos, Christine M

    2015-01-01

    Arbuscular mycorrhizal fungi (AMF) are obligate root symbionts that can protect their host plant against biotic stress factors such as plant-parasitic nematode (PPN) infection. PPN consist of a wide range of species with different life styles that can cause major damage in many important crops worldwide. Various mechanisms have been proposed to play a role in the biocontrol effect of AMF against PPN. This review presents an overview of the different mechanisms that have been proposed, and discusses into more detail the plausibility of their involvement in the biocontrol against PPN specifically. The proposed mechanisms include enhanced plant tolerance, direct competition for nutrients and space, induced systemic resistance (ISR) and altered rhizosphere interactions. Recent studies have emphasized the importance of ISR in biocontrol and are increasingly placing rhizosphere effects on the foreground as well, both of which will be the focal point of this review. Though AMF are not yet widely used in conventional agriculture, recent data help to develop a better insight into the modes of action, which will eventually lead toward future field applications of AMF against PPN. The scientific community has entered an exciting era that provides the tools to actually unravel the underlying molecular mechanisms, making this a timely opportunity for a review of our current knowledge and the challenges ahead.

  11. Arbuscular Mycorrhizal Fungi for the Biocontrol of Plant-Parasitic Nematodes: A Review of the Mechanisms Involved

    Science.gov (United States)

    Schouteden, Nele; De Waele, Dirk; Panis, Bart; Vos, Christine M.

    2015-01-01

    Arbuscular mycorrhizal fungi (AMF) are obligate root symbionts that can protect their host plant against biotic stress factors such as plant-parasitic nematode (PPN) infection. PPN consist of a wide range of species with different life styles that can cause major damage in many important crops worldwide. Various mechanisms have been proposed to play a role in the biocontrol effect of AMF against PPN. This review presents an overview of the different mechanisms that have been proposed, and discusses into more detail the plausibility of their involvement in the biocontrol against PPN specifically. The proposed mechanisms include enhanced plant tolerance, direct competition for nutrients and space, induced systemic resistance (ISR) and altered rhizosphere interactions. Recent studies have emphasized the importance of ISR in biocontrol and are increasingly placing rhizosphere effects on the foreground as well, both of which will be the focal point of this review. Though AMF are not yet widely used in conventional agriculture, recent data help to develop a better insight into the modes of action, which will eventually lead toward future field applications of AMF against PPN. The scientific community has entered an exciting era that provides the tools to actually unravel the underlying molecular mechanisms, making this a timely opportunity for a review of our current knowledge and the challenges ahead. PMID:26635750

  12. Plant P4-ATPases: lipid translocators with a role in membrane traficking

    DEFF Research Database (Denmark)

    Lopez Marques, Rosa Laura

    a large family of membrane proteins involved in pumping different physiologically-relevant substrates across biological membranes [4]. The members of the P4 subfamily (also known as flippases) catalyze the energy-driven translocation of lipids necessary for establishing transbilayer lipid asymmetry [5......], a feature necessary for correct functioning of the cells [6,7]. Deletion of one or more P4-ATPase genes causes defects in vesicle budding in various organisms [8-10] and some members of the yeast family have been shown to interact with the vesiculation machinery [11,12]. Thus, unraveling the key features...... of P4-ATPase functioning is crucial to understand the mechanisms underlying the whole secretory and endocytic pathways. In the model plant Arabidopsis, 12 members of the P4-ATPase family have been described (ALA1-ALA12, for Aminophospholipid ATPase) [4]. In the past years, we have characterized several...

  13. A voltage-gated pore for translocation of tRNA

    Energy Technology Data Exchange (ETDEWEB)

    Koley, Sandip; Adhya, Samit, E-mail: nilugrandson@gmail.com

    2013-09-13

    Highlights: •A tRNA translocating complex was assembled from purified proteins. •The complex translocates tRNA at a membrane potential of ∼60 mV. •Translocation requires Cys and His residues in the Fe–S center of RIC6 subunit. -- Abstract: Very little is known about how nucleic acids are translocated across membranes. The multi-subunit RNA Import Complex (RIC) from mitochondria of the kinetoplastid protozoon Leishmania tropica induces translocation of tRNAs across artificial or natural membranes, but the nature of the translocation pore remains unknown. We show that subunits RIC6 and RIC9 assemble on the membrane in presence of subunit RIC4A to form complex R3. Atomic Force Microscopy of R3 revealed particles with an asymmetric surface groove of ∼20 nm rim diameter and ∼1 nm depth. R3 induced translocation of tRNA into liposomes when the pH of the medium was lowered to ∼6 in the absence of ATP. R3-mediated tRNA translocation could also be induced at neutral pH by a K{sup +} diffusion potential with an optimum of 60–70 mV. Point mutations in the Cys{sub 2}–His{sub 2} Fe-binding motif of RIC6, which is homologous to the respiratory Complex III Fe–S protein, abrogated import induced by low pH but not by K{sup +} diffusion potential. These results indicate that the R3 complex forms a pore that is gated by a proton-generated membrane potential and that the Fe–S binding region of RIC6 has a role in proton translocation. The tRNA import complex of L. tropica thus contains a novel macromolecular channel distinct from the mitochondrial protein import pore that is apparently involved in tRNA import in some species.

  14. Carbon and nitrogen translocation between seagrass ramets

    NARCIS (Netherlands)

    Marbà, N.; Hemminga, M.A.; Mateo, M.A.; Duarte, C.M.; Maas, Y.E.M.; Terrados, J.; Gacia, E.

    2002-01-01

    The spatial scale and the magnitude of carbon and nitrogen translocation was examined in 5 tropical (Cymodocea serrulata, Halophila stipulacea, Halodule uninervis, Thalassodendron ciliatum, Thalassia hemprichii) and 3 temperate (Cymodocea nodosa, Posidonia oceanica, Zostera noltii) seagrass species

  15. Dudleya Variegata Translocation - San Diego [ds654

    Data.gov (United States)

    California Department of Resources — At Mission Trails Regional Park, a translocation project of Dudleya variegata was conducted in efforts to save the population from a private property undergoing...

  16. Variants forms of Philadelphia translocation in two patients with chronic myeloid leukemia

    International Nuclear Information System (INIS)

    Valent, A.; Zamecnikova, A.; Krizan, P.; Karlic, H.; Nowotny, H.

    1996-01-01

    During a 4-year period (December 1990-December 1994), among other diagnoses hundred cases of chronic myeloid leukemia (CML) were analyzed in our departments. We focused our attention on two cases with a variant form of Philadelphia translocation. Cytogenetic and molecular genetic studies were performed to resolve the status of BCR and ABL in the bone marrow or peripheral blood cells of the two CML patients with complex translocations involving chromosomes, 3, 9, 22 and 9, 12, 22 respectively. In the first case the presence of Ph chromosome was detected cytogenetically, BCR-ABL translocation was detected by Southern hybridization. In the second phase, only the PCR method showed BCR-ABL rearrangement. The second case, with a random variant form of Ph translocation, could be detected using different methods of clinical molecular genetics. (author)

  17. Chemotherapeutics-resistance "arms" race: An update on mechanisms involved in resistance limiting EGFR inhibitors in lung cancer.

    Science.gov (United States)

    Singh, Pankaj Kumar; Silakari, Om

    2017-10-01

    Clinical reports suggest that EGFR-mutated lung cancer usually respond significantly towards small molecule tyrosine kinase inhibitors. Same studies also report the eventual development of acquired resistance within a median time interval of 9 to 14months. One of the major mechanisms involved in this acquired resistance was found to be a secondary point mutation at gate-keeper residue, EGFR T790M. However, there are other recent studies which disclose the role of few other novel key players such as, ZEB1, TOPK etc., in the development of tolerance towards the EGFR TKI's, along with other commonly known mechanisms, such as amplification of signalling pathways such as, c-MET, Erbb2, AXL, additional acquired secondary mutations (PIK3CA, BRAF), or phenotypic transformation (small cell or epithelial to mesenchymal transitions). Interestingly, a recent study showed development of resistance via another point mutation, C797S, in case of tumors which were previously resistant and were administered agents capable of overcoming T790M gatekeeper mutation based resistance. Thus, raising serious concern over the direction of drug development involving tyrosine kinases such as EGFR. Current approaches focussing on development of third generation inhibitors, dual inhibitors or inhibitors of HSP90 have shown significant activity but do not answer the long term question of resistance. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. The corticotropin-releasing hormone network and the hypothalamic-pituitary-adrenal axis: molecular and cellular mechanisms involved.

    Science.gov (United States)

    Bonfiglio, Juan José; Inda, Carolina; Refojo, Damián; Holsboer, Florian; Arzt, Eduardo; Silberstein, Susana

    2011-01-01

    Corticotropin-releasing hormone (CRH) plays a key role in adjusting the basal and stress-activated hypothalamic-pituitary-adrenal axis (HPA). CRH is also widely distributed in extrahypothalamic circuits, where it acts as a neuroregulator to integrate the complex neuroendocrine, autonomic, and behavioral adaptive response to stress. Hyperactive and/or dysregulated CRH circuits are involved in neuroendocrinological disturbances and stress-related mood disorders such as anxiety and depression. This review describes the main physiological features of the CRH network and summarizes recent relevant information concerning the molecular mechanism of CRH action obtained from signal transduction studies using cells and wild-type and transgenic mice lines. Special focus is placed on the MAPK signaling pathways triggered by CRH through the CRH receptor 1 that plays an essential role in CRH action in pituitary corticotrophs and in specific brain structures. Recent findings underpin the concept of specific CRH-signaling pathways restricted to specific anatomical areas. Understanding CRH action at molecular levels will not only provide insight into the precise CRH mechanism of action, but will also be instrumental in identifying novel targets for pharmacological intervention in neuroendocrine tissues and specific brain areas involved in CRH-related disorders. Copyright © 2011 S. Karger AG, Basel.

  19. Mechanisms involved in the p62-73 idiopeptide-modulated delay of lupus nephritis in SNF(1) mice.

    Science.gov (United States)

    Nyland, J F; Stoll, M L; Jiang, F; Feng, F; Gavalchin, J

    2012-12-01

    The F(1) progeny of the (SWR × NZB) cross develop a lupus-like disease with high serum titers of autoantibodies, and increased frequency and severity of immune complex-mediated glomerulonephritis in females. In previous work, we found that an idiotypic peptide corresponding to aa62-73 (p62-73) of the heavy chain variable region of autoantibody 540 (Id(LN)F(1)) induced the proliferation of p62-73 idiotype-reactive T cell clones. Further, monthly immunization of pre-nephritic SNF(1) female mice with p62-73 resulted in decreased nephritis and prolonged life spans. Here we show that this treatment modulated proliferative responses to Id(LN)F(1) antigen, including a reduction in the population of idiopeptide-presenting antigen-presenting cells (APCs), as early as two weeks after immunization (10 weeks of age). Th1-type cytokine production was increased at 12 weeks of age. The incidence and severity of nephritis was reduced by 14 weeks compared to controls. Clinical indicators of nephritis, specifically histological evidence of glomerulonephritis and urine protein levels, were reduced by 20 weeks. Together these data suggest that events involved in the mechanism(s) whereby p62-73 immunization delayed nephritis occurred early after immunization, and involved modulation of APCs, B and T cell populations.

  20. Involvement of delta opioid receptors in alcohol withdrawal-induced mechanical allodynia in male C57BL/6 mice.

    Science.gov (United States)

    Alongkronrusmee, Doungkamol; Chiang, Terrance; van Rijn, Richard M

    2016-10-01

    As a legal drug, alcohol is commonly abused and it is estimated that 17 million adults in the United States suffer from alcohol use disorder. Heavy alcoholics can experience withdrawal symptoms including anxiety and mechanical allodynia that can facilitate relapse. The molecular mechanisms underlying this phenomenon are not well understood, which stifles development of new therapeutics. Here we investigate whether delta opioid receptors (DORs) play an active role in alcohol withdrawal-induced mechanical allodynia (AWiMA) and if DOR agonists may provide analgesic relief from AWiMA. To study AWiMA, adult male wild-type and DOR knockout C57BL/6 mice were exposed to alcohol by a voluntary drinking model or oral gavage exposure model, which we developed and validated here. We also used the DOR-selective agonist TAN-67 and antagonist naltrindole to examine the involvement of DORs in AWiMA, which was measured using a von Frey model of mechanical allodynia. We created a robust model of alcohol withdrawal-induced anxiety and mechanical allodynia by orally gavaging mice with 3g/kg alcohol for three weeks. AWiMA was exacerbated and prolonged in DOR knockout mice as well as by pharmacological blockade of DORs compared to control mice. However, analgesia induced by TAN-67 was attenuated during withdrawal in alcohol-gavaged mice. DORs appear to play a protective role in the establishment of AWiMA. Our current results indicate that DORs could be targeted to prevent or reduce the development of AWiMA during alcohol use; however, DORs may be a less suitable target to treat AWiMA during active withdrawal. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Bifidobacterium breve MCC-117 Induces Tolerance in Porcine Intestinal Epithelial Cells: Study of the Mechanisms Involved in the Immunoregulatory Effect

    Science.gov (United States)

    MURATA, Kozue; TOMOSADA, Yohsuke; VILLENA, Julio; CHIBA, Eriko; SHIMAZU, Tomoyuki; ASO, Hisashi; IWABUCHI, Noriyuki; XIAO, Jin-zhong; SAITO, Tadao; KITAZAWA, Haruki

    2014-01-01

    Bifidobacterium breve MCC-117 is able to significantly reduce the expression of inflammatory cytokines in porcine intestinal epithelial (PIE) cells and to improve IL-10 levels in CD4+CD25high Foxp3+ lymphocytes in response to heat-stable enterotoxigenic Escherichia coli (ETEC) pathogen-associated molecular patterns (PAMPs), while the immunoregulatory effect of B. adolescentis ATCC15705 was significantly lower than that observed for the MCC-117 strain. Considering the different capacities of the two bifidobacterium strains to activate toll-like receptor (TLR)-2 and their differential immunoregulatory activities in PIE and immune cells, we hypothesized that comparative studies with both strains could provide important information regarding the molecular mechanism(s) involved in the anti-inflammatory activity of bifidobacteria. In this work, we demonstrated that the anti-inflammatory effect of B. breve MCC-117 was achieved by a complex interaction of multiple negative regulators of TLRs as well as inhibition of multiple signaling pathways. We showed that B. breve MCC-117 reduced heat-stable ETEC PAMP-induced NF-κB, p38 MAPK and PI3 K activation and expression of pro-inflammatory cytokines in PIE cells. In addition, we demonstrated that B. breve MCC-117 may activate TLR2 synergistically and cooperatively with one or more other pattern recognition receptors (PRRs), and that interactions may result in a coordinated sum of signals that induce the upregulation of A20, Bcl-3, Tollip and SIGIRR. Upregulation of these negative regulators could have an important physiological impact on maintaining or reestablishing homeostatic TLR signals in PIE cells. Therefore, in the present study, we gained insight into the molecular mechanisms involved in the immunoregulatory effect of B. breve MCC-117. PMID:24936377

  2. Effect of food azo dye tartrazine on learning and memory functions in mice and rats, and the possible mechanisms involved.

    Science.gov (United States)

    Gao, Yonglin; Li, Chunmei; Shen, Jingyu; Yin, Huaxian; An, Xiulin; Jin, Haizhu

    2011-08-01

    Tartrazine is an artificial azo dye commonly used in human food and pharmaceutical products. The present study was conducted to evaluate the toxic effect of tartrazine on the learning and memory functions in mice and rats. Animals were administered different doses of tartrazine for a period of 30 d and were evaluated by open-field test, step-through test, and Morris water maze test, respectively. Furthermore, the biomarkers of the oxidative stress and pathohistology were also measured to explore the possible mechanisms involved. The results indicated that tartrazine extract significantly enhanced active behavioral response to the open field, increased the escape latency in Morris water maze test and decreased the retention latency in step-through tests. The decline in the activities of catalase, glutathione peroxidase (GSH-Px), and superoxide dismutase (SOD) as well as a rise in the level of malonaldehyde (MDA) were observed in the brain of tartrazine-treated rats, and these changes were associated with the brain from oxidative damage. The dose levels of tartrazine in the present study produced a few adverse effects in learning and memory functions in animals. The mechanisms might be attributed to promoting lipid peroxidation products and reactive oxygen species, inhibiting endogenous antioxidant defense enzymes and the brain tissue damage. Tartrazine is an artificial azo dye commonly used in human food and pharmaceutical products. Since the last assessment carried out by the Joint FAO/WHO Expert Committee on Food Additives in 1964, many new studies have been conducted. However, there is a little information about the effects on learning and memory performance. The present study was conducted to evaluate the toxic effect of tartrazine on the learning and memory functions in animals and its possible mechanism involved. Based on our results, we believe that more extensive assessment of food additives in current use is warranted. © 2011 Institute of Food

  3. Insertion of molecular oxygen into a palladium(II) methyl bond: a radical chain mechanism involving palladium(III) intermediates.

    Science.gov (United States)

    Boisvert, Luc; Denney, Melanie C; Hanson, Susan Kloek; Goldberg, Karen I

    2009-11-04

    The reaction of (bipy)PdMe(2) (1) (bipy = 2,2'-bipyridine) with molecular oxygen results in the formation of the palladium(II) methylperoxide complex (bipy)PdMe(OOMe) (2). The identity of the product 2 has been confirmed by independent synthesis. Results of kinetic studies of this unprecedented oxygen insertion reaction into a palladium alkyl bond support the involvement of a radical chain mechanism. Reproducible rates, attained in the presence of the radical initiator 2,2'-azobis(2-methylpropionitrile) (AIBN), reveal that the reaction is overall first-order (one-half-order in both [1] and [AIBN], and zero-order in [O(2)]). The unusual rate law (half-order in [1]) implies that the reaction proceeds by a mechanism that differs significantly from those for organic autoxidations and for the recently reported examples of insertion of O(2) into Pd(II) hydride bonds. The mechanism for the autoxidation of 1 is more closely related to that found for the autoxidation of main group and early transition metal alkyl complexes. Notably, the chain propagation is proposed to proceed via a stepwise associative homolytic substitution at the Pd center of 1 with formation of a pentacoordinate Pd(III) intermediate.

  4. Metal and metalloid foliar uptake by various plant species exposed to atmospheric industrial fallout: Mechanisms involved for lead

    Energy Technology Data Exchange (ETDEWEB)

    Schreck, E., E-mail: eva.schreck@ensat.fr [Universite de Toulouse (France); INP, UPS (France); EcoLab (Laboratoire Ecologie Fonctionnelle et Environnement) (France); ENSAT, Avenue de l' Agrobiopole, 31326 Castanet Tolosan (France); CNRS (France); EcoLab, 31326 Castanet Tolosan (France); Foucault, Y. [Universite de Toulouse (France); INP, UPS (France); EcoLab (Laboratoire Ecologie Fonctionnelle et Environnement) (France); ENSAT, Avenue de l' Agrobiopole, 31326 Castanet Tolosan (France); CNRS (France); EcoLab, 31326 Castanet Tolosan (France); STCM, Societe de Traitements Chimiques des Metaux, 30 Avenue de Fondeyre 31200 Toulouse (France); Sarret, G. [ISTerre (UMR 5275), Universite J. Fourier and CNRS, BP 53, 38041 Grenoble cedex 9 (France); Sobanska, S. [LASIR (UMR CNRS 8516), Universite de Lille 1, Bat. C5, 59655 Villeneuve d' Ascq cedex (France); Cecillon, L. [ISTerre (UMR 5275), Universite J. Fourier and CNRS, BP 53, 38041 Grenoble cedex 9 (France); Castrec-Rouelle, M. [Universite Pierre and Marie Curie (UPMC-Paris 6), Bioemco (Biogeochimie et Ecologie des Milieux Continentaux), Site Jussieu, Tour 56, 4 Place Jussieu, 75252 Paris cedex 05 (France); Uzu, G. [Laboratoire d' Aerologie (UMR 5560), OMP, UPS 14, Avenue Edouard Belin, 31400 Toulouse (France); GET (UMR 5563), IRD, 14, Avenue Edouard Belin, 31400 Toulouse (France); Dumat, C. [Universite de Toulouse (France); INP, UPS (France); EcoLab (Laboratoire Ecologie Fonctionnelle et Environnement) (France); ENSAT, Avenue de l' Agrobiopole, 31326 Castanet Tolosan (France); CNRS (France); EcoLab, 31326 Castanet Tolosan (France)

    2012-06-15

    Fine and ultrafine metallic particulate matters (PMs) are emitted from metallurgic activities in peri-urban zones into the atmosphere and can be deposited in terrestrial ecosystems. The foliar transfer of metals and metalloids and their fate in plant leaves remain unclear, although this way of penetration may be a major contributor to the transfer of metals into plants. This study focused on the foliar uptake of various metals and metalloids from enriched PM (Cu, Zn, Cd, Sn, Sb, As, and especially lead (Pb)) resulting from the emissions of a battery-recycling factory. Metal and metalloid foliar uptake by various vegetable species, exhibiting different morphologies, use (food or fodder) and life-cycle (lettuce, parsley and rye-grass) were studied. The mechanisms involved in foliar metal transfer from atmospheric particulate matter fallout, using lead (Pb) as a model element was also investigated. Several complementary techniques (micro-X-ray fluorescence, scanning electron microscopy coupled with energy dispersive X-ray microanalysis and time-of-flight secondary ion mass spectrometry) were used to investigate the localization and the speciation of lead in their edible parts, i.e. leaves. The results showed lead-enriched PM on the surface of plant leaves. Biogeochemical transformations occurred on the leaf surfaces with the formation of lead secondary species (PbCO{sub 3} and organic Pb). Some compounds were internalized in their primary form (PbSO{sub 4}) underneath an organic layer. Internalization through the cuticle or penetration through stomata openings are proposed as two major mechanisms involved in foliar uptake of particulate matter. - Graphical abstract: Overall picture of performed observations and mechanisms potentially involved in lead foliar uptake. Highlights: Black-Right-Pointing-Pointer Foliar uptake of metallic particulate matter (PM) is of environmental and health concerns. Black-Right-Pointing-Pointer The leaf morphology influences the adsorption

  5. Gouty involvement of the patella and extensor mechanism of the knee mimicking aggressive neoplasm. A case series.

    Science.gov (United States)

    Kester, Christopher; Wallace, Matthew T; Jelinek, James; Aboulafia, Albert

    2018-06-01

    Gout is a common inflammatory crystal deposition disease that occurs in many joints throughout the body. Active gout is most often associated with painful synovitis causing searing joint pains, but gout can also produce large masses of space-occupying deposits called tophi. Tophi are most frequently seen in juxta-articular locations with or without bony erosion and are often misdiagnosed as degenerative joint disease. Soft tissue deposits and tendon involvement are also known manifestations of gout, but can present with indeterminate and alarming findings on imaging. We present three cases of tophaceous gout mimicking aggressive neoplasms in the extensor mechanism of the knee. All cases presented as extensor tendon masses eroding into the patella, with imaging findings initially concerning for primary musculoskeletal malignancy.

  6. Wallerian degeneration slow mouse neurons are protected against cell death caused by mechanisms involving mitochondrial electron transport dysfunction.

    Science.gov (United States)

    Tokunaga, Shinji; Araki, Toshiyuki

    2012-03-01

    Ischemia elicits a variety of stress responses in neuronal cells, which result in cell death. wld(S) Mice bear a mutation that significantly delays Wallerian degeneration. This mutation also protects all neuronal cells against other types of stresses resulting in cell death, including ischemia. To clarify the types of stresses that neuronal cell bodies derived from wld(S) mice are protected from, we exposed primary cultured neurons derived from wld(S) mice to various components of hypoxic stress. We found that wld(S) mouse neurons are protected against cellular injury induced by reoxygenation following hypoxic stress. Furthermore, we found that wld(S) mouse neurons are protected against functional impairment of the mitochondrial electron transport chain. These data suggest that Wld(S) protein expression may provide protection against neuronal cell death caused by mechanisms involving mitochondrial electron transport dysfunction. Copyright © 2011 Wiley Periodicals, Inc.

  7. Involvement of Mζ-Like Protein Kinase in the Mechanisms of Conditioned Food Aversion Memory Reconsolidation in the Helix lucorum.

    Science.gov (United States)

    Solntseva, S V; Kozyrev, S A; Nikitin, V P

    2015-06-01

    We studied the involvement of Mζ-like protein kinase (PKMζ) into mechanisms of conditioned food aversion memory reconsolidation in Helix lucorum. Injections PKMζ inhibitor ZIP in a dose of 5 mg/kg on day 2 or 10 after learning led to memory impairment and amnesia development. Injections of the inhibitor in doses of 1.5 or 2.5 mg/kg had no effect. Repeated training on day 11 after induction of amnesia resulted in the formation of memory on the same type of food aversion similar to first training. The number of combinations of conditional (food) and reinforcing (electrical shock) stimuli was similar during initial and repeated training. We hypothesize that the inhibition of Mζ-like protein kinase erases the memory trace and a new memory is formed during repeated training.

  8. A paracrine mechanism involving renal tubular cells, adipocytes and macrophages promotes kidney stone formation in a simulated metabolic syndrome environment.

    Science.gov (United States)

    Zuo, Li; Tozawa, Keiichi; Okada, Atsushi; Yasui, Takahiro; Taguchi, Kazumi; Ito, Yasuhiko; Hirose, Yasuhiko; Fujii, Yasuhiro; Niimi, Kazuhiro; Hamamoto, Shuzo; Ando, Ryosuke; Itoh, Yasunori; Zou, Jiangang; Kohri, Kenjiro

    2014-06-01

    We developed an in vitro system composed of renal tubular cells, adipocytes and macrophages to simulate metabolic syndrome conditions. We investigated the molecular communication mechanism of these cells and their involvement in kidney stone formation. Mouse renal tubular cells (M-1) were cocultured with adipocytes (3T3-L1) and/or macrophages (RAW264.7). Calcium oxalate monohydrate crystals were exposed to M-1 cells after 48-hour coculture and the number of calcium oxalate monohydrate crystals adherent to the cells was quantified. The expression of cocultured medium and M-1 cell inflammatory factors was analyzed by enzyme-linked immunosorbent assay and quantitative polymerase chain reaction, respectively. The inflammatory markers MCP-1, OPN and TNF-α were markedly up-regulated in cocultured M-1 cells. OPN expression increased in M-1 cells cocultured with RAW264.7 cells while MCP-1 and TNF-α were over expressed in M-1 cells cocultured with 3T3-L1 cells. Coculturing M-1 cells simultaneously with 3T3-L1 and RAW264.7 cells resulted in a significant increase in calcium oxalate monohydrate crystal adherence to M-1 cells. Inflammatory cytokine changes were induced by coculturing renal tubular cells with adipocytes and/or macrophages without direct contact, indicating that crosstalk between adipocytes/macrophages and renal tubular cells was mediated by soluble factors. The susceptibility to urolithiasis of patients with metabolic syndrome might be due to aggravated inflammation of renal tubular cells triggered by a paracrine mechanism involving these 3 cell types. Copyright © 2014 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  9. A cohort of balanced reciprocal translocations associated with dyslexia: identification of two putative candidate genes at DYX1

    DEFF Research Database (Denmark)

    Buonincontri, Roberta; Bache, Iben; Silahtaroglu, Asli

    2011-01-01

    Dyslexia is one of the most common neurodevelopmental disorders where likely many genes are involved in the pathogenesis. So far six candidate dyslexia genes have been proposed, and two of these were identified by rare chromosomal translocations in affected individuals. By systematic re......-examination of all translocation carriers in Denmark, we have identified 16 different translocations associated with dyslexia. In four families, where the translocation co-segregated with the phenotype, one of the breakpoints concurred (at the cytogenetic level) with either a known dyslexia linkage region--at 15q21...... (DYX1), 2p13 (DYX3) and 1p36 (DYX8)--or an unpublished linkage region at 19q13. As a first exploitation of this unique cohort, we identify three novel candidate dyslexia genes, ZNF280D and TCF12 at 15q21, and PDE7B at 6q23.3, by molecular mapping of the familial translocation with the 15q21 breakpoint....

  10. Mechanisms involved in the vasorelaxant effects produced by the acute application of amfepramone in vitro to rat aortic rings

    Energy Technology Data Exchange (ETDEWEB)

    López-Canales, J.S. [Section of Postgraduate Studies and Investigation, Higher School of Medicine from the National Polytechnic Institute, Mexico City (Mexico); Department of Cellular Biology, National Institute of Perinatology, Mexico City (Mexico); Lozano-Cuenca, J.; Muãoz-Islas, E.; Aguilar-Carrasco, J.C. [Department of Cellular Biology, National Institute of Perinatology, Mexico City (Mexico); López-Canales, O.A.; López-Mayorga, R.M.; Castillo-Henkel, E.F.; Valencia-Hernández, I.; Castillo-Henkel, C. [Section of Postgraduate Studies and Investigation, Higher School of Medicine from the National Polytechnic Institute, Mexico City (Mexico)

    2015-03-27

    Amfepramone (diethylpropion) is an appetite-suppressant drug used for the treatment of overweight and obesity. It has been suggested that the systemic and central activity of amfepramone produces cardiovascular effects such as transient ischemic attacks and primary pulmonary hypertension. However, it is not known whether amfepramone produces immediate vascular effects when applied in vitro to rat aortic rings and, if so, what mechanisms may be involved. We analyzed the effect of amfepramone on phenylephrine-precontracted rat aortic rings with or without endothelium and the influence of inhibitors or blockers on this effect. Amfepramone produced a concentration-dependent vasorelaxation in phenylephrine-precontracted rat aortic rings that was not affected by the vehicle, atropine, 4-AP, glibenclamide, indomethacin, clotrimazole, or cycloheximide. The vasorelaxant effect of amfepramone was significantly attenuated by NG-nitro-L-arginine methyl ester (L-NAME) and tetraethylammonium (TEA), and was blocked by removal of the vascular endothelium. These results suggest that amfepramone had a direct vasorelaxant effect on phenylephrine-precontracted rat aortic rings, and that inhibition of endothelial nitric oxide synthase and the opening of Ca{sup 2+}-activated K{sup +} channels were involved in this effect.

  11. Tetrahydrocannabinol Induces Brain Mitochondrial Respiratory Chain Dysfunction and Increases Oxidative Stress: A Potential Mechanism Involved in Cannabis-Related Stroke

    Directory of Open Access Journals (Sweden)

    Valérie Wolff

    2015-01-01

    Full Text Available Cannabis has potential therapeutic use but tetrahydrocannabinol (THC, its main psychoactive component, appears as a risk factor for ischemic stroke in young adults. We therefore evaluate the effects of THC on brain mitochondrial function and oxidative stress, key factors involved in stroke. Maximal oxidative capacities Vmax (complexes I, III, and IV activities, Vsucc (complexes II, III, and IV activities, Vtmpd (complex IV activity, together with mitochondrial coupling (Vmax/V0, were determined in control conditions and after exposure to THC in isolated mitochondria extracted from rat brain, using differential centrifugations. Oxidative stress was also assessed through hydrogen peroxide (H2O2 production, measured with Amplex Red. THC significantly decreased Vmax (−71%; P<0.0001, Vsucc (−65%; P<0.0001, and Vtmpd (−3.5%; P<0.001. Mitochondrial coupling (Vmax/V0 was also significantly decreased after THC exposure (1.8±0.2 versus 6.3±0.7; P<0.001. Furthermore, THC significantly enhanced H2O2 production by cerebral mitochondria (+171%; P<0.05 and mitochondrial free radical leak was increased from 0.01±0.01 to 0.10±0.01% (P<0.001. Thus, THC increases oxidative stress and induces cerebral mitochondrial dysfunction. This mechanism may be involved in young cannabis users who develop ischemic stroke since THC might increase patient’s vulnerability to stroke.

  12. GABAergic mechanisms are involved in the antihyperalgesic effects of carbamazepine and oxcarbazepine in a rat model of inflammatory hyperalgesia.

    Science.gov (United States)

    Stepanović-Petrović, Radica M; Tomić, Maja A; Vucković, Sonja M; Kocev, Nikola; Ugresić, Nenad D; Prostran, Milica S; Bosković, Bogdan

    2008-01-01

    The purpose of this study was to investigate the involvement of GABAergic mechanisms in the antihyperalgesic effect of carbamazepine and oxcarbazepine by examining the effect of bicuculline (GABA(A) receptor antagonist) on these effects of antiepileptic drugs. Rats were intraplantarly (i.pl.) injected with the proinflammatory compound concanavalin A (Con A). A paw-pressure test was used to determine: (1) the development of hyperalgesia induced by Con A; (2) the effects of carbamazepine/oxcarbazepine on Con A-induced hyperalgesia, and (3) the effects of bicuculline on the carbamazepine/oxcarbazepine antihyperalgesia. Intraperitoneally injected bicuculline (0.5-1 mg/kg, i.p.) exhibited significant suppression of the systemic antihyperalgesic effects of carbamazepine (27 mg/kg, i.p.) and oxcarbazepine (80 mg/kg, i.p.). When applied intraplantarly, bicuculline (0.14 mg/paw, i.pl.) did not produce any change in the peripheral antihyperalgesic effects of carbamazepine (0.14 mg/paw, i.pl.) and oxcarbazepine (0.5 mg/paw, i.pl.). Bicuculline alone did not produce an intrinsic effect in the paw-pressure test. These results indicate that the antihyperalgesic effects of carbamazepine and oxcarbazepine against inflammatory hyperalgesia involve in part the GABAergic inhibitory modulation of pain transmission at central, but not at peripheral sites, which is mediated via GABA(A) receptor activation. Copyright 2008 S. Karger AG, Basel.

  13. Molecular mechanisms involved in the inhibition of tumor cells proliferation exposed to elevated concentrations of the epidermal growth factor

    International Nuclear Information System (INIS)

    Guillen, Isabel A; Berlanga, Jorge; Camacho, Hanlet

    2013-01-01

    The EGF promotes inhibition of cell proliferation in vitro and in vivo models depending on its concentration, application schema and the type of tumor cells on which it acts. Our research hypothesis was based on the fact that the EGF varies the expression of genes involved in a negative regulation of tumor cell lines proliferation carrying high levels of its receptor (EGFR). Our objectives were, to obtain information about the effect of EGF on tumor cell proliferation in vitro and in vivo models and, know the gene expression patterns of a group of genes involved in cancer signaling pathways and EGFR. The results showed that EGF at nanomolar concentrations inhibits the tumor cells proliferation bearing high levels of EGFR and, promotes the survival of treated animals, establishing a direct relationship between the inhibition of cell proliferation, high concentrations of EGF and, high amount of EGFR in the cells. The differential gene expression profile showed a variation in a group of genes which exert a powerful control over the cell cycle progression, gene transcription and apoptosis. It was concluded that the inhibition of tumor cell proliferation by the action of EGF is due to activation of molecular mechanisms controlling cell cycle progression. This work won the Annual Award of the Cuban Academy of Sciences in 2012

  14. Mechanisms involved in the vasorelaxant effects produced by the acute application of amfepramone in vitro to rat aortic rings

    International Nuclear Information System (INIS)

    López-Canales, J.S.; Lozano-Cuenca, J.; Muãoz-Islas, E.; Aguilar-Carrasco, J.C.; López-Canales, O.A.; López-Mayorga, R.M.; Castillo-Henkel, E.F.; Valencia-Hernández, I.; Castillo-Henkel, C.

    2015-01-01

    Amfepramone (diethylpropion) is an appetite-suppressant drug used for the treatment of overweight and obesity. It has been suggested that the systemic and central activity of amfepramone produces cardiovascular effects such as transient ischemic attacks and primary pulmonary hypertension. However, it is not known whether amfepramone produces immediate vascular effects when applied in vitro to rat aortic rings and, if so, what mechanisms may be involved. We analyzed the effect of amfepramone on phenylephrine-precontracted rat aortic rings with or without endothelium and the influence of inhibitors or blockers on this effect. Amfepramone produced a concentration-dependent vasorelaxation in phenylephrine-precontracted rat aortic rings that was not affected by the vehicle, atropine, 4-AP, glibenclamide, indomethacin, clotrimazole, or cycloheximide. The vasorelaxant effect of amfepramone was significantly attenuated by NG-nitro-L-arginine methyl ester (L-NAME) and tetraethylammonium (TEA), and was blocked by removal of the vascular endothelium. These results suggest that amfepramone had a direct vasorelaxant effect on phenylephrine-precontracted rat aortic rings, and that inhibition of endothelial nitric oxide synthase and the opening of Ca 2+ -activated K + channels were involved in this effect

  15. Mecanismos envolvidos na cicatrização: uma revisão Mechanisms involved in wound healing: a revision

    Directory of Open Access Journals (Sweden)

    Carlos Aberto Balbino

    2005-03-01

    Full Text Available Os mecanismos envolvidos no processo de reparo de tecidos estão revisados nesse trabalho. O processo de cicatrização ocorre fundamentalmente em três fases: inflamação, formação de tecido de granulação e deposição de matriz extracelular e remodelação. Os eventos celulares e tissulares de cada uma dessas fases estão descritos e discutidos. Os mediadores químicos estão correlacionados com os eventos do processo de cicatrização e as células envolvidas. Especial ênfase é dada à participação dos fatores de crescimento.The mechanisms involved in tissue repair are revised. The wound healing process occurs basically in three phases: inflammation, formation of granulating tissue and extracellular tissue deposition, and tissue remodeling. The cellular and tissue events of each phase are described and discussed. The chemical mediators and their interplay with the wound healing events and cells involved are also discussed. However, especial attention was given to the role played by the growth factors in the tissue repair process.

  16. Gastroprotective and ulcer healing effects of hydroethanolic extract of leaves of Caryocar coriaceum: Mechanisms involved in the gastroprotective activity.

    Science.gov (United States)

    de Lacerda Neto, Luis Jardelino; Ramos, Andreza Guedes Barbosa; Santos Sales, Valterlucio; de Souza, Severino Denicio Gonçalves; Dos Santos, Antonia Thassya Lucas; de Oliveira, Larissa Rolim; Kerntopf, Marta Regina; de Albuquerque, Thais Rodrigues; Coutinho, Henrique Douglas Melo; Quintans-Júnior, Lucindo Jose; Wanderley, Almir Gonçalves; de Menezes, Irwin Rose Alencar

    2017-01-05

    This work aimed to determine the chemical fingerprint of hydroethanolic extract of leaves of Caryocar coriaceum (HELCC) and the gastroprotective activity. The chemical fingerprint of HELCC was analyzed by HPLC-DAD, to quantify total phenols and flavonoids were carried out by Folin-Ciocalteu reagent and aluminum chloride assay, while in vitro antioxidant activity was evaluated by the DPPH method. The methods used to determine pharmacological activity were: gastroprotective screening test in classical models of induced acute and chronic gastric lesions and physical barrier test. Further assays were performed to demonstrate the involvement of NO, prostaglandins, ATP-dependent potassium channels, TRPV, noradrenergic α2 receptors, histamines, and opioids. The DPPH method demonstrated the antioxidant activity of the extract, in vitro, explained by the presence of polyphenols and flavonoids. Oral administration of the extract, previously dissolved in deionized water, at a dose of 100 mg/kg decreased the lesions induced by indomethacin, acidified ethanol, ethanol and acetic acid by 75.0, 72.8, 69.4 and 86.2% respectively. It was demonstrated that opioid receptors, α 2 -adrenergic receptors and primary afferent neurons sensitive to capsaicin were involved in the mechanism of gastric protection, in addition to the contribution of NO and prostaglandins. The results show that extract is a promising candidate for the treatment of gastric ulcers. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Mechanisms involved in repairing the lesions induced in pBR 322 by PUVA treatment (8-Methoxypsoralen + ultraviolet A light)

    International Nuclear Information System (INIS)

    Bauluz, C.

    1988-01-01

    This work deals with the genotoxic effects derived from damaging pBR322 DNA through PUVA treatment (8-Methoxypsoralen plusUVA light), both with respect to the lethality and mutagenicity of the lesions produced by the treatment. The mechanisms involved in the repair of the plasmid lesions have been investigated by transforming several strains of E. coli differing in their DNA-repair capacities. The frequency, distribution and type of mutations occurring in a restriction fragment of the damaged plasmid were determined in order to establish the mutagenic features of the PUVA treatment. Damages produced bY PUVA habe a strong lethal effect on plasmid survival; however, partial recovery is possible through some of the bacterial DNA repair pathways, namely Excision repair, SOS-repair and a third mechanism which appears to be independent from the analised genes and is detected at high density of lesions per plasmid molecule. PUVA treatment produces a high increase in plasmid mutagenesis; however, the contribution of such an increase to the whole plasmid survival is negligible. Only punctual mutations were detected and consisted mainly in base-pair substitutions. Some mutation-prone regions were sound inside the investigated DNA fragment, a though their existence is more likely to be related with the structure acquired by the damaged DNA than with the type of damaging agent. (Author)

  18. Preimplantation genetic diagnosis by fluorescence in situ hybridization of reciprocal and Robertsonian translocations.

    Science.gov (United States)

    Chen, Chun-Kai; Wu, Dennis; Yu, Hsing-Tse; Lin, Chieh-Yu; Wang, Mei-Li; Yeh, Hsin-Yi; Huang, Hong-Yuan; Wang, Hsin-Shin; Soong, Yung-Kuei; Lee, Chyi-Long

    2014-03-01

    The presence of reciprocal and Robertsonian chromosomal rearrangement is often related to recurrent miscarriage. Using preimplantation genetic diagnosis, the abortion rate can be decreased. Cases treated at our center were reviewed. A retrospective analysis for either Robertsonian or reciprocal translocations was performed on all completed cycles of preimplantation genetic diagnosis at our center since the first reported case in 2004 until the end of 2010. Day 3 embryo biopsies were carried out, and the biopsied cell was checked by fluorescent in situ hybridization using relevant informative probes. Embryos with a normal or balanced translocation karyotype were transferred on Day 4. Thirty-eight preimplantation genetic diagnosis cycles involving 17 couples were completed. A total of 450 (82.6%) of the total oocytes were MII oocytes, and 158 (60.0%) of the two-pronuclei embryos were biopsied. In 41.4% of the fluorescent in situ hybridization analyses, the results were either normal or balanced. Embryos were transferred back after 21 cycles. Three babies were born from Robertsonian translocation carriers and another two from reciprocal translocation carriers. The miscarriage rate was 0%. Among the reciprocal translocation group, the live delivery rate was 8.3% per ovum pick-up cycle and 18.2% per embryo transfer cycle. Among the Robertsonian translocation group, the live delivery rate was 14.3% per ovum pick-up cycle and 20.0% per embryo transfer cycle. There is a trend whereby the outcome for Robertsonian translocation group carriers is better than that for reciprocal translocation group carriers. Aneuploidy screening may possibly be added in order to improve the outcome, especially for individuals with an advanced maternal age. The emergence of an array-based technology should help improve this type of analysis. Copyright © 2014. Published by Elsevier B.V.

  19. Stochastic resonance during a polymer translocation process

    International Nuclear Information System (INIS)

    Mondal, Debasish; Muthukumar, M.

    2016-01-01

    We have studied the occurrence of stochastic resonance when a flexible polymer chain undergoes a single-file translocation through a nano-pore separating two spherical cavities, under a time-periodic external driving force. The translocation of the chain is controlled by a free energy barrier determined by chain length, pore length, pore-polymer interaction, and confinement inside the donor and receiver cavities. The external driving force is characterized by a frequency and amplitude. By combining the Fokker-Planck formalism for polymer translocation and a two-state model for stochastic resonance, we have derived analytical formulas for criteria for emergence of stochastic resonance during polymer translocation. We show that no stochastic resonance is possible if the free energy barrier for polymer translocation is purely entropic in nature. The polymer chain exhibits stochastic resonance only in the presence of an energy threshold in terms of polymer-pore interactions. Once stochastic resonance is feasible, the chain entropy controls the optimal synchronization conditions significantly.

  20. Structure reveals regulatory mechanisms of a MaoC-like hydratase from Phytophthora capsici involved in biosynthesis of polyhydroxyalkanoates (PHAs).

    Science.gov (United States)

    Wang, Huizheng; Zhang, Kai; Zhu, Jie; Song, Weiwei; Zhao, Li; Zhang, Xiuguo

    2013-01-01

    Polyhydroxyalkanoates (PHAs) have attracted increasing attention as "green plastic" due to their biodegradable, biocompatible, thermoplastic, and mechanical properties, and considerable research has been undertaken to develop low cost/high efficiency processes for the production of PHAs. MaoC-like hydratase (MaoC), which belongs to (R)-hydratase involved in linking the β-oxidation and the PHA biosynthetic pathways, has been identified recently. Understanding the regulatory mechanisms of (R)-hydratase catalysis is critical for efficient production of PHAs that promise synthesis an environment-friendly plastic. We have determined the crystal structure of a new MaoC recognized from Phytophthora capsici. The crystal structure of the enzyme was solved at 2.00 Å resolution. The structure shows that MaoC has a canonical (R)-hydratase fold with an N-domain and a C-domain. Supporting its dimerization observed in structure, MaoC forms a stable homodimer in solution. Mutations that disrupt the dimeric MaoC result in a complete loss of activity toward crotonyl-CoA, indicating that dimerization is required for the enzymatic activity of MaoC. Importantly, structure comparison reveals that a loop unique to MaoC interacts with an α-helix that harbors the catalytic residues of MaoC. Deletion of the loop enhances the enzymatic activity of MaoC, suggesting its inhibitory role in regulating the activity of MaoC. The data in our study reveal the regulatory mechanism of an (R)-hydratase, providing information on enzyme engineering to produce low cost PHAs.

  1. Redundant mechanisms are involved in suppression of default cell fates during embryonic mesenchyme and notochord induction in ascidians.

    Science.gov (United States)

    Kodama, Hitoshi; Miyata, Yoshimasa; Kuwajima, Mami; Izuchi, Ryoichi; Kobayashi, Ayumi; Gyoja, Fuki; Onuma, Takeshi A; Kumano, Gaku; Nishida, Hiroki

    2016-08-01

    During embryonic induction, the responding cells invoke an induced developmental program, whereas in the absence of an inducing signal, they assume a default uninduced cell fate. Suppression of the default fate during the inductive event is crucial for choice of the binary cell fate. In contrast to the mechanisms that promote an induced cell fate, those that suppress the default fate have been overlooked. Upon induction, intracellular signal transduction results in activation of genes encoding key transcription factors for induced tissue differentiation. It is elusive whether an induced key transcription factor has dual functions involving suppression of the default fates and promotion of the induced fate, or whether suppression of the default fate is independently regulated by other factors that are also downstream of the signaling cascade. We show that during ascidian embryonic induction, default fates were suppressed by multifold redundant mechanisms. The key transcription factor, Twist-related.a, which is required for mesenchyme differentiation, and another independent transcription factor, Lhx3, which is dispensable for mesenchyme differentiation, sequentially and redundantly suppress the default muscle fate in induced mesenchyme cells. Similarly in notochord induction, Brachyury, which is required for notochord differentiation, and other factors, Lhx3 and Mnx, are likely to suppress the default nerve cord fate redundantly. Lhx3 commonly suppresses the default fates in two kinds of induction. Mis-activation of the autonomously executed default program in induced cells is detrimental to choice of the binary cell fate. Multifold redundant mechanisms would be required for suppression of the default fate to be secure. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Effects and mechanisms of 3α,5α,-THP on emotion, motivation, and reward functions involving pregnane xenobiotic receptor

    Directory of Open Access Journals (Sweden)

    Cheryl A Frye

    2012-01-01

    Full Text Available Progestogens [progesterone (P4 and its products] play fundamental roles in the development and/or function of the central nervous system during pregnancy. We, and others, have investigated the role of pregnane neurosteroids for a plethora of functional effects beyond their pro-gestational processes. Emerging findings regarding the effects, mechanisms, and sources of neurosteroids have challenged traditional dogma about steroid action. How the P4 metabolite and neurosteroid, 3α-hydroxy-5α-pregnan-20-one (3α,5α-THP, influences cellular functions and behavioral processes involved in emotion/affect, motivation, and reward, is the focus of the present review. To further understand these processes, we have utilized an animal model assessing the effects, mechanisms, and sources of 3α,5α-THP. In the ventral tegmental area (VTA, 3α,5α-THP has actions to facilitate affective, and motivated, social behaviors through non-traditional targets, such as GABA, glutamate, and dopamine receptors. 3α,5α-THP levels in the midbrain VTA both facilitate, and/or are enhanced by, affective and social behavior. The pregnane xenobiotic receptor (PXR mediates the production of, and/or metabolism to, various neurobiological factors. PXR is localized to the midbrain VTA of rats. The role of PXR to influence 3α,5α-THP production from central biosynthesis, and/or metabolism of peripheral P4, in the VTA, as well as its role to facilitate, or be increased by, affective/social behaviors is under investigation. Investigating novel behavioral functions of 3α,5α-THP extends our knowledge of the neurobiology of progestogens, relevant for affective/social behaviors, and their connections to systems that regulate affect and motivated processes, such as those important for stress regulation and neuropsychiatric disorders (anxiety, depression, schizophrenia, drug dependence. Thus, further understanding of 3α,5α-THP’s role and mechanisms to enhance affective and motivated

  3. Structure reveals regulatory mechanisms of a MaoC-like hydratase from Phytophthora capsici involved in biosynthesis of polyhydroxyalkanoates (PHAs.

    Directory of Open Access Journals (Sweden)

    Huizheng Wang

    Full Text Available Polyhydroxyalkanoates (PHAs have attracted increasing attention as "green plastic" due to their biodegradable, biocompatible, thermoplastic, and mechanical properties, and considerable research has been undertaken to develop low cost/high efficiency processes for the production of PHAs. MaoC-like hydratase (MaoC, which belongs to (R-hydratase involved in linking the β-oxidation and the PHA biosynthetic pathways, has been identified recently. Understanding the regulatory mechanisms of (R-hydratase catalysis is critical for efficient production of PHAs that promise synthesis an environment-friendly plastic.We have determined the crystal structure of a new MaoC recognized from Phytophthora capsici. The crystal structure of the enzyme was solved at 2.00 Å resolution. The structure shows that MaoC has a canonical (R-hydratase fold with an N-domain and a C-domain. Supporting its dimerization observed in structure, MaoC forms a stable homodimer in solution. Mutations that disrupt the dimeric MaoC result in a complete loss of activity toward crotonyl-CoA, indicating that dimerization is required for the enzymatic activity of MaoC. Importantly, structure comparison reveals that a loop unique to MaoC interacts with an α-helix that harbors the catalytic residues of MaoC. Deletion of the loop enhances the enzymatic activity of MaoC, suggesting its inhibitory role in regulating the activity of MaoC.The data in our study reveal the regulatory mechanism of an (R-hydratase, providing information on enzyme engineering to produce low cost PHAs.

  4. Mechanisms underlying the neurotoxicity induced by glyphosate-based herbicide in immature rat hippocampus: Involvement of glutamate excitotoxicity

    International Nuclear Information System (INIS)

    Cattani, Daiane; Oliveira Cavalli, Liz Vera Lúcia de; Heinz Rieg, Carla Elise; Domingues, Juliana Tonietto; Dal-Cim, Tharine; Tasca, Carla Inês; Mena Barreto Silva, Fátima Regina; Zamoner, Ariane

    2014-01-01

    Graphical abstract: - Highlights: • Roundup ® induces Ca 2+ influx through L-VDCC and NMDA receptor activation. • The mechanisms underlying Roundup ® neurotoxicity involve glutamatergic excitotoxicity. • Kinase pathways participate in Roundup ® -induced neural toxicity. • Roundup ® alters glutamate uptake, release and metabolism in hippocampal cells. - Abstract: Previous studies demonstrate that glyphosate exposure is associated with oxidative damage and neurotoxicity. Therefore, the mechanism of glyphosate-induced neurotoxic effects needs to be determined. The aim of this study was to investigate whether Roundup ® (a glyphosate-based herbicide) leads to neurotoxicity in hippocampus of immature rats following acute (30 min) and chronic (pregnancy and lactation) pesticide exposure. Maternal exposure to pesticide was undertaken by treating dams orally with 1% Roundup ® (0.38% glyphosate) during pregnancy and lactation (till 15-day-old). Hippocampal slices from 15 day old rats were acutely exposed to Roundup ® (0.00005–0.1%) during 30 min and experiments were carried out to determine whether glyphosate affects 45 Ca 2+ influx and cell viability. Moreover, we investigated the pesticide effects on oxidative stress parameters, 14 C-α-methyl-amino-isobutyric acid ( 14 C-MeAIB) accumulation, as well as glutamate uptake, release and metabolism. Results showed that acute exposure to Roundup ® (30 min) increases 45 Ca 2+ influx by activating NMDA receptors and voltage-dependent Ca 2+ channels, leading to oxidative stress and neural cell death. The mechanisms underlying Roundup ® -induced neurotoxicity also involve the activation of CaMKII and ERK. Moreover, acute exposure to Roundup ® increased 3 H-glutamate released into the synaptic cleft, decreased GSH content and increased the lipoperoxidation, characterizing excitotoxicity and oxidative damage. We also observed that both acute and chronic exposure to Roundup ® decreased 3 H-glutamate uptake and

  5. Translocation and neurotoxicity of CdTe quantum dots in RMEs motor neurons in nematode Caenorhabditis elegans

    International Nuclear Information System (INIS)

    Zhao, Yunli; Wang, Xiong; Wu, Qiuli; Li, Yiping; Wang, Dayong

    2015-01-01

    Graphical abstract: - Highlights: • We investigated in vivo neurotoxicity of CdTe QDs on RMEs motor neurons in C. elegans. • CdTe QDs in the range of μg/L caused neurotoxicity on RMEs motor neurons. • Bioavailability of CdTe QDs may be the primary inducer for CdTe QDs neurotoxicity. • Both oxidative stress and cell identity regulate the CdTe QDs neurotoxicity. • CdTe QDs were translocated and deposited into RMEs motor neurons. - Abstract: We employed Caenorhabditis elegans assay system to investigate in vivo neurotoxicity of CdTe quantum dots (QDs) on RMEs motor neurons, which are involved in controlling foraging behavior, and the underlying mechanism of such neurotoxicity. After prolonged exposure to 0.1–1 μg/L of CdTe QDs, abnormal foraging behavior and deficits in development of RMEs motor neurons were observed. The observed neurotoxicity from CdTe QDs on RMEs motor neurons might be not due to released Cd 2+ . Overexpression of genes encoding Mn-SODs or unc-30 gene controlling cell identity of RMEs neurons prevented neurotoxic effects of CdTe QDs on RMEs motor neurons, suggesting the crucial roles of oxidative stress and cell identity in regulating CdTe QDs neurotoxicity. In nematodes, CdTe QDs could be translocated through intestinal barrier and be deposited in RMEs motor neurons. In contrast, CdTe@ZnS QDs could not be translocated into RMEs motor neurons and therefore, could only moderately accumulated in intestinal cells, suggesting that ZnS coating might reduce neurotoxicity of CdTe QDs on RMEs motor neurons. Therefore, the combinational effects of oxidative stress, cell identity, and bioavailability may contribute greatly to the mechanism of CdTe QDs neurotoxicity on RMEs motor neurons. Our results provide insights into understanding the potential risks of CdTe QDs on the development and function of nervous systems in animals

  6. Translocation and neurotoxicity of CdTe quantum dots in RMEs motor neurons in nematode Caenorhabditis elegans

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yunli; Wang, Xiong; Wu, Qiuli; Li, Yiping; Wang, Dayong, E-mail: dayongw@seu.edu.cn

    2015-02-11

    Graphical abstract: - Highlights: • We investigated in vivo neurotoxicity of CdTe QDs on RMEs motor neurons in C. elegans. • CdTe QDs in the range of μg/L caused neurotoxicity on RMEs motor neurons. • Bioavailability of CdTe QDs may be the primary inducer for CdTe QDs neurotoxicity. • Both oxidative stress and cell identity regulate the CdTe QDs neurotoxicity. • CdTe QDs were translocated and deposited into RMEs motor neurons. - Abstract: We employed Caenorhabditis elegans assay system to investigate in vivo neurotoxicity of CdTe quantum dots (QDs) on RMEs motor neurons, which are involved in controlling foraging behavior, and the underlying mechanism of such neurotoxicity. After prolonged exposure to 0.1–1 μg/L of CdTe QDs, abnormal foraging behavior and deficits in development of RMEs motor neurons were observed. The observed neurotoxicity from CdTe QDs on RMEs motor neurons might be not due to released Cd{sup 2+}. Overexpression of genes encoding Mn-SODs or unc-30 gene controlling cell identity of RMEs neurons prevented neurotoxic effects of CdTe QDs on RMEs motor neurons, suggesting the crucial roles of oxidative stress and cell identity in regulating CdTe QDs neurotoxicity. In nematodes, CdTe QDs could be translocated through intestinal barrier and be deposited in RMEs motor neurons. In contrast, CdTe@ZnS QDs could not be translocated into RMEs motor neurons and therefore, could only moderately accumulated in intestinal cells, suggesting that ZnS coating might reduce neurotoxicity of CdTe QDs on RMEs motor neurons. Therefore, the combinational effects of oxidative stress, cell identity, and bioavailability may contribute greatly to the mechanism of CdTe QDs neurotoxicity on RMEs motor neurons. Our results provide insights into understanding the potential risks of CdTe QDs on the development and function of nervous systems in animals.

  7. Tourette syndrome in a pedigree with a 7;18 translocation: Identification of a YAC spanning the translocation breakpoint at 18q22.3

    Energy Technology Data Exchange (ETDEWEB)

    Boghosian-Sell, L.; Overhauser, J. [Thomas Jefferson Univ., Philadelphia, PA (United States); Comings, D.E. [City of Hope Medical Center, Duarte, CA (United States)

    1996-11-01

    Tourette syndrome is a neuropsychiatric disorder characterized by the presence of multiple, involuntary motor and vocal tics. Associated pathologies include attention deficit disorder and obsessive-compulsive disorder (OCD). Extensive linkage analysis based on an autosomal dominant mode of transmission with reduced penetrance has failed to show linkage with polymorphic markers, suggesting either locus heterogeneity or a polygenic origin for Tourette syndrome. An individual diagnosed with Tourette syndrome has been described carrying a constitutional chromosome translocation. Other family members carrying the translocation exhibit features seen in Tourette syndrome including motor tics, vocal tics, and OCD. Since the disruption of specific genes by a chromosomal rearrangement can elicit a particular phenotype, we have undertaken the physical mapping of the 7;18 translocation such that genes mapping at the site of the breakpoint can be identified and evaluated for a possible involvement in Tourette syndrome. Using somatic cell hybrids retaining either the der(7) or the der(18), a more precise localization of the breakpoints on chromosomes 7 and 18 have been determined. Furthermore, physical mapping has identified two YAC clones that span the translocation breakpoint on chromosome 18 as determined by FISH. These YAC clones will be useful for the eventual identification of genes that map to chromosomes 7 and 18 at the site of the translocation. 41 refs., 3 figs., 1 tab.

  8. Miscoding-induced stalling of substrate translocation on the bacterial ribosome.

    Science.gov (United States)

    Alejo, Jose L; Blanchard, Scott C

    2017-10-10

    Directional transit of the ribosome along the messenger RNA (mRNA) template is a key determinant of the rate and processivity of protein synthesis. Imaging of the multistep translocation mechanism using single-molecule FRET has led to the hypothesis that substrate movements relative to the ribosome resolve through relatively long-lived late intermediates wherein peptidyl-tRNA enters the P site of the small ribosomal subunit via reversible, swivel-like motions of the small subunit head domain within the elongation factor G (GDP)-bound ribosome complex. Consistent with translocation being rate-limited by recognition and productive engagement of peptidyl-tRNA within the P site, we now show that base-pairing mismatches between the peptidyl-tRNA anticodon and the mRNA codon dramatically delay this rate-limiting, intramolecular process. This unexpected relationship between aminoacyl-tRNA decoding and translocation suggests that miscoding antibiotics may impact protein synthesis by impairing the recognition of peptidyl-tRNA in the small subunit P site during EF-G-catalyzed translocation. Strikingly, we show that elongation factor P (EF-P), traditionally known to alleviate ribosome stalling at polyproline motifs, can efficiently rescue translocation defects arising from miscoding. These findings help reveal the nature and origin of the rate-limiting steps in substrate translocation on the bacterial ribosome and indicate that EF-P can aid in resuming translation elongation stalled by miscoding errors.

  9. High-performance analysis of single interphase cells with custom DNA probes spanning translocation break points

    Science.gov (United States)

    Weier, Heinz-Ulli G.; Munne, S.; Lersch, Robert A.; Marquez, C.; Wu, J.; Pedersen, Roger A.; Fung, Jingly

    1999-06-01

    The chromatin organization of interphase cell nuclei, albeit an object of intense investigation, is only poorly understood. In the past, this has hampered the cytogenetic analysis of tissues derived from specimens where only few cells were actively proliferating or a significant number of metaphase cells could be obtained by induction of growth. Typical examples of such hard to analyze cell systems are solid tumors, germ cells and, to a certain extent, fetal cells such as amniocytes, blastomeres or cytotrophoblasts. Balanced reciprocal translocations that do not disrupt essential genes and thus do not led to disease symptoms exit in less than one percent of the general population. Since the presence of translocations interferes with homologue pairing in meiosis, many of these individuals experience problems in their reproduction, such as reduced fertility, infertility or a history of spontaneous abortions. The majority of translocation carriers enrolled in our in vitro fertilization (IVF) programs carry simple translocations involving only two autosomes. While most translocations are relatively easy to spot in metaphase cells, the majority of cells biopsied from embryos produced by IVF are in interphase and thus unsuitable for analysis by chromosome banding or FISH-painting. We therefore set out to analyze single interphase cells for presence or absence of specific translocations. Our assay, based on fluorescence in situ hybridization (FISH) of breakpoint-spanning DNA probes, detects translocations in interphase by visual microscopic inspection of hybridization domains. Probes are prepared so that they span a breakpoint and cover several hundred kb of DNA adjacent to the breakpoint. On normal chromosomes, such probes label a contiguous stretch of DNA and produce a single hybridization domain per chromosome in interphase cells. The translocation disrupts the hybridization domain and the resulting two fragments appear as physically separated hybridization domains in

  10. Nuclear translocation and retention of growth hormone

    DEFF Research Database (Denmark)

    Mertani, Hichem C; Raccurt, Mireille; Abbate, Aude

    2003-01-01

    We have previously demonstrated that GH is subject to rapid receptor-dependent nuclear translocation. Here, we examine the importance of ligand activation of the GH-receptor (GHR)-associated Janus kinase (JAK) 2 and receptor dimerization for hormone internalization and nuclear translocation by use...... of cells stably transfected with cDNA for the GHR. Staurosporine and herbimycin A treatment of cells did not affect the ability of GH to internalize but resulted in increased nuclear accumulation of hormone. Similarly, receptor mutations, which prevent the association and activation of JAK2, did not affect...... the ability of the hormone to internalize or translocate to the nucleus but resulted in increased nuclear accumulation of GH. These results were observed both by nuclear isolation and confocal laser scanning microscopy. Staurosporine treatment of cells in which human GH (hGH) was targeted to the cytoplasm...

  11. Ciglitazone induces caspase-independent apoptosis via p38-dependent AIF nuclear translocation in renal epithelial cells

    International Nuclear Information System (INIS)

    Kwon, Chae Hwa; Yoon, Chang Soo; Kim, Yong Keun

    2008-01-01

    Peroxisome proliferator-activated receptor γ (PPARγ) agonists have been reported to induce apoptosis in a variety of cell types including renal proximal epithelial cells. However, the underlying mechanism of cell death induced by PPARγ agonists has not been clearly defined in renal proximal tubular cells. This study was therefore undertaken to determine the mechanism by which ciglitazone, a synthetic PPARγ agonist, induces apoptosis in opossum kidney (OK) cells, an established renal epithelial cell line. Ciglitazone treatment induced apoptotic cell death in a dose- and time-dependent manner. Ciglitazone caused a transient activation of ERK and sustained activation of p38 MAP kinase. Ciglitazone-mediated cell death was attenuated by the p38 inhibitor SB203580 and transfection of dominant-negative form of p38, but not by the MEK inhibitor U0126, indicating that p38 MAP kinase activation is involved in the ciglitazone-induced cell death. Although ciglitazone-induced caspase-3 activation, the ciglitazone-mediated cell death was not affected by the caspase-3 inhibitor DEVD-CHO. Ciglitazone-induced mitochondrial membrane depolarization and apoptosis-inducing factor (AIF) nuclear translocation and these effects were prevented by the p38 inhibitor. These results suggest that ciglitazone induces caspase-independent apoptosis through p38 MAP kinase-dependent AIF nuclear translocation in OK renal epithelial cells

  12. De novo unbalanced translocations in Prader-Willi and Angelman syndrome might be the reciprocal product of inv dup(15s.

    Directory of Open Access Journals (Sweden)

    Elena Rossi

    Full Text Available The 15q11-q13 region is characterized by high instability, caused by the presence of several paralogous segmental duplications. Although most mechanisms dealing with cryptic deletions and amplifications have been at least partly characterized, little is known about the rare translocations involving this region. We characterized at the molecular level five unbalanced translocations, including a jumping one, having most of 15q transposed to the end of another chromosome, whereas the der(15(pter->q11-q13 was missing. Imbalances were associated either with Prader-Willi or Angelman syndrome. Array-CGH demonstrated the absence of any copy number changes in the recipient chromosome in three cases, while one carried a cryptic terminal deletion and another a large terminal deletion, already diagnosed by classical cytogenetics. We cloned the breakpoint junctions in two cases, whereas cloning was impaired by complex regional genomic architecture and mosaicism in the others. Our results strongly indicate that some of our translocations originated through a prezygotic/postzygotic two-hit mechanism starting with the formation of an acentric 15qter->q1::q1->qter representing the reciprocal product of the inv dup(15 supernumerary marker chromosome. An embryo with such an acentric chromosome plus a normal chromosome 15 inherited from the other parent could survive only if partial trisomy 15 rescue would occur through elimination of part of the acentric chromosome, stabilization of the remaining portion with telomere capture, and formation of a derivative chromosome. All these events likely do not happen concurrently in a single cell but are rather the result of successive stabilization attempts occurring in different cells of which only the fittest will finally survive. Accordingly, jumping translocations might represent successful rescue attempts in different cells rather than transfer of the same 15q portion to different chromosomes. We also hypothesize that

  13. Mechanisms Involved in Acquisition of blaNDM Genes by IncA/C2 and IncFIIY Plasmids.

    Science.gov (United States)

    Wailan, Alexander M; Sidjabat, Hanna E; Yam, Wan Keat; Alikhan, Nabil-Fareed; Petty, Nicola K; Sartor, Anna L; Williamson, Deborah A; Forde, Brian M; Schembri, Mark A; Beatson, Scott A; Paterson, David L; Walsh, Timothy R; Partridge, Sally R

    2016-07-01

    blaNDM genes confer carbapenem resistance and have been identified on transferable plasmids belonging to different incompatibility (Inc) groups. Here we present the complete sequences of four plasmids carrying a blaNDM gene, pKP1-NDM-1, pEC2-NDM-3, pECL3-NDM-1, and pEC4-NDM-6, from four clinical samples originating from four different patients. Different plasmids carry segments that align to different parts of the blaNDM region found on Acinetobacter plasmids. pKP1-NDM-1 and pEC2-NDM-3, from Klebsiella pneumoniae and Escherichia coli, respectively, were identified as type 1 IncA/C2 plasmids with almost identical backbones. Different regions carrying blaNDM are inserted in different locations in the antibiotic resistance island known as ARI-A, and ISCR1 may have been involved in the acquisition of blaNDM-3 by pEC2-NDM-3. pECL3-NDM-1 and pEC4-NDM-6, from Enterobacter cloacae and E. coli, respectively, have similar IncFIIY backbones, but different regions carrying blaNDM are found in different locations. Tn3-derived inverted-repeat transposable elements (TIME) appear to have been involved in the acquisition of blaNDM-6 by pEC4-NDM-6 and the rmtC 16S rRNA methylase gene by IncFIIY plasmids. Characterization of these plasmids further demonstrates that even very closely related plasmids may have acquired blaNDM genes by different mechanisms. These findings also illustrate the complex relationships between antimicrobial resistance genes, transposable elements, and plasmids and provide insights into the possible routes for transmission of blaNDM genes among species of the Enterobacteriaceae family. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  14. Is red wine a SAFE sip away from cardioprotection? Mechanisms involved in resveratrol- and melatonin-induced cardioprotection.

    Science.gov (United States)

    Lamont, Kim T; Somers, Sarin; Lacerda, Lydia; Opie, Lionel H; Lecour, Sandrine

    2011-05-01

    Epidemiological studies suggest that regular moderate consumption of red wine confers cardioprotection but the mechanisms involved in this effect remain unclear. Recent studies demonstrate the presence of melatonin in wine. We propose that melatonin, at a concentration found in red wine, confers cardioprotection against ischemia-reperfusion injury. Furthermore, we investigated whether both melatonin and resveratrol protect via the activation of the newly discovered survivor activating factor enhancement (SAFE) prosurvival signaling pathway that involves the activation of tumor necrosis factor alpha (TNFα) and the signal transducer and activator of transcription 3 (STAT3). Isolated perfused male mouse (wild type, TNFα receptor 2 knockout mice, and cardiomyocyte-specific STAT3-deficient mice) or rat hearts (Wistars) were subjected to ischemia-reperfusion. Resveratrol (2.3 mg/L) or melatonin (75 ng/L) was perfused for 15 min with a 10-min washout period prior to an ischemia-reperfusion insult. Infarct size was measured at the end of the protocol, and Western blot analysis was performed to evaluate STAT3 activation prior to the ischemic insult. Both resveratrol and melatonin, at concentrations found in red wine, significantly reduced infarct size compared with control hearts in wild-type mouse hearts (25 ± 3% and 25 ± 3% respectively versus control 69 ± 3%, P < 0.001) but failed to protect in TNF receptor 2 knockout or STAT3-deficient mice. Furthermore, perfusion with either melatonin or resveratrol increased STAT3 phosphorylation prior to ischemia by 79% and 50%, respectively (P < 0.001 versus control). Our data demonstrate that both melatonin and resveratrol, as found in red wine, protect the heart in an experimental model of myocardial infarction via the SAFE pathway. © 2011 John Wiley & Sons A/S.

  15. Analyzing the molecular mechanism of lipoprotein localization in Brucella.

    Science.gov (United States)

    Goolab, Shivani; Roth, Robyn L; van Heerden, Henriette; Crampton, Michael C

    2015-01-01

    Bacterial lipoproteins possess diverse structure and functionality, ranging from bacterial physiology to pathogenic processes. As such many lipoproteins, originating from Brucella are exploited as potential vaccines to countermeasure brucellosis infection in the host. These membrane proteins are translocated from the cytoplasm to the cell membrane where they are anchored peripherally by a multifaceted targeting mechanism. Although much research has focused on the identification and classification of Brucella lipoproteins and their potential use as vaccine candidates for the treatment of Brucellosis, the underlying route for the translocation of these lipoproteins to the outer surface of the Brucella (and other pathogens) outer membrane (OM) remains mostly unknown. This is partly due to the complexity of the organism and evasive tactics used to escape the host immune system, the variation in biological structure and activity of lipoproteins, combined with the complex nature of the translocation machinery. The biosynthetic pathway of Brucella lipoproteins involves a distinct secretion system aiding translocation from the cytoplasm, where they are modified by lipidation, sorted by the lipoprotein localization machinery pathway and thereafter equipped for export to the OM. Surface localized lipoproteins in Brucella may employ a lipoprotein flippase or the β-barrel assembly complex for translocation. This review provides an overview of the characterized Brucella OM proteins that form part of the OM, including a handful of other characterized bacterial lipoproteins and their mechanisms of translocation. Lipoprotein localization pathways in gram negative bacteria will be used as a model to identify gaps in Brucella lipoprotein localization and infer a potential pathway. Of particular interest are the dual topology lipoproteins identified in Escherichia coli and Haemophilus influenza. The localization and topology of these lipoproteins from other gram negative bacteria

  16. Analyzing the molecular mechanism of lipoprotein localization in Brucella

    Science.gov (United States)

    Goolab, Shivani; Roth, Robyn L.; van Heerden, Henriette; Crampton, Michael C.

    2015-01-01

    Bacterial lipoproteins possess diverse structure and functionality, ranging from bacterial physiology to pathogenic processes. As such many lipoproteins, originating from Brucella are exploited as potential vaccines to countermeasure brucellosis infection in the host. These membrane proteins are translocated from the cytoplasm to the cell membrane where they are anchored peripherally by a multifaceted targeting mechanism. Although much research has focused on the identification and classification of Brucella lipoproteins and their potential use as vaccine candidates for the treatment of Brucellosis, the underlying route for the translocation of these lipoproteins to the outer surface of the Brucella (and other pathogens) outer membrane (OM) remains mostly unknown. This is partly due to the complexity of the organism and evasive tactics used to escape the host immune system, the variation in biological structure and activity of lipoproteins, combined with the complex nature of the translocation machinery. The biosynthetic pathway of Brucella lipoproteins involves a distinct secretion system aiding translocation from the cytoplasm, where they are modified by lipidation, sorted by the lipoprotein localization machinery pathway and thereafter equipped for export to the OM. Surface localized lipoproteins in Brucella may employ a lipoprotein flippase or the β-barrel assembly complex for translocation. This review provides an overview of the characterized Brucella OM proteins that form part of the OM, including a handful of other characterized bacterial lipoproteins and their mechanisms of translocation. Lipoprotein localization pathways in gram negative bacteria will be used as a model to identify gaps in Brucella lipoprotein localization and infer a potential pathway. Of particular interest are the dual topology lipoproteins identified in Escherichia coli and Haemophilus influenza. The localization and topology of these lipoproteins from other gram negative bacteria

  17. Pharmacological evaluation of the mechanisms involved in increased adiposity in zebrafish triggered by the environmental contaminant tributyltin

    Energy Technology Data Exchange (ETDEWEB)

    Ouadah-Boussouf, Nafia; Babin, Patrick J., E-mail: p.babin@gpp.u-bordeaux1.fr

    2016-03-01

    One proposed contributing factor to the rise in overweight and obesity is exposure to endocrine disrupting chemicals. Tributyltin chloride (TBT), an organotin, induces adipogenesis in cell culture models and may increases adipose mass in vivo in vertebrate model organisms. It has been hypothesized that TBT acts via the peroxisome proliferator activated receptor (PPAR)γ-dependent pathway. However, the mechanisms involved in the effects of TBT exposure on in vivo adipose tissue metabolism remain unexplored. Semitransparent zebrafish larvae, with their well-developed white adipose tissue, offer a unique opportunity for studying the effects of toxicant chemicals and pharmaceuticals on adipocyte biology and whole-organism adiposity in a vertebrate model. Within hours, zebrafish larvae, treated at environmentally-relevant nanomolar concentrations of TBT, exhibited a remarkable increase in adiposity linked to adipocyte hypertrophy. Under the experimental conditions used, we also demonstrated that zebrafish larvae adipose tissue proved to be highly responsive to selected human nuclear receptor agonists and antagonists. Retinoid X receptor (RXR) homodimers and RXR/liver X receptor heterodimers were suggested to be in vivo effectors of the obesogenic effect of TBT on zebrafish white adipose tissue. RXR/PPARγ heterodimers may be recruited to modulate adiposity in zebrafish but were not a necessary requirement for the short term in vivo TBT obesogenic effect. Together, the present results suggest that TBT may induce the promotion of triacylglycerol storage in adipocytes via RXR-dependent pathways without necessary using PPAR isoforms. - Highlights: • The environmental contaminant tributyltin (TBT) may promote obesity development. • TBT may induce adipocyte hypertrophy through a PPARγ independent mechanism. • RXR/RXR and RXR/LXR dimers are potential in vivo effectors of TBT in zebrafish.

  18. Pharmacological evaluation of the mechanisms involved in increased adiposity in zebrafish triggered by the environmental contaminant tributyltin

    International Nuclear Information System (INIS)

    Ouadah-Boussouf, Nafia; Babin, Patrick J.

    2016-01-01

    One proposed contributing factor to the rise in overweight and obesity is exposure to endocrine disrupting chemicals. Tributyltin chloride (TBT), an organotin, induces adipogenesis in cell culture models and may increases adipose mass in vivo in vertebrate model organisms. It has been hypothesized that TBT acts via the peroxisome proliferator activated receptor (PPAR)γ-dependent pathway. However, the mechanisms involved in the effects of TBT exposure on in vivo adipose tissue metabolism remain unexplored. Semitransparent zebrafish larvae, with their well-developed white adipose tissue, offer a unique opportunity for studying the effects of toxicant chemicals and pharmaceuticals on adipocyte biology and whole-organism adiposity in a vertebrate model. Within hours, zebrafish larvae, treated at environmentally-relevant nanomolar concentrations of TBT, exhibited a remarkable increase in adiposity linked to adipocyte hypertrophy. Under the experimental conditions used, we also demonstrated that zebrafish larvae adipose tissue proved to be highly responsive to selected human nuclear receptor agonists and antagonists. Retinoid X receptor (RXR) homodimers and RXR/liver X receptor heterodimers were suggested to be in vivo effectors of the obesogenic effect of TBT on zebrafish white adipose tissue. RXR/PPARγ heterodimers may be recruited to modulate adiposity in zebrafish but were not a necessary requirement for the short term in vivo TBT obesogenic effect. Together, the present results suggest that TBT may induce the promotion of triacylglycerol storage in adipocytes via RXR-dependent pathways without necessary using PPAR isoforms. - Highlights: • The environmental contaminant tributyltin (TBT) may promote obesity development. • TBT may induce adipocyte hypertrophy through a PPARγ independent mechanism. • RXR/RXR and RXR/LXR dimers are potential in vivo effectors of TBT in zebrafish.

  19. Oral Efficacy of Apigenin against Cutaneous Leishmaniasis: Involvement of Reactive Oxygen Species and Autophagy as a Mechanism of Action.

    Directory of Open Access Journals (Sweden)

    Fernanda Fonseca-Silva

    2016-02-01

    Full Text Available The treatment for leishmaniasis is currently based on pentavalent antimonials and amphotericin B; however, these drugs result in numerous adverse side effects. The lack of affordable therapy has necessitated the urgent development of new drugs that are efficacious, safe, and more accessible to patients. Natural products are a major source for the discovery of new and selective molecules for neglected diseases. In this paper, we evaluated the effect of apigenin on Leishmania amazonensis in vitro and in vivo and described the mechanism of action against intracellular amastigotes of L. amazonensis.Apigenin reduced the infection index in a dose-dependent manner, with IC50 values of 4.3 μM and a selectivity index of 18.2. Apigenin induced ROS production in the L. amazonensis-infected macrophage, and the effects were reversed by NAC and GSH. Additionally, apigenin induced an increase in the number of macrophages autophagosomes after the infection, surrounding the parasitophorous vacuole, suggestive of the involvement of host autophagy probably due to ROS generation induced by apigenin. Furthermore, apigenin treatment was also effective in vivo, demonstrating oral bioavailability and reduced parasitic loads without altering serological toxicity markers.In conclusion, our study suggests that apigenin exhibits leishmanicidal effects against L. amazonensis-infected macrophages. ROS production, as part of the mechanism of action, could occur through the increase in host autophagy and thereby promoting parasite death. Furthermore, our data suggest that apigenin is effective in the treatment of L. amazonensis-infected BALB/c mice by oral administration, without altering serological toxicity markers. The selective in vitro activity of apigenin, together with excellent theoretical predictions of oral availability, clear decreases in parasite load and lesion size, and no observed compromises to the overall health of the infected mice encourage us to supports

  20. Cosmosiin Increases ADAM10 Expression via Mechanisms Involving 5’UTR and PI3K Signaling

    Directory of Open Access Journals (Sweden)

    Zhuo Min

    2018-06-01

    Full Text Available The α-secretase “a disintegrin and metalloproteinase domain-containing protein” (ADAM10 is involved in the processing of amyloid precursor protein (APP. Upregulation of ADAM10 precludes the generation of neurotoxic β-amyloid protein (Aβ and represents a plausible therapeutic strategy for Alzheimer’s disease (AD. In this study, we explored compounds that can potentially promote the expression of ADAM10. Therefore, we performed high-throughput small-molecule screening in SH-SY5Y (human neuroblastoma cells that stably express a luciferase reporter gene driven by the ADAM10 promoter, including a portion of its 5’-untranslated region (5’UTR. This has led to the discovery of cosmosiin (apigenin 7-O-β-glucoside. Here, we report that in human cell lines (SH-SY5Y and HEK293, cosmosiin proportionally increased the levels of the immature and mature forms of the ADAM10 protein without altering its mRNA level. This effect was attenuated by translation inhibitors or by deleting the 5’UTR of ADAM10, suggesting that a translational mechanism was responsible for the increased levels of ADAM10. Luciferase deletion assays revealed that the first 144 nucleotides of the 5’UTR were necessary for mediating the cosmosiin-induced enhancement of ADAM10 expression in SH-SY5Y cells. Cosmosiin failed to increase the levels of the ADAM10 protein in murine cells, which lack native expression of the ADAM10 transcript containing the identified 5’UTR element. The potential signaling pathway may involve phosphatidylinositide 3-kinase (PI3K because pharmacological inhibition of PI3K attenuated the effect of cosmosiin on the expression of the ADAM10 protein. Finally, cosmosiin attenuated Aβ generation because the levels of Aβ40/42 in HEK-APP cells were significantly reduced after cosmosiin treatment. Collectively, we found that the first 144 nucleotides of the ADAM10 5’UTR, and PI3K signaling, are involved in cosmosiin-induced enhancement of the expression

  1. Monitoring translocations by M-FISH and three-color FISH painting techniques. A study of two radiotherapy patients

    International Nuclear Information System (INIS)

    Pouzoulet, F.; Roch-Lefevre, S.; Giraudet, AL.

    2007-01-01

    To compare translocation rate using either M-FISH or FISH-3 in two patients treated for head and neck cancer, with a view to retrospective dosimetry. Translocation analysis was performed on peripheral blood lymphocyte cultures from blood samples taken at different times during the radiotherapy (0 Gy, 12 Gy and 50 Gy) and a few months after the end of the treatment (follow-up). Estimated translocation yield varied according to the FISH technique used. At 50 Gy and follow-up points, the translocation yields were higher with FISH-3 than with M-FISH. This difference can be attributed to three events. First, an increase in complex aberrations was observed for 50 Gy and follow-up points compared with 0 Gy and 12 Gy points. Second, at the end of treatment for patient A, involvement of chromosomes 2, 4, 12 in translocations was less than expected according to the Lucas formula. Third, a clone bearing a translocation involving a FISH-3 painted chromosome was detected. More translocations were detected with M-FISH than with FISH-3, and so M-FISH is expected to improve the accuracy of chromosome aberration analyses in some situations. (author)

  2. All-Atom Molecular Dynamics Simulation of Protein Translocation through an α-Hemolysin Nanopore

    KAUST Repository

    Di Marino, Daniele

    2015-08-06

    © 2015 American Chemical Society. Nanopore sensing is attracting the attention of a large and varied scientific community. One of the main issues in nanopore sensing is how to associate the measured current signals to specific features of the molecule under investigation. This is particularly relevant when the translocating molecule is a protein and the pore is sufficiently narrow to necessarily involve unfolding of the translocating protein. Recent experimental results characterized the cotranslocational unfolding of Thioredoxin (Trx) passing through an α-hemolisin pore, providing evidence for the existence of a multistep process. In this study we report the results of all-atom molecular dynamics simulations of the same system. Our data indicate that Trx translocation involves two main barriers. The first one is an unfolding barrier associated with a translocation intermediate where the N-terminal region of Trx is stuck at the pore entrance in a conformation that strongly resembles the native one. After the abrupt unfolding of the N-terminal region, the Trx enters the α-hemolisin vestibule. During this stage, the constriction is occupied not only by the translocating residue but also by a hairpin-like structure forming a tangle in the constriction. The second barrier is associated with the disentangling of this region.

  3. All-Atom Molecular Dynamics Simulation of Protein Translocation through an α-Hemolysin Nanopore

    KAUST Repository

    Di Marino, Daniele; Bonome, Emma Letizia; Tramontano, Anna; Chinappi, Mauro

    2015-01-01

    © 2015 American Chemical Society. Nanopore sensing is attracting the attention of a large and varied scientific community. One of the main issues in nanopore sensing is how to associate the measured current signals to specific features of the molecule under investigation. This is particularly relevant when the translocating molecule is a protein and the pore is sufficiently narrow to necessarily involve unfolding of the translocating protein. Recent experimental results characterized the cotranslocational unfolding of Thioredoxin (Trx) passing through an α-hemolisin pore, providing evidence for the existence of a multistep process. In this study we report the results of all-atom molecular dynamics simulations of the same system. Our data indicate that Trx translocation involves two main barriers. The first one is an unfolding barrier associated with a translocation intermediate where the N-terminal region of Trx is stuck at the pore entrance in a conformation that strongly resembles the native one. After the abrupt unfolding of the N-terminal region, the Trx enters the α-hemolisin vestibule. During this stage, the constriction is occupied not only by the translocating residue but also by a hairpin-like structure forming a tangle in the constriction. The second barrier is associated with the disentangling of this region.

  4. Effects of benzo(a)pyrene on the skeletal development of Sebastiscus marmoratus embryos and the molecular mechanism involved

    International Nuclear Information System (INIS)

    He Chengyong; Zuo Zhenghong; Shi Xiao; Li Ruixia; Chen Donglei; Huang Xin; Chen Yixin; Wang Chonggang

    2011-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are widespread environmental contaminants, which have been known to be carcinogenic and teratogenic. However, the skeletal development toxicity of PAHs and the mechanism involved remain unclear. In fishes, the neurocranial and craniofacial skeleton develop as cartilage. The signaling molecules of hedgehog (Hh) family play crucial roles in regulating skeletal development. In the present study, rockfish (Sebastiscus marmoratus) embryos were exposed to benzo(a)pyrene (BaP) for 7 days at environmental levels (0.05, 0.5 and 5 nmol/L) which resulted in craniofacial skeleton deformities. BaP exposure reduced the cell proliferation activity in the craniofacial skeleton as detected by quantitative PCR and in situ hybridization. The expression of Sonic hedgehog (Shh), rather than Indian hedgehog (Ihh), was down-regulated in the craniofacial skeleton in the 0.5 and 5 nmol/L groups. Consistent with the Shh results, the expression of Ptch1 and Gli2 was decreased by BaP exposure and BMP4 was presented on changes in the 0.5 and 5 nmol/L groups. These results suggested that BaP could impair the expression and function of Shh signaling pathway, perturbing the proliferation of chondrocytes and so disturbing craniofacial skeletal development.

  5. Electroencephalogram oscillations support the involvement of task-unrelated thoughts in the mechanism of boredom: A pilot study.

    Science.gov (United States)

    Miyauchi, Eri; Kawasaki, Masahiro

    2018-06-11

    Boredom is a universal experience; however, the neural mechanisms underlying the phenomenon remain unclear. Previous research suggests that boredom is related to attentional failure and derives a possible explanation for the cognitive processes of boredom as a product of appraisals made about task-unrelated thoughts. There are little published data regarding proposed processes from neuroscientific perspectives. Therefore, the authors aimed to examine whether cognitive processes of boredom with task-unrelated thoughts followed by appraisals of them can be explained by examining oscillatory correlates. Electroencephalography was used to measure changes in neural oscillatory activity during subjective experiences of boredom or dislike in healthy subjects. Using this approach, temporal information of brain activity particular to the boredom experience was acquired. Additionally, the Adult Attention-Deficit Hyperactivity Disorder Self-Report Scale was used to evaluate the effects of attentional deficits in the neural processing of boredom. Tonic increase in theta and transient increases in alpha activity were exhibited before the key press response for experiencing boredom; however, only tonic increases in theta amplitudes were boredom specific. The results of this pilot study suggest that the boredom experience is possibly associated with cognitive processes involved in task-unrelated thoughts, followed by their appraisals to be bored, mediated by alpha and theta activity. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Pharmacological evaluation of the mechanisms involved in increased adiposity in zebrafish triggered by the environmental contaminant tributyltin.

    Science.gov (United States)

    Ouadah-Boussouf, Nafia; Babin, Patrick J

    2016-03-01

    One proposed contributing factor to the rise in overweight and obesity is exposure to endocrine disrupting chemicals. Tributyltin chloride (TBT), an organotin, induces adipogenesis in cell culture models and may increases adipose mass in vivo in vertebrate model organisms. It has been hypothesized that TBT acts via the peroxisome proliferator activated receptor (PPAR)γ-dependent pathway. However, the mechanisms involved in the effects of TBT exposure on in vivo adipose tissue metabolism remain unexplored. Semitransparent zebrafish larvae, with their well-developed white adipose tissue, offer a unique opportunity for studying the effects of toxicant chemicals and pharmaceuticals on adipocyte biology and whole-organism adiposity in a vertebrate model. Within hours, zebrafish larvae, treated at environmentally-relevant nanomolar concentrations of TBT, exhibited a remarkable increase in adiposity linked to adipocyte hypertrophy. Under the experimental conditions used, we also demonstrated that zebrafish larvae adipose tissue proved to be highly responsive to selected human nuclear receptor agonists and antagonists. Retinoid X receptor (RXR) homodimers and RXR/liver X receptor heterodimers were suggested to be in vivo effectors of the obesogenic effect of TBT on zebrafish white adipose tissue. RXR/PPARγ heterodimers may be recruited to modulate adiposity in zebrafish but were not a necessary requirement for the short term in vivo TBT obesogenic effect. Together, the present results suggest that TBT may induce the promotion of triacylglycerol storage in adipocytes via RXR-dependent pathways without necessary using PPAR isoforms. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Involvement of oxidative stress in the mechanism of p,p'-DDT-induced nephrotoxicity in adult rats.

    Science.gov (United States)

    Marouani, Neila; Hallegue, Dorsaf; Sakly, Mohsen; Benkhalifa, Moncef; Ben Rhouma, Khémais; Tebourbi, Olfa

    2017-07-01

    The 1,1,1-trichloro-2,2-bis(4-chlorophenyl) ethane (p,p'-DDT) is an organochlorine pesticide that persists in the environment and has a risk to human health. We investigated whether p,p'-DDT-induces nephrotoxicity in rats and whether oxidative stress and apoptosis are involved in the pathogenesis of this process. Male rats received the pesticide at doses of 50 and 100 mg/kg for 10 days. Renal damage was evaluated by histopathological examination and serum markers. The oxidative stress was evaluated by lipid peroxidation (LPO), metallothioneins (MTs) and protein carbonyl levels. Antioxidant enzymes were assessed by determination of superoxide dismutase (SOD) and catalase (CAT) activities. Glutathione-dependent enzymes and reducing power in kidney were evaluated by glutathione peroxidase (GPx), glutathione reductase (GR), glutathione S-transferase (GST) activities. Renal tubular cells apoptosis was assessed through the TUNEL assay. After 10 days of treatment, an increase of serum creatinine and urea levels occurred, LPO and protein carbonyl levels were increased, while MTs level, SOD and CAT activities were decreased. Besides, the GPx, GR, GST, and GSH activities were decreased. Histological alterations in kidney tissue and intense apoptosis in renal tubular cells were observed. These results suggest that DDT sub-acute treatment causes oxidative stress and apoptosis, which may be the chief mechanisms of DDT-induced nephrotoxicity.

  8. Immunological mechanisms involved in the protection against intestinal taeniosis elicited by oral immunization with Taenia solium calreticulin.

    Science.gov (United States)

    Leon-Cabrera, Sonia; Cruz-Rivera, Mayra; Mendlovic, Fela; Romero-Valdovinos, Mirza; Vaughan, Gilberto; Salazar, Ana María; Avila, Guillermina; Flisser, Ana

    2012-11-01

    Oral immunization with functional recombinant Taenia solium calreticulin (rTsCRT) induces 37% reduction in tapeworm burden in the experimental model of intestinal taeniosis in hamsters. Furthermore, tapeworms recovered from vaccinated animals exhibit diminished length, being frequently found in more posterior parts of the small intestine. The aim of this study was to analyze the immunological mechanisms involved in protection in response to rTsCRT oral immunization. Hamsters were orally immunized with rTsCRT using cholera toxin (CT) as adjuvant, weekly for 4 weeks. Fifteen days after the last boost animals were challenged with four T. solium cysticerci. Reduction in the adult worm recovery and increased transcription of mRNA for IL-4 and IFN-γ in the mucosa of rTsCRT+CT immunized animals were observed. Immunization also induced goblet cell hyperplasia in the mucosa surrounding the implantation site of the parasite. Specific IgG and IgA antibodies in serum and fecal supernatants were detected after the second immunization, being more pronounced after challenge. Our data suggest that oral vaccination with rTsCRT+CT regulates a local expression of IL-4 and IFN-γ, stimulating secretion of IgA that, together with the increase of goblet cells and mucin production, could result in an unfavorable environment for T. solium promoting an impaired tapeworm development. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Clinical trial involving sufferers and non-sufferers of cervicogenic headache (CGH): potential mechanisms of action of photobiomodulation (Conference Presentation)

    Science.gov (United States)

    Liebert, Ann D.; Bicknell, Brian

    2017-02-01

    Photobiomodulation (PBM) is an effective tool for the management of spinal pain including inflammation of facet joints. Apart from cervical and lumbar joint pain the upper cervical spine facet joint inflammation can result in the CGH (traumatic or atraumatic in origin). This condition affects children, adults and elders and is responsible for 19% of chronic headache and up to 33% of patients in pain clinics. The condition responds well to physiotherapy, facet joint injection, radiofrequency neurotomy and surgery at a rate of 75%. The other 25% being unresponsive to treatment with no identified features of unresponsiveness. In other conditions of chronic unresponsive cervical pain have responded to photobiomodulation at a level of 80% in the short and medium term. A clinical trial was therefore conducted on a cohort of atraumatic patients from the ages of 5-93 (predominantly Neurologist referred / familial sufferers 2/3 generations vertically and laterally) who had responded to a course of PBM and physiotherapy. The CGH sufferers and their non CGH suffering relatives over these generations were then compared for features that distinguish the two groups. Fifty parameters were tested (anthropmetric, movement and neural tension tests included) and there was a noted difference in tandem stance between the groups (.04 significance with repeated measures). As this impairment is common to benign ataxia and migrainous vertigo and in these conditions there is an ion channelopathy (especially potassium channelopathy). A postulated mechanism of action of PBM would involve modulation of ion channels and this is discussed in this presentation.

  10. Gut microbiota-involved mechanisms in enhancing systemic exposure of ginsenosides by coexisting polysaccharides in ginseng decoction

    Science.gov (United States)

    Zhou, Shan-Shan; Xu, Jun; Zhu, He; Wu, Jie; Xu, Jin-Di; Yan, Ru; Li, Xiu-Yang; Liu, Huan-Huan; Duan, Su-Min; Wang, Zhuo; Chen, Hu-Biao; Shen, Hong; Li, Song-Lin

    2016-03-01

    Oral decoctions of traditional Chinese medicines (TCMs) serve for therapeutic and prophylactic management of diseases for centuries. Small molecules and polysaccharides are the dominant chemicals co-occurred in the TCM decoction. Small molecules are well-studied by multidisciplinary elaborations, whereas the role of polysaccharides remains largely elusive. Here we explore a gut microbiota-involved mechanism by which TCM polysaccharides restore the homeostasis of gut microbiota and consequently promote the systemic exposure of concomitant small molecules in the decoction. As a case study, ginseng polysaccharides and ginsenosides in Du-Shen-Tang, the decoction of ginseng, were investigated on an over-fatigue and acute cold stress model. The results indicated that ginseng polysaccharides improved intestinal metabolism and absorption of certain ginsenosides, meanwhile reinstated the perturbed holistic gut microbiota, and particularly enhanced the growth of Lactobacillus spp. and Bacteroides spp., two major metabolic bacteria of ginsenosides. By exploring the synergistic actions of polysaccharides with small molecules, these findings shed new light on scientization and rationalization of the classic TCM decoctions in human health care.

  11. Mechanisms involved in the differential recovery of CD4 and CD8 T-lymphocytes after local irradiation in mice

    International Nuclear Information System (INIS)

    De Ruysscher, D; Waer, M.; Vandeputte, M.; Van der Schueren, E.

    1990-01-01

    The mechanisms involved in the differential recovery of CD4 (helper/inducer phenotype) and CD8 (Cytotoxic/suppressor phenotype) T-lymphocytes after fractionated local irradiation were investigated. In mice, a better recovery of CD4 cells than of CD8 cells was found, while the reverse has been described in humans. Differences in radiosensivitity between CD4 and CD8 mouse splenocytes could not be found. No sequestration of CD8 cells in irradiated tissues could be demonstrated. Irradiation of the thymus did not influence the observed immune changes. Altered thymic production of CD4 and CD8 cells could be excluded by intrathymic injection of FITC (fluorescein isothiocyanate). Hindlimb and tail irradiation did suggest that the differential recovery of CD4 and CD8 T-lymphocytes after local irradiation is determined by extrathymic factors in man and mice, and that the observed differences in immune recovery between man and mice are due to defective thymic function in the former and normal function in the latter. (author). 12 refs.; 5 figs.; 2 tabs

  12. Mechanisms involved in the hydrothermal growth of ultra-thin and high aspect ratio ZnO nanowires

    Science.gov (United States)

    Demes, Thomas; Ternon, Céline; Morisot, Fanny; Riassetto, David; Legallais, Maxime; Roussel, Hervé; Langlet, Michel

    2017-07-01

    Hydrothermal synthesis of ZnO nanowires (NWs) with tailored dimensions, notably high aspect ratios (AR) and small diameters, is a major concern for a wide range of applications and still represents a challenging and recurring issue. In this work, an additive-free and reproducible hydrothermal procedure has been developed to grow ultra-thin and high AR ZnO NWs on sol-gel deposited ZnO seed layers. Controlling the substrate temperature and using a low reagent concentration (1 mM) has been found to be essential for obtaining such NWs. We show that the NW diameter remains constant at about 20-25 nm with growth time contrary to the NW length that can be selectively increased leading to NWs with ARs up to 400. On the basis of investigated experimental conditions along with thermodynamic and kinetic considerations, a ZnO NW growth mechanism has been developed which involves the formation and growth of nuclei followed by NW growth when the nuclei reach a critical size of about 20-25 nm. The low reagent concentration inhibits NW lateral growth leading to ultra-thin and high AR NWs. These NWs have been assembled into electrically conductive ZnO nanowire networks, which opens attractive perspectives toward the development of highly sensitive low-cost gas- or bio-sensors.

  13. Effects of benzo(a)pyrene on the skeletal development of Sebastiscus marmoratus embryos and the molecular mechanism involved

    Energy Technology Data Exchange (ETDEWEB)

    He Chengyong [Key Laboratory of Ministry of Education for Subtropical Wetland Ecosystem Research, School of Life Sciences, Xiamen University, Xiamen (China); Zuo Zhenghong [Key Laboratory of Ministry of Education for Subtropical Wetland Ecosystem Research, School of Life Sciences, Xiamen University, Xiamen (China); State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen (China); Shi Xiao; Li Ruixia; Chen Donglei; Huang Xin; Chen Yixin [Key Laboratory of Ministry of Education for Subtropical Wetland Ecosystem Research, School of Life Sciences, Xiamen University, Xiamen (China); Wang Chonggang, E-mail: cgwang@xmu.edu.cn [Key Laboratory of Ministry of Education for Subtropical Wetland Ecosystem Research, School of Life Sciences, Xiamen University, Xiamen (China); State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen (China)

    2011-01-25

    Polycyclic aromatic hydrocarbons (PAHs) are widespread environmental contaminants, which have been known to be carcinogenic and teratogenic. However, the skeletal development toxicity of PAHs and the mechanism involved remain unclear. In fishes, the neurocranial and craniofacial skeleton develop as cartilage. The signaling molecules of hedgehog (Hh) family play crucial roles in regulating skeletal development. In the present study, rockfish (Sebastiscus marmoratus) embryos were exposed to benzo(a)pyrene (BaP) for 7 days at environmental levels (0.05, 0.5 and 5 nmol/L) which resulted in craniofacial skeleton deformities. BaP exposure reduced the cell proliferation activity in the craniofacial skeleton as detected by quantitative PCR and in situ hybridization. The expression of Sonic hedgehog (Shh), rather than Indian hedgehog (Ihh), was down-regulated in the craniofacial skeleton in the 0.5 and 5 nmol/L groups. Consistent with the Shh results, the expression of Ptch1 and Gli2 was decreased by BaP exposure and BMP4 was presented on changes in the 0.5 and 5 nmol/L groups. These results suggested that BaP could impair the expression and function of Shh signaling pathway, perturbing the proliferation of chondrocytes and so disturbing craniofacial skeletal development.

  14. Newt tail regeneration: a model for gravity-dependent morphogenesis and clues to the molecular mechanisms involved.

    Science.gov (United States)

    Radugina, Elena A.; Almeida, Eduardo; Grigoryan, Eleonora

    factors and are expressed during development, we hypothesized they may play a role newt tail regenerative morphogenesis under altered g-levels. Specifically there is increasing evidence for HSPs expression changes as a result of hyper-and microgravity. HSPs are also expressed throughout regeneration, rather than just after surgery. To test this hypothesis we performed heat shock on intact and regenerating newts and collected tail tissues. In these experiments we observed that some tails had uplifted tips while others mimicked hook-like regenerates at 1g or 2g. These findings suggest that heat shock, and HSPs induction, may be involved in the mechanism responsible for gravity effects on morphogenesis, or at least interact with them. Current work underway is focused on analyzing the expression of mRNA and localization of proteins for two members of the group, Hsp70 and Hsp90. In summary, we developed and characterized a new practical animal model in which gravity mechanostimulation at 1g, versus unloading in aquaria, causes prominent effects on newt tail regenerative morphogenesis. This model can be achieved without the use of a centrifuge, significantly simplifying its research applications. Initial results using this model suggest that induction of HSPs may be involved in gravity regulation of newt tail regenerative morphogenesis. Further research based on this simple model may help to unravel mechanisms of gravity influence relevant not only to newt tail regeneration, but also to a broad range of other biological processes in amphibian models.

  15. Melanotic MiT family translocation neoplasms: Expanding the clinical and molecular spectrum of this unique entity of tumors.

    Science.gov (United States)

    Saleeb, Rola M; Srigley, John R; Sweet, Joan; Doucet, Cedric; Royal, Virginie; Chen, Ying-Bei; Brimo, Fadi; Evans, Andrew

    2017-11-01

    MiT family translocation tumors are a group of neoplasms characterized by translocations involving MiT family transcription factors. The translocation renal cell carcinomas, TFE3 (Xp11.2) and TFEB (t6;11) are known members of this family. Melanotic Xp11 translocation renal cancer is a more recently described entity. To date only 14 cases have been described. It is characterized by a distinct set of features including a nested epithelioid morphology, melanin pigmentation, labeling for markers of melanocytic differentiation, lack of labeling for markers of renal tubular differentiation, predominance in a younger age population and association with aggressive clinical behavior. There are noted similarities between that entity and TFE3 associated PEComas. There are no cases reported of equivalent melanotic TFEB translocation renal cancer. We report 2 rare cases of melanotic translocation renal neoplasms. The first is a melanotic TFE3 translocation renal cancer with an indolent clinical course, occurring in a patient more than 3-decades older than the usual average age in which such tumors have been described. The other case is, to our knowledge, the first reported melanotic TFEB translocation cancer of the kidney. Both cases exhibit the same H&E morphology as previously reported in melanotic translocation renal cancers and label accordingly with HMB45 and Melan-A. While the TFE3 melanotic tumor lacked any evidence of renal tubular differentiation, the TFEB melanotic cancer exhibited some staining for renal tubular markers. Based on the unique features noted above, these two cases expand the clinical and molecular spectrum of the melanotic translocation renal cancers. Copyright © 2017 Elsevier GmbH. All rights reserved.

  16. Translocations used to generate chromosome segment duplications ...

    Indian Academy of Sciences (India)

    a duplication (Dp) of the translocated segment and four inviable (white, W) ascospores with .... of this work, namely, the definition of breakpoint junction sequences of 12 ..... then our results would place supercontig 10.9 in distal. LG VIR. A third ...

  17. Nitrogen uptake and translocation by Chara

    NARCIS (Netherlands)

    Vermeer, C.P.; Escher, M.; Portielje, R.; Klein, de J.J.M.

    2003-01-01

    The potential for above-ground and below-ground uptake and subsequent internal translocation of ammonium (NH4+) and nitrate (NO3-) by the macroalga Chara spp. was investigated. In a two compartment experimental set-up separating above-ground and below-ground algal parts, the charophytes were exposed

  18. 11C-methionine translocation in barley

    International Nuclear Information System (INIS)

    Nakanishi, Hiromi; Bughio, Naimatullah; Shigeta Ishioka, Noriko

    2000-01-01

    11 C-methionine was supplied to barley plants through a single leaf or via the roots and real time 11 C movement was monitored using a PETIS (positron emitting tracer imaging system). In Fe-deficient plants, 11 C-methionine was translocated from the tip of the absorbing leaf to the discrimination center' at the basal part of the shoot and then retranslocated to all the chlorotic leaves, while a negligible amount was retranslocated to the roots. In Fe-sufficient plants, methionine was translocated from the absorbing leaf to the discrimination center and then only to the newest leaf on the main shoot. A negligible amount was also retranslocated to the roots. Although, in Fe-sufficient plants, methionine translocation was observed from absorbing roots to shoots, in Fe-deficient plants, only a little amount was translocated from roots to shoots. In conclusion, methionine from the upper portion of a plant is not used as a precursor of mugineic acid under Fe-deficiency conditions. (author)

  19. The translocation (6;9) (p23;q34) shows consistent rearrangement of two genes and defines a myeloproliferative disorder with specific clinical features

    NARCIS (Netherlands)

    Soekarman, D.; von Lindern, M.; Daenen, S.; de Jong, B.; Fonatsch, C.; Heinze, B.; Bartram, C.; Hagemeijer, A.; Grosveld, G.

    1992-01-01

    Translocation (6;9)(p23;q34) is a cytogenetic aberration that can be found in specific subtypes of both acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). This translocation is associated with an unfavourable prognosis. Recently, the genes involved in the t(6;9) were isolated and

  20. AKT delays the early-activated apoptotic pathway in UVB-irradiated keratinocytes via BAD translocation.

    Science.gov (United States)

    Claerhout, Sofie; Decraene, David; Van Laethem, An; Van Kelst, Sofie; Agostinis, Patrizia; Garmyn, Marjan

    2007-02-01

    Upon irradiation with a high dose of UVB, keratinocytes undergo apoptosis as a protective mechanism. In previous work, we demonstrated the existence of an early-activated UVB-induced apoptotic pathway in growth factor-depleted human keratinocytes, which can be substantially delayed by the exclusive supplementation of IGF-1. We now show that in human keratinocytes, IGF-1 inhibits the onset of UVB-triggered apoptosis through a transcriptional independent, AKT-mediated mechanism, involving BAD serine 136 phosphorylation. Our results show that the early UVB-induced apoptosis in growth factor-depleted human keratinocytes is exclusively triggered through the mitochondrial pathway. It is accompanied by BAX translocation, cytochrome c release, and procaspase-9 cleavage, but not by procaspase-8 or BID cleavage. In human keratinocytes, IGF-1 supplementation inhibits these events in a transcription-independent manner. Both IGF-1 supplementation and the transduction of a membrane-targeted form of AKT result in a shift of the BH3-only protein BAD from the mitochondria to the cytoplasm, paralleled by an increase of AKT-specific Ser136 phospho-BAD bound to 14-3-3zeta protein. These data indicate that AKT-induced BAD phosphorylation and its subsequent cytoplasmic sequestration by 14-3-3zeta is a major mechanism responsible for the postponement of UVB-induced apoptosis in human keratinocytes.

  1. Control of glucokinase translocation in rat hepatocytes by sorbitol and the cytosolic redox state.

    Science.gov (United States)

    Agius, L

    1994-02-15

    In rat hepatocytes cultured in 5 mM glucose, glucokinase activity is present predominantly in a bound state, and during permeabilization of the cells with digitonin in the presence of Mg2+ less than 20% of glucokinase activity is released. However, incubation of hepatocytes with a higher [glucose] [concn. giving half-maximal activation (A50) 15 mM] or with fructose (A50 50 microM) causes translocation of glucokinase from its Mg(2+)-dependent binding site to an alternative site [Agius and Peak (1993) Biochem. J. 296, 785-796]. A comparison of various substrates showed that sorbitol (A50 8 microM) was 6-fold more potent than fructose at causing glucokinase translocation, whereas tagatose was as potent and mannitol was > 10-fold less potent (A50 550 microM). These substrates also stimulate glucose conversion into glycogen with a similar relative potency, suggesting that conversion of glucose into glycogen is dependent on the binding and/or location of glucokinase within the hepatocyte. Ethanol and glycerol inhibited the effects of fructose, sorbitol and glucose on glucokinase translocation, whereas dihydroxy-acetone had a small additive effect at sub-maximal substrate stimulation. The converse effects of glycerol and dihydroxy-acetone suggest a role for the cytosolic NADH/NAD+ redox state in controlling glucokinase translocation. Titrations with three competitive inhibitors of glucokinase did not provide evidence for involvement of glucokinase flux in glucose-induced glucokinase translocation: N-acetylglucosamine inhibited glucose conversion into glycogen, but not glucose-induced glucokinase translocation; glucosamine partially suppressed glucose-induced and fructose-induced glucokinase translocation, at concentrations that caused total inhibition of glucose conversion into glycogen; D-mannoheptulose increased glucokinase release and had an additive effect with glucose. 3,3'-Tetramethylene-glutaric acid (5 mM), an inhibitor of aldose reductase, inhibited glucokinase

  2. Metabotropic Glutamate Receptor 7 Modulates the Rewarding Effects of Cocaine in Rats: Involvement of a Ventral Pallidal GABAergic Mechanism

    Science.gov (United States)

    Li, Xia; Li, Jie; Peng, Xiao-Qing; Spiller, Krista; Gardner, Eliot L; Xi, Zheng-Xiong

    2013-01-01

    The metabotropic glutamate receptor 7 (mGluR7) has received much attention as a potential target for the treatment of epilepsy, major depression, and anxiety. In this study, we investigated the possible involvement of mGluR7 in cocaine reward in animal models of drug addiction. Pretreatment with the selective mGluR7 allosteric agonist N,N’-dibenzyhydryl-ethane-1,2-diamine dihydrochloride (AMN082; 1-20 mg/kg, i.p.) dose-dependently inhibited cocaine-induced enhancement of electrical brain-stimulation reward and intravenous cocaine self-administration under both fixed-ratio and progressive-ratio reinforcement conditions, but failed to alter either basal or cocaine-enhanced locomotion or oral sucrose self-administration, suggesting a specific inhibition of cocaine reward. Microinjections of AMN082 (1–5 μg/μl per side) into the nucleus accumbens (NAc) or ventral pallidum (VP), but not dorsal striatum, also inhibited cocaine self-administration in a dose-dependent manner. Intra-NAc or intra-VP co-administration of 6-(4-methoxyphenyl)-5-methyl-3-pyridin-4-ylisoxazolo[4,5-c]pyridin-4(5H)-one (MMPIP, 5 μg/μl per side), a selective mGluR7 allosteric antagonist, significantly blocked AMN082’s action, suggesting an effect mediated by mGluR7 in these brain regions. In vivo microdialysis demonstrated that cocaine (10 mg/kg, i.p.) priming significantly elevated extracellular DA in the NAc or VP, while decreasing extracellular GABA in VP (but not in NAc). AMN082 pretreatment selectively blocked cocaine-induced changes in extracellular GABA, but not in DA, in both naive rats and cocaine self-administration rats. These data suggest: (1) mGluR7 is critically involved in cocaine’s acute reinforcement; (2) GABA-, but not DA-, dependent mechanisms in the ventral striatopallidal pathway appear to underlie AMN082’s actions; and (3) AMN082 or other mGluR7-selective agonists may be useful in the treatment of cocaine addiction. PMID:19158667

  3. Effects of different ligands on epidermal growth factor receptor (EGFR) nuclear translocation

    Energy Technology Data Exchange (ETDEWEB)

    Faria, Jerusa A.Q.A.; Andrade, Carolina de; Goes, Alfredo M. [Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Belo Horizonte, MG, 31270-901 (Brazil); Rodrigues, Michele A. [Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Belo Horizonte, MG, 31270-901 (Brazil); Department of General Pathology, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Belo Horizonte, MG, 31270-901 (Brazil); Gomes, Dawidson A., E-mail: dawidson@ufmg.br [Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Belo Horizonte, MG, 31270-901 (Brazil)

    2016-09-09

    The epidermal growth factor receptor (EGFR) is activated through binding to specific ligands and generates signals for proliferation, differentiation, migration, and cell survival. Recent data show the role of nuclear EGFR in tumors. Although many EGFR ligands are upregulated in cancers, little is known about their effects on EGFR nuclear translocation. We have compared the effects of six EGFR ligands (EGF, HB-EGF, TGF-α, β-Cellulin, amphiregulin, and epiregulin) on nuclear translocation of EGFR, receptor phosphorylation, migration, and proliferation. Cell fractionation and confocal immunofluorescence detected EGFR in the nucleus after EGF, HB-EGF, TGF-α and β-Cellulin stimulation in a dose-dependent manner. In contrast, amphiregulin and epiregulin did not generate nuclear translocation of EGFR. EGF, HB-EGF, TGF-α and β-Cellulin showed correlations between a higher rate of wound closure and increased phosphorylation of residues in the carboxy-terminus of EGFR, compared to amphiregulin and epiregulin. The data indicate that EGFR is translocated to the nucleus after stimulation with EGF, HB-EGF, TGF-α and β-Cellulin, and that these ligands are related to increased phosphorylation of EGFR tyrosine residues, inducing migration of SkHep-1 cells. - Highlights: • EGF, HB-EGF, TGF-α, β-Cellulin are involved in the EGFR nuclear translocation. • Amphiregulin and epiregulin did not promote nuclear translocation of EGFR. • EGF, HB-EGF, TGF-α and β-Cellulin have a role in SkHep-1 cells migration. • EGFR ligands associated with better prognosis don't stimulate EGFR translocation.

  4. Effects of different ligands on epidermal growth factor receptor (EGFR) nuclear translocation

    International Nuclear Information System (INIS)

    Faria, Jerusa A.Q.A.; Andrade, Carolina de; Goes, Alfredo M.; Rodrigues, Michele A.; Gomes, Dawidson A.

    2016-01-01

    The epidermal growth factor receptor (EGFR) is activated through binding to specific ligands and generates signals for proliferation, differentiation, migration, and cell survival. Recent data show the role of nuclear EGFR in tumors. Although many EGFR ligands are upregulated in cancers, little is known about their effects on EGFR nuclear translocation. We have compared the effects of six EGFR ligands (EGF, HB-EGF, TGF-α, β-Cellulin, amphiregulin, and epiregulin) on nuclear translocation of EGFR, receptor phosphorylation, migration, and proliferation. Cell fractionation and confocal immunofluorescence detected EGFR in the nucleus after EGF, HB-EGF, TGF-α and β-Cellulin stimulation in a dose-dependent manner. In contrast, amphiregulin and epiregulin did not generate nuclear translocation of EGFR. EGF, HB-EGF, TGF-α and β-Cellulin showed correlations between a higher rate of wound closure and increased phosphorylation of residues in the carboxy-terminus of EGFR, compared to amphiregulin and epiregulin. The data indicate that EGFR is translocated to the nucleus after stimulation with EGF, HB-EGF, TGF-α and β-Cellulin, and that these ligands are related to increased phosphorylation of EGFR tyrosine residues, inducing migration of SkHep-1 cells. - Highlights: • EGF, HB-EGF, TGF-α, β-Cellulin are involved in the EGFR nuclear translocation. • Amphiregulin and epiregulin did not promote nuclear translocation of EGFR. • EGF, HB-EGF, TGF-α and β-Cellulin have a role in SkHep-1 cells migration. • EGFR ligands associated with better prognosis don't stimulate EGFR translocation.

  5. Cytotoxic mechanisms of Zn2+ and Cd2+ involve Na+/H+ exchanger (NHE) activation by ROS

    International Nuclear Information System (INIS)

    Koutsogiannaki, Sophia; Evangelinos, Nikolaos; Koliakos, George; Kaloyianni, Martha

    2006-01-01

    The signaling mechanism induced by cadmium (Cd) and zinc (Zn) in gill cells of Mytilus galloprovincialis was investigated. Both metals cause an increase in ·O 2 - production, with Cd to be more potent (216 ± 15%) than Zn (150 ± 9.5%), in relation to control value (100%). The metals effect was reversed after incubation with the amiloride analogue, EIPA, a selective Na + /H + exchanger (NHE) inhibitor as well as in the presence of calphostin C, a protein kinase C (PKC) inhibitor. The heavy metals effect on ·O 2 - production was mediated via the interaction of metal ions with α 1 - and β-adrenergic receptors, as shown after incubation with their respective agonists and antagonists. In addition, both metals caused an increase in intracellular pH (pHi) of gill cells. EIPA together with either metal significantly reduced the effect of each metal treatment on pHi. Incubation of gill cells with the oxidants rotenone, antimycin A and pyruvate caused a significant increase in pHi (ΔpHi 0.830, 0.272 and 0.610, respectively), while in the presence of the anti-oxidant N-acetyl cysteine (NAC) a decrease in pHi (ΔpHi -0.090) was measured, indicating that change in reactive oxygen species (ROS) production by heavy metals affects NHE activity. When rosiglitazone was incubated together with either heavy metal a decrease in O 2 - production was observed. Our results show a key role of NHE in the signal transduction pathway induced by Zn and Cd in gill cells, with the involvement of ROS, PKC, adrenergic and PPAR-γ receptors. In addition, differences between the two metals concerning NHE activation, O 2 - production and interaction with adrenergic receptors were observed

  6. Involvement of two uptake mechanisms of gold and iron oxide nanoparticles in a co-exposure scenario using mouse macrophages

    Directory of Open Access Journals (Sweden)

    Dimitri Vanhecke

    2017-11-01

    Full Text Available Little is known about the simultaneous uptake of different engineered nanoparticle types, as it can be expected in our daily life. In order to test such co-exposure effects, murine macrophages (J774A.1 cell line were incubated with gold (AuNPs and iron oxide nanoparticles (FeOxNPs either alone or combined. Environmental scanning electron microscopy revealed that single NPs of both types bound within minutes on the cell surface but with a distinctive difference between FeOxNPs and AuNPs. Uptake analysis studies based on laser scanning microscopy, transmission electron microscopy, and inductively coupled plasma optical emission spectrometry revealed intracellular appearance of both NP types in all exposure scenarios and a time-dependent increase. This increase was higher for both AuNPs and FeOxNPs during co-exposure. Cells treated with endocytotic inhibitors recovered after co-exposure, which additionally hinted that two uptake mechanisms are involved. Cross-talk between uptake pathways is relevant for toxicological studies: Co-exposure acts as an uptake accelerant. If the goal is to maximize the cellular uptake, e.g., for the delivery of pharmaceutical agents, this can be beneficial. However, co-exposure should also be taken into account in the case of risk assessment of occupational settings. The demonstration of co-exposure-invoked pathway interactions reveals that synergetic nanoparticle effects, either positive or negative, must be considered for nanotechnology and nanomedicine in particular to develop to its full potential.

  7. The asymmetric binding of PGC-1α to the ERRα and ERRγ nuclear receptor homodimers involves a similar recognition mechanism.

    Directory of Open Access Journals (Sweden)

    Maria Takacs

    Full Text Available PGC-1α is a crucial regulator of cellular metabolism and energy homeostasis that functionally acts together with the estrogen-related receptors (ERRα and ERRγ in the regulation of mitochondrial and metabolic gene networks. Dimerization of the ERRs is a pre-requisite for interactions with PGC-1α and other coactivators, eventually leading to transactivation. It was suggested recently (Devarakonda et al that PGC-1α binds in a strikingly different manner to ERRγ ligand-binding domains (LBDs compared to its mode of binding to ERRα and other nuclear receptors (NRs, where it interacts directly with the two ERRγ homodimer subunits.Here, we show that PGC-1α receptor interacting domain (RID binds in an almost identical manner to ERRα and ERRγ homodimers. Microscale thermophoresis demonstrated that the interactions between PGC-1α RID and ERR LBDs involve a single receptor subunit through high-affinity, ERR-specific L3 and low-affinity L2 interactions. NMR studies further defined the limits of PGC-1α RID that interacts with ERRs. Consistent with these findings, the solution structures of PGC-1α/ERRα LBDs and PGC-1α/ERRγ LBDs complexes share an identical architecture with an asymmetric binding of PGC-1α to homodimeric ERR.These studies provide the molecular determinants for the specificity of interactions between PGC-1α and the ERRs, whereby negative cooperativity prevails in the binding of the coactivators to these receptors. Our work indicates that allosteric regulation may be a general mechanism controlling the binding of the coactivators to homodimers.

  8. Slimmer or fertile? Pharmacological mechanisms involved in reduced sperm quality and fertility in rats exposed to the anorexigen sibutramine.

    Directory of Open Access Journals (Sweden)

    Cibele S Borges

    Full Text Available Sperm acquire motility and fertility capacity during epididymal transit, under the control of androgens and sympathetic innervations. It is already known that the acceleration of epididymal sperm transit time can lead to lower sperm quality. In a previous work we showed that rats exposed to the anorexigen sibutramine, a non-selective serotonin-norepinephrine reuptake inhibitor, presented faster sperm transit time, lower epididymal sperm reserves and potentiation of the tension of epididymal duct to norepinephrine exposed acutely in vitro to sibutramine. In the present work we aimed to further investigate pharmacological mechanisms involved in these alterations and the impact on rat sperm quality. For this, adult male Wistar rats were treated with sibutramine (10 mg/kg/day or vehicle for 30 days. Sibutramine decreased final body, seminal vesicle, ventral prostate and epididymal weights, as well as sperm transit time in the epididymal cauda. On the contrary of the in vitro pharmacological assays, in which sibutramine was added directly to the bath containing strips of distal epididymal cauda, the ductal tension was not altered after in vivo sub-chronic exposure to sibutramine. However, there is pharmacological evidence that the endogenous epididymal norepinephrine reserves were reduced in these animals. It was also shown that the decrease in prostate weight can be related to increased tension developed of the gland, due to sibutramine sympathomimetic effects. In addition, our results showed reduced sperm quality after in utero artificial insemination, a more sensitive procedure to assess fertility in rodents. The epididymal norepinephrine depletion exerted by sibutramine, associated with decreases in sperm transit time, quantity and quality, leading to reduced fertility in this experimental model, reinforces the concerns about the possible impact on fertility of man taking sibutramine as well as other non-selective serotonin

  9. Slimmer or fertile? Pharmacological mechanisms involved in reduced sperm quality and fertility in rats exposed to the anorexigen sibutramine.

    Science.gov (United States)

    Borges, Cibele S; Missassi, Gabriela; Pacini, Enio S A; Kiguti, Luiz Ricardo A; Sanabria, Marciana; Silva, Raquel F; Banzato, Thais P; Perobelli, Juliana E; Pupo, André S; Kempinas, Wilma G

    2013-01-01

    Sperm acquire motility and fertility capacity during epididymal transit, under the control of androgens and sympathetic innervations. It is already known that the acceleration of epididymal sperm transit time can lead to lower sperm quality. In a previous work we showed that rats exposed to the anorexigen sibutramine, a non-selective serotonin-norepinephrine reuptake inhibitor, presented faster sperm transit time, lower epididymal sperm reserves and potentiation of the tension of epididymal duct to norepinephrine exposed acutely in vitro to sibutramine. In the present work we aimed to further investigate pharmacological mechanisms involved in these alterations and the impact on rat sperm quality. For this, adult male Wistar rats were treated with sibutramine (10 mg/kg/day) or vehicle for 30 days. Sibutramine decreased final body, seminal vesicle, ventral prostate and epididymal weights, as well as sperm transit time in the epididymal cauda. On the contrary of the in vitro pharmacological assays, in which sibutramine was added directly to the bath containing strips of distal epididymal cauda, the ductal tension was not altered after in vivo sub-chronic exposure to sibutramine. However, there is pharmacological evidence that the endogenous epididymal norepinephrine reserves were reduced in these animals. It was also shown that the decrease in prostate weight can be related to increased tension developed of the gland, due to sibutramine sympathomimetic effects. In addition, our results showed reduced sperm quality after in utero artificial insemination, a more sensitive procedure to assess fertility in rodents. The epididymal norepinephrine depletion exerted by sibutramine, associated with decreases in sperm transit time, quantity and quality, leading to reduced fertility in this experimental model, reinforces the concerns about the possible impact on fertility of man taking sibutramine as well as other non-selective serotonin-norepinephrine reuptake inhibitors

  10. Mechanisms involved in the hydrothermal growth of ultra-thin and high aspect ratio ZnO nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Demes, Thomas [Univ. Grenoble Alpes, CNRS, Grenoble-INP, LMGP, F-38000 Grenoble (France); Ternon, Céline, E-mail: celine.ternon@grenoble-inp.fr [Univ. Grenoble Alpes, CNRS, Grenoble-INP, LMGP, F-38000 Grenoble (France); Univ. Grenoble Alpes, CNRS, LTM, F-38000 Grenoble (France); Morisot, Fanny [Univ. Grenoble Alpes, CNRS, Grenoble-INP, LMGP, F-38000 Grenoble (France); Univ. Grenoble Alpes, CNRS, Grenoble-INP" 2, IMEP-LaHC, F-38000 Grenoble (France); Riassetto, David [Univ. Grenoble Alpes, CNRS, Grenoble-INP, LMGP, F-38000 Grenoble (France); Legallais, Maxime [Univ. Grenoble Alpes, CNRS, Grenoble-INP, LMGP, F-38000 Grenoble (France); Univ. Grenoble Alpes, CNRS, Grenoble-INP" 2, IMEP-LaHC, F-38000 Grenoble (France); Roussel, Hervé; Langlet, Michel [Univ. Grenoble Alpes, CNRS, Grenoble-INP, LMGP, F-38000 Grenoble (France)

    2017-07-15

    Highlights: • ZnO nanowires are grown on sol-gel ZnO seed layers by hydrothermal synthesis. • Ultra-thin and high aspect ratio nanowires are obtained without using additives. • Nanowire diameter is 20–25 nm regardless of growth time and seed morphology. • A nanowire growth model is developed on the basis of thermodynamic considerations. • The nanowires are intended for integration into electrically conductive nanonets. - Abstract: Hydrothermal synthesis of ZnO nanowires (NWs) with tailored dimensions, notably high aspect ratios (AR) and small diameters, is a major concern for a wide range of applications and still represents a challenging and recurring issue. In this work, an additive-free and reproducible hydrothermal procedure has been developed to grow ultra-thin and high AR ZnO NWs on sol-gel deposited ZnO seed layers. Controlling the substrate temperature and using a low reagent concentration (1 mM) has been found to be essential for obtaining such NWs. We show that the NW diameter remains constant at about 20–25 nm with growth time contrary to the NW length that can be selectively increased leading to NWs with ARs up to 400. On the basis of investigated experimental conditions along with thermodynamic and kinetic considerations, a ZnO NW growth mechanism has been developed which involves the formation and growth of nuclei followed by NW growth when the nuclei reach a critical size of about 20–25 nm. The low reagent concentration inhibits NW lateral growth leading to ultra-thin and high AR NWs. These NWs have been assembled into electrically conductive ZnO nanowire networks, which opens attractive perspectives toward the development of highly sensitive low-cost gas- or bio-sensors.

  11. E2F-1 induces melanoma cell apoptosis via PUMA up-regulation and Bax translocation

    International Nuclear Information System (INIS)

    Hao, Hongying; Dong, Yanbin; Bowling, Maria T; Gomez-Gutierrez, Jorge G; Zhou, H Sam; McMasters, Kelly M

    2007-01-01

    PUMA is a pro-apoptotic Bcl-2 family member that has been shown to be involved in apoptosis in many cell types. We sought to ascertain whether induction of PUMA plays a crucial role in E2F-1-induced apoptosis in melanoma cells. PUMA gene and protein expression levels were detected by real-time PCR and Western blot in SK-MEL-2 and HCT116 cell lines after Ad-E2F-1 infection. Activation of the PUMA promoter by E2F-1 overexpression was detected by dual luciferase reporter assay. E2F-1-induced Bax translocation was shown by immunocytochemistry. The induction of caspase-9 activity was measured by caspase-9 colorimetric assay kit. Up-regulation of the PUMA gene and protein by E2F-1 overexpression was detected by real-time PCR and Western blot analysis in the SK-MEL-2 melanoma cell line. In support of this finding, we found six putative E2F-1 binding sites within the PUMA promoter. Subsequent dual luciferase reporter assay showed that E2F-1 expression could increase the PUMA gene promoter activity 9.3 fold in SK-MEL-2 cells. The role of PUMA in E2F-1-induced apoptosis was further investigated in a PUMA knockout cell line. Cell viability assay showed that the HCT116 PUMA-/- cell line was more resistant to Ad-E2F-1-mediated cell death than the HCT116 PUMA+/+ cell line. Moreover, a 2.2-fold induction of the PUMA promoter was also noted in the HCT116 PUMA+/+ colon cancer cell line after Ad-E2F-1 infection. Overexpression of a truncated E2F-1 protein that lacks the transactivation domain failed to up-regulate PUMA promoter, suggesting that PUMA may be a transcriptional target of E2F-1. E2F-1-induced cancer cell apoptosis was accompanied by Bax translocation from the cytosol to mitochondria and the induction of caspase-9 activity, suggesting that E2F-1-induced apoptosis is mediated by PUMA through the cytochrome C/Apaf-1-dependent pathway. Our studies strongly demonstrated that E2F-1 induces melanoma cell apoptosis via PUMA up-regulation and Bax translocation. The signaling

  12. Hyaluronan synthase mediates dye translocation across liposomal membranes

    Directory of Open Access Journals (Sweden)

    Medina Andria P

    2012-01-01

    Full Text Available Abstract Background Hyaluronan (HA is made at the plasma membrane and secreted into the extracellular medium or matrix by phospolipid-dependent hyaluronan synthase (HAS, which is active as a monomer. Since the mechanism by which HA is translocated across membranes is still unresolved, we assessed the presence of an intraprotein pore within HAS by adding purified Streptococcus equisimilis HAS (SeHAS to liposomes preloaded with the fluorophore Cascade Blue (CB. Results CB translocation (efflux was not observed with mock-purified material from empty vector control E. coli membranes, but was induced by SeHAS, purified from membranes, in a time- and dose-dependent manner. CB efflux was eliminated or greatly reduced when purified SeHAS was first treated under conditions that inhibit enzyme activity: heating, oxidization or cysteine modification with N-ethylmaleimide. Reduced CB efflux also occurred with SeHAS K48E or K48F mutants, in which alteration of K48 within membrane domain 2 causes decreased activity and HA product size. The above results used liposomes containing bovine cardiolipin (BCL. An earlier study testing many synthetic lipids found that the best activating lipid for SeHAS is tetraoleoyl cardiolipin (TO-CL and that, in contrast, tetramyristoyl cardiolipin (TM-CL is an inactivating lipid (Weigel et al, J. Biol. Chem. 281, 36542, 2006. Consistent with the effects of these CL species on SeHAS activity, CB efflux was more than 2-fold greater in liposomes made with TO-CL compared to TM-CL. Conclusions The results indicate the presence of an intraprotein pore in HAS and support a model in which HA is translocated to the exterior by HAS itself.

  13. Translocation heterozygosity in southern African species of Viscum

    Directory of Open Access Journals (Sweden)

    D. Wiens

    1980-11-01

    Full Text Available Sex-associated and floating translocation complexes are characteristic of dioecious species of  Viscum,  but are virtually absent in monoecious species. The majority of dioecious species has fixed sex-associated translocation complexes with the male being the heterozygous sex. The sex-associated multivalent is usually O4 (ring-of-four or O6 , rarely O8 . Dioecious species without sex-associated translocations are much less common. Most of the dioecious species are also polymorphic for floating translocations, producing one or more additional multivalents ranging from O4 to O12. Floating translocations may be more frequent in species that do not have sex-associated translocations. Supernumerary chromosomes are also present in several species. Sex ratios are at unity in most dioecious species, but female-biased ratios may occur in some species. The high correlation between dioecy and translocation heterozygosity suggests that translocations are primarily associated with the origin and establishment of dioecy. Any róle in the maintenance of biased sex ratios through meiotic drive is probably secondary. Sex-associated translocations may serve to stabilize dioecy by bringing the sex factors into close linkage. Subsequent structural rearrangements within a sex-associated translocation complex may bring the sex factors together in one chromosome pair, releasing floating translocations. The high frequencies of floating translocation heterozygosity in some species indicate that such heterozygosity also has adaptive value.

  14. Preimplantation genetic haplotyping a new application for diagnosis of translocation carrier's embryos- preliminary observations of two robertsonian translocation carrier families.

    Science.gov (United States)

    Shamash, Jana; Rienstein, Shlomit; Wolf-Reznik, Haike; Pras, Elon; Dekel, Michal; Litmanovitch, Talia; Brengauz, Masha; Goldman, Boleslav; Yonath, Hagith; Dor, Jehoshua; Levron, Jacob; Aviram-Goldring, Ayala

    2011-01-01

    Preimplantation genetic diagnosis using fluorescence in-situ hybridization (PGD-FISH) is currently the most common reproductive solution for translocation carriers. However, this technique usually does not differentiate between embryos carrying the balanced form of the translocation and those carrying the homologous normal chromosomes. We developed a new application of preimplantation genetic haplotyping (PGH) that can identify and distinguish between all forms of the translocation status in cleavage stage embryos prior to implantation. Polymorphic markers were used to identify and differentiate between the alleles that carry the translocation and those that are the normal homologous chromosomes. Embryos from two families of robertsonian translocation carriers were successfully analyzed using polymorphic markers haplotyping. Our preliminary results indicate that the PGH is capable of distinguishing between normal, balanced and unbalanced translocation carrier embryos. This method will improve PGD and will enable translocation carriers to avoid transmission of the translocation and the associated medical complications to offspring.

  15. Missense Mutations Allow a Sequence-Blind Mutant of SpoIIIE to Successfully Translocate Chromosomes during Sporulation.

    Science.gov (United States)

    Bose, Baundauna; Reed, Sydney E; Besprozvannaya, Marina; Burton, Briana M

    2016-01-01

    SpoIIIE directionally pumps DNA across membranes during Bacillus subtilis sporulation and vegetative growth. The sequence-reading domain (γ domain) is required for directional DNA transport, and its deletion severely impairs sporulation. We selected suppressors of the spoIIIEΔγ sporulation defect. Unexpectedly, many suppressors were intragenic missense mutants, and some restore sporulation to near-wild-type levels. The mutant proteins are likely not more abundant, faster at translocating DNA, or sequence-sensitive, and rescue does not involve the SpoIIIE homolog SftA. Some mutants behave differently when co-expressed with spoIIIEΔγ, consistent with the idea that some, but not all, variants may form mixed oligomers. In full-length spoIIIE, these mutations do not affect sporulation, and yet the corresponding residues are rarely found in other SpoIIIE/FtsK family members. The suppressors do not rescue chromosome translocation defects during vegetative growth, indicating that the role of the γ domain cannot be fully replaced by these mutations. We present two models consistent with our findings: that the suppressors commit to transport in one arbitrarily-determined direction or delay spore development. It is surprising that missense mutations somehow rescue loss of an entire domain with a complex function, and this raises new questions about the mechanism by which SpoIIIE pumps DNA and the roles SpoIIIE plays in vivo.

  16. KDM6B Elicits Cell Apoptosis by Promoting Nuclear Translocation of FOXO1 in Non-Small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Jun Ma

    2015-08-01

    Full Text Available Background/Aims: Non-small cell lung carcinoma (NSCLC is the most common type of lung cancer and the cause of most cancer-related deaths. The molecular mechanisms that are involved in NSCLC development are currently not well understood. Accumulating evidence shows that histone demethylases play important roles in the regulation of pathological developmental processes in many diseases, including various types of cancers. Methods: Mitochondrial membrane potential assays, migration and invasion assays, caspase-3 and caspase-9 activity assays and western blot analysis were used in this research. Results: We found that overexpression of KDM6B, a demethylase that acts on histone H3 at lysine 27 (H3K27, inhibited cell growth by initiating mitochondria-dependent apoptosis and by attenuating the invasion-metastasis cascade in NSCLC cells. Moreover, our results showed that KDM6B directly interacted with FOXO1 and that overexpression of KDM6B promoted nuclear accumulation of FOXO1. The effects of KDM6B on cell apoptosis and metastasis were weakened by knockdown of FOXO1 expression. On the contrary, knocking down expression of KDM6B inhibited cell apoptosis and promoted cell growth by mitigating the nuclear translocation of FOXO1 in NSCLC cells. Conclusions: These findings suggest that KDM6B may act in a pro-apoptotic role in NSCLC by causing the nuclear translocation of FOXO1.

  17. Missense Mutations Allow a Sequence-Blind Mutant of SpoIIIE to Successfully Translocate Chromosomes during Sporulation.

    Directory of Open Access Journals (Sweden)

    Baundauna Bose

    Full Text Available SpoIIIE directionally pumps DNA across membranes during Bacillus subtilis sporulation and vegetative growth. The sequence-reading domain (γ domain is required for directional DNA transport, and its deletion severely impairs sporulation. We selected suppressors of the spoIIIEΔγ sporulation defect. Unexpectedly, many suppressors were intragenic missense mutants, and some restore sporulation to near-wild-type levels. The mutant proteins are likely not more abundant, faster at translocating DNA, or sequence-sensitive, and rescue does not involve the SpoIIIE homolog SftA. Some mutants behave differently when co-expressed with spoIIIEΔγ, consistent with the idea that some, but not all, variants may form mixed oligomers. In full-length spoIIIE, these mutations do not affect sporulation, and yet the corresponding residues are rarely found in other SpoIIIE/FtsK family members. The suppressors do not rescue chromosome translocation defects during vegetative growth, indicating that the role of the γ domain cannot be fully replaced by these mutations. We present two models consistent with our findings: that the suppressors commit to transport in one arbitrarily-determined direction or delay spore development. It is surprising that missense mutations somehow rescue loss of an entire domain with a complex function, and this raises new questions about the mechanism by which SpoIIIE pumps DNA and the roles SpoIIIE plays in vivo.

  18. Translocality, Network Structure, and Music Worlds: Underground Metal in the United Kingdom.

    Science.gov (United States)

    Emms, Rachel; Crossley, Nick

    2018-02-01

    Translocal music worlds are often defined as networks of local music worlds. However, their networked character and more especially their network structure is generally assumed rather than concretely mapped and explored. Formal social network analysis (SNA) is beginning to attract interest in music sociology but it has not previously been used to explore a translocal music world. In this paper, drawing upon a survey of the participation of 474 enthusiasts in 148 live music events, spread across 6 localities, we use SNA to explore a significant "slice" of the network structure of the U.K.'s translocal underground heavy metal world. Translocality is generated in a number of ways, we suggest, but one way, the way we focus upon, involves audiences traveling between localities to attend gigs and festivals. Our analysis of this network uncovers a core-periphery structure which, we further find, maps onto locality. Not all live events enjoy equal standing in our music world and some localities are better placed to capture more prestigious events, encouraging inward travel. The identification of such structures, and the inequality they point to, is, we believe, one of several benefits of using SNA to analyze translocal music worlds. © 2018 Canadian Sociological Association/La Société canadienne de sociologie.

  19. Effects of arbuscular mycorrhizal fungi on the root uptake and translocation of radiocaesium

    International Nuclear Information System (INIS)

    Dupre de Boulois, Herve; Delvaux, Bruno; Declerck, Stephane

    2005-01-01

    Because mycorrhizal fungi are intimately associated with plant roots, their importance in radionuclide (RN) recycling and subsequent dispersion into the biosphere has received an increasing interest. Recently, the capacity of arbuscular mycorrhizal fungi to take up and translocate radiocaesium to their host was demonstrated. However, the relative contribution of these processes in comparison to the ones of roots remains unknown. Here, the respective contributions of the hyphae of a Glomus species and the transformed carrot (Daucus carota L.) roots on radiocaesium uptake and translocation were compared and quantified. We observed that radiocaesium uptake by hyphae was significantly lower as compared to that of the roots, while the opposite was noted for radiocaesium translocation/uptake ratio. We also observed that the intraradical fungal structures might induce a local accumulation of radiocaesium and concurrently reduce its translocation within mycorrhizal roots. We believe that intraradical fungal structures might induce the down-regulation of radiocaesium channels involved in the transport processes of radiocaesium towards the xylem. - Radiocaesium root uptake and translocation is affected by an arbuscular mycorrhizal fungus

  20. Effects of arbuscular mycorrhizal fungi on the root uptake and translocation of radiocaesium

    Energy Technology Data Exchange (ETDEWEB)

    Dupre de Boulois, Herve [Universite catholique de Louvain, Mycotheque de l' Universite catholique de Louvain (MUCL), Unite de Microbiologie, Place Croix du Sud 3, 1348 Louvain-la-Neuve (Belgium); Delvaux, Bruno [Universite catholique de Louvain, Unite des Sciences du Sol, Place Croix du Sud 2/10, 1348 Louvain-la-Neuve (Belgium); Declerck, Stephane [Universite catholique de Louvain, Mycotheque de l' Universite catholique de Louvain (MUCL), Unite de Microbiologie, Place Croix du Sud 3, 1348 Louvain-la-Neuve (Belgium)]. E-mail: declerck@mbla.ucl.ac.be

    2005-04-01

    Because mycorrhizal fungi are intimately associated with plant roots, their importance in radionuclide (RN) recycling and subsequent dispersion into the biosphere has received an increasing interest. Recently, the capacity of arbuscular mycorrhizal fungi to take up and translocate radiocaesium to their host was demonstrated. However, the relative contribution of these processes in comparison to the ones of roots remains unknown. Here, the respective contributions of the hyphae of a Glomus species and the transformed carrot (Daucus carota L.) roots on radiocaesium uptake and translocation were compared and quantified. We observed that radiocaesium uptake by hyphae was significantly lower as compared to that of the roots, while the opposite was noted for radiocaesium translocation/uptake ratio. We also observed that the intraradical fungal structures might induce a local accumulation of radiocaesium and concurrently reduce its translocation within mycorrhizal roots. We believe that intraradical fungal structures might induce the down-regulation of radiocaesium channels involved in the transport processes of radiocaesium towards the xylem. - Radiocaesium root uptake and translocation is affected by an arbuscular mycorrhizal fungus.

  1. Multiperspective smFRET reveals rate-determining late intermediates of ribosomal translocation.

    Science.gov (United States)

    Wasserman, Michael R; Alejo, Jose L; Altman, Roger B; Blanchard, Scott C

    2016-04-01

    Directional translocation of the ribosome through the mRNA open reading frame is a critical determinant of translational fidelity. This process entails a complex interplay of large-scale conformational changes within the actively translating particle, which together coordinate the movement of tRNA and mRNA substrates with respect to the large and small ribosomal subunits. Using pre-steady state, single-molecule fluorescence resonance energy transfer imaging, we tracked the nature and timing of these conformational events within the Escherichia coli ribosome from five structural perspectives. Our investigations revealed direct evidence of structurally and kinetically distinct late intermediates during substrate movement, whose resolution determines the rate of translocation. These steps involve intramolecular events within the EF-G-GDP-bound ribosome, including exaggerated, reversible fluctuations of the small-subunit head domain, which ultimately facilitate peptidyl-tRNA's movement into its final post-translocation position.

  2. Research methods in weed science: herbicide absorption and translocation in plants using radioisotopes

    Science.gov (United States)

    Herbicide absorption and translocation in plants is a key component in the study of herbicide physiology, mode of action, selectivity, resistance mechanisms, and in the registration process. Radioactive herbicides have been in use for over half-a-century in the research and study of herbicide absorp...

  3. Insulin-induced translocation of IR to the nucleus in insulin responsive cells requires a nuclear translocation sequence.

    Science.gov (United States)

    Kesten, Dov; Horovitz-Fried, Miriam; Brutman-Barazani, Tamar; Sampson, Sanford R

    2018-04-01

    Insulin binding to its cell surface receptor (IR) activates a cascade of events leading to its biological effects. The Insulin-IR complex is rapidly internalized and then is either recycled back to the plasma membrane or sent to lysosomes for degradation. Although most of the receptor is recycled or degraded, a small amount may escape this pathway and migrate to the nucleus of the cell where it might be important in promulgation of receptor signals. In this study we explored the mechanism by which insulin induces IR translocation to the cell nucleus. Experiments were performed cultured L6 myoblasts, AML liver cells and 3T3-L1 adipocytes. Insulin treatment induced a rapid increase in nuclear IR protein levels within 2 to 5 min. Treatment with WGA, an inhibitor of nuclear import, reduced insulin-induced increases nuclear IR protein; IR was, however, translocated to a perinuclear location. Bioinformatics tools predicted a potential nuclear localization sequence (NLS) on IR. Immunofluorescence staining showed that a point mutation on the predicted NLS blocked insulin-induced IR nuclear translocation. In addition, blockade of nuclear IR activation in isolated nuclei by an IR blocking antibody abrogated insulin-induced increases in IR tyrosine phosphorylation and nuclear PKCδ levels. Furthermore, over expression of mutated IR reduced insulin-induced glucose uptake and PKB phosphorylation. When added to isolated nuclei, insulin induced IR phosphorylation but had no effect on nuclear IR protein levels. These results raise questions regarding the possible role of nuclear IR in IR signaling and insulin resistance. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Novel Class of Potential Therapeutics that Target Ricin Retrograde Translocation

    Directory of Open Access Journals (Sweden)

    Veronika Redmann

    2013-12-01

    Full Text Available Ricin toxin, an A-B toxin from Ricinus communis, induces cell death through the inhibition of protein synthesis. The toxin binds to the cell surface via its B chain (RTB followed by its retrograde trafficking through intracellular compartments to the ER where the A chain (RTA is transported across the membrane and into the cytosol. Ricin A chain is transported across the ER membrane utilizing cellular proteins involved in the disposal of aberrant ER proteins by a process referred to as retrograde translocation. Given the current lack of therapeutics against ricin intoxication, we developed a high-content screen using an enzymatically attenuated RTA chimera engineered with a carboxy-terminal enhanced green fluorescent protein (RTAE177Qegfp to identify compounds that target RTA retrograde translocation. Stabilizing RTAE177Qegfp through the inclusion of proteasome inhibitor produced fluorescent peri-nuclear granules. Quantitative analysis of the fluorescent granules provided the basis to discover compounds from a small chemical library (2080 compounds with known bioactive properties. Strikingly, the screen found compounds that stabilized RTA molecules within the cell and several compounds limited the ability of wild type RTA to suppress protein synthesis. Collectively, a robust high-content screen was developed to discover novel compounds that stabilize intracellular ricin and limit ricin intoxication.

  5. Molecular determinants of nucleolar translocation of RNA helicase A

    International Nuclear Information System (INIS)

    Liu Zhe; Kenworthy, Rachael; Green, Christopher; Tang, Hengli

    2007-01-01

    RNA helicase A (RHA) is a member of the DEAH-box family of DNA/RNA helicases involved in multiple cellular processes and the life cycles of many viruses. The subcellular localization of RHA is dynamic despite its steady-state concentration in the nucleoplasm. We have previously shown that it shuttles rapidly between the nucleus and the cytoplasm by virtue of a bidirectional nuclear transport domain (NTD) located in its carboxyl terminus. Here, we investigate the molecular determinants for its translocation within the nucleus and, more specifically, its redistribution from the nucleoplasm to nucleolus or the perinucleolar region. We found that low temperature treatment, transcription inhibition or replication of hepatitis C virus caused the intranuclear redistribution of the protein, suggesting that RHA shuttles between the nucleolus and nucleoplasm and becomes trapped in the nucleolus or the perinucleolar region upon blockade of transport to the nucleoplasm. Both the NTD and ATPase activity were essential for RHA's transport to the nucleolus or perinucleolar region. One of the double-stranded RNA binding domains (dsRBD II) was also required for this nucleolar translocation (NoT) phenotype. RNA interference studies revealed that RHA is essential for survival of cultured hepatoma cells and the ATPase activity appears to be important for this critical role

  6. PGE2 suppresses intestinal T cell function in thermal injury: a cause of enhanced bacterial translocation.

    Science.gov (United States)

    Choudhry, M A; Fazal, N; Namak, S Y; Haque, F; Ravindranath, T; Sayeed, M M

    2001-09-01

    Increased gut bacterial translocation in burn and trauma patients has been demonstrated in a number of previous studies, however, the mechanism for such an increased gut bacterial translocation in injured patients remains poorly understood. Utilizing a rat model of burn injury, in the present study we examined the role of intestinal immune defense by analyzing the T cell functions. We investigated if intestinal T cells dysfunction contributes to bacterial translocation after burn injury. Also our study determined if burn-mediated alterations in intestinal T cell functions are related to enhanced release of PGE2. Finally, we examined whether or not burn-related alterations in intestinal T cell function are due to inappropriate activation of signaling molecule P59fyn, which is required for T cell activation and proliferation. The results presented here showed an increase in gut bacterial accumulation in mesenteric lymph nodes after thermal injury. This was accompanied by a decrease in the intestinal T cell proliferative responses. Furthermore, the treatments of burn-injured animals with PGE2 synthesis blocker (indomethacin or NS398) prevented both the decrease in intestinal T cell proliferation and enhanced bacterial translocation. Finally, our data suggested that the inhibition of intestinal T cell proliferation could result via PGE2-mediated down-regulation of the T cell activation-signaling molecule P59fyn. These findings support a role of T cell-mediated immune defense against bacterial translocation in burn injury.

  7. A recurrent translocation is mediated by homologous recombination between HERV-H elements

    Directory of Open Access Journals (Sweden)

    Hermetz Karen E

    2012-01-01

    Full Text Available Abstract Background Chromosome rearrangements are caused by many mutational mechanisms; of these, recurrent rearrangements can be particularly informative for teasing apart DNA sequence-specific factors. Some recurrent translocations are mediated by homologous recombination between large blocks of segmental duplications on different chromosomes. Here we describe a recurrent unbalanced translocation casued by recombination between shorter homologous regions on chromosomes 4 and 18 in two unrelated children with intellectual disability. Results Array CGH resolved the breakpoints of the 6.97-Megabase (Mb loss of 18q and the 7.30-Mb gain of 4q. Sequencing across the translocation breakpoints revealed that both translocations occurred between 92%-identical human endogenous retrovirus (HERV elements in the same orientation on chromosomes 4 and 18. In addition, we find sequence variation in the chromosome 4 HERV that makes one allele more like the chromosome 18 HERV. Conclusions Homologous recombination between HERVs on the same chromosome is known to cause chromosome deletions, but this is the first report of interchromosomal HERV-HERV recombination leading to a translocation. It is possible that normal sequence variation in substrates of non-allelic homologous recombination (NAHR affects the alignment of recombining segments and influences the propensity to chromosome rearrangement.

  8. Identification of mechanisms involved in the relaxation of rabbit cavernous smooth muscle by a new nitric oxide donor ruthenium compound

    Directory of Open Access Journals (Sweden)

    João Batista Gadelha de Cerqueira

    2012-10-01

    Full Text Available PURPOSE: The aim of this study was to evaluate the relaxation in vitro of cavernous smooth muscle induced by a new NO donor of the complex nitrosil-ruthenium, named trans-[Ru(NH34(caffeine(NO]C13 (Rut-Caf and sodium nitroprusside (SNP. MATERIALS AND METHODS: The tissues, immersed in isolated bath systems, were pre-contracted with phenilephrine (PE (1 µM and then concentration-response curves (10-12 - 10-4 M were obtained. To clarify the mechanism of action involved, it was added to the baths ODQ (10 µM, 30 µM, oxyhemoglobin (10 µM, L-cysteine (100 µM, hydroxicobalamine (100 µM, glibenclamide, iberotoxin and apamine. Tissue samples were frozen in liquid nitrogen to measure the amount of cGMP and cAMP produced. RESULTS: The substances provoked significant relaxation of the cavernous smooth muscle. Both Rut-Caf and SNP determined dose-dependent relaxation with similar potency (pEC50 and maximum effect (Emax. The substances showed activity through activation of the soluble guanylyl cyclase (sGC, because the relaxations were inhibited by ODQ. Oxyhemoglobin significantly diminished the relaxation effect of the substances. L-cysteine failed to modify the relaxations caused by the agents. Hydroxicobalamine significantly diminished the relaxation effect of Rut-Caf. Glibenclamide significantly increased the efficacy of Rut-Caf (pEC50 4.09 x 7.09. There were no alterations of potency or maximum effect of the substances with the addition of the other ion channel blockers. Rut-Caf induced production of significant amounts of cGMP and cAMP during the relaxation process. CONCLUSIONS: In conclusion, Rut-Caf causes relaxation of smooth muscle of corpus cavernosum by means of activation of sGC with intracellular production of cGMP and cAMP; and also by release of NO in the intracellular environment. Rut-Caf releases the NO free radical and it does not act directly on the potassium ion channels.

  9. The Octyl Ester of Ginsenoside Rh2 Induces Lysosomal Membrane Permeabilization via Bax Translocation

    Directory of Open Access Journals (Sweden)

    Fang Chen

    2016-04-01

    Full Text Available Ginsenoside Rh2 is a potential pharmacologically active metabolite of ginseng. Previously, we have reported that an octyl ester derivative of ginsenoside Rh2 (Rh2-O, has been confirmed to possess higher bioavailability and anticancer effect than Rh2 in vitro. In order to better assess the possibility that Rh2-O could be used as an anticancer compound, the underlying mechanism was investigated in this study. The present results revealed that lysosomal destabilization was involved in the early stage of cell apoptosis in HepG2 cells induced by Rh2-O. Rh2-O could induce an early lysosomal membrane permeabilization with the release of lysosomal protease cathepsins to the cytosol in HepG2 cells. The Cat B inhibitor (leu and Cat D inhibitor (pepA inhibited Rh2-O-induced HepG2 apoptosis as well as tBid production and Δφm depolarization, indicating that lysosomal permeabilization occurred upstream of mitochondrial dysfunction. In addition, Rh2-O induced a significant increase in the protein levels of DRAM1 and Bax (p < 0.05 in lysosomes of HepG2 cells. Knockdown of Bax partially inhibited Rh2-O-induced Cat D release from lysosomes. Thus it was concluded that Rh2-O induced apoptosis of HepG2 cells through activation of the lysosomal-mitochondrial apoptotic pathway involving the translocation of Bax to the lysosome.

  10. A chromatin modifying enzyme, SDG8, is involved in morphological, gene expression, and epigenetic responses to mechanical stimulation

    OpenAIRE

    Cazzonelli, Christopher I.; Nisar, Nazia; Roberts, Andrea C.; Murray, Kevin D.; Borevitz, Justin O.; Pogson, Barry J.

    2014-01-01

    Thigmomorphogenesis is viewed as being a response process of acclimation to short repetitive bursts of mechanical stimulation or touch. The underlying molecular mechanisms that coordinate changes in how touch signals lead to long-term morphological changes are enigmatic. Touch responsive gene expression is rapid and transient, and no transcription factor or DNA regulatory motif has been reported that could confer a genome wide mechanical stimulus. We report here on a chromatin modifying enzym...

  11. Translocation of the neonicotinoid seed treatment clothianidin in maize.

    Science.gov (United States)

    Alford, Adam; Krupke, Christian H

    2017-01-01

    Neonicotinoid seed treatments, typically clothianidin or thiamethoxam, are routinely applied to >80% of maize (corn) seed grown in North America where they are marketed as a targeted pesticide delivery system. Despite this widespread use, the amount of compound translocated into plant tissue from the initial seed treatment to provide protection has not been reported. Our two year field study compared concentrations of clothianidin seed treatments in maize to that of maize without neonicotinoid seed treatments and found neonicotinoids present in root tissues up to 34 days post planting. Plant-bound clothianidin concentrations followed an exponential decay pattern with initially high values followed by a rapid decrease within the first ~20 days post planting. A maximum of 1.34% of the initial seed treatment was successfully recovered from plant tissues in both study years and a maximum of 0.26% was recovered from root tissue. Our findings show neonicotinoid seed treatments may provide protection from some early season secondary maize pests. However, the proportion of the neonicotinoid seed treatment clothianidin translocated into plant tissues throughout the growing season is low overall and this observation may provide a mechanism to explain reports of inconsistent efficacy of this pest management approach and increasing detections of environmental neonicotinoids.

  12. Translocation of the neonicotinoid seed treatment clothianidin in maize.

    Directory of Open Access Journals (Sweden)

    Adam Alford

    Full Text Available Neonicotinoid seed treatments, typically clothianidin or thiamethoxam, are routinely applied to >80% of maize (corn seed grown in North America where they are marketed as a targeted pesticide delivery system. Despite this widespread use, the amount of compound translocated into plant tissue from the initial seed treatment to provide protection has not been reported. Our two year field study compared concentrations of clothianidin seed treatments in maize to that of maize without neonicotinoid seed treatments and found neonicotinoids present in root tissues up to 34 days post planting. Plant-bound clothianidin concentrations followed an exponential decay pattern with initially high values followed by a rapid decrease within the first ~20 days post planting. A maximum of 1.34% of the initial seed treatment was successfully recovered from plant tissues in both study years and a maximum of 0.26% was recovered from root tissue. Our findings show neonicotinoid seed treatments may provide protection from some early season secondary maize pests. However, the proportion of the neonicotinoid seed treatment clothianidin translocated into plant tissues throughout the growing season is low overall and this observation may provide a mechanism to explain reports of inconsistent efficacy of this pest management approach and increasing detections of environmental neonicotinoids.

  13. Adenine nucleotide translocator transports haem precursors into mitochondria.

    Directory of Open Access Journals (Sweden)

    Motoki Azuma

    2008-08-01

    Full Text Available Haem is a prosthetic group for haem proteins, which play an essential role in oxygen transport, respiration, signal transduction, and detoxification. In haem biosynthesis, the haem precursor protoporphyrin IX (PP IX must be accumulated into the mitochondrial matrix across the inner membrane, but its mechanism is largely unclear. Here we show that adenine nucleotide translocator (ANT, the inner membrane transporter, contributes to haem biosynthesis by facilitating mitochondrial accumulation of its precursors. We identified that haem and PP IX specifically bind to ANT. Mitochondrial uptake of PP IX was inhibited by ADP, a known substrate of ANT. Conversely, ADP uptake into mitochondria was competitively inhibited by haem and its precursors, suggesting that haem-related porphyrins are accumulated into mitochondria via ANT. Furthermore, disruption of the ANT genes in yeast resulted in a reduction of haem biosynthesis by blocking the translocation of haem precursors into the matrix. Our results represent a new model that ANT plays a crucial role in haem biosynthesis by facilitating accumulation of its precursors into the mitochondrial matrix.

  14. Obstructive jaundice promotes bacterial translocation in humans.

    Science.gov (United States)

    Kuzu, M A; Kale, I T; Cöl, C; Tekeli, A; Tanik, A; Köksoy, C

    1999-01-01

    Significant bacterial translocation was demonstrated following experimental biliary obstruction, however very little is known about the importance and the prevalence of gut-origin sepsis in obstructive jaundice patients. Therefore, the aim of this study was to investigate the concept of gut-origin sepsis in obstructive jaundiced patients and its clinical importance. Twenty-one patients requiring laparotomy for obstructive jaundice (group I) and thirty patients operated on electively mainly for chronic cholecystitis (group II) were studied. Peritoneal swab, mesenteric lymph node, portal venous blood, liver wedge biopsy and bile were sampled for culture immediately after opening the peritoneum. Additionally, peripheral blood samples were taken pre- and post-operatively from all patients. Post-operatively, patients were monitored for infectious complications. The mean serum bilirubin concentration, gamma glutamyl transferase and alkaline phosphatase levels in jaundiced patients before therapeutic intervention were significantly higher than in control patients. Five patients demonstrated bacterial translocation in group I (24%), whereas only one did so in group II (3.5%, p jaundice significantly promotes bacterial translocation in humans, however, its clinical importance has yet to be defined.

  15. Dynamics of translocation and substrate binding in individual complexes formed with active site mutants of {phi}29 DNA polymerase.

    Science.gov (United States)

    Dahl, Joseph M; Wang, Hongyun; Lázaro, José M; Salas, Margarita; Lieberman, Kate R

    2014-03-07

    The Φ29 DNA polymerase (DNAP) is a processive B-family replicative DNAP. Fluctuations between the pre-translocation and post-translocation states can be quantified from ionic current traces, when individual Φ29 DNAP-DNA complexes are held atop a nanopore in an electric field. Based upon crystal structures of the Φ29 DNAP-DNA binary complex and the Φ29 DNAP-DNA-dNTP ternary complex, residues Tyr-226 and Tyr-390 in the polymerase active site were implicated in the structural basis of translocation. Here, we have examined the dynamics of translocation and substrate binding in complexes formed with the Y226F and Y390F mutants. The Y226F mutation diminished the forward and reverse rates of translocation, increased the affinity for dNTP in the post-translocation state by decreasing the dNTP dissociation rate, and increased the affinity for pyrophosphate in the pre-translocation state. The Y390F mutation significantly decreased the affinity for dNTP in the post-translocation state by decreasing the association rate ∼2-fold and increasing the dissociation rate ∼10-fold, implicating this as a mechanism by which this mutation impedes DNA synthesis. The Y390F dissociation rate increase is suppressed when complexes are examined in the presence of Mn(2+) rather than Mg(2+). The same effects of the Y226F or Y390F mutations were observed in the background of the D12A/D66A mutations, located in the exonuclease active site, ∼30 Å from the polymerase active site. Although translocation rates were unaffected in the D12A/D66A mutant, these exonuclease site mutations caused a decrease in the dNTP dissociation rate, suggesting that they perturb Φ29 DNAP interdomain architecture.

  16. Financial costs of large carnivore translocations--accounting for conservation.

    Directory of Open Access Journals (Sweden)

    Florian J Weise

    Full Text Available Human-carnivore conflict continues to present a major conservation challenge around the world. Translocation of large carnivores is widely implemented but remains strongly debated, in part because of a lack of cost transparency. We report detailed translocation costs for three large carnivore species in Namibia and across different translocation scenarios. We consider the effect of various parameters and factors on costs and translocation success. Total translocation cost for 30 individuals in 22 events was $80,681 (US Dollars. Median translocation cost per individual was $2,393, and $2,669 per event. Median cost per cheetah was $2,760 (n = 23, and $2,108 per leopard (n = 6. One hyaena was translocated at a cost of $1,672. Tracking technology was the single biggest cost element (56%, followed by captive holding and feeding. Soft releases, prolonged captivity and orphaned individuals also increased case-specific costs. A substantial proportion (65.4% of the total translocation cost was successfully recovered from public interest groups. Less than half the translocations were confirmed successes (44.4%, 3 unknown with a strong species bias. Four leopards (66.7% were successfully translocated but only eight of the 20 cheetahs (40.0% with known outcome met these strict criteria. None of the five habituated cheetahs was translocated successfully, nor was the hyaena. We introduce the concept of Individual Conservation Cost (ICC and define it as the cost of one successfully translocated individual adjusted by costs of unsuccessful events of the same species. The median ICC for cheetah was $6,898 and $3,140 for leopard. Translocations are costly, but we demonstrate that they are not inherently more expensive than other strategies currently employed in non-lethal carnivore conflict management. We conclude that translocation should be one available option for conserving large carnivores, but needs to be critically evaluated on a case-by-case basis.

  17. Financial costs of large carnivore translocations--accounting for conservation.

    Science.gov (United States)

    Weise, Florian J; Stratford, Ken J; van Vuuren, Rudolf J

    2014-01-01

    Human-carnivore conflict continues to present a major conservation challenge around the world. Translocation of large carnivores is widely implemented but remains strongly debated, in part because of a lack of cost transparency. We report detailed translocation costs for three large carnivore species in Namibia and across different translocation scenarios. We consider the effect of various parameters and factors on costs and translocation success. Total translocation cost for 30 individuals in 22 events was $80,681 (US Dollars). Median translocation cost per individual was $2,393, and $2,669 per event. Median cost per cheetah was $2,760 (n = 23), and $2,108 per leopard (n = 6). One hyaena was translocated at a cost of $1,672. Tracking technology was the single biggest cost element (56%), followed by captive holding and feeding. Soft releases, prolonged captivity and orphaned individuals also increased case-specific costs. A substantial proportion (65.4%) of the total translocation cost was successfully recovered from public interest groups. Less than half the translocations were confirmed successes (44.4%, 3 unknown) with a strong species bias. Four leopards (66.7%) were successfully translocated but only eight of the 20 cheetahs (40.0%) with known outcome met these strict criteria. None of the five habituated cheetahs was translocated successfully, nor was the hyaena. We introduce the concept of Individual Conservation Cost (ICC) and define it as the cost of one successfully translocated individual adjusted by costs of unsuccessful events of the same species. The median ICC for cheetah was $6,898 and $3,140 for leopard. Translocations are costly, but we demonstrate that they are not inherently more expensive than other strategies currently employed in non-lethal carnivore conflict management. We conclude that translocation should be one available option for conserving large carnivores, but needs to be critically evaluated on a case-by-case basis.

  18. Opioid Mechanism Involvement in the Synergism Produced by the Combination of Diclofenac and Caffeine in the Formalin Model

    OpenAIRE

    Flores-Ramos, Jos? Mar?a; D?az-Reval, M. Irene

    2013-01-01

    Analgesics can be administered in combination with caffeine for improved analgesic effectiveness in a process known as synergism. The mechanisms by which these combinations produce synergism are not yet fully understood. The aim of this study was to analyze whether the administration of diclofenac combined with caffeine produced antinociceptive synergism and whether opioid mechanisms played a role in this event. The formalin model was used to evaluate the antinociception produced by the oral ...

  19. Mitochondrial tRNA gene translocations in highly eusocial bees

    Directory of Open Access Journals (Sweden)

    Daniela Silvestre

    2006-01-01

    Full Text Available Mitochondrial gene rearrangement events, especially involving tRNA genes, have been described more frequently as more complete mitochondrial genome sequences are becoming available. In the present work, we analyzed mitochondrial tRNA gene rearrangements between two bee species belonging to the tribes Apini and Meliponini within the "corbiculate Apidae". Eleven tRNA genes are in different genome positions or strands. The molecular events responsible for each translocation are explained. Considering the high number of rearrangements observed, the data presented here contradict the general rule of high gene order conservation among closely related organisms, and also represent a powerful molecular tool to help solve questions about phylogeny and evolution in bees.

  20. Involvement of peripheral III nerve in multiple sclerosis patient: Report of a new case and discussion of the underlying mechanism.

    Science.gov (United States)

    Shor, Natalia; Amador, Maria Del Mar; Dormont, Didier; Lubetzki, Catherine; Bertrand, Anne

    2017-04-01

    Multiple sclerosis (MS) is a chronic disorder that affects the central nervous system myelin. However, a few radiological cases have documented an involvement of peripheral cranial nerves, within the subarachnoid space, in MS patients. We report the case of a 36-year-old female with a history of relapsing-remitting (RR) MS who consulted for a subacute complete paralysis of the right III nerve. Magnetic resonance imaging (MRI) examination showed enhancement and thickening of the cisternal right III nerve, in continuity with a linear, mesencephalic, acute demyelinating lesion. Radiological involvement of the cisternal part of III nerve has been reported only once in MS patients. Radiological involvement of the cisternal part of V nerve occurs more frequently, in almost 3% of MS patients. In both situations, the presence of a central demyelinating lesion, in continuity with the enhancement of the peripheral nerve, suggests that peripheral nerve damage is a secondary process, rather than a primary target of demyelination.

  1. Measurement of background translocation frequencies in individuals with clones

    Energy Technology Data Exchange (ETDEWEB)

    Wade, Marcelle J. [California State Univ. (CalState), Hayward, CA (United States)

    1996-08-01

    In the leukemia case the unseparated B and T lymphocytes had a high translocation frequency even after 0.0014, respectively. After purging all clones from the data, the translocation frequencies for Bio 8 and Bio 23 were 0.00750.0014 and 0.0073 metaphases were scored for chromosomal aberrations,, specifically reciprocal translocations, using fluorescence in situ hybridization (FISH). Metaphase spreads were used from two healthy, unexposed individuals (not exposed to radiation, chemotherapy or radiotherapy) and one early B- precursor acute lymphocytic leukemia (ALL) patient (metaphase spreads from both separated T lymphocytes and unseparated B and T lymphocytes were scored). All three individuals had an abnormally high translocation frequency. The high translocation frequencies resulted from clonal expansion of specific translocated chromosomes. I show in this thesis that by purging (discounting or removing) clones from the data of unexposed individuals, one can obtain true background translocation frequencies. In two cases, Bio 8 and Bio 23, the measured translocation frequency for chromosomes 1, 2 and 4 was 0.0124 purging all of the clones from the data. This high translocation frequency may be due to a low frequency of some clones and may not be recognized. The separated T lymphocytes had a higher translocation frequency than expected.

  2. Cd translocation into generative organs of linseed (Linum usitatissimum L.)

    Energy Technology Data Exchange (ETDEWEB)

    Becher, M.; Woerner, A.; Schubert, S. [Giessen Univ. (Germany). Inst. fuer Pflanzenernaehrung

    1997-12-31

    Linseed is able to accumulate considerably high concentrations of Cd in generative organs, the dietary critical value of 0.3 {mu}g Cd/g seed often being exceeded. Differences between genotypes of linseed in this respect, however, have been observed but the underlying mechanisms responsible for these differences are unknown. The aim of the present work was to identify these mechanisms by studying the Cd accumulation of the linseed genotypes Antares and McGregor which differ in their ability to accumulate Cd in the seeds. Cultivar Antares is a high and cv. McGregor is low Cd accumulator which was confirmed in a pot experiment. It was found that the differences between these genotypes were Cd-specific and were caused neither by single seed weight nor by Cd translocation into the shoot. The distribution pattern of Cd within mature capsules between the pericarp and the seeds differed from that of Ca which was used as a phloem-immobile reference ion. From these results we conclude that Cd was translocated from the pericarp into the seeds via the phloem. This conclusion was supported by direct Cd determination in collected phloem sap from linseed stems. As sources of seed-Cd we identified the pericarps of capsules and the leaves. The genotype differences concerning the Cd concentrations in the seeds may be explained in terms of differences in phloem translocation of Cd. (orig.) [Deutsch] Oellein vermag Cd in betraechtlichen Konzentrationen in den Samen zu akkumulieren. Aus diesem Grund wird der Grenzwert fuer Diaetlein von 0,3 {mu}g/g Samen im Anbau haeufig ueberschritten. Es gibt jedoch genotypische Unterschiede, deren zugrundeliegende Mechanismen nicht bekannt sind. Das Ziel der vorliegenden Arbeit bestand darin, diese Mechanismen an den Oelleinsorten Antares und McGregor zu untersuchen. Antares akkumuliert grosse, McGregor hingegen geringe Mengen Cd in den Samen. Diese Beobachtungen konnten in einem Gefaessversuch bestaetigt werden. Es wurde gezeigt, dass die

  3. An extrahepatic receptor-associated protein-sensitive mechanism is involved in the metabolism of triglyceride-rich lipoproteins

    NARCIS (Netherlands)

    Vlijmen, B.J.M. van; Rohlmann, A.; Page, S.T.; Bensadoun, A.; Bos, I.S.T.; Berkel, T.J.C. van; Havekes, L.M.; Herz, J.

    1999-01-01

    We have used adenovirus-mediated gene transfer in mice to investigate low density lipoprotein receptor (LDLR) and LDLR-related protein (LRP)- independent mechanisms that control the metabolism of chylomicron and very low density lipoprotein (VLDL) remnants in vivo. Overexpression of receptor-

  4. Are mechanically sensitive regulators involved in the function and (patho)physiology of cerebral palsy-related contractures?

    Science.gov (United States)

    Pingel, Jessica; Suhr, Frank

    2017-08-01

    Skeletal muscle tissue is mechanosensitive, as it is able to sense mechanical impacts and to translate these into biochemical signals making the tissue adapt. Among its mechanosensitive nature, skeletal muscle tissue is the largest metabolic organ of the human body. Disturbances in skeletal muscle mechanosensing and metabolism cause and contribute to many diseases, i.e. muscular dystrophies/myopathies, cardiovascular diseases, COPD or diabetes mellitus type 2. A less commonly focused muscle-related disorder is clinically known as muscle contractures that derive from cerebral palsy (CP) conditions in young and adults. Muscle contractures are characterized by gradually increasing passive muscle stiffness resulting in complete fixation of joints. Different mechanisms have been identified in CP-related contractures, i.e. altered calcium handling, altered metabolism or altered titin regulation. The muscle-related extracellular matrix (ECM), specifically collagens, plays a role in CP-related contractures. Herein, we focus on mechanically sensitive complexes, known as costameres (Cstms), and discuss their potential role in CP-related contractures. We extend our discussion to the ECM due to the limited knowledge of its role in CP-related contractures. The aims of this review are (1) to summarize CP-related contracture mechanisms, (2) to raise novel hypotheses on the genesis of contractures with a focus on Cstms, and (3) to stimulate novel approaches to study CP-related contractures.

  5. A chromatin modifying enzyme, SDG8, is involved in morphological, gene expression, and epigenetic responses to mechanical stimulation.

    Science.gov (United States)

    Cazzonelli, Christopher I; Nisar, Nazia; Roberts, Andrea C; Murray, Kevin D; Borevitz, Justin O; Pogson, Barry J

    2014-01-01

    Thigmomorphogenesis is viewed as being a response process of acclimation to short repetitive bursts of mechanical stimulation or touch. The underlying molecular mechanisms that coordinate changes in how touch signals lead to long-term morphological changes are enigmatic. Touch responsive gene expression is rapid and transient, and no transcription factor or DNA regulatory motif has been reported that could confer a genome wide mechanical stimulus. We report here on a chromatin modifying enzyme, SDG8/ASHH2, which can regulate the expression of many touch responsive genes identified in Arabidopsis. SDG8 is required for the permissive expression of touch induced genes; and the loss of function of sdg8 perturbs the maximum levels of induction on selected touch gene targets. SDG8 is required to maintain permissive H3K4 trimethylation marks surrounding the Arabidopsis touch-inducible gene TOUCH 3 (TCH3), which encodes a calmodulin-like protein (CML12). The gene neighboring was also slightly down regulated, revealing a new target for SDG8 mediated chromatin modification. Finally, sdg8 mutants show perturbed morphological response to wind-agitated mechanical stimuli, implicating an epigenetic memory-forming process in the acclimation response of thigmomorphogenesis.

  6. Positive effect of Chang Run Tong on colonic remodeling in streptozotocin-induced diabetic rats and mechanisms involved

    DEFF Research Database (Denmark)

    Zhao, Jingbo; Sha, Hong; Gregersen, Hans

    2015-01-01

    Objective: It has been documented that the Chinese medicine Chang Run Tong (CRT) has a positive effect on constipation which is a prominent symptom in diabetic patients. This present study investigated the effect and the possible mechanism of CRT on colonic remodeling in streptozotocin (STZ...

  7. Autophosphorylation of [alpha]CaMKII is Differentially Involved in New Learning and Unlearning Mechanisms of Memory Extinction

    Science.gov (United States)

    Kimura, Ryoichi; Silva, Alcino J.; Ohno, Masuo

    2008-01-01

    Accumulating evidence indicates the key role of [alpha]-calcium/calmodulin-dependent protein kinase II ([alpha]CaMKII) in synaptic plasticity and learning, but it remains unclear how this kinase participates in the processing of memory extinction. Here, we investigated the mechanism by which [alpha]CaMKII may mediate extinction by using…

  8. Biochemical mechanisms involved in the endotoxin-induced type II cell hyperplasia in F344 rat lung

    International Nuclear Information System (INIS)

    Tesfaigzi, J.; Johnson, N.F.; Lechner, J.F.

    1994-01-01

    Proliferative lesions and pulmonary epithelial neoplasms induced in the rat by plutonium inhalation have been shown to be of type II cell origin. Defining the gene changes responsible for the development of the type II proliferative lesions would help to elucidate the genetic events involved in the expansion of initiated type II cells into fully transformed tumor cells. One problem in identifying these gene alterations is dissociating changes in gene expression linked to cell replication or repair from those involved in tumor initiation and progression. The long-term goals of these investigations are to first develop and characterize a model of transient type II cell hyperplasia. Second, changes in gene expression associated with remodeling epithelium will be compared to gene changes exhibited by the 239 Pu-induced hyperplastic lesions

  9. Delayed translocation of NGFI-B/RXR in glutamate stimulated neurons allows late protection by 9-cis retinoic acid

    International Nuclear Information System (INIS)

    Mathisen, Gro H.; Fallgren, Asa B.; Strom, Bjorn O.; Boldingh Debernard, Karen A.; Mohebi, Beata U.; Paulsen, Ragnhild E.

    2011-01-01

    Highlights: → NGFI-B and RXR translocate out of the nucleus after glutamate treatment. → Arresting NGFI-B/RXR in the nucleus protects neurons from excitotoxicity. → Late protection by 9-cis RA is possible due to a delayed translocation of NGFI-B/RXR. -- Abstract: Nuclear receptor and apoptosis inducer NGFI-B translocates out of the nucleus as a heterodimer with RXR in response to different apoptosis stimuli, and therefore represents a potential pharmacological target. We found that the cytosolic levels of NGFI-B and RXRα were increased in cultures of cerebellar granule neurons 2 h after treatment with glutamate (excitatory neurotransmitter in the brain, involved in stroke). To find a time-window for potential intervention the neurons were transfected with gfp-tagged expressor plasmids for NGFI-B and RXR. The default localization of NGFI-Bgfp and RXRgfp was nuclear, however, translocation out of the nucleus was observed 2-3 h after glutamate treatment. We therefore hypothesized that the time-window between treatment and translocation would allow late protection against neuronal death. The RXR ligand 9-cis retinoic acid was used to arrest NGFI-B and RXR in the nucleus. Addition of 9-cis retinoic acid 1 h after treatment with glutamate reduced the cytosolic translocation of NGFI-B and RXRα, the cytosolic translocation of NGFI-Bgfp observed in live neurons, as well as the neuronal death. However, the reduced translocation and the reduced cell death were not observed when 9-cis retinoic acid was added after 3 h. Thus, late protection from glutamate induced death by addition of 9-cis retinoic acid is possible in a time-window after apoptosis induction.

  10. Further studies on the possible relationship between radiation-induced reciprocal translocations and intrinsic radiosensitivity of human tumor cells

    International Nuclear Information System (INIS)

    Virsik-Peuckert, P.; Rave-Fraenk, M.; Schmidberger, H.

    1996-01-01

    Background and purpose. The aim of the present study was to estimate yields of radiation-induced translocations in surviving cells of several human tumor cell lines and in normal diploid human fibroblasts, and to compare these yields with corresponding intrinsic radiosensitivities determined by standard colony-formation assay. Material and methods. The yields of radiation-induced reciprocal translocations were investigated by fluorescence in situ hybridization. Chromosomes no. 1 and no. 4 were 'painted' with fluorescent hybridization probes for whole chromosomes. Translocation yields and cell survival were determined for different doses up to 6 Gy of 200 kV X-rays. Results. We observed a higher frequency of reciprocal translocations in the radiosensitive cells MCF-7 and MDA-MB-436 than in the radioresistant cells CaSki, WiDr, A549 and normal skin fibroblasts. For primary squamous cell carcinoma cells, ZMK-1, an intermediate radiosensitivity and an intermediate translocation yield were observed. The dose-dependence of translocation yields involving chromosomes no. 1 or no. 4 varied in different cell lines: it was linear or linear with a plateau at higher doses. Conclusions. A comparison of the data obtained with chromosomes no. 1 and no. 4 in the investigated cell types, indicates that intrinsic radiosensitivity of different tumor cells observed at the survival level, is correlated with different translocation yields, respectively. This correlation was observed for all cell types investigated, independent of the number of copies of the painted chromosome per cell or the radiation dose. However, for low doses (under 1 Gy), the yields of translocations determined for the individual chromosomes seem to be too low for a discrimination between radioresistant or radiosensitive cells

  11. The soluble mannose receptor is released from the liver in cirrhotic patients, but is not associated with bacterial translocation

    DEFF Research Database (Denmark)

    Laursen, Tea L; Rødgaard-Hansen, Sidsel; Møller, Holger J

    2017-01-01

    BACKGROUND & AIMS: Intestinal bacterial translocation is involved in activation of liver macrophages in cirrhotic patients. Macrophages play a key role in liver inflammation and are involved in the pathogenesis of cirrhosis and complications. Bacterial translocation may be determined by presence...... receptor level was elevated in the hepatic vein compared with the portal vein (0.57(interquartile range 0.31) vs 0.55(0.40) mg/L, P=.005). The soluble mannose receptor levels were similar in bacterial DNA-positive and -negative patients. The soluble mannose receptor level in the portal and hepatic veins...

  12. Immune Response Induction and New Effector Mechanisms Possibly Involved in Protection Conferred by the Cuban Anti-Meningococcal BC Vaccine

    Science.gov (United States)

    Pérez, Oliver; Lastre, Miriam; Lapinet, José; Bracho, Gustavo; Díaz, Miriam; Zayas, Caridad; Taboada, Carlos; Sierra, Gustavo

    2001-01-01

    This report explores the participation of some afferent mechanisms in the immune response induced by the Cuban anti-meningococcal vaccine VA-MENGOC-BC. The induction of delayed-type hypersensitivity in nursing babies and lymphocyte proliferation after immunization is demonstrated. The presence of gamma interferon IFN-γ and interleukin-2 (IL-2) mRNAs but absence of IL-4, IL-5, and IL-10 mRNAs were observed in peripheral blood mononuclear cells from immunized subjects after in vitro challenge with outer membrane vesicles. In addition, some effector functions were also explored. The presence of opsonic activity was demonstrated in sera from vaccinees. The role of neutrophils as essential effector cells was shown. In conclusion, we have shown that, at least in the Cuban adult population, VA-MENGOC-BC induces mechanisms with a T-helper 1 pattern in the afferent and effector branches of the immune response. PMID:11401992

  13. Longing Itineraries: Building the Translocal Community

    Directory of Open Access Journals (Sweden)

    Gustavo López Angel

    2017-06-01

    Full Text Available Migration has reshaped social practices, the sense of belonging has been rethought, and the membership is renegotiated and contended; this is why strategies for their sustainability have been generated. The translocal community operates through multilocated relationships that reveal the ways in which migrants are adapting to the new demands of the community. We emphasize the emotional impulse of nostalgia as one of the vehicles of sustainability for the community. The community is redefined and understood in a set of socio-cultural relationships its members generate, and where the locality is not central, but the connection. A new dimension of the social community space is not just the community gathered in a specific place, but also that agreements, commitments, and acknowledgments are exhibited and settled in the cyberspace; this cyberspace gives cohesion and brings a dynamic element to preserve the community, despite the fact that it is even less concrete than the spatial notion of territory. Facebook, YouTube and a blog are the web platforms of the virtual space where "neighbors, compatriots and citizens" (categories of ascription from the migration get together, where there is a reproduction of social practices (even the most ancient and fundamental ones, to give a new dimension to a translocal, multilocated and ciberlocated community.

  14. Another reptile translocation to a national park

    Directory of Open Access Journals (Sweden)

    W.R. Branch

    1990-10-01

    Full Text Available On 4 May 1988 a sub-adult (50 mm snout-vent length, 42 mm tail Jones' girdled lizard Cordylus tropidosternum jonesi was collected in a pile of wood being off-loaded at the new restcamp in the Karoo National Park, Beaufort West. The wood had been transported by lorry from the Kruger National Park. The specimen is deposited in the herpetological collection of the Port Elizabeth Museum (PEM R 4584. Jones' girdled lizard is a small, arboreal cordylid that shelters under tree bark and in hollow logs. It is common and widely-distributed in the Kruger National Park (Pienaar, Haacke & Jacobsen 1983, The Reptiles of the Kruger National Park, 3rd edition. Pretoria: National Parks Board and adjacent lowveld, being replaced in northern Zimbabwe and East Africa by the nominate race. Hewitt & Power (1913, Transactions of the Royal Society of South Africa 3: 147-176, 1913 reported a similar translocation of the species to Kimberley in association with timber brought to the diamond mining camps. One of us noted recently the ease and danger of the unwitting spread of commensal reptile species into conservation areas (Branch 1978, Koedoe 30: 165, and this is confirmed by this additional example. We recommend that should similar shipments of wood be considered essential, then they be fumigated to prevent the translocation of other alien organisms that may potentially have more dangerous consequences.

  15. Pharmacological Characterization of the Mechanisms Involved in Delayed Calcium Deregulation in SH-SY5Y Cells Challenged with Methadone

    Directory of Open Access Journals (Sweden)

    Sergio Perez-Alvarez

    2012-01-01

    Full Text Available Previously, we have shown that SH-SY5Y cells exposed to high concentrations of methadone died due to a necrotic-like cell death mechanism related to delayed calcium deregulation (DCD. In this study, we show that, in terms of their Ca2+ responses to 0.5 mM methadone, SH-SY5Y cells can be pooled into four different groups. In a broad pharmacological survey, the relevance of different Ca2+-related mechanisms on methadone-induced DCD was investigated including extracellular calcium, L-type Ca2+ channels, μ-opioid receptor, mitochondrial inner membrane potential, mitochondrial ATP synthesis, mitochondrial Ca2+/2Na+-exchanger, reactive oxygen species, and mitochondrial permeability transition. Only those compounds targeting mitochondria such as oligomycin, FCCP, CGP 37157, and cyclosporine A were able to amend methadone-induced Ca2+ dyshomeostasis suggesting that methadone induces DCD by modulating the ability of mitochondria to handle Ca2+. Consistently, mitochondria became dramatically shorter and rounder in the presence of methadone. Furthermore, analysis of oxygen uptake by isolated rat liver mitochondria suggested that methadone affected mitochondrial Ca2+ uptake in a respiratory substrate-dependent way. We conclude that methadone causes failure of intracellular Ca2+ homeostasis, and this effect is associated with morphological and functional changes of mitochondria. Likely, this mechanism contributes to degenerative side effects associated with methadone treatment.

  16. Physiological Mechanisms Only Tell Half Story: Multiple Biological Processes are involved in Regulating Freezing Tolerance of Imbibed Lactuca sativa Seeds.

    Science.gov (United States)

    Jaganathan, Ganesh K; Han, Yingying; Li, Weijie; Song, Danping; Song, Xiaoyan; Shen, Mengqi; Zhou, Qiang; Zhang, Chenxue; Liu, Baolin

    2017-03-13

    The physiological mechanisms by which imbibed seeds survive freezing temperatures in their natural environment have been categorized as freezing avoidance by supercooling and freezing tolerance by extracellular freeze-desiccation, but the biochemical and molecular mechanisms conferring seed freezing tolerance is unexplored. In this study, using imbibed Lactuca sativa seeds we show that fast cooled seeds (60 °C h -1 ) suffered significantly higher membrane damage at temperature between -20 °C and -10 °C than slow cooled (3 °Ch -1 ) seeds (P  0.05). However, both SOD activity and accumulation of free proline were induced significantly after slow cooling to -20 °C compared with fast cooling. RNA-seq demonstrated that multiple pathways were differentially regulated between slow and fast cooling. Real-time verification of some differentially expressed genes (DEGs) revealed that fast cooling caused mRNA level changes of plant hormone and ubiquitionation pathways at higher sub-zero temperature, whilst slow cooling caused mRNA level change of those pathways at lower sub-zero ttemperatures. Thus, we conclude that imbibed seed tolerate low temperature not only by physiological mechanisms but also by biochemical and molecular changes.

  17. Spinal translocator protein (TSPO) modulates pain behavior in rats with CFA-induced monoarthritis.

    Science.gov (United States)

    Hernstadt, Hayley; Wang, Shuxing; Lim, Grewo; Mao, Jianren

    2009-08-25

    Translocator protein 18 kDa (TSPO), previously known as the peripheral benzodiazepine receptor (PBR), is predominantly located in the mitochondrial outer membrane and plays an important role in steroidogenesis, immunomodulation, cell survival and proliferation. Previous studies have shown an increased expression of TSPO centrally in neuropathology, as well as in injured nerves. TSPO has also been implicated in modulation of nociception. In the present study, we examined the hypothesis that TSPO is involved in the initiation and maintenance of inflammatory pain using a rat model of Complete Freund's Adjuvant (CFA)-induced monoarthritis of the tibio-tarsal joint. Immunohistochemistry was performed using Iba-1 (microglia), NeuN (neurons), anti-Glial Fibrillary Acidic Protein, GFAP (astrocytes) and anti-PBR (TSPO) on Days 1, 7 and 14 after CFA-induced arthritis. Rats with CFA-induced monoarthritis showed mechanical allodynia and thermal hyperalgesia on the ipsilateral hindpaw, which correlated with the increased TSPO expression in ipsilateral laminae I-II on all experimental days. Iba-1 expression in the ipsilateral dorsal horn was also increased on Days 7 and 14. Moreover, TSPO was colocalized with Iba-1, GFAP and NeuN within the spinal cord dorsal horn. The TSPO agonist Ro5-4864, given intrathecally, dose-dependently retarded or prevented the development of mechanical allodynia and thermal hyperalgesia in rats with CFA-induced monoarthritis. These findings provide evidence that spinal TSPO is involved in the development and maintenance of inflammatory pain behaviors in rats. Thus, spinal TSPO may present a central target as a complementary therapy to reduce inflammatory pain.

  18. Evolution of the Banana Genome (Musa acuminata) Is Impacted by Large Chromosomal Translocations.

    Science.gov (United States)

    Martin, Guillaume; Carreel, Françoise; Coriton, Olivier; Hervouet, Catherine; Cardi, Céline; Derouault, Paco; Roques, Danièle; Salmon, Frédéric; Rouard, Mathieu; Sardos, Julie; Labadie, Karine; Baurens, Franc-Christophe; D'Hont, Angélique

    2017-09-01

    Most banana cultivars are triploid seedless parthenocarpic clones derived from hybridization between Musa acuminata subspecies and sometimes M. balbisiana. M. acuminata subspecies were suggested to differ by a few large chromosomal rearrangements based on chromosome pairing configurations in intersubspecies hybrids. We searched for large chromosomal rearrangements in a seedy M. acuminata ssp. malaccensis banana accession through mate-pair sequencing, BAC-FISH, targeted PCR and marker (DArTseq) segregation in its progeny. We identified a heterozygous reciprocal translocation involving two distal 3 and 10 Mb segments from chromosomes 01 and 04, respectively, and showed that it generated high segregation distortion, reduced recombination and linkage between chromosomes 01 and 04 in its progeny. The two chromosome structures were found to be mutually exclusive in gametes and the rearranged structure was preferentially transmitted to the progeny. The rearranged chromosome structure was frequently found in triploid cultivars but present only in wild malaccensis ssp. accessions, thus suggesting that this rearrangement occurred in M. acuminata ssp. malaccensis. We propose a mechanism for the spread of this rearrangement in Musa diversity and suggest that this rearrangement could have played a role in the emergence of triploid cultivars. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  19. [Dermohypodermitis and gut translocation Escherichia coli septicemia in a newborn infant].

    Science.gov (United States)

    Gouache, E; Chantier, E; Hubert, N; Rivière, M-F

    2013-01-01

    The burden of neonatal bacterial infections continues. They remain a significant cause of death and morbidity, despite recommendations for prevention. The epidemiology of these infections has changed. Currently the two most causative pathogens for early-onset neonatal sepsis and for late-onset sepsis in term infants are Group B streptococci (GBS) and Escherichia coli. E. coli's role is increasingly important since the widespread use of intrapartum antibiotic prophylaxis. In late-onset infections, one of the suggested pathophysiological mechanisms is microbial translocation in the gut secondary to digestive colonization, particularly when E. coli is isolated in blood cultures. This can occur either before or after birth. Bacterial sepsis can be associated with various non-specific peripheral manifestations involving skin and soft tissues. We report the case of a full-term, 26-day-old newborn admitted to the hospital for fever. She presented with dermohypodermitis of the left trunk and was diagnosed with E. coli septicemia. She was discharged in good condition after appropriate intravenous antibiotic therapy. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  20. Timely activation of budding yeast APCCdh1 involves degradation of its inhibitor, Acm1, by an unconventional proteolytic mechanism.

    Directory of Open Access Journals (Sweden)

    Michael Melesse

    Full Text Available Regulated proteolysis mediated by the ubiquitin proteasome system is a fundamental and essential feature of the eukaryotic cell division cycle. Most proteins with cell cycle-regulated stability are targeted for degradation by one of two related ubiquitin ligases, the Skp1-cullin-F box protein (SCF complex or the anaphase-promoting complex (APC. Here we describe an unconventional cell cycle-regulated proteolytic mechanism that acts on the Acm1 protein, an inhibitor of the APC activator Cdh1 in budding yeast. Although Acm1 can be recognized as a substrate by the Cdc20-activated APC (APCCdc20 in anaphase, APCCdc20 is neither necessary nor sufficient for complete Acm1 degradation at the end of mitosis. An APC-independent, but 26S proteasome-dependent, mechanism is sufficient for complete Acm1 clearance from late mitotic and G1 cells. Surprisingly, this mechanism appears distinct from the canonical ubiquitin targeting pathway, exhibiting several features of ubiquitin-independent proteasomal degradation. For example, Acm1 degradation in G1 requires neither lysine residues in Acm1 nor assembly of polyubiquitin chains. Acm1 was stabilized though by conditional inactivation of the ubiquitin activating enzyme Uba1, implying some requirement for the ubiquitin pathway, either direct or indirect. We identified an amino terminal predicted disordered region in Acm1 that contributes to its proteolysis in G1. Although ubiquitin-independent proteasome substrates have been described, Acm1 appears unique in that its sensitivity to this mechanism is strictly cell cycle-regulated via cyclin-dependent kinase (Cdk phosphorylation. As a result, Acm1 expression is limited to the cell cycle window in which Cdk is active. We provide evidence that failure to eliminate Acm1 impairs activation of APCCdh1 at mitotic exit, justifying its strict regulation by cell cycle-dependent transcription and proteolytic mechanisms. Importantly, our results reveal that strict cell

  1. Timely Activation of Budding Yeast APCCdh1 Involves Degradation of Its Inhibitor, Acm1, by an Unconventional Proteolytic Mechanism

    Science.gov (United States)

    Melesse, Michael; Choi, Eunyoung; Hall, Hana; Walsh, Michael J.; Geer, M. Ariel; Hall, Mark C.

    2014-01-01

    Regulated proteolysis mediated by the ubiquitin proteasome system is a fundamental and essential feature of the eukaryotic cell division cycle. Most proteins with cell cycle-regulated stability are targeted for degradation by one of two related ubiquitin ligases, the Skp1-cullin-F box protein (SCF) complex or the anaphase-promoting complex (APC). Here we describe an unconventional cell cycle-regulated proteolytic mechanism that acts on the Acm1 protein, an inhibitor of the APC activator Cdh1 in budding yeast. Although Acm1 can be recognized as a substrate by the Cdc20-activated APC (APCCdc20) in anaphase, APCCdc20 is neither necessary nor sufficient for complete Acm1 degradation at the end of mitosis. An APC-independent, but 26S proteasome-dependent, mechanism is sufficient for complete Acm1 clearance from late mitotic and G1 cells. Surprisingly, this mechanism appears distinct from the canonical ubiquitin targeting pathway, exhibiting several features of ubiquitin-independent proteasomal degradation. For example, Acm1 degradation in G1 requires neither lysine residues in Acm1 nor assembly of polyubiquitin chains. Acm1 was stabilized though by conditional inactivation of the ubiquitin activating enzyme Uba1, implying some requirement for the ubiquitin pathway, either direct or indirect. We identified an amino terminal predicted disordered region in Acm1 that contributes to its proteolysis in G1. Although ubiquitin-independent proteasome substrates have been described, Acm1 appears unique in that its sensitivity to this mechanism is strictly cell cycle-regulated via cyclin-dependent kinase (Cdk) phosphorylation. As a result, Acm1 expression is limited to the cell cycle window in which Cdk is active. We provide evidence that failure to eliminate Acm1 impairs activation of APCCdh1 at mitotic exit, justifying its strict regulation by cell cycle-dependent transcription and proteolytic mechanisms. Importantly, our results reveal that strict cell-cycle expression profiles

  2. Factors affecting translocation and sclerotial formation in Morchella esculenta

    International Nuclear Information System (INIS)

    Amir, R.; Levanon, D.; Hadar, Y.; Chet, I.

    1995-01-01

    Amir, R., Levanon, D., Hadar, Y., and Chet, I. 1995. Factors affecting translocation and sclerotial formation in Morchella esculenta. Experimental Mycology 19, 61-70. Morchella esculenta was grown on square split plates, forming sclerotia on one side and mycelium on the other. After the fungus ceased to colonize and before sclerotial initials appeared, [ 14 C]3-O-methyl glucose was added to the edge of the plate on the mycelial side. The effect of various activities in the mycelium (source) and sclerotia (sink) on sclerotial formation and translocation were examined using inhibitors and water potential changes of the media. Sodium azide or cycloheximide applied separately to both sides inhibited both sclerotial formation and translocation, showing that processes in the source and sink depend on metabolic activities as well as protein synthesis. The use of nikkomycin inhibited sclerotial formation, without affecting translocation to the sclerotia. Since the hyphal tips swelled and burst, the translocated compounds were lost to the media. In a strain defective in sclerotial formation, used as a control, no translocation took place, showing that there is a connection between sclerotial formation and translocation. Reversal of the water potential gradient between the two media (lower on the mycelial side), reduced the formation of sclerotia and translocation to them. Translocation to Morchella sclerotia takes place via turgor driven mass flow, but is nevertheless affected by activities in both the source and the sink. (author)

  3. Label Free Chromosome Translocation Detection with Silicon nanowires

    DEFF Research Database (Denmark)

    Kwasny, Dorota; Andersen, Karsten Brandt; Frøhling, Kasper Bayer

    HROMOSOME translocation, which is a rearrangement of arms between two chromosomes, is a major group of chromosome abnormalities leading to cancer. As a result, two derivative chromosomes with sequences coming from both chromosomes are formed. The current translocation detection method is a Fluore......HROMOSOME translocation, which is a rearrangement of arms between two chromosomes, is a major group of chromosome abnormalities leading to cancer. As a result, two derivative chromosomes with sequences coming from both chromosomes are formed. The current translocation detection method...

  4. MECHANISMS IN ENDOCRINOLOGY: Kidney involvement in patients with primary hyperparathyroidism: an update on clinical and molecular aspects.

    Science.gov (United States)

    Verdelli, C; Corbetta, S

    2017-01-01

    Primary hyperparathyroidism (PHPT) is the third most common endocrine disease. Kidney is a target of both chronic elevated PTH and calcium in PHPT. The classic PHPT complications of symptomatic kidney stones and nephrocalcinosis have become rare and the PHPT current presentation is asymptomatic with uncertain and long-lasting progression. Nonetheless, the routine use of imaging and of biochemical determinations have revealed the frequent occurrence of asymptomatic kidney stones, hypercalciuria and reduced kidney function in asymptomatic PHPT patients. Though the pathogenesis is far from being elucidated, PHPT is associated with reduced renal function, in terms of estimated glomerular filtration rate, and related increased morbidity and mortality. In the last decade, the effort of the Kidney Disease: Improving Global Outcomes (KDIGO) panel of experts highlighted that even mild reduction of kidney function is associated with increased risk of cardiovascular disease. These considerations provided the basis for the Fourth Workshop recommendations of a more extensive diagnostic workout about kidney features and of wider criteria for parathyroid surgery including asymptomatic kidney disease. Moreover, kidney involvement in PHPT is likely to be affected by variants of genes coding the key molecules regulating the calcium and ions renal handling; these features might have clinical relevance and should be considered both during diagnostic workout and follow-up. Finally, the effects of parathyroid surgery and of medical treatment on kidney involvement of PHPT are reviewed. © 2017 European Society of Endocrinology.

  5. The Crystal Structure and Mechanism of an Unusual Oxidoreductase, GilR, Involved in Gilvocarcin V Biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Noinaj, Nicholas; Bosserman, Mary A.; Schickli, M. Alexandra; Piszczek, Grzegorz; Kharel, Madan K.; Pahari, Pallab; Buchanan, Susan K.; Rohr, Jürgen (NIH); (Kentucky)

    2012-11-26

    GilR is a recently identified oxidoreductase that catalyzes the terminal step of gilvocarcin V biosynthesis and is a unique enzyme that establishes the lactone core of the polyketide-derived gilvocarcin chromophore. Gilvocarcin-type compounds form a small distinct family of anticancer agents that are involved in both photo-activated DNA-alkylation and histone H3 cross-linking. High resolution crystal structures of apoGilR and GilR in complex with its substrate pregilvocarcin V reveals that GilR belongs to the small group of a relatively new type of the vanillyl-alcohol oxidase flavoprotein family characterized by bicovalently tethered cofactors. GilR was found as a dimer, with the bicovalently attached FAD cofactor mediated through His-65 and Cys-125. Subsequent mutagenesis and functional assays indicate that Tyr-445 may be involved in reaction catalysis and in mediating the covalent attachment of FAD, whereas Tyr-448 serves as an essential residue initiating the catalysis by swinging away from the active site to accommodate binding of the 6R-configured substrate and consequently abstracting the proton of the hydroxyl residue of the substrate hemiacetal 6-OH group. These studies lay the groundwork for future enzyme engineering to broaden the substrate specificity of this bottleneck enzyme of the gilvocarcin biosynthetic pathway for the development of novel anti-cancer therapeutics.

  6. Effects of Time-Compressed Speech Training on Multiple Functional and Structural Neural Mechanisms Involving the Left Superior Temporal Gyrus.

    Science.gov (United States)

    Maruyama, Tsukasa; Takeuchi, Hikaru; Taki, Yasuyuki; Motoki, Kosuke; Jeong, Hyeonjeong; Kotozaki, Yuka; Nakagawa, Seishu; Nouchi, Rui; Iizuka, Kunio; Yokoyama, Ryoichi; Yamamoto, Yuki; Hanawa, Sugiko; Araki, Tsuyoshi; Sakaki, Kohei; Sasaki, Yukako; Magistro, Daniele; Kawashima, Ryuta

    2018-01-01

    Time-compressed speech is an artificial form of rapidly presented speech. Training with time-compressed speech (TCSSL) in a second language leads to adaptation toward TCSSL. Here, we newly investigated the effects of 4 weeks of training with TCSSL on diverse cognitive functions and neural systems using the fractional amplitude of spontaneous low-frequency fluctuations (fALFF), resting-state functional connectivity (RSFC) with the left superior temporal gyrus (STG), fractional anisotropy (FA), and regional gray matter volume (rGMV) of young adults by magnetic resonance imaging. There were no significant differences in change of performance of measures of cognitive functions or second language skills after training with TCSSL compared with that of the active control group. However, compared with the active control group, training with TCSSL was associated with increased fALFF, RSFC, and FA and decreased rGMV involving areas in the left STG. These results lacked evidence of a far transfer effect of time-compressed speech training on a wide range of cognitive functions and second language skills in young adults. However, these results demonstrated effects of time-compressed speech training on gray and white matter structures as well as on resting-state intrinsic activity and connectivity involving the left STG, which plays a key role in listening comprehension.

  7. Muscle contraction increases carnitine uptake via translocation of OCTN2

    International Nuclear Information System (INIS)

    Furuichi, Yasuro; Sugiura, Tomoko; Kato, Yukio; Takakura, Hisashi; Hanai, Yoshiteru; Hashimoto, Takeshi; Masuda, Kazumi

    2012-01-01

    Highlights: ► Muscle contraction augmented carnitine uptake into rat hindlimb muscles. ► An increase in carnitine uptake was due to an intrinsic clearance, not blood flow. ► Histochemical analysis showed sarcolemmal OCTN2 was emphasized after contraction. ► OCTN2 protein in sarcolemmal fraction was increased in contracting muscles. -- Abstract: Since carnitine plays an important role in fat oxidation, influx of carnitine could be crucial for muscle metabolism. OCTN2 (SLC22A5), a sodium-dependent solute carrier, is assumed to transport carnitine into skeletal muscle cells. Acute regulation of OCTN2 activity in rat hindlimb muscles was investigated in response to electrically induced contractile activity. The tissue uptake clearance (CL uptake ) of L-[ 3 H]carnitine during muscle contraction was examined in vivo using integration plot analysis. The CL uptake of [ 14 C]iodoantipyrine (IAP) was also determined as an index of tissue blood flow. To test the hypothesis that increased carnitine uptake involves the translocation of OCTN2, contraction-induced alteration in the subcellular localization of OCTN2 was examined. The CL uptake of L-[ 3 H]carnitine in the contracting muscles increased 1.4–1.7-fold as compared to that in the contralateral resting muscles (p uptake of [ 14 C]IAP was much higher than that of L-[ 3 H]carnitine, but no association between the increase in carnitine uptake and blood flow was obtained. Co-immunostaining of OCTN2 and dystrophin (a muscle plasma membrane marker) showed an increase in OCTN2 signal in the plasma membrane after muscle contraction. Western blotting showed that the level of sarcolemmal OCTN2 was greater in contracting muscles than in resting muscles (p < 0.05). The present study showed that muscle contraction facilitated carnitine uptake in skeletal muscles, possibly via the contraction-induced translocation of its specific transporter OCTN2 to the plasma membrane.

  8. Involvement of spinal glutamate transporter-1 in the development of mechanical allodynia and hyperalgesia associated with type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Shi J

    2016-11-01

    Full Text Available Jinshan Shi,1,* Ke Jiang,2,* Zhaoduan Li,3 1Department of Anesthesiology, Guizhou Provincial People’s Hospital, 2Department of Anesthesiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 3Department of Anesthesiology, Tianjin Nankai Hospital, Tianjin, People’s Republic of China *These authors contributed equally to this work Abstract: Little is known about the effects of the development of type 2 diabetes on glutamate homeostasis in the spinal cord. Therefore, we quantified the extracellular levels of glutamate in the spinal cord of Zucker diabetic fatty (ZDF rats using in vivo microdialysis. In addition, protein levels of glutamate transporter-1 (GLT-1 in the spinal cord of ZDF rats were measured using Western blot. Finally, the effects of repeated intrathecal injections of ceftriaxone, which was previously shown to enhance GLT-1 expression, on the development of mechanical allodynia and hyperalgesia as well as on basal extracellular level of glutamate and the expression of GLT-1 in the spinal cord of ZDF rats were evaluated. It was found that ZDF rats developed mechanical hyperalgesia and allodynia, which were associated with increased basal extracellular levels of glutamate and attenuated levels of GLT-1 expression in the spinal cord, particularly in the dorsal horn. Furthermore, repeated intrathecal administrations of ceftriaxone dose-dependently prevented the development of mechanical hyperalgesia and allodynia in ZDF rats, which were correlated with enhanced GLT-1 expression without altering the basal glutamate levels in the spinal cord of ZDF rats. Overall, the results suggested that impaired glutamate reuptake in the spinal cord may contribute to the development of neuropathic pains in type 2 diabetes. Keywords: diabetes, peripheral neuropathy, spinal cord, Zucker diabetic fatty rats, glutamate, glutamate transporter-1

  9. Rapid and Localized Mechanical Stimulation and Adhesion Assay: TRPM7 Involvement in Calcium Signaling and Cell Adhesion.

    Directory of Open Access Journals (Sweden)

    Wagner Shin Nishitani

    Full Text Available A cell mechanical stimulation equipment, based on cell substrate deformation, and a more sensitive method for measuring adhesion of cells were developed. A probe, precisely positioned close to the cell, was capable of a vertical localized mechanical stimulation with a temporal frequency of 207 Hz, and strain magnitude of 50%. This setup was characterized and used to probe the response of Human Umbilical Endothelial Vein Cells (HUVECs in terms of calcium signaling. The intracellular calcium ion concentration was measured by the genetically encoded Cameleon biosensor, with the Transient Receptor Potential cation channel, subfamily M, member 7 (TRPM7 expression inhibited. As TRPM7 expression also regulates adhesion, a relatively simple method for measuring adhesion of cells was also developed, tested and used to study the effect of adhesion alone. Three adhesion conditions of HUVECs on polyacrylamide gel dishes were compared. In the first condition, the substrate is fully treated with Sulfo-SANPAH crosslinking and fibronectin. The other two conditions had increasingly reduced adhesion: partially treated (only coated with fibronectin, with no use of Sulfo-SANPAH, at 5% of the normal amount and non-treated polyacrylamide gels. The cells showed adhesion and calcium response to the mechanical stimulation correlated to the degree of gel treatment: highest for fully treated gels and lowest for non-treated ones. TRPM7 inhibition by siRNA on HUVECs caused an increase in adhesion relative to control (no siRNA treatment and non-targeting siRNA, but a decrease to 80% of calcium response relative to non-targeting siRNA which confirms the important role of TRPM7 in mechanotransduction despite the increase in adhesion.

  10. Evolutionary Mechanisms Involved in Emergence of Viral Haemorrhagic Septicaemia Virus (VHSV) into Cultured Rainbow Trout, Oncorhynchus mykiss

    DEFF Research Database (Denmark)

    Schönherz, Anna A.

    virulence, causing extensive losses to the aquacultre industry. Cross-species transmission and subsequent adaptation to cultured raibow trout is observed occasionally. However, the biological background facilitationg VHSV emergense has yet to be identified. In the present PhD project potential mechanisms...... facilitation VHSV emergence into cultured raibow trout were explored. In vivo infection trials and in selico based molecular analysis were performed to independently investigate the first two steps of viral emergence, namely initial introduction to- and subsequent adaptation and establishment within the new...... of genetic variation, and that VHSV emergence into cultured rainbow torut was accompanied by rapid adaptive evolution within the viral glucoprotein...

  11. Optimization of an innovative approach involving mechanical activation and acid digestion for the extraction of lithium from lepidolite

    Science.gov (United States)

    Vieceli, Nathália; Nogueira, Carlos A.; Pereira, Manuel F. C.; Durão, Fernando O.; Guimarães, Carlos; Margarido, Fernanda

    2018-01-01

    The recovery of lithium from hard rock minerals has received increased attention given the high demand for this element. Therefore, this study optimized an innovative process, which does not require a high-temperature calcination step, for lithium extraction from lepidolite. Mechanical activation and acid digestion were suggested as crucial process parameters, and experimental design and response-surface methodology were applied to model and optimize the proposed lithium extraction process. The promoting effect of amorphization and the formation of lithium sulfate hydrate on lithium extraction yield were assessed. Several factor combinations led to extraction yields that exceeded 90%, indicating that the proposed process is an effective approach for lithium recovery.

  12. Are mechanically sensitive regulators involved in the function and (patho)physiology of cerebral palsy-related contractures?

    DEFF Research Database (Denmark)

    Pingel, Jessica; Suhr, Frank

    2017-01-01

    mechanosensing and metabolism cause and contribute to many diseases, i.e. muscular dystrophies/myopathies, cardiovascular diseases, COPD or diabetes mellitus type 2. A less commonly focused muscle-related disorder is clinically known as muscle contractures that derive from cerebral palsy (CP) conditions in young...... role in CP-related contractures. The aims of this review are (1) to summarize CP-related contracture mechanisms, (2) to raise novel hypotheses on the genesis of contractures with a focus on Cstms, and (3) to stimulate novel approaches to study CP-related contractures....